Oracle® Fusion Middleware
Developing with Oracle WebCenter Sites

12¢ (12.2.1.1)
E71617-03
March 2018

ORACLE"

Oracle Fusion Middleware Developing with Oracle WebCenter Sites, 12c (12.2.1.1)
E71617-03

Copyright © 2012, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Puneeta Bharani, Promila Chitkara

Contributing Authors: Debosri Brahma

Contributors: Anil Yamarti, Aswini Kalyanam, Brian Cheyne, Chandra Busireddy, Eric Gandt, Eugene
Shevchenko, Hareesh Kadlabalu, Kannan Appachi, Kuldeep Tiwari, Naveen Chintala, Revanth Potnuru, Ravi
Khanuja, Saikat Chaudhuri, Sailaxmi Rajanala, Viswadas Leher

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience xlvi
Documentation Accessibility xIvi
Related Documents xlvi
Conventions Xlvii
Part | Getting Started with Oracle WebCenter Sites
1 Introduction to Developing with WebCenter Sites

1.1 About Developing with WebCenter Sites 1-1
1.2 Typical Tasks for WebCenter Sites Developers 1-2
1.2.1 Data Models for Content Display 1-3
1.2.2 Content Entry Forms for Content Management Sites 1-3
1.2.3 Templates and Elements to Render Content on the Website 1-4
1.2.3.1 Element Files 1-4
1.2.3.2 APIs and JSP Tags 1-5
1.2.3.3 Sessions and Cookies 1-6

1.2.4 WebCenter Sites Systems for Development, Management, Delivery,
and Testing 1-6
1.2.5 Approvals and Publishing 1-7
1.2.6 Caching to Optimize Performance 1-8
1.2.6.1 Page Caching 1-8
1.2.6.2 Resultset Caching 1-9
1.2.6.3 Asset Caching 1-9
1.2.6.4 Satellite Server Caching 1-9
1.3 WebCenter Sites Utilities 1-10
1.4 WebCenter Sites Interfaces 1-11
1.5 Use Case Scenarios for WebCenter Sites 1-13
1.5.1 Developing Informational (Branding) Websites 1-14
1.5.2 Creating Marketing-Oriented Websites 1-15

ORACLE

1.5.3 Creating Mobile Websites 1-16
2 Overview of the Avisports Sample Site
2.1 Touring the Avisports Sample Site as a Content Contributor 2-1
2.2 Touring the Infrastructure of the Avisports Sample Site 2-2
3 The WebCenter Sites Development Process
3.1 Step 1: Set Up the Team 3-1
3.2 Step 2: Create Functional and Design Specifications 3-2
3.2.1 Functional Requirements 3-2
3.2.2 Page Design 3-2
3.2.3 Caching Strategy 3-3
3.2.4 Security Strategy (Access Control) 3-3
3.2.5 Separate Format from Content (Elements from Assets) 3-3
3.2.5.1 Determine the Asset Types (Content) 3-3
3.2.5.2 Decide How to Handle Images and Other Blobs 3-4
3.2.5.3 Map Out the Functional Design and Format (Elements) 3-4
3.2.6 Data Design 3-4
3.2.6.1 Asset Types 3-4
3.2.6.2 Auxiliary Tables That Support Your Asset Types 3-5
3.2.6.3 Visitor Data 3-5
3.3 Step 3: Set Management System Requirements 3-5
3.4 Step 4: Implement the Data Design 3-6
3.5 Step 5: Build the Online Site 3-6
3.6 Step 6: Set Up the Management System 3-7
3.6.1 Import Content as Assets 3-7
3.6.2 Import Catalog Data and Flex Asset Data 3-7
3.6.3 Instruct the Editorial Team About Site Design 3-7
3.7 Step 7: Set Up the Delivery System 3-8
3.8 Step 8: Publish to the Delivery System 3-8
Part |l Building Your Data Model
4 Understanding the Asset Types and Asset Models
4.1 What Are Asset Models? 4-1
4.1.1 Two Data Models 4-2
4.1.2 What Are Asset Types? 4-2
4.1.2.1 Asset Types Delivered with WebCenter Sites 4-4
ORACLE v

4.1.2.2 Asset Types Delivered with Engage 4-5

4.1.3 Which Asset Model Should You Use to Represent Your Content? 4-6
4.1.3.1 When to Use the Basic Model 4-6

4.1.3.2 When to Use the Flex Model 4-6

4.2 The Basic Asset Model 4-7
4.2.1 Relationships Between Basic Assets 4-7
4.2.1.1 Associations 4-8

4.2.1.2 Unnamed Relationships 4-8

4.2.2 Category, Source, and Subtype 4-8
4.2.2.1 Category 4-8

4.2.2.2 Source 4-9

4.2.2.3 Subtype 4-9

4.2.3 Basic Asset Types and the Database 4-10
4.2.3.1 Template Asset Type and the Database 4-11

4.2.3.2 Default Columns in the Basic Asset Type Database Table 4-11

4.3 The Flex Asset Model 4-15
4.3.1 The Flex Family 4-16
4.3.1.1 Parent, Child, and Flex Assets 4-17

4.3.2 The Flex Family in the Avisports Sample Site 4-17
4.3.3 Flex Attributes 4-18
4.3.3.1 Data Types for Attributes 4-18

4.3.3.2 Default Input Styles for Attributes 4-19

4.3.3.3 Foreign Attributes 4-19

4.3.4 Flex Parents and Flex Parent Definitions 4-20
4.3.4.1 Business Rules and Taxonomy 4-21

4.3.5 Flex Assets and Flex Definition Assets 4-22
4.3.6 Flex Families and the Database 4-23
4.3.6.1 Default Columns in the Flex Asset Type Database Table 4-23

4.3.6.2 The Mungo Tables 4-24

4.3.6.3 The MungoBlobs Table 4-25

4.3.6.4 The _AMap Tables 4-25

4.4 Assetsets and Searchstates 4-26
4.5 Search Engines and the Two Asset Models 4-27
4.6 Tags and the Two Asset Models 4-27
4.7 Summary: Basic and Flex Asset Models 4-27

5 Designing Basic Asset Types

5.1 About the AssetMaker Utility 5-1
5.1.1 How AssetMaker Works 5-1
5.1.2 Asset Descriptor Files 5-4

ORACLE Y

5.1.2.1 About the Asset Descriptor File 5-4
5.1.2.2 About Format and Syntax 5-4
5.1.2.3 About the AssetMaker Tags 5-5
5.1.3 Columns in the Asset Type's Database Table 5-6
5.1.3.1 The Source Column: A Special Case 5-7
5.1.3.2 Storage Types for the Columns 5-7
5.1.3.3 Input Types for the Fields 5-7
5.1.3.4 Data Types for Standard Asset Fields 5-9
5.1.4 Elements and SQL Statements for the Asset Type 5-10
5.1.4.1 The Elements 5-11
5.1.4.2 The SQL Statements 5-14
5.2 Before You Begin Creating Basic Asset Types 5-15
5.2.1 Planning the Asset Type Design 5-15
5.2.2 Setting Up Your Development System 5-15
5.3 Creating Basic Asset Types 5-16
5.3.1 Coding the Asset Descriptor File 5-17
5.3.2 Uploading the Asset Descriptor File to WebCenter Sites 5-24
5.3.3 Creating the Asset Table 5-25
5.3.4 Configuring the Asset Type 5-26
5.3.5 Enabling the Asset Type on Your Site 5-27
5.3.6 Fine-Tuning the Asset Descriptor File 5-27
5.3.7 Customizing the Asset Type Elements (Optional) 5-28
5.3.8 Adding Subtypes (Optional) 5-29
5.3.9 Configuring Association Fields (Optional) 5-29
5.3.10 Configuring Categories (Optional) 5-31
5.3.11 Configuring Sources (Optional) 5-32
5.3.12 Adding Mimetypes (Conditional) 5-32
5.3.13 Editing Search Elements to Enable Indexed Search (Optional) 5-33
5.3.14 Creating and Assigning Asset Type Icons (Contributor Interface Only) 5-34
5.3.15 Coding Templates for the Asset Type 5-34
5.3.16 Moving the Asset Types to Other Systems 5-34
5.4 Deleting Basic Asset Types 5-34
6 Designing Flex Asset Types
6.1 About Designing Flex Asset Types 6-1
6.2 Design Tips for Flex Families 6-1
6.2.1 Visitors on the Delivery System 6-2
6.2.2 Users on the Management System 6-2
6.2.3 How Many Attribute Types Should You Create? 6-2
6.2.4 Designing Flex Attributes 6-3
ORACLE Vi

6.3
6.4
6.5
6.6

6.7

6.8

6.2.4.1 Which Data Types Are Available for Attributes
6.2.4.2 About Using Attribute Editors

6.2.4.3 Where Will Each Attribute Be Used?

6.2.4.4 Attribute Dependencies Imposed by Hierarchy

6.2.5
6.2.6

How Many Definition Types Should You Create?
Designing Parent Definition and Flex Definition Assets

6.2.6.1 Determining Hierarchical Place

6.2.6.2 Determining Attribute Inheritance

6.2.6.3 How Many Flex Parent Definition Assets?
6.2.6.4 How Many Flex Definition Assets?

The Flex Family Maker Utility

Flex Asset Elements

Setting Up Your Development System

Creating a Flex Asset Family

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

Creating a Flex Family

(Conditional) Creating Additional Flex Family Members
(Conditional) Configuring the Flex Family Members
Enabling the New Flex Asset Types

Create Flex Attributes

6.6.5.1 Creating Flex Attributes: Basic Procedure

6.6.5.2 Creating Flex Attributes of Type Blob (Upload Field)
6.6.5.3 Creating Flex Attributes of Type Asset

6.6.5.4 Creating Foreign Flex Attributes

6.6.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12
6.6.13
6.6.14

(Conditional) Creating Flex Filter Assets
Creating Parent Definition Assets
Creating Flex Definition Assets
Creating Flex Parent Assets
Creating and Assigning Asset Type Icons (Contributor Interface Only)
Coding Templates for the Flex Assets
Testing Your Design (Creating Test Flex Assets)
(Conditional) Creating Flex Asset Associations
Moving Asset Types to Other Systems

What You May Need to Know About Editing Flex Attributes, Parents, and
Definitions

6.7.1
6.7.2

6.7.3

What You May Need to Know About Editing Attributes

What You May Need to Know About Editing Parent Definitions and Flex
Definitions

What You May Need to Know About Editing Parents and Flex Assets

Using Product Sets

6.8.1
6.8.2

ORACLE

About Using Product Sets
Creating a Product Set

6-3
6-3
6-4
6-4
6-4
6-5

6-6
6-6
6-6
6-7
6-7
6-7
6-8
6-8
6-11
6-11
6-12
6-13
6-14
6-15
6-16
6-16
6-17
6-18
6-20
6-22
6-24
6-24
6-25
6-25
6-26

6-27
6-27

6-27
6-28
6-28
6-29
6-29

Vii

7 Creating a Hierarchical Flex Family

7.1 Hierarchical Organization 7-1
7.2 Flex Family Specifications 7-2
7.3 Creating a Sample Flex Family Using a Real-World Example 7-2
7.3.1 Creating a Flex Family 7-3
7.3.2 Enabling the New Flex Asset Types 7-4
7.3.3 Adding a Flex Family Tab to the WebCenter Sites Tree 7-4
7.3.4 Creating Parent Definition Assets 7-5
7.3.5 Creating Flex Parent Assets 7-7
7.3.6 Creating Flex Definition Assets 7-9
7.3.7 Creating Flex Assets 7-13
7.3.8 Translating the Formulaic Data Model into a Real-World Data Model 7-15
7.3.9 Developing Your Real-World Model 7-17

8 Creating Flex Filters

8.1 About Flex Filter Classes and Assets 8-1
8.1.1 Flex Filter Classes 8-1
8.1.2 Flex Filter Assets 8-3

8.2 Defining a Flex Filter Class and Creating a Flex Filter Asset 8-4
8.2.1 Implementation of a Flex Filter Class 8-4

8.2.1.1 AbstractFlexFilter Class Extension 8-5
8.2.2 Defining a Custom Flex Filter Class 8-6
8.2.3 Creating a Flex Filter Asset 8-8

8.3 Document Transformation Flex Filter 8-12
8.3.1 Default Solution 8-12
8.3.2 About Custom Solutions 8-13
8.3.3 Using a Default Transformation Engine 8-13
8.3.4 Customizing Document Transformation Flex Filter 8-13

8.3.4.1 Writing and Deploying a Document Transformer Flex Filter 8-13
8.3.4.2 Registering the Transformation Engine 8-14
8.3.4.3 Registering the Document Transformer 8-14

9 Designing Attribute Editors

9.1 About Attribute Editors 9-1
9.1.1 The presentationobject.dtd File 9-2
9.1.2 The Attribute Editor Asset 9-6

9.1.2.1 The Syntax and the Default Tags 9-6
9.1.2.2 CHECKBOXES 9-7
9.1.2.3 CKEditor 9-8

ORACLE viii

9.1.2.4 PICKASSET 9-11

9.1.25 PULLDOWN Example 9-11

9.1.2.6 RADIOBUTTONS 9-12

9.1.2.7 TEXTAREA 9-13

9.1.2.8 TEXTFIELD 9-14

9.1.2.9 TYPEAHEAD 9-15
9.1.2.10 UPLOADER 9-16

9.1.3 The Attribute Editor Elements 9-18
9.1.4 Conventions for the Attribute Editor Elements 9-19

9.2 Creating Attribute Editors 9-21
9.3 Customizing Attribute Editors 9-22
9.3.1 Example: Customized Attribute Editor 9-23
9.3.1.1 Step 1: Editing the presentationobject.dtd File 9-23

9.3.1.2 Step 2: Specifying Permission for the Example Attribute Editor 9-23

9.3.1.3 Step 3: Editing the TEXTAREA Element 9-23

9.3.2 Adding Custom Logic to Validate an Uploaded File 9-27

9.4 Considerations About Editing Attribute Editors 9-28

10 Configuring Bundled Attribute Editors

10.1 Configuring CKEditor 10-1
10.1.1 Before You Begin 10-1
10.1.2 How to Create a CKEditor Instance and Enable It for a Field 10-2
10.1.3 How to Enable CKEditor for Use in Web Mode 10-3
10.1.4 How to Enable Selected Asset Types for the CKEditor 10-4
10.1.5 How to Set the Approval Dependency for Included Assets 10-5
10.1.6 How to Customize the CKEditor Toolbar 10-6
10.1.7 How to Configure Spell Check Support in CKEditor 10-8

10.2 Configuring the Clarkii Online Image Editor 10-8
10.2.1 How to Create a Clarkii OIE Instance and Enable it for a Field 10-9
10.2.2 How to Configure Clarkii OIE Properties 10-13
10.2.3 How to Implement a Field Copier Filter to Classify Assets 10-15

10.3 Configuring the Image Picker 10-17
10.3.1 How to Categorize Image Assets for Display in Image Picker 10-18
10.3.2 How to Create Image Picker Attribute Editor Definition Code 10-18

11 Working with the WebCenter Sites Database

11.1 Types of Database Tables 11-1
11.1.1 Object Tables 11-2
11.1.2 Tree Tables 11-2

ORACLE iX

12

11.1.3 Content Tables 11-3
11.1.4 Foreign Tables 11-4
11.1.5 System Tables 11-4
11.1.6 lIdentifying a Table's Type 11-5
11.2 Types of Columns (Fields) 11-6
11.2.1 Generic Field Types 11-6
11.2.2 Database-Specific Field Types 11-8
11.2.3 Indirect Data Storage with the WebCenter Sites URL Field 11-8
11.3 About Adding to the System Tables 11-9
11.4 About Property Files and Databases 11-10
Managing Data in Non-Asset Tables
12.1 Using Methods and Tags to Program Data Management in Non-Asset
Tables 12-1
12.1.1 About Writing and Retrieving Data 12-1
12.1.1.1 Security Through CatalogManager 12-2
12.1.1.2 Tree Manager Commands for Managing the Tree Tables 12-3
12.1.2 Methods for Querying for Data 12-4
12.1.3 Lists and Listing Data 12-4
12.2 Coding Data Entry Forms 12-5
12.2.1 How To Add a Row 12-5
12.2.1.1 The addrowFORM Element 12-6
12.2.1.2 Root Element for the addrow Page 12-7
12.2.2 How To Delete a Row 12-8
12.2.2.1 The deleterowFORM Element 12-9
12.2.2.2 Root Element for the deleterow Page 12-9
12.2.3 How To Query a Table 12-11
12.2.3.1 The SelectNameForm Element 12-11
12.2.3.2 The Root Element for the QueryEditRowForm Page 12-12
12.2.3.3 The Root Element for the QueryEditRow Page 12-16
12.2.4 How To Query a Table with an Embedded SQL Statement 12-18
12.2.4.1 QuerylnlineSQLForm 12-18
12.2.4.2 The Root Element for the QuerylnlineSQL Page 12-19
12.3 Consideration About Deleting Non-Asset Tables 12-22

Part Ill Developing a Website

ORACLE

13 Website Development with the MVC Framework and APIs

13.1 Server-Side and Client-Side Development Methodologies 13-1
13.2 Server-Side MVC Framework 13-3
13.2.1 Developer’'s Samples Website 13-4
13.2.2 WebCenter Sites MVC Framework Overview 13-4
13.2.3 Controllers 13-6
13.2.4 Views 13-6
13.3 Pages, Pagelets, and Elements 13-6
13.4 Template and CSElement Assets 13-7
13.5 Page Assets and Site Navigation 13-8
13.6 Date-Based Preview 13-8
13.7 Multilingual Support 13-8
13.8 Caching in the MVC Framework 13-9
13.9 Server-Side Java APIs 13-9
13.9.1 Asset Reader 13-10
13.9.2 Navigation Reader 13-10
13.9.3 Link Builder 13-11
13.9.4 Blob Link Builder 13-12
13.9.5 Searcher 13-13
13.9.6 Recommendation Reader 13-14
13.9.7 Table Reader 13-16
13.10 REST APIs 13-16
13.11 Sample Websites 13-17
14 Developing a Server-Side Website
14.1 About Developing a Server-Side Website 14-1
14.2 Working with the Controller Interface 14-1
14.3 Creating a Controller 14-9
14.4 Creating a Template 14-10
14.5 Setting Up the Home Page 14-11
14.6 Adding Site Navigation 14-11
15 Developing a Client-Side Website
15.1 About Client-Side Websites 15-1
15.2 REST Calls for Developing REST-Avisports: Examples 15-1
15.2.1 Getting Navigation Menus 15-2
15.2.2 Getting the Home Page 15-3
15.2.3 Getting an Additional Website Page 15-5
15.2.4 Calling an Article from a Page 15-6

ORACLE

Xi

15.2.5 Calling a Collection Resource with Pagination 15-8
15.2.6 Calling a Search Resource 15-10
15.2.7 Calling Page Segments 15-11
15.2.7.1 Calling a Page Without Segments 15-12
15.2.7.2 Calling a Page with Segments That Target Specific Visitors 15-13
15.2.7.3 Calling a Page with Segments That Target Different Visitors 15-15
15.2.7.4 Calling a Page with Segments That Target More Visitors 15-17
16 Website Development with Tag Technologies

16.1 About Choosing a Coding Language 16-1
16.2 About the Oracle WebCenter Sites Context 16-2
16.2.1 The ICS Object 16-2
16.2.2 The FTCS tag 16-2
16.3 Understanding WebCenter Sites JSP 16-3
16.3.1 About the WebCenter Sites Standard Beginning 16-3
16.3.1.1 Taglib Directives 16-4
16.3.1.2 Page Directives 16-4
16.3.1.3 The cs:ftcs Tag 16-5

16.3.2 About JSP Implicit Objects 16-5
16.3.3 About JSP Syntax 16-6
16.3.4 About JSP Actions 16-6
16.3.5 About JSP Declarations 16-6
16.3.6 About Scriptlets and Expressions 16-6
16.3.7 About JSP Directives 16-7
16.3.8 About Oracle WebCenter Sites Tag Libraries 16-7
16.3.8.1 Tag Libraries for Both Basic and Flex Assets 16-9
16.3.8.2 Tag Libraries for Basic Assets 16-10
16.3.8.3 Tag Libraries for Flex Assets 16-10

16.4 Understanding WebCenter Sites XML 16-11
16.4.1 WebCenter Sites Standard Beginning 16-11
16.4.1.1 XML Version and Encoding 16-11
16.4.1.2 The DTD File 16-12
16.4.1.3 The FTCS Tag 16-12

16.4.2 XML Entities and Reserved Characters 16-12
16.4.3 XML Parsing Errors 16-13
16.5 Understanding WebCenter Sites Tags 16-13
16.5.1 Tags That Create the WebCenter Sites Context 16-14
16.5.2 Tags That Handle Variables 16-14
16.5.3 Tags That Call Pages and Elements 16-15
16.5.4 Tags That Create URLs 16-16

ORACLE

Xii

16.5.5 Tags That Control Caching 16-17

16.5.6 Tags That Set Cookies 16-17
16.5.7 Programming Construct Tags 16-17
16.5.8 Tags That Manage Compositional and Approval Dependencies 16-18
16.5.9 Tags That Retrieve Information About Basic Assets 16-19
16.5.9.1 Performance Notes About the Asset Tags 16-20
16.5.10 Tags That Create Assetsets (Flex Assets) 16-20
16.5.11 Tags That Create Searchstates (Flex Assets) 16-22
16.6 About Variables Supported in WebCenter Sites 16-24
16.6.1 Reserved Variables 16-25
16.6.2 Regular Variables 16-26
16.6.2.1 Variables with SETVAR 16-26
16.6.2.2 Variables Using a URL 16-26
16.6.2.3 Default Variables for Elements and Templates with Explorer 16-27
16.6.2.4 Variables Using HTML Forms 16-28

16.6.3 Session Variables 16-28
16.6.4 Working With Variables 16-29
16.6.4.1 Syntax to Read Variables' Values 16-29
16.6.4.2 Tags to Display Variables' Values 16-29
16.6.4.3 Assigning of One Variable Value to Another Variable 16-29
16.6.4.4 Variables in HTML Tags 16-30
16.6.4.5 Evaluation of Variables with IF/THEN/ELSE 16-31

16.6.5 Variables and Precedence 16-32
16.6.6 Best Practices with Variables 16-32
16.7 Other WebCenter Sites Storage Constructs 16-33
16.7.1 Built-ins 16-33
16.7.2 Lists 16-33
16.7.2.1 Looping Through Lists 16-33

16.7.3 Counters 16-34
16.8 About Values for Special Characters 16-35

17 About Sessions and Cookies

17.1 About Sessions 17-1
17.2 Session Lifetime 17-2
17.2.1 Session Variables Maintained by WebCenter Sites 17-2
17.2.2 Logging In and Logging Out 17-2
17.3 Sessions Example 17-3
17.3.1 FeelingsForm Element 17-3
17.3.2 SetFeeling Element 17-4
17.3.3 Meat Element 17-4

ORACLE Xiii

17.4 About Cookies 17-5

17.4.1 CookieServer 17-5
17.4.2 Cookie Tags 17-5
17.5 Cookie Example 17-6
17.5.1 Start.xml 17-6
17.5.2 ColorForm 17-7
17.5.3 CreateCookie 17-7
17.5.4 DisplayWelcome 17-7
17.5.5 Running the Cookie Example 17-8
17.6 Tips and Tricks 17-8
17.7 Satellite Server Session Tracking 17-8
17.7.1 Flushing a Session Using a URL 17-8
17.7.2 Flushing Current Session Information 17-9
17.7.3 Flushing Other Session Information 17-9

18 Creating Template, CSElement, and SiteEntry Assets

18.1 About Template, CSElement, and SiteEntry Assets 18-1
18.2 About Pages 18-2
18.2.1 Elements, Pagelets, and Caching 18-3
18.2.2 Calling Pages and Elements 18-3
18.2.3 Page vs. Pagelet 18-4
18.3 Using CSElement, Template, and SiteEntry Assets 18-5
18.3.1 Template Assets 18-6
18.3.2 CSElement Assets 18-7
18.3.3 SiteEntry Assets 18-7
18.3.4 Non-Asset Elements 18-8
18.4 Creating Template Assets 18-8
18.4.1 Before You Begin Creating a Template Asset 18-10
18.4.1.1 Naming a Template Asset 18-10
18.4.1.2 Designating a Template as Typed or Typeless 18-11
18.4.1.3 Template Sharing and Site Replication 18-11

18.4.2 Creating a Template Asset 18-12
18.4.2.1 Open the Template Form 18-13
18.4.2.2 Name and Describe the Template Asset 18-14
18.4.2.3 Configure the Template's Element 18-16
18.4.2.4 Configure SiteEntry 18-20
18.4.2.5 Configure the Map 18-24
18.4.2.6 Create a Thumbnail (Optional) 18-25
18.4.2.7 Inspect the Template 18-26

18.5 Creating CSElement Assets 18-28

ORACLE Xiv

18.5.1 Before You Begin Creating a CSElement 18-29
18.5.1.1 Naming the CSElement 18-29
18.5.1.2 CSElement Sharing and Site Replication 18-29

18.5.2 Creating a CSElement Asset 18-30
18.5.2.1 Open the CSElement Form 18-30
18.5.2.2 Name and Describe the CSElement Asset 18-31
18.5.2.3 Configure the Element 18-32
18.5.2.4 Configure the Map 18-36
18.5.2.5 Save and Inspect the CSElement 18-37
18.5.2.6 Add the CSElement to Bookmarks 18-38

18.6 Creating SiteEntry Assets 18-39

18.6.1 Before You Begin Creating SiteEntry Assets 18-40

18.6.2 Creating a SiteEntry Asset 18-40
18.6.2.1 Open the SiteEntry Form 18-40
18.6.2.2 Create the SiteEntry Asset 18-41
18.6.2.3 Save and Inspect the SiteEntry Asset 18-43

18.7 Managing Template, CSElement, and SiteEntry Assets 18-44

18.7.1 Designating Default Approval Templates (Static Publishing Only) 18-44

18.7.2 Editing Template, CSElement, and SiteEntry Assets 18-44

18.7.3 Sharing Template, CSElement, and SiteEntry Assets 18-45

18.7.4 Deleting Template, CSElement, and SiteEntry Assets 18-46

18.7.5 Previewing Template, CSElement, and SiteEntry Assets 18-46
18.7.5.1 Templates and Preview 18-46
18.7.5.2 CSElement and SiteEntry Assets and Preview 18-46

18.8 Using Oracle WebCenter Sites Explorer to Create and Edit Element Logic 18-47

18.8.1 Creating Templates and CSElements 18-48

18.8.2 Editing Templates and CSElements 18-48

19 Creating Templates and Wrappers
19.1 Working with Templates 19-1

19.1.1 Layout Templates 19-1
19.1.1.1 A layout template can be invoked from a browser 19-2
19.1.1.2 A layout template can be assigned to an asset 19-2
19.1.1.3 A layout template typically renders an entire web page 19-3
19.1.1.4 Use Case 1: Building a Layout Template for Article Assets 19-4

19.1.2 Pagelet Templates 19-9
19.1.2.1 A pagelet template cannot be invoked directly from a browser 19-9
19.1.2.2 A pagelet template cannot be assigned to an asset 19-9
19.1.2.3 A pagelet template renders a page fragment 19-9
19.1.2.4 Use Case 2: Using Pagelet Templates 19-10

ORACLE

XV

19.1.3 Page Templates 19-12
19.1.3.1 A Page Template Can be Invoked from a Browser 19-13
19.1.3.2 A Page Template Cannot be Assigned to an Asset 19-13
19.1.3.3 A Page Template Can be Used for Previewing 19-13

19.2 Working with Wrappers 19-13

19.2.1 Creating a Wrapper Page 19-13

19.2.2 Previewing Wrappers 19-14

20 Coding Elements for Templates and CSElements
20.1 About Dependencies 20-1

20.1.1 The Publishing System and Approval Dependencies 20-2
20.1.1.1 Calculating Approval Dependencies 20-2
20.1.1.2 Exists vs. Exact vs. None 20-3
20.1.1.3 Approval Templates for Export to Disk 20-4
20.1.1.4 Subtypes, Flex Definitions, and Approval Templates 20-5

20.1.2 Page Generation and Compositional Dependencies 20-5
20.1.2.1 CacheManager and Dynamic Publish Sessions 20-6
20.1.2.2 CacheManager and the Preview Function 20-6

20.2 About Coding to Log Dependencies 20-7

20.2.1 ASSET.LOAD and asset:load 20-7

20.2.2 The ASSETSET (assetset) Tag Family 20-7
20.2.2.1 Setting the Approval Dependency Type 20-8

20.2.3 RENDER.GETPAGEURL and render:getpageurl 20-8

20.2.4 RENDER.LOGDEP (render:logdep) 20-9
20.2.4.1 Setting the Approval Dependency Type 20-10

20.2.5 RENDER.FILTER and render:filter 20-10

20.2.6 RENDER.UNKNOWNDEPS and render:unknowndeps 20-10

20.3 About Invoking CSElement and SiteEntry Assets 20-11
20.4 Coding Elements to Display Basic Assets 20-12

20.4.1 Assets That Represent Simple Content 20-12

20.4.2 Associations 20-13

20.4.3 ImageFile Assets or Other Blob Assets 20-14

20.4.4 Basic Assets That Can Have Embedded Links 20-14

20.4.5 Collections 20-15
20.4.5.1 Collection Templates and Approval Dependencies 20-15
20.4.5.2 Collection Templates and Compositional Dependencies 20-16

20.4.6 Query Assets 20-16

20.4.7 Page Assets 20-17

20.5 About Coding Elements that Display Flex Assets 20-19

20.5.1 Assetsets 20-20

ORACLE

XVi

20.5.2 Searchstate Objects 20-20

20.5.3 Assetsets, Searchstates, and Flex Attribute Asset Types 20-21
20.5.4 Scope 20-21
20.6 Coding Templates That Display Flex Assets 20-22
20.6.1 Example Data Set for the Examples in This Section 20-22
20.6.2 Examples of Assetsets with One Product (Flex Asset) 20-23
20.6.2.1 Create a Searchstate and Apply It to an Assetset 20-24
20.6.2.2 Get the Price of the Product 20-24
20.6.2.3 Display the Price of the Product 20-24
20.6.2.4 Get the Colors for the Product 20-24
20.6.2.5 Display the Colors of the Product 20-25
20.6.2.6 Create a List Object for the ASSETSET.GETMULTIPLEVALUES
tag 20-25
20.6.2.7 Get the Value for Both Price and Color with
ASSETSET.GETMULTIPLEVALUES 20-25
20.6.2.8 Display the Value of Price and Color for the jeans-2 Product 20-26
20.6.3 Special Cases: Flex Attributes of Type Text, Blob, and URL 20-26
20.6.3.1 About Flex Attributes of Type Text 20-26
20.6.3.2 About Flex Attributes of Type Blob 20-26
20.6.3.3 Creating a BlobServer URL 20-27
20.6.3.4 Getting and Displaying the Value of a Blob Flex Attribute 20-28
20.6.4 Examples of Assetsets with Multiple Products (Flex Assets) 20-28
20.6.4.1 Creating a Searchstate and Apply it to an Assetset 20-29
20.6.4.2 Displaying the Number of Assets in the Assetset 20-29
20.6.4.3 Displaying the Colors That the Jeans Are Available In 20-29
20.6.4.4 Displaying Both the Colors and the Styles for the Jeans in the
Assetset 20-30
20.6.4.5 Creating a Table That Displays All the Jeans and Their Attribute
Values 20-30
20.6.4.6 Searching for Jeans Based on a Range of Prices 20-32
20.6.4.7 Searching for Jeans with a Wildcard for Color 20-32
20.6.4.8 Searching for Jeans with Specific Colors 20-33
20.7 Creating URLSs for Hyperlinks 20-33
20.7.1 RENDER.GETPAGEURL (render:getpageurl) 20-34
20.7.2 RENDER.SATELLITEBLOB (render:satelliteblob) 20-34
20.7.3 RENDER.GETBLOBURL (render:getbloburl) 20-35
20.7.4 Using the referURL Variable 20-35
20.8 Handling Error Conditions 20-35
20.8.1 Using the Errno Variable 20-36
20.8.2 Ensuring that Incorrect Pages Are Not Cached 20-37
20.9 Encoding Page Arguments 20-38

ORACLE XVii

20.10 What You May Need to Know About Securing Your Site Against XSS
Attacks 20-38

21 Coding Templates for In-Context and Presentation Editing

21.1 Coding Templates for In-Context Content Editing 21-1
21.1.1 Attribute Data Types 21-2
21.1.2 Making String Fields Editable 21-2

21.1.2.1 Variants of the <insite:edit/> Tag 21-4
21.1.3 Making Text Fields Editable 21-4
21.1.4 Making Date Fields Editable 21-5

21.1.4.1 Date Formatting APIs 21-6

21.1.4.2 Enabling Date Fields for Editing in Web Mode 21-7
21.1.5 Making Binary Fields Editable 21-8
21.1.6 Making Asset Fields Editable 21-9

21.1.6.1 Editing an Association 21-12

21.1.6.2 Editing a Parent Asset 21-12
21.1.7 Number Fields 21-12
21.1.8 Multivalued Fields 21-14

21.1.8.1 Example 1: Editing Multivalued Text Fields 21-14

21.1.8.2 Example 2: Modifying Multivalued Text Fields 21-16

21.1.8.3 Specifying a Different Ordering 21-19

21.1.8.4 Editing Mode and Caching 21-19

21.2 Coding Templates for Presentation Editing 21-20
21.2.1 Selecting a Different Layout for the Entire Web Page 21-20
21.2.2 Selecting a Different Layout for a Page Fragment 21-21

21.2.2.1 Defining a Slot for Presentation Editing 21-23

21.2.2.2 Adjusting the Slot Title 21-25

21.2.2.3 Controlling Template Arguments 21-26
21.2.3 Editing Presentation and Content Simultaneously 21-27

21.2.3.1 Understanding Content-Editable Slots and Presentation-Editable
Slots 21-27
21.2.3.2 Combining Content-Editable Slots and Presentation-Editable
Slots 21-28
21.2.4 Understanding the Context System Variable 21-30

21.2.4.1 About Defining the Scope of the Slot 21-31

21.2.4.2 Using the Context Variable in Action 21-31

21.2.4.3 Initializing the Context Value 21-32

21.2.4.4 Overriding Context 21-32

21.2.4.5 Caching Context 21-32
21.2.5 Using Slots with CSElement and SiteEntry Assets 21-32

21.2.5.1 Defining a Slot Containing a CSElement Asset 21-32

ORACLE Xviii

21.2.5.2 When to Use CSElement or SiteEntry Assets 21-33
21.2.5.3 About Defining Legal Arguments 21-33
21.2.5.4 Consideration About Using Nested Slots 21-33

21.2.6 Constraining Asset Types 21-34
21.2.7 Preventing CSS and JavaScript Conflicts 21-34
21.3 Enabling Content Creation for Web Mode 21-35
21.3.1 Defining a Start Menu for In-Context Creation 21-35
21.3.2 Providing Layout Templates for In-Context Creation 21-35
21.3.2.1 Adjusting Stylesheets 21-36
21.3.2.2 Adjusting Stylesheets for Slots 21-36

21.3.3 Providing Empty Value Indicators 21-36
21.3.4 Providing Editing-Specific Presentation Logic 21-37

22 Template Element Examples for Basic Assets

22.1 Creating Basic Modular Design 22-1
22.1.1 Home Element 22-2
22.1.2 MainStoryList Element 22-3
22.1.3 LeadSummary Element 22-4
22.1.4 TeaserSummary Element 22-5
22.1.5 Backto LeadSummary 22-5
22.1.6 Back to MainStoryList 22-6
22.1.7 Back to Home 22-6
22.2 Coding Links to the Article Assets in a Collection Asset 22-6
22.2.1 SectionFront Element 22-6
22.2.2 PlainList Element 22-8
22.3 Using the ct Variable 22-9
22.3.1 SectionFront Element 22-10
22.3.2 TextOnlyLink Element 22-10
22.3.3 ColumnistFront 22-11
22.4 Coding Templates for Query Assets 22-11
22.4.1 Home Element 22-12
22.4.2 WireFeedBox Element 22-13
22.4.3 ExecuteQuery Element 22-13
22.4.4 Back to WireFeedBox 22-14
22.5 Displaying an Article Asset Without a Template 22-14
22.5.1 Full Element 22-15
22.5.2 AltVersionBlock Element 22-16
22.5.3 EmailFront Element 22-16
22.6 Displaying Site Navigation Information 22-17
22.6.1 Home Element 22-17

ORACLE

XiX

22.6.2 SiteBanner Element 22-17
22.6.3 TopSiteBar Element 22-18
22.6.3.1 Creating the Link for the Home Page 22-18
22.6.3.2 Creating the Links to the Home Page's Child Pages 22-18
22.6.4 Back to SiteBanner 22-20
22.7 Displaying Non-Asset Information 22-20
22.7.1 Home Element 22-20
22.7.2 ShowMainDate Element 22-20
23 Creating Collection Assets, Query Assets, and Page Assets
23.1 About Creating Assets 23-1
23.2 Creating Collection Assets 23-1
23.2.1 Before You Begin 23-2
23.2.2 Creating a Collection Asset 23-2
23.2.3 Sharing a Collection Asset 23-3
23.3 Creating Query Assets 23-3
23.3.1 How to Use Query Assets and Other Assets 23-4
23.3.2 How to Store the Query 23-4
23.3.3 Commonly Used Fields for Queries 23-4
23.3.4 Before You Begin Creating Query Assets 23-6
23.3.5 Creating a Query Asset 23-6
23.3.6 Sharing Query Assets 23-7
23.3.7 Previewing and Approving Query Assets 23-8
23.4 Creating Page Assets 23-8
23.4.1 Understanding the Page Asset Model 23-9
23.4.2 How To Design Page Attributes 23-9
23.4.3 How to Create a Page Asset 23-9
23.4.4 How To Place Page Assets 23-11
23.4.5 How To Move Page Assets in the Site Tree 23-11
23.4.5.1 Reordering Child Pages 23-11
23.4.5.2 Changing Parent Pages 23-12
23.4.6 Considerations About Placing Page Assets and Workflow 23-12
23.4.7 Tips About Editing Page Assets 23-13
23.4.8 Considerations About Deleting Page Assets 23-13
24 Best Practices for Creating Future Site Preview Assets and
Templates
24.1 About Implementing Future Site Preview 24-1
24.2 Creating Sets of Assets 24-1

ORACLE

XX

24.3 Writing Templates for Future Site Preview 24-2
24.3.1 The asset:filterassetshydate Tag 24-2
24.3.2 The Input List 24-3

24.4 Caching Considerations 24-4

25 Configuring Sites for Multilingual Support

25.1 About Configuring a Site for Multilingual Support 25-1
25.1.1 Dimensions 25-1
25.1.2 Dimension Sets 25-2
25.1.3 Cross-Site Multilingual Support 25-2
25.1.4 Master Assets, Translations, and Multilingual Sets 25-3
25.1.5 Translations and Asset Relationships 25-4
25.1.6 Approval Dependencies 25-5

25.2 Working with Locale Filtering 25-6
25.2.1 Options for Implementing Asset Relationships Through Locale Filtering

25-6

25.2.2 Understanding the Included Locale Filters 25-7
25.2.2.1 The Simple Filter 25-7
25.2.2.2 The SimpleLookup Filter 25-7
25.2.2.3 The Hierarchical Filter 25-8
25.2.3 About Using Custom Locale Filters 25-9
25.2.4 Accounting for Compositional Dependencies 25-9
25.2.4.1 Asset Lookup Chain 25-9
25.2.4.2 Caching Rules 25-10
25.2.5 About Adding Filtering Support to Your Site 25-10
25.2.5.1 About Adding Filtering to Templates 25-11
25.2.5.2 About Obtaining and Maintaining a Visitor's Locale Preference 25-11
25.2.5.3 About Filtering Search Results 25-12

25.3 Planning Multilingual Support for a Site 25-12

25.4 Configuring Multilingual Support for a Site 25-13
25.4.1 Configuration Quick Reference 25-14
25.4.2 Enabling the Dimension and DimensionSet Asset Types 25-15
25.4.3 Enabling the Locale Subtype of the Dimension Asset Type 25-15
25.4.4 How To Create a Locale 25-16
25.45 How to Share a Locale to Another Site 25-16
25.4.6 How To Create and Configure a Dimension Set 25-17
25.4.7 How To Share a Dimension Set to Another Site 25-18
25.4.8 How To Configure a Locale Filter 25-18
25.4.9 How to Configure the Fallback Hierarchy of the Hierarchical Filter 25-19
25.4.10 How to Bulk-Assign a Default Locale to Assets in a Site 25-20

25.4.10.1 Sample Element Code for Bulk-Assigning a Default Locale 25-20

ORACLE

XXi

25.5 Tips for Using WebCenter Sites Translation Mechanism 25-22

25.5.1 What Do Customers Want? 25-22
25.5.2 Use of WebCenter Sites Translation Mechanism to Effectively Meet
Customers' Requirements 25-22

Part |\VV Developing Mobile Websites

26 Configuring WebCenter Sites to Support Mobile Websites

26.1 Prerequisites for Mobility Developers 26-1
26.2 Understanding Key Mobility Concepts 26-1
26.2.1 About Device Repository 26-2
26.2.2 About Device Groups and Suffixes 26-3
26.2.3 About Device Assets 26-4
26.2.4 About Site Navigations 26-6
26.2.5 About Mobile Templates 26-6
26.3 Prerequisites for Configuring Mobility Features 26-7
26.4 Configuring Mobility Features 26-8
26.4.1 How to Configure the Device Repository 26-8
26.4.2 How to Create Custom Filters for Device Group Criteria 26-9
26.4.2.1 Using the Default DefaultCustomFllter.java Custom Filter
Provided with WebCenter Sites 26-9
26.4.2.2 Creating Your Own DeviceGroupFilter Implementation 26-11
26.4.3 How to Activate Your Device Repository 26-11
26.4.4 How to Configure Device Groups 26-12
26.4.5 How to Prioritize Device Groups 26-16
26.4.6 How to Create Device Assets 26-19
26.4.7 How to Create Site Navigations 26-21
26.4.8 How to Organize Site Navigations 26-24
26.5 Mirror Publishing the Device Repository to Delivery System 26-26
26.6 Creating Templates 26-27
26.6.1 Basic Guidelines for Creating Template Variants 26-28
26.6.2 Understanding Mobility Tags 26-28
26.6.3 Tags Modified to Support Device Detection and Page Rendering 26-29
26.6.4 Creating Template Variants 26-30
26.6.4.1 How to Create a Variant of a Single Template 26-30
26.6.4.2 How to Create Template Variants in Bulk 26-32
26.7 Optimizing Images for Mobile Websites 26-33
26.7.1 How to Optimize Images Using the Image Optimization Filter 26-33
26.7.1.1 Create a Flex Filter of the ImageOptimizationFilter Type 26-34
26.7.1.2 Include the Filter in Your Site's Image Definition 26-34

ORACLE XXii

26.7.1.3 Create Instances of the blob Type Attribute Asset 26-35
26.7.1.4 Set Image Properties for Optimization 26-35
26.7.1.5 Apply the Image Optimization Filter on Existing Images 26-36
26.7.1.6 Verify If the Image Optimization Filter Has Been Applied 26-36
26.7.1.7 Use the Optimized Images in Your Site 26-38
26.7.2 How to Optimize Images Using a Pluggable Interface 26-38
26.8 How Device Detection Works 26-39
Part V. Coding with Developer Tools
27 About Developer Tools
27.1 Introduction to Developer Tools Architecture 27-1
27.2 IDE Integration 27-2
27.3 The Developer Tools Workspace 27-3
27.4 Connecting to WebCenter Sites Instances 27-3
27.5 Synchronization 27-3
27.6 JSP Management 27-4
27.7 Command Line Interface (CLI) 27-4
27.8 About Using a Version Control System 27-4
28 Installing and Configuring Developer Tools
28.1 Prerequisites 28-1
28.2 Setting Up Developer Tools 28-2
28.2.1 How to Install the Developer Tools Plug-in 28-2
28.2.2 How to Verify the Developer Tools Plug-In Installation 28-4
28.2.3 How to Integrate WebCenter Sites with the Eclipse IDE 28-6
28.2.4 How to Enable Code Completion for Remote Hosts 28-8
28.2.5 How to Use Developer Tools to Work with Existing Resources 28-10
28.2.6 How to Manage WebCenter Sites Resources 28-10
28.2.7 How to Work with a Pre-Existing Project in Eclipse 28-10
28.3 Updating Developer Tools 28-11
28.3.1 How to Update the Location of the Developer Tools Plug-In 28-11
28.3.2 How to Check for Updates to Existing Plug-Ins 28-13
28.3.3 How To Verify That the Developer Tools Plug-In Has Been Updated 28-13
28.4 Managing WebCenter Sites Resources in Eclipse 28-14
28.4.1 How to Create Resources 28-15
28.4.2 How to Display Developer Tools Views in Panels 28-15
28.4.3 How to Export and Import Data Between WebCenter Sites and
Developer Tools 28-16

ORACLE

XXiii

28.5 Uninstalling Developer Tools 28-16

29 Introducing Developer Tools Features in Eclipse

29.1 About the Oracle WebCenter Sites Perspective 29-1
29.2 Understanding the Configuration Form 29-3
29.3 Understanding Projects and Workspaces in Eclipse 29-3
29.4 About Developer Tools Views 29-4
29.4.1 Workspace 29-5
29.4.2 Log Viewer 29-6
29.4.3 Templates View 29-6
29.4.4 Preview View 29-7
2945 Sites View 29-8
29.4.6 Controllers View 29-8
29.4.7 Logging Configuration View 29-9
29.4.8 Developer Reference View 29-9
29.4.9 Wizards 29-9
29.5 Data Synchronization (Export/Import) Tool 29-10
29.5.1 Export (Sync Resources to Workspace from WebCenter Sites) 29-10
29.5.2 Import (Sync Resources to WebCenter Sites from the Workspace) 29-11

30 Developing JSPs with Developer Tools

30.1 JSP Development with Developer Tools 30-1
30.2 Tag and Java API Completion 30-2
30.3 Debugging 30-4

31 Creating Templates for Mobile Websites Using Developer Tools

31.1 About Mobility Support in Developer Tools 31-1
31.2 Creating Mobile Templates from the Sites Workspace Tab 31-1
31.3 Creating Mobile Templates in Sites and Device Groups Views 31-4

32 Synchronizing and Exchanging Data Using Developer Tools

32.1 Synchronization Using Developer Tools 32-1
32.2 Synchronization Scenarios 32-1
32.3 About Dependency Resolution 32-2
32.4 ID Mapping 32-3
32.4.1 About ID Mapping 32-3
32.4.2 Overriding a Resource's fw_uid 32-6

ORACLE XXiV

33

34

35

36

37

32.4.3 What You Should Know About Using Developer Tools with Pre-

Existing Resources 32-7

32.5 Working with Site Mappings 32-7

32.5.1 About Natural Site Mappings 32-8
32.5.2 About Overriding Natural Site Mappings With the Command Line

Interface (CLI) 32-8

Using Workspaces in Developer Tools

33.1 Introduction to Workspaces 33-1
33.2 Workspace Structure 33-1
33.3 Asset Storage Structure 33-2
33.4 Code-Based Resource Storage Structure 33-3
33.5 Attribute Editor Storage Structure 33-3
33.6 Asset Type Storage Structure 33-3

Using Developer Tools Command Line Interface (CLI)

34.1 Running and Using the Command Line Interface (CLI) 34-1
34.2 Example Commands 34-3
34.3 About Importing Modules 34-3
34.4 Status Codes for Operations Invoked from the Developer Tools Command

Line Interface (CLI) 34-4

Integrating Developer Tools Workspaces with Version Control
Systems

35.1 About Version Control With Developer Tools 35-1
35.2 About Integrating Developer Tools With a VCS 35-1
35.3 Using a Developer Tools-Integrated VCS: Example 35-2

Using Developer Tools to Manage and Exchange Resources

36.1 Today: Develop a Site and Associated Resources 36-1
36.2 Three Days Later... Deployment 36-22

Using the Developer Tools Command Line Interface (CLI) to Create
Reusable Modules

37.1 Creating a Reusable Model 37-1
37.2 List the Resources in the WebCenter Sites Instance 37-2
37.3 List Start Menu ltems 37-2

ORACLE' v

37.4 Export All Resources to a Workspace 37-3
37.5 Inspect the Module's Content 37-4
37.6 Archive the Module 37-4
37.7 Import the Module to a WebCenter Sites Instance 37-4
Part VI Managing Caching
38 Understanding Page Design and Caching
38.1 About Modular Page Design 38-1
38.2 About Caching 38-2
38.2.1 WebCenter Sites Caching 38-2
38.2.2 BlobServer and Caching 38-2
38.2.3 Satellite Server Caching 38-3
38.2.3.1 Cache Expiration 38-3
38.2.3.2 Caching with the Satellite Servlet 38-4
38.2.3.3 Viewing the Contents of the Satellite Server Cache 38-7
38.3 Double-Buffered Caching 38-10
38.3.1 About Implementing Double-Buffered Caching 38-12
38.3.1.1 Pagelet Caching Strategies 38-12
38.3.2 Setting cscacheinfo 38-13
38.3.3 Coding for Caching 38-14
38.3.4 Caching and Security 38-14
38.3.4.1 WebCenter Sites Security 38-14
38.3.4.2 Satellite Server Security 38-15
39 Working with Resultset Caching and Queries
39.1 About Resultset Caching and Queries 39-1
39.2 Caching Frameworks 39-2
39.3 Database Queries 39-2
39.4 How Resultset Caching Works 39-2
39.5 Reducing the Load on the Database 39-3
39.6 Specifying the Table Name 39-3
39.6.1 SELECTTO 39-4
39.6.2 EXECSQL 39-4
39.6.3 CALLSQL 394
39.6.4 Search Forms in the WebCenter Sites Interface 39-5
39.6.5 Query Asset 39-5
39.6.6 SEARCHSTATE 39-5
39.7 Flushing the Resultset Cache 39-5
ORACLE XXVi

39.8 Switching Between Caching Frameworks 39-6
39.9 About Resultset Caching Strategy and Properties 39-6
39.9.1 Planning Your Resultset Caching Strategy 39-6
39.9.2 Default Properties 39-7
39.9.3 Table-Specific Properties 39-7
40 Using Cache Management with WebCenter Sites
40.1 About the WebCenter Sites Rendering Engine Cache 40-1
40.2 About the CacheManager 40-1
40.3 Enabling CacheManager 40-2
40.3.1 Tier 1 Cache Configuration Properties 40-2
40.3.2 Tier 2 Cache Configuration Properties 40-3
A1 Using Advanced Page Caching Techniques
41.1 About Advanced Page Caching 41-1
41.2 Configuring the WebCenter Sites Cache 41-1
41.2.1 Configuring Maximum Cache Size 41-2
41.2.2 Setting Expiration Time for an Individual Entry 41-2
41.2.3 Explicity Removing Entries from Cache 41-2
41.2.3.1 Manual Removal 41-2
41.2.3.2 Automatic Removal 41-3
41.3 Configuring the Blob Server Cache 41-4
41.3.1 Consideration About Configuring Maximum Cache Size 41-5
41.3.2 Setting Expiration Time for an Individual Entry 41-5
41.3.3 Explicity Removing Entries from Cache 41-5
41.3.3.1 Manual Removal 41-5
41.3.3.2 Automatic Removal 41-5
41.4 Configuring the Satellite Server Cache 41-5
41.4.1 Configuring Maximum Cache Size 41-6
41.4.2 Explicitly Removing Entries from Cache 41-6
41.5 Cachelnfo String Syntax 41-6
41.6 Caching Best Practices 41-8
41.6.1 Few Pagelets Per Page 41-8
41.6.2 Share Cache Between Pages 41-9
Part VIl Migrating Your Work to Your Content Management System
ORACLE XXVii

42 Importing Assets of Any Type

42.1 About Importing Assets Using the XMLPost Utility 42-1
42.1.1 What the Developer Does 42-2
42.1.2 What XMLPost and WebCenter Sites Do 42-2

42.2 Using XMLPost Configuration Files 42-3
42.2.1 Configuration Properties for XMLPost 42-4
42.2.2 Configuration Properties for the Posting Element 42-6
42.2.3 Configuration Properties for the Source Files 42-8

42.2.3.1 Site Properties 42-8
42.2.3.2 Asset Type Properties 42-9
42.2.4 Sample XMLPost Configuration File 42-11

42.3 Using XMLPost Source Files 42-13
42.3.1 Sample XMLPost Source File 42-13
42.3.2 XMLPost and File Encoding 42-13

42.4 Using the XMLPost Utility 42-14
42.4.1 Before You Begin 42-14
42.4.2 Running XMLPost from the Command Line 42-15
42.4.3 ldentifying Source Files 42-16

42.4.3.1 A Single File 42-16
42.4.3.2 A Directory of Files 42-17
42.4.3.3 AlList File 42-17
42.4.4 Running XMLPost as a Batch Process 42-18
42.4.5 Running XMLPost Programmatically 42-18

42,5 Customizing RemoteContentPost and PreUpdate 42-18
42.5.1 Setting a Field Value Programmatically 42-19
42.5.2 Setting an Asset Association 42-20

42.6 Troubleshooting XMLPost 42-21
42.6.1 XMLPost Does Not Run and Does Not Create a Log File Message 42-21
42.6.2 XMLPost Fails and there is a Missing Entity Statement in the Log File 42-21
42.6.3 Error 105 is Triggered when XMLPost Tries to Save an Asset 42-21
42.6.4 Debugging the Posting Element 42-21

43 Importing Flex Assets

43.1 About Importing Flex Assets 43-1
43.1.1 Before You Begin Importing the Data Structure Flex Asset Types 43-1
43.1.2 About Importing the Flex Assets 43-2

43.1.2.1 When to Use BulkLoader 43-2

43.1.2.2 When to Use XMLPost 43-2

43.1.3 Overview of the Process to Import Flex Assets 43-2

43.1.4 About Custom Data Delimiters 43-3
ORACLE XXVili

43.2 Understanding XMLPost and the Flex Asset Model
43.3 About Importing the Structural Asset Types in the Flex Model
43.3.1 Attribute Editors
43.3.1.1 Sample Configuration File: Attribute Editor
43.3.1.2 Sample Source File: Attribute Editor
43.3.2 Flex Attributes
43.3.2.1 Sample Configuration File: Flex Attribute
43.3.2.2 Sample Source File: Attribute
43.3.3 Flex Definitions and Flex Parent Definitions: Sample Files
43.3.3.1 Sample Configuration File: Flex Definition
43.3.3.2 Sample Source File: Flex Definition
43.3.4 Flex Parents
43.3.4.1 Sample Configuration File: Individual Flex Parent
43.3.4.2 Sample Source File: Individual Flex Parent
43.4 Importing Flex Assets with XMLPost
43.4.1 Configuration File Properties and Source File Tags for Flex Assets
43.4.1.1 For the addData Posting Element
43.4.1.2 For the RemoteContentPost Posting Element
43.4.2 Sample Flex Asset Configuration File for addData
43.4.3 Configuration File Properties and Attributes of Type Blob (or URL)
43.4.3.1 Attribute of Type Blob (or URL) As an Upload Field
43.4.3.2 Attribute of Type Blob (or URL) As a Text Field
43.4.4 Sample Flex Asset Source File for addData
43.4.4.1 Sample File
43.4.4.2 Handling Special Characters
43.4.4.3 Flex Assets and Their Parents
43.4.4.4 Specifying the Parents of a Flex Asset
43.4.4.5 Setting Attribute Values for Parents
43.4.4.6 Setting Multiple Values in a Flex Source File
43.4.5 Sample Flex Asset Configuration File for RemoteContentPost
43.4.6 Sample Flex Asset Source File for RemoteContentPost
43.5 Editing Flex Assets with XMLPost
43.5.1 Configuration Files for Editing Flex Assets
43.5.2 Source Files for Editing Flex Assets
43.5.2.1 Changing the Value of an Attribute
43.5.2.2 Removing an Attribute Value
43.5.2.3 Editing Parent Relationships
43.6 Deleting Assets with XMLPost
43.6.1 Configuration Files for Deleting Assets
43.6.2 Source Files for Deleting Assets

ORACLE

43-4

43-5

43-6

43-6

43-7

43-7

43-9

43-9
43-10
43-12
43-13
43-14
43-14
43-15
43-15
43-16
43-16
43-17
43-18
43-19
43-19
43-19
43-20
43-20
43-21
43-21
43-22
43-22
43-22
43-23
43-24
43-25
43-25
43-26
43-26
43-26
43-27
43-28
43-28
43-28

XXiX

44 Importing Flex Assets with the BulkLoader Utility

44.1 About the BulkLoader Utility 44-1
44.1.1 Understanding BulkLoader Features 44-2
44.1.2 How BulkLoader Works 44-2
44.1.3 About Using the BulkLoader Utility 44-3
44.1.4 Importing Flex Assets from Flat Tables 44-3

44.1.4.1 The Basic Steps 44-3
44.1.4.2 Driver Requirements 44-4
44.1.4.3 Requirement for DB2 44-4
44.1.5 When to Use XMLPost to Import Structural Assets 44-4
44.1.6 Creating the Input Table (Data Source) 44-4
44.1.6.1 Inserts 44-5
44.1.6.2 Updates 44-6
44.1.7 Creating the Mapping Table 44-7
44.1.8 Creating the BulkLoader Configuration File 44-8
44.1.8.1 BulkLoader Configuration File Properties 44-8
44.1.8.2 Setting the initID Parameter 44-11
44.1.8.3 Example Configuration File 44-12
44.1.9 Running the BulkLoader Utility 44-13
44.1.10 Enabling Access to Imported Assets in the Contributor Interface 44-14
44.1.11 Reviewing Feedback Information 44-14
44.1.12 Approving and Publishing the Assets to the Delivery System 44-14

44.2 Importing Flex Assets Using a Custom Extraction Mechanism 44-15
44.2.1 |DataExtract Interface 44-15
44.2.2 |PopulateDataSlice 44-18
44.2.3 IFeedback Interface 44-22

44.3 Approving Flex Assets with the BulkApprover Utility 44-23
44.3.1 Configuring BulkApprover 44-23
44.3.2 Using BulkApprover 44-25

Part VIII Security: Managing Content Management Users
45 Managing Users on the Management System

45.1 About the Directory Services API 45-1
45.1.1 Entries 45-2
45.1.2 Hierarchies 45-2
45.1.3 Groups 45-2
45.1.4 Directory Services Tags 45-2
45.1.5 Directory Operations 45-3

ORACLE

XXX

45.1.5.1 Searching

45.1.5.2 Looking Up a User

45.1.5.3 Listing Users

45.1.5.4 Directory Services Code Samples

45.1.6
45.1.7

Error Handling
Directory Services Applications Troubleshooting

45.2 Working with Custom User Manager

45.2.1
452.2
45.2.3
45.2.4

What is Custom User Manager?

Sample Implementation of Custom User Manager

Integrating the Sample Implementation with WebCenter Sites
What You May Need to Know About the Custom User Manager

45.3 Controlling User Access

45.3.1
45.3.2
45.3.3

ACL Tags
USER Tags
WebCenter Sites and Encryption

Part |X Publishing Your Site

45-4
45-4
45-4
45-4
45-6
45-6
45-7
45-7
45-8
45-9

45-10

45-10

45-10

45-11

45-11

A6 Publishing Your Content Management Site to Make it Available

Online

Part X Developing Personalized and Targeted Websites with Engage

A7 Creating Visitor Data Assets

47.1 About Visitor Data Assets

47.1.1
47.1.2
47.1.3
47.1.4

Visitor Attributes

History Attributes and History Definitions
Segments

Developing Visitor Data Assets: Process Overview

47.2 Creating Visitor Data Assets

47.2.1

Creating Visitor Attributes

47.2.1.1 Configure the Data Type
47.2.1.2 Configure the Constraint Criteria
47.2.1.3 Save the Attribute

47.2.2

Creating History Attributes

47.2.2.1 Configure the Constraint Criteria
47.2.2.2 Save the History Attribute

47.2.3

ORACLE"

Creating History Definitions

47-1
47-1
47-2
47-2
47-4
47-5
47-6
47-7
47-7
47-9
47-9

47-11

47-12

47-12

XXXI

47.3 Verifying Visitor Data Assets 47-14
47.4 Approving Visitor Data Assets 47-14
48 Understanding Recommendation Assets
48.1 About Recommendation Assets 48-1
48.2 Development Process for Setting Up Recommendations 48-2
48.3 About Creating a Dynamic List Element 48-2
49 Working with Memory-Centric Visitor Tracking
49.1 About Memory-Centric Visitor Tracking 49-1
49.1.1 Database-Centric Model 49-1
49.1.2 Memory-Centric Model 49-2
49.2 Enabling Memory-Centric Visitor Tracking 49-2
49.2.1 Visitor Tracking Property 49-2
49.2.2 Supporting Code 49-3
49.2.3 Batch-Saving History Attributes to the Database 49-3
49.3 How Memory-Centric Visitor Tracking Works 49-4
49.3.1 Visitor Detection 49-4
49.3.2 Retrieval of Scalar Values 49-6
49.3.3 Collection of History Attribute Values 49-6
49.3.4 Computation of Sums and Counts 49-7
49.3.5 Computation of Segments 49-8
49.3.6 Display of Recommended Assets 49-9
49.3.7 Logging of Dependencies 49-10
50 Coding Engage Pages
50.1 Commerce Context and Visitor Context 50-1
50.2 Identification of Visitors and Linking Sessions 50-2
50.3 Collection of Visitor Data 50-3
50.4 Coding of Site Pages That Collect Visitor Data 50-3
50.4.1 Example 1: Visitor Attributes 50-4
50.4.2 Example 2: History Definition 50-4
50.4.3 Example 3: Visitor Attribute of Type Binary 50-5
50.5 Templates and Recommendations 50-5
50.5.1 Creating Templates for Recommendations 50-6
50.5.2 Creation of Templates for Recommendations Using Oracle Real-Time
Decisions 50-7
50.6 What You May Need to Know About Shopping Carts and Engage 50-8
50.7 Debugging Site Pages 50-9
ORACLE XXXii

50.7.1 Session Links 50-9
50.7.2 Visitor Data Collection 50-9
50.7.3 Recommendations and Promotions 50-10
Part X|I Running A/B Testing
51 Developing for A/B Testing
51.1 A/B Testing Prerequisites 51-1
51.2 Scripting Templates for A/B Testing 51-2
51.3 Updating Cache Criteria for A/B Testing 51-4
51.4 Viewing A/B Test Details as JSON 51-5
51.5 Understanding Confidence Algorithms 51-6
Part XII Customizing Blogs
52 Customizing Blog Components
52.1 Customizing the Blog Asset Form 52-1
52.1.1 Creating a Blog Attribute 52-1
52.1.2 Adding a Blog Attribute to the Blog Asset Definition 52-3
52.2 Adding Blog Functionality to CM Sites 52-4
52.2.1 Creating Blog Pages 52-5
52.2.2 Adding Blog Code 52-6
52.2.3 Adding Blog Parameters to Your Site's SiteEntry Asset 52-8
52.3 Customizing URLs for the RSS Feed 52-9
Part XlIl Developing WebCenter Sites: Visitor Services
53 Developing WebCenter Sites: Visitor Services
53.1 Visitor Services Overview 53-1
53.2 Configuring the Visitor Services URL 53-3
53.3 Configuring an Identity Provider 53-4
53.3.1 Configuring Identity Provider Settings 53-5
53.3.2 Integrating Oracle Access Manager (OAM) with Visitor Services 53-6
53.3.3 Creating a Custom Identity Provider: Example 53-13
53.4 Configuring an Access Provider 53-14
53.5 Configuring One or More Profile Providers 53-16

ORACLE"

XXXiii

53.5.1 Configuring Profile Provider Settings and Enrichment Rules
53.5.1.1 About Configuring Eloqua Profile Provider
53.5.2 Creating a Custom Profile Provider: Example
53.6 Creating One or More Aggregation Templates
53.7 Optimizing Experiences Using Visitor Services Data

53.7.1 How WebCenter Sites Components Request Visitor Services Profile
Information

53.7.2 Configuring Visitor Services with Engage
53.7.3 Linking Visitor Profiles and Managing Cookies
53.7.4 Storing Additional Information with Extended Attributes and Activities
53.7.4.1 About Extended Attributes and Activities
53.7.4.2 How to Use Extended Attributes and Activities in Visitor Services
53.8 Visitor Services Reference
53.8.1 About the Visitor Services Architecture
53.8.2 Identity Provider Reference
53.8.2.1 About the Identity Providers
53.8.2.2 How Visitor Services ldentifies Visitors to Your Website
53.8.3 Access Provider Reference
53.8.3.1 About Container Protection and Visitor Services Protection
53.8.3.2 How Container Protection Works
53.8.3.3 How Visitor Services Protection Works
53.8.4 Profile Provider Reference
53.8.4.1 About the Profile Providers and Enrichment Service

53.8.4.2 How Visitor Services Gathers and Enriches Visitor Attributes
from Multiple Channels

53.8.5 Aggregation Template Reference
53.8.5.1 About Aggregation Templates

53.8.5.2 How Visitor Services Merges Raw Visitor Profiles into a Single
Aggregated Profile

53.8.5.3 How Visitor Services Makes Aggregated Visitor Profiles
Available for Targeting, Testing, and Analysis

53.8.6 About the Visitor Services Data Model
53.8.7 Glossary

Part XI\V Enabling Convergence between Eloqua and Oracle
WebCenter Sites

53-17
53-20
53-22
53-23
53-26

53-27
53-29
53-30
53-31
53-31
53-32
53-33
53-33
53-34
53-34
53-35
53-35
53-36
53-36
53-36
53-37
53-37

53-39
53-39
53-40

53-41

53-41
53-41
53-43

54 Integrating Eloqua Cloud Marketing Service with Oracle WebCenter
Sites

54.1 Eloqua Integration Overview 54-1

54.1.1 Integrating Cloud Marketing Services with WebCenter Sites 54-1

ORACLE XXXIV

54.1.2 Accessing Eloqua Documentation 54-2
54.2 Accessing WebCenter Sites Content in Eloqua 54-2
54.2.1 Configuring Elogua for Access to the WebCenter Sites Content

Service 54-3
54.2.2 Configuring OAuth Authentication 54-5
54.2.3 Making WebCenter Sites Assets Available within Eloqua 54-5
54.2.3.1 Creating Asset Rendering Templates for Eloqua 54-5
54.2.3.2 Configuring Asset Type Visibility in Eloqua 54-6

54.2.4 Placing WebCenter Sites Content into Eloqua E-Mails and Landing
Pages 54-8
54.3 Accessing Eloqua Forms in WebCenter Sites 54-9
54.3.1 Specifying the Eloqua Instance Connection Parameters 54-10
54.3.2 Enabling the EloquaForm Proxy Asset Type 54-10
54.3.3 Registering the Eloqua Firehose Service 54-10
54.3.4 Configuring the Form Deletion Notification 54-11
54.3.5 Creating the Rendering Template for the EloquaForm Assets 54-11
54.3.6 Placing Eloqua Forms on WebCenter Sites Pages 54-12

Part XV Controlling the Site Capture Process
55 Coding the Crawler Configuration File

55.1 About Controlling a Crawler 55-1
55.2 BaseConfigurator Methods 55-2
55.2.1 getStartUri 55-2
55.2.2 createLinkExtractor 55-3
55.3 Crawler Customization Methods 55-5
55.3.1 getMaxLinks 55-5
55.3.2 getMaxCrawlDepth 55-5
55.3.3 getConnectionTimeout 55-5
55.4 getSocketTimeout 55-6
55.5 getPostExecutionCommand 55-6
55.6 getNumWorkers 55-7
55.7 getUserAgent 55-7
55.8 createResourceRewriter 55-7
55.9 createMailer 55-8
55.10 getProxyHost 55-9
55.11 getProxyCredentials 55-9
55.12 Interfaces 55-9
55.12.1 LinkExtractor 55-10
55.12.1.1 LinkExtractor Interface 55-10

ORACLE

XXXV

55.12.1.2 Using the Default Implementation of LinkExtractor 55-10

55.12.1.3 Writing and Deploying a Custom Link Extractor 55-12
55.12.2 ResourceRewriter 55-13
55.12.2.1 ResourceRewriter Interface 55-13
55.12.2.2 Using the Default Implementations of ResourceRewriter 55-14
55.12.2.3 Writing a Custom ResourceRewriter 55-14
55.12.3 Mailer 55-15
55.12.3.1 Mailer Interface 55-16
55.12.3.2 Using the Default Implementation of Mailer 55-16
55.12.3.3 Writing a Custom Mailer 55-17
55.13 Summary of Methods and Interfaces 55-19
55.13.1 Methods 55-19
55.13.2 Interfaces 55-19

Part XVI Integrating with Third-Party Content Sources

56 Integrating Third-Party Content Sources Using Proxy Assets

56.1 Proxy Asset Architecture and the Contributor Interface 56-1
56.2 Installing Sample Proxy Assets 56-3
56.2.1 Set up a Proxy Asset Directory 56-3
56.2.2 Create a Proxy Asset 56-3
56.2.3 Add the Search Functionality for the Proxy Asset 56-4
56.2.4 Add the Thumbnail Grid Functionality for the Proxy Asset 56-5
56.2.5 Add the Tree Functionality for the Proxy Asset 56-5
56.3 Integrating External Content in the Contributor Interface 56-6
56.3.1 Case Study: The ProxyTest Repository 56-7
56.3.2 Registering a New Proxy Asset Type 56-9
56.3.3 About Implementing Ul Integration Code 56-10
56.3.4 Customizing Search 56-10
56.3.4.1 Getting Search Results Using the Provided Third-Party API 56-11

56.3.4.2 Turning Search Results into Proxy Assets, Filter Incoming
Search Results, Register External Content, and Gather Data for

Search Grid Widget 56-12

56.3.4.3 Building a Data Store for the Grid Widget 56-13
56.3.4.4 Testing Custom Search 56-14
56.3.4.5 Additional Customizations 56-15

56.3.5 Implementing a Custom Tree 56-18
56.3.5.1 Registering the Custom Tree Tab 56-19
56.3.5.2 Implementing the Tree Code 56-21

56.4 Setting Up YouTube Proxy Assets 56-24

ORACLE XXXVi

56.5 User Interface Customizations 56-26

56.5.1 Customizing the Search Start Menu 56-26
56.5.2 Customizing the Content Tree 56-27
56.6 Information About Embedding Proxy Assets in Web Pages 56-28
56.6.1 Writing a Template for Proxy Assets 56-28
56.6.2 Using Proxy Assets in Slots 56-30
56.6.3 About Caching Proxy Assets 56-32

Part XVIl Developing Applications with the Web Experience
Management (WEM) Framework

57 About the Web Experience Management (WEM) Framework

57.1 About the WEM Framework 57-1
57.2 Prerequisites for Application Development 57-3
57.2.1 Technologies 57-4
57.2.2 WebCenter Sites Interfaces, Objects, and APIs 57-4
57.2.3 Documentation 57-4
57.2.4 Sample Applications and Files 57-4
57.2.5 Application Access 57-5
57.3 Getting Started 57-5

58 Understanding the WEM Framework and Services

58.1 Support for Application Development 58-1
58.2 REST Services 58-2
58.3 Ul Container 58-3

58.3.1 Registration 58-3

58.3.2 WEM Context Object 58-4
58.4 Single Sign-On 58-5
58.5 Authorization Model 58-6
58.6 Custom Applications 58-7
58.7 Requirements for REST Resources 58-8

59 Working with the Articles Sample Application

59.1 About the Articles Sample Application 59-1

59.2 Launching the Articles Sample Application 59-2

59.2.1 Building and Deploying the Articles Application 59-2

59.2.2 Registering the Articles Sample Application 59-4
ORACLE XXXVii

59.3 Testing the Articles Application 59-5

60 Developing Applications with WEM Framework

60.1 About the Articles Sample Application's Structure 60-1
60.2 About the Articles Sample Application's Configuration Files 60-2
60.3 Making REST Calls 60-6
60.3.1 Making REST Calls from JavaScript 60-6
60.3.2 Making REST Calls from Java 60-8
60.4 Constructing URLSs to Serve Binary Data 60-9
60.5 Accessing Parameters from the WEM Framework 60-9
60.5.1 Initializing and Using Context Object in the Same Domain 60-10
60.5.2 Initializing and Using Context Object for Cross-Domain Applications 60-10
60.5.3 Methods Available in Context Object 60-11
60.6 Registering Applications with Different Views 60-12
60.6.1 Registering Applications with an iframe View 60-12
60.6.2 Registering Applications with JavaScript and HTML Views 60-13
60.6.2.1 Rendering JavaScript View 60-14
60.6.2.2 Rendering HTML View 60-14

61 Developing Custom REST Resources with WEM Framework

61.1 Creating REST Resources for WebCenter Sites and Satellite Server:

Example 61-1

61.1.1 Building and Deploying the Recommendations Sample Application 61-1
61.1.2 Testing the Recommendations Sample Application 61-2
61.2 Creating REST Resources 61-2
61.2.1 About the Recommendations Sample Application's Structure 61-2
61.2.2 Implementing Custom REST Resources 61-3

62 Working with Single Sign-On for Production Sites

62.1 Deploying the SSO Sample Application 62-1
62.2 Understanding SSO Sample Application's Structure 62-3
62.3 Implementing Single Sign-On 62-5
62.4 Implementing Single Sign-Out 62-5

63 Using REST Resources with the WEM Framework

63.1 Authentication for REST Resources 63-1
63.1.1 Acquiring Tickets from Java Code 63-2
63.1.2 Acquiring Tickets from Other Programming Languages (Over HTTP) 63-2

ORACLE XXXViii

63.1.3 Using Tickets and Multitickets 63-3
63.1.4 SSO Configuration for Standalone Applications 63-4
63.1.4.1 Beans and Properties 63-4
63.1.4.2 Query Parameters Processed by SSO Filter 63-8
63.2 About Configuring CAS 63-8
63.3 REST Authorization 63-8
63.3.1 Security Model 63-9
63.3.2 Use of the Security Model to Access REST Resources 63-10
63.3.3 About Configuring REST Security 63-11
63.3.4 Privilege Resolution Algorithm 63-11
63.4 Management of Assets Over REST 63-11
64 Introducing Customizable Single Sign-On Facility in WEM
Framework
64.1 About Customizing Login Behavior for the WEM Framework 64-1
64.2 About Components of the Default CSSO Implementation 64-2
64.3 Configuring and Deploying Custom SSO Behavior 64-3
64.3.1 About Extending the Default CSSO Classes 64-3
64.3.2 Settings Resolver Credentials 64-5
64.3.3 About Identifying Your Java Classes to Spring for Instantiation 64-6
64.3.3.1 About Creating a Spring Configuration File 64-6
64.3.3.2 About Placing Your Spring Configuration File 64-8
64.3.4 Mapping External User Identifiers to WebCenter Sites Credentials 64-9
64.3.5 Restarting the CAS Web Application 64-11
64.4 Running the CSSO Sample Implementation 64-11
64.4.1 Sample CSSO Classes 64-12
64.4.2 Sample Spring Configuration File 64-13
64.4.2.1 Analysis of the Sample Spring Configuration File 64-13
64.4.2.2 Placing the Sample Spring Configuration File 64-15
64.4.3 Sample CSSO Components 64-15
65 Buffering in WEM Framework
65.1 Architecture of Buffering System 65-1
65.2 Using Buffering 65-2
66 Registering Applications Manually in WEM Framework
66.1 Registering Applications in WEM Framework 66-1
66.2 Reference: Registration Asset Types 66-4

ORACLE

XXXiX

66.2.1 FW_View Asset Type 66-4
66.2.2 FW_Application Asset Type 66-5
Part XVIIl customizing Oracle WebCenter Sites
67 Customizing the Tree in the Admin Interface
67.1 About the Tree in the Admin Interface 67-1
67.1.1 Loading the Tree Tabs 67-3
67.1.1.1 Applet-Wide Parameters 67-4
67.1.1.2 Tree-Specific Parameters 67-5
67.1.1.3 Node Parameters 67-6
67.1.1.4 Adding a Command Node Context Menu 67-8
67.1.2 Refreshing the Tree 67-9
67.2 About Trees and Security 67-9
67.3 About Tree Error Logging 67-9
68 About Customizing Components of the Contributor Interface
68.1 Before You Begin 68-1
68.2 What Can You Customize in the Contributor Interface? 68-1
68.3 Where to Find Sample Code? 68-2
68.4 Where to Begin? 68-2
69 Understanding the Contributor Interface Framework and Ul
Controller
69.1 About the Contributor Interface Framework 69-1
69.2 Ul Controller 69-2
69.2.1 How the Ul Controller Processes Requests 69-2
69.2.2 Ul Controller Processing an Element Request: Example 69-5
69.3 Custom Elements 69-6
69.3.1 Element Storage 69-6
69.3.2 How the Ul Controller Locates Elements 69-7
69.3.3 Element Naming Conventions 69-8
70 Customizing the Contributor Interface Dashboard
70.1 About Dashboard Customization 70-1
70.2 Customizing the Dashboard 70-2
70.3 Examples of Customizing the Dashboard 70-3
ORACLE Xl

70.3.1 Adding a Hello World Widget 70-3
70.3.2 Adding a Widget that Shows Recently Modified Assets 70-5
71 Customizing Search Views of the Contributor Interface
71.1 About Search View Customization 71-1
71.1.1 Types of Search Views 71-1
71.1.2 What You Can Customize in Search Views 71-2
71.1.3 View-Rendering Process 71-5
71.1.4 Configuration Elements for Search Views 71-6
71.2 Customization Processes 71-7
71.3 Customizing Undocked Views 71-8
71.3.1 Basic Steps for Customizing Undocked Views 71-8
71.3.2 Setting the Default Undocked View to List or Thumbnail 71-9
71.3.3 Customizing the Undocked List View 71-10
71.3.4 Customizing the Undocked Thumbnail View 71-12
71.3.4.1 More About the <assettypes> Section in the
ThumbnailViewConfig Element 71-15
71.4 About Customizing Docked Views 71-18
71.5 Customizing Sort Menus and Tooltips 71-18
71.5.1 Customizing Sort Menus 71-18
71.5.2 Customizing Tooltips for Search Results 71-19
71.5.3 Customizing Context Menus 71-21
/2 Customizing Global Properties, Toolbar, and Menu Bar in the
Contributor Interface
72.1 Customizing Global Configuration Properties 72-1
72.1.1 About the Configuration Properties 72-1
72.1.2 Default Configuration Properties That Can Be Modified 72-2
72.1.3 Adding Custom Configuration Properties 72-3
72.1.3.1 Adding Custom Global Properties 72-3
72.1.3.2 Adding Site-Specific Properties 72-4
72.2 Customizing the Toolbar 72-5
72.2.1 About Toolbar Customization 72-5
72.2.2 Examples of Toolbar Customization 72-6
72.2.2.1 Customizing the Toolbar with Standard Actions for Web Mode 72-6
72.2.2.2 Customizing the Toolbar with Standard Actions for Asset Type
and Subtype 72-6
72.2.2.3 Customizing the Toolbar with Custom Actions 72-7
72.3 Customizing the Menu Bar 72-10
72.3.1 About Menu Bar Customization 72-10

ORACLE

xli

72.3.2 Adding a Custom Action to the Menu Bar 72-12
72.4 Customizing Context Menus 72-14

73 Customizing Asset Forms for the Contributor Interface

73.1 About Asset Forms Customization 73-1
73.2 Modifying the Header of Asset Forms 73-1
73.3 Building an Attribute Editor 73-1
73.3.1 Creating a Dojo Widget and its Template 73-2
73.3.1.1 Create a Template for the Dojo Widget 73-2
73.3.1.2 Creating a Dojo Widget 73-3

73.3.2 Defining the Attribute Editor as a Presentation Object 73-5
73.3.3 Creating the Attribute Editor Element 73-6
73.3.4 Creating the Attribute Editor 73-8
73.3.5 Implementing a Multi-Valued Attribute Editor 73-9

74 Customizing Workflow

74.1 Workflow Step Conditions 74-1
74.2 Workflow Actions 74-3
74.2.1 Step Action Elements 74-4
74.2.2 Timed Action Elements 74-6
74.2.3 Deadlock Action Elements 74-7
74.2.4 Group Deadlock Action Elements 74-10
74.2.5 Delegation Action Elements 74-13

75 Working with RealTime Publishing Customization Hooks

75.1 About RealTime Publishing 75-1
75.2 Writing a Custom Transporter 75-3
75.2.1 Writing Your Own Transporter 75-3
75.2.2 Considerations About Overriding AbstractTransporter Methods 75-3
75.2.3 Helper Methods in AbstractTransporter 75-4
75.2.4 Implementing a Transporter: Example 75-4
75.2.5 Code for Writing RealTime Publishing Transporter 75-5
75.2.6 Understanding Edge-Case Scenarios 75-7
75.2.7 Intercepting Asset Publishing Events on the Management Instance 75-7
75.2.8 Distinguishing Between Unpackers and CacheUpdates 75-9

ORACLE xlii

76 Understanding Asset and Publish Events in WebCenter Sites

76.1 Asset Events 76-1
76.1.1 Writing an Asset Event Listener 76-1
76.1.2 Registering an Asset Event Listener 76-2
76.2 Publishing Events 76-2
76.2.1 Writing a Publishing Event Listener 76-2
76.2.2 Registering a Publishing Event Listener 76-3
/7 Customizing Content Audit Reports
77.1 About the Content Audit Reports 77-1
77.2 Customizing the Content Audit Report 77-2
77.2.1 Creating a Custom Chart for the Content Audit Report 77-2
77.2.1.1 Create a Chart Asset 77-2
77.2.1.2 Create Rendering Elements to Implement the Chart 77-3
77.2.1.3 Add the Chart to a Report 77-4
77.2.2 Modifying the Chart's Rendering Elements 77-5
77.2.3 Adding a Custom Chart to a Report 77-5
Part XIX Troubleshooting
78 Logging and Debugging Errors
78.1 About Writing Custom Messages to the WebCenter Sites Log File 78-1
78.2 Using Error Codes with Tags 78-2
Part XX Reference
79 Using Asset API: Tutorial
79.1 Understanding the Asset API 79-1
79.2 Primary Interfaces 79-2
79.3 Getting Started 79-2
79.4 Asset APl Read 79-3
79.4.1 A Simple Example: Reading Field Values 79-3
79.4.2 Reading Assetld 79-4
79.4.3 Reading Attributes Given the Asset ID 79-4
79.4.4 Running a Query 79-6
79.4.5 Running a Complex Query 79-7

ORACLE"

xliii

79.4.6 Retrieving the Results by Sorting 79-8

79.4.7 Reading BlobObject 79-8
79.4.8 Retrieving Multi-Valued Attributes 79-9
79.4.9 Multilingual Assets: Retrieving Translations 79-10
79.4.10 Reading Asset and Attribute Definitions 79-11
79.4.11 Reading Key-Value Mappings 79-11
79.5 Asset APl Write 79-12
79.5.1 Creating New Assets 79-12
79.5.2 Updating Existing Assets 79-14
79.5.3 Deleting Existing Assets 79-15
79.5.4 Multilingual Assets 79-15
79.6 Development Strategies 79-16
79.6.1 Data Types and Attribute Data 79-16
79.6.2 Query Types 79-17
79.6.3 Data Types and Valid Query Operations 79-18
79.7 Optional: Setting Up to Use the Asset API from Standalone Java Programs 79-19

80 Using Public Site Search

80.1 About the Search Framework 80-1
80.2 Index Types 80-2
80.2.1 Global Index 80-3
80.2.2 Asset Type Index 80-4
80.3 About Search API 80-5
80.3.1 SearchEngine 80-6
80.3.2 QueryExpression 80-6
80.3.3 Configuring Query Expression 80-7
80.4 Advanced Configuration 80-7
80.4.1 Configuration of Lucene Parameters 80-7
80.4.2 Configuration of Custom AnalyzerFactory 80-10

Part XX| Appendixes for Oracle WebCenter Sites Core

81 Introducing WebCenter Sites Tools and Utilities

81.1 Oracle WebCenter Sites Explorer 81-1
81.2 Connecting to a WebCenter Sites Database 81-1
81.3 CatalogMover 81-3
81.3.1 Starting CatalogMover 81-3
81.3.2 Connecting to WebCenter Sites 81-4
81.3.3 CatalogMover Menu Commands 81-5

ORACLE xliv

81.3.4 Catalog Menu 81-5
81.3.5 Exporting Tables 81-6
81.3.5.1 Exporting Selected Table Rows 81-7
81.3.5.2 Selecting Rows for Export 81-7
81.3.5.3 Exporting to a ZIP File 81-8
81.3.6 Importing Tables 81-9
81.3.6.1 Importing HTML Files Previously Exported 81-9
81.3.6.2 Importing a Previously Exported ZIP File 81-10
81.3.6.3 Merging Existing CatalogMover Files 81-10
81.3.6.4 Replacing Existing CatalogMover Files 81-10
81.3.7 Command Line Interface 81-11
81.4 Property Management Tool 81-11
81.4.1 Accessing the Property Management Tool 81-12
81.4.2 Setting Properties 81-13
81.4.3 Adding Properties to the wcs_properties.json File 81-13
81.5 About Importing with XMLPost 81-13
82 Understanding White Space and Compression
82.1 White Space and JSP 82-1
82.2 White Space and XML 82-1
82.3 Compression 82-2
82.4 JSP Design 82-2
83 Using WebCenter Sites URL Assemblers
83.1 About WebCenter Sites URL Assemblers 83-1
83.1.1 URL Assembly 83-1
83.1.2 Assembler Discovery and Disassembly 83-2
83.1.3 URL Assembly and Disassembly Using GET and POST Requests 83-2
83.2 Assemblers Installed with WebCenter Sites 83-2
83.2.1 Query Assembler 83-3
83.2.2 QueryAsPathinfo Assembler 83-3
83.3 Working with Assemblers 83-3
83.3.1 Creating Assemblers 83-3
83.3.2 Registering and Ranking Assemblers 83-4
83.3.3 Link Tags Modification 83-5
83.4 Vanity URL Links in a Web Page 83-5
ORACLE xIv

Preface

Preface

Audience

This guide contains information about developing Oracle WebCenter Sites to support
content contributors and administrators in creating, managing, and delivering highly
interactive desktop and mobile websites.

This guide is written primarily for developers. It is assumed that developers have a
clear knowledge of their company's business needs, and a basic understanding of
their roles in the development of the online site and its back end. This guide is also
useful to administrators, who collaborate with developers by setting up content
management sites, site users, workflow processes, publishing methods, and Oracle
WebCenter Sites client options.

Developers must know Java, JavaServer Pages (JSP), XML, and HTML.
Administrators are not required to have programming experience, although a technical
background is assumed.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=accé&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

These additional documents may also be useful:

* Oracle WebCenter Sites Release Notes

e Installing and Configuring Oracle WebCenter Sites
e Using Oracle WebCenter Sites

e Administering Oracle WebCenter Sites

e Property Files Reference for Oracle WebCenter Sites

XIvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

The following text conventions are used in this document:

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that displays on the screen, or text that you enter.

xIvii

Getting Started with Oracle WebCenter

Sites

ORACLE

You'll be introduced to the tasks that you will typically perform in Oracle WebCenter
Sites, tools and technologies that you will use, and development process you'll follow.
You'll also become familiar with the sample site that comes packaged with WebCenter
Sites.

Topics:
e Introduction to Developing with WebCenter Sites

e Overview of the Avisports Sample Site

* The WebCenter Sites Development Process

Introduction to Developing with WebCenter
Sites

In WebCenter Sites, both templates and information are stored as assets. So, you
begin with designing an asset model; creating asset types and assets. You also design
site layout, page templates, and pagelets. For security and performance, you develop
caching framework and security model. There is more to keep you engaged until you
turn in the site to someone who'll administer it therefrom.

* About Developing with WebCenter Sites

* Typical Tasks for WebCenter Sites Developers
* WebCenter Sites Utilities

* WebCenter Sites Interfaces

e Use Case Scenarios for WebCenter Sites

1.1 About Developing with WebCenter Sites

Your role as a WebCenter Sites developer begins with building a core website, but it
doesn't end here. You'll also tailor WebCenter Sites interfaces as the need arises.
Does your company plan to leverage marketing-oriented components of WebCenter
Sites? Extending these features to marketers so they can collect visitor profile
information and design promotions for those visitors may be one of your key areas.

Your tasks as a developer can be grouped as follows:

* Building a website

To create a website, developers build the website's infrastructure, administrators
create content management site and site navigations, and content contributors
add content to the website.

This guide focuses on how developers can create a website's infrastructure using
WebCenter Sites.

In WebCenter Sites, both templates and information are stored as assets. To
develop infrastructure of a website, first an asset model is designed which
incorporates creating asset types and assets. Once asset types are ready, site
layout, page templates, and pagelets are coded, and caching is implemented for
better performance. For website access, users, ACLs, and roles are created, as
well as the users are assigned to the relevant roles. Various types of content is
imported as assets. The infrastructure is then mirror published to the management
system where administrator and content contributors start designing the site. See
The WebCenter Sites Development Process.

ORACLE 1-1

Chapter 1
Typical Tasks for WebCenter Sites Developers

Note:

Depending upon an organization's setup, either developers or
administrators create a content management site (framework to contain
the content of an online site) and site navigations. Content contributors
add pages and contents to the site navigations, and approve the content
so administrator can publish it to the delivery system where the site goes
online and starts functioning like a website.

For detailed information about building a website, see Getting Started with Oracle
WebCenter Sites, Building Your Data Model, Developing a Website, Developing
Mobile Websites, Coding with Developer Tools, Managing Caching, Migrating
Your Work to Your Content Management System , and Security: Managing
Content Management Users.

* Enhancing the website

Websites can be enhanced depending on the nature of the business and customer
profile. Using WebCenter Sites, online sites can be designed such that they gather
visitor information and personalize promotional messages for each visitor, capture
data about website visitors and their usage of pages. Site pages can be integrated
with Facebook, Twitter, Google, and so on, as well as gadgets and applications
can also be designed and integrated with WebCenter Sites.

For detailed information, see Developing Personalized and Targeted Websites
with Engage, Running A/B Testing, and Developing WebCenter Sites: Visitor
Services.

e Customizing WebCenter Sites

To make the development environment and experience efficient and the content
contributor's job easier, you can customize the Oracle WebCenter Sites: Admin
and Oracle WebCenter Sites: Contributor interfaces. You can alter properties,
the dashboard, search views, asset forms, workflows, and so on for higher
efficiency and productivity.

For detailed information, see Customizing Oracle WebCenter Sites.

1.2 Typical Tasks for WebCenter Sites Developers

ORACLE

Some of the tasks you accomplish to build your core website are designing your site’'s
data model, forms for users to enter information, sample assets, templates to display
content assets, caching for performance.

See these topics for typical developer tasks:

» Data Models for Content Display

* Content Entry Forms for Content Management Sites

* Templates and Elements to Render Content on the Website

* WebCenter Sites Systems for Development, Management, Delivery, and Testing
* Approvals and Publishing

* Caching to Optimize Performance

1-2

Chapter 1
Typical Tasks for WebCenter Sites Developers

1.2.1 Data Models for Content Display

WebCenter Sites developers build a data model for the content they need displayed
on their website. WebCenter Sites supports the following data models:

- Basic Asset Model: This supports a flat data structure, so basic assets cannot
inherit each other's properties (called attributes in this guide). Content is entered
by WebCenter Sites users and is stored as objects called assets in the WebCenter
Sites database. Each type of asset is contained in one primary storage table in the
database, such that basic assets of one type can be associated with basic assets
of another type.

* Flex Asset Model: This is a comprehensive data model in which each asset type
uses several storage tables such that hierarchical data structures can be created,
and child assets inherit attribute values from their parent assets. The flex asset
model also supports flat data structures, within its own framework. Note that the
flex asset model functions independently of the basic asset model; tables created
within the two models do not intersect.

Whether you choose the flex asset model or the basic asset model depends on the
complexity of the data you plan to serve to your visitors. The flex asset model has
historically been used for creating large online catalogs of products. However, it can
be used in less complex situations, and is especially desirable when the intent is to
eventually convert flat data structures to hierarchical structures. The conversion
process does not require you to re-create the data.

1.2.2 Content Entry Forms for Content Management Sites

ORACLE

WebCenter Sites developers use data models to create the content entry forms that
contributors use to create content for the website. Each field in a content entry form
maps to a corresponding column in a database table (or multiple tables). In addition,
developers create the JSPs that render content entry forms in Web Mode and render
published content on the website.

When content is ready for public delivery, it can be published to the website using
either dynamic or static publishing. Formatted content is displayed on the website by
JSPs. This table describes the difference between a dynamic WebCenter Sites page
and typical HTML page.

Table 1-1 Static and Dynamic Pages

|
Static Page (HTML Page) Dynamic Page (WebCenter Sites Page)

Single disk file, served by a web server. Composed and created upon request.

One-to-one association between the HTML The web page that the visitor sees can be
page and the page the visitor sees in the web composed of multiple components called

browser. pagelets, created from within WebCenter
Sites.

No separation of presentation and content. As Separation of presentation and content. As a

a result, it is difficult to modify presentation result, presentation and content can be

and content independently of each other. modified and maintained independently of
each other.

1-3

Chapter 1
Typical Tasks for WebCenter Sites Developers

1.2.3 Templates and Elements to Render Content on the Website

WebCenter Sites developers use APIs and JSP tags to code templates and elements
used to render content on the website. The following programming components are
used in the process of coding:

 Element Files
 APIs and JSP Tags

e Sessions and Cookies

1.2.3.1 Element Files

ORACLE

In very simplistic terms, the main function of WebCenter Sites is to separate format
from content. By separating the two, WebCenter Sites enables you to reuse the same
bits of formatting code for many pieces of content. For example, to change the format
of articles, you rewrite the code in one place, rather than having to rewrite code for
every article in your system.

Your formatting code is stored in files called elements. The code extracts the content
from the database and formats the content. Because content is formatted only when a
page is requested, you have the opportunity to design pages that will be constructed
on-the-fly, according to the identity of the visitor requesting them.

Element files are stored in the ElementCatalog table in the WebCenter Sites database.
The names of your pages are stored in the SiteCatalog table. That is, the SiteCatalog
table stores the entries for all the legal page names for your website. Each row in the
SiteCatalog table is a page entry. Each page entry points to an element in the
ElementCatalog table. The element being pointed to by a page entry is called the root
element of the page entry.

WebCenter Sites renders your content into an online page by executing SiteCatalog
page entries. Here is how it works:

1. A visitor enters a URL to your website in a browser.

2. The web server that processes the HTTP request maps that URL to a WebCenter
Sites URL. For example, a WebCenter Sites URL would look like this:

http://www.FiscalNews.com/servlet/ContentServer?pagename=FiscalNews/Home
The text after a WebCenter Sites URL is called the pagename. In this example,
the pagename is Fiscalnews/Home.

3. WebCenter Sites looks up the pagename in the SiteCatalog table, determines its
root element, locates that element in the ElementCatalog table, and then invokes
that element.

The element is executed. Elements that are called from within the root element are
executed in turn.

4. The results (images, articles, and so on, including any HTML tags) are rendered
into HTML code and returned to the visitor's browser.

The result is a page that is dynamically rendered on demand.

1-4

Chapter 1
Typical Tasks for WebCenter Sites Developers

1.2.3.2 APIs and JSP Tags

ORACLE

WebCenter Sites includes several tag families that you use to code your elements.
The tag families enable you to identify, extract, and then display assets on your
website. WebCenter Sites also provides Java methods and utilities that you can use
for designing your website, for developing your own content management applications,
and for customizing the WebCenter Sites modules/products.

For information about coding pages that display assets that use the basic data model,
see Coding Elements for Templates and CSElements. For information about
WebCenter Sites tags, see the Tag Reference for Oracle WebCenter Sites.

The WebCenter Sites operating system consists of several servlets that run on top of
an application server. Each servlet is invoked when necessary to perform a discrete
set of tasks. Each servlet has a corresponding Java API with Java methods and JSP
tags that you use to invoke the functions.

This figure shows the main WebCenter Sites servlets:

Figure 1-1 Main WebCenter Sites Servlets

Content | Catalog Tres Blob | Debug | Cookie | Hello
Server | Manager | Manager | Server | Semer | Saryer]

Application Server

Web Server

The main WebCenter Sites servlets are as follows:

» ContentServer: Generates and serves pages dynamically. This servlet provides
disk caching, session management, event management, searching, and
personalization services.

» CatalogManager: Provides most of the database management for the WebCenter
Sites database, including revision tracking, security, resultset caching, and
publishing services.

* TreeManager: Manages the tree tables, which store hierarchical information about
other tables in the WebCenter Sites database.

» BlobServer: Locates and serves binary large objects (blobs). Blobs are not
processed in any way. They are served as is, as they are stored.

» DebugServer: Provides tools that help you debug your XML code.

» CookieServer: Serves cookies for WebCenter Sites pages, whether those pages
are delivered by the ContentServer servlet or by the Satellite Server application.

* HelloCS: Displays version information about the WebCenter Sites software
installed on your system.

In general, you do not have to know which servlet performs which service or task. You
simply invoke the appropriate Java method or XML or JSP tag and let the WebCenter

1-5

Chapter 1
Typical Tasks for WebCenter Sites Developers

Sites core application determine which servlet to call. The exception to this rule is
when you write code that references a servlet URL. That is, when you include a link to
a blob or to another page on a WebCenter Sites page. Because the ContentServer
servlet and the BlobServer servlet reside at different URLs, you must include the URL
of the appropriate servlet in your <A HREF> tags.

For information about the coding links to blobs and pages, see Website Development
with Tag Technologies and Coding Elements for Templates and CSElements.

1.2.3.3 Sessions and Cookies

WebCenter Sites automatically creates a session for a visitor when he or she visits
your website for the first time. You can store information about that visitor in session
variables by using the tags and methods in the WebCenter Sites core. Subsequent
elements can then access those variables and respond conditionally to them.

Session variables, however, are volatile. They last only while the session lasts, that is,
until one of the following events occurs:

* The visitor closes his or her browser.

e The session times out after a period of inactivity. You control session timeouts by
setting the cs. timeout property (in the wcs_properties. json file) from the Property
Management Tool in the Admin interface.

* The application server is restarted (except in a cluster).
e The session is disabled in some other way.

Cookies are used to store information in a more permanent manner. You can code
your elements to write cookies that store information about your visitors to their
browsers. Then, you can use the stored information to customize pages and display
the appropriate version of a page to the appropriate visitor when he or she returns to
your website.

See About Sessions and Cookies.

1.2.4 WebCenter Sites Systems for Development, Management,
Delivery, and Testing

ORACLE

When you are working with WebCenter Sites for your content management needs, you
and the others on your team work with up to four different systems:

« Development System: Where developers and designers plan and create the
website. All of the WebCenter Sites products that you have purchased are
installed on this system.

» Management System: Where content providers such as writers, editors, graphic
artists, and marketers are assigned to content management sites to develop the
content that is delivered to visitors of the website. Revision tracking and workflow
features track changes to assets (content), monitoring them until they are
approved to be published to the delivery system.

Content management sites represent the real website. For example, you could
create separate content management sites for separate sections of your website
because the teams who provide content for each section work completely
separately from each other and only members of that team should have access to
that section (content management site). Or, you could create a content

1-6

Chapter 1
Typical Tasks for WebCenter Sites Developers

management site that represents an entire website, as does the avisports sample
site. See Assembling Content Management Sites in Administering Oracle
WebCenter Sites.

- Delivery System: Here the content you are making available or the products that
you are selling are served to your visitors or customers.

To deliver content dynamically, you should install all of the WebCenter Sites
products that you purchased on this system. To deliver content statically, that is, to
serve static HTML pages, your delivery system needs a web server only. That is,
you don't have to install any of the WebCenter Sites products on your system.

* Testing System: Where you or your QA engineers test the performance of both
the management system and the delivery system. Testing can be performed on
either a dedicated system or on the development system itself.

WebCenter Sites developers spend the majority of their time working on the
development system. When the asset types that you develop and the site that you
have designed are ready, you migrate (publish) your work from the development
system to the management system. As assets are created, modified, and approved by
the content providers, they are published from the management system to the delivery
system.

1.2.5 Approvals and Publishing

ORACLE

When you finish developing the website, you publish your work (templates, elements,
asset types, the site navigation, and so on) from the development system to the
management system. Publishing your work makes it available on the management
system. Contributors can then use the asset types and your site design to create
content for the website. When contributors are finished creating the site content, that
content (along with the supporting asset types, templates, elements, site navigation,
and so on) can be approved and published to the website.

When assets are ready to be published, someone first marks them as approved. Then,
when the publishing process is ready to start, it invokes the approval system which
compiles a list of all the approved assets and examines all the dependencies for those
assets. Assets linked to an approved asset must also be approved before the asset
can be published.

The WebCenter Sites publishing and approval systems track and verify all the asset
dependencies to maintain the integrity of the content on your delivery system. The
publishing and approval systems ensure that the assets that are ready for publishing
are the only assets that get published.

When you publish content and elements, WebCenter Sites copies them from one
system (for example, your management system) to another system (for example, the
delivery system). WebCenter Sites delivers two publishing methods that are built from
the WebCenter Sites publishing APIs. These publishing methods interact with the
WebCenter Sites approval system, an underlying system that determines which assets
have been approved.

The WebCenter Sites publishing methods are:

e RealTime: The dynamic publishing method. It is built with the WebCenter Sites
RealTime API to copy approved assets from the WebCenter Sites database on
one system to the WebCenter Sites database on another system.

- Export to Disk: The static publishing method. It renders your approved assets into
static HTML files, using the template elements assigned to them. An administrator

1-7

Chapter 1
Typical Tasks for WebCenter Sites Developers

or automated process then copies those files to your delivery system using FTP or
another file transfer method.

" See Also:

e Tips for Configuring Publishing Destination Definitions in Administering
Oracle WebCenter Sites for information about configuring publishing

e Coding Elements for Templates and CSElements for information about
coding elements so that they log dependencies appropriately and how
WebCenter Sites calculates approval dependencies

e Approving and Publishing Content in
Using Oracle WebCenter Sites and Approving Multiple Assets in
Administering Oracle WebCenter Sites for information about how to
approve assets

1.2.6 Caching to Optimize Performance

Developers implement various caching frameworks to optimize the performance.
WebCenter Sites also supports the use of Satellite Server caching, which provides a
second level of caching and can also be used as a remote cache for your web pages.
By default, WebCenter Sites and Satellite Server use inCache as their page caching
framework. The following topics describe caching:

e Page Caching
* Resultset Caching
e Asset Caching

e Satellite Server Caching

1.2.6.1 Page Caching

Page caching is implemented at the template level and is used to cache pages on the
WebCenter Sites system. Page caching plays a significant role in system
performance. A cached page can be served much faster than it can if it must first be
generated.

WebCenter Sites alone (independently of Satellite Server) can separately cache each
page or pagelet that is identified by a page entry in the SiteCatalog table. You can
mark the expiration date of any pagelet in the cache by specifying a value for that
page entry in that table.

Page caching is made especially effective by the addition of Satellite Server. Installing
a Satellite Server application amounts to installing page caches on the servers that
host Satellite Server, thereby extending the WebCenter Sites page cache.

ORACLE 1-8

Chapter 1
Typical Tasks for WebCenter Sites Developers

¢ See Also:

e Understanding Page Design and Caching for information about page
caching

e Configuring Your System for inCache Page Caching in Administering
Oracle WebCenter Sites for information about inCache page caching

e Satellite Server Caching for information about Satellite Server

1.2.6.2 Resultset Caching

Resultset caching is another feature that can greatly enhance system performance.
When the WebCenter Sites database is queried by any mechanism, the WebCenter
Sites application can cache the resultset that it returns. It keeps track of every table in
the database. Whenever a table is modified, it flushes all the resultsets that were
cached for that table.

See Working with Resultset Caching and Queries.

1.2.6.3 Asset Caching

Asset caching is a memory-based system that is built on the inCache framework to
optimize the performance of WebCenter Sites by taking up load that would otherwise
affect the database. In WebCenter Sites, programmatic usage of assets consists of
loading and rendering their attributes. Given that assets are loaded by templates,
which are stored in the WebCenter Sites database, AssetCache is used only on
WebCenter Sites nodes. Asset caching includes the AssetCache container component
which functions by caching assets and interacting with existing inCache components.

See Using the inCache Framework in Administering Oracle WebCenter Sites.

1.2.6.4 Satellite Server Caching

Satellite Server is a caching application. It supplements WebCenter Sites caching
functionality by providing additional page caches. The tandem use of the WebCenter
Sites and Satellite Server caches results in automatic double-buffered caching.

By default, co-resident Satellite Server is installed on the same computer where
WebCenter Sites is installed. You can further improve your system's performance by
installing Satellite Server remotely so it can cache pages and pagelets closer to their
intended audience. Remote Satellite Server hosts are fast, inexpensive caches of
WebCenter Sites pages. They reduce the load on the WebCenter Sites host,
dramatically increase the speed of page delivery to your site visitors, and provide a
simple and inexpensive way to scale your WebCenter Sites system.

1.2.6.4.1 HTTP Requests

When the load balancer routes an HTTP request for a page to Satellite Server,
Satellite Server either serves the page if the page is in its cache, or if the page is not
cached, it forwards the HTTP request to WebCenter Sites. The basic chain of events
is the following:

1. Satellite Server checks its cache.

ORACLE 1-9

Chapter 1
WebCenter Sites Utilities

2. What happens next depends on whether the page is in the Satellite Server cache

(see Table 1-2 for details).

Table 1-2 Pages in or not in the Satellite Server Cache

Page in the Satellite Server Cache

Page Not in the Satellite Server Cache

Satellite Server serves the page to the visitor's -

browser.

In this case, Satellite Server does not have to

forward the request to the WebCenter Sites
database, thus reducing the load on the
database.

Satellite Server forwards the request to
WebCenter Sites.

WebCenter Sites returns the cached
pages from its cache to Satellite Server. It
renders the page which is not in its cache,
caches a copy, and sends the page to
Satellite Server.

Satellite Server then caches the page and
serves it to the visitor's browser. When
requested again, the page is served from
the Satellite Server cache, which reduces
the load on the WebCenter Sites
database.

Each Satellite Server application is independent of every other Satellite Server
application. An individual Satellite Server application has the following characteristics:

e It maintains its own cache.

* It cannot request pages or pagelets from another Satellite Server application. It
can request pages or pagelets from only the WebCenter Sites core.

1.2.6.4.2 Satellite Server Servlets

ORACLE

Satellite Server is made up of several servlets: one that caches and serves pages, and

two that manage the cache:

- Satellite: Caches pages at the pagelet level. The Satellite XML or JSP tags in
your elements indicate which pagelets should be cached, and they control various

Satellite Server settings.

* Inventory: Enables you to examine the Satellite Server cache so you can obtain
the information you need to manually flush individual pages or pagelets from the

cache when necessary.

e FlushServer: Handles all types of cache-flushing. FlushServer can either flush the
entire cache, or can flush individual items from the cache.

For information about coding pages with the Satellite Server tags and page caching in
general, see Understanding Page Design and Caching.

1.3 WebCenter Sites Utilities

Many GUI-based WebCenter Sites utilities are available for you to manage
the WebCenter Sites database and various code. Decide which utility you need and

install it on your system.

» Developer Tools, which integrates WebCenter Sites with the Eclipse Integrated
Development Environment (IDE). The Developer Tools kit enables WebCenter
Sites developers to work in a distributed environment using tools such as Eclipse
and version control system (VCS) integration.

1-10

Chapter 1
WebCenter Sites Interfaces

» Sites Explorer, for viewing and editing tables in the WebCenter Sites database.
» CatalogMover, for exporting and importing database tables.
* XMLPost, for incrementally importing data into the WebCenter Sites database.

» BulkLoader, for quickly importing large amounts of data into the WebCenter Sites
database.

* Property Management Tool, accessible from the Admin interface, for viewing and
organizing the wcs_properties. json file (system configuration files).

1.4 WebCenter Sites Interfaces

You'll use the Admin interface to accomplish several different tasks. However, it's a
good idea to get familiar with Contributor and WEM interfaces, too.

* Admin Interface: The Admin interface allows developers and administrators to
manage and configure WebCenter Sites.

Figure 1-2 Admin Interface

ORACLE" WebCenter Sites New Search Workflow Site Navigation Publishing Help

=) [Admi - P
b Admin Site Navigations
= Sites
Lo e Add New
o) AdminSite
e avisports ra B pefault Default Desktop
iy Users .
g '] @ MonTouch NenTouch BlackBerry Phones, Others
3+ (E) Asset Types
¥ S Site Navigations | D Touch Touch iPads,iPhones,Android Tablets,Android Phones,BlackBerry10 Phones, Windows Phones,Windows Tablets,Nokiz Symbizn Phones
+ (H) Asset Types

+ [B) Flex Family Maker

+ [B] Proxy Asset Maker

¥ @@ Publishing

+ g Search

T x User Access Management
+ % WebRoots

+ @ Start Menu

- 5 Tree

- 3 Locale

= % System Tools

rlaar Charkante

The tree panel on the left contains all the content management elements that
developers and administrators have to work with. The workspace area on the right
is where all the tasks and operations are performed.

The Admin interface supports code-based operations, and enables you to
graphically complete the creation of basic asset types. For example, to create a
basic asset type, you would:

1. Write an XML file (called asset descriptor files) to define the basic asset type.
2. Upload the file to WebCenter Sites.

3. Invoke the AssetMaker utility. One of the functions of the interface
(AssetMaker) is to read the asset descriptor file and, from it, create a storage
table for the asset type. Other functions in the interface allow you to configure
the asset type (for example, hame its authorized users).

ORACLE' 1-11

Chapter 1
WebCenter Sites Interfaces

The same interface is used by administrators to create content management sites,
manage system users, control their permissions to content, establish workflow
processes, and configure WebCenter Sites features (such as Mobility).

Contributor interface: The Contributor interface is designed specifically for
content providers and business users. It provides ease of use and quick access to
most WebCenter Sites content management functions, such as previewing,
creating, editing, deleting, and approving assets.

Figure 1-3 Contributor Interface

9

fwadmin avisports

ORACLE WebCenter Sites Content

avisports Site
= [Default
I'i“ i~| Home
i=| Surfing
i=| Skiing
i=| Running
i=| Tennis

.. [Basebal

i=| Surfing
.. [i] Skiing

Running

Tennis
L Easeball
= [MonTouch
I'i“ i~| Home

... [i~| Basebal

Content Tree

My Work

Marketing Tree

ORACLE

SURFING SKIING

Hit the slopes th
is waiting just 3(

There's no sign of mild weathe
season. With crisp cold tempe
forecast - don't miss out on the

Read More

When you work with assets in the Contributor interface, you may see fields
enabled with the following WYSIWYG editors:

— CKEditor: An open source WYSIWYG text editor from CKSource which
requires no client-side installation. Developers can use CKEditor to create
basic assets whose text-entry fields use CKEditor as the input mechanism for
the field. Developers can also create attribute editors for flex attributes that
use CKEditor as the input medium.

— Clarkii Online Image Editor (Clarkii OIE): A popular third-party image editor
from InDis Baltic. Developers can enable Clarkii OIE to allow users to edit
images directly in the Form Mode eliminating the need for an external image
editor.

1-12

Chapter 1
Use Case Scenarios for WebCenter Sites

* WEM Admin Interface: The WEM Admin interface is designed specifically for
administrators to manage the assignment of applications and users to sites using
roles.

Figure 1-4 WEM Admin Interface

>~
© Add site
Sort by: Site Name =
%TE NAME DESCRIPTION
AdminSite AdminSite
avisports avisports
Firstsitell FirstSite I
Show rows: 5 n 1-3 of 3 . .
3
See Also:

Using the Web Experience Management Framework in Administering
Oracle WebCenter Sites and Developing Applications with the Web
Experience Management (WEM) Framework.

1.5 Use Case Scenarios for WebCenter Sites

WebCenter Sites provides capabilities for business-user content authoring, delivery of
high-scale dynamic sites, content targeting and optimization, user-generated content,
end-user personalization, marketing and lead generation, and mobile Web delivery.
WebCenter Sites is used in a variety of industries to create informational and branding
websites that run marketing campaigns and generate business leads.

These topics describe WebCenter Sites use cases:

* Developing Informational (Branding) Websites
* Creating Marketing-Oriented Websites
* Creating Mobile Websites

ORACLE 1-13

Chapter 1
Use Case Scenarios for WebCenter Sites

1.5.1 Developing Informational (Branding) Websites

WebCenter Sites provides easy-to-use and efficient features to develop branding
websites for products and services. The starting point is creating the basic
infrastructure using the WebCenter Sites core. Consider the following when designing
a website with WebCenter Sites:

ORACLE

Content Type: The first thing to determine is how the site content should be
categorized and designed in WebCenter Sites. Which content type should be
structured and which should be binary? Content that content contributors create in
WebCenter Sites through Form or Web mode is structured, but imported content
(such as Microsoft Word files) is binary.

Architects determine the following about content types:

— Which content types should have variable attributes and which should have
fixed attributes? A product model or service type of content may require
variable attributes as companies improve their existing range of offerings from
time to time.

— Which content should be flat and which should be hierarchical? For instance,
images are usually flat or basic type. A product accessory model such as
headphones for a MP3 player can be hierarchical.

— Based on the product or service, which content should inherit attributes from
other content? A product model may need to inherit attributes from the parent
product. Some content types may be standalone.

— Some content types require associated content. For example, you may need
to associate an article about a product model with articles about similar
product models or the parent product.

— How will contents be recovered if a disaster occurs?

These considerations determine the asset model and its implementation. Typically,
websites require a combination of basic and flex assets. For information about
how content types are determined and designed in WebCenter Sites, see
Understanding the Asset Types and Asset Models.

Content Volume: A website should be designed to handle any volume of content.
It should be scalable.

Pages: A page contains many pagelets that can be reused. When designing
pages consider reusability benefits as well as caching strategy for better
performance. See Coding Elements for Templates and CSElements and
Understanding Page Design and Caching.

Page Caching: For better performance, determine when pagelets will be used.
Design page templates to use fewer uncached pagelets per page. See Managing
Caching.

Templates: Before designing templates, consider those scenarios when template
components might be reused; pagelets can be reused on other pages. Some
examples of pagelets are: Top, LeftNav and Footer as they are likely to be reused
on many pages. See Developing a Website.

Content Mode: WebCenter Sites lets you include Form mode and Web mode in
your content management site. While Form mode is quick to use, Web mode
enables infrequent users or users who perform a limited role to find, edit, and
submit content directly from the rendered (Preview) version of an asset. Web

1-14

Chapter 1
Use Case Scenarios for WebCenter Sites

mode also enables content contributors to compare two or more versions of a web
page to determine which version is more effective. See Developing a Website.

+ Content Management (CM) Sites: A CM site is the source of content for the
online site and can represent either an entire online site or one of its sections.
Consider customers' needs and determine how CM and online sites should be
designed: whether a single CM site and its single online site, or a single CM site
and multiple online site, or multiple CM sites and multiple online sites. See Content
Management Models in Administering Oracle WebCenter Sites.

* Multilingual Requirements: Find out what customers are looking for. Mostly
customers want the ability to create content in a master language, wire it up to
other related content (which may or may not be in the master language), then
either publish it and translate it later. Or, they prefer translating the content and
other related bits and pieces first, and then publishing the whole as a single
package. Determine if customers want certain country-specific rules to apply to the
rendered content. See Configuring Sites for Multilingual Support.

* User permissions: You use Access Control Lists (ACLS) to restrict user access to
the WebCenter Sites database and the rendered pages served on your sites by
WebCenter Sites. WebCenter Sites also provides user tags to log in and log out
users, as well as to create an account or edit user profiles. Some of the common
user permissions are: create, edit, delete, approve content, rights to access WEM,
Admin, and Contributor interfaces. Consider what all types of permissions should
be created for different roles. See Creating and Authorizing Users in Administering
Oracle WebCenter Sites and Security: Managing Content Management Users.

» Security: Before developers begin designing the online site or contemplating
changes to the user interface on the management system, you must determine
and implement your security protocols. The decisions you make about security
configuration affect the way that you code and implement your online site. See
Setting Up External Security in Administering Oracle WebCenter Sites.

e Customization: Customer teams interact with the Contributor interface to edit and
update websites. For their efficiency and convenience, you can customize the
Contributor interface components such as the site tree, dashboard, asset forms,
search views, and so on. See Customizing Oracle WebCenter Sites.

1.5.2 Creating Marketing-Oriented Websites

ORACLE

Oracle WebCenter Sites enables marketers and business users to easily create and
manage contextually relevant website content aimed toward sales and customer
loyalty. It provides components that let you develop personalized and targeted
websites, as well as facilitate analysis of websites' effectiveness to sell products and
create new customers.

Oracle WebCenter Sites: Engage lets you design online sites that gather information
about your site visitors and customers. Marketing uses this information to personalize
product placements and create promotional offerings for each visitor.

The Oracle WebCenter Sites: A/B Testing module provides a feature to compare two
or more versions of a web page to determine the most effective version that can help
converting a website visitor into a website customer through a sale. WebCenter Sites
allows many methods to analyze effectiveness of a page version. Some of them are:
visitor clicking a link, visiting a certain set of pages, remaining on the site for a certain
length of time, adding an item to a shopping cart, and other actions, as well as the sale
of a product. For information, see Developing for A/B Testing.

1-15

Chapter 1
Use Case Scenarios for WebCenter Sites

For detailed information, see Developing Personalized and Targeted Websites with
Engage.

1.5.3 Creating Mobile Websites

ORACLE

The WebCenter Sites' mobility feature lets you easily extend your web presence to
mobile devices and deliver multi-channel marketing and customer experience
initiatives while saving significant time, money, and effort in managing mobile sites.
Use the mobility feature to create, preview, and deliver websites to a variety of mobile
devices such as phones and tablets. For information about developing mobile
websites, see Developing Mobile Websites.

1-16

Overview of the Avisports Sample Site

Avisports, a sports-centric sample site, illustrates features such as creating and editing
assets in Form Mode and Web Mode in the Oracle WebCenter Sites: Contributor
interface. It includes articles illustrated with images. Avisports provides you with
sample templates that are coded to render assets’ Create and Edit view in Web Mode.

Topics:
e Touring the Avisports Sample Site as a Content Contributor

e Touring the Infrastructure of the Avisports Sample Site

2.1 Touring the Avisports Sample Site as a Content
Contributor

To get a glimpse of what you can do with Oracle WebCenter Sites, take a tour of the
avisports demo site. We used WebCenter Sites tools and technologies to design this
site for you. By default, the Contributor interface is launched for you when you log into
the WebCenter Sites instance.

10 Important Ba... X M E

avisports Site m & MOD v G » 0 ¢

On the left of the Contributor interface is the Site Tree that contains three site
navigations for the avisports site. The avisports site under the Default site navigation
node is meant for desktop and laptop computers. The Touch site navigation node is
meant for touch screen devices, and the NonTouch site navigation node is for non-
touch devices with QWERTY keypads. Expanding these nodes displays the site
pages. Double-clicking a page displays the page in Web Mode, where a content
contributor can edit and preview the content.

You can preview the avisports site in the context of a single or multiple devices. To
preview avisports in the context of a single device, click the Show/Hide Devices icon

ORACLE 2-1

Chapter 2
Touring the Infrastructure of the Avisports Sample Site

on the right and choose a device in which you wish to preview this site. For multi-
device preview, click the Multi-Device Preview icon. These previews show how the
site will be displayed on site visitors' devices.

See Using Oracle WebCenter Sites.

2.2 Touring the Infrastructure of the Avisports Sample Site

ORACLE

Now let’s take a look at the infrastructural elements of the avisports site. To take a tour
of the avisports infrastructure, you need to switch to the Admin interface. The Admin
icon on the top left of the WebCenter Sites interface can quickly take you there.

In the Admin interface, click Site to display its contents. Expand the Site Navigation
node. There are three nodes that contain assets identical to those on the Site Tree in
the Contributor interface. Expand any site navigation node (Default, Touch, NonTouch)
to see that it contains the Home page, navigation pages, articles, and images.

2-2

ORACLE

Chapter 2
Touring the Infrastructure of the Avisports Sample Site

= | Site Admin
& avisports Site
& Users
+ (@) Asset Types
+ == Site Navigations
= | Site Navigation
: avisports Site
B Default
&[] Home
— [Touch
| + | Home

- B MNonTouch

* [Z] Home

+ = Unplaced Pages

General Admin
My Work

Content

Expand the Site Admin node, and then expand the Asset Type node to view the
assets enabled for the avisports site.

Expand the Site Navigations node. It lets you create new site navigations and reorder
the existing site navigations.

On the General Admin tree, expand the Mobility node. It includes Device Groups,
Devices, Device Repository, and Image Properties nodes. These nodes were used
while designing avisports site for touch screen and QWERTY devices.

To view templates used for the avisports site, click Search on the toolbar. In the
Search dropdown list, choose Suffix and select the default All in the for dropdown list.
These choices display templates used for avisports meant for desktop and laptop
devices, touch screen devices, and non-touch QWERTY devices.

2-3

ORACLE

Chapter 2
Touring the Infrastructure of the Avisports Sample Site

What you are seeing in the Admin interface is the infrastructure of the site that you
previewed in the Contributor interface.

To familiarize yourself with the high-level development process, see The WebCenter
Sites Development Process. To learn what types of websites you can develop with
WebCenter Sites, see Use Case Scenarios for WebCenter Sites.

2-4

The WebCenter Sites Development
Process

In WebCenter Sites, you design two sites: a content management site(s) that the
content contributors use to add and update information, and an online site that is
delivered to visitors' browsers from your delivery system. Content contributors publish
the online site from the management system to the delivery system.

So you are responsible for the user experience of two sets of end users:

e The site visitors who use your delivery system.
* The content providers who use the management system.

When creating these two closely connected yet separate sites, the development team
performs a series of planning, development, and testing steps. This chapter describes
the development process in one possible sequence of events and in very general
terms. Your own workflow will vary based on your work environment and business
needs.

Topics:

e Step 1: Set Up the Team

* Step 2: Create Functional and Design Specifications
- Step 3: Set Management System Requirements

e Step 4: Implement the Data Design

e Step 5: Build the Online Site

e Step 6: Set Up the Management System

e Step 7: Set Up the Delivery System

» Step 8: Publish to the Delivery System

3.1 Step 1: Set Up the Team

People with a variety of skillsets collaborate to assemble a site in WebCenter Sites.
Some people design the site, some code various elements, some manage content,
and so on.

e Solution architects (site designers)
e XML and JSP developers

e Java application developers

o Database administrators

e System network administrators

e Marketers and advertising staff

e Product managers (if you are developing a commerce site)

ORACLE 3-1

Chapter 3
Step 2: Create Functional and Design Specifications

» Content providers

You need people such as DBAs, system administrators, and content providers on your
development team in addition to the people (like you) who do the actual coding for
several reasons:

* You need to design a data model in addition to creating a page design, which
means that you need early input from the DBAs who will be supporting the
databases on each system.

e Code and data need to move around on multiple separate systems, several of
which are probably clustered, which means you need early input from system and
network administrators.

* Implementing a WebCenter Sites system is dependant on the work habits of your
content providers being accurately reflected in the design of the management
system. You need early input from those who will use the management system.

3.2 Step 2: Create Functional and Design Specifications

An online site delivered from an Oracle WebCenter Sites content management system
is a holistic construct in which everything interacts, intersects, and works with
everything else. So, you need to create a functional specification and a design
specification (to design your online site on paper).

You should accomplish some pieces of this task before you begin coding anything
(although you might do some proof-of-concept coding while working on the design
specification).

3.2.1 Functional Requirements

Before you can begin a design specification, product management and marketing must
provide the functional requirements for the online site.

3.2.2 Page Design

ORACLE

After you obtain the functional requirements from your marketing folks, a good place to
start is to map out all the types of pages that you want to present on the online site.
For example, home page, section page, columnist page, search page, article page,
and so on. To design a commerce site you will need other kinds of pages: registration
page, product category pages, product description page, article page, FAQ page,
invoice page, and so on.

Determine the graphical, navigational, and functional features for each page and the
site overall: navigation bars, buy buttons and shopping carts, tell me more buttons,
search functions, logo placement, animated graphics, and so on.

If you are using Oracle WebCenter Sites: Engage, decide where the merchandising
messages (recommendations) are to be placed on the pages and on which pages
they'll be placed. For example, each product category page may include a New
Products section in the upper-right corner of the page.

Map out the entire structure of the site and create mock-ups.

3-2

Chapter 3
Step 2: Create Functional and Design Specifications

3.2.3 Caching Strategy

One of the major elements in your design is caching: page caching and resultset
caching. No online site can reach performance goals without you planning, testing,
and implementing a caching strategy. While designing the pages that you want to
present on your online site, you must consider how and when page caching can and
should be implemented for each piece on each page. While designing your queries,
you must map out all the tables in the database and determine how the resultset
caching settings should be set for each table.

3.2.4 Security Strategy (Access Control)

You must determine what kinds of access control you want to enforce early in the
design process so that you design your pages correctly. For example, requiring your
visitors to identify themselves before they are allowed to access any part of your online
site. The requirement to check visitors' identities before allowing them access to a
page affects how you would cache the components of that page. You could design a
container page, which is never cached. This page verifies the identity of the visitor and
then assembles the page from cached pagelets only if the verification is successful.

3.2.5 Separate Format from Content (Elements from Assets)

Following the basic proposition of separating content from format, take a look at each
piece of each proposed page in your site and determine whether that piece should be
represented as data or as logic.

A good design is one in which data is designed to be represented as an asset and is
not embedded into element code. Examine every component of design or content, and
then determine what your assets are. You make that determination by deciding which
category a component belongs to: data or logic/code.

Simply speaking, do not code something into an element (embed it in logic) if it is
really data. Data should be in a separate asset.

Here's another way to look at it:

» Assets that represent content are the responsibility of content providers.

* Logic, anything coded into any element, is the responsibility of the developers.

3.2.5.1 Determine the Asset Types (Content)

ORACLE

Documents, articles, products, and images are easily identified as assets. However,
design components such as headers and footers could also be assets:

e When the content in a header or footer is embedded in the code of an element,
you or another developer has to change the text in it when anything in it changes
(a phone number, a logo, and so on).

e When the content in a header or footer is in an asset, the code in your elements
must be able to obtain the identity of the asset. Its content becomes the
responsibility of a content provider.

Other page components that can be assets include the following:

* Animation and other media

3-3

Chapter 3
Step 2: Create Functional and Design Specifications

* Quote of the day
* Company or stock profiles
* Knowledgebase questions and answers

From your point of view, someone else is responsible for a component's content which
is represented in an asset. You are only responsible for when and where it displays on
your online sites and what it looks like when it displays there.

3.2.5.2 Decide How to Handle Images and Other Blobs

You have two general options when deciding how to manage the images and other
blobs that you want to use in your online site:

* Treat them as assets: Store them in the WebCenter Sites database and have the
BlobServer servlet serve them.

» Treat them as static files: Put them in a file structure on your web server and let
the web server serve them.

Either method is a valid option. You can create links to image files stored on the web
server with the WebCenter Sites tags. There may be performance benefits when you
allow your web server to deliver your images. However, if you keep your images and
blobs separate from the WebCenter Sites database:

e You must implement a separate file management process. The publishing
methods that move image assets from your management system to your delivery
system cannot move content that is not in the WebCenter Sites database. You
must manage this process on your own.

* None of the native WebCenter Sites security mechanisms will apply. That is, you
cannot use ACLs to limit access to blobs that are not managed by WebCenter
Sites.

3.2.5.3 Map Out the Functional Design and Format (Elements)

Analyze all of the functionality that you plan to incorporate into your online site. Parts
of a commerce site will no doubt behave more like an application. Outline what code or
logic is required for your visitor registration pages, visitor data collection pages,
shopping carts, personalization, and so on.

Remember that your WebCenter Sites system provides you with coding options: Java,
XML, and JSP. As you look at each of the functions you want to provide, determine
which is the best coding solution for that function.

3.2.6 Data Design

Once you know which pieces of your site should be represented as assets, you can
map out what your asset types should be. Each new asset type will use one or more
database tables (depending on whether it is a basic or flex asset type).

3.2.6.1 Asset Types

No matter which asset model you are using, basic or flex, consider the following when
you design your asset types:

ORACLE 3-4

Chapter 3
Step 3: Set Management System Requirements

» Asset type design affects both of the user groups that you are designing for
(visitors to the online site and the content providers who enter the data).

* Which types of assets have to be linked or related to other assets of other types to
successfully implement your page design? Be sure to implement these
relationships in the asset type.

* Be sure that your asset types store only the data that you really plan to use so that
content providers do not waste time maintaining data that no one uses.

3.2.6.2 Auxiliary Tables That Support Your Asset Types

The data design that you want to implement for your system extends beyond the
database tables that hold your assets. Depending on the kinds of information that you
want to provide, you might have to create auxiliary tables that support your asset
types. For example, in a site that has asset types with a Mimetype drop-down list, a
user must select a value from this list. You could create a lookup table named MimeType
and pull these values from this table. Depending on your needs, you might have to
create similar tables for your system.

Your DBAs should be involved in your discussions about the asset types and auxiliary
tables that you plan to create so they can understand from the start the kind of
database tuning issues that might arise on the management and delivery systems.

3.2.6.3 Visitor Data

If you are using Engage, determine what kinds of visitor data will be gathered. These
data types are represented by the Engage visitor data assets that you use to create
segments for personalizing your site based on the identity of the visitor. For example,
demographics, purchase history, or clickstream information.

After your WebCenter Sites system goes live and starts collecting visitor data, the
tables that store that data grow very quickly. This is another area that you have to
consult your DBAs about.

3.3 Step 3: Set Management System Requirements

ORACLE

Don't yet begin coding. Think about how the management system should be
organized. Keep in mind that the design depends on the content management site.

A content management site is an object that you use as an organizational construct for
an actual online site and as an access control tool. When you create Template assets,
WebCenter Sites creates an entry in the SiteCatalog table. The naming convention for
the page entries includes the name of the content management site that you are
creating the Template for. This means that you must be consistent with site names
throughout your entire content management system (development system,
management system, and delivery system), and you must know the names of the sites
that you are using before you begin coding.

Although your primary concern is the name of each site, the system administrators and
business managers must also determine the following:

e How many users and ACLs (access control lists) do you need? (Remember that
you may have to create ACLs to assign to the visitors of the online site, as well.)

e How many site roles you do you need?

3-5

Chapter 3
Step 4: Implement the Data Design

* Which asset types need a workflow process?
* Which asset types should use revision tracking?
* Who should have access to which asset types on which sites?

Use both this guide and Administering Oracle WebCenter Sites to help you make
these decisions.

3.4 Step 4: Implement the Data Design

You've created the design specification, and you understand how the management
system is organized. So, it's time for you to implement the data design.

On the development system, you complete tasks such as these:

e Create content management sites with the same names as those that will be used
on the management system. See Creating a Site From the Admin Interface in
Administering Oracle WebCenter Sites.

e Design and create your asset types. See Creating Basic Asset Types and Creating
a Flex Asset Family.

e Add any lookup tables or other auxiliary tables for the asset types.

e Create sample assets of each type. See Creating an Asset in Form View in Using
Oracle WebCenter Sites.

This step and Step 5: Build the Online Site are iterative and will most likely overlap a
great deal. While you create asset types so that you can create assets before you
create templates for them, it is likely that you will uncover areas that need refinement
in your data design only after you have coded a template and tested the code.

3.5 Step 5: Build the Online Site

ORACLE

As soon as you've created your design specification, you can begin coding elements
that do not display assets. And, to start coding templates and building the online site
all you need is the sample assets of one type.

In this step, you complete tasks such as these:

» Create the page, query, and collection assets that implement the functionality of
your online site. See Creating Collection Assets, Query Assets, and Page Assets.

» If you are using Engage, create the visitor data assets, sample segments,
recommendations, and sample promotions. See Developing Personalized and
Targeted Websites with Engage.

» Create Template assets (and code template elements) for all of your asset types.
See Creating Template, CSElement, and SiteEntry Assets.

* For the Web Mode feature of the Oracle WebCenter Sites: Contributor interface,
code the templates using the insite family of tags. See Coding Templates for In-
Context Content Editing.

* Code the CSElements that implement underlying functionality (that do not display
assets). See Creating CSElement Assets.

» For a commerce site, code pages that implement the shopping cart. See What
You May Need to Know About Shopping Carts and Engage.

3-6

Chapter 3
Step 6: Set Up the Management System

* If you are using Engage, code pages that collect visitor data. See Collection of
Visitor Data.

e Test everything.
Perform both usability and market testing for your online site.

See Website Development with Tag Technologies.

3.6 Step 6: Set Up the Management System

After your online site becomes functional on the development system, it's ready to
move to the management system.

The developers complete the following task:

e Publish the content management site and all its components to the management
system. See Working with RealTime Publishing in Administering Oracle
WebCenter Sites.

The system administrators then complete the following kinds of tasks:

» Create users, ACLs, and roles. Assign users their roles for each content
management site. See Working with ACLs and Roles in Administering Oracle
WebCenter Sites.

» Create workflow processes. See Creating and Managing Workflow Processes in
Administering Oracle WebCenter Sites.

* Create StartMenu shortcuts. See Creating a Start Menu Item in Administering
Oracle WebCenter Sites.

* Enable revision tracking. See Enabling Revision Tracking in Administering Oracle
WebCenter Sites.

For information about setting up the management system, see Administering Oracle
WebCenter Sites.

3.6.1 Import Content as Assets

It is likely that you have content in some non-asset format that you want to use. To
import this content into the WebCenter Sites database as assets, use the XMLPost
utility. See About Importing Assets Using the XMLPost Utility.

3.6.2 Import Catalog Data and Flex Asset Data

For the flex asset model, you can import a large amount of pre-existing data with the
BulkLoader utility. See Importing Flex Assets with the BulkLoader Utility. For
systematic updates, however, you use the XMLPost utility. See Using the XMLPost
Utility.

3.6.3 Instruct the Editorial Team About Site Design

ORACLE

Before the editorial team can successfully maintain the online site, they must
understand your design. For example, how frequently are collections supposed to be
rebuilt?

If you are using the basic asset model, content providers have to know the following:

3-7

Chapter 3
Step 7: Set Up the Delivery System

* Which categories and sources they should assign to their assets in order for their
assets to be located by the appropriate queries and collections.

* Which templates they should assign to which assets.

* Which association fields must be filled out in order for the links on the site pages to
function correctly.

It is a good idea to program as much of this information as possible into the start menu
shortcuts that you and the system administrators create for each asset type.

If you are using the flex asset model, content providers have to know the following:

e The general hierarchy or taxonomy in place for the flex assets.
e Some information about what information a flex asset inherits.

e Which templates they should assign to which assets.

3.7 Step 7: Set Up the Delivery System

You're ready to publish all assets on the management system to the delivery system
as soon as you've set up the delivery system. Since the delivery system hosts the
public-facing site, you don’t have to publish Start menus, workflows, revision tracking,
and so on which you configured on the management system for content contributors
and marketers.

On your delivery system, you need to also accomplish these tasks:

* Implement your security strategy. See Setting Up External Security in
Administering Oracle WebCenter Sites.

e Onthe web server, map the URL of your site (www.example.com) to the WebCenter
Sites URL of your home page. See Mapping a URL Prefix for Your Web Server in
Administering Oracle WebCenter Sites.

For information about setting up the delivery system, see the section on publishing in
Administering Oracle WebCenter Sites.

3.8 Step 8: Publish to the Delivery System

Your content is published to the delivery system. Open your site to the public only after
an intensive testing (both performance and load).

See Working with RealTime Publishing in Administering Oracle WebCenter Sites.

ORACLE 3-8

Building Your Data Model

ORACLE

Before you start developing a site, get an insight into designing basic and flex asset
types. Also become familiar with what a flex filter class is, how you would create a flex
filter asset and a flex family, and how you would design attribute editors and configure
their instances. Learn about various kinds of tables and columns in the WebCenter
Sites database, how you can create database tables, and interact with those tables
that do not hold assets.

Understanding the Asset Types and Asset Models
Designing Basic Asset Types

Designing Flex Asset Types

Creating a Hierarchical Flex Family

Creating Flex Filters

Designing Attribute Editors

Configuring Bundled Attribute Editors

Working with the WebCenter Sites Database

Managing Data in Non-Asset Tables

Understanding the Asset Types and Asset

Models

You need basic and flex asset models to develop sites. The basic model comprises
simple, unalterable asset types where each type is stored in a single table. The flex
model includes a flex family whose asset types inherit attributes that are changeable
and are stored across multiple tables.

Topics:

* What Are Asset Types?

* What Are Asset Models?

* The Basic Asset Model

* The Flex Asset Model

* Assetsets and Searchstates

e Search Engines and the Two Asset Models
e Tags and the Two Asset Models

e Summary: Basic and Flex Asset Models

Note:

Designing and creating tables that do not hold assets is discussed in
Working with the WebCenter Sites Database.

4.1 What Are Asset Models?

ORACLE

Asset models (or data models) consist of asset types that content contributors and
marketers use to create content assets. You can design two types of models, basic
and flex. The asset types in the basic model are unalterable and suitable for
predictable scenarios. The asset types in the flex model are hierarchal and
changeable.

» Basic: Asset types have a simple data structure. They have one primary storage
table and simple parent-child relationships with each other.

Basic asset types are separate, standalone asset types that represent individual
kinds of content: an article, an image file, a page, a query, and so on. You use the
AssetMaker utility (located in the General Admin tree under the Admin node) to
create basic asset types.

* Flex: Asset types have a complex data structure with several database tables and
the ability to support many more fields than do basic asset types. Additionally, they
can have multiple parents, any number of grandparents, and so on, that they can
inherit attribute values from.

4-1

Chapter 4
What Are Asset Models?

Flex asset types comprise families of asset types that define each other and
assign attribute values to each other. You use the Flex Family Maker utility
(located in the General Admin tree under the Admin node) to create a family of
flex asset types.

During the process of designing your online site with the WebCenter Sites content
management system, you and others on your team create the asset types that should
represent the content for your site. The WebCenter Sites template and page asset
types provide the formatting framework for the asset types that represent your data,
whether you use the basic data model or the flex data model.

The asset data model (basic or flex) that you should choose to represent the data that
you want to display on your online site depends on the nature of that data, as
described in the following two sections:

« When to Use the Basic Model
When to Use the Flex Model

4.1.1 Two Data Models

WebCenter Sites provides two data models for the assets types that you design: basic
and flex.

* Basic: Asset types have a simple data structure. They have one primary storage
table and simple parent-child relationships with each other.

Basic asset types are separate, standalone asset types that represent individual
kinds of content: an article, an image file, a page, a query, and so on. You use the
AssetMaker utility (located in the General Admin tree under the Admin node) to
create basic asset types.

* Flex: Asset types have a complex data structure with several database tables and
the ability to support many more fields than do basic asset types. Additionally, they
can have multiple parents, any number of grandparents, and so on, that they can
inherit attribute values from.

Flex asset types comprise families of asset types that define each other and
assign attribute values to each other. You use the Flex Family Maker utility
(located in the General Admin tree under the Admin node) to create a family of
flex asset types.

4.1.2 What Are Asset Types?

ORACLE

Content contributors and marketers can create assets such as articles, images, videos
when you make asset types for those assets available to them. When creating your
asset model, you may want to leverage the asset types available in the avisports
sample site.

An asset type defines the characteristics of asset objects of that type. An asset is an
object that is stored in the WebCenter Sites database and can be created, edited,
inspected, deleted, duplicated, placed into workflow, tracked through revision tracking,
searched for, and published to your delivery (live) site.

This figure shows the WebCenter Sites Content-Entry form and the relationship of field
names and field values to the database table for an asset type.

4-2

Chapter 4
What Are Asset Models?

Figure 4-1 Asset Types: Database Tables and WebCenter Sites Forms

WebCenter Sites Content-Entry Form

Spark Contact: {Contact)

= | *Name: John Doe

Description:
Filename:

Path:

External Item ID:

Spark Content Definition: Contact

Field names define the asset type EEs

e | Phone: 516-555-5555
== | Email: johndoegretail.com
—————== | Ratings: [no Segrments defined]

no segment ratings apply

Related Items: [no recommendations defined]

Name Fhone Email Ratings
John Doe | 516-555- | johndoe Field values
5555 @retail.com define the asset

Database Table for Asset Type “Contact”

ORACLE

Developers design and create asset types while designing your content management
system and your online sites. Content providers then create and edit assets of those

types.

In general, assets perform one of the following three roles:

* Provide content that visitors read and examine on your online sites

» Provide the formatting logic or code for displaying the content

» Provide data structure for storing the content in the WebCenter Sites database

The developer's job is to design asset types that are easy for content providers to work
with on the management system and that can be delivered efficiently to visitors from
the delivery system.

4-3

Chapter 4
What Are Asset Models?

Several core asset types are delivered by WebCenter Sites and Oracle WebCenter
Sites: Engage. Because WebCenter Sites has a stack architecture, the core asset
types are made available as follows:

WebCenter Sites delivers the template, query, collection, SiteEntry, CSElement,
Link, and page asset types. All of the other modules and products use the
template and page asset types.

WebCenter Sites delivers the attribute editor asset type. It supports any flex
attribute asset types that you create.

Engage delivers the visitor attribute, history attribute, history definition, segment,
recommendation, and promotion asset types.

Assets of these types provide format or logic for the display of asset types that hold
your content by retrieving, ordering, organizing, and formatting those assets. In other
words, you use the core asset types to organize and format the content on your online

site.

4.1.2.1 Asset Types Delivered with WebCenter Sites

Asset types delivered with WebCenter Sites provide basic site design logic. You can
create as many individual assets of these types as you need, but you cannot modify
the asset types themselves:

ORACLE

Query: Stores queries that retrieve a list of assets based on selected parameters
or criteria. You use query assets in page assets, collections, and
recommendations. The database query can be either written directly in the New or
Edit form for the query asset as a SQL query, or written in an element (with
WebCenter Sites query tags or a as a search engine query) that is identified in the
New or Edit form.

Collection: Stores an ordered list of assets of one type. You build collections by
running one or more queries, selecting items from their resultsets, and then
ranking (ordering) the items that you selected. This ranked, ordered list is the
collection. For example, you could rank a collection of articles about politics so that
the article about last night's election results is number one.

Page: Stores references to other assets. Arranging and designing page assets is
how you represent the organization or design of your site. You design page assets
by selecting the appropriate collections, articles, imagefiles, queries, and so on for
them. Then, you position your page assets on the Site Navigation node that
represents your site in the tree on the left side of the WebCenter Sites Admin
interface.

Note that a page asset and a WebCenter Sites page are quite different. The page
asset is an organizational construct that you use in the Site Navigation node as a
site design aid and to identify data in your elements. A WebCenter Sites page is a
rendered page that is displayed in a browser or by some other mechanism.

Template: Stores code (XML or JSP and Java) that renders other assets into
WebCenter Sites pages and pagelets. Developers code a standard set of
templates for each asset type (other than CSElement and SiteEntry) so that all
assets of the same type are formatted in the same way.

Content providers can select templates for previewing their content assets without
having access to the code itself or being required to code.

CSElement: Stores code (XML or JSP and Java) that does not render assets.
Typically, you use CSElements for common code that you want to call from

4-4

Chapter 4
What Are Asset Models?

multiple templates (a banner perhaps). You also use CSElements to provide the
gueries that are needed to create DynamicList recommendations in Engage.

SiteEntry: Represents a WebCenter Sites page or pagelet and has a CSElement
assigned as the root element that generates the page. Template assets do not
have associated SiteEntry assets because they represent both an element and a
WebCenter Sites page.

Link: Stores a URL to an external website. You use this asset to embed an
external link within another asset.

Attribute Editor: Is an attribute editor that specifies how data is entered for a flex
attribute when that attribute is displayed on a New or Edit form for a flex asset or a
flex parent asset. It is similar to a Template asset. However, unlike a Template
asset, you use it to identify the code that you want WebCenter Sites to use when it
displays an attribute in its interface, not when it displays the value of an attribute
on your online site.

Because the data needs of each organization using a WebCenter Sites content
management system are different, there are no default asset types that represent
content. However, the sample sites deliver sample content asset types that you can
examine and modify for use on your sites.

4.1.2.2 Asset Types Delivered with Engage

ORACLE

The Engage application delivers several core asset types that you use to gather visitor
information so that you can personalize the product placements and promotional
offerings that are displayed for each visitor:

Visitor Attribute: Holds types of information that specify one characteristic only
(scalar values). For example, you can create visitor attributes named years of
experience, job title, or number of children.

History Attributes: Are individual information types that you group together to
create a vector of information that Engage treats as a single record. This vector of
data is the history definition. For example, a history type called purchases can
consist of the history attributes SKU, itemname, quantity, and price.

Segments: Are assets that divide visitors into groups based on common
characteristics (visitor attributes and history types). You build segments by
determining which visitor data assets to base them on and then setting qualifying
values for those criteria. For example, a segment could define people who live in
Alaska and own fly fishing gear, or it could define people who bought a personal
computer in the past six months, and so on.

After you define and categorize the visitor data that you want to collect, you use the
following asset types to select, organize, and display the flex assets that represent
your content on your online site:

Recommendation: Is like an advanced collection. It collects, assesses, and sorts
flex assets (products or articles, perhaps) and then recommends the most
appropriate ones for the current visitor, based on the segments that visitor belongs
to.

Promotion: Is a merchandising asset that offers some type of value or discount to
your site visitors based on the flex assets (products, perhaps) that the visitor is
buying and the segments that the visitor qualifies for.

4-5

Chapter 4
What Are Asset Models?

Note:

Engage interacts with assets that are built using the flex asset model
only. You cannot program recommendations and promotions to work
with assets that use the basic asset model.

4.1.3 Which Asset Model Should You Use to Represent Your Content?

During the process of designing your online site with the WebCenter Sites content
management system, you and others on your team create the asset types that should
represent the content for your site. The WebCenter Sites template and page asset
types provide the formatting framework for the asset types that represent your data,
whether you use the basic data model or the flex data model.

The asset data model (basic or flex) that you should choose to represent the data that
you want to display on your online site depends on the nature of that data, as
described in the following two sections:

« When to Use the Basic Model
« When to Use the Flex Model

4.1.3.1 When to Use the Basic Model

The basic model is a good choice when your data has the following characteristics:

» ltis fixed, predictable: there will be no need to add attributes to the asset type.
* Itis homogenous: all assets of the same type have similar attributes.

* It has a moderate number of attributes. You are limited by your database as to
how many columns/attributes you can have in the asset type table for a basic
asset.

* You want to use the static publishing method. There are very limited applications
of the flex asset model in which it makes sense to use the static publishing
method.

* Visitors browse your online site by navigating from link to link.

When the data for an asset type can be imagined as a spreadsheet, as a simple flat
table where each asset of that type is a single record and every record has the same
columns, that asset type should use the basic asset model.

4.1.3.2 When to Use the Flex Model

ORACLE

The flex model is the right choice when your data has the following characteristics:

* It has lots of attributes. For example, products can have potentially hundreds of
attributes. Because attribute values for the flex family member are stored as rows
rather than columns, and flex assets can physically have many more attributes
than basic assets can.

» It can be represented in a hierarchy in which assets inherit attribute values from
parent assets.

4-6

Chapter 4
The Basic Asset Model

* You cannot predict what attributes might be necessary in the future and your data
might need additional attributes periodically.

* Asset instances of the same type can vary widely. That is, not all assets of that
type should have the same attributes. For example, a bath towel product asset
would have attributes that a toaster product asset would not, but both the bath
towel and the toaster are product assets.

* Visitors browse your online site by navigating through drill-down searches that are
based on the attribute values of your data.

* You want to use Engage.

Products fit into the flex asset model because markets are constantly changing. You
cannot always predict what products you will be selling next year or what attributes
those products will have.

Flex data model is the right fit when you business needs require you to make
modifications to your asset types such as adding or changing their attributes. The flex
asset model gives you the extensibility that you have to represent data whose
characteristics cannot be predicted.

4.2 The Basic Asset Model

WebCenter Sites includes the basic asset model by default. This data model uses one
database table per asset type. All basic assets of the same type have the exact same
fields (properties), and all assets of a single type are stored in the same database
table. Most of the core WebCenter Sites asset types use this model.

The AssetMaker utility lets you create basic asset types. You code XML files called
asset descriptor files using a custom tag named PROPERTY and then upload the file with
AssetMaker. A property is both a column and a field. A PROPERTY statement defines a
column in the table that stores assets of that type and defines how data is to be
entered into the corresponding field for that column in the WebCenter Sites forms.

For information about coding asset descriptor files and creating new basic asset types,
see Designing Basic Asset Types.

Familiarize yourself with the following:

* Relationships Between Basic Assets
e Category, Source, and Subtype

» Basic Asset Types and the Database

4.2.1 Relationships Between Basic Assets

ORACLE

Basic asset types have very simple parent-child relationships. You use these
relationships to associate or link assets to each other. When you design the online
pages for your online sites you code template elements that identify, extract, and then
display an asset's children or parent assets in appropriate ways.

The relationships that basic assets can have with each other are called associations
and unnamed relationships. When these relationships occur between individual
assets, they are written to the AssetRelationTree table.

4-7

Chapter 4
The Basic Asset Model

4.2.1.1 Associations

Associations are defined, asset-type-specific relationships that are represented as
fields in the WebCenter Sites asset forms. After you create an asset type with
AssetMaker, you use the Association form for that asset type to create association
fields.

You use associations to set up relationships that make sense for the asset types in
your system and then you use the names of these relationships to identify the related
assets and display them in appropriate ways on your site pages. For example, in a site
where an asset named article had three associations with an imagefile asset type,
such as Main ImageFile, Teaser ImageFile, and Spot ImageFile, the article templates
would be coded to display the imagefiles that are linked to articles through these
associations. The association is what enables the template to determine which
imagefile is the correct one to display for an individual article asset. When a content
provider selects an image asset in the imagefile field of the New and Edit article forms,
the selected imagefile asset becomes a child of the article asset. (Note that this same
imagefile asset can also be a child of other articles.)

When you create a new association between asset types, WebCenter Sites creates a
row for that type of association in the Association table. Then, when you create an
asset and specify the name of another asset in an association field, that relationship is
written to the AssetRelationTree table.

4.2.1.2 Unnamed Relationships

Unnamed relationships occur when you build a collection, the items in the collection
become children of the collection.

4.2.2 Category, Source, and Subtype

There are three additional ways to organize or categorize basic assets: category,
source, and subtype. Categories and subtypes are specific to an asset type. Source,
however, applies to all the asset types in a content management site. In other words,
source is site-specific.

4.2.2.1 Category

ORACLE

Category is a default column and field that you can use to categorize assets according
to a convention that works for your sites. Although all basic asset types have a
category column by default, you do not have to use it (not a required field). For
example, a banking site might have categories named Personal Finance, Banking and
Loans, Rates and Bonds, News, and so on. Articles identified with these categories
are selected by queries that use category as a selection criterion and displayed on
specific site pages, as appropriate.

When you create a new basic asset type, AssetMaker creates one category code for
assets of that type. You then use the Category form for your new asset type to create
additional categories to use this feature.

New categories are written to the Category table, which serves as the lookup table for
the Category field on the New and Edit asset forms for asset types that use the basic
asset model.

4-8

Chapter 4
The Basic Asset Model

The purpose of the Category field and column is for site design. You can use
category, or not, in your queries and query assets for your online site. The WebCenter
Sites application does not base any of its functions on category codes. (With the
exception that you can search for assets based on this field, if you are using it.)

Note:

SQL Server can't differentiate case for attribute categories. For example, you
can't have a category named MyCategory and another category named
mycategory if you are using SQL server.

4.2.2.2 Source

Source is a column and field that you can use to identify where an asset originated.
Although WebCenter Sites provides administrative support (through the Source form)
for you to use this feature in the design of your online site, the source column does not
exist by default in the primary storage tables for basic asset types other than Article.
To use source with your basic asset types, you must include a property statement in
your asset descriptor file for it.

For example, a banking site might have sources named WireFeed, Asia Pulse, UPI,
and so on. Certain online pages select stories to display based on the results of
gueries that search for articles based on the value in their source column.

After you create a new basic asset type, you add new sources in the Source form in
the Admin node on the General Admin tree, if necessary. New sources are written to
the Source table, which serves as the lookup table for the Source field on the New and
Edit asset forms for basic-style assets.

4.2.2.3 Subtype

ORACLE

The subtype concept provides a way to further classify an asset type. In the flex asset
data model, the definition asset types create subtypes of flex assets and flex parent
assets. In the basic asset data model, the concept of subtype is implemented through
the subtype column in the primary storage table for the asset type.

The WebCenter Sites application uses the value of an asset's Subtype in many ways:

» For Template assets, subtype means the type of asset that the template formats.
Templates that format articles are a different subtype of template than templates
that format images. When you create an article asset, only the templates that
format articles appear as options in the Template field on that asset's New or Edit
form.

In addition, you can use the Oracle WebCenter Sites: Contributor interface to
specify a subtype that is displayed using a given template. For example, if your
website uses two subtypes of article asset, Sports and News, you can create a
template that only displays articles with the Sports subtype.

» For query assets, subtype means the type of asset that the query returns. Query
assets that return articles are a different subtype of query asset than those that
return imagefiles.

4-9

Chapter 4
The Basic Asset Model

» For collection assets, subtype means the type of asset that the collection holds.
Collections that hold articles are a different subtype of collection asset than those
that hold imagefiles.

* For the basic asset types that you design, subtype is designed to classify an asset
based on how it is rendered. You can define a default template for each subtype of
an asset type for each of your publishing targets.

You are required to create subtypes only when a different template should be
assigned to assets of a specific type based on the publishing target for the asset.

The field named Subtype is displayed in those assets' New and Edit forms for whose
asset types you create any subtypes. The drop-down list in the field displays all the
possible subtypes for that asset type.

" Note:

In the flex asset model, the definition asset types serve as subtypes. For
example, the flex family in the avisports sample site has a definition named
Article. This means that there is one subtype for article assets: the Article
subtype.

For some asset types, the subtype is set implicitly and cannot be changed. Other
asset types allow users to choose a subtype for the asset using the Contributor
interface. Table 4-1 lists the WebCenter Sites asset types according to whether they
have configurable subtypes.

Table 4-1 Implicit Subtypes vs. Configurable Subtypes

Implicit Subtypes Configurable Subtypes

e Allflex assets e All custom basic assets (made with AssetMaker)
* Query assets e Article assets

e Collection assets * Image assets

e Template assets e Linkset assets

e Page assets Recommendation assets

. Link assets

For information about setting configurable subtypes, see Designing Basic Asset
Types.

4.2.3 Basic Asset Types and the Database

Although there is one primary storage table for basic asset types, WebCenter Sites
keeps other kinds of supporting information for basic assets in other tables. When you
create a new asset of a basic type, WebCenter Sites writes to the following database
tables:

* The primary database table that holds assets of its type. For example, each page
asset has a row in the Page table and each article asset has a row in the Article
table.

ORACLE 4-10

Chapter 4
The Basic Asset Model

These tables store all of the asset's attribute or field values, such as the asset's
name, its object ID, who created it, which template it uses, and so on. The name of
this table always matches the name of the asset type.

When you create a new basic asset type, the AssetMaker utility creates the
primary storage table (a WebCenter Sites object table) for the asset type as a part
of that process.

e The AssetRelationTree table, if the asset has associations with other assets. The
relationships that basic assets can have are described in Relationships Between
Basic Assets.

e The AssetPublication table, which specifies which content management sites
(publications) give you access to the asset. If the asset is shared among sites
(publications), there is a row entry for each pubid. A pubid is a unique value that
identifies a site (publication).

* The SitePlanTree table, if the asset is a page asset. This table stores information
about the page asset's hierarchical position in your site navigation.

When you develop the templates that display the assets that represent your content,
you code elements with XML or JSP tags that extract and display the information from
the tables in the preceding list.

Be sure to examine the New and Edit forms for the various sample asset types and to
use the Explorer tool to examine the tables in your WebCenter Sites database.

Note:

Do not use the Explorer tool to modify the data in any of these tables. All
editing of assets and their related tables should be done only through the
WebCenter Sites interface.

4.2.3.1 Template Asset Type and the Database

Although the Template asset type is a core asset type, it does not use the basic asset
model. It is a complex asset type with entries in the following database tables:

e The Template table (primary storage table)
e The SiteCatalog table
e The ElementCatalog tables

When you create a new Template asset, WebCenter Sites automatically creates
entries in both the SiteCatalog and ElementCatalog tables for it.

4.2.3.2 Default Columns in the Basic Asset Type Database Table

ORACLE

WebCenter Sites needs several default columns for its basic functionality. So,
AssetMaker creates each of the columns described in the following table in the asset
type's primary storage table in addition to the columns defined in the asset descriptor
file for that asset type.

Note that you do not have to code your asset descriptor files to include property
statements for the columns in this table:

4-11

ORACLE

Chapter 4
The Basic Asset Model

Table 4-2 Columns in an Asset Type's Primary Storage Table

Default Description Where It's Displayed in the WebCenter
Column Sites Interface
(Field)
Name
id A unique ID for each asset, Forms:
automatically generated by * Inspect
WebCenter Sites when you create | it
th 1.
¢ asse e Status
_(ou cannot change the value in this search forms
field.
name A unique name for the asset. Names Forms:
are limited to 64 alphanumeric .« New
characters. . Edit
. Inspect,
e Status
Also in the search results lists.
description A short description of the asset that Forms:
offers more information than justthe . New
name. « Edit
* Inspect
e Status
Also in the search results lists.
status The status of the asset, one of the Forms: Status, if the status of an asset is
following status codes obtained from either PL (created) or ED (edited)
the StatusCode table: Note that assets with a status of VO
PL: created (deleted) are not displayed anywhere in
ED: edited the WebCenter Sites Windows interface.
RF: received (from XMLPost, for
example)
UP: upgraded from Xcelerate 2.x
VO: deleted (void)
WebCenter Sites controls the value
in this field. This field cannot be
edited manually.
createdby The identity of the user who originally Forms: Status
created the asset. This user name is Ao, the Revision History list if revision
obtained from the SystemUsers table. {racking is enabled for assets of this type.
WebCenter Sites controls the value
in this field. It cannot be edited
manually.
createddate The date and time that the asset was Forms: Status

written to the database for the first
time.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

Also, the Revision History list if revision
tracking is enabled for assets of this type.

4-12

ORACLE

Chapter 4
The Basic Asset Model

Table 4-2 (Cont.) Columns in an Asset Type's Primary Storage Table
|

Default Description Where It's Displayed in the WebCenter
Column Sites Interface
(Field)
Name
updatedby The identity of the user who most Forms: Status
recently modified the assetinany ajso, the Revision History list if revision
way. This user name is obtained tracking is enabled for assets of this type.
from the SystemUsers table.
WebCenter Sites controls the value
in this field. It cannot be edited
manually.
updateddate The date on which the information in Forms: Status
the status field was changed to its Also, the Revision History list if revision
current state. tracking is enabled for assets of this type.
WebCenter Sites controls the value
in this field. It cannot be edited
manually.
startdate Promotion assets (an Engage asset) Forms:
have durations during which they can Duration, Edit, and Inspect for
be displayed on the visitor pages on promotion assets.
your live system. This column stores New, Edit, Inspect, and Status if you
the start time of the promotion's enab,Ie it f‘or other :";tsset types
duration. '
The promotion asset type is the only
default asset type that uses this
column.
For information on using startdate
and enddate fields for your asset
types, see Example 5-7 in Creating
Basic Asset Types.
enddate For promotion assets (an Engage Forms:
asset), this column stores the end « Duration, Edit, and Inspect for
time of the promotion’s duration. promotion assets.
The promotion asset type is the only . New, Edit, Inspect, and Status if you
default asset type that uses this enable it for other asset types.
column.
subtype The value of the asset's subtype. Forms:
The subtype is setin differentways . New, and Edit for Template assets
for different assets. See Subtype. (Asset Type field).
* New, and Edit for query assets
(Result of Query field).

New, and Edit for any asset type that
has subtypes configured for it.
Set Default Templates.

4-13

Chapter 4
The Basic Asset Model

Table 4-2 (Cont.) Columns in an Asset Type's Primary Storage Table

Default Description Where It's Displayed in the WebCenter
Column Sites Interface
(Field)
Name
filename The name to use for the file created Forms:
for this asset during the Export to « New and Edit for page and article
Disk publishing method. assets, by default.
The page and article assettypes are . New and Edit for any other asset
the only asset types that have this type that has the field enabled.
field enabled by default.
For information on using the
filename field for your asset types,
see Example 5-7 in Creating Basic
Asset Types.
path The directory path to use for Forms:
exported page files that are _ « New and Edit for page and article
generated from child assets of this assets, by default.
asse_t W.he“ the Export to Disk New and Edit for any other asset
publishing method renders that asset type that has the field enabled
into a file. '
The page and article asset types are
the only asset types that have this
field enabled by default.
For information on using the
filename field for your asset types,
see Example 5-7. in Creating Basic
Asset Types. in Creating Basic Asset
Types.
template The template for the asset. Forms:
This is the template that is used to * New
render the asset when it is either « Edit
published with Export to Disk or + Inspect
rendered on a live dynamic delivery Status
system.
This template is also used to
calculate the dependencies when the
asset is approved for the Export to
Disk publishing method, unless the
asset type has subtypes and there is
a default approval template assigned
for the asset based on its subtype.
category The category code of the category Forms:
assigned to the asset, if any. .« New
If you decide to use the category . Edit
field to organize assets, you add « Inspect
category codes in the Asset Types Status

forms in the Admin node on the
General Admin tree.

ORACLE

4-14

Chapter 4
The Flex Asset Model

Table 4-2 (Cont.) Columns in an Asset Type's Primary Storage Table
|

Default Description Where It's Displayed in the WebCenter
Column Sites Interface

(Field)

Name

urlexternal If the asset was entered with the Not applicable

doc Sites Desktop interface rather than

Deprecated the WebCenter Sites interface,

stores the external document that is
the source for the asset.

WebCenter Sites controls the value
in this field. It cannot be edited
manually.

externaldoc The mimetype of the file held in the Not applicable
type urlexternaldoc field.

Deprecated WebCenter Sites controls the value
in this field. It cannot be edited
manually.

urlexternal Reserved for future use. Not applicable
docxml

4.3 The Flex Asset Model

ORACLE

In the flex asset model asset types inherit attributes. You can modify this model to
meet unpredictable content needs. For example, a car company keeps adding new
models. And, all models share some features. Content for such a car site needs the
flex asset model.

The main characteristics of the flex asset model are:

e Flex assets are defined by flex definitions. A flex definition is an asset type that
determines which flex attributes make up an individual flex asset. Flex definitions
create subtypes of the flex asset type.

e The definition asset types create subtypes of flex and flex parent assets, which
allows individual instances of a flex asset or flex parent asset type to vary widely.

e Flex attributes are assets. The flex data model lets you add flex attributes to (or
remove them from) existing flex asset types at any time.

* Flexfilters can take the data from one flex attribute, transform or assess it in some
way, and then store the results in another flex attribute when you save the flex
asset. The resulting value from a flex filter action is called a derived attribute value.
See Creating Flex Filters.

e Flex assets can inherit attribute values, even derived values, from their flex
parents, which means that you can represent your data in hierarchies.

You do not create individual flex asset types as you do basic asset types; instead, you
create a flex family of asset types.

See these topics:

* The Flex Family

4-15

Chapter 4
The Flex Asset Model

* The Flex Family in the Avisports Sample Site
* Flex Attributes

* Flex Parents and Flex Parent Definitions

* Flex Assets and Flex Definition Assets

* Flex Families and the Database

4.3.1 The Flex Family

ORACLE

The flex asset data model can be thought of in terms of a family of asset types. There
are six asset types in a flex family. Five are required, the sixth is optional, as indicated
in Table 4-3.

Table 4-3 Flex Family Members
|

Flex Family Member Number Per Family
flex attribute asset type one

flex parent definition asset type one or more

flex definition asset type one or more

flex parent asset type one or more

flex asset type one or more

flex filter asset type none or more

Whereas some asset types are used exclusively by developers to create the other
asset types in the data model, the flex asset type is always used by the content
providers to create assets of that type. (When necessary, authorized users can be
given access to additional flex family members.)

To create a flex family, you access the Add New Flex Family form by double-clicking
Add New Family, located in the General Admin tree on the Admin node under Flex
Family Maker. under the Flex Family Maker node in the Admin interface. In the form,
you name each of the asset types in the family. For example, a site has a flex family
named product family. The flex asset is called the product asset, the flex attribute is
called the product attribute, and so on.

The key member of a flex family is the flex asset. The flex asset is the unit of data that
you extract from the database and display to the visitors of your online site (delivery
system). All of the other members in the family contribute to the flex asset member in
some way.

While the flex asset is the key, the attributes are the foundation of the flex asset
model. An attribute is an individual component of information. For example, color,
height, author, headline. You use attributes to define the flex assets and the flex
parents. Flex assets inherit attribute values from their parents who inherit attribute
values from their parents and so on.

You decide which attributes describe which flex assets and which flex parents by
creating templates with the flex definition and flex parent definition asset types. Flex
parents and their definitions implement the inheritance of attribute values.

Note that a flex parent or a flex asset cannot be defined by attributes of two types. A
site might have two or more kinds of attributes. For example: product attributes and

4-16

Chapter 4
The Flex Asset Model

content attributes. A product asset (the flex asset member in the product flex family)
can be defined by product attributes only. Its definition cannot include content
attributes.

A flex filter enables you to configure some kind of action to take place on the value of
an attribute and then save the results of the action when the flex asset is saved. For
example, you can configure a filter that converts the text in a Word file into HTML
code.

In summary, the flex asset member of a flex family is the reason for the family, the unit
of content that you want to display. The other members of a flex family provide data
structure for the flex asset. However, because all of the members in the family are
assets, you can take advantage of the standard WebCenter Sites features like revision
tracking, workflow, search, and so on.

4.3.1.1 Parent, Child, and Flex Assets

When you are using the flex asset data model, the phrase parent-child relationship
refers to the relationship between a flex asset and its flex parent asset(s). This is a
different parent-child relationship than the ones that basic assets have through asset
associations.

Although it is possible for flex assets to have the kinds of parent-child relationships
that basic assets do, it is unlikely for the following reasons:

* WebCenter Sites provides the ASSETSET and SEARCHSTATE tag families, which you
use instead of the collection and query asset types to select the flex assets that
you want to display. For more information about this tag family, see Assetsets and
Searchstates.

* Flex assets have no need for associations. For example, to assign an image file to
a flex asset like a product, you can create an attribute that identifies the image file
and assign it to the definition for the flex asset.

4.3.2 The Flex Family in the Avisports Sample Site

ORACLE

In the avisports sample site there is one flex family that you can examine. To better
understand the following descriptions of the sample flex asset types, examine some
article and image assets in the Contributor interface as you read this section.

The Avisports Flex Family

The flex family in the avisports sample site provides the data structure for the articles
and images shown on the avisports sample site. It creates an online sports news
website.

These are the asset types in the avisports flex family:

e ContentAttribute: The flex attribute asset type used to define the attributes for the
articles, images, and parents in the avisports sample site. For example, there are
attributes named headline, subheadline, author, relatedimage, and so on.

e ContentParentDef: The flex parent definition asset type in the avisports sample
site's flex family. It is used to create subtypes of parents. There is one: Category.

e ContentDef: The flex definition asset type in the avisports sample site's flex
family. It is used to create a subtype for each definition: Article, Articlelmage, and
Image. All of the AVIArticle assets in this site are defined by the Article definition.

4-17

Chapter 4
The Flex Asset Model

The AVIlImage assets in this site are defined by either the Image or Articlelmage
definition.

- ImageCategory: A flex parent that represents categories of images such as
Running images, Skiing images, Baseball images, and so on.

e ArticleCategory: A flex parent that represents categories of articles such as
Running Articles, Baseball Articles, Skiing Articles, and so on.

* AVlimage: A flex asset type that stores an uploaded image file. Image assets
represent the images that are shown on the avisports website.

e AVIlArticle: A flex asset type that stores the text of an article and information about
it. It has attributes such as headline, byline, subheadline, body, and so on.

Notice that there are three content definitions in the avisports sample site's flex family,
and only two content asset types. The Article definition is used by the AVIArticle asset
type. The Image and Articlelmage definitions are both used by the AVl Image asset type.

4.3.3 Flex Attributes

Flex attributes are the foundation of the flex asset model. An attribute represents one
unit of information. You use attribute assets to define flex assets and flex parents.
They are then displayed as fields in the New and Edit forms for your flex assets and
their parents.

An attribute is similar to a property for a basic asset. As does a property, an attribute
defines the kind of data that can be stored in a column in a WebCenter Sites database
table and describes a field in the forms. However, while a property defines one column
in an asset type's database table, an attribute is an asset with database tables of its
own.

This data structure (attributes as assets rather than columns) is a one of the main
reasons why flex assets are so flexible.

Once again, a flex parent or a flex asset cannot be defined by attributes of two types.
For example, in a site that has a product flex family and a content flex family, the
product asset type can be defined by product attributes only. Its definition cannot
include content attributes.

Note:

The data stored by flex attributes that you removed is not deleted from the
database (queries continue to return this data).

4.3.3.1 Data Types for Attributes

ORACLE

The data types for your attributes are defined by the WebCenter Sites database
properties located in the wcs_properties. json file, categorized under Core.

The following table lists the data types for flex attributes, the properties that define the
data types, and the files where the properties are located.

4-18

Chapter 4
The Flex Asset Model

Table 4-4 Data Types for Flex Attributes

Type Property
date cc.datetime
float cc.double
integer cc.integer
money cc.money
string cc.varchar
text cc.bigtext
asset cc.bigint
blob cc.bigint

4.3.3.2 Default Input Styles for Attributes

When a flex attribute is displayed as a field on a New or Edit form, it has default input
styles based on its data types. The following list presents the default input styles for
flex attributes:

Date: input boxes that look like the following:

Figure 4-2 Date Attribute

yvyyy-mm-dd hourimin:sec (Format)

Float: A text field with decimal position enforced.
Integer: A text field.

Money: A text field with currency format enforced.
String: A text field that accepts up to 255 characters.

Text: A text box. The number of characters that it accepts depends on the
database and database driver you are using.

Asset: A drop-down list of all the assets of the type that was specified.

Blob: A text field with a Browse button.

Instead of using the default input style, you can create an attribute editor and assign it
to the attribute. Attribute editors are assets but they are also similar to the INPUTFORM
statement in an asset descriptor file for a basic asset -- they specify how data is
entered into the attribute field. For more information about attribute editors, see
Designing Attribute Editors.

4.3.3.3 Foreign Attributes

You can have flex attributes that are stored in foreign tables, that is, foreign attributes.
They are subject to the following constraints:

ORACLE

The foreign table must be registered with WebCenter Sites. That is, the foreign
table must be identified to WebCenter Sites in the Systeminfo table.

4-19

Chapter 4
The Flex Asset Model

* The foreign table must have a column that holds an identifier that uniquely
identifies each row. The identifier must have fewer than 20 characters.

* The foreign table must have a column that is reserved for the attribute data value,
which can be of any appropriate data type. For example, for a string type attribute,
the data type must be appropriate for a string.

4.3.4 Flex Parents and Flex Parent Definitions

ORACLE

Flex parents and their flex parent definitions are organizational constructs that do two
things:

* Implement the inheritance of attribute values. The parent definitions set up
(describe) the rules of inheritance and the parents pass on attribute values to the
flex assets according to those rules of inheritance.

» Determine the position of a flex asset on the tabs that display your assets in the
WebCenter Sites interface. The hierarchy of the parents and the flex assets on the
tabs in that tree are based on the hierarchy set up with the parent definitions.

Each parent asset type has its own set of attributes, as specified in its parent
definition. The parent definition creates a form that you see in the WebCenter Sites
interface.

Note:

While creating a parent definition, if you add the parent definition as its own
parent, publishing errors may occur.

You use parents to organize or manage the flex assets by passing on attribute values
that are standard and do not have to vary for each individual child asset of that parent.

Parent asset types affect how you and the content providers see and interact with the
data within the WebCenter Sites interface.

For example, say there is a site named ProductSite that has two parent definitions:
Category and SubCategory. Their sole purpose is to create structure on the Content
Tree (in the Contributor interface).

When the product parent's definition is Category, the product parent is displayed at the
top level on the Content Tree. When the product parent's definition is SubCategory, the
product parent is displayed at the second level and it has a parent of its own, as
shown in the following:

4-20

Chapter 4
The Flex Asset Model

Figure 4-3 Product Node in the Content Tree

= g Product
= A CompactFluorescent
£, Double BIAX and 2-Pin
& Double BIAX and 4-Pin
£, High Lumen BIAX RS and IS
.%. Other Compact Fluorescent

+ A Fluorescent

+
o

Halogen

I+
B

High Intensity Discharge

+ A, Incandescent

[+ % Miniature and Sealed Beam

In Figure 4-3, there are several top-level product parents: Compact Fluorescent,
Halogen, and so on. They were created with the Category definition. The next-level
product parents, such as Double BIAX and 2-Pin, Double BIAX and 4-pin, and so on
were created with the Subcategory definition.

4.3.4.1 Business Rules and Taxonomy

ORACLE

The purpose of parent definitions and parent assets is not only to express the
taxonomy of your data. They also allow you to apply business rules (logic) without risk
of input error from end users. If you created a flex asset of a specific definition and
there are dependencies that it should inherit, that flex asset should have a parent.

For example, here is a simple product, a toaster with five attributes:

o SKU=1234

» Description = toaster
* Price =20

* CAT1 = Kitchen

* CAT2 = Appliances

When the value of CAT2 is Appliances, the value of CAT1 can only be Kitchen. In
other words, there is a business rule dependency between the value of CAT1 and the
value of CAT2.

In this kind of case, there is no reason to require the content providers to fill in both
fields. Because every field whose data has to be entered manually is a field that might
hold bad data through input error, you would use inheritance to impose the business
rule:

* Make CAT1 and CAT2 parent definitions.

» Make Kitchen a parent created with the CAT1 definition and Appliances a parent
created with the CAT2 definition.

4-21

Chapter 4
The Flex Asset Model

* Make Kitchen the flex parent of Appliances.

Now, when content providers create products and select Appliances for CAT2, the
value for CAT1 is determined automatically through inheritance.

4.3.5 Flex Assets and Flex Definition Assets

A flex asset is the reason for the flex family. It is the asset type that represents the end
goal; a product, a piece of content that is displayed, and so on. For example, in the
avisports sample site there are two flex asset types:

* Article (flex), an asset that holds text.
* Image (flex), an asset that holds an uploaded image file.

All of the other members in the family contribute to the flex asset member in some
way.

A flex definition asset describes one kind of flex asset in a flex family; for example, a
shoe, a toaster, a bowling ball, a brochure, a newsletter, an article, and so on. A flex
definition asset is a template in that it directly affects a form that you see in the
Contributor interface.

The avisports sample site has one definition for articles (Article) and two definitions
for images (Image and Articlelmage). You can create as many flex definitions as you
need. For example, a news site that should offer sports and weather articles will
require a flex definition asset for sports and a different flex definition asset for weather.

Individual flex assets can be created according to only one flex definition asset. You
could not create an image that used both the Image definition and the Articlelmage
definition, but you can create an image that uses the Image definition and then create a
different image that uses the Articlelmage definition.

A flex asset has not only the attributes assigned directly to it when it was created, it
also has the attributes that it inherits from a parent. It can have multiple flex parents
and whether the parents have parents depends on the hierarchical structure that you
design. The following figure shows an example of a site that has three levels of
hierarchy.

Figure 4-4 Levels of Hierarchy

“

= ntent T

T 2V

+ [Marketing

=) (@ Product I Browsing: Other Compact Fluarescent (4 items)
= B, Compact Fluorescent

Name Typa
. Doubie BLAX and 2-Fin i

B, Double BLAX and 4-Pin
B, High Lumen BIAX RS and IS

B, Other Compact Flsorescent
B, Fuorescent

&, Halogen

. Incandescent

Miniature and Sealed Beam

2
2
+ §. High ltensty Discharge
2
3

The Other Compact Fluorescent product parent has a parent of its own (Compact
Fluorescent) and several children (10576, 10578, and so on).

ORACLE 4-22

Chapter 4
The Flex Asset Model

4.3.6 Flex Families and the Database

Each asset type in a flex family has several database tables. For example, the flex
asset member has six tables and a flex parent type has five. This data model enables
the flex member in a flex family to support more fields than an asset type in the basic
asset model can support.

The four most important types of tables in the flex model are as follows:

e The primary table for the asset type.

e The _Mungo table, which holds attribute values for flex assets and flex parent assets
only.

* The MungoBlobs table, which holds the values of all the flex attributes of type blob.

e The _AMap table, which holds information about the inheritance of attribute values
for flex asset and flex parents only.

There are several other tables that store supporting data about the relationships
between the flex assets and additional configuration information (details about search
engines, the location of foreign attributes, publishing information, and, if revision
tracking is enabled, version information).

Additionally, certain kinds of site information are held in the same tables that basic
assets use. For example, the AssetPublication table specifies which content
management sites the asset type is enabled for.

When you develop the templates that display flex assets, you code elements that
extract and display information from the _Mungo tables and the MungoBlobs table.

4.3.6.1 Default Columns in the Flex Asset Type Database Table

As do basic asset types, each of the flex asset types has a primary storage table that
takes its name from the asset type. For example, the primary table for the avisports
sample site asset type named article is AVIArticle and the primary table for this
sample site's image asset type is AVlImage. The primary table for both article and
image attributes is called ContentAttribute.

Unlike the primary table for a basic asset type, the primary table for a flex asset type
has only the default columns. This is because flex asset types that have attribute
values do not store those values in the primary table, attribute values are stored in the
_Mungo table for the asset type.

In general, the default column types in the primary table for a flex asset type are the
same as the default columns in the primary storage table for a basic asset type. For
the general list of default column types, see Default Columns in the Basic Asset Type
Database Table.

However, there are, of course, exceptions and additions, as described in the following
table:

ORACLE 4-23

Chapter 4
The Flex Asset Model

Table 4-5 Default Columns in the Flex Asset Type Database Table

___|
Column Description

category Category is not used in the flex asset model so there is no category
column in any of the primary tables for flex asset types.

Flex assets have no need for the category feature because queries for flex
assets are based on the values of their flex attributes.

template Only the table for the flex asset member in a flex family, product, article
(flex), and image (flex), for example, holds values in this column. This is
because only the flex asset member in the family can have a Template
asset assigned to it and be displayed on your online site.

renderid Holds the object ID of the Template asset assigned to a flex asset.

attributetype An additional column in the primary table for flex attribute types. It holds the
name of the attribute editor that formats the input style of the attribute when
it is displayed in the New and Edit forms (if there is one).

flextemplateid An additional column in the primary table for a flex asset type (the flex asset
member of a flex family.) It holds the ID of the flex definition that the flex
asset was created with.

flexgrouptempla An additional column in the primary table for flex parent asset types. It holds
teid the object ID of the parent definition that the flex parent asset was created
with.

4.3.6.2 The _Mungo Tables

The flex asset and flex parent asset types have an AssetType_Mungo table, where
AssetType is the name of the flex asset type (and matches the name of the main
storage table). Its purpose is to store the attribute values assigned to an asset when
an asset of this type is created. For example the avisports sample site table
AVIArticle_Mungo holds the attribute values for article assets and the table
AVIImage_Mungo holds the attribute values for the image assets.

Each attribute value has a separate row.

Each row in _Mungo table has a value in each of the columns described in Table 4-6.

Table 4-6 _Mungo Table Rows

___|
Column Description

id A unique ID for each attribute value, automatically generated by WebCenter
Sites when the flex asset is saved and the row is created.

This is the table's primary key.

ownerid The ID of the flex asset that the attribute value belongs to. (From the flex
asset table: Product, for example.)

attrid The ID of the attribute. (From the attribute table: PAttributes, for example.)

assetgroupid If the attribute value is inherited, the ID of the parent who passed on the

value. (From the parent table: ProductGroups, for example.)

Each row in a _Mungo table also has all of the columns in Table 4-7, but it has a value
(data) in only one of them, depending on the data type of the attribute.

ORACLE 4-24

Chapter 4
The Flex Asset Model

Table 4-7 _Mungo Table Columns
|

Column Description

floatvalue If the attribute's data type is float, the value of the attribute.

moneyvalue If the attribute's data type is money, the value of the attribute.

textvalue If the attribute's data type is textvalue, the value of the attribute.

datevalue If the attribute's data type is date, the value of the attribute.

intvalue If the attribute's data type is int, the value of the attribute.

blobvalue If the attribute's data type is blob, the ID of the row in the MungoBlobs table
that holds the value of the attribute.

urlvalue If the attribute's data type is url, the path or url entered for the attribute.

assetvalue If the attribute's data type is asset, the ID of the asset.

stringvalue If the attribute's data type is float, the value of the attribute.

Because the _Mungo tables have URL columns (see Indirect Data Storage with the
WebCenter Sites URL Field), a default storage directory (defdir) must be set for it.
You use the cc.urlattrpath property in the wes_properties. json file to set the defdir for
your _Mungo tables.

4.3.6.3 The MungoBlobs Table

There is one MungoBlobs table. It holds all the values for all flex attributes of type blob,
for all the flex attribute types in your system. Each attribute value has a separate row
in the table.

4.3.6.4 The _AMap Tables

ORACLE

Flex asset and flex parent asset types have an AssetType _AMap table. Its purpose is to
map the asset to the attributes it inherits from its parents. Then when you create a
template that displays the asset on a page in your online site, you can query for assets
based on any of their attributes and display any of those attributes, whether they were
inherited or were directly assigned.

The _AMap table has one row for each flex asset that has a value for the inherited
attribute. (However, if an attribute has multiple values, the _Mungo table has a row for
each value.)

An _AMap table has the columns described in Table 4-8.

Table 4-8 _AMap Table Columns

]
Column Description

id A unique ID for each row, automatically generated by
WebCenter Sites when the flex asset is saved and the row is
created. This is the table's primary key.

inherited The ID of the parent the attribute was inherited from, if it was
inherited. (From the parent table: ProductGroups, for example.)

4-25

Chapter 4
Assetsets and Searchstates

Table 4-8 (Cont.) _AMap Table Columns
|

Column Description

attributeid The ID of the attribute. (From the attribute table: PAttributes, for
example)

ownerid The ID of the flex asset that the attribute value belongs to. (From

the flex asset table: Product, for example.)

4.4 Assetsets and Searchstates

ORACLE

assetsets display assets, and searchstates identify which flex assets should be
displayed in anassetset.

Assetset

An assetset is a group of flex assets or flex parent assets only, not flex attributes or
flex definitions or flex parent definitions. For example, in the avisports sample site, you
can create assetsets that contain articles and images. When coding your site pages,
you code statements that create assetsets and then display the assets in them.

Searchstate

You identify which flex assets should be in an assetset by using the SEARCHSTATE
method family in the templates for your flex assets. A searchstate is a set of search
constraints that are applied to a list or set of flex assets. A constraint can be either a
filter (restriction) based on the value of an attribute or based on another searchstate
(called a nested searchstate).

A searchstate can search either the _Mungo tables in the database or the attribute
indexes created by a search engine. This means that you can mix database and rich-
text (full-text through an index) searches in the same query.

Because these tags search only the _Mungo table or attribute indexes for that flex asset
type, using them to extract your flex assets is much more efficient than using the ASSET
tags or the query asset.

Assetsets and Attribute Asset Types

WebCenter Sites cannot perform searches across attribute asset types. Because
assetsets are created on the basis of attribute values, only assets that share the same
attribute asset type can be included in the same assetset. This is an important point to
consider when you design your flex families: data is separated for flex asset types that
do not share a common attribute asset type. By creating such flex asset types you
ensure that assets from different types cannot be included in a common assetset. And
displaying assetsets is the mechanism for displaying flex assets on your delivery
system.

For example, you can have two types of flex assets in the same flex family. While they
use the same type of attributes, you can create assetsets that include assets of both
types. Keep in mind, though, that a search across two types of flex assets creates a
join between their _Mungo tables, which can deprecate performance.

In the avisports sample site there are two flex asset types: article and image. They
share the same attribute asset type (ContentAttribute). This shared attribute asset

4-26

Chapter 4
Search Engines and the Two Asset Models

type enables them to be included in the same assetset, even though they are two
different flex asset types.

4.5 Search Engines and the Two Asset Models

Basic and flex asset models interact with search engines differently from each other
because of the differences in their data structure. You'll use a different method in each
model to index asset type fields for search.

* A basic asset type is defined by an asset descriptor file. Its primary storage table
includes all of its properties as columns. To specify which fields of a basic asset
type should be indexed, you must customize certain elements for the asset type.
See Designing Basic Asset Types.

» Because fields for flex assets are flex attributes, which are assets, you decide
which fields are indexed for rich-text search, attribute by attribute. Additionally, the
WebCenter Sites application enables you to specify which attributes should be
indexed with the Search Engine field on the attribute's New and Edit forms. You
do not have to customize any elements to enable this feature.

4.6 Tags and the Two Asset Models

The assets you create and manage, ultimately you move them to the delivery system
where the code in the elements extracts the assets from the database and display
them to your site visitors. The WebCenter Sites applications offer various toolsets,
custom tag sets, in both XML and JSP to help extract assets from the database.

The toolset you use to extract assets from the database in your templates depends on
the kind of asset that you are working with.

* For assets with the basic asset model, use the ASSET method family.

e For the flex asset member in a flex family, use the ASSETSET and SEARCHSTATE
method families. Note that you should not use the ASSET.LOAD tag for the flex asset
member in a flex family (product, article, and image, for example). Using
ASSET.LOAD tag for flex assets is extremely inefficient because it retrieves all of the
information for that asset from all of its tables. The SEARCHSTATE methods queries
only the _Mungo table for the asset type of the flex asset and the MungoBlobs table.

* For recommendation assets, use the COMMERCECONTEXT method family.

There are many more method families available with these products and an extensive
set of custom tags from WebCenter Sites itself and several APIs.

For information about WebCenter Sites tags, see the Tag Reference for Oracle
WebCenter Sites.

4.7 Summary: Basic and Flex Asset Models

While the basic and flex models are quite different from each other, they are similar,
too, in some ways.

The similarities and differences between the two asset models are as follows:

ORACLE 4-27

ORACLE

Where the Asset Models Intersect

Chapter 4

Summary: Basic and Flex Asset Models

Even though there are many differences in the way that the basic and flex asset

models function, there are several points of intersection.

* No matter which asset model you are using, basic or flex, you use the template
and page asset types that are delivered with the WebCenter Sites application.

» All asset types have a status code, which means that all assets, whether they are
flex or basic, can be searched for with queries based on status.

* All asset types, whether they are flex or basic, have the following configuration or
administrative traits in common:

— They must be enabled by site.

— They must have start menu items configured for them before anyone can
create individual instances of those types.

— Individual instances of them can be imported with the XMLPost utility.

Where the Asset Models Differ

Table 4-9 summarizes the major differences between the asset models.

Table 4-9 Major Differences Between the Asset Models

Feature

Basic Asset Model

Flex Asset Model

Number of database
tables

One.

Several.

Adding fields to an asset
type

Requires a schema change.

Does not require a schema
change.

Links to other assets

Through associations and
unnamed relationships.

Through flex family
relationships.

Subtypes

Usually available through the
Subtype item on the Admin tab.
See Subtype.

Through flex definitions and flex
parent definitions.

Search engine indexing

Must customize certain elements
for the asset type.

Use the Search Engine field in
the flex attribute form.

Main tag families

ASSET, SITEPLAN, and RENDER.

ASSETSET, SEARCHSTATE, and
RENDER.

Publishing methods

Export to Disk.
Mirror to Server.

Export to Server is possible, but
is atypical for the flex model.

Mirror to Server.

4-28

Designing Basic Asset Types

The AssetMaker utility is available for you to create basic asset types. You also need
to create an asset descriptor file and asset table, add subtypes, set association fields,
etc., before you migrate the asset types to the management/delivery system for
content and marketing teams.

Topics:

* About the AssetMaker Utility

» Before You Begin Creating Basic Asset Types
* Creating Basic Asset Types

* Deleting Basic Asset Types

5.1 About the AssetMaker Utility

To create basic asset types, the AssetMaker utility carries out several operations in
AssetType, Systeminfo, Category, Catalog, and SystemSQL tables using a descriptor
file which you'll create.

Before the AssetMaker utility can begin its work, it needs a descriptor file that defines
properties for the new asset type. The term property means both a column in a
database table and a field in a WebCenter Sites entry form. So, first define the basic
asset type inWebCenter Sites an XML file—asset descriptor file using AssetMaker XML
tags.

Your next step is to upload the file to WebCenter Sites and create two items using
AssetMaker: a database table for the new asset type, and the WebCenter Sites
elements which generate the forms that you and others use when working with assets
of the new type (creating, editing, copying, and so on).

This section includes the following topics:

* How AssetMaker Works

e Asset Descriptor Files

e Columns in the Asset Type's Database Table

e Elements and SQL Statements for the Asset Type

5.1.1 How AssetMaker Works

ORACLE

Creating a new basic asset type using AssetMaker involves the following steps:

1. Code the asset descriptor file.

This chapter describes asset descriptor files and coding them. For information
about AssetMaker tags, see the Tag Reference for Oracle WebCenter Sites.

2. Upload the file.

5-1

Chapter 5
About the AssetMaker Utility

AssetMaker creates a row in the AssetType table and copies the asset descriptor
file to that row.

3. Create the table.
When you click the Create Asset Table button, AssetMaker does the following:
e Parses the asset descriptor file.

e Creates the primary storage table for assets of that type. The name of the
table matches the name of the asset type identified in the asset descriptor file.
The data type of each column is defined by statements in the file as well.

In addition to the columns defined in the asset descriptor file, AssetMaker
creates default columns that WebCenter Sites needs to function correctly.

e Adds a row for the new table to the Systeminfo table.

All asset tables are object tables so the value in the systable column is set to
obj.

All asset tables have URL columns. So, the value in the defdir column is set
to the value that you specified either in the asset descriptor file or in the DefDir
field in the Create Asset Table form when you create the asset type.

* If you have enabled the Add General Category option, Asset Maker adds one
row to the Category table for the new asset type and names that category
General.

4. Register the elements.
AssetMaker does the following:

e Creates a subdirectory in the ElementCatalog table under OpenMarket/
Xcelerate/AssetType directory for the new asset type.

e Copies elements from the AssetStubCatalog table to the new subdirectory in
the ElementCatalog table. These elements render WebCenter Sites forms for
working with assets of this type and provide the processing logic for the
WebCenter Sites functions.

e Creates SQL statements that implement searches on individual fields in the
search forms. These statements are placed in the SystemSQL table.

When you create, edit, inspect, and so on an asset of this type, AssetMaker parses the
asset descriptor file located in the AssetType table, and passes its values to WebCenter
Sites so that the forms are specific to the asset type. Statements in the asset
descriptor file determine the input types of the fields, specify field length restrictions,
and determine whether the field is displayed on search and search results forms.

Note that after you create an asset type, you must enable the asset type on the sites
that will use it, create start menu shortcuts, and so on.

The following figure shows a flow chart that summarizes how AssetMaker works, and
which database tables are involved when a basic asset type is created.

ORACLE 5-2

Chapter 5
About the AssetMaker Utility
Figure 5-1 How AssetMaker Works

User Action AssetMaker's Database Tables
Response

1. Code asset
descriptor file

Asset
descriptar file

AssetMaker enters the AzsetT
} i Ype
2. UpI_Dad asset | asset descriptor file into Ly tahle
descriptor file a rowe of the
Primary
Using the asset descriptor file, . storage table
h 4 AssetMaker creates the... o for the asset
3. Create the type
asset storage —-]
table
AssetMaker adds a row for the - SystemInfo
new storage table to the... i table
Ifyou
checked
Fhe Add . AssetMaker adds a categary Category
General row named "General” to the... table
Category
checkhox

Subdirecto
Azsetdtub ry

. of Element
copies elements fram Catalog to
Catalog
Table
tahle
¥
AssetMaker creates
4. Reqgister the a subdirectary in the
elements ElementCatalog
tahble, and ...
creates SUL SystemsSQL Search forms

for usein

¥

statements and

. table
copies themto the ..

ORACLE 5-3

Chapter 5
About the AssetMaker Utility

5.1.2 Asset Descriptor Files

Using the AssetMaker XML tags, you code asset descriptor files that define the asset
types you design for your systems.

This section includes the following topics:

e About the Asset Descriptor File
e About Format and Syntax

e About the AssetMaker Tags

5.1.2.1 About the Asset Descriptor File

An asset descriptor file is a valid XML document in which developers define a basic
asset type using AssetMaker tags. An asset descriptor file does the following:

» Describes the asset type in terms of data structure. It specifies the name of the
database table, the names of the columns, the columns data types, and the sizes
of the fields on the WebCenter Sites forms.

* Formats the HTML forms that are displayed by WebCenter Sites when users work
with assets of the given type. Formatting an HTML form means naming the fields
on the form, displaying the fields in required format (for example, check box, radio
button, or drop-down list), accounting for field specifications (such as the number
of characters that can be entered in to a text field), and so on.

AssetMaker uses the asset descriptor file to create a database table for the new asset
type. When content providers work with assets of the given type (create, edit, and so
on), AssetMaker parses the asset descriptor file, using the data in the file to customize
the forms that WebCenter Sites displays.

Note:

For reference, sample AssetMaker descriptor code is provided on the
WebCenter Sites installation medium, in the Samples folder. The same
folder contains the readme.txt file that describes the sample descriptor files.

5.1.2.2 About Format and Syntax

ORACLE

The basic format for every asset descriptor file is shown below. To the right of each
AssetMaker tag is a brief description of the tag.

<?xml version="1.0" ?>
<ASSET ...> Names the asset type (storage table)
<PROPERTIES> Starts the properties specification section
<PROPERTY ...> Specifies column and field name for the property
<STORAGE .../> Specifies data type for the column
<INPUTFORM .../> Specifies field format on New, Edit, Inspect forms
<SEARCHFORM .../> Specifies field format on Advanced Search form
<SEARCHRESULTS .../> Specifies which fields are shown in search results
</PROPERTY>
<PROPERTY ...>
<STORAGE .../>

5-4

Chapter 5
About the AssetMaker Utility

<INPUTFORM .../>
<SEARCHFORM .../>
<SEARCHRESULTS .../>
</PROPERTY>
<PROPERTY ...>

</PROPERTIES> Ends the properties specification section
</ASSET> Ends the asset descriptor file

Shown next is the syntax of an asset descriptor file, indicating some parameters that
an AssetMaker tag can take:

<?xml version="1.0" ?>
<ASSET NAME="assetTypeName" DESCRIPTION=""'assetTypeName™ ...>
<PROPERTIES>
<PROPERTY NAME="fieldNamel" DESCRIPTION="fieldNamel"/>
<STORAGE TYPE="VARCHAR™ LENGTH="36"/>
<INPUTFORM TYPE="TEXT" DESCRIPTION="fieldNamel™.../>
<SEARCHFORM TYPE=""TEXT" DESCRIPTION="fieldNamel™.../>
<SEARCHRESULTS INCLUDE="TRUE"/>
</PROPERTY>
<PROPERTY NAME="fieldName2" DESCRIPTION="fieldName2"/>
<STORAGE TYPE="INTEGER™ LENGTH="4"/>
<INPUTFORM TYPE="TEXT" DESCRIPTION="fieldName2".../>
<SEARCHFORM TYPE="TEXT" DESCRIPTION="fieldName2".../>
<SEARCHRESULTS INCLUDE="TRUE"/>
</PROPERTY>

</PROPERTIES>
</ASSET>

For information about WebCenter Sites tags and their parameters, along with sample
code, see the Tag Reference for Oracle WebCenter Sites.

5.1.2.3 About the AssetMaker Tags

* An asset descriptor file begins with the standard XML version tag:
<?2xml version="1.0"?>

* The ASSET tag, which follows the XML version tag, names the asset type and
therefore its storage table in the WebCenter Sites database. The ASSET tag also
sets some behavior and display attributes of assets of that type; for example, the
ASSET tag determines what graphical notation designates that a field is required,
and whether an asset can be previewed.

The opening tag <ASSET> is always the first line of code and the closing tag <
\ASSET> is always the last line of code in the asset descriptor file. Note that there is
only one ASSET tag pair in each asset descriptor file because only one asset type
per asset descriptor file can be created.

* The PROPERTIES tag marks the section of the file that holds the property
descriptions. The opening tag <PROPERTIES> is always the second statement in the
asset descriptor file. There is only one PROPERTIES tag pair in each asset descriptor
file.

ORACLE 5-5

Chapter 5
About the AssetMaker Utility

Note:

The PROPERTIES tag is required in every asset descriptor file, even if no
PROPERTY tags are needed.

* The PROPERTY tags, nested within the PROPERTIES tag pair, specify the columns and
fields for assets of this type. Each PROPERTY tag specifies the database name of the
column that will hold the value(s) users will enter for this property, and the
column's display name (that is, its field name) as it will appear on the form that will
be rendered for users who are to work with assets of this type.

* Nested inside each pair of PROPERTY tags are the following tags:

— STORAGE: Specifies the data type of the column that is being established by this
property. Note that the data type in the STORAGE tag must map to one of the
data types that is defined by the properties on the database entry of the
futuretense. ini file.

— INPUTFORM: Specifies the name and format of the field on the New, Edit, and
Inspect forms. For example, whether the field is a drop-down list or a check
box or a text field. The field's input type must be compatible with the data type
of the database column, as specified by the STORAGE statement.

— SEARCHFORM: Specifies the format of the field (property) when it displays on the
Advanced Search form. Omitting the SEARCHFORM statement from the PROPERTY
section prevents the field being defined from appearing on the Advanced
Search form.

Setting the TYPE parameter values to Table or Date displays a drop-down list on
the Advanced Search form for the asset type, but not on the SimpleSearch
form.

— SEARCHRESULTS: Specifies which fields are displayed in the search results form
after a search is run. The field value is also displayed if the INCLUDE parameter
is set to true. This tag is optional.

When modifying a standard field, do not set SEARCHRESULTS to true for name or
description.

For information about AssetMaker tags and their parameters, see the Tag Reference
for Oracle WebCenter Sites. That section also provides information about
dependencies and restrictions among the parameters STORAGE TYPE, INPUTFORM TYPE,
and SEARCHFORM TYPE.

5.1.3 Columns in the Asset Type's Database Table

ORACLE

When AssetMaker creates the database table for a new asset type, it creates columns
for all the properties defined by the PROPERTY tags in the asset descriptor file, and it
creates default columns that are required by WebCenter Sites for its basic
functionality. For a list of the default columns in each asset type's table, see Default
Columns in the Basic Asset Type Database Table.

This section includes the following topics:

e The Source Column: A Special Case

e Storage Types for the Columns

5-6

Chapter 5
About the AssetMaker Utility

* Input Types for the Fields
» Data Types for Standard Asset Fields

5.1.3.1 The Source Column: A Special Case

All of the asset type tables can also have a source column. WebCenter Sites provides
a Source table and a Source form in the Admin node on the General Admin tree. that
you use to add the rows to the Source table. You can use this feature to identify where
an asset originated. However, unlike the columns listed in the preceding table, the
source column is not automatically created when AssetMaker creates the asset type
table. To add the source column to your table and have it displayed on your asset
forms, you must include a PROPERTY description for it in the asset descriptor file. See
Example 5-2.

5.1.3.2 Storage Types for the Columns

The STORAGE TYPE parameter specifies the data type of a column. The data types are
defined by the WebCenter Sites database properties located in the
wcs_properties. json file.

The following table presents the possible data types for your asset type's table
columns.

Table 5-1 STORAGE TYPE Parameter

Type (generic ODBC/JIDBC data type) Property
CHAR cc.char
VARCHAR cc.varchar
SMALLINT cc.smallint
INTEGER cc.integer
BIGINT cc.bigint
DOUBLE cc.double
TIMESTAMP cc.datetime
BINARY cc.blob
LONGVARCHAR cc.bigtext

5.1.3.3 Input Types for the Fields

The INPUT TYPE parameter specifies how data can be entered in a field when it is
displayed in the WebCenter Sites forms. The following table lists all the input types.
Note that the input type for a field must be compatible with the data type of its column.

Table 5-2 INPUT TYPE Parameter

___|
Input TYPE Description

TEXT A single line of text.
Corresponds to the HTML input type named TEXT.

ORACLE .

ORACLE

Chapter 5
About the AssetMaker Utility

Table 5-2 (Cont.) INPUT TYPE Parameter

Input TYPE

Description

TEXTAREA

A text box, with scroll bars, that accepts multiple lines of text.
Corresponds to the HTML input type named TEXTAREA.

To accommodate large amounts of text in the field, create a text
box that displays the contents of a URL column. To do so, you
must specify a string for PROPERTY NAME that begins with url and
set the STORAGE TYPE to VARCHAR.

When a user clicks Save, the text entered into this kind of field is
stored in the file directory specified as the default storage
directory for this asset type. You can specify the default storage
directory (defdir) in either the asset descriptor file, or in the
AssetMaker form when you create the asset type.

Note:

e You can specify an unlimited size for a url field that is edited
using a TEXTAREA field by not specifying a value for the
MAXLENGTH parameter.

« Do not use the following suffixes with a string for PROPERTY
NAME that begins with the letters url: _type, _size, _folder,
and _file.

UPLOAD

A field that takes a file name (a URL) and presents a Browse
button so that you can either enter the path to and name of a file
or browse to it and select it.

When you specify that a field is an upload field, set a string for
PROPERTY NAME that begins with url and set STORAGE TYPE (the
property's data type) to VARCHAR.

You can also use the BLOB storage type for an upload field. In this
case, the PROPERTY NAME string does not have to begin with url.

When the user clicks Save, WebCenter Sites uploads the
selected file and stores it in the file directory specified as the
default storage directory for this asset type. You can specify the
default storage directory (defdir) in either the asset descriptor file,
or in the AssetMaker form when you upload the file.

Note:

e The size of a file that is selected in an upload field cannot
exceed 30 megabytes.

e If you specify a string for PROPERTY NAME that begins with the

letters url, do not use the following suffixes: _type, _size,
_folder, and _file.

SELECT

A field that presents a drop-down list of options that can be
selected.

You can either specify the options that are presented in the list or
you can specify a query so that the options are selected from the
database (or an external table) and presented dynamically.

Corresponds to the HTML input type SELECT.

CHECKBOX

A check box field.

You can specify the names of the check box options or you can
specify a query so that the names are selected from the database
(or an external table) and presented dynamically. This input type
allows the user to select multiple options.

Corresponds to the HTML input type CHECKBOX.

5-8

Chapter 5
About the AssetMaker Utility

Table 5-2 (Cont.) INPUT TYPE Parameter
|

Input TYPE

Description

RADIO

A radio button control.

You can either specify the names of the radio options or you can
specify a query so that the names are selected from the database
(or an external table) and presented dynamically. This input type
allows the user to select only one option.

Corresponds to the HTML input type RADIO.

CKEDITOR

A field whose contents you edit by using the CKEditor text editor.
When you specify that a field is a CKEditor field, it is
recommended that you make it a URL field. That is, set a string
for PROPERTY NAME with the url prefix and set STORAGE TYPE (the
property's data type) to VARCHAR.

If you specify a string form PROPERTY NAME that begins with the
url prefix, do not use the following suffixes: _type, _size,
_folder, and _file.

ELEMENT

Calls an element that you create to display a field on the
ContentForm, ContentDetails, or SearchForm forms. The custom
element must be found at one of the following locations:

e For afield on the ContentForm form:
OpenMarket/Xcelerate/AssetType/nyAsset Type/ ContentForm/
fieldname

* For afield on the ContentDetails form:
OpenMarket/Xcelerate/AssetType/nyAsset Type/
ContentDetails/fieldname

e For afield on the SearchForm form:
OpenMarket/Xcelerate/AssetType/nyAsset Type/SearchForm/
fieldname

Where nyAsset Type is the asset type that you are creating the
custom field for, and fieldname is the name of the custom field.

An ELEMENT field can have any storage type, including BLOB.

5.1.3.4 Data Types for Standard Asset Fields

You can customize the appearance of the WebCenter Sites standard asset fields. All
other changes are conditional on the type of field, as described below:

ORACLE

All standard fields. You can change their display names.

A standard field that is not a system field. You must not change its data type, with
one exception: You can change only the length of the VARCHAR data type.

System fields. You must not change the data type (including the length of a

VARCHAR type of field).

The following table lists the data types of standard fields (and indicates whether
they are also system fields).

5-9

Chapter 5
About the AssetMaker Utility

Table 5-3 Data Types for Standard Asset Fields

Standard Field System Field Data Type

ID Yes NOT NULL NUMBER(38)
NAME N/A NOT NULL VARCHAR(64)
DESCRIPTION N/A VARCHAR(128)
TEMPLATE Yes VARCHAR(64)

SUBTYPE N/A VARCHAR(24)
FILENAME N/A VARCHAR(64)

PATH N/A VARCHAR(255)

STATUS Yes NOT NULL VARCHAR(2)
EXTERNALDOCTYPE Yes VARCHAR(64)
URLEXTERNALDOCXML Yes VARCHAR(255)
URLEXTERNALDOC Yes VARCHAR2(255)
CREATEDBY Yes NOT NULL VARCHAR(64)
UPDATEDBY Yes NOT NULL VARCHAR(64)
CREATEDDATE Yes NOT NULL DATE
UPDATEDDATE Yes NOT NULL DATE
STARTDATE N/A DATE

ENDDATE N/A DATE

5.1.4 Elements and SQL Statements for the Asset Type

After you upload an asset descriptor file, you register the elements. When you register
elements, AssetMaker copies elements in the AssetStubElementCatalog table to a
directory in the ElementCatalog table for this asset type. Additionally, AssetMaker
copies several SQL statements that implement the WebCenter Sites searches on the
Simple Search and the Advanced Search forms for assets of this type.

If necessary, you can customize the SQL statements, the asset type-specific
elements, or, in some cases, the elements in the AssetStubElementCatalog table. See
Customizing the Asset Type Elements (Optional) .

Note:

Under no circumstances should you modify any of the other WebCenter
Sites elements.

Topics:
e The Elements
* The SQL Statements

ORACLE 5-10

5.1.4.1 The Elements

AssetMaker places the elements for your new asset type to the ElementCatalog table
according to the following naming convention:

ORACLE

Chapter 5
About the AssetMaker Utility

OpenMarket/Xcelerate/AssetType/YourNewAssetType

For example, the elements for the sample asset type ImageFile are located here:

OpenMarket/Xcelerate/AssetType/ ImageFile

The following table lists the elements that AssetMaker copies for each asset type.

Table 5-4 AssetMaker Elements
]

Element

Description

ContentForm

Renders the New and Edit forms for assets of this type.

When the function is invoked, AssetMaker uses the INPUTFORM
statements in the asset descriptor file to format these forms.

ContentDetails

Formats the Inspect form for assets of this type.

When the function is invoked, AssetMaker uses the INPUTFORM
statements in the asset descriptor file to customize these forms.

SimpleSearch

Renders the Simple Search form for assets of this type.

When the function is invoked, AssetMaker uses the SEARCHFORM
statements in the asset descriptor file to format these forms.

SearchForm

Formats the Advanced Search form for assets of this type.

When the function is invoked, AssetMaker uses the SEARCHFORM
statements in the asset descriptor file to format these forms.

AppendSelectDetails

Builds the SQL queries on the individual fields in the Advanced Search
form.

When the Advanced Search form is rendered, AssetMaker uses the
SEARCHFORM statements in the asset descriptor file to customize the
form.

AppendSelectDetails
SE

Builds the SQL queries on the individual fields in the Advanced Search
form when your system is using an external search engine.

When this function is invoked, AssetMaker uses the SEARCHFORM
statements in the asset descriptor file to create the SQL queries.

IndexAdd

The IndexAdd and IndexReplace elements establish which fields
(columns) are indexed by the search engine when you are using a
search engine. By default, only the standard fields are indexed. To
index other fields, you must customize these forms. See Customizing
the Asset Type Elements (Optional).

IndexReplace

See the description of IndexAdd.

Tile

Formats the Search Results page, a page that lists the assets that
meet the search criteria, for assets of this type.

When the page is rendered, AssetMaker uses the SEARCHRESULTS
statements in the asset descriptor file to display the results.

LoadTree

Determines how assets of this type appear when they are displayed on
any tab in the tree other than the Site Navigation tab.

5-11

Chapter 5
About the AssetMaker Utility

Table 5-4 (Cont.) AssetMaker Elements

___|
Element Description

LoadSiteTree Determines how assets of this type appear when they are displayed on
the Site Navigation node in the Site tree.

PreUpdate Is called before a function that writes to the database is completed. In
other words, before an asset is saved and during the create, edit,
delete, or XMLPost functions, this element is called.

This element takes no input from the asset descriptor file. However,
you can customize it directly.

PostUpdate Is called after a function that writes to the database is completed. In
other words, after an asset is created, edited, deleted, or imported with
XMLPost, this element is called.

You can customize this element.

5.1.4.1.1 About PreUpdate and PostUpdate Elements

Actions or procedures that can be performed on assets are called functions. For
example, New, Edit, and Delete are all functions that can be invoked by users of the
Admin and Oracle WebCenter Sites: Contributor interfaces to create, edit, and delete
assets. Such functions also call the PreUpdate and PostUpdate elements.

PreUpdate and PostUpdate elements are used to contain logic that initiates various
operations when the elements are called. The PreUpdate element is called when a
function is invoked; the PostUpdate element is called after WebCenter Sites writes
asset information to the database. Each element contains a variable whose name and
value specify conditions that call the element. To call the element from the Admin
interface or from Form Mode of the Contributor interface or the XMLPost utility, name
the variable as updatetype. To call the element from Web Mode of the Contributor
interface, name the variable as servicesUpdateType. For example, your content
managers are working with the Admin interface and their system is configured to
import batches of articles from a wire service. You can have the PreUpdate element set
the value for the Source field to wirefeed and the value for the Byline field to API just
before import occurs if you code these operations in the element and set
updatetype=remotepost as the condition under which the element will be called.

Note:

PreUpdate and PostUpdate elements are always called when a WebCenter
Sites user invokes the New, Edit, or Delete function in the Admin or
Contributor interface, or when assets are imported through XMLPost.
Whether operations are performed using the PreUpdate and PostUpdate
elements depends on how the elements are coded. By default, they are
designed for no action.

PreUpdate and PostUpdate elements are accessible from Explorer, in the following path:

ElementCatalog\OpenMarket\Xcelerate\AssetType

ORACLE 5-12

ORACLE

Note:

variable.

Chapter 5
About the AssetMaker Utility

The PreUpdate element is called twice if a user saves a new or edited asset in
the Admin interface:

The first call occurs before the New or Edit form is rendered.The second call
occurs after the user clicks Save in the New or Edit form, but WebCenter
Sites has not yet written asset information to the database.

The condition above provides the opportunity to perform operations using
PreUpdate at one or more points once the New or Edit function is invoked:
before the New or Edit form is rendered, before asset information is written to
the database, or both, depending on the value of the element's updatetype

The following table defines the values of the updatetype variable:

Table 5-5 Values of the UpdateType Variable
|

updatetype = Description
setformdefaults When a user invokes the New function in the Admin interface or in the
Form Mode of the Contributor interface.
e The PreUpdate element is called before the New form is rendered.
e For PostUpdate, setformdefaults is not a legal value for the
updatetype variable.
create When a user saves a new asset in the Admin interface or in the Form
Mode of the Contributor interface:
* The PreUpdate element is called before the new asset is written to
the database.
* The PostUpdate element is called after the new asset is written to
the database.
editfront When a user invokes the Edit function in the Admin interface or in the
Form Mode of the Contributor interface:
e The PreUpdate element is called before the Edit form is rendered.
« For PostUpdate, editfront is not a legal value for the UpdateType
variable.
edit When a user saves an edited asset in the Admin interface or in the
Form Mode of the Contributor interface:
e The PreUpdate element is called before the edits are written to the
database.
* The PostUpdate element is called after the edits are written to the
database.
delete When a user deletes an asset from the Admin interface:
* The PreUpdate element is called before WebCenter Sites deletes
the asset.
* The PostUpdate is performed after WebCenter Sites deletes the
asset.
remotepost When a user invokes the XMLPost function to import an asset:

e The PreUpdate element is called before the asset is imported.
* The PostUpdate element is called after the asset is imported.

5-13

Chapter 5
About the AssetMaker Utility

Table 5-5 (Cont.) Values of the UpdateType Variable

___|
updatetype = Description

InSite When saved from Web Mode, a variable called servicesUpdateType
will have create, edit, or delete depending on the user operation.

Table 5-6 defines the values of the servicesUpdateType variable.

The following table defines the values of the servicesUpdateType variable.

Table 5-6 Values of the servicesUpdateType Variable (Contributor interface)

|
servicesUpdateType Description

create When a user saves a new asset in the Contributor interface:
* The PreUpdate element is called before the new asset is written to
the database.

e The PostUpdate element is called after the new asset is written to
the database.

edit When a user saves an edited asset in the Contributor interface:
e The PreUpdate element is called before the edits are written to the
database.
e The PostUpdate element is called after the edits are written to the
database.
delete When a user deletes an asset in the Contributor interface:
* The PreUpdate element is called before WebCenter Sites deletes
the asset.
e The PostUpdate element is called after WebCenter Sites deletes
the asset.

5.1.4.2 The SQL Statements

ORACLE

AssetMaker places the SQL statements in the SystemSQL table according to the
following haming convention:

OpenMarket/Xcelerate/AssetType/YourNewAssetType

For example, the elements for the sample asset type ImageFile are located here:

OpenMarket/Xcelerate/ImageFile

The following table lists the SQL elements that AssetMaker creates:

Table 5-7 SQL Elements

___|
Statement Description

SelectSummary A SQL statement that defines the query used in the Simple
Search and Advanced Search form for assets of this type.

SelectSummarySE Not used.

5-14

Chapter 5
Before You Begin Creating Basic Asset Types

5.2 Before You Begin Creating Basic Asset Types

To be able to create an efficient asset type design, you need to consider many points
such as the number of fields, data types, asset associations. Also set up your
development system with a CM site and a user Id with appropriate rights.

Planning the Asset Type Design
Setting Up Your Development System

5.2.1 Planning the Asset Type Design

Be sure to design your asset types on paper before you start coding an asset
descriptor file. Consider the following kinds of details:

What fields do you need?

In general, try to minimize the number of fields that you use by organizing the
information into useful units. When determining those units, consider both the
information you plan to display on your online site and the data-entry needs of the
content providers who will enter that data.

What is the appropriate data type for each field?
For fields with options, how will you supply the options?

With a static list coded in the asset descriptor file or with a lookup table that holds
the valid options?

Which WebCenter Sites features will you use to organize or categorize assets of
this type?

For example, source, category, and asset associations. For each one, determine
its name and plan how it will be used both on the management system and in the
design of your online site.

Does the implementation of your site design require assets of this type to use a
different default template based on the publishing target that they are published
to?

If so, you will have to use the Subtype feature. Determine the names of the
subtypes that you will need for assets of this type.

5.2.2 Setting Up Your Development System

Also before you begin, be sure to set up your development system. For information
about any of these preliminary steps, see Administering Oracle WebCenter Sites.

ORACLE

Create the appropriate sites.

Create a user name for yourself that has administrator rights and enable that user
name on all of the sites on your development system. Be sure that the TableEditor
ACL is assigned to your user name or you will be unable to create asset types.

5-15

Chapter 5
Creating Basic Asset Types

Note:

Without administrator rights, you do not have access to the Admin node
in the General Admin tree, which means that you cannot perform any of
the procedures in this chapter. For the sake of convenience, assign the
Designer and GeneralAdmin roles to your user name. That way you will
have access to all the tabs and all of the existing Start Menu shortcuts
for the assets in the sample site.

5.3 Creating Basic Asset Types

ORACLE

You spend less time creating a simple asset type that needs just one descriptor file.
For some asset types you can modify the code in the elements that AssetMaker
creates, or add a database table to hold information for the dropdown lists.

Creating basic asset types includes these tasks:

* Caoding the Asset Descriptor File.

» Uploading the Asset Descriptor File to WebCenter Sites using AssetMaker in the
Admin tab.

» Creating the Asset Table and register the asset type elements by copying the
asset type elements from the AssetStubElementCatalog table to the appropriate
directory in the ElementCatalog table.

* Configuring the Asset Type.

* Enabling the Asset Type on Your Site and create a start menu shortcut so that you
can work with the asset type.

» Fine-Tuning the Asset Descriptor File (if necessary) and re-register the asset type
elements.

e Customizing the Asset Type Elements (Optional) .

e Adding Subtypes (Optional) for the new asset type.

e Configuring Association Fields (Optional) for the new asset type.
» Configuring Categories (Optional) for the new asset type.

* Adding Mimetypes (Conditional) for the new asset type.

« Editing Search Elements to Enable Indexed Search (Optional) if you are using a
search engine rather than the WebCenter Sites database search utility to perform
the logic behind the search forms and you want to use it on your new asset type.

» Creating and Assigning Asset Type Icons (Contributor Interface Only) that will
represent the asset type in the Contributor interface's navigation trees (Site Tree,
Content Tree, and My Work tree).

e Coding Templates for the Asset Type, Coding Templates for the Asset Type. See
also Coding Elements for Templates and CSElements.

* Moving the Asset Types to Other Systems (management and delivery) This allows
your administrator to complete the final steps in creating the asset type, including
setting up workflow and creating start menu items.

5-16

Chapter 5
Creating Basic Asset Types

5.3.1 Coding the Asset Descriptor File

As described in Asset Descriptor Files, this is the basic format of an asset descriptor
file:

<?xml version="1.0" ?>
<ASSET NAME="assetName"...>
<PROPERTIES>
<PROPERTY.../>
<STORAGE.../>
<INPUTFORM.../>
<SEARCHFORM. ../>
<SEARCHRESULTS.../>
</PROPERTY>
<PROPERTY... />
<STORAGE.../>
<INPUTFORM.../>
<SEARCHFORM. ../>
<SEARCHRESULTS.../>
</PROPERTY>
</PROPERTIES>
</ASSET>

To code your asset descriptor files, see the Tag Reference for Oracle WebCenter
Sites and use the tags described in this guide to code the file. Use the native XML
editor in Explorer or any other XML editor to code the file.

Note that you can customize the appearance of standard asset fields by including
them in your asset descriptor file. Changing a field's storage type is conditional. For
example, a system field's storage type must not be changed. For the list of standard
fields, their storage types, and allowed changes to storage type, see Data Types for
Standard Asset Fields.

This section offers a sample asset descriptor file and several examples about coding
specific kinds of properties.

This section includes the following examples:
e Example 5-1
Example 5-2
Example 5-3
e Example 5-4
e Example 5-5
Example 5-6
e Example 5-7
e Example 5-8
Example 5-9
e Example 5-10

Example 5-1 Sample Asset Descriptor File: ImageFile.xml

An example of an Asset Descriptor File, ImageFile.xml, follows:

ORACLE 5-17

ORACLE

Chapter 5
Creating Basic Asset Types

<I-- this is the description of an asset -->

<ASSET NAME="ImageFile" DESCRIPTION="ImageFile"
MARKERIMAGE="/Xcelerate/data/helpl6.gif" PROCESSOR="4.0"
DEFDIR="c:\FutureTense\Storage\lImageFile">

<PROPERTIES>

<PROPERTY NAME="source" DESCRIPTION="Source">
<STORAGE TYPE="VARCHAR" LENGTH="'24"/>
<INPUTFORM DESCRIPTION=""Source™ TYPE="SELECT" TABLENAME="Source"
OPTIONDESCKEY="description" OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
<SEARCHFORM DESCRIPTION=""Source" TYPE="SELECT" TABLENAME="Source"
OPTIONDESCKEY="description" OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
</PROPERTY>

<PROPERTY NAME="urlpicture" DESCRIPTION="Image File">

<STORAGE TYPE="VARCHAR" LENGTH=''255"/>

<INPUTFORM TYPE="UPLOAD" WIDTH=""36" REQUIRED="NO" LINKTEXT="Image"/>
</PROPERTY>

<PROPERTY NAME="urlthumbnail" DESCRIPTION="Thumbnail File">

<STORAGE TYPE="VARCHAR" LENGTH=''255"/>

<INPUTFORM TYPE="UPLOAD" WIDTH=""36" REQUIRED="NO" LINKTEXT="Image"/>
</PROPERTY>

<PROPERTY NAME="mimetype" DESCRIPTION="Mimetype'>
<STORAGE TYPE="VARCHAR" LENGTH="36"/>
<INPUTFORM TYPE="SELECT" SOURCETYPE="TABLE" TABLENAME="MimeType"
OPTIONDESCKEY="description” OPTIONVALUEKEY="mimetype"
SQL=""SELECT mimetype, description
FROM MimeType
WHERE keyword = "image”
AND isdefault = "y""
INSTRUCTION=""Add more options to mimetype table with isdefault=y
and keyword=image"/>
<SEARCHFORM DESCRIPTION="MimeType" TYPE="SELECT" SOURCETYPE="'TABLE"
TABLENAME="MimeType" OPTIONDESCKEY="description” OPTIONVALUEKEY="mimetype"
SQL=""SELECT mimetype, description
FROM MimeType
WHERE keyword = "image”
AND isdefault = "y""/>
</PROPERTY>

<PROPERTY NAME="width" DESCRIPTION="Width">
<STORAGE TYPE="INTEGER" LENGTH="4"/>
<INPUTFORM TYPE="TEXT" WIDTH="4" MAXLENGTH="4" REQUIRED="NO" DEFAULT=""/>
<SEARCHFORM DESCRIPTION="Width is" TYPE="TEXT" WIDTH="4"
MAXLENGTH="4" VERB="="/>
</PROPERTY>

<PROPERTY NAME="height" DESCRIPTION="Height'>
<STORAGE TYPE="INTEGER" LENGTH="4"/>
<INPUTFORM TYPE="TEXT" WIDTH="4" MAXLENGTH="4" REQUIRED="NO" DEFAULT=""/>
<SEARCHFORM DESCRIPTION="Height is" TYPE="TEXT" WIDTH="4"
MAXLENGTH="4" VERB="="/>
</PROPERTY>

<PROPERTY NAME="align" DESCRIPTION="Alignment'>
<STORAGE TYPE="VARCHAR" LENGTH="8"/>
<INPUTFORM TYPE="SELECT" SOURCETYPE="'STRING"
OPTIONVALUES="Left,Center,Right" OPTIONDESCRIPTIONS="Left,Center,Right"/>

5-18

ORACLE

Chapter 5
Creating Basic Asset Types

<SEARCHFORM DESCRIPTION="Alignment" TYPE="SELECT" SOURCETYPE="STRING"
OPTIONVALUES="Left,Center,Right" OPTIONDESCRIPTIONS="Left,Center,Right"/>
</PROPERTY>

<PROPERTY NAME="artist" DESCRIPTION="Artist">
<STORAGE TYPE="VARCHAR" LENGTH="'64"/>
<INPUTFORM TYPE="TEXT" WIDTH="36" MAXLENGTH="36" REQUIRED="NO" DEFAULT=""/>
<SEARCHFORM DESCRIPTION="Artist contains" TYPE="TEXT"
WIDTH="36" MAXLENGTH="64"/>
</PROPERTY>

<PROPERTY NAME="alttext" DESCRIPTION="Alt Text'>
<STORAGE TYPE="VARCHAR" LENGTH="255"/>
<INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="255" REQUIRED="NO" DEFAULT=""'/>
<SEARCHFORM DESCRIPTION="Alt Text contains" TYPE="TEXT"
WIDTH="48" MAXLENGTH="255"/>
</PROPERTY>

<PROPERTY NAME="keywords" DESCRIPTION="Keywords'>
<STORAGE TYPE="VARCHAR" LENGTH=''128"/>
<INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="128" REQUIRED="NO" DEFAULT=""'/>
<SEARCHFORM DESCRIPTION="Keywords contain' TYPE="TEXT"
WIDTH="48" MAXLENGTH="128"/>
</PROPERTY>

<PROPERTY NAME="imagedate" DESCRIPTION="Image date">
<STORAGE TYPE="TIMESTAMP" LENGTH="8"/>
<INPUTFORM TYPE="ELEMENT" WIDTH=""24" MAXLENGTH="48" REQUIRED="NO"
DEFAULT="" INSTRUCTION="Format: yyyy-mm-dd hh:mm"/>
<SEARCHFORM DESCRIPTION="Image date" TYPE="ELEMENT"
WIDTH="48" MAXLENGTH="128"/>
</PROPERTY>

</PROPERTIES>
</ASSET>

Example 5-2 Adding the Source Column and Field

The source column is not created by default even though WebCenter Sites has a
Source feature on the Admin node in the General Admin tree. To use the Source
feature on your new asset types, you must include a property statement for the source
column and field.

Note the following:

e STORAGE TYPE must be set to VARCHAR, and LENGTH must be set to 24.
e INPUTFORM SOURCETYPE must be set to TABLE, and TABLENAME must be set to Source.
For example:

<PROPERTY NAME="'source" DESCRIPTION=""Source">
<STORAGE TYPE="VARCHAR"™ LENGTH="'24"/>
<INPUTFORM TYPE="SELECT" TABLENAME="'Source"
OPTIONDESCKEY="description”
OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
<SEARCHFORM DESCRIPTION=""Source" TYPE="SELECT"
TABLENAME=""Source" OPTIONDESCKEY="description"
OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>

</PROPERTY>

5-19

ORACLE

Chapter 5
Creating Basic Asset Types

Example 5-3 Creating a Standard Upload Field

To create an upload field with a Browse button, code the PROPERTY statement as
follows:

1. The string set for PROPERTY NAME must begin with the letters url.

2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to UPLOAD.

Here is a code snippet of an upload field from the ImageFile asset descriptor file:

<PROPERTY NAME="urlpicture" DESCRIPTION="Image File">

<STORAGE TYPE="VARCHAR™ LENGTH="255"/>

<INPUTFORM TYPE="UPLOAD"™ WIDTH="36" REQUIRED="NO" LINKTEXT="Image"/>
</PROPERTY>

Note:

The size of a file that you can select in an upload field is limited to 30
megabytes.

Example 5-4 Creating an Upload Field with a Text Box

To create an upload field with a text box that you can enter the text in (rather than with
a Browse button that you use to select a file), code the PROPERTY statement as follows:

1. The string set for PROPERTY NAME must begin with the letters url.
2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to TEXTAREA.

The following code snippet creates a text area field for a url column:

<PROPERTY NAME="urlbody" DESCRIPTION="Article Body">

<STORAGE TYPE="VARCHAR" LENGTH="256"/>

<INPUTFORM TYPE="TEXTAREA™ WIDTH="400" HEIGHT="100" REQUIRED="YES"/>
</PROPERTY>

Example 5-5 Creating an Upload Field with a CKEditor
To create a CKEditor field, code the property statement as follows:

1. The PROPERTY NAME must begin with the letters url. Therefore, use a URL column
for the field, otherwise the field will be too small.

2. The value for STORAGE TYPE must be set to VARCHAR.
3. The value for INPUT TYPE must be set to CKEDITOR.

<PROPERTY NAME="urlbody" DESCRIPTION="Body">
<STORAGE TYPE="VARCHAR" LENGTH="50"/>
<INPUTFORM TYPE="CKEDITOR" WIDTH="300" HEIGHT="300" REQUIRED="YES"
INSTRUCTION="Be concise! No more than 3 paragraphs.'/>
</PROPERTY>

The length of the type VARCHAR is the length of the path to the file where the data is

stored. This is typically less than 100. An excessively large length (for example, 5000)
causes issues with data storage as the database will store the data as a CLOB. And

5-20

Chapter 5
Creating Basic Asset Types

the URL field will be corrupted because the data would be stored in the database
rather than the file.

Example 5-6 Creating an Upload Field That Uploads a Binary File

The following code creates a field where you can upload a blob. Not specifying
MIMETYPE will prevent you from viewing the blob from the Edit and Inspect forms.

Code the property statements as follows:
* The string set for PROPERTY NAME must not begin with the letters url.
* The value for STORAGE TYPE must be set to BINARY.

<PROPERTY NAME="type_binary" DESCRIPTION="Binary">
<STORAGE TYPE="BINARY"/>
<INPUTFORM TYPE="UPLOAD"
WIDTH=""24" MAXLENGTH="'64"
MIMETYPE="application/msword"
LINKTEXT="Edit with Microsoft Word"
INSTRUCTION="maps to cc.blob"/>
</PROPERTY>

Consider the following about Upload fields:

e For an Upload field whose PROPERTY NAME starts with the letters url, only the
file system path of the uploaded file is stored in the database. So, in this case,
STORAGE TYPE must be set to VARCHAR.

* For an Upload field whose PROPERTY NAME doesn't start with the letters url, the
uploaded file’s data resides in the database in BINARY format. So, in this case
STORAGE TYPE must be set to BINARY.

Example 5-7 Enabling path, filename, startdate, and enddate
The path, filename, startdate, and enddate columns are special cases.

AssetMaker creates columns for path, filename, startdate, and enddate without
requiring a PROPERTY statement for them. However, while these columns exist, their
fields do not appear on your asset forms unless you include a PROPERTY statement for
them in the asset descriptor file.

Note the following about these columns:

e path: The STORAGE TYPE must be set to VARCHAR and LENGTH must be set to 255.

e filename: The STORAGE TYPE must be set to VARCHAR and LENGTH must be set to 128.
e startdate: The STORAGE TYPE must be set to TIMESTAMP.

e enddate: The STORAGE TYPE must be set to TIMESTAMP.

¢ Note:

If you include one of these standard columns in your asset descriptor file
but your storage type does not match the one specified in this list,
AssetMaker cannot create the asset type.

For example:

ORACLE 5-21

ORACLE

Chapter 5
Creating Basic Asset Types

<PROPERTY NAME="path" DESCRIPTION="Path">

<STORAGE TYPE="VARCHAR"™ LENGTH="255"/>

<INPUTFORM DESCRIPTION="Path" TYPE="TEXT" LENGTH='"255"/>
</PROPERTY>

Example 5-8 Using a Query to Obtain Options for a Drop-Down List

When the INPUTFORM TYPE of your property is SELECT, you can have WebCenter Sites
populate the drop-down list for the select field with a static list of items that you provide
with the OPTIONDESCRIPTIONS parameter, or with a list of items that WebCenter Sites
obtains, dynamically, from a database table.

Another example of a select field that populates its drop-down list dynamically from a
table is the Mimetype field on the imagefile forms, which queries the MimeType table for
its options. Here's the code:

<PROPERTY NAME="mimetype" DESCRIPTION="Mimetype'>

<STORAGE TYPE="VARCHAR" LENGTH="36"/>
<INPUTFORM TYPE="SELECT" SOURCETYPE="TABLE"
TABLENAME="mimetype" OPTIONDESCKEY="description"
OPTIONVALUEKEY="mimetype" SQL="SELECT mimetype, description
FROM mimetype

WHERE keyword = "image*®

AND isdefault = "y*"

INSTRUCTION=""Add more options to mimetype table

with isdefault=y and keyword=image"/>

<SEARCHFORM DESCRIPTION="Mimetype" TYPE="SELECT"
SOURCETYPE="TABLE" TABLENAME="mimetype"
OPTIONDESCKEY="description” OPTIONVALUEKEY="mimetype"
SQL="SELECT mimetype, description

FROM mimetype
WHERE keyword
AND isdefault

"image”
yrt/>

</PROPERTY>

This example shows a field that not only selects items from a database table, but,
through an additional SQL query, further restricts which items are returned from that
table, as well.

Example 5-9 Using a Query to Obtain Labels for Radio Buttons

Use RADIO as the INPUTFORM TYPE of your property to input the label for each radio
button using a static list of items that you provide with the OPTIONDESCRIPTIONS
parameter, or with a list of items that WebCenter Sites obtains, dynamically, from a
database table.

The following sample code creates radio buttons with labels drawn from the CreditCard
table:

<PROPERTY NAME="sqlrbcc™ DESCRIPTION="SQL RB Credit Card">
<STORAGE TYPE="VARCHAR" LENGTH="4"/>
<INPUTFORM TYPE="RADIO" SOURCETYPE="TABLE" TABLENAME="CreditCard"
RBVALUEKEY="ccvalue" RBDESCKEY="ccdescription" />
<SEARCHFORM TYPE="SELECT" DESCRIPTION="Credit Card:" SOURCETYPE="TABLE"
TABLENAME="CreditCard" OPTIONVALUEKEY="ccvalue" OPTIONDESCKEY="ccdescription”
SQL="SELECT ccvalue,ccdescription
FROM CreditCard ORDER BY ccdescription”/>
</PROPERTY>

5-22

ORACLE

Chapter 5
Creating Basic Asset Types

Example 5-10 Creating a Field with the ELEMENT Input Type

To display the fields as you want them on your asset forms, you can call custom code
using the ELEMENT input type. Use this method to create asset fields, or to change the
appearance of standard asset fields, though you cannot modify the storage type of a
standard asset field.

An ELEMENT field can have any storage type, including BLOB. When you set a field's input
type to ELEMENT, WebCenter Sites calls a custom element to display the field. The
custom element must be found at one of the following locations:

For a field on the ContentForm form:

OpenMarket/Xcelerate/AssetType/myAssetType/ContentForm/fieldname

For a field on the ContentDetails form:

OpenMarket/Xcelerate/AssetType/myAssetType/ContentDetails/fieldname

For a field on the SearchForm form:

OpenMarket/Xcelerate/AssetType/myAssetType/SearchForm/fieldname

Note that nyAsset Type is the asset type that you are creating the custom field for, and
fieldname is the name of the custom field.

The following excerpt from an asset descriptor file uses the ELEMENT input type:

<PROPERTY NAME="imagedate" DESCRIPTION="Image date">
<STORAGE TYPE="TIMESTAMP" LENGTH="8"/>
<INPUTFORM TYPE="ELEMENT" WIDTH=""24" MAXLENGTH="48" REQUIRED="NO" DEFAULT=""
INSTRUCTION="Format: yyyy-mm-dd hh:mm"/>
<SEARCHFORM DESCRIPTION="Image date" TYPE="ELEMENT"
WIDTH="48" MAXLENGTH="'128"/>
</PROPERTY>

Note that the input form uses a customized field, but the search form and content
details forms display default fields.

The following code excerpt is the element that the descriptor file calls:

<I-- OpenMarket/Xcelerate/AssetType/ImageFile/ContentForm/imagedate

- INPUT

- Variables.AssetType

Variables.fieldname

Variables.fieldvalue- default or value for this field

Variables.datatype - from STORAGE tag in ADF for this field
Variables.helpimage - help icon

Variables.alttext - help text from INPUT tag in ADF

Other fields from input tag are in:
Variables.assetmaker/property/Variables.fieldname/inputform/[tag attribute]
- field name used in form should be Variables_AssetType:Variables.fieldname

- OUTPUT

-3
Enter date in the format yyyy-mm-dd hh:mm:ss

<setvar

NAME="inputfieldsize"
VALUE="Variables.assetmaker/property/Variables.fieldname/inputform/width"/>

5-23

Chapter 5
Creating Basic Asset Types

<callelement NAME="OpenMarket/Xcelerate/Scripts/FormatDate"/>

<INPUT TYPE="text" SIZE="Variables.inputfieldsize"
NAME="Variables.AssetType:Variables.fieldname"

VALUE="Variables.fieldvalue"
REPLACEALL="Variables.inputfieldsize,Variables.fieldvalue,Variables.fieldname,
Variables.AssetType"onChange="padDate(this.form.elements["Variables.AssetType:
Variables.fieldname"].value,this, "Variables.AssetType:Variables.fieldname®
)"

</FTCS>

Note that you can customize as many fields as you want using the ELEMENT input type,
but you must write a separate element for each field.

5.3.2 Uploading the Asset Descriptor File to WebCenter Sites

ORACLE

After you have coded the asset descriptor file for your asset type, use AssetMaker to
upload it and register the new elements:

1. Open the Admin interface.
2. Select the General Admin tree and then expand the Admin node.
3. Expand AssetMaker and click Add New.

The Add New AssetMaker Asset Type form opens.

4. In the Name field, enter the name of the new asset type. The string that you enter
into this field must exactly match the string specified by the ASSET NAME parameter
in the asset descriptor file that you are going to upload.

5. In the Descriptor File field, click Browse and select the asset descriptor file.
6. Click Save.

AssetMaker enters the file into the AssetType table (that is, it uploads the asset
descriptor file to the default storage directory for the AssetType table), and then
opens the Asset Type form.

The Asset Type form opens.

5-24

Figure 5-2 Asset Type Form

Chapter 5
Creating Basic Asset Types

Asset Type: ImageFile

@ tnipect " Edit

¥ Delate

MName:

Description:

Plural Form:

Can Be a Child Asset:

Use Dimensiomn:

Revision Tracking:

Type:

Class:

Deflir:

1o:

Sites Assel Type appears in:

more, b

ImageFie

ImageFie

ImageFies

Wot Tracked

AssetMaker

com.openmarket. assetrmaker. asset. AMAssat

Register Asset Elements

Creale Aiiel Table,..

1332150644 1208

5.3.3 Creating the Asset Table

This step continues from step 6 of Uploading the Asset Descriptor File to WebCenter

ORACLE

In the DefDir field, examine the value and change it if necessary. AssetMaker
reads this value from the asset descriptor file. You must enter a value in this field if

* If you did not provide a value with the DEFDIR parameter for the ASSET tag in the

* To change the default storage directory, which is typical when you are
migrating the asset type to another system.

Enable the Add General Category option. AssetMaker adds one row to the
Category table for the new asset type and names that category General.

Sites.
1. Select Create Asset Table.
2.
either of the following conditions exist:
asset descriptor.
3. Click Create Asset Table.

AssetMaker creates the table, and it displays a confirmation.

5-25

4.

Chapter 5
Creating Basic Asset Types

Select Register Asset Elements, and then click Register Asset Elements.

AssetMaker copies the elements from the AssetStubElementCatalog table to the
asset type's directory in the ElementCatalog table and copies the SQL statements in
the SystemSQL table.

When it is finished, it displays a confirmation.

5.3.4 Configuring the Asset Type

When AssetMaker created the new asset type (in Uploading the Asset Descriptor File
to WebCenter Sites), it also created an icon and administrative forms for configuring
the new asset type, located in the Admin node on the General Admin tree.

ORACLE

To configure the asset type:

1.

In the General Admin tree, expand the Admin node and then expand the Asset
Types icon.

Under Asset Types, select your new asset type. If you do not see it in the list,
right-click and choose Refresh from the context menu, and then choose your new
asset type.

Click Edit.
The Edit Asset Type form opens.

Figure 5-3 Edit Asset Type Form

Edit Asset Type

Kame: [mageFis
*Description: ImageFile
*Plural Form: ImageFilas
Can Be a Child Asset: & Tue
CiFake
Indicates whether this aset i dlowed to be a child of
other asset typas
Use Dimension: & True
Orake
Indicates whather the asset type will use dimension tables,
Type: AssetMaker

Class: com.openmarket, assetmaker. asset. AMAssat

1D 1331506441208

5-26

Chapter 5
Creating Basic Asset Types

4. (Optional) In the Description field, change the value, if necessary. The text in this
field is the name that WebCenter Sites uses for this asset type on the forms and
lists in the WebCenter Sites interface. By default, description is set to the value of
the ASSET DESCRIPTION statement in the asset descriptor file.

5. (Optional) In the Plural Form field, change the value, if necessary. The text in this
field is the text that WebCenter Sites uses in the Admin interface when it is
appropriate to refer to the asset type in the plural. By default, Plural Form is set to
the value of the ASSET DESCRIPTION statement in the asset descriptor file plus the
letter "s." You can also specify your own plural form in the asset descriptor file by
setting the value of the ASSET tag's PLURAL parameter.

6. (Optional) In the Can Be a Child Asset field, change the value, if necessary. By
default, this field is set to True, which means that this asset type can be the child
asset type in an association field for another asset type. Its name displays in the
list of asset types in the Child Asset Field on the Add New Association forms.

7. (Optional) In the Use Dimensions field, change the value, if necessary. By
default, this field is set to True, which means that this asset type supports the
creation of multi-lingual content.

8. Click Save.

5.3.5 Enabling the Asset Type on Your Site

Before you can examine the forms that the new elements render for the asset type,
you must enable the asset on the site (or sites) that you are working with and create a
simple start menu item for it.

For instructions on how to enable your asset types and create start menu items for
them, see Administering Oracle WebCenter Sites.

5.3.6 Fine-Tuning the Asset Descriptor File

ORACLE

Create a new asset of your new type and examine the New, Edit, Inspect, and Search
forms. (To create a new asset of this type, click New on the toolbar and select the start
menu shortcut that you created in the preceding procedure.)

After you examine the forms, you might have to modify the asset descriptor file.
You can make any of the following changes with relatively few steps:

* Re-ordering the fields that appear on the WebCenter Sites forms for the asset
type.
* Changing the name of a field (that is, the value of PROPERTY DESCRIPTION).

e Changing anything in an INPUTFORM, SEARCHFORM, or SEARCHRESULTS statement.

To make any of the changes in the preceding list, complete the following steps:

1. Use Explorer to open and modify the asset descriptor file that you uploaded in
Uploading the Asset Descriptor File to WebCenter Sites.

2. Save your changes.
3. Re-register the elements for the asset type.

You cannot change the schema of the asset type's database table after it is created.
The following are the schema changes:

5-27

Chapter 5
Creating Basic Asset Types

* Changing the name of a column (the NAME parameter in an existing PROPERTY
statement).

e Changing the data type of the column (the STORAGE TYPE or LENGTH in an existing
PROPERTY statement).

e Adding a new property (new PROPERTY statement), which adds a new column to the
table.

» Deleting a property (an existing PROPERTY statement), which deletes a column from
the table.

Therefore, to make any of the changes in the preceding list, you must first delete the
asset type, modify the asset descriptor file, and then create the asset type again.

Note that customizing the elements that AssetMaker copied from the
AssetStubElementCatalog table to the asset type's directory in the ElementCatalog table
allows for changes to be overwritten at re-registration of elements.

5.3.7 Customizing the Asset Type Elements (Optional)

The following are the ways to customize asset type elements on your content
management system:

* For changes specific to a certain asset type, modify the elements for that asset
type in the ElementCatalog table, using Explorer. See About PreUpdate and
PostUpdate Elements.

* To make the same modifications for assets of all types, modify the source
elements in the AssetStubElementCatalog table, using Explorer, before you create
your asset types. That way you will have to customize only once.

Note:

Although customizing source elements in the AssetStubElementCatalog table
might be necessary, it is not supported. If you plan to customize a stub
element, consider that it will be overwritten under the following conditions:

e Changing the stub elements requires you to re-register all of the asset
elements that must take the new changes. When you re-register asset
elements, AssetMaker moves new copies of the elements from the
AssetStubElementCatalog table to the asset type's directory in the
ElementCatalog table (the path is ElementCatalog\OpenMarket\Xcelerate
\AssetType) and in the process overwrites the existing elements.
Elements that you customized in the AssetType directory will be
overwritten.

e The WebCenter Sites upgrade process typically installs new source
elements in the AssetStubElementCatalog table. Code changes in the stub
elements are overwritten when you re-register your asset types after
upgrade.

Be meticulous about tracking all of your customizations at all times. That way you can
re-create your work if necessary.

ORACLE 5-28

Chapter 5
Creating Basic Asset Types

For more information about the asset type elements you can modify, see The
Elements.

5.3.8 Adding Subtypes (Optional)

A subtype is a subclass of the basic asset type based on how that asset is rendered.
Use subtypes to define a separate default approval template for an asset of that type
and subtype on each publishing target.

Follow these steps to create a subtype:

1. Inthe General Admin tree, expand the Admin node, and then expand the Asset
Types option.

2. Under the Asset Types option, select the asset type that you want to create
subtypes for.

3. Select the Subtypes option.
The Subtypes form opens.

Figure 5-4 Subtypes for Asset Type Dialog

Subtypes for Asset Type: » Imagefile

T FrstSite I

Add Mew Subltype

4. Click Add New Subtype.
5. In the Name column of the next form, enter the name of the subtype.

6. Inthe corresponding field of the Sites column, select the names of the sites that
need this subtype.

7. Repeat these steps for up to five subtypes.
8. Click Save.

5.3.9 Configuring Association Fields (Optional)

ORACLE

Associations are assettype-specific relationships that describe parent-child
relationships or links between individual assets or asset sub-types. Associations are
described in The Basic Asset Model.

When you code your template elements, you use the names of these relationships to
identify individual assets or sub-types, without having to refer to the object by its name.
For example, in a site that associates imagefile assets with article assets, the template
elements should be coded to extract an associated imagefile asset by the name of the
association rather than the name of the asset. This enables the template to display
another imagefile for an article without you having to re-code the template.

5-29

ORACLE

Chapter 5
Creating Basic Asset Types

Associations are represented as fields in the asset forms. These fields are not created
from an asset descriptor file. Instead, you use the Asset Associations forms under the
Admin node in the General Admin tree.

To add an association field:

1.

In the General Admin tree, expand the Admin node, and then expand Asset
Types.

Under the Asset Types option, select the asset type that you want to create
associations for.

Under the asset type you selected, select Asset Associations and then Add
New.

The Add New Association form opens.

Figure 5-5 Add New Association Dialog

Add New Association

Asset Type: Content

Name: (Marne canmot contan spaces or
punctuation.)
YDescription:
Child Asset: | Amwy b

Content Subtypes: | Ay
F3l Articla

Mirror Dependency Type: & Exists - Any approved varsion of the assocated asset i acceptabis for
publsh of Content.
) Exact version - Any change to the associated assst will require spproval
for publish of Content.

Type of Association: & Single valued - only one value diowed per asset,
O Muttivalued - multipla values sllowed per asset.

Add Mew Ardocialion

In the Name field, enter the name of the association field, without using spaces,
decimal points, or punctuation marks.

In the Description field, enter a short description of the field. WebCenter Sites
uses the text entered into this field as the name of the field when it is displayed on
the new asset form.

5-30

Chapter 5
Creating Basic Asset Types

In the Child Asset field, select the kind of asset type that will appear in this field.
(It is called the Child Asset field because associations create parent-child
relationships between assets.) You cannot specify the template or the page asset
type in this field.

In the Subtypes field, select the subtype or subtypes for this association by
highlighting them. To select multiple subtypes, press the Control key while you
click your selection with your mouse.

In the Mirror Dependency Type section, select a suitable option for this asset
association. By default, it is set to Exists. The dependency type specified here is
used by the approval system when your publishing method is Mirror to Server.

Click Add New Association.

WebCenter Sites creates a row in the Association table for this association. The
name used in the row is the text you entered in the Name field in step 4.

5.3.10 Configuring Categories (Optional)

Use categories to organize your asset types according to some convention that works
for your site design. Although all basic asset types have a Category field (column) by
default, it is not a required field and you do not have to use it.

ORACLE

To add a category:

1.
2.

Under the Admin node, select Asset Types.

For the Asset Type option, select the asset type for which you want to create
categories. For example, select Article.

Under that asset type, select Categories and then Add New.

The Add New Category form opens.

Figure 5-6 Add New Category Dialog

Add New Category

*Desoription:
*Category Cocde:

Asset Type: Page

In the Description field, enter a short description of the category. WebCenter
Sites uses the text that you enter in this field in the site tree and in the drop-down
list for the Category field on the forms for assets of this type.

In the Category Code field, enter a two-character code for your new category.
Click Add.

Repeat steps 2 through 6, as needed, to finish creating the categories for this
asset type.

5-31

Chapter 5
Creating Basic Asset Types

The categories you created now appear in the drop-down lists in the Category fields
when creating new assets or editing assets.

5.3.11 Configuring Sources (Optional)

Sources apply to all the asset types in all the sites on your system. Therefore, add
your sources only once (not for each asset type).

To create a source:

1. Under the Admin node, select Sources, and then Add New.
The Add New Source form opens.
2. For Source, enter the name of a source.

3. For Description, enter a short description of the source. WebCenter Sites uses
the text from this field in the drop-down list for the Source field on the forms for
assets.

4. Click Add.
The source is written to the Source table.

5. Repeat steps 1 through 4 for each source that you need for your asset types.

5.3.12 Adding Mimetypes (Conditional)

ORACLE

The MimeType table holds mimetype codes that can be displayed in MimeType fields.
You must add mimetypes for your asset if you reference the MimeType table in your
asset descriptor file. For example, both the imagefile and stylesheet asset types have
upload fields with Browse buttons next to them. After you select a file in the upload
field, you specify the mimetype of the file you selected from the Mimetype drop-down
list.

The Mimetype fields for the imagefile and stylesheet asset types query the MimeType
table for mimetype codes based on the keyword column:

* Mimetype codes with their keyword set to stylesheet appear in the drop-down list of
the Mimetype field in the Stylesheet form.

e Mimetype codes with their keyword set to image appear in the drop-down list of the
Mimetype field in the ImageFile form.

By default, stylesheet files can be CSS files and imagefile files can be GIF or JPEG files.
You can add mimetype codes for these asset types, for your own custom asset types,
or for any other reason.

To add mime types to a Mimetype drop-down list:
1. Open Explorer.

2. Expand the MimeType table.

3. Do one of the following:

* To add a mimetype for the imagefile asset type, select image in the MimeType
table.

* To add a mimetype for the stylesheet asset type, select text in the MimeType
table.

5-32

Chapter 5
Creating Basic Asset Types

* To add a mimetype for a custom asset type with an upload field or for any
other reason, select the appropriate location in the MimeType table.

4. Right-click in the frame on the right and then choose New from the drop-down list.
Explorer creates a new row in the table.
5. In the mimetype field, enter the name of the mimetype. For example: XSL.

6. Inthe extension field, enter the extension for mime types of this type. For
example: .xml.

7. In the Description field, enter a short description of this mimetype.
8. Inthe isdefault field, do one of the following:

e To specify multiple extensions for the same mimetype, enter n. For example, if
a mimetype named JPG has .jpg and .jpeg extensions, set isdefault to n.

e If this is the only extension for the mimetype, entery.
9. Inthe Keyword field, do one of the following:
* To add a mimetype for the imagefile asset type, enter image.
* To add a mimetype for the stylesheet asset type, enter stylesheet.

* To add a mimetype for a custom asset type with an upload field or for any
other reason, enter the appropriate keyword.

10. Select File and then Save all.
Explorer saves the row.

A mimetype code, if added with the keyword of image, is now displayed in the
Mimetype field of the ImageFile form. A mimetype code that was added with the
keyword of stylesheet is now displayed in the Mimetype field of the Stylesheet
form.

5.3.13 Editing Search Elements to Enable Indexed Search (Optional)

WebCenter Sites and Oracle WebCenter Sites: Engage have its own database SQL
search mechanism that runs the Simple and Advanced searches. However, you can
set up your management system to one of the supported third-party search engines
instead. For configuration information, see Administering Oracle WebCenter Sites.

When you are using a search engine on your management system, each asset is
indexed when it is saved after being created or edited. By default, only the default
fields are indexed (for a list, see Default Columns in the Basic Asset Type Database
Table). To index the fields that you created with PROPERTY statements in your asset
descriptor file, add statements for them in the following elements:

* OpenMarketXcelerate/AssetType/YourAssetType/ IndexAdd.xml
* OpenMarketXcelerate/AssetType/YourAssetType/ IndexReplace.xml

To add the asset type's custom fields to these elements, use the WebCenter Sites
INDEX tags and follow the convention illustrated in these elements.

ORACLE 5-33

Chapter 5
Deleting Basic Asset Types

5.3.14 Creating and Assigning Asset Type Icons (Contributor Interface
Only)

Create and assign the icon that will represent the asset type in the Contributor
interface's navigation trees (Site Tree, Content Tree and My Work tree). Icons can be
of any type of image file (for example, PNG, GIF, and so on). In this example, an
image file of type PNG is created.

1. Create an image no larger than 20x20 pixels representing the asset type.

2. Name the file using the syntax assetType.png. The file name determines the asset
type for which the icon will be displayed. The name is case-sensitive.

3. Place the file in the following directory:
<cs_app_dir>/Xcelerate/OMTree/Treelmages/AssetTypes/

where <cs_app_dir> is the directory of the deployed WebCenter Sites application
on your application server.

4. Restart your application server for the icons to appear in the Contributor interface
(Site tree, Content tree, and My Work tree).

5.3.15 Coding Templates for the Asset Type

Creating your asset types and coding the templates for assets of that types is an
iterative process.

» Although you have to create asset types before you can create templates for
assets of that type, it is likely that you will discover areas that need refinement in
your data design only after you have coded a template and tested the code.

See Coding Elements for Templates and CSElements.

5.3.16 Moving the Asset Types to Other Systems

When you have finished creating all of your new asset types (including creating
templates for them), you need to move them to other systems.

e Migrate the asset types to the management and delivery systems.

System administrators will then configure the asset types for the management
system. They will enable revision tracking where appropriate, create workflow
processes, create start menu shortcuts, and so on.

See Administering Oracle WebCenter Sites.

5.4 Deleting Basic Asset Types

You can either delete components of the asset type that you select or all traces of the
asset type from the database.

The asset type components are:

* The database table and all the data in it.

e The elements in the ElementCatalog table.

ORACLE 5-34

ORACLE

Chapter 5
Deleting Basic Asset Types

The SQL statements in the SystemSQL table.
The row in the AssetType table.

Any rows in the Association table (optional).
Any rows in the Category table (optional).
Any rows in the AssetPublication table.

Any rows in the AssetRelationTree table.

To delete an asset type that you created with AssetMaker:

1.
2.
3.

Open the Admin interface.

Select the General Admin tree and then expand the Admin node.

Expand AssetMaker and then select the asset type that you want to delete.
The Asset Type form opens.

Select the Delete Asset option and click Submit.

WebCenter Sites displays a confirmation message.

Click OK.

5-35

Designing Flex Asset Types

Flex asset types are part of a flex asset family, and they inherit attributes from parents,
grandparents, and so on. Each asset type is stored across several database tables.

For an overview of the data model, see Understanding the Asset Types and Asset
Models. For information about flex asset types, see these topics:

* About Designing Flex Asset Types

* Design Tips for Flex Families

e The Flex Family Maker Utility

* Flex Asset Elements

* Setting Up Your Development System
* Creating a Flex Asset Family

* What You May Need to Know About Editing Flex Attributes, Parents, and
Definitions

e Using Product Sets

6.1 About Designing Flex Asset Types

When creating flex asset types, you also create the individual data structure assets of
those types. These assets are flex attributes, flex parent definitions, flex definitions,
and flex parent assets. For creating flex asset types, the Flex Family Maker utility is
available in the Admin interface.

Typically, you design the flex asset types and create the data structure assets on a
development system. When your data model is ready, you migrate your work from the
development system to the management and delivery systems.

6.2 Design Tips for Flex Families

ORACLE

The data structure that you create for your flex family should offer flexibility and
convenience to the site visitors and content contributors who enter data into the
WebCenter Sites database. Here are some tips that can help you meet the site
visitors’ and content teams’ needs.

See these topics:

e Visitors on the Delivery System

e Users on the Management System

* How Many Attribute Types Should You Create?
* Designing Flex Attributes

* How Many Definition Types Should You Create?

* Designing Parent Definition and Flex Definition Assets

6-1

Chapter 6
Design Tips for Flex Families

6.2.1 Visitors on the Delivery System

The experience of the visitors to your online site is based on the following asset types:
* Flex asset
* Flex attribute

Your online site pages display flex assets (assetsets) for the visitors through queries
that are based on attribute values (searchstates). To give the appearance of hierarchy
on your online site, use attribute values as the basis for drill-down searches.

6.2.2 Users on the Management System

The users of your management system navigate through a visual hierarchical structure
that you create for them with the following flex asset types:

e Flex parent definition
* Flex definition
e Flex parent

Although the organizational structure that you create with these asset types does
affect the data, it determines which attribute values are inherited by which flex assets.
Its biggest impact is on the users of the management system.

You are not required to use flex parents and flex parent definitions, but their
inheritance properties make them a valuable tool for users who are maintaining a large
amount of data such as an online catalog:

« Changing an attribute value at the parent level changes that value for all the flex
assets who are children of that parent, which means you only have to change the
value once.

» Inherited attribute values aren't subject to user error, which means less data
cleanup is required.

The inheritance tree that you create for your content providers has no bearing on how
your site visitors navigate the online site you are designing. For example, if content is
entered into your management system through some completely automated process
(perhaps it is bulk loaded from an ERP system) you would have no need for parent
asset types at all, yet you can still create drill-down searches on your online site.

6.2.3 How Many Attribute Types Should You Create?

ORACLE

As described in Assetsets and Searchstates, only the flex assets that share a common
attribute type can belong to the same assetset because queries (searchstates) are
based on attributes and not on the organizational constructs of parent definitions and
flex definitions.

You might create a nicely delineated interface on the management system by
organizing you data to use separate types of attributes, but this data cannot be
synthesized well on the delivery system. As a general rule, you should create one type
of attribute for your system. Multiple versions of the rest of the family members (the
flex asset type, flex definition type, flex parent type, and flex parent definition type)
must still share the same pool of attributes. For example, in the avisports sample site,
the article asset type and the image asset type share the same attribute type.

6-2

Chapter 6
Design Tips for Flex Families

Therefore, you are able to create assetsets that contain an article and a corresponding
image for that article.

6.2.4 Designing Flex Attributes

Before you begin creating attributes, design them on paper. Determine all the
attributes you need and decide where they will appear, with flex assets or the flex
parents. Start by planning out the bottom level of your hierarchy (that is, the individual
instances of flex asset types like products) and determine the attributes you need for
each item at that level. For example, before creating flex filter assets, determine which
attributes must be created and assigned to the definitions as the input and output
attributes for your filters.

You must determine all of the flex attributes that you need beforehand because the
way you plan to use these attributes creates dependencies that you must account for
when you create them.

6.2.4.1 Which Data Types Are Available for Attributes

Assess the data types that are available for attributes and the default input types for
those data types. Determine which data types will work best for which attributes. To
change the default input style for an attribute, you create an attribute editor for it before
you create the attribute. See Designing Attribute Editors.

When you create a flex asset that uses an attribute of type blob, the format of the
value entered for the attribute on an Inspect form depends on its type. For example, a
text file shows the first 200 bytes in the file. An image file displays as a thumbnail
image. And some files cannot be displayed at all. In this case, WebCenter Sites
displays the message filename not displayable but the file location is still
successfully recorded.

6.2.4.2 About Using Attribute Editors

ORACLE

The default input type for an attribute depends on the data type that you select for it.
You can create an attribute editor instead of using the default input type.

Creating flex assets and their attribute editors is an iterative process. You can create
the attribute editors first or the attributes first and then go back and assign the attribute
editors. For information about process of creating attribute editors, see Designing
Attribute Editors.

About Attributes of Type Blob

The default input style of an attribute of type blob is a text field with a Browse button.
Click Browse to locate and select a file and WebCenter Sites uploads it to the default
storage directory. You cannot use the WebCenter Sites forms to edit the contents of
the file.

To be able to enter content directly into the external file through the WebCenter Sites
forms, you must assign an attribute editor to the attribute:

* For an attribute editor that uses the TEXTAREA input style, create a field that can
hold up to 2,000 characters (entered through the forms). When saved, that content
is written to the default storage directory.

* Inyour CKEditor, you can use a CKEDITOR field to edit the contents of the
external file that the attribute represents.

6-3

Chapter 6
Design Tips for Flex Families

About Attributes of Type Asset

The default input style for an attribute of type asset is a drop-down list of all the assets
of the type specified. An unfiltered drop-down list is not recommended for more than
20 assets of that type.

In general, whenever you create an attribute of type asset, you should assign it an
attribute editor.

e An attribute editor that uses the PICKASSET style checks to find out whether the tree
is toggled on or off in the WebCenter Sites interface. If the tree is on, the user can
select an asset from a tab in the tree. If the tree is toggled off, the attribute editor
displays a dialog that lists the assets from the Bookmarks and History tabs.

* Another option is to use the PULLDOWN style but to supply a query asset that limits
the options that appear in the list.

» For valid choices of assets that are small in number, use the CHECKBOXES or the
RADIOBUTTONS input style, both of which require a query asset to identify the assets.

6.2.4.3 Where Will Each Attribute Be Used?

After you have determined the list of attributes, determine whether you plan to use
them in a flex definition or a flex parent definition. Sort them logically by using the
following guidelines:

» An attribute whose value is unique to an individual flex asset (product, article,
image, for example) belongs at the bottom of the tree, with the flex asset.

* An attribute whose value is the same for multiple flex assets belongs in a parent.
Of course there are always exceptions. For example, a toaster that costs the same
amount as a bowling ball is unlikely to inherit its prices from a common parent.

* Based on that attribute distribution, you can determine how many flex definitions
you need and how many parent definitions you need.

Remember that there is both a physical limit (based on your DBMS) and a
psychological limit (user satisfaction) as to how many attributes you can or should use
in an individual flex asset or flex parent. Someone has to enter all those values. Be
sure to create and then assign to the definitions only those attributes that you really
plan to use. You can add more attributes when you need additional ones.

6.2.4.4 Attribute Dependencies Imposed by Hierarchy

After you know where an attribute will be used, you can determine whether
hierarchical concerns add requirements to the attribute. For example, an attribute used
by a flex parent must be configured to hold multiple values for data structure that
allows flex assets to have multiple parents, because a flex asset might inherit multiple
values for it. In general, try not to make the inheritance structure too complex.

6.2.5 How Many Definition Types Should You Create?

The appearance and input of data on the management system is based on the flex
asset definitions and the flex parent definitions. Parents and flex assets appear on
tabs in the tree based on the hierarchy that you create through the definitions.

ORACLE 6-4

Chapter 6
Design Tips for Flex Families

In general, it is best to create a separate set of definition types for each flex asset
member in a family. For example, in the avisports sample site, the article and image
flex assets share the same attribute asset type, but they have different parents, and
flex definitions. The definition for article assets contains only attributes that are
relevant to articles, whereas, the definition for image assets contains only attributes
that are relevant to image assets. Article and image assets that share the same
parents and definitions will have some attributes left blank in both types of assets
because some attributes won't apply to article assets and some to image assets.

6.2.6 Designing Parent Definition and Flex Definition Assets

The hierarchy on the tabs in the tree in the WebCenter Sites interfaces is created
through the flex parent definitions and flex definitions:

e To set a hierarchy three levels deep, you need at least two parent definitions and
at least one flex definition.

» To specify a hierarchy two levels deep, you need at least one parent definition and
at least one flex definition.

Be sure to consider the basic tenets of usability when you set up a structural hierarchy
with the flex definitions and flex parent definitions. For example:

e How deep can the hierarchy go before the content providers feel lost in the tree?

e How many attribute values can be inherited to alleviate the possibility of user error
during input?

e How many options can be comfortably displayed in a drop-down list?

The content providers won't like to use a complex system. Keep the following rules in
mind as you design the data structure with a flex family for your online site:

» Carefully planned, easy-to-use asset design (data design) makes content
providers happy.

* Usable layout and efficient code makes site visitors happy.

And both user groups need efficient systems that perform well.

6.2.6.1 Determining Hierarchical Place

ORACLE

You can log in to WebCenter Sites, access the avisports sample site, and examine the
form for a new content parent definition or for a new content definition.

In the Parent Definition section of these forms, you determine two things:

e The hierarchical position of the assets that use this definition.
e The parents that they can inherit attributes from.

Remember that although the hierarchical position has meaning only in the Oracle
WebCenter Sites: Contributor interface on the management system, the attributes that
they inherit have meaning both on the management system and on your online site.

The text box named Available lists all the existing parent definitions. You use this
section of the form to specify how many parents are possible, by selecting parent
definitions from the Available list and moving them to the Selected list.

When you create a parent asset or a flex asset, the New form displays a definition field
in which you specify a definition for the parent or flex asset. The definitions available

6-5

Chapter 6
Design Tips for Flex Families

for you to select are determined by the definitions you selected from the Available list
when you created the definition you are using to create the parent or flex asset.

Note:

By default, the available definitions for the parent or flex asset you are
creating are displayed in a drop-down list. However, when you create the
parent definition, you can specify whether this will be displayed as a drop-
down list, type ahead field, or drop zone (pick from tree) field.

The asset inherits the attribute values (if any) of the parent selected in the New form.
The more parent definitions you select from the Available list, the more fields the
content providers have to fill out when they create a new flex asset. Not selecting a
parent definition in the Available list positions the assets created with this definition at
the top level of the tree on the tab that displays your flex assets. The best way to
understand how parent definitions, flex definitions, parent assets, and flex assets
interact is to examine the assets delivered with the avisports sample site.

6.2.6.2 Determining Attribute Inheritance

You can configure attribute inheritance in the Attributes section of the parent
definition form. You use that section to specify the attributes that define the parents
that are created with this definition. When you create a parent with this definition, the
values entered for these attributes are passed down to the flex assets that are children
of the parent asset.

6.2.6.3 How Many Flex Parent Definition Assets?

Consider usability when you decide how many flex parent definition assets and how
many parent assets of those definitions that you need. For short drop-down lists in the
new parent and new flex asset form, create many parent definitions so that there are
fewer parents with each definition. However, to have a small number of parent
definitions and a large number of parents, create a tab that lists all the parents so the
content providers can select the correct parent asset from the tab.

6.2.6.4 How Many Flex Definition Assets?

Create enough flex definitions so that fields (attributes) are not left blank on the New
and Edit flex asset forms. Creating few definitions increases the form size with lots of
attribute fields, not all of which apply for each asset. When you have long forms with
lots of attribute fields, not only do content providers have to sort through the form to
determine which attributes apply to the asset they are currently creating, the form
takes a long time to be rendered in the user's browser.

ORACLE 6-6

Chapter 6
The Flex Family Maker Utility

6.3 The Flex Family Maker Utility

The Flex Family Maker utility creates flex families and their database tables. It writes
information to the database tables and creates directories in the ElementCatalog table
to which the utility copies elements.

» Creates several database tables (the number depends on which flex asset types
you create).

* Writes information about the new flex family to these tables:

FlexAssetTypes: Holds a row for each flex asset member type.

FlexGrpTmplITypes: Holds a row for each flex parent definition type.

FlexGrpTypes: Holds a row for each flex parent type.
— FlexTmplITypes: Holds a row for each flex definition type.

e Creates new directories in the ElementCatalog table using the following naming
convention:

OpenMarket/Xcelerate/AssetType/Nanef Your Asset Type

e Copies elements from the ElementCatalog table to the directories created for your
asset types. WebCenter Sites use these elements to format the New, Edit,
Inspect, Search, and Search Results forms for assets of that type.

For information about the main database tables for flex assets and flex parent assets,
see Flex Families and the Database.

6.4 Flex Asset Elements

The Flex Family Maker creates elements and SQL statements and stores them in
appropriate database tables.

The Flex Family Maker copies elements for the new flex asset type to OpenMarket/
Xcelerate/AssetType/NameOfAssetType in the ElementCatalog table. For example, the
avisports sample site article asset elements are in:

OpenMarket/Xcelerate/AssetType/AVIArticle

It also creates a SQL statement that the search elements use and places it in the
SystemSQL table under OpenMarket/Xcelerate/AssetType/NaneCf Asset Type.

For information on the elements and SQL statement that Flex Family Maker copies for
you, see Elements and SQL Statements for the Asset Type. The elements for flex
assets are the same as the elements for the basic assets with the exception of the
AppendSelectDetai IsSE element.

6.5 Setting Up Your Development System

Before you create a flex asset family, you need to set up your development system
and get access to it.

1. Create the appropriate WebCenter Sites sites.

ORACLE 6-7

Chapter 6
Creating a Flex Asset Family

Create a user name for yourself that has administrator rights, and enable that user
name on all of the sites on your development system.

Without administrator rights, you do not have access to the Admin node in the
General Admin tree, which means that you cannot perform some procedures in
this chapter.

Assign the Designer and GeneralAdmin roles to your user name so you will have
access to all the trees in the WebCenter Sites Admin interface and all of the
existing Start menu shortcuts for the assets in the sample site.

Be sure that the TableEditor ACL is assigned to your user name.

See Administering Oracle WebCenter Sites.

6.6 Creating a Flex Asset Family

For your flex asset data model you need to create flex asset types and individual data
structure assets of those types: flex attributes, flex parent definitions, flex definitions,
and flex parent assets.

These topics are presented in the order in which a new flex asset family should be
created. So, to create a flex family for the first time, follow the procedure in the
sequence given here:

Creating a Flex Family.
(Conditional) Creating Additional Flex Family Members.
(Conditional) Configuring the Flex Family Members.

Enabling the New Flex Asset Types on all the WebCenter Sites sites on the
development system and create start menu shortcuts for all the new asset types.

Create Flex Attributes and design your attribute editors. See Designing Attribute
Editors.

(Conditional) Creating Flex Filter Assets . See Creating Flex Filters.
Creating Parent Definition Assets.

Creating Flex Definition Assets.

Creating Flex Parent Assets.

Creating and Assigning Asset Type lcons (Contributor Interface Only) that will
represent the members of your flex family in search results lists that are displayed
in the Thumbnail view.

Coding Templates for the Flex Assets.

Testing Your Design (Creating Test Flex Assets) by creating enough flex assets to
examine the data structure that you have designed.

(Conditional) Creating Flex Asset Associations.

Moving Asset Types to Other Systems. See Administering Oracle WebCenter
Sites.

6.6.1 Creating a Flex Family

To create a new flex family:

ORACLE

6-8

ORACLE

Chapter 6
Creating a Flex Asset Family

Note:

WebCenter Sites is case-insensitive to the names of the flex assets
regardless of the underlying case-sensitivity of the database. If you create a
flex family with the name of an existing asset but different case, WebCenter
Sites adds the rest of the flex family under the existing asset type(s). For
example, if the following flex family already exists {Product_A, Product_PD,
Product_CD, Product P, Product _C}, and you try to create this flex family:
{PRODUCT_A, PRODUCT_PD, PRODUCT_CD, PRODUCT P, myProduct_C}, then
WebCenter Sites will use the existing asset types and create the following
flex family: {Product_A, Product PD, Product CD, Product P, myProduct C}.

In the General Admin tree, select the Admin node.

Expand Flex Family Maker and click Add New Family.

The Add New Flex Family form opens.

In the Add New Flex Family form, fill in the following fields to name the members
of the flex family:

a.

In the Flex Attribute field, enter the name of the new flex attribute asset type.

The name you enter in this field is the internal name of the new attribute asset
type. It becomes the name of the core table for this asset type and the prefix
for all its auxiliary tables.

Note:

There are three suffixes reserved for use. Flex attributes cannot
have a name end with _size, _type, or _file. For example,
broadformsize is an acceptable flex attribute name; broadform_size is
not.

In the Flex Parent Definition field, enter the name of the new flex parent
definition asset type.

The name you enter in this field is the internal name of the new parent
definition asset type. It becomes the name of the core table for this asset type
and the prefix for all its auxiliary tables.

In the Flex Definition field, enter the name of the new flex definition asset
type.

The name you enter in this field is the internal name of the new flex definition
asset type. It becomes the name of the core table for this asset type and the
prefix for all its auxiliary tables.

In the Flex Parent field, enter the name of the new flex parent asset type.

The name you enter in this field is the internal name of the new parent asset
type. It becomes the name of the core table for this asset type and the prefix
for all its auxiliary tables.

In the Flex Asset field, enter the name of the new flex asset type.

6-9

Chapter 6
Creating a Flex Asset Family

The name you enter in this field is the internal name of the new flex asset type.
It becomes the name of the core table for this asset type and the prefix for all
its auxiliary tables.

f. In the Flex Filter field, enter the name of the new flex filter asset type.

The name you enter in this field is the internal name of the new flex filter asset
type. It becomes the name of the core table for this asset type and the prefix
for all its auxiliary tables.

4. Click Continue.

The Add New Flex Family form opens. WebCenter Sites automatically populates
the Description and Plural Form fields.

Figure 6-1 Add New Flex Family Dialog

Add New Flex Family

Flex Attribute: [mage_aA
“Description: [mag._x_,i‘.,
"Plurzl Form: |Image_As
Flex Parent Definition: [mage_PD
"“Description: |Image_PD
*Plural Form: Image_PDs
Flex Definition: Image_FD
"Description: |Image_FD
"Plural Form: Image_FDs
Flex Parent: Image_P
"Description: |Image_P
*Plural Farm: Image_Ps
Flex Asset: Image_C
"Description: Image_C
*Plural Farrr: Image_Cs
Flex Filter: Image_F
"Description: |Image_F

*Plural Farr: Image_Fs
.

5. Inthe Add New Flex Family form, do the following:

a. To enter your own values into the Description field for each member of the
family, enter the external name of the asset type, that is, the name of the asset

ORACLE 6-10

Chapter 6
Creating a Flex Asset Family

type when it is displayed in WebCenter Sites. This is the name that displays
on the forms (New, Edit, Inspect, and so on).

b. To enter your own values into the Plural Form field for each member of the
family, enter the plural version of its name. This version is used in status
messages and so on when appropriate.

Click Add New Flex Family.
Flex Family Maker creates the database tables that will store assets of these

types.

It also copies elements that format the forms for assets of these types to a
directory with the name of the asset type in the ElementCatalog and SystemSQL
tables.

6.6.2 (Conditional) Creating Additional Flex Family Members

To create additional flex family members (for example, if you need multiple flex parent
asset types):

1.

5.

In the General Admin tree, expand the Admin node, and then expand the flex
family you just created.

Drill down the flex family tree until you reach the type of flex family member you
want to create (flex parent for example).

Under the type of flex family member you want to create, double-click Add New
Member Asset Type.

The New Member Asset Type form opens.

Figure 6-2 Flex Family Maker: New Parent Definition Asset Type Form

Flex Family Maker: New Parent Definition Asset Type

*Name:
*Description:
*Plural Form:

Flex Attribute: Attribute

In the form, fill out the required fields and click Save.
WebCenter Sites displays a message confirming that the asset type was created.

Repeat this procedure for each additional flex family member you want to create.

6.6.3 (Conditional) Configuring the Flex Family Members

When the Flex Family Maker creates the new flex family, it also creates an icon and
administrative forms for configuring the new flex family, located on the Admin tab.

ORACLE

6-11

5.
6.

Chapter 6
Creating a Flex Asset Family

In the General Admin tree, expand the Admin node, and then expand the Asset
Types icon.

Under Asset Types, select one of the asset types in your new flex family. To see
the asset types for your flex family in the list, right-click the navigation pane and
choose Refresh All from the context menu, and then select an asset type in your
new flex family.

Click Edit.
The Edit Asset Type form opens.
In the Edit Asset Type form, do the following:

a. Inthe Description field, change the value, if necessary. The text in this field is
the name that WebCenter Sites uses for this asset type on the forms and lists
in the WebCenter Sites interfaces. By default, Description is set to the value
you specified in the Add New Flex Family form for that asset type.

b. Inthe Plural Form field, change the value, if necessary. The text in this field is
the text that WebCenter Sites uses in the WebCenter Sites interfaces when it
is appropriate to refer to the asset type in the plural.

c. Inthe Can Be a Child Asset field, change the value, if necessary. To allow
the asset type to be the child asset type in an association field for another
asset, set the value to True.

d. Inthe Use Dimensions field, change the value if necessary. To enable this
asset type to support the creation of multilingual content, set the value to True.

Click Save.

Repeat steps 1 to 5 for each flex family member you want to configure.

6.6.4 Enabling the New Flex Asset Types

Before you start creating assets (attributes, flex parent definitions, and so on), you
must complete some steps on the Admin tab. Your login must grant you administrator
rights to access to the Admin tab.

To enable the new flex asset types:

1.

ORACLE

In the General Admin tree, expand the Admin node, and then click the Sites icon
and complete the following steps:

a. Expand the site that you are going to use to work with these asset type.
b. Under that site, select Asset Types and then Enable.
c. Select your new asset types from the list and click Enable Asset Types.

WebCenter Sites can automatically create a new start menu item or a search
start menu item (or both) for the asset types you are enabling.

d. Enable the option next to any available start menu item that you would like
WebCenter Sites to create, as shown in the following figure:

6-12

Chapter 6
Creating a Flex Asset Family

Figure 6-3 Start Menu Selection Dialog

Enable Asset Types: FirstSitell
Start Menu selection

Asset Type W Available Start Menus

ImageFile [Jcreate Seach start menu for ImagaFie

Clcreate Mew start menu for ImageFie

Generate these menu items now, or you or your site administrator must
manually create them later (no one can create assets of the enabled asset
types until start menu items are created for them).

Click Enable Asset Types.

The asset types are now enabled for the site(s). If you did not use WebCenter
Sites to generate start menu items, you or your site administrator must now
manually create them. As the developer of the asset types and the designer of the
online site, your responsibility is to let the administrator know enough about your
assets and site design that the site administrator can configure meaningful start
menu items.

You (the developers) must let the site and system administrators know which fields
are used by the queries, collections, or other design elements for your online site
so that they can create meaningful start menu items for the content providers.

Repeat steps 1 through 3 for each site on which you want to enable these asset
types.

After you or your administrator has created start menu items for your new asset types,
you can create assets of these types.

" Note:

You may have added your asset types to a tab in the tree. However, to
create assets of these types you must create start menu shortcuts for them.

6.6.5 Create Flex Attributes

The steps can differ significantly based on the data type that you select for your
attribute. Therefore, this section presents several procedures:

ORACLE

Creating Flex Attributes: Basic Procedure

Creating Flex Attributes of Type Blob (Upload Field)
Creating Flex Attributes of Type Asset

Creating Foreign Flex Attributes

6-13

Chapter 6
Creating a Flex Asset Family

6.6.5.1 Creating Flex Attributes: Basic Procedure

This example shows you the basic procedure for creating flex attributes.

ORACLE

1.

In the menu bar, click New, and then select the name of your attribute type from
the list of shortcuts. For example, New Product Attribute. To be able to select
assignees for the workflow associated with this asset, choose at least one user
from each role and click Set Assignees.

The Product Attribute form opens.

Figure 6-4 Product Attribute Form

Vv B

Product Attribute:

*Name:
Diescription:
*Attribute Type: - select an aftnbule lype = »
sNumber of Values: singla ¥
Attribute Editor: — salect an Atinbute Editor — »

In the form, fill in the following fields:
a. Inthe Name field, enter a name of up to 64 characters, excluding spaces.

b. Inthe Description field, enter a short, descriptive phrase that describes the
use or function of the attribute.

c. Inthe Value Type field, select a data type for this attribute:

e If you select blob, see Creating Flex Attributes of Type Blob (Upload
Field) and start with step 3.

» If you select asset, see Creating Flex Attributes of Type Asset.

e To create a foreign attribute, select a value other than asset or blob,
complete step d, and continue with step 3 in the Creating Foreign Flex
Attributes.

» If you select text: The Admin interface supports searches on attribute
values of all types except text.

For information about deciding which data type is appropriate for your
attribute, see Data Types for Attributes.

d. Inthe Number of Values field, select either single or multiple from the drop-
down list, as appropriate for the data type that you selected in the Value Type
field.

6-14

3.

Chapter 6
Creating a Flex Asset Family

To make this attribute available to a flex parent (if your data structure allows
multiple flex parents for a flex asset), select multiple because the flex assets
that inherit values for this attribute might inherit a value from multiple parents.

Note:

When an attribute is configured to accept multiple values, it displays
on the flex parent and flex asset forms as a field with an Add
Another Attribute Name button. To enable the attribute to accept
multiple values for inheritance reasons without allowing content
providers to select multiple values for the attribute for individual
parents or flex assets, assign the attribute an attribute editor that
presents it as a single-value field (but select multiple in the Value
Type field).

WebCenter Sites does not allow attributes of type text to have
multiple values, due to the way these attributes are stored in the
database. A message denoting this restriction displays if you attempt
to save an attribute configured in such a way.

To use any other input type than the default type for this attribute (which is
based on the data type that you selected in the Value Type field), in the
Attribute Editor field, select an attribute editor from the drop-down list.

Note:

If you select the CHECKBOXES attribute editor, ensure the Number of
Values field is set to multiple.

If you need more information about:

default input types (so you can determine whether you want to use an
attribute editor instead), see Default Input Styles for Attributes.

creating attribute editors, see Designing Attribute Editors.

which attribute editors are appropriate for the data type of this attribute,
see The Attribute Editor Asset.

To override the default ISO character set (ISO 8859-1), in the ISO Character
Set field, enter the one you want to use for this attribute.

Click Save.

6.6.5.2 Creating Flex Attributes of Type Blob (Upload Field)

This example shows you how to create a flex attribute of type Blob.

ORACLE

1.
2.
3.

Complete steps 1 through 2c in Creating Flex Attributes: Basic Procedure.
In the Value Type field, select blob.

(Optional) In the Folder field, enter a path to the directory that you want to store
the attribute values in. The value you enter in this field is appended to the value
set as the default storage directory (defdir) for the MungoBlobs table.

6-15

6.

Chapter 6
Creating a Flex Asset Family

In the Number of Values field, select single or multiple, as appropriate.

If you do not want to use the default input type (a Browse button), in the Attribute
Editor field and select one of the following:

* An attribute editor that specifies the TEXTAREA input style.

e If your system is configured to use CKEditor, an attribute editor that specifies
the CKEDITOR input style.

Click Save.

6.6.5.3 Creating Flex Attributes of Type Asset

To create an attribute of type asset:

1
2
3.
4
5

7.

Complete steps 1 through 22.b in Creating Flex Attributes: Basic Procedure.
In the Value Type field, select asset.

In the Asset Type field, select an option from the drop-down list.

In the Mirror Dependency Type field, select a dependency type.

In the Number of Values field, select either single or multiple from the drop-
down list, as appropriate for the data type that you selected in the Value Type
field.

If this attribute is to be used by a flex parent and your data structure allows flex
assets to have multiple flex parents, you must select multiple because the flex
assets who inherit values for this attribute might inherit a value from multiple
parents.

If the number of assets of the type you selected in the Number of Values field is
more than 20, select one in the Attribute Editor field. For information about
appropriate attribute editors, see About Using Attribute Editors.

Click Save.

6.6.5.4 Creating Foreign Flex Attributes

To keep data in another system (a price list, for example) that you also want to use for
your flex assets, create a foreign attribute that points to the column in the foreign table
whose data you want to use as a flex attribute.

ORACLE

To create a foreign attribute:

1.
2.

Register the foreign table that contains the data you want to use as a flex attribute.

Complete steps 1 to 2d in Creating Flex Attributes: Basic Procedure.

Note:
In the Value Type field, you cannot select either asset or blob.
If you plan to use WebCenter Sites flex asset forms to enter values for the attribute
into the foreign table and you do not want to use the default input type for the data

type that you selected in the Value Type field, in the Attribute Editor field, select
an appropriate attribute editor.

6-16

Chapter 6
Creating a Flex Asset Family

4. In the Editing Style field, do one of the following:

 To use WebCenter Sites forms to enter values into this attribute's fields for the
flex assets that use it, select local.

» If you do not want users to be able to write values to this table through
WebCenter Sites forms, select external.

5. Inthe Storage Style field, select external from the drop-down list.

6. In the External ID field, specify the name of the column that serves as the primary
key for the table that holds this foreign attribute, that is, the column that uniquely
identifies the attribute.

7. In the External Table field, enter the name of the table that stores this attribute.

8. In the External Column field, enter the name of the column in the table specified
in the External Table that holds the values for this attribute.

9. Click Save.

6.6.6 (Conditional) Creating Flex Filter Assets

ORACLE

Create a flex filter asset whose functionality is defined by one of the default
WebCenter Sites filter classes.

Before you can create flex filter assets, the flex attributes that you plan to use as the
input and output attributes must be created. Create the appropriate flex attributes if
they don't exist yet. Note the following requirements:

e For flex filters that use the Document Transformation filter type, the input and
output attributes must be of type blob.

* For any flex filter, the input attribute, output attribute, and flex filter asset must all
belong to the same flex family.

For more information about flex filter classes, and detailed instructions on creating flex
filter assets, see Creating Flex Filters.

To create a flex filter asset:

1. Inthe menu bar, click New.

2. Inthe list of asset types, select the type of filter you want to create. For example,
New Media Filter. To be able to select assignees for the workflow associated with
this asset, choose at least one user from each role and click Set Assignees.

The Media Filter form opens.

6-17

Chapter 6
Creating a Flex Asset Family

Figure 6-5 Media Filter Dialog

Media Filter
*Name: FSII_CustomFlesFiter
Description: CustormMediaFlesxFilter
*Filter: CustomFilter A
Arguments: Marne:
Dutput custom string v “
FSI_CustomOutput »

3. In the New form, do the following:
e In the Name field, enter a unique name for this filter asset.

e In the Description field, enter a brief description summarizing the filter's
function.
e Inthe Filters field, select the filter class that will define the functionality of the

flex filter asset you are creating. By default, the filter options are Doc-Type,
Document Transformation, FieldCopier, and ThumbnailCreator.

Note:

Custom filter classes that may have been created for your system
appear in this list. For information on creating a custom flex filter
class, see Defining a Flex Filter Class and Creating a Flex Filter
Asset.

» Click Get Arguments. In the Arguments field, specify the input and output
arguments for the flex filter asset. Click Add to add the arguments to the filter.

4. Click Save.

6.6.7 Creating Parent Definition Assets

To create a parent definition asset:

1. Inthe menu bar, click New.

2. Select the name of your product definition asset from the list of shortcuts. For
example, New Product Parent Definition. To be able to select assignees for the
workflow associated with this asset, choose at least one user from each role and

click Set Assignees.

The Product Parent Definition form opens.

ORACLE 6-18

Chapter 6
Creating a Flex Asset Family

Figure 6-6 Product Parent Definition Dialog

v H

Product Parent Definition

*Name:
Description:
Parent Select Style: Select Boxes v

Available Selected

Single Value:
Product Parent Definitions: FSliCategony: o

FSliManufacturer
FSlIProductTopLevel
FSlSubcategory Dptional

Display Crder:

Multiple Value:
Required

Optional

Awvailable Selected

Attributes: FEllCategoryDescription (M)
FSliCategonMame ()
FSlllmage (S) —
Fllkeyward () . Display Crder:
FSliLangDescription (5) Optional !
F3liManufacturerDescription (3)
FSlikanufacturerLogo (S)

FSliManufacturerNarme (S)
FElIPrice ()

FSliProductName (5)

FSlIProductShonDescription (S)

FSISKU (5)

< ¥

Available Selected
Filters: FSIl CategoryFieldCopier
FSIl ManufacturerFieldCaopier
FSll ProductFieldCopier

FSIl SubcategorFieldCopier Disslay Order:

3. In the Product Parent Definition form, fill in the fields as follows:
a. For Name, enter a name of up to 64 characters.

b. For Description, enter a short descriptive phrase that describes the parent
definition.

c. For Parent Select Style, determine how flex parents that use this definition
will be selected on the parent asset forms. Do one of the following:

« If the number of parents of this type will be small, choose Select Boxes.
Then, all the parents of this type will be displayed as options in a drop-
down list on the flex asset forms.

ORACLE 6-19

Chapter 6
Creating a Flex Asset Family

* If the number of parents of this type will be large, choose Pick From Tree.
Then, when you select a parent of this type on the flex asset form, you
select it from the tree on the tab that displays your catalog data.

d. Inthe Product Parent Definitions section, select a parent definition from the
Available list and then click one of the buttons described in the following table:

Table 6-1 Buttons in Parent Definition Form

Button in parent definition Creates a field in the New parent form that does the

form following:

Single Value: Required Forces you to select one parent for the field.

Single Value: Optional Lets you select only one parent for the field.

Multiple Value: Required Forces you to select at least one parent asset for the
field.

Multiple Value: Optional Lets you select multiple parent assets for the field.

WebCenter Sites moves the parent definition from the Available list to the
Selected list.

e. Repeat step 3.d as many times as necessary. Remember that the
corresponding New parent form will include a field for each item that you
select in the Available list on this parent definition form.

f. In the Attributes section, select the appropriate attributes from the Available
list, and then do one of the following:

» Click Required to specify that the attribute is required, that is, all flex
parents created with this definition must have a value for this attribute.

» Click Optional to specify that the attribute is optional.

Note:

To assign a flex filter asset to this parent definition in the future, you
must include the input and output attributes that the flex filter uses.

To order the attributes as you want them to appear on the parent form for
parents of this type, use the Display Order arrows to the right of the Selected
box.

g. Inthe Filters section, select any flex filter assets that are appropriate for this
parent definition.

4. Click Save.

5. Repeat this procedure for each parent definition asset that you have to create.

6.6.8 Creating Flex Definition Assets

To create a flex definition asset:

1. Inthe menu bar, click New.

ORACLE 6-20

Chapter 6
Creating a Flex Asset Family

2. Select the name of your flex definition asset type from the list of shortcuts. For
example, New Product Definition. To be able to select assignees for the
workflow associated with this asset, choose at least one user from each role and
click Set Assignees.

The Product Definition form opens.
3. In the Product Definition form, fill in the fields as follows:
a. Inthe Name field, enter a name of up to 64 characters.

b. Inthe Description field, enter a short, descriptive phrase that describes the
parent definition.

c. Inthe Product Parent Definitions section, select a parent definition from the
Available list and then click one of the buttons described in the following table:

Table 6-2 Buttons in Flex Definition Form

Button in flex Creates a field in the New flex asset form that does the
definition form following:

Single Value: Required Forces you to select only one parent in the field.

Single Value: Optional Lets you select only one parent in the field.

Multiple Value: Forces you to select at least one parent asset in the field.
Required

Multiple Value: Optional Lets you select multiple parent assets in the field.

WebCenter Sites moves the parent definition from the Available list to the
Selected list. For information about selecting parent definitions, see
Determining Hierarchical Place.

d. Repeat the previous step as many times as is necessary. Remember that the
corresponding New Flex Asset form will include a field for each item that you
select in the Available list on this flex definition form.

e. Inthe Attributes section, select attributes from the Available list, and then do
one of the following:

» Click Required to specify that the attribute is required; that is, that all flex
assets created with this definition must have a value for this attribute.

» Click Optional to specify that the attribute is optional.

Note:

To assign a flex filter asset to this flex definition in the future, you
must include the input and output attributes that the flex filter uses.

To order the attributes as you want them to appear on the New and Edit forms
for flex assets created with this definition, use the Display Order arrows to the
right of the Selected box.

f. In the Filters section, select any flex filter assets that are appropriate for this
flex definition.

4. Click Save.

ORACLE 6-21

Chapter 6
Creating a Flex Asset Family

5. Repeat this procedure for each flex definition that you have to create.

6.6.9 Creating Flex Parent Assets

To create flex parent assets:
1. Log into WebCenter Sites as an administrator and select the Contributor
interface.

2. Inthe menu bar, select Content, then New, and then the type of flex parent asset
you want to create.

A tab opens displaying the Create view of the flex parent asset you want to create.

Figure 6-7 Product Parent Dialog

Product Parent

MNane:

*Product Parent Definition: -- choose a definition -

3. Inthe Product Parent form, fill in the fields as follows:
a. Inthe Name field, enter a name of up to 64 characters.

b. Inthe Product Parent Definition field, select a parent definition from the
drop-down list. The definition you select formats the next sections of the form
(the sections you fill out to define this parent asset).

c. Click Continue.

The Content section of the form opens.

ORACLE 6-22

Chapter 6
Creating a Flex Asset Family

Figure 6-8 Content Section

Content Marketing Metadata

Category: New (Category)

*Name: =
Template: -- chioose display style
Keyword:

*FSIIProductTopLevel:

4. In the Content section of the form, fill in the fields keeping in mind the following:
* An asterisk (*) next to the field indicates that the field is required.

* Inthis example, the field in which you designate a parent asset is called
FSI1IProductTopLevel. The parent that you drag and drop into this field becomes
the grandparent of any flex assets you designate as children of the parent you
are creating in this procedure. If this field is not required, and you do not select
any parents (grandparents), the parent you are creating will be a top-level
parent in the Content tree.

* To determine whether the field is single or multi-valued, point to the drop zone
associated with the field. A tooltip is displayed showing the type of assets this
field accepts along with information about whether the field is single or multi-
valued.

5. Use the form section selector to switch to the next sections of the form (Marketing
and Metadata sections). An asterisk (*) next to the field indicates that it is a
required field.

The fields displayed in these sections are based on the parent definition you chose
for this parent. The values that you enter into these fields are inherited by any flex
assets that have this parent asset as their parents.

6. Inthe asset's toolbar, click the Save icon.

WebCenter Sites writes the new parent to the database. All the information other
than the attribute values are written to the FlexParent, FlexParent _AMap, and
FlexParent_Extension tables, where FlexParent represents the internal name of
your flex parents. The attribute values are written to the FlexParent _Mungo table.

ORACLE 6-23

Chapter 6
Creating a Flex Asset Family

6.6.10 Creating and Assigning Asset Type Icons (Contributor Interface

Only)

When a user performs a search in the Contributor interface and displays the results of
the search in the Thumbnail view, each asset in the search results list is represented
by a thumbnail image. By default, the name, asset type, modification date, and locale
of the assets in the search results list are displayed below the thumbnail image
representing the asset or the asset's type. Images can either be assigned per asset or
per asset type. The focus of this section is to assign a thumbnail image for each asset

type.

You must create and assign images that uniquely identify the members of your new
flex family.

1. For each flex family member, do the following:

a. Create two image files of type JPG, one to be displayed in the docked search
results list, and the other to be displayed in the undocked search results list.
The standard size of the image that will be displayed in the docked search
results list is 96x96 pixels. The standard size of the image that will be
displayed in the undocked search results list is 170x170 pixels.

b. Name the image files as follows:

e To name the image that will be displayed for the asset type in the docked
search results list, use the syntax asset Type. jpg.

* To name the image that will be displayed for the asset type in the
undocked search results list, use the syntax asset Type_large.jpg.

< Note:

You must save the images as JPGs. The file name determines the
asset type for which the icon will be displayed. The name is case-
sensitive.

c. Place the image files in the appropriate directory:
<cs_app_dir>/images/search

where <cs_app_dir> is the directory of the deployed WebCenter Sites
application on your application server.

2. Restart your application server for the icons to appear in the Thumbnail view of the
search results list in the Contributor interface.

6.6.11 Coding Templates for the Flex Assets

ORACLE

Creating your flex asset definitions and coding the templates for the flex assets that
use those definitions is an iterative process. Although you have to create definitions
and flex assets before you can create templates for your flex assets, it is likely that you
will discover areas that need refinement in your data design only after you have coded
a template and tested the code.

6-24

Chapter 6
Creating a Flex Asset Family

For information about coding elements for your templates, see Creating Template,
CSElement, and SiteEntry Assets and Coding Elements for Templates and
CSElements.

6.6.12 Testing Your Design (Creating Test Flex Assets)

To thoroughly test your design, you must examine where flex assets appear on the
tree, what their forms look like, how long it takes to load their forms, and so on. Create
some flex assets and examine them.

For information about creating assets, see Using Oracle WebCenter Sites.

6.6.13 (Conditional) Creating Flex Asset Associations

In most cases, you should use a flex asset's attributes to form associations. In the rare
case that your associations must work across flex definitions, create associations
between flex assets.

To create associations:

1. Inthe General Admin tree, expand the Admin node, and then expand the Asset
Types node.

2. Expand the node for the asset type you want to create an association for.
3. Expand the node for Asset Associations.
4. Click Add New.

The Add New Association form opens.

ORACLE 6-25

6.6.14 Moving Asset Types to Other Systems

ORACLE

Figure 6-9 Add New Association Dialog

Chapter 6

Creating a Flex Asset Family

Add New Association

Assel Type:

*hame:

*Description:

Child Asset:

Content Subtypes:

Mirror Dependency Type:

Type of Assoclation:

Content

punciuation.)

Ary
F3Il Article

{Wame cannat contan spaces of

(® Exists - Any approved version of the asspoiated asset i acoeptable for

publish of Contert.

O Exact version - Any change to the associated assst will requine aoproval

for publish of Content.

® Single vaued - only ona value diowed per asset.
O Multivalued - multipla values allowed per asset.

m Add New Aivocialion

In the Add New Association form, fill in the fields as follows:

* In the Name field, enter a name for the association.

* Inthe Description field, enter a description of the association.

* Inthe Child Asset field, select a child asset to associate with this asset.

* Inthe Subtypes field, select one or more subtypes for this association.

* Inthe Mirror Dependency Type field, select a dependency type for the
associated flex asset.

* Inthe Type of Association field, select one of the following:

— Single valued - only one value allowed per asset.

— Multivalued - multiple values allowed per asset.

6. Click Add New Association to associate the flex asset types.

After you finish creating your flex family, creating the data structure assets (including
attribute editors), and coding templates for the flex asset type, system administrators
can configure the asset types for the management system. They enable revision

tracking where appropriate, create workflow processes, create start menu shortcuts,

and so on.

6-26

Chapter 6
What You May Need to Know About Editing Flex Attributes, Parents, and Definitions

Move your flex family, data structure assets, and coding templates to the management
and delivery systems so system administrators can configure them. For information
about moving your asset types to the management and delivery systems, see
Administering Oracle WebCenter Sites.

6.7 What You May Need to Know About Editing Flex
Attributes, Parents, and Definitions

Some editing tips that you can use when editing flex asset types to prevent schema
changes that lead to data loss.

See these topics:

What You May Need to Know About Editing Attributes
What You May Need to Know About Editing Parent Definitions and Flex Definitions
What You May Need to Know About Editing Parents and Flex Assets

6.7.1 What You May Need to Know About Editing Attributes

Note the following when editing a flex attribute:

You can change the Name without causing a schema change. However, to import
flex assets into your WebCenter Sites database using XMLPost, you must edit
your XMLPost files if you change the name of an attribute.

You can change the Description without causing data loss.

If you change the data type in the Value Type field, you lose all data associated
with the attribute in the _Mungo table(s) that use this attribute type.

If the attribute's data type is asset and you change the asset type, all existing data
for the attribute is invalid.

If you change the Folder field for a blob attribute, WebCenter Sites will no longer
be able to find any existing data for that attribute. If you must change this value,
move the file system to match the new value that you set.

You can change the Number of Values from single to multiple without causing
data loss or complications.

If you change the Number of Values from multiple to single, WebCenter Sites
cannot determine which of the values in any existing rows are the values to keep.

You can change the Search Engine and ISO Character Set without causing data
loss.

6.7.2 What You May Need to Know About Editing Parent Definitions
and Flex Definitions

Note the following when editing a parent definition or a flex definition:

ORACLE

You can change the Name without causing a schema change. However, to import
flex assets into your WebCenter Sites database using XMLPost, you must edit
your XMLPost files if you change the name of a parent definition.

6-27

Chapter 6
Using Product Sets

You can change the Description and the Parent Select Style fields without
causing data loss.

If you change the parent selections:
— Adding parents is allowed.
— Removing parents can cause assets to no longer have valid data.

— Changing parents from optional to required can cause problems because
parents or flex assets who do not have one of the newly required parents are
no longer valid.

— Changing parents from required to optional is allowed.
— Changing parents from single value to multiple value is allowed.

— Changing parents from multiple value to single value causes unpredictable
results because WebCenter Sites cannot determine which of the previously
acceptable multiple values is the one to keep and which ones to remove.

If you change the attribute selections:
— Adding optional attributes is allowed.

— Adding required attributes causes existing parents or flex assets without them
to be invalid.

— Removing attributes causes existing parents or flex assets with such an
attribute value to be invalid.

6.7.3 What You May Need to Know About Editing Parents and Flex

Assets

6.8 Using

ORACLE

Note the following when editing a flex or parent asset:

You can change the Name without causing a schema change. However, to import
flex assets into your WebCenter Sites database using XMLPost, you must edit
your XMLPost files if you change the name of a parent definition.

You can change the Description without causing data loss.
If you change parents, WebCenter Sites corrects all the inherited attribute values.
You cannot change the definition that you used to create the parent or flex asset.

Changing the value of an attribute is allowed. If you change the value of an
attribute for a parent, WebCenter Sites corrects that attribute for all the assets that
inherited it from this parent. Changing the attribute value for a flex asset is
allowed.

Product Sets

When you’re managing an online catalog with WebCenter Sites, using the product set
feature with product assets can help you group products that are identical but are
packaged and sold differently.

See these topics:

About Using Product Sets
Creating a Product Set

6-28

Chapter 6
Using Product Sets

6.8.1 About Using Product Sets

A book is the same book whether it is the paperback version or the hard-cover version.
And a soft drink is the same soft drink whether it is sold in individual cans, as a six-
pack, in a 2-liter bottle, or a case. Product sets allow you to group products like these
together so that they can be displayed together (in the same form) on the
management system, yet remain individual saleable units, identified as such by their
SKUs.

The model for the product set feature is as follows:

e The product set is a product parent that takes on the characteristics of a product
asset. The product set (parent) has all of the attributes that define the core
product.

e The product assets are SKUs. That is, they have only those attributes that
describe the packaging or are the unique identifiers for members of the set: the
SKU, the bottle size, and so on.

e The product set (parent) has an attribute that marks it as a product set and the
value of this attribute is unique among all the product sets. This attribute is called
GAProductSet and is a reserved name. The products in the set inherit this attribute
and, by this inheritance, are marked as members of that product set (that is,
children of that product parent).

6.8.2 Creating a Product Set

To create a product set:

1. Create a product attribute named GAProductSet. This is a reserved name and your
attribute name must match it exactly.

2. Create a new product parent definition and select the GAProductSet attribute.

3. Create a new product definition and designate that the parents created with the
definition that you created in step 2 can be parents of products created with this
product definition.

4. Create a new product parent from the definition you created in step 2.

5. Using the product definition that you created in step 3, create the products in the
set and designate that the parent that you created in step 4 is their product parent.

Now, when you inspect or edit the product set (product parent), each product (SKU) in
the set is listed on the Product Parent form, presenting a representation of the product
set relationship.

There can be only one GAProductSet attribute in the WebCenter Sites database. To
create product sets in multiple WebCenter Sites sites, you must share the GAProductSet
attribute to the sites that you want to use it in.

ORACLE 6-29

Creating a Hierarchical Flex Family

Creating a flex family with a multi-level hierarchy and single-valued definitions will give
you a basic understanding of the flex asset model in WebCenter Sites. On completing
these steps, you'll also have a model that you might want to use to create similar
hierarchies.

Topics:

* Hierarchical Organization

* Flex Family Specifications

* Creating a Sample Flex Family Using a Real-World Example

Hierarchical Organization and Flex Family Specifications describe the flex family that
you will create. Creating a Sample Flex Family Using a Real-World Example is a
tutorial, where you create a small flex family with generic names for its family
members.

7.1 Hierarchical Organization

You're going to create a flex family with three levels: a top-level parent, a second level
parent, and assets.

* Atop-level parent (named Parent 1 [Level 1] in our example).
* A second-level parent (named Parent 2 [Level 2] in our example).

* Assets, at the third level. One asset is placed directly under its level 1 parent;
another asset is placed directly under its level 2 parent; the third asset is placed
under both the level 1 parent and the level 2 parent.

In the WebCenter Sites interface, the hierarchy looks exactly as shown in the left side
of the following figure. The representation is formulaic. The right side of this graphic
shows how it translates to a real-world model, represented by the avisports sample
site.

Figure 7-1 Formulaic Data Model vs. Real World Data Model

Level 1 =) & Parent 1 [Level1] Type of Product -]) Outdoor Sports Equipment
Level 2 F) & Parent 2 [Level 2] Subtype =) & Mountain Climbing
) Asset? — Productasset 2———— . &J High Altitude Gear
o Asset 12 ——— Product asset_12——— W Special Orders
) Asset 1 ————Product asset 1——————) Our Awesome Catalog
o Asset_12 7Produ-3tasset_124;— o Special Orders

ORACLE

On the sample site (Right side of the above figure):

7-1

Chapter 7

Flex Family Specifications

e Parent 1 [Level 1] is named Outdoor Sports Equipment.

e Parent 2 [Level 2] is named Mountain Climbing, a subtype of Outdoor Sports

Equipment.

» Asset 1is named Our Awesome Catalog, an asset of the type Outdoor Sports

Equipment.

» Asset 12 is named Special Offers. It displays under both Outdoor Sports
Equipment and Mountain Climbing.

7.2 Flex Family Specifications

Flex family members that you’ll create in your flex family.

The following table lists the flex family members that you will create:

Table 7-1 Flex Family Members

Flex Family Name Instances Based on Based on Flex
Member Parent Definition
Definition
Flex Attribute My Attribute Attribute_11 n/a n/a
Type Attribute_2
Flex Parent My Parent Level 1 Def n/a n/a
Definition Type Definition Level 2 Def Level 1 Def
Flex Definition My Flex Definition Flex Def 1 Level 1 Def n/a
Type Flex Def 2 Level 2 Def
Flex Def 12 Level 1 Def and
Level 2 Def
Flex Parent Type My Parent Parent 1 [Level 1] Level 1 Def n/a
Parent 2 [Level 2] Level 2 Def
Flex Asset Type My Asset Asset 1 n/a Flex Def 1
Asset 2 Flex Def 1
Asset_12 Flex Def_12
Flex Filter Type n/a n/a n/a n/a

1 Suffixes 1, 2 and _12 refer to levels of the hierarchy (_12 denotes both levels 1 and 2). For example,
Asset 1 denotes an asset that is placed under level 1. Asset_12 denotes an asset that is placed under

both levels 1 and 2.

7.3 Creating a Sample Flex Family Using a Real-World

Example

ORACLE

You'll create a small flex family whose family members you’ll give generic names. This

approach will help you visualize the formula for building hierarchies.

At the end of this tutorial, you will change the names of selected family members to

real-world names to understand how a formulaic data model translates to a business-
related data model. You will also add more parents and assets to the hierarchy, giving
them real-world hames as you create them.

7-2

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

This section includes the following topics:

Creating a Flex Family

Enabling the New Flex Asset Types

Adding a Flex Family Tab to the WebCenter Sites Tree

Creating Parent Definition Assets

Creating Flex Parent Assets

Creating Flex Definition Assets

Creating Flex Assets

Translating the Formulaic Data Model into a Real-World Data Model

Developing Your Real-World Model

7.3.1 Creating a Flex Family

In this step, you create a flex family by naming its required members.

ORACLE

To create the flex family:

1.
2.

Launch the Admin interface.

In the General Admin tree, expand the Admin node, then expand Flex Family
Maker, and then double-click Add New Family.

In the Flex Family Maker form, fill in the fields exactly as shown in the following
table:

Table 7-2 Flex Family Maker Form

|
Field Name Enter Comments

Flex Attribute MyAttribute In this step, name the database
tables that WebCenter Sites
creates for the flex family. The
names must not contain spaces.

Flex Parent Definition MyParentDefinition n/a
Flex Definition MyFlexDefinition n/a
Flex Parent MyParent n/a
Flex Asset MyAsset n/a
Flex Filter n/a n/a

Click Continue.
In the next form, fill in the fields for each new member of the family as follows:

a. Inthe Description field, enter the same name as in step 3, but separate the
words in the name with spaces.

The name that you enter is used throughout the WebCenter Sites interface to
identify the asset type.

b. Inthe Plural field, enter the plural form of the name used in the preceding
step.

c. Click Add New Flex Family.

7-3

6.

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Wait for WebCenter Sites to create the flex family and return the message
indicating that the flex family members (asset types) were successfully installed.

7.3.2 Enabling the New Flex Asset Types

In this step, you enable the flex family members for the avisports sample site. You also
create start menu items for the members, so that you can create and search for their
instances in subsequent steps.

To enable the new flex asset types:

1.

In the General Admin tree, expand the Admin node, and then expand the Sites
node and complete the following steps:

a. Expand avisports (the sample site where the flex family is enabled), or a site
of your choice.

b. Under that site, expand Asset Types and double-click Enable.

i. From the list, select the asset types that you just created (MyAsset,
MyAttribute, MyFlexDefinition, MyParent, MyParentDefinition).

ii. Click Enable Asset Types.
c. Inthe Enable Asset Types form;

i. Ensure all Start Menu options are selected (so that, later, you can create
and search for instances of the family members.)

ii. Click Enable Asset Types.

Wait for WebCenter Sites to display the message indicating that the asset types
have been enabled for the site.

7.3.3 Adding a Flex Family Tab to the WebCenter Sites Tree

In this step, you add a tab that tracks the creation of your flex family. You set up this
tab to display selected members of the flex family as you finish creating them.

ORACLE

To add the tree tab:

1.

In the General Admin tree, expand the Admin node, and then double-click the
Tree node.

In the Tree Tabs form, scroll to the bottom and click Add New Tree Tab.

In the Add New Tree Tab form, fill in the fields as in the following table:

Table 7-3 Add New Tree Tab Form
|

Field Name Enter or Select Comments

Title Sample Flex Family Name of the tab.

Tooltip Sample Flex Family Description of the tab.

Sites avisports (or the site you chose Site on which to enable the flex
in Enabling the New Flex Asset family.
Types)

Required Roles Any n/a

7-4

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Table 7-3 (Cont.) Add New Tree Tab Form
]

Field Name Enter or Select Comments
Tab Contents My Parent Definition n/a

My Parent

My Flex Definition

My Asset

Note: Click Add Selected Items
and use the Display Order
arrow to arrange the members in
this order.

4. Click Save.
5. Refresh the page.

6. Click the Sample Flex Family tab and make sure its contents are identical to the
following figure:

Figure 7-2 Sample Flex Family Tab

Bookmarks Dev
Site Admin Workflow
Site Plan Admin

Sample Flex Famihy

o bty Parent Definition
o iy Flex Definition

7.3.4 Creating Parent Definition Assets

In this step, you create two parent definitions. The first parent definition establishes the
top level of the hierarchy, and the second parent definition establishes the second
level.

To create the first parent definition asset:

1. Inthe menu bar, click New.

2. From the list of options that display, select New My Parent Definition.
3. Inthe next form:

a. Fillin the fields as in the table.

Table 7-4 New My Parent Definition Form
|

Field Name Enter or Select Comments

Name Level 1 Def This is our name for the definition of
the first level of the hierarchy.

Description Level 1 Def N/A

Parent Select Style Select Box N/A

ORACLE 7.5

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Table 7-4 (Cont.) New My Parent Definition Form

|
Field Name Enter or Select Comments

My Parent Definitions n/a No parent definitions are selected (or
available) in this field. Therefore, this
parent definition establishes the first
level of the hierarchy.

b. Click the Save icon.

To create the second parent definition asset:

1. Inthe menu bar, click New.
2. From the list of options that display, select New My Parent Definition.
3. Inthe next form:

a. Fillin the fields as in the table.

Table 7-5 New My Parent Definition Form
|

Field Name Enter or Select Comments
Name Level 2 Def This is our name for the definition
of the second level of the
hierarchy.
Description Level 2 Def N/A
Parent Select Select Box N/A
Style
My Parent Level 1 Def Choosing Level 1 Def
Definitions Note: Under Single Value, click subordinates the current parent
the Required arrow to move your definition to Level 1 Def.
selection to the Selected list. Chaining definitions in this

manner establishes Level 2 Def
as the second level.

When parents are created and
based on the current parent
definition (Level 2 Def), they are
subordinated to parents that are
based on Level 1 Def.

b. Click the Save icon.
4. Refresh the page.

5. Click the Sample Flex Family tab and expand its contents to make sure they are
identical to this figure:

ORACLE 7-6

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Figure 7-3 Sample Flex Family Tab with Parent Definition

Bookmarks Dev
Site Admin Workflow
Site Plan Admin

Sample Flex Famihy

(=1 My Parent Definition
o Lewvel1 Def
o Lewvel 2 Def
. My Flex Definition

7.3.5 Creating Flex Parent Assets

In this step, you create two flex parent assets, and base them on the flex parent
definitions that you created in the previous step. The first parent asset occupies the
top level of the hierarchy. The second parent asset occupies the second level of the
hierarchy.

To create the top-level parent of the hierarchy:

1. Switch to the Oracle WebCenter Sites: Contributor interface by clicking the
Contributor icon on the top.

2. From the Content menu, choose New, then New My Parent.

3. In the form that opens, fill in the fields as in the table.

Table 7-6 New My Parent Form
|

Field Name Enter or Select Comments
Name Parent 1 [Level This is our name for a level 1 parent in the hierarchy
1] (a generic name simply to help you identify the level).

Note: At the end of this tutorial, you will change the
name to a business-specific name (Outdoor Sports
Equipment, in our example, which describes the
inventory of a company dealing with sports gear.)

My Parent Level 1 Def Choosing Level 1 Def places the parent you are
Definition creating at the top level of the hierarchy.

4. On top of the form, click the Save icon.

To create the second-level parent of the hierarchy:

1. From the Content menu, choose New, then New My Parent.

2. In the form that opens, fill in the fields as in the table.

ORACLE 7.7

ORACLE

Chapter 7

Creating a Sample Flex Family Using a Real-World Example

Table 7-7 New My Parent Form

Field Name Enter or Select

Comments

Name Parent 2 [Level 2]

This is our name for a level 2 parent in the
hierarchy (a generic name to help you
identify the level).

Note: At the end of this tutorial, you will
change the name to a business-specific
name, Mountain Climbing in our example
(an appropriate name given that

Parent 1 [Level 1] is Sports Equipment).

My Parent Level 2 Def
Definition

Selecting Level 2 Def places the parent you
are creating at the second level of the
hierarchy.

Level 1 Def Parent 1 [Level 1] is
selected by default.

N/A

Click the Save icon.

On the Content Tree, expand Sample Flex Family to make sure its contents are

identical to the figure.

Figure 7-4 Sample Flex Family Tab Expanded on the Content Tree

= kg Sample Flex Famiby

=) & My Parent Definition
i & Level 1 Def

L. @ Level 2 Def

f.) Parent2 [Level 2]

i @ Wy Flex Definition

Note:

Before going to the next step, review the following figure that
summarizes how the objects that you created, parent definitions and
parents based on the definitions, relate to each other.

7-8

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Figure 7-5 Parents and Parent Definitions

=] ,; Zample Flex Famify
) & My Parent Definition
P QD Level 1 Def
: o Level 2 Def
SR TR ()

o Parent 2 [Level 2]

o My Flex Definition

7.3.6 Creating Flex Definition Assets

In this step, you create three flex definition assets:

The first flex definition asset is used to place assets under Parent 1 [Level 1].
The second flex definition asset is used to place assets under Parent 2 [Level 2].

The third flex definition asset is used to place the asset under both levels of the
hierarchy.

To create the first flex definition asset:

1.

5.

Switch to the Admin interface by clicking the Admin icon, located in the
applications bar.

In the menu bar, click New.
From the list of options that display, select New My Flex Definition.

In the form that opens, fill in the fields as in the table.

Table 7-8 New My Flex Definition Form
]

Field Name Enter or Select Comments

Name Flex Def 1 N/A

My Parent Level 1 Def Choosing Level 1 Def and Single Value
Definitions Note: Under Single means that when you use the current flex

definition to create flex assets, the assets
can be placed under only one parent that
use Level 1 Def as its parent definition. In
our example, the asset is placed under
Parent 1 [Level 1].

Note: Selecting a Multiple Values option
allows you to place the asset under any and
all parents that use Level 1 Def as their
parent definition.

Value, click the Required
arrow.

Click the Save icon.

To create the second flex definition asset:

1.
2.

ORACLE

From the button bar, click New.

From the list of options that display, select New My Flex Definition.

7-9

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

3. Inthe form that opens, fill in the fields as in the table.

Table 7-9 New My Flex Definition Form
]

Field Name Enter or Select Comments

Name Flex Def 2 N/A

My Parent Level 2 Def Choosing Level 2 Def and Single Value

Definitions Note: Under Single means that when you use the current flex
Value, click the Required definition to create flex assets, the assets
arrow. can be placed under only one parent that

uses Level 2 Def as its parent definition. In
our example, the asset is placed under
Parent 2 [Level 2].

Note: Selecting a Multiple Values option
allows you to place the asset under any and
all parents that use Level 2 Def as their
parent definition.

4. Click the Save icon.

To create the third flex definition asset:

1. From the button bar, click New.

2. From the list of options that display, select New My Flex Definition.

3. In the form that opens, fill in the fields as in the table.

Table 7-10 New My Flex Definition Form
]

Field Name Enter or Select Comments

Name Flex Def_12 N/A

Parent Level 1 Def Choosing Level 1 Def and Level 2 Def and
Definitions Level 2 Def Single Value means that when you use the

current flex definition to create flex assets,
the assets are placed under only one parent
that uses Level 1 Def and under only one
parent that uses Level 2 Def as parent
definitions.

Note: Under Single
Value, click the Required
arrow.

In our example, the assets are placed under
Parent 1 [Level 1] and Parent 2 [Level 2]).

Parent N/A Note: Selecting a Multiple Values option
Definitions allows you to place the asset under any and
(continued) all parents that use Level 1 Def and

Level 2 Def as their parent definitions.

4. Click the Save icon.
5. Refresh the page.

6. Click the Sample Flex Family tab and expand its contents to make sure they are
identical to the following figure.

ORACLE 7-10

ORACLE

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Figure 7-6 Sample Flex Family Tab

Bookmarks Dew

Site Admin Workflow

Site Plan Admin

Sample Flex Family History

. My Parert Definition
o Level 1 Def
o Level 2 Det

o) My Flex Defintion
. Flex Def 1
. Flex Def 2
. Flex Def_12

< Note:

Before going to the next step, review the next figure, which depicts the
Sample Flex Family structure as it displays in the Contributor application.
This figure shows how the objects that you created, flex definitions,
relate to the parent definitions they are based upon. Flex Definition 1 is
based on Level 1 Parent Definition. When used to create assets, this flex
definition places the assets under Parent 1 [Level 1]. Flex Definition 2 is
based on Level 2 Parent Definition. When used to create assets, this flex
definition places the assets under Parent 2 [Level 2]. Flex Definition 12 is
based on Level 1 and Level 2 Parent Definitions. When used to create
assets, this flex definition places the assets under both Parent 1 [Level 1]
and Parent 2 [Level 2].

7-11

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Figure 7-7 Flex Definitions and Assets

[© ler Sample Flex Famiy
(= & My Parent Defintion
: & Level 1 Def
i @ Level2Def
@ @ Parent 1 [Level 1]
) @ Parent2 [LevelZ]
: W Asset?
L. Q Asset_12
i W Asset1
L. Q@ Asset12
B & My Flex Definition
.~ @ FlexDef 1
i @ FlexDef2
. @ Flex Def_12

& @ Wy Parent Definition
: & Level 1 Def
; | @ Level2 Def
© @ Parent1[Level]
: E & Parent 2 [Level 2]
b Asset2
] W Asset_12
-~ @ Asset1
: I W Asset_12
© @ My Flex Definition
) Flex Def1
. @ FlexDef2
' @ Flex Def_12

© lar Sample Flex Famiy
=) @ My Parent Definition
: i~ Q@ Level 1 Def
: I & Level 2 Def
f_:1 & Parent 1 [Level 1]
) J Parent2 [Level 2]
: W Asset2
L. @ Asset_12
& Asset1
O Asset_12
[3 & My Flex Definition
.~ @ Flex Def 1
- @ FlexDef2
|- @ Flex Def_12

ORACLE" 7-12

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

7.3.7 Creating Flex Assets

ORACLE

In this step, you complete the flex family by adding the third level of the hierarchy; the
flex assets. You create three assets:

* The first asset you place under Parent 1 [Level 1].

* The second asset you place under Parent 2 [Level 2].

* The third asset you place under both Parent 1 [Level 1] and Parent 2 [Level 2].
To create the first flex asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the top.
2. From the Content menu, choose New, then New My Asset.

3. In the form that opens, fill in the fields as in the table.

Table 7-11 New My Asset Form
]

Field Name Enter or Select Comments

Name Asset 1 N/A

My Flex Flex Def 1 Choosing Flex Def 1 places the asset you are
Definition creating under Parent 1 (Level 1].

4. Click the Save icon.

To create the second flex asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the top.
2. From the Content menu, choose New, then New My Asset.

3. Inthe form that opens, fill in the fields as in the table.

Table 7-12 New My Asset Form
]

Field Name Enter or Select Comments

Name Asset 2 N/A

My Flex Flex Def 2 Choosing Flex Def 2 places the asset you are
Definition creating under Parent [Level 2].

4. In the next form, click Save.

To create the third flex asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the top.
2. From the Content menu, choose New, then New My Asset.

3. Inthe form that opens, fill in the fields as in the table.

Table 7-13 New My Asset Form

|
Field Name Enter or Select Comments

Name Asset 12 N/A

7-13

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Table 7-13 (Cont.) New My Asset Form

Field Name Enter or Select Comments

Flex Definition Flex Def_12 Choosing Flex Def_12 places the asset you are
creating under both Parent [Level 1] and
Parent [Level 2].

4. In the next form, click the Save icon.
5. Refresh the page.

6. Click the Sample Flex Family tab and expand its contents to make sure they are
identical to the following figure.

Figure 7-8 Sample Flex Family Structure

=) ke Sample Flex Famiby
=) @ My Parent Definition
. e @ Level 1 Def
. L @ Level2 Def
5 @ Parent 1 [Level 1]
@ @ Parent2 [Level 2]
: i il Azmet 2
o Aszet 12
o Az=zet
. e) Asset 12
= My Flex Definition
- @ Flex Def 1
- @ Flex Def2

.. @ FlexDef_12

The following figure shows how the objects that you created, assets, relate to the
flex definitions they are based upon. Based on the definition, each asset is placed
under a relevant parent. For instance, the Flex Def 1 definition places the Asset 1
asset under Parent 1 [Level 1]. However, in case of Flex_Def 12 Definition, the
Asset_12 asset is placed under both Parent 1 [Level 1] and Parent 2 [Level 2].

ORACLE 7-14

= & My Parent Definition
& Level 1 Def

 Level 2 Def

D]

@ Parent 1 [Level 1]
B & Parent 2 [Level 2]
W Asset2
o Asset 12
W Asset1
O Asset_12

0]

& My Flex Definition
& Flex Def1
« Flex Def2
W Flex Def_12

) ke Sample Flex Famih]

(A & My Parent Definition
& Level 1 Def
W Level 2 Def
(=)) Parent 1 [Level 1]
=) & Parent 2 [Level 2]
o Asset2
@ Asset_12
W Asset1
W Asset_12
= & My Flex Definition
) Flex Def1
« Flex Def2
J Flex Def_12

| ke Sample Flex Famiy

(=) & My Parent Definition
& Level 1 Def
W Level 2 Def
= Parent 1 [Level 1]
(=) & Parent 2 [Level 2]
& Asset2
W Asset 12
W Asset1
o Asset_12
= & My Flex Definition
W Flex Def1
) Flex Def2
W Flex Def_12

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

Figure 7-9 Flex Definitions and Assets

7.3.8 Translating the Formulaic Data Model into a Real-World Data

Model

ORACLE"

In this step, you rename the parent definitions, parents, and assets to translate the
formulaic data model you just created into a real-world model. (In practice, instead of
renaming flex family members, you would name them directly in their business
context, as you create them.)

7-15

ORACLE

Chapter 7

Creating a Sample Flex Family Using a Real-World Example

In our example, the real-world model describes a business that deals with sports gear.
The flex parents and assets, after you finish renaming them, are listed in your Content

Tree tab as shown in the following figure.

Figure 7-10 Content Tree Tab

— o Outdoor Speortz Equipment
. © @ Mountain Climbing
- i~ O High Altitude Gear
: s Special Orders
o Our Awezome Cataleg

i) Special Orders

To create the real-world model:

1. Rename the parent definitions as follows:

a. Open the Admin interface.

b. Inthe Sample Flex Family Tree, right-click Level 1 Def and choose Edit from

the context menu.

c. Replace the parent's name with Level 1 Def (Type of Sports Equipment),

and click the Save icon.

d. Inthe same manner, replace the name of Level 2 Def with Level 2 Def

(Sport).
2. Rename the parents as follows:

a. Switch to the Contributor interface.

In the Sample Flex Family Tree, right-click Parent 1 [Level 1], and choose

Replace the parent's name with Outdoor Sports Equipment, and click the

b. Click Content Tree to display its contents.
C.
Edit from the context menu.
d.
Save icon.
e.

In the same manner, replace the name of Parent 2 [Level 2] with Mountain
Climbing. The Sample Flex Family Tree should look like the following figure.

Figure 7-11 Sample Flex Family Tree Node Expanded

=) kg Sampls Flex Famity

+] & My Parent Definitior

— o Qutdoor Sportz Equipment
" @ & Mountain Climbing

- o Asset

i Q) Asset_12

% & My Flex Definition

7-16

Chapter 7

Creating a Sample Flex Family Using a Real-World Example

Rename the assets as follows:

a. Inthe Sample Flex Family Tree, expand Outdoor Sports Equipment.

b. Right-click Asset 1 and choose Edit.

c. Replace the asset's name with Our Awesome Catalog, and then click the

Save icon.

d. Inthe same manner, expand Mountain Climbing and replace the name of

Asset 2 with High Altitude Gear.

e. Replace the name of Asset_12 with Special Orders.

The assets you renamed should look like the following figure.

Figure 7-12 Sample Flex Family Tree Node Expanded

=) ke Sample Fiex Famiyd
& & My Parent Definition
=) & Outdoor Sportz Equipment

=) Mountain Climbking

7.3.9 Developing Your Real-World Model

ORACLE

In this step, you develop your data model by creating a new parent and its asset,
giving each a real-world name. You do the following:

Create a second level-2 parent and name it White Watering.

Create the parent's asset (a catalog) and name it Rafts, Canoes, and Kayaks.

Expand White Watering to display its assets, as shown in this figure:

Figure 7-13 Sample Flex Family Tree Node Expanded

= kg Sample Flex Famity
* @ My Parent Definition
_ o Outdoor Sports Equipment
. © @ Mountain Climbing
: i @ High Altitude Gear
o Special Orders

= & Whits Watering

. Aaftz, Cances, and Kavaks

o Qur Awezome Catalog

i. \J Special Orders

7-17

Chapter 7
Creating a Sample Flex Family Using a Real-World Example

To create the level-2 parent:

1. Switch to the Contributor interface by clicking the Contributor icon on the
application bar.

2. From the Content menu, choose New, then New My Parent.

3. Inthe form that opens, fill in the fields as in the table:

Table 7-14 New My Parent Form

Field Name Value
Name White Watering
My Parent Definition Level 2 Def (Sports)

4. Click the Save icon.

To create the parent's asset:

1. Switch to the Contributor interface by clicking the Contributor icon on the
application bar.

2. From the Content menu, choose New, and then New My Asset.

3. Inthe form that opens, fill in the fields as in the table:

Table 7-15 New My Asset Form

Field Name Value
Name Rafts, Canoes, and Kayaks
My Flex Definition Flex Def 2

4. From the Level 2 Def drop-down, choose White Watering.
5. Click the Save icon.
6. Refresh the page and display the Sample Flex Family tree tab.

Its content should be identical to this figure:

Figure 7-14 Sample Flex Family Tree Node Expanded

@ kg Sample Flex Famity
@ @ My Parent Definition
_ o Qutdoor Sporte Equipment
: =) @ Mountain Climbing
: i (@ High Altitude Gear
o Special Orders

=] & White Watering

) Haftz, Canoss and Kavaks

o Our Awezome Catalog

i) Special Orders

ORACLE 7-18

Creating Flex Filters

The flex assets you create can work appropriately when you associate flex filters with
them. The flex filters carry out the assigned tasks, while flex classes implement the
flex filters’ functionality. You can associate multiple flex filters with a flex asset and
define the order of processing, too.

Topics:
* About Flex Filter Classes and Assets
* Defining a Flex Filter Class and Creating a Flex Filter Asset

e Document Transformation Flex Filter

8.1 About Flex Filter Classes and Assets

Flex classes implement the functionality of flex filter assets so that the filters can
process the tasks you've designed them for.

See these topics:

* Flex Filter Classes

* Flex Filter Assets

8.1.1 Flex Filter Classes

ORACLE

Flex filter classes implement the functionality of flex filter assets. These classes are
listed in the Filters table in the WebCenter Sites database. When you create a flex
filter asset, you select a flex filter class for it.

WebCenter Sites delivers the following flex filter classes:

e Doc-Type: Extracts components from an asset containing one or more MIME file
types and maps each file type to an individually named attribute.

e Thumbnail Creator: Converts an image into a thumbnail.

» Field Copier: Copies the contents of a system-defined attribute into a user-
defined attribute.

e Document Transformation: Converts a document from one file type into another
by invoking a registered transformation engine (an engine that is specified in the
SystemTransforms table). The transformation engine functions as a wrapper that
forwards calls to a document transformer, which then performs document
conversion.

You can create a custom flex filter class by defining it in the WebCenter Sites Filters
database table. For instructions on creating a custom flex filter class, see Defining a
Custom Flex Filter Class.

8-1

ORACLE

Chapter 8
About Flex Filter Classes and Assets

Doc-Type Filter Class

A Doc-Type filter takes a document and extracts the MIME-type data associated with
the file into its individual components. For example, an uploaded file containing text
and a GIF photo would be filtered into two generated attributes, one containing TXT
formatted data and one containing GIF formatted data.

The Doc-Type class is defined by the following arguments:

e Attribute to Hold Derived File Name: (Optional) Enter the flex attribute that
stores the output file name.

e Attribute to Hold Derived File Type: The file extension is stored in this attribute.

e Attribute to Hold Derived MIME Type: (Optional) MIME files can have several
types such as plain text, attachment, media file, and so on.

e Input Attribute Name: The attribute name stored by WebCenter Sites
corresponds to the uploaded file name.

Thumbnail Creator Filter Class

With the thumbnail creator filter, a content provider can upload an original graphic and
WebCenter Sites can create a new thumbnail sized GIF graphic file.

The Thumbnail Creator class is defined by the following arguments:

* Input Attribute Name: The name of the uploaded file.

» Display values for the large version of the thumbnail graphic: Output Attribute for
Main Height, Output Attribute for Main Width, and Enter Maximum Pixel Size.

* Attributes that define the thumbnail to be created: Output Attribute Name,
Output Attribute for Thumb Height, Output Attribute for Image Aspect, and
Output Attribute for Thumb Width.

Field Copier Filter Class

The field copier filter copies the contents of a system-defined attribute into a user
defined flex attribute.

The Field Copier class is defined by the following arguments:

* Name: The name of the system-defined attribute you want to copy.

* Value: The name of the flex attribute into which you are copying the system-
defined attribute's value.

Figure 10-3 illustrates an advanced example of how to implement a field copier filter,
using the Media flex family of the FirstSitell sample site. The purpose of the field
copier filter in this example is to categorize image assets by the names of their parent
assets.

Document Transformation Filter Class
The Document Transformation filter class is defined by the following arguments:

* Document Transformer Name: The name of a registered transformation engine
exactly as it is listed in the SystemTransforms table. By default, CS: Convert to Raw
Text is listed in the SystemTransforms table. This engine is used to initiate the
conversion of a binary file to a TXT format.

8-2

Chapter 8
About Flex Filter Classes and Assets

Note:
The following document transformer is available with WebCenter Sites:
com. fatwire.transformer.tika.DocumentTransformerImpl

The document transformer is coded to convert documents to raw text
files when it is invoked by the CS: Convert to Raw Text engine.
Converting to any other file type requires writing a document transformer
for that file type, registering the corresponding transformation engine
(unless it is registered), and registering the document transformer with
WebCenter Sites. For information on implementing default and
document transformation solutions, see Document Transformation Flex
Filter.

Input Attribute Name: The name of the flex attribute whose contents are to be
converted by the flex filter. For the Document Transformation filter, the input
attribute must be of type blob because it expects to find a file in that attribute.

Fail on Transform Error: Choose whether the system will display an error
message if the transformation does not complete properly.

Output Attribute Name: The name of the flex attribute that stores the results of
the document transformation. For the Document Transformation filter, the output
attribute must be of type blob because it stores the results of the transformation as
a file.

The data stored in the output attribute (field) is read-only because it is derived from
the data in the input attribute. This data is regenerated from the source data in the
input attribute each time the asset is saved.

Output Document Extension: The file extension to be assigned to the resulting
file. Enter a document extension appropriate to the selected Document
Transformer Name. For example, when you specify that the document
transformation engine is CS: Convert to HTML, the document extension must be
either htm or html.

8.1.2 Flex Filter Assets

Flex filter assets are defined by all of the following criteria:

A flex filter class registered in the Filters table.

The information that is passed to that filter class (through arguments). These
arguments specify which data to use, any constraints on the filter's action, and
where to store the results of the filtering process when the asset is saved.

When you create a flex filter asset, you select the flex filter class to be used, then enter
values for the arguments that the filter class needs to perform its action.

After you create a flex filter asset, you assign it to the appropriate flex definition assets.
Then, whenever content providers save a flex asset of that definition, the filter
automatically performs its assigned action. See Creating a Flex Filter Asset.

ORACLE

8-3

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

8.2 Defining a Flex Filter Class and Creating a Flex Filter

Asset

Your flex asset needs a flex filter to process the flex asset’s task. And, your flex filter
works when you define a custom flex filter class that implements the flex filter’s
functionality.

These are your basic steps:

1. Create the Java class that provides the implementation code for the custom flex
filter class. See Implementation of a Flex Filter Class.

2. Define the new flex filter class in the Filters table in the WebCenter Sites
database. See Defining a Custom Flex Filter Class.

3. Create a flex filter asset that is defined by the custom flex filter class:
a. Create the attributes that will be referenced in the filter's arguments.
b. Create the flex filter asset and assign it to a flex filter class.
c. Add the new filter asset to a child definition.

d. Re-save all related assets associated with the definition to which you added
the filter asset. See Creating a Flex Filter Asset.

See these topics:
* Implementation of a Flex Filter Class
e Defining a Custom Flex Filter Class

e Creating a Flex Filter Asset

8.2.1 Implementation of a Flex Filter Class

ORACLE

To implement a custom flex filter, create a new Java class for it by extending the
AbstractFlexFilter class. This filter class contains all default functionality required to
handle filter requests. A working example of a custom flex filter class that extends the
AbstractFlexFilter class, and whose purpose is to access a flex attribute and set a
derived attribute value.

A flex filter's functionality is implemented by parameters called abstraction interfaces.
Since flex filters only have to know about certain aspects of the assets they are
filtering, abstraction interfaces provide filters with access to only the asset information
necessary for them to perform their function on a given flex asset.

The following table lists the abstraction interfaces required to implement a flex filter,
and the asset information each abstraction interface passes to the filter. For
information about abstraction interfaces used to implement a custom flex filter class,
see the Java API Reference for Oracle WebCenter Sites.

Table 8-1 Abstraction Interfaces (com openmarket . gator. i nterf aces Package)

___|
Abstraction Interface Description

IFilterEnvironment Provides methods to obtain information about the
environment that is supporting the filter.

8-4

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

Table 8-1 (Cont.) Abstraction Interfaces (com opennarket. gator.interfaces
Package)

Abstraction Interface Description

IFilterableAssetlInstance Provides methods to manipulate the asset that is being
filtered.

IFilterDescription Provides methods to describe all the potential derived
attributes that will be modified by the filter during its
execution.

IFilterDependencies Provides methods to log the dependencies against the

asset instance to be filtered. A dependency refers to
another asset by type and identifier that shares a
relationship with the asset to be filtered. When a
dependency is declared, it is either exact or exists.

< Note:

Standard asset attributes can be obtained by the
IFilterableAssetinstance.get method. For example, to get the standard
asset description, you would add the line:

String description = instance.get(description);

When building the Java code for the new flex filter class, define a constructor with a
single FTvalList parameter (located in the COM.FutureTense. Interfaces package). This
parameter provides a list of arguments obtained from the filter's definition in the
Filters database table. These arguments are passed to the filter in the form of key/
value pairs. If there are no predefined arguments for the filter class in the Filters
database table, the FTvalList is null.

8.2.1.1 AbstractFlexFilter Class Extension

ORACLE

The AbstractFlexFilter class can be extended to build your implementation of a flex
filter class. This class is located in the com.openmarket.gator.flexfilters package.
When you create the new flex filter's Java class, you can call the required methods
necessary for your filter's functionality from theAbstractFlexFilter class Java code.
This simplifies the amount of code necessary to create a custom implementation.

When a method is called, it is provided with the argument String filterldentifier,
which is the asset identifier for the filter. When you associate the same filter with
different flex asset families, the filter identifier reflects the filter definition for the
associated family. This argument is useful when you are implementing a filter that will
be used by different asset families in order for the filter to know which flex family
association is being used at the moment the filter is invoked.

For information about abstract methods used to implement a flex filter class, see the
Java API Reference for Oracle WebCenter Sites.

Required Abstract Methods

The following abstract methods are required by all flex filter implementations:

8-5

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

public void filterAsset(IFilterEnvironment env,
String filterldentifier,
FTValList filterArguments,
IFilterableAssetInstance instance)
throws AssetException;

These lines are the main method to process asset post processing when a new or pre-
existing asset is saved. This method is not called if the edit is canceled. It does the
work that represents the filter's purpose. A list of arguments (FTvalList) is provided so
the filter can obtain input or output (or both) attribute definitions, and any other
information valid to the filter. The filterArguments list is defined when the filter is
created in the WebCenter Sites interface.

public FTValList getLegalArguments(IFilterEnvironment env,
String filterldentifier)
throws AssetException;

These lines are the method that is called to return a list of legal filter arguments. The
WebCenter Sites interface will call this during filter creation or editing to populate the
drop-down list after selecting the filter and pressing the Get Arguments button.

Optional Abstract Methods

The following abstract methods can be used to override those within the
AbstractFlexFilter class. These methods are optional because the default
implementations provided by the AbstractFlexFilter class are usually sufficient for
most filters:

public void describeDerivedAttributes(IFilterEnvironment env,
String filterldentifier, FTValList filterArguments,
String defTypeName, String parentDefTypeName,
IFilterDescription descriptionObject) throws AssetException

This method describes all the potential derived attributes, group affinities, and
recommendations that the filter might set. When the filter plans to output to attributes,
this method must identify the attributes that will be modified. This is called whenever
the flex asset is viewed, to anticipate the editing of the asset.

public void getDependencies(IFilterEnvironment env,String filterldentifier,
FTValList filterArguments, String assetTypeName, String parentTypeName,
IFilterDependencies filterdeps) throws AssetException

This method is called to describe the filter's asset dependencies. Filter dependencies
are set to either exists or exact.

public String[] getArgumentLegalValues(IFilterEnvironment env,
String filterldentifier, String argumentName) throws AssetException

This method is called to return a list of acceptable values for a specified argument.
Any value is accepted if the return list is null. This method is called by the Admin
interface when a filter asset is being created or edited to validate the argument values
that are specified for the filter asset.

8.2.2 Defining a Custom Flex Filter Class

Define a custom flex filter class in the Filters table in the WebCenter Sites database.
In the following procedure, the flex filter class is named CustomFilter.

To define a custom Flex Filter class:

ORACLE 8-6

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

1. Copy the _jar or class file containing the implementation code for the custom flex
filter class into the directory that holds the WebCenter Sites product jars:

" Note:

For information about creating a Java class that provides the
implementation code for your custom flex filter class, see Implementation
of a Flex Filter Class.

* For WebLogic: app-server-install-dir/bea/path-to-domain/domain-name/
applications/WEB-INF/lib

* For WebSphere: WebSphere-Instal lation-Directory/Instal ledApps/WEB-INF/lib

2. Open Oracle WebCenter Sites Explorer and add a row to the Filters table for the
new filter class:

a. Inthe tree, expand the Tables node, and then select the Filters table.
b. Select File, then New, and then Record.
c. Define the filter in the database by filling in the following columns:

* name: Enter the name of the filter as it will be displayed in the WebCenter
Sites interfaces.

e description:; (Optional) Enter a short summary about the purpose of the
filter class.

* classname: Enter the exact classname of the filter class' implementation
(for example, com.fatwire.firstsite.filter.SampleFlexFilter). This name
must be available for loading in the WebCenter Sites classpath.

» args: (Optional) Enter the input and output arguments for the filter.
Argument key/value pairs are delimited by an ampersand (&) character.
(for example, argl=argumentl&arg2=argument2). These arguments are
passed to the filter constructor and their use is left up to the filter's
developer.

" Note:

If you do not define the flex filter class' input and output
arguments in the Filters table, you can define the arguments in
the flex filter class' code. See Implementation of a Flex Filter
Class.

d. Select File and then Save.

Your new filter entry looks similar to this figure:

ORACLE .

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

Figure 8-1 Sample Filter Entry

name | description classname args
|° CustomFilter Sample Flex Filter com fatwire firstsite filter. Sample FlexFitter Input custom string=argument 1&0utput custom string=argument 2 |
o DocType Bxracts Mime Type from Document com fatwire firstsite fiter DocType
© Document Transformation Use a registered document transformation engine com.openmarket.gator fiters. Doc Transformation
o FieldCopier Copies Base Fields to Attributes com fatwire firstsite filter. FieldCopier
o ThumbnailCreator Creates Thumbnail com fatwire firstsite fiter. Imaging

The filter class is now displayed as an option in the Filter drop-down list in the
New and Edit forms of filter assets.

8.2.3 Creating a Flex Filter Asset

Before you can create a filter asset, the flex attributes that you want to use as the input
and output attributes must exist. To ensure that the values of preexisting attributes are
not overwritten, create attributes to be referenced by the arguments for your custom
flex filter. For this example, create two Media attributes of type string; FSI1_Customlnput
to be used as the input attribute and FSI11_CustomOutput to be used as the output
attribute.

Create a flex filter asset named FS11_CustomFlexFilter for the Media flex family of the
FirstSitell sample site.

To Create a Flex Filter Asset:

1. Log in to the Admin interface as a general administrator, and select the site for
which you want to create a flex filter asset (FirstSitell sample site in this example).

2. Create the attributes (if not defined) that will be referenced by the filter's input and
output arguments. Note the following requirements:

« For flex filters that use the Document Transformation filter class, the input and
output attributes must be of type blob.

* For any flex filter, the input attribute, output attribute, and flex filter must all
belong to the same flex family.

3. Create a flex filter asset for the associated flex family (Media flex family in this
example):

a. From the start menu items, click New.

b. In the list of asset types, select the type of filter you want to create. In this
example, New Media Filter.

The Media Filter form opens.
c. Fill in the following fields:

i. Inthe Name field, enter a uniqgue name for this filter (in this example, use
FS11_CustomFlexFilter).

ii. Inthe Description field, enter a brief description summarizing the filter's
function.

iii. From the Filter drop-down list, select the filter definition that matches the
name you assigned to the custom filter (in this example, select
CustomFilter). Then click Get Arguments.

iv. Inthe Arguments field, specify the input and output arguments for the flex
filter asset. Click Add to add the argument(s) to the filter.

ORACLE 8-8

ORACLE

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

Click Save.

This figure shows the saved filter:

Figure 8-2 New Filter

Media Filter: FEI1_CustomFlexFiter

Mame: FSII_CustormFlesFiter
Description: ClstombediaPexFilter
Status:

ID: 1233150644 1491

Site: First5ite 11

Filter: CustomFilter
Arguments: Output custom string=F511_CustomOutput
Input custom string=FSII_Custominput

Created: Morday, March 19, 2012 1:12:42 PM FDT by fwatmin

Modified: Morday, March 19, 2012 1:12:42 PM POT by fwadmin

Find a child definition to which you want to add the new filter asset (in this
example. For example, add the filter to the Media child definition FSI1_Image).

a.

b.

From the start menu items, click Search.

In the list of asset types, select a type of asset definition to which you want to
add the filter (Find Media Definition in this example).

In the Search field, enter the name of the definition to which you want to add
the filter (FSII_Image in this example).

Click Search.

In the list of search results, navigate to a definition and click its Edit icon
(FSII_Image in this example).

The Edit form of the definition opens.

In the Edit form, add the filter and input argument to the definition:

a.

b.

For Attributes, highlight the input attribute in the Available list and move it to
the Selected list (FSII_CustomlInput in this example).

For Filters, highlight a flex filter in the Available list and move it to the
Selected list (FSII_CustomFlexFilter in this example).

8-9

ORACLE

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

Note:

Add the new filter after any other filters that will create or modify
attributes which the filter you are adding depends on or shares in
common.

Click Save. This figure shows a saved filter.

Figure 8-3 New Filter

7 d “ £ (Bl, Ay more... n

Inspect Media Definition: FSIT_Image

Marme: FSI1_Image
Description: Image
Status:
ID: 1331506441467

Parent Definitions:

Attribaite Names:

Filters: FSII_FisddCopiar
FSII_ImagaeType
FS1I_ThurmbnalExtractor
FSI1_CustomFiexFiles

Created: mMonday, March 19, 2012 12:52035 PM POT by fecadmin

Modified: Monday, March 19, 2012 1:26:29 PM PDT by Fsadmin

Find and re-save all preexisting assets associated with the definition to which you
added the filter. This enables the filter to populate the output attribute
(FSII_CustomOutput) with the derived value from the input attribute
(FSII_Customlinput). For example:

a.

In the applications bar, click the Contributor icon to switch to the Oracle
WebCenter Sites: Contributor interface.

In the Search field, click the down-arrow. In the Search Type menu, choose
the type of asset associated with the definition you modified in step 5 (Find
Media in this example). Then click the magnifying glass icon.

A Search tab opens displaying the results of your search.
Re-save the asset. In the asset toolbar, click the Save icon.

Inspect the asset. In the asset toolbar, click the Inspect icon.

8-10

ORACLE

Chapter 8
Defining a Flex Filter Class and Creating a Flex Filter Asset

This image is the result of editing a flex asset that invokes several filters,
including the filter you created in this section. By default, Media assets call the
FSI1_FieldCopier, FSII_ImageType, and FSI1_Thumbnai lExtractor filters. In this
example, the Media asset also calls the FS11_CustomFlexFilter filter, which
takes the value of the input attribute (MediaCustomlnput) and inserts a derived
string value into the output attribute (MediaCustomOutput).

Figure 8-4 Inspect Dialog

e

Bl s mnv i

Cardenk St sdak s

Image: F211 FSE_Triplilan. jpg

Mame: FSIl FEE_Tipeflarpg
Tenplats: FSiDets
Irmse Careaory:

T ImadpE i

Al Tl

MrdiaCaniursinpul.
MediaCustomQuitput: Filterld=1 208553135434, assetlds 111008373041 1(FS1T FSE_SripleFay.iog) cralnputs

MarweAllr: FSE_TrpdePla g
Torgplah e/ il
Irvage Height: 0 1
Image Width: 00
Thasmonail Height: 100
| i amibesad wici; Lo

Thamvbinail Imaige:

Imege File Type: PG

Image Mama Type: mage/peg

L4

8-11

Chapter 8
Document Transformation Flex Filter

8.3 Document Transformation Flex Filter

For your document transformation flex filter, Oracle WebCenter Sites provides a
default solution that converts documents into raw text files. If you need a flex filter that
converts documents into different formats, you can create a custom solution, register
its components, and use them with your flex filter.

Implementing a Document Transformation flex filter requires the following
components:

e A transformation engine that is registered in the SystemTransforms table and named
to indicate the target file type; for example, CS:Convert to Raw Text.

e A document transformer, which is a custom class that performs document
conversion (for example, converting binary files to raw text files). The document
transformer class implements the following interface:

com.fatwire.transformer.common.DocumentTransformer

e The transformer-formats.xml file, which is used to associate the transformation
engine with the document transformer. The file, located in the WebCenter Sites
WEB-INF/classes folder, specifies the target file type and the document transformer.

When the Document Transformation flex filter is invoked, the transformation engine
functions as a wrapper. The engine forwards calls (using the transformer-formats.xml
file) to the document transformer, which then performs file conversion.

See these topics:

* Default Solution
e About Custom Solutions
* Using a Default Transformation Engine

* Customizing Document Transformation Flex Filter

8.3.1 Default Solution

WebCenter Sites provides a default solution that can be used to convert documents to
raw text files. The default components follow:

* The CS:Convert to Raw Text transformation engine, registered in the
SystemTransforms table.

e A document transformer named
com. fatwire.transformer.tika.DocumentTransformerImpl, which is coded to output
raw text files once it is invoked by the CS:Convert to Raw Text engine.

e The transformer-formats.xml file, which is configured to associate the CS:Convert
to Raw Text engine with the document transformer class named above.

Using the default solution requires you to implement a corresponding Document
Transformation flex filter, which makes the transformation engine accessible from the
WebCenter Sites interface as a document transformation option.

ORACLE 8-12

Chapter 8
Document Transformation Flex Filter

8.3.2 About Custom Solutions

To design a document transformation solution other than the default solution described
above, create and customize the following components:

1. Write and deploy a document transformer for the target file type.
2. Register the transformation engine for the target file type.

3. Configure the transformer-formats.xml file to specify the document transformer
and the target file type. (The xml file supports multiple document transformers.)

4. Implement the Document Transformation flex filter as described in this chapter.

See Customizing Document Transformation Flex Filter.

8.3.3 Using a Default Transformation Engine

WebCenter Sites provides the CS:Convert to Raw Text transformation engine. All of the
engines are registered by default in the SystemTransforms table. If your document
transformer is written to output files of type HTML, or HTML fragment, or XML, use the
corresponding engine.

To use a default transformation engine:
1. Open Oracle WebCenter Sites Explorer.
2. Select the SystemTransforms table.

3. Locate the engine you have created. Note the value of the engine's target field.
You enter this value for <mime-type> in the transformer-formats.xml file, discussed
in Registering the Document Transformer.

4. In the args field, set the arguments that are appropriate for this transformation
engine. For example: exporttype=HTML.

5. Continue to Registering the Document Transformer.

8.3.4 Customizing Document Transformation Flex Filter

WebCenter Sites provides a default document transformer,

com. fatwire.transformer.tika.DocumentTransformerImpl, which is coded to output raw
text files once it is invoked by the CS:Convert to Raw Text engine. For the target file
other than raw text, create and register the flex filter's supporting components as
follows.

Before implementing a Document Transformer flex filter:

* Writing and Deploying a Document Transformer Flex Filter
* Registering the Transformation Engine

* Registering the Document Transformer

8.3.4.1 Writing and Deploying a Document Transformer Flex Filter

You can write a deploy a document transformer flex filter

ORACLE 8-13

Chapter 8
Document Transformation Flex Filter

Write an implementation of the
com. fatwire._transformer.common.DocumentTransformer interface. You will implement
the following methods:

public String getOutputDocument(String filename,
TransformerFormat outputformat);

and

public String getOutputDocument(String filename,String inputFileExt,
TransformerFormat outputformat);

You can return null in the following method, as this method has been deprecated:

public InputStream getBytesAsStream(String filename,
TransformerFormat outputformat);

Copy the document transformer's jar or class file to the WebCenter Sites web
application lib folder or classes folder.

* For WebLogic Server:

app-server-install-dir/bea/path-to-domain/domain-name/applications/WEB-INF/
lib

* For WebSphere Application Server:
WebSphere-Installation-Directory/Instal ledApps/WEB-INF/1ib

8.3.4.2 Registering the Transformation Engine

If you have written a document transformer to output files other than raw text, do the
following procedure. Otherwise, see .

To register a transformation engine:

1.

4.

Open Oracle WebCenter Sites Explorer to add a row to the SystemTransforms table
for the new transformation engine.

Select the SystemTransforms table and click in the table's workspace.
Select File, then New, and then Record and fill in the new row as follows:
* In the name column, enter the name of the transformation engine.

* Inthe description column, enter a description of the engine.

* Inthe target column, enter text/<filetype>. You will use the target value for
the <mime-type> at the time of registering the document transformer.

* Inthe classhame column, enter the engine's default class name:
com.fatwire.transformer.common.FWTransformer.

e Inthe args column, set any arguments that are appropriate for this
transformation engine.

Save your changes.

8.3.4.3 Registering the Document Transformer

You can register your document transformer in the transformer-formats.xnl file,
located in the WebCenter Sites WEB-INF/classes folder. The default file looks like this:

ORACLE

8-14

ORACLE

Chapter 8
Document Transformation Flex Filter

<transformer-format>

<name>Text Format</name>

<I-- name of the output format supported by this repository -->
<mime-type>text/plain</mime-type>

<file-extension>txt</file-extension>
<transformer-options>
<I-- number of possible transformers available for this transformation -->
<transformer>
<name>TIKA</name>
<properties>
<property>
<name>ClassName</name>
<I-- name of the transformer class that gets loaded by transformer factory -->
<value>com.fatwire.transformer.tika.DocumentTransformerImpl</value>
</property>
<property>
<name>InputFile_Exts</name>
<I-- allowed input file extensions..* means all file types supported by tika -->
<value>*</value>
</property>
</properties>
</transformer>
</transformer-options>
</transformer-format>

1. Setthe <mime-type> to the value of the target field for the transformation engine.
The value for target is set when registering the transformation engine.
2. Specify the class name of your document transformer.

The class name is created when writing and deploying a document transformer
flex filter.

3. To specify multiple document transformers, repeat the entries for each
transformer.

The value for <mime-type> determines which document transformer will be invoked
by the transformation engine.

8-15

Designing Attribute Editors

Attribute editors are displayed in flex and flex parent assets’ New and Edit forms.
Through attribute editor you define how users will enter attribute data. To help you
create attribute editors, WebCenter Sites provides the presentationobject.dtd file that
defines the input types, the attribute editor asset whose XML code provides the values
of the input ty