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Preface

This guide provides an introduction to Identity Governance Framework and describes how to use the related developer APIs Oracle has made available. It describes the Identity Directory API, which is a common service for identity management applications to access and manage identity information.



Audience

This document is intended for developers who are writing applications that use the Oracle Fusion Middleware Identity Governance Framework based APIs.





Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.








Related Documents

For more information, see the following documents:

	Java API Reference for Identity Governance Framework Identity Directory


	Java API Reference for Identity Governance Framework IDXUserRole


	Java API Reference for Identity Governance Framework UserRole


	Securing Applications with Oracle Platform Security Services


	Oracle® Fusion Middleware Infrastructure Security WLST Command Reference


	Javadocs for Project Aristotle - ArisID Attribute Services, at: http://arisid.sourceforge.net/javadocs/arisId_1.1_javadoc/








Conventions

The following text conventions are used in this document:




	Convention	Meaning
	boldface

	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.


	italic

	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.


	monospace

	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.















What's New in This Guide

Review the new features and significant product changes for the Identity Governance Framework (IGF) and the related developer APIs.



New Features in Release 12c (12.2.1.1)

The new features and major changes introduced in release 12.2.1.1 are as follows:

	New IDS Tuning Configuration Parameters






New IDS Tuning Configuration Parameters

New configuration parameter Protocols has been added for tuning your IDS deployment.

See Configuration Parameters for IDS.







New Features in Release 12c (12.2.1)

The new features and major changes introduced in release 12.2.1.0.0 are as follows:

	New IDS Configuration Parameters


	Support to Reclaim Connection Back into the Connection Pool






New IDS Configuration Parameters 

New configuration parameters MaxPoolConnectionReuseTime and ConnectTimeout have been added for tuning your IDS deployment.

See Configuration Parameters for IDS.





Support to Reclaim Connection Back into the Connection Pool

You can now configure connection pool property, which allows you to reclaim borrowed connections into the connection pool after a connection has not been used for a specific time duration.

Use the PoolConnectionReclaimTime configuration parameter to set the property. This feature helps maximize connection reuse and conserves system resources that are otherwise lost on maintaining borrowed connections that are no longer in use.

See Configuration Parameters for IDS.







New Features in Release 12c (12.1.3)

The new features and major changes introduced in release 12.1.3 are as follows:

	Logical NOT Operator in Search Filters


	Pass-Through Support for Entity Attributes






Logical NOT Operator in Search Filters

You can specify the logical NOT operator to negate a simple or complex filter condition. 

The SearchFilter class has two new methods: negate() is a toggle method to set the NOT condition, and the isNegated() method can check if the NOT condition is already set.

See Using Logical NOT Operator in a Search Filter.





Pass-Through Support for Entity Attributes

The Identity Directory API supports entity attribute pass-through.

You do not need to include each and every attribute in attribute definitions and attribute references under the entity definition. You can include any attribute in an add, modify, requested attributes, or search filter operation, and if the attribute is not present in the in the identity store schema, the IDS API returns the error thrown by the identity store.

See Logical Entity Configuration for an Identity Directory Service.








1  Introduction to Identity Governance Framework 

The Identity Governance Framework (IGF) initiative enables secure exchange of identity-related information between users and applications and service providers. It provides privacy and governance semantics to applications and services infrastructure. 


The following topics provide an introduction to the Identity Governance Framework and the related developer APIs Oracle has made available:

	Overview of the Identity Governance Framework


	Understanding Identity Governance Framework APIs


	System Requirements and Certification for Identity Governance Framework






1.1 Overview of the Identity Governance Framework

The Identity Governance Framework is an open initiative. As part of this initiative, Oracle has contributed key initial specifications and is making them available to the community. 

The Identity Governance Framework is designed to meet the following goals: 

	To simplify the development of identity information access regardless of where that information is stored.


	To simplify the management (also known as governance) of how applications use identity data, in particular, sensitive data.




The specifications provide a common framework for defining usage policies, attribute requirements, and developer APIs pertaining to the use of identity related information. These enable businesses to ensure full documentation, control, and auditing regarding the use, storage, and propagation of identity-related data across systems and applications.

This section contains the following topics:

	Benefits of Identity Governance Framework to Organizations


	Benefits of Identity Governance Framework to Developers






1.1.1 Benefits of Identity Governance Framework to Organizations

Organizations need to maintain control and integrity of sensitive personal information about their customers, employees, and partners. Data related to social security numbers, credit card numbers, medical history and more are increasingly under scrutiny by regulations seeking to prevent abuse or theft of such information. Privacy conscious organizations frequently have reacted to these requirements by enforcing overly strict controls and processes that hinder business operations and impact productivity, flexibility, and efficiency. At the opposite end of the spectrum, some organizations do not take the care needed to safeguard this information, potentially putting identity-related data at risk without sufficient oversight and control. The Identity Governance Framework enables a standards-based mechanism for enterprises to establish "contracts" between their applications so that identity related information can be shared securely and with confidence that this data will not be abused, compromised, or misplaced. Using this framework, organizations have complete visibility into how identity information is stored, used, and propagated throughout their business. This enables organizations to automate controls to streamline business processes without fear of compromising the confidentiality of sensitive identity related information.





1.1.2 Benefits of Identity Governance Framework to Developers

The Identity Governance Framework is an agreed-upon process for specifying how identity-related data is treated when writing applications. This provides developers a standards-based way to easily write applications that use this data so that governing policies can be used to control it. This will result in faster development of privacy aware applications. 

IGF enables the decoupling of identity-aware applications from a specific deployment infrastructure. Specifically, using IGF enables developers to defer deciding how identity related information will be stored and accessed by their application. Developers do not need to worry about whether they should use a SQL database, an LDAP directory, or other system. In the past, developers were forced to write highly specific code, driving technology and vendor lock-in.

For example, the Identity Directory API provides methods for accessing and managing identity information in a directory server that is the domain identity store. Entity definitions, entity relationships, and the physical identity store details can be configured using either the Identity Directory Configuration APIs or Mbeans. The Identity Directory API is used to initialize the Identity Directory Service. The Identity Directory Service provides an interface to both access and modify users and group information from different identity stores. For more information, see Using the Identity Directory API.

Another example is the ArisID API, which handles the hard work of data retrieval, transformation, and policy-enforcement when it comes to identity-based information. By using a Client Attribute Requirement Markup Language (CARML) file and declarations, applications will support flexible deployment in a wide range of environments without the need for ongoing specialized developer enhancements. For more information, see Using the ArisID API.







1.2 Understanding Identity Governance Framework APIs

The Identity Governance Framework depends on two API modules to implement the data model requirements.

Oracle has made the following APIs available that are based on the Identity Governance Framework:

	Identity Directory API

The Identity Directory API is a common service for identity management applications to access and manage identity information. The service can be used in both Java EE and Java SE modes. For more information, see Using the Identity Directory API.


	ArisID API

The ArisID API provides enterprise developers and system architects a library for building identity-enabled applications using multiple identity protocols. The ArisID API enables developers to specify requirements for identity attributes, roles, and search filters by using Client Attribute Requirements Markup Language (CARML). For more information, see Using the ArisID API.








1.3 System Requirements and Certification for Identity Governance Framework

The system requirements document covers information such as hardware and software requirements, minimum disk space and memory requirements, and required system libraries, packages, or patches. 

Refer to the system requirements and certification documentation for information about hardware and software requirements, platforms, databases, and other information. Both of these documents are available on Oracle Technology Network (OTN).

For more information, see Oracle Fusion Middleware System Requirements and Specifications.

The certification document covers supported installation types, platforms, operating systems, databases, JDKs, and third-party products. For more information, see Oracle Fusion Middleware Supported System Configurations.









2 Using the Identity Directory API

The Identity Directory API supports accessing and managing users, groups, organizations, and can be extended to support new entity types with relationships defined between these entities.


The following topics describe the architecture and key functionality of the Identity Governance Framework, Identity Directory API, and Identity Directory Service.

	Overview of the Identity Directory API


	Identity Directory API Configuration


	Design Recommendations for Identity Directory API


	Examples of Using the Identity Directory API




Note:
Oracle® Fusion Middleware Securing Applications with Oracle Platform Security Services





2.1 Overview of the Identity Directory API

The Identity Directory API provides a service for identity management applications to access and manage identity information. The API is flexible and can be fully configured by clients supporting heterogeneous identity stores having standard and specific schemas, and is robust with both high-availability and failover support.

The API uses the Identity Governance Framework and provides all the benefits of Identity Governance for identity information regulation and control. The API can be used in both Java EE and Java SE modes. For more information about the Identity Governance Framework, see Introduction to Identity Governance Framework.

The API supports the following actions:

	Create/Read/Update/Delete (CRUD) operations on User, Group, Org, and generic entities


	Get operation on User Account State


	Identity Directory API configuration sharing


	Support for directory servers such as Oracle Internet Directory, Oracle Unified Directory, Oracle Directory Server EE, and Active Directory. 




Identity Directory Service consists of the following:

	Identity Directory API

The Identity Directory API provide methods for accessing and managing identity information in a directory server that is the domain identity store. Entity definitions, entity relationships, and the physical identity store details can be configured using either the Identity Directory Configuration APIs or Mbeans. Directory service instance capabilities can be queried using getter methods.


	Identity Directory API Configuration

Identity Directory API configuration comprises logical entity configuration and physical identity store configuration.




This section contains the following topics:

	Understanding Identity Directory API


	Identity Directory Service Architecture






2.1.1 Understanding Identity Directory API

The Identity Directory API is used to initialize the Identity Directory Service. 

The Identity Directory Service is a common service used by identity management products to access and manage an Identity Directory. The Identity Directory Service provides an interface to both access and modify users and group information from different identity stores. An Identity Directory is an instance of the Identity Directory Service having:

	a unique name (IDS name)


	a logical entity configuration


	a physical identity store configuration




For more information about the Identity Directory Service, also referred to as the identity store service, see Oracle® Fusion Middleware Securing Applications with Oracle Platform Security Services.





2.1.2 Identity Directory Service Architecture

To use the Identity Directory Service APIs, it is essential to understand how identities are integrated, and how they can be used. 

Figure 2-1 shows the logical architecture of the . 

Figure 2-1 Identity Directory API Architecture
[image: Description of Figure 2-1 follows]



Figure 2-2 shows the relationship between the  components.

Figure 2-2 Identity Directory API Components
[image: Description of Figure 2-2 follows]









2.2 Identity Directory API Configuration

The Identify Directory API provides an interface to access and modify users and group information from different identity stores. 

The Identity Directory Service configuration is a combination of the logical entity configuration, the physical identity store configuration, and operational configuration.

The logical entity configuration and operational configuration is stored in ids-config.xml. This file is located in the same directory as jps-config.xml. For example, in a Java EE environment the location is:

DOMAIN_HOME/config/fmwconfig/ids-config.xml

The physical identity store configuration is stored in ovd/ids/adapters.os.xml. For example, in a Java EE environment the ovd directory is located in:

DOMAIN_HOME/config/fmwconfig

This section contains the following topics:

	Logical Entity Configuration for an Identity Directory Service


	Physical Identity Store Configuration for an Identity Directory Service


	Operational Configuration for an Identity Directory Service






2.2.1 Logical Entity Configuration for an Identity Directory Service

The Identity Directory Service configuration is a combination of logical entity configuration, the physical identity store configuration, and operational configuration.

The following topics describe the logical entity configuration information for an Identity Directory Service:

	Properties of a Logical Entity Configuration


	Attributes of a Logical Entity Configuration


	Properties of a Logical Entity Definition


	Properties of a Logical Entity Relationship






2.2.1.1 Properties of a Logical Entity Configuration

You must keep in mind the properties of a logical entity configuration.




	Name	Description
	name

	Name that uniquely identifies the Identity Directory Service.


	description

	Detailed description of the Identity Directory Service.


	ovd.context

	Valid values are default or ids. Use default for connecting to the same identity store configured in OPSS. Use ids to connect to any physical identity store configured independent of OPSS. Only out-of-the-box identity directories, that is userrole and idxuserrole, use default value.


	app.name

	Optional property to specify the specific application for which the Identity Directory Service is being configured.














2.2.1.2 Attributes of a Logical Entity Configuration

The following table describes the logical entity attributes:







	Name	Description
	name

	Logical attribute name.


	dataType

	Valid data type values are as follows: string, boolean, integer, double, datetime, binary, x500name, and rfc822name.


	description

	Detailed description of the logical attribute.


	readOnly

	Default is false. Use true if the attribute is read-only. 


	pwdAttr

	Default is false. Use true if the attribute is a password attribute.










Note:
Beginning with the 12c (12.1.3) release, the Identity Directory API supports entity attribute pass-through. With pass-through support, you do not need to include each and every attribute in attribute definitions (described in table in Attributes of a Logical Entity Configuration) and in attribute references under the entity definition (described in table in Properties of a Logical Entity Definition).

The IDS API allows any attribute in an add, modify, requested attributes, or search filter operation. The entity definition can hold a minimal set of attributes either to define entity relationships using logical attribute names that are different from the back-end identity store or for the default fetch of attributes.

If an input attribute is not in the identity store schema, the IDS API returns the error thrown by the identity store.










2.2.1.3 Properties of a Logical Entity Definition

You must keep in mind the properties required in each logical entity definition.




	Name	Description
	name

	Name of the entity.


	type

	Valid entity values are as follows: user, group, org and other.


	idAttr

	Logical attribute that uniquely identifies the entity.


	create

	Use true if creating this entity is allowed. Use false otherwise.


	modify

	Use true if modifying this entity is allowed. Use false otherwise.


	delete

	Use true if deleting this entity is allowed. Use false otherwise.


	search

	Use true if search of this entity to be allowed. Use false otherwise.


	Attribute References

	List of entity attribute references that contain the following details:

	name: Logical attribute name.


	defaultFetch: Default value is true. Use true if the attribute will be fetched by default. For example, when the entity is read using Identity Directory API, this attribute value is fetched from the identity store even though this attribute is not included in the requested attributes.


	filter: Search filter type with one of the following valid values: none, dynamic, equals, notequals, beginswith, contains, doesnotcontain, endswith, greaterequal, lessequal, greaterthan, and lessthan. Value none means no filter support.

















2.2.1.4 Properties of a Logical Entity Relationship

You must keep in mind the properties required in each logical entity relationship definition.




	Name	Description
	name

	Name of the entity relationship.


	type

	Valid entity values are as follows: OneToOne, OneToMany, ManyToOne, and ManyToMany.


	fromEntity

	Name of the first entity in the Entity Relationship.


	fromAttr

	The first entity's attribute. Value of this attribute relates to the second entity in the relationship.


	toEntity

	Name of the second entity in the Entity Relationship.


	toAttr

	The second entity's attribute. Value of the fromAttr property maps to this attribute in second entity.


	recursive

	Use true if the entity relationship is recursive. Default is false.
















2.2.2 Physical Identity Store Configuration for an Identity Directory Service

You must keep in mind the physical identity store configuration for an Identity Directory Service.

The following table describes the physical identity store configuration properties:







	Name	Description
	Host and Port

	Host and Port information of the Identity Store. Alternate Host and Port details also can be setup for failover.


	Directory Type

	Type of directory. Valid values are: OID, ACTIVE_DIRECTORY, IPLANET, EDIRECTORY, OPEN_LDAP, WLS_OVD, and OUD.


	Bind DN and Password

	Credentials to connect to the directory.














2.2.3 Operational Configuration for an Identity Directory Service

You must explore the operational configuration for an Identity Directory Service.

The operational configuration contains mainly base, name attribute, and objectclass configuration for each of the entities. 

The following table describes the operational configuration entities:







	Name	Description
	entity.searchbase

	Container under which the entity should be searched.


	entity.createbase

	Container where the new entity will be created.


	entity.name.attr

	RDN attribute of the entity.


	entity.filter.objclasses

	The objectclass filters to be used while searching this entity.


	entity.create.objclasses

	The objectclasses to be added while creating this new entity.
















2.3 Design Recommendations for Identity Directory API

You must keep in mind the recommendations while designing a new Identity Directory API.

The following topics describe the recommendations:

	Minimizing Use of defaultFetch Attributes


	Initializing the Identity Directory Once






2.3.1 Minimizing Use of defaultFetch Attributes

You must keep the number of entity attributes to minimal while configuring a new Identity Directory.

The entity attribute is defined by defaultFetch value. Also, try to have large attributes like jpegphoto configured with a defaultFetch value of false. The reason is every time the entity is read from the backend, all the defaultFetch attributes from backend directory will be retrieved. Too many defaultFetch attributes will affect the performance.








2.3.2 Initializing the Identity Directory Once

You must initialize the Identity Directory once.

Initialization of Identity Directory has some overhead to initialize the entire ArisId stack. As a result, applications should initialize the Identity Directory once, preferably on application startup, and use only one handle throughout.










2.4 Examples of Using the Identity Directory API

Use the sample codes for performing various operations associated with the Identity Directory API.

The following topics describe operations associated with the Identity Directory API:

	Initializing and Obtaining Identity Directory Handle


	Initializing and Obtaining Identity Directory Handle from JPS Context


	Initializing and Obtaining In-Memory Identity Directory Handle


	Adding a User


	Obtaining a User for Given Principal


	Modifying a User


	Obtaining a User for Given ID Value


	Searching Users Using Complex Search Filter


	Changing User Password


	Resetting User Password


	Authenticating a User


	Deleting a User


	Creating a Group


	Searching Groups


	Obtaining Management Chain


	Obtaining Reportees of a User


	Adding a Member to a Group


	Deleting a Member From a Group


	Obtaining All The Groups For Which User is a Member


	Using Logical NOT Operator in a Search Filter






2.4.1 Initializing and Obtaining Identity Directory Handle

Use the code sample to initialize and obtain a handle to the identity directory.



import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;
import oracle.igf.ids.config.OperationalConfig;
import oracle.igf.ids.IdentityDirectoryFactory;
import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;


public class IdsSample {

    private IdentityDirectory ids;
    private UserManager uMgr;
    private GroupManager gMgr;

    public IdsSample() throws IDSException {
        // Set Operational Config
        OperationalConfig opConfig = new OperationalConfig();

        // Set the application credentials (optional).  This
 overrides the credentials set in
        // physical ID store configuration 
opConfig.setApplicationUser("cn=user1,dc=us,dc=example,dc=com");
opConfig.setApplicationPassword("password".toCharArray());

        // Set search/crate base, name, objclass, etc. config
 (optional).  This overrides default operational configuration
 in IDS
        opConfig.setEntityProperty("User", opConfig.SEARCH_BASE,
 "dc=us,dc=example,dc=com");
        opConfig.setEntityProperty("User", opConfig.CREATE_BASE,
 "dc=us,dc=example,dc=com");
        opConfig.setEntityProperty("User", opConfig.FILTER
_OBJCLASSES, "person");
        opConfig.setEntityProperty("User", opConfig.CREATE
_OBJCLASSES, "inetorgperson");
        opConfig.setEntityProperty("Group", opConfig.SEARCH
_BASE, "cn=groups,dc=us,dc=example,dc=com");
        opConfig.setEntityProperty("Group", opConfig.CREATE
_BASE, "cn=groups,dc=us,dc=example,dc=com");
        opConfig.setEntityProperty("Group", opConfig.FILTER
_OBJCLASSES, "groupofuniquenames");
        opConfig.setEntityProperty("Group", opConfig.CREATE
_OBJCLASSES, "groupofuniquenames");

        // Get IdentityDirectory "ids1" configured in IDS config
        IdentityDirectoryFactory factory = new
 IdentityDirectoryFactory();
        ids = factory.getIdentityDirectory("ids1", opConfig);

        // Get UserManager and GroupManager handles
        uMgr = ids.getUserManager();
        gMgr = ids.getGroupManager();
    }
}

Note:
If you plan to use Tivoli as the authentication provider, then you need to select OPEN_LDAP as the authentication provider type. This is because Oracle WebLogic Server does not support Tivoli. 

When Identity Governance Framework or Identity Directory Service is initialized to obtain the directory handle for Tivoli, then the generated adapters.os_xml file contains the following parameter:

<param name="mapAttribute" value="orclGUID=entryUUID"/>


In this scenario, for Tivoli, you need to map orclGUID attribute to ibm-entryUUID as follows:

<param name="mapAttribute" value="orclGUID=ibm-entryUUID"/>


You need to update the adapters.os_xml file manually to reflect these changes. In addition, you must restart the Oracle WebLogic Server for any attribute mapping update to work.










2.4.2 Initializing and Obtaining Identity Directory Handle from JPS Context

Use the code sample to initialize and obtain the identity directory handle from JPS context.

import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;
import oracle.igf.ids.config.OperationalConfig;
import oracle.igf.ids.IdentityDirectoryFactory;
import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;

import oracle.security.jps.JpsContext;
import oracle.security.jps.JpsContextFactory;
import oracle.security.jps.service.idstore.IdentityStoreService;

public class IdsSample {

    private IdentityDirectory ids;
    private UserManager uMgr;
    private GroupManager gMgr;

    public IdsSample() throws IDSException {

        // Get IdentityDirectory from JpsContext
        try {
            JpsContext context =
JpsContextFactory.getContextFactory().getContext();
            IdentityStoreService idstore = (IdentityStoreService)
context.getServiceInstance(IdentityStoreService.class);
            ids = idstore.getIdentityStore();
        } catch (Exception e) {
            throw new IDSException(e);
        }        

 // Get UserManager and GroupManager handles
        uMgr = ids.getUserManager();
        gMgr = ids.getGroupManager();
    }
}









2.4.3 Initializing and Obtaining In-Memory Identity Directory Handle

Use the code sample to initialize and obtain the in-memory identity directory handle.

import java.util.ArrayList;
import java.util.List;

import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;
import oracle.igf.ids.config.AttributeDef;
import oracle.igf.ids.config.AttributeRef;
import oracle.igf.ids.config.EntityDef;
import oracle.igf.ids.config.EntitiesConfig;
import oracle.igf.ids.config.EntityRelationship;
import oracle.igf.ids.config.IdentityStoreConfig;
import oracle.igf.ids.config.OperationalConfig;
import oracle.igf.ids.IdentityDirectoryFactory;
import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;

public class IdsSample {

    private IdentityDirectory ids;
    private UserManager uMgr;
    private GroupManager gMgr;
    public IdsSample() throws IDSException {

        // Add Attribute definitions
        List<AttributeDef> attrDefs = new ArrayList<AttributeDef>();
        attrDefs.add(new AttributeDef("cn", AttributeDef.DataType.STRING));
        attrDefs.add(new AttributeDef("firstname", AttributeDef.DataType.STRING));
        attrDefs.add(new AttributeDef("sn", AttributeDef.DataType.STRING));
        attrDefs.add(new AttributeDef("telephonenumber",
 AttributeDef.DataType.STRING));
        attrDefs.add(new AttributeDef("uid", AttributeDef.DataType.STRING));
        attrDefs.add(new AttributeDef("uniquemember",
 AttributeDef.DataType.STRING));

        // Add User entity definition
        List<EntityDef> entityDefs = new ArrayList<EntityDef>();
        EntityDef userEntityDef = new EntityDef("User", EntityDef.EntityType.USER,
 "cn");
        userEntityDef.addAttribute(new AttributeRef("cn"));
        userEntityDef.addAttribute(new AttributeRef("firstname"));
        userEntityDef.addAttribute(new AttributeRef("sn"));
        userEntityDef.addAttribute(new AttributeRef("telephonenumber"));
        userEntityDef.addAttribute(new AttributeRef("uid"));
        entityDefs.add(userEntityDef);

        // Add Group entity definition
        EntityDef groupEntityDef = new EntityDef("Group",
 EntityDef.EntityType.GROUP, "cn");
        groupEntityDef.addAttribute(new AttributeRef("cn"));
        groupEntityDef.addAttribute(new AttributeRef("uniquemember", false,
 AttributeRef.FilterType.EQUALS));
        entityDefs.add(groupEntityDef);

        // Add Entity relationship definition
        List<EntityRelationship> entityRelations = new
 ArrayList<EntityRelationship>();
        entityRelations.add(new EntityRelationship("user_memberOfGroup",
                EntityRelationship.RelationshipType.MANYTOMANY, "User",
 "principal", "Group", "uniquemember"));
        entityRelations.add(new EntityRelationship("group_memberOfGroup",
                EntityRelationship.RelationshipType.MANYTOMANY, "Group",
 "principal", "Group", "uniquemember", true));
        EntitiesConfig entityCfg = new EntitiesConfig(attrDefs,
 entityDefs, entityRelations);


        // Create physical Identity Store configuration
        IdentityStoreConfig idStoreCfg = new IdentityStoreConfig(
            "ldap://host1:389,ldap://host2:389", "cn=orcladmin",
 "password".toCharArray(), IdentityStoreConfig.IdentityStoreType.OID);
       
 idStoreCfg.setHighAvailabilityOption(IdentityStoreConfig.HAOption.FAILOVER);
        idStoreCfg.setProperty(IdentityStoreConfig.HEARTBEAT_INTERVAL, "60");
        idStoreCfg.setProperty(IdentityStoreConfig.CONN_TIMEOUT, "30000");    //
 milli sec
        idStoreCfg.setProperty(IdentityStoreConfig.MIN_POOLSIZE, "5");
        idStoreCfg.setProperty(IdentityStoreConfig.MAX_POOLSIZE, "10");
        idStoreCfg.setProperty(IdentityStoreConfig.MAX_POOLWAIT, "1000");     //
 milli sec
        idStoreCfg.setProperty(IdentityStoreConfig.MAX_POOLCHECKS, "10");
        idStoreCfg.setProperty(IdentityStoreConfig.FOLLOW_REFERRAL, "false");
        idStoreCfg.setAttrMapping("firstname", "givenname");

        // Set operational config
        OperationalConfig opConfig = new OperationalConfig();
        opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.SEARCH_BASE,
 "cn=users,dc=us,dc=example,dc=com");
        opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.CREATE_BASE,
 "cn=users,dc=us,dc=example,dc=com");
        opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.NAME_ATTR,
 "cn");
        opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.FILTER
_OBJCLASSES, "inetorgperson");
        opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.CREATE
_OBJCLASSES, "inetorgperson");
        opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.SEARCH_BASE,
 "cn=groups,dc=us,dc=example,dc=com");
        opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.CREATE_BASE,
 "cn=groups,dc=us,dc=example,dc=com");
        opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.NAME_ATTR,
 "cn");
        opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.FILTER
_OBJCLASSES, "groupofuniquenames");
        opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.CREATE
_OBJCLASSES, "groupofuniquenames");

        // Initialize Identity Store Service
        IdentityDirectoryFactory factory = new IdentityDirectoryFactory();
        ids = factory.getIdentityDirectory("ids1", entityCfg, idStoreCfg,
 opConfig);

        // Get UserManager and GroupManager handles
        uMgr = ids.getUserManager();
        gMgr = ids.getGroupManager();
    }

}









2.4.4 Adding a User

You can add a user to the identity store.

The following code sample adds a user to the identity store:

Principal principal = null;
        
        List<Attribute> attrs = new ArrayList<Attribute>();
        attrs.add(new Attribute("commonname", "test1_user1"));
        attrs.add(new Attribute("password", "mypassword".toCharArray()));
        attrs.add(new Attribute("firstname", "test1"));
        attrs.add(new Attribute("lastname", "user1"));
        attrs.add(new Attribute("mail", "test1.user1@example.com"));
        attrs.add(new Attribute("telephone", "1 650 123 0001"));
        attrs.add(new Attribute("title", "Senior Director"));
        attrs.add(new Attribute("uid", "tuser1"));

        try {
            CreateOptions createOpts = new CreateOptions();

            principal = uMgr.createUser(attrs, createOpts);



            System.out.println("Created user " + principal.getName());

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.5 Obtaining a User for Given Principal

Use the sample code to obtain a user for a given principal.

User user = null;

        try {
            ReadOptions readOpts = new ReadOptions();

            user = uMgr.getUser(principal, readOpts);
            
        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.6 Modifying a User

Use the code sample to modify a user in the identity directory.

try {
            ModifyOptions modifyOpts = new ModifyOptions();

            List<ModAttribute> attrs = new ArrayList<ModAttribute>();
            attrs.add(new ModAttribute("description", "modified test user 1"));

            user.modify(attrs, modifyOpts);
            

            System.out.println("Modified user " + user.getName());
        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.7 Obtaining a User for Given ID Value

Use the sample code to obtain a user matching the given identity value.

try {
            ReadOptions readOpts = new ReadOptions();

            User user = uMgr.searchUser("tuser1", readOpts);
            
        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.8 Searching Users Using Complex Search Filter

Use the code sample to search users using a complex search filter.

try {
            // Complex search filter with nested AND and OR conditiions
            SearchFilter filter = new SearchFilter(
                SearchFilter.LogicalOp.OR,
                new SearchFilter(SearchFilter.LogicalOp.AND,
                  new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH,
 "test"),
                  new SearchFilter("telephone", SearchFilter.Operator.CONTAINS,
 "650")),
                new SearchFilter(SearchFilter.LogicalOp.AND,
                  new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH,
 "demo"),
                  new SearchFilter(SearchFilter.LogicalOp.OR,
                    new SearchFilter("orgunit", SearchFilter.Operator.BEGINS_WITH,
 "hr"),
                    new SearchFilter("orgunit", SearchFilter.Operator.BEGINS_WITH,
 "it"),
           
                  new SearchFilter("telephone", SearchFilter.Operator.CONTAINS,
 "650")));

            // Requesting attributes
            List<String> reqAttrs = new ArrayList<String>();
            reqAttrs.add("jpegphoto");

            SearchOptions searchOpts = new SearchOptions();
            searchOpts.setPageSize(100);
            searchOpts.setRequestedAttrs(reqAttrs);
            searchOpts.setSortAttrs(new String[] {"firstname"});

            ResultSet<User> sr = uMgr.searchUsers(filter, searchOpts);
            while (sr.hasMore()) {
                User user = sr.getNext();
                System.out.println(user.getSubjectName());
            }

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }
    









2.4.9 Changing User Password

The following code sample shows how to change a user password:

ModifyOptions modOpts = new ModifyOptions();

        try {
            user.changePassword("welcome123".toCharArray(),
 "welcome1".toCharArray(), modOpts);
            System.out.println("Changed user password");
        } catch (Exception e) {
            System.out.println("Failed to change user password");
            e.printStackTrace();
        }









2.4.10 Resetting User Password

Use the sample code to  reset a user password.

ModifyOptions modOpts = new ModifyOptions();

        try {
            user.resetPassword("welcome123".toCharArray(), modOpts);
            System.out.println("Reset user password");
        } catch (Exception e) {
            System.out.println("Failed to reset user password");
            e.printStackTrace();
        }









2.4.11 Authenticating a User

You can authenticate a user using APIs.

The following code sample shows how to authenticate a user:

        ReadOptions readOpts = new ReadOptions();
        try {
            User user = uMgr.authenticateUser("tuser1",
 "mypassword".toCharArray(), readOpts);   
            System.out.println("authentication success");
        } catch (Exception e) {
            System.out.println("Authentication failed. " + e.getMessage());
            e.printStackTrace();
        }









2.4.12 Deleting a User

Use the code sample to delete a user.

try {
            DeleteOptions deleteOpts = new DeleteOptions();

            uMgr.deleteUser(principal, deleteOpts);
            
            System.out.println("Deleted user " + principal.getName());

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.13 Creating a Group

Use the sample code to create a group.

Principal principal = null;
        
        List<Attribute> attrs = new ArrayList<Attribute>();
        attrs.add(new Attribute("name", "test1_group1"));
        attrs.add(new Attribute("description", "created test group 1"));
        attrs.add(new Attribute("displayname", "test1 group1"));
        try {
            CreateOptions createOpts = new CreateOptions();

            principal = gMgr.createGroup(attrs, createOpts);

            System.out.println("Created group " + principal.getName());
        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.14 Searching Groups

Use the code sample to search groups.

public void searchGroups() {

        try {
            SearchFilter filter = new SearchFilter("name",
                                SearchFilter.Operator.BEGINS_WITH, "test");

            SearchOptions searchOpts = new SearchOptions();
            searchOpts.setPageSize(10);

            ResultSet<Group> sr = gMgr.searchGroups(filter, searchOpts);
            while (sr.hasMore()) {
                Group group = sr.getNext();
                System.out.println(group.getSubjectName());
            }

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.15 Obtaining Management Chain

Use the code sample to show how to get a management chain.

try {
            ReadOptions readOpts = new ReadOptions();
            User user = uMgr.searchUser("tuser1", readOpts);

            SearchOptions searchOpts = new SearchOptions();
            searchOpts.setPageSize(10);
            int nLevels = 0;

            ResultSet<User> sr  = user.getManagementChain(nLevels, searchOpts);
            while (sr.hasMore()) {
                User u = sr.getNext();
                System.out.println(u.getSubjectName());
            }

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.16 Obtaining Reportees of a User

Use the code sample to show how to get the reportees of user.

// Get Reportees with target search filter
    public void getReportees() {

        try {
            ReadOptions readOpts = new ReadOptions();
            User user = uMgr.searchUser("tuser1", readOpts);

            SearchOptions searchOpts = new SearchOptions();
            searchOpts.setPageSize(20);
            int nLevels = 0;

            // get all the direct/indirect reporting of tuser1 who are
 "developers"
            SearchFilter filter = new SearchFilter("title",
 SearchFilter.Operator.CONTAINS, "developer");
            ResultSet<User> sr  = user.getReportees(nLevels, filter, searchOpts);
            while (sr.hasMore()) {
                User u = sr.getNext();
                System.out.println(u.getSubjectName());
            }

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.17 Adding a Member to a Group

You can add a member to a group.

The following code sample adds a member to a group:

try {
            ReadOptions readOpts = new ReadOptions();
            User user = uMgr.searchUser("tuser1", readOpts);
            Group group = gMgr.searchGroup("test1_group1", readOpts);

            ModifyOptions modOpts = new ModifyOptions();
            user.addMemberOf(group, modOpts);

            System.out.println("added tuser1 as a member of test1_group1");

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.18 Deleting a Member From a Group

Use the code sample to delete a member from a group.

try {
            ReadOptions readOpts = new ReadOptions();
            User user = uMgr.searchUser("tuser1", readOpts);
            Group group = gMgr.searchGroup("test1_group1", readOpts);

            ModifyOptions modOpts = new ModifyOptions();
            group.deleteMember(user, modOpts);

            System.out.println("deleted tuser1 from the group test1_group1");

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }


Note:
Identity Governance Framework/Identity Directory Service group membership search evaluates both static and dynamic groups. However, membership updates (addition/deletion) are not supported for dynamic groups. For instance, if you wish to delete a member from a group and the member is a dynamic member of that group, then the delete operation is not supported for the dynamic group. 










2.4.19 Obtaining All The Groups For Which User is a Member

Use the code sample to get all the groups in which user is a member.

try {
            ReadOptions readOpts = new ReadOptions();
            User user = uMgr.searchUser("tuser1", readOpts);

            SearchOptions searchOpts = new SearchOptions();
            searchOpts.setPageSize(10);
            int nLevels = 0;

            ResultSet<Group> sr  = user.getMemberOfGroups(nLevels, null,
 searchOpts);
            while (sr.hasMore()) {
                Group group = sr.getNext();
                System.out.println(group.getSubjectName());
            }

        } catch (Exception e) {
            System.out.println(e.getMessage());
            e.printStackTrace();
        }









2.4.20 Using Logical NOT Operator in a Search Filter

Use the code sample that describes how to use the NOT operator in a search filter.

try {
     SearchFilter f1 = new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH, "demo");
     SearchFilter f2 = new SearchFilter("orgunit", SearchFilter.Operator.CONTAINS, "myorg");
     f2.negate();
     SearchFilter filter = new SearchFilter(SearchFilter.LogicalOp.AND, f1, f2);

     ResultSet<User> sr = uMgr.searchUsers(filter, searchOpts);
    }












3  Using the ArisID API 

The ArisID API provides enterprise developers and system architects a library for building identity-enabled applications using multiple identity protocols. The ArisID API enables developers to specify requirements for identity attributes, roles, and search filters by using Client Attribute Requirements Markup Language (CARML).


The following topics describe the architecture and key functionality of the Identity Governance Framework ArisID API:

	About the ArisID API


	Configuring the ArisID API


	Design Recommendations for the ArisID API


	Generating ArisID Beans


	Examples of Using IDX User and Role Beans


	Understanding OpenLDAP Considerations






3.1 About the ArisID API

The Identity Governance Framework ArisID API represents a common core service through which all identity information exchanged should be passed. While not an official name, the ArisID API is often referred to as Identity Beans by developers. 

The 12c (12.2.2.0) release of the ArisID API is a subset of the configuration proposed at:

 http://www.openliberty.org/wiki/index.php/ArisID_Configuration. 

If you have installed Oracle WebLogic Server and Oracle Identity Management, all the necessary jar files for developing applications with this API are already installed on your computer. 

The Identity Governance Framework open source API jar files are as follows:

	openliberty.arisId_1.1.jar — Provides the core ArisID API with library functions and providers that can be used to retrieve identity subjects that contain collections of attributes. For more information, see http://arisid.sourceforge.net/javadocs/arisId_1.1_javadoc/. 


	org.openliberty.arisIdBeans_1.1.jar — Provides the ArisID beans, which provide Java object abstractions on top of the ArisID API. These convert the transactional approach of the ArisID API to an object or bean approach. For more information, see http://arisid.sourceforge.net/javadocs/arisId_1.1_javadoc/.




The ArisID API jar files are as follows:

	idxuserrole.jar — Provides the Standard User and Role identity read-only operations. This jar is generated from the standard idxuserrole.xml CARML file. For more information, see Java API Reference for Identity Governance Framework IDXUserRole.


	userrole.jar — Provides the User and Role identity read/write operations for updating identity information. For more information, see Java API Reference for Identity Governance Framework UserRole.


	arisId-stack-ovd.jar — This jar file is an implementation of the IAttrSvcStack interface with the Oracle Virtualization library to connect to different backends and provide an abstract view of the identity store entities.




The ArisID beans provide the Java APIs required for initialization and accessing CARML interactions. The bean generator generates a set of java files for each entity in the CARML file using Apache Velociy. The CARML file is a declarative document that describes the attribute usage requirements of your application. The ArisID beans are in the jar files idxuserrole.jar and userrole.jar.

The following figure provides a high-level view of the ArisID API architecture.

Figure 3-1 IGF ArisID API Architecture
[image: Description of Figure 3-1 follows]







3.2 Configuring the ArisID API

The ArisID API provides several configuration options for easier and flexible deployment.

The Identity Governance Framework ArisID supports the basic development process Create > Modify > Test > Deploy. Creation requires CARML XML files and modifying them to suit your environment. Testing the application can be done in Oracle WebLogic Server embedded LDAP directory server.

This section contains the following topics:

	Examining CARML Files


	Configuring the Identity Repository


	Configuring the Mapping File






3.2.1 Examining CARML Files

You use the CARML file to declare the application requirements in terms of attributes and interactions.

To determine whether the existing ArisID beans meet your application's needs, you need to examine the CARML files idxuserrole.xml (read-only operations) and userrole.xml (read-only and read/write operations). These files are located in DOMAIN_HOME/config/fmwconfig/carml.








3.2.2 Configuring the Identity Repository

The identity repository to be used by the ArisID beans must be available. You can use the Oracle WebLogic Server embedded LDAP-based directory server or any LDAP directory supported by 11g Oracle Virtual Directory. The ArisID API is integrated with Oracle Platform Security Services. It automatically connects to the LDAP-based identity store configured in Oracle Platform Security Services. For more information about the identity stores supported by Oracle Platform Security Services, see System Requirements and Certification for Identity Governance Framework.

For more information about Oracle Platform Security Services, see Oracle® Fusion Middleware Securing Applications with Oracle Platform Security Services.

If you must use a different identity store from the Oracle Platform Security Services identity store, then set the following system property:

igf.ovd.config.dir=DOMAIN_HOME/config/fmwconfig/arisidprovider/conf 


Next, edit the adapters.os_xml file to include the host, port and credentials of the directory to be connected to. The igf.ovd.config.dir property can be set to any other directory containing adapaters.os_xml and other configuration files with the right settings.

Directory Limitations

The following LDAP directory limitations apply:




	When using OpenLDAP 2.2 or Novell eDirectory, there is no paging support. Paging APIs, for example, searchUsersbyPage(), searchRolesbyPage(), etc., do not work. There is no Multiple Language Support (MLS).


	When using Oracle WebLogic Server embedded LDAP-based directory server, there is no Multiple Language Support (MLS).











3.2.3 Configuring the Mapping File

When a CARML file is created a corresponding mapping file is created in the same location. The default mapping file has attribute details specific to Oracle WebLogic Server embedded directory server, which is the Oracle Platform Security Services default identity store. If you are using a default CARML file and the Oracle Platform Security Services identity store, you do not need to configure mapping. The configuration parameters in Oracle Platform Security Services override the parameters in the mapping file.










3.3 Design Recommendations for the ArisID API

The default CARML and mapping files make certain assumptions about the deployment scenario. You may need to modify these details depending on your deployment requirements.

The following topics describe the configuration parameters that can be modified:

	About Unique Identifier Configuration


	About Unique Key Attribute Specification


	About Multiple Language Support


	Handling Large Results


	Securing the Application


	Configuring the Timeout Interval


	Specifying Wildcard Characters in Search Filters






3.3.1 About Unique Identifier Configuration

In the default configuration, email is used as a unique identifier for identifying user entries. 

When you are searching for a user, the default attribute expected for search is email. For example:

SearchUser( String uniqueid,  Map<String, Object>)


For performance reasons, the attribute used as a unique identifier must be a searchable attribute in the backend. The mapping between the application's choice of uniquekey and the backend attribute is handled at configuration time. This is a configuration in Oracle Virtual Directory mapping. The HashMap is used to provide the optional context information to be used while performing the operation. In the current release it supports the following options: 

	The Principal user that performs the search - (ArisIdConstants.APP_CTX_AUTHUSER, (Principal)user)


	The language constraint if any - (ArisIdConstants.APP_CTX_LOCALE, "fr") 


	Pagination support if any - (ArisIdConstants.APP_CTX_PAGESIZE, 10) 








3.3.2 About Unique Key Attribute Specification

Attribute uniqueness is enforced by defining constraints on attributes.

An application occasionally stores the entries accessed from the identity repository's backend in their own application-specific repository. In such cases, you must carefully consider which attribute should be persisted. For instance, if the backend is an LDAP-based repository, you should use the GUID attribute as the persisting attribute because this is the only unique key on the LDAP-based backend. All other LDAP attributes are modifiable. 

If the backend is a relational database, choose an attribute on which uniqueness constraint is enforced as the unique key. You can specify this in the ArisID mapping property file. The method to search for a user based on the unique key is:

searchUserOnUniqueKey(String UniqueKey, Map<String,Object>)


The HashMap is used to provide the optional context information to be used while performing the operation. In the current release it supports the following options: 

	The Principal user that performs the search - (ArisIdConstants.APP_CTX_AUTHUSER, (Principal)user)


	The language constraint if any - (ArisIdConstants.APP_CTX_LOCALE, "fr") 


	Pagination support if any - (ArisIdConstants.APP_CTX_PAGESIZE, "10")








3.3.3 About Multiple Language Support

Multiple Language Support (MLS) is provided for applications that need locale-specific results. 

The attributes and the appropriate MLS code are stored in the ArisID properties file in the multiLanguageAttributes element.

<multiLanguageAttributes>…</multiLanguageAttribute>


Because displayname is the most commonly used multiple language attribute, it is configured by default as a multi-language attribute. Other attributes can be added as needed in the ArisID mapping file. 

Restrictions

Any API to which locale is specified as an argument will return the locale-specific values for all the attributes listed in the ArisID properties file as <multiLanguageAttributes> that have locale-specific values. For all other attributes it returns the default values stored.

In the backend system, the data is returned in a form conforming to ISO-3166. For example, if there is a French locale (in addition to English), it is stored as cn,:fr for the cn attribute. The locale for the client applications should be specified in the properties HashMap as ArisIdConstants.APP_CTX_LOCALE, "fr" and the ArisID properties file should contain cn as multiLanguageAttribute and map this attribute.





3.3.4 Handling Large Results

There are situations when you retrieve large result sets. This could cause a performance and resource problem. Use the sample code to manage large result sets.

When applications access identity data, the result set for a search is frequently too large to be handled by the application. In such cases you have the option of dividing the result into manageable sized pages. You do this by defining the number of objects to be returned in the page. 

The following example shows a typical usage pattern:

RoleManager rm = new RoleManager(env); 
  List<PropertyFilterValue> attrFilters = new  ArrayList<PropertyFilterValue>(); 
  attrFilters.add(new PropertyFilterValue(Role.NAME, "admin", AttributeFilter.OP_CONTAINS)); 

  HashMap<String,Object> map = new HashMap<String,Object>(); 
  map.put("ArisIdConstants.APP_CTX_PAGESIZE","2"); 
  SearchResults<Role> sr = rm.searchRolesbyPage(attrFilters, map); 

  while(sr.hasMore()) 
  { 
     List<Role> roles = sr.getNextSet(); 

     for (int i=0; i<roles.size(); i++) 
       //do the operations with roles.get(i)
}








3.3.5 Securing the Application

Two security scenarios are available for executing create, read, update, and delete (CRUD) operations on the target system.

They are as follows:

	Applying Domain Level Credentials


	Applying Application Level Credentials




Proxy authentication is not supported in this release.



3.3.5.1 Applying Domain Level Credentials

In this scenario, all applications in a domain use common credentials to connect to the target system and perform operations with those credentials. The application does not maintain a footprint in the target system.

The LDAP Adapter's configuration file, adapters.os_xml, contains credentials to connect to the backend directory, along with the host and port details. If you do not provide any other credentials during initialization, the application connects to the target system using the credentials in the LDAP Adapter's configuration file. 

If proxy user (logged in user id) is not specified in the API's application context, ArisID operation will be executed with the credentials that are in LDAP Adapter's configuration file.

If your application connects using common credentials, you must build security into the application itself so that it displays or modifies data only for an authorized user. 

Consider the following example where the LDAP adapter's configuration file adapters.os_xml is configured with domain level userid and encrypted password to connect to backend directory. The following is a snippet of adapters.os_xml.

    <binddn>cn=admin</binddn>
    <bindpass>{OMASK}C2QXW1Nmf+s=</bindpass>


While initializing the ArisID API do not provide any credentials.

Map env = new HashMap();
// Do not set UserManager.SECURITY_PRINCIPAL & SECURITY_CREDENTIALS
UserManager uMgr  = new UserManager(env);
…
…
// Search Operation (with no proxy user in app context)
List<PropertyFilterValue> attrFilters = new ArrayList<PropertyFilterValue>();
attrFilters.add(new PropertyFilterValue("User.FIRSTNAME", "app1", AttributeFilter.OP_CONTAINS));
attrFilters.add(new PropertyFilterValue("User.LASTNAME", "user1", AttributeFilter.OP_BGNSWITH));
Map<String, Object> appCtx = null;
users = um.searchUsers(attrFilters, appCtx);









3.3.5.2 Applying Application Level Credentials

In this scenario, each application uses application level credentials to connect to the target system and performs CRUD operations with those credentials.

In this case you provide the application's user id and password while initializing the ArisID API. When you do that, the application connects to the target system using those credentials. 

If no proxy user is specified in the API's application context then ArisID operation will be executed with the application's credentials.

This scenario has the following features:




	Each application has different privileges to view and update the data in the target system


	You can audit the modifications performed by each application in the target system




Consider the scenario where the LDAP adapter's configuration file adapters.os_xml is configured with domain level userid and encrypted password to connect to backend directory. The following is a snippet of adapters.os_xml.

<binddn>cn=admin</binddn>
    <bindpass>{OMASK}C2QXW1Nmf+s=</bindpass>


While initializing the ArisID API, provide the application user credentials.

Map env = new HashMap();
env.put(UserManager.SECURITY_PRINCIPAL, "cn=app1_user,cn=users,dc=example,dc=com");
env.put(UserManager.SECURITY_CREDENTIALS, "mypassword");
UserManager uMgr  = new UserManager(env);
…
// Search Operation (with no proxy user in app context)
List<PropertyFilterValue> attrFilters = new ArrayList<PropertyFilterValue>();
attrFilters.add(new PropertyFilterValue("User.FIRSTNAME", "app1", AttributeFilter.OP_CONTAINS));
attrFilters.add(new PropertyFilterValue("User.LASTNAME", "user1", AttributeFilter.OP_BGNSWITH));Map<String, Object> appCtx = null;
users = um.searchUsers(attrFilters, appCtx);











3.3.6 Configuring the Timeout Interval

You can configure the timeout intervals for LDAP operations. These intervals specify the amount of time after which the LDAP operation times out.

The default connect/read timout is configured to be 15 seconds. For example, if the LDAP operation on IdentityStore is taking more than 15 seconds, the operation will timeout and throw the following IGF exception:

org.openliberty.arisid.stack.ConnectionException


If the IdentityStore has a many entries and the applications are using filters with "contains" and search with paging/sorting, those queries may timeout.

The recommendation is to set the timeout value to 0 (no timeout) and increase the pool size to 20. If the application has a timeout interval, set the value to greater than 0.

To configure the timeout interval:

	Run the following WLST command to list all adapters.

listAdapters() 



	Run the following command for each adapter to set timeout and maxpoolsize.

	modifyLDAPAdapter('<ADAPTER NAME>', 'OperationTimeout', 0)


	modifyLDAPAdapter('<ADAPTER NAME>', 'MaxPoolSize', 20)





	Restart WebLogic Server.











3.3.7 Specifying Wildcard Characters in Search Filters

Oracle Internet Directory supports wildcard search for DN attributes.

Directories other than Oracle directories might not support wildcard search. Therefore, if you perform a seachUsers operation through Identity Governance Framework API with say Microsoft Active Directory as the backend and using a DN in a search filter, then you must provide the AttributeFilter.OP_EQUALS operator to successfully execute the operation.










3.4 Generating ArisID Beans

The ArisID Beans provides Java APIs as a layer on top of the ArisID API. It uses a CARML declaration to generate Java beans that call the ArisID API.

To generate ArisID Beans run the following command as follows:

java BeanGenerator [-genmap] <package name> <output dir> [<relationship file>] <carml file>


where:




	-genmap: Generates the CARML-ArisIDStack map file in the same location where the CARML file is.


	package name: Is the package name for the generated bean classes.


	output dir: Location to write the generated bean classes.


	relationship file: File containing the relationship definitions between entities.


	carml file: The CARML declaration file.




To build ORG beans from a CARML file:

	Create a CARML file name org.xml with the appropriate attributes/interactions for ORG entity.


	Generate org beans (OrgManager.java and Org.java) using the Bean Generator. The build.xml file should resemble the following sample:

<path id="ArisIDBeans.classpath">
            <pathelement location="MW_HOME/oracle_common/modules/velocity-dep-1.4.jar" />
            <pathelement location="MW_HOME/oracle_common/modules/oracle.jrf_11.1.1/jrf.jar" />
    </path>
    <property name="BeanGeneratorClassPath" refid="ArisIDBeans.classpath"/>
    <target name="generatebeans" description="generate arisid beans">
        <java classname="org.openliberty.arisidbeans.BeanGenerator" dir="${generatedsource.dir}" fork="true">
            <arg value="${generatedbean.userrole.packagename}"/>
            <arg value="."/>
            <arg value="${carml.dir}/org.xml"/>
            <classpath>
                <pathelement path="${BeanGeneratorClassPath}"/>
            </classpath>
            <sysproperty key="org.openliberty.arisid.policy.wspolicy.class"
                         value="org.openliberty.arisid.policy.neethi.PolicyImpl" />
        </java>
    </target>



	Compile the generated java files Org.java and OrgManager.java.


	Edit the generated mapping file (igf-map-config-.xml) to update basesearch, objectclass, OVD attribute names with their values.


	An application can use the generated ORG APIs for the interactions defined in the CARML file (org.xml). After the application is deployed in application server:

	Copy the mapping file under DOMAIN_HOME/config/fmwconfig/arisidprovider/conf, and


	Copy the CARML file under DOMAIN_HOME/config/fmwconfig/carml














3.5 Examples of Using IDX User and Role Beans

Use the sample applications to understand how to work with  IDX User/Role Beans.

The following topics describe the use of IDX User/Role Beans:

	Searching Users Using IDX User and Role Beans: SearchUsers.jsp


	Searching Users Using IDX User and Role Beans: SearchUsers.html






3.5.1 Searching Users Using IDX User and Role Beans: SearchUsers.jsp

Use the code sample to search users using IDX User/Role Beans

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<%@page import="org.openliberty.arisid.*"%>
<%@page import="org.openliberty.arisidbeans.*"%>
<%@page import="oracle.igf.userrole.*"%>
<%@page import="java.util.*"%>
<%@page import="java.net.URI"%>
<%!public static UserManager uMgr = null;
{
        try {
                uMgr = new UserManager(null);
        } catch (Exception e) {
                e.printStackTrace();
        }
 
}
%>
<html>
<head>
<title>Search Users</title>
<%
 
 
String firstname = request.getParameter("firstname");
String lastname = request.getParameter("lastname");
String telephone = request.getParameter("telephone");
 
 
List<PropertyFilterValue> attrFilters = new ArrayList<PropertyFilterValue>();
attrFilters.add(new PropertyFilterValue("firstname", firstname, AttributeFilter.OP_BGNSWITH));
attrFilters.add(new PropertyFilterValue("lastname", lastname, AttributeFilter.OP_BGNSWITH));
attrFilters.add(new PropertyFilterValue("telephone", telephone, AttributeFilter.OP_CONTAINS));
 
List<User> subjs = uMgr.searchUsers(attrFilters);
 
%>
</head>
<body>
 
<a href="SearchUsers.html">Home</a>
<center>List of Users with FirstName starting with "<%=firstname%>", LastName
starting with "<%=lastname%>" and TelephoneNumber containing
"<%=telephone%>"</center>
 
<%
Iterator<User> sIter = subjs.iterator();
while (sIter.hasNext()) {
        User subj = sIter.next();
 
        Map<String, IAttributeValue> vals = subj.getAllAttributes();
        Iterator<IAttributeValue> iter = vals.values().iterator();
%>
<table border="0">
        <tr>
                <th>Item</th>
                <th>Value</th>
        </tr>
        <%
                while (iter.hasNext()) {
                        IAttributeValue val = iter.next();
                        String name = val.getNameIdRef();
                        String value = null;
                        if (val.size() > 0)
                                value = val.get(0);
if (value != null)
{
        %>
        <tr>
                <td><%=name%></td>
                <td><%=value%></td>
        </tr>
        <%
}
                }
        %>
</table>
<%
        }
%>
<br>
<br>
<br>
<a href="SearchUsers.html">Home</a>
</body>
</html>









3.5.2 Searching Users Using IDX User and Role Beans: SearchUsers.html

Use the code sample to search users using IDX User/Role Beans.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML>
<HEAD><TITLE>Search Users</TITLE></HEAD>
<BODY>
<FORM METHOD=POST ACTION="SearchUsers.jsp">
 
First Name Starting with <INPUT TYPE=TEXT NAME=firstname SIZE=30><BR><BR>
Last Name Starting with <INPUT TYPE=TEXT NAME=lastname SIZE=30><BR><BR>
Telephone Number containing <INPUT TYPE=TEXT NAME=telephone SIZE=15><BR><BR>
<P><INPUT TYPE=SUBMIT>
</FORM>
</BODY>
</HTML>










3.6 Understanding OpenLDAP Considerations

OpenLDAP specifies some mandatory attributes for implementing the APIs.

For OpenLDAP, Role.MEMBER is a mandatory attribute for the following APIs:

	createRole(List<PropertyValue> attrVals, Map<String,Object> appCtxMap)


	createRole(List<PropertyValue> attrVals)




If the Role.MEMBER is not included in the input attrVals list, role creation will fail.









4 Migrating to Identity Directory API

Use the topics to understand how to migrate applications from the User and Role API to the Identity Directory API.


	Overview of Migrating to Identity Directory API


	Migrating the Application to Identity Directory API


	Understanding the Comparison Between User and Role API With IDS API


	Moving From a Test to a Production Environment


	Tuning Configuration Parameters for IDS


	Allowing Pass-through Attributes in IDS






4.1 Overview of Migrating to Identity Directory API

It is significant to understand the scope when migrating from User and Role API to Identity Directory API.

If you have an application that uses the User and Role API described in Oracle® Fusion Middleware Securing Applications with Oracle Platform Security Services. You can modify it to use Identity Directory API instead.

The Identity Directory API also picks up the LDAP-based identity store confirmation from the jps-config file. As such, when migrating an application from the User and Role API to the Identity Directory API you do not need to change the configuration in the jps-config file.

Applications that initialize the User and Role API with a programmatic configuration can use a similar method to initialize the Identity Directory API. For more information, see Initializing and Obtaining In-Memory Identity Directory Handle.





4.2 Migrating the Application to Identity Directory API

You need to make code changes in when migrating an application from the User and Role API to the Identity Directory API.

The following topics describe the code changes needed while migration:

	Initializing API


	Getting UserManager and GroupManager Handle


	Searching Filter


	Performing CRUD Operations






4.2.1 Initializing API

Use the code sample to initialize an API.

The process of initializing is similar to using IdentityStoreService.GetIdmStore() for getting oracle.security.idm.IdentityStore handle.  uses IdentityStoreService.getIdentityStore() to get IdentityDirectory handle. For example: 

import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;
import oracle.security.jps.JpsContext;
import oracle.security.jps.JpsContextFactory;
import oracle.security.jps.service.idstore.IdentityStoreService;

// Get IdentityDirectory from JpsContext
JpsContext context = JpsContextFactory.getContextFactory().getContext();
IdentityStoreService idstore = (IdentityStoreService)
context.getServiceInstance(IdentityStoreService.class);
Identity Directory ids = idstore.getIdentityStore();









4.2.2 Getting UserManager and GroupManager Handle

All operations on a user instance are handled by a user manager and all operations on a group are handled by a group manager.

User related CRUD operations can be performed with oracle.igf.ids.UserManager and Role related CRUD operations can be performed with oracle.igf.ids.GroupManager. UserManager and GroupManager handles can be obtained from IdentityDirectory object. For example:

import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;

// Get UserManager and GroupManager handles
        UserManager uMgr = ids.getUserManager();
        GroupManager gMgr = ids.getGroupManager();









4.2.3 Searching Filter

Use the code sample to create a search filter.

A simple or complex search filter can be built using oracle.igf.ids.SearchFilter. For example:

import oracle.igf.ids.SearchFilter;

// Simple search filter for (firstname equals "john")

SearchFilter filter1 = new SearchFilter("firstname", 
SearchFilter.Operator.EQUALS, "john");

	// Complex search filter for 
   	((title contains "manager") and (org equals "amer")) or 
((title contains "senior manager") and (org equals "apac"))

            SearchFilter filter = new SearchFilter(
                SearchFilter.LogicalOp.OR,
                new SearchFilter(SearchFilter.LogicalOp.AND,
                  new SearchFilter("manager", SearchFilter.Operator.CONTAINS,
 "manager"),
                  new SearchFilter("org", SearchFilter.Operator.EQUALS, "amer")),
                new SearchFilter(SearchFilter.LogicalOp.AND,
                  new SearchFilter("manager", SearchFilter.Operator.CONTAINS,
 "senior manager"),
                  new SearchFilter("org", SearchFilter.Operator.EQUALS, "apac")));
           









4.2.4 Performing CRUD Operations

You can perform Create/Read/Update/Delete (CRUD) operations on User, Group, Org, and generic entities.

The following topics describes these CRUD operations:

	APIs to Find a User


	APIs to Search a User


	APIs to Create a User


	APIs to Delete a User


	APIs to Authenticate a User


	APIs to Modify Users and Manage Related Entities






4.2.4.1 APIs to Find a User

The following APIs are used for finding a user:

	Get user for given principal identifier. For example: 

User getUser(Principal principal, ReadOptions opts)



	Search for user matching given id attribute value that uniquely identifies the user. For example:

User searchUser(String id, ReadOptions opts)



	Finds user matching given attribute name and value. For example:

User searchUser(String attrName, String attrVal, ReadOptions opts)



	Search for user matching given GUID value that uniquely identifies the user. For example: 

searchUserByGuid(String guid, ReadOptions opts) 












4.2.4.2 APIs to Search a User

The following is an example of the API for searching a user.

ResultSet<User> searchUsers(SearchFilter filter, SearchOptions opts)









4.2.4.3 APIs to Create a User

You can create a user using an API.

The following is an example of the API for creating a user. 

Principal createUser(List<Attribute> attrVals, CreateOptions opts)









4.2.4.4 APIs to Delete a User

You can delete a user using an API.

The following are examples of the API for deleting a user.

	Delete the user given the principal identifier.

void deleteUser(Principal principal, DeleteOptions opts)



	Delete the user given the id attribute value.

void deleteUser(String id, DeleteOptions opts)












4.2.4.5 APIs to Authenticate a User

It is a common mechanism to authenticate users via an API.

The following are examples of the API for user authentication.

	Authenticate the user matching the given id attribute value.

User authenticateUser(String id, char[] password, ReadOptions opts)



	Authenticate the user for given principal identifier.

boolean authenticateUser(Principal principal, char[] password)












4.2.4.6 APIs to Modify Users and Manage Related Entities

The APIs for modifying user attributes and for getting the related entities are in User object instead of UserManager.

Modifying a User

The following are examples of the API for modifying a user. 

	Modify user attributes.

void User.modify(List<ModAttribute> attrVals, ModifyOptions opts) 



	Set the user attribute value.

void User.setAttributeValue(String attrName, String attrVal, ModifyOptions opts)





Managing Related Entities

The following are examples of the APIs for managing entities. 

	Get the management chain.

ResultSet<User> getManagementChain(int nLevels, SearchOptions opts) 



	Check if the given user is manager of this user.

boolean isManager(User user, boolean direct, ReadOptions opts)



	Check if the given user is manager of this user.

boolean isManager(User user, boolean direct, ReadOptions opts)



	Set the given user as manager of this user.

void setManager(User user, ModifyOptions opts)



	Get all the reportees of this user.

ResultSet<User> getReportees(int nLevels,
 SearchFilter targetFilter, SearchOptions opts) 



	Get all the groups this user is a member of and matching the given filter criteria.

ResultSet<Group> getMemberOfGroups(int
 nLevels, SearchFilter targetFilter, SearchOptions opts)
 


	Check if this user is a member of the given group.

boolean isMemberOf(Group group, boolean direct, ReadOptions opts) 



	Add this user as a member to given group.

void addMemberOf(Group group, ModifyOptions opts) 



	Delete this user as a member to given group.

void deleteMemberOf(Group group, ModifyOptions opts)















4.3 Understanding the Comparison Between User and Role API With IDS API

You must understand the difference between the User and Role API and Identity Directory API.

The following topics describe the differences:

	Comparison of User-Related APIs With Identity Directory APIs


	Comparison of Role-Related APIs With Identity Directory APIs






4.3.1 Comparison of User-Related APIs With Identity Directory APIs

The table provides a comparison between the User-related API method and the corresponding Identity Directory API method.







	Functionality	User/Role API Method	 Method
	User Creation 

	User UserManager.createUser(String name, char[] password)

User UserManager.createUser(String name, char[] password, PropertySet pset) 

	Principal UserManager.createUser(List<Attribute> attrVals, CreateOptions opts)


	Delete User

	void UserManager.dropUser(UserProfile user)

void UserManager.dropUser(User user); 

	void UserManager.deleteUser(Principal principal, DeleteOptions opts)

void UserManager.deleteUser(String id, DeleteOptions opts)


	Authenticate User 

	User UserManager.authenticateUser(String user_id, char[] passwd)

User UserManager.authenticateUser(User user, char[] passwd)

User UserManager.authenticateUser(String user_id, String authProperty, char[] passwd) 

	User UserManager.authenticateUser(String id, char[] password, ReadOptions opts)

boolean UserManager.authenticateUser(Principal principal, char[] password)


	Check if create User is supported

	boolean UserManager.isCreateUserSupported() 

	boolean UserManager.getCapabilities().isCreateCapable()


	Check if modify User is supported

	boolean UserManager.isModifyUserSupported() 

	boolean UserManager.getCapabilities().isUpdateCapable()


	Check if drop User is supported 

	boolean UserManager.isDropUserSupported()

	boolean UserManager.getCapabilities().isDeleteCapable()


	Search Users by given search criteria 

	SearchResponse IdentityStore.searchUsers(SearchParameters params) 

	ResultSet<User> UserManager.searchUsers(SearchFilter filter, SearchOptions opts)


	Search an User by name/uniquename /guid 

	User IdentityStore.searchUser(String name) 

	User UserManager.searchUser(String id, ReadOptions opts)

User UserManager.searchUser(String attrName, String attrVal, ReadOptions opts)


	Check if User exists in the repository for a given User object 

	boolean IdentityStore.exists (User user) 

	User.getPrincipal() if the following method returns null user doesn't exist; otherwise exists

User getUser(Principal principal, ReadOptions opts)


	Simple search filter (search based on a single attribute name, type and value) 

	SimpleSearchFilter

	SearchFilter(String propertyName, Operator op, String propertyVal)


	Complex Search Filter (search based on more than one attribute with filter conditions and nested filters) 

	ComplextSearchFilter 

	SearchFilter(LogicalOp op, SearchFilter... searchFilters)


	Getting a property value for a given property name 

	String User.getPropertyVal(String propName)

(User Role API fetches the attribute values from cache. If it misses cache, it fetches from repository) 

	String User.getAttributeValue(String attrName)

Limitation: Returns attribute values from User object that has been already fetched from the repository.


	Getting the User property for a given property name 

	Property User.getProperty(String propName) 

	Attribute User.getAttribute(String attrName)


	Getting the user properties for a given set of property names

	Map User.getProperties() 

	Map<String, Attribute> User.getAllAttributes()


	Get all user properties from the repository for a user 

	PropertySet User.getAllUserProperties() 

	Map<String, Attribute> User.getAllAttributes()


	Get all user property names from the schema 

	List IdentityStore.getUserPropertyNames()

Returns the names of all the properties in the schema 

	List<String> UserManager.getEntityAttributes()


	Changing the attribute value in the repository of an user 

	void User.setProperty(ModProperty mprop) 

	void User.setAttributeValue(String attrName, String attrVal, ModifyOptions opts)


	Changing the set of attribute values in the repository for an user 

	void User.setProperties(ModProperty[] modPropObjs)

void User.setProperties(LdapContext ctx, ModProperty[] modPropObjs) 

	void User.modify(List<ModAttribute> attrVals, ModifyOptions opts)


	Get all the reportees of an User either direct or indirect

	SearchResponse User.getReportees(boolean direct) 

	ResultSet<User> User.getReportees(int nLevels, SearchFilter targetFilter, SearchOptions opts)


	Get Management chain of an user 

	List User.getManagementChain(int max, String upToManagerName, String upToTitle) 

	ResultSet<User> User.getManagementChain(int nLevels, SearchOptions opts)

List<User> User.getManagementChain(int nLevels, String manager, String title, SearchOptions opts)


	Get/Set of Binary Attributes 

	Available

Property in User/Role API supports binary attributes

byte[] user.getJPEGPhoto()

void user.setJPEGPhoto(String imgpath) 

	Returns base64 encoded value

While setting the value either base64 encoded value or byte[] can be used for creating ModAttribute.


	Selecting the Realm 

	Available

env.put(OIDIdentityStoreFactory.RT_SUBSCRIBER_NAME, "<realm dn>");

IdentityStoreFactory.getIdentityStoreInstance(env); 

	This is part of IDS Operational configuration. At API level searchbase and createbase can be specified as well.














4.3.2 Comparison of Role-Related APIs With Identity Directory APIs

The table provides a comparison between the Role-related API method and the corresponding Identity Directory API method.







	Functionality	User/Role API Method	 Method
	Creating a Role

	Role RoleManager.createRole(String name, int scope)

Role RoleManager.createRole(String name) 

	Principal GroupManager.createGroup(List<Attribute> attrVals, CreateOptions opts)


	Deleting a Role

	void RoleManager.dropRole(RoleProfile role)

void RoleManager.dropRole(Role role)

	void GroupManager.deleteGroup(Principal principal, DeleteOptions opts)


	Check if create role is supported

	boolean RoleManager.isCreateRoleSupported()

	boolean GroupManager.getCapabilities().isCreateCapable()


	Check if modify role is supported

	boolean RoleManager.isModifyRoleSupported()

	boolean GroupManager.getCapabilities().isUpdateCapable()


	Check if delete role is supported

	boolean RoleManager.isDropRoleSupported()

	boolean GroupManager.getCapabilities().isDeleteCapable()


	Is the Group owned by a User

	boolean RoleManager.isGranted(Role parent, Principal principal)

	boolean Group.isMember(User user, boolean direct, ReadOptions opts)

boolean User.isMemberOf(Group group, boolean direct, ReadOptions opts)


	Is the Group owned by a User

	boolean RoleManager.isOwnedBy(Role parent, Principal principal)

	boolean User.isOwnerOf(Group group, boolean direct, ReadOptions opts)


	Is the group managed by a User

	boolean RoleManager.isManagedBy(Role parent, Principal principal)

	Not supported


	Get all the members of a Role either direct / indirect

	SearchResponse Role.getGrantees(SearchFilter filter, boolean direct)

	ResultSet<User> Group.getMembers(int nLevels, SearchFilter targetFilter, SearchOptions opts)


	Add an user as a member to a role

	void RoleManager.grantRole(Role parent, Principal principal)

	void Group.addMember(User user, ModifyOptions opts)


	Remove a user from being member of a role

	void RoleManager.revokeRole(Role parent, Principal principal)

	void Group.deleteMember(User user, ModifyOptions opts)


	Get all the owners of a specific Role either direct / indirect

	SearchResponse Role.getOwners(SearchFilter filter, boolean direct)

SearchResponse Role.getOwners(SearchFilter filter) 

	ResultSet<User> Group.getOwners(int nLevels, SearchFilter targetFilter, SearchOptions opts)


	Add a user as a owner of a role

	void Role.addOwner(Principal principal)

	void Group.addOwner(User user, ModifyOptions opts)


	Remove a user from being a owner of a Role

	void Role.removeOwner(Principal principal)

	void Group.deleteOwner(User user, ModifyOptions opts)


	Get all the managers of a Role either direct / indirect

	SearchResponse Role.getManagers(SearchFilter filter, boolean direct)

SearchResponse Role.getManagers(SearchFilter filter)

	Not Supported


	Add a user as a manager of a Role

	void Role.addManager(Principal principal)

	Not Supported


	Remove a user from being manager of a Role

	void Role.removeManager(Principal principal)

	Not Supported


	Getting the role property

	Property Role.getProperty(String propName)

Note: User Role API fetches these attribute values from cache. If it misses cache, it fetches from repository.

	Attribute Group.getAttribute(String attrName)


	Determine the Role Type

	Role.isApplicationRole

Role.isEnterpriseRole

Role.isSeeded

	Not Supported


	Search Roles for a given search criteria

	SearchResponse IdentityStore.searchRoles(int scope, SearchParameters params) 

	ResultSet<Group> GroupManager.searchGroups(SearchFilter filter, SearchOptions opts)


	Search a Role by name/uniquename /guid

	Role IdentityStore.searchRole(int searchType, String value)

	Group searchGroup(String id, ReadOptions opts)

Group searchGroup(String attrName, String attrVal, ReadOptions opts)


	Search both User and Roles for a given filter

	SearchResponse IdentityStore.search(SearchParameters params)

	Available through separate methods:

UserManager.searchUsers

GroupManager.searchGroups


	Get all the roles assigned to user/group

	SearchResponse getGrantedRoles(Principal principal, boolean direct)

	ResultSet<Group> User.getMemberOfGroups(int nLevels, SearchFilter targetFilter, SearchOptions opts)

ResultSet<Group> Group.getMemberOfGroups(int nLevels, SearchFilter targetFilter, SearchOptions opts)


	Get all the roles owned by user/group

	SearchResponse getOwnedRoles(Principal principal, boolean direct)

	ResultSet<Group> User.getOwnedGroups(int nLevels, SearchFilter targetFilter, SearchOptions opts)

ResultSet<Group> Group.getOwnedGroups(int nLevels, SearchFilter targetFilter, SearchOptions opts)


	Get all the roles managed by user/group

	SearchResponse getManagedRoles(Principal principal, boolean direct)

	Not supported
















4.4 Moving From a Test to a Production Environment

Moving from one environment to another, especially from a test environment to production environment, provides you the flexibility to test applications in a test environment and then roll them out in the production environment.

The following topics describe the Identity Directory Service/libOVD properties that you need to modify while moving from a test environment to production environment:

	Overview of Moving Between Environments


	Modifying Identity Directory Service/libOVD Move Plan






4.4.1 Overview of Moving Between Environments

Moving Identity Directory Service/libOVD installation diminishes the amount of work that would otherwise be required to reapply all the customization and configuration changes made in one environment to another. 

You can install, configure, customize, and validate Identity Directory Service/libOVD in a test environment. Once the system is stable and performs as required, you can create the production environment by moving a copy of the server and its configuration from the test environment, instead of redoing all the changes that were incorporated into the test environment.





4.4.2 Modifying Identity Directory Service/libOVD Move Plan

A move plan contains configuration settings of the source environment. When you move between environments, you run the extractMovePlan script to create a move plan for the entity that you are moving. 

The extractMovePlan script extracts configuration information from the archive into a move plan. It also extracts any needed configuration plans. Before you apply the archive to the target, you must edit the move plan to reflect the values of the target environment.

You can modify properties with the scope of READ_WRITE. Do not modify the properties with the scope of READ_ONLY. For a comprehensive description and the procedure to follow for moving between environments, see Administering Oracle Fusion Middleware.

This section contains the following topics:

	Locating Identity Directory Service/libOVD configGroup Elements


	Properties to Customize for Identity Directory Service/libOVD Move Plan






4.4.2.1 Locating Identity Directory Service/libOVD configGroup Elements

Move plans usually contain multiple configGroup elements. When a property is associated with a particular configGroup element, the tables listing the properties group the properties by configGroup element.

To locate Identity Directory Service/libOVD ConfigGroup, in the generated move plan, you must look for <type>LIBOVD_ADAPTERS</type>. This tag provides comprehensive information about the libOVD adapter properties that you might have to update. A property is associated with a particular configGroup element. 

Each adapter is represented by a configProperty id tag of the form: 

"LDAP:<context_name>:<adapter_name>"


Consider the following example: "LDAP:ids:myOID"

Table 4-1 shows the properties for the move plan for libOVD.

The following example shows a section of the move plan for Identity Directory Service/libOVD, with portion of the LIBOVD_ADAPTERS configGroup elements:

<configGroup>
                <type>LIBOVD_ADAPTERS</type>
                <configProperty id="LDAP:ids:myOID">
                    <configProperty>
                        <name>Context Name</name>
                        <value>ids</value>
                        <itemMetadata>
                            <dataType>STRING</dataType>
                            <scope>READ_ONLY</scope>
                        </itemMetadata>
                    </configProperty>
                    <configProperty>
                        <name>Adapter Name</name>
                        <value>myOID</value>
                        <itemMetadata>
                            <dataType>STRING</dataType>
                            <scope>READ_ONLY</scope>
                        </itemMetadata>
                    </configProperty>
                    <configProperty>
                        <name>LDAP URL</name>
                        <value>ldap://hostname:1389</value>
                        <itemMetadata>
                            <dataType>STRING</dataType>
                            <scope>READ_WRITE</scope>
                        </itemMetadata>
                    </configProperty>
                    <configProperty>
                        <name>LDAP Host Read Only</name>
                        <value>false</value>
                        <itemMetadata>
                            <dataType>STRING</dataType>
                            <scope>READ_WRITE</scope>
                        </itemMetadata>
                    </configProperty>
                    <configProperty>
                        <name>LDAP Host Percentage</name>
                        <value>100</value>
                        <itemMetadata>
                            <dataType>STRING</dataType>
                            <scope>READ_WRITE</scope>
                        </itemMetadata>
                    </configProperty>
                    <configProperty>
                        <name>DN</name>
                        <value>cn=orcladmin</value>
                        <itemMetadata>
                            <dataType>STRING</dataType>
                            <scope>READ_WRITE</scope>
                        </itemMetadata>
                    </configProperty>
                    <configProperty>
                        <name>Password File</name>
                        <value/>
                        <itemMetadata>
                            <dataType>STRING</dataType>
                            <password>true</password>
                            <scope>READ_WRITE</scope>
                        </itemMetadata>
                    </configProperty>
                </configProperty>
            </configGroup>









4.4.2.2 Properties to Customize for Identity Directory Service/libOVD Move Plan

You can customize the properties of a move plan.

Table 4-1 describes the move plan properties you can customize for Identity Directory Service/libOVD adapter.







Table 4-1 Move Plan Properties for libOVD

	Property	Description	Sample Value
	Context Name

	The libOVD context to use with which the adapter is associated. 

This is a read-only property.

	ids


	Adapter Name

	The name of the adapter. This is a read-only property.

	myOID


	LDAP URL

	The LDAP URL value for the adapter in the form of ldap://host:port. This is a read-write property.

	ldap://slc05kym:1389


	DN

	The DN of the user to connect to the backend LDAP. This is a read-write property.

	cn=orcladmin


	Password File

	The absolute path to the secure file containing the password of the user. This is a read-write property.

	/tmp/p.txt


	LDAP Host Read Only

	The flag indicating if the given host is read only. The default value is false. This is a read-write property.

	false


	LDAP Host Percentage

	It specifies the load percentage value for the given LADAP host. The default value is 100. This is a read-write property.

	100


















4.5 Tuning Configuration Parameters for IDS

Tuning is the adjustment or modification of parameters to meet specific deployment requirements. The default IDS configuration must be tuned for your deployment scenario.

You must review the requirements and recommendations in this section carefully.

This section contains the following topics: 

	Configuration Parameters for IDS


	WLST Commands to Set Tuning Parameters Using File-Based Configuration


	WLST Commands to Set Tuning Parameters Using In-Memory Configuration


	Handling Firewall and Load Balancer Timeout Errors






4.5.1 Configuration Parameters for IDS

You must bear in mind the configuration parameters that require tuning for a real-time deployment scenario.

Table 4-2 lists the configuration parameters for IDS that require tuning for real deployment scenarios. 







Table 4-2 Configuration Parameters for IDS

	Parameter	Description
	InitialPoolSize

	The initial number of LDAP connections created when the LDAP connection pool is set up.


	MaxPoolSize

	The maximum number of LDAP connections allowed in the LDAP connection pool.

Note: If a deployment has numerous concurrent requests coming in, then you must set this value appropriately to prevent running out of connections or waiting for a connection during an operation.


	MaxPoolWait

MaxPoolChecks

	These parameters determine the waiting time for free LDAP connection when all the LDAP connections in the connection pool are in use. IDS waits for MAX_POOLWAIT and MAX_POOLCHECKS milliseconds for a free connection to be available first and then tries to expand the connection pool.


	PoolCleanupInterval

	This is the timer interval (in seconds) used by the LDAP connection pool cleanup timer. The LDAP connection pool cleanup timer runs using this timer interval to perform pool cleanup tasks like shrinking the connection pool based on the idle connection if needed.


	MaxPoolConnectionIdleTime

	This specifies the maximum idle time for an LDAP connection. In an LDAP connection remains idle for this amount of time, it will be closed when the next LDAP connection pool cleanup timer runs.


	OperationTimeout

	The amount of time in milliseconds IDS waits for an LDAP request to be acknowledged by the LDAP remote host.


	ConnectTimeout

	This specifies the LDAP connection timeout duration in milli seconds. If a connection cannot be established in this period, then the connection attempt is aborted.


	HeartbeatInterval

	This is the interval in seconds to check the availability of backend LDAP.


	SocketOptions

	This parameters set SO_TIMEOUT (in seconds), SO_REUSEADDR, TCP_NODELAY, SO_KEEPALIVE properties for the underlying JNDI sockets in the LDAP connection.


	MaxPoolConnectionReuseTime

	This specifies the maximum time any connection can potentially be reused after which the pool removes and closes a connection. The value is specified in seconds.


	PoolConnectionReclaimTime

	This specifies the time duration in seconds that a borrowed connection can remain unused before it is automatically reclaimed by the pool.


	Protocols

	This specifies the protocol versions supported by IDS.














4.5.2 WLST Commands to Set Tuning Parameters Using File-Based Configuration

Use the WLST commands to configure the tuning parameters using file-based configuration.

The configuration information is stored in XML file. In such a scenario, you can use the WebLogic Scripting Tool (WLST) to modify the configuration parameters. 

You use the following WLST commands to configure the tuning parameters:

Note:
In all the WLST command examples in this section, ADAPTER_NAME refers to the name of the IDS repository. For instance, the libOVD adapter name.



	For InitialPoolSize:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='InitialPoolSize', value=10, contextName='ids')



	For MaxPoolSize:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolSize', value=100, contextName='ids')



	For MaxPoolWait and MaxPoolCheck:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolWait', value=1000, contextName='ids')

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolChecks', value=10, contextName='ids')



	For PoolCleanupInterval:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='PoolCleanupInterval', value=300, contextName='ids')



	For MaxPoolConnectionIdleTime:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolConnectionIdleTime', value=3600, contextName='ids')



	For OperationTimeout:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='OperationTimeout', value=120000, contextName='ids')



	For ConnectTimeout

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='ConnectTimeout', value=10000, contextName='ids')



	For HeartbeatInterval:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='HeartBeatInterval', value=60, contextName='ids')



	For SocketOption:

modifySocketOptions(adapterName='ADAPTER_NAME', reuseAddress=false, keepAlive=false, tcpNoDelay=true, readTimeout=1800, contextName='ids')



	For MaxPoolConnectionReuseTime

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolConnectionReuseTime', value=3600, contextName='ids') 



	For PoolConnectionReclaimTime

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='PoolConnectionReclaimTime', value=180, contextName='ids')



	For Protocols

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='Protocols', value='TLSv1.2', contextName='ids')





Note:
You must run the activateLibOVDConfigChanges('ids') WLST command or restart the WebLogic server for configuration changes to take effect.










4.5.3 WLST Commands to Set Tuning Parameters Using In-Memory Configuration

Use the WLST commands to configure the tuning parameters using in-memory configuration.

The configuration information is stored by the IDS consumer and is passed during run-time to IDS by invoking the IdentityStoreConfig class. For more information about using the class and its properties, see Oracle Fusion Middleware Java API Reference for Identity Governance Framework Identity Directory.

You can modify the following configuration parameters using the Java API class:







Table 4-3 Field Name for Configuration Parameters

	Parameter	Field Name to Modify
	InitialPoolSize

	IdentityStoreConfig.INITIAL_POOLSIZE


	MaxPoolSize

	IdentityStoreConfig.MAX_POOLSIZE


	MaxPoolWait

MaxPoolChecks

	IdentityStoreConfig.MAX_POOLWAIT

IdentityStoreConfig.MAX_POOLCHECK


	PoolCleanupInterval

	IdentityStoreConfig.POOL_CLEANUP_INTERVAL


	MaxPoolConnectionIdleTime

	IdentityStoreConfig.MAX_POOL_CONNECTION_IDLE_TIME


	OperationTimeout

	IdentityStoreConfig.CONN_TIMEOUT


	ConnectTimeout

	IdentityStoreConfig.CONNECT_TIMEOUT


	HeartbeatInterval

	IdentityStoreConfig.HEARTBEAT_INTERVAL


	SocketOptions

	IdentityStoreConfig.SOCKET_READTIMEOUT

IdentityStoreConfig.SOCKET_REUSEADDRESS

IdentityStoreConfig.SOCKET_KEEPALIVE

IdentityStoreConfig.SOCKET_TCPNODELAY


	MaxPoolConnectionReuseTime

	IdentityStoreConfig.MAX_POOL_CONNECTION_REUSE_TIME


	PoolConnectionReclaimTime

	IdentityStoreConfig.POOL_CONNECTION_RECLAIM_TIME














4.5.4 Handling Firewall and Load Balancer Timeout Errors

It is imperative to set up timeout on firewalls and load balancers to improve the communication process. It helps to detect issues in a distributed system. 

SocketOptions setting helps detect and safely close orphan socket connections caused by remote server failure. TCP waits for the configured duration of time for a response from the remote server before closing the socket. However, when there is a firewall or a Load Balancer between libOVD and the backend LDAP, then you must set the readTimeout value in the SocketOptions appropriately to prevent timeout errors. It is recommended that you set this value to a value which is less than the firewall or the Load Balancer timeout.










4.6 Allowing Pass-through Attributes in IDS

In IDS while executing the Search or Update operation, you need to define every attribute that is used by IDS APIs in the entity definition.

However, in certain scenarios attributes are specified dynamically. In other words, they could be used in requested attributes or filters without being defined in the entity definition. The pass-through feature implements this usage and does not throw any exception.
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