ORACLE"

Oracle® Fusion Middleware
Integrating Oracle Coherence
12¢(12.2.1.1)

E69629-01

June 2016

Documentation for developers and administrators that
describes how to integrate Oracle Coherence with
Coherence*Web, EclipseLink JPA, Hibernate, Spring,
memcached adapters, and Coherence GoldenGate HotCache.

Oracle Fusion Middleware Integrating Oracle Coherence, 12c (12.2.1.1)
E69629-01
Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACEooo vii
AUAIEIICE ... vii
Documentation AcCeSSIDILILYcccvvvviimiiiiiiiiiiiii s Vi
Related DOCUIMNENLS. ... Vi
CONVENEIONS ...ttt b e viii

What's New in ThiS GUITE.............c..cooiiicisecrecse s ix
New and Changed FEatUres.........ccccociuiiiiiiiiiiiceeeeeee e iX
Other Significant Changes in this DOCUMENLtccccceiiiiiiiiiiiiiccccceeccee e iX

1 Integrating TopLink Grid with Oracle Coherence

1.1 What is TOPLINK GIid?.....ccoiiiiiiiiiiiiiiinnrrr s 11
1.1.1 What are the JPA on the Grid Configurations?.............ccccccceiiiiiiiiiiiiiiiiiecns 1-1
1.1.2 What are the Benefits of Using TopLink Grid with Oracle Coherence? 1-2

1.2 ReqUIred Files........ccooiiiiiiiiiiiiii s 1-3

1.3 JPA on the Grid COnfigurationscccocoevrrnrnnnnnnrrreeeeree s 1-3
1.3.1 Understanding JPA on the Grid.........ccccociiiiiiiiiiiiiiicecceeceeeenes 1-3
1.3.2 JPA on the Grid APL.....ccciiiiiiiiiiicric s 1-4
1.3.3 Grid Cache Configuration.........ccccoueuiiiiieiiiiiciecce e 1-5
1.3.4 Grid Read Configuration..........cccoeviviiiiiniiiiiiiiic s 1-10
1.3.5 Grid Entity Configuration.........c.cccccocoiiiiiiiiiiiicicceeeeeeeeeeseeenene s 1-14
1.3.6 Handling Grid Read and Grid Entity Failovers............ccccociiiiiiiiiiiiiciiinnas 1-18
1.3.7 Wrapping and Unwrapping Entity Relationshipscccooviiiiiin 1-18
1.3.8 Working with QUETIEScceviimiiii e 1-19

1.4 EclipseLink Native ORM Configurationscccccococeiiiceeireceeieceeeeeeeeneeeenenenes 1-20
1.4.1 Understanding EclipseLink Native ORM..........cccccccoeiuiiiiiiiiiiiiceccceeeeenenenes 1-21
1.4.2 API for EclipseLink Native ORM.........ccccccooiiiiiiiiiiiiiicccccceeeeeeiennes 1-21
1.4.3 Configuring an Amendment Method ..o 1-22
1.4.4 Configuring the EclipseLink Native ORM Cache Store and Cache Loader 1-26

1.5 Using POF Serialization with TopLink Grid and Coherence............cccccccoeeeicccccccccnenas 1-27
1.5.1 Implement a Serialization ROUHNEc.ccccoeuiiiiiiiiiiiiiiiicccccccecceccennes 1-28
1.5.2 Define a Cache Configuration File............ccccccciiiiiiiiiiiiiiiiicccccces 1-30

1.5.3 Define a POF Configuration File...........cccccooiiiiiiiiiniiic 1-31

1.6 Best PractiCes ...t 1-35
1.6.1 Changing Compiled Java Classes with Byte Code Weaving..........cccccccoeeueucciccnnns 1-35
1.6.2 Deferring Database Queries with Lazy Loading...........ccccoeiiiiiiiiiiiiiiinnns 1-35
1.6.3 Defining Near Caches for Applications Using TopLink Gridcccocoeveiiriiieninnn. 1-36
1.6.4 Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration.................. 1-36
1.6.5 Opverriding the Default Cache Name.........c.cccccocuiiiiiiiiiiiicccceeeeeeee e 1-38

Integrating JPA Using the Coherence API

2.1 Using TopLink Grid with Coherence Client Applications..........cccoceveevverervrivenrrnrcirreene 2-1
2.1.1 API for Coherence with TopLink Grid Configurations.............cccceeeiiiiiniiniininnnnne. 2-2
2.1.2 Sample Cache Configuration File for Coherence with TopLink Grid............ccco.c....... 2-3
2.1.3 Sample Project for Using Coherence with TopLink Grid.......cccceovviriiiiiiiiiiiiine, 2-4

2.2 Using Third Party JPA ProvIiders ... 2-4
2.2.1 API for Native Coherence JPA CacheStore and CacheLoaderc.cccecvevvrvrvrenrennene. 2-4
2.2.2 Steps to Use a Third Party JPA Provider and Native Coherence JPA API.................. 2-5

Integrating Coherence Applications with Coherence*Web

3.1 Merging Coherence Cache and Session Informationc..ccocoeeieioiiininiccnniccee 3-1

Integrating Hibernate and Coherence
Integrating Spring with Coherence
Enabling ECID in Coherence Logs

Integrating with Oracle Coherence GoldenGate HotCache

7.1 OVEIVIEW .ottt 7-1
7.2 How Does HotCache WOTK?cccoviiiiiiiiiiiiieeec s 7-2
721 How the GoldenGate Java Adapter uses JPA Mapping Metadata...........ccccoeeevnnenn. 7-4
7.2.2 Supported Database Operationsoccoceueiiieieieinicicieeccie e 7-4
7.3 PIEreqUISIEES ...ocooviiiiiiiii s 7-5
74 Configuring GOLAENGALEcovvveiiririri s 7-5
7.4.1 Monitor Table Changes ... s 7-6
7.4.2 Filter Changes Made by the Current User...........cccocovvvivininiiiniiiiiincnnn 7-6
7.5 Configuring HotCache..........coiiiii 7-7
7.5.1 Create a Properties File with GoldenGate for Java Propertiesccccocoeuvruniirinininnes 7-7
7.5.2 Add Java Boot Options to the Properties Filecccocoovniviiiinniiirccene 7-9
7.5.3 Provide Coherence*Extend Connection Informationcccccoevveeereincniniiincnnnnnn, 7-11
7.6 Configuring the GoldenGate Java CHent ... 7-12
7.6.1 Edit the GoldenGate Java Client Extracts File........c.ccccovirininininenenieeeecceeecne 7-12
7.7 Using Portable Object Format with HotCache...........ccccooooiiiiiii 7-13
7.8 Enabling Wrapper Classes for TopLink Grid Applicationscccccoeoeveeciccccccccnencnns 7-14

Using Memcached Clients with Oracle Coherence

8.1
8.2

8.3
8.4

8.5

Overview of the Oracle Coherence Memcached Adapter..........cccooeiiiiiiiciiiiicnce, 8-1
Setting Up the Memcached Adapter..........cccooiiiiiiiiiiiiiiiiiic e 8-2
8.2.1 Define the Memcached Adapter Socket AAdrIess........cccccouvuvuveverererernerererrrreeereeene 8-2
8.2.2 Define Memcached Adapter Proxy Service........cccooveeininiinnnincceeeceeccenn, 8-2
Connecting to the Memcached Adapter ..o 8-4
Securing Memcached Client Communication...........coovirieioiiiciii e 8-4
8.4.1 Performing Memcached Client Authentication..........c..coeeveieiiiiiiiiiiicicc 8-4
8.42 Performing Memcached Client Authorizationc.cccccocovvviininvnnnnrncceene 8-5
Sharing Data Between Memcached and Coherence Clients.............cccooevevvivnerniniceiennicnnen, 8-5
8.5.1 Configuring POF for Memcached Clientsccccoovoiiiiiiiiiiiiccecc, 8-5
8.5.2 Create a Memcached Client that Uses POF ..o, 8-6

Vi

Audience

Preface

Oracle Coherence (Coherence) is a JCache-compliant in-memory caching and data
management solution for clustered Java Platform Enterprise Edition (Java EE)
applications and application servers. Coherence makes sharing and managing data in
a cluster as simple as it is on a single server. It accomplishes this by coordinating
updates to the data using clusterwide concurrency control, replicating and
distributing data modifications across the cluster using the highest performing
clustered protocol available, and delivering notifications of data modifications to any
servers that request them. Developers can take advantage of Coherence features using
the standard Java collections API to access and modify data, and use the standard
JavaBeans event model to receive data change notifications.

This guide is for software developers and architects who will be integrating Coherence
with TopLink-Grid, JPA, Hibernate, Spring, memcached adapters, and Coherence
GoldenGate HotCache.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

For more information about Oracle Coherence, see the following:

* Administering HTTP Session Management with Oracle Coherence*Web
e Administering Oracle Coherence

¢ Developing Applications with Oracle Coherence

e Developing Remote Clients for Oracle Coherence

o Installing Oracle Coherence

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

* Managing Oracle Coherence

o Securing Oracle Coherence

® Java API Reference for Oracle Coherence
e .NET API Reference for Oracle Coherence
® C++ API Reference for Oracle Coherence

® Release Notes for Oracle Coherence

Conventions

The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

viii

What's New Iin This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide, and provides pointers to
additional information.

New and Changed Features

New and Changed Features for 12c¢ (12.2.1.1)

Oracle Coherence 12c (12.2.1.1) does not contain any new and changed features for this
document.

New and Changed Features for 12c (12.2.1)

Oracle Coherence 12¢ (12.2.1) includes the following new and changed features for this
document.

* Support for GoldenGate HotCach has been updated. For details on using the
HotCache feature, see “Integrating with Oracle Coherence GoldenGate HotCache .”

Other Significant Changes in this Document

Other Significant Changes in This Document for 12c¢ (12.2.1.1)
For 12c¢ (12.2.1.1), no other significant changes have been made to this guide.

Other Significant Changes in This Document for 12c (12.2.1)

For 12c (12.2.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

* Support for the Toplink cache store and cache loader has been removed.

1

Integrating TopLink Grid with Oracle
Coherence

This chapter describes how Oracle TopLink Grid enables you to scale out Java
Persistence API (JPA) applications using Oracle Coherence. TopLink Grid provides
applications with a number of options on how they can scale, ranging from using
Coherence as a distributed shared (L2) cache up to directing JP QL queries to
Coherence for parallel execution across the grid to reduce database load. With
TopLink Grid, you do not have to rewrite your applications to scale out. You can use
your investment in JPA, and still take advantage of the scalability of Coherence.

This chapter contains the following sections:

¢ Whatis TopLink Grid?

* Required Files

® JPA on the Grid Configurations

e EclipseLink Native ORM Configurations

¢ Using POF Serialization with TopLink Grid and Coherence

e Best Practices

1.1 What is TopLink Grid?

Oracle TopLink Grid is a feature of Oracle TopLink that provides integration between
the EclipseLink JPA and Coherence. Standard JPA applications interact directly with
their primary data store, typically a relational database. However, with TopLink Grid
you can store some or all of your domain model in the Coherence data grid. This
configuration is also known as JPA on the Grid.

You can easily configure TopLink Grid to use Coherence as the primary data store,
execute queries against the grid, and allow Coherence to manage the persistence of
new and modified data. Coherence provides the layer between JPA and the data store,
where direct database calls can be offloaded from every application instance. This
makes it possible for clustered application deployments to scale beyond the bounds of
standard database operations.

The Oracle TopLink Grid page on the Oracle Technology Network provides additional
information and code examples for Coherence for TopLink Grid.

http://ww. oracl e. com t echnet wor k/ m ddl eware/ias/tl -
grid-097210. htmi

1.1.1 What are the JPA on the Grid Configurations?

These are the typical JPA on the Grid configurations that applications can use:

Integrating TopLink Grid with Oracle Coherence 1-1

http://www.oracle.com/technology/products/ias/toplink/tl_grid.html
http://www.oracle.com/technology/products/ias/toplink/tl_grid.html
http://www.oracle.com/technetwork/middleware/ias/tl-grid-097210.html
http://www.oracle.com/technetwork/middleware/ias/tl-grid-097210.html

What is TopLink Grid?

Grid Cache configuration, which uses Coherence as the TopLink L2 (shared) cache.
This configuration applies the Coherence data grid to JPA applications that rely on
database-hosted data that cannot be entirely preloaded into a Coherence cache.
Some reasons why it might not be able to be preloaded include extremely complex
queries that exceed the feature set of Coherence Filters, third-party database
updates that create stale caches, reliance on native SQL queries, stored procedures
or triggers, and so on.

In this configuration, you can scale TopLink up into large clusters while avoiding
the requirement to coordinate local L2 caches. Updates made to entities are
available in all Coherence cluster members immediately, upon committing a
transaction. For more information, see “Grid Cache Configuration”.

Grid Read configuration, which is optimal for entities that require fast access to
large amounts of (fairly stable) data and must write changes synchronously to the
database. In these entities, cache warming could be used to populate the Coherence
cache, but individual queries could also be directed to the database if necessary.
For more information, see “Grid Read Configuration”.

Grid Entity configuration, which is optimal for applications that require fast access
to large amounts of (fairly stable) data and perform relatively few updates. This
configuration can be combined with a Coherence cache store using write-behind to
improve application response time by performing database updates
asynchronously. For more information, see “Grid Entity Configuration”.

1.1.2 What are the Benefits of Using TopLink Grid with Oracle Coherence?
TopLink Grid provides the following benefits:

Simple application configuration using annotations or XML configurations that
align with standard JPA.

The ability to store complex object graphs with relationships in Coherence.

The ability to selectively choose which entities are stored in the grid and which are
stored directly in the backing database.

Allows you to execute JP QL queries in the Grid or directly against the database.

Allows you to store entities with both eager and lazy relationships into Coherence.

TopLink Grid integrates the EclipseLink JPA implementation with Oracle Coherence
and provides these development approaches:

You can build applications using JPA and transparently use the power of the data
grid for improved scalability and performance. In this JPA on the Grid approach,
TopLink Grid provides a set of cache and query configuration options that allow
you to control how EclipseLink JPA uses Coherence. These implementations reside
in the or acl e. ecl i psel i nk. coher ence. i nt egr at ed package. See “JPA on
the Grid Configurations” for more information.

If you have existing Native ORM applications, then you can use the EclipseLink
Native Object Relational Mapping (ORM) framework with them. The Native ORM
approach is very similar to JPA on the Grid, however, it does not use annotations to
configure how the cache is used. Instead, this approach employs an amendment
method that defines the appropriate cache behavior. See “EclipseLink Native ORM
Configurations” for more information.

1-2 Integrating Oracle Coherence

Required Files

* You can use the Coherence API with caches backed by TopLink Grid to access
relational data with special cache loader and cache store interfaces which have
been implemented for JPA.

In this traditional Coherence approach, TopLink Grid provides the CachelLoader
and CacheSt or e implementations in the

oracl e. ecl i psel i nk. coher ence. st andal one package that are optimized
for EclipseLink JPA. This technique is described in “Using TopLink Grid with
Coherence Client Applications”.

When integrating JPA applications with the Coherence data grid, note the potential
benefits and restrictions. You must understand how the grid works and how it relates
to your JPA configurations to realize the full potential.

1.2 Required Files

The required files for working with TopLink Grid are the

j avax. persistence 2.2.0.0_1-0-2.jar,theeclipselink.jar,and the
topl i nk-grid.jar. Assuming that you performed a standard installation of
Coherence, these files can be found in the following locations:

e .../ Oacl e_Honel/oracl e_comon/ nodul es/
j avax. persistence _2.2.0.0_1-0-2.jar

e .../Oacl e _Honel/oracl e_common/ nodul es/ oracl e.toplinkl2. 1.3/
eclipselink.jar

e _../Oracl e_Hore/ oracl e_comon/ nodul es/ oracl e. topl i nk12. 1. 3/
toplink-grid.jar

1.3 JPA on the Grid Configurations

This section describes JPA on the Grid and how to read and write objects in the Grid
Cache, Grid Read, and Grid Entity configurations. It also describes how to work with
queries against the Coherence cache under these configurations.

This section contains the following:

e Understanding JPA on the Grid

e JPA on the Grid API

¢ Grid Cache Configuration

¢ Grid Read Configuration

¢ Grid Entity Configuration

¢ Handling Grid Read and Grid Entity Failovers

* Wrapping and Unwrapping Entity Relationships

* Working with Queries

1.3.1 Understanding JPA on the Grid

The expression JPA on the Grid refers to using JPA and the power of the data grid to
build applications with improved scalability and performance. In the JPA on the Grid

Integrating TopLink Grid with Oracle Coherence 1-3

JPA on the Grid Configurations

approach, TopLink Grid provides a set of cache and query configuration options that
allow you to control how EclipseLink JPA uses Coherence.

You can configure Coherence as a distributed shared (L2) cache or use Coherence as
the primary data store. You can also configure entities to execute queries in the
Coherence data grid instead of the database. This allows clustered application
deployments to scale beyond database-bound operations.

Figure 1-1 illustrates the relationship between an application, TopLink, Coherence,
and the database.

Figure 1-1 JPA on the Grid Approach

d

i~

I‘Ih"'hr /

Application

Oracle Oracle
TopLink ™ " Coherence

- B

€

tij’u

Databasas

1.3.2 JPA on the Grid API

The API used by JPA on the Grid configurations are shipped in the t opl i nk-
grid.jar file. Table 1-1 lists some of the key classes in the

oracl e. ecl i psel i nk. coherence. i nt egr at ed package that are used in JPA on
the Grid configurations.

Table 1-1 TopLink Grid Classes to Build JPA on the Grid Applications

Class Name Description

oracl e. ecl i pseLi nk. coherence. i ntegrated. Ecl i pseL Provides JPA-aware
i nkJPACacheLoader versions of the Coherence
CachelLoader interface.

oracl e. ecl i pseLi nk. coherence. i ntegrated. Ecl i pseL Provides JPA-aware
i nkJPACacheSt or e versions of the Coherence
CacheSt or e interface.

1-4 Integrating Oracle Coherence

JPA on the Grid Configurations

Table 1-1 (Cont.) TopLink Grid Classes to Build JPA on the Grid Applications
__|

Class Name Description

oracl e. ecl i pselink. coherence.integrated.config.C Enablesa Coherence read
oher enceReadCust omi zer configuration.

oracl e. ecli pselink.coherence.integrated. config.C Enablesa Coherence
oher enceReadW i t eCust omi zer read /write configuration.

oracl e. ecl i pselink.coherence.integrated. config. G Enables cache instances to

ri dCacheCust oni zer be cached in Coherence
instead of in the internal
EclipseLink shared cache.
All calls to the internal
TopLink L2 cache are
redirected to Coherence.

oracl e. eclipselink.coherence.integrated. querying Allows queries to bypass

. I gnor eDef aul t Redi r ect or the Coherence cache and
be sent directly to the
database.

The configuration also uses the standard JPA run-time configuration file

per si st ence. xm and the JPA mapping file or m xni . You must also use the
Coherence cache configuration file coher ence- cache- confi g. xm to override the
default Coherence settings and define the cache store caching scheme.

1.3.3 Grid Cache Configuration

The Grid Cache configuration can be considered as the base configuration for TopLink
Grid. In this configuration, Coherence acts as the TopLink shared (L2) cache. This
brings the power of the Coherence data grid to JPA applications that rely on database-
hosted data that cannot be entirely preloaded into a Coherence cache. Some reasons
why the data might not be able to be preloaded include extremely complex queries
that exceed the abilities of Coherence Filters, third-party database updates that create
stale caches, and reliance on native SQL queries, stored procedures, or triggers.

By using Coherence as the TopLink Grid cache, you can scale TopLink up into large
clusters while avoiding the need to coordinate local shared caches. Updates made to
entities are available in all Coherence cluster members immediately, upon committing
a transaction.

In general, read and write operations in a Grid Cache configuration have the following
characteristics:

e A primary key query will attempt to get entities first from the Coherence cache. If
the attempt is unsuccessful, the database will be queried and the Coherence cache
will be updated with the query results. See the following section, “Reading Objects
in Grid Cache Configuration”.

* A nonprimary key query will be executed against the database and the results will
be checked against the Coherence cache. This is to avoid the negative performance
impact of constructing entities that are already cached. Newly queried entities are
put into the Coherence cache.

Integrating TopLink Grid with Oracle Coherence 1-5

JPA on the Grid Configurations

* A write operation will update the database and, if successfully committed, will put
updated entities into the Coherence cache. See “Writing Objects in Grid Cache
Configuration”.

See “Grid Cache Configuration Examples” for detailed examples.

To use Coherence as a distributed cache for an entity, you must enable shared caching
in EclipseLink. Shared caching is enabled by default for all entities, but the default can
be explicitly set to t r ue or f al se by setting the

ecl i psel i nk. cache. shar ed. def aul t property in the per si st ence. xni file.
Specific entities can override the default using the @ache annotation or by specifying
the corresponding XML <cache> element in the ecl i psel i nk- orm xmi file. For
more information, see:

http://wki.eclipse.org/

Usi ng_Ecl i pseLi nk_JPA Ext ensi ons_(ELUG) #How_t o_Use_t he_.
40Cache_Annot ati on

1.3.3.1 Reading Objects in Grid Cache Configuration

In the Grid Cache configuration, all read queries are directed to the database except
primary key queries, which are directed to the Coherence cache first. Any cache misses
will result in a database query.

All entities queried from the database are placed in the Coherence cache. This makes
the entities immediately available to all members of the cluster. This is valuable
because, by default, TopLink uses the cache to avoid constructing new entities from
database results.

For each row resulting from a query, TopLink uses the primary key of the result row
to query the corresponding entity from the cache. If the cache contains the entity then
the entity is used and a new entity is not built. This approach can greatly improve
application performance, especially with a warmed cache, because it reduces the cost
of a query by eliminating the cost associated with object building.

Figure 1-2 illustrates the path of a read query in the Grid Cache configuration:
1. The application issues a f i nd query.
2. For primary key queries, TopLink queries the Coherence cache first.

3. If the object does not exist in the Coherence cache, TopLink queries the database.

For all read queries except primary key queries, TopLink queries the database first.

4. Read objects are put into the Coherence cache.

1-6 Integrating Oracle Coherence

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_the_.40Cache_Annotation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_the_.40Cache_Annotation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_the_.40Cache_Annotation

JPA on the Grid Configurations

Figure 1-2 Reading Objects in Grid Cache Configuration

Oracle Application

-_JMSE | Development Spring Framework
L Framework

L‘L em. find

¥ @ cache.get

‘ Oracle | EclipseLink < Oracle

TopLink JPA Coherence
4 cache.put .~

i3 | select

k3

(sts

Databases

1.3.3.2 Writing Objects in Grid Cache Configuration

In the Grid Cache configuration, TopLink performs all database write operations
(insert, update, delete). The Coherence cache is then updated to reflect the changes
made to the database. TopLink offers a number of performance features when writing
large amounts of data including batch writing, parameter binding, stored procedure
support, and statement ordering to ensure that database constraints are satisfied.

Figure 1-3 illustrates the path for writing and persisting objects in the Grid Cache
configuration:

1. The application issues a commi t query.
2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

Integrating TopLink Grid with Oracle Coherence 1-7

JPA on the Grid Configurations

Figure 1-3 Writing and Persisting Objects in grid Cache Configuration

Oracle Application
| JavaEE, JavaSE Development | Spring Framework
‘ Framework ‘

(1 | em.persist/comit

k)
Oracle
TopLink

EclipseLink @ cache .put - =

JPA "| Coherence

Y

(2 | insert/commit

liﬁi

Databases

1.3.3.3 Grid Cache Configuration Examples
You can obtain the code in these examples at the following URL:

http: //wwv. oracl e. com t echnet wor k/ m ddl ewar e/ t opl i nk/
exanpl es- 325517-en-ca. ht m

1.3.3.3.1 Configuring the Cache for the Grid Cache Configuration

The cache configuration file (coher ence- cache- conf i g. xnl) in Example 1-1
defines the cache and configures a wrapper serializer to support serialization of
relationships.

Example 1-1 Configuring the Cache in Grid Cache Configuration

<cache-config>
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>*</ cache- nane>
<schene- name>ecl i psel i nk-di stri but ed</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>
<cachi ng- schemes>
<di stribut ed-scheme>
<schene- name>ecl i psel i nk-di stri but ed</ scheme- nane>
<servi ce- name>Ecl i pseLi nkJPA</ servi ce- nane>

<l--
Configure a wapper serializer to support serialization of relationships.
-->
<serializer>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i ntegrated. cache. Wapper Seri al i zer</cl ass-

name>
</serializer>
<backi ng- map- scheme>

1-8 Integrating Oracle Coherence

http://www.oracle.com/technetwork/middleware/toplink/examples-325517-en-ca.html
http://www.oracle.com/technetwork/middleware/toplink/examples-325517-en-ca.html

JPA on the Grid Configurations

<.

Backi ng map schene with no eviction policy.

-->
<l ocal - schene>

<schene- name>unl i mi t ed- backi ng- map</ schene- name>

</l ocal - schene>

</ backi ng- map- schene>

</ backi ng- map- schene>

<autostart>true</autostart>

</ di stribut ed- scheme>
</ cachi ng- schenes></ cache- confi g>

1.3.3.3.2 Configuring an Entity for the Grid Cache Configuration

To configure an entity to use Grid Cache, use the @ust oni zer annotation and the
G i dCacheCust omi zer class as shown in Example 1-2. This class intercepts all
TopLink calls to the internal TopLink Grid cache and redirects them to the Coherence
cache.

Example 1-2 Configuring the Entity in Grid Cache Configuration

i nport oracle.eclipselink.coherence.integrated.config.GidCacheCustom zer;
inport org.eclipse.persistence.annotations. Custoni zer;

@ntity
@ust oni zer (G'i dCacheCust omi zer. cl ass)
public class Enployee {

1.3.3.3.3 Inserting Objects for the Grid Cache Configuration

In Example 1-3, TopLink performs the insert to create a new employee. Entities are
persisted through the Ent i t yManager and placed in the database. After a successful
transaction, the Coherence cache is updated.

Example 1-3 Inserting Objects in Grid Cache Configuration

EntityManager Factory enf = Persistence. createEntityManager Fact ory("enpl oyee-
pu");

/] Create an enployee with an address and tel ephone nunber.
EntityManager em = enf.createEntityMinager();

em get Transaction(). begin();

Empl oyee enpl oyee = creat eEnpl oyee();

em persi st (enpl oyee) ;

em get Transaction().comit();

emclose();

1.3.3.3.4 Querying Objects for the Grid Cache Configuration

In Example 1-4, the named JPQL query is directed to the database. Query results are
resolved against the Coherence cache to avoid the cost of building objects that have
previously been cached.

Example 1-4 Querying Objects in Grid Cache Configuration
EntityManager Factory enf = Persistence. createEntityManager Fact ory("enpl oyee-
pu");

EntityManager em = enf.createEntityManager();
Li st <Enpl oyee> enpl oyees = em createQuery("sel ect e from Enpl oyee e where
e.lastName = :|astNanme").setParaneter("lastName", "Smith").getResultList();

Integrating TopLink Grid with Oracle Coherence 1-9

JPA on the Grid Configurations

for (Enployee enployee : enpl oyees) {
Systemerr. println(enployee);
for (PhoneNurmber phone : enpl oyee. get PhoneNunbers()) {
Systemerr.printIn("\t" + phone);
}

}

enf.close();

1.3.4 Grid Read Configuration

Use the Grid Read configuration for entities that require fast access to large amounts
of (fairly stable) data and write changes synchronously to the database. For these
entities, cache warming would typically be used to populate the Coherence cache, but
individual queries could be directed to the database if necessary.

In general, read and write operations in a Grid Read configuration have the following
characteristics:

* Read operations get objects from the Coherence cache. Configuring a cache loader
has no impact on JPQL queries. See the next section, “Reading Objects in Grid Read
Configuration ”.

e Write operations update the database and, if successfully committed, updated
entities are put into the Coherence cache. See “Writing Objects in Grid Read
Configuration”.

See “Grid Read Configuration Examples” for detailed examples.

1.3.4.1 Reading Objects in Grid Read Configuration

In the Grid Read configuration, all primary key and non-primary key queries are
directed to the Coherence cache. To reduce query processing time, TopLink Grid
supports parallel processing of queries across the data grid. Coherence contains data
already in object form, avoiding the performance impact of database communication
and object construction.

With the Grid Read configuration, if Coherence does not contain the entity requested
by thefi nd(...) method, then nul | is returned. However, if a cache loader is
configured for the entity's cache, Coherence will attempt to load the object from the
database. This is true only for primary key queries.

Configuring a cache loader has no impact on JPQL queries translated to Coherence
filters. When searching with a filter, Coherence will operate only on the set of entities
in the caches; the database will not be queried. However, it is possible to direct a
query, on a query-by-query basis, to the database instead of to Coherence by using the
oracl e. ecli psel i nk. coherence. i nt egrated. queryi ng. | gnoreDef aul t Re
di rect or class, as shown in following example:

query. set Hi nt (Quer yHi nt's. QUERY_REDI RECTOR, new | gnor eDef aul t Redi rector());
Any objects retrieved by a database query will be added to the Coherence cache so
that they are available for subsequent queries. Because this configuration resolves all

queries for an entity through Coherence by default, the Coherence cache should be
warmed with all of the data that is to be queried.

In the Grid Read configuration, projection queries (reports) that extract data from a
single entity type will also be directed to Coherence. For example, the following JPQL

1-10 Integrating Oracle Coherence

JPA on the Grid Configurations

query will return the first and last names of all employees contained in the Coherence
cache.

select e.firstName, e.lastNanme from Enpl oyee e
This type of query is useful when the entire entity is not required, for example when
populating a drop-down list in a user interface.

A cache store is not compatible with the Grid Read configuration because the
EclipseLink JPA will perform all database updates and then propagate the updated
objects into Coherence. If you use a cache store, Coherence will attempt to write the
objects again.

For complete information on using EclipseLink JPA query hints, see "JPA Query
Customization Extensions" in Java Persistence API (JPA) Extensions Reference for Oracle
TopLink and "About JPA Query Hints" in Understanding Oracle TopLink.

Figure 1-4 illustrates the path for a query in the Grid Read configuration:
1. The application issues a JPQL query.
2. TopLink executes a Filter on the Coherence cache.

3. TopLink returns results from the Coherence cache only; the database is not
queried.

Figure 1-4 Reading Objects with a Query

Oracle Application
JavaSE Development Spring Framework
Framework
(1| oJeQL
¥ (2 Filter
Oracle | EclipseLink «———= Oracle
TopLink JPA 3 Coherence

1.3.4.2 Writing Objects in Grid Read Configuration

In the Grid Read configuration, TopLink performs all database write operations
(insert, update, delete) directly. The Coherence caches are then updated to reflect the
changes made to the database. TopLink offers a number of performance features when

Integrating TopLink Grid with Oracle Coherence 1-11

JPA on the Grid Configurations

writing large amounts of data. These include batch writing, parameter binding, stored
procedure support, and statement ordering to ensure that database constraints are
satisfied.

This approach offers the best possibilities: database updates are performed efficiently
and queries continue to be executed in parallel across the Coherence data grid, with
the option of directing individual queries to the database.

Figure 1-5 illustrates the path for writing and persisting objects in the Grid Read
configuration:

1. The application issues a conmi t query.
2. TopLink updates the database.
3. After a successful transaction, TopLink updates the Coherence cache.

Figure 1-5 Writing and Persisting Objects in Grid Read Configuration

Oracle Application
| JavaEE, JavaSE Development Spring Framework

‘ Framework

(1 | em.persist/commit

Y

‘ oOracle | EclipseLink & °3°P-PUt | oraqe

JPA | Coherence

TopLink

(2 | insert/commit
L

liﬁi

Databases

1.3.4.3 Grid Read Configuration Examples

You can obtain the code in these examples at the following URL:
http://ww. oracl e. coni t echnet wor k/ i ddl ewar e/t opl i nk/
exanpl es- 325517-en-ca. htm

1.3.4.3.1 Configuring the Cache in Grid Read Configuration

The cache configuration file (coher ence- cache- confi g. xnl) in Example 1-5
defines the cache and configures a wrapper serializer to support serialization of
relationships. The

oracl e. ecli psel i nk. coherence. i ntegrated. Ecl i pseLi nkJPACacheLoade
r class defines the cache store scheme.

1-12 Integrating Oracle Coherence

http://www.oracle.com/technetwork/middleware/toplink/examples-325517-en-ca.html
http://www.oracle.com/technetwork/middleware/toplink/examples-325517-en-ca.html

JPA on the Grid Configurations

Example 1-5 Configuring the Cache in Grid Read Configuration

<cache-confi g>
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>*</ cache- nane>
<schene- nane>ecl i psel i nk-di stri but ed-readonl y</ scheme- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>
<cachi ng- schemes>
<di stribut ed- scheme>
<schene- nane>ecl i psel i nk-di stri but ed-readonl y</ scheme- name>
<servi ce- name>Ecl i pseLi nkJPAReadOnl y</ servi ce- nane>
<l--
Configure a wapper serializer to support serialization of relationships
>
<serializer>
<cl ass- name>or acl e. ecl i psel i nk. coherence. i nt egrat ed. cache. Wapper Seri al i zer</
cl ass- name>
</serializer>
<backi ng- map- scheme>
<read-wr it e- backi ng- map- scheme>
<i nternal - cache- schene>
<l ocal - schene />
</internal -cache-schene>
<l--
Define the cache scheme
>
<cachest or e- scheme>
<cl ass- scheme>
<cl ass-
nane>or acl e. ecl i psel i nk. coherence. i ntegrated. Ecl i pseLi nkJPACacheLoader </ ¢l ass- nane>
<init-paranms>
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ par am val ue>
</init-paranp
<init-paranp
<param type>j ava. | ang. String</ paramtype>
<par am val ue>enpl oyee- pu</ par am val ue>
</init-paranm
</init-params>
</ cl ass- schene>
</ cachest or e- scheme>
<read- onl y>t rue</ r eadonl y>
</read-write-backi ng- map- scheme>
</ backi ng- map- schene>
<autostart>true</autostart>
</ di stribut ed- scheme>
</ cachi ng- schenes></ cache-confi g>

1.3.4.3.2 Reading Objects for the Grid Read Configuration

To configure an entity to read through a Coherence cache, use the @ust omi zer
annotation and the Coher enceReadCust omi zer class as shown in Example 1-6:

Example 1-6 Configuring the Entity in Grid Read Configuration

import oracle. eclipselink.coherence.integrated. config. CoherenceReadCust om zer;
inport org.eclipse.persistence.annotations. Custoni zer;

@ntity
@ust oni zer (Coher enceReadCust omi zer . ¢l ass)

Integrating TopLink Grid with Oracle Coherence 1-13

JPA on the Grid Configurations

public class Enployee {

}
1.3.4.3.3 Inserting Objects for the Grid Read Configuration

In Example 1-7, TopLink performs an insert to create a new employee. If the
transaction is successful, the new object is placed into the Coherence cache under its
primary key.

Example 1-7 Inserting Objects in Grid Read Configuration

EntityManager Factory enf = Persistence. createEntityManager Factory("enpl oyee-
pu”);

/1 Create an enployee with an address and tel ephone number

EntityManager em = enf.createEntityMnager();

em get Transaction(). begin();

Enpl oyee enpl oyee = creat eEnpl oyee();

em per si st (enpl oyee) ;

em get Transaction().comit();

emcl ose();

enf.close();

1.3.4.3.4 Querying Objects for the Grid Read Configuration

When finding an employee, the read query is directed to the Coherence cache. The
JPQL query is translated to Coherence filters, as shown in Example 1-8.

Example 1-8 Querying Objects in Grid Read Configuration

EntityManager Factory enf = Persistence. createEntityManager Factory("enpl oyee-
pu”);
EntityManager em = enf.createEntityManager();
Li st <Enpl oyee> enpl oyees = em createQuery("sel ect e from Enpl oyee e where
e.lastName = :|astNanme").setParaneter("lastName", "Smith").getResul tList();
for (Enpl oyee enpl oyee : enployees) {
Systemerr. println(enpl oyee);
for (PhoneNunmber phone : enpl oyee. get PhoneNunbers()) {
Systemerr.println("\t" + phone);

}
}enf.close();

To retrieve an object from the Coherence cache with a specific ID (key), use the
emfind(Entity.class, |D) method. You can also configure a Coherence cache
loader to query the database to find the object, if the cache does not contain the object
with the specified ID.

1.3.5 Grid Entity Configuration

The Grid Entity configuration should be used by applications that require fast access
to large amounts of (fairly stable) data, but perform relatively few updates. This
configuration can be combined with a Coherence cache store using write-behind to
improve application response time by performing database updates asynchronously.

In general, read and write operations in a Grid Entity configuration have the following
characteristics:

* Read operations get objects from the Coherence cache. See “Reading Objects in
Grid Entity Configuration”.

1-14 Integrating Oracle Coherence

JPA on the Grid Configurations

* Write operations put objects into the Coherence cache. If a cache store is
configured, TopLink also performs write operations on the database. See “Writing
Objects in Grid Entity Configuration”.

See “Grid Entity Configuration Examples ” for detailed examples.

1.3.5.1 Reading Objects in Grid Entity Configuration

In the Grid Entity configuration, querying objects is identical to the Grid Read
configuration. See “Reading Objects in Grid Cache Configuration” for more
information.

1.3.5.2 Writing Objects in Grid Entity Configuration

In the Grid Entity configuration, all objects that are persisted, updated, or merged
through an Ent i t yManager instance will be put in the appropriate Coherence cache.
To persist objects in a Coherence cache to the database, an EclipseLink JPA cache store
(oracl e. eclipselink. coherence. integrated. Ecl i pseLi nkJPACacheSt or
e) must be configured for each cache.

You can also configure the cache store to use write-behind to asynchronously batch-
write updated objects. See Developing Applications with Oracle Coherence for more
information.

Figure 1-6 illustrates the path for writing and persisting objects in the Grid Entity
configuration.

1. The application issues a conmi t call.
2. TopLink directs all queries to update the Coherence cache.

3. By configuring a Coherence cache store (optional), TopLink will also update the
database.

Figure 1-6 Writing and Persisting Objects in Grid Entity Configuration

Oracle Application
JavaSE Developmeant | Spring Framework

(1 | em.persist,/commit

¥ 2 cache.put
‘ Oracle | Eclipselink —»| Oracle

TopLink JPA Coherance
@
E store
v
! | - Oracle
" 4 insert /commit TopLink
E\j j CacheStore
Databases

Integrating TopLink Grid with Oracle Coherence 1-15

JPA on the Grid Configurations

1.3.5.3 Limitations on Writing Objects in Grid Entity Configuration

When using a cache store, Coherence assumes that all write operations succeed and
will not inform TopLink of a failure. This could result in the Coherence cache differing
from the database. You cannot use optimistic locking to protect against data
corruption that may occur if the database is concurrently modified by Coherence and a
third-party application.

Because the order in which Coherence cache members write updates to the database is
unpredictable, referential integrity cannot be guaranteed. Referential integrity
constraints must be removed from the database. If they are not, write operations could
fail with the following error:

org. eclipse. persistence. exceptions. Dat abaseException

Internal Exception: java.sql.BatchUpdateException: ORA-02292: integrity constraint
violated - child record found

Error Code: 2292

1.3.5.4 Grid Entity Configuration Examples
You can obtain the code in these examples at the following URL:

http://ww. oracl e. com t echnet wor k/ m ddl ewar e/ t opl i nk/
exanpl es- 325517-en-ca. ht m

1.3.5.4.1 Configuring the Cache for the Grid Entity Configuration

The cache configuration file (coher ence- cache- conf i g. xn) in Example 1-9
configures a wrapper serializer to support serialization of relationships. The

oracl e. ecl i psel i nk. coherence. i ntegrated. Ecl i pseLi nkJPACacheSt or e
class defines the cache store scheme.

Example 1-9 Configuring the Cache in Grid Entity Configuration

<cache-config>
<cachi ng- scheme- mappi ng>
<cache- mappi ng>
<cache- name>* </ cache- nane>
<schene- nanme>ecl i psel i nk-di stri but ed-readw it e</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>
<cachi ng- schenes>
<di stri but ed- scheme>
<schene- nanme>ecl i psel i nk-di stri but ed-readw it e</ scheme- nane>
<servi ce- name>Ecl i pseLi nkJPAReadW i t e</ servi ce- nane>
<l--
Configure a wapper serializer to support serialization of relationships
>
<serializer>
<cl ass- name>or acl e. ecl i psel i nk. coherence. i nt egrat ed. cache. Wapper Seri al i zer</
cl ass- name>
</serializer>
<backi ng- map- scheme>
<read-write-backi ng- map- scheme>
<i nternal - cache- scheme>
<l ocal - scheme />
</internal - cache- scheme>
<l--
Define the cache schene
-
<cachest or e- schene>

1-16 Integrating Oracle Coherence

http://www.oracle.com/technetwork/middleware/toplink/examples-325517-en-ca.html
http://www.oracle.com/technetwork/middleware/toplink/examples-325517-en-ca.html

JPA on the Grid Configurations

<cl ass- scheme>
<cl ass-
nane>or acl e. ecl i psel i nk. coherence. i ntegrated. Ecl i pseLi nkJPACacheSt or e</ ¢l ass- nane>
<init-parans>
<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ par am val ue>
</init-paranp
<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>enpl oyee- pu</ par am val ue>
</init-paranp
</init-parans>
</ cl ass- schene>
</ cachest or e- scheme>
</read-write-backi ng- map- schene>
</ backi ng- map- scheme>
<autostart>true</autostart>
</ distribut ed- scheme>
</ cachi ng- schenes>
</ cache-confi g>

1.3.5.4.2 Configuring an Entity for the Grid Entity Configuration

To configure an entity to read through Coherence, use the @ust o zer annotation
and the Coher enceReadW i t eCust omi zer class as shown Example 1-10:

Example 1-10 Configuring an Entity in Grid Entity Configuration

i nport
oracl e. eclipselink.coherence.integrated. config. CoherenceReadW it eCustom zer;
import org.eclipse.persistence.annotations. Custoni zer;

@ntity
@ust om zer (Coher enceReadW i t eCust omi zer. cl ass)
public class Enployee {

1.3.5.4.3 Persisting Objects for the Grid Entity Configuration

In Example 1-11, TopLink performs the insert to create a new employee. Entities
persist through the Ent i t yManager instance and are placed in the appropriate
Coherence cache.

Example 1-11 Persisting Objects in Grid Entity Configuration

EntityManager Factory enf = Persistence. createEntityManager Factory("enpl oyee-
pu”);

/] Create an enployee with an address and tel ephone nunber.
EntityManager em = enf.createEntityManager();

em get Transaction(). begin();

Enpl oyee enpl oyee = creat eEnpl oyee();

em persi st (enpl oyee) ;

em get Transaction().comit();

emclose();

1.3.5.4.4 Querying Objects for the Grid Entity Configuration

When finding an employee, the read query is directed to the Coherence cache, as
shown in Example 1-12.

Integrating TopLink Grid with Oracle Coherence 1-17

JPA on the Grid Configurations

Example 1-12 Querying Objects in Grid Entity Configuration

EntityManager Factory enf = Persistence. createEntityManager Fact ory("enpl oyee-
pu”);

EntityManager em = enf.createEntityManager();
Li st <Enpl oyee> enpl oyees = em creat eQuery("sel ect e from Enpl oyee e where
e.lastName = :lastNanme").setParaneter("lastName", "Smith").getResul tList();

for (Enployee enployee : enpl oyees) {
Systemerr. println(enpl oyee);
for (PhoneNumber phone : enpl oyee. get PhoneNunbers()) {
Systemerr.printIn("\t" + phone);

}
}

enf.close();

To get an object from the Coherence cache with a specific ID (key), use the
emfind(Entity.class, |D) method.You can also configure a Coherence cache
store to query the database to find the object, if the cache does not contain the object
with the specified ID.

1.3.6 Handling Grid Read and Grid Entity Failovers

In the Grid Read and Grid Entity configurations, TopLink Grid will attempt to
translate JPQL queries into Coherence Filters and execute the query in the grid.
However some queries cannot be translated into filters. When TopLink Grid
encounters such a query, it automatically fails over to the database to execute the
query. In TopLink, you can specify a user-defined translation failure delegate object
that will be called if the JPQL-to-filter translation fails. You configure the translation
failure delegate by declaring the

ecl i psel i nk. coherence. query.transl ati on-fail ure-del egate
persistence unit property. For example:

<property name="ecl i pselink. coherence. query.translation-failure-del egate"
val ue="org. exanpl e. Except i onFai | over Pol i cy"/ >

A translation failure delegate must implement

oracl e. ecli psel i nk. coherence. i ntegrated. queryi ng. Transl ati onFai |
ur eDel egat e class which defines the single method

transl ati onFai | ed(Dat abaseQuery query, Record argunents, Session
sessi on).

1.3.7 Wrapping and Unwrapping Entity Relationships

When storing entities with relationships in the Coherence cache, TopLink Grid
generates a wrapper class that maintains the relationship information. In this way,
when the object is read from the Coherence cache (eager or lazy), the relationships can
be resolved.

If you read entities directly from the Coherence cache using the Coherence API, the
wrappers are not automatically removed. You can configure automatic unwrapping
programatically by calling the set Not Ecl i pseLi nk(true) method on the
serializer, as shown in Example 1-13. You can also set the system property as

ecl i psel i nk. coher ence. not - ecl i psel i nk to automatically unwrap an entity.

When configured properly, a cache get operation will return the unwrapped entity.

1-18 Integrating Oracle Coherence

JPA on the Grid Configurations

Example 1-13 Unwrapping an Entity

W apper Serial i zer wrapperSerializer =

(Wapper Seri al i zer) nyCache. get CacheServi ce(). get Serializer();

wr apper Seri al i zer. set Not Ecl i pseLink(true); // So the Serializer will unwap an
Entity when clients use a get() call fromthe cache.

1.3.8 Working with Queries

This section includes information on the following topics:

* Querying Objects by ID

Querying Objects with Criteria

Using Indexes in Queries

e Limitations on Queries

1.3.8.1 Querying Objects by ID

To get an entity from the Coherence cache with a specific ID (key), use the
emfind(Entity.class, |D) method.For example, the following code will get
the entity with key 8, from the Coherence Enpl oyee cache.

em find(Enpl oyee. cl ass, 8)

If the entity is not found in the Coherence cache, TopLink executes a SELECT
statement against the database. If a result is found, then the entity is constructed and
placed into the Coherence cache. The query's specific behavior will depend on your
Coherence cache configuration:

e calling the f i nd method with a Grid Cache Configuration performs a SELECT
statement against the database on a cache miss and then updates the cache.

e calling the f i nd method with a Grid Read Configuration or a Grid Entity
Configuration performs a get operation on the Coherence cache. A cache miss
results in a SELECT statement against the database by using a CachelLoader
instance, if it is configured.

1.3.8.2 Querying Objects with Criteria

To retrieve an entity that matches a specific selection criterion, use the
em createQuery("...") method. The query's specific behavior will depend on
your Coherence cache configuration:

¢ For the Grid Cache Configuration, the query will always execute a SELECT
statement against the database. For example, the following code will execute a
SELECT statement to find employees named John.

em createQuery("select e from Enpl oyee e where e.name='John'")

e For the Grid Read Configuration and Grid Entity Configuration, the query will be
executed against the Coherence cache. If the cache does not contain any entities
that match the selection criteria, then nothing will be returned. This is an example
of why the cache should be warmed before performing the query.

* For the cache store and cache loader, queries are performed only on primary keys

Integrating TopLink Grid with Oracle Coherence 1-19

EclipseLink Native ORM Configurations

1.3.8.3 Using Indexes in Queries

Indexes allow values (or attributes of those values) and corresponding keys to be
correlated within a cache to improve query performance. TopLink Grid allows you to
declare indexes with the @°r oper t y annotation. The | nt egr at i onPr operti es
class provides the | NDEXED property.

In Example 1-14, the @°r oper t y annotation declares that the nane attribute is to be
indexed. TopLink Grid will define an index for that attribute in the Publ i sher cache.

Example 1-14 Exposing a Coherence Query Index to TopLink Grid

inport static oracle.eclipselink.coherence.IntegrationProperties. | NDEXED,
import oracle. eclipselink.coherence.integrated. config. CoherenceReadCust omi zer;;

@ust om zer (Coher enceReadCust oni zer . cl ass)
public class Publisher inplenments Serializable {

@r opert y(name=| NDEXED, val ue="true")
private String nane;

With an index in place, you can issue a JPQL query, such as the following, to return all
the Publ i sher s in the cache with a name beginning with S.

SELECT Publisher p WHERE p.nanme |ike 'S%

Internally, Coherence will process the query by consulting the nanme index to find
matches rather than by deserializing and examining every Publ i sher object stored in
the grid. By avoiding deserialization, you achieve a significant positive improvement
on query execution time, eliminate garbage collection of the temporarily deserialized
objects, and reduce CPU usage.

1.3.8.4 Limitations on Queries

The following are limitations on querying Coherence caches:

¢ Because the Coherence Filter framework is limited to a single cache, JPQL j 0i n
queries cannot be translated to Filters. Allj oi n queries will execute on the
database.

* This release of TopLink Grid does not provide support for JPQL bulk updates and
deletions.

1.4 EclipseLink Native ORM Configurations

This section describes the EclipseLink Native Object Relational Mapping (ORM), an
extensible object-relational mapping framework. It also describes how to configure
amendment methods with Oracle JDeveloper and how to configure EclipseLink
Native ORM cache stores and cache loaders.

This section contains the following:

¢ Understanding EclipseLink Native ORM
e API for EclipseLink Native ORM

¢ Configuring an Amendment Method

¢ Configuring the EclipseLink Native ORM Cache Store and Cache Loader

1-20 Integrating Oracle Coherence

EclipseLink Native ORM Configurations

1.4.1 Understanding EclipseLink Native ORM

EclipseLink Native ORM provides an extensible object-relational mapping framework.
It provides high-performance object persistence with extended capabilities configured
declaratively through XML. These extended capabilities include caching (including
support for clustered caching), advanced database-specific capabilities, and
performance tuning and management options.

Like JPA on the Grid configurations, applications that employ EclipseLink ORM can
access Coherence caches. However, unlike JPA on the Grid configurations, EclipseLink
ORM applications do not use the @ust oni zer annotation to configure how the
cache is used. Instead, they typically call an amendment method that defines the
appropriate cache behavior.

1.4.2 API for EclipseLink Native ORM

The cache store and cache loader API used in EclipseLink Native ORM configurations
are shipped in the t opl i nk-gri d. j ar file. Table 1-2 describes the API for
EclipseLink Native ORM. These classes can be found in the

oracl e. ecl i psel i nk. coherence. i nt egr at ed package.

Table 1-2 EclipseLink Classes for Native ORM Configurations
- - - - |

Class Name

Description

Ecl i pseLi nkNati veCacheStore(String cacheName, String Coherence cache store that

sessi onNane)

should be used with native
EclipseLink configuration
(sessions. xm).

Ecl i pseLi nkNat i veCacheLoader (Stri ng cacheNane, String Coherence cache loader that

sessi onNane)

should be used with native
EclipseLink configuration
(sessions. xnl).

oracl e. ecl i pselink. coherence. integrated. config. CoherenceRe Enables a Coherence read

adCust om zer

configuration.

oracl e. ecli pselink.coherence.integrated. config. CoherenceRe Enablesa Coherence read/write
adW it eCust omi zer configuration.

oracl e. eclipselink.coherence.integrated. config. GidCacheCu Enables entity instances to be

stom zer

cached in Coherence instead of
in the internal EclipseLink
shared cache

Note that the second initialization parameter in the signatures, sessi onNane,
represents the name of the mapping project that must be listed in the native
EclipseLink configuration file, META- | NF/ sessi ons. xni .

The Ecl i pseLi nkNat i veCacheSt or e and Ecl i pseLi nkNat i veCachelLoader
classes allow applications that use EclipseLink Native ORM to access Coherence
caches. Use these classes when Coherence cache behavior has been configured through
an amendment method. These classes can be used to configure a cache store or cache
loader for each persistent class in the same way as described in “JPA on the Grid
Configurations”.

Integrating TopLink Grid with Oracle Coherence 1-21

EclipseLink Native ORM Configurations

Use the Coherence cache configuration file coher ence- cache-confi g. xii to
define the cache store caching scheme and to override any default Coherence settings.

The configuration uses the native EclipseLink sessi ons. xmi file and the

proj ect . xm file. The sessi ons. xm file, and all of the deployment XML files
(which have user-defined names) listed in it, must be available on the classpath or
packaged within a JAR file within the META- | NF directory.

You must also configure an amendment method to define the appropriate cache
behavior. See “Configuring an Amendment Method” for more information.

1.4.3 Configuring an Amendment Method

An amendment method is a method that uses the EclipseLink descriptor API to
customize the ORM mapping metadata for a class. The method is called when the
descriptor is loaded at runtime. The purpose of the amendment methods provided by
TopLink Grid is to define how the Coherence cache is going to be used. Amendment
methods are the TopLink native ORM alternative to the @ust oni zer annotation;
they produce the same configuration.

The TopLink Grid customizer classes in the t opl i nk-gri d. j ar file

(Coher enceReadCust om zer , Coher enceReadW i t eCust om zer, and

G i dCacheCust omi zer) provide an af t er Load amendment method that can be
selected to enable the appropriate Coherence cache behavior.

You can select the amendment method using either JDeveloper or EclipseLink
Workbench. The following section describes how to configure the amendment method
with JDeveloper. A description of EclipseLink Workbench is beyond the scope of this
document.

1.4.3.1 Configuring the Amendment Method in JDeveloper

To configure an amendment method:

1. In the JDeveloper Structure pane, expand the desired tIMap descriptor name.

1-22 Integrating Oracle Coherence

EclipseLink Native ORM Configurations

Figure 1-7 tIMap Descriptors in the JDeveloper Structure Pane

Ethap - Structure I (=]
AEROR

2 tiMap
B (il model

- {7) Address

:, = address
@ .

e Y firstname
, % id

o "B lastname
- 923 phones

Lo "F version

- Fhone

2. Right-click the desired TopLink descriptor element. Select Advanced Properties

to open the Advanced Properties dialog box. Select the After Loading check box
and click OK.

Integrating TopLink Grid with Oracle Coherence 1-23

EclipseLink Native ORM Configurations

Figure 1-8 Advanced Properties Dialog Box

Advanced Pro perties rs__(|

Select Advanced Properties
Select all of the advanced policies wou would like
applied to the selected descriptor(s).

After Lo
[] Copying
[] Ewvents
[] Inheritance
[] Instantiation
[] Interface Alias
[] Multitable Info
[] Returning

| Help | | (] 4 _J | Zancel |

3. Inthe After Load tab of the tIMap configuration window, enter the name of the
class containing the af t er Load amendment method you want to use for the
selected TopLink descriptor. You can also use the class browser to search for the
class. Figure 1-9 illustrates the After Load tab of the tiIMap configuration window.

1-24 Integrating Oracle Coherence

EclipseLink Native ORM Configurations

Figure 1-9

[Eeman

After Load Tab for a TopLink Descriptor

E P_ﬁ orack . koplnk, descriptors P_Eﬂcscriptc\rEvcnt F

Zeneral
fuerizs
Caching
Locking
After Load

once the descriptor 15 Ioaded at runtime, the following staoc mechod Wil be execuced, The method mosk
have the Following characteristics: (1) be public static and (2 bzke 2 sngle parameter of bvpe
orecle, toplink, descriptors . ZlassDescriptor,

Class: | Q,

Figure 1-10 illustrates the class browser with the with the
Coher enceReadCust omi zer class selected.

Figure 1-10 Searching for the Class containing the Amendment Method

& Class Browser [‘5_<|
To search, enker the simple class name, o the package prefix to search by

package. Use a question mark (7 ko match any single characker, or an askerisk (+)
ko match any number of characters,

|/Searn:h rHierarchy |

Match Class Mame:

Matching Classes:

] cCoherence3sadaptor { oracle.eclipselink. coherence.integrated.internal . cag
] cCoherenceadaptor { oracle. edipselink, coherence.integrated. internal . cache
[Coherencelnterceptor { oracle. eclipselink. coherence.integrated. cache

B CoherenceReadCustamizer | oracle, eclipselink, coherence, inkegrated, config

[cCoherenceReadwriteCustomizer oracle edipselink.coherence.integrated.

%[

Integrating TopLink Grid with Oracle Coherence 1-25

EclipseLink Native ORM Configurations

4. Inthe After Load tab of the tIMap configuration window, select the amendment
method from the Static Method dropdown list. For the Coherence Customizer
classes, this will be the af t er Load method.

Figure 1-11 Selecting the Amendment Method

tiay | &

E ¥ _L'ﬁ] orade. topink. descripkars w E DescripbarEvers k

Len=re] Qnice the descnptor 1s loaded at run time, the folowing static mathod will be executed, The meshad must

QueHes have the Fallowing characteristics: (L) be public skzkic 2nd (2% Eake a zsingle parameter of bupe
oracls.toolink, descriptors ClassDescriptar,

Caching
Lacking Class: |aracle. eclpselnk. coherence incegrat=d. config. CaherenceR eadCustomizer | &,
After Load

Skakic Mekhod: |E| efterload{ClessDescripbar) ; void "'|

1.4.4 Configuring the EclipseLink Native ORM Cache Store and Cache Loader

The coher ence- cache-confi g. xm file must specify the cache loader or cache
store class and provide parameters for the cache name and session name (that is,
project name). The following examples illustrate that aside from changing the class
name (Ecl i pseLi nkNati veCacheSt or e or Ecl i pseLi nkNat i veCachelLoader),
you do not have to make any changes to the Coherence cache configuration depending
on whether you are using the cache loader or cache store.

Example 1-15 illustrates a configuration in the coher ence- cache- confi g. xn file
for a cache that can communicate with EclipseLink Native ORM applications. The

cl ass- name element identifies the Ecl i pseLi nkNat i veCacheSt or e class as the
cache store scheme. The par am val ue elements specify the cache name and the
session (project) name that are passed to the class.

Example 1-15 Configuration for an Integrated EclipseLinkNativeCacheStore

<di stri but ed- scheme>
<schene- nane>ecl i psel i nk-native-di stri but ed- st ore</ scheme- name>
<servi ce- name>Ecl i pseLi nkNat i ve</ servi ce- name>
<serializer>
<cl ass- nanme>or acl e. ecl i psel i nk. coherence. i ntegrat ed. cache. Wapper Seri al i zer</
cl ass- name>
</serializer>
<backi ng- map- scheme>
<read-w it e- backi ng- map- scheme>
<i nternal - cache- schenme>
<l ocal - schene/ >
</internal - cache- scheme>
<I-- Define the cache schene -->
<cachest or e- schenme>
<cl ass- schenme>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i ntegrated. Ecl i pseLi nkNat i veCacheSt or e</
cl ass- name>
<init-params>

1-26 Integrating Oracle Coherence

Using POF Serialization with TopLink Grid and Coherence

<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ param val ue>
<linit-paranp
<init-paranp
<paramtype>j ava. | ang. Stri ng</ paramt ype>
<par am val ue>coher ence- nati ve- proj ect </ par am val ue>
</init-paranm
</init-parans>
</ cl ass- scheme>
</ cachest or e- scheme>
</read-wite-backi ng- map- schene>
</ backi ng- map- scheme>
<autostart>true</autostart>
</ distributed-schene>

Example 1-16 illustrates an integrated Ecl i pseLi nkNat i veCacheLoader instance
configuration in the coher ence- cache- confi g. xm file. The cache name

({ cache- nane}) and session name (coher ence- nat i ve- pr oj ect) parameter
values are passed to the class.

Example 1-16 Configuration for an Integrated EclipseLinkNativeCachelLoader

<cachest or e- scheme>
<cl ass- scheme>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i nt egrat ed. Ecl i pseLi nkNat i veCacheLoader </
cl ass- name>
<init-paranms>
<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ par am val ue>
<linit-paranp
<init-paran
<paramtype>j ava. | ang. Stri ng</ paramtype>
<par am val ue>coher ence- nati ve- pr oj ect </ param val ue>
<linit-paranm
</init-parans>
</ cl ass- schenme>
</ cachest or e- scheme>

1.5 Using POF Serialization with TopLink Grid and Coherence

This section describes how to use Portable Object Format (POF) serialization to
optimize the performance of applications that use TopLink Grid and Coherence
caches.

Serialization is the process of encoding an object into a binary format. It is a critical
component when working with Coherence as data must be moved around the
network. The Portable Object Format (also referred to as POF) is a language agnostic
binary format. POF was designed to be incredibly efficient in both space and time and
has become a cornerstone element in working with Coherence. Using POF has many
advantages ranging from performance benefits to language independence. It's
recommended that you look closely at POF as your serialization solution when
working with Coherence.

Integrating TopLink Grid with Oracle Coherence 1-27

Using POF Serialization with TopLink Grid and Coherence

This section focuses only on the changes and additions that you need to make to your
TopLink application files to make them eligible to participate in POF serialization. For
more detailed information on using and configuring POF, see "Using Portable Object
Format" in the Developing Applications with Oracle Coherence.

This section contains the following:
¢ Implement a Serialization Routine
® Define a Cache Configuration File

¢ Define a POF Configuration File

1.5.1 Implement a Serialization Routine

You must implement serialization routines that know how to serialize and deserialize
your Entities. You can do this by implementing the Por t abl eObj ect interface or by
creating a serializer using the com t angosol . i 0. pof . Pof Seri al i zer interface.

* Implement the Port abl eCbj ect interface in your Entity class files

The com t angosol . i 0. pof. Port abl eCbj ect interface provides classes with
the ability to self-serialize and deserialize their state to and from a POF data
stream. To use this interface, you must also provide implementations of the
required methods r eadExt er nal and wri t eExt er nal .

Example 1-17 illustrates a sample Entity class file that implements the
Por t abl eCbj ect interface. Note the implementations of the required
readExt er nal and wri t eExt er nal methods.

Also note that the class includes an @neToOne annotation to define the
relationship mapping between the Tr ade object and a Secur i t y object. TopLink
supports all of the relationship mappings defined by the JPA specification: one-to-
one, one-to-many, many-to-many, and many-to-many. These relationships can be
expressed as annotations.

Example 1-17 Sample Entity Class that Implements PortableObject

package oracle.toplinkgrid. codesanpl e. pof.nodel s.trader;

inport java.io.|CException;
import java.io.Serializable;

i mport javax. persistence.Entity;

i nport j avax. persistence. Fet chType;

i mport javax. persistence. Generat edVal ue;
i nport javax. persistence.|d;

i nport javax. persistence. OneToOne;

i nport com tangosol . i o. pof. Pof Reader;
i nport com tangosol .io.pof.Pof Witer;
i nport com tangosol .io. pof. Portabl etj ect;

/**

* This class will not be stored within Coherence as Trades are not high
* throughput objects in this nodel.

*

*|

@ntity

public class Trade inplements Serializable, PortableChject{

/**

1-28 Integrating Oracle Coherence

Using POF Serialization with TopLink Grid and Coherence

}

*
*/
private static final long serialVersionU D = -244532585419336780L;
@d
@xener at edVal ue
protected Iong id,;
@neToOne(f et ch=Fet chType. EAGER)
protected Security security;
protected int quantity;
protected doubl e anount;
public long getld() {
return id,

public void setld(long id) {
this.id =id;
}

public Security getSecurity() {
return security;

public void setSecurity(Security security) {
this.security = security;
}

public int getQuantity() {
return quantity;

public void setQuantity(int quantity) {
this.quantity = quantity;

public doubl e getAmount () {
return anount;

public void set Amount (doubl e amount) {
this.amunt = amount;

public void readExternal (Pof Reader pofreader) throws | OException {
id = pofreader.readLong(0);
quantity = pofreader.readint(2);
anount = pof reader. readDoubl e(3);

public void witeExternal (Pof Witer pofwiter) throws |COException {
pofwiter.witelLong(0, id);
pofwiter.witelnt(2, quantity);
pofwriter.witeDoubl e(3, amount);

Create a POFSeri al i zer for the Entities

An alternative to implementing the Por t abl eQbj ect interface is to implement
the com t angosol . i 0. pof . Pof Seri al i zer interface to create your own
serializer and deserializer. This interface provides you with a way to externalize
your serialization logic from the Entities you want to serialize. This is particularly
useful when you do not want to change the structure of your classes to work with
POF and Coherence. The POFSeri al i zer interface provides these methods:

— public Object deserialize(Pof Reader in)

— public void serialize(PofWiter out, Object 0)

Integrating TopLink Grid with Oracle Coherence 1-29

Using POF Serialization with TopLink Grid and Coherence

1.5.2 Define a Cache Configuration File

In the cache configuration file, create cache mappings corresponding to the Entities
you will be working with. Identify the serializer (such as

com t angosol . i 0. pof. Confi gur abl ePof Cont ext) and the POF configuration
file pof - conf i g. xn . Identify the EclipseLink cache store (such as

oracl e. ecli psel i nk. coherence. i ntegrated. Ecl i pseLi nkJPACacheSt or e
) in the <cachest or e- schene> attribute.

Example 1-18 Sample Cache Configuration File

<?xm version="1.0"?>
<cache-config xm ns:xsi="http://ww:. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xm ns. oracl e. conf coher ence/ coher ence- cache-
config http://xm ns.oracl e. con coher ence/ coher ence- cache- confi g/ 1. 0/ coher ence- cache-
config.xsd">
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>ATTORNEY_JPA_CACHE</ cache- nane>
<schene- nane>ecl i psel i nk-j pa- di stri but ed</ scheme- name>
</ cache- mappi ng>
<cache- mappi ng>
<cache- name>CONTACT _JPA CACHE</ cache- nane>
<schene- nanme>ecl i psel i nk-j pa-di stri but ed- | oad</ scheme- nane>
</ cache- mappi ng>

é.dlditional cache mappi ngs

<cachi ng- schenes>
<di stribut ed- scheme>
<schene- nane>ecl i psel i nk-j pa- di stri but ed- | oad</ scheme- name>
<servi ce- name>Ecl i pseLi nkJPA</ servi ce- nane>

<serializer>
<i nstance>
<cl ass- name>com t angosol . i 0. pof . Confi gur abl ePof Cont ext </ ¢l ass- nane>
<init-params>
<init-paranp
<paramtype>String</ paramtype>
<par am val ue>t r ader - pof - conf i g. xn </ param val ue>
<linit-paran
</init-parans>
</instance>
</serializer>
<backi ng- map- scheme>
<read-write-backi ng- map- scheme>
<i nternal - cache- schene>
<l ocal - schene/ >
</internal -cache-schene>
</read-write-backi ng- map- scheme>
</ backi ng- map- schene>
<autostart>true</autostart>
</ di stribut ed- scheme>
<di stribut ed- scheme>
<schene- nane>ecl i psel i nk-j pa-di stri but ed</ schene- name>
<servi ce- nane>Ecl i pseLi nkJPA</ servi ce- nane>
<serializer>
<i nstance>
<cl ass- name>com t angosol . i 0. pof . Confi gur abl ePof Cont ext </ cl ass- nane>

1-30 Integrating Oracle Coherence

Using POF Serialization with TopLink Grid and Coherence

<init-paranms>
<init-paranp
<paramtype>String</ paramtype>
<par am val ue>t r ader - pof - conf i g. xn </ param val ue>
<linit-paranp
</init-parans>
</instance>
</serializer>

<backi ng- map- scheme>
<read-write-backi ng- mp- scheme>
<i nternal - cache- scheme>
<l ocal - scheme/ >
</internal - cache-scheme>
<!-- Define the cache scheme -->
<cachest or e- scheme>
<cl ass-scheme>
<cl ass-
name>or acl e. ecl i psel i nk. coherence. i ntegrat ed. Ecl i pseLi nkJPACacheSt or e</ cl ass-
nane>
<init-parans>
<init-paranp
<param type>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ par am val ue>
</init-paranm
<init-paranp
<param type>j ava. | ang. String</ paramtype>
<par am val ue>coher ence- pu</ par am val ue>
</init-paranm
</init-paranms>
</ cl ass- scheme>
</ cachest or e- scheme>
</read-wite-backi ng- map- schene>
</ backi ng- map- scheme>
<autostart>true</autostart>
</ distributed-schenme>
</ cachi ng- schenes>
</ cache-confi g>

1.5.3 Define a POF Configuration File

Provide a file that identifies the Entity classes that will participate in POF serialization.
Coherence provides a POF configuration file which is named pof - confi g. xm by
default. Use the file to assign t ype- i ds of TopLink classes to the Entity classes.

TopLink Grid simplifies the assignment of t ype- i ds to TopLink-Grid required
classes. If the al | ow-i nt er f aces element is set to t r ue in the POF configuration
file, then only one t ype- i d entry is needed for TopLink-Grid classes.

e oracle.eclipselink.coherence.integrated. cache. TopLi nkGi dPort
abl eObj ect — the TopLink Grid analog of the Por t abl eCbj ect interface.
TopLink Grid classes that implement the TopLi nkG i dPor t abl eObj ect
interface can be POF serialized by the TopLi nkGri dSeri al i zer class. This
allows you to register a single class for all implementors of this interface when the
al I owi nt er f aces POF configuration element is set to t r ue.

e oracle.eclipselink.coherence.integrated. cache. TopLi nkGri dSeri
al i zer —the associated serializer for all implementors of the
TopLi nkGri dPor t abl eObj ect interface. This allows you to register a single

Integrating TopLink Grid with Oracle Coherence 1-31

Using POF Serialization with TopLink Grid and Coherence

class for all implementors of this interface in your POF configuration XML file
when the al | ow i nt er f aces POF configuration element is set to true.

Example 1-19 illustrates the assignment of the TopLi nkGri dPor t abl eCbj ect and
TopLi nkGri dSeri al i zer serializer class to the At t or ney Entity.

Example 1-19 Simplified POF Configuration File

<?xm version="1.0"?>
<pof-config xm ns: xsi="http://ww.w3. org/ 2001/ XM_.Schena- i nst ance"
xm ns="http://xn ns. oracl e. con coher ence/ coher ence- pof - confi g"
xsi: schemalocation="http://xm ns. oracl e. con coher ence/ coher ence- pof -config
http://xm ns. oracl e. conl coher ence/ coher ence- pof - confi g/ 1. 0/ coher ence- pof - confi g. xsd">
<user-type-list>
<I-- include all "standard" Coherence POF user types -->
<i ncl ude>coher ence- pof - confi g. xnl </i ncl ude>
<user-type>
<type-i d>1163</type-id>
<cl ass- nane>oracl e. topl i nkgri d. codesanpl e. pof . model s. trader. Att or ney</ cl ass-
nanme>
</ user-type>

additional type IDs for Entity classes

<user-type>
<type-id>1130</type-id>

<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i nt egrat ed. cache. TopLi nkG i dPort abl eO
bj ect </ cl ass- nanme>

<serializer>

<cl ass-
name>or acl e. ecl i psel i nk. coherence. i ntegrat ed. cache. TopLi nkGri dSerialize r</
cl ass- name>
</serializer>
</ user-type>

<al lowinterfaces>true</allowinterfaces>
</ pof - confi g>

Note:

the al | ow subcl asses element is not required for a TopLink Grid POF
configuration.

If you cannot set al | ow-i nt er f aces to t r ue, then you must define individual
t ype- i d entries for the following classes:

e oracle.eclipselink.coherence.integrated.internal.cache. El enen
t Col I ecti onUpdat ePr ocessor —Entry processor used by TopLink Grid to
update an El enent Col | ect i on object within the cache.

e oracle.eclipselink.coherence.integrated.internal.cache. Rel ati
onshi pUpdat ePr ocessor —An internal file, used to update lazy-loaded
relationship data into the grid.

1-32 Integrating Oracle Coherence

Using POF Serialization with TopLink Grid and Coherence

oracl e. eclipselink.coherence.integrated.internal.cache. Versio
nPut Pr ocessor —An internal file, used for optimistic lock-aware updates to the
grid.

oracl e. eclipselink. coherence.integrated.internal.cache. Versio
nRenmovePr ocessor —An internal file, used for optimistic lock-aware removals
from the grid.

oracl e. eclipselink.coherence.integrated.internal.cache. Seri al
i zabl eW apper —A generic wrapper class for non POF serialization. It provides
for serialization to a node which may not have the correct dynamic wrapper
defined which would otherwise result in an exception.

oracl e. eclipselink. coherence.integrated.internal.cache. LockVe
r si onExt r act or —Used during conditional puts of Optimistically Locked
objects. This class is used to extract the version value from the object.

oracl e. ecli pselink. coherence.integrated.internal.querying.Fi
t er Ext r act or —used by the filters to extract values from the objects stored in the
caches. It supports both attribute access and method access.

oracl e. ecli psel i nk. coherence. i ntegrated.internal.querying. Ecl
i pseLi nkFi | terFact or y$SubCl assOf —An inner class. Thisisa Fi | t er
extension that filters on the type of Entity, eliminating superclasses from
polymorphic queries. A t ype- i d is needed for this class needed only if you are
using this operation.

oracl e. eclipselink. coherence.integrated.internal.querying. Ecl
i pseLi nkFi | t er Fact or y$$! sNul | —An inner class. | sNul | is equivalent to

the Coherence | sNul | Fi | t er except that it provides support for a

Val ueExt r act or instead of an explicit method name. A t ype-i d is needed for

this class needed only if you are using this operation.

oracl e. ecli psel i nk. coherence.integrated.internal.querying. Ecl
i pseLi nkFi | terFact or y$$l sNot Nul | —An inner class. | sNot Nul | is
equivalent to the Coherence | sNot Nul | Fi | t er except that it provides support
for a Val ueExt r act or instead of an explicit method name. A t ype- i d is needed
for this class needed only if you are using this operation.

oracl e. eclipselink. coherence.integrated.internal.cache. Wappe
r I nt er nal —This interface is used to access internal attributes of the Entity
wrappers.

oracl e. ecli psel i nk. coherence. i nt egrated. cache. Wapper Pof Seri a
| i zer —Associated serializer. This class is used to provide serialization support
for the Entity Wrappers within Coherence when you want to access Coherence
caches directly. This includes users who have custom Value Extractors.

oracl e. ecli pselink. coherence.integrated.internal.querying. Ecl
i pseLi nkExt r act or —This interface is used for Coherence POF serialization to
mark an EclipseLink Extractor for serialization. It extracts values from TopLink
Grid entities for Filters.

oracl e. ecli pselink. coherence. i ntegrated. cache. Extract or Seri al
i zer —Associated serializer. This class is used to provide serialization support for
the Entity Wrappers within Coherence when you want to access the Coherence
caches directly. This includes users who have custom Value Extractors.

Integrating TopLink Grid with Oracle Coherence 1-33

Using POF Serialization with TopLink Grid and Coherence

Example 1-20 illustrates a sample POF configuration file that includes definitions for
the TopLink Grid support files.

Example 1-20 Sample POF Configuration File with Definitions for TopLink Classes

additional type IDs for Entity classes

<user-type>
<type-id>1144</type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. integrated.internal.cache. El enent Col | ectio
nUpdat ePr ocessor </ cl ass- nane>
</ user-type>
<user-type>
<type-id>1143</type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. integrated.internal.querying. FilterExtract
or </ cl ass- nane>
</ user-type>
<user-type>
<type-id>1142</type-id>
<cl ass-
name>or acl e. ecl i psel i nk. coherence. integrated.internal.cache. LockVersionExtra
ctor</cl ass- name>
</ user-type>
<user-type>
<type-id>1141</type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i ntegrated.internal.cache. Versi onPut Proces
sor</ cl ass- nane>
</ user-type>
<user-type>
<type-id>1140</type-id>
<cl ass-
nane>or acl e. ecl i psel i nk. coherence. integrated.internal.cache. Versi onRenovePro
cessor</ cl ass- nane>
</ user-type>
<user-type>
<type-id>1139</type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. integrated.internal.cache. Rel ati onshi pUpda
t eProcessor </ cl ass- name>
</ user-type>
<user-type>
<type-id>1138</type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i ntegrated.internal.cache. Serializabl eWap
per </ cl ass- nanme>
</ user-type>
<user-type>
<type-id>1137</type-id>
<cl ass-
name>or acl e. ecl i psel i nk. coherence. integrated.internal.querying. Ecli pseLi nkF
|t er Fact or y$SubC assOf </ cl ass- nane>
</ user-type>
<user-type>
<type-i d>1136</type-id>
<cl ass-

1-34 Integrating Oracle Coherence

Best Practices

nanme>or acl e. ecl i psel i nk. coherence. i ntegrated.internal.querying. Ecl i pseLi nkFi
I'terFact orysl sNul | </ cl ass- name>
</ user-type>
<user-type>
<type-id>1135</type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. integrated.internal.querying. Ecli pseLi nkFi
I'terFactory$$l sNot Nul | </ cl ass- nane>
</ user-type>
<l user-type-list>

<all owinterfaces>fal se</al | owinterfaces>
</ pof - confi g>

1.6 Best Practices

This section contains best practice recommendations on how to use TopLink Grid with
byte code weaving, lazy loading, near caches, and cache configurations.

This section contains the following:

¢ Changing Compiled Java Classes with Byte Code Weaving

¢ Deferring Database Queries with Lazy Loading

¢ Defining Near Caches for Applications Using TopLink Grid

* Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration

¢ Opverriding the Default Cache Name

1.6.1 Changing Compiled Java Classes with Byte Code Weaving

Byte code weaving is a technique for changing the byte code of compiled Java classes.
You can configure byte code weaving to enable a number of EclipseLink JPA
performance optimizations, including support for the lazy loading of one-to-one and
many-to-one relationships, attribute-level change tracking, and fetch groups.

Weaving can be performed either dynamically when entity classes are loaded, or
statically as part of the build process. Static byte code weaving can be incorporated
into an Ant build using the weaver task provided by EclipseLink.

Dynamic byte code weaving is automatically enabled in Java EE 5-compliant
application servers such as Oracle WebLogic. However, in Java SE it must be explicitly
enabled by using the JRE 1.5 j avaagent JVM command line argument. See "Using
Weaving" in Solutions Guide for Oracle TopLink

To enable byte code weaving in a Coherence cache server, the Java VM should be
invoked with - j avaagent : <PATH>\ ecl i psel i nk. j ar . Java SE client applications
should be run with the - j avaagent argument.

See "Using Weaving" in Solutions Guide for Oracle TopLink for more information on
configuring and disabling static and dynamic byte code weaving.

1.6.2 Deferring Database Queries with Lazy Loading

Lazy loading is a technique used to defer the querying of objects from the database
until they are required. This can reduce the amount of data loaded by an application
and improve throughput. A TopLink Grid JPA or native ORM application should
lazily load all relationships. Lazy loading is the default for one-to-many and many-to-

Integrating TopLink Grid with Oracle Coherence 1-35

Best Practices

many relationships in JPA, but is eager for one-to-one and many-to-one relationships.
You must explicitly select lazy loading on these relationship types. For example, you
can specify lazy loading as an attribute for many of the relationship annotations:

@mnyToOne(f et ch=Fet chType. LAZY)
private Publisher parent

For maximum efficiency, lazy loading should be specified for all one-to-one and
many-to-one entity relationships that TopLink Grid stores in the Coherence cache.
Lazy loading is implemented through byte code weaving in EclipseLink and must be
enabled explicitly if not running in a Java EE 5-compliant application server. For more
information, see “Changing Compiled Java Classes with Byte Code Weaving”.

1.6.3 Defining Near Caches for Applications Using TopLink Grid

Near cache is one of the standard cache configurations offered by Oracle Coherence.
The use of near caches can improve throughput by avoiding network access when an
object is retrieved repeatedly. For example, in an environment where users are pinned
to a particular Web server, near caching may improve performance.

The near cache is a hybrid cache consisting of a front cache, which is of limited size
and offers fast data access, and a larger back cache, which can be scalable, can load on
demand, and provide failover protection.

For applications using TopLink Grid, you configure the near cache in the same way as
any other application using Oracle Coherence. See "Near Cache" and "Defining Near
Cache Schemes" in the Developing Applications with Oracle Coherence for more
information on near caches.

Note:

Near caches are used only on a Coherence cache get operation, but not when
a Fi | t er operation is executed. This is because the Fi | t er operation is sent
to each member, and they return results directly to the caller. In this case, a
near cache will not add value.

This can also become an issue if you are using JPQL queries. In the TopLink
Grid Grid Read or Grid Entity configurations, JPQL queries are mapped to

Fi | t er operations. In the case of either of these configurations, if you execute
TopLink JPQL queries, you will not see any cache hits.

1.6.4 Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration

When using TopLink Grid with applications that use Coherence caches and
Coherence*Web, you might want to apply different configuration properties to the
TopLink Grid caches for entities and the Coherence*Web caches. The most efficient
way to specify and configure a set of caches is to use a wildcard character ("*").
However, this will match both sets of caches. To separate the Coherence*Web caches
from entity caches, you must create a wildcard pattern that will match entities only.
One way to do this is to prepend a unique prefix to the entity cache names.

The following steps describe how to create and use a custom session customizer to
prepend a specified prefix to TopLink Grid-enabled classes.

1-36 Integrating Oracle Coherence

Best Practices

Create a session customizer class that will prepend TopLink-enabled classes with
a specified prefix.

The following example illustrates a custom session customizer class,
CacheNanePr ef i xCust oni zer, which implements the EclipseLink

Sessi onCust oni zer class. The class defines a PREFI X_PROPERTY

nyapp. cache- pr ef i x that represents the prefix that will be added to the
TopLink-enabled classes. The value of the property can be either specified in the
persi st ence. xm file (described in Step 2) or passed in an optional property
map to the Per si st ence. creat eEnti t yManager Fact or y method.

inport java.util.Collection;

inmport oracle.eclipselink.coherence.|ntegrationProperties;

inmport oracle. eclipselink.coherence.integrated. cache. Coherencel nt er cept or;

i mport

oracl e. eclipselink.coherence.integrated.internal.cache. CoherenceCacheHel per;
inport org.eclipse.persistence.config. SessionCustom zer;

inport org.eclipse.persistence.descriptors. C assDescriptor;

inport org.eclipse.persistence. sessions. Sessi on;

public class CacheNanmePrefixCustom zer inplenents SessionCustonizer {
private static final String PREFI X_PROPERTY = "nyapp. cache-prefix";

public void customn ze(Session session) throws Exception {
/1 Look up custom persistence unit cache prefix property
String prefix = (String) session. getProperty(PREFI X_PROPERTY);
if (prefix == null) {
throw new Runti meExcepti on(
"Cache name prefix custom zer configured but prefix property '" +
PREFI X_PROPERTY + "' not specified");
}
Il 1terate over all entity descriptors
Col | ection<C assDescriptor> descriptors =
session. get Descriptors().val ues();
for (C assDescriptor classDescriptor : descriptors) {
[/ 1f entity is TopLink Gid-enabled, prepend cache name with prefix
if
(Coherencel nterceptor. class. equal s(cl assDescri ptor. get Cachel nterceptorC ass())) {
String cacheNane =
Coher enceCacheHel per. get CacheNane(cl assDescriptor);

cl assDescriptor.setProperty(lntegrationProperties. COHERENCE_CACHE_NAME, prefix +
cacheNane) ;

}
}
}
}

Edit the per si st ence. xnl file to declare a value for the prefix property.

In the following example, My App__ is defined as the value of the prefix property
nyapp. cache- prefi x in the per si st ence. xn file. The nyapp. cache-
pref i x prefix property is defined in the custom session customizer file.

<property name="nyapp. cache-prefix" val ue="M/App_"/>

See http:/ /www.eclipse.org/eclipselink/ for more information on the
EclipseLink Sessi onCust omi zer class.

Integrating TopLink Grid with Oracle Coherence 1-37

http://www.eclipse.org/eclipselink/

Best Practices

3. Edit the persi st ence. xmi file to add the name of the custom session
customizer class as the value of the ecl i psel i nk. sessi on. cust om zer
context property.

<property name="eclipselink.session. custom zer"
val ue="CacheNamePr ef i xCust oni zer"/ >

4. Edit the coher ence- cache-confi g. xnl file to add the name of the prefix with
a wildcard character to the cache mapping.

<cache- mappi ng>

<cache- name>MyApp_*</ cache- name>

<schene- name>ecl i psel i nk-di stri but ed- r eadonl y</ schene- nane>
</ cache- mappi ng>

1.6.5 Overriding the Default Cache Name

There may be situations where you want to override the default name given to an
entity cache. In TopLink Grid, entity cache names default to the entity name. The
following list describes how the name of the cache can be determined, and how you
can change it explicitly:

Cache Name—the cache name can be set either by default, or set explicitly:

® Default: cache name defaults to entity name. The entity name, in turn can be set
either by default, or set explicitly:

— Default: Entity name defaults to class short name.

- Explicit: Entity name can be set explicitly by using the name property of the
@nt ity annotation.

¢ Explicit: the cache name can be set explicitly by using the @r opert y annotation.

For example, the following code fragment illustrates the Enpl oyee class. By default,
the entity cache name would be Enpl oyee. However, you can force the name of the
Enpl oyee entity cache to be EMP_CACHE by using the @Pr oper t y annotation.

inmport static
oracl e. eclipselink.coherence. I ntegrationProperties. COHERENCE CACHE_NAME;
i mport org.eclipse. persistence. annotations. Property;

@nt i ty(name="Enp")
@r opert y(name=COHERENCE_CACHE NAME, val ue="EMP_CACHE")
public class Enployee inplenents Serializable {

Notice that the code explicitly specifies the entity name as Enp. If the nanme=" Enp"
value were not present, then the entity name would have defaulted to the short class
name Enpl oyee.

1-38 Integrating Oracle Coherence

2

Integrating JPA Using the Coherence API

This chapter describes how to use the Coherence API with caches backed by TopLink
Grid to access relational data. It also describes how to use the native, entity-based
Coherence implementations of the CacheStore interfacecache store and cache loader to
access relational data. These implementations use JPA to load and store objects to the
database.

Note:

Only resource-local and bootstrapped entity managers can be used with
Coherence API and JPA. Container-managed entity managers and those that
use Java Transaction Architecture (JTA) transactions are not currently
supported.

This chapter contains the following sections:
¢ Using TopLink Grid with Coherence Client Applications

e Using Third Party JPA Providers

2.1 Using TopLink Grid with Coherence Client Applications

This section describes how to use the Coherence API with caches backed by TopLink
Grid to access relational data. Access to the relational data is provided with JPA cache
loader and cache store interfaces which have been optimized for EclipseLink JPA.

In this traditional Coherence approach, TopLink Grid provides the CachelLoader and
CacheSt or e implementations in the

oracl e. ecl i psel i nk. coher ence. st andal one package that are optimized for
EclipseLink JPA.

Figure 2-1 illustrates the relationship between the client application (which employs
Coherence APIs), the Coherence cache, TopLink Grid, and the database.

Integrating JPA Using the Coherence API 2-1

Using TopLink Grid with Coherence Client Applications

Figure 2-1 Coherence with TopLink Grid Approach

Bl
Application

l

Oracle Coherence

l

Cracle TopLink
CachaStore/Loader

Databases

2.1.1 API for Coherence with TopLink Grid Configurations

TopLink Grid uses the standard JPA run-time configuration file per si st ence. xni
and the JPA mapping file or m xnm . The Coherence cache configuration file

coher ence- cache- confi g. xm must be specified to override the default
Coherence settings and to define the cache store caching scheme.

The TopLink Grid cache store and cache loader implementations are shipped in the
toplink-grid.jar file. The JAR file in installed with the Coherence product in
the. ..\ oracl e_comon\ nodul es\ oracl e.toplink_12. 1. 3 folder.

The TopLink Grid cache store and cache loader classes which are optimized for
EclipseLink JPA and designed for use by Coherence applications, are in the

oracl e. eclispelink. coherence. st andal one package. Table 2-1 describes
these classes.

Table 2-1 TopLink Grid Classes to build Coherence with TopLink Grid Applications
. __|]

Class Name Description

Ecl i pseLi nkJPACacheLoade Provides JPA-aware versions of the Coherence CachelLoader class.
r

Ecl i pseLi nkJPACacheSt ore Provides JPA-aware versions of the Coherence CacheSt or e class.

2-2 Integrating Oracle Coherence

Using TopLink Grid with Coherence Client Applications

2.1.2 Sample Cache Configuration File for Coherence with TopLink Grid

In the cache configuration file (coher ence- cache- confi g. xm), define the cache
as illustrated in Example 2-1. For TopLink Grid, you have to define only two
parameters:

® The name of the cache for the entity being stored. Unless explicitly overridden in JPA
this is the entity name that, by default, is the unqualified name of the entity class.
In Example 2-1, the name of the cache is Enpl oyee. You can use the built-in
Coherence macro { cache- nane} to supply the name of the cache that is
constructing and using the cache store.

o The name of the persistence unit containing the entity being stored. In Example 2-1,
enpl oyee- pu is a persistence unit defined in the META- | NF/ per si st ence. xni
file that includes the Enpl oyee entity.

To define more entity caches, add additional <cache- mappi ng> elements.

Example 2-1 Configuring the Cache for Coherence with TopLink Grid

<cache-config>
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>Enpl oyee</ cache- nane>
<schene- nane>di st ri but ed- ecl i psel i nk</ scheme- name>
</ cachi ng- schene- mappi ng>
</ cachi ng- schene- mappi ng>
<cachi ng- schemes>
<di stribut ed- scheme>
<schene- nane>di st ri but ed- ecl i psel i nk</ scheme- name>
<servi ce- name>Ecl i pseLi nkJPA</ servi ce- nane>
<backi ng- map- scheme>
<read-wr it e- backi ng- map- scheme>
<i nternal - cache- scheme>
<l ocal - schene />
</internal -cache-schene>
<l--
Define the cache schene.
>
<cachest or e- scheme>
<cl ass- scheme>
<l--
Because the client code is using Coherence APl, use the "standal one"
version of the cache | oader
>
<cl ass-
name>or acl e. ecl i psel i nk. coherence. st andal one. Ecl i pseLi nkJPACacheSt or e</ cl ass- name>
<init-params>

<l-- This paraneter is the name of the cache containing the entity. -->
<init-paran
<param type>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ par am val ue>
</init-paran>

<I-- This paraneter is the persistence unit nane. -->
<init-paran
<param type>j ava. | ang. String</ paramtype>
<par am val ue>enpl oyee- pu</ par am val ue>
</init-paran>

Integrating JPA Using the Coherence API 2-3

Using Third Party JPA Providers

</init-params>
</ cl ass- schene>
</ cachest or e- scheme>
</read-write-backi ng- map- schene>
</ backi ng- map- schene>
<autostart>true</autostart>
</ di stribut ed- scheme>
</ cachi ng- schenes></ cache- confi g>

2.1.3 Sample Project for Using Coherence with TopLink Grid

"Using JPA with Coherence" in the provides a sample project that uses the TopLink
Grid cache store and cache loader classes which are optimized for EclipseLink JPA and
designed for use by Coherence applications. These classes can be found in the

oracl e. ecli spelink. coherence. st andal one package.

The project uses the Oracle Express Database and the Eclipse IDE to configure a
project for JPA, create the JPA persistence unit and entities, edit the persistence.xml
file, create a cache configuration file for JPA, automatically generate JPA objects for a
database table, and create a class to interact with the data objects.

2.2 Using Third Party JPA Providers

Oracle Coherence provides its own implementations of the CacheLoader and
CachesSt or e classes which can be used with JPA. The JpaCachelLoader and
JpaCacheSt or e classes do not have to use EclipseLink JPA—they can use any JPA
implementation to load and store entities to and from a data store. The entities must
be mapped to the data store and a JPA persistence unit configuration must exist. A
JPA persistence unit is defined as a logical grouping of user-defined entity classes that
can be persisted and their settings.

Coherence also provides a default cache configuration file named coher ence-
cache- confi g. xm . The JPA run-time configuration file, per si st ence. xnl , and
the default JPA Object-Relational mapping file, or m xnl , are typically provided by
the JPA implementation.

2.2.1 API for Native Coherence JPA CacheStore and CacheLoader

The JpaCachelLoader and JpaCacheSt or e classes can be found in the
coherence-j pa.j ar file, which is installed in the . . . \ coher ence\l i b folder in
the Coherence installation. The CacheLoader and CacheSt or e interfaces can be
found in the coher ence. j ar file, which is also installed in the . . . \ coher ence
\l'i b folder.

Table 2-2 describes the default JPA implementations provided by Coherence.

Table 2-2 JPA-Related CacheStore and CachelLoader API Included with Coherence

Class Name Description

com t angosol . net. cache. CacheLoad A JCache cache loader.
er

com t angosol . net. cache. CacheSt or A JCache cache store. The CacheSt or e interface extends
e CachelLoader.

2-4 Integrating Oracle Coherence

Using Third Party JPA Providers

Table 2-2 (Cont.) JPA-Related CacheStore and CachelLoader API Included with Coherence
. ___|

Class Name

Description

com t angosol . coherence. j pa. JpaCa The JPA implementation of the Coherence CacheLoader

chelLoader

interface. Use this class as a load-only implementation. It can use
any JPA implementation to load entities from a data store. The
entities must be mapped to the data store and a JPA persistence
unit configuration must exist.

Use the JpaCacheSt or e class for a full load and store
implementation.

com tangosol . coherence. j pa. JpaCa The JPA implementation of the Coherence CacheSt or e interface.

cheStore

Use this class as a full load and store implementation. It can use
any JPA implementation to load and store entities to and from a
data store. The entities must be mapped to the data store and a JPA
persistence unit configuration must exist.

Note: The persistence unit is assumed to be set to use
RESOURCE_LOCAL transactions.

2.2.2 Steps to Use a Third Party JPA Provider and Native Coherence JPA API

To use a third party JPA provider and the native Coherence JPA API to load and store
objects to the database:

1. Obtain a JPA Provider Implementation. The provider implementation allows you
to map, query, and store Java objects to a database.

2. Configure a Coherence JPA Cache Store. The JPA cache store configuration maps
database entities to Java objects.

2.2.2.1 Obtain a JPA Provider Implementation

A JPA provider allows you to work directly with Java objects, rather then with SQL
statements. You can map, store, update and retrieve data, and the provider will
perform the translation between database entities and Java objects.

The Coherence JPA cache store and cache loader work with any JPA-compliant
implementation. Oracle recommends using EclipseLink JPA, the reference
implementation for the JPA 2.0 specification. Oracle TopLink and TopLink Grid for
Coherence integration include EclipseLink as their JPA implementations.

The TopLink Grid and EclipseLink JAR files (t opl i nk-gri d. j ar and
ecl i psel i nk.j ar) are included in the Coherence installation and can be found in
the. ..\ oracl e_common\ nodul es\ oracl e.toplink_12. 1. 3 folder.

2.2.2.2 Configure a Coherence JPA Cache Store

JPA is a standard API for mapping, querying, and storing Java objects to a database.
The characteristics of the different JPA implementations can differ, however, when it
comes to caching, threading, and overall performance. EclipseLink provides a high-
performance JPA implementation with many advanced features.

Coherence provides a default entity-based cache store implementation,
JpaCacheSt or e, and a corresponding cache loader, JpaCacheLoader . You can find
additional information in the Javadoc for these classes.

To configure a Coherence JpaCacheSt or e:

Integrating JPA Using the Coherence API 2-5

Using Third Party JPA Providers

1. Map the Persistent Classes
2. Configure JPA
3. Configure a Coherence Cache for JPA

4. Configure the Persistence Unit

2.2.2.2.1 Map the Persistent Classes

Map the entity classes to the database. This will allow you to load and store objects
through the JPA cache store. JPA mappings are standard, and can be specified in the
same way for all JPA providers.

You can map entities either by annotating the entity classes or by adding an or m xm
or other XML mapping file. See the JPA provider documentation for more information
about how to map JPA entities.

2.2.2.2.2 Configure JPA

Edit the per si st ence. xrl file to create the JPA configuration. This file contains the
properties that dictate run-time operation.

Set the transaction type to RESOURCE_LOCAL and provide the required JDBC
properties for your JPA provider (such asdri ver,url,user, and passwor d) with
the appropriate values for connecting and logging into your database. List the classes
that are mapped using JPA annotations in <cl ass> elements. Example 2-2 illustrates
a sample per si st ence. xml file with the typical properties that you can set.

Example 2-2 Sample persistence.xml File for JPA

<persistence xm ns:xsi ="http://ww. w3. org/ 2001/ XM.Schenai nst ance" version="1. 0"
xm ns="http://java.sun.com xm / ns/ per si st ence" >
<persi stence-unit nanme="EnmpUnit" transaction-type="RESOURCE LOCAL">
<provi der >
org. eclipse. persistence. | pa. PersistenceProvi der
</ provi der>
<cl ass>com oracl e. coher ence. handson. Enpl oyee</ cl ass>
<properties>
<property name="eclipselink.jdbc.driver"
val ue="oracl e. jdbc. Oracl eDriver"/>
<property name="eclipselink.jdbc.url"
val ue="j dbc: oracl e: thi n: @ocal host : 1521: XE"/ >
<property name="eclipselink.jdbc.user" val ue="scott"/>
<property name="eclipselink.|dbc. password" val ue="tiger"/>
</ properties>
</ persi st ence-unit>
</ persi st ence>

2.2.2.2.3 Configure a Coherence Cache for JPA

Create a coher ence- cache- confi g. xn file to override the default Coherence
settings and define the JpaCacheSt or e caching scheme. The caching scheme should
include a <cachest or e- schene> element that lists the JpaCacheSt or e class and
includes the following parameters.

¢ The entity name of the entity being stored. Unless it is explicitly overridden in JPA,
this is the unqualified name of the entity class. Example 2-3 uses the built-in
Coherence macro { cache- nane} that translates to the name of the cache that is
constructing and using the cache store. This works because a separate cache must

2-6 Integrating Oracle Coherence

Using Third Party JPA Providers

be used for each type of persistent entity and Coherence ensures that the name of

each cache is set to the name of the entity that is being stored in it.

o The fully qualified name of the entity class. If the classes are all in the same package
and use the default JPA entity names, then you can again use the { cache- nane}
macro for the part that is variable across the different entity types. In this way, the
same caching scheme can be used for all of the entities that are cached within the

same persistence unit.

o The persistence unit name. This should be the same as the name specified in the

per si stence. xnl file.

The various named caches are then directed to use the JPA caching scheme. Example
2-3is a sample coher ence- cache- confi g. xm file that defines a NanedCache
class named Enpl oyee that caches instances of the Enpl oyee class. To define
additional entity caches for more classes, add more <cache- nappi ng> elements to

the file.
Example 2-3 Assigning Named Caches to a JPA Caching Scheme

<cache-confi g>
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<l-- Set the nane of the cache to be the entity name. -->
<cache- name>Enpl oyee</ cache- name>

<I-- Configure this cache to use the follow ng defined scheme.

<schene- name>j pa- di stri but ed</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>
<cachi ng- schemes>
<di stribut ed-scheme>
<schene- name>j pa- di stri but ed</ scheme- nane>
<servi ce- nanme>JpaDi st ri but edCache</ servi ce- name>
<backi ng- map- scheme>
<read-wr it e- backi ng- map- scheme>
<i nternal - cache- schenme>
<l ocal - schene/ >
</internal -cache-scheme>
<lI- Define the cache scheme. -->
<cachest or e- schene>
<cl ass- scheme>
<cl ass- name>
com t angosol . coherence. j pa. JpaCacheSt ore
</ cl ass- name>
<init-parans>

<l-- This paramis the entity name. -->
<init-paranp
<param type>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ par am val ue>
</init-paranm

<I-- This paramis the fully qualified entity class.

<init-paranp

<param type>j ava. | ang. String</ paramtype>

<par am val ue>com acne. { cache- nane} </ par am val ue>
</init-paranm

<l-- This param should match the value of the -->
<l-- persistence unit name in persistence.xm. -->
<init-paranp

Integrating JPA Using the Coherence API 2-7

Using Third Party JPA Providers

<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>EnpUni t </ par am val ue>
</init-paranm
</init-params>
</ cl ass- schene>
</ cachest or e- scheme>
</read-write-backi ng- map- schene>
</ backi ng- map- scheme>
</ di stribut ed- scheme>
</ cachi ng- schenes>
</ cache-confi g>

2.2.2.2.4 Configure the Persistence Unit

When using the JpaCacheSt or e class, configure the persistence unit to ensure that
no changes are made to entities when they are inserted or updated. Any changes made
to entities by the JPA provider are not reflected in the Coherence cache. This means
that the entity in the cache will not match the database contents. In particular, entities
should not use ID generation, for example, @ener at edVal ue, to obtain an ID. IDs
should be assigned in application code before an object is put into Coherence. The ID
is typically the key under which the entity is stored in Coherence.

Optimistic locking (for example, @/er si on) should not be used because it might lead
to the failure of a database transaction commit transaction. See Caching Data Sources
and Sample CacheStore in Developing Applications with Oracle Coherence for more
information about how a cache store works, and how to set up your database schema.

When using either the JpaCacheSt or e or JpaCachelLoader class, L2 ("shared")
caching should be disabled in your persistence unit. See the documentation for your
provider. In Oracle TopLink, this can be specified on an individual entity with
@cache(shar ed=f al se) or as the default in the per si st ence. xm file with the
following property:

<property nanme="eclipselink.cache. shared. defaul t" val ue="fal se"/>
When using EclipseLink with TopLink Grid, the TopLink Grid implementations will
automatically disable L2 caching, optimistic lock checking, and versioning. Essentially,

TopLink Grid implementations understand the cache store context in which the
persistence unit is being deployed and adjust the configuration accordingly.

2-8 Integrating Oracle Coherence

3

Integrating Coherence Applications with
Coherence*Web

This chapter provides more detailed information on how to configure applications
running under Coherence*Web so that they can share Coherence cache and session
information.

You can find more information on Coherence*Web and how to enable it for
applications running on a variety of application servers in Administering HTTP Session
Management with Oracle Coherence*Web.

3.1 Merging Coherence Cache and Session Information

In Coherence, the cache configuration deployment descriptor provides detailed
information about the various caches that can be used by applications within a cluster.
Coherence provides a sample cache configuration deployment descriptor, named
coher ence- cache- confi g. xm , in the root of the coher ence. j ar library.

In Coherence*Web, the session cache configuration deployment descriptor provides
detailed information about the caches, services, and attributes used by HTTP session
management. Coherence*Web provides a sample session cache configuration
deployment descriptor, named def aul t - sessi on- cache- confi g. xm , in the
coher ence-web. j ar library. You can use this file as the basis for any custom session
cache configuration file you may need to write.

At run time, Coherence uses the first coher ence- cache- confi g. xnl file that is
found in the classpath, and it must precede the coher ence. j ar library; otherwise,
the sample coher ence- cache- confi g. xnl file in the coher ence. j ar file is used.

In the case of Coherence*Web, it first looks for a custom session cache configuration
XML file in the classloader that was used to start Coherence*Web. If no custom session
cache configuration XML resource is found, then it will use the def aul t - sessi on-
cache-config. xm file packaged in coher ence-web. j ar.

If your Coherence applications are using Coherence*Web for HTTP session
management, the start-up script for the application server and the Coherence cache
servers must reference the session cache configuration file—not the cache
configuration file. In this case, you must complete these steps:

1. Extract the session cache configuration file from the coher ence-web. j ar
library.

2. Merge the cache information from the Coherence cache configuration file into the
session cache configuration file.

Note that in the cache scheme mappings in this file, you cannot use wildcards to
specify cache names. You must provide, at least, a common prefix for application
cache names.

Integrating Coherence Applications with Coherence*Web 3-1

Merging Coherence Cache and Session Information

3. Ensure that modified session cache configuration file is used by the Coherence
members in the cluster.

The cache and session configuration must be consistent across WebLogic Servers
and Coherence cache servers.

3-2 Integrating Oracle Coherence

A

Integrating Hibernate and Coherence

This chapter describes where you can find information on integrating Oracle
Coherence with Hibernate, an object-relational mapping tool for Java environments.
The functionality in Oracle Coherence and Hibernate can be combined such that
Hibernate can act as the Coherence cache store or Coherence can act as the Hibernate
L2 cache.

You can find information on integrating Coherence with Hibernate in the Coherence
Community projects at the following URL:

https://java. net/projects/cohhib

Integrating Hibernate and Coherence 4-1

https://java.net/projects/cohhib

4-2 Integrating Oracle Coherence

5

Integrating Spring with Coherence

This chapter describes where you can find information on integrating Oracle
Coherence with Spring, a platform for building and running Java-based enterprise
applications. You can find information on how to configure the Oracle Coherence
cache to consume objects provided by the Spring platform in Coherence Community
projects. Coherence Community projects provide example implementations for
commonly used design patterns based on Oracle Coherence. See the following URL:

https://java. net/projects/cohspr/

Integrating Spring with Coherence 5-1

https://java.net/projects/cohspr/

5-2 Integrating Oracle Coherence

6

Enabling ECID in Coherence Logs

This chapter describes how Oracle Coherence can use the Execution Context ID
(ECID). This globally unique ID can be attached to requests between Oracle
components. The ECID allows you to track log messages pertaining to the same
request when multiple requests are processed in parallel.

Coherence logs will include ECID only if the client already has an activated ECID
prior to calling Coherence operations. The ECID may be passed from another
component or obtained in the client code. To activate the context, use the get and

act i vat e methods on the or acl e. dns. cont ext . Execut i onCont ext interface in
the Coherence client code. The ECID will be attached to the executing thread. Use the
deact i vat e method to release the context, for example:

Example 6-1 Using a DMS Context in Coherence Client Code

/1 Get the context associated with this thread
ExecutionContext ctx = ExecutionContext.get();
ctx.activate();

set additional execution context values (optional)
perform sone cache operations

/1 Rel ease the context
ctx. deactivate();

ECID logging will occur only on the node where the client is running. If a client
request is processed on some other node and an exception is thrown by Coherence,
then the remote error will be returned to the originating node and it will be logged on
the Coherence client. The log message will contain the ECID of the request. Messages
logged on the remote node will not contain the ECID.

For more information on how to include the ECID in a Coherence log message, see
“Changing the Log Message Format" in the Developing Applications with Oracle
Coherence.

Enabling ECID in Coherence Logs 6-1

6-2 Integrating Oracle Coherence

v

Integrating with Oracle Coherence
GoldenGate HotCache

This chapter describes how to use (HotCache) with applications using Coherence
caches. HotCache allows changes to the database to be propagated to objects in the
Coherence cache.

A detailed description of Oracle GoldenGate is beyond the scope of this
documentation. For more information, see Installing and Configuring Oracle GoldenGate
for Oracle Database to install GoldenGate on Oracle databases and Administering Oracle
GoldenGate Adapters.

Note:

To use HotCache, you must have licenses for Oracle GoldenGate and
Coherence Grid Edition. HotCache can be used with Oracle GoldenGate
11gR1, 11gR2, and 12c releases.

This chapter contains the following sections:

¢ Overview

¢ How Does HotCache Work?

® Prerequisites

¢ Configuring GoldenGate

¢ Configuring HotCache

¢ Configuring the GoldenGate Java Client

¢ Using Portable Object Format with HotCache

¢ Enabling Wrapper Classes for TopLink Grid Applications

7.1 Overview

Third-party updates to the database can cause Coherence applications to work with
data which could be stale and out-of-date. HotCache solves this problem by
monitoring the database and pushing any changes into the Coherence cache.
HotCache employs an efficient push model which processes only stale data. Low
latency is assured because the data is pushed when the change occurs in the database.

HotCache can be added to any Coherence application. Standard JPA is used to capture
the mappings from database data to Java objects. The configuration can be captured in
XML exclusively or in XML with annotations.

Integrating with Oracle Coherence GoldenGate HotCache 7-1

How Does HotCache Work?

The following scenario describes how HotCache could be used to work with the
database and with applications that use Coherence caches. Figure 7-1 illustrates the
scenario.

1. Start GoldenGate—see "Starting the Application" in Administering Oracle
GoldenGate Adapters for details. GoldenGate monitors the transaction log for
changes of interest. These changes will be placed into a "trail file".

2. Start the Coherence cache server and warm the cache, if required.

3. Start HotCache so that it can propagate changes in the trail file into the cache. If
changes occur during cache warming, then they will be applied to the cache once
HotCache is started so no changes are lost.

4. Start an application client. As part of its operation, assume that the application
performs repeated queries on the cache.

5. A third-party application performs a direct database update.

6. GoldenGate detects the database change which is then propagated to the
Coherence cache by HotCache.

7. The application client detects the change in cache.

Figure 7-1 How HotCache Propagates Database Changes to the Cache

(7 (3
\[' Application Client =4 — Query = Coherence -« Put = Coherence GoldenGate

—*— HotCache

E 5 Put GoldenGate Java Client
\[' Third Party Application \[Cache Warmer T
Query Insart
l Event
k_?.
| (1
Insart —= =« Monitor —\[GoldenGate
Database

7.2 How Does HotCache Work?

HotCache processes database change events delivered by GoldenGate and maps those
changes onto the affected objects in the Coherence cache. It is able to do this through
the use of Java Persistence API (JPA) mapping metadata. JPA is the Java standard for
object-relational mapping in Java and it defines a set of annotations (and
corresponding XML) that describe how Java objects are mapped to relational tables.
As Example 7-1 illustrates, instances of an Enpl oyee class could be mapped to rows
in an EMPLOYEE table with the following annotations.

Example 7-1 Mapping Instances of Employee Class to Rows with Java Code
@ntity

@abl e(name="EMPLOYEE")
Public class Enployee {

7-2 Integrating Oracle Coherence

How Does HotCache Work?

@d

@ol um(nanme="1D")
private int id;

@ol um(name=""FI RSTNAME")
private String firstNang;

The @nt i t y annotation marks the Enpl oyee class as being persistent and the @ d
annotation identifies the i d field as containing its primary key. In the case of
Coherence cached objects, the @ d field must also contain the value of the key under
which the object is cached. The @abl e and @ol umm annotations associate the class
with a named table and a field with a named column, respectively.

For simplification, JPA assumes a number of default mappings such as t abl e
name=cl ass name and col umm nanme=f i el d name so many mappings need only be
specified when the defaults are not correct. In Example 7-1, both the table and field
names match the Java names so the @abl e and @ol unn can be removed to make
the code more compact, as illustrated in Example 7-2.

Example 7-2 Simplified Java Code for Mapping Instances of Employee Class to
Rows

@ntity
Public class Enployee {
@d
private int id;
private String firstNang;

Note that the Java code in the previous examples can also be expressed as XML.
Example 7-3 illustrates the XML equivalent of the Java code in Example 7-1.

Example 7-3 Mapping Instances of Employee Class to Rows with XML

<entity class="Enpl oyee">
<t abl e nane="EMPLOYEE"/ >
<attributes>

<id nane="id">
<colum name="1D"/>

<[id>

<basi ¢ nane="firstNane"/>
<col um name="F| RSTNAME"/ >

</ basi c>

<lattributes>
<lentity>

Similarly, Example 7-4 illustrates the XML equivalent for the simplified Java code in
Example 7-2.
Example 7-4 Simplified XML for Mapping Instances of Employee Class to Rows

<entity class="Enpl oyee">
<attributes>
<id nane="id"/>
<basi ¢ nane="firstNane"/>

<lattributes>
<lentity>

Integrating with Oracle Coherence GoldenGate HotCache 7-3

How Does HotCache Work?

7.2.1 How the GoldenGate Java Adapter uses JPA Mapping Metadata

JPA mapping metadata provides mappings from object to relational; however, it also
provides the inverse relational to object mappings which HotCache can use. Given the
Enmpl oyee example, consider an update to the FI RSTNAME column of a row in the
EMPLOYEE table. Figure 7-2 illustrates the EMPLOYEE table before the update, where
the first name John is associated with employee ID 1, and the EMPLOYEE table after the
update where first name Bob is associated with employee ID 1.

Figure 7-2 EMPLOYEE Table Before and After an Update

Before:

ID FIRSTNAME ..

1 | John

After:

ID FIRSTNAME ..

With GoldenGate monitoring changes to the EMPLOYEE table and HotCache
configured on the appropriate trail file, the adapter processes an event indicating the
FI RSTNAME column of the EMPLOYEE row with primary key 1 has been changed to
Bob. The adapter will use the JPA mapping metadata to first identify the class
associated with the EMPLOYEE table, Enpl oyee, and then determine the column
associated with an Enpl oyee's ID field, | D. With this information, the adapter can
extract the ID column value from the change event and update the f i r st Nane field
(associated with the FI RSTNAME column) of the Enpl oyee cached under the | D
column value.

7.2.2 Supported Database Operations

Database | NSERT, UPDATE, and DELETE operations are supported by the GoldenGate
Java Adapter. | NSERT operations into a mapped table will result in the addition of a
new instance of the associated class populated with the data from the newly inserted
row. Changes applied through an UPDATE operation will be propagated to the
corresponding cached object. If the cache does not contain an object corresponding to
the updated row, the cache is unchanged. A DELETE operation will result in the
removal of the corresponding object from the cache, if one exists.

7-4 Integrating Oracle Coherence

Prerequisites

7.3 Prerequisites

The instructions in the following sections assume that you have set up your database
to work with GoldenGate. This includes the following tasks:

* creating a database and tables

* granting user permissions

* enabling logging

® provisioning the tables with data

Example 7-5 illustrates a list of sample commands for the Oracle Database that creates
a user named csdenp and grants user permissions to the database.

Note the ALTER DATABASE ADD SUPPLENMENTAL LOGDATA command. When
supplemental logging is enabled, all columns are specified for extra logging. At the
very least, minimal database-level supplemental logging must be enabled for any
change data capture source database.

Example 7-5 Sample Commands to Create a User, Grant Permissions, and Enable
Logging

CREATE USER csdeno | DENTI FI ED BY csdeno;
GRANT DBA TO csdenv;

grant alter session to csdeno;

grant create session to csdeno;

grant flashback any table to csdeno;
grant select any dictionary to csdenp;
grant select any table to csdeno;

grant select any transaction to csdeno;
grant unlimted tabl espace to csdenp;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

The instructions in the following sections also assume that you have installed Oracle
GoldenGate and started the manager. This includes the following tasks:

* downloading and installing Oracle GoldenGate

* running ggsci to create the GoldenGate subdirectories

* creating a manager parameter (ngr . pr n file, specifying the listener port
¢ adding JVM libraries to the libraries path

¢ starting the manager

A detailed description of these tasks is beyond the scope of this documentation. For
more information, see Installing and Configquring Oracle GoldenGate for Oracle Database to
install GoldenGate on Oracle databases and Administering Oracle GoldenGate Adapters.

7.4 Configuring GoldenGate

Updating the cache from a GoldenGate trail file requires configuring GoldenGate and
HotCache. You then enable HotCache by configuring the GoldenGate Java Adapter.

* Monitor Table Changes

¢ Filter Changes Made by the Current User

Integrating with Oracle Coherence GoldenGate HotCache 7-5

Configuring GoldenGate

7.4.1 Monitor Table Changes

Indicate the table that you want to monitor for changes by using the ADD TRANDATA
command. The ADD TRANDATA command can be used on the command line or as part
of aggsci script. For example, to monitor changes to tables in the csdenp schema,
use the following command:

ADD TRANDATA csdeno. *
Example 7-6 illustrates a sample ggsci script named cs- cap. ggsci .

® The script starts the manager and logs into the database. It stops and deletes any
running extract named cs- cap.

e The ADD TRANDATA command instructs the extract that tables named csdeno*
should be monitored for changes.

e The SHELL command deletes all trail files in the di r dat directory to ensure that if
the extract is being recreated, there will be no old trail files. Note that the r m - f
command is platform-specific. An extract named cs- cap is created using
parameters from the di r pr nf cs- cap. pr mfile. A trail is added at di rdat/ cs
from the extract cs- cap file.

e Thestart command starts the cs- cap. ggsci script.

e The ADD EXTRACT command automatically uses the cs- cap. pr mfile as the source
of parameters, so a PARAMS di r pr nf cs- cap. pr m statement is not necessary.

Example 7-6 Sample GoldenGate Java Adapter ggsci Script to Monitor Table
Changes

start nor

DBLOA N USERI D csdenp, PASSWORD csdenp
STOP EXTRACT cs- cap

DELETE EXTRACT cs-cap

ADD TRANDATA csdeno. *

ADD EXTRACT cs-cap, tranlog, begin now
SHELL rm-f dirdat/cs*

ADD EXTTRAIL dirdat/cs, EXTRACT cs-cap
start cs-cap

7.4.2 Filter Changes Made by the Current User

Configure GoldenGate to ignore changes made by the user that the Coherence
CacheStores are logged in as. This avoids GoldenGate processing any changes made to
the database by Coherence that are already in the cache.

The Tr anLogOpt i ons excl udeUSER command can be used on the command line or
inaggsci script. For example, the following command instructs GoldenGate extract
process to ignore changes to the database tables made by the Coherence CacheStore
user logged in as csdeno.

TranLogOpti ons excl udeUser csdeno

Example 7-7 illustrates a sample extract . pr mfile named cs- cap. pr m The user that
the Coherence CacheStore is logged in as is csdenp. The r ecover yOpt i ons
Overwri t eMbde line indicates that the extract overwrites the existing transaction
data in the trail after the last write-checkpoint position, instead of appending the new
data. The EXTRAI L parameter identifies the trail as di r dat / ¢s. The BR BROFF

7-6 Integrating Oracle Coherence

Configuring HotCache

parameter controls the Bounded Recovery (BR) feature. The BROFF value turns off
Bounded Recovery for the run and for recovery. The GETUPDATEBEFORES parameter
indicates that the before images of updated columns are included in the records that
are processed by Oracle GoldenGate. The TABLE parameter identifies csdenp. * as
the tables that should be monitored for changes. The Tr anLogOpt i ons

excl udeUSER parameter indicates that GoldenGate should ignore changes to the
tables made by the Coherence CacheStore user logged in as csdenp.

Example 7-7 Sample Extract .prm File for the GoldenGate Java Adapter

EXTRACT cs-cap

USERI D csdenp, PASSWORD csdenp

RecoveryQOptions Overwitehbde

EXTTRAIL dirdat/cs

BR BROFF

get Updat eBef or es

TABLE csdeno. *;

TranLogOptions excl udeUser csdenp --ignore changes made by csuser

7.5 Configuring HotCache

HotCache is configured with system properties, EclipseLink JPA mapping metadata
(as described in“How Does HotCache Work?”), and a JPA per si st ence. xml file.
The connection from HotCache to the Coherence cluster can be made by using
Coherence*Extend (TCP), or the HotCache JVM can join the Coherence cluster as a
member.

The following sections describe the properties needed to configure HotCache and
provides details about connecting with Coherence*Extend.

* Create a Properties File with GoldenGate for Java Properties
¢ Add Java Boot Options to the Properties File

e Provide Coherence*Extend Connection Information

7.5.1 Create a Properties File with GoldenGate for Java Properties

Create a text file with the filename extension . pr opert i es. In the file, enter the
configuration for HotCache. A minimal configuration should contain the list of event
handlers, the fully-qualified Java class of the event handler, whether the user-exit
checkpoint file is being used, and the name of the Java writer.

Note:

The path to the . proper ti es file must be set as the value of the GoldenGate
Java Adapter GGS_USEREXI T_CONF variable in a . pr mfile, for example:

Set Env(GGS_USEREXI T_CONF="di r prnf cs- cgga. properties")

This is described in “Edit the GoldenGate Java Client Extracts File”.

Example 7-8 illustrates a . pr operti es file that contains the minimal configuration
for a HotCache project. The following properties are used in the file:

e gg. handl erli st=cgga

Integrating with Oracle Coherence GoldenGate HotCache 7-7

Configuring HotCache

The gg. handl er | i st property specifies a comma-separated list of active
handlers. This example defines the logical name cgga as database change event
handler. The name of a handler can be defined by the user, but it must match the
name used in the gg. handl er . { name} .type property in the following bullet.

¢ gg. handl er. cgga. t ype=or acl e. t opl i nk. gol dengat e. Coher enceAdapt
er

The gg. handl er. { nane} . t ype property defines handler for HotCache. The
{nane} field should be replaced with the name of an event handler listed in the
gg. handl er | i st property. The only handler that can be set for HotCache is
oracl e. t opl i nk. gol dengat e. Coher enceAdapt er.

e gol dengat e. userexit.nochkpt=true

The gol dengat e. user exi t . nochkpt property is used to disable the user-exit
checkpoint file. This example defines the user-exit checkpoint file to be disabled.

e gol dengate.userexit.witers=jvm

The gol dengat e. user exit. w it ers property specifies the name of the writer.

The value of gol dengat e. user exi t. writ er s must be j vmto enable calling out

to the GoldenGate Java Adapter.
e -Dl og4j.configuration=ny-1o0g4j.properties

The - Dl og4j . confi gur ati on property specifies a user-defined Log4] properties
file, my- 1 0g4j . properti es, in the di r pr mdirectory (note that the di r prm

directory is already on the classpath). This statement is optional, because properties

can be loaded from classpath (that is, | 0g4j . conf i gur ati on=ny-
[0og4j . properti es). For more information on configuring logging properties for
HotCache, see “Logging Properties”.

There are many other properties that can be used to control the behavior of the
GoldenGate Java Adapter. For more information, see the Administering Oracle
GoldenGate Adapters.

Example 7-8 .properties File for a HotCache Project

#
List of active event handlers. Handlers not in the list are ignored.
#
gg. handl erl i st=cgga

#
Coherence cache updater
#
gg. handl er. cgga. t ype=or acl e. t opl i nk. gol dengat e. Coher enceAdapt er

#
Native JNI library properties
#
gol dengat e. userexi t. nochkpt =t rue
gol dengat e. userexit.witers=jvm

#
Java boot options
#
j vm boot opt i ons=-Dj ava. cl ass. pat h=di r prm / hore/ or acl e/ app/ or acl e/ product/ 11. 2. 0/
dbhone_2/j dbc/ li b/ oj dbc6. j ar: ggj aval ggj ava. j ar: / honme/ or acl e/ Or acl e/ M ddl ewar e/
coherence/ | i b/ coherence. jar:/hone/ oracl e/ Oracl e/ M ddl ewar e/ coher ence/ | i b/ coher ence-
hot cache. j ar: /hone/ oracl e/ Oracl e/ M ddl ewar e/ or acl e_conmon/ nodul es/

7-8 Integrating Oracle Coherence

Configuring HotCache

javax. persistence_2.0.0.0_2-0.jar:/home/oracl e/ Oracl e/ M ddl ewar e/ or acl e_common/
modul es/ oracl e. toplink_12. 1.2/ eclipselink.jar:/hone/oracl e/ O acl e/ M ddl ewar e/

oracl e_common/ nodul es/ oracl e. toplink_12.1.2/toplink-grid.jar:/home/oracl el cggal

wor kspace/ CacheSt or eDeno/ bi n - Xmx32M - Xns32M - Dt opl i nk. gol dengat e. per si st ence-

uni t =enpl oyee - Dl og4j.configuration=ny-1|og4j.properties -

Dcoherence. di stribut ed. | ocal st orage=fal se - Dcoher ence. cacheconfi g=/ hone/ or acl e/ cgga/
wor kspace/ CacheSt or eDeno/ cl i ent - cache-confi g. xnl -Dcoherence. ttl=0

7.5.2 Add Java Boot Options to the Properties File

This section describes the properties that must appear in the Java boot options section
of the . properti es file. These options are defined by using the j vm boot opt i ons

property.
A sample j vm boot opt i ons listing is illustrated in Java boot opti ons section of
Example 7-8.

® Java Classpath Files

¢ HotCache-related Properties
® Coherence-related Properties
* Logging Properties

7.5.2.1 Java Classpath Files

The following is a list of directories and JAR files that should be included in the Java
classpath. The directories and JAR files are defined with the j ava. cl ass. pat h

property.

e di r pr m-the GoldenGate di r pr mdirectory which contains the extract . pr mfiles
* ggj ava.j ar — contains the GoldenGate Java adapter libraries

e coherence. j ar — contains the Oracle Coherence libraries

e coherence- hot cache. j ar — contains the Oracle Coherence GoldenGate
HotCache libraries

e javax.persistence_2.0.0.0_2-0.]jar — contains the Java persistence
libraries

e eclipselink.jar —contains the EclipseLink libraries

e toplink-grid.jar —contains the Oracle TopLink libraries required by
HotCache

¢ domain classes — the JAR file or directory containing the user classes cached in
Coherence that are mapped with JPA for use in HotCache. Also, the Coherence
configuration files, per si st ence. xm file, and any or m xmi file.

7.5.2.2 HotCache-related Properties

The t opl i nk. gol dengat e. per si st ence- uni t property is required as it
identifies the persistence unit defined in per si st ence. xm file that HotCache
should load. The persistence unit contains information such as the list of participating
domain classes, configuration options, and optionally, database connection
information.

Integrating with Oracle Coherence GoldenGate HotCache 7-9

Configuring HotCache

The t opl i nk. gol dengat e. on- err or property is optional. It controls how the
adapter responds to errors while processing a change event. This response applies to
both expected optimistic lock exceptions and to unexpected exceptions. This property
is optional, as its value defaults to "Refresh". Refresh causes the adapter to attempt to
read the latest data for a given row from the database and update the corresponding
object in the cache. Refresh requires a database connection to be specified in the

per si st ence. xnl file. This connection will be established during initialization of
HotCache. If a connection cannot be made, then an exception is thrown and HotCache
will fail to start.

The other on-error strategies do not require a database connection. They are:

¢ | gnor e—Log the exception only. The cache may be left with stale data. Depending
on application requirements and cache eviction policies this may be acceptable.

* Evi ct —Log a warning and evict the object corresponding to the change database
row from the cache

¢ Fai | —Throw an exception and exit HotCache

7.5.2.3 Coherence-related Properties

Any Coherence property can be passed as a system property in the Java boot options.
The coher ence. di stri but ed. | ocal st or age system property with a value of

f al se is the only Coherence property that is required to be passed in the Java boot
options. Like all Coherence properties, precede the property name with the - D prefix
in the j vm boot opt i ons statement, for example:

- Dcoherence. di stributed. | ocal storage=fal se

7.5.2.4 Logging Properties
The following logging properties can be defined for HotCache.

The - Dl og4j . confi gurati on=def aul t-1 og4j . properti es property specifies
the default Log4] configuration file. Example properties are located in
$GOLDEN_GATE_HOVE/ ggj ava/ r esour ces/ cl asses/ directory. You can merge
these with your existing Log4] configuration.

The Log4] properties file that is bundled with GoldenGate for Java is for
demonstration purposes only. The file can be used as-is, or you can merge its contents
with the existing Log4] properties.

If the file is used as-is, then it should be copied into the di r pr mdirectory, given a new
name, and specified with the - Dl 0g4j . conf i gur at i on property. For example, the
following line specifies the user-defined ny- | 0g4j . properti es file in the di r prm
directory (note the di r pr mdirectory is already on the classpath):

-Dl og4j . configuration=ny-1|o0g4j.properties

Using the default properties file in its current location can cause problems during
upgrades: your changes will lost when a new distribution is installed.

To allow HotCache to log warnings, add the following line to the property file:

| og4j . | ogger. oracl e. topl i nk. gol dengat e=WARN, stdout, rolling

To allow HotCache to log errors, add the following line to the property file you use:
-Dlog4j .1 ogger. oracl e. toplink. gol dengat e=DEBUG, stdout, rolling

7-10 Integrating Oracle Coherence

Configuring HotCache

Note:

A Coherence Log4] configuration can co-exist with the GoldenGate Log4]
configuration. Both can be included in the same file that is configured on the
j vm boot opt i ons path.

7.5.3 Provide Coherence*Extend Connection Information

The connection between HotCache and the Coherence cluster can be made with
Coherence*Extend. For more information on Coherence*Extend, see Developing Remote
Clients for Oracle Coherence.

The Coherence configuration files must be in a directory referenced by the
j vm boot opt i ons=- Dj ava. cl ass. pat h= ... entry in the . pr operti es file. For
an example, see the j vm boot opt i ons entry in Example 7-8.

Example 7-9 illustrates the section of a client cache configuration file that uses
Coherence*Extend to connect to the Coherence cluster. In the client cache
configuration file, Coherence*Extend is configured in the <r enot e- cache- scheme>
section. By default, the connection port for Coherence*Extend is 9099.

Example 7-9 Coherence*Extend Section of a Client Cache Configuration File

<cache-confi g>

<cachi ng- schemes>
<r enot e- cache- scheme>
<schene- nane>Cust onRenot eCacheScheme</ schene- nane>
<servi ce- name>Cust onExt endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>| ocal host </ addr ess>
<port >9099</ port >
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- message- handl er >

</ out goi ng- message- handl er >
</initiator-config>
</ renot e- cache- scheme>

</ cache-confi g>

Example 7-10 illustrates the section of a server cache configuration file that listens for
Coherence*Extend connections. In the server cache configuration file,
Coherence*Extend is configured in the <pr oxy- schene> section. By default, the
listener port for Coherence*Extend is 9099.

Example 7-10 Coherence*Extend Section of a Server Cache Configuration File
<cache-config>
.<.C;:iChi ng- schenmes>
h .<proxy- scheme>

<schene- name>Cust onPr oxy Scheme</ schene- nane>
<servi ce- name>Cust onPr oxy Ser vi ce</ servi ce- name>

Integrating with Oracle Coherence GoldenGate HotCache 7-11

Configuring the GoldenGate Java Client

<t hr ead- count >2</ t hr ead- count >
<acceptor-config>
<t cp- accept or>
<l ocal - addr ess>
<addr ess>l ocal host </ addr ess>
<port >9099</ port >
</l ocal - addr ess>
</tcp-acceptor>
</ acceptor-confi g>
<| oad- bal ancer >pr oxy</ | oad- bal ancer >
<autostart>true</autostart>
</ proxy- scheme>

</ cachi ng- schenes>
</ cache-confi g>

7.6 Configuring the GoldenGate Java Client

The GoldenGate Java client provides a way to process GoldenGate data change events
in Java by configuring an event handler class. The configuration for the GoldenGate
Java client allows it to monitor an extract and to pass data change events to HotCache.

This configuration is provided in an extracts . pr mfile and is described in the
following section. The extracts . pr mfile also contains a reference to the event handler
class. This is the same event handler class that is specified in the properties file
described in “Create a Properties File with GoldenGate for Java Properties”.

7.6.1 Edit the GoldenGate Java Client Extracts File

This section describes the parameters that can be defined in the extract . pr mfile for a
GoldenGate Java client. The parameters are illustrated in Example 7-11 and constitute
a minimal configuration for a HotCache project.

For more information on these parameters and others that can be added toa . pr m
extracts file, see Reference for Oracle GoldenGate for Windows and UNIX.

e SetEnv (GGS_USEREXI T _CONF = "dirprnics-cgga. properties")

The GGS_USEREXI T_CONF property provides a reference to the . pr operti es file
that you created in “Create a Properties File with GoldenGate for Java Properties”.
It is assumed that the file is named cs- cgga. pr operti es and is stored in the

di r pr mfolder.

o CETUPDATEBEFORES

The GETUPDATEBEFCRES property indicates that the before and after values of
columns that have changed are written to the trail if the before values are present
and can be compared. If before values are not present only after values are written.

e CUserExit libggjava ue.so CUSEREXI T PassThru
I ncl udeUpdat eBef or es

The CUSEREXI T parameter includes the following:

— The location of the user exit library, which will be | i bggj ava_ue. so for
UNIX or ggj ava_ue. dl | for Windows

— CUSEREXI T—the callback function name that must be uppercase

— PASSTHRU—avoids the need for a dummy target trail

7-12 Integrating Oracle Coherence

Using Portable Object Format with HotCache

— | NCLUDEUPDATEBEFORES—needed for transaction integrity

e NoTcpSourceTi ner

Use the NOTCPSOURCET! MER parameter to manage the timestamps of replicated
operations for reporting purposes within the Oracle GoldenGate environment.
NOTCPSOURCET! MER retains the original timestamp value. Use
NOTCPSOURCET! MER when using timestamp-based conflict resolution in a
bidirectional configuration.

Example 7-11 illustrates a sample . pr mfile for GoldenGate for Java client.
Example 7-11 Sample .prm Parameter File for GoldenGate for Java Client

Extract cs-cgga
USERI D csdenp, PASSWORD csdenp

Set Env (GGS_USEREXI T_CONF = "dirprnics-cgga. properties")

- the user-exit library (unix/linux)
CUserExit |ibggjava_ue.so CUSEREXIT PassThru | ncl udeUpdat eBef or es

- the user-exit library (w ndows)
- CUserExit ggjava_ue.dll CUSEREXI T PassThru Incl udeUpdat eBef ores
pass all trail data to user-exit (don't ignore/onmt/filter data)
Get Updat eBef or es

- TcpSourceTi mer (defaul t=on) adjusts tinmestanps in replicated records for nore
- accurate lag calculation, if time differences between source/target
NoTcpSour ceTi mer

- pass all data in trail to user-exit. Can wildcard tables, but not schema name
Tabl e csden. *;

7.7 Using Portable Object Format with HotCache

Serialization is the process of encoding an object into a binary format. It is a critical
component to working with Coherence as data must be moved around the network.
Portable Object Format (also known as POF) is a language-agnostic binary format.
POF was designed to be very efficient in both space and time and has become a
cornerstone element in working with Coherence.

POF serialization can be used with HotCache but requires a small update to the POF
configuration file (pof - confi g. xm) to allow for HotCache and TopLink Grid
framework classes to be registered. The pof - conf i g. xm file must include the
coher ence- hot cache- pof - confi g. xm file and must register the

TopLi nkG i dPor t abl eObj ect user type and TopLi nkGi dSeri al i zer as the
serializer. The <t ype- i d> for each class must be unique and must match across all
cluster instances. For more information on configuring a POF file, see "Registering
POF Objects" in Developing Applications with Oracle Coherence.

The <al | ow-i nt er f aces> element must be set to t r ue to allow you to register a
single class for all implementors of the TopLi nkGr i dPor t abl eCbj ect interface.

Example 7-12 illustrates a sample pof - conf i g. xni file for HotCache. The value
i nt eger _val ue represents a unique integer value greater than 1000.

Example 7-12 Sample POF Configuration File for HotCache

<?xm version="1.0" ?><pof-config xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena-
i nstance"xm ns="http://xn ns. oracl e. com coher ence/ coher ence- pof -
confi g"xsi:schemalocation="http://xmn ns. oracl e. com coher ence/ coher ence- pof -

Integrating with Oracle Coherence GoldenGate HotCache 7-13

Enabling Wrapper Classes for TopLink Grid Applications

confi gcoher ence- pof - confi g. xsd">

<user-type-list>

<i ncl ude>coher ence- hot cache- pof - confi g. xnl </i ncl ude>
<l-- User types must be above 1000 -->

<user-type>
<type-id><i nt eger _val ue></type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i nt egrat ed. cache. TopLi nkG i dPor t abl e(bj ect
</ cl ass- name>
<serializer>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i nt egrat ed. cache. TopLi nkGi dSeri al i zer </
cl ass- name>
</serializer>
</ user-type>

</ user-type-list>
<all owinterfaces>true</allowinterfaces>

</ pof - confi g>

7.8 Enabling Wrapper Classes for TopLink Grid Applications

TopLink Grid applications which depend on HotCache to pump changed data to the
Coherence cache can use the t opl i nk. gol dengat e. enabl e-t opl i nkgri d-

cl i ent context property set to t r ue to generate Java wrapper classes for Coherence
cache inserts.

TopLink Grid depends on wrappers to encode relationship information so that eager
and lazy JPA relationships can be rebuilt when retrieved from Coherence by TopLink
Grid JPA clients. If you are using TopLink Grid with HotCache and the property is not
set to t r ue, then relationships between objects will be null when retrieved from the
Coherence cache.

This context property can be set in the per si st ence. xnl file or as a system property
in the Java boot options section of the HotCache . properti es file.

7-14 Integrating Oracle Coherence

8

Using Memcached Clients with Oracle
Coherence

This chapter provides instructions for configuring the Oracle Coherence memcached
adapter. The memcached adapter allows Coherence to be used as a distributed cache
for memcached-based clients. The instructions in this chapter assume that an existing
memcached client is being used to connect to Coherence. A simple hello world client
that is written using the spymemcached API is provided for demonstration purposes.

This chapter contains the following sections:

¢ Overview of the Oracle Coherence Memcached Adapter
* Setting Up the Memcached Adapter

¢ Connecting to the Memcached Adapter

* Securing Memcached Client Communication

¢ Sharing Data Between Memcached and Coherence Clients

8.1 Overview of the Oracle Coherence Memcached Adapter

The memcached adapter provides access to Coherence caches over the memcached
binary protocol and allows Coherence to be used as a drop-in replacement for a
memcached server. The adapter supports any memcached client API that supports the
memcached binary protocol. This allows memcached clients that are written in many
different programming languages to use Coherence.

The memcached adapter is located on a Coherence proxy server and is implemented
as a Coherence*Extend-styled acceptor. Memcached clients connect to the acceptor,
which manages the distributed cache operations on the cluster. The cache operations
are performed as entry processor operations. The acceptor must first be enabled within
a proxy service in order to interact with Coherence cached data. Additional features
for securing memcached client communication and for sharing data with native
Coherence clients are provided and can be configured as required.

Figure 8-1 shows a conceptual view of a memcached client connecting to the
memcached acceptor located on a Coherence proxy server in order to use a distributed
cache.

Using Memcached Clients with Oracle Coherence 8-1

Setting Up the Memcached Adapter

Figure 8-1 Conceptual View of a Memcached Client Connection

Coherence Proxy Server

Memcached Client

¥

Memcached Acceptor

Distributed Cache

8.2 Setting Up the Memcached Adapter

Memcached adapters are configured within a proxy service using a specific
memcached acceptor. The acceptor configuration defines the socket address and the
distributed cache for use by memcached clients.

8.2.1 Define the Memcached Adapter Socket Address

The memcached adapter uses a socket address (IP, or DNS name, and port) for clients
to connect to. The socket address is configured in an operational override
configuration file using the <addr ess- pr ovi der > element. The address is then
referenced from a proxy service definition using the configured i d attribute. For
details on the <addr ess- pr ovi der > element, see Developing Applications with Oracle
Coherence.

The following example configures a socket address and uses 198. 168. 1. 5 for the IP
address, 9099 for the port, and mentached for the ID.

<cluster-config>
<addr ess- provi der s>
<addr ess- provi der id="nencached">
<socket - addr ess>
<addr ess>198. 168. 1. 5</ addr ess>
<port >9099</ port >
</ socket - addr ess>
</ addr ess- provi der >
</ addr ess- provi der s>
</cl uster-config>

8.2.2 Define Memcached Adapter Proxy Service

A proxy service allows remote clients to interact with the caching services of a
Coherence cluster without becoming cluster members. A proxy service for the
memcached adapter includes a specific memcached acceptor that accepts memcached
client requests on a defined socket address and then delegates the requests to a
distributed cache.

8-2 Integrating Oracle Coherence

Setting Up the Memcached Adapter

Note:

The memcached adapter can only use a distributed cache.

To create a proxy service for memcached clients, edit the cache configuration file and
add a <pr oxy- schene> element and include the <nentached- accept or > element
within the <accept or - conf i g> element. The <mentached- accept or > element
must include the name of the cache to use and a reference to an address provider
definition that defines the socket address to listen to for memcached client
communication. For a detailed reference of the <mentached- accept or > element,
see Developing Applications with Oracle Coherence.

The following example creates a proxy service and defines a memcached acceptor. The
example references the address provider that was defined in Define the Memcached
Adapter Socket Address.

<cachi ng- schenes>
<pr oxy- schenme>
<servi ce- nane>MencachedPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<nencached- accept or >
<cache- nane>hel | o- exanpl e</ cache- nane>
<addr ess- provi der >nencached</ addr ess- pr ovi der >
</ menctached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- schene>
</ cachi ng- schenes>

The cache name refers to the hel | 0- exanpl e cache. The cache name must resolve to
a distributed cache. The following example shows the definition of the hel | o-
exanpl e cache and the distributed scheme to which it maps.

<?xm version="1.0"?>
<cache-config xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocat i on=
"http://xm ns. oracl e. cont coher ence/ coher ence- cache-confi g
coher ence- cache-confi g. xsd">

<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>hel | o- exanpl e</ cache- nane>
<schene- nane>di st ri but ed</ schene- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>

<di stri but ed- schene>
<scheme- name>di st ri but ed</ schenme- name>
<servi ce- name>MencachedTest </ servi ce- nane>
<backi ng- map- scheme>

<l ocal - scheme/ >

</ backi ng- map- schene>
<autostart>true</autostart>

</ di stribut ed- schene>

Using Memcached Clients with Oracle Coherence 8-3

Connecting to the Memcached Adapter

<pr oxy- scheme>
<servi ce- nane>MencachedPr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<nencached- accept or >
<cache- name>hel | 0- exanpl e</ cache- name>
<addr ess- provi der >mencached</ addr ess- pr ovi der >
</ mentached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>
</ cachi ng- schenes>
</ cache-confi g>

8.3 Connecting to the Memcached Adapter

Memcached clients must specify the address and port of a proxy service for the
memcached adapter. The proxy service address is used in place of the memcached
server address. Refer to your memcached client documentation for details on how to
specify the address of a memcached server.

The following example shows a simple hello world client that uses the spymemcached
client API to connect to the proxy service for the memcached adapter that was defined
in Setting Up the Memcached Adapter.

i mport net.spy. nencached. Addr Util;
i mport net. spy. mencached. Bi naryConnect i onFact ory;
i nport net. spy. nencached. Mentachedd i ent;

public class MentachedExanpl e {
public static void main(String[] args) throws Exception {
String key = "k1";
String value = "Hello Wrld!'";

Mencachedd ient ¢ = new Mentachedd i ent (
new Bi naryConnecti onFactory(),
AddrUti|. get Addresses("198. 168. 1. 5: 9099"));

c.add(key, 0, value);
Systemout. printIn((String)c.get(key));
c. shut down();

}
}

8.4 Securing Memcached Client Communication

The memcached adapter can use both authentication and authorization to restrict
access to cluster resources. Authentication support is provided for the SASL (Simple
Authentication and Security Layer) plain authentication. Authorization is
implemented using Oracle Coherence*Extend-styled authorization, which relies on
interceptor classes that provide fine-grained access for cache service operations. The
memcached adapter authentication and authorization features reuses much of the
existing security capabilities of Oracle Coherence: references are provided to existing
content where applicable.

8.4.1 Performing Memcached Client Authentication

Memcached clients can use SASL plain authentication to provide a username and
password when connecting to the memcached adapter. To use SASL plain
authentication, you must create an | dent i t yAssert er implementation on the

8-4 Integrating Oracle Coherence

Sharing Data Between Memcached and Coherence Clients

proxy. The memcached adapter calls the | dent i t yAssert er implementation and
passes the com t angosol . net . security. User nameAndPasswor d object as a
token. For details on creating and enabling an | dent i t yAssert er implementation,
see Securing Oracle Coherence. Refer to your memcached client documentation for
details on establishing a SASL plain connection.

In addition to an | dent i t yAsser t er implementation, authentication must be
enabled on a memcached adapter to use SASL plain authentication. To enable
authentication, edit the proxy service definition in the cache configuration file and add
a <nentached- aut h- net hod> element, within the <mentached- accept or >
element, and set it to pl ai n.

<cachi ng- schenes>
<pr oxy- scheme>
<servi ce- nanme>MencachedPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<nencached- accept or >
<cache- nane>hel | o- exanpl e</ cache- nane>
<nencached- aut h- met hod>pl ai n</ mentached- aut h- net hod>
<addr ess- provi der >mentached</ addr ess- pr ovi der >
</ mencached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- schenme>
</ cachi ng- schenes>

8.4.2 Performing Memcached Client Authorization

The memcached adapter relies on the Oracle Coherence*Extend authorization
framework to restrict which operations a memcached client performs on a cluster. For
detailed instructions about implementing Oracle Coherence*Extend-style
authorization, see Securing Oracle Coherence.

8.5 Sharing Data Between Memcached and Coherence Clients

The memcached adapter stores entries in a cache using a binary format. If you intend
to share the data with Coherence clients, then memcached clients must use a
serialization format that Coherence clients also support. Coherence clients typically
use Portable Object Format (POF), which is highlighted in this section. For details
about POF, see Developing Applications with Oracle Coherence.

8.5.1 Configuring POF for Memcached Clients

To configure POF for Memcached clients:

1. Edit the proxy service definition in the cache configuration file and add an
<i nt er op- enabl ed> element, within the <mentached- accept or > element,
and setittotrue.

<pr oxy- scheme>
<servi ce- nane>MencachedPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<nentached- accept or >
<cache- nane>hel | o- exanpl e</ cache- nane>
<i nt er op- enabl ed>t r ue</ i nt er op- enabl ed>
<addr ess- provi der >mentached</ addr ess- pr ovi der >

Using Memcached Clients with Oracle Coherence 8-5

Sharing Data Between Memcached and Coherence Clients

</ mentached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- scheme>

2. Enable POF on the distributed cache that is used by the memcached acceptor.

<di st ri but ed- scheme>
<schene- nane>di st ri but ed</ scheme- name>
<servi ce- name>MentachedTest </ servi ce- nane>
<serializer>
<i nstance>
<cl ass- name>com t angosol . i 0. pof . Confi gur abl ePof Cont ext </ cl ass- name>
<init-parans>
<init-paran>
<param type>String</ paramtype>
<par am val ue>nentached- pof - confi g. xm </ par am val ue>
</init-paranm
</init-params>
</instance>
</serializer>
<backi ng- map- scheme>
<l ocal - schene/ >
</ backi ng- map- scheme>
<autostart>true</autostart>
</ distributed- scheme>

3. Register POF types in the defined POF configuration file. For the above example,
the POF configuration file is named nentached- pof - confi g. xm . The file must
be found on the classpath before the coher ence. j ar file. The following example
defines a POF user type for the Pof User object:

<?xm version='1.0"?>

<pof-config xm ns: xsi="http://wwm. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- pof - confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence- pof - confi g
coher ence- pof - confi g. xsd">
<user-type-list>
<i ncl ude>coher ence- pof - confi g. xn </i ncl ude>

<l-- User types nust be above 1000 -->
<user-type>

<type-i d>1001</type-id>

<cl ass- nane>nentached. Pof User </ ¢l ass- nane>
</ user-type>

</user-type-list>
</ pof - confi g>

8.5.2 Create a Memcached Client that Uses POF

Many memcached client libraries include the ability to plug in custom serializers.
Refer to your memcached client documentation for details on how to plug in custom
serializers. The following excerpt shows a spymemcached client that adds the

Pof User object that was registered in step 3 and uses a spymemcached transcoder to
plug in the POF serializer.

8-6 Integrating Oracle Coherence

Sharing Data Between Memcached and Coherence Clients

MencachedClient client = mclient;

String key = "pof Key";

Pof User user = new Pof User (" nmencached", 1);

Pof Transcoder <Pof User> t¢ = new Pof Transcoder (" nencached- pof - config. xm");

if (client.set(key, 0, user, tc).get())
{

throw new Exception("failed to set value");

}

The POF transcoder plug-in is defined as follows:

i mport com tangosol . io. pof. Configurabl ePof Cont ext ;
i mport com tangosol.util.Binary;
inport com tangosol.util.Externalizabl eHel per;

i mport net. spy. nencached. CachedDat a;
i mport net. spy. nencached. conpat . SpyQhj ect ;
i nport net.spy. nencached. transcoders. Transcoder;

public class Pof Transcoder <T> extends SpyChject inplenents Transcoder <T>

{

public Pof Transcoder (String sLocator)

{

m ctx = new Confi gurabl ePof Cont ext (sLocat or);

}

@verride
public bool ean asyncDecode(CachedData arg0)

{
return Bool ean. FALSE;

}

@verride
public T decode(CachedData cachedDat a)

{
int nFlag = cachedDat a. get Fl ags();

Bi nary bin = new Binary(cachedData. getData());
return (T) Externalizabl eHel per.fronBinary(bin, mctx);

}

@verride
public CachedData encode(Chject obj)

{

byte[] oValue = Externalizabl eHel per.toByteArray(obj, mctx);
return new CachedDat a(FLAG oVal ue, CachedData. MAX_SI ZE);
}

@verride
public int get MaxSize()

{
return CachedData. MAX_SI ZE;

}

protected Configurabl ePof Context mctx;

protected static final int FLAG = 4,

Using Memcached Clients with Oracle Coherence 8-7

Sharing Data Between Memcached and Coherence Clients

8-8 Integrating Oracle Coherence

Index

G Grid Read configuration (continued)
inserting objects, 1-14

Grid Read configuration

Index-1

Index-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features
	Other Significant Changes in this Document

	1 Integrating TopLink Grid with Oracle Coherence
	1.1 What is TopLink Grid?
	1.1.1 What are the JPA on the Grid Configurations?
	1.1.2 What are the Benefits of Using TopLink Grid with Oracle Coherence?

	1.2 Required Files
	1.3 JPA on the Grid Configurations
	1.3.1 Understanding JPA on the Grid
	1.3.2 JPA on the Grid API
	1.3.3 Grid Cache Configuration
	1.3.3.1 Reading Objects in Grid Cache Configuration
	1.3.3.2 Writing Objects in Grid Cache Configuration
	1.3.3.3 Grid Cache Configuration Examples
	1.3.3.3.1 Configuring the Cache for the Grid Cache Configuration
	1.3.3.3.2 Configuring an Entity for the Grid Cache Configuration
	1.3.3.3.3 Inserting Objects for the Grid Cache Configuration
	1.3.3.3.4 Querying Objects for the Grid Cache Configuration

	1.3.4 Grid Read Configuration
	1.3.4.1 Reading Objects in Grid Read Configuration
	1.3.4.2 Writing Objects in Grid Read Configuration
	1.3.4.3 Grid Read Configuration Examples
	1.3.4.3.1 Configuring the Cache in Grid Read Configuration
	1.3.4.3.2 Reading Objects for the Grid Read Configuration
	1.3.4.3.3 Inserting Objects for the Grid Read Configuration
	1.3.4.3.4 Querying Objects for the Grid Read Configuration

	1.3.5 Grid Entity Configuration
	1.3.5.1 Reading Objects in Grid Entity Configuration
	1.3.5.2 Writing Objects in Grid Entity Configuration
	1.3.5.3 Limitations on Writing Objects in Grid Entity Configuration
	1.3.5.4 Grid Entity Configuration Examples
	1.3.5.4.1 Configuring the Cache for the Grid Entity Configuration
	1.3.5.4.2 Configuring an Entity for the Grid Entity Configuration
	1.3.5.4.3 Persisting Objects for the Grid Entity Configuration
	1.3.5.4.4 Querying Objects for the Grid Entity Configuration

	1.3.6 Handling Grid Read and Grid Entity Failovers
	1.3.7 Wrapping and Unwrapping Entity Relationships
	1.3.8 Working with Queries
	1.3.8.1 Querying Objects by ID
	1.3.8.2 Querying Objects with Criteria
	1.3.8.3 Using Indexes in Queries
	1.3.8.4 Limitations on Queries

	1.4 EclipseLink Native ORM Configurations
	1.4.1 Understanding EclipseLink Native ORM
	1.4.2 API for EclipseLink Native ORM
	1.4.3 Configuring an Amendment Method
	1.4.3.1 Configuring the Amendment Method in JDeveloper

	1.4.4 Configuring the EclipseLink Native ORM Cache Store and Cache Loader

	1.5 Using POF Serialization with TopLink Grid and Coherence
	1.5.1 Implement a Serialization Routine
	1.5.2 Define a Cache Configuration File
	1.5.3 Define a POF Configuration File

	1.6 Best Practices
	1.6.1 Changing Compiled Java Classes with Byte Code Weaving
	1.6.2 Deferring Database Queries with Lazy Loading
	1.6.3 Defining Near Caches for Applications Using TopLink Grid
	1.6.4 Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration
	1.6.5 Overriding the Default Cache Name

	2 Integrating JPA Using the Coherence API
	2.1 Using TopLink Grid with Coherence Client Applications
	2.1.1 API for Coherence with TopLink Grid Configurations
	2.1.2 Sample Cache Configuration File for Coherence with TopLink Grid
	2.1.3 Sample Project for Using Coherence with TopLink Grid

	2.2 Using Third Party JPA Providers
	2.2.1 API for Native Coherence JPA CacheStore and CacheLoader
	2.2.2 Steps to Use a Third Party JPA Provider and Native Coherence JPA API
	2.2.2.1 Obtain a JPA Provider Implementation
	2.2.2.2 Configure a Coherence JPA Cache Store
	2.2.2.2.1 Map the Persistent Classes
	2.2.2.2.2 Configure JPA
	2.2.2.2.3 Configure a Coherence Cache for JPA
	2.2.2.2.4 Configure the Persistence Unit

	3 Integrating Coherence Applications with Coherence*Web
	3.1 Merging Coherence Cache and Session Information

	4 Integrating Hibernate and Coherence
	5 Integrating Spring with Coherence
	6 Enabling ECID in Coherence Logs
	7 Integrating with Oracle Coherence GoldenGate HotCache
	7.1 Overview
	7.2 How Does HotCache Work?
	7.2.1 How the GoldenGate Java Adapter uses JPA Mapping Metadata
	7.2.2 Supported Database Operations

	7.3 Prerequisites
	7.4 Configuring GoldenGate
	7.4.1 Monitor Table Changes
	7.4.2 Filter Changes Made by the Current User

	7.5 Configuring HotCache
	7.5.1 Create a Properties File with GoldenGate for Java Properties
	7.5.2 Add Java Boot Options to the Properties File
	7.5.2.1 Java Classpath Files
	7.5.2.2 HotCache-related Properties
	7.5.2.3 Coherence-related Properties
	7.5.2.4 Logging Properties

	7.5.3 Provide Coherence*Extend Connection Information

	7.6 Configuring the GoldenGate Java Client
	7.6.1 Edit the GoldenGate Java Client Extracts File

	7.7 Using Portable Object Format with HotCache
	7.8 Enabling Wrapper Classes for TopLink Grid Applications

	8 Using Memcached Clients with Oracle Coherence
	8.1 Overview of the Oracle Coherence Memcached Adapter
	8.2 Setting Up the Memcached Adapter
	8.2.1 Define the Memcached Adapter Socket Address
	8.2.2 Define Memcached Adapter Proxy Service

	8.3 Connecting to the Memcached Adapter
	8.4 Securing Memcached Client Communication
	8.4.1 Performing Memcached Client Authentication
	8.4.2 Performing Memcached Client Authorization

	8.5 Sharing Data Between Memcached and Coherence Clients
	8.5.1 Configuring POF for Memcached Clients
	8.5.2 Create a Memcached Client that Uses POF

	Index

