
[1]Oracle® Fusion Middleware
Integrating Big Data with Oracle Data Integrator

12c (12.2.1.1)

E73982-01

May 2016

Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator, 12c (12.2.1.1)

E73982-01

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Aslam Khan

Contributing Author: Alex Kotopoulis

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Big Data Integration with Oracle Data Integrator

1.1 Overview of Hadoop Data Integration.. 1-1
1.2 Big Data Knowledge Modules Matrix ... 1-2

2 Hadoop Data Integration Concepts

2.1 Hadoop Data Integration with Oracle Data Integrator ... 2-1
2.2 Generate Code in Different Languages with Oracle Data Integrator.................................. 2-1
2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects 2-2
2.4 Oozie Workflow Execution Modes .. 2-2

3 Setting Up the Environment for Integrating Hadoop Data

3.1 Configuring Big Data technologies using the Big Data Configurations Wizard............... 3-1
3.1.1 General Settings ... 3-3
3.1.2 HBase Data Server Definition .. 3-3
3.2 Creating and Initializing the Hadoop Data Server .. 3-4
3.2.1 Hadoop Data Server Definition ... 3-4
3.2.2 Hadoop Data Server Properties... 3-5
3.3 Creating a Hadoop Physical Schema ... 3-7
3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs 3-7
3.5 Configuring Oracle Loader for Hadoop.. 3-8
3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster................................... 3-8
3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent .

3-9

4 Integrating Hadoop Data

4.1 Integrating Hadoop Data... 4-1
4.2 Setting Up File Data Sources ... 4-2
4.3 Setting Up Hive Data Sources... 4-3

iv

4.4 Setting Up HBase Data Sources .. 4-3
4.5 Importing Hadoop Knowledge Modules.. 4-4
4.6 Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and

HDFS Models 4-5
4.6.1 Creating a Model ... 4-5
4.6.2 Reverse Engineering Hive Tables.. 4-5
4.6.3 Reverse Engineering HBase Tables... 4-6
4.6.4 Reverse Engineering HDFS Files... 4-7
4.7 Loading Data from Files into Hive... 4-7
4.8 Loading Data from Hive to Files .. 4-7
4.9 Loading Data from HBase into Hive.. 4-7
4.10 Loading Data from Hive into Hbase.. 4-8
4.11 Loading Data from an SQL Database into Hive, HBase, and File using SQOOP 4-8
4.12 Loading Data from an SQL Database into Hive using SQOOP ... 4-8
4.13 Loading Data from an SQL Database into File using SQOOP ... 4-9
4.14 Loading Data from an SQL Database into HBase using SQOOP .. 4-9
4.15 Validating and Transforming Data Within Hive .. 4-10
4.16 Loading Data into an Oracle Database from Hive and File... 4-10
4.17 Loading Data into an SQL Database from Hbase, Hive and File using SQOOP............ 4-10

5 Executing Oozie Workflows

5.1 Executing Oozie Workflows with Oracle Data Integrator.. 5-1
5.2 Setting Up and Initializing the Oozie Runtime Engine .. 5-2
5.2.1 Oozie Runtime Engine Definition ... 5-2
5.2.2 Oozie Runtime Engine Properties ... 5-3
5.3 Creating a Logical Oozie Engine .. 5-3
5.4 Executing or Deploying an Oozie Workflow.. 5-4
5.5 Auditing Hadoop Logs .. 5-4
5.6 Userlib jars support for running ODI Oozie workflows... 5-4

6 Using Query Processing Engines to Generate Code in Different Languages

6.1 Query Processing Engines Supported by Oracle Data Integrator 6-1
6.2 Setting Up Hive Data Server ... 6-2
6.2.1 Hive Data Server Definition... 6-2
6.2.2 Hive Data Server Connection Details ... 6-2
6.3 Creating a Hive Physical Schema ... 6-3
6.4 Setting Up Pig Data Server .. 6-3
6.4.1 Pig Data Server Definition.. 6-3
6.4.2 Pig Data Server Properties.. 6-4
6.5 Creating a Pig Physical Schema.. 6-5
6.6 Setting Up Spark Data Server.. 6-5
6.6.1 Spark Data Server Definition ... 6-5
6.6.2 Spark Data Server Properties ... 6-6
6.7 Creating a Spark Physical Schema ... 6-7
6.8 Generating Code in Different Languages.. 6-7

v

7 Working with Unstructured Data and Complex Data

7.1 Working with Unstructured Data .. 7-1
7.2 Working with Complex Data .. 7-1

A Hive Knowledge Modules

A.1 LKM SQL to Hive SQOOP.. A-2
A.2 LKM SQL to File SQOOP Direct .. A-3
A.3 LKM SQL to HBase SQOOP Direct ... A-5
A.4 LKM File to SQL SQOOP.. A-7
A.5 LKM Hive to SQL SQOOP.. A-8
A.6 LKM HBase to SQL SQOOP... A-9
A.7 IKM Hive Append ... A-11
A.8 LKM File to Hive LOAD DATA .. A-11
A.9 LKM File to Hive LOAD DATA Direct .. A-13
A.10 LKM HBase to Hive HBASE-SERDE .. A-14
A.11 LKM Hive to HBase Incremental Update HBASE-SERDE Direct A-14
A.12 LKM Hive to File Direct .. A-14
A.13 XKM Hive Sort ... A-15
A.14 LKM File to Oracle OLH-OSCH .. A-15
A.15 LKM File to Oracle OLH-OSCH Direct .. A-18
A.16 LKM Hive to Oracle OLH-OSCH.. A-20
A.17 LKM Hive to Oracle OLH-OSCH Direct .. A-23
A.18 RKM Hive ... A-26
A.19 RKM HBase... A-27
A.20 IKM File to Hive (Deprecated)... A-27
A.21 LKM HBase to Hive (HBase-SerDe) [Deprecated].. A-30
A.22 IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]........................... A-30
A.23 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated] ... A-31
A.24 IKM Hive Control Append (Deprecated)... A-33
A.25 CKM Hive (Deprecated) ... A-33
A.26 IKM Hive Transform (Deprecated) ... A-34
A.27 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]... A-36
A.28 IKM File-Hive to SQL (SQOOP) [Deprecated] .. A-39

B Pig Knowledge Modules

B.1 LKM File to Pig... B-1
B.2 LKM Pig to File... B-3
B.3 LKM HBase to Pig.. B-4
B.4 LKM Pig to HBase.. B-5
B.5 LKM Hive to Pig .. B-6
B.6 LKM Pig to Hive .. B-6
B.7 LKM SQL to Pig SQOOP .. B-7
B.8 XKM Pig Aggregate... B-8
B.9 XKM Pig Distinct.. B-8
B.10 XKM Pig Expression.. B-8
B.11 XKM Pig Filter .. B-8

vi

B.12 XKM Pig Flatten ... B-8
B.13 XKM Pig Join .. B-9
B.14 XKM Pig Lookup ... B-9
B.15 XKM Pig Pivot .. B-9
B.16 XKM Pig Set .. B-9
B.17 XKM Pig Sort .. B-9
B.18 XKM Pig Split ... B-9
B.19 XKM Pig Subquery Filter.. B-10
B.20 XKM Pig Table Function... B-10
B.21 XKM Pig Unpivot... B-10

C Spark Knowledge Modules

C.1 LKM File to Spark .. C-1
C.2 LKM Spark to File .. C-2
C.3 LKM Hive to Spark.. C-2
C.4 LKM Spark to Hive.. C-3
C.5 XKM Spark Aggregate .. C-3
C.6 XKM Spark Distinct ... C-3
C.7 XKM Spark Expression ... C-3
C.8 XKM Spark Filter ... C-3
C.9 XKM Spark Flatten... C-3
C.10 XKM Spark Join.. C-4
C.11 XKM Spark Lookup... C-4
C.12 XKM Spark Pivot.. C-4
C.13 XKM Spark Set.. C-4
C.14 XKM Spark Sort.. C-4
C.15 XKM Spark Split... C-5
C.16 XKM Spark Table Function .. C-5
C.17 IKM Spark Table Function.. C-5
C.18 XKM Spark Unpivot .. C-5

D Components Knowledge Modules

D.1 XKM Oracle Flatten ... D-1
D.2 XKM Oracle Flatten XML ... D-1
D.3 XKM Jagged .. D-2

E Considerations, Limitations, and Issues

E.1 Considerations, Limitations, and Issues... E-1

vii

Preface

This manual describes how to develop Big Data integration projects using Oracle Data
Integrator.

This preface contains the following topics:.

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for anyone interested in using Oracle Data Integrator (ODI)
to develop Big Data integration projects. It provides conceptual information about the
Big Data related features and functionality of ODI and also explains how to use the
ODI graphical user interface to create integration projects.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Data Integrator
Library.

■ Release Notes for Oracle Data Integrator

■ Understanding Oracle Data Integrator

■ Developing Integration Projects with Oracle Data Integrator

■ Administering Oracle Data Integrator

viii

■ Installing and Configuring Oracle Data Integrator

■ Upgrading Oracle Data Integrator

■ Application Adapters Guide for Oracle Data Integrator

■ Developing Knowledge Modules with Oracle Data Integrator

■ Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Migrating From Oracle Warehouse Builder to Oracle Data Integrator

■ Oracle Data Integrator Tool Reference

■ Data Services Java API Reference for Oracle Data Integrator

■ Open Tools Java API Reference for Oracle Data Integrator

■ Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator

■ Java API Reference for Oracle Data Integrator

■ Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

■ Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the
JDeveloper Help Center when you press F1 or from the main menu by selecting
Help, and then Search or Table of Contents.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Big Data Integration with Oracle Data Integrator 1-1

1Big Data Integration with Oracle Data Integrator

[2]This chapter provides an overview of Big Data integration using Oracle Data
Integrator. It also provides a compatibility matrix of the supported Big Data
technologies.

This chapter includes the following sections:

■ Section 1.1, "Overview of Hadoop Data Integration"

■ Section 1.2, "Big Data Knowledge Modules Matrix"

1.1 Overview of Hadoop Data Integration
Apache Hadoop is designed to handle and process data that is typically from data
sources that are non-relational and data volumes that are beyond what is handled by
relational databases.

Oracle Data Integrator can be used to design the 'what' of an integration flow and
assign knowledge modules to define the 'how' of the flow in an extensible range of
mechanisms. The 'how' is whether it is Oracle, Teradata, Hive, Spark, Pig, etc.

Employing familiar and easy-to-use tools and pre-configured knowledge modules
(KMs), Oracle Data Integrator lets you to do the following:

■ Load data into Hadoop directly from Files or SQL databases.

For more information, see Section 4.1, "Integrating Hadoop Data".

■ Validate and transform data within Hadoop with the ability to make the data
available in various forms such as Hive, HBase, or HDFS.

For more information, see Section 4.15, "Validating and Transforming Data Within
Hive".

■ Load the processed data from Hadoop into Oracle database, SQL database, or
Files.

For more information, see Section 4.1, "Integrating Hadoop Data".

■ Execute integration projects as Oozie workflows on Hadoop.

For more information, see Section 5.1, "Executing Oozie Workflows with Oracle
Data Integrator".

■ Audit Oozie workflow execution logs from within Oracle Data Integrator.

For more information, see Section 5.5, "Auditing Hadoop Logs".

■ Generate code in different languages for Hadoop, such as HiveQL, Pig Latin, or
Spark Python.

Big Data Knowledge Modules Matrix

1-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

For more information, see Section 6.8, "Generating Code in Different Languages"

1.2 Big Data Knowledge Modules Matrix
Depending on the source and target technologies, you can use the KMs shown in the
following table in your integration projects. You can also use a combination of these
KMs. For example, to read data from SQL into Spark, you can load the data first in
HDFS using LKM SQL to File Direct, and then use LKM File to Spark to continue.

The following table shows the Big Data KMs that Oracle Data Integrator provides to
integrate data between different source and target technologies.

Table 1–1 Big Data Knowledge Modules

Source Target Knowledge Module

OS File HDFS File -

Hive LKM File to Hive LOAD DATA Direct

HBase -

Pig LKM File to Pig

Spark LKM File to Spark

Generic SQL HDFS File LKM SQL to File SQOOP Direct

Hive LKM SQL to Hive SQOOP

HBase LKM SQL to HBase SQOOP Direct

Pig -

Spark -

HDFS File OS File -

Generic SQL LKM File to SQL SQOOP

Oracle SQL LKM File to Oracle OLH-OSCH Direct

HDFS File -

Hive LKM File to Hive LOAD DATA Direct

HBase -

Pig LKM File to Pig

Spark LKM File to Spark

Hive OS File LKM Hive to File Direct

Generic SQL LKM Hive to SQL SQOOP

Oracle SQL LKM Hive to Oracle OLH-OSCH Direct

HDFS File LKM Hive to File Direct

Hive IKM Hive Append

HBase LKM Hive to HBase Incremental Update HBASE-SERDE Direct

Pig LKM Hive to Pig

Spark LKM Hive to Spark

Big Data Knowledge Modules Matrix

Big Data Integration with Oracle Data Integrator 1-3

HBase OS File -

Generic SQL LKM HBase to SQL SQOOP

Oracle SQL -

HDFS File -

Hive LKM HBase to Hive HBASE-SERDE

HBase -

Pig LKM HBase to Pig

Spark -

Pig OS File LKM Pig to File

Generic SQL LKM SQL to Pig SQOOP

Oracle SQL -

HDFS File LKM Pig to File

Hive LKM Pig to Hive

HBase LKM Pig to HBase

Pig -

Spark -

Spark OS File LKM Spark to File

Generic SQL -

Oracle SQL -

HDFS File LKM Spark to File

Hive LKM Spark to Hive

HBase -

Pig -

Spark -

Table 1–1 (Cont.) Big Data Knowledge Modules

Source Target Knowledge Module

Big Data Knowledge Modules Matrix

1-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

2

Hadoop Data Integration Concepts 2-1

2Hadoop Data Integration Concepts

[3]The chapter provides an introduction to the basic concepts of Hadoop Data integration
using Oracle Data Integrator.

This chapter includes the following sections:

■ Section 2.1, "Hadoop Data Integration with Oracle Data Integrator"

■ Section 2.2, "Generate Code in Different Languages with Oracle Data Integrator"

■ Section 2.3, "Leveraging Apache Oozie to execute Oracle Data Integrator Projects"

■ Section 2.4, "Oozie Workflow Execution Modes"

2.1 Hadoop Data Integration with Oracle Data Integrator
Typical processing in Hadoop includes data validation and transformations that are
programmed as MapReduce jobs. Designing and implementing a MapReduce job
requires expert programming knowledge. However, when you use Oracle Data
Integrator, you do not need to write MapReduce jobs. Oracle Data Integrator uses
Apache Hive and the Hive Query Language (HiveQL), a SQL-like language for
implementing MapReduce jobs.

When you implement a big data processing scenario, the first step is to load the data
into Hadoop. The data source is typically in Files or SQL databases.

After the data is loaded, you can validate and transform it by using HiveQL like you
use SQL. You can perform data validation (such as checking for NULLS and primary
keys), and transformations (such as filtering, aggregations, set operations, and derived
tables). You can also include customized procedural snippets (scripts) for processing
the data.

When the data has been aggregated, condensed, or processed into a smaller data set,
you can load it into an Oracle database, other relational database, HDFS, HBase, or
Hive for further processing and analysis. Oracle Loader for Hadoop is recommended
for optimal loading into an Oracle database.

For more information, see Chapter 4, "Integrating Hadoop Data".

2.2 Generate Code in Different Languages with Oracle Data Integrator
By default, Oracle Data Integrator (ODI) uses HiveQL to implement the mappings.
However, Oracle Data Integrator also lets you to implement the mappings using Pig
Latin and Spark Python. Once your mapping is designed, you can either implement it
using the default HiveQL, or choose to implement it using Pig Latin or Spark Python.

Leveraging Apache Oozie to execute Oracle Data Integrator Projects

2-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

Support for Pig Latin and Spark Python in ODI is achieved through a set of
component KMs that are specific to these languages. These component KMs are used
only when a Pig data server or a Spark data server is used as the staging location for
your mapping.

For example, if you use a Pig data server as the staging location, the Pig related KMs
are used to implement the mapping and Pig Latin code is generated. Similarly, to
generate Spark Python code, you must use a Spark data server as the staging location
for your mapping.

For more information about generating code in different languages and the Pig and
Spark component KMs, see the following:

■ Appendix B, "Pig Knowledge Modules".

■ Appendix C, "Spark Knowledge Modules".

■ Chapter 6, "Using Query Processing Engines to Generate Code in Different
Languages".

2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects
Apache Oozie is a workflow scheduler system that helps you orchestrate actions in
Hadoop. It is a server-based Workflow Engine specialized in running workflow jobs
with actions that run Hadoop MapReduce jobs. Implementing and running Oozie
workflow requires in-depth knowledge of Oozie.

However, Oracle Data Integrator does not require you to be an Oozie expert. With
Oracle Data Integrator you can easily define and execute Oozie workflows.

Oracle Data Integrator allows you to automatically generate an Oozie workflow
definition by executing an integration project (package, procedure, mapping, or
scenario) on an Oozie engine. The generated Oozie workflow definition is deployed
and executed into an Oozie workflow system. You can also choose to only deploy the
Oozie workflow to validate its content or execute it at a later time.

Information from the Oozie logs is captured and stored in the ODI repository along
with links to the Oozie UIs. This information is available for viewing within ODI
Operator and Console.

For more information, see Chapter 5, "Executing Oozie Workflows".

2.4 Oozie Workflow Execution Modes
ODI provides the following two modes for executing the Oozie workflows:

■ TASK

Task mode generates an Oozie action for every ODI task. This is the default mode.

The task mode cannot handle the following:

– KMs with scripting code that spans across multiple tasks.

– KMs with transactions.

– KMs with file system access that cannot span file access across tasks.

– ODI packages with looping constructs.

■ SESSION

Session mode generates an Oozie action for the entire session.

Oozie Workflow Execution Modes

Hadoop Data Integration Concepts 2-3

ODI automatically uses this mode if any of the following conditions is true:

– Any task opens a transactional connection.

– Any task has scripting.

– A package contains loops.

Note that loops in a package are not supported by Oozie engines and may not
function properly in terms of execution and/or session log content retrieval,
even when running in SESSION mode.

By default, the Oozie Runtime Engines use the Task mode, that is, the default value of
the OOZIE_WF_GEN_MAX_DETAIL property for the Oozie Runtime Engines is TASK.

You can configure an Oozie Runtime Engine to use Session mode, irrespective of
whether the conditions mentioned above are satisfied or not. To force an Oozie
Runtime Engine to generate session level Oozie workflows, set the OOZIE_WF_GEN_MAX_
DETAIL property for the Oozie Runtime Engine to SESSION.

For more information, see Section 5.2.2, "Oozie Runtime Engine Properties".

Note: This mode is recommended for most of the use cases.

Oozie Workflow Execution Modes

2-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

3

Setting Up the Environment for Integrating Hadoop Data 3-1

3Setting Up the Environment for Integrating
Hadoop Data

[4]This chapter provides information steps you need to perform to set up the
environment to integrate Hadoop data.

This chapter includes the following sections:

■ Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard"

■ Section 3.2, "Creating and Initializing the Hadoop Data Server"

■ Section 3.3, "Creating a Hadoop Physical Schema"

■ Section 3.4, "Configuring the Oracle Data Integrator Agent to Execute Hadoop
Jobs"

■ Section 3.5, "Configuring Oracle Loader for Hadoop"

■ Section 3.6, "Configuring Oracle Data Integrator to Connect to a Secure Cluster"

■ Section 3.7, "Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs
on the Local Agent"

3.1 Configuring Big Data technologies using the Big Data Configurations
Wizard

The Big Data Configurations wizard provides a single entry point to set up multiple
Hadoop technologies. You can quickly create data servers, physical schema, logical
schema, and set a context for different Hadoop technologies such as Hadoop, HBase,
Oozie, Spark, Hive, Pig, etc.

The default metadata for different distributions, such as properties, host names, port
numbers, etc., and default values for environment variables are pre-populated for you.
This helps you to easily create the data servers along with the physical and logical
schema, without having in-depth knowledge about these technologies.

After all the technologies are configured, you can validate the settings against the data
servers to test the connection status.

To run the Big Data Configurations Wizard:

Note: If you do not want to use the Big Data Configurations wizard,
you can set up the data servers for the Big Data technologies manually
using the information mentioned in the subsequent sections.

Configuring Big Data technologies using the Big Data Configurations Wizard

3-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

1. In ODI Studio, select File and click New....

2. In the New Gallery dialog, select Big Data Configurations and click OK.

The Big Data Configurations wizard appears.

3. In the General Settings panel of the wizard, specify the required options.

See Section 3.1.1, "General Settings" for more information.

4. Click Next.

Data server panel for each of the technologies you selected in the General Settings
panel will be displayed.

5. In the Hadoop panel of the wizard, do the following:

■ Specify the options required to create the Hadoop data server.

See Section 3.2.1, "Hadoop Data Server Definition" for more information.

■ In Properties section, click the + icon to add any data server properties.

■ Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

6. Click Next.

7. In the HBase panel of the wizard, do the following:

■ Specify the options required to create the HBase data server.

See Section 3.1.2, "HBase Data Server Definition" for more information.

■ In the Properties section, click + icon to add any data server properties.

■ Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

8. In the Spark panel of the wizard, do the following:

■ Specify the options required to create the Spark data server.

See Section 6.6.1, "Spark Data Server Definition" for more information.

■ In the Properties section, click + icon to add any data server properties.

■ Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

9. Click Next.

10. In the Pig panel of the wizard, do the following:

■ Specify the options required to create the Pig data server.

See Section 6.4.1, "Pig Data Server Definition" for more information.

■ In the Properties section, click + icon to add any data server properties.

■ Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

11. Click Next.

12. In the Hive panel of the wizard, do the following:

■ Specify the options required to create the Hive data server.

See Section 6.2.1, "Hive Data Server Definition" for more information.

■ In the Properties section, click + icon to add any data server properties.

Configuring Big Data technologies using the Big Data Configurations Wizard

Setting Up the Environment for Integrating Hadoop Data 3-3

■ Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

13. Click Next.

14. In the Oozie panel of the wizard, do the following:

■ Specify the options required to create the Oozie runtime engine.

See Section 5.2.1, "Oozie Runtime Engine Definition" for more information.

■ Under Properties section, review the data server properties that are listed.

Note: You cannot add new properties or remove listed properties. However, if
required, you can change the value of listed properties.

See Section 5.2.2, "Oozie Runtime Engine Properties" for more information.

■ Select a logical schema and a context from the appropriate drop-down lists.

15. Click Next.

16. In the Validate all the settings panel, click Test All Settings to validate the
settings against the data servers to ensure the connection status.

17. Click Finish.

3.1.1 General Settings
The following table describes the options that you need to set on the General Settings
panel of the Big Data Configurations wizard.

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard".

3.1.2 HBase Data Server Definition
The following table describes the options that you must specify to create an HBase
data server.

Note: Only the fields required or specific for defining a HBase data server are
described.

Table 3–1 General Settings Options

Option Description

Prefix Specify a prefix. This prefix is attached to the data server name,
logical schema name, and physical schema name.

Distribution Select a distribution, either Manual or CDH <version>.

Base Directory Specify the base directory. This base directory is automatically
populated in all other panels of the wizard.

Note: This option appears only if the distribution is other than
Manual.

Technologies Select the technologies that you want to configure.

Note: Data server creation panels only for the selected
technologies are displayed.

Creating and Initializing the Hadoop Data Server

3-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard".

3.2 Creating and Initializing the Hadoop Data Server
To create and initialize the Hadoop data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Hadoop and then
click New Data Server.

3. In the Definition tab, specify the details of the Hadoop data server.

See Section 3.2.1, "Hadoop Data Server Definition" for more information.

4. In the Properties tab, specify the properties for the Hadoop data server.

See Section 3.2.2, "Hadoop Data Server Properties" for more information.

5. Click Initialize to initialize the Hadoop data server.

Initializing the Hadoop data server creates the structure of the ODI Master
repository and Work repository in HDFS.

6. Click Test Connection to test the connection to the Hadoop data server.

3.2.1 Hadoop Data Server Definition
The following table describes the fields that you need to specify on the Definition tab
when creating a new Hadoop data server.

Note: Only the fields required or specific for defining a Hadoop data server are
described.

Table 3–2 HBase Data Server Definition

Option Description

Name Type a name for the data server. This name appears in Oracle
Data Integrator.

HBase Quorum Quorum of the HBase installation. For example,
localhost:2181.

User/Password User name with its password.

Hadoop Data Server Hadoop data server that you want to associate with the HBase
data server.

Additional Classpath By default, the following classpaths are added:

■ /usr/lib/hbase/*

■ usr/lib/hbase/lib/*

Specify the additional classpaths, if required.

Table 3–3 Hadoop Data Server Definition

Field Description

Name Name of the data server that appears in Oracle Data Integrator.

Data Server Physical name of the data server.

Creating and Initializing the Hadoop Data Server

Setting Up the Environment for Integrating Hadoop Data 3-5

Section 3.2, "Creating and Initializing the Hadoop Data Server"

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard".

3.2.2 Hadoop Data Server Properties
The following table describes the properties that you can configure in the Properties
tab when defining a new Hadoop data server.

Note: These properties can be inherited by other Hadoop technologies, such as Hive or
HDFS. To inherit these properties, you must select the configured Hadoop data server
when creating data server for other Hadoop technologies.

User/Password Hadoop user with its password.

If password is not provided, only simple authentication is
performed using the username on HDFS and Oozie.

HDFS Node Name URI URI of the HDFS node name.

hdfs://localhost:8020

Resource Manager/Job
Tracker URI

URI of the resource manager or the job tracker.

localhost:8032

ODI HDFS Root Path of the ODI HDFS root directory.

/user/<login_username>/odi_home.

Additional Class Path Specify additional classpaths.

Add the following additional classpaths:

■ /usr/lib/hadoop/*

■ /usr/lib/hadoop/lib/*

■ /usr/lib/hadoop-hdfs/*

■ /usr/lib/hadoop-mapreduce/*

■ /usr/lib/hadoop-yarn/*

■ /usr/lib/oozie/lib/*

■ /etc/hadoop/conf/

Table 3–4 Hadoop Data Server Properties

Property Description/Value

Properties mandatory for Hadoop and Hive

The following properties are mandatory for Hadoop and Hive.

HADOOP_HOME Location of Hadoop dir. For example, /usr/lib/hadoop

HADOOP_CONF Location of Hadoop configuration files such as core-default.xml,
core-site.xml, and hdfs-site.xml. For example,
/home/shared/hadoop-conf

HIVE_HOME Location of Hive dir. For example, /usr/lib/hive

HIVE_CONF Location of Hive configuration files such as hive-site.xml. For
example, /home/shared/hive-conf

Table 3–3 (Cont.) Hadoop Data Server Definition

Field Description

Creating and Initializing the Hadoop Data Server

3-6 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

HADOOP_CLASSPATH $HIVE_HOME/lib/hive-metastore-*.jar:$HIVE_
HOME/lib/libthrift-*.jar:$HIVE_
HOME/lib/libfb*.jar:$HIVE_
HOME/lib/hive-exec-*.jar:$HIVE_CONF

HADOOP_CLIENT_OPTS -Dlog4j.debug -Dhadoop.root.logger=INFO,console
-Dlog4j.configuration=file:/etc/hadoop/conf.cloudera.ya
rn/log4j.properties

ODI_ADDITIONAL_
CLASSPATH

$HIVE_HOME/lib/'*':$HADOOP_HOME/client/*:$HADOOP_CONF

HIVE_SESSION_JARS $HIVE_HOME/lib/hive-contrib-*.jar:<ODI library
directory>/wlhive.jar

■ Actual path of wlhive.jar can be determined under ODI
installation home.

■ Include other JAR files as required, such as custom SerDes
JAR files. These JAR files are added to every Hive JDBC
session and thus are added to every Hive MapReduce job.

■ List of JARs is separated by ":", wildcards in file names must
not evaluate to more than one file.

Properties mandatory for HBase ((In addition to base Hadoop and Hive environment
variables)

The following properties are mandatory for HBase. Note that you need to set these properties
in addition to the base Hadoop and Hive properties.

HBASE_HOME Location of HBase dir. For example, /usr/lib/hbase

HADOOP_CLASSPATH $HBASE_HOME/lib/hbase-*.jar:$HIVE_
HOME/lib/hive-hbase-handler*.jar:$HBASE_HOME/hbase.jar

ODI_ADDITIONAL_
CLASSPATH

$HBASE_HOME/hbase.jar

HIVE_SESSION_JARS $HBASE_HOME/hbase.jar:$HBASE_
HOME/lib/hbase-sep-api-*.jar:$HBASE_
HOME/lib/hbase-sep-impl-*hbase*.jar:/$HBASE_
HOME/lib/hbase-sep-impl-common-*.jar:/$HBASE_
HOME/lib/hbase-sep-tools-*.jar:$HIVE_
HOME/lib/hive-hbase-handler-*.jar

Properties mandatory for Oracle Loader for Hadoop (In addition to base Hadoop and Hive
properties)

The following properties are mandatory for Oracle Loader for Hadoop. Note that you need to
set these properties in addition to the base Hadoop and Hive properties.

OLH_HOME Location of OLH installation. For example,
/u01/connectors/olh

OLH_FILES usr/lib/hive/lib/hive-contrib-1.1.0-cdh5.5.1.jar

ODCH_HOME Location of OSCH installation. For example,
/u01/connectors/osch

HADOOP_CLASSPATH $OLH_HOME/jlib/*:$OSCH_HOME/jlib/*

In order to work with OLH, the Hadoop jars in the HADOOP_
CLASSPATH have to be manually resolved without wildcards.

Table 3–4 (Cont.) Hadoop Data Server Properties

Property Description/Value

Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs

Setting Up the Environment for Integrating Hadoop Data 3-7

Section 3.2, "Creating and Initializing the Hadoop Data Server"

3.3 Creating a Hadoop Physical Schema
Create a Hadoop physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop
Jobs

You must configure the Oracle Data Integrator agent to execute Hadoop jobs.

To configure the Oracle Data Integrator agent:

1. Install Hadoop on your Oracle Data Integrator agent computer.

For Oracle Big Data Appliance, see Oracle Big Data Appliance Software User's Guide
for instructions for setting up a remote Hadoop client.

2. Install Hive on your Oracle Data Integrator agent computer.

3. Install SQOOP on your Oracle Data Integrator agent computer.

4. Set the base properties for Hadoop and Hive on your ODI agent computer.

These properties must be added as Hadoop data server properties. For more
information, see Section 3.2.2, "Hadoop Data Server Properties".

OLH_JARS Comma-separated list of all JAR files required for custom input
formats, Hive, Hive SerDes, and so forth, used by Oracle Loader
for Hadoop. All filenames have to be expanded without
wildcards.

For example:

$HIVE_
HOME/lib/hive-metastore-0.10.0-cdh4.5.0.jar,$HIVE_
HOME/lib/libthrift-0.9.0-cdh4-1.jar,$HIVE_
HOME/lib/libfb303-0.9.0.jar

OLH_SHAREDLIBS $OLH_HOME/lib/libolh12.so,$OLH_
HOME/lib/libclntsh.so.12.1,$OLH_
HOME/lib/libnnz12.so,$OLH_HOME/lib/libociei.so,$OLH_
HOME/lib/libclntshcore.so.12.1,$OLH_HOME/lib/libons.so

ODI_ADDITIONAL_
CLASSPATH

$OSCH_HOME/jlib/'*'

Properties mandatory for SQOOP (In addition to base Hadoop and Hive properties)

The following properties are mandatory for SQOOP. Note that you need to set these properties
in addition to the base Hadoop and Hive properties.

SQOOP_HOME Location of Sqoop dir. For example, /usr/lib/sqoop

SQOOP_LIBJARS Location of the SQOOP library jars. For example,
usr/lib/hive/lib/hive-contrib-1.1.0-cdh5.5.1.jar

Table 3–4 (Cont.) Hadoop Data Server Properties

Property Description/Value

Configuring Oracle Loader for Hadoop

3-8 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

5. If you plan to use HBase features, set the properties on your ODI agent computer.
Note that you need to set these properties in addition to the base Hadoop and
Hive properties.

These properties must be added as Hadoop data server properties. For more
information, see Section 3.2.2, "Hadoop Data Server Properties".

3.5 Configuring Oracle Loader for Hadoop
If you want to use Oracle Loader for Hadoop, you must install and configure Oracle
Loader for Hadoop on your Oracle Data Integrator agent computer.

To install and configure Oracle Loader for Hadoop:

1. Install Oracle Loader for Hadoop on your Oracle Data Integrator agent computer.

See Installing Oracle Loader for Hadoop in Oracle Big Data Connectors User's Guide.

2. To use Oracle SQL Connector for HDFS (OLH_OUTPUT_MODE=DP_OSCH or OSCH), you
must first install it.

See "Oracle SQL Connector for Hadoop Distributed File System Setup" in Oracle Big
Data Connectors User's Guide.

3. Set the properties for Oracle Loader for Hadoop on your ODI agent computer.
Note that you must set these properties in addition to the base Hadoop and Hive
properties.

These properties must be added as Hadoop data server properties. For more
information, see Section 3.2.2, "Hadoop Data Server Properties".

3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster
To run the Oracle Data Integrator agent on a Hadoop cluster that is protected by
Kerberos authentication, you must configure a Kerberos-secured cluster.

To use a Kerberos-secured cluster:

1. Log in to the node04 of the Oracle Big Data Appliance, where the Oracle Data
Integrator agent runs.

2. Generate a new Kerberos ticket for the oracle user. Use the following command,
replacing realm with the actual Kerberos realm name.

$ kinit oracle@realm

3. Set the environment variables by using the following commands. Substitute the
appropriate values for your appliance:

$ export KRB5CCNAME=Kerberos-ticket-cache-directory

$ export KRB5_CONFIG=Kerberos-configuration-file

$ export HADOOP_OPTS="$HADOOP_OPTS
-Djavax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.i
nternal.
jaxp.DocumentBuilderFactoryImpl-Djava.security.krb5.conf=Kerberos-conf
iguration-file"

In this example, the configuration files are named krb5* and are located in
/tmp/oracle_krb/:

$ export KRB5CCNAME=/tmp/oracle_krb/krb5cc_1000

Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

Setting Up the Environment for Integrating Hadoop Data 3-9

$ export KRB5_CONFIG=/tmp/oracle_krb/krb5.conf

$ export HADOOP_OPTS="$HADOOP_OPTS -D
javax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.int
ernal. jaxp.DocumentBuilderFactoryImpl -D
java.security.krb5.conf=/tmp/oracle_krb/krb5.conf"

4. Redefine the JDBC connection URL, using syntax like the following:

jdbc:hive2://node1:10000/default;principal=HiveServer2-Kerberos-Princi
pal

For example:

jdbc:hive2://bda1node01.example.com:10000/default;principal=
hive/HiveServer2Host@EXAMPLE.COM

See also, "HiveServer2 Security Configuration" in the CDH5 Security Guide at the
following URL:

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/la
test/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html

5. Renew the Kerberos ticket for the Oracle use on a regular basis to prevent
disruptions in service.

See Oracle Big Data Appliance Software User's Guide for instructions about managing
Kerberos on Oracle Big Data Appliance.

3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs
on the Local Agent

For executing Hadoop jobs on the local agent of an Oracle Data Integrator Studio
installation, follow the configuration steps in the Section 3.4, "Configuring the Oracle
Data Integrator Agent to Execute Hadoop Jobs" with the following change: Copy JAR
files into the Oracle Data Integrator userlib directory.

For example:

Linux: $USER_HOME/.odi/oracledi/userlib directory.

Windows: C:\Users\<USERNAME>\AppData\Roaming\odi\oracledi\userlib directory

Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

3-10 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

4

Integrating Hadoop Data 4-1

4Integrating Hadoop Data

[5]This chapter provides information about the steps you need to perform to integrate
Hadoop data.

This chapter includes the following sections:

■ Section 4.1, "Integrating Hadoop Data"

■ Section 4.2, "Setting Up File Data Sources"

■ Section 4.3, "Setting Up Hive Data Sources"

■ Section 4.4, "Setting Up HBase Data Sources"

■ Section 4.5, "Importing Hadoop Knowledge Modules"

■ Section 4.6, "Creating a Oracle Data Integrator Model from a Reverse-Engineered
Hive, HBase, and HDFS Models"

■ Section 4.7, "Loading Data from Files into Hive"

■ Section 4.8, "Loading Data from Hive to Files"

■ Section 4.9, "Loading Data from HBase into Hive"

■ Section 4.10, "Loading Data from Hive into Hbase"

■ Section 4.11, "Loading Data from an SQL Database into Hive, HBase, and File
using SQOOP"

■ Section 4.12, "Loading Data from an SQL Database into Hive using SQOOP"

■ Section 4.13, "Loading Data from an SQL Database into File using SQOOP"

■ Section 4.14, "Loading Data from an SQL Database into HBase using SQOOP"

■ Section 4.15, "Validating and Transforming Data Within Hive"

■ Section 4.16, "Loading Data into an Oracle Database from Hive and File"

■ Section 4.17, "Loading Data into an SQL Database from Hbase, Hive and File using
SQOOP"

4.1 Integrating Hadoop Data
The following table summarizes the steps for integrating Hadoop data.

Setting Up File Data Sources

4-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

4.2 Setting Up File Data Sources
In the Hadoop context, there is a distinction between files in Hadoop Distributed File
System (HDFS) and local files (outside of HDFS).

To define a data source:

1. Create a Data Server object under File technology.

2. Create a Physical Schema object for every directory to be accessed.

3. Create a Logical Schema object for every directory to be accessed.

4. Create a Model for every Logical Schema.

5. Create one or more data stores for each different type of file and wildcard name
pattern.

6. For HDFS files, create a Data Server object under File technology by entering the
HDFS name node in the field JDBC URL and leave the JDBC Driver name empty.
For example:

hdfs://bda1node01.example.com:8020

Test Connection is not supported for this Data Server configuration.

Table 4–1 Integrating Hadoop Data

Step Description

Set Up Data Sources Set up the data sources to create the data source models. You
must set up File, Hive, and HBase data sources.

See Section 4.2, "Setting Up File Data Sources"

See Section 4.3, "Setting Up Hive Data Sources"

See Section 4.4, "Setting Up HBase Data Sources"

Import Hadoop Knowledge
Modules

Import the Hadoop KMs into Global Objects or a project.

See Section 4.5, "Importing Hadoop Knowledge Modules"

Create Oracle Data
Integrator Models

Reverse-engineer the Hive and HBase models to create Oracle
Data Integrator models.

See Section 4.6, "Creating a Oracle Data Integrator Model from a
Reverse-Engineered Hive, HBase, and HDFS Models"

Integrate Hadoop Data Design mappings to load, validate, and transform Hadoop data.

See Section 4.7, "Loading Data from Files into Hive"

See Section 4.9, "Loading Data from HBase into Hive"

See Section 4.10, "Loading Data from Hive into Hbase"

See Section 4.11, "Loading Data from an SQL Database into Hive,
HBase, and File using SQOOP"

See Section 4.15, "Validating and Transforming Data Within
Hive"

See Section 4.16, "Loading Data into an Oracle Database from
Hive and File"

See Section 4.17, "Loading Data into an SQL Database from
Hbase, Hive and File using SQOOP"

Note: No dedicated technology is defined for HDFS files.

Setting Up HBase Data Sources

Integrating Hadoop Data 4-3

Section 4.1, "Integrating Hadoop Data"

4.3 Setting Up Hive Data Sources
The following steps in Oracle Data Integrator are required for connecting to a Hive
system. Oracle Data Integrator connects to Hive by using JDBC.

Prerequisites
The Hive technology must be included in the standard Oracle Data Integrator
technologies. If it is not, then import the technology in INSERT_UPDATE mode from the
xml-reference directory.

You must add all Hive-specific flex fields.

To set up a Hive data source:

1. Create a Data Server object under Hive technology.

2. Set the following locations under JDBC:

JDBC Driver: weblogic.jdbc.hive.HiveDriver

JDBC URL: jdbc:weblogic:hive://<host>:<port>[; property=value[;...]]

For example,
jdbc:weblogic:hive://localhost:10000;DatabaseName=default;User=default
;Password=default

3. Set the following under Flexfields:

Hive Metastore URIs: for example, thrift://BDA:10000

4. Ensure that the Hive server is up and running.

5. Test the connection to the Data Server.

6. Create a Physical Schema. Enter the name of the Hive schema in both schema
fields of the Physical Schema definition.

7. Create a Logical Schema object.

8. Import RKM Hive into Global Objects or a project.

9. Create a new model for Hive Technology pointing to the logical schema.

10. Perform a custom reverse-engineering operation using RKM Hive.

At the end of this process, the Hive Data Model contains all Hive tables with their
columns, partitioning, and clustering details stored as flex field values.

Section 4.1, "Integrating Hadoop Data"

4.4 Setting Up HBase Data Sources
The following steps in Oracle Data Integrator are required for connecting to a HBase
system.

Note: Usually User ID and Password are provided in the respective
fields of an ODI Data Server. In case where a Hive user is defined
without password, you must add password=default as part of the
JDBC URL and the password field of Data Server shall be left blank.

Importing Hadoop Knowledge Modules

4-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

Prerequisites
The HBase technology must be included in the standard Oracle Data Integrator
technologies. If it is not, then import the technology in INSERT_UPDATE mode from the
xml-reference directory.

You must add all HBase-specific flex fields.

To set up a HBase data source:

1. Create a Data Server object under HBase technology.

JDBC Driver and URL are not available for data servers of this technology.

2. Set the following under Flexfields:

HBase Quorum: Quorum of the HBase installation. For example:
zkhost1.mydomain.com,zkhost2.mydomain.com,zkhost3.mydomain.com

3. Ensure that the HBase server is up and running.

4. Create a Physical Schema.

5. Create a Logical Schema object.

6. Import RKM HBase into Global Objects or a project.

7. Create a new model for HBase Technology pointing to the logical schema.

8. Perform a custom reverse-engineering operation using RKM HBase.

At the end of this process, the HBase Data Model contains all the HBase tables with
their columns and data types.

Section 4.1, "Integrating Hadoop Data"

4.5 Importing Hadoop Knowledge Modules
You need to import the KMs that you want to use in your integration projects.

Import the following KMs into Global Objects or a project:

■ IKM Hive Control Append

■ CKM Hive

■ RKM Hive

■ RKM HBase

■ IKM Hive Transform

■ IKM File-Hive to Oracle (OLH-OSCH)

■ IKM File-Hive to SQL (SQOOP)

■ IKM SQL to Hive-HBase-File (SQOOP)

Note: You cannot test the connection to the HBase Data Server.

Note: Ensure that the HBase tables contain some data before
performing reverse-engineering. The reverse-engineering operation
does not work if the HBase tables are empty.

Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and HDFS Models

Integrating Hadoop Data 4-5

Section 4.1, "Integrating Hadoop Data"

4.6 Creating a Oracle Data Integrator Model from a Reverse-Engineered
Hive, HBase, and HDFS Models

You must create a ODI Model from a reverse-engineered Hive, HBase, and HDFS
Models. The reverse engineering process creates Hive and HBase creates data stores
for the corresponding Hive and HBase tables. You can use these data stores as source
or target in your mappings.

This section contains the following topics:

■ Creating a Model

■ Reverse Engineering Hive Tables

■ Reverse Engineering HBase Tables

■ Reverse Engineering HDFS Files

4.6.1 Creating a Model
To create a model that is based on the technology hosting Hive, HBase, or HDFS and
on the logical schema created when you configured the Hive, HBase, or HDFS
connection, follow the standard procedure described in Developing Integration Projects
with Oracle Data Integrator.

Section 4.6, "Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive,
HBase, and HDFS Models"

4.6.2 Reverse Engineering Hive Tables
RKM Hive is used to reverse engineer Hive tables and views. To perform a customized
reverse-engineering of Hive tables with RKM Hive, follow the usual procedures, as
described in Developing Integration Projects with Oracle Data Integrator. This topic details
information specific to Hive tables.

The reverse-engineering process creates the data stores for the corresponding Hive
table or views. You can use the data stores as either a source or a target in a mapping.

For more information about RKM Hive, see Section A.18, "RKM Hive".

Table 4–2 describes the created flex fields.

Table 4–2 Flex Fields for Reverse-Engineered Hive Tables and Views

Object Flex Field Name Flex Field Code
Flex Field
Type Description

DataStore Hive Buckets HIVE_BUCKETS String Number of buckets to be used for
clustering

Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and HDFS Models

4-6 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

Section 4.6, "Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive,
HBase, and HDFS Models"

4.6.3 Reverse Engineering HBase Tables
RKM HBase is used to reverse engineer HBase tables. To perform a customized
reverse-engineering of HBase tables with RKM HBase, follow the usual procedures, as
described in Developing Integration Projects with Oracle Data Integrator. This topic details
information specific to HBase tables.

The reverse-engineering process creates the data stores for the corresponding HBase
table. You can use the data stores as either a source or a target in a mapping.

For more information about RKM HBase, see Section A.19, "RKM HBase".

Table 4–3 describes the created flex fields.

Section 4.6, "Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive,
HBase, and HDFS Models"

Column Hive Partition
Column

HIVE_PARTITION_COLUMN Numeric All partitioning columns are marked as
"1". Partition information can come
from the following:

■ Mapped source column

■ Constant value specified in the
target column

■ File name fragment

Column Hive Cluster Column HIVE_CLUSTER_COLUMN Numeric All cluster columns are marked as "1".

Column Hive Sort Column HIVE_SORT_COLUMN Numeric All sort columns are marked as "1".

Note: Ensure that the HBase tables contain some data before
performing reverse-engineering. The reverse-engineering operation
does not work if the HBase tables are empty.

Table 4–3 Flex Fields for Reverse-Engineered HBase Tables

Object Flex Field Name Flex Field Code
Flex Field
Type Description

DataStore HBase Quorum HBASE_QUORUM String Comma separated list of Zookeeper
nodes. It is used by the HBase client to
locate the HBase Master server and
HBase Region servers.

Column HBase storage type HBASE_STORAGE_TYPE String Defines how a data type is physically
stored in HBase.

Permitted values are Binary and
String (default).

Table 4–2 (Cont.) Flex Fields for Reverse-Engineered Hive Tables and Views

Object Flex Field Name Flex Field Code
Flex Field
Type Description

Loading Data from HBase into Hive

Integrating Hadoop Data 4-7

4.6.4 Reverse Engineering HDFS Files
HDFS files can be reverse engineered like regular files. To reverse-engineer HDFS files,
you must follow the same process as that to reverse-engineer regular files.

Refer to Reverse-engineer a File Model in Connectivity and Knowledge Modules Guide for
Oracle Data Integrator for more information.

Section 4.6, "Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive,
HBase, and HDFS Models"

4.7 Loading Data from Files into Hive
To load data from the local file system or the HDFS file system into Hive tables:

1. Create the data stores for local files and HDFS files.

Refer to Connectivity and Knowledge Modules Guide for Oracle Data Integrator for
information about reverse engineering and configuring local file data sources.

2. Create a mapping using the file data store as the source and the corresponding
Hive table as the target.

3. Use the LKM File to Hive LOAD DATA or the LKM File to Hive LOAD DATA
Direct knowledge module specified in the physical diagram of the mapping.

These integration knowledge modules load data from flat files into Hive, replacing
or appending any existing data.

For more information about the KMs, see the following sections:

■ Section A.8, "LKM File to Hive LOAD DATA"

■ Section A.9, "LKM File to Hive LOAD DATA Direct"

4.8 Loading Data from Hive to Files
To load data from Hive tables to a local file system or a HDFS file:

1. Create a data store for the Hive tables that you want to load in flat files.

Refer to "Setting Up Hive Data Sources" for information about reverse engineering
and configuring Hive data sources.

2. Create a mapping using the Hive data store as the source and the corresponding
File data source as the target.

3. Use the LKM Hive to File Direct knowledge module, specified in the physical
diagram of the mapping.

This integration knowledge module loads data from Hive into flat Files.

For more information about LKM Hive to File Direct, see Section A.12, "LKM Hive
to File Direct".

4.9 Loading Data from HBase into Hive
To load data from an HBase table into Hive:

1. Create a data store for the HBase table that you want to load in Hive.

Refer to "Setting Up HBase Data Sources" for information about reverse
engineering and configuring HBase data sources.

Loading Data from Hive into Hbase

4-8 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

2. Create a mapping using the HBase data store as the source and the corresponding
Hive table as the target.

3. Use the LKM HBase to Hive HBASE-SERDE knowledge module, specified in the
physical diagram of the mapping.

This knowledge module provides read access to an HBase table from Hive.

For more information about LKM HBase to Hive HBASE-SERDE, see Section A.10,
"LKM HBase to Hive HBASE-SERDE".

4.10 Loading Data from Hive into Hbase
To load data from a Hive table into HBase:

1. Create a data store for the Hive tables that you want to load in HBase.

Refer to "Setting Up Hive Data Sources" for information about reverse engineering
and configuring Hive data sources.

2. Create a mapping using the Hive data store as the source and the corresponding
HBase table as the target.

3. Use the LKM Hive to HBase Incremental Update HBASE-SERDE Direct
knowledge module, specified in the physical diagram of the mapping.

This integration knowledge module loads data from Hive into HBase and
supports inserting new rows as well as updating existing data.

For more information about LKM Hive to HBase Incremental Update HBASE-SERDE
Direct, see Section A.11, "LKM Hive to HBase Incremental Update HBASE-SERDE
Direct".

4.11 Loading Data from an SQL Database into Hive, HBase, and File
using SQOOP

To load data from an SQL Database into a Hive, HBase, and File target:

1. Create a data store for the SQL source that you want to load into Hive, HBase, or
File target.

Refer to Connectivity and Knowledge Modules Guide for Oracle Data Integrator for
information about reverse engineering and configuring SQL data sources.

2. Create a mapping using the SQL source data store as the source and the
corresponding HBase table, Hive table, or HDFS files as the target.

3. Use the IKM SQL to Hive-HBase-File (SQOOP) knowledge module, specified in
the physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into Hive,
HBase, or Files target. It uses SQOOP to load the data into Hive, HBase, and File
targets. SQOOP uses parallel JDBC connections to load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see Section A.23,
"IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]".

4.12 Loading Data from an SQL Database into Hive using SQOOP
To load data from an SQL Database into a Hive target:

1. Create a data store for the SQL source that you want to load into Hive target.

Loading Data from an SQL Database into HBase using SQOOP

Integrating Hadoop Data 4-9

Refer to Connectivity and Knowledge Modules Guide for Oracle Data Integrator for
information about reverse engineering and configuring SQL data sources.

2. Create a mapping using the SQL source data store as the source and the
corresponding Hive table as the target.

3. Use the LKM SQL to Hive SQOOP knowledge module, specified in the physical
diagram of the mapping.

This KM loads data from a SQL source into Hive. It uses SQOOP to load the data
into Hive. SQOOP uses parallel JDBC connections to load the data.

For more information about LKM SQL to Hive SQOOP, see Section A.1, "LKM SQL to
Hive SQOOP".

4.13 Loading Data from an SQL Database into File using SQOOP
To load data from an SQL Database into a File target:

1. Create a data store for the SQL source that you want to load into File target.

Refer to Connectivity and Knowledge Modules Guide for Oracle Data Integrator for
information about reverse engineering and configuring SQL data sources.

2. Create a mapping using the SQL source data store as the source and the
corresponding HDFS files as the target.

3. Use the LKM SQL to File SQOOP Direct knowledge module, specified in the
physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into Files target.
It uses SQOOP to load the data into File targets. SQOOP uses parallel JDBC
connections to load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see Section A.23,
"IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]".

4.14 Loading Data from an SQL Database into HBase using SQOOP
To load data from an SQL Database into a HBase target:

1. Create a data store for the SQL source that you want to load into HBase target.

Refer to Connectivity and Knowledge Modules Guide for Oracle Data Integrator for
information about reverse engineering and configuring SQL data sources.

2. Create a mapping using the SQL source data store as the source and the
corresponding HBase table as the target.

3. Use the LKM SQL to HBase SQOOP Direct knowledge module, specified in the
physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into HBase
target. It uses SQOOP to load the data into HBase targets. SQOOP uses parallel
JDBC connections to load the data.

For more information about LKM SQL to HBase SQOOP Direct, see Section A.3, "LKM
SQL to HBase SQOOP Direct".

Validating and Transforming Data Within Hive

4-10 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

4.15 Validating and Transforming Data Within Hive
After loading data into Hive, you can validate and transform the data using the
following knowledge modules.

■ IKM Hive Control Append

For more information, see Section A.7, "IKM Hive Append".

■ IKM Hive Append

For more information, see Section A.7, "IKM Hive Append".

■ CKM Hive

For more information, see Section A.25, "CKM Hive (Deprecated)".

■ IKM Hive Transform

For more information, see Section A.26, "IKM Hive Transform (Deprecated)".

4.16 Loading Data into an Oracle Database from Hive and File
Use the knowledge modules listed in the following table to load data from an HDFS
file or Hive source into an Oracle database target using Oracle Loader for Hadoop.

4.17 Loading Data into an SQL Database from Hbase, Hive and File using
SQOOP

Use the knowledge modules listed in the following table to load data from a HDFS
file, HBase source, or Hive source into an SQL database target using SQOOP.

Table 4–4 Knowledge Modules to load data into Oracle Database

Knowledge Module Use To...

IKM File-Hive to Oracle
(OLH-OSCH)

Load data from an HDFS file or Hive source into an Oracle
database target using Oracle Loader for Hadoop.

For more information, see Section A.27, "IKM File-Hive to
Oracle (OLH-OSCH) [Deprecated]".

LKM File to Oracle
OLH-OSCH

Load data from an HDFS file into an Oracle staging table using
Oracle Loader for Hadoop.

For more information, see Section A.14, "LKM File to Oracle
OLH-OSCH".

LKM File to Oracle
OLH-OSCH Direct

Load data from an HDFS file into an Oracle database target
using Oracle Loader for Hadoop.

For more information, see Section A.15, "LKM File to Oracle
OLH-OSCH Direct".

LKM Hive to Oracle
OLH-OSCH

Load data from a Hive source into an Oracle staging table using
Oracle Loader for Hadoop.

For more information, see Section A.16, "LKM Hive to Oracle
OLH-OSCH".

LKM Hive to Oracle
OLH-OSCH Direct

Load data from a Hive source into an Oracle database target
using Oracle Loader for Hadoop.

For more information, see Section A.17, "LKM Hive to Oracle
OLH-OSCH Direct".

Loading Data into an SQL Database from Hbase, Hive and File using SQOOP

Integrating Hadoop Data 4-11

Table 4–5 Knowledge Modules to load data into SQL Database

Knowledge Module Use To...

IKM File-Hive to SQL
(SQOOP)

Load data from an HDFS file or Hive source into an SQL
database target using SQOOP.

For more information, see Section A.28, "IKM File-Hive to SQL
(SQOOP) [Deprecated]".

LKM HBase to SQL SQOOP Load data from an HBase source into an SQL database target
using SQOOP.

For more information, see Section A.6, "LKM HBase to SQL
SQOOP".

LKM File to SQL SQOOP Load data from an HDFS file into an SQL database target using
SQOOP.

For more information, see Section A.4, "LKM File to SQL
SQOOP".

LKM Hive to SQL SQOOP Load data from a Hive source into an SQL database target using
SQOOP.

For more information, see Section A.5, "LKM Hive to SQL
SQOOP".

Loading Data into an SQL Database from Hbase, Hive and File using SQOOP

4-12 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

5

Executing Oozie Workflows 5-1

5Executing Oozie Workflows

[6]This chapter provides information about how to set up the Oozie Engine and explains
how to execute Oozie Workflows using Oracle Data Integrator. It also tells you how to
audit Hadoop logs.

This chapter includes the following sections:

■ Section 5.1, "Executing Oozie Workflows with Oracle Data Integrator"

■ Section 5.2, "Setting Up and Initializing the Oozie Runtime Engine"

■ Section 5.3, "Creating a Logical Oozie Engine"

■ Section 5.4, "Executing or Deploying an Oozie Workflow"

■ Section 5.4, "Executing or Deploying an Oozie Workflow"

■ Section 5.5, "Auditing Hadoop Logs"

■ Section 5.6, "Userlib jars support for running ODI Oozie workflows"

5.1 Executing Oozie Workflows with Oracle Data Integrator
The following table summarizes the steps you need to perform to execute Oozie
Workflows with Oracle Data Integrator.

Table 5–1 Executing Oozie Workflows

Step Description

Set up the Oozie runtime
engine

Set up the Oozie runtime engine to configure the connection to
the Hadoop data server where the Oozie engine is installed. This
Oozie runtime engine is used to execute ODI Design Objects or
Scenarios on the Oozie engine as Oozie workflows.

See Section 5.2, "Setting Up and Initializing the Oozie Runtime
Engine".

Execute or deploy an Oozie
workflow

Run the ODI Design Objects or Scenarios using the Oozie
runtime engine created in the previous step to execute or deploy
an Oozie workflow.

See Section 5.4, "Executing or Deploying an Oozie Workflow".

Audit Hadoop Logs Audit the Hadoop Logs to monitor the execution of the Oozie
workflows from within Oracle Data Integrator.

See Section 5.5, "Auditing Hadoop Logs".

Setting Up and Initializing the Oozie Runtime Engine

5-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

5.2 Setting Up and Initializing the Oozie Runtime Engine
Before you set up the Oozie runtime engine, ensure that the Hadoop data server where
the Oozie engine is deployed is available in the topology. The Oozie engine needs to be
associated to this Hadoop data server.

To set up the Oozie runtime engine:

1. In the Topology Navigator, right-click the Oozie Runtime Engine node in the
Physical Architecture navigation tree and click New.

2. In the Definition tab, specify the values in the fields for the defining the Oozie
runtime engine.

See Section 5.2.1, "Oozie Runtime Engine Definition" for the description of the
fields.

3. In the Properties tab, specify the properties for the Oozie Runtime Engine.

See Section 5.2.2, "Oozie Runtime Engine Properties" for the description of the
properties.

4. Click Test to test the connections and configurations of the actual Oozie server and
the associated Hadoop data server.

5. Click Initialize to initialize the Oozie runtime engine.

Initializing the Oozie runtime engine deploys the log retrieval workflows and
coordinator workflows to the HDFS file system and starts the log retrieval
coordinator and workflow jobs on the actual Oozie server. The log retrieval flow
and coordinator for a repository and oozie engine will have the names
OdiRetrieveLog_<EngineName>_<ReposId>_F and OdiLogRetriever_
<EngineName>_<ReposId>_C respectively.

It also deploys the ODI libraries and classes.

6. Click Save.

Section 5.1, "Executing Oozie Workflows with Oracle Data Integrator"

5.2.1 Oozie Runtime Engine Definition
The following table describes the fields that you need to specify on the Definition tab
when defining a new Oozie runtime engine. An Oozie runtime engine models an
actual Oozie server in a Hadoop environment.

Table 5–2 Oozie Runtime Engine Definition

Field Values

Name Name of the Oozie runtime engine that appears in Oracle Data
Integrator.

Host Name or IP address of the machine on which the Oozie runtime
agent has been launched.

Port Listening port used by the Oozie runtime engine. Default Oozie
port value is 11000.

Web application context Name of the web application context. Type oozie as the value of
this field, as required by the Oozie service process running in an
Hadoop environment.

Protocol Protocol used for the connection. Possible values are http or
https. Default is http.

Creating a Logical Oozie Engine

Executing Oozie Workflows 5-3

Section 5.2, "Setting Up and Initializing the Oozie Runtime Engine"

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard"

5.2.2 Oozie Runtime Engine Properties
The following table describes the properties that you can configure on the Properties
tab when defining a new Oozie runtime engine.

Section 5.2, "Setting Up and Initializing the Oozie Runtime Engine"

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard"

5.3 Creating a Logical Oozie Engine
To create a logical oozie agent:

1. In Topology Navigator right-click the Oozie Runtime Engine node in the Logical
Architecture navigation tree.

2. Select New Logical Agent.

3. Fill in the Agent Name.

Hadoop Server Name of the Hadoop server where the oozie engine is installed.
This Hadoop server is associated with the oozie runtime engine.

Poll Frequency Frequency at which the Hadoop audit logs are retrieved and
stored in ODI repository as session logs.

The poll frequency can be specified in seconds (s), minutes (m),
hours (h), days (d), and years (d). For example, 5m or 4h.

Lifespan Time period for which the Hadoop audit logs retrieval
coordinator stays enabled to schedule audit logs retrieval
workflows.

Lifespan can be specified in minutes (m), hours (h), days (d),
and years (d). For example, 4h or 2d.

Schedule Frequency Frequency at which the Hadoop audit logs retrieval workflow is
scheduled as an Oozie Coordinator Job.

Schedule workflow can be specified in minutes (m), hours (h),
days (d), and years (d). For example, 20m or 5h.

Table 5–3 Oozie Runtime Engine Properties

Field Values

OOZIE_WF_GEN_MAX_
DETAIL

Limits the maximum detail (session level or fine-grained task
level) allowed when generating ODI Oozie workflows for an
Oozie engine.

Set the value of this property to TASK to generate an Oozie
action for every ODI task or to SESSION to generate an Oozie
action for the entire session.

Table 5–2 (Cont.) Oozie Runtime Engine Definition

Field Values

Executing or Deploying an Oozie Workflow

5-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

4. For each Context in the left column, select an existing Physical Agent in the right
column. This Physical Agent is automatically associated to the logical agent in this
context.

5. From the File menu, click Save.

Section 5.2, "Setting Up and Initializing the Oozie Runtime Engine"

5.4 Executing or Deploying an Oozie Workflow
You can run an ODI design object or scenario using the Oozie runtime engine to
execute an Oozie Workflow on the Oozie engine. When running the ODI design object
or scenario, you can choose to only deploy the Oozie workflow without executing it.

To deploy or execute an ODI Oozie workflow:

1. From the Projects menu of the Designer navigator, right-click the mapping that
you want to execute as an Oozie workflow and click Run.

2. From the Run Using drop-down list, select the Oozie runtime engine.

3. Select Deploy Only check box to only deploy the Oozie workflow without
executing it.

4. Click OK.

The Information dialog appears.

5. Check if the session started and click OK on the Information dialog.

Section 5.1, "Executing Oozie Workflows with Oracle Data Integrator"

5.5 Auditing Hadoop Logs
When the ODI Oozie workflows are executed, log information is retrieved and
captured according to the frequency properties on the Oozie runtime engine. This
information relates to the state, progress, and performance of the Oozie job.

You can retrieve the log data of an active Oozie session by clicking the Retrieve Log
Data in the Operator menu. Also, you can view information regarding the oozie
session in the oozie webconsole or the MapReduce webconsole by clicking the URL
available in the Definition tab of the Session Editor.

The Details tab in the Session Editor, Session Step Editor, and Session Task Editor
provides a summary of the oozie and MapReduce job.

Section 5.1, "Executing Oozie Workflows with Oracle Data Integrator"

5.6 Userlib jars support for running ODI Oozie workflows
Support of userlib jars for ODI Oozie workflows allows a user to copy jar files into a
userlib HDFS directory, which is referenced by ODI Oozie workflows that are
generated and submitted with the oozie.libpath property.

This avoids replicating the libs/jars in each of the workflow app's lib HDFS
directory. The userlib directory is located in HDFS in the following location:

<ODI HDFS Root>/odi_<version>/userlib

Section 5.1, "Executing Oozie Workflows with Oracle Data Integrator"

6

Using Query Processing Engines to Generate Code in Different Languages 6-1

6Using Query Processing Engines to Generate
Code in Different Languages

[7]This chapter describes how to set up the query processing engines that are supported
by Oracle Data Integrator to generate code in different languages.

This chapter includes the following sections:

■ Section 6.1, "Query Processing Engines Supported by Oracle Data Integrator"

■ Section 6.2, "Setting Up Hive Data Server"

■ Section 6.3, "Creating a Hive Physical Schema"

■ Section 6.4, "Setting Up Pig Data Server"

■ Section 6.5, "Creating a Pig Physical Schema"

■ Section 6.6, "Setting Up Spark Data Server"

■ Section 6.7, "Creating a Spark Physical Schema"

■ Section 6.8, "Generating Code in Different Languages"

6.1 Query Processing Engines Supported by Oracle Data Integrator
Hadoop provides a framework for parallel data processing in a cluster. There are
different languages that provide a user front-end. Oracle Data Integrator supports the
following query processing engines to generate code in different languages:

■ Hive

The Apache Hive warehouse software facilitates querying and managing large
datasets residing in distributed storage. Hive provides a mechanism to project
structure onto this data and query the data using a SQL-like language called
HiveQL.

■ Pig

Pig is a high-level platform for creating MapReduce programs used with Hadoop.
The language for this platform is called Pig Latin.

■ Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can
run in Hadoop clusters through YARN or Spark's standalone mode, and it can
process data in HDFS, HBase, Cassandra, Hive, and any Hadoop Input Format.

Setting Up Hive Data Server

6-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

To generate code in these languages, you need to set up Hive, Pig, and Spark data
servers in Oracle Data Integrator. These data servers are to be used as the staging area
in your mappings to generate HiveQL, Pig Latin, or Spark code.

Section 2.2, "Generate Code in Different Languages with Oracle Data Integrator"

6.2 Setting Up Hive Data Server
To set up the Hive data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Hive and then
click New Data Server.

3. In the Definition tab, specify the details of the Hive data server.

See Section 6.2.1, "Hive Data Server Definition" for more information.

4. In the JDBC tab, specify the Hive data server connection details.

See Section 6.2.2, "Hive Data Server Connection Details" for more information.

5. Click Test Connection to test the connection to the Hive data server.

6.2.1 Hive Data Server Definition
The following table describes the fields that you need to specify on the Definition tab
when creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

Section 6.2, "Setting Up Hive Data Server"

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard"

6.2.2 Hive Data Server Connection Details
The following table describes the fields that you need to specify on the JDBC tab when
creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

Table 6–1 Hive Data Server Definition

Field Description

Name Name of the data server that appears in Oracle Data Integrator.

Data Server Physical name of the data server.

User/Password Hive user with its password.

Metastore URI Hive Metastore URIs: for example, thrift://BDA:10000.

Hadoop Data Server Hadoop data server that you want to associate with the Hive
data server.

Additional Classpath Additional classpaths.

Setting Up Pig Data Server

Using Query Processing Engines to Generate Code in Different Languages 6-3

Section 6.2, "Setting Up Hive Data Server"

6.3 Creating a Hive Physical Schema
Create a Hive physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

Section 6.2, "Setting Up Hive Data Server"

6.4 Setting Up Pig Data Server
To set up the Pig data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Pig and then click
New Data Server.

3. In the Definition tab, specify the details of the Pig data server.

See Section 6.4.1, "Pig Data Server Definition" for more information.

4. In the Properties tab, add the Pig data server properties.

See Section 6.4.2, "Pig Data Server Properties" for more information.

5. Click Test Connection to test the connection to the Pig data server.

6.4.1 Pig Data Server Definition
The following table describes the fields that you need to specify on the Definition tab
when creating a new Pig data server.

Note: Only the fields required or specific for defining a Pig data server are described.

Table 6–2 Hive Data Server Connection Details

Field Description

JDBC Driver DataDirect Apache Hive JDBC Driver

Use this JDBC driver to connect to the Hive Data Server. The
driver documentation is available at the following URL:

http://media.datadirect.com/download/docs/jdbc/alljdbc/hel
p.html#page/userguide/rfi1369069225784.html#

JDBC URL jdbc:weblogic:hive://<host>:<port>[;
property=value[;...]]

For example,
jdbc:weblogic:hive://localhost:10000;DatabaseName=defau
lt;User=default;Password=default

Table 6–3 Pig Data Server Definition

Field Description

Name Name of the data server that will appear in Oracle Data
Integrator.

Setting Up Pig Data Server

6-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

Section 6.4, "Setting Up Pig Data Server"

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard"

6.4.2 Pig Data Server Properties
The following table describes the Pig data server properties that you need to add on
the Properties tab when creating a new Pig data server.

Section 6.4, "Setting Up Pig Data Server"

Data Server Physical name of the data server.

Process Type Choose one of the following:

■ Local Mode

Select to run the job in local mode.

In this mode, pig scripts located in the local file system are
executed. MapReduce jobs are not created.

■ MapReduce Mode

Select to run the job in MapReduce mode.

In this mode, pig scripts located in the HDFS are executed.
MapReduce jobs are created.

Note: If this option is selected, the Pig data server must be
associated with a Hadoop data server.

Hadoop Data Server Hadoop data sever that you want to associate with the Pig data
server.

Note: This field is displayed only when the MapReduce Mode
option is set to Process Type.

Additional Classpath Specify additional classpaths.

Add the following additional classpaths:

■ /usr/lib/pig/lib

■ /usr/lib/pig/pig-0.12.0-cdh<version>.jar

Replace <version> with the Cloudera version you have. For
example, /usr/lib/pig/pig-0.12.0-cdh5.3.0.jar.

■ /usr/lib/hive/lib

■ /usr/lib/hive/conf

For pig-hcatalog-hive, add the following classpath in addition to
the ones mentioned above:

/usr/lib/hive-hcatalaog/share/hcatalog

User/Password Pig user with its password.

Table 6–4 Pig Data Server Properties

Key Value

hive.metastore.uris thrift://bigdatalite.localdomain:9083

pig.additional.jars /usr/lib/hive-hcatalog/share/hcatalog/*.jar:/usr/lib/hi
ve/

Table 6–3 (Cont.) Pig Data Server Definition

Field Description

Setting Up Spark Data Server

Using Query Processing Engines to Generate Code in Different Languages 6-5

6.5 Creating a Pig Physical Schema
Create a Pig physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

Section 6.4, "Setting Up Pig Data Server"

6.6 Setting Up Spark Data Server
To set up the Spark data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Spark Python and
then click New Data Server.

3. In the Definition tab, specify the details of the Spark data server.

See Section 6.6.1, "Spark Data Server Definition" for more information.

4. In the Properties tab, specify the properties for the Spark data server.

See Section 6.6.2, "Spark Data Server Properties" for more information.

5. Click Test Connection to test the connection to the Spark data server.

6.6.1 Spark Data Server Definition
The following table describes the fields that you need to specify on the Definition tab
when creating a new Spark Python data server.

Note: Only the fields required or specific for defining a Spark Python data server are
described.

Section 6.6, "Setting Up Spark Data Server"

Table 6–5 Spark Data Server Definition

Field Description

Name Name of the data server that will appear in Oracle Data
Integrator.

Master Cluster (Data
Server)

Physical name of the master cluster or the data server.

User/Password Spark data server or master cluster user with its password.

Hadoop DataServer Hadoop data server that you want to associate with the Spark
data server.

Note: This field appears only when you are creating the Spark
Data Server using the Big Data Configurations wizard.

Additional Classpath The following additional classpaths are added by default:

■ /usr/lib/spark/*

■ /usr/lib/spark/lib/*

If required, you can add more additional classpaths.

Note: This field appears only when you are creating the Spark
Data Server using the Big Data Configuration wizard.

Setting Up Spark Data Server

6-6 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard"

6.6.2 Spark Data Server Properties
The following table describes the properties that you can configure on the Properties
tab when defining a new Spark data server.

Note: Other than the properties listed in the following table, you can add Spark
configuration properties on the Properties tab. The configuration properties that you
add here are applied when mappings are executed. For more information about the
configuration properties, refer to the Spark documentation available at the following
URL:

http://spark.apache.org/docs/latest/configuration.html

Table 6–6 Spark Data Server Properties

Property Description

archives Comma separated list of archives to be extracted into the
working directory of each executor.

deploy-mode Whether to launch the driver program locally (client) or on one
of the worker machines inside the cluster (cluster).

driver-class-path Classpath entries to pass to the driver. Note that jars added with
--jars are automatically included in the classpath.

driver-cores Number of cores used by the driver in Yarn Cluster mode.

driver-java-options Extra Java options to pass to the driver.

driver-library-path Extra library path entries to pass to the driver.

driver-memory Memory for driver, for example, 1000M, 2G. The default value is
512M.

executor-cores Number of cores per executor. The default value is 1 in YARN
mode, or all available cores on the worker in standalone mode.

executor-memory Memory per executor, for example, 1000M, 2G. The default
value is 1G.

jars Comma-separated list of local jars to include on the driver and
executor classpaths.

num-executors Number of executors to launch. The default value is 2.

odi-execution-mode ODI execution mode, either SYNC or ASYNC.

properties-file Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.

py-files Additional python file to execute.

queue The YARN queue to submit to. The default value is default.

spark-home-dir Home directory of Spark installation.

spark-web-port Web port of Spark UI. The default value is 1808.

spark-work-dir Working directory of ODI Spark mappings that stores the
generated python file.

supervise If configured, restarts the driver on failure (Spark Standalone
mode).

total-executor-cores Total cores for all executors (Spark Standalone mode).

yarn-web-port Web port of yarn, the default value is 8088.

Generating Code in Different Languages

Using Query Processing Engines to Generate Code in Different Languages 6-7

Section 6.6, "Setting Up Spark Data Server"

Section 3.1, "Configuring Big Data technologies using the Big Data Configurations
Wizard"

6.7 Creating a Spark Physical Schema
Create a Spark physical schema using the standard procedure, as described in Creating
a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

Section 6.6, "Setting Up Spark Data Server"

6.8 Generating Code in Different Languages
By default, Oracle Data Integrator generates HiveQL code. To generate Pig Latin or
Spark code, you must use the Pig data server or the Spark data server as the staging
location for your mapping.

Before you generate code in these languages, ensure that the Hive, Pig, and Spark data
servers are set up.

For more information see the following sections:

Section 6.2, "Setting Up Hive Data Server"

Section 6.4, "Setting Up Pig Data Server"

Section 6.6, "Setting Up Spark Data Server"

To generate code in different languages:

1. Open your mapping.

2. To generate HiveQL code, run the mapping with the default staging location
(Hive).

3. To generate Pig Latin or Spark code, go to the Physical diagram and do one of the
following:

a. To generate Pig Latin code, set the Execute On Hint option to use the Pig data
server as the staging location for your mapping.

b. To generate Spark code, set the Execute On Hint option to use the Spark data
server as the staging location for your mapping.

4. Execute the mapping.

Section 6.1, "Query Processing Engines Supported by Oracle Data Integrator"

Section 2.2, "Generate Code in Different Languages with Oracle Data Integrator"

Generating Code in Different Languages

6-8 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

7

Working with Unstructured Data and Complex Data 7-1

7Working with Unstructured Data and Complex
Data

[8]This chapters provides an overview of the Jagged component and the Flatten
component. These components help you to process unstructured and complex data.

This chapter includes the following sections:

■ Section 7.1, "Working with Unstructured Data"

■ Section 7.2, "Working with Complex Data"

7.1 Working with Unstructured Data
Oracle Data Integrator provides a Jagged component that can process unstructured
data. Source data from sources such as social media or e-commerce businesses is
represented in a key-value free format. Using the jagged component, this data can be
transformed into structured entities that can be loaded into database tables.

For more information using the Jagged component and KMs associated with it, see the
following sections:

■ Creating Jagged Components in Developing Integration Projects with Oracle Data
Integrator

■ Section D.3, "XKM Jagged".

7.2 Working with Complex Data
Oracle Data Integrator provides a Flatten component that can process input data with
complex structure and produce flatten representation of the same data using standard
data types. The input data may be in a database, in an XML, or any other source.

For more information using the Flatten component and the KMs associated with it, see
the following sections:

■ Creating Flatten Components in Developing Integration Projects with Oracle Data
Integrator

■ Section D.1, "XKM Oracle Flatten".

■ Section D.3, "XKM Jagged".

Working with Complex Data

7-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A

Hive Knowledge Modules A-1

AHive Knowledge Modules

This appendix provides information about the Hive knowledge modules.

This chapter includes the following sections:

■ Section A.1, "LKM SQL to Hive SQOOP"

■ Section A.2, "LKM SQL to File SQOOP Direct"

■ Section A.3, "LKM SQL to HBase SQOOP Direct"

■ Section A.4, "LKM File to SQL SQOOP"

■ Section A.5, "LKM Hive to SQL SQOOP"

■ Section A.6, "LKM HBase to SQL SQOOP"

■ Section A.7, "IKM Hive Append"

■ Section A.8, "LKM File to Hive LOAD DATA"

■ Section A.9, "LKM File to Hive LOAD DATA Direct"

■ Section A.10, "LKM HBase to Hive HBASE-SERDE"

■ Section A.11, "LKM Hive to HBase Incremental Update HBASE-SERDE Direct"

■ Section A.12, "LKM Hive to File Direct"

■ Section A.13, "XKM Hive Sort"

■ Section A.14, "LKM File to Oracle OLH-OSCH"

■ Section A.15, "LKM File to Oracle OLH-OSCH Direct"

■ Section A.16, "LKM Hive to Oracle OLH-OSCH"

■ Section A.17, "LKM Hive to Oracle OLH-OSCH Direct"

■ Section A.18, "RKM Hive"

■ Section A.19, "RKM HBase"

■ Section A.20, "IKM File to Hive (Deprecated)"

■ Section A.21, "LKM HBase to Hive (HBase-SerDe) [Deprecated]"

■ Section A.22, "IKM Hive to HBase Incremental Update (HBase-SerDe)
[Deprecated]"

■ Section A.23, "IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]"

■ Section A.24, "IKM Hive Control Append (Deprecated)"

■ Section A.25, "CKM Hive (Deprecated)"

LKM SQL to Hive SQOOP

A-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

■ Section A.26, "IKM Hive Transform (Deprecated)"

■ Section A.27, "IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]"

■ Section A.28, "IKM File-Hive to SQL (SQOOP) [Deprecated]"

A.1 LKM SQL to Hive SQOOP
This KM integrates data from a JDBC data source into Hive.

1. Create a Hive staging table.

2. Create a SQOOP configuration file, which contains the upstream query.

3. Execute SQOOP to extract the source data and import into Hive

4. Drop the Hive staging table.

This is a direct load LKM and will ignore any of the target IKM.

The following table descriptions the options for LKM SQL to Hive SQOOP.

Table A–1 LKM SQL to Hive SQOOP

Option Description

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP
is used. To avoid an extra full table scan the split column should
be backed by an index.

LKM SQL to File SQOOP Direct

Hive Knowledge Modules A-3

A.2 LKM SQL to File SQOOP Direct
This KM extracts data from a JDBC data source into an HDFS file

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLIT-BY). In certain situations this may
not be the best boundaries or not the most performant way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELISM chunks for parallel
extraction.

Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName(EMP")%>"

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_
CONNECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_
CONNECTOR_CONF_
PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Table A–1 (Cont.) LKM SQL to Hive SQOOP

Option Description

LKM SQL to File SQOOP Direct

A-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

2. Execute SQOOP to extract the source data and store it as an HDFS file

This is a direct load LKM and must be used without any IKM.

The following table descriptions the options for LKM SQL to File SQOOP Direct.

Note: The entire target directory will be removed prior to extraction.

Table A–2 LKM SQL to File SQOOP Direct

Option Description

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP
is used. To avoid an extra full table scan the split column should
be backed by an index.

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLIT-BY). In certain situations this may
not be the best boundaries or not the most performant way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELISM chunks for parallel
extraction.

Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName(EMP")%>"

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

LKM SQL to HBase SQOOP Direct

Hive Knowledge Modules A-5

A.3 LKM SQL to HBase SQOOP Direct
This KM extacts data from a JDBC data source and imports the data into HBase.

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and import into HBase.

This is a direct load LKM and must be used without any IKM.

The following table descriptions the options for LKM SQL to HBase SQOOP Direct.

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_
CONNECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_
CONNECTOR_CONF_
PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Table A–3 LKM SQL to HBase SQOOP Direct

Option Description

CREATE_TARG_TABLE Create target table?

Check this option, if you wish to create the target table.

TRUNCATE Replace existing target data?

Set this option to true, if you wish to replace any existing target
table content with the new data.

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Table A–2 (Cont.) LKM SQL to File SQOOP Direct

Option Description

LKM SQL to HBase SQOOP Direct

A-6 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP
is used. To avoid an extra full table scan the split column should
be backed by an index.

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLIT-BY). In certain situations this may
not be the best boundaries or not the most performant way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELISM chunks for parallel
extraction.

Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName(EMP")%>"

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_
CONNECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Table A–3 (Cont.) LKM SQL to HBase SQOOP Direct

Option Description

LKM File to SQL SQOOP

Hive Knowledge Modules A-7

A.4 LKM File to SQL SQOOP
This KM integrates data from HDFS files into a JDBC target.

It executes the following steps:

1. Create a SQOOP configuration file

2. Load data using SQOOP into a work table on RDBMS

3. Drop the work table.

The following table descriptions the options for LKM File to SQL SQOOP.

EXTRA_SQOOP_
CONNECTOR_CONF_
PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Table A–4 LKM File to SQL SQOOP

Option Description

SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

WORK_TABLE_OPTIONS Work table options.

Use this option if you wish to override standard technology
specific work table options. When left blank, these options
values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

TERADATA_WORK_
TABLE_TYPE

Teradata work table type.

Use SET or MULTISET table for work table.

TERADATA_OUTPUT_
METHOD

Teradata Load Method.

Specifies the way the Teradata Connector will load the data.
Valid values are:

■ batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

■ multiple.fastload: multiple FastLoad connections

■ internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for more
details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

Table A–3 (Cont.) LKM SQL to HBase SQOOP Direct

Option Description

LKM Hive to SQL SQOOP

A-8 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.5 LKM Hive to SQL SQOOP
This KM integrates data from Hive into a JDBC target.

It executes the following steps:

1. Unload data into HDFS

2. Create a SQOOP configuration file

3. Load data using SQOOP into a work table on RDBMS

4. Drop the work table

The following table descriptions the options for LKM Hive to SQL SQOOP.

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_
CONNECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_
CONNECTOR_CONF_
PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Table A–5 LKM Hive to SQL SQOOP

Option Description

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Table A–4 (Cont.) LKM File to SQL SQOOP

Option Description

LKM HBase to SQL SQOOP

Hive Knowledge Modules A-9

A.6 LKM HBase to SQL SQOOP
This KM integrates data from HBase into a JDBC target.

WORK_TABLE_OPTIONS Work table options.

Use this option if you wish to override standard technology
specific work table options. When left blank, these options
values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

TERADATA_WORK_
TABLE_TYPE

Teradata work table type.

Use SET or MULTISET table for work table.

TERADATA_OUTPUT_
METHOD

Teradata Load Method.

Specifies the way the Teradata Connector will load the data.
Valid values are:

■ batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

■ multiple.fastload: multiple FastLoad connections

■ internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for more
details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_
CONNECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_
CONNECTOR_CONF_
PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Table A–5 (Cont.) LKM Hive to SQL SQOOP

Option Description

LKM HBase to SQL SQOOP

A-10 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

It executes the following steps:

1. Create a SQOOP configuration file

2. Create a Hive table definition for the HBase table

3. Unload data from Hive (HBase) using SQOOP into a work table on RDBMS

4. Drop the work table.

The following table descriptions the options for LKM HBase to SQL SQOOP.

Table A–6 LKM HBase to SQL SQOOP

Option Description

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
Default: true.

HIVE_STAGING_
LSCHEMA

Logical schema name for Hive-HBase-SerDe table.

The unloading from HBase data is done via Hive. This KM
option defines the Hive database, which will be used for
creating the Hive HBase-SerDe table for unloading the HBase
data.

SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

WORK_TABLE_OPTIONS Work table options.

Use this option if you wish to override standard technology
specific work table options. When left blank, these options
values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

TERADATA_WORK_
TABLE_TYPE

Teradata work table type.

Use SET or MULTISET table for work table.

TERADATA_OUTPUT_
METHOD

Teradata Load Method.

Specifies the way the Teradata Connector will load the data.
Valid values are:

■ batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

■ multiple.fastload: multiple FastLoad connections

■ internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for more
details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

LKM File to Hive LOAD DATA

Hive Knowledge Modules A-11

A.7 IKM Hive Append
This KM integrates data into a Hive target table in append or replace (truncate) mode.

The following table descriptions the options for IKM Hive Append.

A.8 LKM File to Hive LOAD DATA
Integration from a flat file staging area to Hive using Hive's LOAD DATA command.

This KM executes the following steps:

1. Create a flow table in Hive

2. Declare data files to Hive (LOAD DATA command)

3. Load data from Hive staging table into target table

The KM can handle filename wildcards (*, ?).">

The following table describes the options for LKM File to Hive LOAD DATA.

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_
CONNECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_
CONNECTOR_CONF_
PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Table A–7 IKM Hive Append

Option Description

CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

Table A–6 (Cont.) LKM HBase to SQL SQOOP

Option Description

LKM File to Hive LOAD DATA

A-12 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

Table A–8 LKM File to Hive LOAD DATA

Option Description

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

EXTERNAL_TABLE Preserve file in original location?

Defines whether to declare the target/staging table as externally
managed.

Default: false

For non-external tables Hive manages all data files. That is, it
will *move* any data files into
<hive.metastore.warehouse.dir>/<table_name>. For external
tables Hive does not move or delete any files. It will load data
from the location given by the ODI schema.

If EXTERNAL_TABLE is set to true:

All files in the directory given by the physical data schema will
be loaded. So any filename or wildcard information from the
source DataStore's resource name will be ignored.

The directory structure and file names must comply with Hives
directory organization for tables, e.g. for partitioning and
clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus
loading of files to a specific partition (using a target-side
expression) is not possible.

FILE_IS_LOCAL Is this a local file?

Defines whether the source file is to be considered local (=
outside of the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into
the Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into
the Hadoop cluster and therefore will no longer be available at
their source location. If the source file is already in HDFS, FILE_
IS_LOCAL=false results in just a file rename and therefore very
fast operation. This option only applies, if EXTERNAL_TABLE
is set to false.

STOP_ON_FILE_NOT_
FOUND

Stop if no input file was found?

This checkbox option defines whether the KM should stop, if no
input file has been found.

OVERRIDE_ROW_
FORMAT

Custom row format clause.

This option allows to override the entire Hive row format
definition of the staging table (in case USE_STAGE_TABLE is set
to true) or the target table (in case USE_STAGE_TABLE is set to
false). It contains the text to be used for row format definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
<EOL>WITH SERDEPROPERTIES (<EOL> input.regex" = "([^
]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*)
(-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")"

LKM File to Hive LOAD DATA Direct

Hive Knowledge Modules A-13

A.9 LKM File to Hive LOAD DATA Direct
Direct integration from a flat file into Hive without any staging using Hive's LOAD
DATA command.

This is a direct load LKM and must be used without any IKM.

The KM can handle filename wildcards (*, ?).

The following table describes the options for LKM File to Hive LOAD DATA Direct.

Table A–9 LKM File to Hive LOAD DATA Direct

Option Description

CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

EXTERNAL_TABLE Preserve file in original location?

Defines whether to declare the target/staging table as externally
managed.

Default: false

For non-external tables Hive manages all data files. That is, it
will *move* any data files into
<hive.metastore.warehouse.dir>/<table_name>. For external
tables Hive does not move or delete any files. It will load data
from the location given by the ODI schema.

If EXTERNAL_TABLE is set to true:

All files in the directory given by the physical data schema will
be loaded. So any filename or wildcard information from the
source DataStore's resource name will be ignored.

The directory structure and file names must comply with Hives
directory organization for tables, e.g. for partitioning and
clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus
loading of files to a specific partition (using a target-side
expression) is not possible.

FILE_IS_LOCAL Is this a local file?

Defines whether the source file is to be considered local (=
outside of the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into
the Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into
the Hadoop cluster and therefore will no longer be available at
their source location. If the source file is already in HDFS, FILE_
IS_LOCAL=false results in just a file rename and therefore very
fast operation. This option only applies, if EXTERNAL_TABLE
is set to false.

LKM HBase to Hive HBASE-SERDE

A-14 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.10 LKM HBase to Hive HBASE-SERDE
This LKM provides read access to a HBase table from the Hive.

This is achieved by defining a temporary load table definition on Hive which
represents all relevant columns of the HBase source table.

A.11 LKM Hive to HBase Incremental Update HBASE-SERDE Direct
This LKM loads data from Hive into HBase and supports inserting new rows as well
as updating existing data.

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to HBase Incremental Update
HBASE-SERDE Direct.

A.12 LKM Hive to File Direct
This LKM unloads data from Hive into flat files.

STOP_ON_FILE_NOT_
FOUND

Stop if no input file was found?

This checkbox option defines whether the KM should stop, if no
input file has been found.

OVERRIDE_ROW_
FORMAT

Custom row format clause.

This option allows to override the entire Hive row format
definition of the staging table (in case USE_STAGE_TABLE is set
to true) or the target table (in case USE_STAGE_TABLE is set to
false). It contains the text to be used for row format definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
<EOL>WITH SERDEPROPERTIES (<EOL> input.regex" = "([^
]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*)
(-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")"

Table A–10 LKM Hive to HBase Incremental Update HBASE-SERDE Direct

Option Description

CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

HBASE_WAL Disable Write-Ahead-Log.

HBase uses a Write-Ahead-Log to protect against data loss. For
better performance, WAL can be disabled. Please note that this
setting applies to all Hive commands executed later in this
session.

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

Table A–9 (Cont.) LKM File to Hive LOAD DATA Direct

Option Description

LKM File to Oracle OLH-OSCH

Hive Knowledge Modules A-15

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to File Direct.

A.13 XKM Hive Sort
This XKM sorts data using an expression.

The following table describes the options for XKM Hive Sort.

A.14 LKM File to Oracle OLH-OSCH
This KM integrates data from an HDFS file into an Oracle staging table using Oracle
Loader for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The KM can handle filename wildcards (*, ?).

The following table describes the options for LKM File to Oracle OLH-OSCH.

Table A–11 LKM Hive to File Direct

Option Description

FILE_IS_LOCAL Is this a local file?

Defines whether the target file is to be considered local (outside
of the current Hadoop cluster).

STORED_AS File format.

Defines whether the target file is to be stored as plain text file
(TEXTFILE) or compressed (SEQUENCEFILE).

Table A–12 XKM Hive Sort

Option Description

SORT_MODE Select the mode the SORT operator will generate code for.

Table A–13 LKM Hive to Oracle OLH-OSCH

Option Description

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

LKM File to Oracle OLH-OSCH

A-16 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

■ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

■ OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_
OPTIONS must explicitely specify partitioning: e.g.
PARTITION BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

■ DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:

■ Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

■ For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

■ For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

■ For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

■ For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

■ ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

Table A–13 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

LKM File to Oracle OLH-OSCH

Hive Knowledge Modules A-17

OVERRIDE_
INPUTFORMAT

Class name of InputFormat.

By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvroInputFormat). This option allows the user to specify
the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

EXTRA_OLH_CONF_
PROPERTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding
extra properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\")
(-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

Table A–13 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

LKM File to Oracle OLH-OSCH Direct

A-18 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.15 LKM File to Oracle OLH-OSCH Direct
This KM integrates data from an HDFS file into an Oracle target using Oracle Loader
for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

The KM can handle filename wildcards (*, ?).

This is a direct load LKM (no staging) and must be used without any IKM.

The following table describes the options for LKM File to Oracle OLH-OSCH Direct.

Table A–14 LKM File to Oracle OLH-OSCH Direct

Option Description

CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_ALL Delete all rows.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

■ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

■ OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_
OPTIONS must explicitely specify partitioning: e.g.
PARTITION BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

■ DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

LKM File to Oracle OLH-OSCH Direct

Hive Knowledge Modules A-19

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:

■ Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

■ For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

■ For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

■ For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

■ For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

■ ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

OVERRIDE_
INPUTFORMAT

Class name of InputFormat.

By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvroInputFormat). This option allows the user to specify
the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

Table A–14 (Cont.) LKM File to Oracle OLH-OSCH Direct

Option Description

LKM Hive to Oracle OLH-OSCH

A-20 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.16 LKM Hive to Oracle OLH-OSCH
This KM integrates data from a Hive query into an Oracle staging table using Oracle
Loader for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The following table describes the options for LKM Hive to Oracle OLH-OSCH.

EXTRA_OLH_CONF_
PROPERTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding
extra properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\")
(-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

Table A–14 (Cont.) LKM File to Oracle OLH-OSCH Direct

Option Description

LKM Hive to Oracle OLH-OSCH

Hive Knowledge Modules A-21

Table A–15 LKM Hive to Oracle OLH-OSCH

Option Description

USE_HIVE_STAGING_
TABLE

Use intermediate Hive staging table?

By default the Hive source data is getting materialized in a Hive
staging table prior to extraction by OLH. If USE_HIVE_
STAGING_TABLE is set to false, OLH directly accesses the Hive
source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these
conditions are true.

■ Only a single source table

■ No transformations, filters, joins.

■ No datasets

■ USE_HIVE_STAGING_TABLE=0 provides better
performance by avoiding an extra data transfer step.

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

■ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

■ OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_
OPTIONS must explicitely specify partitioning: e.g.
PARTITION BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

■ DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

LKM Hive to Oracle OLH-OSCH

A-22 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:

■ Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

■ For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

■ For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

■ For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

■ For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

■ ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

OVERRIDE_
INPUTFORMAT

Class name of InputFormat.

By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvroInputFormat). This option allows the user to specify
the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

Table A–15 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

LKM Hive to Oracle OLH-OSCH Direct

Hive Knowledge Modules A-23

A.17 LKM Hive to Oracle OLH-OSCH Direct
This KM integrates data from a Hive query into an Oracle target using Oracle Loader
for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to Oracle OLH-OSCH.

EXTRA_OLH_CONF_
PROPERTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding
extra properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\")
(-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

Table A–16 LKM Hive to Oracle OLH-OSCH

Option Description

CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.

Table A–15 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

LKM Hive to Oracle OLH-OSCH Direct

A-24 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_ALL Delete all rows.

Set this option to true, if you wish to replace the target table
content with the new data.

USE_HIVE_STAGING_
TABLE

Use intermediate Hive staging table?

By default the Hive source data is getting materialized in a Hive
staging table prior to extraction by OLH. If USE_HIVE_
STAGING_TABLE is set to false, OLH directly accesses the Hive
source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these
conditions are true.

■ Only a single source table

■ No transformations, filters, joins.

■ No datasets

■ USE_HIVE_STAGING_TABLE=0 provides better
performance by avoiding an extra data transfer step.

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

■ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

■ OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_
OPTIONS must explicitely specify partitioning: e.g.
PARTITION BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

■ DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

Table A–16 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

LKM Hive to Oracle OLH-OSCH Direct

Hive Knowledge Modules A-25

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:

■ Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

■ For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

■ For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

■ For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

■ For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

■ ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

OVERRIDE_
INPUTFORMAT

Class name of InputFormat.

By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvroInputFormat). This option allows the user to specify
the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

Table A–16 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

RKM Hive

A-26 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.18 RKM Hive
RKM Hive reverses these metadata elements:

■ Hive tables and views as Oracle Data Integrator data stores.

Specify the reverse mask in the Mask field, and then select the tables and views to
reverse. The Mask field in the Reverse Engineer tab filters reverse-engineered
objects based on their names. The Mask field cannot be empty and must contain at
least the percent sign (%).

■ Hive columns as Oracle Data Integrator attributes with their data types.

■ Information about buckets, partitioning, clusters, and sort columns are set in the
respective flex fields in the Oracle Data Integrator data store or column metadata.

EXTRA_OLH_CONF_
PROPERTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding
extra properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\")
(-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_
DIR

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir
(<?=System.getProperty(java.io.tmp")?>)".

Table A–16 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

IKM File to Hive (Deprecated)

Hive Knowledge Modules A-27

A.19 RKM HBase
RKM HBase reverses these metadata elements:

■ HBase tables as Oracle Data Integrator data stores.

Specify the reverse mask in the Mask field, and then select the tables to reverse.
The Mask field in the Reverse Engineer tab filters reverse-engineered objects based
on their names. The Mask field cannot be empty and must contain at least the
percent sign (%).

■ HBase columns as Oracle Data Integrator attributes with their data types.

■ HBase unique row key as Oracle Data Integrator attribute called key.

The following table describes the options for RKM HBase.

A.20 IKM File to Hive (Deprecated)
Note: This KM is deprecated and only used for backward compatibility.

IKM File to Hive (Load Data) supports:

■ One or more input files. To load multiple source files, enter an asterisk or a
question mark as a wildcard character in the resource name of the file DataStore
(for example, webshop_*.log).

Note: This RKM uses the oracle.odi.km logger for logging. You can
enable logging by changing log level for oracle.odi.km logger to
TRACE:16 in ODI-logging-config.xml as shown below:

<logger name="oracle.odi.km" level="TRACE:16"
useParentHandlers="true"/>
<logger name="oracle.odi.studio.message.logger.proxy"
level="TRACE:16" useParentHandlers="false"/>

For more information about logging configuration in ODI, please see
Runtime Logging for ODI components in Administering Oracle Data
Integrator.

Table A–17 RKM HBase Options

Option Description

SCAN_MAX_ROWS Specifies the maximum number of rows to be scanned during
reversing of a table. The default value is 10000.

SCAN_START_ROW Specifies the key of the row to start the scan on. By default the
scan will start on the first row. The row key is specified as a Java
expressions returning an instance of
org.apache.hadoop.hbase.util.Bytes. Example:
Bytes.toBytes(?EMP000001?).

SCAN_STOP_ROW Specifies the key of the row to stop the scan on? By default the
scan will run to the last row of the table or up to SCAN_MAX_ROWS
is reached. The row key is specified as a Java expressions
returning an instance of org.apache.hadoop.hbase.util.Bytes.
Example: Bytes.toBytes(?EMP000999?).

Only applies if SCAN_START_ROW is specified.

SCAN_ONLY_FAMILY Restricts the scan to column families, whose name match this
pattern. SQL-LIKE wildcards percentage (%) and underscore (_)
can be used. By default all column families are scanned.

IKM File to Hive (Deprecated)

A-28 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

■ File formats:

– Fixed length

– Delimited

– Customized format

■ Loading options:

– Immediate or deferred loading

– Overwrite or append

– Hive external tables

The following table describes the options for IKM File to Hive (Load Data). See the
knowledge module for additional details.

Table A–18 IKM File to Hive Options

Option Description

CREATE_TARG_TABLE Check this option, if you wish to create the target table. In case
USE_STAGING_TABLE is set to false, please note that data will
only be read correctly, if the target table definition, particularly
the row format and file format details, are correct.

TRUNCATE Set this option to true, if you wish to replace the target
table/partition content with the new data. Otherwise the new
data will be appended to the target table. If TRUNCATE and USE_
STAGING_TABLE are set to false, all source file names must be
unique and must not collide with any data files already loaded
into the target table.

FILE_IS_LOCAL Defines whether the source file is to be considered local (outside
of the current Hadoop cluster). If this option is set to true, the
data file(s) are copied into the Hadoop cluster first. The file has
to be accessible by the Hive server through the local or shared
file system. If this option is set to false, the data file(s) are
moved into the Hadoop cluster and therefore will no longer be
available at their source location. If the source file is already in
HDFS, setting this option is set to false results in just a file
rename, and therefore the operation is very fast.

This option only applies, if EXTERNAL_TABLE is set to false.

EXTERNAL_TABLE Defines whether to declare the target/staging table as externally
managed. For non-external tables Hive manages all data files.
That is, it will move any data files into
<hive.metastore.warehouse.dir>/<table_name>. For external
tables Hive does not move or delete any files. It will load data
from the location given by the ODI schema.

If this option is set to true:

■ All files in the directory given by the physical data schema
will be loaded. So any filename or wildcard information
from the source DataStore's resource name will be ignored.

■ The directory structure and file names must comply with
Hives directory organization for tables, for example, for
partitioning and clustering.

■ The directory and its files must reside in HDFS.

■ No Hive LOAD-DATA-statements are submitted and thus
loading of files to a specific partition (using a target-side
expression) is not possible.

IKM File to Hive (Deprecated)

Hive Knowledge Modules A-29

USE_STAGING_TABLE Defines whether an intermediate staging table will be created.

A Hive staging table is required if:

■ Target table is partitioned, but data spreads across partitions

■ Target table is clustered

■ Target table (partition) is sorted, but input file is not

■ Target table is already defined and target table definition
does not match the definition required by the KM

■ Target column order does not match source file column
order

■ There are any unmapped source columns

■ There are any unmapped non-partition target columns

■ The source is a fixed length file and the target has
non-string columns

In case none of the above is true, this option can be turned off
for better performance.

DELETE_TEMPORARY_OBJECTS Removes temporary objects, such as tables, files, and scripts
after integration. Set this option to No if you want to retain the
temporary files, which might be useful for debugging.

DEFER_TARGET_LOAD Defines whether the file(s), which have been declared to the
staging table should be loaded into the target table now or
during a later execution. Permitted values are START, NEXT, END
or <empty>.

This option only applies if USE_STAGE_TABLE is set to true.

The typical use case for this option is when there are multiple
files and each of them requires data redistribution/sorting and
the files are gathered by calling the interface several times. For
example, the interface is used in a package, which retrieves
(many small) files from different locations and the location,
stored in an Oracle Data Integrator variable, is to be used in a
target partition column. In this case the first interface execution
will have DEFER_TARGET_LOAD set to START, the next interface
executions will have DEFER_TARGET_LOAD set to NEXT and set to
END for the last interface. The interfaces having DEFER_ TARGET _
LOAD set to START/NEXT will just load the data file into HDFS (but
not yet into the target table) and can be executed in parallel to
accelerate file upload to cluster.

Table A–18 (Cont.) IKM File to Hive Options

Option Description

LKM HBase to Hive (HBase-SerDe) [Deprecated]

A-30 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.21 LKM HBase to Hive (HBase-SerDe) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

LKM HBase to Hive (HBase-SerDe) supports:

■ A single source HBase table.

The following table describes the options for LKM HBase to Hive (HBase-SerDe). See
the knowledge module for additional details.

A.22 IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

OVERRIDE_ROW_FORMAT Allows to override the entire Hive row format definition of the
staging table (in case USE_STAGE_TABLE is set to true) or the
target table (in case USE_STAGE_TABLE is set to false). It contains
the text to be used for row format definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' WITH
SERDEPROPERTIES ("input.regex" = "([^]*) ([^]*)
([^]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\")
(-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")",
"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s
%7$s %8$s %9$s %10$s") STORED AS TEXTFILE

The list of columns in the source DataStore must match the list
of input groups in the regular expression (same number of
columns and appropriate data types). If USE_STAGE_TABLE is set
to false, the number of target columns must match the number
of columns returned by the SerDe, in the above example, the
number of groups in the regular expression. The number of
source columns is ignored (At least one column must be mapped
to the target.). All source data is mapped into the target table
structure according to the column order, the SerDe's first column
is mapped to the first target column, the SerDe's second column
is mapped to the second target column, and so on. If USE_STAGE_
TABLE is set to true, the source DataStore must have as many
columns as the SerDe returns columns. Only data of mapped
columns will be transferred.

STOP_ON_FILE_NOT_FOUND Defines whether the KM should stop, if input file is not found.

HIVE_COMPATIBILE Specifies the Hive version compatibility. The values permitted
for this option are 0.7 and 0.8.

■ 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).

■ 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

Table A–19 LKM HBase to Hive (HBase-SerDe) Options

Option Description

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts post
data integration. Set this option to NO if you want to retain the
temporary objects, which might be useful for debugging.

Table A–18 (Cont.) IKM File to Hive Options

Option Description

IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

Hive Knowledge Modules A-31

IKM Hive to HBase Incremental Update (HBase-SerDe) supports:

■ Filters, Joins, Datasets, Transformations and Aggregations in Hive

■ Inline views generated by IKM Hive Transform

■ Inline views generated by IKM Hive Control Append

The following table describes the options for IKM Hive to HBase Incremental Update
(HBase-SerDe). See the knowledge module for additional details.

A.23 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

IKM SQL to Hive-HBase-File (SQOOP) supports:

■ Mappings on staging

■ Joins on staging

■ Filter expressions on staging

■ Datasets

■ Lookups

■ Derived tables

The following table describes the options for IKM SQL to Hive-HBase-File (SQOOP).
See the knowledge module for additional details.

Table A–20 IKM Hive to HBase Incremental Update (HBase-SerDe) Options

Option Description

CREATE_TARG_TABLE Creates the HBase target table.

TRUNCATE Replaces the target table content with the new data. If this
option is set to false, the new data is appended to the target
table.

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts post
data integration. Set this option to NO if you want to retain the
temporary objects, which might be useful for debugging.

HBASE_WAL Enables or disables the Write-Ahead-Log (WAL) that HBase uses
to protect against data loss. For better performance, WAL can be
disabled.

Table A–21 IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

CREATE_TARG_TABLE Creates the target table. This option is applicable only if the
target is Hive or HBase.

TRUNCATE Replaces any existing target table content with the new data. For
Hive and HBase targets, the target data is truncated. For File
targets, the target directory is removed. For File targets, this
option must be set to true.

SQOOP_PARALLELISM Specifies the degree of parallelism. More precisely the number of
mapper processes used for extraction.

If SQOOP_PARALLELISM option is set to greater than 1, SPLIT_BY
option must be defined.

IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

A-32 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

SPLIT_BY Specifies the target column to be used for splitting the source
data into n chunks for parallel extraction, where n is SQOOP_
PARALLELISM. To achieve equally sized data chunks the split
column should contain homogeneously distributed values. For
calculating the data chunk boundaries a query similar to SELECT
MIN(EMP.EMPNO), MAX(EMP.EMPNO) from EMPLOYEE EMP is used.
To avoid an extra full table scan the split column should be
backed by an index.

BOUNDARY_QUERY For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLIT-BY). In certain situations this may
not be the best boundaries or not the most optimized way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELISM chunks for parallel
extraction. Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence, regular table names
should be inserted through odiRef.getObjectName calls. For
example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName("EMP")%>

TEMP_DIR Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option blank
to use system's default temp directory:

<?=System.getProperty("java.io.tmp")?>

MAPRED_OUTPUT_BASE_DIR Specifies an hdfs directory, where SQOOP creates subdirectories
for temporary files. A subdirectory called like the work table
will be created here to hold the temporary data.

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts after
data integration. Set this option to NO if you want to retain the
temporary objects, which might be useful for debugging.

USE_HIVE_STAGING_TABLE Loads data into the Hive work table before loading into the Hive
target table. Set this option to false to load data directly into the
target table.

Setting this option to false is only possible, if all these
conditions are true:

■ All target columns are mapped

■ Existing Hive table uses standard hive row separators (\n)
and column delimiter (\01)

Setting this option to false provides better performance by
avoiding an extra data transfer step.

This option is applicable only if the target technology is Hive.

USE_GENERIC_JDBC_
CONNECTOR

Specifies whether to use the generic JDBC connector if a
connector for the target technology is not available.

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector can be used.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

Table A–21 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

CKM Hive (Deprecated)

Hive Knowledge Modules A-33

A.24 IKM Hive Control Append (Deprecated)
Note: This KM is deprecated and only used for backward compatibility.

This knowledge module validates and controls the data, and integrates it into a Hive
target table in truncate/insert (append) mode. Invalid data is isolated in an error table
and can be recycled. IKM Hive Control Append supports inline view mappings that
use either this knowledge module or IKM Hive Transform.

The following table describes the options for IKM Hive Control Append.

A.25 CKM Hive (Deprecated)
Note: This KM is deprecated and only used for backward compatibility.

This knowledge module checks data integrity for Hive tables. It verifies the validity of
the constraints of a Hive data store and diverts the invalid records to an error table.
You can use CKM Hive for static control and flow control. You must also define these
constraints on the stored data.

The following table describes the options for this check knowledge module.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

EXTRA_SQOOP_CONNECTOR_
CONF_PROPERTIES

Optional SQOOP connector properties.

Table A–22 IKM Hive Control Append Options

Option Description

FLOW_CONTROL Activates flow control.

RECYCLE_ERRORS Recycles data rejected from a previous control.

STATIC_CONTROL Controls the target table after having inserted or updated target
data.

CREATE_TARG_TABLE Creates the target table.

TRUNCATE Replaces the target table content with the new data. Setting this
option to true provides better performance.

DELETE_TEMPORARY_OBJECTS Removes the temporary objects, such as tables, files, and scripts
after data integration. Set this option to NO if you want to retain
the temporary objects, which might be useful for debugging.

HIVE_COMPATIBILE Specifies the Hive version compatibility. The values permitted
for this option are 0.7 and 0.8.

■ 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).

■ 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

Table A–21 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

IKM Hive Transform (Deprecated)

A-34 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.26 IKM Hive Transform (Deprecated)
Note: This KM is deprecated and only used for backward compatibility.

This knowledge module performs transformations. It uses a shell script to transform
the data, and then integrates it into a Hive target table using replace mode. The
knowledge module supports inline view mappings and can be used as an inline-view
for IKM Hive Control Append.

The transformation script must read the input columns in the order defined by the
source data store. Only mapped source columns are streamed into the transformations.
The transformation script must provide the output columns in the order defined by
the target data store.

The following table describes the options for this integration knowledge module.

Table A–23 CKM Hive Options

Option Description

DROP_ERROR_TABLE Drops error table before execution. When this option is set to
YES, the error table will be dropped each time a control is
performed on the target table. This means that any rejected
records, identified and stored during previous control
operations, will be lost. Otherwise previous rejects will be
preserved. In addition to the error table, any table called <error
table>_tmp will also be dropped.

HIVE_COMPATIBILE Specifies the Hive version compatibility. The values permitted
for this option are 0.7 and 0.8.

■ 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).

■ 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

Table A–24 IKM Hive Transform Options

Option Description

CREATE_TARG_TABLE Creates the target table.

DELETE_TEMPORARY_OBJECTS Removes the temporary objects, such as tables, files, and scripts
post data integration. Set this option to NO if you want to retain
the temporary objects, which might be useful for debugging.

IKM Hive Transform (Deprecated)

Hive Knowledge Modules A-35

TRANSFORM_SCRIPT_NAME Defines the file name of the transformation script. This
transformation script is used to transform the input data into the
output structure. Both local and HDFS paths are supported, for
example:

Local script location: file:///tmp/odi/script1.pl

HDFS script location:
hdfs://namenode:nnPort/tmp/odi/script1.pl

Ensure that the following requirements are met:

■ The path/file must be accessible by both the ODI agent and
the Hive server. Read access for the Hive server is required
as it is the Hive server, which executes the resulting MR job
invoking the script.

■ If TRANSFORM_SCRIPT is set (ODI creates the script file
during mapping execution), the path/file must be writable
for the ODI agent, as it is the ODI agent, which writes the
script file using the HDFS Java API.

When the KM option TRANSFORM_SCRIPT is set, the following
paragraphs provide some configuration help:

■ For HDFS script locations:

The script file created is owned by the ODI agent user and
receives the group of the owning directory. See Hadoop Hdfs
Permissions Guide for more details. The standard
configuration to cover the above two requirements for
HDFS scripts is to ensure that the group of the HDFS script
directory includes the ODI agent user (let's assume oracle)
as well as the Hive server user (let's assume hive).
Assuming that the group hadoop includes oracle and hive,
the sample command below adjusts the ownership of the
HDFS script directory:

logon as hdfs user hdfs dfs -chown oracle:hadoop
/tmp/odi/myscriptdir

■ For local script locations:

The script file created is owned by the ODI agent user and
receives the ODI agent user's default group, unless SGID
has been set on the script directory. If the sticky group bit
has been set, the file will be owned by the group of the
script directory instead. The standard configuration to cover
the above two requirements for local scripts is similar to the
HDFS configuration by using the SGID:

chown oracle:hadoop /tmp/odi/myscriptdir chmod g+s
/tmp/odi/myscriptdir

TRANSFORM_SCRIPT Defines the transformation script content. This transformation
script is then used to transform the input data into the output
structure. If left blank, the file given in TRANSFORM_SCRIPT_NAME
must already exist. If not blank, the script file is created.

Script example (1-to-1 transformation): #! /usr/bin/csh -f
cat

All mapped source columns are spooled as tab separated data
into this script via stdin. This unix script then transforms the
data and writes out the data as tab separated data on stdout. The
script must provide as many output columns as there are target
columns.

Table A–24 (Cont.) IKM Hive Transform Options

Option Description

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

A-36 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

A.27 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

IKM File-Hive to Oracle (OLH-OSCH) integrates data from an HDFS file or Hive
source into an Oracle database target using Oracle Loader for Hadoop. Using the
mapping configuration and the selected options, the knowledge module generates an
appropriate Oracle Database target instance. Hive and Hadoop versions must follow
the Oracle Loader for Hadoop requirements.

The following table describes the options for this integration knowledge module.

TRANSFORM_SCRIPT_MODE Unix/HDFS file permissions for script file in octal notation with
leading zero. For example, full permissions for owner and
group: 0770.

Warning: Using wider permissions like 0777 poses a security
risk.

See also KM option description for TRANSFORM_SCRIPT_NAME for
details on directory permissions.

PRE_TRANSFORM_DISTRIBUTE Provides an optional, comma-separated list of source column
names, which enables the knowledge module to distribute the
data before the transformation script is applied.

PRE_TRANSFORM_SORT Provide an optional, comma-separated list of source column
names, which enables the knowledge module to sort the data
before the transformation script is applied.

POST_TRANSFORM_
DISTRIBUTE

Provides an optional, comma-separated list of target column
names, which enables the knowledge module to distribute the
data after the transformation script is applied.

POST_TRANSFORM_SORT Provides an optional, comma-separated list of target column
names, which enables the knowledge module to sort the data
after the transformation script is applied.

See Also:

■ "Oracle Loader for Hadoop Setup" in Oracle Big Data Connectors User's
Guide for the required versions of Hadoop and Hive

■ "Configuring the Oracle Data Integrator Agent to Execute Hadoop
Jobs" on page 3-7 for required environment variable settings

Table A–24 (Cont.) IKM Hive Transform Options

Option Description

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

Hive Knowledge Modules A-37

Table A–25 IKM File - Hive to Oracle (OLH-OSCH)

Option Description

OLH_OUTPUT_MODE Specifies how to load the Hadoop data into Oracle. Permitted
values are JDBC, OCI, DP_COPY, DP_OSCH, and OSCH.

■ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections. In very rare cases JDBC
mode may result in duplicate records in target table due to
Hadoop trying to restart tasks.

■ OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode. If USE_
ORACLE_STAGINGis set to false, target table must be
partitioned. If USE_ORACLE_STAGING is set to true, FLOW_
TABLE_OPTIONS must explicitly specify partitioning, for
example, "PARTITION BY HASH(COL1) PARTITIONS 4". In
very rare cases OCI mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

■ DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. Please note that the
path must be accessible by the Oracle Database engine.
Once the copy job is complete, an external table is defined
in the target database, which accesses the files from EXT_
TAB_DIR_LOCATION.

■ DP_OSCH output mode: OLH creates a number of
DataPump export files. After the export phase an external
table is created on the target database, which accesses these
output files directly via OSCH. Please note that the path
must be accessible by the Oracle Database engine. Once the
copy job is complete, an external table is defined in the
target database, which accesses the files from EXT_TAB_DIR_
LOCATION.

■ OSCH output mode: In OSCH mode loading, OLH is
bypassed. ODI creates an external table on the target
database, which accesses the input files through OSCH.
Please note that only delimited and fixed length files can be
read. No support for loading from Hive or custom Input
Formats such as RegexInputFormat, as there is no OLH
pre-processing.

REJECT_LIMIT Specifies the maximum number of errors for Oracle Loader for
Hadoop and external table. Examples: UNLIMITED to except all
errors. Integer value (10 to allow 10 rejections) This value is used
in Oracle Loader for Hadoop job definitions as well as in
external table definitions.

CREATE_TARG_TABLE Creates the target table.

TRUNCATE Replaces the target table content with the new data.

DELETE_ALL Deletes all the data in target table.

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

A-38 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

USE_HIVE_STAGING_TABLE Materializes Hive source data before extraction by Oracle
Loader for Hadoop. If this option is set to false, Oracle Loader
for Hadoop directly accesses the Hive source data. Setting this
option to false is only possible, if all these conditions are true:

■ Only a single source table

■ No transformations, filters, joins

■ No datasets

Setting this option to false provides better performance by
avoiding an extra data transfer step.

This option is applicable only if the source technology is Hive.

USE_ORACLE_STAGING_TABLE Uses an intermediate Oracle database staging table.

The extracted data is made available to Oracle by an external
table. If USE_ORACLE_STAGING_TABLE is set to true (default), the
external table is created as a temporary (I$) table. This I$ table
data is then inserted into the target table. Setting this option to
false is only possible, if all these conditions are true:

■ OLH_OUTPUT_MODE is set to JDBC or OCI

■ All source columns are mapped

■ All target columns are mapped

■ No target-side mapping expressions

Setting this option to false provides better performance by
avoiding an extra data transfer step, but may lead to partial data
being loaded into the target table, as Oracle Loader for Hadoop
loads data in multiple transactions.

EXT_TAB_DIR_LOCATION Specifies the file system path of the external table. Please note
the following:

■ Only applicable, if OLH_OUTPUT_MODE = DP_*|OSCH

■ For OLH_OUTPUT_MODE = DP_*: this path must be accessible
both from the ODI agent and from the target database
engine.

■ For OLH_OUTPUT_MODE = DP_*: the name of the external
directory object is the I$ table name.

■ For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use
hadoop-fs command to copy dp files into this directory.

■ For OLH_OUTPUT_MODE = DP_*|OSCH: this path will contain
any external table log/bad/dsc files.

■ ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

TEMP_DIR Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option blank
to use system's default temp directory:

<?=System.getProperty("java.io.tmp")?>

MAPRED_OUTPUT_BASE_DIR Specifies an HDFS directory, where the Oracle Loader for
Hadoop job will create subdirectories for temporary
files/datapump output files.

FLOW_TABLE_OPTIONS Specifies the attributes for the integration table at create time
and used for increasing performance. This option is set by
default to NOLOGGING. This option may be left empty.

Table A–25 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)

Option Description

IKM File-Hive to SQL (SQOOP) [Deprecated]

Hive Knowledge Modules A-39

A.28 IKM File-Hive to SQL (SQOOP) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

IKM File-Hive to SQL (SQOOP) supports:

■ Filters, Joins, Datasets, Transformations and Aggregations in Hive

■ Inline views generated by IKM Hive Control Append

■ Inline views generated by IKM Hive Transform

■ Hive-HBase source tables using LKM HBase to Hive (HBase SerDe)

■ File source data (delimited file format only)

The following table describes the options for this integration knowledge module.

DELETE_TEMPORARY_OBJECTS Removes temporary objects, such as tables, files, and scripts post
data integration. Set this option to NO if you want to retain the
temporary objects, which might be useful for debugging.

OVERRIDE_INPUTFORMAT By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvroInputFormat). This option allows the user to specify
the class name of a custom InputFormat. Cannot be used with
OLH_OUTPUT_MODE=OSCH.

Example, for reading custom file formats like web log files the
OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

EXTRA_OLH_CONF_
PROPERTIES

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may require
additional configuration parameters. These are provided in the
OLH configuration file. This KM option allows adding extra
properties to the OLH configuration file. Cannot be used with
OLH_OUTPUT_MODE=OSCH.

Example, (loading apache weblog file format): When OLH
RegexInputFormat is used for reading custom file formats, this
KM option specifies the regular expression and other parsing
details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^
\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*) (\".*?\")
(\".*?\") (\".*?\")</value> <description>RegEx
for Apache WebLog format</description> </property>

Table A–26 IKM File-Hive to SQL (SQOOP)

Option Description

CREATE_TARG_TABLE Creates the target table.

TRUNCATE Replaces the target datastore content with new data. If this
option is set to false, the new data is appended to the target
datastore.

DELETE_ALL Deletes all the rows in the target datastore.

Table A–25 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)

Option Description

IKM File-Hive to SQL (SQOOP) [Deprecated]

A-40 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

SQOOP_PARALLELISM Specifies the degree of parallelism. More precisely the number of
mappers used during SQOOP export and therefore the number
of parallel JDBC connections.

USE_TARGET_STAGING_TABLE By default the source data is staged into a target-side staging
table, before it is moved into the target table. If this option is set
to false, SQOOP loads the source data directly into the target
table, which provides better performance and less need for
tablespace in target RDBMS by avoiding an extra data transfer
step.

For File sources setting this option to false is only possible, if all
these conditions are met:

■ All source columns must be mapped

■ Source and target columns have same order

■ First file column must map to first target column

■ no mapping gaps

■ only 1-to-1 mappings (no expressions)

Please note the following:

■ SQOOP uses multiple writers, each having their own JDBC
connection to the target. Every writer uses multiple
transactions for inserting the data. This means that in case
USE_TARGET_STAGING_TABLE is set to false, changes to the
target table are no longer atomic and writer failures can lead
to partially updated target tables.

■ The Teradata Connector for SQOOP always creates an extra
staging table during load. This connector staging table is
independent of the KM option.

USE_GENERIC_JDBC_
CONNECTOR

Specifies whether to use the generic JDBC connector if a
connector for the target technology is not available.

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector can be used.

FLOW_TABLE_OPTIONS When creating the target-side work table, RDBMS-specific table
options can improve performance. By default this option is
empty and the knowledge module will use the following table
options:

■ For Oracle: NOLOGGING

■ For DB2: NOT LOGGED INITIALLY

■ For Teradata: no fallback, no before journal, no
after journal

Any explicit value overrides these defaults.

TEMP_DIR Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option blank
to use system's default temp directory:

<?=System.getProperty("java.io.tmp")?>

MAPRED_OUTPUT_BASE_DIR Specifies an HDFS directory, where SQOOP creates
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

Table A–26 (Cont.) IKM File-Hive to SQL (SQOOP)

Option Description

IKM File-Hive to SQL (SQOOP) [Deprecated]

Hive Knowledge Modules A-41

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts after
data integration. Set this option to NO if you want to retain the
temporary objects, which might be useful for debugging.

TERADATA_PRIMARY_INDEX Primary index for the target table. Teradata uses the primary
index to spread data across AMPs. It is important that the
chosen primary index has a high cardinality (many distinct
values) to ensure evenly spread data to allow maximum
processing performance. Please follow Teradata's
recommendation on choosing a primary index.

This option is applicable only to Teradata targets.

TERADATA_FLOW_TABLE_TYPE Type of the Teradata flow table, either SET or MULTISET.

This option is applicable only to Teradata targets.

TERADATA_OUTPUT_METHOD Specifies the way the Teradata Connector will load the data.
Valid values are:

■ batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

■ multiple.fastload: multiple FastLoad connections

■ internal.fastload: single coordinated FastLoad
connections (most performant)

This option is applicable only to Teradata targets.

EXTRA_HADOOP_CONF_
PROPERTIES

Optional generic Hadoop properties.

EXTRA_SQOOP_CONF_
PROPERTIES

Optional SQOOP properties.

EXTRA_SQOOP_CONNECTOR_
CONF_PROPERTIES

Optional SQOOP connector properties.

Table A–26 (Cont.) IKM File-Hive to SQL (SQOOP)

Option Description

IKM File-Hive to SQL (SQOOP) [Deprecated]

A-42 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

B

Pig Knowledge Modules B-1

BPig Knowledge Modules

This appendix provides information about the Pig knowledge modules.

This chapter includes the following sections:

■ Section B.1, "LKM File to Pig"

■ Section B.2, "LKM Pig to File"

■ Section B.3, "LKM HBase to Pig"

■ Section B.4, "LKM Pig to HBase"

■ Section B.5, "LKM Hive to Pig"

■ Section B.6, "LKM Pig to Hive"

■ Section B.7, "LKM SQL to Pig SQOOP"

■ Section B.8, "XKM Pig Aggregate"

■ Section B.9, "XKM Pig Distinct"

■ Section B.10, "XKM Pig Expression"

■ Section B.11, "XKM Pig Filter"

■ Section B.12, "XKM Pig Flatten"

■ Section B.13, "XKM Pig Join"

■ Section B.14, "XKM Pig Lookup"

■ Section B.15, "XKM Pig Pivot"

■ Section B.16, "XKM Pig Set"

■ Section B.17, "XKM Pig Sort"

■ Section B.18, "XKM Pig Split"

■ Section B.19, "XKM Pig Subquery Filter"

■ Section B.20, "XKM Pig Table Function"

■ Section B.21, "XKM Pig Unpivot"

B.1 LKM File to Pig
This KM loads data from a file into Pig.

The supported data formats are:

■ Delimited

LKM File to Pig

B-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

■ JSON

■ Pig Binary

■ Text

■ Avro

■ Trevni

■ Custom

Data can be loaded and written to local file system or HDFS.

The following table describes the options for LKM File to Pig.

Table B–1 LKM File to Pig

Option Description

Storage Function The storage function to be used to load data.

Select the storage function to be used to load data.

Schema for Complex Fields The pig schema for simple/complex fields separated by comma
(,).

Redefine the datatypes of the fields in pig schema format. This
option primarily allows to overwrite the default datatypes
conversion for data store attributes, for example: PO_
NO:int,PO_TOTAL:long MOVIE_
RATING:{(RATING:double,INFO:chararray)}, where the names
of the fields defined here should match with the attributes
names of the datastore.

Function Class Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as storage
function to load data.

Function Parameters The parameters required for the custom function.

Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie
-schema

where,

MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Options Additional options required for the storage function

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

LKM Pig to File

Pig Knowledge Modules B-3

B.2 LKM Pig to File
This KM unloads data to file from pig.

The supported data formats are:

■ Delimited

■ JSON

■ Pig Binary

■ Text

■ Avro

■ Trevni

■ Custom

Data can be stored in local file system or in HDFS.

The following table describes the options for LKM Pig to File.

Jars The jar containing the storage function class and dependant
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependant libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

Table B–2 LKM Pig to File

Option Description

Storage Function The storage function to be used to load data.

Select the storage function to be used to load data.

Store Schema If selected, stores the schema of the relation using a hidden
JSON file.

Record Name The Avro record name to be assigned to the bag of tuples being
stored.

Specify a name to be assigned to the bag of tuples being stored.

Namespace The namespace to be assigned to Avro/Trevni records, while
storing data.

Specify a namespace for the bag of tuples being stored.

Delete Target File Delete target file before Pig writes to the file.

If selected, the target file is deleted before storing data. This
option effectively enables the target file to be overwritten.

Function Class Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as storage
function to load data.

Table B–1 (Cont.) LKM File to Pig

Option Description

LKM HBase to Pig

B-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

B.3 LKM HBase to Pig
This KM loads data from a hbase table into Pig using HBaseStorage function.

The following table describes the options for LKM HBase to Pig.

Function Parameters The parameters required for the custom function.

Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie
-schema

where,

MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Options Additional options required for the storage function

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

Jars The jar containing the storage function class and dependant
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependant libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

Table B–3 LKM HBase to Pig

Option Description

Storage Function The storage function to be used to load data.

HBaseStorage is used to load from a hbase table into pig.

Load Row Key Load the row key as the first value in every tuple returned from
HBase.

If selected, Loads the row key as the first value in every tuple
returned from HBase. The row key is mapped to the 'key'
column of the HBase data store in ODI.

Table B–2 (Cont.) LKM Pig to File

Option Description

LKM Pig to HBase

Pig Knowledge Modules B-5

B.4 LKM Pig to HBase
This KM stores data into a hbase table using HBaseStorage function.

The following table describes the options for LKM Pig to HBase.

Greater Than Min Key Loads rows with key greater than the key specified for this
option.

Specify the key value to load rows with key greater than the
specified key value.

Less Than Min Key Loads rows with row key less than the value specified for this
option.

Specify the key value to load rows with key less than the
specified key value.

Greater Than Or Equal Min
Key

Loads rows with key greater than or equal to the key specified
for this option.

Specify the key value to load rows with key greater than or
equal to the specified key value.

Less Than Or Equal Min
Key

Loads rows with row key less than or equal to the value
specified for this option.

Specify the key value to load rows with key less than or equal to
the specified key value.

Limit Rows Maximum number of row to retrieve per region

Specify the maximum number of rows to retrieve per region.

Cached Rows Number of rows to cache.

Specify the number of rows to cache.

Storage Convertor The name of Caster to use to convert values.

Specify the class name of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

Column Delimiter The delimiter to be used to separate columns in the columns list
of HBaseStorage function.

Specify the delimiter to be used to separate columns in the
columns list of HBaseStorage function. If unspecified, the
default is whitespace.

Timestamp Return cell values that have a creation timestamp equal to this
value.

Specify a timestamp to return cell values that have a creation
timestamp equal to the specified value.

Min Timestamp Return cell values that have a creation timestamp less than to
this value.

Specify a timestamp to return cell values that have a creation
timestamp less than to the specified value.

Max Timestamp Return cell values that have a creation timestamp less than this
value.

Specify a timestamp to return cell values that have a creation
timestamp greater than or equal to the specified value.

Table B–3 (Cont.) LKM HBase to Pig

Option Description

LKM Hive to Pig

B-6 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

B.5 LKM Hive to Pig
This KM loads data from a hive table into Pig using HCatalog.

The following table describes the options for LKM Hive to Pig.

B.6 LKM Pig to Hive
This KM stores data into a hive table using HCatalog.

The following table describes the options for LKM Pig to Hive.

Table B–4 LKM Pig to HBase

Option Description

Storage Function The storage function to be used to store data. This is a read-only
option, which can not be changed.

HBaseStore function is used to load data into hbase table.

Storage Convertor The name of Caster to use to convert values.

Specify the class name of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

Column Delimiter The delimiter to be used to separate columns in the columns list
of HBaseStorage function.

Specify the delimiter to be used to separate columns in the
columns list of HBaseStorage function. If unspecified, the
default is whitespace.

Disable Write Ahead Log If it is true, write ahead log is set to false for faster loading into
HBase.

If selected, write ahead log is set to false for faster loading into
HBase. This must be used in extreme caution, since this could
result in data loss. Default value is false.

Table B–5 LKM Hive to Pig

Option Description

Storage Function The storage function to be used to load data. This is a read-only
option, which can not be changed.

HCatLoader is used to load data from a hive table.

Table B–6 LKM Pig to Hive

Option Description

Storage Function The storage function to be used to load data. This is a read-only
option, which can not be changed.

HCatStorer is used to store data into a hive table.

Partition The new partition to be created.

Represents key/value pairs for partition. This is a mandatory
argument when you are writing to a partitioned table and the
partition column is not in the output column. The values for
partition keys should NOT be quoted.

LKM SQL to Pig SQOOP

Pig Knowledge Modules B-7

B.7 LKM SQL to Pig SQOOP
This KM integrates data from a JDBC data source into Pig.

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and import into Staging file in csv
format.

3. Runs LKM File To Pig KM to load the Staging file into PIG.

4. Drop the Staging file.

The following table describes the options for LKM SQL to Pig SQOOP.

Table B–7 LKM File to Pig

Option Description

STAGING_FILE_
DELIMITER

Sqoop uses this delimiter to create the temporary file. If not
specified, \\t will be used.

Storage Function The storage function to be used to load data.

Select the storage function to be used to load data.

Schema for Complex Fields The pig schema for simple/complex fields separated by comma
(,).

Redefine the datatypes of the fields in pig schema format. This
option primarily allows to overwrite the default datatypes
conversion for data store attributes, for example: PO_
NO:int,PO_TOTAL:long MOVIE_
RATING:{(RATING:double,INFO:chararray)}, where the names
of the fields defined here should match with the attributes
names of the datastore.

Function Class Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as storage
function to load data.

Function Parameters The parameters required for the custom function.

Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie
-schema

where,

MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

XKM Pig Aggregate

B-8 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

B.8 XKM Pig Aggregate
Summarize rows, for example using SUM and GROUP BY.

The following table describes the options for XKM Pig Aggregate.

B.9 XKM Pig Distinct
Eliminates duplicates in data.

B.10 XKM Pig Expression
Define expressions to be reused across a single mapping.

B.11 XKM Pig Filter
Produce a subset of data by a filter condition.

B.12 XKM Pig Flatten
Un-nest the complex data according to the given options.

The following table describes the options for XKM Pig Flatten.

Options Additional options required for the storage function.

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

Jars The jar containing the storage function class and dependant
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependant libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

Table B–8 XKM Pig Aggregate

Option Description

USING_ALGORITHM Aggregation type; collected or merge.

PARTITION_BY Specify the Hadoop partitioner.

PARTITIONER_JAR Increase the parallelism of this job.

PARALLEL_NUMBER Increase the parallelism of this job.

Table B–7 (Cont.) LKM File to Pig

Option Description

XKM Pig Split

Pig Knowledge Modules B-9

B.13 XKM Pig Join
Joins more than one input sources based on the join condition.

The following table describes the options for XKM Pig Join.

B.14 XKM Pig Lookup
Lookup data for a driving data source.

The following table describes the options for XKM Pig Lookup.

B.15 XKM Pig Pivot
Takes data in separate rows, aggregates it, and converts it into columns.

B.16 XKM Pig Set
Perform UNION, MINUS or other set operations.

B.17 XKM Pig Sort
Sort data using an expression.

B.18 XKM Pig Split
Split data into multiple paths with multiple conditions.

Table B–9 XKM Pig Flatten

Option Description

Default Expression Default expression for null nested table objects, e.g. rating_
table(obj_rating('-1', 'Unknown')).

This is used to return a row with default values for each null
nested table object.

Table B–10 XKM Pig Join

Option Description

USING_ALGORITHM Join type; replicated or skewed or merge.

PARTITION_BY Specify the Hadoop partitioner.

PARTITIONER_JAR Increase the parallelism of this job.

PARALLEL_NUMBER Increase the parallelism of this job.

Table B–11 XKM Pig Lookup

Option Description

Jars The jar containing the Used Defined Function classes and
dependant libraries separated by colon (:).

XKM Pig Subquery Filter

B-10 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

B.19 XKM Pig Subquery Filter
Filter rows based on the results of a subquery.

B.20 XKM Pig Table Function
Pig table function access.

The following table descriptions the options for XKM Pig Table Function.

B.21 XKM Pig Unpivot
Transform a single row of attributes into multiple rows in an efficient manner.

Table B–12 XKM Pig Table Function

Option Description

PIG_SCRIPT_CONTENT User specified pig script content.

C

Spark Knowledge Modules C-1

CSpark Knowledge Modules

This appendix provides information about the Spark knowledge modules.

This chapter includes the following sections:

■ Section C.1, "LKM File to Spark"

■ Section C.2, "LKM Spark to File"

■ Section C.3, "LKM Hive to Spark"

■ Section C.4, "LKM Spark to Hive"

■ Section C.5, "XKM Spark Aggregate"

■ Section C.6, "XKM Spark Distinct"

■ Section C.7, "XKM Spark Expression"

■ Section C.8, "XKM Spark Filter"

■ Section C.9, "XKM Spark Flatten"

■ Section C.10, "XKM Spark Join"

■ Section C.11, "XKM Spark Lookup"

■ Section C.12, "XKM Spark Pivot"

■ Section C.13, "XKM Spark Set"

■ Section C.14, "XKM Spark Sort"

■ Section C.15, "XKM Spark Split"

■ Section C.16, "XKM Spark Table Function"

■ Section C.17, "IKM Spark Table Function"

■ Section C.18, "XKM Spark Unpivot"

C.1 LKM File to Spark
This KM will load data from a file into a Spark Python variable and can be defined on
the AP between the execution units, source technology File, target technology Spark
Python.

The following tables describes the options for LKM File to Spark.

LKM Spark to File

C-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

C.2 LKM Spark to File
This KM will store data into a file from a Spark Python variable and can be defined on
the AP between the execution units, source technology Spark Python, target
technology File.

The following tables describes the options for LKM Spark to File.

C.3 LKM Hive to Spark
This KM will load data from a Hive table into a Spark Python variable and can be
defined on the AP between the execution units, source technology Hive, target
technology Spark Python.

Table C–1 LKM File to Spark

Option Description

Storage Function The storage function to be used to load/store data.

CACHE_DATA Persist the data with the default storage level.

InputFormatClass Classname of Hadoop InputFormat.

For example,
org.apache.hadoop.mapreduce.lib.input.TextInputFormat.

KeyClass Fully qualified classname of key Writable class.

For example, org.apache.hadoop.io.Text.

ValueClass Fully qualified classname of value Writable class.

For example, org.apache.hadoop.io.LongWritable.

KeyConverter Fully qualified classname of key converter class.

ValueConverter Fully qualified classname of value converter class.

Job Configuration Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST',
'hbase.mapreduce.inputtable': 'TAB'}

Table C–2 LKM Spark to File

Option Description

Storage Function The storage function to be used to load/store data.

InputFormatClass Classname of Hadoop InputFormat.

For example,
org.apache.hadoop.mapreduce.lib.input.TextInputFormat.

KeyClass Fully qualified classname of key Writable class.

For example, org.apache.hadoop.io.Text.

ValueClass Fully qualified classname of value Writable class.

For example, org.apache.hadoop.io.LongWritable.

KeyConverter Fully qualified classname of key converter class.

ValueConverter Fully qualified classname of value converter class.

Job Configuration Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST',
'hbase.mapreduce.inputtable': 'TAB'}

XKM Spark Flatten

Spark Knowledge Modules C-3

C.4 LKM Spark to Hive
This KM will store data into a Hive table from a Spark Python variable and can be
defined on the AP between the execution units, source technology Spark, target
technology Hive.

The following tables describes the options for LKM Spark to Hive.

C.5 XKM Spark Aggregate
Summarize rows, for example, using SUM and GROUP BY.

The following tables describes the options for XKM Spark Aggregate.

C.6 XKM Spark Distinct
Eliminates duplicates in data.

The following tables describes the options for XKM Spark Distinct.

C.7 XKM Spark Expression
Define expressions to be reused across a single mapping.

C.8 XKM Spark Filter
Produce a subset of data by a filter condition.

The following tables describes the options for XKM Spark Filter.

C.9 XKM Spark Flatten
Un-nest the complex data according to the given options.

Table C–3 LKM Spark to Hive

Option Description

CREATE_TARGET_TABLE Create the target table.

OVERWRITE_TARGET_
TABLE

Overwrite the target table.

Table C–4 XKM Spark Aggregate

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

Table C–5 XKM Spark Distinct

Option Description

CACHE_DATA Persist the data with the default storage level.

Table C–6 XKM Spark Filter

Option Description

CACHE_DATA Persist the data with the default storage level.

XKM Spark Join

C-4 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

The following tables describes the options for XKM Spark Flatten.

C.10 XKM Spark Join
Joins more than one input sources based on the join condition.

The following tables describes the options for XKM Spark Join.

C.11 XKM Spark Lookup
Lookup data for a driving data source.

The following tables describes the options for XKM Spark Lookup.

C.12 XKM Spark Pivot
Take data in separate rows, aggregates it and converts it into columns.

The following tables describes the options for XKM Spark Pivot.

C.13 XKM Spark Set
Perform UNION, MINUS or other set operations.

C.14 XKM Spark Sort
Sort data using an expression.

Table C–7 XKM Spark Flatten

Option Description

Default Expression Default expression for null nested table objects. For example,
rating_table(obj_rating('-1', 'Unknown')).

This is used to return a row with default values for each null
nested table object.

CACHE_DATA When set to TRUE, persist the results with Spark default storage
level.

Default is FALSE.

Table C–8 XKM Spark Join

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

Table C–9 XKM Spark Join

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

Table C–10 XKM Spark Pivot

Option Description

CACHE_DATA Persist the data with the default storage level.

XKM Spark Unpivot

Spark Knowledge Modules C-5

The following tables describes the options for XKM Spark Sort.

C.15 XKM Spark Split
Split data into multiple paths with multiple conditions.

The following tables describes the options for XKM Spark Split.

C.16 XKM Spark Table Function
Spark table function access.

The following tables describes the options for XKM Spark Table Function.

C.17 IKM Spark Table Function
Spark table function as target.

The following tables describes the options for IKM Spark Table Function.

C.18 XKM Spark Unpivot
Transform a single row of attributes into multiple rows in an efficient manner.

The following tables describes the options for XKM Spark Pivot.

Table C–11 XKM Spark Sort

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

Table C–12 XKM Spark Split

Option Description

CACHE_DATA Persist the data with the default storage level.

Table C–13 XKM Spark Table Function

Option Description

SPARK_SCRIPT_FILE User specifies the path of spark script file.

CACHE_DATA Persist the data with the default storage level.

Table C–14 IKM Spark Table Function

Option Description

SPARK_SCRIPT_FILE User specifies the path of spark script file.

CACHE_DATA Persist the data with the default storage level.

Table C–15 XKM Spark Unpivot

Option Description

CACHE_DATA Persist the data with the default storage level.

XKM Spark Unpivot

C-6 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

D

Components Knowledge Modules D-1

DComponents Knowledge Modules

This appendix provides information about the knowledge modules for the Flatten and
the Jagged component.

This chapter includes the following sections:

■ Section D.1, "XKM Oracle Flatten"

■ Section D.2, "XKM Oracle Flatten XML"

■ Section D.3, "XKM Jagged"

D.1 XKM Oracle Flatten
Un-nest the complex data according to the given options.

The following tables describes the options for XKM Oracle Flatten.

D.2 XKM Oracle Flatten XML
Un-nest the complex data in an XML file according to the given options.

The following tables describes the options for XKM Oracle Flatten XML.

Table D–1 XKM Oracle Flatten

Option Description

NESTED_TABLE_ALIAS Alias used for nested table expression.

Default is NST.

DEFAULT_EXPRESSION Default expression for null nested table objects. For example,
rating_table(obj_rating('-1', 'Unknown')).

Table D–2 XKM Oracle Flatten XML

Option Description

XML_XPATH Specify XML path for XMLTABLE function. For example,
'/ratings/rating'.

XML_IS_ATTRIBUTE Set to True when data is stored as attribute values of record tag.
For example, <row attribute1=..." /> "

XML_TABLE_ALIAS Alias used for XMLTABLE expression.

Default is XMLT.

XKM Jagged

D-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

D.3 XKM Jagged
Jagged component KMs process unstructured data using meta pivoting. Source data,
represented as key-value free format, will be transformed into more structured entities
in order to be loaded into database tables or file structures. Jagged component has one
input group and one or multiple output groups based on the configuration of the
component. Input group is connected to a source component, which has e key-value or
id-key-value structure. Output groups are connected to the target components where
data is stored in more structured way, i.e. keys become column names and values are
stored as table rows. Jagged KM is parsing the source data and is looking for key data
matching the output group attributes. Once the relevant keys are identified the
corresponding data is stored into a row. In case of key-value source each incoming
record is delimited by a key marked as End of Data Indicator. In case of id-key-value
source incoming records are delimited by a new value of the sequence defined as id.
Target records can be consolidated by removing duplicates based on Unique Index
attribute property. Some attributes can be labelled as required, meaning no new record
is stored if any of the required keys is missing. Default values can be defined for some
missing keys.

The following tables describes the options for XKM Jagged.

DEFAULT_EXPRESSION Default expression for null XMLTYPE objects. For example,
<row> < attribute1/><row/>

This is used to return a row with default values for each null
XMLTYPE object.

Table D–3 XKM Jagged

Option Description

TMP_DIR Directory for temporary files.

FIELD_DELIMITER Field delimiter for temporary files.

DELETE_TEMPORARY_
OBJECTS

Delete temporary objects at end of mapping.

Table D–2 (Cont.) XKM Oracle Flatten XML

Option Description

E

Considerations, Limitations, and Issues E-1

EConsiderations, Limitations, and Issues

[9]This appendix lists the considerations, limitations, and issues that you must be aware
of while working on Big Data integration projects in ODI.

This appendix includes the following sections:

■ Section E, "Considerations, Limitations, and Issues"

E.1 Considerations, Limitations, and Issues
Please note the following when working on Big Data integration projects:

■ Before ODI 12c (12.2.1.1) any Groovy, Jython, Beanshell code in ODI
Procedures/Custom KMs were not able to access Hadoop/Pig classes, unless
these JARs were added to ODI class path.

Starting with ODI 12c (12.2.1.1), the ODI Procedures/Custom KMs can access
Hadoop/Pig classes as long as they exist in the paths configured on Hadoop/Pig
data servers.

■ A new property oracle.odi.prefer.dataserver.packages is exposed on Hadoop
and Pig data servers, as well as Hive data servers. This property lets you specify
which packages are loaded child-first rather than parent-first.

Note: Upgraded repositories will not show this property on upgraded
Hadoop/Pig data servers. Only new data servers will show this property.

■ In JEE environment, Agent application may be redeployed. However due to Pig's
shutdown hook, Logging leak, and other undiscovered leaks, the execution
classloader created will not get GC'd. Hence, in ODI 12c (12.2.1), if using Big Data
features, the JEE Agent application must not be re-deployed, instead a server
restart is required.

■ Any package filter applied to a data server must be as specific as possible. Do not
try to make things easier by specifying the widest possible filter. For example, if
you specify org.apache as a filter element, you will get ClassCastException on
Beanshell instantiation, XML parsers instantiation, and so on. This happens
because according to Java Language Specification two class instances are castable
only if they are same type declaration and are loaded by the same classloader. In
this example, your interface will be under some sub-package of org.apache, for
example, org.apache.util.IMyInterface. The interface class loaded by the
Studio classloader/web application classloader is the casting target. When the
implementation class is instantiated via reflection, the instance class's interface
class is also loaded by the execution classloader. When JNIEnv code does the
checking to see if the caster and castee share a same type declaration, it will turn

Considerations, Limitations, and Issues

E-2 Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator

out to be false since the LHS has Studio/web-application classloader and RHS has
execution classloader.

■ Execution classloader instances are cached. Changing the data server package
filter or data server classpath results in the creation of a new classloader instance.
The old classloader may not be GC'd immediately (or even ever). This can lead to
running out of heap space. The only solution is a JVM restart.

■ When using SDK to create Pig, Hadoop, or any other data server having package
filtering property set on it, adding more data server properties requires attention
to one detail. You must retrieve the current set of properties, add your properties
to it and then set it on the data server. Otherwise, the filtering property will be lost.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Big Data Integration with Oracle Data Integrator
	1.1 Overview of Hadoop Data Integration
	1.2 Big Data Knowledge Modules Matrix

	2 Hadoop Data Integration Concepts
	2.1 Hadoop Data Integration with Oracle Data Integrator
	2.2 Generate Code in Different Languages with Oracle Data Integrator
	2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects
	2.4 Oozie Workflow Execution Modes

	3 Setting Up the Environment for Integrating Hadoop Data
	3.1 Configuring Big Data technologies using the Big Data Configurations Wizard
	3.1.1 General Settings
	3.1.2 HBase Data Server Definition

	3.2 Creating and Initializing the Hadoop Data Server
	3.2.1 Hadoop Data Server Definition
	3.2.2 Hadoop Data Server Properties

	3.3 Creating a Hadoop Physical Schema
	3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs
	3.5 Configuring Oracle Loader for Hadoop
	3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster
	3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

	4 Integrating Hadoop Data
	4.1 Integrating Hadoop Data
	4.2 Setting Up File Data Sources
	4.3 Setting Up Hive Data Sources
	4.4 Setting Up HBase Data Sources
	4.5 Importing Hadoop Knowledge Modules
	4.6 Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and HDFS Models
	4.6.1 Creating a Model
	4.6.2 Reverse Engineering Hive Tables
	4.6.3 Reverse Engineering HBase Tables
	4.6.4 Reverse Engineering HDFS Files

	4.7 Loading Data from Files into Hive
	4.8 Loading Data from Hive to Files
	4.9 Loading Data from HBase into Hive
	4.10 Loading Data from Hive into Hbase
	4.11 Loading Data from an SQL Database into Hive, HBase, and File using SQOOP
	4.12 Loading Data from an SQL Database into Hive using SQOOP
	4.13 Loading Data from an SQL Database into File using SQOOP
	4.14 Loading Data from an SQL Database into HBase using SQOOP
	4.15 Validating and Transforming Data Within Hive
	4.16 Loading Data into an Oracle Database from Hive and File
	4.17 Loading Data into an SQL Database from Hbase, Hive and File using SQOOP

	5 Executing Oozie Workflows
	5.1 Executing Oozie Workflows with Oracle Data Integrator
	5.2 Setting Up and Initializing the Oozie Runtime Engine
	5.2.1 Oozie Runtime Engine Definition
	5.2.2 Oozie Runtime Engine Properties

	5.3 Creating a Logical Oozie Engine
	5.4 Executing or Deploying an Oozie Workflow
	5.5 Auditing Hadoop Logs
	5.6 Userlib jars support for running ODI Oozie workflows

	6 Using Query Processing Engines to Generate Code in Different Languages
	6.1 Query Processing Engines Supported by Oracle Data Integrator
	6.2 Setting Up Hive Data Server
	6.2.1 Hive Data Server Definition
	6.2.2 Hive Data Server Connection Details

	6.3 Creating a Hive Physical Schema
	6.4 Setting Up Pig Data Server
	6.4.1 Pig Data Server Definition
	6.4.2 Pig Data Server Properties

	6.5 Creating a Pig Physical Schema
	6.6 Setting Up Spark Data Server
	6.6.1 Spark Data Server Definition
	6.6.2 Spark Data Server Properties

	6.7 Creating a Spark Physical Schema
	6.8 Generating Code in Different Languages

	7 Working with Unstructured Data and Complex Data
	7.1 Working with Unstructured Data
	7.2 Working with Complex Data
	A.1 LKM SQL to Hive SQOOP
	A.2 LKM SQL to File SQOOP Direct
	A.3 LKM SQL to HBase SQOOP Direct
	A.4 LKM File to SQL SQOOP
	A.5 LKM Hive to SQL SQOOP
	A.6 LKM HBase to SQL SQOOP
	A.7 IKM Hive Append
	A.8 LKM File to Hive LOAD DATA
	A.9 LKM File to Hive LOAD DATA Direct
	A.10 LKM HBase to Hive HBASE-SERDE
	A.11 LKM Hive to HBase Incremental Update HBASE-SERDE Direct
	A.12 LKM Hive to File Direct
	A.13 XKM Hive Sort
	A.14 LKM File to Oracle OLH-OSCH
	A.15 LKM File to Oracle OLH-OSCH Direct
	A.16 LKM Hive to Oracle OLH-OSCH
	A.17 LKM Hive to Oracle OLH-OSCH Direct
	A.18 RKM Hive
	A.19 RKM HBase
	A.20 IKM File to Hive (Deprecated)
	A.21 LKM HBase to Hive (HBase-SerDe) [Deprecated]
	A.22 IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]
	A.23 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]
	A.24 IKM Hive Control Append (Deprecated)
	A.25 CKM Hive (Deprecated)
	A.26 IKM Hive Transform (Deprecated)
	A.27 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]
	A.28 IKM File-Hive to SQL (SQOOP) [Deprecated]
	B.1 LKM File to Pig
	B.2 LKM Pig to File
	B.3 LKM HBase to Pig
	B.4 LKM Pig to HBase
	B.5 LKM Hive to Pig
	B.6 LKM Pig to Hive
	B.7 LKM SQL to Pig SQOOP
	B.8 XKM Pig Aggregate
	B.9 XKM Pig Distinct
	B.10 XKM Pig Expression
	B.11 XKM Pig Filter
	B.12 XKM Pig Flatten
	B.13 XKM Pig Join
	B.14 XKM Pig Lookup
	B.15 XKM Pig Pivot
	B.16 XKM Pig Set
	B.17 XKM Pig Sort
	B.18 XKM Pig Split
	B.19 XKM Pig Subquery Filter
	B.20 XKM Pig Table Function
	B.21 XKM Pig Unpivot
	C.1 LKM File to Spark
	C.2 LKM Spark to File
	C.3 LKM Hive to Spark
	C.4 LKM Spark to Hive
	C.5 XKM Spark Aggregate
	C.6 XKM Spark Distinct
	C.7 XKM Spark Expression
	C.8 XKM Spark Filter
	C.9 XKM Spark Flatten
	C.10 XKM Spark Join
	C.11 XKM Spark Lookup
	C.12 XKM Spark Pivot
	C.13 XKM Spark Set
	C.14 XKM Spark Sort
	C.15 XKM Spark Split
	C.16 XKM Spark Table Function
	C.17 IKM Spark Table Function
	C.18 XKM Spark Unpivot
	D.1 XKM Oracle Flatten
	D.2 XKM Oracle Flatten XML
	D.3 XKM Jagged
	E.1 Considerations, Limitations, and Issues

