
Oracle® Fusion Middleware
Tuning Performance Guide

12c (12.2.1.1)

E76028-01

June 2016

Describes how to monitor, optimize performance, and
configure components for optimal performance in the Oracle
Fusion Middleware environment.

Oracle Fusion Middleware Tuning Performance Guide, 12c (12.2.1.1)

E76028-01

Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Minu Nair

Contributing Authors: Hannah Cheng, Peter LaQuerre, Lisa Jamen, Jayaram Kasi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xi

Audience ... xi

Documentation Accessibility ... xi

Conventions.. xi

Part I Introduction

1 Introduction and Roadmap

1.1 Document Scope and Audience... 1-1

1.2 Guide to this Document.. 1-1

1.3 Related Documentation .. 1-3

2 Top Performance Areas

2.1 Identifying Top Performance Areas.. 2-1

2.2 Securing Sufficient Hardware Resources ... 2-2

2.3 Tuning the Operating System .. 2-3

2.4 Tuning Java Virtual Machines (JVMs) .. 2-3

2.5 Tuning the WebLogic Server.. 2-4

2.6 Tuning Database Parameters ... 2-4

2.6.1 Tuning Database Parameters.. 2-4

2.6.2 Tuning Database Files.. 2-8

2.6.3 Tuning Automatic Segment-Space Management (ASSM) ... 2-9

2.7 Reusing Database Connections.. 2-9

2.8 Enabling Data Source Statement Caching.. 2-10

2.9 Controlling Concurrency.. 2-10

2.9.1 Setting Server Connection Limits... 2-11

2.9.2 Configuring Connection Pools ... 2-12

2.9.3 Tuning the WebLogic Sever Thread Pool ... 2-13

2.10 Setting Logging Levels.. 2-14

3 Performance Planning

3.1 About Performance Planning... 3-1

iii

3.2 Performance Planning Methodology.. 3-1

3.2.1 Step 1: Defining Your Performance Objectives.. 3-1

3.2.2 Step 2: Designing Applications for Performance and Scalability.................................. 3-4

3.2.3 Step 3: Monitoring and Measuring Your Performance Metrics 3-4

4 Monitoring

4.1 About Oracle Fusion Middleware Management Tools.. 4-1

4.1.1 Measuring Your Performance Metrics .. 4-2

4.2 Oracle Enterprise Manager Fusion Middleware Control .. 4-2

4.3 Oracle WebLogic Server Administration Console.. 4-2

4.4 WebLogic Diagnostics Framework (WLDF).. 4-3

4.5 WebLogic Scripting Tool (WLST).. 4-3

4.6 DMS Spy Servlet .. 4-3

4.6.1 Viewing Performance Metrics Using the Spy Servlet ... 4-3

4.6.2 Using the DMS Spy Servlet ... 4-3

4.7 Native Operating System Performance Commands .. 4-5

4.8 Network Performance Monitoring Tools ... 4-5

5 Using the Oracle Dynamic Monitoring Service

5.1 About Dynamic Monitoring Service (DMS) ... 5-1

5.1.1 Understanding Common DMS Terms and Concepts ... 5-1

5.2 About DMS Availability ... 5-7

5.3 About DMS Architecture .. 5-7

5.4 Viewing DMS Metrics ... 5-8

5.4.1 Viewing Metrics Using the Spy Servlet... 5-9

5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)............................... 5-9

5.4.3 Viewing Metrics with WLST (Oracle WebLogic Server) .. 5-9

5.4.4 Viewing Metrics with JConsole.. 5-11

5.4.5 Viewing Metrics with Oracle Enterprise Manager.. 5-12

5.5 Accessing DMS Metrics with WLDF... 5-12

5.6 About DMS Execution Context.. 5-12

5.6.1 DMS Execution Requests and Subtasks .. 5-13

5.6.2 DMS Execution Context Usage .. 5-14

5.6.3 DMS Execution Context Communication... 5-14

5.7 DMS Tracing and Events .. 5-15

5.7.1 Configuring the DMS Event System.. 5-16

5.7.2 Configuring Destinations .. 5-19

5.7.3 Understanding the Format of DMS Events in Log Messages 5-26

5.7.4 Understanding DMS Event Actions .. 5-31

5.8 DMS Best Practices .. 5-31

iv

Part II Core Components

6 Tuning Oracle HTTP Server

6.1 About Oracle HTTP Server .. 6-1

6.2 Monitoring Oracle HTTP Server Performance.. 6-1

6.3 Basic Tuning Considerations .. 6-2

6.3.1 Tuning Oracle HTTP Server Directives... 6-2

6.3.2 Reducing Process Availability with Persistent Connections ... 6-8

6.3.3 Logging Options for Oracle HTTP Server .. 6-9

6.4 Advanced Tuning Considerations .. 6-10

6.4.1 Tuning Oracle HTTP Server ... 6-10

6.4.2 Tuning Oracle HTTP Server Security ... 6-12

7 Tuning Oracle Metadata Service

7.1 About Oracle Metadata Services (MDS)... 7-1

7.2 Monitoring Oracle Metadata Service Performance ... 7-1

7.3 Basic Tuning Considerations ... 7-2

7.3.1 Tuning Database Repository .. 7-2

7.3.2 Tuning Cache Configuration .. 7-3

7.3.3 Purging Document Version History.. 7-5

7.3.4 Using Database Polling Interval for Change Detection.. 7-5

7.4 Advanced Tuning Considerations .. 7-6

7.4.1 Analyzing Performance Impact from Customization... 7-6

8 Tuning Oracle Fusion Middleware Security

8.1 About Security Services .. 8-1

8.2 Basic Tuning Considerations ... 8-2

8.3 Tuning Oracle Platform Security Services ... 8-2

8.3.1 JVM Tuning Parameters .. 8-2

8.3.2 JDK Tuning Parameters... 8-3

8.3.3 Authentication Tuning Parameters ... 8-3

8.3.4 Authorization Tuning Properties... 8-3

8.3.5 OPSS PDP Service Tuning Parameters.. 8-6

8.4 Oracle Web Services Security Tuning... 8-10

8.4.1 Choosing the Right Policy... 8-10

8.4.2 Policy Manager ... 8-10

8.4.3 Configuring the Log Assertion to Record SOAP Messages ... 8-10

8.4.4 Configuring Connection Pooling ... 8-11

8.4.5 Monitoring the Performance of Web Services ... 8-11

v

Part III Oracle Fusion Middleware Server Components

9 Tuning Oracle Application Development Framework (ADF)

9.1 About Oracle ADF ... 9-1

9.2 Basic Tuning Considerations ... 9-1

9.2.1 Oracle ADF Faces Configuration and Profiling... 9-2

9.2.2 Performance Considerations for ADF Faces .. 9-3

9.2.3 Tuning ADF Faces Component Attributes ... 9-13

9.2.4 Performance Considerations for Table and Tree Components 9-16

9.2.5 Performance Considerations for autoSuggest.. 9-17

9.2.6 Data Delivery - Lazy versus Immediate ... 9-17

9.2.7 Performance Considerations for DVT Components ... 9-18

9.3 Advanced Tuning Considerations .. 9-19

9.3.1 ADF Server Performance... 9-19

10 Tuning Oracle TopLink

10.1 About Oracle TopLink and EclipseLink... 10-1

10.2 Basic Tuning Considerations ... 10-1

10.2.1 SQL Statement and Query Tuning Parameters.. 10-2

10.2.2 Cache Configuration Tuning Parameters ... 10-7

10.2.3 About Mapping and Descriptor Configurations ... 10-14

10.2.4 About Data Partitioning .. 10-14

10.3 Advanced Tuning Considerations .. 10-14

10.3.1 Integrating with Oracle Coherence ... 10-15

10.3.2 Analyzing EclipseLink JPA Entity Performance ... 10-15

Part IV SOA Suite Components

11 Tuning the SOA Infrastructure

11.1 About the SOA Infrastructure.. 11-1

11.2 Tuning SOA Work Managers... 11-1

11.2.1 Configuring Database Connections with the SOADataSource Property................. 11-2

11.2.2 Configuring Work Managers with the SOAMaxThreadsConfig Attribute 11-3

11.3 Tuning SOA Infrastructure Parameters.. 11-4

11.4 Using Advanced Tuning Options ... 11-6

11.4.1 Using Composite Lazy Loading... 11-7

11.4.2 Changing Modularity Profiles.. 11-8

11.4.3 Tuning Your Database for SOA Processes.. 11-9

11.4.4 Tuning Event Delivery Network Parameters... 11-15

11.4.5 Tuning the WebLogic Server .. 11-19

11.5 Advanced Tuning for Work Managers... 11-21

11.5.1 Configuring Fair Share Request Class for SOA Work Managers............................ 11-22

vi

11.5.2 Creating a New Work Manager Constraint ... 11-22

12 Tuning Oracle BPEL Process Manager

12.1 About BPEL Process Manager ... 12-1

12.2 Tuning BPEL Parameters.. 12-1

12.2.1 Tuning BPEL Engine.. 12-1

12.2.2 Tuning BPEL in a Composite.. 12-4

12.3 Using Other Tuning Strategies .. 12-5

12.3.1 Identifying Tables Impacted By Instance Data Growth ... 12-5

13 Tuning Oracle Mediator

13.1 About Oracle Mediator ... 13-1

13.2 Tuning Mediator Parameters ... 13-1

13.3 Using Resequencer for Messages .. 13-2

14 Tuning Oracle Managed File Transfer

14.1 About Managed File Transfer .. 14-1

14.2 Tuning MFT Parameters ... 14-1

14.2.1 Tuning Remote FTP / SFTP/ FILE Type Sources ... 14-4

14.2.2 Minimizing MDS label... 14-4

14.2.3 Adjusting the Materialized Views Refresh Interval .. 14-5

15 Tuning Oracle Business Rules

15.1 About Oracle Business Rules ... 15-1

15.2 Tuning Oracle Business Rules.. 15-1

15.2.1 Exerting assertXPath Support... 15-3

16 Tuning Oracle Business Process Management

16.1 About Oracle Business Process Management.. 16-1

16.2 Tuning Business Process Management Parameters.. 16-1

16.3 Using Other Tuning Strategies .. 16-3

16.3.1 Tuning Oracle Workspace Applications ... 16-4

16.3.2 Tuning Process Measurement .. 16-6

17 Tuning Oracle Human Workflow

17.1 About Oracle Human Workflow... 17-1

17.2 Tuning Human Workflow.. 17-1

17.3 Using Other Tuning Strategies .. 17-3

17.3.1 Improving Server Performance .. 17-4

17.3.2 Completing Workflows Faster ... 17-5

17.3.3 Tuning the Identity Provider.. 17-6

17.3.4 Tuning the Database .. 17-6

vii

18 Tuning Oracle Business Activity Monitoring

18.1 About Oracle Business Activity Monitoring.. 18-1

18.2 Tuning BAM Server Parameters.. 18-1

18.3 Other Tuning Strategies .. 18-3

18.3.1 Creating an Index Column.. 18-3

18.3.2 Tuning Loggers... 18-3

18.3.3 Tuning Continuous Query Service .. 18-4

19 Tuning Oracle Service Bus

19.1 About Oracle Service Bus ... 19-1

19.2 Tuning OSB Parameters.. 19-1

19.2.1 Tuning Oracle Service Bus with Work Managers.. 19-2

19.2.2 Tuning OSB Operation Settings ... 19-2

19.3 Using Other Tuning Strategies .. 19-5

19.3.1 Tuning Resequencer in OSB ... 19-5

19.3.2 Considering Design Time for Proxy Applications .. 19-7

19.3.3 Tuning XQuery ... 19-8

19.3.4 Tuning Poller-based Transports... 19-10

20 Tuning Oracle Enterprise Scheduler Service

20.1 About Enterprise Scheduler Service ... 20-1

20.2 Tuning Enterprise Scheduler Service Parameters... 20-1

21 Tuning Oracle Business Intelligence Performance

21.1 About Oracle Business Intelligence... 21-1

21.2 Tuning Oracle BI Server Query Performance.. 21-1

21.3 Tuning Oracle BI Server Query Cache Performance .. 21-2

21.4 Tuning Oracle BI Web Client Performance.. 21-2

Part V Oracle WebCenter Components

22 Tuning Oracle WebCenter Portal

22.1 About Oracle WebCenter Portal.. 22-1

22.2 Basic Tuning Considerations ... 22-2

22.2.1 Setting System Limit .. 22-2

22.2.2 Setting JDBC Data Source .. 22-2

22.2.3 Setting JRockit Virtual Machine (JVM) Arguments .. 22-3

22.2.4 Using Content Compression to Reduce Downloads... 22-3

22.3 Tuning Configuration for WebCenter Portal... 22-4

22.3.1 Setting a Session Timeout for WebCenter Portal... 22-5

22.3.2 Setting MDS Cache Size and Purge Rate .. 22-5

22.3.3 Configuring Concurrency Management .. 22-6

viii

22.4 Tuning Tools and Services Configuration ... 22-9

22.4.1 Tuning Performance of Announcements.. 22-9

22.4.2 Tuning Performance of Discussions .. 22-10

22.4.3 Tuning Performance Instant Messaging and Presence... 22-10

22.4.4 Tuning Performance of Mail .. 22-11

22.4.5 Tuning Performance of Personal Events... 22-12

22.4.6 Tuning Performance of RSS News Feeds.. 22-12

22.4.7 Tuning Performance of Searches.. 22-13

22.4.8 Tuning Policy Store Parameters ... 22-13

22.5 Tuning Identity Store Configuration .. 22-14

22.5.1 Tuning the Identity Store when Using SSL .. 22-14

22.5.2 Tuning Performance when Using OVD.. 22-14

22.5.3 Tuning Performance when Using Active Directory.. 22-15

22.6 Tuning Portlet Configuration ... 22-15

22.6.1 Tuning Performance of the Portlet Client... 22-16

22.6.2 Enabling Java Object Cache for WSRP Producers ... 22-17

22.6.3 Customizing the Container Runtime Environment Options 22-17

22.6.4 Tuning Performance of Oracle PDK-Java Producers .. 22-19

22.6.5 Setting WSRP Attribute for Portlet-served Resources .. 22-19

22.6.6 Setting WSRP Attribute for Resources Not Served by the Portlet 22-20

22.6.7 Tuning Performance of OmniPortlet ... 22-20

ix

x

Preface

This guide describes how to monitor and optimize performance, review the key
components that impact performance, use multiple components for optimal
performance, and design applications for performance in the Oracle Fusion
Middleware environment.

Audience

Documentation Accessibility

Conventions

Audience
Tuning Performance is aimed at a target audience of Application developers, Oracle
Fusion Middleware administrators, database administrators, and Web masters.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Introduction

This part describes basic performance concepts, how to measure performance, and
designing applications for performance and scalability. It contains the following
topics:

Introduction and Roadmap

Top Performance Areas

Performance Planning

Monitoring

Using the Oracle Dynamic Monitoring Service

1
Introduction and Roadmap

Tuning Performance addresses topics pertinent to application developers, Oracle Fusion
Middleware administrators, database administrators, and Web masters.

Introduction

Document Scope and Audience

Guide to this Document

Related Documentation

1.1 Document Scope and Audience
Tuning Performance is for a target audience of application developers, Oracle Fusion
Middleware administrators, database administrators, and Web masters. This guide
assumes knowledge of Fusion Middleware Administration and hardware
performance tuning fundamentals, WebLogic Server, XML, and the Java programming
language.

1.2 Guide to this Document
• Introduction and Roadmap, introduces the objectives and organization of this

guide.

• Top Performance Areas , describes top tuning areas for Oracle Fusion Middleware
and serves as a Quick Start for tuning applications.

• Performance Planning , describes the performance planning methodology and
tuning concepts for Oracle Fusion Middleware.

• Monitoring , describes how to monitor Oracle Fusion Middleware and its
components to obtain performance data that can assist you in tuning the system
and debugging applications with performance problems.

• Using the Oracle Dynamic Monitoring Service provides an overview and features
available in the Oracle Dynamic Monitoring Service (DMS).

• Tuning Oracle HTTP Server, discusses the techniques for optimizing Oracle HTTP
Server performance, the Web server component for Oracle Fusion Middleware. It
provides a listener for Oracle WebLogic Server and the framework for hosting
static pages, dynamic pages, and applications over the Web.

• Tuning Oracle Metadata Service, provides tuning tips for Oracle Metadata Service
(MDS). MDS is used by Oracle Application Development Framework to manage
metadata.

Introduction and Roadmap 1-1

• Tuning Oracle Fusion Middleware Security describes tuning Oracle Platform
Security for Java for optimal performance. Oracle Platform Security for Java is the
Oracle Fusion Middleware security implementation for Java features such as Java
Authentication and Authorization Service (JAAS) and Java EE security.

• Tuning Oracle Application Development Framework (ADF), provides basic
guidelines on how to maximize the performance and scalability of the ADF stack in
applications. Oracle ADF is an end-to-end application framework that builds on
Java Platform, Enterprise Edition (Java EE) standards and open-source technologies
to simplify and accelerate implementing service-oriented applications.

• Tuning Oracle TopLink , provides some of the available performance options for
Java Persistence API (JPA) entity architecture. Oracle TopLink includes EclipseLink
as the JPA implementation.

• Tuning the SOA Infrastructure , describes the common SOA infrastructure tuning
parameters for configuring Oracle Service-Oriented Architecture (SOA) Suite
components to improve performance. Oracle SOA Suite provides a complete set of
service infrastructure components for designing, deploying, and managing SOA
composite applications. Oracle SOA Suite enables services to be created, managed,
and orchestrated into SOA composite applications. Composites enable you to easily
assemble multiple technology components into one SOA composite application.

• Tuning Oracle BPEL Process Manager provides several BPEL property settings that
can be configured to optimize performance at the process, domain, and application
server levels.

• Tuning Oracle Mediator describes how to tune Oracle Mediator, a service engine
within the Oracle SOA Service Infrastructure, for optimal performance. Oracle
Mediator provides the framework to mediate between various providers and
consumers of services and events. The Mediator service engine runs with the SOA
Service Infrastructure Java EE application.

• Tuning Oracle Managed File Transfer , describes how to tune Oracle Managed File
Transfer, a new product in 12c (12.2.1). Oracle Managed File Transfer (MFT) is a
high performance, standards-based, end-to-end managed file gateway. It features
design, deployment, and monitoring of file transfers using a lightweight web-based
design-time console that includes file encryption, scheduling, and embedded FTP
and sFTP servers.

• Tuning Oracle Business Rules describes the technology that enables automation of
business rules; it also discusses the extraction of business rules from procedural
logic such as Java code or BPEL processes.

• Tuning Oracle Business Process Management describes how to tune Oracle
Business Process Management (BPM), which provides a seamless integration of all
stages of the application development life cycle from design-time and
implementation to run-time and application management.

• Tuning Oracle Human Workflow describes how to tune Oracle Human Workflow
for optimal performance. Oracle Human Workflow is a service engine running in
Oracle SOA Service Infrastructure that allows the execution of interactive human
driven processes. A human workflow provides the human interaction support such
as approve, reject, and reassign actions within a process or outside of any process.
The Human Workflow service consists of a number of services that handle various
aspects of human interaction with a business process.

Guide to this Document

1-2 Tuning Performance Guide

• Tuning Oracle Business Activity Monitoring describes how to tune the Oracle
Business Activity Monitoring dashboard application for optimal performance.
Oracle Business Activity Monitoring (BAM) provides the tools for monitoring
business services and processes in the enterprise.

• Tuning Oracle Service Bus describes how to tune the Oracle Service Bus, which
provides connectivity, routing, mediation, management and also some process
orchestration capabilities. It is part of a larger system where it plays the role of an
intermediary between two or more applications (servers).

• Tuning Oracle Enterprise Scheduler Service describes how to tune the Oracle
Enterprise Scheduler Service, which enables scheduling and running jobs within a
particular time frame, or workshift, using rules to create work assignments.

• Tuning Oracle Business Intelligence Performance describes how to tune Oracle
Business Performance, which provides a full range of business intelligence
capabilities that collects up-to-date data from the organization, presents the data in
easy-to-understand formats (such as tables and graphs), and delivers the data
quickly to the members of the organization.

• Tuning Oracle WebCenter Portal describes how to tune Oracle WebCenter Portal,
which is an integrated suite of products used to create social applications,
enterprise portals, communities, composite applications, and internet or intranet
Web sites on a standards-based, service-oriented architecture (SOA).

1.3 Related Documentation
For more information, see the following documents in the Oracle Fusion Middleware
12c (12.2.1.1) documentation set:

• Administering Oracle Fusion Middleware

• Understanding Oracle Fusion Middleware

• High Availability Guide

• Tuning Performance of Oracle WebLogic Server

• Administrator's Guide for Oracle HTTP Server

• Administering Web Services

Related Documentation

Introduction and Roadmap 1-3

Related Documentation

1-4 Tuning Performance Guide

2
Top Performance Areas

By identifying top performance areas, you can tune Oracle Fusion Middleware for
optimal performance.

Introduction

Identifying Top Performance Areas

Securing Sufficient Hardware Resources

Tuning the Operating System

Tuning Java Virtual Machines (JVMs)

Tuning the WebLogic Server

Tuning Database Parameters

Reusing Database Connections

Enabling Data Source Statement Caching

Controlling Concurrency

Setting Logging Levels

2.1 Identifying Top Performance Areas
One of the most challenging aspects of performance tuning is knowing where to begin.

Table 2-1 provides a list of common performance considerations for Oracle Fusion
Middleware. While the list is a useful tool in starting your performance tuning, it is
not meant to be comprehensive list of areas to tune. You must monitor and track
specific performance issues within your application to understand where tuning can
improve performance. See Monitoring for more information.

Table 2-1 Top Performance Areas for Oracle Fusion Middleware

Performance Area Description and Reference

Hardware Resources Ensure that your hardware resources meet or exceed
the application's resource requirements to maximize
performance.

See Securing Sufficient Hardware Resources for
information on how to determine if your hardware
resources are sufficient.

Operating System Each operating system has native tools and utilities that
can be useful for monitoring purposes.

See Tuning the Operating System

Top Performance Areas 2-1

Table 2-1 (Cont.) Top Performance Areas for Oracle Fusion Middleware

Performance Area Description and Reference

Java Virtual Machines (JVMs) Follow best practices and practical tips to tune the JVM
and improve the performance of a Java EE application,
including heap size and JVM garbage collection
options.

See Tuning Java Virtual Machines (JVMs).

Database For applications that access a database, ensure that
your database is properly configured to support your
application's requirements.

See Tuning Database Parameters for more information
on garbage collection.

WebLogic Server If your Oracle Fusion Middleware applications are
using the WebLogic Server, see Tuning the WebLogic
Server.

Database Connections Pooling the connections so they are reused is an
important tuning consideration.

See Reusing Database Connections

Data Source Statement Caching For applications that use a database, you can lower the
performance impact of repeated statement parsing and
creation by configuring statement caching properly.

See Enabling Data Source Statement Caching

Oracle HTTP Server Tune the Oracle HTTP Server directives to set the level
of concurrency by specifying the number of HTTP
connections.

See Controlling Concurrency.

Concurrency Control concurrency with Oracle Fusion Middleware
components.

See Controlling Concurrency

Logging Levels Logging levels are thresholds that a system
administrator sets to control how much information is
logged. Performance can be impacted by the amount of
information that applications log therefore it is
important to set the logging levels appropriately.

See Setting Logging Levels.

2.2 Securing Sufficient Hardware Resources
A key component of managing the performance of Oracle Fusion Middleware
applications is to ensure that there are sufficient CPU, memory, and network resources
to support the user and application requirements for your installation.

No matter how well you tune your applications, if you do not have the appropriate
hardware resources, your applications cannot reach optimal performance levels.
Oracle Fusion Middleware has minimum hardware requirements for its applications
and database tier. For details on Oracle Fusion Middleware supported configurations,
see Verifying Certification, System Requirements, and Interoperability in Planning an
Installation of Oracle Fusion Middleware.

Securing Sufficient Hardware Resources

2-2 Tuning Performance Guide

Sufficient hardware resources should meet or exceed the acceptable response times
and throughputs for applications without becoming saturated. To verify that you have
sufficient hardware resources, you should monitor resource utilization over an
extended period to determine if (or when) you have occasional peaks of usage or
whether a resource is consistently saturated. For more information on monitoring, see
Monitoring .

Tip:

Your target CPU usage should never reach 100% utilization. You should
determine a target CPU utilization based on your application needs, including
CPU cycles for peak usage.

If your CPU utilization is optimized at 100% during normal load hours, you
have no capacity to handle a peak load. In applications that are latency
sensitive and maintaining a fast response time is important, high CPU usage
(approaching 100% utilization) can increase response times while throughput
stays constant or even decreases. For such applications, a 70% - 80% CPU
utilization is recommended. A good target for non-latency sensitive
applications is about 90%.

If any of the hardware resources are saturated (consistently at or near 100%
utilization), one or more of the following conditions may exist:

• The hardware resources are insufficient to run the application.

• The system is not properly configured.

• The application or database must be tuned.

For a consistently saturated resource, the solutions are to reduce load or increase
resources. For peak traffic periods when the increased response time is not acceptable,
consider increasing resources or determine if there is traffic that can be rescheduled to
reduce the peak load, such as scheduling batch or background operations during
slower periods.

Oracle Fusion Middleware provides a variety of mechanisms to help you control
resource concurrency; this can limit the impact of bursts of traffic. However, for a
consistently saturated system, these mechanisms should be viewed as temporary
solutions. For more information, see Controlling Concurrency.

2.3 Tuning the Operating System
Each operating system has native tools and utilities that can be useful for monitoring
and tuning purposes. Native operating system commands enable you to monitor CPU
utilization, paging activity, swapping, and other system activity information.

For details on operating system commands, and guidelines for performance tuning of
the network or operating system, refer to the documentation provided by the
operating system vendor.

2.4 Tuning Java Virtual Machines (JVMs)
How you tune your Java virtual machine (JVM) greatly affects the performance of
Oracle Fusion Middleware and your applications. For more information on tuning
your JVM, see Tuning Java Virtual Machines (JVM) in Tuning Performance of Oracle
WebLogic Server.

Tuning the Operating System

Top Performance Areas 2-3

2.5 Tuning the WebLogic Server
If your Oracle Fusion Middleware applications are using the WebLogic Server, see
Tuning WebLogic Server in Tuning Performance of Oracle WebLogic Server.

2.6 Tuning Database Parameters
To achieve optimal performance for applications that use the Oracle database, the
database tables you access must be designed with performance in mind. Monitoring
and tuning the database ensures that you get the best performance from your
applications.

Note:

The information in these topics is a subset of database tuning information for
Fusion Middleware. Make sure that you have also reviewed the Database
Performance Tuning Guide.

Note:

Always review the tuning guidelines in your database-specific vendor
documentation.

Tuning Database Parameters

Tuning Database Files

Tuning Automatic Segment-Space Management (ASSM)

2.6.1 Tuning Database Parameters
The following tables provide common init.ora parameters and their descriptions.
Consider following these guidelines to set the database parameters. Ultimately,
however, the DBA should monitor the database health and tune parameters based on
the need.

The database that is used for SOA is configured with the suggested values. Tuning the
database involves adjusting the sizing parameters based on the available resource and
load on the database.

The sga_target, pga_aggregate_target, and processes parameters from
Table 2-2 are examples of such parameters that need to be tuned based on SGA and
PGA advisories and looking into the number of open processes during peak load.

Table 2-2 Important Oracle 12c Database Tuning Parameters

Parameter Description Tuning Recommendation

audit_trail

Default: DB

Enables or disables database
auditing.

Set to NONE if there is NO policy to
audit database activity. Enabling
auditing can impact performance.

Tuning the WebLogic Server

2-4 Tuning Performance Guide

Table 2-2 (Cont.) Important Oracle 12c Database Tuning Parameters

Parameter Description Tuning Recommendation

plsql_code_type

Default: INTERPRETED

Compilation mode for PL/SQL
library units. Possible modes are as
follows:

• INTERPRETED: PL/SQL library
units are compiled to PL/SQL
bytecode format. Such modules
are executed by the PL/SQL
interpreter engine.

• NATIVE: PL/SQL library units
are compiled to native
(machine) code. Such modules
are executed natively without
incurring any interpreter
impacts.

Set to NATIVE.

nls_sort

Default: Derived from
NLS_LANGUAGE

Collating sequence for ORDER BY
queries.

• If the value is a named linguistic
sort, the collating sequence is
based on the order of the
defined linguistic sort. Most
languages supported by the
NLS_LANGUAGE parameter also
support a linguistic sort with the
same name.

• If the value is set to BINARY,
then the collating sequence is
based on the numeric value of
characters. This requires fewer
system resources.

Set to BINARY.

open_cursors

Default: 50

Maximum number of open cursors
that a session can have at once.
Open cursors are handles to private
SQL areas.

The value of OPEN_CURSORS
should be high enough to prevent
your application from running out
of open cursors.

Increase to 500.

Tuning Database Parameters

Top Performance Areas 2-5

Table 2-2 (Cont.) Important Oracle 12c Database Tuning Parameters

Parameter Description Tuning Recommendation

session_cached_cursors

Default: 50

Number of session cursors to cache.
Repeated parse calls of the same
SQL statement cause the session
cursor for that statement to be
moved into the session cursor
cache. Subsequent parse calls find
the cursor in the cache and do not
reopen the cursor. Oracle uses a
"least recently used" algorithm to
remove entries in the session cursor
cache to make room for new entries
when needed.

This parameter also constrains the
size of the PL/SQL cursor cache
which PL/SQL uses to avoid
having to re-parse as statements are
re-executed by a user.

Increase to 500.

_b_tree_bitmap_plans

Default: TRUE

Enables or disables the use of
bitmap access paths for b-tree
indexes.

Set to FALSE.

processes

Default: 100

Maximum number of operating
system processes that can be
connected to Oracle concurrently.
The value of this parameter must
account for Oracle background
processes.

The SESSIONS parameter is
deduced from this value.

For most systems, increasing to
1500 should suffice.

For a large scale system, such as
databases with large number of
users, the recommended value is
5000.

Memory_target Oracle system-wide usable
memory. The database tunes
memory to the MEMORY_TARGET
value, reducing or enlarging the
SGA and PGA as needed.

Consider setting to NONE. Then set
the SGA and PGA targets separately
as setting MEMORY_TARGET does
not allocate sufficient memory to
SGA and PGA as needed.

sga_target

Default: 0

A non-zero value enables
Automatic Shared Memory
Management. This can simplify
configuration and improve
performance.

For small systems, use a minimum
of 2GB.

For large systems, set this to 18GB.

pga_aggregate_target

Default: 0

Target aggregate PGA memory
available to all server processes
attached to the instance.

For small systems, use a minimum
of 1GB.

For large systems, set this to 8GB.

Tuning Database Parameters

2-6 Tuning Performance Guide

Table 2-2 (Cont.) Important Oracle 12c Database Tuning Parameters

Parameter Description Tuning Recommendation

Disk_asynch_io

Default: TRUE

Controls whether I/O to data files,
control files, and log files is
asynchronous. It decides what
parallel server processes can
overlap I/O requests with CPU
processing during table scans.

If your platform supports
asynchronous I/O, leave this
parameter to its default value of
TRUE.

Otherwise, set it to FALSE.

Filesystemio_options

Default: None

I/O operations for file system files. Set to SETALL.

Secure_Files

Default: PERMITTED

How to store LOB objects from
tables.

Set to ALWAYS.

parallel_max_servers

Default:
PARALLEL_THREADS_PER_CPU*C

PU_COUNT*concurrent_parall

el_users*5

Maximum number of parallel
execution processes and parallel
recovery processes for an instance.

As demand increases, an Oracle
Database increases the number of
processes from the number created
at instance startup up to this value.

Set to 12.

job_queue_processes

Default: 1000

Maximum number of job slaves per
instance that can be created for the
execution of DBMS_JOB jobs and
Oracle Scheduler
(DBMS_SCHEDULER) jobs.

Set to 12.

shared_servers

Default: 0 (or) 1

Number of server processes that
you want to create when an
instance is started.

Set to 0.

Table 2-3 Important inti.ora Oracle 12c Database Tuning Parameters

Database Parameter Description

AUDIT_TRAIL If there is NO policy to audit database activity, consider
setting this parameter to NONE. Enabling auditing can
impact performance.

MEMORY_MAX_TARGET Maximum value to which a DBA can set the
MEMORY_TARGET initialization parameter.

MEMORY_TARGET Consider setting to NONE. Set SGA and PGA separately
as setting MEMORY_TARGET does not allocate sufficient
memory to SGA and PGA as needed.

Tuning Database Parameters

Top Performance Areas 2-7

Table 2-3 (Cont.) Important inti.ora Oracle 12c Database Tuning Parameters

Database Parameter Description

PGA_AGGREGATE_TARGET Consider using a value of 1G for PGA initially and then
monitor the production database on daily basis and
adjust SGA and PGA accordingly.

If the database server has more memory, consider
setting PGA_AGGREGATE_TARGET to a value higher
than 1G based on usage needs.

SGA_MAX_SIZE Consider setting MEMORY_TARGET instead of setting
SGA and the PGA separately.

SGA_TARGET Consider using a value of 2G initially and then monitor
the production database on daily basis and adjust SGA
and PGA accordingly.

If the database server has more memory, consider
setting SGA_TARGET to a value higher than 2G based
on usage needs.

In addition, you may consider setting a minimum value for SHARED_POOL_SIZE and
DB_CACHE_SIZE to minimize frequent resizing.

2.6.2 Tuning Database Files
In addition to tuning the database parameters, the database administrator should
properly configure the REDO logs, UNDO tablespace, and TEMP tablespaces to meet the
demands of the expected or observed database workload. This is an empirical task.
The recommendations here are intended to provide initial guidance in these areas.

The location of the database files should be optimized for I/O performance and
growth. Segment Advisor should be leveraged to optimize the use of segment space
and assure performance degradation does not occur. The advisor can provide
historical growth trends of segments, which can be used to proactively plan for
growth. See Using the Segment Advisor in for more information.

Configuring REDO Logs

Configuring UNDO Tablespace

Configuring TEMP Tablespace

2.6.2.1 Configuring REDO Logs

Under demanding workloads, the size of the redo log files can influence performance.
Generally, larger redo log files provide better performance. Undersized log files
increase checkpoint activity and log file switches, which reduces performance.You can
obtain sizing advice on the Redo Log Groups page of the Enterprise Manager.

Depending on your storage configuration and performance characteristics, you may
need to redistribute redo logs to optimize I/O performance. Redo log files should be
placed on a disk separate from data files to improve I/O performance.

See Managing the Redo Log in for more information.

Tuning Database Parameters

2-8 Tuning Performance Guide

2.6.2.2 Configuring UNDO Tablespace

The suggested minimum size for the UNDO tablespace is 6 GB with auto-extend
enabled. It is recommended that the default mode of automatic undo management be
leveraged to maximize performance and efficiency.

The Oracle Enterprise Manager Automatic Undo Management Advisor should be
leveraged to set configuration details for UNDO tablespace and retention settings. This
advisor also provides access to the Undo Advisor that assesses the effect and provides
advice of a new undo retention setting. For more information about using advisors,
see The Undo Advisor PL/SQL Interface in .

2.6.2.3 Configuring TEMP Tablespace

Oracle recommends the use of locally-managed temporary tablespaces with UNIFORM
extents and the default size of 1 MB.

For tuning TEMP tablespaces for SOA, see Tuning Temporary Tablespaces for SOA.

2.6.3 Tuning Automatic Segment-Space Management (ASSM)
For permanent tablespaces, consider using automatic segment-space management.
Such tablespaces, often referred to as bitmap tablespaces, are locally managed
tablespaces with bitmap segment space management.

For backward compatibility, the default local tablespace segment-space management
mode is MANUAL.

While configuring tablespaces, consider setting the extent allocation type to SYSTEM. If
the allocation type is set to UNIFORM, it might impact performance.

For more information, see Free Space Management in , and Specifying Segment Space
Management in Locally Managed Tablespaces in .

2.7 Reusing Database Connections
Creating a database connection is a relatively resource intensive process in any
environment. Typically, a connection pool starts with a small number of connections.
As client demand for more connections grow, there may not be enough in the pool to
satisfy the requests. WebLogic Server creates additional connections and adds them to
the pool until the maximum pool size is reached.

One way to avoid connection creation delays is to initialize all connections at server
startup, rather than on-demand as clients need them. This may be appropriate if your
load is predictable and even. Set the initial number of connections equal to the
maximum number of connections in the Connection Pool tab of your data source
configuration. Determine the optimal value for the Maximum Capacity as part of your
pre-production performance testing.

If your load is uneven, and has a much higher number of connections at peak load
than at typical load, consider setting the initial number of connections equal to your
typical load. In addition, consider setting the maximum number of connections based
on your supported peak load. With these configurations, WebLogic server can free up
some connections when they are not used for a period of time.

For more information, see Tuning Data Source Connection Pool Options in
Administering JDBC Data Sources for Oracle WebLogic Server.

Reusing Database Connections

Top Performance Areas 2-9

2.8 Enabling Data Source Statement Caching
When you use a prepared statement or callable statement in an application or EJB,
there may be a performance impact associated with the processing of the
communication between the application server and the database server and on the
database server. To minimize the processing impact, enable the data source to cache
prepared and callable statements used in your applications. When an application or
EJB calls any of the statements stored in the cache, the server reuses the statement
stored in the cache. Reusing prepared and callable statements reduces CPU usage on
the database server, improving performance for the current statement and leaving
CPU cycles for other tasks.

Consider the following data source configurations when performance is an issue:

• When configuring the data source, ensure that the connection pool has enough free
connections.

• Statement caching can eliminate potential performance impacts caused by repeated
cursor creation and repeated statement parsing and creation. Statement caching
also reduces the performance impact of communication between the application
server and the database server

• Disable unnecessary connection testing and profiling.

Each connection in a data source has its own individual cache of prepared and callable
statements used on the connection. However, you configure statement cache options
per data source. That is, the statement cache for each connection in a data source uses
the statement cache options specified for the data source, but each connection caches
it's own statements. Statement cache configuration options include:

• Statement Cache Type—The algorithm that determines which statements to store
in the statement cache.

• Statement Cache Size—The number of statements to store in the cache for each
connection. The default value is 10. You should analyze your database's statement
parse metrics to size the statement cache sufficiently for the number of statements
you have in your application.

You can use the Administration Console to set statement cache options for a data
source. See Configure the statement cache for a JDBC data source in the Oracle
WebLogic Server Administration Console Online Help.

For more information on using statement caching, see Increasing Performance with
the Statement Cache in Administering JDBC Data Sources for Oracle WebLogic Server.

2.9 Controlling Concurrency
Limiting concurrency, at multiple layers of the system to match specific usage needs,
can greatly improve performance.

When system capacity is reached, and a web server or application server continues to
accept requests, application performance and stability can deteriorate. There are
several places within Oracle Fusion Middleware where you can throttle the requests to
avoid overloading the mid-tier or database tier systems and tune for best performance.

Setting Server Connection Limits

Configuring Connection Pools

Enabling Data Source Statement Caching

2-10 Tuning Performance Guide

Tuning the WebLogic Sever Thread Pool

2.9.1 Setting Server Connection Limits
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies
the maximum number of HTTP requests that can be processed simultaneously,
logging details, and certain limits and time outs.

For more information on modifying the httpd.conf file, see Configuring Oracle HTTP
Server in Administrator's Guide for Oracle HTTP Server.

You can use the MaxClients and ThreadsPerChild directives to limit incoming
requests to WebLogic instances from the Oracle HTTP Server based on your expected
client load and system resources. There are several Oracle HTTP Server tuning
parameters related to connection limits that you typically need to tune based on your
expected client load. See Tuning Oracle HTTP Server for more information and a more
complete list of tunable parameters.

Setting MaxClients/ ThreadsPerChild

Setting KeepAlive

Tuning HTTP Server Modules

2.9.1.1 Setting MaxClients/ ThreadsPerChild

Note:

The MaxClients parameter is applicable only to UNIX platforms and on
Microsoft Windows (mpm_winnt), the same is achieved through the
ThreadsPerChild and ThreadLimit properties.

The MaxClients parameter specifies a limit on the total number of server threads
running, that is, a limit on the number of clients who can simultaneously connect. If
the number of client connections reaches this limit, then subsequent requests are
queued in the TCP/IP system up to the limit specified (in the ListenBackLog
directive).

You can configure the MaxClients directive in the httpd.conf file up to a
maximum of 8K (the default value is 150). If your system is not resource-saturated and
you have a user population of more than 150 concurrent HTTP connections, you can
improve your performance by increasing MaxClients to increase server concurrency.
Increase MaxClients until your system becomes fully utilized (85% is a good
threshold).

When system resources are saturated, increasing MaxClients does not improve
performance. In this case, the MaxClients value could be reduced as a throttle on the
number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent
httpd server processes to handle both active and idle connections. When you specify
MaxClients to act as a throttle for system concurrency, you need to consider that
persistent idle httpd connections also consume httpd processes. Specifically, the
number of connections includes the currently active persistent and non-persistent
connections and the idle persistent connections. When there are no httpd server
threads available, connection requests are queued in the TCP/IP system until a thread
becomes available, and eventually clients terminate connections.

Controlling Concurrency

Top Performance Areas 2-11

You can define a number of server processes and the threads per process
(ThreadsPerChild) to handle the incoming connections to Oracle HTTP Server. The
ThreadsPerChild property specifies the upper limit on the number of threads that
can be created under a server (child) process.

Note:

ThreadsPerChild, StartServers, and ServerLimit properties are
inter-related with the MaxClients setting. All of these properties must be set
appropriately to achieve the number of connections as specified by
MaxClients. See Table 6-1 for a description of all the HTTP configuration
properties.

2.9.1.2 Setting KeepAlive

A persistent HTTP connection, KeepAlive, consumes an httpd child process, or
thread, for the duration of the connection, even if no requests are currently being
processed for the connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent
connections improves performance and prevents wasting CPU resources re-
establishing HTTP connections. Normally, you should not need to change KeepAlive
parameters.

Note:

The default maximum requests for a persistent connection is 100, as specified
with the MaxKeepAliveRequests directive in httpd.conf. By default, the
server waits for 15 seconds between requests from a client before closing a
connection, as specified with the KeepAliveTimeout directive in
httpd.conf.

2.9.1.3 Tuning HTTP Server Modules

The Oracle HTTP Server (OHS) uses the mod_wl_ohs module to route requests to the
underlying Weblogic server or the Weblogic Server cluster. The configuration details
for mod_wl_ohs are available in the mod_wl_ohs.conf file in the config directory.

For more information on the tuning parameters for mod_wl_ohs, see Understanding
Oracle HTTP Server Modules in Administrator's Guide for Oracle HTTP Server.

2.9.2 Configuring Connection Pools
Connection pooling is configured and maintained per Java runtime. Connections are
not shared across different runtimes. To use connection pooling, no configuration is
required. Configuration is necessary only if you want to customize how pooling is
done, such as to control the size of the pools and which types of connections are
pooled.

You configure connection pooling by using a number of system properties at program
startup time. Note that these are system properties, not environment properties and
that they affect all connection pooling requests.

For applications that use a database, performance can improve when the connection
pool associated with a data source limits the number of connections. You can use the

Controlling Concurrency

2-12 Tuning Performance Guide

MaxCapacity attribute to limit the database requests from Oracle Application Server
so that incoming requests do not saturate the database, or to limit the database
requests so that the database access does not overload the Oracle Application Server-
tier resource.

The connection pool MaxCapacity attribute specifies the maximum number of
connections that a connection pool allows. By default, the value of MaxCapacity is
set to 15. For best performance, you should specify a value for MaxCapacity that
matches the number appropriate to your database performance characteristics.

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure that
your database is configured to allow at least as large a number of open connections as
the total of the values specified for all the data sources MaxCapacity option, as
specified in all the applications that access the database.

Note:

JDBC Data Source: Configuration: Connection Pool in the Oracle WebLogic
Server Administration Console Online Help.

Tuning Data Source Connection Pool Options in Administering JDBC Data
Sources for Oracle WebLogic Server.

2.9.3 Tuning the WebLogic Sever Thread Pool
By default WebLogic Server uses a single thread pool, in which all types of work are
executed. WebLogic Server uses Work Managers to prioritize work based on rules you
can define, and run-time metrics, including the actual time it takes to execute a request
and the rate at which requests are entering and leaving the pool. There is a default
work manager that manages the common thread pool.

The common thread pool changes its size automatically to maximize throughput.
WebLogic Server monitors throughput over time and based on history, determines
whether to adjust the thread count. For example, if historical throughput statistics
indicate that a higher thread count increased throughput, WebLogic increases the
thread count. Similarly, if statistics indicate that fewer threads did not reduce
throughput, WebLogic decreases the thread count.

Since the WebLogic Server thread pool by default is sized automatically, in most
situations you do not need to tune this. However, for special requirements, an
administrator can configure custom Work Managers to manage the thread pool at a
more granular level for sets of requests that have similar performance, availability, or
reliability requirements. With custom work managers, you can define priorities and
guidelines for how to assign pending work (including specifying a min threads or
max threads constraint, or a constraint on the total number of requests that can be
queued or executing before WebLogic Server begins rejecting requests).

Use the following guidelines to help you determine when to use Work Managers to
customize thread management:

• The default fair share is not sufficient.

This usually occurs in situations where one application needs to be given a higher
priority over another.

• A response time goal is required.

Controlling Concurrency

Top Performance Areas 2-13

• A minimum thread constraint needs to be specified to avoid server deadlock.

• You use MDBs in your application.

To ensure MDBs use a well-defined share of server thread resources, and to tune
MDB concurrency, most MDBs should be modified to reference a custom work
manager that has a max-threads-constraint. In general, a custom work manager is
useful when you have multiple MDB deployments, or if you determine that a
particular MDB needs more threads.

Note:

For more information on how to use custom Work Managers to customize
thread management, and when to use custom work managers, see the
following:

• Tune Pool Sizes in Tuning Performance of Oracle WebLogic Server

• Thread Management in Tuning Performance of Oracle WebLogic Server

• MDB Thread Management in Tuning Performance of Oracle WebLogic Server

• Using Work Managers to Optimize Scheduled Work in Administering Server
Environments for Oracle WebLogic Server

• Avoiding and Managing Overload in Administering Server Environments for
Oracle WebLogic Server

You can use Oracle WebLogic Administration Console to view general
information about the status of the thread pool (such as active thread count,
total thread count, and queue length.) You can also use the Console to view
each application's scoped work manager metrics from the Workload tab on
the Monitoring page. The metrics provided include the number of pending
requests and number of completed requests.

For more information, see Servers: Monitoring: Threads and Deployments:
Monitoring: Workload in the Oracle WebLogic Server Administration Console
Online Help.

The work manager and thread pool metrics can also be viewed from the
Oracle Fusion Middleware Control.

2.10 Setting Logging Levels
The amount of information that applications log depends on how the environment is
configured and how the application code is instrumented. To maximize performance it
is recommended that the logging level is not set higher than the default INFO level
logging. If the logging setting does not match the default level, reset the logging level
to the default for best performance.

Once the application and server logging levels are set appropriately, ensure that the
debugging properties or other application level debugging flags are also set to
appropriate levels or disabled. To avoid performance impacts, do not set log levels to
levels that produce more diagnostic messages, including the FINE or TRACE levels.

Each component may have specific recommendations for logging levels.

Setting Logging Levels

2-14 Tuning Performance Guide

3
Performance Planning

A clearly defined plan for achieving your performance objectives is essential for
deciding what to trade for higher performance.

Introduction

About Performance Planning

Performance Planning Methodology

3.1 About Performance Planning
To maximize performance, you must monitor, analyze, and tune all the components
that are used by your applications.

Performance tuning usually involves a series of trade-offs. After you have determined
what is causing the bottlenecks, you may have to modify performance in some other
areas to achieve the expected results. However, if you have a clearly defined plan for
achieving your performance objectives, the decision on what to trade for higher
performance is easier because you have identified the most important areas.

3.2 Performance Planning Methodology
The Fusion Middleware components are built for performance and scalability. To
maximize the performance capabilities of your applications, you must build
performance and scalability into your design. The performance plan should address
the current performance requirements, the existing issues (such as bottlenecks or
insufficient hardware resources) and any anticipated variances in load, users or
processes. The performance plan should also address how the components scale
during peak usage without impacting performance.

Step 1: Defining Your Performance Objectives

Step 2: Designing Applications for Performance and Scalability

Step 3: Monitoring and Measuring Your Performance Metrics

3.2.1 Step 1: Defining Your Performance Objectives
Before you can begin performance tuning your applications, you must first identify
the performance objectives you hope to achieve. To determine your performance
objectives, you must understand the applications deployed and the environmental
constraints placed on the system.

Performance objectives are limited by constraints, such as:

• The configuration of hardware and software such as CPU type, disk size, disk
speed, and sufficient memory.

Performance Planning 3-1

There is no single formula for determining your hardware requirements. The
process of determining what type of hardware and software configuration is
required to meet application needs adequately is called capacity planning.

Capacity planning requires assessment of your system performance goals and an
understanding of your application. Capacity planning for server hardware should
focus on maximum performance requirements.

• The configuration of high availability architecture to address peak usage and
response times. For more information on implementing high availability features in
Oracle Fusion Middleware applications, see High Availability Guide.

• The ability to interoperate between domains, use legacy systems, support legacy
data.

• Development, implementation, and maintenance costs.

Understanding these constraints - and their impacts - ensure that you set realistic
performance objectives for your application environment, such as response times,
throughput, and load on specific hardware.

Defining Operational Requirements

Identifying Performance Goals

Understanding User Expectations

Conducting Performance Evaluations

3.2.1.1 Defining Operational Requirements

Before you begin to deploy and tune your application on Oracle Fusion Middleware, it
is important to clearly define the operational environment. The operational
environment is determined by high-level constraints and requirements such as:

• Application Architecture

• Security Requirements

• Hardware Resources

3.2.1.2 Identifying Performance Goals

Whether you are designing a new system or maintaining an existing system, you
should set specific performance goals so that you know how and what to optimize. To
determine your performance objectives, you must understand the application
deployed and the environmental constraints placed on the system.

Gather information about the levels of activity that components of the application are
expected to meet, such as:

• Anticipated number of users

• Number and size of requests

• Amount of data and its consistency

• Target CPU utilization

Performance Planning Methodology

3-2 Tuning Performance Guide

3.2.1.3 Understanding User Expectations

Application developers, database administrators, and system administrators must be
careful to set appropriate performance expectations for users. When the system carries
out a particularly complicated operation, response time may be slower than when it is
performing a simple operation. Users should be made aware of which operations
might take longer.

For example, you might want to ensure that 90% of the users experience response
times no greater than 5 seconds and the maximum response time for all users is 20
seconds. Usually, it's not that simple. Your application may include a variety of
operations with differing characteristics and acceptable response times. You need to
set measurable goals for each of these.

You also need to determine how variances in the load can affect the response time. For
example, users might access the system heavily between 9:00am and 10:00am and then
again between 1:00pm and 2:00pm, as illustrated by the graph in Figure 3-1. If your
peak load occurs on a regular basis, for example, daily or weekly, the conventional
wisdom is to configure and tune systems to meet your peak load requirements. The
lucky users who access the application in off-time can experience better response times
than your peak-time users. If your peak load is infrequent, you may be willing to
tolerate higher response times at peak loads for the cost savings of smaller hardware
configurations.

Figure 3-1 Adjusting Capacity and Functional Demand

3.2.1.4 Conducting Performance Evaluations

With clearly defined performance goals and performance expectations, you can
readily determine when performance tuning has been successful. Success depends on
the functional objectives you have established with the user community, your ability
to measure whether the criteria are being met, and your ability to take corrective
action to overcome any exceptions.

Ongoing performance monitoring enables you to maintain a well-tuned system.
Keeping a history of the application's performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of loads,
you can conduct objective scalability studies and from these predict the resource
requirements for anticipated load volumes. For more information on evaluating
performance, see Monitoring .

Performance Planning Methodology

Performance Planning 3-3

3.2.2 Step 2: Designing Applications for Performance and Scalability
The key to good performance is good design. The design phase of the application
development cycle should be an on-going process. Cycling through the planning,
monitoring and tuning phases of the application development cycle is critical to
achieving optimal performance across Fusion Middleware deployments. Using an
iterative design methodology enables you to accommodate changes in your work
loads without impacting your performance objectives.

3.2.3 Step 3: Monitoring and Measuring Your Performance Metrics
Oracle Fusion Middleware provides a variety of technologies and tools that can be
used to monitor Server and Application performance. Monitoring enables you to
evaluate Server activity, watch trends, diagnose system bottlenecks, debug
applications with performance problems and gather data that can assist you in tuning
the system. For more information, see Monitoring .

Performance tuning is specific to the applications and resources that you have
deployed on your system. Some common tuning areas are included in Top
Performance Areas .

Note:

Tuning Performance of Oracle WebLogic Server

Administering Oracle Fusion Middleware

Performance Planning Methodology

3-4 Tuning Performance Guide

4
Monitoring

Oracle Fusion Middleware provides a variety of technologies and tools that monitor
server and application performance.

Note:

Additional monitoring information is included for most products in the
product-specific topics of this guide.

Introduction

About Oracle Fusion Middleware Management Tools

Oracle Enterprise Manager Fusion Middleware Control

Oracle WebLogic Server Administration Console

WebLogic Diagnostics Framework (WLDF)

WebLogic Scripting Tool (WLST)

DMS Spy Servlet

Native Operating System Performance Commands

Network Performance Monitoring Tools

4.1 About Oracle Fusion Middleware Management Tools
Monitoring is an important step in performance tuning and enables you to evaluate
server activity, watch trends, diagnose system bottlenecks, debug applications with
performance problems and gather data that can assist you in tuning the system.

After you install and configure Oracle Fusion Middleware, you can use the graphical
user interfaces or command-line tools to manage your environment.

Each tool is described in Overview of Oracle Fusion Middleware Administration Tools
in Administering Oracle Fusion Middleware.

Note:

The Oracle Process Manager and Notification Server (OPMN) is no longer
used in Oracle Fusion Middleware. Instead, system components are managed
by the WebLogic Management Framework, which includes WLST, Node
Manager and pack and unpack. See What Is the WebLogic Management
Framework in Understanding Oracle Fusion Middleware.

Monitoring 4-1

Measuring Your Performance Metrics

4.1.1 Measuring Your Performance Metrics
Metrics are the criteria you use to measure your scenarios against your performance
objectives. You can use performance metrics to help locate bottlenecks, identify
resource availability issues, or help tune your components to improve throughput and
response times. After you have determined your performance criteria, take
measurements of the metrics used to quantify your performance objectives.

For example, you might use response time, throughput, and resource utilization as
your metrics. The performance objective for each metric is the value that is acceptable.
You match the actual value of the metrics to your objectives to verify that you are
meeting, exceeding, or failing to meet your performance objectives.

When you manage or monitor an Oracle Fusion Middleware component or
application with Fusion Middleware Control, you may see performance metrics that
provide insight into the current performance of the component or application. In many
cases, these metrics are shown in interactive charts; other times they are presented in
tabular format. The best way to use and correlate the performance metrics is from the
Performance Summary page for the component or application you are monitoring.

If you are new to Oracle Fusion Middleware or if you need additional information
about monitoring your environment using the Performance Summary pages, see
Viewing the Performance of Oracle Fusion Middleware in Administering Oracle Fusion
Middleware. In addition, the Fusion Middleware Control online help provides
definitions and other information about specific performance metrics that are available
on its management and monitoring pages.

4.2 Oracle Enterprise Manager Fusion Middleware Control
Fusion Middleware Control is a Web browser-based, graphical user interface that you
can use to monitor and administer your domain. It can manage an Oracle WebLogic
Server domain with its Administration Server, one or more Managed Servers, clusters,
the Oracle Fusion Middleware components that are installed, configured, and running
in the domain, and the applications you deploy.

For more information, see Getting Started Using Oracle Enterprise Manager Fusion
Middleware Control in Administering Oracle Fusion Middleware.

4.3 Oracle WebLogic Server Administration Console
Oracle WebLogic Server Administration Console is a Web browser-based, graphical
user interface that you use to manage an Oracle WebLogic Server domain. It is
accessible from any supported Web browser with network access to the
Administration Server.

For more information on using the WebLogic Server console, see Getting Started
Using Oracle WebLogic Server Administration Console in Administering Oracle Fusion
Middleware.

Additional WebLogic Server Console Resources:

For details on the content contained in each summary table, see "Monitor Servers" in
the WebLogic Administration Console Online Help.

For detailed information on using the WebLogic Server to monitor your domain, see
the Tuning Performance of Oracle WebLogic Server.

Oracle Enterprise Manager Fusion Middleware Control

4-2 Tuning Performance Guide

4.4 WebLogic Diagnostics Framework (WLDF)
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that can collect diagnostic data that servers and applications generate. The
WLDF can be configured to collect the data and store it in various sources, including
log records, data events, and harvested metrics.

For more information, see Understanding the Diagnostic Framework in Administering
Oracle Fusion Middleware.

Note:

For more information on the WebLogic Diagnostics Framework and how it
can be leveraged for monitoring Oracle Fusion Middleware components, see
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

4.5 WebLogic Scripting Tool (WLST)
The Oracle WebLogic Scripting Tool (WLST) is a command-line scripting environment
that you can use to create, manage, and monitor Oracle WebLogic Server domains. It
is based on the Java scripting interpreter, Jython. In addition to supporting standard
Jython features such as local variables, conditional variables, and flow-control
statements, WLST provides a set of scripting functions (commands) that are specific to
WebLogic Server. You can extend the WebLogic scripting language to suit your needs
by following the Jython language syntax.

For more information, see Getting Started Using the Oracle WebLogic Scripting Tool
(WLST) in Administering Oracle Fusion Middleware.

4.6 DMS Spy Servlet
The DMS Spy servlet provides access to DMS metric data from a web browser. Data
that is created and updated by DMS-enabled applications and components is
accessible through the DMS Spy Servlet.

Viewing Performance Metrics Using the Spy Servlet

Using the DMS Spy Servlet

4.6.1 Viewing Performance Metrics Using the Spy Servlet
The DMS Spy Servlet is part of the DMS web application. The DMS web application's
web archive file is dms.war, and can be found in the same directory as dms.jar: /
modules/oracle.dms_12.1.2/dms.war.

The DMS web application is deployed by default as part of a JRF-enabled server
instance. The URL is: http://host:port/dms/Spy.

Only users who have Administrator role access can view this URL as access is
controlled by standard Java EE elements in web.xml.

4.6.2 Using the DMS Spy Servlet
Figure 4-1 shows the initial page of the Spy servlet: both sides show the same list of
metric tables.

WebLogic Diagnostics Framework (WLDF)

Monitoring 4-3

Figure 4-1 Spy Servlet Page - Metrics Tables

Note that the Spy servlet can display metric tables for WebLogic Server and also for
non-Java EE components that are deployed.

For metric tables to appear in the Spy servlet, the component that creates and updates
that table must be installed and running. Metric tables for components that are not
running are not displayed. Metric tables with ":" in their name (for example,
weblogic_j2eeserver:app_overview) are aggregated metric tables generated by
metric rules.

To view the contents of a metric table, click the table name. For example, Figure 4-2
shows the MDS_Partition table.

DMS Spy Servlet

4-4 Tuning Performance Guide

Figure 4-2 MDS Partition Table

To get a description of the fields in a metric table, click the Metric Definitions link
below the table.

4.7 Native Operating System Performance Commands
Each operating system has native tools and utilities that can be useful for monitoring
purposes. Native operating system commands enable you to gather and monitor for
example CPU utilization, paging activity, swapping, and other system activity
information.

For details on operating system commands, refer to the documentation provided by
the operating system vendor.

4.8 Network Performance Monitoring Tools
Your operating system's network monitoring tools can be used to monitor utilization,
verify that the network is not becoming a bottleneck, or detect packet loss or other
network performance issues. For details on network performance monitoring, refer to
your operating system documentation.

Native Operating System Performance Commands

Monitoring 4-5

Network Performance Monitoring Tools

4-6 Tuning Performance Guide

5
Using the Oracle Dynamic Monitoring

Service

The Oracle Dynamic Monitoring Service (DMS) publishes component performance
data.

Introduction

About Dynamic Monitoring Service (DMS)

About DMS Availability

About DMS Architecture

Viewing DMS Metrics

Accessing DMS Metrics with WLDF

About DMS Execution Context

DMS Tracing and Events

DMS Best Practices

5.1 About Dynamic Monitoring Service (DMS)
The Oracle Dynamic Monitoring Service (DMS) enables Oracle Fusion Middleware
components to provide administration tools, such as Oracle Enterprise Manager, with
data regarding the component's performance, state and on-going behavior. Fusion
Middleware components push data to DMS and in turn DMS publishes that data
through a range of different components. DMS measures and reports metrics, trace
events and system performance and provides a context correlation service for these
components.

Understanding Common DMS Terms and Concepts

5.1.1 Understanding Common DMS Terms and Concepts
There are common DMS terms and concepts related to DMS Senors, DMS Nouns, and
DMS Tracing and Events.

DMS Sensors

DMS Nouns

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-1

5.1.1.1 DMS Sensors

DMS sensors measure performance data and enable DMS to define and collect a set of
metrics. Certain metrics are always included with a sensor and other metrics are
optionally included with a sensor.

DMS PhaseEvent Sensors

DMS Event Sensors

DMS State Sensors

Sensor Naming Conventions

5.1.1.1.1 DMS PhaseEvent Sensors

A DMS PhaseEvent sensor measures the time spent in a specific section of code that has
a beginning and an end. Use a PhaseEvent sensor to track time in a method or in a
block of code.

DMS can calculate optional metrics associated with a PhaseEvent, including the
average, maximum, and minimum time that is spent in the PhaseEvent sensor.

Table 5-1 lists the metrics available with PhaseEvent sensors.

Table 5-1 DMS PhaseEvent Sensor Metrics

Metric Description

sensor_name.time Specifies the total time spent in the phase
sensor_name.

Default metric: time is a default PhaseEvent sensor
metric.

sensor_name.completed Specifies the number of times the phase sensor_name
has completed since the process was started.

Optional metric

sensor_name.minTime Specifies the minimum time spent in the phase
sensor_name, for all the times the sensor_name
phase completed.

Optional metric

sensor_name.maxTime Specifies the maximum time spent in the phase
sensor_name, for all the times the sensor_name
phase completed.

Optional metric

sensor_name.avg Specifies the average time spent in the phase
sensor_name, computed as the (total time)/(number
of times the phase completed).

Optional metric

sensor_name.active Specifies the number of threads in the phase
sensor_name, at the time the DMS statistics are
gathered (the value may change over time).

Optional metric

About Dynamic Monitoring Service (DMS)

5-2 Tuning Performance Guide

Table 5-1 (Cont.) DMS PhaseEvent Sensor Metrics

Metric Description

sensor_name.maxActive Specifies the maximum number of concurrent threads
in the phase sensor_name, since the process started.

Optional metric

5.1.1.1.2 DMS Event Sensors

A DMS event sensor counts system events. Use a DMS event sensor to track system
events that have a short duration, or where the duration of the event is not of interest
but the occurrence of the event is of interest.

Table 5-2 describes the metric that is associated with an event sensor.

Table 5-2 DMS Event Sensor Metrics

Metric Description

sensor_name.count Specifies the number of times the event has occurred
since the process started, where sensor_name is the
name of the Event sensor as specified in the DMS
instrumentation API.

Default: count is the default metric for an event
sensor. No other metrics are available for an event
sensor.

5.1.1.1.3 DMS State Sensors

A DMS state sensor tracks the value of Java primitives or the content of a Java object.
Supported types include integer, double, long, and object. Use a state sensor when you
want to track system status information or when you need a metric that is not
associated with an event. For example, use state sensors to track queue lengths, pool
sizes, buffer sizes, or host names. You assign a precomputed value to a state sensor.

Table 5-3 describes the state sensor metrics. State sensors support a default metric
value, as well as optional metrics. The optional minValue and maxValue metrics
only apply for state sensors if the state sensor represents a numeric Java primitive (of
type integer, double, or long).

Table 5-3 DMS State Sensor Metrics

Metric Description

sensor_name.value Specifies the metric value for sensor_name, using the
type assigned when sensor_name is created.

Default: value is the default State metric.

sensor_name.count Specifies the number of times sensor_name is
updated.

Optional metric

sensor_name.minValue Specifies the minimum value for sensor_name since
startup.

Optional metric

About Dynamic Monitoring Service (DMS)

Using the Oracle Dynamic Monitoring Service 5-3

Table 5-3 (Cont.) DMS State Sensor Metrics

Metric Description

sensor_name.maxValue Specifies the maximum value this sensor_name since
startup.

Optional metric

5.1.1.1.4 Sensor Naming Conventions

The following list describes DMS sensor naming conventions:

• Sensor names should be descriptive, but not redundant. Sensor names should not
contain any part of the noun name hierarchy, or type, as this is redundant.

• Sensor names should avoid containing the value for the individual metrics.

• Where multiple words are required to describe a sensor, the first word should start
with a lowercase letter, and the following words should start with uppercase
letters. Example: computeSeries

• In general, avoid using a "/" character in a sensor name. However, there are cases
where it makes sense to use a name that contains "/". If a "/" is used in a noun or
sensor name, then when you use the sensor in a string with DMS methods, you
need to use an alternative delimiter, such as "," or "_", which does not appear
anywhere in the path; this enables the "/" to be properly understood as part of the
noun or sensor name rather than as a delimiter.

For example, a child noun can have a name such as:

examples/jsp/num/numguess.jsp

and you can look this up using the string:

,default,WEBs,defaultWebApp,JSPs,example/jsp/num/numguess.jsp,service

where the delimiter is the "," character.

• Event sensor and PhaseEvent sensor names should have the form verbnoun.
Examples: activateInstance and runMethod. When a PhaseEvent monitors a
function, method, or code block, it should be named to reflect the task performed
as clearly as possible.

• The name of a state sensor should be a noun, possibly preceded by an adjective,
which describes the semantics of the value which is tracked with this state sensor.
Examples: lastComputed, totalMemory, port, availableThreads,
activeInstances

• To avoid confusion, do not name sensors with strings such as .time, .value,
or .avg, which are names of sensor metrics, as shown in Table 5-1, Table 5-2, and
Table 5-3.

5.1.1.2 DMS Nouns

DMS nouns organize performance data. Sensors, with their associated metrics, are
organized in an hierarchy according to nouns. Nouns enable you to organize DMS
metrics in a manner comparable to a directory structure in a file system. For example,

About Dynamic Monitoring Service (DMS)

5-4 Tuning Performance Guide

nouns can represent classes, methods, objects, queues, connections, applications,
databases, or other objects that you want to measure.

A noun type is the attribute that identifies the noun's type. Nouns that represent
similar types of entities will typically have the same noun type and will usually record
a common set of measurements for each of those entities.

General DMS Naming

General DMS Naming Conventions and Character Sets

Noun and Noun Type Naming Conventions

5.1.1.2.1 General DMS Naming

A noun name is a simple string, not including a delimiter. For example,
BasicBinomial is a noun name. A noun full name consists of the noun name with
the namespace and localpart. The noun name is preceded by the full name of its
parent, and a delimiter. /dmsDemo/BasicBinomial/"{http://
mynamespace/}JAXWSHelloService" is a noun full name.

A sensor name is a simple string, not including the "." or the derivation. For example,
computeSeries, loops, and lastComputed are sensor names.

A sensor full name consists of the sensor name, preceded by the name of its
associated noun, and a delimiter. Examples: /dmsDemo/BasicBinomial/
computeSeries, /dmsDemo/BasicBinomial/loops, /dmsDemo/
BasicBinomial/lastComputed.

A DMS metric name consists of a sensor name plus the "." character plus the metric.
For example, computeSeries.time, loops.count, and lastComputed.value
are valid DMS metric names.

Note:

The suffixes .time, .count, and .value are immutable. Sensor and noun
names, however, can be modified as needed.

5.1.1.2.2 General DMS Naming Conventions and Character Sets

DMS names should be as compact as possible. When you define noun and sensor
names, avoid special characters such as white space, slashes, periods, parenthesis,
commas, and control characters.

Table 5-4 shows DMS replacement for special characters in names.

Table 5-4 Replacement for Special Characters in DMS Names

Character DMS Replacement Character

Space character Underscore character: _

Period character: . Underscore character: _

Control character Underscore character: _

Less than character: < Open parenthesis: (

Greater than character: > Close parenthesis:)

About Dynamic Monitoring Service (DMS)

Using the Oracle Dynamic Monitoring Service 5-5

Table 5-4 (Cont.) Replacement for Special Characters in DMS Names

Character DMS Replacement Character

Ampersand: & Caret: ^

Double quote: " Backquote: '

Single quote: ' Backquote: '

Note:

Oracle Fusion Middleware includes several built-in metrics. The Oracle Fusion
Middleware built-in metrics do not always follow the DMS naming
conventions.

5.1.1.2.3 Noun and Noun Type Naming Conventions

The following conventions are used when naming noun and noun types:

• A noun name should be unique.

• A noun name should identify a specific entity of interest.

• Noun types should have names that clearly reflect the set of metrics being
collected. For example, Servlet is the type for a noun under which the metrics that
are specific to a given servlet fall.

• Noun type names should start with a capital letter to distinguish them from other
DMS names. All nouns of a given type should contain the same set of sensors.

• The noun naming scheme uses a '/' as the root of the hierarchy, with each noun
acting as a container under the root, or under its parent noun.

5.1.1.3 DMS Tracing and Events

Conceptually DMS generates a stream of events; each event is in response to one of the
event-producing actions being performed on the DMS API by the components that
integrate with DMS (such as a sensor being updated). That stream of events can be
completely ignored or routed (and optionally filtered) to destinations that can respond
in some way to events.

Table 5-5 provides a list of DMS tracing and event terminology.

Table 5-5 DMS Tracing and Event Terminology

About Dynamic Monitoring Service (DMS)

5-6 Tuning Performance Guide

Table 5-5 (Cont.) DMS Tracing and Event Terminology

DMS Term Definition

Condition A condition is the logic behind a condition filter. It
determines which events may pass through a filter,
based on the rules defined in the condition. Every
condition filter has zero or one root condition, but
conditions may include AND or OR arguments
together to create compound conditions. The single
root condition can describe a relatively complex rule.

Two types of condition exist:

• Noun Type Condition - operates on the name of the
noun type associated with a sensor or noun event.

• Context Condition - operates on the values
currently set within the current Execution Context.

For more information on using conditions, see DMS
Tracing and Events.

Destination A destination implements a mechanism for reacting to
events that are passed to it. For example, a destination
could log events to a file, another could send
transformed copies of event to the Java Flight Recorder,
yet another might render information gleaned from
incoming events as data in an MBean.

Event Route An event route connects a filter to a destination. Event
routes may be enabled or disabled.

Filter An event tracing filter selectively passes a subset of all
possible DMS runtime events. Filters can be configured
with rules that determine which events are passed and
which are blocked.

For example it is possible to define filters to:

• Only pass sensor updates that are made when the
execution context has a key-value pair of role-
admin

• Only pass sensor updates from nouns of type
JDBC_Statement

For more information on using filters, see DMS Tracing
and Events.

Listener A DMS listener is also known as the destination. See
Configuring Destinations for more information.

5.2 About DMS Availability
DMS functionality is available on all certified Java EE servers. This includes both the
runtime features and supporting commands. Also, several features of DMS will
operate in JSE applications and standalone C applications.

For more information on which servers are certified, see the Oracle Fusion
Middleware Certification Matrix.

5.3 About DMS Architecture
DMS consists of the following features:

About DMS Availability

Using the Oracle Dynamic Monitoring Service 5-7

• DMS Metrics - The DMS metrics feature provides Java and C APIs that are used by
Oracle Fusion Middleware components for instrumenting code with performance
measurements and other useful state metrics.

• Execution Context - Execution Context supports the maintenance and propagation
of a specific context structure throughout the Oracle stack. By exploiting the
propagated context structure Oracle FMW components can record diagnostic
information (such as log records) that can be correlated between different
components and products running on the same or different servers and hosts. For
more information, see About DMS Execution Context.

• Events and Tracing - Event Tracing enables you to configure live tracing with no
restarts. DMS metrics updated during the course of using Oracle Fusion
Middleware products may be traced using the DMS Event Tracing feature. The
system has been designed to facilitate not only tracing, but also to support other
functionality that may be driven from DMS activity.

Figure 5-1 shows the components of DMS and how they interact with other Oracle
Fusion Middleware components. Arrows show the direction in which information
flows from one component to the next.

Figure 5-1 DMS Interactions with Oracle Fusion Middleware Components

5.4 Viewing DMS Metrics
Oracle Fusion Middleware components are instrumented with DMS metrics to collect
information that developers, system administrators, and support analysts can use to
analyze system performance or monitor system status. The Fusion Middleware
Control online help provides information on each of the specific metrics. See Viewing
the Performance of Oracle Fusion Middleware in Administering Oracle Fusion
Middleware for information on accessing metric information.

The Oracle Fusion Middleware metrics come from various sources and locations. They
include MBean attributes and DMS metrics. They also come from non-Java EE servers,
such as Oracle servers.

You can use various tools to view the DMS metrics.

Viewing DMS Metrics

5-8 Tuning Performance Guide

Viewing Metrics Using the Spy Servlet

Viewing Metrics with WLDF (WebLogic Diagnostic Framework)

Viewing Metrics with WLST (Oracle WebLogic Server)

Viewing Metrics with JConsole

Viewing Metrics with Oracle Enterprise Manager

5.4.1 Viewing Metrics Using the Spy Servlet
The Spy Servlet is part of the DMS Application that is deployed by default on JRF-
extended installations. The Spy Servlet is launched from http://
<host>:<port>/dms/Spy. The default port for WebLogic is 1521.

The DMS Application's web archive file is dms.war, and can be found in the same
directory as dms.jar: oracle_common/modules/oracle.dms_12.1.2/
dms.war.

For more information, see DMS Spy Servlet.

Note:

The Spy Servlet is secured using standard Java EE declarative security in the
web-application's web.xml file, and will only grant access to the Spy Servlet
to members of the Administrator's group.

5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
You can use WebLogic Diagnostic Framework (WLDF) to harvest DMS metrics from
DMS metric MBeans. You can also use WLDF to monitor changes to the attribute
value of an MBean. For more information, see Configuring the Harvester for Metric
Collection in Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

5.4.3 Viewing Metrics with WLST (Oracle WebLogic Server)
DMS provides three commands to view metrics in WLST:

Viewing DMS Metrics

Using the Oracle Dynamic Monitoring Service 5-9

Use this command... To do this...

displayMetricTableNames() List the names of the available metric tables.

If you have a large number of DMS metric tables,
consider using the outputfile parameter with
displayMetricTableNames(). This is useful when
the output is expected to be large. When
displayMetricTableNames() has the outputfile
parameter, it returns null to the script instead of the
whole output. This prevents the command from
running out of memory.

NOTE: In 12c, the command syntax for
displayMetricTableNames() differs slightly for
system components (such as OHS). After you connect
WLST to Node Manager using nmConnect()
command, you must specify both server name and
server type explicitly.

For example:

displayMetricTableNames(servertype="OHS",

servers="ohs1")

displayMetricTables() Show the content of the DMS metric tables.

If you have a large number of DMS metric tables,
consider using the outputfile parameter with
displayMetricTables(). This is useful when the
output is expected to be large. When
displayMetricTables() has the outputfile
parameter, it returns null to the script instead of the
whole output. This prevents the command from
running out of memory.

NOTE: In 12c, the command syntax for
displayMetricTables() differs slightly for system
components (such as OHS). After you connect WLST to
Node Manager using nmConnect() command, you
must specify both server name and server type
explicitly.

For example:

displayMetricTables(servertype="OHS",

servers="ohs1")

Viewing DMS Metrics

5-10 Tuning Performance Guide

Use this command... To do this...

dumpMetrics() Display metrics in the internal format. Valid formats
for the dumpMetrics command include raw, xml and
pdml.

If you have a large number of DMS metric tables,
consider using the outputfile parameter with
dumpMetrics(). This is useful when the output is
expected to be large. When dumpMetrics() has the
outputfile parameter, it returns null to the script
instead of the whole output. This prevents the
command from running out of memory.

NOTE: In 12c, the command syntax for
dumpMetrics() differs slightly for system
components (such as OHS). After you connect WLST to
Node Manager using nmConnect() command, you
must specify both server name and server type
explicitly.

For example:

dumpMetrics()(servertype="OHS",

servers="ohs1")

As well as displaying textual output, these commands also return a structured object
or single value that you can use in a script to process.

For more information on using these commands, see the following:

• Getting Started Using the Oracle WebLogic Scripting Tool (WLST) in Administering
Oracle Fusion Middleware

• DMS Metric Commands in WLST Command Reference for Infrastructure Components

5.4.4 Viewing Metrics with JConsole
To provide a standards-based way to access metrics, DMS exposes them through
MBeans. An MBean will be created and registered for each typed noun with the
runtime MBean Server. The DMS sensors contained by the noun are exposed as the
attributes of the MBean. Exposing the DMS metrics as MBeans allows administrators
to use tools such as JConsole (the Java monitoring and management console), and
other Java Management Extension (JMX) clients, to access the DMS metrics.

MBeans also allow for integration with other Oracle diagnostics software such as
WLDF (WebLogic Diagnostics Framework), which is described in Accessing DMS
Metrics with WLDF. The noun name and noun type are exposed as the name and type
properties of the metric MBean object name. The MBean domain name is
oracle.dms. The object name also reflects the DMS noun hierarchy.

Viewing DMS Metrics

Using the Oracle Dynamic Monitoring Service 5-11

Note:

You can use JConsole to view DMS generated MBeans on a Java EE server
either locally or remotely. DMS generates an MBean for each Java DMS noun
that has a valid noun type. It does not generate MBeans for the non-Java EE
component's metrics and the DMS nouns that have no noun types. Each DMS
metric contained under the noun is mapped to an attribute in the metric
MBean.

5.4.5 Viewing Metrics with Oracle Enterprise Manager
Oracle Fusion Middleware automatically and continuously measures data regarding
the component's performance, state and on-going behavior. The metrics are
automatically enabled; there is no need to set options or perform any extra
configuration to collect them. For more information, see Oracle Enterprise Manager
Fusion Middleware Control.

5.5 Accessing DMS Metrics with WLDF
The WebLogic Diagnostics Framework (WLDF) provides a diagnostic feature that
allows MBean attributes to be harvested and monitored for specific conditions. This
provides a proactive way of monitoring activity in your environment and creating E-
mail and JMX notifications when a condition is triggered.

The following steps describe how to configure WLDF to send an E-mail notification
using the WebLogic Administration Console:

1. Select an existing or create a new Diagnostics Module from the Diagnostics screen.

2. Click on the Watches and Notifications tab.

3. Click New.

4. Enter a Watch Name and click Next.

5. Enter the text as the Watch Rule and click Next.

(${ServerRuntime//[NOUNTYPE]oracle.dms:name=/starWars/alliance,type=NounType//
forceBalance_value} = 'BAD')

6. Select Use a manual reset alarm and click Next. The manual reset option means
that once an E-mail is triggered, you must reset the watch using the WebLogic
Administration Console.

7. Select the E-mail notification type and click Finish.

It is also possible to configure WLDF to collect the MBean data for offline storage and
analysis. This is achieved by configuring a WLDF Diagnostic Module to collect specific
MBean attributes, and can be done so using the WebLogic Administration Console.

For more information on using WLDF to harvest and monitor MBean data see
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

5.6 About DMS Execution Context
The DMS execution context is the mechanism by which requests (such as or RMI
requests) can be uniquely identified and thus tracked as they flow through the system.

Accessing DMS Metrics with WLDF

5-12 Tuning Performance Guide

It also provides a means by which context information can be communicated between
cooperating Fusion Middleware components involved in fulfilling requests.

DMS Execution Requests and Subtasks

DMS Execution Context Usage

DMS Execution Context Communication

5.6.1 DMS Execution Requests and Subtasks
The DMS execution context has been developed with the understanding that a single
request (or task) may form the root of a tree of subtasks that are coordinated to
complete the request or root task. Consider the following examples of requests and
their associated subtasks:

1. A request sent directly to Oracle WebLogic Server from a browser:

• Root task only on Oracle WebLogic Server

2. An request sent through Oracle Server (acting as a reverse proxy) to Oracle
WebLogic Server:

• Root task on Oracle Server

• Single sub-task on Oracle WebLogic Server

3. An request sent from Oracle Server (acting as a reverse proxy) to Oracle WebLogic
Server that then requires invocation of two remote web services from Oracle
WebLogic Server to fulfill the request:

• Root task on Oracle Server

• Single sub-task on Oracle WebLogic Server

• Two sub-subtasks, one on each web service

A DMS execution context is composed of the following:

• A unique identifier, the ECID

The Execution Context ID (ECID) is unique for each new root task and is shared
across the tree of tasks associated with the root task.

• A relationship identifier, the RID

The Relationship ID (RID) is an ordered set of numbers that describes the location
of each task in the tree of tasks. The leading number is usually a zero. A leading
number of 1 indicates that it has not been possible to track the location of the sub-
task within the overall sub-task tree.

• A set of name-value pairs by which globally relevant data can be shared among
Oracle Fusion Middleware components.

The following three scenarios illustrate how ECID and RID are used when an request
is sent from Oracle Server (acting as a reverse proxy) to an Oracle WebLogic Server
and the server requires invocation of two remote web services from Oracle WebLogic
Server.

1. Root task on Oracle Server:

About DMS Execution Context

Using the Oracle Dynamic Monitoring Service 5-13

• New ECID = B5C094FA...BE4AE8

• Root RID = 0

2. Single subtask on Oracle WebLogic Server:

• Same ECID = B5C094FA...BE4AE8

• Sub-task RID = 0:1

3. Two subtasks, one on each web service:

• First web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:1

• Second web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:2

5.6.2 DMS Execution Context Usage
The most immediate benefits of the DMS execution context are realized when
attempting to correlate log messages between servers. The Oracle standard format for
logging involves a field dedicated to the ECID. Once the ECID is known, when its read
from an ERROR level log message for example, it is possible to locate all other log
messages associated with that task by querying the log files for messages containing
that ECID.

The following example shows a very specific case of using the command:

displayLogs(ecid="B5C094FA...BE4AE8");

In this example, any log files with messages that contain the ECID
B5C094FA...BE4AE8 will be displayed.

5.6.3 DMS Execution Context Communication
Figure 5-2 shows the components that cooperate to communicate the DMS execution
context between each other. Arrows pointing to a component indicate the protocols
that are inspected for incoming context information. Outgoing arrows show protocols
to which context information is added. It is possible for a single component to send
requests to itself, passing context information in that request.

About DMS Execution Context

5-14 Tuning Performance Guide

Figure 5-2 DMS Execution Context Communication Protocols

5.7 DMS Tracing and Events
DMS can selectively trace the following:

• DMS sensor lifecycle events (create, update, delete of state sensors, event sensors
and phase sensors)

• Context events (start, stop)

• events (start, stop)

The configuration that controls which of these types of events are traced, and how
those events are processed, is recorded in the dms_config.xml file. The DMS trace
configuration is split into three parts:

1. Filter Configuration

Defines the rules that select the events that are of interest

2. Destination Configuration

Defines how the events are used

3. eventRoute Configuration

Defines which filters are wired to which destinations

A filter can be associated with one or more destinations thus granting the
administrator the ability to define a filter rule once and have the resulting subset of all
possible events processed on one or more different destinations.

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-15

The configuration can be modified using the DMS configuration MBean or WLST
commands at runtime; this makes the DMS tracing feature invaluable for diagnosing
issues within a specific time period or collecting specific data at a specific time for a
specific set of criteria.

For more information, see Configuring Selective Tracing Using WLST in Administering
Oracle Fusion Middleware.

The following types of filter rules are supported:

• Event Type Conditions

Used to identify if an event was triggered from the START or STOP of a
PHASE_SENSOR

• Context Type Conditions

Used to identify if the event was generated from a unit of work whose context
contains a value (for example, USER)

• Noun Type Conditions

Used to identify if the event was triggered from a sensor whose noun is of a
specific type (for example, JDBC_CONNECTION)

• Logical AND and OR combinations of the above conditions

Configuring the DMS Event System

Configuring Destinations

Understanding the Format of DMS Events in Log Messages

Understanding DMS Event Actions

5.7.1 Configuring the DMS Event System
Configuration is recorded in each server's dms_config.xml file. MBean updates can
be made at runtime using command line interface (CLI) commands and through the
Event Configuration Mbean. Configuration updates are applied to the running system
in a thread safe, but non-atomic, manner.

The object name of the DMS Event configuration MBean is:
oracle.dms.event.config:name=DMSEventConfigMBean,type=JMXEventCo
nfig

To review the current state of your system's DMS event configuration, use the
following command:

listDMSEventConfiguration([server=<server>])

The resulting output will look similar to this:

Event routes:
 FILTER : auto662515911
 DESTINATION : destination1
 ENABLED : true
 FILTER : filter0
 DESTINATION : q
 ENABLED : true
Filters with no event route:
 Fred

DMS Tracing and Events

5-16 Tuning Performance Guide

Destinations with no event route:
 des4

Adding and Editing Filters

Adding and Editing Destinations

Adding and Editing Event Routes

Compound Operations

5.7.1.1 Adding and Editing Filters

Filters define the rules that select which events are considered for tracing.

The following example shows how to add a filter that selects all events related to JDBC
operations:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE sw JDBC_'})

Or:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE startsWith
JDBC_'})

This filter assumes that all DMS sensor updates associated with JDBC operations are
performed on nouns of types whose names begin JDBC_.

If the rule must be modified, the filter may be updated as shown in the following
example:

updateDMSEventFilter(id="myJDBCFilter", props={'condition': 'NOUNTYPE startsWith
JDBC_ OR NOUNTYPE startsWith MDS_'});

As of Oracle Fusion Middleware 11.1.1.6.0, the following shortened convenience
operators have been added. Operators can be specified using either the shortened or
longer name.

Note that operators with an underscore have been deprecated in favor of the ODL
format, which is to use mixed case. For example, not_equals becomes notEquals
or ne. The old format will still work, but is discouraged.

Noun Type Operators

equals, eq notEquals, ne

contains in

startsWith, sw

Context Operators

equals, eq notequals, ne

isnull isnotnull

startswith, sw contains

lt gt

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-17

Example:

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE eq MDS_Connections AND CONTEXT user ne bruce'})

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE equals MDS_Connections AND CONTEXT user notequals bruce'})

For more information about the syntax used to describe a filter's rule (the condition
property), refer to the WebLogic Scripting Tool Command Reference or the command help.

5.7.1.2 Adding and Editing Destinations

Destinations encapsulate logic for responding to events. For example, a basic
destination will log the event, a different destination may transform an event and pass
it to another system for further processing.

The following example shows how to add a destination that will log events:

addDMSEventDestination(id="myLoggerDestination",
class="oracle.dms.trace2.runtime.LoggerDestination",
props={"loggerName":"myLogger"});

Note that merely adding the destination is not sufficient for events to be logged; to log
the events, you must associate a filter with a destination using an eventRoute, and the
eventRoute must be enabled (default).

The types of destination available, and their configuration options, are described in
Configuring Destinations. The following example shows how to edit an existing
destination:

updateDMSEventDestination(id="myLoggerDestination",
props={"loggerName":"myTraceLogger"});

5.7.1.3 Adding and Editing Event Routes

The following example shows how to join the filter and destination created above:

addDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')

Note that you can invoke addDMSEventRoute without an explicit filterId. In these
scenarios, all events are passed to the destination without filtering.

To remove a filter or destination, you must first remove the event routes associated
with the filter or destination (even if the event route is disabled). For example, if you
wanted to remove myJDBCFilter, you would first need to remove the eventRoute
created in the previous example, and then remove the filter as shown in the following
example:

removeDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')
removeDMSEventFilter(id='myJDBCFilter')

5.7.1.4 Compound Operations

It is possible to create a filter and an eventRoute based on that filter using a single
command (rather than using two separate commands as shown in Adding and Editing
Event Routes). Note, however, that the destination to be used by the event route must
already be defined:

enableDMSEventTrace (destinationid='myLoggerDestination', condition='NOUNTYPE
starts_with JDBC_')

DMS Tracing and Events

5-18 Tuning Performance Guide

In the example above, enableDMSEventTrace automatically creates a filter with the
specified condition, and also creates and enables an event route using the new filter
and the nominated destination. The output is shown in the following example:

Filter "auto605449842" using Destination "myLoggerDestination" added, and event-
route enabled for server "AdminServer"

5.7.2 Configuring Destinations
DMS offers several types of destinations.

LoggerDestination

MBean Creator Destination

Request Tracker Destination

Java Flight Recorder Destination

5.7.2.1 LoggerDestination

Description The LoggerDestination writes each event to the
associated logger.

Implementing Class oracle.dms.trace2.runtime.LoggerDestination

Properties

loggerName The name of the ODL logger to which events will be
written.

Instances of logger destinations write events to the named logger at a log level of
FINER.

The loggerName property specifies the name of a logger, but the logger does not
necessarily have to be described in logging.xml, though it can be. If the logger name
refers to a logger that is explicitly named in logging.xml, then the logger is referred
to as a static logger (see Static Loggers and Handlers). If the logger name refers to a
logger that is not explicitly named in logging.xml, then the logger is referred to as a
dynamic logger (see Dynamic Loggers and Handlers).

Use in the default configuration: the default configuration defines a logger
destination, with an identification of LoggerDestination. This particular instance
does not form part of any eventRoute and therefore is not active. It is provided for
convenience, and uses a dynamic logger.

Static Loggers and Handlers

Dynamic Loggers and Handlers

Default Locations of the logging.xml File

Using a CLI Command to Query the Trace Log File

5.7.2.1.1 Static Loggers and Handlers

Loggers are the objects to which log records are presented. Log handlers are the
objects through which log records are written to log files.

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-19

For complete control over the log file to which DMS trace data is written, define the
logger named in the logger destination in logging.xml. Doing this allows you to
explicitly define the name of the log file, the maximum size, format, file rotation and
policies.

Oracle recommends using commands (like the example below) to update the
configuration.

setLogLevel(logger="myTraceLogger", level="FINER", addLogger=1);

configureLogHandler(name="my-trace-handler", addToLogger=["myTraceLogger"],
path="/tmp/myTraceLogFiles/trace", maxFileSize="10m", maxLogSize="50m",
handlerType="oracle.core.ojdl.logging.ODLHandlerFactory", addHandler=1,
useParentHandlers=0);

configureLogHandler(name="my-trace-handler", propertyName="useSourceClassandMethod",
propertyValue="false", addProperty=1);

For more information on logging configuration, see Managing Log Files and
Diagnostic Data in Administering Oracle Fusion Middleware.

The use of the optional property useSourceClassandMethod set to FALSE prevents
the SRC_CLASS and SRC_METHOD from appearing in every message and will
marginally improve performance by reducing file output times.

For static loggers, consider setting the useParentHandlers parameter to FALSE,
otherwise duplicate event messages will be logged to [server]-
diagnostics.log, and shown in a log query.

See Understanding the Format of DMS Events in Log Messages for more information
about interpreting logger output.

5.7.2.1.2 Dynamic Loggers and Handlers

If the named logger has no associated handler defined in logging.xml, then the
logger destination will dynamically create a handler object that will write to a file in
the server's default log output directory. (Instances of logger destinations write events
to the named logger at a log level of FINER.) The file name will be the logger's name
followed by -event.log. For instance, in the example in Static Loggers and
Handlers, DMS events would be written to myTraceLogger-event.log.

5.7.2.1.3 Default Locations of the logging.xml File

The logging.xml file can typically be found in one of the following platform
locations:

Platform Server Location

Oracle WebLogic Server AdminServer ORACLE_HOME/WLS_Home/
user_projects/domains/
base_domain/config/
fmwconfig/servers/
AdminServer/logging.xml

5.7.2.1.4 Using a CLI Command to Query the Trace Log File

If the logger destination's logger and handler are defined in logging.xml then you
can take advantage of the displayLogs() command to conveniently access logged
trace data without having to manually locate or search for it.

Examples:

DMS Tracing and Events

5-20 Tuning Performance Guide

• To display all the log messages for the myTraceLogger:

displayLogs(query='MODULE equals myTraceLogger')

• To display only the log messages for myTraceLogger which have an ECID of
0000HpmSpLWEkJQ6ub3FEH194kwB000004:

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004')

• To display only the log messages for myTraceLogger which have an ECID of
0000HpmSpLWEkJQ6ub3FEH194kwB000004 in the last 10 minutes:

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004', last=10)

• To display all the log messages from a dynamic logger the log's file name must be
included:

displayLogs(disconnected=1, log=DOMAIN_ROOT+"/servers/AdminServer/logs/
myTraceLogger-event.log")

5.7.2.2 MBean Creator Destination

Description The MBean creator destination make nouns accessible
as MBeans, exposing their metrics as attributes, for
access via WLDF, JConsole, etc.

Implementing Class oracle.dms.jmx.MetricMBeanFactory

Use in the default configuration: An instance of the MBean Creator destination is
configured and active by default, and will create MBeans for all nouns created in the
server.

By associating an instance of this destination type with a filter based on a noun-type
rule, it is possible to expose (as MBeans) only those noun types that are of interest to
the administrator.

Although it is possible to modify the configuration associated with an MBean creator
destination at runtime, it must be understood that the reinitialization process for this
type of destination may impact performance. Frequent runtime reconfiguration is
therefore discouraged.

Note that WebLogic Diagnostic Framework (WLDF) can be used to harvest DMS
metrics exposed by the MBean creator destination. For more information about WLDF,
see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Metric MBean Object Name

5.7.2.2.1 Metric MBean Object Name

The noun name and noun type are exposed as the name and type properties of the
metric MBean object name. The MBean domain name is oracle.dms. The object
name also reflects the DMS noun hierarchy.

For example if the noun's full path name is:

/oracle/dfw/ofm/base_domain/AdminServer

and the noun type is DFW_Incident, the object name of the MBean representing the
noun is

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-21

oracle.dms:Location=AdminServer,name=/oracle/dfw/ofm/
base_domain/AdminServer,type=DFW_Incident.

5.7.2.3 Request Tracker Destination

Description The Request Tracker destinations maintains a list of
active requests, and makes the requests accessible to
other Diagnostic Framework (DFW) components.

Implementing Class oracle.dms.event.RequestTrackerDestinatio
n

Properties

excludeHeaderNames Comma separated list of header names to exclude from
tracking

Use in the default configuration: An instance of the request tracker destination is
enabled by default. In the case of a DFW incident being generated the active request
list will be dumped automatically, allowing an administrator to correlate the failure
with a specific request.

For each request the following information will be dumped:

• Uniform Resource Identifier (URI)

• Start time of the request

• Execution Context ID (ECID)

• Query string

• Headers

When the request tracker is not enabled the Request Dump will output the following:

 Requests are not being tracked. To enable request tracking enable the DMS
oracle.dms.event.RequestTrackerDestination in dms_config.xml

Executing the Request Tracker Dump

5.7.2.3.1 Executing the Request Tracker Dump

The information being maintained by the request tracker can be accessed manually. To
execute the dump that reports the request information the WLST executeDump
command can be used, when connected to a server, as follows:

> executeDump(name=".requests")
Active Requests:

StartTime: 2009-12-14 02:24:41.870
ECID: 0000IMChyqEC8xT6uBf9EH1B9X9^000009,0
URI: /myApp/Welcome.jsp
QueryString:
Headers:
 Host: myHost.myDomain.com:7001
 Connection: keep-alive
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.5
(KHTML, like Gecko) Chrome/4.0.249.30 Safari/532.5
 Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5

DMS Tracing and Events

5-22 Tuning Performance Guide

 Accept-Encoding: gzip,deflate
 Cookie: ORA_MOS_LOCALE=en%7CGB; s_nr...
 Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

5.7.2.4 Java Flight Recorder Destination

The Java Flight Recorder (JFR) records information regarding the runtime status and
behavior of the Java JVM. JFR also exposes an API through which third party events
can be reported.

By themselves DMS traces and JFR traces only show part of the picture of the actions
being performed in the server. DMS integration with JFR enhances the diagnostic
information available to administrators and developers as follows:

1. Application level events and JVM level events can be reported as a single
sequence therefore avoiding the need to combine such events from separate log
files based only on timestamp (which may not tick over fast enough to accurately
order events created at or around the same time).

2. Recent DMS activity can be dumped, retroactively, from the JVM at will.

3. Recent DMS and JVM events can be dumped to disk in the event of a fatal error
that causes the JVM to exit gracefully.

4. The DMS ECID can be used to correlate activity relating to the same request, or
unit of work, across the span of a JFR recording.

5. The DMS ECID can be used to collect diagnostic information from all systems
involved with an event, or series of events, recorded by JFR.

Dynamically Derived JFR Event Types – Names, Values and Descriptions

5.7.2.4.1 Dynamically Derived JFR Event Types – Names, Values and Descriptions

A DMS noun type will be associated with a JFR InstantEvent event type:

• The name of the JFR event type for a noun type will be the noun type's name with
the suffix state.

• The path of the JFR event type for a noun type will be dms/ followed by the
producer-name, followed by the event type name.

• Event sensors will not contribute any values to the noun type's JFR event type.

• The values of the JFR event for a noun type are described in Table 5-6:

Table 5-6 Values of the JFR Event for a Noun Type

Value Name Description Relational Notes

ECID The Execution Context ID
(ECID) associated with the
action.

Yes

RID The RID associated with
the action.

Yes

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-23

Table 5-6 (Cont.) Values of the JFR Event for a Noun Type

Value Name Description Relational Notes

<noun type> name The full path of the noun. This field will be
populated with the full
path of the noun. The
field's name assumes that
the noun_type
meaningfully categorizes
all objects being measured
by the nouns of that type.

<state-sensor-name> The value of the state
sensor.

No Each state sensor
belonging to the noun will
contribute one of these
values to the instant event.
There may be more that
one value in each noun.

event name The name of the event
sensor that was updated,
left null otherwise.

No The event name field is
required for being able to
count the number of times
a DMS event sensor has
been updated in a
recording (event sensors
do not contribute values
to an event type).

A DMS phase sensor will be associated with a JFR DurationEvent event type:

• The name of the JFR event type for a phase sensor belonging to a noun of a
particular noun type will be the noun type's name following by the phase sensor's
name.

• The path of the JFR event for a noun type will be dms/ followed by the producer-
name, followed by the event type name.

• The values of the duration event will be as above (except for the sensorName
value). For example the "stop" of a phase event will result in a JFR duration event
being reported to JFR that contains the state information of the phase event's parent
noun.

Several DMS objects allow integrators to add descriptions. Descriptions from DMS
objects will be used as follows:

• Noun type description will be used in creation of the JFR event type

• State and event sensor descriptions will not be applied – there is nowhere to apply
them.

• Phase sensor descriptions will be applied to their JFR event type.

Examples of Dynamically Derived Producers and Events

DMS Tracing and Events

5-24 Tuning Performance Guide

5.7.2.4.1.1 Examples of Dynamically Derived Producers and Events

Table 5-7 provides examples for the rules described in Dynamically Derived JFR Event
Types – Names, Values and Descriptions:

Table 5-7 Examples of Dynamically Derived Producers and Events

DMS Java Flight Recorder (JFR)

Noun type:

JDBC_Connection

Noun path:

/JDBC/Driver/CONNECTION_7

Sensors:

CreateStatement (P)

CreateNewStatement (P)

DBWaitTime (P)

JDBC_Connection_Url (S)

JDBC_Connection_Username (S)

Where:

P: Phase Sensor

S: State Sensor

E: Event Sensor

Producer Name: JDBC

The Producer Name is based on the leading component
of the noun path.

Event Type 1

Event Type Name: JDBC_Connection State

noun type State

Event Type Path: dms/JDBC/
JDBC_Connection_State

dms/leading component of noun path/noun
type/_State

Fields:

• ECID

• RID

• JDBC_Connection name

Value will be the full path of the noun
• JDBC_Connection_Url

Value will be that of the state sensor of this name at
the time of the event

• JDBC_Connection_Username

Value will be that of the state sensor of this name at
the time of the event

• Event Name

Value will be one of the following:

– The name of the DMS event sensor whose
activation caused this JFR event instance

– Null if this JFR event instance was created for a
state sensor update

Producer Name: JDBC

Event Type 2

Event Type Name: JDBC_Connection
CreateStatement

Event Type Path:

dms/JDBC/JDBC_Connection_CreateStatement

Fields:

• ECID

• RID

• JDBC_Connection name

• JDBC_Connection_Url

• JDBC_Connection_Username

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-25

Table 5-7 (Cont.) Examples of Dynamically Derived Producers and Events

DMS Java Flight Recorder (JFR)

Producer Name: JDBC

Event Type 3

Event Type Name: JDBC_Connection
CreateNewStatement

Event Type Path:

dms/JDBC/
JDBC_Connection_CreateNewStatement

Fields:

• ECID

• RID

• JDBC_Connection name

• JDBC_Connection_Url

• JDBC_Connection_Username

Producer Name: JDBC

Event Type 4

Event Type Name: JDBC_Connection DBWaitTime

Event Type Path:

dms/JDBC/JDBC_Connection_DBWaitTime

Fields:

• ECID

• RID

• JDBC_Connection name

• JDBC_Connection_Url

• JDBC_Connection_Username

5.7.3 Understanding the Format of DMS Events in Log Messages
Table 5-8 describes the fields that make up a DMS event. Field elements are separated
by ":" (with a few exceptions). Sample events are provided to illustrate the position of
the field within an actual event string.

Table 5-8 Event Formatting Descriptions

Applicable Events Field Number Name Description

All 1 Version number The version number of the
event format

For example:

v1:1280737384058:_R
EQUEST:STOP:/
MyWebApp/emp

All 2 Event time The time at which the
event occurred

For example:

v1:1280737384058:_R
EQUEST:STOP:/
MyWebApp/emp

DMS Tracing and Events

5-26 Tuning Performance Guide

Table 5-8 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

All 3 Source object type The type of object on
which an action was
performed to produce the
event including:

• NOUN

• EVENT_SENSOR

• STATE_SENSOR

• PHASE_SENSOR

• EXECUTION_CONTEXT

• _REQUEST

For example:

v1:1280737384058:_R
EQUEST:STOP:/
MyWebApp/emp

All 4 Action type The type of action that
resulted in the generation
of this event. A given
source object type may not
necessarily produce
events for every action
type:

• CREATE

• UPDATE

• DELETE

• START

• STOP

• ABORT

For example:

v1:1280737384058:_R
EQUEST:STOP:/
MyWebApp/emp

Nouns 5 Noun type The name of the noun
type

For example:

v1:1281344803506:NO
UN:CREATE:JDBC_Conn
ection:/JDBC/JDBC
Data Source-0/
CONNECTION_1

6 Noun path The full path identifying
the noun to which the
sensor belongs

For example:

v1:1281344803506:NO
UN:CREATE:JDBC_Conn
ection:/JDBC/JDBC
Data Source-0/
CONNECTION_1

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-27

Table 5-8 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

All Sensor Types 5 Noun type The name of the noun
type to which this sensor
belongs

For example:

v1:1280503318973:STATE_
SENSOR:UPDATE:JDBC_
Connection:LogicalConne
ction:/JDBC/JDBC Data
Source-0/
CONNECTION_1:State.A
NY:LogicalConnection@13
bed086

6 Sensor name The name of the sensor

For example:

v1:1280737383069:PH
ASE_SENSOR:STOP:JDB
C_Connection:DBWait
Time:/JDBC/JDBC
Data Source-0/
CONNECTION_1:128073
7382950:12807373830
69

7 Noun path The full path identifying
the noun to which the
sensor belongs

For example:

v1:1280737383069:PH
ASE_SENSOR:STOP:JDB
C_Connection:DBWait
Time:/JDBC/JDBC
Data Source-0/
CONNECTION_1:128073
7382950:12807373830
69

DMS Tracing and Events

5-28 Tuning Performance Guide

Table 5-8 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

Phase Sensor Types 8 Start token The start token of the
phase.

For example:

v1:1280737383069:PH
ASE_SENSOR:STOP:JDB
C_Connection:DBWait
Time:/JDBC/JDBC
Data Source-0/
CONNECTION_1:128073
7382950:12807373830
69

9 Stop token The end token of the
phase.

For example:

v1:1280737383069:PH
ASE_SENSOR:STOP:JDB
C_Connection:DBWait
Time:/JDBC/JDBC
Data Source-0/
CONNECTION_1:128073
7382950:12807373830
69

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-29

Table 5-8 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

State Sensor Types 8 State value type The type of value held by
the state sensor including:

• State.DOUBLE

• State.INTEGER

• State.LONG

• State.OBJECT

• State.ANY

For example:

v1:1280503318973:ST
ATE_SENSOR:UPDATE:J
DBC_Connection:Logi
calConnection:/
JDBC/JDBC Data
Source-0/
CONNECTION_1:State.
ANY:LogicalConnecti
on@13bed086

9 State value The value of the state
represented in string
form.

For example:

v1:1280503318973:ST
ATE_SENSOR:UPDATE:J
DBC_Connection:Logi
calConnection:/
JDBC/JDBC Data
Source-0/
CONNECTION_1:State.
ANY:LogicalConnecti
on@13bed086

Requests 5 URI Uniform Resource
Identifier (URI) identifies
the resource upon which
to apply the request.

For example:

v1:1280737382889:_R
EQUEST:START:/
myWebApp/
showEmployees

v1:1280737384058:_R
EQUEST:STOP:/
myWebApp/
showEmployees

DMS Tracing and Events

5-30 Tuning Performance Guide

Table 5-8 (Cont.) Event Formatting Descriptions

Applicable Events Field Number Name Description

Execution Context 5 ECID,RID The context identifier
(composed of ECID and
RID separated by a
comma).

For execution context
events the complete
substring starting at the
first character after the
fourth event field
separator (":") records the
ECID,RID identifiers - the
context identifiers may
contain ":" but these
should not be interpreted
as event field separators.

For example:

v1:1280737384058:EX
ECUTION_CONTEXT:STO
P:bc4fd0668f79d507:
367c127f:
12a23f2013c:-8000-0
000000000000f73,0

5.7.4 Understanding DMS Event Actions
Table 5-9 shows the action types that can be performed on source object types.

Table 5-9 Actions Performed on Source Object Types

Create Update Delete Start Stop Abort

Noun Yes - Yes - - -

Event Sensor Yes Yes Yes - - -

Phase Sensor Yes - Yes Yes Yes Yes

State Sensor Yes Yes Yes - - -

Execution
Context

- - - Yes Yes -

Request - - - Yes Yes -

5.8 DMS Best Practices
The use of DMS metrics can have an impact on application performance. When adding
metrics, consider the following:

• Use a High Resolution Clock to increase DMS Precision

By default DMS uses the system clock for measuring time intervals during a
PhaseEvent. The default clock reports microsecond precision in C processes such

DMS Best Practices

Using the Oracle Dynamic Monitoring Service 5-31

as Apache and reports millisecond precision in Java processes. Optionally, DMS
supports a high resolution clock to increase the precision of performance
measurements and lets you select the values for reporting time intervals. You can
use a high resolution clock when you need to time phase events more accurately
than is possible using the default clock or when the system's default clock does not
provide the resolution needed for your requirements.

System clocks are not necessarily as accurate as their precision implies. For
example, a system clock that reports time in milliseconds may not tick (change)
once per millisecond. Instead, it may take up to 15ms to tick as shown in the
following example:

Table 5-10 Default System Clock Time versus Actual Time (in milliseconds)

Actual Time System Time

12:00:00.000 12:00:00.000

12:00:00.001 12:00:00.000

12:00:00.002 12:00:00.000

[...]

12:00:00.014 12:00:00.000

12:00:00.015 12:00:00.015

12:00:00.016 12:00:00.015

Table 5-10 shows a phase with a 12ms duration that runs from actual time
12:00:00.002 to 12:00:00.014 would be calculated in system time as having a
duration of zero. Similarly, a phase with a 2ms duration running from 12:00:00.014
to 12:00:00.016 would be reported in system time as having a duration of 15ms.

Note:

These behaviors are more evident on some operating systems than others. Use
caution when analyzing individual periods of time that are shorter than the
tick period of the system clock. Configuring DMS to use a higher resolution
clock will cause DMS to record phase sensor activations with higher
resolution, but the accuracy will still be limited by the underlying system.

• Configure DMS Clocks for Reporting Time for Java

Selecting the high resolution clock changes clocks for all applications running on
the server where the clock is changed. You set the DMS clock and the reporting
values globally using the oracle.dms.clock and oracle.dms.clock.units
properties, which control process startup options.

For example, to use the high resolution clock with the default values, set the
following property on the Java command line:

-Doracle.dms.clock=highres

DMS Best Practices

5-32 Tuning Performance Guide

Caution:

If you use the high resolution clock, the default values are different from the
value that Fusion Middleware Control expects (msecs). If you need the Fusion
Middleware Control displays to be correct when using the high resolution
clock, then you need to set the units property as follows:

-Doracle.dms.clock.units=msecs

Table 5-11 shows supported values for the oracle.dms.clock property.

Table 5-12 shows supported values for the oracle.dms.clock.units property.

Table 5-11 oracle.dms.clock Property Values

Value Description

DEFAULT Specifies that DMS use the default clock. With the
default clock, DMS uses the Java call
java.lang.System.currentTimeMillis to obtain
times for PhaseEvents.

The default value for the units for the default clock is
MSECS.

HIGHRES The Java Highres clock uses System.nanoTime() (no
JNI required).

Table 5-12 oracle.dms.clock.units Property Values

Value Description

MSECS Specifies that the time be converted to milliseconds and
reported as "msecs". A millisecond is 10-3 seconds.

Note: This is the default value for the default clock.

USECS Specifies that the time be converted to microseconds
and reported as "usecs". A microsecond is 10-6

seconds.

NSECS Specifies that the time be converted to nanoseconds
and reported as "nsecs". A nanosecond is 10-9 seconds.

Note: This is the default value for the high resolution
clock.

Note the following when using the high resolution DMS clock:

– When you set the oracle.dms.clock and the oracle.dms.clock.units
properties, any combination of upper and lower case characters is valid for the
value that you select (case is not significant). For example, any of the following
values are valid to select the high resolution clock: highres, HIGHRES, HighRes.

– DMS checks the property values at startup. When the clock property is set with
a value not listed in Table 5-11, DMS uses the default clock. If the
oracle.dms.clock property is not set, DMS uses the default clock.

DMS Best Practices

Using the Oracle Dynamic Monitoring Service 5-33

– When the clock units property is set to a value not listed in Table 5-12, DMS
uses the default units for the specified clock.

DMS Best Practices

5-34 Tuning Performance Guide

Part II
Core Components

This part describes configuring core components to improve performance. It contains
the following topics:

Note:

For information on performance tuning the Oracle WebLogic Server, see
Tuning Performance of Oracle WebLogic Server.

Tuning Oracle HTTP Server

Tuning Oracle Metadata Service

Tuning Oracle Fusion Middleware Security

6
Tuning Oracle HTTP Server

You can tune Oracle HTTP Server (OHS) to optimize its performance as the Web
server component for Oracle Fusion Middleware.

Note:

The configuration examples and recommended settings are for illustrative
purposes only. Consult your own use case scenarios to determine which
configuration options can provide performance improvements.

Core Components

About Oracle HTTP Server

Monitoring Oracle HTTP Server Performance

Basic Tuning Considerations

Advanced Tuning Considerations

6.1 About Oracle HTTP Server
Oracle HTTP Server (OHS) is the Web server component for Oracle Fusion
Middleware. It provides a listener for Oracle WebLogic Server and the framework for
hosting static pages, dynamic pages, and applications over the Web. Oracle HTTP
Server is based on the Apache 2.2.x infrastructure, and includes modules developed
specifically by Oracle. The features of single sign-on, clustered deployment, and high
availability enhance the operation of the Oracle HTTP Server.

For more information, see Introduction to Oracle HTTP Server in Administrator's Guide
for Oracle HTTP Server.

For more information on the Apache open-source software infrastructure, see the
Apache Software Foundation web site at http://www.apache.org/.

6.2 Monitoring Oracle HTTP Server Performance
Oracle Fusion Middleware automatically and continuously measures run-time
performance for Oracle HTTP Server. The performance metrics are automatically
enabled; you do not need to set options or perform any extra configuration to collect
them. If you encounter a problem, such as an application that is running slowly or is
hanging, you can view particular metrics to find out more information about the
problem.

Tuning Oracle HTTP Server 6-1

http://www.apache.org/

Note:

Fusion Middleware Control provides real-time data. For more information on
using Fusion Middleware Control to view performance metrics for Server, see
Managing and Monitoring Server Processes in Administrator's Guide for Oracle
HTTP Server.

For monitoring, Oracle HTTP Server uses the Dynamic Monitoring Service (DMS),
which collects metrics for every functional piece. You can review these metrics as
needed to understand system behavior at a given point of time. This displays memory,
CPU information and the minimum, maximum, and average times for the request
processing at every layer in Oracle HTTP Server. The metrics also display details
about load level, number of threads, number of active connections, and so on, which
can help in tuning the system based on real usage.

For more information on using these DMS metrics, see Viewing Metrics with WLST
(Oracle WebLogic Server).

6.3 Basic Tuning Considerations
Tuning configurations may improve the performance of the Oracle HTTP Server.
Always consult your own use case scenarios to determine if these settings are
applicable to your deployment.

Tuning Oracle HTTP Server Directives

Reducing Process Availability with Persistent Connections

Logging Options for Oracle HTTP Server

6.3.1 Tuning Oracle HTTP Server Directives
Oracle HTTP Server uses directives in d.conf. This configuration file specifies the
maximum number of requests that can be processed simultaneously, logging details,
and certain limits and time outs.

More information on configuring the Oracle HTTP Server, see Understanding Oracle
HTTP Server Management Tools in Administrator's Guide for Oracle HTTP Server.

Oracle HTTP Server supports three different Multi-Processing Modules (MPMs) by
default. The MPMs supported are:

• Worker - This uses Multi-Process-Multi-Threads model and is the default MPM on
all platforms other than Microsoft Windows platforms. Multi-thread support
makes it more scalable by using fewer system resources and multi-process support
makes it more stable.

• WinNT - This MPM is for Windows platforms only. It consists of a parent process
and a child process. The parent process is the control process, and the child process
creates threads to handle requests.

• Prefork - This is Apache 1.3.x style and uses processes instead of threads. This is
considered the least efficient MPM.

The directives for each MPM type are defined in the ORACLE_INSTANCE/config/
OHSComponent/<ohsname>/d.conf file. The default MPM type is Worker

Basic Tuning Considerations

6-2 Tuning Performance Guide

MPM. To use a different MPM (such as Prefork MPM), edit the /ohs/bin/
apachectl file.

Note:

The information here is based on the use of Worker and WinNT MPMs, which
use threads. The directives listed below may not be applicable if you are using
the prefork MPM. If you are using Oracle HTTP Server based on Apache 1.3.x
or Apache 2.2 with prefork MPM, refer to the Oracle Application Server 10g
Release 3 documentation at http://www.oracle.com/technology/
documentation/appserver10132.html.

Table 6-1 Oracle HTTP Server Configuration Properties

Directive Description

ListenBackLog

This directive maps to the Maximum Queue Length
field on the Performance Directives screen.

Specifies the maximum length of the queue of pending
connections. Generally no tuning is needed. Note that
some operating systems do not use exactly what is
specified as the backlog, but use a number based on,
but normally larger than, what is set.

Default Value: 511

Basic Tuning Considerations

Tuning Oracle HTTP Server 6-3

http://www.oracle.com/technology/documentation/appserver10132.html
http://www.oracle.com/technology/documentation/appserver10132.html

Table 6-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

MaxClients

This directive maps to the Maximum Requests field on
the Performance Directives screen.

Note that this parameter is not available in mod_winnt
(Microsoft Windows). Winnt uses a single process,
multi-threaded model and is controlled by
ThreadLimit directive.

Specifies a limit on the total number of servers running,
that is, a limit on the number of clients who can
simultaneously connect. If the number of client
connections reaches this limit, then subsequent
requests are queued in the TCP/IP system up to the
limit specified with the ListenBackLog directive
(after the queue of pending connections is full, new
requests generate connection errors until a thread
becomes available).

You can configure the MaxClients directive in the
d.conf file up to a maximum of 8000 (8K) (the default
value is 150). If your system is not resource-saturated
and you have a user population of more than 150
concurrent /Thread connections, you can improve
your performance by increasing MaxClients to
increase server concurrency. Increase MaxClients
until your system becomes fully utilized (85% is a good
threshold).

Conversely, when system resources are saturated,
increasing MaxClients does not improve
performance. In this case, the MaxClients value could
be reduced as a throttle on the number of concurrent
requests on the server.

If the server handles persistent connections, then it may
require sufficient concurrent d or thread server
processes to handle both active and idle connections.
When you specify MaxClients to act as a throttle for
system concurrency, you must consider that persistent
idle d connections also consume d/thread processes.
Specifically, the number of connections includes the
currently active persistent and non-persistent
connections and the idle persistent connections. A
persistent KeepAlive connection consumes an d child
process, or thread, for the duration of the connection,
even if no requests are currently being processed for
the connection.

If you have sufficient capacity, KeepAlive should be
enabled; using persistent connections improves
performance and prevents wasting CPU resources
reestablishing connections. Normally, you should not
change KeepAlive parameters.

The maximum allowed value for MaxClients is 8192
(8K).

Default Value: 150

Basic Tuning Considerations

6-4 Tuning Performance Guide

Table 6-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

StartServers

This directive maps to the Initial Child Server
Processes field on the Performance Directives screen.

Specifies the number of child server processes created
on startup. If you expect a sudden load after restart, set
this value based on the number child servers required.

Note that the following parameters are inter-related
and applicable only on UNIX platforms
(worker_mpm):

• MaxClients

• MaxSpareThreads and MinSpareThreads
• ServerLimit and StartServers
On the Windows platform (mpm_winnt), as well as
UNIX platforms, the following parameters are
important to tune:

• ThreadLimit

• ThreadsPerChild

Note that each child process has a set of child threads
defined for them and that can actually handle the
requests. Use ThreadsPerChild in connection with
this directive.

The values of ThreadLimit, ServerLimit, and
MaxClients can indirectly affect this value. Read the
notes for these directives and use them in conjunction
with this directive.

Default Value: 2

ServerLimit

Note that this parameter is not available in mod_winnt
(Microsoft Windows). Winnt uses a single process,
multi-threaded model

Specifies an upper limit on the number of server (child)
processes that can exist or be created. This value
overrides the StartServers value if that value is
greater than the ServerLimit value. This is used to
control the maximum number of server processes that
can be created.

Default Value: 16

ThreadLimit Specifies the upper limit on the number of threads that
can be created under a server (child) process. This
value overrides the ThreadsPerChild value if that
value is greater than the ThreadLimit value. This is
used to control the maximum number of threads
created per process to avoid conflicts/issues.

Default Values:

• Windows Multi-Processing Module (mpm_winnt):
1920

• All others: 64

Basic Tuning Considerations

Tuning Oracle HTTP Server 6-5

Table 6-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

ThreadsPerChild

This directive maps to the Threads Per Child Server
Process field on the Performance Directives screen.

Sets the number of threads created by each server
(child) process at startup.

Default Value: 64 when mpm_winnt is used and 25
when Worker MPM is used.

The ThreadsPerChild directive works with other
directives, as follows:

At startup, Oracle HTTP Server creates a parent
process, which creates several child (server) processes
as defined by the StartServers directive. Each
server process creates several threads (server/worker),
as specified in ThreadsPerChild, and a listener
thread which listens for requests and transfers the
control to the worker/server threads.

After startup, based on load conditions, the number of
server processes and server threads (children of server
processes) in the system are controlled by
MinSpareThreads (minimum number of idle threads
in the system) and MaxSpareThreads (maximum
number of idle threads in the system). If the number of
idle threads in the system is more than
MaxSpareThreads, Oracle HTTP Server terminates
the threads and processes if there are no child threads
for a process. If the number of idle threads is fewer
than MinSpareThreads, it creates new threads and
processes if the ThreadsPerChild value has already
been reached in the running processes.

The following directives control the limit on the above
directives. Note that the directives below should be
defined before the directives above for them to take
effect.

• ServerLimit - Defines the upper limit on the
number of servers that can be created. This affects
MaxClients and StartServers.

• ThreadLimit - Defines the upper limit on
ThreadsPerChild. If ThreadsPerChild is
greater than ThreadLimit, then it is automatically
trimmed to the latter value.

• MaxClients - Defines the upper limit on the
number of server threads that can process requests
simultaneously. This should be equal to the number
of simultaneous connections that can be made. This
value should be a multiple of ThreadsPerChild.
If MaxClients is greater than ServerLimit
multiplied by ThreadsPerChild, it is
automatically be trimmed to the latter value.

Basic Tuning Considerations

6-6 Tuning Performance Guide

Table 6-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

MaxRequestsPerChild

This directive maps to the Max Requests Per Child
Server Process field on the Performance Directives
screen.

Specifies the number of requests each child process is
allowed to process before the child process dies. The
child process ends to avoid problems after prolonged
use when Apache (and any other libraries it uses) leak
memory or other resources. On most systems, this is
not needed, but some UNIX systems have notable leaks
in the libraries. For these platforms, set
MaxRequestsPerChild to 10000; a setting of 0
means unlimited requests.

This value does not include KeepAlive requests after
the initial request per connection. For example, if a
child process handles an initial request and 10
subsequent "keep alive" requests, it would only count
as 1 request toward this limit.

Default Value: 0

Note: On Windows systems MaxRequestsPerChild
should always be set to 0 (unlimited) since there is only
one server process.

MaxSpareThreads

MinSpareThreads

These directives map to the Maximum Idle Threads
and Minimum Idle Threads fields on the Performance
Directives screen.

Note that these parameters are not available in
mod_winnt (Windows platform).

Controls the server-pool size. Rather than estimating
how many server threads you need, Oracle HTTP
Server dynamically adapts to the actual load. The
server tries to maintain enough server threads to
handle the current load, plus a few additional server
threads to handle transient load increases such as
multiple simultaneous requests from a single browser.

The server does this by periodically checking how
many server threads are waiting for a request. If there
are fewer than MinSpareThreads, it creates a new
spare. If there are more than MaxSpareThreads, some
of the spares are removed.

Default Values:

MaxSpareThreads: 75

MinSpareThreads: 25

Timeout

This directive maps to the Request Timeout field on
the Performance Directives screen.

The number of seconds before incoming receives and
outgoing sends time out.

Default Value: 300

KeepAlive

This directive maps to the Multiple Requests Per
Connection field on the Performance Directives screen.

Whether or not to allow persistent connections (more
than one request per connection). Set to Off to
deactivate.

Default Value: On

MaxKeepAliveRequests The maximum number of requests to allow during a
persistent connection. Set to 0 to allow an unlimited
amount.

If you have long client sessions, consider increasing
this value.

Default Value: 100

Basic Tuning Considerations

Tuning Oracle HTTP Server 6-7

Table 6-1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

KeepAliveTimeout

This directive maps to the Allow With Connection
Timeout (seconds) field, which is located under the
Multiple Requests Per Connection field, on the
Performance Directives screen.

Number of seconds to wait for the next request from
the same client on the same connection.

Default Value: 5 seconds

limit

ulimit

Number of objects that a program uses to read or write
to an open file or open network sockets. A lack of
available file descriptors can impact operating system
performance.

Tuning the file descriptor limit can be accomplished by
configuring the hard limit (ulimit) in a shell script
which starts the OHS. Once the hard limit has been set
the OHS will then adjust the soft limit (limit) to
match.

Note that configuring file descriptor limits is platform
specific. Refer to your operating system documentation
for more information.

6.3.2 Reducing Process Availability with Persistent Connections
If your browser supports persistent connections, you can support them on the server
using the KeepAlive directives in the Oracle HTTP Server. Persistent Connections
can improve performance by reducing the work load on the server. With Persistent
Connections enabled, the server does not have to repeat the work to set up the
connections with a client.

The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 5

These settings allow enough requests per connection and time between requests to
reap the benefits of the persistent connections, while minimizing the drawbacks. You
should consider the size and behavior of your own user population when setting these
values. For example, if you have a large user population and the users make small
infrequent requests, you may want to reduce the keepAlive directive default
settings, or even set KeepAlive to off. If you have a small population of users that
return to your site frequently, you may want to increase the settings.

KeepAlive option should be used judiciously along with MaxClients directive.
KeepAlive option would tie a worker thread to an established connection until it
times out or the number of requests reaches the limit specified by
MaxKeepAliveRequests. This means that the connections or users in the
ListenBacklog queue would be starving for a worker until the worker is
relinquished by the keep-alive user. The starvation for resources happens on the
KeepAlive user load with user population consistently higher than that specified in
the MaxClients.

Basic Tuning Considerations

6-8 Tuning Performance Guide

Note:

The Maxclients property is applicable only to UNIX platforms. On
Windows, the same functionality is achieved through the ThreadLimit and
ThreadsPerChild parameters.

Increasing MaxClients may impact performance in the following ways:

• A high number of MaxClients can overload the system resources and may lead to
poor performance.

• For a high user population with fewer requests, consider increasing the
MaxClients to support KeepAlive connections to avoid starvation. Note that
this can impact overall performance if the user concurrency increases. System
performance is impacted by increased concurrency and can possibly cause the
system to fail.

MaxClients should always be set to a value where the system would be stable or
performing optimally (~85% CPU).

Typically for high user population with less frequent requests, consider turning the
KeepAlive option off or reduce it to a very low value to avoid starvation.

Disabling the KeepAlive connection may impact performance in the following ways:

• Connection establishment for every request has a cost.

• If the frequency of creating and closing connections is higher, then some system
resources are used. The TCP connection has a time_wait interval before it can
close the socket connection and open file descriptors for every connection. The
default time_wait value is 60 seconds and each connection can take 60 seconds to
close, even after it is relinquished by the server.

Warning:

To avoid potential performance issues, values for any parameters should be
set only after considering the nature of the workload and the system capacity.

6.3.3 Logging Options for Oracle HTTP Server
Logging options for Oracle HTTP Server include types of logging, log levels, and the
performance implications for using logging.

Access Logging

Configuring the HostNameLookups Directive

Error logging

6.3.3.1 Access Logging

Access logs are generally enabled to track who accessed what. The access_log file,
available in the ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory,
contains an entry for each request that is processed. This file grows as time passes and
can consume disk space. Depending on the nature of the workload, the access_log
has little impact on performance. If you notice that performance is becoming an issue,

Basic Tuning Considerations

Tuning Oracle HTTP Server 6-9

the file can be disabled if some other proxy or load balancer is used and gives the same
information.

6.3.3.2 Configuring the HostNameLookups Directive

By default, the HostNameLookups directive is set to Off. The server writes the IP
addresses of incoming requests to the log files. When HostNameLookups is set to On,
the server queries the DNS system on the Internet to find the host name associated
with the IP address of each request, then writes the host names to the log. Depending
on the server load and the network connectivity to your DNS server, the performance
impact of the DNS HostNameLookup may be high. When possible, consider logging
only IP addresses. On UNIX systems, you can resolve IP addresses to host names
offline, with the logresolve utility found in the /Apache/Apache/bin/ directory.

6.3.3.3 Error logging

The server notes unusual activity in an error log. The ohsname.log file, available in
ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains errors,
warnings, system information, and notifications (depending on the log-level
setting).

The d.conf file contains the error log configuration for OHS. The logging mode is
defined by the OraLogMode directive. The default is odl-text, which produces the
Oracle diagnostic logging format in a text file. Alternatively, change this to odl-xml
to produce the Oracle diagnostic logging format in an XML file.

For Oracle diagnostic-style logging, OraLogSeverity directive is used for setting the
log level.

For Apache-style logging, the ErrorLog and LogLevel directives identify the log file
and the level of detail of the messages recorded. The default debug level is Warn.

Excessive logging can have some performance cost and may also fill disk space. The
log level control should be used based on need. For requests that use dynamic
resources, for example, requests that use mod_osso or mod_plsql, there is a
performance cost associated with setting higher debugging levels, such as the debug
level.

6.4 Advanced Tuning Considerations
Advanced tuning recommendations which may or may not apply to your
environment. Review the following recommendations to determine if the changes
would improve your Server performance.

Tuning Oracle HTTP Server

Tuning Oracle HTTP Server Security

6.4.1 Tuning Oracle HTTP Server
You can follow tipcs to avoid or debug potential Oracle HTTP Server performance
problems.

Analyzing Static Versus Dynamic Requests

Managing PL/SQL Requests

Limiting the Number of Enabled Modules

Tuning the File Descriptor Limit

Advanced Tuning Considerations

6-10 Tuning Performance Guide

6.4.1.1 Analyzing Static Versus Dynamic Requests

It is important to understand where your server is spending resources so you can
focus your tuning efforts in the areas where the most stands to be gained. In
configuring your system, it can be useful to know what percentage of the incoming
requests are static and what percentage are dynamic.

Generally, you want to concentrate your tuning effort on dynamic pages because
dynamic pages can be costly to generate. Also, by monitoring and tuning your
application, you may find that much of the dynamically generated content, such as
catalog data, can be cached, sparing significant resource usage.

6.4.1.2 Managing PL/SQL Requests

You can get unrepresentative results when data outliers appear. This can sometimes
occur at start-up. To simulate a simple example, assume that you ran a PL/SQL
"Hello, World" application for about 30 seconds. Examining the results, you can see
that the work was all done in mod_plsql.c:

 /ohs_server/ohs_module/mod_plsql.c
 handle.maxTime: 859330
 handle.minTime: 17099
 handle.avg: 19531
 handle.active: 0
 handle.time: 24023499
 handle.completed: 1230

Note that handle.maxTime is much higher than handle.avg for this module. This
is probably because when the first request is received, a database connection must be
opened. Later requests can make use of the established connection. In this case, to
obtain a better estimate of the average service time for a PL/SQL module, that does
not include the database connection open time which causes the handle.maxTime to
be very large, recalculate the average as in the following:

(time - maxTime)/(completed -1)

For example:

(24023499 - 859330)/(1230 - 1) = 18847.98

6.4.1.3 Limiting the Number of Enabled Modules

Oracle HTTP Server, which is now based on Apache 2.2, has a slight change in
architecture in the way the requests are handled, compared to the previous release of
Oracle HTTP Server, which was based on Apache 1.3.

In the new architecture, Oracle HTTP Server invokes the service function of each
module that is loaded (in the order of definition in d.conf file) until the request is
serviced. This indicates that there is some cost associated with invoking the service
function of each module, to know if the service is accepted or declined.

Because of this change in architecture, consider placing the most frequently hit
modules above the others in the d.conf file.

For the static page requests, which are directly deployed to Oracle HTTP Server and
served by the default handler, the request has to go through all the modules before the
default handler is invoked. This process can impact performance of the request so
consider enabling only the modules that are required by the deployed application. For
example, if mod_plsql is never used by the deployed application, disable it to
maintain performance.

Advanced Tuning Considerations

Tuning Oracle HTTP Server 6-11

In addition, there are a few modules that register their hooks to do some work during
the URL translation phase, which would add to the cost of request processing time.
Example: mod_security, when enabled, has a cost of about 10% on CPU Cost per
Transaction for the specweb benchmark. Again, enable only those modules that are
required by your deployed applications to save CPU time.

6.4.1.4 Tuning the File Descriptor Limit

A lack of available file descriptors can cause a wide variety of symptoms which are not
always easily traced back to the operating system's file descriptor limit. Tuning the file
descriptor limit can be accomplished by configuring the operating system's hard limit
for the user who starts the OHS. Once configured, the OHS will adjust the soft limit to
match the operating system limit.

Configuring file descriptor limits is platform-specific. Refer to your operating system
documentation for more information. The following code example shows the
command for Linux:

 APACHECTL_ULIMIT=ulimit -S -n `ulimit -H -n`

Note that this limit must be reconfigured after applying a patch set.

6.4.2 Tuning Oracle HTTP Server Security
Tuning Oracle HTTP Server includes tuning the SSL and Port Tunneling.

Tuning Oracle HTTP Server Secure Sockets Layer (SSL)

Tuning Oracle HTTP Server Port Tunneling

6.4.2.1 Tuning Oracle HTTP Server Secure Sockets Layer (SSL)

Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications
Corporation that provides authentication and encrypted communication over the
Internet. Conceptually, SSL resides between the application layer and the transport
layer on the protocol stack. While SSL is technically an application-independent
protocol, it has become a standard for providing security over, and all major web
browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a web-
based application. Where SSL is required, the performance challenges of the protocol
should be carefully considered. Session management, in particular session creation
and initialization, is generally the most costly part of using the SSL protocol, in terms
of performance.

Note:

Caching SSL on Oracle HTTP Server

Using SSL Application Level Data Encryption

Tuning SSL Performance

Advanced Tuning Considerations

6-12 Tuning Performance Guide

6.4.2.1.1 Caching SSL on Oracle HTTP Server

When an SSL connection is initialized, a session-based handshake between client and
server occurs that involves the negotiation of a cipher suite, the exchange of a private
key for data encryption, and server and, optionally, client, authentication through
digitally-signed certificates.

After the SSL session state has been initiated between a client and a server, the server
can avoid the session creation handshake in subsequent SSL requests by saving and
reusing the session state. The Oracle HTTP Server caches a client's SSL session
information by default. With session caching, only the first connection to the server
incurs high latency.

The SSLSessionCacheTimeout directive in ssl.conf determines how long the
server keeps a saved SSL session (the default is 300 seconds). Session state is discarded
if it is not used after the specified time period, and any subsequent SSL request must
establish a new SSL session and begin the handshake again. The SSLSessionCache
directive specifies the location for saved SSL session information (the default location
is the following directory):

$ORACLE_INSTANCE/diagnostics/logs/$COMPONENT_ TYPE/
$COMPONENT_NAME

Note that multiple Oracle HTTP Server processes can use a saved session cache file.

Saving SSL session state can significantly improve performance for applications using
SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server,
the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With
SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of saved SSL session state has some performance costs. When SSL session
state is stored to disk, reuse of the saved state normally requires locating and
retrieving the relevant state from disk. This cost can be reduced when using persistent
connections. Oracle HTTP Server uses persistent connections by default, assuming
they are supported on the client side. In over SSL as implemented by Oracle HTTP
Server, SSL session state is kept in memory while the associated connection is
persisted, a process which essentially eliminates the performance impacts associated
with SSL session reuse (conceptually, the SSL connection is kept open along with the
connection). For more information, see Reducing Process Availability with Persistent
Connections.

6.4.2.1.2 Using SSL Application Level Data Encryption

In most applications using SSL, the data encryption cost is small compared with the
cost of SSL session management. Encryption costs can be significant where the volume
of encrypted data is large, and in such cases the data encryption algorithm and key
size chosen for an SSL session can be significant. In general there is a trade-off between
security level and performance.

Oracle HTTP Server negotiates a cipher suite with a client based on the
SSLCipherSuite attribute specified in ssl.conf. OHS 11g uses 128 bit Encryption
algorithm by default and no longer supports lower encryption. Note that the previous
release [10.1.3x] used 64 bit encryption for Windows. For UNIX, the 10.x releases had
128 bit encryption used by default.

Advanced Tuning Considerations

Tuning Oracle HTTP Server 6-13

Note:

Administrator's Guide for Oracle HTTP Server for information on using
supported cipher suites.

6.4.2.1.3 Tuning SSL Performance

The following recommendations can assist you with determining performance
requirements when working with Oracle HTTP Server and SSL.

1. The SSL handshake is an inherently resource intensive process in terms of both
CPU usage and response time. Thus, use SSL only where needed. Determine the
parts of the application that require the security, and the level of security required,
and protect only those parts at the requisite security level. Attempt to minimize
the need for the SSL handshake by using SSL sparingly, and by reusing session
state as much as possible. For example, if a page contains a small amount of
sensitive data and several non-sensitive graphic images, use SSL to transfer the
sensitive data only, use normal to transfer the images. If the application requires
server authentication only, do not use client authentication. If the performance
goals of an application cannot be met by this method alone, additional hardware
may be required.

2. Design the application to use SSL efficiently. Group secure operations to take
advantage of SSL session reuse and SSL connection reuse.

3. Use persistent connections, if possible, to minimize cost of SSL session reuse.

4. Tune the session cache timeout value (the SSLSessionCacheTimeout directive
in ssl.conf). A trade-off exists between the cost of maintaining an SSL session
cache and the cost of establishing a new SSL session. As a rule, any secured
business process, or conceptual grouping of SSL exchanges, should be completed
without incurring session creation more than once. The default value for the
SSLSessionCacheTimeout attribute is 300 seconds. It is a good idea to test an
application's usability to help tune this setting.

5. If large volumes of data are being protected through SSL, pay close attention to
the cipher suite being used. The SSLCipherSuite directive specified in
ssl.conf controls the cipher suite. If lower levels of security are acceptable, use
a less-secure protocol using a smaller key size (this may improve performance
significantly). Finally, test the application using each available cipher suite for the
specified security level to find the optimal suite.

6. If SSL remains a bottleneck to the performance and scalability of your application,
after taking the preceding considerations into account, consider deploying
multiple Oracle HTTP Server instances over a hardware cluster or consider the
use of SSL accelerator cards.

6.4.2.2 Tuning Oracle HTTP Server Port Tunneling

When OracleAS Port Tunneling is configured, every request processed passes through
the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can
have an impact on the overall Oracle HTTP Server request handling performance and
scalability.

With the exception of the number of OracleAS Port Tunneling processes to run, the
performance of OracleAS Port Tunneling is self-tuning. The only performance control

Advanced Tuning Considerations

6-14 Tuning Performance Guide

available is to start more OracleAS Port Tunneling processes; this increases the
number of available connections and the scalability of the system.

The number of OracleAS Port Tunneling processes is based on the degree of
availability required, and the number of anticipated connections. This number cannot
be automatically determined because for each additional process a new port must be
opened through the firewall between the DMZ and the intranet. You cannot start more
processes than you have open ports, and you do not want less processes than open
ports, since in this case ports would not have any process bound to them.

To measure the OracleAS Port Tunneling performance, determine the request time for
servlet requests that pass through the OracleAS Port Tunneling infrastructure. The
response time running with OracleAS Port Tunneling should be compared with a
system without OracleAS Port Tunneling to determine whether your performance
requirements can be met using OracleAS Port Tunneling.

Note:

Administrator's Guide for Oracle HTTP Server for information on configuring
OracleAS Port Tunneling

Advanced Tuning Considerations

Tuning Oracle HTTP Server 6-15

Advanced Tuning Considerations

6-16 Tuning Performance Guide

7
Tuning Oracle Metadata Service

You can tune Oracle Metadata Services (MDS) to optimize its performance as an
application server and Oracle relational database.

Core Components

About Oracle Metadata Services (MDS)

Monitoring Oracle Metadata Service Performance

Basic Tuning Considerations

Advanced Tuning Considerations

7.1 About Oracle Metadata Services (MDS)
Oracle Metadata Services (MDS) is an application server and Oracle relational
database that keeps metadata in these areas: the ClassPath, the ServletContext,
database repository and, in some cases, the file system. One of the primary uses of
MDS is to store customizations and persisted personalization for Oracle applications.
MDS is used by components such as Oracle Application Development Framework
(ADF) to manage metadata. Examples of metadata objects managed by MDS are: JSP
pages and page fragments, ADF page definitions and task flows, and customized
variants of those objects.

Note:

Most of the Oracle Metadata Services configuration parameters are immutable
and cannot be changed at run time unless otherwise specified.

Tuning MDS tablespace and cache size is very important before tuning Oracle B2B and
other Oracle products. If you are using the User's Guide for Oracle B2B to tune B2B,
make sure you have completed the tuning described here first.

7.2 Monitoring Oracle Metadata Service Performance
MDS uses DMS sensors to provide tuning and diagnostic information which can be
viewed using Enterprise Manager. This information is useful, for example, to see if the
MDS caches are large enough.

Information on DMS metrics can be found in the Fusion Middleware Control Console.
Click Help at the top of the page to get more information. In most cases, the Help
window displays a help topic about the current page. Click Contents in the Help
window to browse the list of help topics, or click Search to search for a particular
word or phrase.

Tuning Oracle Metadata Service 7-1

7.3 Basic Tuning Considerations
Tuning is the adjustment of parameters to improve performance. The default MDS
configuration must be tuned in almost all deployments. It is important to review the
requirements and recommendations carefully.

Tuning Database Repository

Tuning Cache Configuration

Purging Document Version History

Using Database Polling Interval for Change Detection

7.3.1 Tuning Database Repository
For optimal performance of MDS APIs, the database schema for the MDS repository
must be monitored and tuned by the database administrator.

For additional information on tuning the database, see Optimizing Instance
Performance in Oracle Database Performance Tuning Guide.

Collecting Schema Statistics

Increasing Redo Log Size

Reclaiming Disk Space

Monitoring the Database Performance

7.3.1.1 Collecting Schema Statistics

While MDS provides database indexes, they may not be used as expected due to a lack
of schema statistics. If performance is an issue with MDS operations such as accessing
or updating metadata in database repository, the database administrator must ensure
that the statistics are available and current.

The following example shows one way that the Oracle database schema statistics can
be collected:

execute dbms_stats.gather_schema_stats(ownname => '<username>',
estimate_percent => dbms_stats.auto_sample_size, method_opt=> 'for all
columns size auto', cascade=>true);

If the performance does not improve after statistics collection, then try to flush the
database shared pool to clear out the existing SQL plans by using the following
command:

alter system flush shared_pool;

In general, the database should be configured with automatic statistics recollection.
For additional information on gathering statistics, see Automatic Performance
Statistics in Oracle Database Performance Tuning Guide.

7.3.1.2 Increasing Redo Log Size

The size of the redo log files can influence performance because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally, larger
redo log files provide better performance. Undersized log files increase checkpoint
activity and can reduce performance.

Basic Tuning Considerations

7-2 Tuning Performance Guide

For more information, see Sizing Redo Log Files in Oracle Database Performance Tuning
Guide.

7.3.1.3 Reclaiming Disk Space

While manual and auto-purge operations delete the metadata content from the
repository, the database may not immediately reclaim the space held by tables and
indexes. This may result in the disk space consumed by MDS schema growing.
Database administrators can manually rebuild the indexes and shrink the tables to
increase performance and to reclaim disk space.

For more information, see Reclaiming Unused Space in Oracle Database Performance
Tuning Guide.

7.3.1.4 Monitoring the Database Performance

Database administrators must monitor the database (for example, by generating
automatic workload repository (AWR) reports for Oracle database) to observe lock
contention, I/O usage and take appropriate action to address the issues.

For more information, see:

• Generating Automatic Workload Repository Reports in Oracle Database Performance
Tuning Guide

• Monitoring Performance in Oracle Database Performance Tuning Guide.

7.3.2 Tuning Cache Configuration
MDS uses a cache to store metadata objects and related objects (such as XML content)
in memory. MDS Cache is a shared cache that is accessible to all users of the
application (on the same JVM). If a metadata object is requested repeatedly, with the
same customizations, that object may be retrieved more quickly from the cache (a
"warm" read). If the metadata object is not found in the cache (a "cold" read), then
MDS may cache that object to facilitate subsequent read operations depending on the
cache configuration, the type of metadata object and the frequency of access.

Cache can be configured or changed post deployment through MBeans. This element
maps to the MaximumCacheSize attribute of the MDSAppConfig MBean. For more
information, see Changing MDS Configuration Attributes for Deployed Applications
in Administering Oracle Fusion Middleware.

Note:

MDS Metrics, visible in Enterprise Manager, are useful for tuning the MDS
cache. In particular, IOs Per MO Content Get or IOs Per Metadata
Object Get should be less than 1. If not, consider increasing the size of the
MDS cache. For more information on viewing DMS metric information, see
Monitoring Oracle Metadata Service Performance .

Having a correctly sized cache can significantly improve throughput for repeated
reading of metadata objects. The optimal cache size depends on the number of
metadata objects used and the individual sizes of these objects. Prior to packaging the
Enterprise ARchive (EAR) file, you can manually update the cache-config in adf-
config.xml, by adding the following entry:

Basic Tuning Considerations

Tuning Oracle Metadata Service 7-3

<mds-config>
 <cache-config>
 <max-size-kb>200000</max-size-kb>
 </cache-config>
</mds-config>

Note:

MDS cache grows in size as metadata objects are accessed until it hits max-
size-kb. After that, objects are removed from the cache to make room as
needed on a least recently used (LRU) basis to make room for new objects.

Enabling Document Cache

7.3.2.1 Enabling Document Cache

In addition to the main MDS cache, MDS uses a document cache in conjunction with
each metadata store to store thumbnail information about metadata documents (base
document and customization documents) in memory. The entry for each document is
small (<100 bytes) and the cache size limit is specified in terms of the number of
document entries. MDS calculates an appropriate default size limit for the document
cache based on the configured maximum size of the MDS Cache, as follows:

• If MDS cache is disabled, MDS defaults to having no document cache.

• If MDS cache is enabled, MDS defaults the document cache size to one document
entry per KB of document cache configured.

• If cache-config is not specified, MDS defaults to 10000 document entries.

• If MDS cache is set to a very small value, MDS uses a minimum size of 500 for
document cache.

In general, the defaults should be sufficient in most cases. However, insufficient
document cache size may impact performance. Prior to packaging the Enterprise
ARchive (EAR) file, you can explicitly set document cache size by adding this entry to
adf-config.xml:

<metadata-store-usage id="db1">
 <metadata-store …>
 <property name = …/>
 </metadata-store>
 <document-cache max-entries="10000"/>
</metadata-store-usage>

Note:

Document cache is cleared when it exceeds the document-cache max-entries
value. To avoid performance issues, consider increasing the document cache
size if you receive a notification like the following for example:

NOTIFICATION: Document cache DBMetadataStore : MDS
Repository connection = <> exceeds its maximum number of
entries <NNNN>, so the cache is cleared.

Basic Tuning Considerations

7-4 Tuning Performance Guide

The DMS metric IOs Per Document Get (visible in Enterprise Manager, see
Monitoring Oracle Metadata Service Performance) should be less than 1. If not,
consider increasing the document cache size.

7.3.3 Purging Document Version History
MDS keeps document version history in the database's metadata store. As version
history accumulates, it requires more disk space and degrades read/write
performance. Assuming the document versions are not part of an active label, you can
purge version history automatically or manually.

Note:

Purging version history manually may impact performance depending on the
number of metadata updates that have been made since the last purge.

Using Auto Purge

Purging Manually

7.3.3.1 Using Auto Purge

The auto-purge interval can be configured or changed post deployment through
MBeans. This element maps to the AutoPurgeTimeToLive attribute of the
MDSAppConfig MBean. If your application uses the database store for MDS, you can
set auto-purge by adding this entry in adf-config.xml prior to packaging the EAR:

<persistence-config>
 <auto-purge seconds-to-live="T"/>
</persistence-config>

In the example above, the auto-purge will be executed every T seconds and will
remove versions that are older than the specified time T (in seconds). For more
information, see Changing MDS Configuration Attributes for Deployed Applications
in Administering Oracle Fusion Middleware.

7.3.3.2 Purging Manually

When you suspect that the database is running out of space or performance is
becoming slower, you can manually purge existing version history using WLST
command or through Oracle Enterprise Manager. Manual purging may impact
performance, so plan to purge in a maintenance window or when the system is not
busy.

For more information about manually purging version history, see Purging Metadata
Version History in Administering Oracle Fusion Middleware.

7.3.4 Using Database Polling Interval for Change Detection
MDS employs a polling thread which queries the database to gauge if the data in the
MDS in-memory cache is out of sync with data in the database. This can happen when
metadata is updated in another JVM. If it is out of sync, MDS clears any out of date-
cached data so subsequent operations see the latest versions of the metadata. MDS
invalidates the document cache, as well as MDS cache, so subsequent operations have
the latest version of the metadata.

Basic Tuning Considerations

Tuning Oracle Metadata Service 7-5

The polling interval can be configured or changed post deployment through MBeans.
The element maps to the ExternalChangeDetection and
ExternalChangeDetectionInterval attributes of the MDSAppConfig MBean.
Prior to packaging the Enterprise ARchive (EAR) file, you can configure the polling
interval by adding this entry in adf-config.xml:

<mds-config>
 <persistence-config>
 <external-change-detection enabled="true" polling-interval-secs="T"/>
 </persistence-config>
</mds-config>

In the example above, T specifies the polling interval in seconds. The minimum value
is 1. Lower values cause metadata updates, that are made in other JVMs, to be seen
more quickly. It is important to note, however, that a lower value can also create
increased middle tier and database CPU consumption due to the frequent queries. By
default, polling is enabled (true) and the default value of 30 seconds should be
suitable for most purposes. For more information, see Changing MDS Configuration
Attributes for Deployed Applications in Administering Oracle Fusion Middleware.

Note:

When setting the polling interval, consider the following: if you poll too
frequently, the database is queried for out-of-date versions; too infrequently,
and those versions may stack up and polling can take longer to process.

7.4 Advanced Tuning Considerations
After you have performed recommended modifications, you can make additional
changes that are specific to your deployment. Consider carefully whether the advance
tuning recommendations are appropriate for your environment.

Analyzing Performance Impact from Customization

7.4.1 Analyzing Performance Impact from Customization
MDS customization may impact performance at run time.The impact from
customization depends on many factors including:

• The type of customization that has been created (shared or user level)

• The percentage of metadata objects in the system which is customized. The lower
this percentage the lower the impact of customization.

• The number of configured customization layers, and the efficiency of the
customization classes.

There are two main types of customization:

• Shared Customizations: these are layers of customization corresponding to
customization classes whose getCacheHint method returns ALL_USERS or
MULTI_USER, meaning the layer applies to all or multiple users. Shared
customizations are cached in the (shared) MDS cache.

• User Level Customizations (also known as Personalizations): these are layers of
customization corresponding to customization classes whose getCacheHint
method returns SINGLE_USER, meaning the layer applies to just one user. User

Advanced Tuning Considerations

7-6 Tuning Performance Guide

customizations are generally cached on the user's session (Session) until the user
logs out.

For more information about customization concepts, writing customization classes,
and configuring customization classes, see Customizing Applications with MDS in
Developing Fusion Web Applications with Oracle Application Development Framework.

Advanced Tuning Considerations

Tuning Oracle Metadata Service 7-7

Advanced Tuning Considerations

7-8 Tuning Performance Guide

8
Tuning Oracle Fusion Middleware Security

You can tune Oracle Fusion Middleware security services to optimize the performance
of security services through Oracle Platform Security Services (OPSS) and Oracle Web
Services.

Core Components

About Security Services

Basic Tuning Considerations

Tuning Oracle Platform Security Services

Oracle Web Services Security Tuning

8.1 About Security Services
Oracle Fusion Middleware provides security services through Oracle Platform
Security Services (OPSS) and Oracle Web Services.

• Oracle Platform Security Services

Oracle Platform Services is a key component of Oracle Fusion Middleware. It offers
an integrated suite of security services and is easily integrated with Java SE and
Java EE applications that use the Java security model. Security Services includes
features that implement user authentication, authorization, and delegation services
that developers can integrate into their application environments. Instead of
devoting resources to developing these services, application developers can focus
on the presentation and business logic of their applications.

Using Oracle Platform Security for Java, applications can enforce fine-grained
access control upon resource users. The three key steps are:

– Configure and invoke a login module, as appropriate. You can use provided
login modules, or you can use custom login modules.

– Authenticate the user attempting to log in, which is the role of the identity store
service.

– Authorize the user by checking permissions for any roles the user belongs to for
whatever the user is attempting to accomplish, which is the role of the policy
store service.

• Oracle Web Services Security

Oracle Web Services Security provides a framework of authorization and
authentication for interacting with a web service using XML-based messages.

Tuning Oracle Fusion Middleware Security 8-1

Note:

The information here assumes that you have reviewed and understand the
concepts and administration information for Oracle Fusion Middleware
Security Services. For more information, see Administering Web Services before
tuning any security parameters.

8.2 Basic Tuning Considerations
If you discover a performance bottleneck, you should first verify that you have
addressed the expected traffic load throughout your Web services deployment. If
there is a system in the critical path that is at 100% CPU usage, you may simply need
to add one or more computers to the cluster.

If there is a bottleneck in your deployment, it is likely to be within one of the
following:

• Traffic through a slow connection with an agent

• Latency in connections to third-party queuing systems like JMS

For any of these problems, check the following potential sources:

• Problems with policy assertions that include connections to outside resources,
especially the following types:

– Database Repositories

– LDAP Repositories

– Secured Resources

– Proprietary Security Systems

• Problems with database performance

If you identify one of these as the cause of a bottleneck, you may need to change how
you manage your database or LDAP connections or how you secure resources.

8.3 Tuning Oracle Platform Security Services
Oracle Platform Security Services (OPSS) includes basic tuning configurations.

JVM Tuning Parameters

JDK Tuning Parameters

Authentication Tuning Parameters

Authorization Tuning Properties

OPSS PDP Service Tuning Parameters

8.3.1 JVM Tuning Parameters
Tuning the JVM parameters can greatly improve performance. For example, the JVM
Heap size should be tuned depending upon the number of roles and permissions in
the store. At run time, all roles and permissions are stored in the in-memory cache. For
more JVM tuning information, see Tuning Java Virtual Machines (JVMs).

Basic Tuning Considerations

8-2 Tuning Performance Guide

8.3.2 JDK Tuning Parameters
Starting with Java Development Kit 7 (JDK 7), the default keystore size is now 2048
bits. JDK 6 and earlier had a default size of 1024 bits.

When using the Java keytool to generate keystores, the -keysize parameter can be
used to control the keystore size. Larger keystores provide stronger security, though at
the cost of decreased security performance. Consider your environment's use case
scenarios to determine if increasing the keystores would negatively impact your
security or performance thresholds.

For more information, see the JDK 7 release notes at http://www.oracle.com/
technetwork/java/javase/jdk7-relnotes-418459.html

8.3.3 Authentication Tuning Parameters
For OPSS Authentication tuning, see "Improving the Performance of WebLogic and
LDAP Authentication Providers" in Oracle Fusion Middleware Securing Oracle WebLogic
Server guide on the Oracle Technology Network http://download.oracle.com/
docs/cd/E12840_01/wls/docs103/secmanage/atn.html#wp1199087.

8.3.4 Authorization Tuning Properties
The following Java system properties can be used to optimize authorization:

Table 8-1 Authorization Properties

Tuning Oracle Platform Security Services

Tuning Oracle Fusion Middleware Security 8-3

http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/atn.html#wp1199087
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/atn.html#wp1199087

Table 8-1 (Cont.) Authorization Properties

Java System Properties Default Value Valid Values Notes

-
Djps.subject.cache.
key

4 3

4

5

JPS uses a Subject
Resolver to convert a
platform subject to
JpsSubject which contains
user/enterprise-
role information, as well
as ApplicationRole
information. This
information is represented
as principals in the
subject.

This conversion can be
CPU intensive, especially
if the subject's principal
set has a large population.
To improve performance,
JPS code caches the
conversion between
Platform subject and
JpsSubject. Note that two
subjects could be confused
if their contents are the
same, but the case of the
principals' name is
different.

The following settings can
be used to configure the
cache key:

• 3: Use the platform
subject directly as the
key. Note: On WLS if
the
principalEqualCas
einsensitive flag is
enabled, two subjects
could confused if their
contents are the same,
but the case of the
principals is different.

• 4: This setting is
similar to '3' but
overcomes the case-
sensitive issue. This is
the out-of-the-box
setting.

• 5: Instead of using the
whole subject as the
key, this settings uses
a subset of the
principal set inside the
subject as the key
(actually use
principals of
WLSUSerImpl type).

This setting will
accelerate the cache
retrieval operation if
the subject has a large
principal set. On a non
WLS platform (such as
WAS and JBOSS, this
reverts back to case
'4'), so this setting is
for WLS only. For this
case, there is also a
Time To Live setting
(TTL) flag which
controls how long the
cache is valid, as
explained below.

Tuning Oracle Platform Security Services

8-4 Tuning Performance Guide

Table 8-1 (Cont.) Authorization Properties

Java System Properties Default Value Valid Values Notes

-
Djps.subject.cache.
ttl

60000ms Cache's Time To Live
(TTL) for case '5' (above).
This system property
controls how long the
cache is valid. When the
time expired, the cached
value is dumped. The
setting can be controlled
by the flag of -
Djps.subject.cache.
ttl=xxxx, where 'xxx' is
the duration in
milliseconds.

Consider setting the
duration of this TTL
setting to the same value
as the value used for the
group and user cache TTL
in WLS LDAP
authenticator.

-
Djps.combiner.optim
ize=true

True True

False

This system property is
used to cache the
protection domains for a
given subject. Setting -
Djps.combiner.optim
ize=true can improve
Java authorization
performance.

-
Djps.combiner.optim
ize.lazyeval=true

True True

False

This system property is
used to evaluate a
subject's protection
domain when a
checkPermission occurs.
Setting -
Djps.combiner.optim
ize.lazyeval=true
can improve Java
authorization
performance.

Tuning Oracle Platform Security Services

Tuning Oracle Fusion Middleware Security 8-5

Table 8-1 (Cont.) Authorization Properties

Java System Properties Default Value Valid Values Notes

-
Djps.policystore.hy
brid.mode=true

True True

False

This 'hybrid mode'
property is used to
facilitate transition from
SUN java.security.Policy
to OPSS Java Policy
Provider.

The OPSS Java Policy
Provider reads from both
java.policy and
system-jazn-
data.xml. "Hybrid"
mode can be disabled by
setting the system
property
jps.policystore.hyb
rid.mode to false
when starting the
WebLogic Server. Setting
-
Djps.policystore.hy
brid.mode=false can
reduce runtime overhead.

-Djps.authz=ACC ACC ACC

SM

Delegates the call to JDK
API
AccessController.ch
eckPermission which
can reduce the
performance impact at
run time or while
debugging.

ACC: delegate to
AccessController.ch
eckPermission

SM: delegate to
SecurityManager if
SecurityManager is set.

8.3.5 OPSS PDP Service Tuning Parameters
Table 8-2 provides OPSS tuning parameters for policy store:

Table 8-2 OPSS PDP Service Tuning Parameters

Tuning Oracle Platform Security Services

8-6 Tuning Performance Guide

Table 8-2 (Cont.) OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

oracle.security.jps
.policystore.roleme
mber.cache.type

STATIC STATIC, SOFT, WEAK This parameter specifies
the type of role member
cache.Valid only in Java
EE applications.

Valid values:

• STATIC: Cache objects
are statically cached
and can be cleaned
explicitly only
according the applied
cache strategy, such as
FIFO. The garbage
collector does not
clean a cache of this
type.

• SOFT: The cleaning of
a cache of this type
relies on the garbage
collector when there is
a memory crunch.

• WEAK: The behavior of
a cache of this type is
similar to a cache of
type SOFT, but the
garbage collector
cleans it more
frequently.

Consider maintaining the
default value for the best
performance.

oracle.security.jps
.policystore.roleme
mber.cache.strategy

FIFO FIFO

NONE

The type of strategy used
in the role member cache.
Valid only in Java EE
applications.

Valid values:

• FIFO: The cache
implements the first-
in-first-out strategy.

• NONE: All entries in the
cache grow until a
refresh or reboot
occurs; there is no
control over the size of
the cache; not
recommended but
typically efficient
when the policy
footprint is very small.

Consider maintaining the
default value for the best
performance.

Tuning Oracle Platform Security Services

Tuning Oracle Fusion Middleware Security 8-7

Table 8-2 (Cont.) OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

oracle.security.jps
.policystore.roleme
mber.cache.size

1000 The size of the role
member cache. The role
being referred to is the
enterprise role (group).
You can find out the
number of the groups you
have in your ID store first.
Then, based on your
performance requirement,
you can set this number to
the number of the groups
- full cache scenario. Or
you can change to a
certain percentage of the
number of the groups -
partial group cache
scenario.

oracle.security.jps
.policystore.policy
.lazy.load.enable

True True

False

Enables or disables the
policy lazy loading. If this
parameter is set to false,
the server initial startup
time will take longer -
especially in a large policy
store. For faster start-up
time, the recommended
value is true.

oracle.security.jps
.policystore.policy
.cache.strategy

PERMISSION_FIFO PERMISSION_FIFO

NONE

The type of strategy used
in the permission cache.
Valid only in Java EE
applications.

Valid Values:

• PERMISSION_FIFO:
The cache implements
the first-in-first-out
strategy.

• NONE: All entries in the
cache grow until a
refresh or reboot
occurs; there is no
control over the size of
the cache; not
recommended but
typically efficient
when the policy
footprint is very small.

Consider using the default
value for the best
performance.

Tuning Oracle Platform Security Services

8-8 Tuning Performance Guide

Table 8-2 (Cont.) OPSS PDP Service Tuning Parameters

Parameter Default Value Valid Values Notes

oracle.security.jps
.policystore.policy
.cache.size

1000 The size of the permission
cache. If you cache all
policies, then you can set
this value to the total
number of grants.

oracle.security.jps
.policystore.cache.
updatable

True True

False

This property is used for
refresh enabling. Consider
maintaining the default
value for the best
performance.

oracle.security.jps
.policystore.refres
h.enable

True True

False

This property is used for
refresh enabling. Consider
maintaining the default
value for performance.

oracle.security.jps
.policystore.refres
h.purge.timeout

43200000 The time, in milliseconds,
after which the policy
store is refreshed.
Consider maintaining the
default value for the best
performance.

oracle.security.jps
.ldap.policystore.r
efresh.interval

600000 (10 minutes) The interval, in
milliseconds, at which the
policy store is polled for
changes. Consider
maintaining the default
value for the best
performance. This
property is valid in Java
EE and J2SE applications.

oracle.security.jps
.policystore.roleme
mber.cache.warmup.e
nable

False True

False

This property controls the
way the
ApplicationRole
membership cache is
created. If set to True, the
cache is created at server
startup; otherwise, it is
created on demand (lazy
loading).

Set to True when the
number of users and
groups is significantly
higher than the number of
application roles; set to
False otherwise, that is,
when the number of
application roles is very
high.

Tuning Oracle Platform Security Services

Tuning Oracle Fusion Middleware Security 8-9

8.4 Oracle Web Services Security Tuning
Oracle Web Services Security provides a framework of authorization and
authentication for interacting with a web service using XML-based messages. There a
several factors that may affect performance of the web service.

Choosing the Right Policy

Policy Manager

Configuring the Log Assertion to Record SOAP Messages

Configuring Connection Pooling

Monitoring the Performance of Web Services

8.4.1 Choosing the Right Policy
Oracle Web Services Security supports many policies and the appropriate policies
must be implemented based on the security need of the deployment. Careful
consideration should be given to performance, since each additional policy can impact
performance. For example Transport level security (SSL) is faster than Application
level security, but transport level security can be vulnerable in multi-step transactions.
Application level security has more performance implications, but provides end-to-
end security.

See Determining Which Predefined Policies to Use in Securing Web Services and
Managing Policies with Oracle Web Services Manager to determine which security policies
are required for a deployment.

8.4.2 Policy Manager
There is an inherent performance impact when using the database-based policy
enforcement. When database policy enforcement is chosen, careful consideration must
be given to the "polling" frequency of the agent to the database.

8.4.3 Configuring the Log Assertion to Record SOAP Messages
The request and response pipelines of the default policy include a log assertion that
causes policy enforcement points (PEP) to record SOAP messages to either a database
or a component-specific local file. There can be potential performance impacts to the
logging level. To prevent performance issues, consider using the lowest logging level
that is appropriate for your deployment.

The following logging levels can be configured in the log step:

• Header - Only the SOAP header is recorded.

• Body - Only the message content (body) is recorded.

• Envelope - The entire SOAP envelope, which includes both the header and the
body, is recorded. Any attachments are not recorded.

• All - The full message is recorded. This includes the SOAP header, the body, and
all attachments, which might be URLs existing outside the SOAP message itself.

Oracle Web Services Security Tuning

8-10 Tuning Performance Guide

Note: Typically, system performance improves when log files are located in
topological proximity to the enforcement component. If possible, use multiple
distributed logs in a highly distributed environment.

8.4.4 Configuring Connection Pooling
When you request that a Context instance use connection pooling by using the
com.sun.jndi.ldap.connect.pool environment property, the connection that is
used might or might not be pooled. The default rule is that plain (non-SSL)
connections that use simple or no authentication are allowed to be pooled. You can
change this default to include SSL connections and the DIGEST-MD5 authentication
type by using system properties. To allow both plain and SSL connections to be
pooled, set the com.sun.jndi.ldap.connect.pool.protocol system property
to the string plain ssl as shown below:

"-Dcom.sun.jndi.ldap.connect.pool.protocol="plain ssl"

8.4.5 Monitoring the Performance of Web Services
You can monitor the performance on the following Oracle Web Services through the
Web Services home page of Oracle Fusion Middleware Control:

• Endpoint Enabled Metrics such as:

– Policy Reference Status

– Total Violations

– Security Violations

• Invocations Completed

• Response Time, in seconds

• Policy Violations such as:

– Total Violations

– Authentication Violations

– Authorization Violations

– Confidentiality Violations

– Integrity Violations

• Total Faults

For general information on monitoring Oracle Fusion Middleware components, see
Monitoring .

For detailed information on using Oracle Fusion Middleware Control to monitor
Oracle Web Services, see Overview of Performance Monitoring, Auditing, and Tuning
in Administering Web Services.

Oracle Web Services Security Tuning

Tuning Oracle Fusion Middleware Security 8-11

Oracle Web Services Security Tuning

8-12 Tuning Performance Guide

Part III
Oracle Fusion Middleware Server

Components

This part describes configuring Oracle Fusion Middleware server components to
improve performance. It contains the following topics:

Tuning Oracle Application Development Framework (ADF)

Tuning Oracle TopLink

9
Tuning Oracle Application Development

Framework (ADF)

You can tune Oracle Application Development Framework (ADF) to optimize its
performance and scalability with design, configuration, and deployment
considerations.

Note:

• Developing Fusion Web Applications with Oracle Application Development
Framework

• Developing Web User Interfaces with Oracle ADF Faces

Oracle Fusion Middleware Server Components

About Oracle ADF

Basic Tuning Considerations

Advanced Tuning Considerations

9.1 About Oracle ADF
Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies to simplify and accelerate implementing
service-oriented applications. Oracle ADF is suitable for enterprise developers who
want to create applications that search, display, create, modify, and validate data
using web, wireless, desktop, or web services interfaces. If you develop enterprise
solutions that search, display, create, modify, and validate data using web, wireless,
desktop, or web services interfaces, Oracle ADF can simplify your job. Used in
tandem, Oracle JDeveloper 11g and Oracle ADF give you an environment that covers
the full development lifecycle from design to deployment, with drag-and-drop data
binding, visual UI design, and team development features built-in.

For more information, see Introduction to Oracle ADF in Developing Fusion Web
Applications with Oracle Application Development Framework.

9.2 Basic Tuning Considerations
To achieve optimal performance, you can follow tuning recommendations before
building, configuring, and deploying ADF applications.

Oracle ADF Faces Configuration and Profiling

Tuning Oracle Application Development Framework (ADF) 9-1

Performance Considerations for ADF Faces

Tuning ADF Faces Component Attributes

Performance Considerations for Table and Tree Components

Performance Considerations for autoSuggest

Data Delivery - Lazy versus Immediate

Performance Considerations for DVT Components

9.2.1 Oracle ADF Faces Configuration and Profiling
Configuration options for Oracle ADF Faces are set in the web.xml file. Most of these
have default values that are tuned for performance. Table 9-1 describes some of these
configuration options.

Table 9-1 ADF Configuration Options

Parameter Description

Compression View State

org.apache.myfaces.trinidad.COMPRESS_VIEW
_STATE

Controls whether or not the page state is compressed.
Latency can be reduced if the size of the data is
compressed. This parameter should be set to True.

Enhanced Debug

org.apache.myfaces.trinidad.resource.DEBU
G

Controls whether output should be enhanced for
debugging or not. This parameter should be removed
or set to False.

Check File Modification

oracle.adf.view.rich.CHECK_FILE_MODIFICAT
ION

Controls whether ADF faces check for modification
date of JSP pages and discard any saved state if the file
is changed. This parameter should be removed or set to
False.

Client State Method

oracle.adf.view.rich.CLIENT_STATE_METHOD

Specifies which type of saving (all or token) should
be used when client-side state saving is enabled. The
default value is token.

Client Side Log Level
oracle.adf.view.rich.LOGGER_LEVEL

Sets the log level on the client side. The default value is
OFF. This parameter should be removed or set to
False.

Assertion Processing

oracle.adf.view.rich.ASSERT_ENABLED

Specifies when to process assertions on the client side.
The default value is OFF. This parameter should be
removed or set to False.

Note:

When you are profiling or measuring client response time using the Firefox
browser, ensure that the Firebug plug-in is disabled. While this plug-in is very
useful for getting information about the page and for debugging JavaScript
code on the page, it can impact the total response time.

For more information on disabling the Firefox Firebug plug-in, see the Firefox
Support Home Page at http://support.mozilla.com/en-US/kb/.

Basic Tuning Considerations

9-2 Tuning Performance Guide

http://support.mozilla.com/en-US/kb/

9.2.2 Performance Considerations for ADF Faces
Table 9-2 provides configuration recommendations that may improve performance of
ADF Faces:

Table 9-2 Configuration Parameters for ADF Faces

Configuration Recommendation Description

Avoid inline JavaScript in pages. Inline JavaScript can increase response payload size,
will never be cached in browser, and can block browser
rendering. Instead of using inline JavaScript, consider
putting all scripts in .js files in JavaScript libraries
and add scripts to the page using af:resource tag.

TIP: Consider using af:resource rather than
trh:script when possible.

Configure the JSP timeout parameter. Using the JavaServer Pages (JSP) timeout parameter
causes infrequently used pages to be flushed from the
cache by the following setting in web.xml:

<servlet>
 <servlet-name>
 oraclejsp
 <init-param>
 <param-name>
 jsp_timeout
 </param-name>
 <param-value>
 x
 </param-value>
 </init-param>
 </servlet-name>
</servlet>

NOTE: Set parameter x based on your own use case
scenarios.

Create a single toolbar item with a drop-down popup. When the browser size is small because of the screen
resolution, the menubar/toolbar overflow logic
becomes expensive in Internet Explorer 7 and 8. It
especially has problems with laying out DOM
structures with input fields.

Create a single toolbar item with a drop-down popup
and put all the input fields inside it. This popup should
have deferred child creation and
contentDelivery="lazy".

Remove unknown rowCount. A table that has an unknown rowCount can impact
performance because getting the last set of rows takes
excessive scrolling from the user and the application
can appear to be very slow.

Remove unknown rowCount by setting
DeferEstimatedRowCountProperty="false" on
the view object (VO).

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-3

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Disable pop-ups that cannot be displayed by the user. The fnd:attachment component, when stamped in a
table, can generate an excessive amount of DOM and
client component. The amount of DOM + Client
component is ~8K per cell which impacts the
performance of the entire page especially on slower
browsers.

Most cells have no attachments initially and only one
popup can be displayed by the user. Therefore, pop-
ups that cannot be displayed by the user should have
renderer="false". This will cut down the
unnecessary DOM/client components sent to the
browser. Similarly the DOM has a
panelGroupLayout with a number of cells which are
empty. There is no need to send DOM for empty cells.

Do not use hover pop-ups on navigation links. A hover popup on a navigation link causes the
navigation to wait for the hover to be fetched first.

Consider removing the hover popup on the
compensate workforce table navigation link column
and, instead, place it on a separate column or on an
icon inside the cell.

Increase table scrolling timeout. Tables send a fetch request to the server on a scroll
after a timeout. The timeout, before the fetch is sent to
the server, is typically only 20ms if the user scrolls a
short distance, but can increase to 200ms if the user
scrolls further. Therefore performance can be impacted
when the user scrolls to the bottom of a page and the
table sends multiple requests to the server.

To prevent the performance impact, consider
increasing the timeout limit to 300ms.

Use a timeout to call _prepareForIncompleteImages. During Partial Page Rendering (PPR) some images may
not load completely. When this occurs, the parent
component must be notified that the size of one of its
descendants has changed. In the past this was done by
using the complete attribute on the image tag. Now
with Internet Explorer 8 the complete attribute is
always false to alleviate performance issues with
Internet Explorer 7 and 8. The attribute shows as false
even for cached images immediately after the PPR
content is fetched.

For Internet Explorer 8 use a timeout (10ms) to call
_prepareForIncompleteImages so that the image
tag called right after the .xml request is processed.
Note that this is not an issue for Mozilla Firefox or
Google Chrome.

Cache the GetFirstVisibleRowKeyandRow. Performance can be improved by locally caching the
first visible Rowkey and row. This cached value can be
deleted on a scroll or a resize.

Basic Tuning Considerations

9-4 Tuning Performance Guide

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Use partial page navigation. Partial Page Navigation is a feature of the ADF Faces
framework that enables navigating from one ADF
Faces page to another without a full page transition in
the browser.The new page is sent to the client using
Partial Page Rendering (PPR)/Ajax channel.

The main advantage of partial page navigation over
traditional full page navigation is improved
performance: the browser no longer re-interprets and
re-executes Javascript libraries, and does not spend
time for cleanup/initialization of the full page. The
performance benefit from this optimization is very big;
it should be enabled whenever possible.

Some known limitations of this feature are:

• For the document's "metaContainer" facet (the
HEAD section), only scripts are brought over with
the new page. Any other content, such as icon links
or style rules can be ignored.

• Applications cannot use anchor (hash) URLs for
their own purposes.

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-5

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Use page templates. Page templates enable developers to build reusable,
data-bound templates that can be used as a shell for
any page. A developer can build one or more templates
that provide structure and consistency for other
developers building web pages. The templates have
both static areas on them that cannot be changed when
they are used and dynamic areas on them where the
developer can place content specific to the page they
are building.

There are some important considerations when using
templates:

• Since templates are present in every application
page, they have to be optimized so that common
performance impacts are avoided. Adding round
corners to the template, for example, can impact the
performance for every page.

• When building complex templates, sometimes it is
easier to build them in multiple pieces and include
them in the top-level template using <f:subview>
tag. However, from a performance perspective, this
is not typically recommended since it can impact
memory usage on the server side. (<f:subview>
introduces another level into the ID scoping
hierarchy, which results in longer IDs. Long IDs
have a negative impact on performance. Developers
are advised to avoid using <f:subview> unless it
is required. It is not necessary to use <f:subview>
around <jsp:include> if you can ensure that all
IDs are unique. For example, if you are using
<jsp:include>, break a large page into multiple
pieces for easier editing. And whenever possible,
avoid using <f:subview>. If you are including
content developed by someone else, use
<f:subview> if you do not know which IDs the
developer used. In addition, you do not have to put
<f:subview> at the top of a region definition.

• Avoid long IDs in all cases, especially on
pageTemplates, subviews, subforms, and on tables
or within tables. Long IDs can have a performance
impact on the server side, network traffic, and client
processing.

Basic Tuning Considerations

9-6 Tuning Performance Guide

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Enable ADF rich client geometry management. ADF Rich Client supports geometry management of
the browser layout where parent components are in the
UI explicitly. The children components are sized to
stretch and fill up available space in the browser. While
this feature makes the UI look better, it has a cost. The
impact is on the client side where the browser must
spend time resizing the components. The components
that have geometry management by default are:

PanelAccordion

PanelStretchLayout

PanelTabbed

BreadCrumbs

NavigationPane

PanelSplitter

Toolbar

Toolbox

Table

Train

Notes:

• When using geometry management, try minimizing
the number of child components that are under a
parent geometry managed component.

• The cost of geometry management is directly
related to the complexity of child components.

• The performance cost of geometry management can
be smaller (as perceived by the user) for the pages
with table or other data stamped components when
table data streaming is used. The client-side
geometry management can be executed while the
browser is waiting for the data response from the
server.

Use the ADF rich client overflow feature. ADF Rich Client supports overflow feature. This
feature moves the child components to the non-visible
overflow area if they cannot fit the page. The
components that have built-in support for overflow
are: PanelTabbed, BreadCrumbs,
NavigationPane, PanelAccordion, Toolbar, and
Train. Toolbar should be contained in a Toolbox to
handle the overflow.

While there were several optimizations done to reduce
the cost of overflow, it is necessary to pay special
attention to the number of child components and
complexity of each of them in the overflow component.
Sometimes it is a good practice to set a big enough
initial size of the overflow component such that
overflow does not happen in most cases.

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-7

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Use ADF Rich Client Partial Page Rendering (PPR). ADF Rich Client is based on Asynchronous JavaScript
and XML (Ajax) development technique. Ajax is a web
development technique for creating interactive web
applications, where web pages feel more responsive by
exchanging small amounts of data with the server
behind the scenes, without the whole web page being
reloaded. The effect is to improve a web page's
interactivity, speed, and usability.

With ADF Faces, the feature that delivers the Ajax
partial page refresh behavior is called partial page
rendering (PPR). PPR enables small areas of a page to
be refreshed without having to redraw the entire page.
For example, an output component can display what a
user has chosen or entered in an input component or a
command link or button can cause another component
on the page to be refreshed.

Two main Ajax patterns are implemented with partial
page rendering (PPR):

• native component refresh
• cross-component refresh
While the framework builds in native component
refresh, cross-component refresh has to be done by
developers in certain cases.

Cross-component refresh is implemented declaratively
or programmatically by the application developer
defining which components are to trigger a partial
update and which other components are to act as
partial listeners, and so be updated. Using cross-
component refresh and implementing it correctly is one
of the best ways to improve client-side response time.
While designing the UI page always think about what
should happen when the use clicks a command button.
Is it needed for the whole page to be refreshed or just
an output text field? What should happen if the value
in some field is updated? For more information, see
Developing Fusion Web Applications with Oracle
Application Development Framework.

Consider a typical situation in which a page includes
an af:inputText component, an
af:commandButton component, and an
af:outputText component. When the user enters a
value for the af:inputText, then clicks the
af:commandButton, the input value is reflected in the
af:outputText. Without PPR, clicking the
af:commandButton triggers a full-page refresh.
Using PPR, you can limit the scale of the refresh to only
those components you want to refresh, in this case the
af:outputText component. To achieve this, you
would do two things:

• Set up the af:commandButton for partial submit
by setting the partialSubmit attribute to true.
Doing this causes the command component to start
firing partial page requests each time it is clicked.

• Define which components are to be refreshed when
the partial submit takes place, in this example the
af:outputText component, by setting the
partialTriggers attribute for each of them to
the id of the component triggering the refresh. In
this example, this means setting the
partialTriggers attribute of the
af:outputText component to give the id of the
af:commandButton component.

The steps above achieve PPR using a command button
to trigger the partial page refresh.

The main reason why partial page rendering can
significantly boost the performance is that full page
refresh does not happen and the framework artifacts
(such as ADF Rich Client JS library, and style sheets)
are not reloaded and only a small part of page is
refreshed. In several cases, this means no extra data is
fetched or no geometry management.

The ADF Rich Client has shown that partial page
rendering results in the best client-side performance.
Besides the impact on the client side, server-side
processing can be faster and can have better server-side
throughput and scalability.

Basic Tuning Considerations

9-8 Tuning Performance Guide

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Use ADF rich client navigation. ADF Rich Client has an extensive support for
navigation. One of the common use cases is tabbed
navigation. This is currently supported by components
like navigationPane which can bind to
xmlMenuModel to easily define navigation.

There is one drawback in this approach, however. It
results in a full page refresh every time the user
switches the tab. One option is to use panelTabbed
instead. panelTabbed has built-in support for partial
page rendering of the tabbed content without requiring
any developer work. However, panelTabbed cannot
bind to any navigational model and the content has to
be available from within the page, so it has limited
applicability.

Cache resources. Developers are strongly encouraged to ensure that any
resources that can be cached (images, CSS, JavaScript)
have their cache headers specified appropriately. Also,
client requests for missing resources on the server
result in addition round trips to the server. To avoid
this, make sure all the resources are present on the
server.

Consider using the ResourceServlet to configure
web.xml to enable resource caching:

<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/js/*</url-pattern>
 </servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/images/*</url-pattern>
 </servlet-mapping>

Reduce the size of state token cache. This property is defined in web.xml
org.apache.myfaces.trinidad.CLIENT_STATE_
MAX_TOKENS in "token"-based client-side state saving
and determines how many tokens should be preserved
at any one time. The default value is 15. When this
value is exceeded, state will be "forgotten" for the least
recently viewed pages, which can impact users that
actively use the Back button or that have multiple
windows open simultaneously.

To reduce live memory per session, consider reducing
this value to 2. Reducing the state token cache to 2
means one Back button click is supported. For
applications without support for a Back button, this
value should be set to 1.

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-9

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Define custom styles at the top of the page. A common developer task is to define custom styles
inside a regular page or template page. Since most
browsers use progressive scanning of the page, a late
introduction of styles forces the browser to recompute
the page. This impacts the page layout performance.
For better performance, define styles at the top of the
page and possibly wrap them inside the ADF group
tag.

An HTML page basically has two parts, the head and
the body. When you add an af:document component
to a page, this component creates both parts of the page
for you. Any child component of the af:document is
in the body part of the page. To get a component (or
static CDATA content) to show up in the head, use the
metaContainer facet.

To get a component (or static CDATA content) to
display in the head, use the metaContainer facet as
follows:

<af:document title="#{attrs.documentTitle}"
theme="dark">
<f:facet name="metaContainer">
<af:group><![CDATA[
<style type="text/css">
.TabletNavigationGlobal {
text-align: right;
padding-left: 0px;
padding-right: 10px;
white-space: nowrap;
}
HTML[dir=rtl] .TabletNavigationGlobal {
text-align: left;
padding-left: 10px;
padding-right: 0px;
}
</style>
]]>
<af:facetRef facetName="metaContainer"/>
</af:group>
</f:facet>
<af:form ...>
<af:facetRef facetName="body"/>
</af:form>
</af:document>

If you use page templates, consider including
af:document and af:form in the template definition
and expose anything that you may want to customize
in those tags through the page template attributes and
page template af:facetRef. Your templates are then
able to utilize the metaContainer facet if they have
template-specific styling as shown above. Also, your
usage pages do not have to repeat the same document
and form tags on every page.

See Developing Fusion Web Applications with Oracle
Application Development Framework for details about
af:facetRef.

Basic Tuning Considerations

9-10 Tuning Performance Guide

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Optimize custom JavaScript code. ADF Rich Client uses JavaScript on the client side. The
framework itself provides most of the functionality
needed. However, you may have to write custom
JavaScript code. To get the best performance, consider
bundling the JavaScript code into one JS lib (one
JavaScript file) and deliver it to the client. The easiest
approach is to use the ADF tag: <af:resource
type="javascript" source=" "/>.

If most pages require custom JavaScript code, the tag
should be included in the application template.
Otherwise, including it in particular pages can result in
better performance. If custom the JavaScript code lib
file becomes too big, then consider splitting it into
meaningful pieces and include only the pieces needed
by the page.Overall, this approach is faster since the
browser cache is used and the html content of the page
is smaller.

Disable debug output mode. The debug-output element in the trinidad-
config.xml file specifies whether output should be
more verbose to help with debugging. When set to
TRUE, the output debugging mechanism in Trinidad
produces pretty-printed, commented HTML content.
To improve performance by reducing the output size,
you should disable the debug output mode in
production environments.

Set the debug-output element to FALSE, or if
necessary, remove it completely from the trinidad-
config.xml file.

Disable test automation. Enabling test automation parameter
oracle.adf.view.rich.automation.ENABLED
generates a client component for every component on
the page which can negatively impact performance.

Set the
oracle.adf.view.rich.automation.ENABLED
parameter value to FALSE (the default value) in the
web.xml file to improve performance.

Disable animation. ADF Rich Client framework has client side animation
enabled by default. Animation is introduced to provide
an enhanced user experience. Some of the components,
like popup table, have animation set for some of the
operations. While using animation can improve the
user experience, it can increase the response time when
an action is executed. If speed is the biggest concern,
then animation can be disabled by setting the flag in
trinidad-config.xml

Disable client-side assertions. Assertions on client-side code base can have a
significant impact on client-side performance. Set the
parameter value to FALSE (the default value) to disable
client-side assertions. Also ensure that the
oracle.adf.view.rich.ASSERT_ENABLED is not
explicitly set to TRUE in the web.xml file.

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-11

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Disable JavaScript Profiler. When the JavaScript
oracle.adf.view.rich.profiler.ENABLED
profiler is enabled, an extra round-trip occurs on every
page to fetch the profiler data. Disable the profiler in
the web.xml file to avoid this extra round-trip.

Disable resource debug mode. When resource debug mode is enabled, the response
headers do not tell the browser that resources (JS
libraries, CSS style sheets, or images) can be cached.

Disable the
org.apache.myfaces.trinidad.resource.DEBU
G parameter in the web.xml file to ensure that caching
is enabled.

Disable timestamp checking. The
org.apache.myfaces.trinidad.CHECK_FILE_MO
DIFICATION parameter controls whether jsp or jspx
files are checked for modifications each time they are
accessed.

Ensure that the parameter value
org.apache.myfaces.trinidad.CHECK_FILE_MO
DIFICATION is set to FALSE (the default value) in the
web.xml file.

Disable checking for CSS file modifications. The
org.apache.myfaces.trinidad.CHECK_FILE_MO
DIFICATION parameter controls when CSS file
modification checks are made. To aid in performance,
this configuration option defaults to false - do not
check for css file modifications. Set this to TRUE if you
want the skinning css file changes to be reflected
without stopping or starting the server.

Enable content compression. By default, style classes that are rendered are
compressed to reduce page size. In production
environments, make sure you remove the
DISABLE_CONTENT_COMPRESSION parameter from
the web.xml file or set it to FALSE.

For debugging, turn off the style class content
compression. You can do this by setting the
DISABLE_CONTENT_COMPRESSION property to TRUE.

Basic Tuning Considerations

9-12 Tuning Performance Guide

Table 9-2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Enable JavaScript obfuscation. ADF Faces supports a run time option for providing a
non-obfuscated version of the JavaScript library. The
obfuscated version is supplied by default, but the non-
obfuscated version is supplied for development builds.
Obfuscation reduces the overall size of the JavaScript
library by about 50%.

To provide an obfuscated ADF Faces build, set the
org.apache.myfaces.trinidad.DEBUG_JAVASCR
IPT parameter to FALSE in the web.xml file.

There are two ways to check that the code is obfuscated
using Firefox with Firebug enabled:

Check the download size:

1. Ensure that All or JS is selected on the Net tab.

2. Locate the all-11-version.js entry.

3. Check the size of the column. It should be about
1.3 MB (as opposed to 2.8 MB).

Check the source:

1. From the Script tab select all-11-version.js from the
drop-down menu located above the tabs.

2. Examine the code. If there are comments and long
variable names, the library is not obfuscated.

Note: Copyright comments are kept even in the
obfuscated version of the JS files.

Enable library partitioning. In the Oracle 11g release, library partitioning is on by
default. In previous versions library partitioning was
off by default. Ensure that the library partitioning is on
by validating the
oracle.adf.view.rich.libraryPartitioning.
DISABLED property is set to false in the web.xml
file.

9.2.3 Tuning ADF Faces Component Attributes
Table 9-3 provides configuration recommendations for ADF Faces Component
Attributes:

Table 9-3 ADF Faces Component Attributes

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-13

Table 9-3 (Cont.) ADF Faces Component Attributes

Configuration Recommendation Description

Use the immediate attribute. ADF Rich Client components have an immediate
attribute. If a component has its immediate attribute
set to TRUE (immediate="true"), then the validation,
conversion, and events associated with the component
are processed during the applyRequestValues
phase. These are some cases where setting immediate
to TRUE can lead to better performance.

• The commandNavigationItem in the
navigationPane can use the immediate
attribute set to TRUE to avoid processing the data
from the current screen while navigating to the new
page.

• If the input component value has to be validated
before the other values, immediate should be set
to TRUE. In case of an error it be detected earlier in
the cycle and additional processing be avoided.

ADF Rich Client is built on top of JSF and uses
standard JSF lifecycle. See Using the JSF Lifecycle with
ADF Faces in Developing Web User Interfaces with Oracle
ADF Faces.

There are some important issues associated with the
immediate attribute. Refer to Using the Immediate
Attribute in Developing Web User Interfaces with Oracle
ADF Faces for more information.

Note that this is an advanced feature. Most of the
performance improvements can be achieved using the
af:subform component. Refer to Developing Web User
Interfaces with Oracle ADF Faces for af:subform
details.

Use the visible and rendered attributes. All ADF Faces Rich Client display components have
two properties that dictate how the component is
displayed on the page:

• The visible property specifies simply whether
the component is to be displayed on the page, or is
to be hidden.

• The rendered property specifies whether the
component shall exist in the client page at all.

The EL expression is commonly used to control these
properties. For better performance, consider setting the
component to not rendered instead of not visible,
assuming there is no client interaction with the
component. Making a component not rendered can
improve server performance and client response time
since the component does not have client side
representation.

Basic Tuning Considerations

9-14 Tuning Performance Guide

Table 9-3 (Cont.) ADF Faces Component Attributes

Configuration Recommendation Description

Use client-side events. ADF Rich Client framework provides the client-side
event model based on component-level events rather
than DOM level. The client-side event model is a very
useful feature that can speed up the application.
Review the following performance considerations:

• Consider using client-side events for relatively
simple event handling that can be done on the client
side. This improves client side performance by
reducing the number of server round trips. Also, it
can increase server-side throughput and scalability
since requests do not have to be handled by the
server.

• By default, the events generated on the client by the
client components are propagated to the server. If a
client-side event handler is provided, consider
canceling the event at the end of processing so that
the event does not propagate to the server.

Use the id attribute. The id attribute should not be longer than 7 characters
in length. This is particularly important for naming
containers. A long id can impact performance as the
amount of HTML that must be sent down to the client
is impacted by the length of the ids.

Use client-side components. ADF Rich Client framework has client-side components
that play a role in client-side event handling and
component behavior. The clientComponent attribute
is used to configure when (or if) a client-side
component should be generated. Setting
clientComponent attribute to TRUE has a
performance impact, so determine if its necessary to
generate client-side components.

For more information, see What Happens When You
Set clientComponent to true in Developing Web User
Interfaces with Oracle ADF Faces.

Set the childCreation attribute on af:popup to
deferred for a server-side performance enhancement

Setting childCreation to deferred postpones
construction of the components under the popup until
the content is delivered. A deferred setting can
therefore reduce the footprint of server-side state in
some cases.

CAUTION: This approach CANNOT be used if any of
the following tags are present inside the popup:

• f:attribute

• af:setPropertyListener

• af:clientListener

• af:serverListener

It also CANNOT be used if you need to refer to any
child components of the popup before the popup is
displayed. Setting childCreation="deferred" will
postpone creating any child components of the popup
and you cannot refer to them until after the popup is
shown.

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-15

9.2.4 Performance Considerations for Table and Tree Components
Table, Tree, and TreeTable are some of the most complex, and frequently used,
components. Since these components can include large sets of data, they can be the
common source of performance problems. Table 9-4 provides some performance
recommendations.

Table 9-4 Table and Tree Component Configurations

Configuration Recommendation Description

Use editingMode="clickToEdit". When using editingMode="editAll" all content of
the editable values holders and their client components
is sent. This can significantly increase the payload and
the Document Object Model (DOM) content on the
client.

Consider switching to
editingMode="clickToEdit" to reduce the
amount of transmitted data and potentially improve
user interaction.

Reduce fetchSize when possible. A larger fetch size attribute on af:table implies that
more data needs to be processed, fetched from the
server, and displayed on the client. This can also
increase the amount of DOM displayed on the client.

Modify table fetch size. Tables have a fetch size which defines the number of
rows to be sent to the client in one round-trip. To get
the best performance, keep this number low while still
allowing enough rows to fulfill the initial table view
port. This ensures the best performance while
eliminating extra server requests.

In addition, consider keeping the table fetch size and
iterator range size in sync. By default, the table fetch
size is set to the EL expression
#{bindings.<name>.rangeSize} and should be
equal to the iterator size.

For more information, see Using Tables, Trees, and
Other Collection-Based Components in Developing Web
User Interfaces with Oracle ADF Faces.

Disable column stretching. Columns in the table and treeTable components
can be stretched so that there is no unused space
between the end of the last column and the edge of the
table or treeTable component. This feature is turned
off by default due to potential performance impacts.
Turning this feature on may have a performance
impact on the client rendering time, so use caution
when enabling this feature with complex tables.

Consider using header rows and frozen columns only
when necessary.

The table component provides features that enable
you to set the row Header and frozen columns. These
options can provide a well-designed interface which
can lead to a good user experience. However, they can
impact client-side performance. To get the best
performance for table components, use these options
only when they are needed.

Basic Tuning Considerations

9-16 Tuning Performance Guide

Table 9-4 (Cont.) Table and Tree Component Configurations

Configuration Recommendation Description

Consider using visitTree instead of
invokeOnComponent.

A partial visit using visitTree is always at least as
fast as invokeOnComponent. In addition, for
components controlling visiting, providing both
invokeOnComponent and visitTree
implementations is a source of errors. Consider
deprecating invokeOnComponent and use
visitTree instead.

For more information, see Using Tables, Trees, and
Other Collection-Based Components in Developing Web
User Interfaces with Oracle ADF Faces.

9.2.5 Performance Considerations for autoSuggest
autoSuggest is a feature that can be enabled for inputText,
inputListOfValues, and inputComboboxListOfValues components. When the
user types characters in the input field, the component displays a list of suggested
items. The feature performs a query in the database table to filter the results. To speed
up database processing, a database index should be created on the column for which
autosuggest is enabled. This improves the component's response times especially
when the database table has a large number of rows.

9.2.6 Data Delivery - Lazy versus Immediate
Data for Table, Tree, and other stamped components can be delivered immediately or
lazily. By default, lazy delivery is used. This means that data is not delivered in the
initial response from the server. Rather, after the initial page is rendered, the client
asks the server for the data and gets it as a response to the second request.

In the case of immediate delivery, data can be in line with the response to the page
request. It is important to note that data delivery is per component and not per page.
This means that these two can be mixed on the same page.

When choosing between these two options, consider the following:

Basic Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-17

Lazy Delivery (default) Lazy delivery should be used for tables, or other
stamped components, which are known to have slow
fetch time. The examples are stamped components are
the ones based on data controls using web services calls
or other data controls with slow data fetch. Lazy
delivery can also be used on pages where content is not
immediately visible unless the user scrolls down to it.
In this case the time to deliver the visible context to the
client will be shorter, and the user perceives better
performance.

Lazy delivery is implemented using data streaming
technique. The advantage of this approach is that the
server has the ability to execute data fetches in parallel
and stream data back to the client as soon as the data is
available. The technique performs very well for a page
with two tables, one that returns data very quickly and
one that returns data very slowly. Users see the data for
the fast table as soon as the data is available.

Executing data fetches in parallel also speeds up the
total time to fetch data. This gives an advantage to lazy
loading in cases of multiple, and possibly slow, data
fetches. While streaming is the default mechanisms to
deliver data in lazy mode, parallel execution of data
controls is not. To enable parallel execution, open the
page definition and change RenderHint on the
iterator to background.

In certain situations, the advantage of parallel
execution is faster response time. Parallel execution
could potentially use more resources due to multiple
threads executing request in parallel and possibly more
database connections will be opened.

Consider using parallel execution only when there are
multiple slow components on the page and the
stamped components belong to different data control
frames (such as isolated task flows). Since parallel
execution synchronizes on the data control frame level,
when there is a single data control frame parallel
execution may not improve performance.

Immediate Delivery Immediate delivery
(contentDelivery="immediate") should be used
if table data control is fast, or if it returns a small set of
data. In these cases the response time be faster than
using lazy delivery.

Another advantage of immediate delivery is less server
resource usage, compared to lazy delivery. Immediate
delivery sends only one request to the server, which
results in lower CPU and memory usage on the server
for the given user interaction.

9.2.7 Performance Considerations for DVT Components
DVT components are data visualization components built on top of ADF Rich Client
components. DVT components include graphs, gauges, Gantt charts, pivot tables and
maps. Table 9-5 provides some configuration recommendations for DVT components:

Basic Tuning Considerations

9-18 Tuning Performance Guide

Table 9-5 DVT Component Configurations

Configuration Recommendation Description

Modify the RangeSize attribute. The RangeSize attribute defines the number of rows
to return simultaneously. A RangeSize value of -1
causes the iterator to return all the rows. Using a lower
value may improve performance, but it may be harder
to stop the data and any data beyond RangeSize is
not available in the view.

Use horizontal text instead of vertical text. By default, pivot tables use horizontal text for column
headers. However, there is an option to use vertical text
as well. Vertical text can be used by specifying a CSS
style for the header format such as:

writing-mode:tb-rl;filter:flipV flipH;

While vertical text can look better in some cases, it has
a performance impact when the Firefox browser is
used.

The problem is that vertical text is not native in Firefox
as it is in Internet Explorer. To show vertical text, the
pivot table uses images produced by GaugeServlet.
These images cannot be cached as the text is dynamic
and depends on the binding value. Due to this, every
rendering of the pivot table incurs extra round-trips to
the server to fetch the images, which impact network
traffic, server memory, and CPU.

To have the best performance, consider using
horizontal text instead of vertical text.

9.3 Advanced Tuning Considerations
After you have performed recommended tuning modifications, you can make
additional changes that are specific to your ADF Server deployment. Consider
carefully whether the advanced tuning recommendations are appropriate for your
environment.

ADF Server Performance

9.3.1 ADF Server Performance
Oracle ADF Server components consist of the non-UI components within ADF. These
include the ADF implementations of the model layer (ADFm), business services layer
(ADFbc), and controller layer (ADFc). As the server components are highly
configurable, it is important to choose the combination of configurations that best suits
the available resources with the specified application performance and functionality.

Note:

When using ADFm, consider using deferred execution and monitor the
refresh conditions to maintain performance.

Tuning Session Timeout

Tuning View Objects

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-19

Enabling Batch Processing

Tuning RangeSize

Configuring Application Module Pooling

Using ADFc Regions

Deferring Task Flow Execution

Deferring Task Flow Creation in Popups

Configuring the Task Flow Inside Switcher

Reusing Static Data

Conditional Validations

9.3.1.1 Tuning Session Timeout

For ADF applications with a significant user community, the amount of memory held
by sessions waiting to expire can negatively impact performance when the default
session timeout of 45 minutes is used. The memory being held can be higher than
what is physically available, causing the server to not be able to handle the load. For
large numbers of users, such as those using a public facing website, the session
timeout should be as short as possible.

To improve performance, consider modifying the default session timeout value (in
minutes) in the web.xml file. Use a session timeout value that works with your use
case scenario. The example below shows a session timeout of 10 minutes:

<session-config>
 <session-timeout>
 10
 </session-timeout>
</session-config>

9.3.1.2 Tuning View Objects

View objects (VOs) provide many tuning options to enable a developer to tailor the
View Object to the application's specific needs. View Objects should be configured to
use the minimal feature set required to fulfill the functional requirement. Developing
Fusion Web Applications with Oracle Application Development Framework provides
detailed information on tuning View Objects. Provided here are some tips pertaining
to View Object performance.

Creating View Objects

Configuring View Object Data Fetching

Setting Additional View Object Configurations

9.3.1.2.1 Creating View Objects

To maximize View Object performance, the View Object should match the intended
usage. For instance, data retrieved for a list of values pick-list is typically read-only, so
a read-only View Object should be used to query this data. Tailoring the View Object
to the specific needs of the application can improve performance, memory usage, CPU
usage, and network usage.

Advanced Tuning Considerations

9-20 Tuning Performance Guide

View Object Type Description

Read-only View Objects Consider using a read-only View Object if the View
Object does not have to insert or update data. There are
two options for read-only View Objects:

• Non-updatable EO-based View Objects
• Expert-mode View Objects
Non-updatable EO-based View Objects offer the
advantage of a customizable select list at run time
which retrieve attributes needed in the UI, data reads
from local cache (instead of re-executing a database
query), and data consistency with other updatable
View Objects based on the same EO.

Expert-mode View Objects have the ability to perform
SQL operations not supported by EOs and avoid the
small performance impact from coordinating View
Object and EO rows. EO-based View Objects can be
marked non-updatable by deselecting the updatable
option in the selected EO for the View Object, which
can also be done by adding the parameter
ReadOnly="true" on the EntityUsage attribute in
the View Object XML definition.

Insert-only View Objects For View Objects that are used only for inserting
records, you can prevent unnecessary select queries
from being executed when using the View Object. To
do this, set the option No Rows in the Retrieve from the
Database group box in the View Objects Overview tab.
This sets MaxFetchSize to 0 (zero) for the View
Object definition.

run time-created View Objects View Objects can be created at run time using the
createViewObjectFromQueryStmt() API on the
AM. However, avoid using run time-created View
Objects unless absolutely necessary due to potential
performance impacts and complexity of tuning.

9.3.1.2.2 Configuring View Object Data Fetching

View Object performance is largely dependent on how the view object is configured to
fetch data. If the fetch options are not tuned correctly for the application, then the view
object may fetch an excessive amount of data or may take too many round-trips to the
database. Fetch options can be configured through the Retrieve from the Database
group box in the View Object dialog Figure 9-1.

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-21

Figure 9-1 View Object Dialog

Fetch Option Description

Fetch Mode The default fetch option is the All Rows option, which
is retrieved as needed
(FetchMode="FETCH_AS_NEEDED") or all at once
(FetchMode="FETCH_ALL"), depending on which
option is appropriate. The As Needed option ensures
that an executeQuery() operation on the view object
initially retrieves only as many rows as necessary to fill
the first page of a display. The number of rows is set
based on the view object's range size.

Fetch Size In conjunction with the fetch mode option, the Batches
field controls the number of records fetched
simultaneously from the database (FetchSize in the
View Object, XML). The default value is 1, which may
impact performance unless only 1 row is fetched. The
suggested configuration is to set this value to n+1
where n is the number of rows to be displayed in the
user interface.

Note that for DVT objects, Fetch Size should be n+1
where n is either rangeSize or the likely maximum
rowset size if rangeSize is -1.

Advanced Tuning Considerations

9-22 Tuning Performance Guide

Fetch Option Description

Max Fetch Size The default max fetch size for a View Object is -1,
which means that there is no limit to the number of
rows the View Object can fetch. Setting a max fetch size
of 0 (zero) makes the View Object insert-only. In cases
where the result set should only contain n rows of data,
the option Only Up to Row Number should be selected
and set or call setMaxFetchSize(N) to set this
programmatically. To set this manually, add the
parameter MaxFetchSize to the View Object XML.

For View Objects whose WHERE clause expects to
retrieve a single row, set the option At Most One
Row. This option ensures that the view object knows
not to expect any more rows and skips its normal test
for that situation. In this case no select query is issued
and no rows are fetched.

Max fetch size can also be used to limit the impact from
an non-selective query that may return hundreds (or
thousands) of rows. In such cases, specifying the max
fetch size limits the number of rows that can be fetched
and stored into memory.

Forward-Only Mode If a data set is only traversed going forward, then
forward-only mode can help performance when
iterating through the data set. This can be configured
by programmatically calling
setForwardOnly(true) on the View Object. Setting
forward-only can also prevent caching previous sets of
rows as the data set is traversed.

9.3.1.2.3 Setting Additional View Object Configurations

Table 9-6 provides additional tuning considerations when using the View Object:

Table 9-6 Additional View Object Configurations

Configuration Recommendation Description

Optimize large data sets. View Objects provide a mechanism to page through
large data sets so that a user can jump to a specific page
in the results. This is configured by calling
setRangeSize(N) followed by
setAccessMode(RowSet.RANGE_PAGING) on the
View Object where N is the number of rows contained
within 1 page. When navigating to a specific page in
the data set, the application can call
scrollToRangePage(P) on the View Object to
navigate to page P. Range paging fetches and caches
only the current page of rows in the View Object row
cache at the cost of another query execution to retrieve
each page of data. Range paging is not appropriate
where it is beneficial to have all fetched rows in the
View Object row cache (for example, when the
application must read all rows in a data set for an LOV
or page back and forth in records of a small data set).

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-23

Table 9-6 (Cont.) Additional View Object Configurations

Configuration Recommendation Description

Disable "spillover" configurations when possible. You can use the data source as "virtual memory" when
the JVM container runs out of memory. By default this
is disabled and can be enabled (if needed) by setting
jbo.use.pers.coll=true. Keep this option
disabled (if possible) to avoid a potential performance
impact.

Review SQL style configuration. If the generic SQL92 SQL style is used to connect to
generic SQL92-compliant database, then some View
Object tuning options do not apply. The View Object
fetch size is one such tuning option. When SQL92 SQL
style is used, the fetch size defaults to 10 rows,
regardless of what is configured for the View Object.
The SQL style is set when defining the database
connection. By default when defining an Oracle
database connection, the SQL style can be Oracle. To
manually override the SQL style, pass the parameter -
Djbo.SQLBuilder="SQL92" to the JVM at startup.

Use bind variables for view object queries. If the query associated with the View Object contains
values that may change from execution to execution,
consider using bind variables. This may help to avoid
re-parsing the query on the database. Bind variables
can be added to the View Object in the Query section of
the View Object definition.

Use query optimizer hints for view object queries. The View Object can pass hints to the database to
influence which execution plan to use for the associated
query. The optimizer hints can be specified in the
Retrieve from the Database group box.

Use dynamic SQL generation. View Objects can be configured to dynamically
generate SQL statements at run time instead of
defining the SQL at design time. A View Object
instance, configured with generating SQL statements
dynamically, can avoid re-querying a database. This is
especially true during page navigation if a subset of all
attributes with the same key Entity Object list is used in
the subsequent page navigation. Performance can be
improved by activating a superset of all the required
attributes to eliminate a subsequent query execution.

9.3.1.3 Enabling Batch Processing

Batch processing enables multiple inserts, updates, and deletes to be processed
together when sending the operations to the database. Enabling this feature is done on
the Entity Object (EO) by either selecting the Use Update Batching check box in the
Tuning section of the EO's General tab, or by directly modifying the EO's XML file and
adding the parameter BatchThreshold with the specified batch size to the Entity
attribute.

The BatchThreshold value is the threshold at which a group of operations can be
batched instead of performing each operation one at a time. If the threshold is not
exceeded, then rows may be affected one at a time. On the other hand, more rows than
specified by the threshold can be batched into a single batch.

Advanced Tuning Considerations

9-24 Tuning Performance Guide

Note that the BatchThreshold configuration for the EO is not compatible if an
attribute in the EO exists with the configuration to refresh after insert
(RetrievedOnInsert="true") or update (RetrievedOnUpdate="true").

9.3.1.4 Tuning RangeSize

This parameter controls the number of records ADFm requests from the BC layer
simultaneously. The default RangeSize is 25 records. Consider setting this value to
the number of records to be displayed in the UI simultaneously for the View Object so
that the number of round-trips between the model and BC layers is reduced to one.
This is configured in the Iterator attribute of the corresponding page's page
definition XML.

9.3.1.5 Configuring Application Module Pooling

Application module (AM) pooling enables multiple users to share several application
module instances. The configurations for the AM pool vary depending on the
expected usage of the application.

Most of the AM pool parameters can be set through Oracle JDeveloper. The
configurations are saved in bc4j.xcfg, which can be manually edited if needed.
Parameters can also be set at the system level by specifying these as JVM parameters
(-Dproperty=value). The bc4j.xcfg configuration takes precedence over the JVM
configuration; this enables a generic system-level configuration to be overridden by an
application-specific exception.

Table 9-7 Application Module (AM) Pool Tuning

Configuration Recommendation Description

Optimize the number of AM pools in the application. Parameters applied at the system level are applied per
AM pool. If the application uses more than 1 AM pool,
then system-level values for the number of AM
instances must be multiplied by the number of AM
pools to realize the actual limits specified on the system
as a whole.

For example, if an application uses four separate AM
pools to service the application, and a system-level
configuration is used to limit the max AM pool size to
100, then this can result in a maximum of 400 AM
instances (4 pools * 100 max pool size).

If the intent is to limit the entire application to a max
pool size of 100, then the system-level configuration
should specify a max pool size of 25 (100 max pool
size / 4 pools). Finer granularity for configuring each
AM pool can be achieved by configuring each pool
separately through JDev or directly in bc4j.xcfg.

Optimize the number of database connections. By default AM instances retain their database
connections even when checked back into the AM pool.
There are many performance benefits to maintain this
association. To maintain performance, consider
configuring more AM instances than the maximum
number of specified database connections.

NOTE: If you have an AM pool that needs to be used as
root pool, consider tuning at the specific AM pool level.
For pools that are infrequently used, consider tuning
pool sizes on the pool level so that top-level application
parameters are not used.

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-25

General AM Pool Configurations

Configuring Application Module Pool Sizing

Configuring Application Module Pool Resource Cleanup

Designing an Application Module

9.3.1.5.1 General AM Pool Configurations

The following guidelines can be used as a general starting point when tuning AM and
AM pool behavior. More specific tuning for memory or CPU usage can be found in
Configuring Application Module Pool Sizing.

Table 9-8 AM Pool Tuning Parameters

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize

Specifies the number of application module instances
to create when the pool is initialized (default is zero).
Setting a nonzero initial pool size increases the time to
initialize the application, but improves subsequent
performance for operations requiring an AM instance.

Configure this value to 10% more than the anticipated
number of concurrent AM instances required to service
all users.

Maximum Pool Size

jbo.ampool.maxpoolsize

Specifies the maximum number of application module
instances that the pool can allocate (default is 4096).
The pool can never create more application module
instances than this limit imposes. A general guideline is
to configure this to 20% more than the initial pool size
to allow for some additional growth.

Minimum Available Size

jbo.ampool.minavailablesize

The minimum number of available application module
instances that the pool monitor should leave in the pool
during a resource cleanup operation, when the server is
under light load.

Set to 0 (zero) if you want the pool to shrink to contain
no instances when all instances have been idle for
longer than the idle time-out after a resource cleanup.

The default is 5 instances.

While application module pool tuning allows different
values for the jbo.ampool.minavailablesize |
jbo.ampool.maxavailablesize parameters, in
most cases it is fine to set these minimum and
maximum tuning properties to the same value.

Advanced Tuning Considerations

9-26 Tuning Performance Guide

Table 9-8 (Cont.) AM Pool Tuning Parameters

Parameter Description

Maximum Available Size

jbo.ampool.maxavailablesize

The ideal maximum number of available application
module instances in the pool when the server is under
load.

When the pool monitor wakes up to do resource
cleanup, it will try to remove available application
module instances to bring the total number of available
instances down to this ideal maximum. Instances that
have been not been used for a period longer than the
idle instance time-out will always get cleaned up at this
time, then additional available instances will be
removed if necessary to bring the number of available
instances down to this size.

The default maximum available size is 25 instances.
Configure this to leave the maximum number of
available instances desired after a resource cleanup. A
lower value generally results in more application
module instances being removed from the pool on a
cleanup.

While application module pool tuning allows different
values for the jbo.ampool.maxavailablesize |
jbo.ampool.minavailablesize parameters, in
most cases it is fine to set these minimum and
maximum tuning properties to the same value.

Referenced Pool Size

jbo.recyclethreshold

Specifies the maximum number of application module
instances in the pool that attempt to preserve session
affinity for the next request made by the session that
used them last before releasing them to the pool in
managed-state mode (default is 10).

The referenced pool size should always be less than or
equal to the maximum pool size. This enables the
configured number of available instances to try and
remain "loyal" to the affinity they have with the most
recent session that released them in managed state
mode.

Configure this value to the expected number of
concurrent users that perform multiple operations with
short think times. If there are no users expected to use
the application with short think times, then this can be
configured to 0 (zero) to eliminate affinity.

Maximum Instance Time to Live

jbo.ampool.timetolive

The number of milliseconds after which to consider an
connection instance in the pool as a candidate for
removal during the next resource cleanup regardless of
whether it would bring the number of instances in the
pool below minavailablesize.

The default is 3600000 milliseconds of total time to
live (which is 3600 seconds, or one hour). A lower
value reduces the time an application module instance
can exist before it must be removed at the next resource
cleanup. The default value is sufficient for most
applications. A higher value increases the time an
application module instance can exist before it must be
removed at the next cleanup.

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-27

Table 9-8 (Cont.) AM Pool Tuning Parameters

Parameter Description

Idle Instance Timeout

jbo.ampool.maxinactiveage

The number of milliseconds after which to consider an
inactive application module instance in the pool as a
candidate for removal during the next resource
cleanup.

The default is 600000 milliseconds of idle time (which
is 600 seconds, or ten minutes). A lower value results in
more application module instances being marked as a
candidate for removal at the next resource cleanup. A
higher value results in fewer application module
instances being marked as a candidate for removal at
the next resource cleanup.

Pool Polling Interval

jbo.ampool.monitorsleepinterval

The length of time in milliseconds between pool
resource cleanup.

While the number of application module instances in
the pool will never exceed the maximum pool size,
available instances which are candidates for getting
removed from the pool do not get "cleaned up" until
the next time the application module pool monitor
wakes up to do its job.

The default is to have the application module pool
monitor wake up every 600000 milliseconds (which is
600 seconds, or ten minutes). Configuring a lower
interval results in inactive application module instances
being removed more frequently to save memory.
Configuring a higher interval results in less frequent
resource cleanups.

Failover

jbo.dofailover

Specifies whether to disable or enable failover. By
default, failover is disabled. To enable failover, set the
parameter to true.

NOTE: When enabling application module state
passivation, a failure can occur when Oracle WebLogic
Server is configured to forcibly release connection back
into the pool. A failure of this type produces a
SQLException (Connection has already been closed)
that is saved to the server log. The exception is not
reported through the user interface.

To ensure that state passivation occurs and changes are
saved, set an appropriate value for the weblogic-
application.xml deployment descriptor parameter
inactive-connection-timeout-seconds on the
<connection-check-params> pool-params
element.

Setting the deployment descriptor parameter to several
minutes, in most cases, should avoid forcing the
inactive connection timeout and the resulting
passivation failure. Adjust the setting as needed for
your environment.

Advanced Tuning Considerations

9-28 Tuning Performance Guide

Table 9-8 (Cont.) AM Pool Tuning Parameters

Parameter Description

Locking Mode

jbo.locking.mode

Specifies the locking mode (optimistic or
pessimistic). The default is pessimistic, which
means that a pending transaction state can be created
on the database with row-level locks. With pessimistic
locking mode, each time an AM is recycled, a rollback
is issued in the JDBC connection. Web applications
should set the locking mode to optimistic to avoid
creating the row-level locks.

Database Connection Pooling

jbo.doconnectionpooling

Specifies whether the AM instance can be disconnected
from the database connection when the AM instance is
returned to the AM pool. This enables an application to
size the AM pool larger than the database connection
pool. The default is false, which means that an AM
instance can retain its database connection when the
AM instance is returned to the AM pool. When set to
true, the AM can release the database connection back
to the database connection pool when the AM instance
is returned to the AM pool. Note that before an AM is
disconnected from the database connection, a rollback
can be issued on that database connection to revert any
pending database state.

Transaction Disconnect Level

jbo.txn.disconnect_level

When used in conjunction with
jbo.doconnectionpooling=true, specifies BC4J
behavior for maintaining JDBC ResultSets. By default
jbo.txn.disconnect_level is 0, and passivation
can be used to close any open ResultSets when the
database connection is disconnected from the AM
instance. Configuring jbo.txn.disconnect_level
to 1 can prevent this behavior to avoid the passivation
costs for this situation.

For parameters that can be configured for memory-constrained systems, see Table 9-9.

Table 9-9 AM Pool Sizing Configurations - Memory Considerations

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize

Set this to a low value to conserve memory at the cost
of slower performance when additional AM instances
are required. The default value of 0 (zero) does not
create any AM instances when the AM pool is
initialized.

Maximum Pool Size

jbo.ampool.maxpoolsize

Configure this to prevent the number of AM instance
from exceeding the determined value. However, if this
is set too low, then some users may see an error
accessing the application if no AM instances are
available.

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-29

Table 9-9 (Cont.) AM Pool Sizing Configurations - Memory Considerations

Parameter Description

Minimum Available Pool Size

jbo.ampool.minavailablesize

Set to 0 (zero) to shrink the pool to contain no instances
when all instances have been idle for longer than the
idle time out after a resource cleanup. However, a
setting of 1 is commonly used to avoid the costs of re-
creating the AM pool.

Maximum Available Pool Size

jbo.ampool.maxavailablesize

Configure this to leave the maximum number of
available instances specified after a resource cleanup.

For parameters that can be configured to reduce the load on the CPU to some extent
through a few parameters, see Table 9-10.

Table 9-10 AM Pool Sizing Configurations - CPU Considerations

Parameter Description

jbo.ampool.initpoolsize Set this value to the number of AM instances you want
the application pool to start with. Creating AM
instances during initialization takes the CPU
processing costs of creating AM instances during the
initialization instead of on-demand when additional
AM instances are required.

jbo.recyclethreshold Configure this value to maintain the AM instance's
affinity to a user's session. Maintaining this affinity as
much as possible save the CPU processing cost of
needing to switch an AM instance from one user
session to another.

9.3.1.5.2 Configuring Application Module Pool Sizing

The Application Module pool sizing configuration is largely dependant on the number
of concurrent users you expect to have. To prevent performance issues, you need to
make sure AM pool size is sufficient to serve all concurrent users.

Caution:

The following example assumes at least 100 concurrent users. Always consult
your own use case scenarios to determine the appropriate settings for your
deployment.

To configure these parameters, open the setDomainEnv.sh file for the WebLogic
Server instance and find these lines:

JAVA_OPTIONS="${JAVA_OPTIONS}"
export JAVA_OPTIONS

Replace these lines with the following:

JAVA_OPTIONS="-Djbo.ampool.doampooling=true
-Djbo.ampool.minavailablesize=1
-Djbo.ampool.maxavailablesize=120
-Djbo.recyclethreshold=60

Advanced Tuning Considerations

9-30 Tuning Performance Guide

-Djbo.ampool.timetolive=-1
-Djbo.load.components.lazily=true
-Djbo.doconnectionpooling=true
-Djbo.txn.disconnect_level=1
-Djbo.connectfailover=false
-Djbo.max.cursors=5
-Doracle.jdbc.implicitStatementCacheSize=5
-Doracle.jdbc.maxCachedBufferSize=19 ${JAVA_OPTIONS}"

Note:

To limit performance implications, set the ampool.maxavailablesize to a
value that is at least 20% more than the maximum number of concurrent users
you expect in your own use case scenarios.

9.3.1.5.3 Configuring Application Module Pool Resource Cleanup

These parameters affect the frequency and characteristics for AM pool resource
cleanups.

For memory-constrained systems, configure the AM pool to clean up more AM
instances more frequently so that the memory consumed by the AM instance can be
freed for other purposes. However, reducing the number of available AM instances
and increasing the frequency of cleanups can result in higher CPU usage and longer
response times. See Table 9-11 for more information.

Table 9-11 AM Pool Resource Cleanup Configurations - Memory Considerations

Parameter Description

jbo.ampool.minavailablesize A setting of 0 (zero) shrinks the pool to contain no
instances when all instances have been idle for longer
than the idle time out. However, a setting of 1 is
commonly used to avoid the costs of re-creating the
AM pool

jbo.ampool.maxavailablesize A lower value generally results in more AM instances
being removed from the pool on a cleanup.

jbo.ampool.timetolive A lower value reduces the time an AM instance can
exist before it must be removed at the next resource
cleanup.

jbo.ampool.maxinactiveage A low value results in more AM instances being
marked as a candidate for removal at the next resource
cleanup.

jbo.ampool.monitorsleepinterval This controls how frequent resource cleanups can be
triggered. Configuring a lower interval results in
inactive AM instances being removed more frequently
to save memory.

The AM pool can be configured to reduce the need for CPU processing by allowing
more AM instances to exist in the pool for longer periods of time. This generally comes
at the cost of consuming more memory.

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-31

Table 9-12 AM Pool Resource Cleanup Configurations - CPU Considerations

Parameter Description

jbo.ampool.minavailablesize and
jbo.ampool.maxavailablesize

Setting these to a higher value leaves more idle
instances in the pool, so that AM instances do not have
to be recreated at a later time. However, the values
should not be set excessively high to keep more AM
instances than can be required at maximum load.

jbo.ampool.timetolive A higher value increases the time an AM instance can
exist before it must be removed at the next resource
cleanup.

jbo.ampool.maxinactiveage A higher value results in fewer AM instances being
marked as a candidate for removal at the next resource
cleanup.

jbo.ampool.monitorsleepinterval Configuring a higher interval results in less frequent
resource cleanups.

9.3.1.5.4 Designing an Application Module

Designing an application's module granularity is an important consideration that can
significantly impact performance and scalability. It is important to note that each root
application module generally holds its own database connection. If a user session
consumes multiple root application modules, then that user session can potentially
hold multiple database connections simultaneously. This can occur even if the
connections are not actively being used, due to the general affinity maintained
between an application module and a user session. To reduce the possibility that a
user can hold multiple connections at once, consider the following options:

• Design larger application modules to encompass all of the functionality that a user
needs.

• Nest smaller application modules under a single root application module so that
the same database connection can be shared among the nested application
modules.

• Use lazy loading for application modules. In the Application Module tuning
section, customize runtime instantiation behavior to use lazy loading. Lazy loading
can also be set JVM-wide by adding the following JVM argument:

-Djbo.load.components.lazily=true

9.3.1.6 Using ADFc Regions

Adding regions to a page can be a powerful addition to the application. While there is
no limit to the number of remote regions that you can render in a JSF page, use this
capability with caution. For simple pages, where tabs are not used, regions may be
combined in the page such that the maximum number of regions is determined by the
design of the region and the view object queries it executes. Alternatively, for complex
pages that use tabs, limit the use of regions to achieve best performance. For complex
tabbed pages, ADF will not deactivate task flow transactions once a region is loaded.
When switching tabs, the ongoing transaction must be stopped to achieve best
performance.

Advanced Tuning Considerations

9-32 Tuning Performance Guide

9.3.1.7 Deferring Task Flow Execution

By default, task flows are activated when the page is loaded, even when the task flow
is not initially rendered. This causes unnecessary overhead if the task flow is never
displayed.

Note:

For regions and task flows, the amount of time it takes to evaluate the current
viewId and the time it takes to calculate input parameters to the flow can
impact your overall performance. Consider this during your design phase.

9.3.1.8 Deferring Task Flow Creation in Popups

By default, the child components under a popup are created even when popup is not
accessed. To avoid this overhead, consider the following:

• Set childCreation to deferred

Set childCreation="deferred" on the popup

Set activation="deferred" on the task flow

Note:

This approach cannot be used if any of the following tags are present inside
the popup:

– f:attribute

– af:setPropertyListener

– af:clientListener

– af:serverListener

t also cannot be used if you need to refer to any child components of the
popup before the popup is displayed. Setting childCreation="deferred"
will postpone creating any child components of the popup and you cannot
refer to them until after the popup is shown. In that case, use Conditional
Activation.

• Use Conditional Activation

Add property listener on the popup in the jsff to set a condition

Set activation="conditional" on the task flow

Set activate=condition on the task flow

9.3.1.9 Configuring the Task Flow Inside Switcher

By default, task flows under switchers are activated when the page is loaded, not
when the switcher facet is displayed. To avoid this, use conditional activation and set
active to an expression language (EL) expression that returns true when the facet is
displayed.

Advanced Tuning Considerations

Tuning Oracle Application Development Framework (ADF) 9-33

9.3.1.10 Reusing Static Data

If the application contains static data that can be reused across the application, the
cache data can be collected using a shared application module. For more information
on creating and using shared application modules, see Sharing Application Module
View Instances in Developing Fusion Web Applications with Oracle Application
Development Framework.

9.3.1.11 Conditional Validations

For resource-intensive validations on entity attributes, consider using preconditions to
selectively apply the validations only when needed. The cost of validation must be
weighted against the cost of the precondition to determine if the precondition is
beneficial to the performance. For more information on specifying preconditions for
validation, see How to Set Preconditions for Validation in Developing Fusion Web
Applications with Oracle Application Development Framework.

Advanced Tuning Considerations

9-34 Tuning Performance Guide

10
Tuning Oracle TopLink

You can tune EclipseLink, an open-source persistence framework used with Oracle
TopLink, to optimize its performance as the Java Persistence API (JPA)
implementation.

Oracle Fusion Middleware Server Components

About Oracle TopLink and EclipseLink

Basic Tuning Considerations

Advanced Tuning Considerations

10.1 About Oracle TopLink and EclipseLink
Oracle TopLink includes the open source EclipseLink as the Java Persistence API (JPA)
implementation. Oracle TopLink extends EclipseLink with advanced integration into
the Oracle Application Server.

The information here assumes that you are familiar with the basic functionality of
EclipseLink. Before you begin tuning, consider reviewing the following introductory
information:

• "Understanding Queries" at http://www.eclipse.org/eclipselink/
documentation/2.5/concepts/queries.htm#CHDGGCJB

• "Understanding Caching" at http://www.eclipse.org/eclipselink/
documentation/2.5/concepts/general004.htm#CHDEEBFG

• "Understanding Mappings" at http://www.eclipse.org/eclipselink/
documentation/2.5/concepts/mappingintro.htm#CHDFEJIJ

For more information on Oracle TopLink, see the TopLink page on the Oracle
Technology Network (OTN).]

Note:

The information here serves as a Quick Start guide to performance tuning JPA
in the context of a Java EE environment. While this information provides
common performance tuning considerations and related documentation
resources, it is not meant to be comprehensive list of areas to tune.

10.2 Basic Tuning Considerations
To achieve optimal performance, you can follow tuning recommendations that apply
to your own use case scenarios.

Tuning Oracle TopLink 10-1

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/general004.htm#CHDEEBFG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/general004.htm#CHDEEBFG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro.htm#CHDFEJIJ
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro.htm#CHDFEJIJ
http://www.oracle.com/technology/products/ias/toplink/index.html

SQL Statement and Query Tuning Parameters

Cache Configuration Tuning Parameters

About Mapping and Descriptor Configurations

About Data Partitioning

10.2.1 SQL Statement and Query Tuning Parameters
Table 10-1 and Table 10-2 show tuning parameters and performance recommendations
related to SQL statements and querying.

Table 10-1 EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Parameterized SQL Binding Using parameterized SQL and
prepared statement caching, you
can improve performance by
reducing the number of times the
database SQL engine parses and
prepares SQL for a frequently called
query. EclipseLink enables
parameterized SQL by default.
However, not all databases and
JDBC drivers support these options.
Note that the Oracle JDBC driver
bundled with Oracle Application
Server does support this option. The
persistence property
eclipselink.jdbc.bind-
parameters in
persistence.xml is used to
configure this.

See also "Understanding Caching"
at http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
cache.htm#CDEFHHEH and
"Understanding Querying" at
http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
queries.htm#CHDGGCJB

Default Value:
PERSISTENCE_UNIT_DEFAULT
(which is true by default)

Leave parameterized SQL binding
enabled for selected databases and
JDBC drivers that support these
options.

Basic Tuning Considerations

10-2 Tuning Performance Guide

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/queries.htm#CHDGGCJB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/queries.htm#CHDGGCJB

Table 10-1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

JDBC Statement Caching Statement caching is used to lower
the performance impact of repeated
cursor creation and repeated
statement parsing and creation; this
can improve performance for
applications using a database.

Note: For Java EE applications, use
the data source's statement caching
(and do not use EclipseLink
Statement Caching for EJB3.0/JPA,
for example:
eclipselink.jdbc.cache-
statements="true").

Set this option in an Oracle
Weblogic data source by setting
Statement Cached Type and
Statement Cached Size
configuration options.

See also Increasing Performance
with the Statement Cache in
Administering JDBC Data Sources for
Oracle WebLogic Server.

Default Value: The Oracle Weblogic
Server data source default
statement cache size is 10
statements per connection.

You should always enable
statement caching if your JDBC
driver supports this option. The
Oracle JDBC driver supports this
option.

Fetch Size The JDBC fetch size gives the JDBC
driver a hint as to the number of
rows that should be fetched from
the database when more rows are
needed.

For large queries that return a large
number of objects, you can
configure the row fetch size used in
the query to improve performance
by reducing the number database
hits required to satisfy the selection
criteria.

Most JDBC drivers use a default
fetch size of 10. If you are reading
1000 objects, increasing the fetch
size to 256 can significantly reduce
the time required to fetch the
query's results.

Note: The default value means use
the JDBC driver default value,
which is typically 10 rows for the
Oracle JDBC driver.

To configure this, use query hint
eclipselink.jdbc.fetch-
size.

Default Value: 0

The optimal fetch size is not always
obvious. Usually, a fetch size of one
half or one quarter of the total
expected result size is optimal. Note
that if you are unsure of the result
set size, incorrectly setting a fetch
size too large or too small can
decrease performance.

Basic Tuning Considerations

Tuning Oracle TopLink 10-3

Table 10-1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Batch Writing Batch writing can improve database
performance by sending groups of
INSERT, UPDATE, and DELETE
statements to the database in a
single transaction, rather than
individually.

The persistence property
"eclipselink.jdbc.batch-
writing"="JDBC" in
persistence.xml is used to
configure this.

Default Value: Off

Enable for the persistence unit.

Change Tracking This is an optimization feature that
lets you tune the way EclipseLink
detects changes in an Entity.

Default Value: AttributeLevel if
using weaving (Java EE default),
otherwise Deferred.

Leave at default AttributeLevel
for best performance.

Weaving Can disable through
persistence.xml properties
eclipselink.weaving

Default Value: On

Leave on for best performance.

Read Only Setting an EJB3.0 JPA Entity to
Read Only ensures that the entity
cannot be modified and enables
EclipseLink to optimize unit of
work performance.

Set through query hint
eclipselink.read-only.

Can also be set at entity level using
@ReadOnly class annotation.

Default Value: False

For optimal performance use Read
Only on any query where the
resulting objects are not changed.

firstResult and maxRows These are JPA query properties that
are used for paging large queries.
Typically, these properties can be
used when the entire result set of a
query returning a large number of
rows is not needed. For example,
when a user scans the result set (a
page at a time) looking for a
particular result and then discards
the rest of the data after the record
is found.

Use on queries that can have a large
result set and only a subset of the
objects is needed.

Basic Tuning Considerations

10-4 Tuning Performance Guide

Table 10-1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Sequence number pre-
allocation

Sequence number pre-allocation
enables a batch of ids to be queried
from the database simultaneously to
avoid accessing the database for an
id on every insert.

Default Value: 50

Always use sequence number pre-
allocation for best performance for
inserts. SEQUENCE or TABLE
sequencing should be used for
optimal performance, not
IDENTITY which does not allow
pre-allocation.

Entity Relationships Query Tuning Parameters

10.2.1.1 Entity Relationships Query Tuning Parameters

Table 10-2 shows the Entity relationship query parameters for performance tuning.

Table 10-2 EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Batch Fetching The eclipselink.batch hint
supplies EclipseLink with batching
information so subsequent queries
of related objects can be optimized
in batches instead of being retrieved
one-by-one or in one large joined
read.

Batch fetching has three types:
JOIN, EXISTS and IN. The type is
set through the query hint
eclipselink.batch.type.

Note that batching is only allowed
on queries that have a single object
in their select clause. The query hint
to configure this is
eclipselink.batch. Batch
fetching can also be set using the
@BatchFetch annotation.

Default Value: Off

Use for queries of tables with
columns mappings to table data
you need.You should only use
either batch fetching or joining if
you know that you are going to
access all of the data; if you do not
intend to access the relationships,
then just let indirection defer their
loading.

Batch fetching is more efficient than
joining because it avoids reading
duplicate data; therefore for best
performance for queries where
batch fetching is supported,
consider using batch fetching
instead of join reading.

Basic Tuning Considerations

Tuning Oracle TopLink 10-5

Table 10-2 (Cont.) EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Join Fetching Join fetching is a query optimization
feature that enables a single query
for a class to return the data to build
the instances of that class and its
related objects.

Use this feature to improve query
performance by reducing database
access. By default, relationships are
not join-read: each relationship is
fetched separately when accessed if
you are using lazy-loading, or as a
separate database query if you are
not using lazy-loading.

You can specify the use of join in
JPQL (JOIN FETCH), or you can
set it multi-level in a query hint
eclipselink.join-fetch. It
also can be set in the mapping
annotation @JoinFetch.

Joining is part of the JPA
specification, whereas batch
fetching is not. And, joining works
on queries that not work with batch
fetching. For example, joining
works on queries with multiple
objects in the select clause, queries
with a single result, and for cursors
and first/max results, whereas
batch fetching does not.

See also "Join Fetching" at http://
www.eclipse.org/
eclipselink/
documentation/2.5/
solutions/
performance001.htm#CHDEGCH
H

Default Value: Not Used

Use for queries of tables with
columns mappings to table data
you need. You should only use
either batch fetching or joining if
you know that you are going to
access all of the data; if you do not
intend to access the relationships,
then just let indirection defer their
loading. For the best performance of
selects, where batch fetching is not
supported, a join is recommended

Basic Tuning Considerations

10-6 Tuning Performance Guide

http://www.eclipse.org/eclipselink/documentation/2.5/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/performance001.htm#CHDEGCHH
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/performance001.htm#CHDEGCHH

Table 10-2 (Cont.) EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Lazy loading Without lazy loading on, when
EclipseLink retrieves a persistent
object, it retrieves all of the
dependent objects to which it refers.
When you configure lazy reading
(also known as indirection, lazy
loading, or just-in-time reading) for
an attribute mapped with a
relationship mapping, EclipseLink
uses an indirection object as a place
holder for the referenced object.

EclipseLink defers reading the
dependent object until you access
that specific attribute. This can
result in a significant performance
improvement, especially if the
application is interested only in the
contents of the retrieved object,
rather than the objects to which it is
related.

See also "Using Lazy Loading" at
http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
mappingintro001.htm#CEGBCJ
AG

Default Value: On for collection
mapping (ToMany mappings,
@OneToMany, @ManyToMany)

Default Value: Off for reference
(ToOne mappings, @OneToOne,
@ManyToOne)

(Note that setting lazy loading On
for @OneToOne, @ManyToOne
requires weaving, which is On by
default for Java EE.)

Use lazy loading for all mappings.
Using lazy loading and querying
the referenced objects using batch
fetching or Join is more efficient
than Eager loading.

You may also consider using
optimized loading with
LoadGroups which allows a query
to force instantiation of
relationships.

10.2.2 Cache Configuration Tuning Parameters
You can tune the default internal cache that is provided by EclipseLink. Oracle
Toplink/EclipseLink can also be integrated with Oracle Coherence. For information
on configuring and tuning an EclipseLink Entity Cache using Oracle Coherence, see
Integrating with Oracle Coherence .

The default settings for EJB3.0/JPA used with the EclipseLink persistence manager
and cache are no locking, no cache refresh, and cache-usage DoNotCheckCache. To
ensure that your application uses the cache and does not read stale data from the
cache (when you do not have exclusive access), you must configure these and other
isolation related settings appropriately. Table 10-3 shows the cache configuration
options.

Basic Tuning Considerations

Tuning Oracle TopLink 10-7

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro001.htm#CEGBCJAG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro001.htm#CEGBCJAG

For more information on cache configuration, see "Understanding Caching" at
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/
cache.htm#CDEFHHEH.

Note:

By default, EclipseLink assumes that your application has exclusive access to
the data it is using (that is, there are no external, non-EclipseLink, applications
modifying the data). If your application does not have exclusive access to the
data, then you must change some of the defaults from Table 10-3.

Table 10-3 EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Object Cache EclipseLink sessions provide an
object cache. EJB3.0 JPA
applications that use the
EclipseLink persistence manager
create EclipseLink sessions that by
default use this cache. This cache,
known as the session cache, retains
information about objects that are
read from or written to the
database, and is a key element for
improving the performance of an
EclipseLink application.

Typically, a server session's object
cache is shared by all client sessions
acquired from it. Isolated sessions
provide their own session cache
isolated from the shared object
cache.

The annotation type @Cacheable
specifies whether an entity should
be cached. Caching is enabled when
the value of the persistence.xml
caching element is
ENABLE_SELECTIVE or
DISABLE_SELECTIVE. The value
of the Cacheable annotation is
inherited by subclasses; it can be
overridden by specifying
Cacheable on a subclass.

Cacheable(false) means that
the entity and its state must not be
cached by the provider.

Default Value: Enabled (shared is
True)

Generally it is recommended that
you leave caching enabled. If you
have an object that is always read
from the database, as in a
pessimistic locked object, then the
cache for that entity should be
disabled. Also, consider disabling
the cache for infrequently accessed
entities

Basic Tuning Considerations

10-8 Tuning Performance Guide

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH

Table 10-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Query Result Set Cache In addition to the object cache in
EclipseLink, EclipseLink also
supports a query cache:

• The object cache indexes objects
by their primary key, allowing
primary key queries to obtain
cache hits. By using the object
cache, queries that access the
data source can avoid the cost of
building the objects and their
relationships if the object is
already present.

• The query cache is distinct from
the object cache. The query
cache is indexed by the query
and the query parameters - not
the object's primary key. This
enables any query executed with
the same parameters to obtain a
query cache hit and return the
same result set.

The query hints for a query cache
are:

eclipselink.query-cache

eclipselink.query-
cache.size

eclipselink.query-
cache.invalidation

See also "Understanding Caching"
at http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
cache.htm#CDEFHHEH and "JPA
Query Customization Extensions" at
http://www.eclipse.org/
eclipselink/
documentation/2.5/jpa/
extensions/
queryhints.htm#sthref498

Default Value: Not Used

Use for frequently executed non-
primary key queries with
infrequently changing result sets.
Use with a cache invalidation time
out to refresh as needed.

Basic Tuning Considerations

Tuning Oracle TopLink 10-9

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.5/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.5/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.5/jpa/extensions/queryhints.htm#sthref498
http://www.eclipse.org/eclipselink/documentation/2.5/jpa/extensions/queryhints.htm#sthref498

Table 10-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Cache Size Cache size can be configured
through persistence properties:
eclipselink.cache.size.ent
ity

eclipselink.cache.size.def
ault

eclipselink.cache.type.def
ault

See also "About the Persistence
Unit" at http://
www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
appdeployment002.htm#BABHC
JDG and "Class
PersistenceUnitProperties" at
http://www.eclipse.org/
eclipselink/api/2.3/org/
eclipse/persistence/
config/
PersistenceUnitProperties.
html

Default Value: Type SoftWeak,
Size 100 (per Entity). The default
value may be different if Toplink is
running on Exalogic. See Enable the
Exalogic Automated Tuner in the
Solutions Guide for Oracle TopLink for
more information about the
Exalogic default.

Set the cache size relative to how
much memory you have available,
how many instances of the class you
have, the frequency the entities are
accessed, and how much caching
you want based on your tolerance
for stale data.

Consider creating larger cache sizes
for entities that have many
instances that are frequently
accessed and stale data is not a big
issue.

Consider using smaller cache sizes
or no cache for frequently updated
entities that must always have fresh
data, or infrequently accessed
entities.

Locking Oracle supports the locking policies
shown in Table 10-4: No Locking,
Optimistic, Pessimistic, and
Read Only.

Locking is set through JPA
@Version annotation,
eclipselink.read-only

See "Descriptors and Locking" at
http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
descriptors002.htm#CHEEEIE
A

Default Value: No Locking

For entities that can be updated
concurrently, consider using the
locking policy to prevent a user
from writing over another users
changes. To optimize performance
for read-only entities, consider
defining the entity as Read Only
or use a read-only query hint.

Basic Tuning Considerations

10-10 Tuning Performance Guide

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/appdeployment002.htm#BABHCJDG
http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/api/2.3/org/eclipse/persistence/config/PersistenceUnitProperties.html
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA

Table 10-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Cache Usage By default, all query types search
the database first and then
synchronize with the cache. Unless
refresh has been set on the query,
the cached objects can be returned
without being refreshed from the
database. You can specify whether a
given query runs against the in-
memory cache, the database, or
both.

To get performance gains by
avoiding the database lookup for
objects already in the cache, you can
configure that the search attempts
to retrieve the required object from
the cache first, and then search the
data source only if the object is not
in the cache. For a query that looks
for a single object based on a
primary key, this is done by setting
the query hint
eclipselink.cache-usage to
CheckCacheByExactPrimaryKe
y.

Default Value: DoNotCheckCache

For faster performance on primary
key queries, where the data is
typically in the cache and does not
require a lot of refreshing, it is
recommended to check the cache
first on these queries (using
CheckCacheByExactPrimaryKe
y).

This avoids the default behavior of
retrieving the object from the
database first and then for objects
already in the cache, returning the
cached values (not updated from
the database access, unless refresh
has been set on the query).

Isolation There is not a single tuning
parameter that sets a particular
database transaction isolation level
in a JPA application that uses
EclipseLink.

In a typical EJB3.0 JPA application,
a variety of factors affect when
database transaction isolation levels
apply and to what extent a
particular database transaction
isolation can be achieved, including
the following:

• Locking mode
• Use of the Session Cache
• External Applications
• Database Login method

setTransactionIsolation

See also "Isolated Cache" at
http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
cache001.htm#CDEEGICF

Basic Tuning Considerations

Tuning Oracle TopLink 10-11

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache001.htm#CDEEGICF
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache001.htm#CDEEGICF
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache001.htm#CDEEGICF
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache001.htm#CDEEGICF
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache001.htm#CDEEGICF

Table 10-3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Cache Refreshing By default, EclipseLink caches
objects read from a data source.
Subsequent queries for these objects
access the cache and thus improve
performance by reducing data
source access and avoiding the cost
of rebuilding object's and their
relationships. Even if a query
accesses the data source, if the
objects corresponding to the records
returned are in the cache,
EclipseLink uses the cached objects.
This default caching policy can lead
to stale data in the application.

Refreshing can be enabled at the
entity level (alwaysRefresh or
refreshOnlyIfNewer and
expiry) and at the query level
(with the eclipselink.refresh
query hint). You can also force
queries to go to the database with
(disableHits). Using an
appropriate locking policy is the
only way to ensure that stale or
conflicting data does not get
committed to the database.

For more information, see About
Cache Refreshing

See also "Understanding Caching"
at http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
cache.htm#CDEFHHEH

Default Value: No Cache
Refreshing

Try to avoid entity level cache
refresh and instead, consider
configuring the following:

• cache refresh on a query-by-
query basis

• cache expiration
• isolated caching

About Cache Refreshing

Locking Mode Policy Options

10.2.2.1 About Cache Refreshing

There are a few scenarios to consider for data refreshing in the cache, all with
performance implications:

• In the case where you never want cached data and always want fresh data,
consider using an isolated cache (Shared=False). This is the case when certain
data in the application changes so frequently that it is desirable to always refresh
the data, instead of only refreshing the data when a conflict is detected.

• In the case when you want to avoid stale data, but getting stale data is not a major
issue, then using a cache expiry policy would be the recommended solution. In this
case you should also use optimistic locking, which automatically refresh stale

Basic Tuning Considerations

10-12 Tuning Performance Guide

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/cache.htm#CDEFHHEH

objects when a locking error occurs. If using optimistic locking, you could also
enable the entity @Cache attributes alwaysRefresh and refreshOnlyIfNewer
to allow queries that access the database to refresh any stale objects returned, and
avoid refreshing invalid objects when unchanged. You may also want to enable
refreshing on certain query operations when you know you want refreshed data, or
even provide the option of refreshing something from the client that would call a
refreshing query.

• In the case when you are not concerned about stale data, you should use optimistic
locking; this automatically refresh stale objects in the cache on locking errors.

10.2.2.2 Locking Mode Policy Options

The locking modes, as shown in Table 10-4, along with EclipseLink cache-usage and
query refreshing options, ensures data consistency for EJB entities using JPA. The
different combinations have both functional and performance implications, but often
the functional requirements for up-to-date data and data consistency lead to the
settings for these options, even when it may be at the expense of performance.

For more information, see "Descriptors and Locking" at http://
www.eclipse.org/eclipselink/documentation/2.5/concepts/
descriptors002.htm#CHEEEIEA.

Table 10-4 Locking Mode Policies

Locking Option Description Performance Notes

No Locking The application does not prevent
users overwriting each other's
changes. This is the default locking
mode. Use this mode if the Entity is
never updated concurrently or
concurrent reads and updates to the
same rows with read-committed
semantics is sufficient.

Default Value: No Locking

In general, no locking is faster, but
may not meet your needs for data
consistency.

Optimistic All users have read access to the
data. When a user attempts to make
a change, the application checks to
ensure the data has not changed
since the user read the data.

See also "Using Optimistic Locking"
at http://www.eclipse.org/
eclipselink/
documentation/2.5/
concepts/
mappingintro005.htm#CEGDII
IB

If infrequent concurrent updates to
the same rows are expected, then
optimistic locking may provide the
best performance while providing
data consistency guarantees.

Basic Tuning Considerations

Tuning Oracle TopLink 10-13

http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/descriptors002.htm#CHEEEIEA
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB
http://www.eclipse.org/eclipselink/documentation/2.5/concepts/mappingintro005.htm#CEGDIIIB

Table 10-4 (Cont.) Locking Mode Policies

Locking Option Description Performance Notes

Pessimistic The first user who accesses the data
with the purpose of updating it
locks the data until completing the
update.

If frequent concurrent updates to
the same rows are expected,
pessimistic locking may be faster
than optimistic locking that is
getting a lot of concurrent access
exceptions and retries.

When using pessimistic locking at
the entity level, it is recommended
that you use it with an isolated
cache (Shared=False) for best
performance.

Read Only Setting an EJB3.0 JPA Entity to
Read Only ensures that the entity
cannot be modified and enables
EclipseLink to optimize unit of
work performance.

Set at the entity level using
@ReadOnly class annotation. Can
also be set at the query level
through query hint
eclipselink.read-only.

Defining an entity as Read Only
can perform better than an entity
that is not defined as Read Only,
yet does no inserts, updates, or
deletes, since it enables EclipseLink
to optimize the unit of work
performance. Always use Read
Only for all read-only operations

10.2.3 About Mapping and Descriptor Configurations
EclipseLink can transform data between an object representation and a representation
specific to a data source. This transformation is called mapping and it is the core of a
EclipseLink project.

A mapping corresponds to a single data member of a domain object. It associates the
object data member with its data source representation and defines the means of
performing the two-way conversion between object and data source.

For information on Mapping, see “Mapping and Descriptors” at http://
www.eclipse.org/eclipselink/documentation/2.5/solutions/
performance002.htm#sthref153.

10.2.4 About Data Partitioning
EclipseLink allows you to configure data partitioning using the @Partitioned
annotation. Partitioning enables an application to scale information across multiple
databases; including clustered databases.

For more information on using @Partitioned and other partitioning policy
annotations, see "Partitioning Annotations" at http://www.eclipse.org/
eclipselink/documentation/2.5/jpa/extensions/
annotations_ref.htm#CACHIHIB.

10.3 Advanced Tuning Considerations
After you have performed recommended modifications, you can make additional
changes that are specific to your deployment. Consider carefully whether the
advanced tuning recommendations are appropriate for your environment.

Advanced Tuning Considerations

10-14 Tuning Performance Guide

http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_(ELUG)#Optimizing_Mappings_and_Descriptors
http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_(ELUG)#Optimizing_Mappings_and_Descriptors
http://wiki.eclipse.org/Optimizing_the_EclipseLink_Application_(ELUG)#Optimizing_Mappings_and_Descriptors
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Data_Partitioning
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Data_Partitioning
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_Development/Data_Partitioning

Integrating with Oracle Coherence

Analyzing EclipseLink JPA Entity Performance

10.3.1 Integrating with Oracle Coherence
Oracle Toplink can be integrated with Oracle Coherence. This integration is provided
through the Oracle TopLink Grid feature. With TopLink Grid, there are several types
of integration with EclipseLink JPA features.

For example:

• Replace the default EclipseLink L2 cache with Coherence. This provides support
for very large L2 caches that span cluster nodes. EclipseLink's default L2 cache
improves performance for multi-threaded and Java EE server hosted applications
running in a single JVM, and requires configuring special cache coordination
features if used across a cluster.

• Configure entities to execute queries in the Coherence data grid instead of the
database. This allows clustered application deployments to scale beyond database-
bound operations.

For more information on using EclipseLink JPA with a Coherence Cache, see Grid
Cache Configuration in Integrating Oracle Coherence.

For more information on Oracle Toplink integration with Oracle Coherence, see
Integrating Toplink Grid with Oracle Coherence in Integrating Oracle Coherence.

10.3.2 Analyzing EclipseLink JPA Entity Performance
The following features in EclipseLink can help you analyze your JPA application
performance:

• For form monitoring performance, see "Performance Monitoring" at http://
www.eclipse.org/eclipselink/documentation/2.5/concepts/
monitoring003.htm#BABJABIH. Note that this tool is intended to profile and
monitor information in a multithreaded server environment.

• For profiling performance, see "Task 1: Measure EclipseLink Performance with the
EclipseLink Profiler" at http://www.eclipse.org/eclipselink/
documentation/2.5/solutions/performance002.htm#CHDIAFJI. Note
that this tool is intended for use with single-threaded finite use cases.

• For debugging performance issues and testing, you can view the SQL generated
from EclipseLink. To view the SQL, increase the logging level to FINE by using the
EclipseLink JPA extensions for logging.

For best performance, remember to restore the logging levels to the default levels
when you are done profiling or debugging.

Advanced Tuning Considerations

Tuning Oracle TopLink 10-15

http://www.eclipse.org/eclipselink/documentation/2.4/concepts/monitoring003.htm
http://www.eclipse.org/eclipselink/documentation/2.4/concepts/monitoring003.htm
http://www.eclipse.org/eclipselink/documentation/2.4/concepts/monitoring003.htm
http://www.eclipse.org/eclipselink/documentation/2.4/solutions/performance002.htm
http://www.eclipse.org/eclipselink/documentation/2.4/solutions/performance002.htm

Advanced Tuning Considerations

10-16 Tuning Performance Guide

Part IV
SOA Suite Components

This part covers how to tune Oracle SOA Suite components to improve performance'

Tuning information for B2B, Healthcare Integration, and adapters are documented
elsewhere. You can find how to tune for performance using the links provided.

• User's Guide for Oracle B2B

• Developing Fusion Web Applications with Oracle Application Development Framework

• Oracle JCA Adapter Tuning Guide in Understanding Technology Adapters

The SOA Suite components are documented in the following topics:

Tuning the SOA Infrastructure

Tuning Oracle BPEL Process Manager

Tuning Oracle Mediator

Tuning Oracle Managed File Transfer

Tuning Oracle Business Rules

Tuning Oracle Business Process Management

Tuning Oracle Human Workflow

Tuning Oracle Business Activity Monitoring

Tuning Oracle Service Bus

Tuning Oracle Enterprise Scheduler Service

Tuning Oracle Business Intelligence Performance

11
Tuning the SOA Infrastructure

You can tune the SOA Infrastructure to optimize its performance in managing
composites and their lifecycle, service engines, and binding components in Oracle
WebLogic Server, using Work Managers and other tuning parameters.

SOA Suite Components

About the SOA Infrastructure

Tuning SOA Work Managers

Tuning SOA Infrastructure Parameters

Using Advanced Tuning Options

Advanced Tuning for Work Managers

11.1 About the SOA Infrastructure
The SOA Infrastructure is a Java EE-compliant application running in Oracle
WebLogic Server. The application manages composites and their lifecycle, service
engines, and binding components. For more information, see Introduction to the SOA
Infrastructure Application in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

The information presented here does not cover any diagnostic tools or methodologies
that are needed for a holistic approach, but addresses isolated tuning options for
isolated symptoms. For information on monitoring the SOA Infrastructure
performance to pinpoint problem areas, see Monitoring the SOA Infrastructure in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

11.2 Tuning SOA Work Managers
You can perform a few simple checks and configurations to take advantage of Work
Managers.

Beginning with Oracle SOA Suite 12c (12.2.1), Work Managers handle most SOA-
related work threads. For more details on how Work Managers manage threads and
self-tune, see Understanding Work Managers in Administering Server Environments for
Oracle WebLogic Server.

Before attempting to configure Work Managers, you should have a good
understanding of your environment and be able to quantify the following:

• Volume of incoming requests that you need processed

• Internal processing requirements including any SLA expectations for transactions

Tuning the SOA Infrastructure 11-1

• An understanding of the processes you have that do not use Work Managers, such
as the Event Delivery Network and most adapters

Based on the information collected above, you can take advantage of the Work
Managers' self-tuning feature.

Configuring Database Connections with the SOADataSource Property

Configuring Work Managers with the SOAMaxThreadsConfig Attribute

11.2.1 Configuring Database Connections with the SOADataSource Property
The SOADataSource property determines the total number of concurrent database
connections that are available for your SOA processes. Because SOA processes use the
database for most of their activities, this is a very important setting and can create a
bottleneck if not appropriately configured.

To tune this setting, it is important to understand your database resources and consult
your DBA.

To tune SOADataSource, do the following:

1. Log in to the Oracle WebLogic Server Administration Console.

2. Select Services from the left-hand menu and then choose DataSources.

3. On the DataSource configuration page, select SOADataSource.

4. Select the Connection Pool tab and scroll down to find the Maximum Capacity
attribute.

The default for the Maximum Capacity attribute is 50. For most practical use cases,
you should set this value to 300 to increase the size of the entire SOADataSource
connection pool.

Tuning SOA Work Managers

11-2 Tuning Performance Guide

The SOADataSource setting is leveraged by the SOAMaxThreadConfig
configuration explained in Configuring Work Managers with the
SOAMaxThreadsConfig Attribute. SOADataSource defines the total number of
connections available to all Work Managers, while the SOAMaxThreadConfig
attribute defines what percentage of those connections will be available to certain
categories of Work Managers.

11.2.2 Configuring Work Managers with the SOAMaxThreadsConfig Attribute
SOA composites are associated with a group of Work Managers that handles various
components and functional areas. The SOAMaxThreadsConfig attribute determines
the number of threads allowed for different groups of SOA Work Managers in a
domain.

The number of threads allotted to handle incoming requests, internal processes, and
other SOA processes are defined as percentages of the SOADataSource property
explained in Configuring Database Connections with the SOADataSource Property.
The default percentage values and categories of the SOAMaxThreadsConfig attribute
are listed in Table 11-1.

Table 11-1 Thread distributions for Work Managers determined by SOAMaxThreadsConfig

Group Description

incomingRequestsPercentage

Default: 20%

This parameter determines the percentage of threads
that your system allocates to Work Managers that
process incoming client requests.

Tuning SOA Work Managers

Tuning the SOA Infrastructure 11-3

Table 11-1 (Cont.) Thread distributions for Work Managers determined by SOAMaxThreadsConfig

Group Description

internalBufferPercentage

Default: 30%

This parameter determines the percentage of threads
distributed to other SOA functions, such as EDN and
adapters.

internalProcessingPercentage

Default: 50%

This parameter determines the percentage of threads
that your system allocates to Work Managers for
internal processes.

This attribute is defined at the domain level and will apply to all the Work Managers
under that domain. You can set this attribute using the SoaInfraConfig MBean in
the Fusion Middleware Control MBean Browser.

To access the attribute:

1. Log in to Fusion Middleware Control.

2. Select System MBean Browser from the WebLogic Domain menu.

3. In the System MBean Browser folder structure, navigate through the following
folders: Application Defined MBeans --> oracle.as.soainfra.config --> Server:
AdminServerName --> SoaInfraConfig --> soa-infra

4. When you click on soa-infra, its attributes will be listed in the main pane on the
right. Look for the SOAMaxThreadsConfig attribute and click on it. You should
then see the parameters and values listed in Table 11-1.

Click Apply when you are ready to make your changes.

Remember that the values you are adjusting on this screen are percentages, not the
discrete number of threads. You should ascertain the total number of threads available
to you by checking the value of the SOADataSource property, which is described in
Configuring Database Connections with the SOADataSource Property.

In a sample scenario where SOADataSource is set to 50 connections and you kept the
default SOAMaxThreadConfig percentages listed in Table 11-1, you would have the
following thread allocations:

• 20% of 50 = 10 threads to process incoming request

• 30% of 50 = 15 threads for processes not using work managers

• 50% of 50 = 25 threads to process internal processes

11.3 Tuning SOA Infrastructure Parameters
Table 11-2 describes the optimal settings for parameters with the greatest impact on
SOA Infrastructure performance.

Table 11-2 Essential SOA Infrastructure Tuning

Tuning SOA Infrastructure Parameters

11-4 Tuning Performance Guide

Table 11-2 (Cont.) Essential SOA Infrastructure Tuning

Parameter Problem Tuning Recommendation Trade-offs

AuditLevel

Default: Production

• High database CPU
• Contentions causing

increased processing
times in applications

To prevent possible
performance degradation,
maintain the lowest audit
level possible or retain the
default of Production.
Avoid setting the audit
level to Development
whenever possible.

This parameter can be set
in the Enterprise Manager.
You can find the Audit
Level parameter page
on the SOA Infrastructure
Common Properties page.

To find this page:

1. Toggle the SOA
folder in your left-
hand Target
Navigation.

2. Right-click on the
soa-infra
(soa_server) you
want to tune.

3. Select SOA
Administration -->
Common Properties

For more information
about this parameter, see
Configuring Oracle SOA
Suite and Oracle BPM
Suite Profiles in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite.

Decreasing the audit level
will cause the system to
generate less audit data.

Diagnosing performance
issues and general
troubleshooting may be
more difficult.

Tuning SOA Infrastructure Parameters

Tuning the SOA Infrastructure 11-5

Table 11-2 (Cont.) Essential SOA Infrastructure Tuning

Parameter Problem Tuning Recommendation Trade-offs

Audit Purge Policy

Default: Everyday
Midnight and purges
records older than 7 days

• Exponential growth in
database size

• If configured at peak
hours, purging can
take resources from
other processes

• Ensure auto purge is
enabled

• Perform purges more
often

• Set the auto purge to
kick off at a time when
there is less resource
contention from other
processes

For information on
finding the Auto
Purge page in the
Oracle Enterprise
Manager Fusion
MIddleware Control,
see Deleting Large
Numbers of Instances
with Oracle Enterprise
Manager Fusion
Middleware Control in
Administering Oracle
SOA Suite and Oracle
Business Process
Management Suite.

Disabling this feature will
make maintaining on-
going database growth
more time-consuming.

11.4 Using Advanced Tuning Options
You can optional configure additional performance tuning settings for SOA. These
options are presented here in no specific order. Before changing any of these
properties, you should have a holistic knowledge of your environment, SOA
processes, and non-SOA processes.

It is important to understand that any advanced performance optimization should be a
customized approach for individual scenarios, settings, environments, and
expectations. A customized approach requires detailed capturing of diagnostic
information to pinpoint and isolate bottlenecks and areas that need optimization.

For information on monitoring the SOA Infrastructure performance to pinpoint
problem areas, see Monitoring the SOA Infrastructure in Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Using Composite Lazy Loading

Changing Modularity Profiles

Tuning Your Database for SOA Processes

Tuning Event Delivery Network Parameters

Tuning the WebLogic Server

Using Advanced Tuning Options

11-6 Tuning Performance Guide

11.4.1 Using Composite Lazy Loading
Composite lazy loading is a new feature in 12c. It improves server startup time when
there is a large number of composites deployed.

At server startup, composites are loaded minimally, meaning that they will only create
in-memory java models and MBeans. Any initializing tasks, such as loading
components and resources used by composite, namely WSLD and Schema file, are
loaded later at first-request time when they are needed.

This greatly improves server startup times and staggers the composite startup times
for when they receive requests, reducing overhead from rarely used or retired
composites.

Composite lazy loading is helpful for:

• Scenarios requiring speedy disaster recovery times during a server failure

• Customers with a huge number of composites that use large WSDLS or schema
files

Composite lazy loading is enabled by default and can be configured at the domain
level and at the composite levels.

Configuring Composite Lazy Loading for the Domain Level

Configuring Composite Lazy Loading at the Component Level

11.4.1.1 Configuring Composite Lazy Loading for the Domain Level

Composite lazy loading is enabled by default at the domain level. This setting can be
disabled from System MBean Browser in Enterprise Manager for Fusion Middleware
Control. Changes to this setting will take affect when the server restarts.

To change the setting for lazy loading feature for the domain level:

1. After logging into Enterprise Manager, right-click on the domain you want to tune
from the list of the WebLogic domains in the Target Navigation browser.

2. Select System MBean Browser from the drop-down menu.

3. In the System MBean Browser folder structure, navigate through the following
folders: Application Defined MBeans --> oracle.as.soainfra.config --> Server:
AdminServerName --> SoaInfraConfig --> soa-infra

4. When you click on soa-infra, its attributes will be listed in the main pane on the
right. Look for the CompositeLazyLoading attribute and click on it.

5. On the CompositeLazyLoading page, you can set the value to true to enable it
or false to disable it. Click Apply when you are ready to make your changes.

11.4.1.2 Configuring Composite Lazy Loading at the Component Level

By default, composites will inherit the lazy loading setting from the domain level. If
there is a use case where you would like to control this behavior at specific composite
level, then this can be configured in the composite.xml, which is a file generated
when you create a new SOA Suite composite application.

You can find composite.xml in the home folder of the application you want to edit.
You can also edit composite.xml by accessing it in JDeveloper. For more

Using Advanced Tuning Options

Tuning the SOA Infrastructure 11-7

information on composite.xml, see What Happens When You Create a SOA
Application and Project in Developing SOA Applications with Oracle SOA Suite.

At the beginning of the composite.xml of the application that you want to edit, you
will need to add the new property lazyLoading="false" to override the default
behavior at the domain level. Then redeploy the composite.

Below is a sample code snippet:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 12.2.1.0.0 at [8/7/13 4:14 PM]. -->
<composite name="ValidatePayment"
 revision="1.0"
 label="2013-08-07_16-14-11_843"
 mode="active"
 state="on"
 lazyLoading="false"
 xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
……….
……….
</composite>

11.4.2 Changing Modularity Profiles
Modularity is another 12c feature that helps improve your memory footprint and
server startup times. Some profile options are limited to only components and features
that are used by your selected composites. The modularity profile you select
determines what components will be loaded in memory.

12c has out-of-box profiles that can be changed after completing installation. By
default, new 12c customers will have SOA_FOUNDATION as their install profile.
Existing customers upgrading to 12c will have SOA_CLASSIC as their install profile by
default.

Table 11-3 shows the modularity profiles in the increasing order of memory footprint
size.

Table 11-3 Modularity Profiles

Profile Components

BPEL-ONLY BPEL Components + SOA Common Infrastructure +
Partial Adapter set

ORCHESTRATION BPEL-Only + HWF + Partial Adapter set

SOA FOUNDATION

Default for new 12c customers

Orchestration + Mediator + Rules + Partial Adapter set

SOA FOUNDATION ENTERPRISE SOA Foundation + Full Adapter Set

SOA FOUNDATION WITH B2B SOA Foundation Enterprise + B2B

SOA FOUNDATION WITH HEALTHCARE SOA Foundation with B2B + Healthcare UI

SOA CLASSIC

Default for upgrade customers

SOA Foundation with B2B + BPM Modules

Using Advanced Tuning Options

11-8 Tuning Performance Guide

If you are using a limited set of components or features in the SOA suite, you can
change your profile to optimize your memory usage and server startup times. This can
free up resources for crucial processes and can improve disaster recovery.

You can change your modularity profile from the SOA dashboard in Enterprise
Manager for Fusion Middleware Control.

For more information on how to change your profile, see Configuring SOA
Infrastructure Properties in Administering Oracle SOA Suite and Oracle Business Process
Management Suite to find the SOA Infrastructure Common Properties page.

Then see Configuring Oracle SOA Suite and Oracle BPM Suite Profiles in
Administering Oracle SOA Suite and Oracle Business Process Management Suite for more
information on the profiles.

11.4.3 Tuning Your Database for SOA Processes
If needed, you can adopt advanced strategies for tuning your database for SOA
processes. Make sure you have already read and followed the general database tuning
suggestions covered in Tuning Database Parameters of this book before progressing.

Collecting Optimizer Statistics

Tuning Temporary Tablespaces for SOA

Minimizing SOA Database Contention

Purging

Reclaiming Space

11.4.3.1 Collecting Optimizer Statistics

Optimizer statistics provide details about the database and the objects in the database.
The query optimizer uses these statistics to choose the best execution plan for each
SQL statement. See Introduction to the Query Optimizer in Oracle Database SQL Tuning
Guide for more information.

Gathering Statistics Automatically

Gathering Statistics Manually

Optimizing the MDS Database Repository With Statistics

11.4.3.1.1 Gathering Statistics Automatically

Because objects in a database can change constantly, you must update statistics
regularly so that they accurately describe these objects.

All SOA databases should use the Automatic Statistics Collection, which is enabled by
default. This job runs every night. See Controlling Automatic Optimizer Statistics
Collection in Oracle Database SQL Tuning Guide for more information.

11.4.3.1.2 Gathering Statistics Manually

Automatic optimizer statistics collection is sufficient for most database objects, but in a
database that is close to going live or for tables that are modified/purged significantly,
manual statistic gathering is needed. See Gathering Optimizer Statistics Manually in
Oracle Database SQL Tuning Guide for more information.

For SOA databases that implement purging of stale data on regular basis, you should
collect stats manually right after purging has completed. In these cases, use the

Using Advanced Tuning Options

Tuning the SOA Infrastructure 11-9

DBMS_STATS.GATHER_TABLE_STATS procedure. See DBMS_STATS in for how to do
this.

11.4.3.1.3 Optimizing the MDS Database Repository With Statistics

Ensure that automatic statistics collection is enabled. See Controlling Automatic
Optimizer Statistics Collection in Oracle Database SQL Tuning Guide for more
information.

In most cases, the first 32 characters of PATH_FULLNAME in the MDS_PATHS table are
the same. You can prevent the database from putting them in the same section of the
histogram by doing the following:

1. Drop the histogram for PATH_FULLNAME column by executing a command
structured like the following as system:

execute dbms_stats.delete_column_stats(ownname=>'mdsSchemaOwner',
tabname=>'MDS_PATHS', colname=>'PATH_FULLNAME', col_stat_type=> 'HISTOGRAM');

2. Set table preferences to exclude collecting histogram for the PATH_FULLNAME
column with a command structured like the following:

execute dbms_stats.set_table_prefs(mdsSchemaOwner, 'MDS_PATHS', 'METHOD_OPT',
'FOR COLUMNS SIZE 1 PATH_FULLNAME');

11.4.3.2 Tuning Temporary Tablespaces for SOA

See Tuning Database Files for general guidelines on tuning TEMP tablespaces for
Oracle Fusion Middleware before progressing to this topic.

Some SOA queries can generate a large amount of disk sorts that require high
amounts of temporary space. Therefore, the use of multiple temporary tablespaces and
tablespace groups is recommended to meet these requirements and assure optimal
performance.

The suggested minimum size for the TEMP tablespace or tablespace group assigned to
the SOA schema owner is 6 GB with auto-extend enabled. See Changing Data File Size
in for more information on how to resize a tablespace and enable auto-extend.

11.4.3.3 Minimizing SOA Database Contention

Most SOA workloads generate heavy DML activity in the database and are likely to
experience contention on database objects.

Wait event data in Automatic Workload Repository (AWR) reports reveal various
symptoms that might be impacting performance. The most common wait events that
could occur in SOA database are as follows:

• DB CPU

• Db file sequential read, db file scattered read

• log file sync

• enq: HW - contention

• enq: TX - index contention

• buffer busy waits

• gc buffer busy acquire, gc buffer busy release (RAC)

Using Advanced Tuning Options

11-10 Tuning Performance Guide

• enq: SQ - contention

Recommendations for the wait events gc buffer busy acquire and gc buffer
busy release are also discussed in Creating Hash Partitioned Indexes (enq: TX -
index contention).

For information on using AWR reports to identify contentions in your database, see
Comparing Database Performance Over Time in .

Tuning the Redo Log Performance (log file sync)

Migrating BasicFiles to SecureFiles (enq:HW - contention)

Creating Hash Partitioned Indexes (enq: TX - index contention)

11.4.3.3.1 Tuning the Redo Log Performance (log file sync)

In a SOA database, it is very common to see the foreground wait event log file
sync with a high average wait time. This is caused by redo log performance. The
possible reasons for high log file sync waits are as following:

• The database log writer (LGWR) is unable to complete writes fast enough for one of
the following reasons:

– Disk I/O performance to log files is not good enough.

– LGWR is starving for CPU resources.

• LGWR is unable to post the processes fast enough due to excessive commits.

• LGWR is suffering from other database contentions, such as enqueue waits or latch
contention.

Tuning the redo log performance can improve performance for applications running
in an Oracle Fusion Middleware environment.

See Tuning Database Files for general guidelines on tuning redo logs for Oracle Fusion
Middleware before using the strategies here to tune for SOA processes.

Finding LGWR wait events

The first step in identifying the root cause is to find and break down LGWR wait
events. You can query for LGWR wait events using its SID, as shown in the following
example:

SQL> SELECT sid, event, time_waited, time_waited_micro
 FROM v$session_event
 WHERE sid IN
 (SELECT SID FROM v$session WHERE type!='USER' AND program LIKE '%LGWR%')
ORDER BY time_waited;

Sizing online redo logs to control the frequency of log switches and minimize
system waits

The suggested minimum setting for redo logs is to have at least 3 log groups of 2 GB
each. Monitor the redo log performance periodically. Then adjust the number of redo
log groups and size of each member as appropriate to control the frequency of log
switches and minimize system waits.

Size the redo log files according to the amount of redos the system generates. A rough
guide is to switch logs at most once every 20 minutes.

Using Advanced Tuning Options

Tuning the SOA Infrastructure 11-11

For example, if your online redo logs switches once every 5 minutes during peak
database activity, the logs would each need to be 4 times larger then their current size
to achieve the 20 minute guideline. The calculation for this is 20min / 5min = 4x.

Optimizing the redo log disk to prevent bottlenecks

A SOA database is highly write-intensive, which generates massive amount of redo
per second and per transaction. Sometimes no amount of disk tuning may relieve redo
log bottlenecks, because Oracle must push all updates for all disks into a single redo
location.

If I/O bandwidth is an issue, doing anything other than improving I/O bandwidth is
not useful. One way to relieve redo bottlenecks is to use faster redo storage. It is
recommended to use Solid State Disk (SSD) redo log files. SSD has greater bandwidth
than platter disk.

Determining the optimal sizing of the log_buffer

SOA applications insert, modify, and delete large volumes of data. Most of these
operations are committed in a row-by-row fashion rather than in batch mode.
Frequent commits cause a significant overhead on the redo performance, so sizing the
log_buffer optimally is important for performance.

The statistic REDO BUFFER ALLOCATION RETRIES from your AWR reports and/or
from V$ views reflects the number of times a user process waits for space in the redo
log buffer. You can obtain this statistic through the dynamic performance view V
$SYSSTAT with the following query:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME = 'redo buffer allocation retries';

The value of redo buffer allocation retries should be near zero over an interval. If this
value increments consistently, then processes have had to wait for space in the redo
log buffer. The wait can be caused by the log buffer being too small or by check
pointing. You can improve this wait by attempting the following:

• Increase the size of the redo log buffer, if necessary, by changing the value of the
initialization parameter LOG_BUFFER. The value of this parameter is expressed in
bytes. A good starting rule of thumb for a write intensive workload is to configure
the log buffer to 100mb. Use caution while increasing log_buffer setting, because
excessive redo size can also cause high log file sync waits.

• Improve the check pointing or archiving process.

You can also check to see if the log buffer space wait event is a significant factor in the
wait time for the instance. If not, the log buffer size is most likely adequate.

Tuning the LGWR Process

For most SOA workloads, the commit rate is very high, and decreasing commits is not
an option. If previous strategies to address high log file sync did not improve redo log
performance, try increasing the priority of LGWR or increasing the priority class of
LGWR to RT from the command line.

Using Smart Flash Logging for ExaData

If your database is on ExaData machine, it should have a minimum of Bundle Patch 11
(BP11) installed to take advantage of the Smart Flash Logging feature.

Exadata Smart Flash Logging is an additional feature implemented in Exadata Storage
software 11.2.2.4.2 and database version 11.2.0.2 + BP11. With this feature, 512MB of

Using Advanced Tuning Options

11-12 Tuning Performance Guide

flash storage is reserved for redo writes and the LGRW process adopts a different
pattern of behavior.

In a system which does not use this feature, LGWR writes in parallel to multiplexed
copies of the redo logs and then waits for all writes to complete. This means that the
time taken to perform these writes (indicated by the Oracle wait interface statistics log
file parallel write) is the time taken for the slowest disk to complete the write.

With Exadata Smart Flash Logging, the redo log files remain on disk, but the
additional reserved 512MB of space is created on flash storage. When issuing a write
call, LGWR writes to the redo logs on disk as usual but will also make a parallel write
to the flash area. LGWR then waits for whichever of these writes completes first to
post it, after which it continues without waiting for the other.

11.4.3.3.2 Migrating BasicFiles to SecureFiles (enq:HW - contention)

The High Water enqueue contention (enq:HW - contention) occurs when competing
processes are inserting into the same table and are trying to increase the high water
mark of a table simultaneously.

In a SOA database, this issue is experienced by tables that have large object (LOB)
columns, such as CUBE_SCOPE, XML_DOCUMENT, AUDIT_DETAILS, etc. Under a
heavy load, LOB segments in these tables experience contention, which is seen in an
AWR report as the wait event enq: HW contention.

The default storage for LOBs in an Oracle database is BasicFiles. Frequently allocating
extents or reclaiming chunks may cause contention for the LOB segment high water
marks. This contention can also occur for LOB segments that are ASSM-managed,
since space allocation only acquires one block at a time.

This contention can be eliminated by switching LOB storage from BasicFiles to
SecureFiles. SecureFiles is a LOB storage architecture that provides performance
benefits over traditional BasicFiles. See About LOB Storage in Database SecureFiles and
Large Objects Developer's Guide for more information on these two architectures.

Migrating BasicFiles to SecureFiles can be done using one of the following methods:

• Set the database parameter SECURE_FILES = ALWAYS.

This method is applicable for new installations prior to creating SOA tables using
RCU. Once this parameter is set at the instance level, any new LOB segments
created will use SecureFiles automatically.

• Use the online redefinition method.

This method is applicable for installations that already have SOA tables created in
them. In such cases, LOB segments from tables in a SOA database experiencing
enq: HW contention can be migrated to SecureFiles.

Using the online redefinition method to migrate to SecureFiles can be done with
very little downtime. See Using DBMS_REDEFINITION in for how to use the
lob_storage_as parameter to reassign a LOB store.

• Set the database event value to 44951 using the following script:

ALTER SYSTEM SET EVENT='44951 TRACE NAME CONTEXT FOREVER, LEVEL 1024?
scope=spfile;

This method will help a SOA installation using an Oracle version older than 11g to
avoid enq:HW contentions on LOB segments.

Using Advanced Tuning Options

Tuning the SOA Infrastructure 11-13

You can use your AWR and Automatic Database Diagnostic Monitor (ADDM) reports
to identify which LOB objects are suffering from enq:HW - contentions. For most
systems, however, it is highly recommended to move the LOB columns listed in the
following table to SecureFiles.

Table Name Column Name Recommended LOB Storage
Attributes

ATTACHMENT ATTACHMENT COMPRESS CACHE

AUDIT_DETAILS BIN COMPRESS CACHE

CUBE_SCOPE SCOPE_BIN COMPRESS CACHE

11.4.3.3.3 Creating Hash Partitioned Indexes (enq: TX - index contention)

In most SOA scenarios, multiple database sessions will insert thousands of rows into
SOA tables. In these situations, the number of index keys is constantly increasing,
particularly the primary key indexes.

Though the number of primary key indexes increases over time, B-tree structure
indexes only target a few database blocks for key insertions. These B-tree index
insertions can become problematic in a Real Application Cluster (RAC). This issue is
seen in an AWR report as high buffer busy waits.

B-tree indexes create other contentions for RAC environments that show in an AWR as
gc buffer busy acquire and gc buffer busy release wait events. These
occur when a transaction inserting a row in an index has to wait for the end of a
different transaction's index block split, forcing the session to wait as well. When
many concurrent inserts lead to excessive index block splits, performance decreases.

The solution for these contentions is to create global, hash partitioned indexes. This
forces a random distribution of index keys across many database blocks to avoid these
contentions or hot spots.

Hash partitioning has proven to be the best tuning method to address index
contention. You should use your AWR and ADDM reports to identify indexes that
need to be partitioned. Once you have identified hot indexes, consider hash
partitioning them to reduce or avoid index contention.

For information on hash partitioning, see Creating Hash Partitioned Tables and Global
Indexes in .

11.4.3.4 Purging

The need for aggressive and continuous purging is a key aspect to improving
performance and controlling disk space in SOA.

Managing auto purge feature, enabled by default to help manage on-going database
growth in 12c, is described in Table 11-2. SOA installations that accumulate a lot of
data should also implement a purging strategy to clean up redundant data, to help of
SQL query performance, and to save disk space.

To create a purging strategy, see Developing a Purging and Partitioning Methodology
in Administering Oracle SOA Suite and Oracle Business Process Management Suite.

11.4.3.5 Reclaiming Space

SOA installations that implement frequent purging of unwanted data from SOA tables
are more likely to experience disk space issues.

Using Advanced Tuning Options

11-14 Tuning Performance Guide

This problem occurs even with ASSM and locally managed tablespaces. When
automatic purge scripts delete rows from database tables and indexes to release space
within the data blocks for reuse, space is not released immediately after rows are
deleted. This causes fragmentation, with some space too small for reuse, particularly
when the tables contain LOB columns.

To alleviate fragmentation and consolidate disk space, you should manually shrink
tables and LOB columns to reclaim space on a routine basis.

Use the Segment Advisor to identify segments that would benefit from online segment
shrink. Note that most SOA segments should be candidates for online segment shrink
operations after constant purging. See Using the Segment Advisor in for more
information on how to use the Segment Advisor.

Once you have identified the database tables and indexes that need shrinking, use the
following commands to reclaim space manually:

ALTER TABLE CUBE_SCOPE ENABLE ROW MOVEMENT;
ALTER TABLE CUBE_SCOPE SHRINK SPACE;
ALTER TABLE CUBE_SCOPE MODIFY LOB (SCOPE_BIN) (SHRINK SPACE);
ALTER TABLE CUBE_SCOPE DISABLE ROW MOVEMENT;

This shrink operation consolidates free space below the high water mark and
compacts the segment. Then it moves the high water mark and de-allocates space
above the high water mark.

11.4.4 Tuning Event Delivery Network Parameters
The Event Delivery Network (EDN) delivers events published by Oracle Mediator,
Oracle BPEL Process Manager, and external publishers such as Oracle Application
Development Framework entity objects. See Introduction to the Event Delivery
Network and JMS Provider Types in Administering Oracle SOA Suite and Oracle
Business Process Management Suite for a more detailed description.

Table 11-4 lists parameters that you can find in the Fusion Middleware MBean
Browser and tune for improved event delivery.

Table 11-4 Event Delivery Network Tuning

Using Advanced Tuning Options

Tuning the SOA Infrastructure 11-15

Table 11-4 (Cont.) Event Delivery Network Tuning

Parameter Problem Tuning Recommendation Trade-offs

numberOfPollerThrea
ds

Default: -1

• Out-of-resource issues,
e.g. out of memory,
system overload,
transaction issue, etc.

• Contention with other
SOA threads

The default value of -1
means that the system will
use
ThreadsPerSubscribe
r to determine a poller
thread count. This is
optimal for most
configurations.

However, if you have a
high number of
subscribers, the default
setting will try to assign a
thread to each subscriber.
This will slow your
system down. You should
define a positive integer to
limit the amount of poller
threads created for this
task.

See Updating the Local
numberOfPollerThreads
Value at the Service
Component Level in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite
for how to change this
parameter's value in the
Fusion Middleware
MBean Browser.

If the value is too low for
your system, then poller
threads can cause event
backlogs and long
latencies between event
publishing and composite
instance creation.

If the value is too high,
then excess poller threads
will consume server
resources needlessly.

ThreadsPerSubscribe
r

Default: 1 thread

• Out-of-resource issues,
e.g. out of memory,
system overload,
transaction issue, etc.

• Contention with other
SOA threads

Typically, the default of 1
thread per subscriber is
optimal.

Note that
numberOfPollerThrea
ds should be adjusted
first, since that parameter
takes precedence over this
value.

See Updating the
ThreadsPerSubscriber
Attribute in the System
MBean Browser in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite
for how to change this
parameter's value in the
Fusion Middleware
MBean Browser.

If the value is too low for
your system, then poller
threads can cause event
backlogs and long
latencies between event
publishing and composite
instance creation.

If the value is too high,
then excess poller threads
will consume server
resources needlessly.

Table 11-5 lists the parameters you can modify for individual business events in
JDeveloper. To modify these attributes, right-click on the event you want to edit to

Using Advanced Tuning Options

11-16 Tuning Performance Guide

bring up the pop-up menu. From this menu, select Edit Subscribed Events... or Edit
Published Events..., depending on the parameter you are trying to edit.

For descriptions of the subscribed event parameters you can edit, see How to
Subscribe to a Business Event in Developing SOA Applications with Oracle SOA Suite.

Table 11-5 Business Event Tuning

Parameter Problem Tuning Recommendation Trade-offs

Consistency for a
Subscribed Event

Default: oneAndOnlyOne

You are experiencing
either one or both
problems with business
event delivery.

• Unfulfilled delivery
guarantee
requirements to event
subscribers

• Unnecessary system
overhead from global
transactions

Set the level for a selected
business event to
guaranteed in
JDeveloper. A guaranteed
delivery is performed in a
local transaction with only
one trip to the main
queue.

You can also edit this
parameter on the
Subscriptions page in the
Oracle Enterprise
Manager Fusion
Middleware Control. See
Viewing Business Event
Subscribers in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite
for details.

oneAndOnlyOne
guarantees delivery by
taxing resources.

If a guaranteed delivery
fails, then there are no
local retries and a system
failure message is
generated. Message
duplication could occur in
the event that the calling
global transaction rolls
back and retries since the
message delivery is
outside of that transaction.

Durability for a
Subscribed Event

Default: Yes

You are experiencing
either one or both
problems with business
event messages.

• Multiple dropped
events

• Unnecessary retention
of messages in the
system

Set the value under the
Durable column to No to
disable durability for a
subscribed event using
JDeveloper. This will free
the system from having to
persist messages to
storage.

No will cause the system
to drop events if the
subscriber is not running
when events are
published.

Yes will retain events in
the JMS server and incur
overhead.

Persistent Delivery for a
Published Event

Default: yes

• Unreliable messaging
• High overhead

Set this value to No to
disable persistent
delivery. This will reduce
overhead.

No will cause less reliable
messaging following an
event publish since there
is no persistence.

Yes will incur overhead
by guarding against a JMS
server crash.

Using Advanced Tuning Options

Tuning the SOA Infrastructure 11-17

Table 11-5 (Cont.) Business Event Tuning

Parameter Problem Tuning Recommendation Trade-offs

Time to Live for a
Published Event

Default: 0 ms

• Non-expired and
unconsumed messages
are occupying system
resources and
requiring manual
cleanup.

• Messages are deleted
before subscribers can
read them.

Specify a positive integer
so that expired messages
are automatically
removed from the system
and not consumed by the
subscribers. The integer
represents milliseconds.

The best value depends on
your system and can be
determined by monitoring
metrics.

Note that the default
value of 0 means that
messages will never
expire.

If the message expiration
duration value is too low,
published messages can
expire before an intended
subscriber can read it.
Once it is gone, it cannot
be retrieved.

If the value is too high,
then lingering messages
can occupy system
resources.

Adding JMS Topics with Mapping

11.4.4.1 Adding JMS Topics with Mapping

By default, all events are mapped to a single WLS topic.

If you have a large backlog of events or are experiencing latency or slowness in event
processing due to single or limited JMS topics, you should create additional JMS topics
and modify events to JMS mapping so that event types of different performance
characteristics may be grouped or managed separately.

However, if you do this, the system will have additional JMS topics and JMS artifacts
to manage, and you will have mapping changes to consider.

Choosing a JMS Topic Type

Creating JMS Topics

Mapping Events to JMS Topics

11.4.4.1.1 Choosing a JMS Topic Type

You can create either a WLSJMS topic or an AQJMS topic.

WLSJMS is the default JMS topic type. It does not provide database indexing, LOB
streaming, embedded rules engines, and lock management as well as AQJMS.

AQJMS will typically not be faster than WLSJMS, but if your system has high
concurrences, AQJMS works well because it is single-threaded. AQJMS can also get
constrained by lower and storage nodes in Exalogic.

11.4.4.1.2 Creating JMS Topics

You can create a new WLSJMS topic under the SOAJMSModule in the WebLogic
Administration Console if you are logged in as an Administrator. See "Create topics in
a system module" in the Oracle WebLogic Server Administration Console Online Help for
details on navigating to the Create a New JMS System Module Resource and creating
a JMS topic.

Using Advanced Tuning Options

11-18 Tuning Performance Guide

You can create an AQJMS topic using the Database Navigator in JDeveloper or SQL
Developer as soainfra user by running the following script:

define edn_user=your_soainfra_schema_username
define topic=your_custom_aqjms_topic_name, e.g. 'EDN_AQJMS_TOPIC_2'
define topic_table=your_custom_aqjms_topic_table, e.g. 'EDN_AQJMS_TOPIC_TABLE_2'

begin
 DBMS_AQADM.stop_queue(queue_name => '&edn_user..&topic');
 DBMS_AQADM.drop_queue(queue_name => '&edn_user..&topic');
 DBMS_AQADM.drop_queue_table(queue_table => '&edn_user..&topic_table');
end;
/
begin
 dbms_aqadm.create_queue_table(queue_table => '&edn_user..&topic_table',
 queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 multiple_consumers => true);
 dbms_aqadm.create_queue(queue_name => '&edn_user..&topic',
 queue_table => '&edn_user..&topic_table',
 max_retries => 256);
 dbms_aqadm.start_queue(queue_name => '&edn_user..&topic');
end;
/
commit;

You can reference Create a JMS Queue or Topic in Administering JMS Resources for
Oracle WebLogic Server for information about AQ JMS topics.

11.4.4.1.3 Mapping Events to JMS Topics

When you have created new JMS topics, you can map business events to specific
topics. Note that one event type can be mapped to only one JMS topic, whereas one
JMS topic can store multiple event types.

For more information on using the Enterprise Manager for Fusion Middleware
Control to map events, see Mapping Business Events to JMS Topic Destinations on the
Business Events Page in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

11.4.5 Tuning the WebLogic Server
The performance of the SOA Infrastructure depends on the WebLogic Server. Though
tuning the WebLogic Server is a separate task not thoroughly addressed in this book,
you can use Table 11-6 to check the tuning knobs that affect the SOA Infrastructure.

Table 11-6 Essential WebLogic Server Tuning for SOA Infrastructure

Parameter Tuning Recommendation Resource

ProductionModeEnabled

Default: The mode you set during
domain creation.

Production mode maximizes
performance. You should enable
this if you are not developing
applications. You can enable the
ProductionModeEnabled MBean
in Oracle Fusion Middleware
Control.

See Configure General Settings in
Administering Oracle WebLogic Server
with Fusion Middleware Control.

Changing the domain mode will
also change certain security and
autodeployment settings. See
Development vs. Production Mode
Default Tuning Values in Tuning
Performance of Oracle WebLogic Server
for more information on domain
modes.

Using Advanced Tuning Options

Tuning the SOA Infrastructure 11-19

Table 11-6 (Cont.) Essential WebLogic Server Tuning for SOA Infrastructure

Parameter Tuning Recommendation Resource

WebLogic Server Logging Levels

Default: Notification

To reduce the volume of logging
requests, use the lowest acceptable
logging level, such as ERROR or
WARNING whenever possible. You
can set log levels for handlers and
loggers in a variety of ways.

See Using Log Severity Levels in
Configuring Log Files and Filtering
Log Messages for Oracle WebLogic
Server for these methods.

HTTP Access Logging

Default: Enabled

By default, the HTTP subsystem
keeps a log of all HTTP transactions
in a text file. Turn off HTTP access
logging to improve performance.
You can disable this property using
the Oracle WebLogic Server
Administration Console.

See "Enable and configure HTTP
logs" in the Oracle WebLogic Server
Administration Console Online Help.

JMS Persistence and Persistence
Storage

Default: Enabled

Ensure that the right persistence
level is set for the Java Message
Service (JMS) destinations.

• For persistent JMS scenarios,
there are two choices: File
Store and JDBC Store.
Typically, operations on a File
Store perform better than JDBC
Store. If there are multiple JMS
servers involved, create each
store on a separate disk to lower
I/O contention.

• For non-persistent JMS
scenarios, turn off persistence at
the JMS server level by un-
checking the Store Enabled
flag from the Advanced section
of the General tab for the JMS
server in the WebLogic Server
console. You can also override
the persistence mode at the JMS
destination level.

See Using Custom File Stores and
JDBC Stores in Tuning Performance of
Oracle WebLogic Server for more
information on creating and
managing persistent JMS stores.

Connection Backlog Buffering You can tune the Accept
Backlog parameter when dealing
with a large number of concurrent
clients.

The Accept Backlog parameter
specifies how many TCP
connections can be buffered in a
wait queue. You can tune the
number of connection requests that
a WebLogic Server instance will
accept before refusing additional
requests.

For more information, see Tuning
Connection Backlog Buffering in
Tuning Performance of Oracle
WebLogic Server.

Using Advanced Tuning Options

11-20 Tuning Performance Guide

11.5 Advanced Tuning for Work Managers
Work Managers are mapped to SOA projects and specific components, and you can
use some advanced configuration options to fine-tune Work Manager performance.

When SOA Suite is installed, it creates a set of default Work Managers, global Work
Managers, and application Work Managers to manage various areas of the SOA
Infrastructure.

High priority composites can be associated with a Work Manager group that has been
configured for higher priority. Table 11-7 lists the set of Work Managers that are
created when SOA is installed and describes the work area they manage.

Table 11-7 Work Manager Descriptions

Work Manager Name Responsible Area

SOA_Request_WM SOA synchronous request clients, such as the
following:

• Facade invocation
• WebService client requests
• Direct/ADF/Rest requests
• B2B

SOA_Notification_WM All SOA notification requests.

WorkManagerName_dspSystem BPEL-specific system dispatcher messages.

WorkManagerName_dspInvoke BPEL-specific engine process invocation dispatcher
messages

WorkManagerName_dspEngine BPEL engine process dispatcher messages

WorkManagerName_dspNonBlocking BPEL engine process non-blocking invocation
dispatcher messages

WorkManagerName__Analytics BPEL analytics

WorkManagerName_MediatorParallelRouting Mediator parallel routing

WorkManagerName_MediatorErrorHandling Mediator error handling

WorkManagerName_bpmnSystem BPM system dispatcher messages

WorkManagerName__bpmnInvoke BPM engine process invocation dispatcher messages

WorkManagerName__bpmnEngine BPM process engine dispatcher messages

WorkManagerName__bpmnNonBlocking BPM process non-blocking invocation dispatcher
messages

SOA_DataSourceBound_WM All SOA backend processing services that access
SOADataSource, including Workflow Enterprise
JavaBeans (EJBs).

SOA_Default_WM All SOA services that do not access the
SOADataSource connection pool. It also handles Case
Management.

Advanced Tuning for Work Managers

Tuning the SOA Infrastructure 11-21

Table 11-7 (Cont.) Work Manager Descriptions

Work Manager Name Responsible Area

SOA_EDN_WM Event Delivery Network (EDN)

WorkManagerName_Adapter Adapter framework

The SOAMaxThreadsConfig property, discussed in Configuring Work Managers
with the SOAMaxThreadsConfig Attribute, determines the number of connections
that will be used by Work Managers to process incoming requests, internal processes,
and other processes. This configuration determines the optimal usage for each of these
processing categories when the system is functioning at its full potential.

Minimum and Maximum Constraints can also be set on Work Managers to control
upper and lower limit of connections for Work Managers. A Fair Share Request class
for a Work Manager can be created to determine the relative priority assigned to a
Work Manager. The constraints and request class mentioned here are the ones most
commonly configured for SOA Work Managers.

All SOA Work Managers are pre-configured with request classes and constraints that
make most sense. It is strongly recommended to run with the default settings and
make any essential changes after an evaluation period.

For information on all Work Manager constraints and request classes you can create
and their default behaviors, refer to Managing Work Manager Groups in Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Configuring Fair Share Request Class for SOA Work Managers

Creating a New Work Manager Constraint

11.5.1 Configuring Fair Share Request Class for SOA Work Managers
A Fair Share Request Class allows you specify the relative priority of a given Work
Manager. All SOA Work Managers managing internal process have been configured
to one of the two Fair Share Classes that are created by default: soa_fairShare_20
and soa_fairShare_80, with fair share values set to 20 and 80 respectively. A Fair
Share value is a relative value from 1 to 1000.

If you want to further tune SOA Work Manager priorities, you will need to create new
Fair Share classes. For more information on how to do this, see Viewing and Creating
Work Manager Groups in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

11.5.2 Creating a New Work Manager Constraint
In addition to the default categories available in SOAMaxThreadConfig, you can
create new categories to address specific scenarios.

Some processes in SOA do not require database connections. These processes do not
depend on SOA Data Source allocation and hence will not have wait for available
connections.

The SOA Infrastructure automatically creates Work Managers that manage most of
your processes and allocate resources accordingly. For most cases, performance can be
improved by leveraging existing Work Managers and tuning their performance using
some of the knobs described above.

Advanced Tuning for Work Managers

11-22 Tuning Performance Guide

If you have special scenarios where you would like to handle uniquely, you can create
a new Work Manager and configure it to meet special circumstances. You will be
either creating a new application or a web application Work Manager. See Viewing
and Creating Work Manager Groups in Administering Oracle SOA Suite and Oracle
Business Process Management Suite for detailed procedures.

Advanced Tuning for Work Managers

Tuning the SOA Infrastructure 11-23

Advanced Tuning for Work Managers

11-24 Tuning Performance Guide

12
Tuning Oracle BPEL Process Manager

You can tune Oracle Business Process Execution Language (BPEL) Process Manager
properties to optimize its performance at the composite, fabric, application, and server
levels.

SOA Suite Components

About BPEL Process Manager

Tuning BPEL Parameters

Using Other Tuning Strategies

12.1 About BPEL Process Manager
BPEL is the standard for assembling a set of discrete services into an end-to-end
process flow, radically reducing the cost and complexity of process integration
initiatives. Oracle BPEL Process Manager offers a comprehensive and easy-to-use
infrastructure for creating, deploying and managing BPEL business processes.

For an overview of Oracle BPEL Process Manager, see Oracle Business Process
Execution Language (BPEL) Process Manager under Key Components in
Understanding Oracle SOA Suite.

12.2 Tuning BPEL Parameters
Tuning recommendations for BPEL parameters described here are likely or highly likely
to improve performance. For descriptions of the other tuning parameters available for
SOA Components, see the component-specific topics in this guide and Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

For detailed information on how to monitor, configure, and manage BPEL process
service components and service engines, see Administering BPEL Process Service
Components and Engines in Administering Oracle SOA Suite and Oracle Business Process
Management Suite. Also see Using the BPEL Process Service Component in Developing
SOA Applications with Oracle SOA Suite for how to use sensors to monitor select BPEL
activities.

Tuning BPEL Engine

Tuning BPEL in a Composite

12.2.1 Tuning BPEL Engine
You can configure the performance tuning properties at the BPEL engine level using
the Enterprise Manager Fusion Middleware Control. For information on using Oracle
Enterprise Manager Fusion Middleware Control to configure and monitor parameters,
see Getting Started with Administering Oracle SOA Suite and Oracle BPM Suite and

Tuning Oracle BPEL Process Manager 12-1

Accessing the System MBean Browser from the Component Property Pages in
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

Tuning BPEL Engine Parameters

12.2.1.1 Tuning BPEL Engine Parameters

Table 12-1 lists the essential tuning parameter you can adjust to improve performance
for the BPEL engine.

Table 12-1 Essential BPEL Engine Tuning

Parameter Problem Tuning Recommendation Trade-offs

auditLevel

Default: Inherit

You are experiencing low
performance because of
frequent database inserts
into the audit_trail
table.

Use the Off value to stop
storing audit information.

Note that the
auditLevel is set at the
SOA Infrastructure level.
See Configuring BPEL
Process Service Engine
Properties in
Administering Oracle SOA
Suite and Oracle Business
Process Management Suite
to see how to find and
tune this parameter.

This property sets the
audit trail logging level
for both durable and
transient processes.

If you turn this off, both
business flow and payload
tracking is disabled. You
will not be able to view
the state of BPEL
processes in the Oracle
Enterprise Manager
Console.

Table 12-2 describes additional BPEL engine parameters that can be tuned for small
performance improvements. Note that for most use cases, the default value is the
recommended value.

Table 12-2 Other BPEL Engine Tuning Knobs

Parameter Description

SyncMaxWaitTime

Default: 45 seconds.

You can decrease this parameter's value to improve
performance.

The SyncMaxWaitTime property sets the maximum
time the process result receiver waits for a result before
returning. This property is required for synchronous
interactions and applicable to transient processes.

See How To Specify Transaction Timeout Values in
Developing SOA Applications with Oracle SOA Suite for
instructions on how to find this property in the System
MBean Browser of Oracle Enterprise Manager Fusion
Middleware Control.

Tuning BPEL Parameters

12-2 Tuning Performance Guide

Table 12-2 (Cont.) Other BPEL Engine Tuning Knobs

Parameter Description

largedocumentthreshold

Default: 10000 (100 kilobytes)

You can decrease this parameter's value to improve
performance.

This property sets the maximum size (in kilobytes) of a
BPEL variable before it is stored in a separate table
from the rest of the instance scope data. It is applicable
to both durable and transient processes.

Large XML documents can slow performance if they
are constantly read in and written out whenever
processing on an instance must be performed.

See Configuring BPEL Process Service Engine
Properties in Administering Oracle SOA Suite and Oracle
Business Process Management Suite to see how to find
and tune this parameter in the Enterprise Manager
Fusion Middleware Control.

validateXML

Default: False

You should set this parameter to the default value of
False to improve performance.

This property can make the Oracle BPEL Process
Manager intercept nonschema-compliant payload data
by validating incoming and outgoing XML documents.
However, XML payload validation can slow
performance.

You can find this parameter in the System MBean
Browser. See Configuring BPEL Process Service Engine
Properties in Administering Oracle SOA Suite and Oracle
Business Process Management Suite for how to find
advanced BPEL properties using the More BPEL
Configuration Properties... button from the BPEL
Service Engine Properties page in Enterprise Manager
Fusion Middleware Control.

InstanceKeyBlockSize

Default: 10000 keys

You can increase the instance key block size to a value
greater than the number of updates to the
ci_id_range table to improve performance.

The InstanceKeyBlockSize property controls the
instance ID range size. Oracle BPEL Server creates
instance keys (a range of process instance IDs) in
batches using the value specified. After creating this
range of in-memory IDs, the next range is updated and
saved in the ci_id_range table.

See Configuring BPEL Process Service Engine
Properties in Administering Oracle SOA Suite and Oracle
Business Process Management Suite to see how to find
and tune this parameter using the System MBean
Browser in Enterprise Manager Fusion Middleware
Control.

Tuning BPEL Parameters

Tuning Oracle BPEL Process Manager 12-3

Table 12-2 (Cont.) Other BPEL Engine Tuning Knobs

Parameter Description

Audit Level Threshold

Default: 10000

You can decrease this parameter's value to improve
performance.

This property sets the maximum size (in kilobytes) of
an audit trail details string before it is stored separately
from the audit trail. Strings larger than the threshold
setting are stored in the audit_details table instead
of the audit_trail table. In cases where the
variable is very large, performance can be severely
impacted by logging it to the audit trail.

See Configuring BPEL Process Service Engine
Properties in Administering Oracle SOA Suite and Oracle
Business Process Management Suite to see how to find
and tune this parameter in Enterprise Manager Fusion
Middleware Control.

12.2.2 Tuning BPEL in a Composite
You can tune BPEL properties for individual composites to improve performance. The
BPEL properties set inside a composite affect the behavior of the component
containing the BPEL process only. Each BPEL process can be created as a component
of a composite.

BPEL composite properties can be modified in composite.xml using JDeveloper, or
in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware
Control. For in-depth descriptions of each property's function, see Deployment
Descriptor Properties in Developing SOA Applications with Oracle SOA Suite.

The BPEL tuning considerations listed in Table 12-3 may not be applicable to all BPEL
deployments. Always consult your own use case scenarios to determine if these
configurations should be used in your deployment. See How to Define Deployment
Descriptor Properties in the Property Inspector in Developing SOA Applications with
Oracle SOA Suite for how to find and edit the parameters listed below.

Table 12-3 Essential BPEL in a Composite Tuning

Parameter Problem Tuning Recommendation Trade-offs

OneWayDeliveryPolic

y

Default: async.persist

Slow performance because
resources are being used
to persist delivery
messages.

Set value to
async.cache. Incoming
delivery messages for
durable processes will be
kept only in the in-
memory cache.

By default, incoming
requests are saved in the
delivery service database
table dlv_message.

This setting has a high risk
of losing messages or
overloading the system. It
will also change the
threading model for
adapter.

Audit Policy

Default: All
activities

Slow performance because
every activity is being
audited.

Audit only key activities. Lower level activities will
not have an audit trail.

Tuning BPEL Parameters

12-4 Tuning Performance Guide

Table 12-3 (Cont.) Essential BPEL in a Composite Tuning

Parameter Problem Tuning Recommendation Trade-offs

inMemoryOptimizatio

n

Default: False

Slow performance because
the
completionPersistPo

licy parameter has been
activated at the BPEL
component level, causing
the BPEL server to
dehydrate either all or
some instances.

Set value to False to tell
the Oracle BPEL Server
that this process is a
transient process and
dehydration is not
required.

No dehydration means
that activities in the
instance will be lost if the
system crashes.

Table 12-4 describes additional BPEL parameters that can be tuned for small
performance improvements, but in most cases, the default value is the recommended
value. For in-depth descriptions of each property's function, see Properties for the
partnerLinkBinding Deployment Descriptors in Developing SOA Applications with
Oracle SOA Suite.

Table 12-4 Other BPEL in a Composite Tuning Knobs

Parameter Description

idempotent

Default: True

An idempotent activity is an activity that can be retried.
Keeping this parameter's value as True allows
idempotent activities by preventing the BPEL server
from dehydrating immediately after a failed activity.

This parameter is configured in a partner link at
runtime in BPEL.

validateXML

Default: False

False means that the system will not validate all XML
messages during a receive activity.

This parameter is configured in a partner link at
runtime in BPEL.

12.3 Using Other Tuning Strategies
Once you have tuned the parameters listed in Tuning BPEL in a Composite, you can
consider using the following strategies to further improve performance.

Identifying Tables Impacted By Instance Data Growth

12.3.1 Identifying Tables Impacted By Instance Data Growth
Instance data occupies space in Oracle BPEL Process Manager schema tables. Data
growth from auditing and dehydration can have a significant impact on database
performance and throughput.

You can use Table 12-5 to locate tables that may be affected by instance data growth.
See Monitoring Space Usage, Hardware Resources, and Database Performance in
Administering Oracle SOA Suite and Oracle Business Process Management Suite for advice
on how to monitor performance on the following database tables:

Using Other Tuning Strategies

Tuning Oracle BPEL Process Manager 12-5

Table 12-5 Oracle BPEL Process Manager Tables Impacted by Instance Data Growth

Table Name Table Description

audit_trail Stores the audit trail for instances. The audit trail
viewed in Oracle BPEL Control is created from an XML
document. As an instance is processed, each activity
writes events to the audit trail as XML.

audit_details Stores audit details that can be logged through the API.
Activities such as an assign activity log the variables as
audit details by default.

Audit details are separated from the audit_trail
table due to their large size. If the size of a detail is
larger than the value specified for this property, it is
placed in this table. Otherwise, it is placed in the
audit_trail table.

cube_instance Stores process instance metadata (for example, the
instance creation date, current state, title, and process
identifier)

cube_scope Stores the scope data for an instance (for example, all
variables declared in the BPEL flow and some internal
objects that help route logic throughout the flow).

dlv_message Stores incoming (invocation) and callback messages
upon receipt. This table only stores the metadata for a
message (for example, current state, process identifier,
and receive date).

dlv_subscription Stores delivery subscriptions for an instance. Whenever
an instance expects a message from a partner (for
example, the receive or onMessage activity) a
subscription is written out for that specific receive
activity.

document_ci_ref Stores cube instance references to data stored in the
xml_document table.

document_dlv_msg_ref Stores references to dlv_message documents stored
in the xml_document table.

wftask Stores tasks created for an instance. The TaskManager
process keeps its current state in this table.

work_item Stores activities created by an instance. All activities in
a BPEL flow have a work_item table. This table
includes the metadata for the activity (current state,
label, and expiration date (used by wait activities)).

Using Other Tuning Strategies

12-6 Tuning Performance Guide

Table 12-5 (Cont.) Oracle BPEL Process Manager Tables Impacted by Instance Data Growth

Table Name Table Description

xml_document Stores all large objects in the system (for example,
dlv_message documents). This table stores the data
as binary large objects (BLOBs). Separating the
document storage from the metadata enables the
metadata to change frequently without being impacted
by the size of the documents.

Headers_properties Stores headers and properties information.

When you have determined which tables are causing slow performance, you can
purge them. See Understanding Growth Management Challenges and Testing
Strategies in Administering Oracle SOA Suite and Oracle Business Process Management
Suite for more information on managing database growth.

Using Other Tuning Strategies

Tuning Oracle BPEL Process Manager 12-7

Using Other Tuning Strategies

12-8 Tuning Performance Guide

13
Tuning Oracle Mediator

You can tune Oracle Mediator to optimize its performance as the framework for
mediation between various providers and consumers of services and events.

SOA Suite Components

About Oracle Mediator

Tuning Mediator Parameters

Using Resequencer for Messages

13.1 About Oracle Mediator
Mediator is a component of the Oracle SOA Suite offering that provides mediation
capabilities like selective routing, transformation and validation capabilities, along
with various message exchange patterns, like synchronous, asynchronous and event
publishing or subscription. Oracle Mediator provides the framework to mediate
between various providers and consumers of services and events. The Mediator
service engine runs with the SOA Service Infrastructure Java EE application.

Note:

For details about the SOA Suite, see Developing SOA Applications with Oracle
SOA Suite.

For details about Oracle Mediator, see Administering Oracle Mediator Service
Components and Engines in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

13.2 Tuning Mediator Parameters
In most business environments, customer data resides in disparate sources including
business partners, legacy applications, enterprise applications, databases, and custom
applications. The challenge of integrating this data efficiently can be met by using
Oracle Mediator to deliver real-time data access to all applications that update or have
a common interest in the same data.

Note:

Before you begin tuning Oracle Mediator properties, be sure that you have
read and understand the Oracle Mediator topics under Administering Oracle
Mediator Service Components and Engines in Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

Tuning Oracle Mediator 13-1

Table 13-1 describes the parameter values that can be tuned for performance. Note that
the need to tune Mediator to improve performance is unlikely.

Table 13-1 Essential Mediator Tuning Knobs

Parameter Tuning Recommendation

DeferredMaxRowsRetrieved

Default: 20 rows

Increase the default value to retrieve more deferred
processing messages from the DB in one iteration.

Note that in Mediator, this parameter is only used with
parallel routing rules.

DeferredLockerThreadSleep

Default: 2 seconds

If deferred messages constitute a small percentage of
total messages, increase the default value to perform
fewer trips to the DB to retrieve deferred messages.

Some use case scenarios can benefit from an idle time
of 3600 seconds (60 minutes).

metricsLevel

Default: enabled

If you do not need to collect DMS metrics data,
disabling this parameter can improve performance.

For more information about each parameter, see Configuring Oracle Mediator Service
Components and Engines in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

13.3 Using Resequencer for Messages
A Resequencer is used to rearrange a stream of related but out-of-sequence messages
back into order. It sequences the incoming messages that arrive in a random order and
then sends them to the target services in an orderly manner.

Table 13-2 lists tunable parameters for Resequencer in Mediator. You can tune the
following parameters by accessing the Mediator Service Engine Properties page or the
System MBean Browser using one of the methods described under Configuring Oracle
Mediator Service Engine Properties in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Table 13-2 Essential Tuning Knobs for Resequencer in Mediator

Parameter Tuning Recommendation

ResequencerMaxGroupsLocked

Default: 4 rows

Increase the default value to lock more Resequencer
groups from the database in one iteration.

ResequencerLockerThreadSleep

Default: 10 seconds

Increase the default value to perform fewer trips to the
database to lock resequencer groups if resequencer
groups constitute a small percentage of total groups
and messages.

DeleteMessageAfterComplete

Default: True

Keep True as the value to delete message after
successful execution. For a high load use case, this will
result in more database space.

Changing the default value to False will retain the
resequenced messages in the resequencer database.
This will slow down the resequencer database queries
which in turn degrade the performance.

Using Resequencer for Messages

13-2 Tuning Performance Guide

For more information about Resequencers in Mediator, refer to Configuring
Resequenced Messages in Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Using Resequencer for Messages

Tuning Oracle Mediator 13-3

Using Resequencer for Messages

13-4 Tuning Performance Guide

14
Tuning Oracle Managed File Transfer

You can tune Managed File Transfer (MFT) to optimize its performance as the
managed file gateway.

SOA Suite Components

About Managed File Transfer

Tuning MFT Parameters

14.1 About Managed File Transfer
Oracle Managed File Transfer (MFT) is a high performance, standards-based, end-to-
end managed file gateway. It features design, deployment, and monitoring of file
transfers using a lightweight web-based design-time console that includes file
encryption, scheduling, and embedded FTP and sFTP servers.

For more information about Managed File Transfer, see Understanding Oracle
Managed File Transfer in Using Oracle Managed File Transfer.

14.2 Tuning MFT Parameters
You can tune MFT parameters to optimize performance.

Table 14-1 lists and describes parameters that you will likely need to tune to improve
MFT performance. To diagnose problem areas in MFT, see Monitoring Oracle
Managed File Transfer and Administering Oracle Managed File Transfer in Using
Oracle Managed File Transfer.

Table 14-1 Essential MFT Tuning

Tuning Oracle Managed File Transfer 14-1

Table 14-1 (Cont.) Essential MFT Tuning

Parameter Problem Tuning Recommendation Trade-offs

Processor count

Default: 2 for each type of
processor

JMS messages are
accumulating in message
processing queues.

Increase the processor
count for the queues
where messages are
accumulating.

The optimal value
depends on the meta data
and incoming payload.
You can calculate the
optimal processor count
using DMS metrics.

To enable DMS metrics,
add MBean property
enablePerformanceMe
tric. To disable metrics
later, set the value to
False.

Having more processors
requires more system
resources for concurrent
processing.

Maximum Concurrent
Request and Max Logins
settings for Embedded
FTP/SFTP server

Default: 10

• Multiple connection
requests in waiting
status

• The message "Too
many users logged in,
user will be
disconnected" occurs
in the embedded
server log file

Increase the maximum
number of concurrent
requests and maximum
number of logins for
embedded FTP/SFTP
server.

You can increase the count
so long as performance
continues to scale linearly.

If the embedded server
service (FTP/SFTP) is not
being used, then disable
this setting.

Increased count requires
more system resources for
concurrent processing.

LDAP Max Pool

Default: 10

• Number of concurrent
connections to the
LDAP consistently
reaches max limit

Increase count.

Because LDAP is a shared
resource for all deployed
applications in WebLogic
server, you should
monitor LDAP
connections and adjust
this value accordingly.

Increased count requires
more system resources.

Max connections to
MFTDataSource

Default: 50

• Number of concurrent
connection to the data
source consistently
reaches max limit

Increase the connection
count so long as
performance continues to
scale linearly.

Optimal value can be
determined based on the
number of processors,
listening source threading
model and max
concurrent request
settings of embedded
servers.

Increased count requires
more system resources.

Tuning MFT Parameters

14-2 Tuning Performance Guide

Table 14-1 (Cont.) Essential MFT Tuning

Parameter Problem Tuning Recommendation Trade-offs

Generating checksum
setting

Default: Enabled

• Overall MFT message
processing is slow

Disable this parameter if
checksum validation for
delivered payloads from
MFT is not necessary.

Generating checksum is a
time consuming
operation.

Regular purge

Default: Disabled

• Disk space is
approaching the
maximum limit

• Table space used by
MFT tables reaches the
max table space
allotted

Run purge to free disk or
table space.

Historical information/
data will be discarded.

Table 14-2describes the tuning properties that do not regularly need to be tuned.
Keeping their default values is recommended, so you can check these parameters see if
their values have been changed.

Table 14-2 MFT Parameters with Low or Medium Importance

Parameter Problem Tuning Recommendation Trade-offs

Processing function/
callout usage
recommendation for
broadcasting use cases

Default: Target Level

Associated processing
function/callout will be
executed for each target
which will degrade the
performance.

For broadcasting use
cases, associate processing
functions/callouts at
source level instead of
target level as much as
possible.

None.

Sub-folder count MBean
setting

Default: 256

Degraded disk
performance caused by
MFT switching among a
high number of sub-
folders to store files.

Reduce the sub-folder
count.

Reducing the number of
sub-folders will increase
the number of files stored
in each sub-folder. If the
volume of incoming files
is high, the number of the
files inside a single sub-
folder will degrade
performance.

Store Inline payload
setting

Default: File System

Slow performance because
accessing inline payload
for Web Service sources
from the disk takes too
much time.

Store inline payload in the
database rather than the
file system.

The table size used by
MFT will increase as
inline payloads are stored
in the database.

Always Save
Modified Files setting
at the target level

Default: False

If you have changed this
setting to True for
auditing purposes, you
will have increased disk
space usage.

The default value of
False reduces disk space
usage.

No audit information will
be available.

Note that a target level
resubmit will not work if
there was any pre-
processing associated with
the target.

Tuning MFT Parameters

Tuning Oracle Managed File Transfer 14-3

Table 14-2 (Cont.) MFT Parameters with Low or Medium Importance

Parameter Problem Tuning Recommendation Trade-offs

minFileSizeForProgr
essMonitor

Default: 10 MB

Frequent updates about
byte transfer.

Specify a minimum file
size so that the transfer
progress screen appears
for larger files only.

For files smaller than the
minimum specified, the
file transfer progress will
not be displayed.

progressMonitorTime
ToCommit MBean

Default: 4 seconds

Frequent updates about
byte transfer.

Specify a minimum file
size so that the transfer
progress screen appears
for larger files only.

Database updates on bytes
transferred for ongoing
file transfers will be
slower.

MaxMdsSessionCacheC
ount

Default: 100

Out-of-memory
exceptions caused by
MDS cache memory
footprint.

Decrease this value. Decreasing this will
decrease the performance
of the overall MFT
message processing
because accessing data
from the cache is faster.

Tuning Remote FTP / SFTP/ FILE Type Sources

Minimizing MDS label

Adjusting the Materialized Views Refresh Interval

14.2.1 Tuning Remote FTP / SFTP/ FILE Type Sources
If MFT is not able to pick up files even after polling frequency is expired, you need to
tune the remote FTP/SFTP/FILE type sources. MFT uses the JCA Adapters
underneath for all of these source types. Refer to the SOA adapter recommendations
listed under Oracle JCA Adapter Framework Performance and Tuning in
Understanding Technology Adapters.

Some of the properties are listed in Table 14-3.

Table 14-3 Tuning Remote FTP/SFTP/FILE Type Source

Parameter Problem Tuning Recommendation Trade-offs

ThreadCount

Default: -1

A high priority endpoint
is downloading files
slowly because of
insufficient threads in the
global pool.

Specify a value greater
than 0. This will create a
dedicated thread pool for
a given end point to
download files.

A very high value may
result in lots of threads
assigned to one end point,
which can lead to lower
overall performance.

SingleThreaded

Default: False

In rare cases, you may not
want to use global threads
or allocate a separate
thread pool for a low-
priority end point.

Set value to True. If set to true, it can result
in a delay in downloading
files from the end point as
now there will be a single
thread for polling as well
as downloading new files.

14.2.2 Minimizing MDS label
Artifact deployment results in creation of new MDS labels. More MDS labels will
increase the memory footprint and time to retrieve the metadata.

Tuning MFT Parameters

14-4 Tuning Performance Guide

In general, users should follow these best practices for deployments:

• Minimize frequent deployments and meta data creations.

• Use bulk deployment WLST commands.

• Make all changes for metadata and deploy them at once.

14.2.3 Adjusting the Materialized Views Refresh Interval
Materialized views refresh every 1 minute. If there is a heavy load on the database
server, you may want to increase the refresh frequency from 1 minute.

You can view data from materialized views on the MFT console. If a high load is
observed on the database server, this refresh frequency can be adjusted using the
following command:

ALTER MATERIALIZED VIEW <<MV_NAME>> REFRESH NEXT <<REFRESH_INTERVAL>>;

The materialized views used by MFT are:

• MV_MFT_PAYLOAD_INFO

• MV_MFT_SOURCE_INFO

• MV_MFT_SOURCE_MESSAGE

• MV_MFT_TARGET_INFO

• MV_MFT_TRANSFER

• MV_MFT_TRANSFER_COUNT_INFO

Tuning MFT Parameters

Tuning Oracle Managed File Transfer 14-5

Tuning MFT Parameters

14-6 Tuning Performance Guide

15
Tuning Oracle Business Rules

You can tune Oracle Business Rules to optimize its performance in enabling
automation of business rules and extraction of business rules from procedural logic
such as Java code or BPEL processes.

SOA Suite Components

About Oracle Business Rules

Tuning Oracle Business Rules

15.1 About Oracle Business Rules
Oracle Business Rules provides an easy-to-use authoring environment as well as a
very high-performance inference-capable rules engine. Oracle Business Rules is part of
the Oracle Fusion Middleware stack and will be a core component of many Oracle
products including both middleware and applications.

For more information, see Designing Business Rules with Oracle Business Process
Management and Getting Started with Oracle Business Rules in Developing SOA
Applications with Oracle SOA Suite.

15.2 Tuning Oracle Business Rules
In most cases, writing of Rules should not require a focus on performance. However,
as in any technology, there are tips and tricks that can be used to maximize
performance when needed. Most of the considerations are focused on the initial
configuration of the data model.

Table 15-1 Essential Business Rules Tuning Strategies

Strategy Description Recommendation

Use Java Beans The rule engine is most efficient
when the facts it is reasoning on are
Java Beans (or RL classes) and the
associated tests involve bean
properties.

The beans should expose get and set
methods (if set is allowed) for each
bean property.

If application data is not directly
available in Java Beans, flatten the
data to a collection of Java Beans
that will be asserted as facts (and
used in the rules).

Tuning Oracle Business Rules 15-1

Table 15-1 (Cont.) Essential Business Rules Tuning Strategies

Strategy Description Recommendation

Assert Child Facts instead of
Multiple Dereferences

Expressions like
Account.Contact.Address
involve more than one object
dereference. In a rule condition, this
is not as efficient as expressions
with single dereferences.

It is a best practice to flatten fact
types as much as possible.

If the fact type has a hierarchical
structure, consider using
assertXPath or other means to
assert object hierarchy.

Avoid Side Effects in Rule
Conditions

The tests in a rule condition may be
evaluated a greater or lesser
number of times than would occur
in a procedural program.

Methods or functions that have side
effects such as changing a value or
state should not be used in a rule
condition.

If a method or function has side
effects, those side effects may be
performed an unexpected number
of times.

Avoid Expensive Operations in
Rule Conditions

Expensive operations would
include any operation that involves
I/O (disk or network) or even
intensive computations. These
operations should be done external
to the rules engine.

Expensive operations should be
avoided in rule conditions. In
general, consider avoiding I/O or
DBMS access from the rules engine
directly.

For other expensive operations or
calculations, consider performing
the computations and assert the
results as a Java or RL fact. These
facts are used in the rule conditions
instead of the expensive operations.

Consider Pattern Ordering Reordering rule patterns can
improve the performance of rule
evaluation in time, memory use, or
both. Finding the optimal order for
your system will require some
experimentation.

If a fact is not expected to change
(or will not change frequently)
during rule evaluation, order the
fact clauses by expected rate of
change from least to greatest.

If a fact clause (including any tests
that involve only that fact) is
expected to match fewer facts than
other fact clauses in the rule
condition, order the fact clauses
from most restrictive (matches
fewest facts) to least restrictive.

Consider the Ordering of Tests in
Rule Conditions

Proper ordering can reduce the
amount of computation required for
facts that do not satisfy the rule
condition.

The tests in a rule condition should
be ordered so that a more restrictive
test occurs before a less restrictive
test.

If the degree of restrictiveness is not
known, or estimated to be equal for
a collection of tests, then simpler
tests should be placed before more
expensive tests.

Exerting assertXPath Support

Tuning Oracle Business Rules

15-2 Tuning Performance Guide

15.2.1 Exerting assertXPath Support
The assertXPath method asserts the whole hierarchy in one call, but also asserts
some XLink facts for children facts to link back to parent facts. Though very
convenient, it may have a performance impact.

To improve performance of assertXPath, select the "Enable improved
assertXPath support for performance" check box in the Dictionary
Properties page in Rule Author. Taking advantage of this will require that the
following conditions are met:

• assertXPath is only invoked with an XPath expression of "//*". Any other XPath
expression will result in an RLIllegalArgumentException.

• XLink facts should not be used in rule conditions as the XLink facts will not be
asserted.

If XLink facts for children facts are not needed, and you need to assert only a few
levels as facts, it is better to turn off the "Supports XPath" for the relevant fact types
and then use a function to do custom asserts. Instead of using assertXPath, the
following example uses a function to assert ExpenseReport and
ExpenseLineItems:

function assertAllObjectsFromList(java.util.List objList)
{
 java.util.Iterator iter = objList.iterator();
 while (iter.hasNext())
 {
 assert(iter.next());
 }
}

function assertExpenseReport (demo.ExpenseReport expenseReport)
{
 assert(expenseReport);
 assertAllObjectsFromList(expenseReport.getExpenseLineItem());
}

Tuning Oracle Business Rules

Tuning Oracle Business Rules 15-3

Tuning Oracle Business Rules

15-4 Tuning Performance Guide

16
Tuning Oracle Business Process

Management

You can tune Oracle Business Process Management to optimize its performance in
providing a seamless integration of all stages of the application development life cycle
from design-time and implementation to run-time and application management.

SOA Suite Components

About Oracle Business Process Management

Tuning Business Process Management Parameters

Using Other Tuning Strategies

16.1 About Oracle Business Process Management
The Oracle Business Process Management Suite provides an integrated environment
for developing, administering, and using business applications centered around
business processes. Oracle Business Process Management is layered on the Oracle
SOA Suite and shares many of the same product components, including Business
Rules, Human Workflow, and Oracle Adapter Framework for Integration.

For more information on using Oracle Business Process Management, see Oracle Fusion
Middleware User's Guide for Oracle Business Process Management.

For more information on tuning Oracle Business Process Management with your other
Oracle Fusion Middleware components, see Top Performance Areas .

16.2 Tuning Business Process Management Parameters
You can tune BPM performance parameters in the Enterprise manager, via the SOA
Administration in BPMN properties.

To tune the performance of the Oracle Business Process Management engine, you can
reduce resource demands to reduce latency and increase system capacity to enable
greater scalability.

To reduce resource demands, you can tune the parameters listed in Table 16-1:

Table 16-1 Essential Business Process Management Tuning to Reduce Resource Demands

Tuning Oracle Business Process Management 16-1

Table 16-1 (Cont.) Essential Business Process Management Tuning to Reduce Resource Demands

Parameter Problem Tuning Recommendation Trade-offs

largedocumentthresh
old

Default: 10000 (100
kilobytes)

Instances are being
processed slowly because
you are storing large
BPMN Data objects.

Decrease the maximum
size (in kilobytes) of this
parameter to limit the size
of BPMN Data Objects. If
they surpass this limit,
they are stored in a
separate location from the
rest of the instance scope
data.

This property is applicable
to both durable and
transient processes.

The overflow data will be
stored in an external
append-only table. This
adds to overall database
size and can increase the
overall workload when
loading instances from the
database.

auditLevel

Default: Inherit from
Infrastructure

You are seeing frequent
database inserts into the
audit_trail table.
These are caused by audit
events being logged by a
process.

Reduce or disable audit.
You can switch to any of
the following settings:

• Off to log no events or
audit events

• Minimal to log only
events

• Error to log only
serious problems

You can also consider
expanding the size of the
AuditKeyExtents.

You lose granular error
reporting that you could
use to diagnose problems
later. Always choose the
audit level according to
your business
requirements and use
cases.

For more information on
how to use audit trails for
monitoring, see
Monitoring BPMN
Process Service
Components and Engines
in Administering Oracle
SOA Suite and Oracle
Business Process
Management Suite.

You can also try to purge completed instances as allowed by business requirements
and add indexes for any flex fields.

Increasing system capacity should only be done based on analysis of performance
testing results. Adjustments should not be made unless testing indicates that they are a
constraint on scale. To increase system capacity, you can tune the parameters listed in
Table 16-2:

Table 16-2 Essential Business Process Management Tuning to Increase System Capacity

Tuning Business Process Management Parameters

16-2 Tuning Performance Guide

Table 16-2 (Cont.) Essential Business Process Management Tuning to Increase System Capacity

Parameter Problem Tuning Recommendation Trade-offs

DispatcherEngineThr
eads

Default: 2 threads

System dispatcher
messages are general
clean-up tasks that are
typically processed
quickly by the server (for
example, releasing stateful
message beans back to the
pool). Typically, only a
small number of threads
are required to handle the
number of system
dispatch messages
generated during run
time. You may need to
tune this parameter if you
have either of the
following problems:

You do not have enough
threads. CPU utilization
remains low

OR

You have too many
threads. Context
switching drives up CPU
use but does not increase
throughput.

Increase the thread pool
sizes for the respective
workload based on thread
pool usage.

If you see a backlog of
requests and additional
CPU capacity, then
consider increasing the
number of threads.

Increasing the size of the
thread pools will increase
CPU utilization and
garbage collection.
However, if there are
other application that
share the same platform
and expect to have access
to additional CPU
capacity, then that could
cause a conflict.

DispatcherInvokeThr
eads

Default:20 threads

Invocation dispatcher
messages are generated
for each payload received
and are meant to
instantiate a new instance.
You may need to tune this
parameter if you have
either of the following
problems:

Threads are busy but CPU
utilization remains low.

OR

You have too many
threads. Context
switching drives up CPU
use but does not increase
throughput.

Increase the thread pool
sizes for the respective
workload based on thread
pool usage.

If you see a backlog of
requests and additional
CPU capacity, then
consider increasing the
number of threads.

Increasing the size of the
thread pools will increase
CPU utilization. However,
if there are other
application that share the
same platform and expect
to have access to
additional CPU capacity,
then that could cause a
conflict.

You can also try to increase the size of connection pools and optimize the use of
connections.

16.3 Using Other Tuning Strategies
Once you have tuned the parameters listed in Tuning Business Process Management
Parameters, consider using the following strategies to further improve performance.

Using Other Tuning Strategies

Tuning Oracle Business Process Management 16-3

Tuning Oracle Workspace Applications

Tuning Process Measurement

16.3.1 Tuning Oracle Workspace Applications
Database performance and session state management are the primary drivers for
performance. Effective database tuning and configuration of HTTP session timeout are
important.

Application design is the next largest factor, especially if there are additional data
controls used to render contextual data on task forms. In those cases, it is important to
optimize data access from those data controls and when possible defer retrieving
additional data unless it is needed. For more details on tuning ADF, see Oracle ADF
Faces Configuration and Profiling.

The following parameters can be changed in the web.xml descriptor in the
OracleBPMWorkspace web application. Once they have been modified, you may
have to redeploy.

Parameter Problem Tuning Recommendation Trade-offs

HTTP Session
Timeout

Default: 15 minutes

Memory is being allocated
for users who may no
longer be actively using
the system.

To better manage resource
usage, decrease the
session timeout value, in
minutes, to the smallest
value that preserves the
expected user experience.
This allows the system to
reclaim any resources
associated with unused
sessions as soon as
possible.

This parameter is edited
in the in the web.xml file.
The following is a sample
snippet of web.xml:

<session-config>
 <session-timeout>
 5
 </session-timeout>
</session-config>

A short timeout value
may mean users will have
to login ore often if they
let the time expire. They
also may potentially lose
session data.

Using Other Tuning Strategies

16-4 Tuning Performance Guide

Parameter Problem Tuning Recommendation Trade-offs

ADF Client State
Token

Default: 15

The default value may
consume too much
memory.

Decrease the value to 3 to
minimize the memory
footprint.

Through this setting, you
can control the number of
pages users can navigate
using the browser Back
button without losing
information. To reduce
CPU and memory usage,
you can decrease the
value in the web.xml file.

The following is a sample
snippet of web.xml:

<context-param>
 <param-name>
org.apache.myfaces.trin
idad.CLIENT_STATE_MAX_T
OKENS
 </param-name>
 <param-value>
 3
 </param-value>
</context-param>

If the user clicks on the
'Back' button more than 3
times, there will be no
session data stored for
that page.

If the value is too small,
users will get an error
using the back button.

Compress_View_State
Token

Default: True

Slow performance on
slower/higher latency
networks.

Keep the default to keep
zipping enabled.

This setting controls
whether or not the page
state is compressed.
Zipping greatly reduces
the memory being taken
up by page state in the
session object.

The following is a snippet
of web.xml:

<param-
name>org.apache.myfaces
.trinidad.COMPRESS_VIEW
_STATE</param-name>
 <param-value>true</
param-value>

There is an additional
CPU cost to zipping and
unzipping the view state.

Using Other Tuning Strategies

Tuning Oracle Business Process Management 16-5

Parameter Problem Tuning Recommendation Trade-offs

DISABLE_CONTENT_COM
PRESSION

Default: False

Slow initial load of pages. In production
environments, make sure
you remove the
DISABLE_CONTENT_COM
PRESSION parameter
from the web.xml file or
set it to FALSE. By default,
style classes that are
rendered are compressed
to reduce page size.

The following is a snippet
of web.xml:

<param-
name>org.apache.myfaces
.trinidad.DISABLE_CONTE
NT_COMPRESSION</param-
name>
 <param-value>false</
param-value>

None.

16.3.2 Tuning Process Measurement
Process Analytics uses measurement events to sample the process and publish
measurements to registered consumers. In 12c (12.2.1.1), these measurements can be
enabled by setting the DisableAnalytics parameter to False in the BPM
Enterprise Manager's Analytics Configuration MBean.

The two supported consumers for measurements in 12c are BAM 11g Monitor Express
and BAM 12c Process Metrics. They can enabled or disabled using the
DisableProcessMetrics and DisableMonitorExpress attributes of the
AnalyticsConfig mbean.

Note:

Only data that is useful should be published. The process design specifies
what data (dimensions, measure, counters) should be published and at what
point(s). If data is being generated that is not useful, then it could be adding
unnecessary load to the system.

Measurement events are published on the JMS Topic: MeasurementTopic, and
consumed by registered Action MDBs. To tune JMS for Measurements, consider
changing the parameters listed in Table 16-3, as needed, in a high volume
environment:

Table 16-3 Essential JMS Resource Tuning for BPM

Using Other Tuning Strategies

16-6 Tuning Performance Guide

Table 16-3 (Cont.) Essential JMS Resource Tuning for BPM

JMS Resource Problem Tuning Recommendation Trade-offs

dist_MeasurementTop
ic_auto

Default: Forwarding
Policy Replicated

A distributed
measurement topic in a
cluster installation is
configured by default
with FORWARDING
POLICY REPLICATED
even though this is not the
best performance option
for BPM analytics.

Change the Forwarding
Policy for this parameter
to PARTITIONED.

This parameter can be
altered in the WebLogic
console. You can find it
from the front page with
the following options:
JMS Modules ->
BPMJMSModule ->
dist_MeasurementTopic_
auto. You will need to
restart all SOA BPM
cluster nodes for the
changes to take effect.

A distributed topic with a
Partitioned policy
generally outperforms the
FORWARDING POLICY
REPLICATED.

For more information on
distributed topics versus
other topic types, see
Supported Topic Types in
Developing Message-Driven
Beans for Oracle WebLogic
Server.

For more information on
partitioned and replicated
forwarding policies, see
Configuring Partitioned
Distributed Topics in
Administering JMS
Resources for Oracle
WebLogic Server.

MeasurementTopicCon
nectionFactory

Default: Send Timeout
200000

You have a high volume
environment and you are
receiving frequent
resource allocation
exceptions from message
producers.

For more information, see
Defining a Send Timeout
on Connection Factories in
Tuning Performance of
Oracle WebLogic Server.

Increase the Send
Timeout for this
parameter to 240000 in a
high volume
environment.

The numerical value
represents the maximum
length of time in
milliseconds.

This parameter can be
altered in the WebLogic
console. You can find it
from the front page with
the following options:
JMS Modules ->
BPMJMSModule -->
MeasurementTopicConn
ectioNFactory --> Default
Delivery.

You may create a message
backlog that consumes
memory and resources.

Using Other Tuning Strategies

Tuning Oracle Business Process Management 16-7

Table 16-3 (Cont.) Essential JMS Resource Tuning for BPM

JMS Resource Problem Tuning Recommendation Trade-offs

MeasurementQuota

Defaults: Message
Maximum 1000000 and
Bytes Maximum
800000000

Measurement messages
cannot be published and
fails with
javax.jms.ResourceAl
locationException
thrown.

Set the Message
Maximum and Bytes
Maximum for this
parameter equal to the
amount of system
memory available after
you have accounted for
the rest of your
application load.

MeasurementQuota
attributes can be altered in
the WebLogic console.
You can find it from the
front page with the
following options: JMS
Modules ->
BPMJMSModule ->
MeasurementQuota.

Increasing this value
consumes more memory.
Message delivery may still
fail if the aggregate size of
messages pushed to the
consumer is larger than
the current protocol's
maximum message size.

For more information
about measurement
quotas, see Tuning for
Large Messages in Tuning
Performance of Oracle
WebLogic Server.

BPMJMSServer

Default: MessageBuffer
size 100000

The JMS server is
frequently writing
message bodies to disk.

Increase the Message
Buffer Size for a given
BPMJMSServer.

Note that the
BPMJMSServer uses
Paging File and
JMSFileStore.

This parameter can be
altered in the WebLogic
console. You can find it
from the front page with
the following options:
JMS
Servers_auto_number.

The JMS server will use
more memory.

Using Other Tuning Strategies

16-8 Tuning Performance Guide

17
Tuning Oracle Human Workflow

You can tune Oracle Human Workflow to optimize its performance in handling
various aspects of human interaction with a business process.

SOA Suite Components

About Oracle Human Workflow

Tuning Human Workflow

Using Other Tuning Strategies

17.1 About Oracle Human Workflow
Oracle Human Workflow is a service engine running in Oracle SOA Service
Infrastructure that allows the execution of interactive human driven processes. A
human workflow provides the human interaction support such as approve, reject, and
reassign actions within a process or outside of any process. The Human Workflow
service consists of a number of services that handle various aspects of human
interaction with a business process.

For more information, see Using the Human Workflow Service Component in
Developing SOA Applications with Oracle SOA Suite.

See also the Oracle Human Workflow web site at http://www.oracle.com/
technology/products/soa/hw/index.html.

17.2 Tuning Human Workflow
You can tune Oracle Human Workflow to optimize its performance in handling
various aspects of human interaction with a business process. The suggestions
presented here are all applicable to API usage.

Table 17-1 Essential Human Workflow Tuning Strategies

Tuning Oracle Human Workflow 17-1

http://www.oracle.com/technology/products/soa/hw/index.html.
http://www.oracle.com/technology/products/soa/hw/index.html.

Table 17-1 (Cont.) Essential Human Workflow Tuning Strategies

Name Description Recommendation

Minimize Client Response Time Since workflow client applications
are interactive, it is important to
have good response time at the
client.

Some of the factors that affect the
response time include service call
performance impacts, querying time
to determine the set of qualifying
tasks for the request, and the
amount of additional information to
be retrieved for each qualifying
task.

Review your performance metrics
to determine how response time can
be improved.

Choose the Right Workflow Service
Client

Remote client is the best option in
terms of performance in most cases.
If the client is running in the same
JVM as the workflow services (soa-
infra application), the API calls are
optimized so that there is no remote
method invocation (RMI) involved.
If the client is on a different JVM,
then RMI is used, which can impact
performance due to the serialization
and de-serialization of data between
the API methods.

SOAP client is preferred for
standardization (based on web
services). There are additional
performance considerations
compared to the remote method
invocation (RMI) used in the remote
client. Additional processing is
performed by the web-services
technology stack which causes the
marshalling and unmarshalling of
API method arguments between
XML.

If the client application is based on
Java EE technology, then consider
which client should be used based
on your use case scenarios.

Note that if the client application is
based on .Net technologies, then
only the SOAP workflow services
can be used.

Narrow Qualifying Tasks Using
Precise Filters

When a task list is retrieved, the
query should be as precise as
possible so the maximum filtering
can be done at the database level.

Use precise filters to improve
response time.

Retrieve Subset of Qualifying Tasks
(Paging)

The query API has paging
parameters that control the number
of qualifying rows returned to the
user and the start row.

Decrease the startRow and
endRow parameters to values that
may limit the number of returned
records. This will decrease query
time, the application process time,
and the amount of data returned to
client.

Tuning Human Workflow

17-2 Tuning Performance Guide

Table 17-1 (Cont.) Essential Human Workflow Tuning Strategies

Name Description Recommendation

Fetch Only the Information That Is
Needed for a Qualifying Task

Typically only some of the payload
fields are needed for displaying the
task list.

When using the queryTask
service, consider reducing the
amount of optional information
retrieved for each task returned in
the list.

In rare cases where the entire
payload is needed, then the payload
information can be requested.

Reduce the Number of Return
Query Columns

When using the queryTask
service, consider reducing the
number of query columns to
improve the SQL time.

Try using the common columns as
they are the most likely indexed
columns. This allows the SQL to
execute faster.

Use the Aggregate API for Charting
Task Statistics

Sometimes it is necessary to display
charts or statistics to summarize
task information.

Consider using the new aggregate
APIs to compute the statistics at the
database level rather than fetching
all the tasks using the query API
and computing the statistics at the
client layer.

Use the Count API Methods for
Counting the Number of Tasks

Sometimes it is only necessary to
count how many tasks exist that
match certain criteria.

Call the countTasks API method,
which returns only the number of
matching tasks.

Create Indexes On Demand for
Flexfields

The workflow schema table
WFTASK contains several flexfield
attribute columns that can be used
for storing task payload values in
the workflow schema. Because there
are numerous columns, and their
use is optional, the installed schema
does not contain indexes for these
columns.

Create indexes on these columns in
certain cases where certain mapped
flexfield columns are frequently
used in query predicates.

Use the doesTaskExist Method Sometimes it is necessary to check
whether a task exists that matches
particular query criteria.

Consider using doesTaskExist
instead of the default of
countTasks.

The doesTaskExist method
performs an optimized query that
simply checks if any rows exist that
match the specified criteria. This
method may achieve better results
than calling the countTasks
method.

17.3 Using Other Tuning Strategies
Once you have tuned the parameters listed in Tuning Human Workflow, you can
consider using the following strategies to further improve performance.

Improving Server Performance

Completing Workflows Faster

Using Other Tuning Strategies

Tuning Oracle Human Workflow 17-3

Tuning the Identity Provider

Tuning the Database

17.3.1 Improving Server Performance
Server performance essentially determines the scalability of the system under heavily
loaded conditions. In Tuning Human Workflow, strategy "Minimize Client Task
Response Time" lists several ways in which client response times can be minimized by
fetching the right of amount of information and reducing the potential performance
impact associated with querying. These techniques also reduce the database and
service logic performance impacts on the server and can improve server performance.
In addition, a few other configuration changes can be made to improve server
performance:

Table 17-2 Essential server performance tuning strategies

Name Description Recommendation

Archive Completed Instances
Periodically

The database scalability of a system
is largely dependent on the amount
of data in the system. Since business
processes and workflows are
temporal in nature, once they are
processed, they are not queried
frequently.

Consider using an archival scheme
to periodically move completed
instances to another system that can
be used to query historical data.
Archival should be done carefully
to avoid orphan task instances.

Select the Appropriate Workflow
Callback Functionality

The workflow callback functionality
can be used to query or update
external systems after any
significant workflow event, such as
assignment or task completion.

Ensure that there are sufficient
resources to update the external
system after the task is completed
instead of after every workflow
event.

If a callback cannot be avoided, then
consider using a Java callback
instead of a BPEL callback. Java
callbacks do not have the
performance impact associated with
a BPEL callback since the callback
method is executed in the same
thread.

Minimize Performance Impacts
from Notification

Notifications are useful for alerting
users that they have a task to
execute. In environments where
most approvals happen through
email, actionable notifications are
especially useful. This also implies
that there is not much load in terms
of worklist usage.

Minimize the notification to alert a
user only when a task is assigned
instead of sending out notifications
for each workflow event.

Also consider making the
notifications secure, in which case
only a link to the task is sent in the
notification and not the task content
itself.

Using Other Tuning Strategies

17-4 Tuning Performance Guide

Table 17-2 (Cont.) Essential server performance tuning strategies

Name Description Recommendation

Deploy Clustered Nodes All workflow instances and state
information are stored in the
dehydration database. Workflow
services are stateless which means
they can be used concurrently on a
cluster of nodes.

When performance is critical and a
highly scalable system is needed, a
clustered environment can be used
for supporting workflow.

17.3.2 Completing Workflows Faster
The time it takes for a workflow to complete depends on the routing type specified for
the workflow. The workflow functionality provides some options that can be used to
decrease the amount of time it takes to complete workflows.

Table 17-3 Essential workflow completion tuning strategies

Name Description Recommendation

Use Workflow Reports to Monitor
Progress

Several workflow reports (and
corresponding views) are available
that can make monitoring and
proactive problem fixing easier.

By checking the unattended tasks
report, you can assign tasks that
have been in the queue for a long
time to specific users.

By monitoring cycle time and other
statistics, you can add staff to
groups that are overloaded or take a
longer time to complete their tasks.

Specify Escalation Rules To ensure that tasks do not get
stuck at any user, you can specify
escalation rules. For example, you
can move a task to a manager if a
certain amount of time passes
without any action being taken on
the task. Custom escalation rules
can also be plugged in if the task
must be escalated to some other
user based on alternative routing
logic.

By specifying proper escalation
rules, you can reduce workflow
completion times.

Specify User and Group Rules for
Automated Assignment

Rules can help significantly reduce
workflow waiting time, which
results in faster workflow
completion.

Instead of manually reassigning
tasks to other users or members of a
group, you can use user and group
rules to perform automated
reassignment. This ensures that
workflows get timely attention.

Using Other Tuning Strategies

Tuning Oracle Human Workflow 17-5

Table 17-3 (Cont.) Essential workflow completion tuning strategies

Name Description Recommendation

Use Task Views to Prioritize Work A user's inbox can contain tasks of
various types with various due
dates. The user has to manually sift
through the tasks or sort them to
find out which one he or she should
work on next.

By creating task views where tasks
are filtered based on due dates or
priority, users can get their work
prioritized automatically so they
can focus on completing their tasks
instead of wasting their time on
deciding which tasks to work on.

17.3.3 Tuning the Identity Provider
The workflow service uses information from the identity provider in constructing the
SQL query to determine the tasks qualifying for a user based on his or her role/group
membership. The identity provider is also queried for determining role information to
determine privileges of a user when fetching the details of a task and determining
what actions the user can perform on a task. There are a few ways to speed up
requests made to the identity provider.

• Set the search base in the identity configuration file to node(s) as specific as
possible. Ideally you should populate workflow-related groups under a single
node to minimize traversal for search and lookup. This is not always possible; for
example, you may need to use existing groups and grant membership to groups
located in other nodes. If it is possible to specify filters that can narrow down the
nodes to be searched, then you should specify them in the identity configuration
file.

• Index all critical attributes such as dn and cn in the identity provider. This ensures
that when a search or a lookup is done, only a subset of the nodes are traversed
instead of a full tree traversal.

• Use an identity provider that supports caching. Not all LDAP providers support
caching but Oracle Internet Directory supports caching which can make lookup
and search queries faster.

• If using Oracle Internet Directory as a Identity Provider, ensure that you run the
oidstats.sql to gather latest statistics on the database after the data shape has
changed.

17.3.4 Tuning the Database
The Human Workflow schema is shipped with several indexes defined on the most
important columns. Based on the type of request, different SQL queries are generated
to fetch the task list for a user. The database optimizer evaluates the cost of different
plan alternatives (for example, full table scan, access table by index) and decides on a
plan that is lower in cost. For the optimizer to work correctly, the index statistics
should be current at all times. As with any database usage, it is important to make
sure the database statistics are updated at regular intervals and other tunable
parameters such as memory, table space, and partitions are used effectively to get
maximum performance.

For more information on tuning the database, see Tuning Database Parameters.

Using Other Tuning Strategies

17-6 Tuning Performance Guide

18
Tuning Oracle Business Activity Monitoring

You can tune Oracle Business Activity Monitoring (BAM) to optimize its performance
in monitoring business services and processes in the enterprise.

SOA Suite Components

About Oracle Business Activity Monitoring

Tuning BAM Server Parameters

Other Tuning Strategies

18.1 About Oracle Business Activity Monitoring
Oracle Business Activity Monitoring (BAM) provides the tools for monitoring business
services and processes in the enterprise. It allows correlation of market indicators to
the actual business process and to changing business processes quickly or taking
corrective actions if the business environment changes.

Oracle BAM also provides the necessary tools and run-time services for creating
dashboards that display real-time data inflow and define rules to send alerts under
specified conditions.

For information on how to monitor your BAM installation's performance, see
Monitoring Oracle BAM Performance in Monitoring Business Activity with Oracle BAM.

18.2 Tuning BAM Server Parameters
BAM performance largely depends on the performance of the following components:

• The Weblogic Server. See Tuning Performance of Oracle WebLogic Server.

• Metadata Service. See Tuning Oracle Metadata Service.

• Coherence. See Administering Oracle Coherence.

• ADF. See Tuning Oracle Application Development Framework (ADF).

• Database Settings. See Tuning Database Parameters.

• Java Virtual Machines (JVMs). See Tuning Java Virtual Machines (JVM) in Tuning
Performance of Oracle WebLogic Server.

• Oracle Platform Security Service. See Tuning Oracle Fusion Middleware Security .

BAM performance also depends on good data object design strategies at design time
and on having good data object purging strategies at runtime.

Tuning Oracle Business Activity Monitoring 18-1

While BAM 12c can support much larger transaction volumes (data arrival rates into
BAM), BAM 12c is an operational analytics product, not a business intelligence
product.

Hence, it is recommended that data that is of analytical value for operational decision-
making be kept in BAM. For most customers, this means storing about 5-30 days of
transactional data in BAM. Resting data sizes typically comparable to a data
warehouse are not useful for operational decision-making, so such data volumes do
not constitute a mainstream use case for BAM 12c.

The tuning suggestions listed and described in Table 18-1 can be used to improve
performance of the BAM Server:

Table 18-1 Essential BAM Server Tuning

Parameter Problem Tuning Recommendation Trade-offs

Max connections to
BAMDatasource

Default: 50

The number of concurrent
connection to the data
source consistently
reaches max limit.

Increase count so long as
performance continues to
scale linearly.

This is set at the WebLogic
level. The value can be
determined mainly based
on the number of
processors, listening
source threading model
and max concurrent
request settings of
embedded servers.

Increasing the count will
most likely increase the
system resources usage.

Viewset Expiry Time

Default: 180 seconds

Viewsets are lingering
after the DC connection is
lost.

Decrease the expiry time
value so that viewsets do
not linger.

See Monitoring Viewsets
in Monitoring Business
Activity with Oracle BAM
for information on how to
find and modify this
parameter.

None.

DiagnosticLevel

Default: Info

You need granular
diagnostic logs to identify
a problem.

OR

Your system is running
fine and you do not need
detailed logs.

Keeping the default of
INFO will help
performance.

For more information on
using the BAM Diagnostic
Framework, see Using the
BAM Diagnostic
Framework in Monitoring
Business Activity with
Oracle BAM.

You will not have detailed
logs to identify a problem
if your system slows
down.

ASM (Automatic
Server Migration)

Default: WSM

You want to migrate a
SOA Suite installation
with BAM to High
Availability. Because
BAM is a real-time
system, you should enable
ASM.

ASM is used so High
Availability can occur
faster than WSM. Given
that BAM is a real time
system, ASM is required
for BAM HA

None.

Tuning BAM Server Parameters

18-2 Tuning Performance Guide

Table 18-1 (Cont.) Essential BAM Server Tuning

Parameter Problem Tuning Recommendation Trade-offs

JVM heap size

Default: -Xms768m -
Xmx1536m

Oracle BAM is running
slowly and out-of-
memory exceptions occur.

Increase the heap size to 2
GB. Use the following
command with the -
Xms2048m and -
Xmx2048m arguments:

setenv
USER_MEM_ARGS "-
Xms2048m -Xmx2048m
-XX:PermSize=256m -
XX:MaxPermSize=768m
"

Increasing the JVM heap
size for BAM could affect
other SOA components.

For more heap size tuning
tips, see Tuning Tips for
Heap Sizes in Tuning
Performance of Oracle
WebLogic Server.

18.3 Other Tuning Strategies
If Oracle BAM is running more slowly than expected, you can try other tuning
strategies.

Creating an Index Column

Tuning Loggers

Tuning Continuous Query Service

18.3.1 Creating an Index Column
If throughput of data into a data object from an Enterprise Message Source or other
source is slow, create an index column for the primary key column. See Adding Index
Columns in Monitoring Business Activity with Oracle BAM for more information.

18.3.2 Tuning Loggers
The default Oracle Diagnostic Logging Level for all loggers is Notification. For
stress testing and production environments, consider using the lowest acceptable
logging level, such as ERROR or WARNING.

The loggers in BEAM that can affect BAM performance are as follows:

oracle.beam.common.alertsengine
oracle.beam.server.service.alertsengine
oracle.beam.Common
oracle.beam.cqservice
oracle.beam.composer
com.oracle.beam
oracle.beam.datacontrol
oracle.beam.datacontrol.management
oracle.beam.server.service.ems
oracle.beam.messaging
oracle.beam.server.service.persistence
oracle.beam.server.service.reportcache
oracle.beam.security
oracle.beam.mbean
oracle.beam.shared
oracle.beam.server

Other Tuning Strategies

Tuning Oracle Business Activity Monitoring 18-3

oracle.beam.impexp.t2p
oracle.beam

For information about locating these loggers and changing their Oracle Diagnostic
Logging Level, see Configuring Log Files in Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

18.3.3 Tuning Continuous Query Service
The Continuous Query Service (CQS) is a BAM-specific wrapper around the
Continuous Query Language (CQL) engine within the Oracle Complex Event
Processing Service Engine. The CQS is a pure push system: query results are delivered
automatically. The CQS supports both stream (non-persistent) and archived relation
(persistent) data objects.

When you create a query, the CQS sets up tables in the CQL engine, registers the
query, and listens for data changes from the persistence engine. The query result is
processed in the CQL engine, then pushed to the CQS and on to the report cache.

For information on how to monitor continuous queries for performance issues, see
Monitoring Continuous Queries in Monitoring Business Activity with Oracle BAM. Once
you understand how your current system is performing, you can try to improve
performance by tuning the knobs described in Table 18-2. Note that for most of these
parameters, tuning for performance means losing diagnostic information.

Table 18-2 Tuning the Continuous Query Service

Parameter Problem Tuning Recommendation

Data Object type

Default: None

You have arbitrarily designated
simple data objects as stream,
archived stream, and archived
relation, and are not sure what to
do.

Categorize your data objects as
stream if you do not care about
history data.

See Data Object Types in Monitoring
Business Activity with Oracle BAM
for detailed descriptions of each
data object type and relation.

Data Object purging

Default: Disabled

By default, data object retention is
not set. Many rows in data object
will cause performance issue.

Customer can set Data Object
retention to in Data Object
Retention tab to specify how many
days they want to keep the data in a
Data Object. When the specified
days has elapsed, the data rows will
automatically be purged.

See Setting Data Retention in a Data
Object in Monitoring Business
Activity with Oracle BAM for
information on how to find and
change this setting.

Replay for Archived Stream

Data Objects

Data parsing is slow for archived
stream data objects.

Specify a smaller Replay Unit or a
lower Replay Amount to reduce the
amount of past data retained in
memory. This will reduce the time
and memory to parse data retrieved
from the database.

Other Tuning Strategies

18-4 Tuning Performance Guide

Table 18-2 (Cont.) Tuning the Continuous Query Service

Parameter Problem Tuning Recommendation

Time Window on Input

Streams

You have chosen to turn an Active
Data query into a continuous query
and are receiving out-of-memory
exceptions.

Decrease the time window size on
the Active Data stream. This
restricts the amount of memory the
window uses to store elements.

To get an idea of how much
window size affects memory usage,
consider a scenario where the
Window Size = 1 hour (RANGE 1
hour) and the event size = 100 bytes.
If the event rate is 1000 events /
second, then the window will
contain 1000 * 3600 events when it is
full. The memory consumed is 1000
* 3600 * 100 bytes = ~340 MB.

See Enabling Active Data in a View
in Monitoring Business Activity with
Oracle BAM for how to configure
the window size on an active data
view.

Active Data Collapsing

Interval

Default: Unchecked

You have checked the box for
Active Data Collapsing to make
data aggregation active. You want
more frequent snapshots or need to
free up memory.

Define a smaller Interval to make
the view update more frequently
and to reduce the amount of
aggregated data stored in memory.

You can maximize your memory
usage by taking note of the
evaluation interval, the event size,
and the event rate. Given the
following values:

Interval: Every 5 minutes
Event Size: 100 bytes
Event Rate: 1000 events/second

The maximum size of the
aggregated view is 5 * 60 * 1000 =
300,000 events = ~28 MB.

See Using Active Data in Monitoring
Business Activity with Oracle BAM
for information on finding the
Active Data Collapsing setting.

Other Tuning Strategies

Tuning Oracle Business Activity Monitoring 18-5

Table 18-2 (Cont.) Tuning the Continuous Query Service

Parameter Problem Tuning Recommendation

Slow Changing Dimension

for Data Object Dimension

Tables

Default: Unchecked

Continuous queries on dimension
tables are slow and consuming
memory.

Check this property to activate it.
This will indicate that the data in
this dimension table changes
infrequently.

For information on specifying slow-
changing dimensions for a data
object, see Specifying Slow-
Changing Dimensions for a Data
Object in Monitoring Business
Activity with Oracle BAM.

Query Type

Default: SQL

You are experiencing out-of-
memory exceptions and most of
your queries are continuous.

Use schedule query (SQL) where
you do not expect frequent output.
This saves memory because SQL
involves JDBC resources while CQL
stores data in memory.

Other Tuning Strategies

18-6 Tuning Performance Guide

19
Tuning Oracle Service Bus

You can tune Oracle Service Bus (OSB) to optimize its performance in providing
connectivity, routing, mediation, management, and also some process orchestration
capabilities between two or more applications.

SOA Suite Components

About Oracle Service Bus

Tuning OSB Parameters

Using Other Tuning Strategies

19.1 About Oracle Service Bus
Within a SOA framework, Oracle Service Bus (OSB) provides connectivity, routing,
mediation, management, and also some process orchestration capabilities. The design
philosophy for OSB is to be a high performance and stateless (non-persistent state)
intermediary between two or more applications. However, given the diversity in scale
and functionality of SOA implementations, OSB applications are subject to a large
variety of usage patterns, message sizes, and QOS requirements.

In most SOA deployments, OSB is part of a larger system where it plays the role of an
intermediary between two or more applications (servers). A typical OSB configuration
involves a client invoking an OSB Proxy Service which may make one or more service
callouts to intermediate back-end services and then route the request to the destination
back end system before responding to the client.

It is necessary to understand that OSB is part of a larger system and the objective of
tuning is the optimization of the overall system performance. This involves not only
tuning OSB as a standalone application, but also using OSB to implement flow-control
patterns such as throttling, request-buffering, caching, prioritization and parallelism.

For more information about Oracle Service Bus, see Oracle Fusion Middleware
Administrator's Guide for Oracle Service Bus.

19.2 Tuning OSB Parameters
Oracle Service Bus performance largely depends on the performance of the other
components. The following components affect OSB performance:

• WebLogic Server

• Coherence

• Adapters

You can begin tuning Oracle Service Bus if you believe the above components are
tuned to your satisfaction.

Tuning Oracle Service Bus 19-1

Tuning Oracle Service Bus with Work Managers

Tuning OSB Operation Settings

19.2.1 Tuning Oracle Service Bus with Work Managers
Starting in 12c (12.2.1), Oracle Service Bus can be tuned by several Oracle WebLogic
Server Work Managers.

For example, Split-Join tuning can be accomplished using Work Managers. By default,
applications do not specify a Work Manager for Split-Joins, but Split-Joins can be
assigned a Work Manager if there are strict thread constraints that need to be met,
such as scheduling parallel tasks.

For optimal performance, strike a balance between the following Work Manager
constraints:

• min-threads-constraint so that Split-Join operations are not starved of
threads.

• max-threads-constraint so that Split-Joins do not starve other resources

By default, there is no minimum or maximum thread constraint defined, which could
either slow Split-Join operations down or slow down other operations sharing the
same thread pool.

Work Managers will take Split-Join operations into account when allotting threads to
system-wide processes so that this balance is met automatically.

For more information on tuning OSB with Work Managers, see Using Work Managers
with Oracle Service Bus in Developing Services with Oracle Service Bus.

19.2.2 Tuning OSB Operation Settings
Table 19-1 lists and describes the knobs you will most likely need to tune to improve
performance. For more information on monitoring Oracle Service Bus to diagnose
trouble areas, see Monitoring Oracle Service Bus in Administering Oracle Service Bus.

Table 19-1 Essential OSB Operation Tuning

Parameter Problem Tuning Recommendation Trade-offs

Monitoring and Alerting

Default: Disabled

The Monitoring and
Alerting framework is
designed to have minimal
impact on performance,
but all of these processes
have performance
impacts.

In general, the more
monitoring rules and
pipeline actions you have
defined, the larger the
performance impact.

Keep the default of
Disabled at the OSB
level. Most settings can be
defined globally or per
service.

The settings for
monitoring and alerting
can be configured in the
Enterprise Manager
Administrator Console.

Note that monitoring
must be enabled for SLA
alerts but not for Pipeline
alerts.

Disabling these processes
to improve performance
means you will be
sacrificing certain metrics
and alerts that could help
you troubleshoot issues in
the future.

For more information on
the OSB Monitoring
Framework, see
Introduction to the Oracle
Service Bus Monitoring
Framework in
Administering Oracle
Service Bus.

Tuning OSB Parameters

19-2 Tuning Performance Guide

Table 19-1 (Cont.) Essential OSB Operation Tuning

Parameter Problem Tuning Recommendation Trade-offs

Tracing

Default: Disabled

If you have large message
sizes and high throughput
scenarios, tracing may be
slowing your system
down.

Leave tracing disabled to
improve performance.

For more information, see
How to Enable or Disable
Tracing in Oracle Fusion
Middleware Administrator's
Guide for Oracle Service
Bus.

If disabled, you will lose
metrics.

Tracing prints the entire
message context,
including headers and
message body. This is an
extremely useful feature
both in a development
and production
environment for
debugging, diagnosing
and troubleshooting
problems involving
message flows in one or
more proxy services.

Tuning OSB Parameters

Tuning Oracle Service Bus 19-3

Table 19-1 (Cont.) Essential OSB Operation Tuning

Parameter Problem Tuning Recommendation Trade-offs

com.bea.wli.sb.pipeline
.
RouterRuntimeCache.size

Default: 100

You may have one of the
following issues:

Proxy services are
accessed slowly.This
means you want to store
more proxy services in the
static portion of the OSB
cache for pipeline service
runtime meta-data. The
proxy services stored here
are never garbage-
collected, meaning they
are accessed faster.

OR

You are seeing a lot of
cache misses in DMS
dumps.

If you want to include
more proxy services in the
static cache, increase this
value as long as there is
sufficient memory for
runtime data processing
for large number of proxy
services.

If you are seeing cache
misses in DMS dumps,
decrease this value.

This system property caps
the number of proxy
services in the static
portion of the OSB cache
for pipeline service
runtime meta-data. These
services never get garbage
collected.

You set the size of this
value in the
setDomainEnv.sh file as
an extra java argument, as
follows:

-
Dcom.bea.wli.sb.pipelin
e.RouterRuntimeCache.si
ze={size}

For example, if you want
to set this value to 3000,
you would write:

EXTRA_JAVA_PROPERTIES=
"-
Dcom.bea.wli.sb.pipelin
e.
RouterRuntimeCache.size
=3000
$
{EXTRA_JAVA_PROPERTIES}
"

Increasing this value
decreases the time it takes
to make initial calls to the
proxy server. It can also
preload the cache when a
configuration session is
committed. However,
while caching proxy
services helps reduce
compilation costs, it also
increases memory
consumption.

Decreasing this value may
means you will free up
memory, but making
initial calls to the proxy
server may take longer.

Tuning OSB Parameters

19-4 Tuning Performance Guide

Table 19-1 (Cont.) Essential OSB Operation Tuning

Parameter Problem Tuning Recommendation Trade-offs

reorderJsonAsPerXml

Schema

Default: False

JSON input to REST
service may not be
ordered as expected by
the schema definition.

When converting from
JSON to XML, OSB
runtime uses the order in
which JSON name/value
appear to construct the
corresponding XML
element. While well-
formed, this format is not
valid according to XML
schema.

Set this parameter to True
by running the REST
wizard and checking the
box on the first page.

Checking this option will
makes the REST service
reorder the input JSON so
that the response from the
external REST endpoint
can be ordered as per the
valid schema definition.

Using this option adds
significant performance
overhead.

19.3 Using Other Tuning Strategies
After you have performed recommended modifications, you can make additional
changes that are specific to your deployment. Consider carefully whether the
additional tuning recommendations are appropriate for your environment.

Tuning Resequencer in OSB

Considering Design Time for Proxy Applications

Tuning XQuery

Tuning Poller-based Transports

19.3.1 Tuning Resequencer in OSB
A Resequencer is used to rearrange a stream of related but out-of-sequence messages
back into order. It sequences the incoming messages that arrive in a random order and
then sends them to the target services in an orderly manner.

You can fine-tune the Resequencer by setting the properties listed in Table 19-2 using
the Global operational settings page in the OSB EM console:

Table 19-2 Essential Resequencer Tuning

Using Other Tuning Strategies

Tuning Oracle Service Bus 19-5

Table 19-2 (Cont.) Essential Resequencer Tuning

Parameter Problem Tuning Recommendation Trade-offs

ResequencerMaxGroupsL
ocked

Default: 4 groups

This parameter defines the
maximum number of
message groups that can
be locked by resequencer
locker threads for parallel
processing. The locked
groups can then use
worker threads to process
their respective messages.

If message processing is
being delayed, identify
which of the following
situations is true:

• Incoming messages
belong to many
groups

• There are many
messages and they
belong to fewer
groups

Increase this parameter's
value if you have many
groups with a small
number of messages each.
Resequencer will lock
more groups in one
iteration.

Decrease this value if you
have a few groups with
many messages.
Resequencer will lock less
number of groups for
processing.

Increasing the
MaxGroupsLocked value
may result in locking
more groups than there
are available worker
threads. This could result
in groups getting blocked
while waiting for the
availability of the worker
threads for message
processing.

Decreasing the default
value may result in under
utilization of resources.

ResequencerLockerThread
Sleep

Default: 10 seconds

The resequencer locker
thread queries the
database to lock groups
for parallel processing.
When no groups are
available, the locker
thread "sleeps" for the
configured amount of
time specified by this
parameter.

This parameter needs
tuning if you have either
of the following
situations:

• You have a high
number of messages
and processing time
between database
queries is slow.

• You have few
messages but frequent
database queries.

Decrease this parameter
value if you have a high
number of messages to
reduce the lag time during
processing.

Increase this value if
Resequencer locker
threads are making
frequent database round
trips even though you do
not have many incoming
messages.

If the sleep time is too
short, there may not be
enough worker threads
available to process
incoming messages of the
locked groups. Too many
database queries will also
cause slow performance.

If the time interval
between incoming
messages is already long,
configuring a higher value
is not beneficial.

Using Other Tuning Strategies

19-6 Tuning Performance Guide

Table 19-2 (Cont.) Essential Resequencer Tuning

Parameter Problem Tuning Recommendation Trade-offs

DeleteMessageAfterComp
lete

Default: True

The resequencer database
is low on space. If you
changed this parameter's
value to false, processed
messages remain in the
resequencer database and
slow down database
inquiries.

Keep the default value of
True to delete message
after successful execution.
This frees up database
space.

You will not have a
detailed history of
processed messages.

19.3.2 Considering Design Time for Proxy Applications
Consider the design configurations described in Table 19-3 for proxy applications
based on your OSB usage and use case scenarios:

Table 19-3 Tuning Design Time for Proxy Application

Strategy Description Recommendations

Avoid creating many OSB context
variables that are used just once
within another XQuery

Context variables created using an
Assign action are converted to
XmlBeans and then reverted to the
native XQuery format for the next
XQuery. Multiple "Assign" actions
can be collapsed into a single
Assign action using a FLWOR
expression. Intermediate values can
be created using "let" statements.

Avoiding redundant context
variable creation eliminates
overheads associated with internal
data format conversions. This
benefit has to be balanced against
visibility of the code and reuse of
the variables.

Transform contents of a context
variable such as $body.

Transforming the contents of a
context variable could be time-
consuming.

Use a Replace action to complete
the transformation in a single step.

If the entire content of $body is to
be replaced, leave the XPath field
blank and select "Replace node
contents". This is faster than
pointing to the child node of $body
(e.g. $body/Order) and selecting
"Replace entire node".

Leaving the XPath field blank
eliminates an extra XQuery
evaluation.

Specify a special XPath. A general XPath like $body/Order
must be evaluated by the XQuery
engine before the primary
transformation resource is executed.
OSB treats $body/*[1] as a special
XPath that can be evaluated without
invoking the XQuery engine.

Use $body/*[1] to represent the
contents of $body as an input to a
Transformation (XQuery / XSLT)
resource.

This is faster than specifying an
absolute path pointing to the child
of $body.

Using Other Tuning Strategies

Tuning Oracle Service Bus 19-7

Table 19-3 (Cont.) Tuning Design Time for Proxy Application

Strategy Description Recommendations

Enable Streaming for pure Content-
Based Routing scenarios.

OSB leverages the partial parsing
capabilities of the XQuery engine
when streaming is used in
conjunction with indexed XPaths.
Thus,

See Tuning XQuery for additional
details.

Enabling streaming means that the
payload is parsed and processed
only to the field referred to in the
XPath. Streaming also eliminates
the overhead associated with
parsing and serialization of
XmlBeans.

Trade-offs: The gains from
streaming can be negated if the
payload is accessed a large number
of times for reading multiple fields.
If all fields read are located in a
single subsection of the XML
document, a hybrid approach
provides the best performance.

The output of a transformation is
stored in a compressed buffer
format either in memory or on disk.
Therefore, streaming should be
avoided when running out of
memory is not a concern.

Set the appropriate QOS level and
transaction settings.

OSB can invoke a back end HTTP
service asynchronously if the QOS
is "Best- Effort". Asynchronous
invocation allows OSB to scale
better with long running back-end
services. It also allows Publish over
HTTP to be truly fire-and-forget.

Do not set XA or Exactly-Once
unless the reliability level required
is once and only once and its
possible to use the setting (it is not
possible if the client is a HTTP
client). If OSB initiates a transaction,
it is possible to replace XA with
LLR to achieve the same level of
reliability.

Disable or delete all log actions. Log actions add an I/O overhead.
Logging also involves an XQuery
evaluation which can be expensive.
Writing to a single device (resource
or directory) can also result in lock
contentions.

Disable or delete all log actions.

19.3.3 Tuning XQuery
OSB uses XQuery and XPath extensively for various actions like Assign, Replace, and
Routing Table. The following XML structure ($body) is used to explain XQuery and
XPath tuning concepts:

<soap-env:Body>
<Order>
<CtrlArea>
<CustName>Mary</CustName>
</CtrlArea>
<ItemList>

Using Other Tuning Strategies

19-8 Tuning Performance Guide

<Item name="ACE_Car" >20000 </Item>
<Item name=" Ext_Warranty" >1500</Item>
…. a large number of items
</ItemList>
<Summary>
<Total>70000</Total>
<Status>Shipped</Status>
<Shipping>My Shipping Firm </Shipping>
</Summary>
</Order>
</soap-env:Body>

You can use the tuning strategies listed in Table 19-4 to tune XQuery.

Table 19-4 XQuery Tuning Strategies

Strategy Description Recommendations

Avoid the use of double front
slashes ("//") in XPaths.

"//" implies all occurrences of a
node irrespective of the location in
an XML tree. Thus, the entire depth
and breadth of the XML tree has to
be searched for the pattern specified
after a "//".

Use "//" only if the exact location of
a node is not known at design time.

Index XPaths when applicable. Indexing helps your system process
only what is needed. When
indexing, only the top part of the
document will be processed by the
XQuery engine.

Index an XPath by adding "[1]" after
each node of the path.

For example, the XPath $body/
Order/CtrlArea/CustName

implies returning all instances
Order under $body and all
instances of CtrlArea under
Order. The entire document has to
be read to correctly process the
above XPath.

But if you know that there is a
single instance of Order under
$body and a single instance of
CtrlArea under Order, we can
index the above XPath by rewriting
it as $body/Order[1]/
CtrlArea[1]/CustName[1].
This will only return the first
instances of the child nodes.

Note: Do not index when you need
a whole array of nodes returned.
Indexing will only return the first
item node of the array.

Extract frequently used parts of a
large XML document as
intermediate variables within a
FLWOR expression

An intermediate variable can be
used to store the common context
for multiple values.

Using intermediate variables
consumes more memory but
reduces redundant XPath
processing.

Using Other Tuning Strategies

Tuning Oracle Service Bus 19-9

Table 19-4 (Cont.) XQuery Tuning Strategies

Strategy Description Recommendations

Use a Hybrid Approach for read-
only scenarios with Streaming

The gains from streaming can be
negated if the payload is accessed a
large number of times for reading
multiple fields. If all fields read are
located in a single subsection of the
XML document, a hybrid approach
provides the best performance.

Enable streaming at the proxy level
and Assigning the relevant
subsection to a context variable. The
individual fields can then be
accessed from this context variable.

The fields Total and Status can
be retrieved using three Assign
actions:

Assign "$body/Order[1]/
Summary[1]" to "foo"
Assign "$foo/Total" to "total"
Assign "$foo/Status" to "total"

Note:

Pipelines enabled for content streaming should use "XQuery 1.0". Using
"XQuery 2004" does work, but incurs significant performance overhead, as
there are "on-the-fly" conversions that happen to and from XQuery 1.0 engine.
There is a design-time warning to that effect.

19.3.4 Tuning Poller-based Transports
Latency and throughput of poller-based transports depends on the frequency with
which a source is polled and the number of files and messages read per polling sweep.

Setting the Polling Interval

Setting Read Limit

19.3.4.1 Setting the Polling Interval

Consider using a smaller polling interval for high throughput scenarios where the
message size is not very large and the CPU is not saturated. The primary polling
interval defaults are listed below with links to additional information:

Polling Intervals Default Interval Additional Information

File Transport 60 seconds File Transport Configuration Page
in Developing Services with Oracle
Service Bus

FTP Transports 60 seconds FTP Transport Configuration Page
in Developing Services with Oracle
Service Bus

MQ Transport 1000 milliseconds MQ Transport Configuration Page
in Developing Services with Oracle
Service Bus

Using Other Tuning Strategies

19-10 Tuning Performance Guide

Polling Intervals Default Interval Additional Information

SFTP Transport 60 seconds SFTP Transport Configuration Page
in Developing Services with Oracle
Service Bus

JCA Transport 60 seconds JCA Transport Configuration Page
in Developing Services with Oracle
Service Bus

19.3.4.2 Setting Read Limit

The read limit determines the number of files or messages that are read per polling
sweep. You can tune it with the information in Table 19-5.

For more information, see Using the File Transport in Developing Services with Oracle
Service Bus

Table 19-5 Essential Read Limit Tuning

Parameter Symptoms if not properly
tuned

Tuning Recommendation Performance Trade-offs

Read Limit

Default: 10 for File and
FTP transports

Excessive memory use or
high memory use due to a
large number of files read
into memory
simultaneously.

Set this value to the
desired concurrency. It
can be set to 0 to specify
no limit.

The read limit determines
the number of files or
messages that are read per
polling sweep.

Setting the Read Limit to a
high value and the Polling
Interval to a small value
may result in a large
number of messages being
simultaneously read into
memory. This can lead to
an out-of-memory error if
the message size is large.

Using Other Tuning Strategies

Tuning Oracle Service Bus 19-11

Using Other Tuning Strategies

19-12 Tuning Performance Guide

20
Tuning Oracle Enterprise Scheduler Service

You can tune Oracle Enterprise Scheduler Service (ESS) to optimize its performance in
enabling scheduling and running jobs.

SOA Suite Components

About Enterprise Scheduler Service

Tuning Enterprise Scheduler Service Parameters

20.1 About Enterprise Scheduler Service
Oracle Enterprise Scheduler enables scheduling and running jobs within a particular
time frame, or workshift, using rules to create work assignments. Oracle Enterprise
Manager Fusion Applications Control allows you to define, control and manage
Oracle Enterprise Scheduler job metadata, including job definitions, job requests, job
sets (a collection of job requests), incompatibilities (job definitions and job sets that
cannot run at the same time for a given application) and schedules governing the
execution of job requests.

For more information, see Introduction to Administering Oracle Enterprise Scheduler
in Administering Oracle Enterprise Scheduler.

20.2 Tuning Enterprise Scheduler Service Parameters
Table 20-1 describes the enterprise scheduler service tuning parameters.

Maximum Poll Interval is a dispatcher parameter that applies to the Oracle
Enterprise Scheduler request dispatcher. The request dispatcher manages requests that
are awaiting their scheduled execution. The request processor handles the job requests
once they have dispatched.

Thread Count is a processor tuning parameter that applies to the Oracle Enterprise
Scheduler request processor. The request processor manages job requests whose
scheduled execution time has arrived, and are ready to execute.

Table 20-1 Essential Enterprise Scheduler Service Tuning

Name Symptoms Recommendations Trade-offs

Maximum Poll
Interval

Default: 15 seconds

A high number of
requests whose execution
time has been reached and
remain in WAIT state for
an extended time.

Decrease this value if
there is an excess of
waiting requests that are
eligible to be dispatched
and processor threads are
available.

Lowering the value will
increase CPU usage and
database activity.

Increasing the value may
delay the dispatching of
requests that are ready for
processing.

Tuning Oracle Enterprise Scheduler Service 20-1

Table 20-1 (Cont.) Essential Enterprise Scheduler Service Tuning

Name Symptoms Recommendations Trade-offs

Thread Count

Default: 25

A high number of
requests in READY state
that are otherwise
available for processing.

Increase this value if there
is a build up of requests
that are ready to be
executed and the increase
system resource usage is
acceptable.

Lower the value to reduce
the amount of system
resources used for request
processing.

Increasing this value will
increase CPU usage,
memory usage, and
database activity.

Lowering this value may
result in a build up and
potentially delay
processing of requests.

Tuning Enterprise Scheduler Service Parameters

20-2 Tuning Performance Guide

21
Tuning Oracle Business Intelligence

Performance

You can tune Oracle Business Intelligence to optimize its performance in collecting,
presenting, and delivering data.

SOA Suite Components

About Oracle Business Intelligence

Tuning Oracle BI Server Query Performance

Tuning Oracle BI Server Query Cache Performance

Tuning Oracle BI Web Client Performance

21.1 About Oracle Business Intelligence
Oracle Business Intelligence (BI) Enterprise Edition (or Oracle Business Intelligence)
provides a full range of business intelligence capabilities that collects up-to-date data
from the organization, presents the data in easy-to-understand formats (such as tables
and graphs), and delivers the data quickly to the members of the organization.

These capabilities enable the organization to make better decisions, take informed
actions, and implement more-efficient business processes.

21.2 Tuning Oracle BI Server Query Performance
For detailed information on BI performance tuning, see Managing Performance
Tuning and Query Caching in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

The following list summarizes methods that you can use to improve query
performance:

• Tuning and indexing underlying databases: For Oracle BI Server database queries
to return quickly, the underlying databases must be configured, tuned, and
indexed correctly. Note that different database products have different tuning
considerations.

If there are queries that return slowly from the underlying databases, then you can
capture the SQL statements for the queries in the query log and provide them to
the database administrator (DBA) for analysis. See Managing the Query Log in
System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for
more information about configuring query logging on the system.

• Aggregate tables: It is extremely important to use aggregate tables to improve
query performance. Aggregate tables contain precalculated summarizations of

Tuning Oracle Business Intelligence Performance 21-1

data. It is much faster to retrieve an answer from an aggregate table than to
recompute the answer from thousands of rows of detail.

The Oracle BI Server uses aggregate tables automatically, if they have been
properly specified in the repository. See Metadata Repository Builder's Guide for
Oracle Business Intelligence Enterprise Edition for examples of setting up aggregate
navigation.

• Query caching: The Oracle BI Server can store query results for reuse by
subsequent queries. Query caching can dramatically improve the apparent
performance of the system for users, particularly for commonly used dashboards,
but it does not improve performance for most ad-hoc analysis.

See About the Oracle BI Server Query Cache in System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition for more information about query
caching concepts and setup.

• Setting parameters in Fusion Middleware Control: You can set various
performance configuration parameters using Fusion Middleware Control to
improve system performance. See Setting Performance Parameters in Fusion
Middleware Control in System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information.

• Setting parameters in NQSConfig.INI: The NQSConfig.INI file contains
additional configuration and tuning parameters for the Oracle BI Server, including
parameters to configure disk space for temporary storage, set virtual table page
sizes, and several other advanced configuration settings. See NQSConfig.INI File
Configuration Settings in System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information.

21.3 Tuning Oracle BI Server Query Cache Performance
You can configure the Oracle BI Server to maintain a local, disk-based cache of query
result sets (query cache). The query cache allows the Oracle BI Server to satisfy many
subsequent query requests without having to access back-end data sources (such as
Oracle or DB2). This reduction in communication costs can dramatically decrease
query response time. See About the Oracle BI Server Query Cache in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

21.4 Tuning Oracle BI Web Client Performance
You can improve the performance of the Oracle BI web client (UI) by configuring your
Web server to serve up all static files, as well as enabling compression for both static
and dynamic resources. BI 11g ships with WebLogic Server (WLS) serving as the
default HTTP server for the BI web client. By allowing the Oracle HTTP Server (OHS)
to proxy requests to WLS instead, you may see an improvement in BI Web Client
performance. See Improving Oracle BI Web Client Performance in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

Tuning Oracle BI Server Query Cache Performance

21-2 Tuning Performance Guide

Part V
Oracle WebCenter Components

This part describes configuring Oracle WebCenter components to improve
performance. It contains the following topic:

Tuning Oracle WebCenter Portal

22
Tuning Oracle WebCenter Portal

You can tune Oracle WebCenter Portal to optimize its performance as a deployed
application.

Oracle WebCenter Components

About Oracle WebCenter Portal

Basic Tuning Considerations

Tuning Configuration for WebCenter Portal

Tuning Tools and Services Configuration

Tuning Identity Store Configuration

Tuning Portlet Configuration

22.1 About Oracle WebCenter Portal
Companies use Oracle WebCenter Portal to build enterprise-scale intranet and
extranet portals that provide a foundation for the next-generation user experience
(UX) with Oracle Fusion Middleware and Oracle Fusion Applications. Portals built
with Oracle WebCenter Portal commonly support thousands of users who create,
update, and access content and data from multiple back-end sources. WebCenter
Portal delivers intuitive user experiences by leveraging the best UX capabilities from a
significant portfolio of leading portal products and related technologies. From the
user's perspective, the integration is seamless.

Business users can easily assemble new portals or composite applications using Portal
Composer and a page editor that includes a library of prebuilt reusable components.
They can enhance user experience by wiring components together on the page,
configuring content personalization, enabling the use of integrated social tools, and
creating data visualizations.

For more information about Oracle WebCenter Portal, see:

• Using Oracle WebCenter Portal

• Building Portals with Oracle WebCenter Portal

• Administering Oracle WebCenter Portal

• Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Tuning Oracle WebCenter Portal 22-1

22.2 Basic Tuning Considerations
Tuning considerations apply to most WebCenter Portal application deployment
scenarios. It is highly recommended that you review these configurations and
implement those that meet your particular usage requirements.

Setting System Limit

Setting JDBC Data Source

Setting JRockit Virtual Machine (JVM) Arguments

Using Content Compression to Reduce Downloads

22.2.1 Setting System Limit
To run WebCenter Portal at moderate load, set the open-files-limit to 4096. If
you encounter errors, such as running out of file descriptors, then increase
the system limit.

For example, on Linux, you can use this command:

ulimit -n 8192

Refer to your operating system documentation to find out how to change this system
limit.

22.2.2 Setting JDBC Data Source
To determine the correct setting for the JDBC data source, use the Oracle WebLogic
Server Administration Console to monitor the running system database connection
usage as described Configuring JDBC Data Sources. If the "Waiting for Connection
Failure" rate is noticeably higher, and the "Active Connections Current Count" is close
to reaching the maximum capacity, then consider increasing capacity to avoid
potential database connection contention.

However, if the "Active Connections Current Count" is routinely lower than the
maximum capacity, consider reducing the capacity to save memory.

For more information, see Configuring Connection Pool Features in Administering
JDBC Data Sources for Oracle WebLogic Server.

The following data source settings are WebCenter Portal defaults for data sources
mds-SpacesDS and WebCenterDS. These settings can be adjusted depending on the
application's usage pattern and load.

 <jdbc-connection-pool-params>
 <initial-capacity>10</initial-capacity>
 <max-capacity>50</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrink-frequency-seconds>0</shrink-frequency-seconds>
 <highest-num-waiters>2147483647</highest-num-waiters>
 <connection-creation-retry-frequency-seconds>0</connection-creation-retry-
frequency-seconds>
 <connection-reserve-timeout-seconds>60</connection-reserve-timeout-seconds>
 <test-frequency-seconds>0</test-frequency-seconds>
 <test-connections-on-reserve>true</test-connections-on-reserve>
 <ignore-in-use-connections-enabled>true</ignore-in-use-connections-enabled>
 <inactive-connection-timeout-seconds>0</inactive-connection-timeout-seconds>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>

Basic Tuning Considerations

22-2 Tuning Performance Guide

 <login-delay-seconds>0</login-delay-seconds>
 <statement-cache-size>5</statement-cache-size>
 <statement-cache-type>LRU</statement-cache-type>
 <remove-infected-connections>true</remove-infected-connections>
 <seconds-to-trust-an-idle-pool-connection>60</seconds-to-trust-an-idle-pool-
connection>
 <statement-timeout>-1</statement-timeout>
 <pinned-to-thread>false</pinned-to-thread>
 </jdbc-connection-pool-params>

For information on how to edit MDS data source settings, see Tuning Data Source
Connection Pools in Administering JDBC Data Sources for Oracle WebLogic Server.

22.2.3 Setting JRockit Virtual Machine (JVM) Arguments
JVM arguments are set in the setDomainEnv.sh file on Unix operating systems and
setDomainEnv.cmd on Windows operating systems. The setDomainEnv file is
located in the domain_dir/bin directory.

Note:

Tuning Java Virtual Machines (JVMs)

• WebLogic Server production mode: When WebCenter Portal is installed for
production deployment, the WebLogic Server is set to production mode. However,
if it is installed for development and then switched to production mode for better
performance, you need to include the following parameter in the startup
command:

-Dweblogic.ProductionModeEnabled=true

For information on setting your domain to production mode using the
Administration Console, see Change to production mode in the Oracle WebLogic
Server Administration Console Online Help.

• Heap size: If the server is overloaded, that is, garbage is collected or out of memory
error occurs frequently, then increase the heap size as appropriate to your server's
available physical memory.

For more information, see Tuning Java Virtual Machines (JVMs) and Set Java
options for servers started by Node Manager in the Oracle WebLogic Server
Administration Console Online Help.

The following parameters can be modified in the server's startup command or
through the Administration Console to increase heap size:

jrockit vm: -Xms2048M -Xmx2048M -Xns512M

hotspot vm: -Xms2048M -Xmx2048M -XX:MaxPermSize512M

22.2.4 Using Content Compression to Reduce Downloads
If clients connect to your server using relatively slow connections, that is, using
modems or VPN from remote locations, consider compressing content before it
downloads to the client. While content compression increases the load on the server,
the client's download experience is much improved.

Basic Tuning Considerations

Tuning Oracle WebCenter Portal 22-3

Note:

Beginning with release 11.1.1.8.0, WebCenter Portal is pre-configured with
ADF caching filter which will automatically set up caching for static resources
and do compression. This pre-configured adf caching filter is available only
for use with WebLogic Server.

Several content compression methods are available. The following steps describe how
to use the mod_deflate module from Apache.

1. Enable mod_deflate module on Apache.

To do this, add the following to httpd.conf ($OH/instances/
$INSTANCE_NAME/config/OHS/$OHS_NAME)

LoadModule deflate_module "${ORACLE_HOME}/ohs/modules/
mod_deflate.so"

2. Setup the Output Filter and specify the rules for compression.

Here is a sample snippet that you can add to the httpd.conf (same location
mentioned above). Modify the content based on your content and the compression
requirements.

<IfModule mod_deflate.c>
SetOutputFilter DEFLATE
AddOutputFilterByType DEFLATE text/plain
AddOutputFilterByType DEFLATE text/xml
AddOutputFilterByType DEFLATE application/xhtml+xml
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE image/svg+xml
AddOutputFilterByType DEFLATE application/rss+xml
AddOutputFilterByType DEFLATE application/atom+xml
AddOutputFilterByType DEFLATE application/x-javascript
AddOutputFilterByType DEFLATE text/html
SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:exe|t?gz|zip|bz2|sit|rar)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:pdf|doc?x|ppt?x|xls?x)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.avi$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mov$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp3$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.mp4$ no-gzip dont-vary
</IfModule>

For more information about mod_deflate, refer to: http://httpd.apache.org/
docs/2.0/mod/mod_deflate.html

22.3 Tuning Configuration for WebCenter Portal
You can tune configuration parameters to improve the performance of WebCenter
Portal.

Setting a Session Timeout for WebCenter Portal

Setting MDS Cache Size and Purge Rate

Configuring Concurrency Management

Tuning Configuration for WebCenter Portal

22-4 Tuning Performance Guide

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

22.3.1 Setting a Session Timeout for WebCenter Portal
The default session timeout for the WebCenter Portal application is 45 minutes.
Administrators can customize the session time to suit their installation, for details see
Specifying Session Timeout Settings in Using Oracle WebCenter Portal.

22.3.2 Setting MDS Cache Size and Purge Rate
If you encounter the any of the following conditions, then you can increase the MDS
cache size in the adf-config.xml file. The default MDS cache size is 100MB.

• Error message JOC region full

• Frequent MDS database access after the page is warmed up

• Retained memory by ADF application is close to the max-size-kb

Post deployment, modify these properties through the System MBeans Browser. For
more information, see Changing MDS Configuration Attributes for Deployed
Applications in Administering Oracle Fusion Middleware.

The following is a sample snippet of adf-config.xml:

<cache-config>
<max-size-kb>150000</max-size-kb>
</cache-config>

Purging MDS data improves MDS queries. If your portal site changes frequently, you
may want to purge old MDS data more often, by reducing the time between purges.

Consider setting the MDS auto-purge seconds-to-live parameter (as shown in
the example below) to remove older versions of metadata automatically every hour.
By default, old versions of metadata are automatically purged every hour, that is, the
auto-purge seconds-to-live parameter is set to 3600 seconds (as shown in the
example below).

Note:

Each purge incurs CPU usage in the database. Do not purge too often (for
example, every 5 or 10 minutes) because the database CPU impact might
outweigh the performance gains from the purge.

If excessive metadata is accumulated and each purge is very expensive, reduce this
interval in the adf-config.xml file.

By default there is no auto-purge entry in adf-config.xml Use the following
sample snippet of adf-config.xml to modify auto-purge:

<mdsC:adf-mds-config version="11.1.1.000">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namePortal>
 ...
 </metadata-namespace>
 <auto-purge seconds-to-live="3600"/>
 </persistence-config>

Tuning Configuration for WebCenter Portal

Tuning Oracle WebCenter Portal 22-5

To ensure the initial purge does not impact ongoing user activities, consider using the
following WLST command to induce an MDS purge immediately before the bulk of
the user load hits the system:

The following example shows how to purge all documents in the application
repository whose versions are older than 10 seconds:

wls:/weblogic/
serverConfig>purgeMetadata(application='[AppName]',server='[ServerName]',olderThan=10
)

22.3.3 Configuring Concurrency Management
Concurrency management includes global settings that impact the entire WebCenter
Portal and service- and resource-specific settings that only impact a particular service.

You can define deployment-specific overrides or additional configuration in the adf-
config.xml file. For example, you can specify resource-specific (producers) values
that are appropriate for a particular deployment.

The following describes the format of the global, service, and resource entries in adf-
config.xml:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenterportal/concurrent/config">
 <global
 queueSize="SIZE"
 poolCoreSize="SIZE"
 poolMaxSize="SIZE"
 poolKeepAlivePeriod="TIMEPERIOD"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD"
 timeoutMonitorFrequency="TIMEPERIOD"
 hangMonitorFrequeny="TIMEPERIOD"
 hangAcceptableStopPeriod="TIMEPERIOD" />
 <service
 service="SERVICENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
 <resource
 service="SERVICENAME"
 resource="RESOURCENAME"
 timeoutMinPeriod="TIMEPERIOD"
 timeoutMaxPeriod="TIMEPERIOD"
 timeoutDefaultPeriod="TIMEPERIOD" />
</concurrent:adf-service-config>

Where:

SIZE: A positive integer. For example: 20.

TIMEPERIOD: Any positive integer followed by a suffix indicating the time unit,
which must be one of: ms for milliseconds, s for seconds, m for minutes, or h for hours.
For example: 50ms, 10s, 3m, or 1h. The following are examples of default settings for
different services. These settings are overwritten with any service-specific
configurations in connections.xml or adf-config.xml files:

<concurrent:adf-service-config
 xmlns="http://xmlns.oracle.com/webcenter/concurrent/config">
 <service service="oracle.webcenter.community" timeoutMinPeriod="2s"

Tuning Configuration for WebCenter Portal

22-6 Tuning Performance Guide

timeoutMaxPeriod="50s" timeoutDefaultPeriod="30s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.doclib"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.calendar.community"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.rtc"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.list"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
 <resource service="oracle.webcenter.community"
 resource="oracle.webcenter.collab.tasks"
 timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/>
</concurrent:adf-service-config>

Note:

All of the attributes except service and resource are optional, and
therefore, for example, the following tags are valid:

<global queueSize="20"/>
 <resource service="foo" resource="bar" timeoutMaxPeriod="5s"/>

You can use the Enterprise Manager System MBean Browser to view, add, modify,
and delete the concurrency configuration based on your usage pattern. To access the
MBean Browser, see Accessing the System MBean Browser in Administering Oracle
WebCenter Portal.

1. In System MBean Browser, navigate to:

Application Defined MBeans -> oracle.adf.share.config -> Server: (your server
name) -> Application: (your application name) ->ADFConfig -> ADFConfig
(bean) -> ADFConfig -> WebCenterConcurrentConfiguration -> Operations ->
listResource

Figure 22-1 System MBean Browser - WebCenterConcurrentConfiguration

Tuning Configuration for WebCenter Portal

Tuning Oracle WebCenter Portal 22-7

2. To view the current concurrency settings, select listResource, and then click
Invoke (Figure 22-2).

Figure 22-2 System MBean Browser - listResource

3. To change a setting, select setResource, enter the resource details, and then click
Invoke (Figure 22-3).

Figure 22-3 System MBean Browser - setResource

Take care to enter the correct values for service, resource, name and value.

NOTE: If the resource parameter you are attempting to modify already has a
[value] setting, you must remove the setting first by invoking the
[removeResource] operation (Figure 22-4).

Tuning Configuration for WebCenter Portal

22-8 Tuning Performance Guide

Figure 22-4 System MBean Browser - removeResource

4. To save changes, navigate to Application Defined MBeans:
ADFConfig:ADFConfig -> save, and click Invoke.

22.4 Tuning Tools and Services Configuration
You can tune the performance of tools and services used by WebCenter Portal. For
information about how to tune and improve the performance of back-end servers, for
example, mail servers, BPEL servers, content servers, and so on, refer to the
appropriate product documentation for each server.

Tuning Performance of Announcements

Tuning Performance of Discussions

Tuning Performance Instant Messaging and Presence

Tuning Performance of Mail

Tuning Performance of Personal Events

Tuning Performance of RSS News Feeds

Tuning Performance of Searches

Tuning Policy Store Parameters

22.4.1 Tuning Performance of Announcements
To manage overall resource usage for the announcements, you can tune the
Connection Timeout property:

• Default: 10 seconds

• Minimum: 0 seconds

• Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

Tuning Tools and Services Configuration

Tuning Oracle WebCenter Portal 22-9

• Modifying Discussions Server Connection Details Using Fusion Middleware
Control in Administering Oracle WebCenter Portal.

• Modifying Discussions Server Connection Details Using WLST in Administering
Oracle WebCenter Portal.

The following is a sample code snippet of the connections.xml to change the
default timeout to 5 seconds:

<Reference name="Jive-7777"
className="oracle.adf.mbean.share.connection.webcenter.Announcement.
AnnouncementConnection">
<Factory
className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactory"/
>
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

22.4.2 Tuning Performance of Discussions
To manage overall resource usage for the discussions, you can tune the Connection
Timeout property:

• Default: 10 seconds

• Minimum: 0 seconds

• Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

• Modifying Discussions Server Connection Details Using Fusion Middleware
Control in Administering Oracle WebCenter Portal

• Modifying Discussions Server Connection Details Using WLST in Administering
Oracle WebCenter Portal

The following is a sample snippet of connections.xml:

<Reference name="Jive-7777"
className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnection">
 <Factory
className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactory"/
>
 <RefAddresses>
 <StringRefAddr addrType="forum.url">
 <Contents>http://[machine]:[port]/owc_discussions_5520</Contents>
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

22.4.3 Tuning Performance Instant Messaging and Presence
To manage overall resource usage for instant messaging and presence, you can tune
the Connection Timeout property:

Tuning Tools and Services Configuration

22-10 Tuning Performance Guide

• Default: 10 seconds

• Minimum: 0 seconds

• Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

• Modifying Instant Messaging and Presence Connections Details Using Fusion
Middleware Control in Administering Oracle WebCenter Portal.

• Modifying Instant Messaging and Presence Connections Details Using WLST in
Administering Oracle WebCenter Portal.

The following is a sample code snippet of the connections.xml to change the
default timeout to 5 seconds:

<Reference name="IMPService-LCS"
 className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnection">
 <Factory
className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnectionFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

22.4.4 Tuning Performance of Mail
To manage overall resource usage for mail, you can tune the Connection Timeout
property:

• Default: 10 seconds

• Minimum: 0 seconds

• Maximum: 45 seconds

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

• Modifying Mail Server Connection Details Using Fusion Middleware Control in
Administering Oracle WebCenter Portal

• Modifying Mail Server Connection Details Using WLST in Administering Oracle
WebCenter Portal

The following is a sample code snippet of the connections.xml to change the
default timeout to 5 seconds:

<Reference name="MailConnection"
className="oracle.adf.mbean.share.connection.webcenter.mail.MailConnection">
 <StringRefAddr addrType="connection.time.out">
 <Contents>5</Contents>
 </StringRefAddr>
</Reference>

Tuning Tools and Services Configuration

Tuning Oracle WebCenter Portal 22-11

22.4.5 Tuning Performance of Personal Events
To manage overall resource usage for personal events, you can tune the Connection
Timeout property:

• Default: 10 seconds

• Minimum: 0 seconds

• Maximum: 45 seconds

You can also set a cache expiration period:

• Default: 10 seconds

• Minimum: 0 seconds

• Maximum: 45 seconds

Post deployment, modify the Connection Timeout and Cache Expiration
properties through Fusion Middleware Control or using WLST. For details, see:

• Modifying Event Server Connection Details Using Fusion Middleware Control in
Administering Oracle WebCenter Portal

• Modifying Event Server Connection Details Using WLST in Administering Oracle
WebCenter Portal

The following is a sample code snippet of the connections.xml to change the
default timeout to 5 seconds:

<Reference name="MSExchange-my-
pc"className="oracle.adf.mbean.share.connection.webcenter.calendar.PersonalEventConne
ction">
 <Factory
className="oracle.adf.mbean.share.connection.webcenter.calendar.PersonalEventConnecti
onFactory"/>
 <StringRefAddr addrType="eventservice.connection.timeout">
 <Contents>5</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="eventservice.cache.expiration.time">
 <Contents>5</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

22.4.6 Tuning Performance of RSS News Feeds
To manage overall resource usage for RSS news feeds, you can adjust the refresh
interval and timeout in the adf-config.xml file.

If you must modify these properties, post deployment, use the System MBeans
Browser.

The following is a sample snippet of adf-config.xml:

<rssC:adf-rss-config>
 <rssC:RefreshSecs>3600</rssC:RefreshSecs>
 <rssC:TimeoutSecs>3</rssC:TimeoutSecs>
 <rssC:Configured>true</rssC:Configured>
</rssC:adf-rss-config>

Tuning Tools and Services Configuration

22-12 Tuning Performance Guide

22.4.7 Tuning Performance of Searches
To manage overall resource usage and user response time for searching, you can
adjust the number of saved searches displayed, the number of results displayed, and
these timeout values:

• prepareTimeoutMs - Maximum time that a service is allowed to initialize a
search (in ms).

• timeoutMs - Maximum time that a service is allowed to execute a search (in ms).

• showAllTimeoutMs - Maximum time that a service is allowed to display search
all results (in ms).

Post deployment, modify timeout properties through Fusion Middleware Control or
using WLST. For details, see:

• Modifying Oracle SES Connection Details Using Fusion Middleware Control in
Administering Oracle WebCenter Portal.

• Modifying Oracle SES Connection Details Using WLST in Administering Oracle
WebCenter Portal.

The following is a sample snippet of adf-config.xml:

<searchC:adf-search-config xmlns="http://xmlns.oracle.com/webcenter/search/config">
 <display-properties>
 <common numSavedSearches="25"/>
 <region-specific>
 <usage id="simpleSearchResultUIMetadata" numServiceRows="5"/>
 <usage id="searchResultUIMetadata" numServiceRows="5"/>
 <usage id="localToolbarRegion" numServiceRows="5"/>
 </region-specific>
 </display-properties>
 <execution-properties prepareTimeoutMs="1000" timeoutMs="3000"
showAllTimeoutMs="20000" />
 </execution-properties>
</searchC:adf-search-config>

22.4.8 Tuning Policy Store Parameters
If you are experiencing performance issues post login, especially in the area of
permission checks, you may need to tune the policy store parameters as described in
OPSS PDP Service Tuning Parameters. Depending on your use case scenarios,
performance of WebCenter Portal can be improved by modifying the following
parameters:

• Set
oracle.security.jps.policystore.rolemember.cache.warmup.enabl
e to True

• Modify oracle.security.jps.policystore.rolemember.cache.size
based on the number of active portals in your WebCenter Portal deployment.

NOTE: Only modify this parameter if your WebCenter Portal deployment expects
to have more than 3000 active portals.

• Set oracle.security.jps.policystore.policy.cache.size to 5 times
the expected number of portals.

Tuning Tools and Services Configuration

Tuning Oracle WebCenter Portal 22-13

Note:

Always refer to your own use case scenarios before modifying the policy store
parameters. For more information, see Administering Web Services before
tuning any security parameters.

22.5 Tuning Identity Store Configuration
Performance-related configurations that may be required for specific environments.

Tuning the Identity Store when Using SSL

Tuning Performance when Using OVD

Tuning Performance when Using Active Directory

22.5.1 Tuning the Identity Store when Using SSL
When you configure an identity store for WebCenter Portal, you can choose to
configure either an SSL port or a non-SSL port. If you choose an SSL port, by default,
the JNDI connections are not pooled causing increased response time and decreased
performance when looking up users, groups, or other identity store entities. To
address this, do the following:

1. Open the jps-config.xml file under domain_home/config/fmwconfig/
jps-config.xml, locate the idstore.ldap service instance and add the line
highlighted below:

<!-- JPS WLS LDAP Identity Store Service Instance -->
 <serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>
 <property name="java.naming.ldap.factory.socket"
value="javax.net.ssl.SSLSocketFactory"/>
 </serviceInstance>

2. Restart all the servers within the domain that are connected to the identity store on
an SSL port with the following JVM parameter:

-Dcom.sun.jndi.ldap.connect.pool.protocol=ssl

You can specify this by modifying setDomainEnv.sh or directly from the
console.

22.5.2 Tuning Performance when Using OVD
For Oracle Virtual Directory (OVD), the only object class against which attributes are
looked up is inetOrgPerson (and it's parent object classes). Since the Profile Gallery
can display attributes not defined in inetOrgPerson, all the additional attributes not
covered in inetOrgPerson would require an additional round trip to the identity
store.For best performance when using OVD in a production environment, Oracle
recommends that you add the following configuration entry (in bold) to the domain-
level jps-config.xml file:

 <!-- JPS WLS LDAP Identity Store Service Instance -->
 <serviceInstance name="idstore.ldap"

Tuning Identity Store Configuration

22-14 Tuning Performance Guide

 provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>

 <extendedProperty>
 <name>user.object.classes</name>
 <values>
 <value>top</value>
 <value>person</value>
 <value>inetorgperson</value>
 <value>organizationalperson</value>
 <value>orcluser</value>
 <value>orcluserv2</value>
 <value>ctCalUser</value>
 </values>
 </extendedProperty>
 </serviceInstance>

22.5.3 Tuning Performance when Using Active Directory
For best performance when using Active Directory in a production environment,
Oracle recommends that you add the following configuration entries (in bold) to the
domain-level jps-config.xml file:

 <serviceInstance provider="idstore.ldap.provider"
 name="idstore.ldap">
 <property
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"
 name="idstore.config.provider"/>
 <property value="oracle.security.idm.providers.stdldap.JNDIPool"
 name="CONNECTION_POOL_CLASS"/>
 <property name="PROPERTY_ATTRIBUTE_MAPPING"
value="WIRELESS_ACCT_NUMBER=mobile:MIDDLE_NAME=middlename:MAIDEN_NAME=sn:DATE_OF_HIRE
=pwdLastSet:NAME_SUFFIX=generationqualifier:DATE_OF_BIRTH=pwdLastSet:DEFAULT_GROUP=pr
imaryGroupID" />
 <property value="sAMAccountName" name="username.attr"/>
 <property value="sAMAccountName" name="user.login.attr"/>
 </serviceInstance>

Profiles query for all these attributes and there is no default mapping for these
attributes in the Active Directory provider. An out-of-the-box Active Directory
installation doesn't have any mapping corresponding to DATE_OF_HIRE,
DATE_OF_BIRTH.

Note that these two attributes are simply a mapping to some attribute of the correct
data type to reduce unnecessary LDAP server calls as Active Directory really doesn't
have corresponding attributes with the same semantic meaning.

22.6 Tuning Portlet Configuration
You can tune the performance of portlets in WebCenter Portal.

Tuning Performance of the Portlet Client

Enabling Java Object Cache for WSRP Producers

Customizing the Container Runtime Environment Options

Tuning Performance of Oracle PDK-Java Producers

Tuning Portlet Configuration

Tuning Oracle WebCenter Portal 22-15

Setting WSRP Attribute for Portlet-served Resources

Setting WSRP Attribute for Resources Not Served by the Portlet

Tuning Performance of OmniPortlet

22.6.1 Tuning Performance of the Portlet Client
Several tuning options are available for Portlet Client.

Configuring Supported Locales

Configuring Portlet Cache Size

Configuring Portlet Timeout

22.6.1.1 Configuring Supported Locales

To manage overall resource usage and user response time, you can remove
unnecessary locale support, modify portlet timeout and cache size in the adf-
config.xml file.

For the Portlet service, 28 supported locales are defined out-of-the-box. You can
remove the locales that are unnecessary for your application.

If you must modify these properties, post deployment, you must edit adf-
config.xml manually. See Editing adf-config.xml in Administering Oracle WebCenter
Portal.

The following is a sample snippet of adf-config.xml:

<portletC:adf-portlet-config xmlns="http://xmlns.oracle.com/adf/portlet/config">
 <supportedLocales>
 <value>es</value>
 <value>ko</value>
 <value>ru</value>
 <value>ar</value>
 <value>fi</value>
 <value>nl</value>
 <value>sk</value>
 <value>cs</value>
 <value>fr</value>
 <value>no</value>
 <value>sv</value>
 <value>da</value>
 <value>hu</value>
 <value>pl</value>
 <value>th</value>
 <value>de</value>
 <value>it</value>
 <value>pt</value>
 <value>tr</value>
 <value>el</value>
 <value>iw</value>
 <value>pt_BR</value>
 <value>zh_CN</value>
 <value>en</value>
 <value>ja</value>
 <value>ro</value>
 <value>zh_TW</value>
 </supportedLocales>
 <defaultTimeout>20</defaultTimeout>

Tuning Portlet Configuration

22-16 Tuning Performance Guide

 <minimumTimeout>1</minimumTimeout>
 <maximumTimeout>300</maximumTimeout>
 <parallelPoolSize>10</parallelPoolSize>
 <parallelQueueSize>20</parallelQueueSize>
 <cacheSettings enabled="true">
 <maxSize>10000000</maxSize>
 </cacheSettings>
</portletC:adf-portlet-config>

22.6.1.2 Configuring Portlet Cache Size

You can modify the portlet cache size in the adf-config.xml file. The default portlet
cache size is set to 10 MB.

If you must modify these properties, post deployment, you must edit adf-
config.xml manually.

For more information, see How to Edit Portlet Client Configuration in Developing
WebCenter Portal Assets and Custom Components with Oracle JDeveloper

22.6.1.3 Configuring Portlet Timeout

You can modify the portlet timeout value in the adf-portlet-config element of
the adf-config.xml file.

• Default: 10 seconds

• Minimum: 0.1 seconds

• Maximum: 60 seconds

If you must modify these properties, post deployment, you must edit adf-
config.xml manually. See Editing adf-config.xml in Administering Oracle WebCenter
Portal.

The following is a sample snippet of adf-config.xml:

<adf-portlet-config>

 <defaultTimeout>5</defaultTimeout>
 <minimumTimeout>2</minimumTimeout>
 <maximumTimeout>300</maximumTimeout>
</adf-portlet-config>

22.6.2 Enabling Java Object Cache for WSRP Producers
For Portal Framework applications, Oracle recommends that you enable the Java
Object Cache (JOC) for WSRP producers so that objects written to the persistent store
are cached.

For more information, see Enabling Java Object Cache for Database Persistence Store
Access in Developing WebCenter Portal Assets and Custom Components with Oracle
JDeveloper

22.6.3 Customizing the Container Runtime Environment Options
Customizing container runtime options can improve overall performance

For more information, see How to Customize the Runtime Environment for JSR 286
Portlets in Developing WebCenter Portal Assets and Custom Components with Oracle
JDeveloper.

Tuning Portlet Configuration

Tuning Oracle WebCenter Portal 22-17

Suppressing Optimistic Rendering for WSRP Portlets

Setting Portlet Container Runtime Options

Excluding Request Attributes for Portlets

22.6.3.1 Suppressing Optimistic Rendering for WSRP Portlets

To suppress the optimistic render of WSRP portlets after a WSRP
PerformBlockingInteraction or HandleEvents call, set the Portlet container
runtime option in portlet.xml to true. For example:

com.oracle.portlet.suppressWsrpOptimisticRender=true

Normally, if a WSRP portlet receives a WSRP PerformBlockingInteraction request
(processAction in JSR168/JSR286 portlets) and the portlet does not send any events as
a result, the WSRP producer renders the portlet and returns the portlet's markup in
the response to the PerformBlockingInteraction SOAP message. This markup
may be cached by the consumer until the consumer's page renders, and if nothing else
affecting the state of the portlet happens (such as the portlet receiving an event), the
cached markup can be used by the consumer, eliminating the need for a second SOAP
call to GetMarkup.

This assumes that the portlet's render phase is idempotent, which is always a best
practice. However, if the portlet expects to receive an event, or rendering the portlet is
more costly than a second SOAP message for GetMarkup, the developer may use this
container option to suppress the optimistic render of the portlet after a
processAction or handleEvent call. The portlet still renders normally when the
producer receives the WSRP GetMarkup request.

For more information, see How to Customize the Runtime Environment for JSR 286
Portlets in Developing WebCenter Portal Assets and Custom Components with Oracle
JDeveloper.

22.6.3.2 Setting Portlet Container Runtime Options

You can use the WebCenter Portal-specific
excludedActionScopeRequestAttributes container runtime option to specify
how to store action-scoped request attributes so that they are available to portlets until
a new action occurs.

Request attributes which match any of the regular expressions are not stored as action-
scoped request attributes if the
javax.portlet.actionScopedRequestAttributes container runtime option is
used, in addition to any request parameters whose values match the regular
expressions defined in the com.oracle.portlet.externalScopeRequestAttributes
container runtime option.

If set to true, you can specify a second value of numberOfCachedScopes and a third
value indicating the number of scopes to be cached by the portlet container.

For more information, see How to Customize the Runtime Environment for JSR 286
Portlets in Developing WebCenter Portal Assets and Custom Components with Oracle
JDeveloper.

22.6.3.3 Excluding Request Attributes for Portlets

The excludedActionScopeRequestAttributes is a multi-valued, Portlet
container runtime property, where each value is a regular expression.

Tuning Portlet Configuration

22-18 Tuning Performance Guide

If using the javax.portlet.actionScopedRequestAttributes container
runtime option with a portlet, it is possible to optimize which request attributes get
stored between portlet lifecycles using the
com.oracle.portlet.excludedActionScopeRequestAttributes container
runtime option. Any request attributes which are unnecessary to store between
lifecycles can be indicated to increase performance.

For more information, see How to Customize the Runtime Environment for JSR 286
Portlets in Developing WebCenter Portal Assets and Custom Components with Oracle
JDeveloper.

22.6.4 Tuning Performance of Oracle PDK-Java Producers
To manage overall resource usage for a Web producer, you can tune the Connection
Timeout property:

• Default: 30000 ms

• Minimum: 5000 ms

• Maximum: 60000 ms

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

• Editing WSRP Producer Registration Details Using Fusion Middleware Control in
Administering Oracle WebCenter Portal.

• Editing Producer Registration Details Using WLST in Administering Oracle
WebCenter Portal.

The following is a sample snippet of connections.xml:

<webproducerconnection producerName="wc-WebClipping" urlConnection="wc-WebClipping-
urlconn" timeout="10000" establishSession="true" mapUser="false"/>

22.6.5 Setting WSRP Attribute for Portlet-served Resources
To specify the default WSRP requiresRewrite flag to use when generating
Resource URLs for portlet-served resources, set the Portlet container runtime option
(specified in portlet.xml) as follows:
com.oracle.portlet.defaultServedResourceRequiresWsrpRewrite.

This setting is used for all ResourceURLs created by the portlet, unless overridden by
the presence of the oracle.portlet.server.resourceRequiresRewriting
request attribute when the ResourceURL methods write() or toString() are
called. This setting is also used to specify the WSRP requiresRewriting flag on the
served resource response, but can be overridden by the presence of the
oracle.portlet.server.resourceRequiresRewriting request attribute
when the portlet's serveResource() method returns.

Valid values:

• unspecified - (Default) The requiresRewrite URL flag is not given a value,
and the requiresRewriting response flag for a serveResource operation is
based on the MIME type of the response.

• true - The requiresRewrite URL flag and requiresRewriting response flag
is set to true, indicating that the resource should be rewritten by the consumer.

Tuning Portlet Configuration

Tuning Oracle WebCenter Portal 22-19

• false - The requiresRewrite URL flag and requiresRewriting response
flag is set to false, indicating that the resource does not necessarily need to be
rewritten by the consumer, though the consumer may choose to rewrite the
resource.

22.6.6 Setting WSRP Attribute for Resources Not Served by the Portlet
To specify the default WSRP requiresRewrite flag to use when encoding URLs for
resources not served by the portlet, set the Portlet container runtime option (specified
in portlet.xml) as follows:
com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite.

This setting is used for all URLs returned by the PortletResponse.encodeURL()
method, unless overridden by the presence of the
oracle.portlet.server.resourceRequiresRewriting request attribute
when the PortletResponse.encodeURL() method is called.

Valid values:

• true - (Default) The requiresRewrite URL flag is set to true, indicating that the
resource should be rewritten by the consumer.

• false - The requiresRewrite URL flag is set to false, indicating that the
resource does not necessarily need to be rewritten by the consumer.

22.6.7 Tuning Performance of OmniPortlet
To manage overall resource usage for OmniPortlets, you can tune the Connection
Timeout property:

• Default: 30000 ms

• Minimum: 5000 ms

• Maximum: 60000 ms

Post deployment, modify the Connection Timeout property through Fusion
Middleware Control or using WLST. For details, see:

• Editing Producer Registration Details Using Fusion Middleware Control in
Administering Oracle WebCenter Portal.

• Editing Producer Registration Details Using WLST in Administering Oracle
WebCenter Portal.

The following is a sample snippet of connections.xml:

<webproducerconnection producerName="wc-OmniPortlet" urlConnection="wc-OmniPortlet-
urlconn" timeout="10000" establishSession="false" mapUser="false"/>

Tuning Portlet Configuration

22-20 Tuning Performance Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	Part I Introduction
	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation

	2 Top Performance Areas
	2.1 Identifying Top Performance Areas
	2.2 Securing Sufficient Hardware Resources
	2.3 Tuning the Operating System
	2.4 Tuning Java Virtual Machines (JVMs)
	2.5 Tuning the WebLogic Server
	2.6 Tuning Database Parameters
	2.6.1 Tuning Database Parameters
	2.6.2 Tuning Database Files
	2.6.2.1 Configuring REDO Logs
	2.6.2.2 Configuring UNDO Tablespace
	2.6.2.3 Configuring TEMP Tablespace

	2.6.3 Tuning Automatic Segment-Space Management (ASSM)

	2.7 Reusing Database Connections
	2.8 Enabling Data Source Statement Caching
	2.9 Controlling Concurrency
	2.9.1 Setting Server Connection Limits
	2.9.1.1 Setting MaxClients/ ThreadsPerChild
	2.9.1.2 Setting KeepAlive
	2.9.1.3 Tuning HTTP Server Modules

	2.9.2 Configuring Connection Pools
	2.9.3 Tuning the WebLogic Sever Thread Pool

	2.10 Setting Logging Levels

	3 Performance Planning
	3.1 About Performance Planning
	3.2 Performance Planning Methodology
	3.2.1 Step 1: Defining Your Performance Objectives
	3.2.1.1 Defining Operational Requirements
	3.2.1.2 Identifying Performance Goals
	3.2.1.3 Understanding User Expectations
	3.2.1.4 Conducting Performance Evaluations

	3.2.2 Step 2: Designing Applications for Performance and Scalability
	3.2.3 Step 3: Monitoring and Measuring Your Performance Metrics

	4 Monitoring
	4.1 About Oracle Fusion Middleware Management Tools
	4.1.1 Measuring Your Performance Metrics

	4.2 Oracle Enterprise Manager Fusion Middleware Control
	4.3 Oracle WebLogic Server Administration Console
	4.4 WebLogic Diagnostics Framework (WLDF)
	4.5 WebLogic Scripting Tool (WLST)
	4.6 DMS Spy Servlet
	4.6.1 Viewing Performance Metrics Using the Spy Servlet
	4.6.2 Using the DMS Spy Servlet

	4.7 Native Operating System Performance Commands
	4.8 Network Performance Monitoring Tools

	5 Using the Oracle Dynamic Monitoring Service
	5.1 About Dynamic Monitoring Service (DMS)
	5.1.1 Understanding Common DMS Terms and Concepts
	5.1.1.1 DMS Sensors
	5.1.1.1.1 DMS PhaseEvent Sensors
	5.1.1.1.2 DMS Event Sensors
	5.1.1.1.3 DMS State Sensors
	5.1.1.1.4 Sensor Naming Conventions

	5.1.1.2 DMS Nouns
	5.1.1.2.1 General DMS Naming
	5.1.1.2.2 General DMS Naming Conventions and Character Sets
	5.1.1.2.3 Noun and Noun Type Naming Conventions

	5.1.1.3 DMS Tracing and Events

	5.2 About DMS Availability
	5.3 About DMS Architecture
	5.4 Viewing DMS Metrics
	5.4.1 Viewing Metrics Using the Spy Servlet
	5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
	5.4.3 Viewing Metrics with WLST (Oracle WebLogic Server)
	5.4.4 Viewing Metrics with JConsole
	5.4.5 Viewing Metrics with Oracle Enterprise Manager

	5.5 Accessing DMS Metrics with WLDF
	5.6 About DMS Execution Context
	5.6.1 DMS Execution Requests and Subtasks
	5.6.2 DMS Execution Context Usage
	5.6.3 DMS Execution Context Communication

	5.7 DMS Tracing and Events
	5.7.1 Configuring the DMS Event System
	5.7.1.1 Adding and Editing Filters
	5.7.1.2 Adding and Editing Destinations
	5.7.1.3 Adding and Editing Event Routes
	5.7.1.4 Compound Operations

	5.7.2 Configuring Destinations
	5.7.2.1 LoggerDestination
	5.7.2.1.1 Static Loggers and Handlers
	5.7.2.1.2 Dynamic Loggers and Handlers
	5.7.2.1.3 Default Locations of the logging.xml File
	5.7.2.1.4 Using a CLI Command to Query the Trace Log File

	5.7.2.2 MBean Creator Destination
	5.7.2.2.1 Metric MBean Object Name

	5.7.2.3 Request Tracker Destination
	5.7.2.3.1 Executing the Request Tracker Dump

	5.7.2.4 Java Flight Recorder Destination
	5.7.2.4.1 Dynamically Derived JFR Event Types – Names, Values and Descriptions
	5.7.2.4.1.1 Examples of Dynamically Derived Producers and Events

	5.7.3 Understanding the Format of DMS Events in Log Messages
	5.7.4 Understanding DMS Event Actions

	5.8 DMS Best Practices

	Part II Core Components
	6 Tuning Oracle HTTP Server
	6.1 About Oracle HTTP Server
	6.2 Monitoring Oracle HTTP Server Performance
	6.3 Basic Tuning Considerations
	6.3.1 Tuning Oracle HTTP Server Directives
	6.3.2 Reducing Process Availability with Persistent Connections
	6.3.3 Logging Options for Oracle HTTP Server
	6.3.3.1 Access Logging
	6.3.3.2 Configuring the HostNameLookups Directive
	6.3.3.3 Error logging

	6.4 Advanced Tuning Considerations
	6.4.1 Tuning Oracle HTTP Server
	6.4.1.1 Analyzing Static Versus Dynamic Requests
	6.4.1.2 Managing PL/SQL Requests
	6.4.1.3 Limiting the Number of Enabled Modules
	6.4.1.4 Tuning the File Descriptor Limit

	6.4.2 Tuning Oracle HTTP Server Security
	6.4.2.1 Tuning Oracle HTTP Server Secure Sockets Layer (SSL)
	6.4.2.1.1 Caching SSL on Oracle HTTP Server
	6.4.2.1.2 Using SSL Application Level Data Encryption
	6.4.2.1.3 Tuning SSL Performance

	6.4.2.2 Tuning Oracle HTTP Server Port Tunneling

	7 Tuning Oracle Metadata Service
	7.1 About Oracle Metadata Services (MDS)
	7.2 Monitoring Oracle Metadata Service Performance
	7.3 Basic Tuning Considerations
	7.3.1 Tuning Database Repository
	7.3.1.1 Collecting Schema Statistics
	7.3.1.2 Increasing Redo Log Size
	7.3.1.3 Reclaiming Disk Space
	7.3.1.4 Monitoring the Database Performance

	7.3.2 Tuning Cache Configuration
	7.3.2.1 Enabling Document Cache

	7.3.3 Purging Document Version History
	7.3.3.1 Using Auto Purge
	7.3.3.2 Purging Manually

	7.3.4 Using Database Polling Interval for Change Detection

	7.4 Advanced Tuning Considerations
	7.4.1 Analyzing Performance Impact from Customization

	8 Tuning Oracle Fusion Middleware Security
	8.1 About Security Services
	8.2 Basic Tuning Considerations
	8.3 Tuning Oracle Platform Security Services
	8.3.1 JVM Tuning Parameters
	8.3.2 JDK Tuning Parameters
	8.3.3 Authentication Tuning Parameters
	8.3.4 Authorization Tuning Properties
	8.3.5 OPSS PDP Service Tuning Parameters

	8.4 Oracle Web Services Security Tuning
	8.4.1 Choosing the Right Policy
	8.4.2 Policy Manager
	8.4.3 Configuring the Log Assertion to Record SOAP Messages
	8.4.4 Configuring Connection Pooling
	8.4.5 Monitoring the Performance of Web Services

	Part III Oracle Fusion Middleware Server Components
	9 Tuning Oracle Application Development Framework (ADF)
	9.1 About Oracle ADF
	9.2 Basic Tuning Considerations
	9.2.1 Oracle ADF Faces Configuration and Profiling
	9.2.2 Performance Considerations for ADF Faces
	9.2.3 Tuning ADF Faces Component Attributes
	9.2.4 Performance Considerations for Table and Tree Components
	9.2.5 Performance Considerations for autoSuggest
	9.2.6 Data Delivery - Lazy versus Immediate
	9.2.7 Performance Considerations for DVT Components

	9.3 Advanced Tuning Considerations
	9.3.1 ADF Server Performance
	9.3.1.1 Tuning Session Timeout
	9.3.1.2 Tuning View Objects
	9.3.1.2.1 Creating View Objects
	9.3.1.2.2 Configuring View Object Data Fetching
	9.3.1.2.3 Setting Additional View Object Configurations

	9.3.1.3 Enabling Batch Processing
	9.3.1.4 Tuning RangeSize
	9.3.1.5 Configuring Application Module Pooling
	9.3.1.5.1 General AM Pool Configurations
	9.3.1.5.2 Configuring Application Module Pool Sizing
	9.3.1.5.3 Configuring Application Module Pool Resource Cleanup
	9.3.1.5.4 Designing an Application Module

	9.3.1.6 Using ADFc Regions
	9.3.1.7 Deferring Task Flow Execution
	9.3.1.8 Deferring Task Flow Creation in Popups
	9.3.1.9 Configuring the Task Flow Inside Switcher
	9.3.1.10 Reusing Static Data
	9.3.1.11 Conditional Validations

	10 Tuning Oracle TopLink
	10.1 About Oracle TopLink and EclipseLink
	10.2 Basic Tuning Considerations
	10.2.1 SQL Statement and Query Tuning Parameters
	10.2.1.1 Entity Relationships Query Tuning Parameters

	10.2.2 Cache Configuration Tuning Parameters
	10.2.2.1 About Cache Refreshing
	10.2.2.2 Locking Mode Policy Options

	10.2.3 About Mapping and Descriptor Configurations
	10.2.4 About Data Partitioning

	10.3 Advanced Tuning Considerations
	10.3.1 Integrating with Oracle Coherence
	10.3.2 Analyzing EclipseLink JPA Entity Performance

	Part IV SOA Suite Components
	11 Tuning the SOA Infrastructure
	11.1 About the SOA Infrastructure
	11.2 Tuning SOA Work Managers
	11.2.1 Configuring Database Connections with the SOADataSource Property
	11.2.2 Configuring Work Managers with the SOAMaxThreadsConfig Attribute

	11.3 Tuning SOA Infrastructure Parameters
	11.4 Using Advanced Tuning Options
	11.4.1 Using Composite Lazy Loading
	11.4.1.1 Configuring Composite Lazy Loading for the Domain Level
	11.4.1.2 Configuring Composite Lazy Loading at the Component Level

	11.4.2 Changing Modularity Profiles
	11.4.3 Tuning Your Database for SOA Processes
	11.4.3.1 Collecting Optimizer Statistics
	11.4.3.1.1 Gathering Statistics Automatically
	11.4.3.1.2 Gathering Statistics Manually
	11.4.3.1.3 Optimizing the MDS Database Repository With Statistics

	11.4.3.2 Tuning Temporary Tablespaces for SOA
	11.4.3.3 Minimizing SOA Database Contention
	11.4.3.3.1 Tuning the Redo Log Performance (log file sync)
	11.4.3.3.2 Migrating BasicFiles to SecureFiles (enq:HW - contention)
	11.4.3.3.3 Creating Hash Partitioned Indexes (enq: TX - index contention)

	11.4.3.4 Purging
	11.4.3.5 Reclaiming Space

	11.4.4 Tuning Event Delivery Network Parameters
	11.4.4.1 Adding JMS Topics with Mapping
	11.4.4.1.1 Choosing a JMS Topic Type
	11.4.4.1.2 Creating JMS Topics
	11.4.4.1.3 Mapping Events to JMS Topics

	11.4.5 Tuning the WebLogic Server

	11.5 Advanced Tuning for Work Managers
	11.5.1 Configuring Fair Share Request Class for SOA Work Managers
	11.5.2 Creating a New Work Manager Constraint

	12 Tuning Oracle BPEL Process Manager
	12.1 About BPEL Process Manager
	12.2 Tuning BPEL Parameters
	12.2.1 Tuning BPEL Engine
	12.2.1.1 Tuning BPEL Engine Parameters

	12.2.2 Tuning BPEL in a Composite

	12.3 Using Other Tuning Strategies
	12.3.1 Identifying Tables Impacted By Instance Data Growth

	13 Tuning Oracle Mediator
	13.1 About Oracle Mediator
	13.2 Tuning Mediator Parameters
	13.3 Using Resequencer for Messages

	14 Tuning Oracle Managed File Transfer
	14.1 About Managed File Transfer
	14.2 Tuning MFT Parameters
	14.2.1 Tuning Remote FTP / SFTP/ FILE Type Sources
	14.2.2 Minimizing MDS label
	14.2.3 Adjusting the Materialized Views Refresh Interval

	15 Tuning Oracle Business Rules
	15.1 About Oracle Business Rules
	15.2 Tuning Oracle Business Rules
	15.2.1 Exerting assertXPath Support

	16 Tuning Oracle Business Process Management
	16.1 About Oracle Business Process Management
	16.2 Tuning Business Process Management Parameters
	16.3 Using Other Tuning Strategies
	16.3.1 Tuning Oracle Workspace Applications
	16.3.2 Tuning Process Measurement

	17 Tuning Oracle Human Workflow
	17.1 About Oracle Human Workflow
	17.2 Tuning Human Workflow
	17.3 Using Other Tuning Strategies
	17.3.1 Improving Server Performance
	17.3.2 Completing Workflows Faster
	17.3.3 Tuning the Identity Provider
	17.3.4 Tuning the Database

	18 Tuning Oracle Business Activity Monitoring
	18.1 About Oracle Business Activity Monitoring
	18.2 Tuning BAM Server Parameters
	18.3 Other Tuning Strategies
	18.3.1 Creating an Index Column
	18.3.2 Tuning Loggers
	18.3.3 Tuning Continuous Query Service

	19 Tuning Oracle Service Bus
	19.1 About Oracle Service Bus
	19.2 Tuning OSB Parameters
	19.2.1 Tuning Oracle Service Bus with Work Managers
	19.2.2 Tuning OSB Operation Settings

	19.3 Using Other Tuning Strategies
	19.3.1 Tuning Resequencer in OSB
	19.3.2 Considering Design Time for Proxy Applications
	19.3.3 Tuning XQuery
	19.3.4 Tuning Poller-based Transports
	19.3.4.1 Setting the Polling Interval
	19.3.4.2 Setting Read Limit

	20 Tuning Oracle Enterprise Scheduler Service
	20.1 About Enterprise Scheduler Service
	20.2 Tuning Enterprise Scheduler Service Parameters

	21 Tuning Oracle Business Intelligence Performance
	21.1 About Oracle Business Intelligence
	21.2 Tuning Oracle BI Server Query Performance
	21.3 Tuning Oracle BI Server Query Cache Performance
	21.4 Tuning Oracle BI Web Client Performance

	Part V Oracle WebCenter Components
	22 Tuning Oracle WebCenter Portal
	22.1 About Oracle WebCenter Portal
	22.2 Basic Tuning Considerations
	22.2.1 Setting System Limit
	22.2.2 Setting JDBC Data Source
	22.2.3 Setting JRockit Virtual Machine (JVM) Arguments
	22.2.4 Using Content Compression to Reduce Downloads

	22.3 Tuning Configuration for WebCenter Portal
	22.3.1 Setting a Session Timeout for WebCenter Portal
	22.3.2 Setting MDS Cache Size and Purge Rate
	22.3.3 Configuring Concurrency Management

	22.4 Tuning Tools and Services Configuration
	22.4.1 Tuning Performance of Announcements
	22.4.2 Tuning Performance of Discussions
	22.4.3 Tuning Performance Instant Messaging and Presence
	22.4.4 Tuning Performance of Mail
	22.4.5 Tuning Performance of Personal Events
	22.4.6 Tuning Performance of RSS News Feeds
	22.4.7 Tuning Performance of Searches
	22.4.8 Tuning Policy Store Parameters

	22.5 Tuning Identity Store Configuration
	22.5.1 Tuning the Identity Store when Using SSL
	22.5.2 Tuning Performance when Using OVD
	22.5.3 Tuning Performance when Using Active Directory

	22.6 Tuning Portlet Configuration
	22.6.1 Tuning Performance of the Portlet Client
	22.6.1.1 Configuring Supported Locales
	22.6.1.2 Configuring Portlet Cache Size
	22.6.1.3 Configuring Portlet Timeout

	22.6.2 Enabling Java Object Cache for WSRP Producers
	22.6.3 Customizing the Container Runtime Environment Options
	22.6.3.1 Suppressing Optimistic Rendering for WSRP Portlets
	22.6.3.2 Setting Portlet Container Runtime Options
	22.6.3.3 Excluding Request Attributes for Portlets

	22.6.4 Tuning Performance of Oracle PDK-Java Producers
	22.6.5 Setting WSRP Attribute for Portlet-served Resources
	22.6.6 Setting WSRP Attribute for Resources Not Served by the Portlet
	22.6.7 Tuning Performance of OmniPortlet

