

[1] Oracle® Fusion Middleware
Developing JAX-RPC Web Services for Oracle WebLogic
Server

12c (12.2.1)

E55165-01

October 2015

Documentation for software developers that describes how
to develop WebLogic web services using Java API for
XML-based RPC (JAX-RPC).

Oracle Fusion Middleware Developing JAX-RPC Web Services for Oracle WebLogic Server, 12c (12.2.1)

E55165-01

Copyright © 2013, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

What's New in This Guide .. xi

New and Changed Features for 12c (12.2.1) .. xi
New and Changed Features for 12c (12.1.3) .. xi
New and Changed Features for 12c (12.1.2) .. xi

1 Introduction to JAX-RPC Web Services

2 Examples for JAX-RPC Web Service Developers

2.1 Creating a Simple HelloWorld Web Service... 2-1
2.1.1 Sample HelloWorldImpl.java JWS File .. 2-3
2.1.2 Sample Ant Build File for HelloWorldImpl.java .. 2-4
2.2 Creating a Web Service With User-Defined Data Types... 2-5
2.2.1 Sample BasicStruct JavaBean ... 2-8
2.2.2 Sample ComplexImpl.java JWS File.. 2-8
2.2.3 Sample Ant Build File for ComplexImpl.java JWS File.. 2-9
2.3 Creating a Web Service from a WSDL File... 2-11
2.3.1 Sample WSDL File .. 2-14
2.3.2 Sample TemperaturePortType Java Implementation File .. 2-15
2.3.3 Sample Ant Build File for TemperatureService ... 2-16
2.4 Invoking a Web Service from a Java SE Client .. 2-17
2.4.1 Sample Java Client Application.. 2-20
2.4.2 Sample Ant Build File For Building Java Client Application..................................... 2-21
2.5 Invoking a Web Service from a WebLogic Web Service .. 2-21
2.5.1 Sample ClientServiceImpl.java JWS File ... 2-24
2.5.2 Sample Ant Build File For Building ClientService... 2-25

3 Developing JAX-RPC Web Services

3.1 Overview of the WebLogic Web Service Programming Model... 3-1
3.2 Configuring Your Domain For Web Services Features ... 3-2
3.3 Developing WebLogic Web Services Starting From Java: Main Steps................................ 3-3

iv

3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps 3-4
3.5 Creating the Basic Ant build.xml File .. 3-6
3.6 Running the jwsc WebLogic Web Services Ant Task .. 3-7
3.6.1 Specifying the Transport Used to Invoke the Web Service ... 3-8
3.6.2 Defining the Context Path of a WebLogic Web Service ... 3-9
3.6.3 Examples of Using jwsc ... 3-10
3.7 Running the wsdlc WebLogic Web Services Ant Task .. 3-11
3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc.......... 3-13
3.9 Deploying and Undeploying WebLogic Web Services .. 3-14
3.9.1 Using the wldeploy Ant Task to Deploy Web Services .. 3-14
3.9.2 Using the Administration Console to Deploy Web Services...................................... 3-15
3.10 Browsing to the WSDL of the Web Service .. 3-16
3.11 Configuring the Server Address Specified in the Dynamic WSDL.................................. 3-17
3.11.1 Web Service is not a callback service and can be invoked using HTTP/S............... 3-17
3.11.2 Web Service is not a callback service and can be invoked using JMS Transport 3-18
3.11.3 Web Service is a callback service .. 3-18
3.11.4 Web Service is invoked using a proxy server... 3-19
3.12 Testing the Web Service .. 3-19
3.13 Integrating Web Services Into the WebLogic Split Development Directory

Environment ... 3-19

4 Programming the JWS File

4.1 Overview of JWS Files and JWS Annotations... 4-1
4.2 Java Requirements for a JWS File ... 4-2
4.3 Programming the JWS File: Typical Steps... 4-2
4.3.1 Example of a JWS File ... 4-3
4.3.2 Specifying that the JWS File Implements a Web Service

(@WebService Annotation)... 4-4
4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol

(@SOAPBinding Annotation)... 4-5
4.3.4 Specifying the Context Path and Service URI of the Web Service

(@WLHttpTransport Annotation) ... 4-5
4.3.5 Specifying That a JWS Method Be Exposed as a Public Operation

(@WebMethod and @OneWay Annotations) .. 4-6
4.3.6 Customizing the Mapping Between Operation Parameters and WSDL Elements

(@WebParam Annotation).. 4-7
4.3.7 Customizing the Mapping Between the Operation Return Value and a WSDL

Element (@WebResult Annotation) .. 4-7
4.4 Accessing Run-Time Information About a Web Service... 4-8
4.4.1 Using JwsContext to Access Run-Time Information.. 4-8
4.4.1.1 Guidelines for Accessing the Web Service Context... 4-8
4.4.1.2 Methods of the JwsContext ... 4-9
4.4.2 Using the Stub Interface to Access Run-Time Information .. 4-12
4.5 Should You Implement a Stateless Session EJB? ... 4-13
4.5.1 Programming Guidelines When Implementing an EJB in Your JWS File................ 4-13
4.5.2 Example of a JWS File That Implements an EJB... 4-14
4.6 Programming the User-Defined Java Data Type .. 4-15
4.7 Throwing Exceptions... 4-16

v

4.8 Invoking Another Web Service from the JWS File.. 4-18
4.9 Programming Additional Miscellaneous Features Using JWS Annotations and APIs . 4-18
4.9.1 Sending Binary Data Using MTOM/XOP .. 4-19
4.9.2 Streaming SOAP Attachments.. 4-20
4.9.3 Using SOAP 1.2 ... 4-21
4.9.4 Specifying that Operations Run Inside of a Transaction .. 4-21
4.9.5 Getting the HttpServletRequest/Response Object .. 4-22
4.10 JWS Programming Best Practices .. 4-24

5 Understanding Data Binding

5.1 Overview of Data Binding... 5-1
5.2 Supported Built-In Data Types ... 5-2
5.2.1 XML-to-Java Mapping for Built-in Data Types... 5-2
5.2.2 Java-to-XML Mapping for Built-In Data Types... 5-3
5.3 Supported User-Defined Data Types... 5-4
5.3.1 Supported XML User-Defined Data Types.. 5-5
5.3.2 Supported Java User-Defined Data Types ... 5-5

6 Developing JAX-RPC Web Service Clients

6.1 Overview of JAX-RPC Web Service Clients.. 6-1
6.1.1 Invoking Web Services Using JAX-RPC... 6-2
6.1.2 Examples of Clients That Invoke Web Services .. 6-2
6.2 Invoking a Web Service from a Java SE Client ... 6-3
6.2.1 Using the clientgen Ant Task To Generate Client Artifacts .. 6-4
6.2.2 Getting Information About a Web Service... 6-5
6.2.3 Writing the Java Client Application Code to Invoke a Web Service............................ 6-6
6.2.4 Compiling and Running the Client Application... 6-7
6.2.5 Sample Ant Build File for a Java Client .. 6-8
6.3 Invoking a Web Service from Another Web Service ... 6-9
6.3.1 Sample build.xml File for a Web Service Client... 6-10
6.3.2 Sample JWS File That Invokes a Web Service .. 6-11
6.4 Using a Standalone Client JAR File When Invoking Web Services.................................. 6-13
6.5 Using a Proxy Server When Invoking a Web Service... 6-14
6.5.1 Using the HttpTransportInfo API to Specify the Proxy Server 6-14
6.5.2 Using System Properties to Specify the Proxy Server ... 6-15
6.6 Client Considerations When Redeploying a Web Service... 6-17
6.7 WebLogic Web Services Stub Properties.. 6-17
6.8 Setting the Character Encoding For the Response SOAP Message 6-19

7 Invoking a Web Service Using Asynchronous Request-Response

7.1 Overview of the Asynchronous Request-Response Feature .. 7-1
7.2 Using Asynchronous Request-Response: Main Steps ... 7-2
7.3 Configuring the Host WebLogic Server Instance for the Asynchronous Web Service 7-3
7.4 Writing the Asynchronous JWS File .. 7-4
7.4.1 Coding Guidelines for Invoking a Web Service Asynchronously................................ 7-6
7.4.2 Using Asynchronous Pre- and Post-call Contexts .. 7-8

vi

7.4.3 Example of a Synchronous Invoke.. 7-9
7.5 Updating the build.xml File When Using Asynchronous Request-Response 7-10
7.6 Disabling The Internal Asynchronous Service .. 7-10
7.7 Using Asynchronous Request Response With a Proxy Server.. 7-11

8 Using Web Services Reliable Messaging

8.1 Overview of Web Service Reliable Messaging ... 8-1
8.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions 8-3
8.1.2 Managing the Life Cycle of the Reliable Message Sequence... 8-3
8.2 Using Web Service Reliable Messaging: Main Steps ... 8-4
8.2.1 Prerequisites ... 8-6
8.3 Configuring the Destination WebLogic Server Instance... 8-6
8.4 Configuring the Source WebLogic Server Instance ... 8-8
8.5 Creating the Web Service Reliable Messaging WS-Policy File... 8-9
8.5.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy

Assertions Version 1.1.. 8-11
8.5.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy

Assertions Version 1.0 (Deprecated).. 8-12
8.5.3 Using Multiple Policy Alternatives.. 8-14
8.6 Programming Guidelines for the Reliable JWS File.. 8-14
8.6.1 Using the @Policy Annotation .. 8-16
8.6.2 Using the @Oneway Annotation .. 8-18
8.6.3 Using the @BufferQueue Annotation .. 8-18
8.6.4 Using the @ReliabilityBuffer Annotation.. 8-18
8.7 Configuring Reliable Messaging for a Reliable Web Service .. 8-19
8.7.1 Using the Administration Console... 8-21
8.7.2 Using WLST... 8-22
8.8 Programming Guidelines for the JWS File That Invokes a Reliable Web Service.......... 8-22
8.9 Updating the build.xml File for a Client of a Reliable Web Service 8-26
8.10 Using Reliable Messaging With MTOM... 8-27
8.11 Client Considerations When Redeploying a Reliable Web Service.................................. 8-28
8.12 Using Reliable Messaging With a Proxy Server .. 8-28

9 Creating Conversational Web Services

9.1 Overview of Conversational Web Services... 9-1
9.2 Creating a Conversational Web Service: Main Steps... 9-2
9.3 Programming Guidelines for the Conversational JWS File .. 9-4
9.4 Programming Guidelines for the JWS File That Invokes a Conversational Web Service 9-6
9.5 ConversationUtils Utility Class .. 9-9
9.6 Updating the build.xml File for a Client of a Conversational Web Service 9-9
9.7 Updating a Stand-Alone Java Client to Invoke a Conversational Web Service 9-10
9.8 Example Conversational Web Service .NET Client .. 9-11
9.8.1 ConversationService.java File ... 9-11
9.8.2 Service.cs File... 9-13
9.8.3 build.xml File... 9-19
9.9 Client Considerations When Redeploying a Conversational Web Service 9-21

vii

10 Creating Buffered Web Services

10.1 Overview of Buffered Web Services ... 10-1
10.2 Creating a Buffered Web Service: Main Steps ... 10-1
10.3 Configuring the Host WebLogic Server Instance for the Buffered Web Service............ 10-3
10.4 Programming Guidelines for the Buffered JWS File... 10-4
10.5 Programming the JWS File That Invokes the Buffered Web Service 10-6
10.6 Updating the build.xml File for a Client of the Buffered Web Service 10-7

11 Using the Asynchronous Features Together

11.1 Using the Asynchronous Features Together.. 11-1
11.2 Example of a JWS File That Implements a Reliable Conversational Web Service 11-2
11.3 Example of Client Web Service That Asynchronously Invokes a Reliable

Conversational Web Service... 11-3

12 Using Callbacks to Notify Clients of Events

12.1 Overview of Callbacks .. 12-1
12.2 Callback Implementation Overview and Terminology ... 12-1
12.3 Programming Callbacks: Main Steps.. 12-3
12.4 Programming Guidelines for Target Web Service .. 12-3
12.5 Programming Guidelines for the Callback Client Web Service.. 12-5
12.6 Programming Guidelines for the Callback Interface.. 12-7
12.7 Updating the build.xml File for the Client Web Service .. 12-8

13 Using JMS Transport as the Connection Protocol

13.1 Overview of Using JMS Transport .. 13-1
13.2 Using JMS Transport Starting From Java: Main Steps ... 13-2
13.3 Using JMS Transport Starting From WSDL: Main Steps ... 13-3
13.4 Configuring the Host WebLogic Server Instance for the JMS Transport Web Service . 13-4
13.5 Using the @WLJmsTransport JWS Annotation ... 13-6
13.6 Using the <WLJmsTransport> Child Element of the jwsc Ant Task................................ 13-7
13.7 Updating the WSDL to Use JMS Transport ... 13-8
13.8 Invoking a WebLogic Web Service Using JMS Transport ... 13-9
13.8.1 Overriding the Default Service Address URL.. 13-9
13.8.2 Using JMS BytesMessage Rather Than the Default TextMessage 13-10
13.8.3 Disabling HTTP Access to the WSDL File .. 13-11

14 Creating and Using SOAP Message Handlers

14.1 Overview of SOAP Message Handlers ... 14-1
14.2 Adding SOAP Message Handlers to a Web Service: Main Steps 14-3
14.3 Designing the SOAP Message Handlers and Handler Chains ... 14-4
14.4 Creating the GenericHandler Class... 14-5
14.4.1 Implementing the Handler.init() Method ... 14-7
14.4.2 Implementing the Handler.destroy() Method.. 14-8
14.4.3 Implementing the Handler.getHeaders() Method... 14-8
14.4.4 Implementing the Handler.handleRequest() Method... 14-8

viii

14.4.5 Implementing the Handler.handleResponse() Method .. 14-9
14.4.6 Implementing the Handler.handleFault() Method.. 14-10
14.4.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ .. 14-11
14.4.7.1 The SOAPPart Object .. 14-11
14.4.7.2 The AttachmentPart Object .. 14-11
14.4.7.3 Manipulating Image Attachments in a SOAP Message Handler 14-11
14.5 Configuring Handlers in the JWS File .. 14-12
14.5.1 @javax.jws.HandlerChain.. 14-12
14.5.2 @javax.jws.soap.SOAPMessageHandlers ... 14-13
14.6 Creating the Handler Chain Configuration File.. 14-15
14.7 Compiling and Rebuilding the Web Service ... 14-16
14.8 Creating and Using Client-Side SOAP Message Handlers.. 14-17
14.8.1 Using Client-Side SOAP Message Handlers: Main Steps... 14-17
14.8.2 Example of a Client-Side Handler Class ... 14-18
14.8.3 Creating the Client-Side SOAP Handler Configuration File.................................... 14-19
14.8.4 XML Schema for the Client-Side Handler Configuration File 14-20
14.8.5 Specifying the Client-Side SOAP Handler Configuration File to clientgen........... 14-21

15 Using Database Web Services

15.1 Overview of Database Web Services... 15-1
15.1.1 Database Call-in .. 15-1
15.1.2 Database Call-out.. 15-2
15.2 Type Mapping Between SQL and XML.. 15-3
15.2.1 SQL to XML Type Mappings for Web Service Call-Ins .. 15-3
15.2.2 XML-to-SQL Type Mapping for Web Service Call-outs ... 15-5

A Pre-Packaged WS-Policy Files for Reliable Messaging

A.1 DefaultReliability1.1.xml (WS-Policy File) ... A-1
A.2 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File) A-2
A.3 Reliability1.1_SequenceSTR.xml (WS-Policy File) .. A-2
A.4 Reliability1.0_1.1.xml (WS-Policy.xml File) ... A-2
A.5 DefaultReliability.xml (WS-Policy File) [Deprecated].. A-3
A.6 LongRunningReliability.xml (WS-Policy File) [Deprecated] .. A-4

ix

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing JAX-RPC Web Services for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

xi

What's New in This Guide

The following topics introduce the new and changed features of WebLogic Java API
for XML-based RPC (JAX-RPC) web services in Oracle Fusion Middleware 12c (12.2.1),
and provides pointers to additional information.

New and Changed Features for 12c (12.2.1)
The JAX-RPC API has been deprecated in WebLogic Server 12.2.1.

New and Changed Features for 12c (12.1.3)
For Oracle Fusion Middleware 12c (12.1.3), this document does not contain any new or
changed features.

New and Changed Features for 12c (12.1.2)
Oracle Fusion Middleware 12c (12.1.2) includes the following new and changed
features for this document:

■ For 12c (12.2.1), the contents of the following guides, delivered in Oracle Fusion
Middleware Release 11g, have been merged into this single document:

– Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

– Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic
Server

■ New standalone web service client JAR file that supports basic JAX-RPC
client-side functionality. See Section 6.4, "Using a Standalone Client JAR File When
Invoking Web Services".

xii

Part I
Part I Introduction

Part I introduces developing WebLogic web services using the Java API for
XML-based RPC (JAX-RPC).

Sections include:

■ Chapter 1, "Introduction to JAX-RPC Web Services"

■ Chapter 2, "Examples for JAX-RPC Web Service Developers"

1

Introduction to JAX-RPC Web Services 1-1

1Introduction to JAX-RPC Web Services

[2] This chapter provides a summary table of topics for software developers who program
WebLogic web services using Java API for XML-based RPC (JAX-RPC).

JAX-RPC is a specification that defines the Java APIs for making XML-based remote
procedure calls (RPC). In particular, these APIs are used to invoke and get a response
from a web service using SOAP 1.1, and XML-based protocol for exchange of
information in a decentralized and distributed environment. For more information, see
http://java.net/projects/jax-rpc/.

The following table summarizes the contents of this guide.

Table 1–1 Content Summary

This section . . . Describes how to . . .

Chapter 2, "Examples for JAX-RPC Web
Service Developers"

Review and run common use cases and
examples.

Chapter 3, "Developing JAX-RPC Web
Services"

Develop web services using the WebLogic
development environment.

Chapter 4, "Programming the JWS File" Program the JWS file that implements your web
service.

Chapter 5, "Understanding Data Binding" Use the Java Architecture for XML Binding
(JAXB) data binding.

Chapter 6, "Developing JAX-RPC Web
Service Clients"

Invoke your web service from a Java client or
another web service.

Chapter 7, "Invoking a Web Service Using
Asynchronous Request-Response"

Invoke a web service asynchronously.

Chapter 8, "Using Web Services Reliable
Messaging"

Create a reliable web service, as specified by the
WS-ReliableMessaging specification, and then
create a client web services that invokes the
reliable web service.

Chapter 9, "Creating Conversational Web
Services"

Create a conversational web service which
communicates with a client.

Chapter 10, "Creating Buffered Web
Services"

Create a buffered web service, which is a simpler
type of reliable web service that one specified by
the WS-ReliableMessaging specification.

Chapter 11, "Using the Asynchronous
Features Together"

Use the asynchronous features, such as reliable
messaging, asynchronous request-response, and
conversations, together in a single web service.

Chapter 12, "Using Callbacks to Notify
Clients of Events"

Notify a client of a web service that an event has
happened by programming a callback.

1-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

For an overview of WebLogic web services, standards, samples, and related
documentation, see Understanding WebLogic Web Services for Oracle WebLogic Server.

For information about WebLogic web service security, see Securing WebLogic Web
Services for Oracle WebLogic Server.

For definitions of unfamiliar terms found in this and other books, see the Glossary.

Chapter 13, "Using JMS Transport as the
Connection Protocol"

Specify that JMS, rather than the default HTTP/S,
is the connection protocol when invoking a web
service.

Chapter 14, "Creating and Using SOAP
Message Handlers"

Create and configure SOAP message handlers for
a web service.

Chapter 15, "Using Database Web Services" Create a database web service.

Table 1–1 (Cont.) Content Summary

This section . . . Describes how to . . .

2

Examples for JAX-RPC Web Service Developers 2-1

2Examples for JAX-RPC Web Service
Developers

[3] This chapter describes common use cases and examples for WebLogic web services
using Java API for XML-based RPC (JAX-RPC).

This chapter includes the following sections:

■ Creating a Simple HelloWorld Web Service

■ Creating a Web Service With User-Defined Data Types

■ Creating a Web Service from a WSDL File

■ Invoking a Web Service from a Java SE Client

■ Invoking a Web Service from a WebLogic Web Service

Each use case provides step-by-step procedures for creating simple WebLogic web
services and invoking an operation from a deployed web service. The examples
include basic Java code and Ant build.xml files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The use cases do not go into detail about the processes and tools used in the examples;
later chapters are referenced for more detail.

2.1 Creating a Simple HelloWorld Web Service
This section describes how to create a very simple web service that contains a single
operation. The Java Web Service (JWS) file that implements the web service uses just the
one required JWS annotation: @WebService. A JWS file is a standard Java file that uses
JWS metadata annotations to specify the shape of the web service. Metadata
annotations were introduced with JDK 5.0, and the set of annotations used to annotate
web service files are called JWS annotations. WebLogic web services use standard JWS
annotations. For a complete list of JWS annotations that are supported, see "Web
Service Annotation Support" in WebLogic Web Services Reference for Oracle WebLogic
Server.

The following example shows how to create a web service called HelloWorldService
that includes a single operation, sayHelloWorld. For simplicity, the operation returns
the inputted String value.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain

Creating a Simple HelloWorld Web Service

2-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

directory. The default location of WebLogic Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and domainName is the
name of your domain.

2. Create a project directory, as follows:

 prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/hello_world
 prompt> mkdir src/examples/webservices/hello_world

4. Create the JWS file that implements the web service.

Open your favorite Java IDE or text editor and create a Java file called
HelloWorldImpl.java using the Java code specified in Section 2.1.1, "Sample
HelloWorldImpl.java JWS File."

The sample JWS file shows a Java class called HelloWorldImpl that contains a
single public method, sayHelloWorld(String). The @WebService annotation
specifies that the Java class implements a web service called HelloWorldService.
By default, all public methods are exposed as operations.

5. Save the HelloWorldImpl.java file in the src/examples/webservices/hello_
world directory.

6. Create a standard Ant build.xml file in the project directory (myExamples/hello_
world/src) and add a taskdef Ant task to specify the full Java classname of the
jwsc task:

<project name="webservices-hello_world" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.1.2, "Sample Ant Build File for HelloWorldImpl.java" for a full
sample build.xml file that contains additional targets from those described in this
procedure, such as clean, undeploy, client, and run. The full build.xml file also
uses properties, such as ${ear-dir}, rather than always using the hard-coded
name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside
of the build-service target:

 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">
 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXRPC"/>
 </jwsc>
 </target>

The jwsc WebLogic web service Ant task generates the supporting artifacts (such
as the deployment descriptors, serialization classes for any user-defined data
types, the WSDL file, and so on), compiles the user-created and generated Java
code, and archives all the artifacts into an Enterprise Application EAR file that you
later deploy to WebLogic Server.

Creating a Simple HelloWorld Web Service

Examples for JAX-RPC Web Service Developers 2-3

8. Execute the jwsc Ant task by specifying the build-service target at the command
line:

prompt> ant build-service

See the output/helloWorldEar directory to view the files and artifacts generated
by the jwsc Ant task.

9. Start the WebLogic Server instance to which the web service will be deployed.

10. Deploy the web service, packaged in an enterprise application, to WebLogic
Server, using either the WebLogic Server Administration Console or the wldeploy
Ant task. In either case, you deploy the helloWorldEar Enterprise application,
located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy"
 name="helloWorldEar" source="output/helloWorldEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/HelloWorldImpl/HelloWorldImpl?WSDL

You construct the URL using the values of the contextPath and serviceUri
attributes of the WLHttpTransport JWS annotation; however, because the JWS file
in this use case does not include the WLHttpTransport annotation, use the default
values for the contextPath and serviceUri attributes: the name of the Java class
in the JWS file. These attributes will be set explicitly in the next example,
Section 2.2, "Creating a Web Service With User-Defined Data Types." Use the
hostname and port relevant to your WebLogic Server instance.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml
file to iteratively update, rebuild, undeploy, and redeploy the web service as part of
your development process.

To run the web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Client" for an example of creating a Java client
application that invokes a web service.

2.1.1 Sample HelloWorldImpl.java JWS File
package examples.webservices.hello_world;
// Import the @WebService annotation
import javax.jws.WebService;
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")

Creating a Simple HelloWorld Web Service

2-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHelloWorld
 */
public class HelloWorldImpl {
 // By default, all public methods are exposed as Web Services operation
 public String sayHelloWorld(String message) {
 try {
 System.out.println("sayHelloWorld:" + message);
 } catch (Exception ex) { ex.printStackTrace(); }

 return "Here is the message: '" + message + "'";
 }
 }

2.1.2 Sample Ant Build File for HelloWorldImpl.java
The following build.xml file uses properties to simplify the file.

<project name="webservices-hello_world" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="helloWorldEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/helloWorldEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXRPC"/>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Creating a Web Service With User-Defined Data Types

Examples for JAX-RPC Web Service Developers 2-5

 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.hello_world.client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/hello_world/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.hello_world.client.Main"
 fork="true" failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg
 line="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl" />
 </java> </target>
</project>

2.2 Creating a Web Service With User-Defined Data Types
The preceding use case uses only a simple data type, String, as the parameter and
return value of the web service operation. This next example shows how to create a
web service that uses a user-defined data type, in particular a JavaBean called
BasicStruct, as both a parameter and a return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a
web service, other than to create the Java source of the data type and use it correctly in
the JWS file. The jwsc Ant task, when it encounters a user-defined data type in the
JWS file, automatically generates all the data binding artifacts needed to convert data
between its XML representation (used in the SOAP messages) and its Java
representation (used in WebLogic Server). The data binding artifacts include the XML
Schema equivalent of the Java user-defined type, the JAX-RPC type mapping file, and
so on.

The following procedure is very similar to the procedure in Section 2.1, "Creating a
Simple HelloWorld Web Service." For this reason, although the procedure does show
all the needed steps, it provides details only for those steps that differ from the simple
HelloWorld example.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is the directory you specified

Creating a Web Service With User-Defined Data Types

2-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

as Oracle Home when you installed Oracle WebLogic Server and domainName is the
name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/complex

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/complex
 prompt> mkdir src/examples/webservices/complex

4. Create the source for the BasicStruct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
BasicStruct.java, in the project directory, using the Java code specified in
Section 2.2.1, "Sample BasicStruct JavaBean."

5. Save the BasicStruct.java file in the src/examples/webservices/complex
subdirectory of the project directory.

6. Create the JWS file that implements the web service using the Java code specified
in Section 2.2.2, "Sample ComplexImpl.java JWS File."

The sample JWS file uses several JWS annotations: @WebMethod to specify explicitly
that a method should be exposed as a web service operation and to change its
operation name from the default method name echoStruct to echoComplexType;
@WebParam and @WebResult to configure the parameters and return values;
@SOAPBinding to specify the type of web service; and @WLHttpTransport to specify
the URI used to invoke the web service. The ComplexImpl.java JWS file also
imports the examples.webservice.complex.BasicStruct class and then uses the
BasicStruct user-defined data type as both a parameter and return value of the
echoStruct() method.

For more in-depth information about creating a JWS file, see Chapter 4,
"Programming the JWS File."

7. Save the ComplexImpl.java file in the src/examples/webservices/complex
subdirectory of the project directory.

8. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the fully Java classname of the jwsc task:

<project name="webservices-complex" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.2.3, "Sample Ant Build File for ComplexImpl.java JWS File" for a full
sample build.xml file.

9. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside
of the build-service target:

<target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/ComplexServiceEar" >
 <jws file="examples/webservices/complex/ComplexImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="complex" serviceUri="ComplexService"

Creating a Web Service With User-Defined Data Types

Examples for JAX-RPC Web Service Developers 2-7

 portName="ComplexServicePort"/>
 </jws>
 </jwsc>
 </target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of web service
(JAX-WS or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant
task specifies the context path and service URI sections of the URL used to
invoke the web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL. This value overrides the value specified in the
JWS file using the @WLHttpTransport attribute. For more information about
defining the context path, see "Defining the Context Path of a WebLogic Web
Service" on page 3-9.

10. Execute the jwsc Ant task:

prompt> ant build-service

See the output/ComplexServiceEar directory to view the files and artifacts
generated by the jwsc Ant task.

11. Start the WebLogic Server instance to which the web service will be deployed.

12. Deploy the web service, packaged in the ComplexServiceEar Enterprise
Application, to WebLogic Server, using either the WebLogic Server Administration
Console or the wldeploy Ant task. For example:

 prompt> ant deploy

13. Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the wldeploy
Ant task. In either case, you deploy the ComplexServiceEar Enterprise application,
located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy"
 name="ComplexServiceEar" source="output/ComplexServiceEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

14. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/complex/ComplexService?WSDL

Creating a Web Service With User-Defined Data Types

2-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

To run the web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Client" for an example of creating a Java client
application that invokes a web service.

2.2.1 Sample BasicStruct JavaBean
package examples.webservices.complex;
/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */
public class BasicStruct {
 // Properties
 private int intValue;
 private String stringValue;
 private String[] stringArray;
 // Getter and setter methods
 public int getIntValue() {
 return intValue;
 }
 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }
 public String getStringValue() {
 return stringValue;
 }
 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }
 public String[] getStringArray() {
 return stringArray;
 }
 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }
 public String toString() {
 return "IntValue="+intValue+", StringValue="+stringValue;
 }
 }

2.2.2 Sample ComplexImpl.java JWS File
package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
 import javax.jws.WebParam;
 import javax.jws.WebResult;
 import javax.jws.WebService;
 import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interface
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
// Standard JWS annotation that specifies that the portType name of the Web
 // Service is "ComplexPortType", its public service name is "ComplexService",
 // and the targetNamespace used in the generated WSDL is "http://example.org"
@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies this is a document-literal-wrapped

Creating a Web Service With User-Defined Data Types

Examples for JAX-RPC Web Service Developers 2-9

 // Web Service
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
// WebLogic-specific JWS annotation that specifies the context path and service
 // URI used to build the URI of the Web Service is "complex/ComplexService"
@WLHttpTransport(contextPath="complex", serviceUri="ComplexService",
 portName="ComplexServicePort")
/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 */
public class ComplexImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 // Standard JWS annotation to expose method "echoStruct" as a public operation
 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".
 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 System.out.println("echoComplexType called");
 return struct;
 }
 }

2.2.3 Sample Ant Build File for ComplexImpl.java JWS File
The following build.xml file uses properties to simplify the file.

Creating a Web Service With User-Defined Data Types

2-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

<project name="webservices-complex" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="complexServiceEAR" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/complexServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client"/>
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}"
 keepGenerated="true"
 >
 <jws file="examples/webservices/complex/ComplexImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="complex" serviceUri="ComplexService"
 portName="ComplexServicePort"/>
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy"
 name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"/>
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" failonerror="false"
 name="${ear.deployed.name}"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"/>
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.complex.client"
 type="JAXRPC"/>

Creating a Web Service from a WSDL File

Examples for JAX-RPC Web Service Developers 2-11

 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/complex/client/**/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.complex.client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"
 />
 </java>
 </target>
</project>

2.3 Creating a Web Service from a WSDL File
Another common use case of creating a web service is to start from an existing WSDL
file, often referred to as the golden WSDL. A WSDL file is a public contract that
specifies what the web service looks like, such as the list of supported operations, the
signature and shape of each operation, the protocols and transports that can be used
when invoking the operations, and the XML Schema data types that are used when
transporting the data. Based on this WSDL file, you generate the artifacts that
implement the web service so that it can be deployed to WebLogic Server. You use the
wsdlc Ant task to generate the following artifacts.

■ JWS service endpoint interface (SEI) that implements the web service described by
the WSDL file.

■ JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

■ Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the web service parameters and return values.

■ Optional Javadocs for the generated JWS SEI.

Typically, you run the wsdlc Ant task one time to generate a JAR file that contains the
generated JWS SEI file and data binding artifacts, then code the generated JWS file that
implements the interface, adding the business logic of your web service. In particular,
you add Java code to the methods that implement the web service operations so that
the operations behave as needed and add additional JWS annotations.

After you have coded the JWS implementation file, you run the jwsc Ant task to
generate the deployable web service, using the same steps as described in the
preceding sections. The only difference is that you use the compiledWsdl attribute to
specify the JAR file (containing the JWS SEI file and data binding artifacts) generated
by the wsdlc Ant task.

Note: The only file generated by the wsdlc Ant task that you update
is the JWS implementation file. You never need to update the JAR file
that contains the JWS SEI and data binding artifacts.

Creating a Web Service from a WSDL File

2-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

The following simple example shows how to create a web service from the WSDL file
shown in Section 2.3.1, "Sample WSDL File." The web service has one operation,
getTemp, that returns a temperature when passed a zip code.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and domainName is the
name of your domain.

2. Create a working directory:

 prompt> mkdir /myExamples/wsdlc

3. Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
TemperatureService.wsdl and is located in the /myExamples/wsdlc/wsdl_files
directory. See Section 2.3.1, "Sample WSDL File" for a full listing of the file.

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the wsdlc task:

<project name="webservices-wsdlc" default="all">
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
</project>

See Section 2.3.3, "Sample Ant Build File for TemperatureService" for a full sample
build.xml file that contains additional targets from those described in this
procedure, such as clean, undeploy, client, and run. The full build.xml file also
uses properties, such as ${ear-dir}, rather than always using the hard-coded
name for the EAR directory.

5. Add the following call to the wsdlc Ant task to the build.xml file, wrapped inside
of the generate-from-wsdl target:

 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc" />
 </target>

The wsdlc task in the examples generates the JAR file that contains the JWS SEI
and data binding artifacts into the output/compiledWsdl directory under the
current directory. It also generates a partial implementation file
(TemperaturePortTypeImpl.java) of the JWS SEI into the
output/impl/examples/webservices/wsdlc directory (which is a combination of
the output directory specified by destImplDir and the directory hierarchy
specified by the package name). All generated JWS files will be packaged in the
examples.webservices.wsdlc package.

6. Execute the wsdlc Ant task by specifying the generate-from-wsdl target at the
command line:

prompt> ant generate-from-wsdl

Creating a Web Service from a WSDL File

Examples for JAX-RPC Web Service Developers 2-13

See the output directory if you want to examine the artifacts and files generated by
the wsdlc Ant task.

7. Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
JWS implementation file using your favorite Java IDE or text editor to add Java
code to the methods so that they behave as you want.

See Section 2.3.2, "Sample TemperaturePortType Java Implementation File" for an
example; the added Java code is in bold. The generated JWS implementation file
automatically includes values for the @WebService and @WLHttpTransport JWS
annotations that correspond to the values in the original WSDL file.

For simplicity, the sample getTemp() method in TemperaturePortTypeImpl.java
returns a hard-coded number. In real life, the implementation of this method
would actually look up the current temperature at the given zip code.

8. Copy the updated TemperaturePortTypeImpl.java file into a permanent directory,
such as a src directory under the project directory; remember to create child
directories that correspond to the package name:

prompt> cd /examples/wsdlc
prompt> mkdir src/examples/webservices/wsdlc
prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
\
 src/examples/webservices/wsdlc/TemperaturePortTypeImpl.java

9. Add a build-service target to the build.xml file that executes the jwsc Ant task
against the updated JWS implementation class. Use the compiledWsdl attribute of
jwsc to specify the name of the JAR file generated by the wsdlc Ant task:

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="temp" serviceUri="TemperatureService"
 portName="TemperaturePort">
 </WLHttpTransport>
 </jws>
 </jwsc>
 </target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of web services
(JAX-WS or JAX-RPC).

Note: There are restrictions on the JWS annotations that you can add
to the JWS implementation file in the "starting from WSDL" use case.
See "wsdlc" in the WebLogic Web Services Reference for Oracle WebLogic
Server for details.

Creating a Web Service from a WSDL File

2-14 Developing JAX-RPC Web Services for Oracle WebLogic Server

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant
task specifies the context path and service URI sections of the URL used to
invoke the web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL. This value overrides the value specified in the
JWS file using the @WLHttpTransport attribute.

10. Execute the build-service target to generate a deployable web service:

prompt> ant build-service

You can re-run this target if you want to update and then re-build the JWS file.

11. Start the WebLogic Server instance to which the web service will be deployed.

12. Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the wldeploy
Ant task. In either case, you deploy the wsdlcEar Enterprise application, located in
the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy" name="wsdlcEar"
 source="output/wsdlcEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

13. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL. Use the hostname and port relevant to your WebLogic
Server instance. Note that the deployed and original WSDL files are the same,
except for the host and port of the endpoint address.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml
file to iteratively update, rebuild, undeploy, and redeploy the web service as part of
your development process.

To run the web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Client" for an example of creating a Java client
application that invokes a web service.

2.3.1 Sample WSDL File
<?xml version="1.0"?>
<definitions
 name="TemperatureService"
 targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"

Creating a Web Service from a WSDL File

Examples for JAX-RPC Web Service Developers 2-15

 xmlns:tns="http://www.xmethods.net/sd/TemperatureService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <message name="getTempRequest">
 <part name="zip" type="xsd:string"/>
 </message>
 <message name="getTempResponse">
 <part name="return" type="xsd:float"/>
 </message>
 <portType name="TemperaturePortType">
 <operation name="getTemp">
 <input message="tns:getTempRequest"/>
 <output message="tns:getTempResponse"/>
 </operation>
 </portType>
 <binding name="TemperatureBinding" type="tns:TemperaturePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getTemp">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
 namespace="urn:xmethods-Temperature" />
 </input>
 <output>
 <soap:body use="literal"
 namespace="urn:xmethods-Temperature" />
 </output>
 </operation>
 </binding>
 <service name="TemperatureService">
 <documentation>
 Returns current temperature in a given U.S. zipcode
 </documentation>
 <port name="TemperaturePort" binding="tns:TemperatureBinding">
 <soap:address

location="http://localhost:7001/temp/TemperatureService"/>
 </port>
 </service>
</definitions>

2.3.2 Sample TemperaturePortType Java Implementation File
package examples.webservices.wsdlc;
import javax.jws.WebService;
 import weblogic.jws.*;
/**
 * TemperaturePortTypeImpl class implements web service endpoint
 * interface TemperaturePortType */
@WebService(
 serviceName="TemperatureService",
 targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType)
@WLHttpTransport(
 contextPath="temp",
 serviceUri="TemperatureService",
 portName="TemperaturePort")

Creating a Web Service from a WSDL File

2-16 Developing JAX-RPC Web Services for Oracle WebLogic Server

 public class TemperaturePortTypeImpl implements
examples.webservices.wsdlc.TemperaturePortType {
 public TemperaturePortTypeImpl() { }
 public float getTemp(java.lang.String zip) {
 return 1.234f;
 }
 }

2.3.3 Sample Ant Build File for TemperatureService
The following build.xml file uses properties to simplify the file.

<project default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="wsdlcEar" />
 <property name="example-output" value="output" />
 <property name="compiledWsdl-dir" value="${example-output}/compiledWsdl" />
 <property name="impl-dir" value="${example-output}/impl" />
 <property name="ear-dir" value="${example-output}/wsdlcEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all"
 depends="clean,generate-from-wsdl,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="${compiledWsdl-dir}"
 destImplDir="${impl-dir}"
 packageName="examples.webservices.wsdlc" />
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="temp" serviceUri="TemperatureService"
 portName="TemperaturePort"/>

Invoking a Web Service from a Java SE Client

Examples for JAX-RPC Web Service Developers 2-17

 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/temp/TemperatureService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.wsdlc.client"
 type="JAXRPC">
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/wsdlc/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.wsdlc.client.TemperatureClient"
 fork="true" failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg
 line="http://${wls.hostname}:${wls.port}/temp/TemperatureService" />
 </java>
 </target>
</project>

2.4 Invoking a Web Service from a Java SE Client

When you invoke an operation of a deployed web service from a client application, the
web service could be deployed to WebLogic Server or to any other application server,
such as .NET. All you need to know is the URL to its public contract file, or WSDL.

Note: As described in this section, you can invoke a web service
from any Java SE or Java EE application running on WebLogic Server
(with access to the WebLogic Server classpath). For information about
support for stand-alone Java applications that are running in an
environment where WebLogic Server libraries are not available, see
Section 6.4, "Using a Standalone Client JAR File When Invoking Web
Services".

Invoking a Web Service from a Java SE Client

2-18 Developing JAX-RPC Web Services for Oracle WebLogic Server

In addition to writing the Java client application, you must also run the clientgen
WebLogic web service Ant task to generate the artifacts that your client application
needs to invoke the web service operation. These artifacts include:

■ The Java class for the JAX-RPC Stub and Service interface implementations for
the particular web service you want to invoke.

■ The Java class for any user-defined XML Schema data types included in the WSDL
file.

■ The JAX-RPC mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

■ A client-side copy of the WSDL file.

The following example shows how to create a Java client application that invokes the
echoComplexType operation of the ComplexService WebLogic web service described in
Section 2.2, "Creating a Web Service With User-Defined Data Types." The
echoComplexType operation takes as both a parameter and return type the
BasicStruct user-defined data type.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and domainName is the
name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/simple_client

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the Java client application (shown later on in
this procedure):

 prompt> cd /myExamples/simple_client
 prompt> mkdir src/examples/webservices/simple_client

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the clientgen task:

<project name="webservices-simple_client" default="all">
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
</project>

See Section 2.4.2, "Sample Ant Build File For Building Java Client Application" for
a full sample build.xml file. The full build.xml file uses properties, such as
${clientclass-dir}, rather than always using the hard-coded name output
directory for client classes.

5. Add the following calls to the clientgen and javac Ant tasks to the build.xml
file, wrapped inside of the build-client target:

Note: It is assumed in this procedure that you have created and
deployed the ComplexService web service.

Invoking a Web Service from a Java SE Client

Examples for JAX-RPC Web Service Developers 2-19

 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="output/clientclass"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 <javac
 srcdir="output/clientclass" destdir="output/clientclass"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="output/clientclass"
 includes="examples/webservices/simple_client/*.java"/>
</target>

The clientgen Ant task uses the WSDL of the deployed ComplexService web
service to generate the necessary artifacts and puts them into the
output/clientclass directory, using the specified package name. Replace the
variables with the actual hostname and port of your WebLogic Server instance that
is hosting the web service.

The clientgen Ant task also automatically generates the
examples.webservices.complex.BasicStruct JavaBean class, which is the Java
representation of the user-defined data type specified in the WSDL.

The build-client target also specifies the standard javac Ant task, in addition to
clientgen, to compile all the Java code, including the simple Java program
described in the next step, into class files.

The clientgen Ant task also provides the destFile attribute if you want the Ant
task to automatically compile the generated Java code and package all artifacts
into a JAR file. For details and an example, see "clientgen" in the WebLogic Web
Services Reference for Oracle WebLogic Server.

6. Create the Java client application file that invokes the echoComplexType operation.

Open your favorite Java IDE or text editor and create a Java file called Main.java
using the code specified in Section 2.4.1, "Sample Java Client Application."

The Main client application takes a single argument: the WSDL URL of the web
service. The application then follows standard JAX-RPC guidelines to invoke an
operation of the web service using the web service-specific implementation of the
Service interface generated by clientgen. The application also imports and uses
the BasicStruct user-defined type, generated by the clientgen Ant task, that is
used as a parameter and return value for the echoStruct operation. For details,
see Chapter 6, "Developing JAX-RPC Web Service Clients."

7. Save the Main.java file in the src/examples/webservices/simple_client
subdirectory of the main project directory.

8. Execute the clientgen and javac Ant tasks by specifying the build-client target
at the command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated by
the clientgen Ant task.

9. Add the following targets to the build.xml file, used to execute the Main
application:

 <path id="client.class.path">

Invoking a Web Service from a Java SE Client

2-20 Developing JAX-RPC Web Services for Oracle WebLogic Server

 <pathelement path="output/clientclass"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
 </java>
 </target>

The run target invokes the Main application, passing it the WSDL URL of the
deployed web service as its single argument. The classpath element adds the
clientclass directory to the CLASSPATH, using the reference created with the
<path> task.

10. Execute the run target to invoke the echoComplexType operation:

 prompt> ant run

If the invoke was successful, you should see the following final output:

run:
 [java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the build.xml file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

2.4.1 Sample Java Client Application
The following provides a simple Java client application that invokes the
echoComplexType operation.

package examples.webservices.simple_client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
// import the BasicStruct class, used as a param and return value of the
 // echoComplexType operation. The class is generated automatically by
 // the clientgen Ant task.
import examples.webservices.complex.BasicStruct;
/**
 * This is a simple Java client application that invokes the
 * echoComplexType operation of the ComplexService web service.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException {
 ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
 }

Invoking a Web Service from a WebLogic Web Service

Examples for JAX-RPC Web Service Developers 2-21

2.4.2 Sample Ant Build File For Building Java Client Application
The following build.xml file defines tasks to build the Java client application. The
example uses properties to simplify the file.

<project name="webservices-simple_client" default="all">
 <!-- set global properties for this build -->
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="example-output" value="output" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="clean" >
 <delete dir="${clientclass-dir}"/>
 </target>
 <target name="all" depends="clean,build-client,run" />
 <target name="build-client">
 <clientgen
 type="JAXRPC"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.simple_client"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/simple_client/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
 </java>
 </target>
</project>

2.5 Invoking a Web Service from a WebLogic Web Service
You can also invoke a web service (WebLogic, .NET, and so on) from within a
deployed WebLogic web service.

The procedure for invoking a web service from a WebLogic web service is similar to
that described in Section 2.4, "Invoking a Web Service from a Java SE Client" except
that instead of running the clientgen Ant task to generate the client stubs, you use the
<clientgen> child element of <jws>, inside of the jwsc Ant task. The jwsc Ant task
automatically packages the generated client stubs in the invoking web service WAR
file so that the web service has immediate access to them. You then follow standard
JAX-RPC programming guidelines in the JWS file that implements the web service that
invokes the other web service.

Invoking a Web Service from a WebLogic Web Service

2-22 Developing JAX-RPC Web Services for Oracle WebLogic Server

The following example shows how to write a JWS file that invokes the
echoComplexType operation of the ComplexService web service described in
Section 2.2, "Creating a Web Service With User-Defined Data Types."

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and domainName is the
name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS and client application files (shown
later on in this procedure):

 prompt> cd /myExamples/service_to_service
 prompt> mkdir src/examples/webservices/service_to_service

4. Create the JWS file that implements the web service that invokes the
ComplexService web service.

Open your favorite Java IDE or text editor and create a Java file called
ClientServiceImpl.java using the Java code specified in Section 2.5.1, "Sample
ClientServiceImpl.java JWS File."

The sample JWS file shows a Java class called ClientServiceImpl that contains a
single public method, callComplexService(). The Java class imports the JAX-RPC
stubs, generated later on by the jwsc Ant task, as well as the BasicStruct Java
Bean (also generated by clientgen), which is the data type of the parameter and
return value of the echoComplexType operation of the ComplexService web
service.

The ClientServiceImpl Java class defines one method, callComplexService(),
which takes two parameters: a BasicStruct which is passed on to the
echoComplexType operation of the ComplexService web service, and the URL of
the ComplexService web service. The method then uses the standard JAX-RPC
APIs to get the Service and PortType of the ComplexService, using the stubs
generated by jwsc, and then invokes the echoComplexType operation.

5. Save the ClientServiceImpl.java file in the
src/examples/webservices/service_to_service directory.

6. Create a standard Ant build.xml file in the project directory and add the
following task:

<project name="webservices-service_to_service" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

The taskdef task defines the full classname of the jwsc Ant task.

Note: It is assumed that you have successfully deployed the
ComplexService web service.

Invoking a Web Service from a WebLogic Web Service

Examples for JAX-RPC Web Service Developers 2-23

See Section 2.5.2, "Sample Ant Build File For Building ClientService" for a full
sample build.xml file that contains additional targets from those described in this
procedure, such as clean, deploy, undeploy, client, and run. The full build.xml
file also uses properties, such as ${ear-dir}, rather than always using the
hard-coded name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside
of the build-service target:

<target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/ClientServiceEar" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>
 <clientgen
 type="JAXRPC"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>

In the preceding example, the <clientgen> child element of the <jws> element of
the jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc should
also generate and compile the client artifacts needed to invoke the web service
described by the WSDL file.

In this example, the package name is set to examples.webservices.complex,
which is different from the client application package name,
examples.webservices.simple_client. As a result, you need to import the
appropriate class files in the client application:

import examples.webservices.complex.BasicStruct;
 import examples.webservices.complex.ComplexPortType;
 import examples.webservices.complex.ComplexService;

If the package name is set to the same package name as the client application, the
import calls would be optional.

8. Execute the jwsc Ant task by specifying the build-service target at the command
line:

prompt> ant build-service

9. Start the WebLogic Server instance to which you will deploy the web service.

10. Deploy the web service, packaged in an enterprise application, to WebLogic
Server, using either the WebLogic Server Administration Console or the wldeploy
Ant task. In either case, you deploy the ClientServiceEar Enterprise application,
located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy" name="ClientServiceEar"

Invoking a Web Service from a WebLogic Web Service

2-24 Developing JAX-RPC Web Services for Oracle WebLogic Server

 source="ClientServiceEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/ClientService/ClientService?WSDL

See Section 2.4, "Invoking a Web Service from a Java SE Client" for an example of
creating a Java client application that invokes a web service.

2.5.1 Sample ClientServiceImpl.java JWS File
The following provides a simple web service client application that invokes the
echoComplexType operation.

package examples.webservices.service_to_service;
import java.rmi.RemoteException;
 import javax.xml.rpc.ServiceException;
import javax.jws.WebService;
 import javax.jws.WebMethod;
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct data type, generated by clientgen and used
 // by the ComplexService Web Service
import examples.webservices.complex.BasicStruct;
// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
 // Stubs generated by clientgen
import examples.webservices.service_to_service.ComplexPortType;
 import examples.webservices.service_to_service.ComplexService_Impl;
 import examples.webservices.service_to_service.ComplexService;
@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")
@WLHttpTransport(contextPath="ClientService", serviceUri="ClientService",
 portName="ClientServicePort")
public class ClientServiceImpl {
 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 throws ServiceException, RemoteException
 {
 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");
 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";
 }
 }

Invoking a Web Service from a WebLogic Web Service

Examples for JAX-RPC Web Service Developers 2-25

2.5.2 Sample Ant Build File For Building ClientService
The following build.xml file defines tasks to build the client application. The example
uses properties to simplify the file.

The following build.xml file uses properties to simplify the file.

<project name="webservices-service_to_service" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>
 <clientgen
 type="JAXRPC"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"

Invoking a Web Service from a WebLogic Web Service

2-26 Developing JAX-RPC Web Services for Oracle WebLogic Server

 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg

line="http://${wls.hostname}:${wls.port}/ClientService/ClientService"/>
 </java>
 </target>
</project>

Part II
Part II Developing Basic JAX-RPC Web Services

Part II describes how to develop basic WebLogic web services using Java API for
XML-based RPC (JAX-RPC).

Sections include:

■ Chapter 3, "Developing JAX-RPC Web Services"

■ Chapter 4, "Programming the JWS File"

■ Chapter 5, "Understanding Data Binding"

3

Developing JAX-RPC Web Services 3-1

3Developing JAX-RPC Web Services

[4] This chapter describes the iterative development process for WebLogic web services
using Java API for XML-based RPC (JAX-RPC).

This chapter includes the following sections:

■ Overview of the WebLogic Web Service Programming Model

■ Configuring Your Domain For Web Services Features

■ Developing WebLogic Web Services Starting From Java: Main Steps

■ Developing WebLogic Web Services Starting From a WSDL File: Main Steps

■ Creating the Basic Ant build.xml File

■ Running the jwsc WebLogic Web Services Ant Task

■ Running the wsdlc WebLogic Web Services Ant Task

■ Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc

■ Deploying and Undeploying WebLogic Web Services

■ Browsing to the WSDL of the Web Service

■ Configuring the Server Address Specified in the Dynamic WSDL

■ Testing the Web Service

■ Integrating Web Services Into the WebLogic Split Development Directory
Environment

3.1 Overview of the WebLogic Web Service Programming Model
The WebLogic Web Services programming model centers around JWS files—Java files
that use JWS annotations to specify the shape and behavior of the Web Service—and
Ant tasks that execute on the JWS file. JWS annotations are based on the metadata
feature, introduced in Version 5.0 of the JDK (specified by JSR-175 at
http://www.jcp.org/en/jsr/detail?id=175) and include standard annotations
defined by Web Services Metadata for the Java Platform specification (JSR-181), described
at http://www.jcp.org/en/jsr/detail?id=181, as well as additional ones. For a
complete list of JWS annotations that are supported, see "Web Service Annotation
Support" in WebLogic Web Services Reference for Oracle WebLogic Server. For additional
detailed information about this programming model, see Understanding WebLogic Web
Services for Oracle WebLogic Server.

The following sections describe the high-level steps for iteratively developing a Web
Service, either starting from Java or starting from an existing WSDL file:

Configuring Your Domain For Web Services Features

3-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

■ Section 3.3, "Developing WebLogic Web Services Starting From Java: Main Steps"

■ Section 3.4, "Developing WebLogic Web Services Starting From a WSDL File: Main
Steps"

Iterative development refers to setting up your development environment in such a
way so that you can repeatedly code, compile, package, deploy, and test a Web Service
until it works as you want. The WebLogic Web Service programming model uses Ant
tasks to perform most of the steps of the iterative development process. Typically, you
create a single build.xml file that contains targets for all the steps, then repeatedly run
the targets, after you have updated your JWS file with new Java code, to test that the
updates work as you expect.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper, to develop web services. For more information, see "Using
Oracle IDEs to Build Web Services" in Understanding WebLogic Web Services for Oracle
WebLogic Server.

3.2 Configuring Your Domain For Web Services Features
After you have created a WebLogic Server domain, you can use the Configuration
Wizard to update the domain, using a Web Services-specific extension template, so
that the resources required by certain WebLogic Web Services features are
automatically configured. Although use of this extension template is not required, it
makes the configuration of JMS and JDBC resources much easier.

The Web Services extension template automatically configures the resources required
for the following features:

■ Web Services Reliable Messaging

■ Buffering

■ JMS Transport

The following procedures describe how to create and extend a domain so that it is
automatically configured for the advanced web services features. For detailed
instructions about using the Configuration Wizard to create and update WebLogic
Server domains, see Creating WebLogic Domains Using the Configuration Wizard.

To create a domain that is automatically configured for the advanced web service
features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Create a new WebLogic domain.

3. Click Next.

4. Select Generate a domain configured automatically to support the following
products and select WebLogic Advanced Web Services for JAX-RPC Extension.

Note: A domain that does not contain Web Services resources will
still boot and operate correctly for non-web services scenarios, and
any Web Services scenario that does not involve asynchronous request
and response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for web services has not been
completely deployed.

Developing WebLogic Web Services Starting From Java: Main Steps

Developing JAX-RPC Web Services 3-3

5. Click Next.

6. Enter the name and location of the domain and click Next.

7. Configure the administrator user name and password and click Next.

8. Configure the server start mode and JDK and click Next.

9. If you want to further configure the JMS services, file stores, or any other feature,
select the items on the Select Optional Configuration screen. This is not typical.

Otherwise, leave all items deselected and click Next.

10. When you reach the Configuration Summary screen, verify the domain details and
click Create.

11. Click Done to exit.

To extend an existing domain so that it is automatically configured for these Web
Services features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Extend an Existing WebLogic Domain.

3. Click Next.

4. Select the domain to which you want to apply the extension template.

5. Click Next.

6. Select Extend my domain automatically to support the following added products
and select WebLogic Advanced Web Services for JAX-RPC Extension.

7. Click Next.

8. If you want to further configure the JMS services or file stores, select the items on
the Select Optional Configuration screen. This is not typical.

Otherwise, leave all items deselected and click Next.

9. Verify that you are extending the correct domain, then click Extend.

10. Click Done to exit.

3.3 Developing WebLogic Web Services Starting From Java: Main Steps
This section describes the general procedure for developing WebLogic Web Services
starting from Java—in effect, coding the JWS file from scratch and later generating the
WSDL file that describes the service. See Chapter 2, "Examples for JAX-RPC Web
Service Developers" for specific examples of this process.

The following procedure is just a recommendation; if you have set up your own
development environment, you can use this procedure as a guide for updating your
existing environment to develop WebLogic Web Services.

Note: This procedure does not use the WebLogic Web Services split
development directory environment. If you are using this
development environment, and would like to integrate Web Services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment" for details.

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

3-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

See Chapter 4, "Programming the JWS File" for information on writing client
applications that invoke a Web Service.

3.4 Developing WebLogic Web Services Starting From a WSDL File: Main
Steps

This section describes the general procedure for developing WebLogic Web Services
based on an existing WSDL file. See Chapter 3, "Developing JAX-RPC Web Services"
for a specific example of this process.

Table 3–1 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv.sh
(UNIX) command, located in the bin subdirectory of your
domain directory. The default location of WebLogic
Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is
the directory you specified as Oracle Home when you
installed Oracle WebLogic Server and domainName is the
name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source
for any user-defined data types, and the Ant build.xml
file. You can name the project directory anything you
want.

3 Create the JWS file that
implements the Web Service.

See Section 4.3, "Programming the JWS File: Typical
Steps."

4 Create user-defined data
types. (Optional)

If your Web Service uses user-defined data types, create
the JavaBeans that describes them. See Section 4.6,
"Programming the User-Defined Java Data Type."

5 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

6 Run the jwsc Ant task against
the JWS file.

The jwsc Ant task generates source code, data binding
artifacts, deployment descriptors, and so on, into an
output directory. The jwsc Ant task generates an
Enterprise application directory structure at this output
directory; later you deploy this exploded directory to
WebLogic Server as part of the iterative development
process. See Section 3.6, "Running the jwsc WebLogic Web
Services Ant Task."

7 Deploy the Web Service to
WebLogic Server.

See Section 3.9, "Deploying and Undeploying WebLogic
Web Services."

8 Browse to the WSDL of the
Web Service.

Browse to the WSDL of the Web Service to ensure that it
was deployed correctly. See Section 3.10, "Browsing to the
WSDL of the Web Service."

9 Test the Web Service. See Section 3.12, "Testing the Web Service."

10 Edit the Web Service.
(Optional)

To make changes to the Web Service, update the JWS file,
undeploy the Web Service as described in Section 3.9,
"Deploying and Undeploying WebLogic Web Services,"
then repeat the steps starting from running the jwsc Ant
task (Step 6).

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

Developing JAX-RPC Web Services 3-5

The procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing
environment to develop WebLogic Web Services.

It is assumed in this procedure that you already have an existing WSDL file.

Note: This procedure does not use the WebLogic Web Services split
development directory environment. If you are using this
development environment, and would like to integrate Web Services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment" for details.

Table 3–2 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv.sh
(UNIX) command, located in the bin subdirectory of your
domain directory. The default location of WebLogic
Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is
the directory you specified as Oracle Home when you
installed Oracle WebLogic Server and domainName is the
name of your domain.

2 Create a project directory. The project directory will contain the generated artifacts
and the Ant build.xml file.

3 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

4 Put your WSDL file in a
directory that the build.xml
Ant build file is able to read.

For example, you can put the WSDL file in a wsdl_files
child directory of the project directory.

5 Run the wsdlc Ant task
against the WSDL file.

The wsdlc Ant task generates the JWS service endpoint
interface (SEI), the stubbed-out JWS class file, JavaBeans
that represent the XML Schema data types, and so on,
into output directories. See Section 3.7, "Running the
wsdlc WebLogic Web Services Ant Task."

6 Update the stubbed-out JWS
file generated by the wsdlc
Ant task.

The wsdlc Ant task generates a stubbed-out JWS file. You
need to add your business code to the Web Service so it
behaves as you want. See Section 3.8, "Updating the
Stubbed-out JWS Implementation Class File Generated
By wsdlc."

7 Run the jwsc Ant task against
the JWS file.

Specify the artifacts generated by the wsdlc Ant task as
well as your updated JWS implementation file, to
generate an Enterprise Application that implements the
Web Service. See Section 3.6, "Running the jwsc WebLogic
Web Services Ant Task."

8 Deploy the Web Service to
WebLogic Server.

See Section 3.9, "Deploying and Undeploying WebLogic
Web Services."

Creating the Basic Ant build.xml File

3-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

See Chapter 6, "Developing JAX-RPC Web Service Clients" for information on writing
client applications that invoke a Web Service.

3.5 Creating the Basic Ant build.xml File
Ant uses build files written in XML (default name build.xml) that contain a <project>
root element and one or more targets that specify different stages in the Web Services
development process. Each target contains one or more tasks, or pieces of code that
can be executed. This section describes how to create a basic Ant build file; later
sections describe how to add targets to the build file that specify how to execute
various stages of the Web Services development process, such as running the jwsc Ant
task to process a JWS file and deploying the Web Service to WebLogic Server.

The following skeleton build.xml file specifies a default all target that calls all other
targets that will be added in later sections:

<project default="all">
 <target name="all"
 depends="clean,build-service,deploy" />
 <target name="clean">
 <delete dir="output" />
 </target>
 <target name="build-service">
 <!--add jwsc and related tasks here -->
 </target>
 <target name="deploy">
 <!--add wldeploy task here -->
 </dftarget>
</project>

9 Browse to the WSDL of the
Web Service.

Browse to the WSDL of the Web Service to ensure that it
was deployed correctly. See Section 3.10, "Browsing to the
WSDL of the Web Service."

The URL used to invoke the WSDL of the deployed Web
Service is essentially the same as the value of the
location attribute of the <address> element in the
original WSDL (except for the host and port values which
now correspond to the host and port of the WebLogic
Server instance to which you deployed the service.) This
is because the wsdlc Ant task generated values for the
contextPath and serviceURI of the @WLHttpTransport
annotation in the JWS implementation file so that
together they create the same URI as the endpoint
address specified in the original WSDL.

10 Test the Web Service. See Section 3.12, "Testing the Web Service."

11 Edit the Web Service.
(Optional)

To make changes to the Web Service, update the JWS file,
undeploy the Web Service as described in Section 3.9,
"Deploying and Undeploying WebLogic Web Services,"
then repeat the steps starting from running the jwsc Ant
task (Step 6).

Table 3–2 (Cont.) Steps to Develop Web Services Starting From Java

Step Description

Running the jwsc WebLogic Web Services Ant Task

Developing JAX-RPC Web Services 3-7

3.6 Running the jwsc WebLogic Web Services Ant Task
The jwsc Ant task takes as input a JWS file that contains JWS annotations and
generates all the artifacts you need to create a WebLogic Web Service. The JWS file can
be either one you coded yourself from scratch or one generated by the wsdlc Ant task.
The jwsc-generated artifacts include:

■ JSR-109 Web Service class file.

■ All required deployment descriptors, including:

– Standard and WebLogic-specific Web Services deployment descriptors:
webservices.xml and weblogic-webservices.xml.

– JAX-RPC mapping files.

– Java class-implemented Web Services: web.xml and weblogic.xml.

– EJB-implemented Web Services: ejb-jar.xml and weblogic-ejb-jar.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

■ The XML Schema representation of any Java user-defined types used as
parameters or return values to the Web Service operations.

■ The WSDL file that publicly describes the Web Service.

If you are running the jwsc Ant task against a JWS file generated by the wsdlc Ant
task, the jwsc task does not generate these artifacts, because the wsdlc Ant task
already generated them for you and packaged them into a JAR file. In this case, you
use an attribute of the jwsc Ant task to specify this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files
(including your JWS file), packages the compiled classes and generated artifacts into a
deployable JAR archive file, and finally creates an exploded Enterprise Application
directory that contains the JAR file.

You can use the jwsc Ant task to perform the following advanced tasks:

■ Process multiple JWS files at once. You can choose to package each resulting Web
Service into its own Web application WAR file, or group all of the Web Services
into a single WAR file.

■ Specify the transports (HTTP/HTTPS/JMS) that client applications can use when
invoking the Web Service, possibly overriding any existing @WLXXXTransport
annotations, as described in Chapter 3.6.1, "Specifying the Transport Used to
Invoke the Web Service."

■ Automatically generate the JAX-RPC client stubs of any other Web Service that is
invoked within the JWS file.

■ Update an existing Enterprise Application or Web application, rather than
generate a completely new one.

To run the jwsc Ant task, add the following taskdef and build-service target to the
build.xml file:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
 <jwsc
 srcdir="src_directory"
 destdir="ear_directory"
 >

Running the jwsc WebLogic Web Services Ant Task

3-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

 <jws file="JWS_file"
 compiledWsdl="WSDLC_Generated_JAR"
 type="WebService_type"/>
 </jwsc>
 </target>

where:

■ ear_directory refers to an Enterprise Application directory that will contain all
the generated artifacts.

■ src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

■ JWS_file refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

■ WSDLC_Generated_JAR refers to the JAR file generated by the wsdlc Ant task that
contains the JWS SEI and data binding artifacts that correspond to an existing
WSDL file.

■ WebService_type specifies the type of Web Service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This means
that, by default, it is assumed that Java files referenced by the JWS file (such as
JavaBeans input parameters or user-defined exceptions) are in the same package as the
JWS file. If this is not the case, use the sourcepath attribute to specify the top-level
directory of these other Java files.

See "jwsc" in the WebLogic Web Services Reference for Oracle WebLogic Server for complete
documentation and examples about the jwsc Ant task.

3.6.1 Specifying the Transport Used to Invoke the Web Service
The <jws> child element of jwsc includes the following optional child elements for
specifying the transports (HTTP/S or JMS) that are used to invoke the web service:

■ WLHttpTransport—Specifies the context path and service URI sections of the URL
used to invoke the web service over the HTTP/S transport, as well as the name of
the port in the generated WSDL.

■ WLJMSTransport—Specifies the context path and service URI sections of the URL
used to invoke the web service over the JMS transport, as well as the name of the
port in the generated WSDL. You also specify the name of the JMS queue and
connection factory that you have already configured for JMS transport.

The following guidelines describe the usage of the transport elements for the jwsc Ant
task:

■ The transports you specify to jwsc always override any corresponding transport
annotations in the JWS file. In addition, all attributes of the transport annotation are
ignored, even if you have not explicitly specified the corresponding attribute for

Note: You specify this attribute only in the "starting from WSDL" use
case; this procedure is described in Section 3.4, "Developing WebLogic
Web Services Starting From a WSDL File: Main Steps."

Running the jwsc WebLogic Web Services Ant Task

Developing JAX-RPC Web Services 3-9

the transport element, in which case the default value of the transport element
attribute is used.

■ You can specify both transport elements for a particular JWS file. However, you
can specify only one instance of a particular transport element. For example,
although you cannot specify two different <WLHttpTransport> elements for a
given JWS file, you can specify one <WLHttpTransport> and one
<WLJmsTransport> element.

■ The value of the serviceURI attribute can be the same when you specify both
<WLJMSTransport> and <WLHttpTransport>.

■ All transports associated with a particular JWS file must specify the same
contextPath attribute value.

■ If you specify more than one transport element for a particular JWS file, the value
of the portName attribute for each element must be unique among all elements.
This means that you must explicitly specify this attribute if you add more than one
transport child element to <jws>, because the default value of the element will
always be the same and thus cause an error when running the jwsc Ant task.

■ If you do not specify any transport as either one of the transport elements to the
jwsc Ant task or a transport annotation in the JWS file, then the web service's
default URL corresponds to the default value of the WLHttpTransport element.

For JAX-RPC web services, when you program your JWS file, you can use an
annotation to specify the transport that clients use to invoke the web service, in
particular @weblogic.jws.WLHttpTransport or @weblogic.jws.WLJMSTransport. You
can specify only one instance of a particular transport annotation in the JWS file. For
example, although you cannot specify two different @WLHttpTransport annotations,
you can specify one @WLHttpTransport and one @WLJmsTransport annotation.
However, you might not know at the time that you are coding the JWS file which
transports best suits your needs. For this reason, it is often better to specify the
transport at build-time.

3.6.2 Defining the Context Path of a WebLogic Web Service
There are a variety of places where the context path (also called context root) of a
WebLogic web service can be specified. This section describes how to determine which
is the true context path of the service based on its configuration, even if it is has been
set in multiple places.

In the context of this discussion, a web service context path is the string that comes
after the host:port portion of the web service URL. For example, if the deployed
WSDL of a WebLogic web service is as follows:

http://hostname:7001/financial/GetQuote?WSDL

The context path for this web service is financial.

The following list describes the order of precedence, from most to least important, of
all possible context path specifications:

1. The contextPath attribute of the <module> element and <jws> element (when used
as a direct child of the jwsc Ant task.)

2. The contextPath attribute of the <WLXXXTransport> child elements of <jws>.

3. The contextPath attribute of the @WLXXXTransport JWS annotations, as described
in Section 4.3.4, "Specifying the Context Path and Service URI of the Web Service
(@WLHttpTransport Annotation)."

Running the jwsc WebLogic Web Services Ant Task

3-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

4. The default value of the context path, which is the name of the JWS file without
any extension.

Suppose, for example, that you specified the @WLHttpTransport annotation in your
JAX-RPC JWS file and set its contextPath attribute to financial. If you do not specify
any additional contextPath attributes in the jwsc Ant task in your build.xml file, then
the context path for this web service would be financial.

Assume that you then update the build.xml file and add a <WLHttpTransport> child
element to the <jws> element that specifies the JWS file and set its contextPath
attribute to finance. The context path of the web service would now be finance. If,
however, you then group the <jws> element (including its child <WLHttpTransport>
element) under a <module> element, and set its contextPath attribute to money, then
the context path of the web service would now be money.

If you do not specify any contextPath attribute in either the JWS file or the jwsc Ant
task, then the context path of the web service is the default value: the name of the JWS
file without its *.java extension.

If you group two or more <jws> elements under a <module> element and do not set the
context path using any of the other options listed above, then you must specify the
contextPath attribute of <module> to specify the common context path used by all the
web services in the module. Otherwise, the default context paths for all the web
services in the module are going to be different (due to different names of the
implementing JWS files), which is not allowed in a single WAR file.

3.6.3 Examples of Using jwsc
The following build.xml excerpt shows a basic example of running the jwsc Ant task
on a JWS file:

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">
 <jws
 file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXRPC"/>
 </jwsc>
 </target>

In the example:

■ The Enterprise application will be generated, in exploded form, in
output/helloWorldEar, relative to the current directory.

■ The JWS file is called HelloWorldImpl.java, and is located in the
src/examples/webservices/hello_world directory, relative to the current
directory. This implies that the JWS file is in the package
examples.webservices.helloWorld.

■ A JAX-RPC Web Service is generated.

The following example is similar to the preceding one, except that it uses the
compiledWsdl attribute to specify the JAR file that contains wsdlc-generated artifacts
(for the "starting with WSDL" use case):

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

Running the wsdlc WebLogic Web Services Ant Task

Developing JAX-RPC Web Services 3-11

 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/wsdlcEar">
 <jws
 file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"
 type="JAXRPC"/>
 </jwsc>
 </target>

In the preceding example, the TemperaturePortTypeImpl.java file is the stubbed-out
JWS file that you updated to include your business logic. Because the compiledWsdl
attribute is specified and points to a JAR file, the jwsc Ant task does not regenerate the
artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

 prompt> ant build-service

3.7 Running the wsdlc WebLogic Web Services Ant Task
The wsdlc Ant task takes as input a WSDL file and generates artifacts that together
partially implement a WebLogic Web Service. These artifacts include:

■ JWS service endpoint interface (SEI) that implements the Web Service described by
the WSDL file.

■ JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

■ Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the Web Service parameters and return values.

■ Optional Javadocs for the generated JWS SEI.

The wsdlc Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the jwsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsdl targets
to the build.xml file:

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="WSDL_file"
 destJwsDir="JWS_interface_directory"
 destImplDir="JWS_implementation_directory"
 packageName="Package_name"
 type="WebService_type"/>
 </target>

where:

■ WSDL_file refers to the name of the WSDL file from which you want to generate a
partial implementation, including its absolute or relative pathname.

■ JWS_interface_directory refers to the directory into which the JAR file that
contains the JWS SEI and data binding artifacts should be generated.

Running the wsdlc WebLogic Web Services Ant Task

3-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

The name of the generated JAR file is WSDLFile_wsdl.jar, where WSDLFile refers
to the root name of the WSDL file. For example, if the name of the WSDL file you
specify to the file attribute is MyService.wsdl, then the generated JAR file is
MyService_wsdl.jar.

■ JWS_implementation_directory refers to the top directory into which the
stubbed-out JWS implementation file is generated. The file is generated into a
subdirectory hierarchy corresponding to its package name.

The name of the generated JWS file is PortTypeImpl.java, where PortType refers
to the name attribute of the <portType> element in the WSDL file for which you are
generating a Web Service. For example, if the port type name is
MyServicePortType, then the JWS implementation file is called
MyServicePortTypeImpl.java.

■ Package_name refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the
wsdlc Ant task generates a package name based on the targetNamespace of the
WSDL.

■ WebService_type specifies the type of Web Service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcWsdl and destJwsDir attributes of the wsdlc Ant task are required.
Typically, however, you generate the stubbed-out JWS file to make your programming
easier. Oracle recommends you explicitly specify the package name in case the
targetNamespace of the WSDL file is not suitable to be converted into a readable
package name.

The following build.xml excerpt shows an example of running the wsdlc Ant task
against a WSDL file:

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="impl_output"
 packageName="examples.webservices.wsdlc"
 type="JAXRPC" />
 </target>

In the example:

■ The existing WSDL file is called TemperatureService.wsdl and is located in the
wsdl_files subdirectory of the directory that contains the build.xml file.

■ The JAR file that will contain the JWS SEI and data binding artifacts is generated
to the output/compiledWsdl directory; the name of the JAR file is
TemperatureService_wsdl.jar.

■ The package name of the generated JWS files is examples.webservices.wsdld.

■ The stubbed-out JWS file is generated into the impl_
output/examples/webservices/wsdlc directory relative to the current directory.

■ Assuming that the port type name in the WSDL file is TemperaturePortType, then
the name of the JWS implementation file is TemperaturePortTypeImpl.java.

■ A JAX-RPC Web Service is generated.

Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc

Developing JAX-RPC Web Services 3-13

To actually run this task, type the following at the command line:

 prompt> ant generate-from-wsdl

See "wsdlc" in WebLogic Web Services Reference for Oracle WebLogic Server for more
information.

3.8 Updating the Stubbed-out JWS Implementation Class File Generated
By wsdlc

The wsdlc Ant task generates the stubbed-out JWS implementation file into the
directory specified by its destImplDir attribute; the name of the file is
PortTypeImpl.java, where PortType is the name of the portType in the original
WSDL. The class file includes everything you need to compile it into a Web Service,
except for your own business logic.

The JWS class implements the JWS Web Service endpoint interface that corresponds to
the WSDL file; the JWS SEI is also generated by wsdlc and is located in the JAR file
that contains other artifacts, such as the Java representations of XML Schema data
types in the WSDL and so on. The public methods of the JWS class correspond to the
operations in the WSDL file.

The wsdlc Ant task automatically includes the @WebService and @WLHttpTransport
annotations in the JWS implementation class; the values of the attributes corresponds
to the equivalent values in the WSDL. For example, the serviceName attribute of
@WebService is the same as the name attribute of the <service> element in the WSDL
file; the contextPath and serviceUri attributes of @WLHttpTransport together make
up the endpoint address specified by the location attribute of the <address> element
in the WSDL.

When you update the JWS file, you add Java code to the methods so that the
corresponding Web Service operations operate as required. Typically, the generated
JWS file contains comments where you should add code, such as:

 //replace with your impl here

In addition, you can add additional JWS annotations to the file, with the following
restrictions:

■ You can include the following annotations from the standard (JSR-181) javax.jws
package in the JWS implementation file: @WebService, @HandlerChain,
@SOAPMessageHandler, and @SOAPMessageHandlers. If you specify any other JWS
annotation from the javax.jws package, the jwsc Ant task returns error when you
try to compile the JWS file into a Web Service.

■ You can specify only the serviceName, endpointInterface, and targetNamespace
attributes of the @WebService annotation. Use the serviceName attribute to specify
a different <service> WSDL element from the one that the wsdlc Ant task used, in
the rare case that the WSDL file contains more than one <service> element. Use
the endpointInterface attribute to specify the JWS SEI generated by the wsdlc
Ant task. Use the targetNamespace attribute to specify the namespace of a WSDL
service, which can be different from the on in JWS SEI.

■ You can specify WebLogic-specific JWS annotations, as required.

After you have updated the JWS file, Oracle recommends that you move it to an
official source location, rather than leaving it in the wsdlc output directory.

The following example shows the wsdlc-generated JWS implementation file from the
WSDL shown in Section 2.3.1, "Sample WSDL File"; the text in bold indicates where

Deploying and Undeploying WebLogic Web Services

3-14 Developing JAX-RPC Web Services for Oracle WebLogic Server

you would add Java code to implement the single operation (getTemp) of the Web
Service:

package examples.webservices.wsdlc;
import javax.jws.WebService;
 import weblogic.jws.*;
/**
 * TemperaturePortTypeImpl class implements web service endpoint interface
 * TemperaturePortType */
@WebService(
 serviceName="TemperatureService",
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType")
@WLHttpTransport(
 contextPath="temp",
 serviceUri="TemperatureService",
 portName="TemperaturePort")
public class TemperaturePortTypeImpl implements TemperaturePortType {
 public TemperaturePortTypeImpl() {
 }
 public float getTemp(java.lang.String zipcode)
 {
 //replace with your impl here
 return 0;
 }
}

3.9 Deploying and Undeploying WebLogic Web Services
Because Web Services are packaged as Enterprise Applications, deploying a Web
Service simply means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the WebLogic
Server Administration Console to using the weblogic.Deployer Java utility. There are
also various issues you must consider when deploying an application to a production
environment as opposed to a development environment. For a complete discussion
about deployment, see Deploying Applications to Oracle WebLogic Server.

This guide, because of its development nature, discusses just two ways of deploying
Web Services:

■ Section 3.9.1, "Using the wldeploy Ant Task to Deploy Web Services"

■ Section 3.9.2, "Using the Administration Console to Deploy Web Services"

3.9.1 Using the wldeploy Ant Task to Deploy Web Services
The easiest way to deploy a Web Service as part of the iterative development process is
to add a target that executes the wldeploy WebLogic Ant task to the same build.xml
file that contains the jwsc Ant task. You can add tasks to both deploy and undeploy
the Web Service so that as you add more Java code and regenerate the service, you can
redeploy and test it iteratively.

To use the wldeploy Ant task, add the following target to your build.xml file:

 <target name="deploy">
 <wldeploy action="deploy"
 name="DeploymentName"
 source="Source" user="AdminUser"
 password="AdminPassword"
 adminurl="AdminServerURL"

Deploying and Undeploying WebLogic Web Services

Developing JAX-RPC Web Services 3-15

 targets="ServerName"/>
 </target>

where:

■ DeploymentName refers to the deployment name of the Enterprise Application, or
the name that appears in the WebLogic Server Administration Console under the
list of deployments.

■ Source refers to the name of the Enterprise Application EAR file or exploded
directory that is being deployed. By default, the jwsc Ant task generates an
exploded Enterprise Application directory.

■ AdminUser refers to administrative username.

■ AdminPassword refers to the administrative password.

■ AdminServerURL refers to the URL of the Administration Server, typically
t3://localhost:7001.

■ ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web Service.

For example, the following wldeploy task specifies that the Enterprise Application
exploded directory, located in the output/ComplexServiceEar directory relative to the
current directory, be deployed to the myServer WebLogic Server instance. Its deployed
name is ComplexServiceEar.

 <target name="deploy">
 <wldeploy action="deploy"
 name="ComplexServiceEar"
 source="output/ComplexServiceEar" user="weblogic"
 password="weblogic" verbose="true"
 adminurl="t3://localhost:7001"
 targets="myserver"/>
 </target>

To actually deploy the Web Service, execute the deploy target at the command-line:

 prompt> ant deploy

You can also add a target to easily undeploy the Web Service so that you can make
changes to its source code, then redeploy it:

 <target name="undeploy">
 <wldeploy action="undeploy"
 name="ComplexServiceEar"
 user="weblogic"
 password="weblogic" verbose="true"
 adminurl="t3://localhost:7001"
 targets="myserver"/>
 </target>

When undeploying a Web Service, you do not specify the source attribute, but rather
undeploy it by its name.

3.9.2 Using the Administration Console to Deploy Web Services
To use the WebLogic Server Administration Console to deploy the Web Service, first
invoke it in your browser using the following URL:

 http://host:port/console

Browsing to the WSDL of the Web Service

3-16 Developing JAX-RPC Web Services for Oracle WebLogic Server

where:

■ host refers to the computer on which WebLogic Server is running.

■ port refers to the port number on which WebLogic Server is listening (default
value is 7001).

Then use the deployment assistants to help you deploy the Enterprise application. For
more information on the WebLogic Server Administration Console, see the Oracle
WebLogic Server Administration Console Online Help.

3.10 Browsing to the WSDL of the Web Service
You can display the WSDL of the Web Service in your browser to ensure that it has
deployed correctly.

The following URL shows how to display the Web Service WSDL in your browser:

http://host:port/contextPath/serviceUri?WSDL

where:

■ host refers to the computer on which WebLogic Server is running (for example,
localhost).

■ port refers to the port number on which WebLogic Server is listening (default
value is 7001).

■ contextPath refers to the context root of the Web Service. There are many places to
set the context root (the contextPath attribute of the @WLHttpTransport
annotation, the <WLHttpTransport>, <module>, or <jws> element of jwsc) and
certain methods take precedence over others. See Chapter 3.6.2, "Defining the
Context Path of a WebLogic Web Service."

■ serviceUri refers to the value of the serviceUri attribute of the
@WLHttpTransport JWS annotation of the JWS file that implements your Web
Service or <WLHttpTransport> child element of the jwsc Ant task; the second takes
precedence over the first. If you do not specify any serviceUri attribute in either
the JWS file or the jwsc Ant task, then the serviceUri of the Web Service is the
default value: the name of the JWS file without its *.java extension.

For example, assume you specified the following @WLHttpTransport annotation in the
JWS file that implements your Web Service

 ...
 @WLHttpTransport(contextPath="complex",
 serviceUri="ComplexService",
 portName="ComplexServicePort")
 /**
 * This JWS file forms the basis of a WebLogic Web Service.
 *
 */
 public class ComplexServiceImpl {
 ...

Further assume that you do not override the contextPath or serviceURI values by
setting equivalent attributes for the <WLHttpTransport> element of the jwsc Ant task.
Then the URL to view the WSDL of the Web Service, assuming the service is running
on a host called ariel at the default port number (7001), is:

 http://ariel:7001/complex/ComplexService?WSDL

Configuring the Server Address Specified in the Dynamic WSDL

Developing JAX-RPC Web Services 3-17

3.11 Configuring the Server Address Specified in the Dynamic WSDL
The WSDL of a deployed Web Service (also called dynamic WSDL) includes an
<address> element that assigns an address (URI) to a particular Web Service port. For
example, assume that the following WSDL snippet partially describes a deployed
WebLogic Web Service called ComplexService:

<definitions name="ComplexServiceDefinitions"
 targetNamespace="http://example.org">
...
 <service name="ComplexService">
 <port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
 <s1:address location="http://myhost:7101/complex/ComplexService"/>
 </port>
 </service>
</definitions>

The preceding example shows that the ComplexService Web Service includes a port
called ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address by
examining the contextPath and serviceURI attributes of the @WLXXXTransport
annotations or jwsc elements, as described in Section 3.10, "Browsing to the WSDL of
the Web Service." However, the method WebLogic Server uses to determine the
protocol and host section of the address (http://myhost:7101, in the example) is more
complicated, as described below. For clarity, this section uses the term server address to
refer to the protocol and host section of the address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed
Web Service depends on whether the Web Service can be invoked using HTTP/S or
JMS, whether you have configured a proxy server, whether the Web Service is
deployed to a cluster, or whether the Web Service is actually a callback service.

The following sections reflect these different configuration options, and provide links
to procedural information about changing the configuration to suit your needs.

■ Section 3.11.1, "Web Service is not a callback service and can be invoked using
HTTP/S"

■ Section 3.11.2, "Web Service is not a callback service and can be invoked using JMS
Transport"

■ Section 3.11.3, "Web Service is a callback service"

■ Section 3.11.4, "Web Service is invoked using a proxy server"

It is assumed in the sections that you use the WebLogic Server Administration Console
to configure cluster and standalone servers.

3.11.1 Web Service is not a callback service and can be invoked using HTTP/S
1. If the Web Service is deployed to a cluster, and the cluster Frontend Host,

Frontend HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server
uses these values in the server address of the dynamic WSDL.

See "Configure HTTP Settings for a Cluster" in the Oracle WebLogic Server
Administration Console Online Help.

Configuring the Server Address Specified in the Dynamic WSDL

3-18 Developing JAX-RPC Web Services for Oracle WebLogic Server

2. If the preceding cluster values are not set, but the Frontend Host, Frontend HTTP
Port, and Frontend HTTPS Port values are set for the individual server to which the
Web Service is deployed, then WebLogic Server uses these values in the server
address.

See "Configure HTTP Protocol" in the Oracle WebLogic Server Administration Console
Online Help.

3. If these values are not set for the cluster or individual server, then WebLogic
Server uses the server address of the WSDL request in the dynamic WSDL.

3.11.2 Web Service is not a callback service and can be invoked using JMS Transport
1. If the Web Service is deployed to a cluster and the Cluster Address is set, then

WebLogic Server uses this value in the server address of the dynamic WSDL.

See "Configure Clusters" in the Oracle WebLogic Server Administration Console
Online Help.

2. If the cluster address is not set, or the Web Service is deployed to a standalone
server, and the Listen Address of the server to which the Web Service is deployed
is set, then WebLogic Server uses this value in the server address.

See "Configure Listen Addresses" in the Oracle WebLogic Server Administration
Console Online Help.

3.11.3 Web Service is a callback service
1. If the callback service is deployed to a cluster, and the cluster Frontend Host,

Frontend HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server
uses these values in the server address of the dynamic WSDL.

See "Configure HTTP Settings for a Cluster" in the Oracle WebLogic Server
Administration Console Online Help.

2. If the callback service is deployed to either a cluster or a standalone server, and the
preceding cluster values are not set, but the Frontend Host, Frontend HTTP Port,
and Frontend HTTPS Port values are set for the individual server to which the
callback service is deployed, then WebLogic Server uses these values in the server
address.

See "Configure HTTP Protocol" in the Oracle WebLogic Server Administration Console
Online Help.

3. If the callback service is deployed to a cluster, but none of the preceding values are
set, but the Cluster Address is set, then WebLogic Server uses this value in the
server address.

See "Configure Clusters" in the Oracle WebLogic Server Administration Console
Online Help.

4. If none of the preceding values are set, but the Listen Address of the server to
which the callback service is deployed is set, then WebLogic Server uses this value
in the server address.

See "Configure Listen Addresses" in the Oracle WebLogic Server Administration
Console Online Help.

Integrating Web Services Into the WebLogic Split Development Directory Environment

Developing JAX-RPC Web Services 3-19

3.11.4 Web Service is invoked using a proxy server
Although not required, Oracle recommends that you explicitly set the Frontend Host,
FrontEnd HTTP Port, and Frontend HTTPS Port of either the cluster or individual
server to which the Web Service is deployed to point to the proxy server.

See "Configure HTTP Settings for a Cluster" or "Configure HTTP Protocol" in the
Oracle WebLogic Server Administration Console Online Help.

3.12 Testing the Web Service
After you have deployed a WebLogic Web Service, you can use the Web Services Test
Client, included in the WebLogic Server Administration Console, to test your service
without writing code. You can quickly and easily test any Web Service, including those
with complex types and those using advanced features of WebLogic Server such as
conversations. The test client automatically maintains a full log of requests allowing
you to return to the previous call to view the results.

To test a deployed Web Service using the WebLogic Server Administration Console,
follow these steps:

1. Invoke the WebLogic Server Administration Console in your browser using the
following URL:

http://host:port/console

where:

– host refers to the computer on which WebLogic Server is running.

– port refers to the port number on which WebLogic Server is listening (default
value is 7001).

2. Follow the procedure described in "Test a Web Service" in the Oracle WebLogic
Server Administration Console Online Help.

3.13 Integrating Web Services Into the WebLogic Split Development
Directory Environment

This section describes how to integrate Web Services development into the WebLogic
split development directory environment. It is assumed that you understand this
WebLogic feature and have set up this type of environment for developing standard
Java Platform, Enterprise Edition (Java EE) Version 5 applications and modules, such
as EJBs and Web applications, and you want to update the single build.xml file to
include Web Services development.

For detailed information about the WebLogic split development directory
environment, see "Creating a Split Development Directory for an Application" in
Developing Applications for Oracle WebLogic Server and the splitdir/helloWorldEar
example optionally installed with WebLogic Server, located in the ORACLE_
HOME/\wlserver\samples\server\examples\src\examples\splitdir directory, where
ORACLE_HOME represents the directory in which you installed WebLogic Server. For
more information about the WebLogic Server code examples, see "Sample Applications
and Code Examples" in Understanding Oracle WebLogic Server.

1. In the main project directory, create a directory that will contain the JWS file that
implements your Web Service.

For example, if your main project directory is called /src/helloWorldEar, then
create a directory called /src/helloWorldEar/helloWebService:

Integrating Web Services Into the WebLogic Split Development Directory Environment

3-20 Developing JAX-RPC Web Services for Oracle WebLogic Server

prompt> mkdir /src/helloWorldEar/helloWebService

2. Create a directory hierarchy under the helloWebService directory that
corresponds to the package name of your JWS file.

For example, if your JWS file is in the package examples.splitdir.hello package,
then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
 prompt> mkdir examples/splitdir/hello

3. Put your JWS file in the just-created Web Service subdirectory of your main project
directory (/src/helloWorldEar/helloWebService/examples/splitdir/hello in
this example.)

4. In the build.xml file that builds the Enterprise application, create a new target to
build the Web Service, adding a call to the jwsc WebLogic Web Service Ant task, as
described in Section 3.6, "Running the jwsc WebLogic Web Services Ant Task."

The jwsc srcdir attribute should point to the top-level directory that contains the
JWS file (helloWebService in this example). The jwsc destdir attribute should
point to the same destination directory you specify for wlcompile, as shown in the
following example:

 <target name="build.helloWebService">
 <jwsc
 srcdir="helloWebService"
 destdir="destination_dir"
 keepGenerated="yes" >
 <jws file="examples/splitdir/hello/HelloWorldImpl.java"
 type="JAXRPC" />
 </jwsc>
 </target>

In the example, destination_dir refers to the destination directory that the other
split development directory environment Ant tasks, such as wlappc and
wlcompile, also use.

5. Update the main build target of the build.xml file to call the Web Service-related
targets:

 <!-- Builds the entire helloWorldEar application -->
 <target name="build"
 description="Compiles helloWorldEar application and runs appc"
 depends="build-helloWebService,compile,appc" />

6. If you use the wlcompile and wlappc Ant tasks to compile and validate the entire
Enterprise Application, be sure to exclude the Web Service source directory for
both Ant tasks. This is because the jwsc Ant task already took care of compiling
and packaging the Web Service. For example:

<target name="compile">
 <wlcompile srcdir="${src.dir}" destdir="${dest.dir}"

Note: When you actually build your Enterprise Application, be sure
you run the jwsc Ant task before you run the wlappc Ant task. This is
because wlappc requires some of the artifacts generated by jwsc for it
to execute successfully. In the example, this means that you should
specify the build-helloWebService target before the appc target.

Integrating Web Services Into the WebLogic Split Development Directory Environment

Developing JAX-RPC Web Services 3-21

 excludes="appStartup,helloWebService">
 ...
 </wlcomplile>
...
 </target>
<target name="appc">
 <wlappc source="${dest.dir}" deprecation="yes" debug="false"
 excludes="helloWebService"/>
</target>

7. Update the application.xml file in the META-INF project source directory, adding
a <web> module and specifying the name of the WAR file generated by the jwsc
Ant task.

For example, add the following to the application.xml file for the helloWorld
Web Service:

<application>
...
 <module>
 <web>
 <web-uri>examples/splitdir/hello/HelloWorldImpl.war</web-uri>
 <context-root>/hello</context-root>
 </web>
 </module>
...
</application>

Your split development directory environment is now updated to include Web Service
development. When you rebuild and deploy the entire Enterprise Application, the
Web Service will also be deployed as part of the EAR. You invoke the Web Service in
the standard way described in Section 3.10, "Browsing to the WSDL of the Web
Service."

Note: The jwsc Ant task always generates a Web Application WAR
file from the JWS file that implements your Web Service, unless your
JWS file explicitly implements javax.ejb.SessionBean. In that case
you must add an <ejb> module element to the application.xml file
instead.

Integrating Web Services Into the WebLogic Split Development Directory Environment

3-22 Developing JAX-RPC Web Services for Oracle WebLogic Server

4

Programming the JWS File 4-1

4Programming the JWS File

[5] This chapter describes how to program the JWS file that implements the WebLogic
web services using Java API for XML-based RPC (JAX-RPC).

This chapter includes the following sections:

■ Overview of JWS Files and JWS Annotations

■ Java Requirements for a JWS File

■ Programming the JWS File: Typical Steps

■ Accessing Run-Time Information About a Web Service

■ Should You Implement a Stateless Session EJB?

■ Programming the User-Defined Java Data Type

■ Throwing Exceptions

■ Invoking Another Web Service from the JWS File

■ Programming Additional Miscellaneous Features Using JWS Annotations and
APIs

■ JWS Programming Best Practices

4.1 Overview of JWS Files and JWS Annotations
There are two ways to program a WebLogic web service from scratch:

1. Annotate a standard EJB or Java class with web service Java annotations, as
defined by JSR-181, the JAX-WS specification, and by the WebLogic web services
programming model.

2. Combine a standard EJB or Java class with the various XML descriptor files and
artifacts specified by JSR-109 (such as, deployment descriptors, WSDL files, data
mapping descriptors, data binding artifacts for user-defined data types, and so
on).

Oracle strongly recommends using option 1 above. Instead of authoring XML
metadata descriptors yourself, the WebLogic Ant tasks and run time will generate the
required descriptors and artifacts based on the annotations you include in your JWS.
Not only is this process much easier, but it keeps the information about your web
service in a central location, the JWS file, rather than scattering it across many Java and
XML files.

The Java Web Service (JWS) annotated file is the core of your web service. It contains
the Java code that determines how your web service behaves. A JWS file is an ordinary
Java class file that uses Java metadata annotations to specify the shape and

Java Requirements for a JWS File

4-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

characteristics of the web service. The JWS annotations you can use in a JWS file
include the standard ones defined by the Web Services Metadata for the Java Platform
specification (JSR-181), described at http://www.jcp.org/en/jsr/detail?id=181,
plus a set of additional annotations based on the type of web service you are
building—JAX-WS or JAX-RPC. For a complete list of JWS annotations that are
supported for JAX-WS and JAX-RPC web services, see "Web Service Annotation
Support" in WebLogic Web Services Reference for Oracle WebLogic Server.

When programming the JWS file, you include annotations to program basic web
service features. The annotations are used at different levels, or targets, in your JWS
file. Some are used at the class-level to indicate that the annotation applies to the entire
JWS file. Others are used at the method-level and yet others at the parameter level.

4.2 Java Requirements for a JWS File
When you program your JWS file, you must follow a set of requirements, as specified
by the Web Services Metadata for the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181. In particular, the Java class that
implements the web service:

■ Must be an outer public class, must not be declared final, and must not be
abstract.

■ Must have a default public constructor.

■ Must not define a finalize() method.

■ Must include, at a minimum, a @WebService JWS annotation at the class level to
indicate that the JWS file implements a web service.

■ May reference a service endpoint interface by using the
@WebService.endpointInterface annotation. In this case, it is assumed that the
service endpoint interface exists and you cannot specify any other JWS
annotations in the JWS file other than @WebService.endpointInterface,
@WebService.serviceName and @WebService.targetNamespace.

■ If JWS file does not implement a service endpoint interface, all public methods
other than those inherited from java.lang.Object will be exposed as web service
operations. This behavior can be overridden by using the @WebMethod annotation
to specify explicitly the public methods that are to be exposed. If a @WebMethod
annotation is present, only the methods to which it is applied are exposed.

4.3 Programming the JWS File: Typical Steps
The following procedure describes the typical steps for programming a JWS file that
implements a web service.

For more information about each of the JWS annotations, see "JWS Annotation
Reference" in WebLogic Web Services Reference for Oracle WebLogic Server. See Part III,
"Developing Advanced Features of JAX-RPC Web Services" for information on using
other JWS annotations to program more advanced features, such as web service
reliable messaging, conversations, SOAP message handlers, and so on.

Note: It is assumed that you have created a JWS file and now want
to add JWS annotations to it.

Programming the JWS File: Typical Steps

Programming the JWS File 4-3

4.3.1 Example of a JWS File
The following sample JWS file shows how to implement a simple web service.

package examples.webservices.simple;
// Import the standard JWS annotation interfaces

Table 4–1 Steps to Program the JWS File

Step Description

1 Import the standard JWS
annotations that will be used
in your JWS file.

The standard JWS annotations are in either the javax.jws
or javax.jws.soap package. For example:

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

2 Import the WebLogic-specific
annotations used in your JWS
file.

The WebLogic-specific annotations are in the
weblogic.jws package. For example:

import weblogic.jws.WLHttpTransport;

3 Add the standard required
@WebService JWS annotation
at the class level to specify
that the Java class exposes a
web service.

See Section 4.3.2, "Specifying that the JWS File
Implements a Web Service (@WebService Annotation)."

4 Add the standard
@SOAPBinding JWS annotation
at the class level to specify the
mapping between the web
service and the SOAP
message protocol. (Optional)

In particular, use this annotation to specify whether the
web service is document-literal, RPC-encoded, and so on.
See Section 4.3.3, "Specifying the Mapping of the Web
Service to the SOAP Message Protocol (@SOAPBinding
Annotation)."

Although this JWS annotation is not required, Oracle
recommends you explicitly specify it in your JWS file to
clarify the type of SOAP bindings a client application
uses to invoke the web service.

5 Add the WebLogic-specific
@WLHttpTransport JWS
annotation at the class level to
specify the context path and
service URI used in the URL
that invokes the web service.
(Optional)

See Section 4.3.4, "Specifying the Context Path and
Service URI of the Web Service (@WLHttpTransport
Annotation)."

Although this JWS annotation is not required, Oracle
recommends you explicitly specify it in your JWS file so
that it is clear what URL a client application uses to
invoke the web service.

6 Add the standard @WebMethod
annotation for each method
in the JWS file that you want
to expose as a public
operation. (Optional)

Optionally specify that the operation takes only input
parameters but does not return any value by using the
standard @Oneway annotation. See Section 4.3.5,
"Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)."

7 Add @WebParam annotation to
customize the name of the
input parameters of the
exposed operations.
(Optional)

See Section 4.3.6, "Customizing the Mapping Between
Operation Parameters and WSDL Elements (@WebParam
Annotation)."

8 Add @WebResult annotations
to customize the name and
behavior of the return value
of the exposed operations.
(Optional)

See Section 4.3.7, "Customizing the Mapping Between the
Operation Return Value and a WSDL Element
(@WebResult Annotation)."

9 Add your business code. Add your business code to the methods to make the
WebService behave as required.

Programming the JWS File: Typical Steps

4-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

import javax.jws.WebMethod;
 import javax.jws.WebService;
 import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interfaces
import weblogic.jws.WLHttpTransport;
// Standard JWS annotation that specifies that the porType name of the Web
 // Service is "SimplePortType", the service name is "SimpleService", and the
 // targetNamespace used in the generated WSDL is "http://example.org"
@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies the mapping of the service onto the
 // SOAP message protocol. In particular, it specifies that the SOAP messages
 // are document-literal-wrapped.
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
// WebLogic-specific JWS annotation that specifies the context path and
 // service URI used to build the URI of the Web Service is
 // "simple/SimpleService"
@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
 portName="SimpleServicePort")
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class SimpleImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: sayHello.
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 }

4.3.2 Specifying that the JWS File Implements a Web Service (@WebService
Annotation)

Use the standard @WebService annotation to specify, at the class level, that the JWS file
implements a web service, as shown in the following code excerpt:

@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")

In the example, the name of the web service is SimplePortType, which will later map
to the wsdl:portType element in the WSDL file generated by the jwsc Ant task. The
service name is SimpleService, which will map to the wsdl:service element in the
generated WSDL file. The target namespace used in the generated WSDL is
http://example.org.

You can also specify the following additional attributes of the @WebService annotation:

■ endpointInterface—Fully qualified name of an existing service endpoint
interface file. This annotation allows the separation of interface definition from the
implementation. If you specify this attribute, the jwsc Ant task does not generate

Programming the JWS File: Typical Steps

Programming the JWS File 4-5

the interface for you, but assumes you have created it and it is in your
CLASSPATH.

■ portname—Name that is used in the wsdl:port.

None of the attributes of the @WebService annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default values of each attribute.

4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)

It is assumed that you want your web service to be available over the SOAP message
protocol; for this reason, your JWS file should include the standard @SOAPBinding
annotation, at the class level, to specify the SOAP bindings of the web service (such as,
RPC-encoded or document-literal-wrapped), as shown in the following code excerpt:

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

In the example, the web service uses document-wrapped-style encodings and literal
message formats, which are also the default formats if you do not specify the
@SOAPBinding annotation.

You can also use the WebLogic-specific @weblogic.jws.soap.SOAPBinding annotation
to specify the SOAP binding at the method level; the attributes are the same as the
standard @javax.jws.soap.SOAPBinding annotation.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the web service
operation parameters represent the entire SOAP message body, or whether the
parameters are elements wrapped inside a top-level element with the same name as
the operation.

4.3.4 Specifying the Context Path and Service URI of the Web Service
(@WLHttpTransport Annotation)

Use the WebLogic-specific @WLHttpTransport annotation to specify the context path
and service URI sections of the URL used to invoke the web service over the HTTP
transport, as well as the name of the port in the generated WSDL, as shown in the
following code excerpt:

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
 portName="SimpleServicePort")

In the example, the name of the port in the WSDL (in particular, the name attribute of
the <port> element) file generated by the jwsc Ant task is SimpleServicePort. The

Table 4–2 Attributes of the @SOAPBinding Annotation

Attribute Possible Values Default Value

style SOAPBinding.Style.RPC
SOAPBinding.Style.DOCUMENT

SOAPBinding.Style.DOCUMENT

use SOAPBinding.Use.LITERAL
SOAPBinding.Use.ENCODED

SOAPBinding.Use.LITERAL

parameterStyle SOAPBinding.ParameterStyle.BARE
SOAPBinding.ParameterStyle.WRAPPED

SOAPBinding.ParameterStyle.WRAPPED

Programming the JWS File: Typical Steps

4-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

URL used to invoke the web service over HTTP includes a context path of simple and
a service URI of SimpleService, as shown in the following example:

http://host:port/simple/SimpleService

For reference documentation on this and other WebLogic-specific annotations, see
"JWS Annotation Reference" in the WebLogic Web Services Reference.

4.3.5 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod
and @OneWay Annotations)

Use the standard @WebMethod annotation to specify that a method of the JWS file
should be exposed as a public operation of the web service, as shown in the following
code excerpt:

public class SimpleImpl {
 @WebMethod(operationName="sayHelloOperation")
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 ...

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a
public operation of the web service. The operationName attribute specifies, however,
that the public name of the operation in the WSDL file is sayHelloOperation. If you
do not specify the operationName attribute, the public name of the operation is the
name of the method itself.

You can also use the action attribute to specify the action of the operation. When
using SOAP as a binding, the value of the action attribute determines the value of the
SOAPAction header in the SOAP messages.

You can specify that an operation not return a value to the calling application by using
the standard @Oneway annotation, as shown in the following example:

 public class OneWayImpl {
 @WebMethod()
 @Oneway()
 public void ping() {
 System.out.println("ping operation");
 }
...

If you specify that an operation is one-way, the implementing method is required to
return void, cannot use a Holder class as a parameter, and cannot throw any checked
exceptions.

None of the attributes of the @WebMethod annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default values of each attribute, as well as additional information about the
@WebMethod and @Oneway annotations.

If none of the public methods in your JWS file are annotated with the @WebMethod
annotation, then by default all public methods are exposed as web service operations.

Programming the JWS File: Typical Steps

Programming the JWS File 4-7

4.3.6 Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam Annotation)

Use the standard @WebParam annotation to customize the mapping between operation
input parameters of the web service and elements of the generated WSDL file, as well
as specify the behavior of the parameter, as shown in the following code excerpt:

public class SimpleImpl {
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/docLiteralBare")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/docLiteralBare")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 ...

In the example, the name of the parameter of the echoInt operation in the generated
WSDL is IntegerInput; if the @WebParam annotation were not present in the JWS file,
the name of the parameter in the generated WSDL file would be the same as the name
of the method's parameter: input. The targetNamespace attribute specifies that the
XML namespace for the parameter is http://example.org/docLiteralBare; this
attribute is relevant only when using document-style SOAP bindings where the
parameter maps to an XML element.

You can also specify the following additional attributes of the @WebParam annotation:

■ mode—The direction in which the parameter is flowing (WebParam.Mode.IN,
WebParam.Mode.OUT, or WebParam.Mode.INOUT). The OUT and INOUT modes may
be specified only for parameter types that conform to the JAX-RPC definition of
Holder types. OUT and INOUT modes are only supported for RPC-style
operations or for parameters that map to headers.

■ header—Boolean attribute that, when set to true, specifies that the value of the
parameter should be retrieved from the SOAP header, rather than the default
body.

None of the attributes of the @WebParam annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default value of each attribute.

4.3.7 Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@WebResult Annotation)

Use the standard @WebResult annotation to customize the mapping between the web
service operation return value and the corresponding element of the generated WSDL
file, as shown in the following code excerpt:

public class Simple {
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/docLiteralBare")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/docLiteralBare")
 int input)

Accessing Run-Time Information About a Web Service

4-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 ...

In the example, the name of the return value of the echoInt operation in the generated
WSDL is IntegerOutput; if the @WebResult annotation were not present in the JWS
file, the name of the return value in the generated WSDL file would be the hard-coded
name return. The targetNamespace attribute specifies that the XML namespace for the
return value is http://example.org/docLiteralBare; this attribute is relevant only
when using document-style SOAP bindings where the return value maps to an XML
element.

None of the attributes of the @WebResult annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default value of each attribute.

4.4 Accessing Run-Time Information About a Web Service
The following sections describe how to access run-time information about a web
service:

■ Section 4.4.1, "Using JwsContext to Access Run-Time Information"—Use the web
service context to access and change run-time information about the service in
your JWS file.

■ Section 4.4.2, "Using the Stub Interface to Access Run-Time Information"—Get and
set properties on the Stub interface in the client file.

4.4.1 Using JwsContext to Access Run-Time Information
When a client application invokes a WebLogic web service that was implemented with
a JWS file, WebLogic Server automatically creates a context that the web service can use
to access, and sometimes change, run-time information about the service. Much of this
information is related to conversations, such as whether the current conversation is
finished, the current values of the conversational properties, changing conversational
properties at run time, and so on. (See Chapter 9, "Creating Conversational Web
Services" for information about conversations and how to implement them.) Some of
the information accessible via the context is more generic, such as the protocol that
was used to invoke the web service (HTTP/S or JMS), the SOAP headers that were in
the SOAP message request, and so on.

You can use annotations and WebLogic web service APIs in your JWS file to access
run-time context information, as described in the following sections.

4.4.1.1 Guidelines for Accessing the Web Service Context
The following example shows a simple JWS file that uses the context to determine the
protocol that was used to invoke the web service. The code in bold is discussed in the
programming guidelines described following the example.

package examples.webservices.jws_context;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.Context;
import weblogic.wsee.jws.JwsContext;
 import weblogic.wsee.jws.Protocol;

Accessing Run-Time Information About a Web Service

Programming the JWS File 4-9

@WebService(name="JwsContextPortType", serviceName="JwsContextService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="contexts", serviceUri="JwsContext",
 portName="JwsContextPort")
/**
 * Simple web service to show how to use the @Context annotation.
 */
public class JwsContextImpl {
 @Context
 private JwsContext ctx;
 @WebMethod()
 public String getProtocol() {
 Protocol protocol = ctx.getProtocol();
 System.out.println("protocol: " + protocol);
 return "This is the protocol: " + protocol;
 }
}

Use the following guidelines in your JWS file to access the run-time context of the web
service, as shown in the code in bold in the preceding example:

■ Import the @weblogic.jws.Context JWS annotation:

import weblogic.jws.Context;

■ Import the weblogic.wsee.jws.JwsContext API, as well as any other related APIs
that you might use (the example also uses the weblogic.wsee.jws.Protocol API):

import weblogic.wsee.jws.JwsContext;
 import weblogic.wsee.jws.Protocol;

■ Annotate a private variable, of data type weblogic.wsee.jws.JwsContext, with
the field-level @Context JWS annotation:

@Context
 private JwsContext ctx;
WebLogic Server automatically assigns the annotated variable (in this case, ctx)
with a run-time implementation of JwsContext the first time the web service is
invoked, which is how you can later use the variable without explicitly initializing
it in your code.

Use the methods of the JwsContext class to access run-time information about the
web service. The following example shows how to get the protocol that was used
to invoke the web service.

Protocol protocol = ctx.getProtocol();

See Section 4.4.1.2, "Methods of the JwsContext" for the full list of available
methods.

4.4.1.2 Methods of the JwsContext
The following table summarizes the methods of the JwsContext that you can use in
your JWS file to access run-time information about the web service.

Accessing Run-Time Information About a Web Service

4-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

Table 4–3 Methods of JwsContext

Method Returns Description

isFinished() boolean Returns a boolean value specifying whether the
current conversation is finished, or if it is still
continuing.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

finishConversation
()

void Finishes the current conversation.

This method is equivalent to a client application
invoking a method that has been annotated with the
@Conversation (Conversation.Phase.FINISH) JWS
annotation.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxAge(java.uti
l.Date)

void Sets a new maximum age for the conversation to an
absolute Date. If the date parameter is in the past,
WebLogic Server immediately finishes the
conversation.

This method is equivalent to the maxAge attribute of
the @Conversational annotation, which specifies the
default maximum age of a conversation. Use this
method to override this default value at run time.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxAge(String) void Sets a new maximum age for the conversation by
specifying a String duration, such as 1 day.

Valid values for the String parameter are a number
and one of the following terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a maximum age of ten
minutes, use the following syntax:

ctx.setMaxAge("10 minutes")

This method is equivalent to the maxAge attribute of
the @Conversational annotation, which specifies the
default maximum age of a conversation. Use this
method to override this default value at run time.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getMaxAge() long Returns the maximum allowed age, in seconds, of a
conversation.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

Accessing Run-Time Information About a Web Service

Programming the JWS File 4-11

getCurrentAge() long Returns the current age, in seconds, of the
conversation.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

resetIdleTime() void Resets the timer which measures the number of
seconds since the last activity for the current
conversation.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxIdleTime(lon
g)

void Sets the number of seconds that the conversation can
remain idle before WebLogic Server finishes it due to
client inactivity.

This method is equivalent to the maxIdleTime
attribute of the @Conversational annotation, which
specifies the default idle time of a conversation. Use
this method to override this default value at run time.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxIdleTime(Str
ing)

void Sets the number of seconds, specified as a String, that
the conversation can remain idle before WebLogic
Server finishes it due to client inactivity.

Valid values for the String parameter are a number
and one of the following terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a maximum idle time of ten
minutes, use the following syntax:

ctx.setMaxIdleTime("10 minutes")

This method is equivalent to the maxIdleTime
attribute of the @Conversational annotation, which
specifies the default idle time of a conversation. Use
this method to override this default value at run time.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getMaxIdleTime() long Returns the number of seconds that the conversation
is allowed to remain idle before WebLogic Server
finishes it due to client inactivity.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

Table 4–3 (Cont.) Methods of JwsContext

Method Returns Description

Accessing Run-Time Information About a Web Service

4-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

4.4.2 Using the Stub Interface to Access Run-Time Information
Thejavax.xml.rpc.Stub interface enables you to dynamically configure the Stub
instance in your web service client file. For more information, see
http://download.oracle.com/javaee/6/api/javax/xml/rpc/Stub.html. For
example, you can set the target service endpoint dynamically for the port Stub
instance, as follows:

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 ((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:8010/MyContext/MyService");

For more information about developing web service clients, see Chapter 6,
"Developing JAX-RPC Web Service Clients."

The following table summarizes the methods of the Stub interface that you can use in
your JWS file to access run-time information about the web service.

getCurrentIdleTime
()

long Gets the number of seconds since the last client
request, or since the conversation's maximum idle
time was reset.

Use this method only in conversational web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getCallerPrincipal
()

java.security
.Principal

Returns the security principal associated with the
operation that was just invoked, assuming that basic
authentication was performed.

isCallerInRole(Str
ing)

boolean Returns true if the authenticated principal is within
the specified security role.

getService() weblogic.wsee
.jws.ServiceH
andle

Returns an instance of ServiceHandle, a WebLogic
web service API, which you can query to gather
additional information about the web service, such as
the conversation ID (if the web service is
conversational), the URL of the web service, and so
on.

getLogger(String) weblogic.wsee
.jws.util.Log
ger

Gets an instance of the Logger class, which you can
use to send messages from the web service to a log
file.

getInputHeaders() org.w3c.dom.E
lement[]

Returns an array of the SOAP headers associated with
the SOAP request message of the current operation
invoke.

setUnderstoodInput
Headers(boolean)

void Indicates whether input headers should be
understood.

getUnderstoodInput
Headers()

boolean Returns the value that was most recently set by a call
to setUnderstoodInputHeader.

setOutputHeaders(E
lement[])

void Specifies an array of SOAP headers that should be
associated with the outgoing SOAP response message
sent back to the client application that initially
invoked the current operation.

getProtocol() weblogic.wsee
.jws.Protocol

Returns the protocol (such as HTTP/S or JMS) used to
invoke the current operation.

Table 4–3 (Cont.) Methods of JwsContext

Method Returns Description

Should You Implement a Stateless Session EJB?

Programming the JWS File 4-13

The following table defined the javax.xml.rpc.Stub property values that you can
access from the Stub instance.

4.5 Should You Implement a Stateless Session EJB?
The jwsc Ant task always chooses a plain Java object as the underlying
implementation of a web service when processing your JWS file.

Sometimes, however, you might want the underlying implementation of your web
service to be a stateless session EJB so as to take advantage of all that EJBs have to
offer, such as instance pooling, transactions, security, container-managed persistence,
container-managed relationships, and data caching. If you decide you want an EJB
implementation for your web service, then follow the programming guidelines in the
following section.

4.5.1 Programming Guidelines When Implementing an EJB in Your JWS File
The general guideline is to always use EJBGen annotations in your JWS file to
automatically generate, rather than manually create, the EJB Remote and Home
interface classes and deployment descriptor files needed when implementing an EJB.
EJBGen annotations work in the same way as JWS annotations: they follow the JDK 5.0
metadata syntax and greatly simplify your programming tasks.

For more information on EJBGen, see "EJBGen Reference" in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Follow these guidelines when explicitly implementing a stateless session EJB in your
JWS file. See Section 4.5.2, "Example of a JWS File That Implements an EJB" for an
example; the relevant sections are shown in bold:

■ Import the standard Java Platform, Enterprise Edition (Java EE) Version 5 EJB
classes:

Table 4–4 Methods of Stub Interface

Method Returns Description

_getProperty() java.lang.Object Gets the value of the specified configuration
property.

_getPropertyNames() java.util.Iterator Returns an Iterator view of the names of the
properties that can be configured on the Stub
instance.

_setProperty() void Sets the name and value of a configuration
property for the Stub instance.

Table 4–5 Properties of Stub Interface

Property Type Description

ENDPOINT_ADDRESS_
PROPERTY

java.lang.String Target service endpoint address.

PASSWORD_PROPERTY java.lang.String Password used for authentication.

SESSION_MAINTAIN_
PROPERTY

java.lang.String Flag specifying whether to participate in a session
with a service endpoint.

USERNAME_PROPERTY java.lang.String User name used for authentication.

Note: JAX-RPC supports EJB 2.x only; it does not support EJB 3.0.

Should You Implement a Stateless Session EJB?

4-14 Developing JAX-RPC Web Services for Oracle WebLogic Server

import javax.ejb.SessionBean;
 import javax.ejb.SessionContext;

■ Import the EJBGen annotations, all of which are in the weblogic.ejbgen package.
At a minimum you need to import the @Session annotation; if you want to use
additional EJBGen annotations in your JWS file to specify the shape and behavior
of the EJB, see the "EJBGen Reference" in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server for the name of the annotation you should import.

import weblogic.ejbgen.Session;

■ At a minimum, use the @Session annotation at the class level to specify the name
of the EJB:

@Session(ejbName="TransactionEJB")

@Session is the only required EJBGen annotation when used in a JWS file. You can,
if you want, use other EJBGen annotations to specify additional features of the
EJB.

■ Ensure that the JWS class implements SessionBean:

public class TransactionImpl implements SessionBean {...

■ You must also include the standard EJB methods ejbCreate(), ejbActivate() and
so on, although you typically do not need to add code to these methods unless you
want to change the default behavior of the EJB:

 public void ejbCreate() {}
 public void ejbActivate() {}
 public void ejbRemove() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}

If you follow all these guidelines in your JWS file, the jwsc Ant task later compiles the
web service into an EJB and packages it into an EJB JAR file inside of the Enterprise
Application.

4.5.2 Example of a JWS File That Implements an EJB
The following example shows a simple JWS file that implement a stateless session EJB.
The relevant code is shown in bold.

package examples.webservices.transactional;
import javax.ejb.SessionBean;
 import javax.ejb.SessionContext;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Transactional;
import weblogic.ejbgen.Session;
@Session(ejbName="TransactionEJB")
@WebService(name="TransactionPortType", serviceName="TransactionService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="transactions", serviceUri="TransactionService",
 portName="TransactionPort")
/**
 * This JWS file forms the basis of simple EJB-implemented WebLogic
 * Web Service with a single operation: sayHello. The operation executes
 * as part of a transaction.
 *

Programming the User-Defined Java Data Type

Programming the JWS File 4-15

 */
public class TransactionImpl implements SessionBean {
 @WebMethod()
 @Transactional(value=true)
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 // Standard EJB methods. Typically there's no need to override the methods.
 public void ejbCreate() {}
 public void ejbActivate() {}
 public void ejbRemove() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}
 }

4.6 Programming the User-Defined Java Data Type
The methods of the JWS file that are exposed as web service operations do not
necessarily take built-in data types (such as Strings and integers) as parameters and
return values, but rather, might use a Java data type that you create yourself. An
example of a user-defined data type is TradeResult, which has two fields: a String
stock symbol and an integer number of shares traded.

If your JWS file uses user-defined data types as parameters or return values of one or
more of its methods, you must create the Java code of the data type yourself, and then
import the class into your JWS file and use it appropriately. The jwsc Ant task will
later take care of creating all the necessary data binding artifacts, such as the
corresponding XML Schema representation of the Java user-defined data type, the
JAX-RPC type mapping file, and so on.

Follow these basic requirements when writing the Java class for your user-defined
data type:

■ Define a default constructor, which is a constructor that takes no parameters.

■ Define both getXXX() and setXXX() methods for each member variable that you
want to publicly expose.

■ Make the data type of each exposed member variable one of the built-in data
types, or another user-defined data type that consists of built-in data types.

These requirements are specified by JAX-RPC; for more detailed information and the
complete list of requirements, see the JAX-RPC specification at
http://java.net/projects/jax-rpc/.

The jwsc Ant task can generate data binding artifacts for most common XML and Java
data types. For the list of supported user-defined data types, see Section 5.3,
"Supported User-Defined Data Types." See Section 5.2, "Supported Built-In Data
Types" for the full list of supported built-in data types.

The following example shows a simple Java user-defined data type called
BasicStruct:

package examples.webservices.complex;
/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */
public class BasicStruct {

Throwing Exceptions

4-16 Developing JAX-RPC Web Services for Oracle WebLogic Server

 // Properties
 private int intValue;
 private String stringValue;
 private String[] stringArray;
 // Getter and setter methods
 public int getIntValue() {
 return intValue;
 }
 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }
 public String getStringValue() {
 return stringValue;
 }
 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }
 public String[] getStringArray() {
 return stringArray;
 }
 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }
}

The following snippets from a JWS file show how to import the BasicStruct class and
use it as both a parameter and return value for one of its methods; for the full JWS file,
see Section 2.2.2, "Sample ComplexImpl.java JWS File":

package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
 import javax.jws.WebParam;
 import javax.jws.WebResult;
 import javax.jws.WebService;
 import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interface
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
...
public class ComplexImpl {
 @WebMethod(operationName="echoComplexType")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 return struct;
 }
 }

4.7 Throwing Exceptions
When you write the error-handling Java code in methods of the JWS file, you can
either throw your own user-defined exceptions or throw a
javax.xml.rpc.soap.SOAPFaultException exception. If you throw a
SOAPFaultException, WebLogic Server maps it to a SOAP fault and sends it to the
client application that invokes the operation.

Throwing Exceptions

Programming the JWS File 4-17

If your JWS file throws any type of Java exception other than SOAPFaultException,
WebLogic Server tries to map it to a SOAP fault as best it can. However, if you want to
control what the client application receives and send it the best possible exception
information, you should explicitly throw a SOAPFaultException exception or one that
extends the exception. See the JAX-RPC specification at
http://java.net/projects/jax-rpc/ for detailed information about creating and
throwing your own user-defined exceptions.

The following excerpt describes the SOAPFaultException class:

public class SOAPFaultException extends java.lang.RuntimeException {
 public SOAPFaultException (QName faultcode,
 String faultstring,
 String faultactor,
 javax.xml.soap.Detail detail) {...}
 public Qname getFaultCode() {...}
 public String getFaultString() {...}
 public String getFaultActor() {...}
 public javax.xml.soap.Detail getDetail() {...}
 }

Use the SOAP with Attachments API for Java 1.1 (SAAJ)
javax.xml.soap.SOAPFactory.createDetail() method to create the Detail object,
which is a container for DetailEntry objects that provide detailed application-specific
information about the error.

You can use your own implementation of the SOAPFactory, or use Oracle 's, which can
be accessed in the JWS file by calling the static method
weblogic.wsee.util.WLSOAPFactory.createSOAPFactory() which returns a
javax.xml.soap.SOAPFactory object. Then at run time, use the
-Djavax.xml.soap.SOAPFactory flag to specify Oracle's SOAPFactory implementation
as shown:

-Djavax.xml.soap.SOAPFactory=weblogic.xml.saaj.SOAPFactoryImpl

The following JWS file shows an example of creating and throwing a
SOAPFaultException from within a method that implements an operation of your web
service; the sections in bold highlight the exception code:

package examples.webservices.soap_exceptions;
import javax.xml.namespace.QName;
 import javax.xml.soap.Detail;
 import javax.xml.soap.SOAPException;
 import javax.xml.soap.SOAPFactory;
 import javax.xml.rpc.soap.SOAPFaultException;
// Import the @WebService annotation
import javax.jws.WebService;
// Import WLHttpTransport
import weblogic.jws.WLHttpTransport;
@WebService(serviceName="SoapExceptionsService",
 name="SoapExceptionsPortType",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="exceptions",
 serviceUri="SoapExceptionsService",
 portName="SoapExceptionsServicePort")
 /**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHelloWorld
 *
 */
public class SoapExceptionsImpl {

Invoking Another Web Service from the JWS File

4-18 Developing JAX-RPC Web Services for Oracle WebLogic Server

 public SoapExceptionsImpl() {
 }
 public void tirarSOAPException() {
 Detail detail = null;
 try {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 detail = soapFactory.createDetail();
 } catch (SOAPException e) {
 // do something
 }
 QName faultCode = null;
 String faultString = "the fault string";
 String faultActor = "the fault actor";
 throw new SOAPFaultException(faultCode, faultString, faultActor, detail);
 }
 }

The preceding example uses the default implementation of SOAPFactory.

4.8 Invoking Another Web Service from the JWS File
From within your JWS file you can invoke another web service, either one deployed
on WebLogic Server or one deployed on some other application server, such as .NET.
The steps to do this are similar to those described in Section 2.4, "Invoking a Web
Service from a Java SE Client," except that rather than running the clientgen Ant task
to generate the client stubs, you include a <clientgen> child element of the jwsc Ant
task that builds the invoking web service to generate the client stubs instead. You then
use the standard JAX-RPC APIs in your JWS file.

See Section 6.3, "Invoking a Web Service from Another Web Service" for detailed
instructions.

4.9 Programming Additional Miscellaneous Features Using JWS
Annotations and APIs

The following sections describe additional miscellaneous features you can program by
specifying particular JWS annotations in your JWS file or using WebLogic web services
APIs:

■ Section 4.9.1, "Sending Binary Data Using MTOM/XOP"

■ Section 4.9.2, "Streaming SOAP Attachments"

■ Section 4.9.3, "Using SOAP 1.2"

■ Section 4.9.4, "Specifying that Operations Run Inside of a Transaction"

■ Section 4.9.5, "Getting the HttpServletRequest/Response Object"

Note: If you create and throw your own exception (rather than use
SOAPFaultException) and two or more of the properties of your
exception class are of the same data type, then you must also create
setter methods for these properties, even though the JAX-RPC
specification does not require it. This is because when a WebLogic web
service receives the exception in a SOAP message and converts the
XML into the Java exception class, there is no way of knowing which
XML element maps to which class property without the
corresponding setter methods.

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

Programming the JWS File 4-19

4.9.1 Sending Binary Data Using MTOM/XOP
SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) describes a method for optimizing the transmission of XML
data of type xs:base64Binary in SOAP messages. When the transport protocol is
HTTP, MIME attachments are used to carry that data while at the same time allowing
both the sender and the receiver direct access to the XML data in the SOAP message
without having to be aware that any MIME artifacts were used to marshal the
xs:base64Binary data. The binary data optimization process involves encoding the
binary data, removing it from the SOAP envelope, compressing it and attaching it to
the MIME package, and adding references to that package in the SOAP envelope.

The MTOM specification does not require that, when MTOM is enabled, the web
service run time use XOP binary optimization when transmitting base64binary data.
Rather, the specification allows the run time to choose to do so. This is because in
certain cases the run time may decide that it is more efficient to send base64binary
data directly in the SOAP Message; an example of such a case is when transporting
small amounts of data in which the overhead of conversion and transport consumes
more resources than just inlining the data as is. The WebLogic web services
implementation for MTOM for JAX-RPC service, however, always uses MTOM/XOP
when MTOM is enabled.

Support for MTOM/XOP in WebLogic JAX-RPC web services is implemented using
the pre-packaged WS-Policy file Mtom.xml. WS-Policy files follow the WS-Policy
specification, described at http://www.w3.org/TR/ws-policy; this specification
provides a general purpose model and XML syntax to describe and communicate the
policies of a web service, in this case the use of MTOM/XOP to send binary data. The
installation of the pre-packaged Mtom.xml WS-Policy file in the types section of the
web service WSDL is as follows (provided for your information only; you cannot
change this file):

<wsp:Policy wsu:Id="myService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsoma:OptimizedMimeSerialization

xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserializati
on" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file;
the snippet indicates that the web service uses MTOM/XOP:

<wsdl:binding name="BasicHttpBinding_IMtomTest"
 type="i0:IMtomTest">
 <wsp:PolicyReference URI="#myService_policy" />
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xml WS-Policy file with a web service at development-time
by specifying the @Policy metadata annotation in your JWS file. Be sure you also
specify the attachToWsdl=true attribute to ensure that the dynamic WSDL includes
the required reference to the Mtom.xml file; see the example below.

You can associate the Mtom.xml WS-Policy file with a web service at deployment time
by modifying the WSDL to add the Policy to the types section just before deployment.

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

4-20 Developing JAX-RPC Web Services for Oracle WebLogic Server

In addition, you can attach the file at run time using by the WebLogic Server
Administration Console; for details, see "Attach a WS-Policy file to a web service" in
the Oracle WebLogic Server Administration Console Online Help. This section describes
how to use the JWS annotation.

To send binary data using MTOM/XOP, follow these steps:

1. Use the WebLogic-specific @weblogic.jws.Policy annotation in your JWS file to
specify that the pre-packaged Mtom.xml file should be applied to your web service,
as shown in the following simple JWS file (relevant code shown in bold):

package examples.webservices.mtom;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Policy;
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="mtom",
 serviceUri="MtomService",
 portName="MtomServicePort")
@Policy(uri="policy:Mtom.xml", attachToWsdl=true)
public class MtomImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

2. Use the Java byte[] data type in your web service operations as either a return
value or input parameter whenever you want the resulting SOAP message to use
MTOM/XOP to send or receive the binary data. See the implementation of the
echoBinaryAsString operation above for an example; this operation simply takes
as input an array of byte and returns it as a String.

3. The WebLogic web services run time has built in MTOM/XOP support which is
enabled if the WSDL for which the clientgen Ant task generates client-side
artifacts specifies MTOM/XOP support. In your client application itself, simply
invoke the operations as usual, using byte[] as the relevant data type.

See the SOAP Message Transmission Optimization Mechanism specification at
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125 for additional information
about the MTOM/XOP feature itself as well as the version of the specification
supported by WebLogic JAX-RPC web services.

4.9.2 Streaming SOAP Attachments
Using the @weblogic.jws.StreamAttachments JWS annotation, you can specify that a
web service use a streaming API when reading inbound SOAP messages that include
attachments, rather than the default behavior in which the service reads the entire

Note: In this release of WebLogic Server, the only supported Java
data type when using MTOM/XOP is byte[]; other binary data types,
such as image, are not supported.

In addition, this release of WebLogic Server does not support using
MTOM with deprecated 9.x security policies.

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

Programming the JWS File 4-21

message into memory. This feature increases the performance of web services whose
SOAP messages are particular large.

See "weblogic.jws.StreamAttachments" in the WebLogic Web Services Reference for Oracle
WebLogic Server for an example of specifying that attachments should be streamed.

4.9.3 Using SOAP 1.2
WebLogic web services use, by default, Version 1.1 of Simple Object Access Protocol
(SOAP) as the message format when transmitting data and invocation calls between
the web service and its client. WebLogic web services support both SOAP 1.1 and the
newer SOAP 1.2, and you are free to use either version.

To specify that the web service use Version 1.2 of SOAP, use the class-level
@weblogic.jws.Binding annotation in your JWS file and set its single attribute to the
value Binding.Type.SOAP12, as shown in the following example (relevant code shown
in bold):

package examples.webservices.soap12;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Binding;
@WebService(name="SOAP12PortType",
 serviceName="SOAP12Service",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="soap12",
 serviceUri="SOAP12Service",
 portName="SOAP12ServicePort")
@Binding(Binding.Type.SOAP12)
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello. The class uses SOAP 1.2
 * as its binding.
 *
 */
public class SOAP12Impl {
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 }

Other than set this annotation, you do not have to do anything else for the web service
to use SOAP 1.2, including changing client applications that invoke the web service;
the WebLogic web services run time takes care of all the rest.

See "weblogic.jws.Binding" in the WebLogic Web Services Reference for Oracle WebLogic
Server for additional information about this annotation.

4.9.4 Specifying that Operations Run Inside of a Transaction
When a client application invokes a WebLogic web service operation, the operation
invocation takes place outside the context of a transaction, by default. If you want the
operation to run inside a transaction, specify the @weblogic.jws.Transactional
annotation in your JWS file, and set the boolean value attribute to true, as shown in
the following example (relevant code shown in bold):

package examples.webservices.transactional;

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

4-22 Developing JAX-RPC Web Services for Oracle WebLogic Server

import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Transactional;
@WebService(name="TransactionPojoPortType",
 serviceName="TransactionPojoService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="transactionsPojo",
 serviceUri="TransactionPojoService",
 portName="TransactionPojoPort")
/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello. The operation executes
 * as part of a transaction.
 *
 */
public class TransactionPojoImpl {
 @WebMethod()
 @Transactional(value=true)
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 }

If you want all operations of a web service to run inside of a transaction, specify the
@Transactional annotation at the class-level. If you want only a subset of the
operations to be transactional, specify the annotation at the method-level. If there is a
conflict, the method-level value overrides the class-level.

See "weblogic.jws.Transactional" in the WebLogic Web Services Reference for Oracle
WebLogic Server for information about additional attributes.

4.9.5 Getting the HttpServletRequest/Response Object
If your web service uses HTTP as its transport protocol, you can use the
weblogic.wsee.connection.transport.servlet.HttpTransportUtils to get the
javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse objects from the JAX-RPC
ServletEndpointContext object, as shown in the following example (relevant code
shown in bold and explained after the example):

package examples.webservices.http_transport_utils;
import javax.xml.rpc.server.ServiceLifecycle;
 import javax.xml.rpc.server.ServletEndpointContext;
 import javax.xml.rpc.ServiceException;
import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;
@WebService(name="HttpTransportUtilsPortType",
 serviceName="HttpTransportUtilsService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="servlet", serviceUri="HttpTransportUtils",
 portName="HttpTransportUtilsPort")
public class HttpTransportUtilsImpl implements ServiceLifecycle {
 private ServletEndpointContext wsctx = null;
 public void init(Object context) throws ServiceException {

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

Programming the JWS File 4-23

 System.out.println("ServletEndpointContext inited...");
 wsctx = (ServletEndpointContext)context;
 }
 public void destroy() {
 System.out.println("ServletEndpointContext destroyed...");
 wsctx = null;
 }
 @WebMethod()
 public String getServletRequestAndResponse() {
 HttpServletRequest request =
 HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());
 HttpServletResponse response =
 HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());
 System.out.println("HttpTransportUtils API used successfully.");
 return "HttpTransportUtils API used successfully";
 }
}

The important parts of the preceding example are as follows:

■ Import the required JAX-RPC and Servlet classes:

import javax.xml.rpc.server.ServiceLifecycle;
 import javax.xml.rpc.server.ServletEndpointContext;
 import javax.xml.rpc.ServiceException;
import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

■ Import the WebLogic HttpTransportUtils class:

import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;

■ Because you will be querying the JAX-RPC message context, your JWS file must
explicitly implement ServiceLifecycle:

public class HttpTransportUtilsImpl implements ServiceLifecycle

■ Create a variable of data type ServletEndpointContext:

 private ServletEndpointContext wsctx = null;

■ Because the JWS file implements ServiceLifecycle, you must also implement the
init and destroy lifecycle methods:

 public void init(Object context) throws ServiceException {
 System.out.println("ServletEndpointContext inited...");
 wsctx = (ServletEndpointContext)context;
 }
 public void destroy() {
 System.out.println("ServletEndpointContext destroyed...");
 wsctx = null;
 }

■ Finally, in the method that implements the web service operation, use the
ServletEndpointContext object to get the HttpServletRequest and
HttpServletResponse objects:

HttpServletRequest request =
 HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());
 HttpServletResponse response =
 HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

JWS Programming Best Practices

4-24 Developing JAX-RPC Web Services for Oracle WebLogic Server

4.10 JWS Programming Best Practices
The following list provides some best practices when programming the JWS file:

■ When you create a document-literal-bare web service, use the @WebParam JWS
annotation to ensure that all input parameters for all operations of a given web
service have a unique name. Because of the nature of document-literal-bare web
services, if you do not explicitly use the @WebParam annotation to specify the name
of the input parameters, WebLogic Server creates one for you and run the risk of
duplicating the names of the parameters across a web service.

■ In general, document-literal-wrapped web services are the most interoperable type
of web service.

■ Use the @WebResult JWS annotation to explicitly set the name of the returned
value of an operation, rather than always relying on the hard-coded name return,
which is the default name of the returned value if you do not use the @WebResult
annotation in your JWS file.

■ Use SOAPFaultExceptions in your JWS file if you want to control the exception
information that is passed back to a client application when an error is
encountered while invoking a the web service.

■ Even though it is not required, Oracle recommends you always specify the
portName attribute of the WebLogic-specific @WLHttpTransport annotation in your
JWS file. If you do not specify this attribute, the jwsc Ant task will generate a port
name for you when generating the WSDL file, but this name might not be very
user-friendly. A consequence of this is that the getXXX() method you use in your
client applications to invoke the web service will not be very well-named. To
ensure that your client applications use the most user-friendly methods possible
when invoking the web service, specify a relevant name of the web service port by
using the portName attribute.

5

Understanding Data Binding 5-1

5Understanding Data Binding

[6] This chapter describes the data binding and the data types (both built-in and
user-defined) that are supported for WebLogic web services using Java API for
XML-based RPC (JAX-RPC).

This chapter includes the following sections:

■ Overview of Data Binding

■ Supported Built-In Data Types

■ Supported User-Defined Data Types

5.1 Overview of Data Binding
With the emergence of XML as the standard for exchanging data across disparate
systems, web service applications need a way to access documents that are in XML
format directly from the Java application. Specifically, the XML content needs to be
converted to a format that is readable by the Java application. Data binding describes
the conversion of data between its XML and Java representations.

As in previous releases, WebLogic web services support a full set of built-in XML
Schema, Java, and SOAP types, as specified by the JAX-RPC specification, described at
http://java.net/projects/jax-rpc/, that you can use in your web service
operations without performing any additional programming steps. Built-in data types
are those such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types,
including Apache XmlBeans (in package org.apache.xmlbeans), as input parameters
and return values of your web service. User-defined data types are those that you
create from XML Schema or Java building blocks, such as <xsd:complexType> or
JavaBeans. The WebLogic web services Ant tasks, such as jwsc and clientgen,
automatically generate the data binding artifacts needed to convert the user-defined
data types between their XML and Java representations. The XML representation is
used in the SOAP request and response messages, and the Java representation is used
in the JWS that implements the web service.

Supported Built-In Data Types

5-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

5.2 Supported Built-In Data Types
The following sections describe the built-in data types supported by WebLogic web
services and the mapping between their XML and Java representations. As long as the
data types of the parameters and return values of the back-end components that
implement your web service are in the set of built-in data types, WebLogic Server
automatically converts the data between XML and Java.

If, however, you use user-defined data types, then you must create the data binding
artifacts that convert the data between XML and Java.WebLogic Server includes the
jwsc and wsdlc Ant tasks that can automatically generate the data binding artifacts for
most user-defined data types. See Section 5.3, "Supported User-Defined Data Types"
for a list of supported XML and Java data types.

5.2.1 XML-to-Java Mapping for Built-in Data Types
The following table lists the supported XML Schema data types (target namespace
http://www.w3.org/2001/XMLSchema) and their corresponding Java data types.

For a list of the supported user-defined XML data types, see Section 5.2.2,
"Java-to-XML Mapping for Built-In Data Types."

Note: As of WebLogic Server 9.1, using XMLBeans 1.x data types (in
other words, extensions of com.bea.xml.XmlObject) as parameters or
return types of a WebLogic web service is deprecated. New
applications should use XMLBeans 2.x data types.

If a web service uses XMLBeans that are compiled with the -noupa
option, then -Dweblogic.wsee.bind.setCompileNoUpaRule=true flag
is required to be set in the WebLogic server startup script to ensure the
web service deploys successfully.Otherwise, deployment will fail with
the following error: cos-nonambig: Content model violates the
unique particle attribution rule.

Table 5–1 Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type

Equivalent Java Data Type

(lower case indicates a primitive data type)

boolean boolean

byte byte

short short

int int

long long

float float

double double

integer java.math.BigInteger

decimal java.math.BigDecimal

string java.lang.String

dateTime java.util.Calendar

base64Binary byte[]

Supported Built-In Data Types

Understanding Data Binding 5-3

5.2.2 Java-to-XML Mapping for Built-In Data Types
For a list of the supported user-defined Java data types, see Section 5.3.2, "Supported
Java User-Defined Data Types."

hexBinary byte[]

duration java.lang.String

time java.util.Calendar

date java.util.Calendar

gYearMonth java.util.Calendar

gYear java.util.Calendar

gMonthDay java.util.Calendar

gDay java.util.Calendar

gMonth java.util.Calendar

anyURI java.net.URI

NOTATION java.lang.String

token java.lang.String

normalizedString java.lang.String

language java.lang.String

Name java.lang.String

NMTOKEN java.lang.String

NCName java.lang.String

NMTOKENS java.lang.String[]

ID java.lang.String

IDREF java.lang.String

ENTITY java.lang.String

IDREFS java.lang.String[]

ENTITIES java.lang.String[]

nonPositiveInteger java.math.BigInteger

nonNegativeInteger java.math.BigInteger

negativeInteger java.math.BigInteger

unsignedLong java.math.BigInteger

positiveInteger java.math.BigInteger

unsignedInt long

unsignedShort int

unsignedByte short

Qname javax.xml.namespace.QName

Table 5–1 (Cont.) Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type

Equivalent Java Data Type

(lower case indicates a primitive data type)

Supported User-Defined Data Types

5-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

5.3 Supported User-Defined Data Types
The tables in the following sections list the user-defined XML and Java data types for
which the jwsc and wsdlc Ant tasks can automatically generate data binding artifacts,
such as the corresponding Java or XML representation, the JAX-RPC type mapping
file, and so on.

Table 5–2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case
indicates a primitive data type) Equivalent XML Schema Data Type

int int

short short

long long

float float

double double

byte byte

boolean boolean

char string (with facet of length=1)

java.lang.Integer int

java.lang.Short short

java.lang.Long long

java.lang.Float float

java.lang.Double double

java.lang.Byte byte

java.lang.Boolean boolean

java.lang.Character string (with facet of length=1)

java.lang.String string

java.math.BigInteger integer

java.math.BigDecimal decimal

java.util.Calendar dateTime

java.util.Date dateTime

byte[] base64Binary

javax.xml.namespace.QName Qname

java.net.URI anyURI

javax.xml.datatype.XMLGregori
anCalendar

anySimpleType

javax.xml.datatype.Duration duration

java.lang.Object anyType

java.awt.Image base64Binary

javax.activation.DataHandler base64Binary

javax.xml.transform.Source base64Binary

java.util.UUID string

Supported User-Defined Data Types

Understanding Data Binding 5-5

If your XML or Java data type is not listed in these tables, and it is not one of the
built-in data types listed in Section 5.2, "Supported Built-In Data Types," then you
must create the user-defined data type artifacts manually.

5.3.1 Supported XML User-Defined Data Types
The following table lists the XML Schema data types supported by the jwsc and wsdlc
Ant tasks and their equivalent Java data type or mapping mechanism.

For details and examples of the data types, see the JAX-RPC specification at
http://java.net/projects/jax-rpc/.

5.3.2 Supported Java User-Defined Data Types
The following table lists the Java user-defined data types supported by the jwsc and
wsdlc Ant tasks and their equivalent XML Schema data type.

Table 5–3 Supported User-Defined XML Schema Data Types

XML Schema Data Type
Equivalent Java Data Type or Mapping
Mechanism

<xsd:complexType> with elements of both
simple and complex types.

JavaBean

<xsd:complexType> with simple content. JavaBean

<xsd:attribute> in <xsd:complexType> Property of a JavaBean

Derivation of new simple types by restriction of
an existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element. Facets not enforced during serialization
and deserialization.

<xsd:list> Array of the list data type.

Array derived from soapenc:Array by restriction
using the wsdl:arrayType attribute.

Array of the Java equivalent of the
arrayType data type.

Array derived from soapenc:Array by
restriction.

Array of Java equivalent.

Derivation of a complex type from a simple type. JavaBean with a property called _value
whose type is mapped from the simple type
according to the rules in this section.

<xsd:anyType> java.lang.Object

<xsd:any> javax.xml.soap.SOAPElement or
org.apache.xmlbeans.XmlObject

<xsd:any[]> javax.xml.soap.SOAPElement[] or
org.apache.xmlbeans.XmlObject[]

<xsd:union> Common parent type of union members.

<xsi:nil> and <xsd:nillable> attribute Java null value.

If the XML data type is built-in and usually
maps to a Java primitive data type (such as
int or short), then the XML data type is
actually mapped to the equivalent object
wrapper type (such as java.lang.Integer
or java.lang.Short).

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

Supported User-Defined Data Types

5-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

Table 5–4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported
data type.

<xsd:complexType> whose content model
is a <xsd:sequence> of elements
corresponding to JavaBean properties.

Array and multidimensional array of any
supported data type (when used as a JavaBean
property)

An element in a <xsd:complexType> with
the maxOccurs attribute set to unbounded.

java.lang.Object

Note: The data type of the run-time object must
be a known type.

<xsd:anyType>

Apache XMLBeans (that are inherited from
org.apache.xmlbeans.XmlObject only)

Note: The web service that uses an Apache
XMLBeans data type as a return type or
parameter must be defined as
document-literal-wrapped or
document-literal-bare.

See Apache XMLBeans at
http://xmlbeans.apache.org/index.html.

java.util.Collection Literal Array

java.util.List Literal Array

java.util.ArrayList Literal Array

java.util.LinkedList Literal Array

java.util.Vector Literal Array

java.util.Stack Literal Array

java.util.Set Literal Array

java.util.TreeSet Literal Array

java.utils.SortedSet Literal Array

java.utils.HashSet Literal Array

Note: The following user-defined Java data type, used as a
parameter or return value of a WebLogic web service in Version 8.1, is
no longer supported: JAX-RPC-style enumeration class.

Additionally, generics are not supported when used as a parameter or
return value. For example, the following Java method cannot be
exposed as a public operation:

public ArrayList<String> echoGeneric(ArrayList<String> in) {
 return in;
 }

6

Developing JAX-RPC Web Service Clients 6-1

6Developing JAX-RPC Web Service Clients

[7] This chapter describes how to develop WebLogic web service clients using Java API
for XML-based RPC (JAX-RPC).

This chapter includes the following sections:

■ Overview of JAX-RPC Web Service Clients

■ Invoking a Web Service from a Java SE Client

■ Invoking a Web Service from Another Web Service

■ Using a Standalone Client JAR File When Invoking Web Services

■ Using a Proxy Server When Invoking a Web Service

■ Client Considerations When Redeploying a Web Service

■ WebLogic Web Services Stub Properties

■ Setting the Character Encoding For the Response SOAP Message

6.1 Overview of JAX-RPC Web Service Clients
Invoking a web service refers to the actions that a client application performs to use
the web service. Client applications that invoke web services can be written using any
technology: Java, Microsoft .NET, and so on.

There are two types of client applications:

■ Java SE client—In its simplest form, a Java SE client is a Java program that has the
Main public class that you invoke with the java command.

■ Java EE component deployed to WebLogic Server—In this type of client
application, the web service runs inside a Java Platform, Enterprise Edition (Java
EE) Version 5 component deployed to WebLogic Server, such as an EJB, servlet, or
another web service. This type of client application, therefore, runs inside a
WebLogic Server container.

You can invoke a web service from any Java SE or Java EE application running on
WebLogic Server (with access to the WebLogic Server classpath). For information
about support for standalone Java applications that are running in an environment
where WebLogic Server libraries are not available, see Section 6.4, "Using a Standalone

Note: The following sections do not include information about
invoking message-secured web services; for that topic, see "Updating
a Client Application to Invoke a Message-Secured Web Service" in
Securing WebLogic Web Services for Oracle WebLogic Server.

Overview of JAX-RPC Web Service Clients

6-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

Client JAR File When Invoking Web Services".

The sections that follow describe how to use Oracle's implementation of the JAX-RPC
specification to invoke a web service from a Java client application. You can use this
implementation to invoke web services running on any application server, both
WebLogic and non-WebLogic. In addition, you can create a client that runs as part of a
WebLogic Server, or a standalone client that runs in an environment where WebLogic
Server libraries are not available.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper, for proxy generation and testing. For more information, see
"Using Oracle IDEs to Build Web Services" in Understanding WebLogic Web Services for
Oracle WebLogic Server.

6.1.1 Invoking Web Services Using JAX-RPC
The Java API for XML based RPC (JAX-RPC) is a specification that defines the APIs
used to invoke a web service. WebLogic Server implements the JAX-RPC specification.

The following table briefly describes the core JAX-RPC interfaces and classes.

6.1.2 Examples of Clients That Invoke Web Services
WebLogic Server optionally includes examples of creating and invoking WebLogic
web services in the ORACLE_
HOME\wlserver\samples\server\examples\src\examples\webservices directory,
where ORACLE_HOME represents the directory in which you installed WebLogic Server.
For detailed instructions on how to build and run the examples, open the ORACLE_
HOME\wlserver\samples\server\docs\index.html Web page in your browser and
expand the WebLogic Server Examples->Examples->API->Web Services node. For
more information, see "Sample Applications and Code Examples" in Understanding
Oracle WebLogic Server.

Note: You cannot use a dynamic client to invoke a web service
operation that implements user-defined data types as parameters or
return values. A dynamic client uses the JAX-RPC Call interface.
Standard (static) clients use the Service and Stub JAX-RPC interfaces,
which correctly invoke web services that implement user-defined data
types.

Table 6–1 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface or Class Description

Service Main client interface.

ServiceFactory Factory class for creating Service instances.

Stub Base class of the client proxy used to invoke the operations
of a web service.

Call Used to dynamically invoke a web service.

JAXRPCException Exception thrown if an error occurs while invoking a web
service.

Invoking a Web Service from a Java SE Client

Developing JAX-RPC Web Service Clients 6-3

6.2 Invoking a Web Service from a Java SE Client

The following table summarizes the main steps to create a Java SE client that invokes a
web service.

Note: As described in this section, you can invoke a web service
from any Java SE or Java EE application running on WebLogic Server
(with access to the WebLogic Server classpath). For information about
support for standalone Java applications that are running in an
environment where WebLogic Server libraries are not available, see
Section 6.4, "Using a Standalone Client JAR File When Invoking Web
Services".

Note: It is assumed that you use Ant in your development
environment to build your client application, compile Java files, and
so on, and that you have an existing build.xml file that you want to
update with web services client tasks. For general information about
using Ant in your development environment, see Section 3.5,
"Creating the Basic Ant build.xml File." For a full example of a
build.xml file used in this section, see Section 6.2.5, "Sample Ant
Build File for a Java Client."

Table 6–2 Steps to Invoke a Web Service from a Java SE Client

Step Description

1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv.sh
(UNIX) command, located in the bin subdirectory of your
domain directory. The default location of WebLogic
Server domains is ORACLE_HOME/user_
projects/domains/domainName, where ORACLE_HOME is
the directory you specified as Oracle Home when you
installed Oracle WebLogic Server and domainName is the
name of your domain.

2 Update your build.xml file to
execute the clientgen Ant
task to generate the needed
client-side artifacts to invoke
a web service.

See Section 6.2.1, "Using the clientgen Ant Task To
Generate Client Artifacts."

3 Get information about the
web service, such as the
signature of its operations
and the name of the ports.

See Section 6.2.2, "Getting Information About a Web
Service."

4 Write the client application
Java code that includes code
for invoking the web service
operation.

See Section 6.2.3, "Writing the Java Client Application
Code to Invoke a Web Service."

5 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

6 Compile and run your Java
client application.

See Section 6.2.4, "Compiling and Running the Client
Application."

Invoking a Web Service from a Java SE Client

6-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

6.2.1 Using the clientgen Ant Task To Generate Client Artifacts
The clientgen WebLogic web services Ant task generates, from an existing WSDL file,
the client artifacts that client applications use to invoke both WebLogic and
non-WebLogic web services. These artifacts include:

■ The Java class for the JAX-RPC Stub and Service interface implementations for
the particular web service you want to invoke.

■ The Java class for any user-defined XML Schema data types included in the WSDL
file.

■ The JAX-RPC mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

■ A client-side copy of the WSDL file.

For additional information about the clientgen Ant task, such as all the available
attributes, see "Ant Task Reference" in the WebLogic Web Services Reference for Oracle
WebLogic Server.

Update your build.xml file, adding a call to the clientgen Ant task, as shown in the
following example:

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="clientclasses"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 </target>

Before you can execute the clientgen WebLogic web service Ant task, you must
specify its full Java classname using the standard taskdef Ant task.

You must include the wsdl and destDir attributes of the clientgen Ant task to specify
the WSDL file from which you want to create client-side artifacts and the directory
into which these artifacts should be generated. The packageName attribute is optional;
if you do not specify it, the clientgen task uses a package name based on the
targetNamespace of the WSDL. The type is also optional; if not specified, it defaults to
JAXRPC.

In this example, the package name is set to the same package name as the client
application, examples.webservices.simple_client. If you set the package name to
one that is different from the client application, you would need to import the
appropriate class files. For example, if you defined the package name as
examples.webservices.complex, you would need to import the following class files in
the client application:

import examples.webservices.complex.BasicStruct;
 import examples.webservices.complex.ComplexPortType;
 import examples.webservices.complex.ComplexService;

Invoking a Web Service from a Java SE Client

Developing JAX-RPC Web Service Clients 6-5

If the WSDL file specifies that user-defined data types are used as input parameters or
return values of web service operations, clientgen automatically generates a JavaBean
class that is the Java representation of the XML Schema data type defined in the
WSDL. The JavaBean classes are generated into the destDir directory.

For a full sample build.xml file that contains additional targets from those described
in this procedure, such as clean, see Section 6.2.5, "Sample Ant Build File for a Java
Client."

To execute the clientgen Ant task, along with the other supporting Ant tasks, specify
the build-client target at the command line:

prompt> ant build-client

See the clientclasses directory to view the files and artifacts generated by the
clientgen Ant task.

6.2.2 Getting Information About a Web Service
You need to know the name of the web service and the signature of its operations
before you write your Java client application code to invoke an operation. There are a
variety of ways to find this information.

The best way to get this information is to use the clientgen Ant task to generate the
web service-specific JAX-RPC stubs and look at the generated *.java files. These files
are generated into the directory specified by the destDir attribute, with subdirectories
corresponding to either the value of the packageName attribute, or, if this attribute is
not specified, to a package based on the targetNamespace of the WSDL.

■ The ServiceName.java source file contains the getPortName() methods for getting
the web service port, where ServiceName refers to the name of the web service and
PortName refers to the name of the port. If the web service was implemented with
a JWS file, the name of the web service is the value of the serviceName attribute of
the @WebService JWS annotation and the name of the port is the value of the
portName attribute of the @WLHttpTransport annotation.

■ The PortType.java file contains the method signatures that correspond to the
public operations of the web service, where PortType refers to the port type of the
web service. If the web service was implemented with a JWS file, the port type is
the value of the name attribute of the @WebService JWS annotation.

You can also examine the actual WSDL of the web service; see Section 3.10, "Browsing
to the WSDL of the Web Service" for details about the WSDL of a deployed WebLogic
web service. The name of the web service is contained in the <service> element, as
shown in the following excerpt of the TraderService WSDL:

Note: The clientgen Ant task also provides the destFile attribute if
you want the Ant task to automatically compile the generated Java
code and package all artifacts into a JAR file. For details and an
example, see "clientgen" in the WebLogic Web Services Reference for
Oracle WebLogic Server.

Note: The package of the Java user-defined data type is based on the
XML Schema of the data type in the WSDL, which is different from
the package name of the JAX-RPC stubs.

Invoking a Web Service from a Java SE Client

6-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

 <service name="TraderService">
 <port name="TraderServicePort"
 binding="tns:TraderServiceSoapBinding">
 ...
 </port>
 </service>

The operations defined for this web service are listed under the corresponding
<binding> element. For example, the following WSDL excerpt shows that the
TraderService web service has two operations, buy and sell (for clarity, only relevant
parts of the WSDL are shown):

 <binding name="TraderServiceSoapBinding" ...>
 ...
 <operation name="sell">
 ...
 </operation>
 <operation name="buy">
 </operation>
 </binding>

6.2.3 Writing the Java Client Application Code to Invoke a Web Service
In the following code example, a Java application invokes a web service operation. The
client application takes a single argument: the WSDL of the web service.The
application then uses standard JAX-RPC API code and the web service-specific
implementation of the Service interface, generated by clientgen, to invoke an
operation of the web service.

The example also shows how to invoke an operation that has a user-defined data type
(examples.webservices.complex.BasicStruct) as an input parameter and return
value. The clientgen Ant task automatically generates the Java code for this
user-defined data type.

package examples.webservices.simple_client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
// import the BasicStruct class, used as a param and return value of the
 // echoComplexType operation. The class is generated automatically by
 // the clientgen Ant task.
import examples.webservices.complex.BasicStruct;
/**
 * This is a simple Java client application that invokes the
 * the echoComplexType operation of the ComplexService web service.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException {
 ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
 }

Invoking a Web Service from a Java SE Client

Developing JAX-RPC Web Service Clients 6-7

In the preceding example:

■ The following code shows how to create a ComplexPortType stub:

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();

The ComplexService_Impl stub factory implements the JAX-RPC Service
interface. The constructor of ComplexService_Impl creates a stub based on the
provided WSDL URI (args[0] + "?WSDL"). The getComplexServicePort()
method is used to return an instance of the ComplexPortType stub implementation.

■ The following code shows how to invoke the echoComplexType operation of the
ComplexService web service:

BasicStruct result = port.echoComplexType(in);

The echoComplexType operation returns the user-defined data type called
BasicStruct.

The method of your application that invokes the web service operation must throw or
catch java.rmi.RemoteException and javax.xml.rpc.ServiceException, both of
which are thrown from the generated JAX-RPC stubs.

6.2.4 Compiling and Running the Client Application
Add javac tasks to the build-client target in the build.xml file to compile all the
Java files (both of your client application and those generated by clientgen) into class
files, as shown by the bold text in the following example:

 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="clientclasses"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 <javac
 srcdir="clientclasses"
 destdir="clientclasses"
 includes="**/*.java"/>
 <javac
 srcdir="src"
 destdir="clientclasses"
 includes="examples/webservices/simple_client/*.java"/>
 </target>

In the example, the first javac task compiles the Java files in the clientclasses
directory that were generated by clientgen, and the second javac task compiles the
Java files in the examples/webservices/simple_client subdirectory of the current
directory; where it is assumed your Java client application source is located.

In the preceding example, the clientgen-generated Java source files and the resulting
compiled classes end up in the same directory (clientclasses). Although this might
be adequate for prototyping, it is often a best practice to keep source code (even
generated code) in a different directory from the compiled classes. To do this, set the
destdir for both javac tasks to a directory different from the srcdir directory. You
must also copy the following clientgen-generated files from clientgen's destination
directory to javac's destination directory, keeping the same subdirectory hierarchy in
the destination:

Invoking a Web Service from a Java SE Client

6-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

packageName/ServiceName_internaldd.xml
packageName/ServiceName_java_wsdl_mapping.xml
packageName/ServiceName_saved_wsdl.wsdl

where packageName refers to the subdirectory hierarchy that corresponds to the
package of the generated JAX-RPC stubs and ServiceName refers to the name of the
web service.

To run the client application, add a run target to the build.xml that includes a call to
the java task, as shown below:

<path id="client.class.path">
 <pathelement path="clientclasses"/>
 <pathelement path="${java.class.path}"/>
 </path>
<target name="run" >
 <java
 fork="true"
 classname="examples.webServices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
 </target>

The path task adds the clientclasses directory to the CLASSPATH. The run target
invokes the Main application, passing it the URL of the deployed web service as its
single argument.

See Section 6.2.5, "Sample Ant Build File for a Java Client" for a full sample build.xml
file that contains additional targets from those described in this procedure, such as
clean.

Rerun the build-client target to regenerate the artifacts and recompile into classes,
then execute the run target to invoke the echoStruct operation:

 prompt> ant build-client run

You can use the build-client and run targets in the build.xml file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

6.2.5 Sample Ant Build File for a Java Client
The following example shows a complete build.xml file for generating and compiling
a Java client. See Section 6.2.1, "Using the clientgen Ant Task To Generate Client
Artifacts" and Section 6.2.4, "Compiling and Running the Client Application" for
explanations of the sections in bold.

<project name="webservices-simple_client" default="all">
 <!-- set global properties for this build -->
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="example-output" value="output" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="clean" >

Invoking a Web Service from Another Web Service

Developing JAX-RPC Web Service Clients 6-9

 <delete dir="${clientclass-dir}"/>
 </target>
 <target name="all" depends="clean,build-client,run" />
 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/simple_client/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"
 />
 </java>
 </target>
</project>

6.3 Invoking a Web Service from Another Web Service
Invoking a web service from within a WebLogic web service is similar to invoking one
from another Java application, as described in Section 6.2, "Invoking a Web Service
from a Java SE Client." However, instead of using the clientgen Ant task to generate
the JAX-RPC stubs of the web service to be invoked, you use the <clientgen> child
element of the <jws> element, inside the jwsc Ant task that compiles the invoking web
service. In the JWS file that invokes the other web service, however, you still use the
same standard JAX-RPC APIs to get Service and PortType instances to invoke the
web service operations.

It is assumed that you have read and understood Section 6.2, "Invoking a Web Service
from a Java SE Client." It is also assumed that you use Ant in your development
environment to build your client application, compile Java files, and so on, and that
you have an existing build.xml that builds a web service that you want to update to
invoke another web service.

The following list describes the changes you must make to the build.xml file that
builds your client web service, which will invoke another web service. See
Section 6.3.1, "Sample build.xml File for a Web Service Client" for the full sample
build.xml file:

■ Add a <clientgen> child element to the <jws> element that specifies the JWS file
that implements the web service that invokes another web service. Set the required
wsdl attribute to the WSDL of the web service to be invoked. Set the required
packageName attribute to the package into which you want the JAX-RPC client
stubs to be generated.

The following list describes the changes you must make to the JWS file that
implements the client web service; see Section 6.3.2, "Sample JWS File That Invokes a
Web Service" for the full JWS file example.

Invoking a Web Service from Another Web Service

6-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

■ Import the files generated by the <clientgen> child element of the jwsc Ant task.
These include the JAX-RPC stubs of the invoked web service, as well as the Java
representation of any user-defined data types used as parameters or return values
in the operations of the invoked web service.

■ Update the method that contains the invoke of the web service to either throw or
catch both java.rmi.RemoteException and javax.xml.rpc.ServiceException.

■ Get the Service and PortType JAX-RPC stubs implementation and invoke the
operation on the port as usual; see Section 6.2.3, "Writing the Java Client
Application Code to Invoke a Web Service" for details.

6.3.1 Sample build.xml File for a Web Service Client
The following sample build.xml file shows how to create a web service that itself
invokes another web service; the relevant sections that differ from the build.xml for
building a simple web service that does not invoke another web service are shown in
bold.

The build-service target in this case is very similar to a target that builds a simple
web service; the only difference is that the jwsc Ant task that builds the invoking web
service also includes a <clientgen> child element of the <jws> element so that jwsc
also generates the required JAX-RPC client stubs.

<project name="webservices-service_to_service" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"

Note: The user-defined data types are generated into a package
based on the XML Schema of the data type in the WSDL, not in the
package specified by clientgen. The JAX-RPC stubs, however, use the
package name specified by the packageName attribute of the
<clientgen> element.

Invoking a Web Service from Another Web Service

Developing JAX-RPC Web Service Clients 6-11

 destdir="${ear-dir}" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg

line="http://${wls.hostname}:${wls.port}/ClientService/ClientService"/>
 </java>
 </target>
</project>

6.3.2 Sample JWS File That Invokes a Web Service
The following sample JWS file, called ClientServiceImpl.java, implements a web
service called ClientService that has an operation that in turn invokes the
echoComplexType operation of a web service called ComplexService. This operation
has a user-defined data type (BasicStruct) as both a parameter and a return value.
The relevant code is shown in bold and described after the example.

Invoking a Web Service from Another Web Service

6-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

package examples.webservices.service_to_service;
import java.rmi.RemoteException;
 import javax.xml.rpc.ServiceException;
import javax.jws.WebService;
 import javax.jws.WebMethod;
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct data type, generated by clientgen and used
 // by the ComplexService Web Service
import examples.webservices.complex.BasicStruct;
// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
 // Stubs generated by clientgen
import examples.webservices.service_to_service.ComplexPortType;
 import examples.webservices.service_to_service.ComplexService_Impl;
 import examples.webservices.service_to_service.ComplexService;
@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")
@WLHttpTransport(contextPath="ClientService", serviceUri="ClientService",
 portName="ClientServicePort")
public class ClientServiceImpl {
 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 throws ServiceException, RemoteException
 {
 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePortTypePort();
 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");
 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";
 }
 }

Follow these guidelines when programming the JWS file that invokes another web
service; code snippets of the guidelines are shown in bold in the preceding example:

■ Import any user-defined data types that are used by the invoked web service. In
this example, the ComplexService uses the BasicStruct JavaBean:

import examples.webservices.complex.BasicStruct;

■ Import the JAX-RPC stubs of the ComplexService web service; the stubs are
generated by the <cliengen> child element of <jws>:

import examples.webservices.service_to_service.ComplexPortType;
 import examples.webservices.service_to_service.ComplexService_Impl;
 import examples.webservices.service_to_service.ComplexService;

■ Ensure that your client web service throws or catches ServiceException and
RemoteException:

throws ServiceException, RemoteException

■ Create the JAX-RPC Service and PortType instances for the ComplexService:

ComplexService service = new
 ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePortTypePort();

Using a Standalone Client JAR File When Invoking Web Services

Developing JAX-RPC Web Service Clients 6-13

■ Invoke the echoComplexType operation of ComplexService using the port you just
instantiated:

BasicStruct result = port.echoComplexType(input);

6.4 Using a Standalone Client JAR File When Invoking Web Services
It is assumed in this document that, when you invoke a web service using the
client-side artifacts generated by the clientgen or wsdlc Ant tasks, you have the entire
set of WebLogic Server classes in your CLASSPATH. If, however, your computer does
not have WebLogic Server installed, you can still invoke a web service by using the
standalone WebLogic web services client JAR file, as described in this section.

The standalone client JAR file supports basic client-side functionality, such as:

■ Use with client-side artifacts created by both the clientgen Ant tasks

■ Processing SOAP messages

■ Using client-side SOAP message handlers

■ Using MTOM

■ Invoking JAX-RPC web services

■ Using SSL

The standalone client JAR file does not, however, support invoking web services that
use the following advanced features:

■ Web services reliable SOAP messaging

■ Message-level security (WS-Security)

■ Conversations

■ Asynchronous request-response

■ Buffering

■ JMS transport

To use the standalone WebLogic web services client JAR file with your client
application, follow these steps:

1. Copy the file ORACLE_
HOME/wlserver/modules/clients/com.oracle.webservices.wls.jaxrpc-client.
jar from the computer hosting WebLogic Server to the client computer, where
ORACLE_HOME is the directory you specified as Oracle Home when you installed
Oracle WebLogic Server and domainName is the name of your domain.

2. Add the JAR file to your CLASSPATH.

Note: Ensure that your CLASSPATH includes the JAR file that
contains the Ant classes (ant.jar) as a subset of the classes are
required by the JAR file. This JAR file is typically located in the lib
directory of the Ant distribution.

Using a Proxy Server When Invoking a Web Service

6-14 Developing JAX-RPC Web Services for Oracle WebLogic Server

6.5 Using a Proxy Server When Invoking a Web Service
You can use a proxy server to proxy requests from a client application to an
application server (either WebLogic or non-WebLogic) that hosts the invoked web
service. You typically use a proxy server when the application server is behind a
firewall. There are two ways to specify the proxy server in your client application:
programmatically using the WebLogic HttpTransportInfo API or using system
properties.

6.5.1 Using the HttpTransportInfo API to Specify the Proxy Server
You can programmatically specify within the Java client application itself the details of
the proxy server that will proxy the web service invoke by using the standard
java.net.* classes and the WebLogic-specific HttpTransportInfo API. You use the
java.net classes to create a Proxy object that represents the proxy server, and then use
the WebLogic API and properties to set the proxy server on the JAX-RPC stub, as
shown in the following sample client that invokes the echo operation of the
HttpProxySampleService web service. The code in bold is described after the
example:

package dev2dev.proxy.client;
import java.net.Proxy;
 import java.net.InetSocketAddress;
import weblogic.wsee.connection.transport.http.HttpTransportInfo;
/**
 * Sample client to invoke a service through a proxy server via
 * programmatic API
 */
public class HttpProxySampleClient {
 public static void main(String[] args) throws Throwable{
 assert args.length == 5;
 String endpoint = args[0];
 String proxyHost = args[1];
 String proxyPort = args[2];
 String user = args[3];
 String pass = args[4];
 //create service and port
 HttpProxySampleService service = new HttpProxySampleService_Impl();
 HttpProxySamplePortType port = service.getHttpProxySamplePortTypeSoapPort();
 //set endpoint address
 ((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, endpoint);
 //set proxy server info
 Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));
 HttpTransportInfo info = new HttpTransportInfo();
 info.setProxy(p);
 ((Stub)port)._setProperty("weblogic.wsee.connection.transportinfo",info);
 //set proxy-authentication info
 ((Stub)port)._setProperty("weblogic.webservice.client.proxyusername",user);
 ((Stub)port)._setProperty("weblogic.webservice.client.proxypassword",pass);
 //invoke
 String s = port.echo("Hello World!");
 System.out.println("echo: " + s);
 }
 }

The sections of the preceding example to note are as follows:

■ Import the required java.net.* classes:

Using a Proxy Server When Invoking a Web Service

Developing JAX-RPC Web Service Clients 6-15

import java.net.Proxy;
 import java.net.InetSocketAddress;

■ Import the WebLogic HttpTransportInfo API:

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

■ Create a Proxy object that represents the proxy server:

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));

The proxyHost and proxyPort arguments refer to the host computer and port of
the proxy server.

■ Create an HttpTransportInfo object and use the setProxy() method to set the
proxy server information:

HttpTransportInfo info = new HttpTransportInfo();
 info.setProxy(p);

■ Use the weblogic.wsee.connection.transportinfo WebLogic stub property to
set the HttpTransportInfo object on the JAX-RPC stub:

((Stub)port)._setProperty("weblogic.wsee.connection.transportinfo",info);

■ Use weblogic.webservice.client.proxyusername and
weblogic.webservice.client.proxypassword WebLogic-specific stub properties
to specify the username and password of a user who is authenticated to access the
proxy server:

((Stub)port)._setProperty("weblogic.webservice.client.proxyusername",user);
 ((Stub)port)._
setProperty("weblogic.webservice.client.proxypassword",pass);

Alternatively, you can use the setProxyUsername() and setProxyPassword()
methods of the HttpTransportInfo API to set the proxy username and password,
as shown in the following example:

 info.setProxyUsername("juliet".getBytes());
 info.setProxyPassword("secret".getBytes());

6.5.2 Using System Properties to Specify the Proxy Server
To use system properties to specify the proxy server, write your client application in
the standard way, and then specify system properties when you execute the client
application.

You have a choice of using standard Java system properties or historical WebLogic
properties. If the proxySet system property is set to false (proxySet=false), proxy
properties will be ignored and no proxy will be used.

The following table summarizes the Java system properties. In this case, the proxySet
system property must not be set.

Using a Proxy Server When Invoking a Web Service

6-16 Developing JAX-RPC Web Services for Oracle WebLogic Server

The following excerpt from an Ant build script shows an example of setting Java
system properties when invoking a client application called
clients.InvokeMyService:

 <target name="run-client">
 <java fork="true"
 classname="clients.InvokeMyService"
 failonerror="true">
 <classpath refid="client.class.path"/>
 <arg line="${http-endpoint}"/>
 <jvmarg line=
 "-Dhttp.proxyHost=${proxy-host}
 -Dhttp.proxyPort=${proxy-port}
 -Dhttp.nonProxyHosts=${mydomain}"
 />
 </java>
 </target>

The following table summarizes the WebLogic system properties. In this case, the
proxySet system property must be set to true.

The following excerpt from an Ant build script shows an example of setting WebLogic
system properties when invoking a client application called
clients.InvokeMyService:

 <target name="run-client">
 <java fork="true"
 classname="clients.InvokeMyService"

Table 6–3 Java System Properties Used to Specify Proxy Server

Property Description

http.proxyHost=proxyHost

or

https.proxyHost=proxyHost

Name of the host computer on which the proxy server is
running. Use https.proxyHost for HTTP over SSL.

http.proxyPort=proxyPort

or

https.proxy.Port=proxyPort

Port to which the proxy server is listening. Use https.proxyPort
for HTTP over SSL.

http.nonProxyHosts=

hostname | hostname | ...

List of hosts that should be reached directly, bypassing the
proxy. Separate each host name using a | character. This
property applies to both HTTP and HTTPS.

Table 6–4 WebLogic System Properties Used to Specify the Proxy Server

Property Description

proxySet=true Flag that specifies that the historical WebLogic proxy properties
should be used.

proxyHost=proxyHost Name of the host computer on which the proxy server is
running.

proxyPort=proxyPort Port to which the proxy server is listening.

weblogic.webservice.client.
proxyusername=username

Username used to access the proxy server.

weblogic.webservice.client.
proxypassword=password

Password used to access the proxy server.

WebLogic Web Services Stub Properties

Developing JAX-RPC Web Service Clients 6-17

 failonerror="true">
 <classpath refid="client.class.path"/>
 <arg line="${http-endpoint}"/>
 <jvmarg line=
 "-DproxySet=true
 -DproxyHost=${proxy-host}
 -DproxyPort=${proxy-port}
 -Dweblogic.webservice.client.proxyusername=${proxy-username}
 -Dweblogic.webservice.client.proxypassword=${proxy-passwd}"
 />
 </java>
 </target>

6.6 Client Considerations When Redeploying a Web Service
WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated WebLogic web service alongside an older version
of the same web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
web service. If the client is connected to a conversational or reliable web service, its
work is considered complete when the existing conversation or reliable messaging
sequence is explicitly ended by the client or because of a timeout.

You can continue using the old client application with the new version of the web
service, as long as the following web service artifacts have not changed in the new
version:

■ WSDL that describes the web service

■ WS-Policy files attached to the web service

If any of these artifacts have changed, you must regenerate the JAX-RPC stubs used by
the client application by re-running the clientgen Ant task.

For example, if you change the signature of an operation in the new version of the web
service, then the WSDL file that describes the new version of the web service will also
change. In this case, you must regenerate the JAX-RPC stubs. If, however, you simply
change the implementation of an operation, but do not change its public contract, then
you can continue using the existing client application.

6.7 WebLogic Web Services Stub Properties
WebLogic Server provides a set of stub properties that you can set in the JAX-RPC
Stub used to invoke a WebLogic web service. Use the Stub._setProperty() method to
set the properties, as shown in the following example:

((Stub)port)._setProperty(WLStub.MARSHAL_FORCE_INCLUDE_XSI_TYPE,"true");

Most of the stub properties are defined in the WLStub class.

The following table describes additional stub properties not defined in the WLStub
class.

WebLogic Web Services Stub Properties

6-18 Developing JAX-RPC Web Services for Oracle WebLogic Server

Table 6–5 Additional Stub Properties

Stub Property Description

weblogic.wsee.transport.connection.timeout Specifies, in milliseconds, how long a client application that is
attempting to invoke a web service waits to make a
connection. After the specified time elapses, if a connection
hasn't been made, the attempt times out.

weblogic.wsee.transport.read.timeout Specifies, in milliseconds, how long a client application waits
for a response from a web service it is invoking. After the
specified time elapses, if a response hasn't arrived, the client
times out.

weblogic.wsee.security.bst.serverVerifyCert Specifies the certificate that the client application uses to
validate the signed response from WebLogic Server. By
default, WebLogic Server includes the certification used to
validate in the response SOAP message itself; if this is not
possible, then use this stub property to specify a different
one.

This stub property applies only to client applications that run
inside of a WebLogic Server container, and not to standalone
client applications.

The value of the property is an object of data type
java.security.cert.X509Certificate.

weblogic.wsee.security.bst.serverEncryptCert Specifies the certificate that the client application uses to
encrypt the request SOAP message sent to WebLogic Server.
By default, the client application uses the public certificate
published in the web service's WSDL; if this is not possible,
then use this stub property to specify a different one.

This stub property applies only to client applications that run
inside of a WebLogic Server container, and not to standalone
client applications.

The value of the property is an object of data type
java.security.cert.X509Certificate.

weblogic.wsee.marshal.forceIncludeXsiType Specifies that the SOAP messages for a web service operation
invoke should include the XML Schema data type of each
parameter. By default, the SOAP messages do not include the
data type of each parameter.

If you set this property to True, the elements in the SOAP
messages that describe operation parameters will include an
xsi:type attribute to specify the data type of the parameter,
as shown in the following example:

<soapenv:Envelope>
 ...
 <maxResults xsi:type="xs:int">10</maxResults>
 ...

By default (or if you set this property to False), the
parameter element would look like the following example:

<soapenv:Envelope>
 ...
 <maxResults>10</maxResults>
 ...

Valid values for this property are True and False; default
value is False.

Setting the Character Encoding For the Response SOAP Message

Developing JAX-RPC Web Service Clients 6-19

6.8 Setting the Character Encoding For the Response SOAP Message
Use the weblogic.wsee.jaxrpc.WLStub.CHARACTER_SET_ENCODING WLStub property
to set the character encoding of the response (outbound) SOAP message. You can set it
to the following two values:

■ UTF-8

■ UTF-16

The following code snippet from a client application shows how to set the character
encoding to UTF-16:

 Simple port = service.getSimpleSoapPort();
 ((Stub) port)._setProperty(weblogic.wsee.jaxrpc.WLStub.CHARACTER_SET_ENCODING,
"UTF-16");
 port.invokeMethod();

Setting the Character Encoding For the Response SOAP Message

6-20 Developing JAX-RPC Web Services for Oracle WebLogic Server

Part III
Part III Developing Advanced Features of JAX-RPC

Web Services

Part II describes how to develop advanced features of WebLogic web services using
Java API for XML-based RPC (JAX-RPC).

Sections include:

■ Chapter 7, "Invoking a Web Service Using Asynchronous Request-Response"

■ Chapter 8, "Using Web Services Reliable Messaging"

■ Chapter 9, "Creating Conversational Web Services"

■ Chapter 10, "Creating Buffered Web Services"

■ Chapter 11, "Using the Asynchronous Features Together"

■ Chapter 12, "Using Callbacks to Notify Clients of Events"

■ Chapter 13, "Using JMS Transport as the Connection Protocol"

■ Chapter 14, "Creating and Using SOAP Message Handlers"

■ Chapter 15, "Using Database Web Services"

7

Invoking a Web Service Using Asynchronous Request-Response 7-1

7Invoking a Web Service Using Asynchronous
Request-Response

[8] This chapter describes how to invoke a WebLogic Java API for XML-based RPC
(JAX-RPC) web service using asynchronous request-response.

This chapter includes the following sections:

■ Overview of the Asynchronous Request-Response Feature

■ Using Asynchronous Request-Response: Main Steps

■ Configuring the Host WebLogic Server Instance for the Asynchronous Web Service

■ Writing the Asynchronous JWS File

■ Updating the build.xml File When Using Asynchronous Request-Response

■ Disabling The Internal Asynchronous Service

■ Using Asynchronous Request Response With a Proxy Server

7.1 Overview of the Asynchronous Request-Response Feature
When you invoke a web service synchronously, the invoking client application waits
for the response to return before it can continue with its work. In cases where the
response returns immediately, this method of invoking the web service might be
adequate. However, because request processing can be delayed, it is often useful for
the client application to continue its work and handle the response later on, or in other
words, use the asynchronous request-response feature of WebLogic web services.

You invoke a web service asynchronously only from a client running in a WebLogic
web service, never from a stand-alone client application. The invoked web service
does not change in any way, thus you can invoke any deployed web service (both
WebLogic and non-WebLogic) asynchronously as long as the application server that
hosts the web service supports the WS-Addressing specification at
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.

When implementing asynchronous request-response in your client, rather than
invoking the operation directly, you invoke an asynchronous flavor of the same
operation. (This asynchronous flavor of the operation is automatically generated by
the jwsc Ant task.) For example, rather than invoking an operation called getQuote
directly, you would invoke getQuoteAsync instead. The asynchronous flavor of the
operation always returns void, even if the original operation returns a value. You then
include methods in your client that handle the asynchronous response or failures
when it returns later on. You put any business logic that processes the return value of
the web service operation invoke or a potential failure in these methods. You use both

Using Asynchronous Request-Response: Main Steps

7-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

naming conventions and JWS annotations to specify these methods to the JWS
compiler. For example, if the asynchronous operation is called getQuoteAsync, then
these methods might be called onGetQuoteAsyncResponse and
onGetQuoteAsyncFailure.

7.2 Using Asynchronous Request-Response: Main Steps
The following procedure describes how to create a client web service that
asynchronously invokes an operation in a different web service. The procedure shows
how to create the JWS file that implements the client web service from scratch; if you
want to update an existing JWS file, use this procedure as a guide.

For clarity, it is assumed in the procedure that:

■ The client web service is called StockQuoteClientService.

■ The StockQuoteClientService service is going to invoke the getQuote(String)
operation of the already-deployed StockQuoteService service whose WSDL is
found at the following URL:

http://localhost:7001/async/StockQuote?WSDL

It is further assumed that you have set up an Ant-based development environment
and that you have a working build.xml file to which you can add targets for running
the jwsc Ant task and deploying the generated service. For more information, see the
following sections:

■ "Examples for JAX-RPC Web Service Developers" on page 2-1

■ "Developing JAX-RPC Web Services" on page 3-1

■ "Programming the JWS File" on page 4-1

■ "Developing JAX-RPC Web Service Clients" on page 6-1

Note: For information about using asynchronous request-response
with other asynchronous features, such as web service reliable
messaging or buffering, see Chapter 11, "Using the Asynchronous
Features Together." This section describes how to use the
asynchronous request-response feature on its own.

The asynchronous request-response feature works only with HTTP;
you cannot use it with the HTTPS or JMS transport.

Table 7–1 Steps to Use Asynchronous Request-Response

Step Description

1 Configure the WebLogic
Server instances.

Configure the asynchronous response service, as
described in Section 7.3, "Configuring the Host WebLogic
Server Instance for the Asynchronous Web Service".

2 Create a new JWS file, or
update an existing one, that
implements the
StockQuoteClientService
web service.

Use your favorite IDE or text editor. See Section 7.4,
"Writing the Asynchronous JWS File".

Configuring the Host WebLogic Server Instance for the Asynchronous Web Service

Invoking a Web Service Using Asynchronous Request-Response 7-3

When you invoke the StockQuoteClientService web service, which in turn invokes
the StockQuoteService web service, the second invoke will be asynchronous rather
than synchronous.

7.3 Configuring the Host WebLogic Server Instance for the
Asynchronous Web Service

Configuring the WebLogic Server instance on which the asynchronous web service is
deployed involves configuring JMS resources, such as JMS servers and modules, that
are used internally by the web services runtime.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" on page 3-2.

If you prefer to configure the resources manually, perform the following steps.

3 Update your build.xml file to
compile the JWS file that
implements the
StockQuoteClientService.

You will add a <clientgen> child element to the jwsc
Ant task so as to automatically generate the
asynchronous flavor of the web service operations you
are invoking.

See Section 7.5, "Updating the build.xml File When Using
Asynchronous Request-Response".

4 Run the Ant target to build
the
StockQuoteClientService.

For example:

prompt> ant build-clientService

5 Deploy the
StockQuoteClientService
web service as usual.

See "Deploying and Undeploying WebLogic Web
Services" on page 3-14.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Understanding the WebLogic
Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for web services has not been
completely deployed.

Table 7–1 (Cont.) Steps to Use Asynchronous Request-Response

Step Description

Writing the Asynchronous JWS File

7-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

7.4 Writing the Asynchronous JWS File
The following example shows a simple JWS file that implements a web service called
StockQuoteClient that has a single method, asyncOperation, that in turn
asynchronously invokes the getQuote method of the StockQuote service. The Java
code in bold is described Section 7.4.1, "Coding Guidelines for Invoking a Web Service
Asynchronously". See Section 7.4.3, "Example of a Synchronous Invoke" to see how the

Table 7–2 Steps to Configure Host WebLogic Server Instance Manually for the
Asynchronous Web Service

Step Description

1 Invoke the WebLogic Server
Administration Console for
the domain that contains the
host WebLogic Server
instance.

To invoke the WebLogic Server Administration Console in
your browser, enter the following URL:

http://host:port/console

where

■ host refers to the computer on which the
Administration Server is running.

■ port refers to the port number where the
Administration Server is listening for connection
requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in
Understanding WebLogic Web Services for Oracle WebLogic
Server.

2 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you
can use it if you do not want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server
Administration Console Online Help.

3 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the
module. If a JMS module already exists, you can use it if
you do not want to create a new one. Target the JMS
queue to the JMS server you created in the preceding step.
Be sure you specify that this JMS queue is local, typically
by setting the local JNDI name. See "Create JMS system
modules" and "Create queues in a system module" in
Oracle WebLogic Server Administration Console Online Help.

If you want the asynchronous web service to use the
default web services queue, set the JNDI name of the JMS
queue to weblogic.wsee.DefaultQueue.

Clustering Considerations:

If you are using the web service asynchronous feature in a
cluster, you must:

■ Create a local JMS queue, rather than a distributed
queue, when creating the JMS queue.

■ Explicitly target this JMS queue to each server in the
cluster.

4 Create a Work Manager. Define a Work Manager named
weblogic.wsee.mdb.DispatchPolicy, which is used by
the asynchronous request-response feature, by default.

See "Create global Work Managers" in Oracle WebLogic
Server Administration Console Online Help.

5 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve Web
Service Performance" in Tuning Performance of Oracle
WebLogic Server.

Writing the Asynchronous JWS File

Invoking a Web Service Using Asynchronous Request-Response 7-5

asynchronous invoke differs from a synchronous invoke of the same operation.

package examples.webservices.async_req_res;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.AsyncResponse;
import weblogic.jws.AsyncFailure;

import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPostCallContext;

import javax.jws.WebService;
import javax.jws.WebMethod;

import examples.webservices.async_req_res.StockQuotePortType;

import java.rmi.RemoteException;

@WebService(name="StockQuoteClientPortType",
 serviceName="StockQuoteClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="asyncClient",
 serviceUri="StockQuoteClient",
 portName="StockQuoteClientServicePort")

/**
 * Client Web Service that invokes the StockQuote Service asynchronously.
 */

public class StockQuoteClientImpl {

 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")

 private StockQuotePortType port;

 @WebMethod
 public void asyncOperation (String symbol, String userName)
 throws RemoteException {

 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("userName", userName);

 try {
 port.getQuoteAsync(apc, symbol);
 System.out.println("in getQuote method of StockQuoteClient WS");

 } catch (RemoteException re) {

 System.out.println("RemoteException thrown");
 throw new RuntimeException(re);
 }

 }

 @AsyncResponse(target="port", operation="getQuote")
 public void onGetQuoteAsyncResponse(AsyncPostCallContext apc, int quote) {
 // Get the userName property we set on AsyncPreCallContext

Writing the Asynchronous JWS File

7-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

 String userName = (String)apc.getProperty("userName");
 System.out.println("-------------------");
 System.out.println(username + " Got quote " + quote);
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="getQuote")
 public void onGetQuoteAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

}

7.4.1 Coding Guidelines for Invoking a Web Service Asynchronously
The following guidelines for invoking an operation asynchronously correspond to the
Java code shown in bold in the example described in Section 7.4, "Writing the
Asynchronous JWS File". These guidelines are in addition to the standard ones for
creating JWS files. See Section 7.4.3, "Example of a Synchronous Invoke" to see how the
asynchronous invoke differs from a synchronous invoke of the same operation.

To invoke an operation asynchronously in your JWS file:

■ Import the following WebLogic-specific JWS annotations related to the
asynchronous request-response feature:

import weblogic.jws.ServiceClient;
import weblogic.jws.AsyncResponse;
import weblogic.jws.AsyncFailure;

■ Import the JAX-RPC stub, created later by the jwsc Ant task, of the port type of the
web service you want to invoke. The stub package is specified by the packageName
attribute of the <clientgen> child element of jwsc, and the name of the stub is
determined by the WSDL of the invoked web service.

import examples.webservices.async_req_res.StockQuotePortType;

■ Import the asynchronous pre- and post-call context WebLogic APIs:

import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncPostCallContext;

For more information about asynchronous pre- and post-call context, see
Section 7.4.2, "Using Asynchronous Pre- and Post-call Contexts".

■ In the body of the JWS file, use the required @ServiceClient JWS annotation to
specify the WSDL, name, and port of the web service you will be invoking
asynchronously. You specify this annotation at the field-level on a variable, whose
data type is the JAX-RPC port type of the web service you are invoking.

 @ServiceClient(
 wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService",
 portName="StockQuote")

 private StockQuotePortType port;

Writing the Asynchronous JWS File

Invoking a Web Service Using Asynchronous Request-Response 7-7

When you annotate a variable (in this case, port) with the @ServiceClient
annotation, the web services runtime automatically initializes and instantiates the
variable, preparing it so that it can be used to invoke another web service
asynchronously.

■ In the method of the JWS file which is going to invoke the getQuote operation
asynchronously, get a pre-call asynchronous context using the context factory:

AsyncPreCallContext apc =
 AsyncCallContextFactory.getAsyncPreCallContext();

For more information about asynchronous pre- and post-call context, see
Section 7.4.2, "Using Asynchronous Pre- and Post-call Contexts".

■ Use the setProperty method of the pre-call context to create a property to store
the username:

apc.setProperty("userName", userName);

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
operation (in this case, getQuote). Instead of invoking it directly, however, invoke
the asynchronous flavor of the operation, which has Async added on to the end of
its name. The asynchronous flavor always returns void. Pass the asynchronous
context as the first parameter:

port.getQuoteAsync(apc, symbol);

■ For each operation you will be invoking asynchronously, create a method called
onOperationnameAsyncResponse, where Operationname refers to the name of the
operation, with initial letter always capitalized. The method must return void, and
have two parameters: the post-call asynchronous context and the return value of
the operation you are invoking. Annotate the method with the @AsyncResponse
JWS annotation; use the target attribute to specify the variable whose datatype is
the JAX-RPC stub and the operation attribute to specify the name of the operation
you are invoking asynchronously. Inside the body of the method, put the business
logic that processes the value returned by the operation. Use the getProperty
method of the post-call context to get the property that was set by pre-call context
before invoking the asynchronous method:

 @AsyncResponse(target="port", operation="getQuote")
 public void onGetQuoteAsyncResponse(AsyncPostCallContext apc,
 int quote) {
 // Get the userName property we set on AsyncPreCallContext
 String userName = (String)apc.getProperty("userName");
 System.out.println("-------------------");
 System.out.println("Got quote " + quote);
 System.out.println("-------------------");
 }

For more information about asynchronous pre- and post-call context, see
Section 7.4.2, "Using Asynchronous Pre- and Post-call Contexts".

■ For each operation you will be invoking asynchronously, create a method called
onOperationnameAsyncFailure, where Operationname refers to the name of the
operation, with initial letter capitalized. The method must return void, and have
two parameters: the post-call asynchronous context and a Throwable object, the
superclass of all exceptions to handle any type of exception thrown by the invoked
operation. Annotate the method with the @AsyncFailure JWS annotation; use the
target attribute to specify the variable whose datatype is the JAX-RPC stub and
the operation attribute to specify the name of the operation you are invoking

Writing the Asynchronous JWS File

7-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

asynchronously. Inside the method, you can determine the exact nature of the
exception and write appropriate Java code.

 @AsyncFailure(target="port", operation="getQuote")
 public void onGetQuoteAsyncFailure(AsyncPostCallContext apc,
 Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

7.4.2 Using Asynchronous Pre- and Post-call Contexts
The AsyncPreCallContext and AsyncPostCallContext APIs describe asynchronous
contexts that you can use in your web service for a variety of reasons. For example:

■ Set a property in the pre-context so that the method that handles the asynchronous
response can distinguish between different asynchronous calls.

■ Get and set contextual variables, such as the name of the user invoking the
operation, their password, and so on.

■ Get the name of the JAX-RPC stub that invoked a method asynchronously; and to
set a time-out interval on the context.

To use asynchronous pre- and post-call contexts:

1. Import the asynchronous pre- and post-call context WebLogic APIs:

import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncPostCallContext;

2. In the method of the JWS file that is going to invoke the asynchronous operation,
get a pre-call asynchronous context using the context factory. For example:

AsyncPreCallContext apc =
 AsyncCallContextFactory.getAsyncPreCallContext();

3. Use the pre-call context methods to operate on the asynchronous context before
the asynchronous method is called. The following example uses the setProperty
method of the pre-call context to create a property that stores the username:

apc.setProperty("userName", userName);

4. Use the post-call context methods to operate on the asynchronous context after the
asynchronous method is called. The following example uses the getProperty
method of the post-call context to get the property that was set by pre-call context
before invoking the asynchronous method:

Note: You are not required to use the @AsyncResponse and
@AsyncFailure annotations, although it is a good practice because it
clears up any ambiguity and makes your JWS file clean and
understandable. However, in the rare use case where you want one of
the onXXX methods to handle the asynchronous response or failure
from two (or more) stubs that are invoking operations from two
different web services that have the same name, then you should
explicitly NOT use these annotations. Be sure that the name of the
onXXX methods follow the correct naming conventions exactly, as
described above.

Updating the build.xml File When Using Asynchronous Request-Response

Invoking a Web Service Using Asynchronous Request-Response 7-9

String userName = (String)apc.getProperty("userName");

7.4.3 Example of a Synchronous Invoke
The following example shows a JWS file that invokes the getQuote operation of the
StockQuote web service synchronously. The example is shown only so you can
compare it with the corresponding asynchronous invoke shown in Section 7.4,
"Writing the Asynchronous JWS File".

package examples.webservices.async_req_res;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;

import javax.jws.WebService;
import javax.jws.WebMethod;

import java.rmi.RemoteException;

@WebService(name="SyncClientPortType",
 serviceName="SyncClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="syncClient",
 serviceUri="SyncClient",
 portName="SyncClientPort")

/**
 * Normal service-to-service client that invokes StockQuote service
 * synchronously.
 */

public class SyncClientImpl {

 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")
 private StockQuotePortType port;

 @WebMethod
 public void nonAsyncOperation(String symbol) throws RemoteException {

 int quote = port.getQuote(symbol);

 System.out.println("-------------------");
 System.out.println("Got quote " + quote);
 System.out.println("-------------------");

 }

}

7.5 Updating the build.xml File When Using Asynchronous
Request-Response

To update a build.xml file to generate the JWS file that invokes a web service
operation asynchronously, add taskdefs and a build-clientService target that looks
something like the following; see the description after the example for details:

<taskdef name="jwsc"

Disabling The Internal Asynchronous Service

7-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws file="examples/webservices/async_req_res/StockQuoteClientImpl.java" >

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/async/StockQuote?WSDL"
 packageName="examples.webservices.async_req_res"/>

 </jws>

 </jwsc>

</target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed StockQuote web service. The jwsc Ant task
automatically packages them in the generated WAR file so that the client web service
can immediately access the stubs. By default, the jwsc Ant task in this case generates
both synchronous and asynchronous flavors of the web service operations in the
JAX-RPC stubs. You do this because the StockQuoteClientImpl JWS file imports and
uses one of the generated classes.

7.6 Disabling The Internal Asynchronous Service
By default, every WebLogic Server instance deploys an internal asynchronous web
service that handles the asynchronous request-response feature. To specify that you do
not want to deploy this internal service, start the WebLogic Server instance using the
-Dweblogic.wsee.skip.async.response=true Java system property.

One reason for disabling the asynchronous service is if you use a WebLogic Server
instance as a Web proxy to a WebLogic cluster. In this case, asynchronous messages
will never get to the cluster, as required, because the asynchronous service on the
proxy server consumes them instead. For this reason, you must disable the
asynchronous service on the proxy server using the system property.

For details on specifying Java system properties to configure WebLogic Server, see
"Specifying Java Options for a WebLogic Server Instance" in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

7.7 Using Asynchronous Request Response With a Proxy Server
Client applications that use the asynchronous request-response feature might not
invoke the operation directly, but rather, use a proxy server. Reasons for using a proxy
include the presence of a firewall or the deployment of the invoked web service to a
cluster.

Using Asynchronous Request Response With a Proxy Server

Invoking a Web Service Using Asynchronous Request-Response 7-11

In this case, the WebLogic Server instance that hosts the invoked web service must be
configured with the address and port of the proxy server. If your web service is
deployed to a cluster, you must configure every server in the cluster.

This procedure describes how to create a network channel, the primary configurable
WebLogic Server resource for managing network connection. Network channels
enable you to provide a consistent way to access the front-end address of a cluster. For
more information about network channels, see "Understanding Network Channels" in
Administering Server Environments for Oracle WebLogic Server.

For each server instance:

1. Create a network channel for the protocol you use to invoke the web service. You
must name the network channel weblogic-wsee-proxy-channel-XXX, where XXX
refers to the protocol. For example, to create a network channel for HTTPS, call it
weblogic-wsee-proxy-channel-https.

See "Configure custom network channels" in Oracle WebLogic Server Administration
Console Online Help for general information about creating a network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

Using Asynchronous Request Response With a Proxy Server

7-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

8

Using Web Services Reliable Messaging 8-1

8Using Web Services Reliable Messaging

[9] This chapter describes web services reliable messaging for WebLogic Java API for
XML-based RPC (JAX-RPC) web services.

This chapter includes the following sections:

■ Overview of Web Service Reliable Messaging

■ Using Web Service Reliable Messaging: Main Steps

■ Configuring the Destination WebLogic Server Instance

■ Configuring the Source WebLogic Server Instance

■ Creating the Web Service Reliable Messaging WS-Policy File

■ Programming Guidelines for the Reliable JWS File

■ Configuring Reliable Messaging for a Reliable Web Service

■ Programming Guidelines for the JWS File That Invokes a Reliable Web Service

■ Updating the build.xml File for a Client of a Reliable Web Service

■ Using Reliable Messaging With MTOM

■ Client Considerations When Redeploying a Reliable Web Service

■ Using Reliable Messaging With a Proxy Server

8.1 Overview of Web Service Reliable Messaging
Web service reliable messaging is a framework that enables an application running on
one application server to reliably invoke a web service running on another application
server, assuming that both servers implement the WS-ReliableMessaging specification.
Reliable is defined as the ability to guarantee message delivery between the two Web
Services in the presence of software component, system, or network failures.

Note: Web service reliable messaging requires the use of
asynchronous request-response feature of WebLogic web services.
Before proceeding, you should familiarize yourself with the concepts
described in Chapter 7, "Invoking a Web Service Using Asynchronous
Request-Response."

Overview of Web Service Reliable Messaging

8-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

WebLogic web services conform to the WS-ReliableMessaging specification (June 2007)
at http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf,
which describes how two web services running on different application servers can
communicate reliably. In particular, the specification describes an interoperable
protocol in which a message sent from a source endpoint (or client web service) to a
destination endpoint (or web service whose operations can be invoked reliably) is
guaranteed either to be delivered, according to one or more delivery assurances, or to
raise an error.

A reliable WebLogic web service provides the following delivery assurances.

This document describes how to create the reliable and client web services and how to
configure the two WebLogic Server instances to which the web services are deployed.
See the WS-ReliableMessaging specification for detailed documentation about the
architecture of web service reliable messaging (see
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf).

Note: Web services reliable messaging works between any two
application servers that implement the WS-ReliableMessaging
specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-o
s-01.pdf. In this document, however, it is assumed that the two
application servers are WebLogic Server instances.

Web services reliable messaging is not supported with the JMS
transport feature.

Table 8–1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

At Most Once Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

At Least Once Every message is delivered at least once. It is possible that some
messages are delivered more than once.

Exactly Once Every message is delivered exactly once, without duplication.

In Order Messages are delivered in the order that they were sent. This delivery
assurance can be combined with one of the preceding three
assurances.

Note: Web services reliable messaging requires the use of
asynchronous messages. Clients cannot invoke a reliable service
synchronously. When invoking a reliable stub method, you must use
the async signature—for example, xyzAsync() instead of xyz(). For
clients that create SOAP messages directly, the request message is
created with non-anonymous ReplyTo address.

You cannot set ReplyTo to the anonymous URI. Any attempt to invoke
an operation on a JAX-RPC-based reliable service (either by invoking
the sync stub signature or sending a request with anonymous
ReplyTo) will result in a runtime exception.

Overview of Web Service Reliable Messaging

Using Web Services Reliable Messaging 8-3

8.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions
WebLogic web services use WS-Policy files to enable a destination endpoint to
describe and advertise its web service reliable messaging capabilities and
requirements. The WS-Policy files are XML files that describe features such as the
version of the supported WS-ReliableMessaging specification and quality of service
requirements. The WS-Policy specification (http://www.w3.org/TR/ws-policy/)
provides a general purpose model and syntax to describe and communicate the
policies of a web service.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions, as described in Appendix A, "Pre-Packaged WS-Policy Files for
Reliable Messaging." If the pre-packaged WS-Policy files do not suit your needs, you
must create your own WS-Policy file. See Section 8.5, "Creating the Web Service
Reliable Messaging WS-Policy File" for details. See "Web Service Reliable Messaging
Policy Assertion Reference" in the WebLogic Web Services Reference for Oracle WebLogic
Server for reference information about the reliable messaging policy assertions.

8.1.2 Managing the Life Cycle of the Reliable Message Sequence
The following figure shows a one-way reliable message exchange.

Figure 8–1 Web Service Reliable Message Exchange

A reliable message sequence is used to track the progress of a set of messages that are
exchanged reliably between an RM source and RM destination. A sequence can be
used to send zero or more messages, and is identified by a string identifier. This
identifier is used to reference the sequence when using reliable messaging.

The web service client application sends a message for reliable delivery which is
transmitted by the RM source to the RM destination. The RM destination
acknowledges that the reliable message has been received and delivers it to the web
service application. The message may be retransmitted by the RM source until the
acknowledgement is received.

A web service client sends messages to a target web service by invoking methods on a
JAX-RPC stub. The stub is associated with the port type of the reliable web service and
represents a programmatic interface to that service. WebLogic stores the identifier for
the reliable message sequence within this stub. This causes the reliable message
sequence to be connected to a single JAX-RPC stub. All messages that are sent using a
given stub will use the same reliable messaging sequence, regardless of the number of
messages that are sent using the stub. The JAX-RPC stub is created by the <clientgen>
child element of the "jwsc" Ant task.

Because WebLogic Server retains resources associated with the reliable sequence, it is
recommended that you take steps to release these resources in a timely fashion.

Using Web Service Reliable Messaging: Main Steps

8-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

WebLogic Server provides a utility class, weblogic.wsee.reliability.WsrmUtils, for
use with the web service reliable messaging. Use this class to perform common tasks
such as set configuration options, get the sequence id, and terminate a reliable
sequence.

Under normal circumstances, a reliable sequence should be retained until all messages
have been sent and acknowledged by the RM destination. To facilitate the timely and
proper termination of a sequence, it is recommended that you identify the final
message in a reliable message sequence. Doing so indicates you are done sending
messages to the RM destination and that WebLogic Server can begin looking for the
final acknowledgement before automatically terminating the reliable sequence.
Indicate the final message using the
weblogic.wsee.reliability.WsrmUtils.setFinalMessage() method, passing the
JAX-RPC stub being used to send messages to the RM destination.

When you identify a final message, after all messages up to and including the final
message are acknowledged, the reliable message sequence is terminated, and all
resources are released. Otherwise, the sequence is terminated automatically after the
configured sequence expiration period is reached.

Although not recommended, you can terminate the sequence reliable message
sequence regardless of whether all messages have been acknowledged using the
terminateSequence() method. Once issued, no further reliable messages can be sent
on this stub.

8.2 Using Web Service Reliable Messaging: Main Steps
Configuring reliable messaging for a WebLogic web service requires standard JMS
tasks such as creating JMS servers and Store and Forward (SAF) agents, as well as web
service-specific tasks, such as adding additional JWS annotations to your JWS file.
Optionally, you create WS-Policy files that describe the reliable messaging capabilities
of the reliable web service if you do not use the pre-packaged ones.

If you are using the WebLogic client APIs to invoke a reliable web service, the client
application must run on WebLogic Server. Thus, configuration tasks must be
performed on both the source WebLogic Server instance on which the web service that
includes client code to invoke the reliable web service reliably is deployed, as well as
the destination WebLogic Server instance on which the reliable web service itself is
deployed.

Note: The JAX-RPC stub is not fully initialized until shortly after the
first method is invoked on the reliable web service. When the first
method is invoked, the RM source sends a CreateSequence message
to the RM destination requesting that the RM destination create and
register the reliable sequence. The RM destination, at some later time,
responds with the ID for the newly created sequence. Until this
response ID is received, the RM source cannot have any further
communication with the RM destination and the JAX-RPC stub
representing the target service at the RM destination cannot be used.

You cannot perform operations on the reliable message sequence until
it is fully initialized; otherwise an error is returned. Use the
weblogic.wsee.reliability.WsrmUtils.waitForSequenceInitializa
tion() method to monitor whether or not the reliable message
sequence has been initialized. Once the reliable sequence is initialized,
this method returns the ID of the sequence.

Using Web Service Reliable Messaging: Main Steps

Using Web Services Reliable Messaging 8-5

The following table summarizes the steps to create a reliable web service, as well as a
client web service that invokes an operation of the reliable web service. The procedure
describes how to create the JWS files that implement the two web services from
scratch; if you want to update existing JWS files, use this procedure as a guide. The
procedure also describes how to configure the source and destination WebLogic Server
instances.

Table 8–2 Steps to Create and Invoke a Reliable Web Service

Step Description

1 Configure the destination
and source WebLogic Server
instances.

You will deploy the reliable web service to the destination
WebLogic Server instance. For information about
configuring the destination WebLogic Server instance, see
Section 8.3, "Configuring the Destination WebLogic Server
Instance".

You will deploy the client web service that invokes the
reliable web service to the source WebLogic Server instance.
For information about configuring the source WebLogic
Server instance, see Section 8.4, "Configuring the Source
WebLogic Server Instance".

2 Create the WS-Policy file.
(Optional)

Using your favorite XML or plain text editor, optionally
create a WS-Policy file that describes the reliable messaging
capabilities of the web service running on the destination
WebLogic Server. For details about creating your own
WS-Policy file, see Section 8.5, "Creating the Web Service
Reliable Messaging WS-Policy File".

This step is not required if you plan to use one of the
WS-Policy files that are included in WebLogic Server; see
Appendix A, "Pre-Packaged WS-Policy Files for Reliable
Messaging," for more information.

3 Create or update the JWS
file that implements the
reliable web service.

This web service will be deployed to the destination
WebLogic Server instance. See Section 8.6, "Programming
Guidelines for the Reliable JWS File".

4 Update the build.xml file
that is used to compile the
reliable web services.

Update your build.xml file to include a call to the jwsc
Ant task which will compile the reliable JWS file into a web
service.

See "Running the jwsc WebLogic Web Services Ant Task" on
page 3-7 for general information about using the jwsc task.

5 Compile and deploy the
reliable JWS file.

Compile the reliable JWS file by calling the appropriate
target and deploy to the destination WebLogic Server. For
example:

prompt> ant build-mainService deploy-mainService

6 Configure the reliable web
service.

Configure the reliable messaging options for the reliable
web service using the WebLogic Server Administration
Console. See Section 8.7, "Configuring Reliable Messaging
for a Reliable Web Service".

7 Create or update the JWS
file that implements the
client web service.

This service invokes the reliable web service and will be
deployed to the source WebLogic Server. See Section 8.8,
"Programming Guidelines for the JWS File That Invokes a
Reliable Web Service".

8 Update the build.xml file
that is used to compile the
client web service.

See Section 8.9, "Updating the build.xml File for a Client of a
Reliable Web Service".

Configuring the Destination WebLogic Server Instance

8-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

Each of these steps is described in more detail in the following sections.

In addition, the following advanced topics are discussed:

■ Using Reliable Messaging With MTOM—Develop a reliable web service that uses
MTOM/XOP to optimize the transmission of XML data of type xs:base64Binary
in SOAP messages

■ Client Considerations When Redeploying a Reliable Web Service—Describes client
considerations for when you deploy a new version of an updated reliable
WebLogic web service alongside an older version of the same web service.

■ Using Reliable Messaging With a Proxy Server—Describes considerations when
invoking a reliable web services operations using a proxy server.

8.2.1 Prerequisites
It is assumed that you have completed the following tasks:

■ You have created the destination and source WebLogic Server instances.

■ You have set up an Ant-based development environment for each environment.

■ You have working build.xml files that you can edit, for example, to add targets
for running the jwsc Ant task and deploying the generated reliable web service.

For more information, see "Developing JAX-RPC Web Services" on page 3-1.

8.3 Configuring the Destination WebLogic Server Instance
To configure the WebLogic Server instance on which the reliable web service is
deployed, configure the JMS and store and forward (SAF) resources.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" on page 3-2.

9 Compile and deploy the
client JWS file.

Compile your client JWS file by calling the appropriate
target and deploy to the source WebLogic Server. For
example:

prompt> ant build-clientService
deploy-clientService

Table 8–2 (Cont.) Steps to Create and Invoke a Reliable Web Service

Step Description

Configuring the Destination WebLogic Server Instance

Using Web Services Reliable Messaging 8-7

If you prefer to configure the resources manually, perform the following steps.

Note: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Understanding the WebLogic
Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for web services has not been
completely deployed.

Table 8–3 Steps to Configure the Destination WebLogic Server Instance Manually

Step Description

1 Invoke the WebLogic Server
Administration Console for
the domain that contains the
destination WebLogic Server.

To invoke the WebLogic Server Administration Console in your browser, enter
the following URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Understanding WebLogic Web
Services for Oracle WebLogic Server.

2 Create persistent file store.
(Optional)

Optionally create a persistent store (file or JDBC) that will be used by the
destination WebLogic Server to store internal web service reliable messaging
information. You can use an existing one, or the default store that always
exists, if you do not want to create a new one.

See "Create file stores" in Oracle WebLogic Server Administration Console Online
Help.

3 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you can use it if you do not
want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server Administration Console
Online Help.

Configuring the Source WebLogic Server Instance

8-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

8.4 Configuring the Source WebLogic Server Instance
Configuring the WebLogic Server instance on which the client web service is deployed
involves configuring JMS and store and forward (SAF) resources.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" on page 3-2.

4 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the module. If a JMS
module already exists, you can use it if you do not want to create a new one.
Target the JMS queue to the JMS server you created in the preceding step. Be
sure you specify that this JMS queue is local, typically by setting the local
JNDI name.

Take note of the JNDI name you define for the JMS queue because you will
later use it when you program the JWS file that implements your reliable web
service.

See "Create JMS system modules" and "Create queues in a system module" in
Oracle WebLogic Server Administration Console Online Help.

Clustering Considerations:

If you are using the web service reliable messaging feature in a cluster, you
must:

■ Create a local JMS queue, rather than a distributed queue, when creating
the JMS queue.

■ Explicitly target this JMS queue to each server in the cluster.

5 Create a store and forward
(SAF) agent.

You can use an existing one if you do not want to create a new one.

When you create the SAF agent:

■ Set the Agent Type field to Both to enable both sending and receiving
agents.

■ Be sure to target the SAF agent by clicking Next on the first assistant page
to view the Select targets page (rather than clicking Finish).

Clustering Considerations:

■ If you are using reliable messaging within a cluster, you must target the
SAF agent to the cluster.

See "Create Store-and-Forward agents" in Oracle WebLogic Server
Administration Console Online Help.

6 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve web service
Performance" in Tuning Performance of Oracle WebLogic Server.

7 Restart the server. In order for the configuration changes to take effect, you must restart the
server, as described in "Starting and Stopping Servers" in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

Table 8–3 (Cont.) Steps to Configure the Destination WebLogic Server Instance Manually

Step Description

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 8-9

If you prefer to configure the resources manually, perform the following steps.

8.5 Creating the Web Service Reliable Messaging WS-Policy File
A WS-Policy file is an XML file that contains policy assertions that comply with the
WS-Policy specification. In this case, the WS-Policy file contains web service reliable
messaging policy assertions.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Understanding the WebLogic
Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for web services has not been
completely deployed.

Table 8–4 Steps to Configure the Source WebLogic Server Instance

Step Description

1 Invoke the WebLogic Server
Administration Console for
the domain that contains the
source WebLogic Server.

To invoke the WebLogic Server Administration Console in your browser, enter
the following URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Understanding WebLogic Web
Services for Oracle WebLogic Server.

2 Create persistent file store.
(Optional)

Optionally create a persistent store (file or JDBC) that will be used by the
source WebLogic Server to store internal web service reliable messaging
information. You can use an existing one, or the default store that always
exists, if you do not want to create a new one.

See "Create file stores" in Oracle WebLogic Server Administration Console Online
Help.

3 Create as store and forward
(SAF) agent.

You can use an existing one if you do not want to create a new one.

When you create the SAF agent, set the Agent Type field to Both to enable
both sending and receiving agents.

See "Create Store-and-Forward agents" in Oracle WebLogic Server
Administration Console Online Help.

6 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve web service
Performance" in Tuning Performance of Oracle WebLogic Server.

7 Restart the server. In order for the configuration changes to take effect, you must restart the
server, as described in "Starting and Stopping Servers" in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

Creating the Web Service Reliable Messaging WS-Policy File

8-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions that you can use if you do not want to create your own
WS-Policy file. The pre-packaged WS-Policy files are listed in the following table.

You can use one of the pre-packaged reliable messaging WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom
WS-Policy file. The following sections describe how to create a custom WS-Policy file.

■ Section 8.5.1, "Creating a Custom WS-Policy File Using WS-ReliableMessaging
Policy Assertions Version 1.1"

Note: The DefaultReliability.xml and
LongRunningReliability.xml files are deprecated in this release. Use
of the DefaultReliability1.1.xml, Reliability1.1_
SequenceTransportSecurity, or Reliability1.0_1.1.xml file is
recommended and required to comply with the 1.1 version of the
WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-o
s-01.pdf.

Table 8–5 Pre-packaged WS-Policy Files

Pre-packaged WS-Policy File Description

DefaultReliability1.1.xml Specifies policy assertions related to quality of service. The web service
reliable messaging assertions are based on WS Reliable Messaging Policy
Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-0
1.pdf. See Section A.1, "DefaultReliability1.1.xml (WS-Policy File)".

Reliability1.1_
SequenceTransportSecurity

Specifies policy assertions related to transport-level security and quality of
service. The web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-0
1.pdf. See Section A.2, "Reliability1.1_SequenceTransportSecurity.xml
(WS-Policy File)".

Reliability1.0_1.1.xml Combines 1.1 and 1.0 WS Reliable Messaging policy assertions. This sample
relies on smart policy selection to determine the policy assertion that is
applied at runtime. See Section A.4, "Reliability1.0_1.1.xml (WS-Policy.xml
File)"

DefaultRelibility.xml Deprecated. The web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf. In this
release, many of the reliable messaging policy assertions are managed
through JWS annotations or configuration.

Specifies typical values for the reliable messaging policy assertions, such as
inactivity timeout of 10 minutes, acknowledgement interval of 200
milliseconds, and base retransmission interval of 3 seconds. See Section A.5,
"DefaultReliability.xml (WS-Policy File) [Deprecated]".

LongRunningReliability.xml Deprecated. The web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion Version 1.0 for long running processes.
In this release, many of the reliable messaging policy assertions are
managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging WS-Policy file, except
that it specifies a much longer activity timeout interval (24 hours.) See
Section A.6, "LongRunningReliability.xml (WS-Policy File) [Deprecated]".

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 8-11

■ Section 8.5.2, "Creating a Custom WS-Policy File Using WS-ReliableMessaging
Policy Assertions Version 1.0 (Deprecated)"

■ Section 8.5.3, "Using Multiple Policy Alternatives"

8.5.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Version 1.1

This section describes how to create a custom WS-Policy file that contains web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf. In
the current release, many of the reliable messaging policy assertions are managed
through JWS annotations or configuration.

The root element of the WS-Policy file is <Policy> and it should include the following
namespace declaration:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

You wrap all web service reliable messaging policy assertions inside of a
<wsrmp:RMAssertion> element. This element should include the following namespace
declaration for using web service reliable messaging policy assertions:

<wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">

The following table lists the web service reliable messaging assertions that you can
specify in the WS-Policy file. The order in which the assertions appear is important.
You can specify the following assertions; the order they appear in the following list is
the order in which they should appear in your WS-Policy file:

The following example shows a simple web service reliable messaging WS-Policy file:

<?xml version="1.0"?>

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion

Table 8–6 Web Service Reliable Messaging Assertions (Version 1.1)

Assertion Description

<wsrmp:SequenceSTR> To secure messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the
CreateSequence message. You can only specify one security assertion;
that is, you can specify wsrmp:SequenceSTR or
wsrmp:SequenceTransportSecurity, but not both.

<wsrmp:SequenceTransportSecurity> To secure messages in a reliable sequence, the runtime will use the
SSL transport session that is used to send the CreateSequence
message. This assertion must be used in conjunction with the
sp:TransportBinding assertion that requires the use of some
transport-level security mechanism (for example, sp:HttpsToken).
You can only specify one security assertion; that is, you can specify
wsrmp:SequenceSTR or wsrmp:SequenceTransportSecurity, but not
both.

<wsrm:DeliveryAssurance> Delivery assurance (or quality of service) of the web service. Valid
values are AtMostOnce, AtLeastOnce, ExactlyOnce, and InOrder. You
can set one of the delivery assurances defined in the following table.
If not set, the delivery assurance defaults to ExactlyOnce.

Creating the Web Service Reliable Messaging WS-Policy File

8-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceTransportSecurity/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

For more information about Reliable Messaging policy assertions in the WS-Policy file,
see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

8.5.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Version 1.0 (Deprecated)

This section describes how to create a custom WS-Policy file that contains web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf.

The root element of the WS-Policy file is <Policy> and it should include the following
namespace declarations for using web service reliable messaging policy assertions:

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy">

You wrap all web service reliable messaging policy assertions inside of a
<wsrm:RMAssertion> element. The assertions that use the wsrm: namespace are
standard ones defined by the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf. The
assertions that use the beapolicy: namespace are WebLogic-specific. See "Web Service
Reliable Messaging Policy Assertion Reference" in the WebLogic Web Services Reference
for Oracle WebLogic Server for details.

The following table lists the web service reliable messaging assertions that you can
specify in the WS-Policy file. All web service reliable messaging assertions are
optional, so only set those whose default values are not adequate. The order in which
the assertions appear is important. You can specify the following assertions; the order
they appear in the following list is the order in which they should appear in your
WS-Policy file,

Note: In the current release, many of the reliable messaging policy
assertions are managed through JWS annotations or configuration.

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 8-13

The following example shows a simple web service reliable messaging WS-Policy file:

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >

 <wsrm:RMAssertion>

 <wsrm:InactivityTimeout
 Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="500" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="2000" />

 </wsrm:RMAssertion>

</wsp:Policy>

Table 8–7 Web Service Reliable Messaging Assertions (Version 1.0)

Assertion Description

<wsrm:InactivityTimeout> Number of milliseconds, specified with the Milliseconds attribute,
which defines an inactivity interval. After this amount of time, if the
destination endpoint has not received a message from the source
endpoint, the destination endpoint may consider the sequence to
have terminated due to inactivity. The same is true for the source
endpoint. By default, sequences never timeout.

<wsrm:BaseRetransmissionInterval> Interval, in milliseconds, that the source endpoint waits after
transmitting a message and before it retransmits the message if it
receives no acknowledgment for that message. Default value is set
by the SAF agent on the source endpoint's WebLogic Server
instance.

<wsrm:ExponentialBackoff> Specifies that the retransmission interval will be adjusted using the
exponential backoff algorithm. This element has no attributes.

<wsrm:AcknowledgmentInterval> Maximum interval, in milliseconds, in which the destination
endpoint must transmit a stand-alone acknowledgement. The
default value is set by the SAF agent on the destination endpoint's
WebLogic Server instance.

<beapolicy:Expires> Amount of time after which the reliable web service expires and
does not accept any new sequence messages. The default value is to
never expire. This element has a single attribute, Expires, whose
data type is an XML Schema duration type (see
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#durati
on). For example, if you want to set the expiration time to one day,
use the following: <beapolicy:Expires Expires="P1D" />.

<beapolicy:QOS> Delivery assurance level, as described in Table 8–9. The element has
one attribute, QOS, which you set to one of the following values:
AtMostOnce, AtLeastOnce, or ExactlyOnce. You can also include the
InOrder string to specify that the messages be in order. The default
value is ExactlyOnce InOrder. This element is typically not set.

Programming Guidelines for the Reliable JWS File

8-14 Developing JAX-RPC Web Services for Oracle WebLogic Server

For more information about Reliable Messaging policy assertions in the WS-Policy file,
see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

8.5.3 Using Multiple Policy Alternatives
You can configure multiple policy alternatives—also referred to as smart policy
alternatives—for a single web service by creating a custom policy file. At runtime,
WebLogic Server selects which of the configured policies to apply. It excludes policies
that are not supported or have conflicting assertions and selects the appropriate policy,
based on your configured preferences, to verify incoming messages and build the
response messages.

The following example provides an example of a security policy that supports both
1.1and 1.0 WS-Reliable Messaging. Each policy alternative is enclosed in a <wsp:All>
element.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp10:RMAssertion
 xmlns:wsrmp10="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp10:InactivityTimeout Milliseconds="1200000"/>
 <wsrmp10:BaseRetransmissionInterval Milliseconds="60000"/>
 <wsrmp10:ExponentialBackoff/>
 <wsrmp10:AcknowledgementInterval Milliseconds="800"/>
 </wsrmp10:RMAssertion>
 </wsp:All>
 <wsp:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:AtMostOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

For more information about multiple policy alternatives, see "Smart Policy Selection"
in "Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle
WebLogic Server.

8.6 Programming Guidelines for the Reliable JWS File
This section describes how to create the JWS file that implements the reliable web
service.

The following JWS annotations are used in the JWS file that implements a reliable web
service.

Note: The 1.0 web service reliable messaging assertions are prefixed
by wsrmp10.

Programming Guidelines for the Reliable JWS File

Using Web Services Reliable Messaging 8-15

The following example shows a simple JWS file that implements a reliable web service;
see the explanation after the example for coding guidelines that correspond to the Java
code in bold.

package examples.webservices.reliable;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.ReliabilityBuffer;
import weblogic.jws.BufferQueue;
import weblogic.jws.Policy;

/**
 * Simple reliable Web Service.
 */

@WebService(name="ReliableHelloWorldPortType",
 serviceName="ReliableHelloWorldService")

@WLHttpTransport(contextPath="ReliableHelloWorld",
 serviceUri="ReliableHelloWorld",
 portName="ReliableHelloWorldServicePort")

@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true)
@BufferQueue(name="webservices.reliable.queue")

public class ReliableHelloWorldImpl {

 private static String onewaySavedInput = null;

/**
 * A one-way helloWorld method that saves the given string for later
 * concatenation to the end of the message passed into helloWorldReturn.

Table 8–8 JWS Annotations for Reliable Messaging

Annotation Description

@weblogic.jws.Policy Required. Specifies that the web service has a WS-Policy
file attached to it that contains reliable messaging
assertions. See Section 8.6.1, "Using the @Policy
Annotation".

@javax.jws.Oneway Required only if you invoke the reliable web service
operation synchronously (that is, you are not using the
asynchronous request-response feature). See Section 8.6.2,
"Using the @Oneway Annotation".

@weblogic.jws.BufferQueue Optional. Specifies the JNDI name of the JMS queue which
WebLogic Server uses to store reliable messages internally.
See Section 8.6.3, "Using the @BufferQueue Annotation".

@weblogic.jws.ReliabilityBuff
er

Optional. Specifies the number of times WebLogic Server
should attempt to deliver the message from the JMS queue
to the web service implementation and the amount of time
that the server should wait in between retries. See
Section 8.6.4, "Using the @ReliabilityBuffer Annotation"

Programming Guidelines for the Reliable JWS File

8-16 Developing JAX-RPC Web Services for Oracle WebLogic Server

 */
 @WebMethod()
 @Oneway()
 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")

 public void helloWorld(String input) {
 System.out.println(" Hello World " + input);
 onewaySavedInput = input;
 }

/**
 * This echo method concatenates the saved message from helloWorld
 * onto the end of the provided message, and returns it.
 */
 @WebMethod()
 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")

 public String echo(String input2) {
 System.out.println(" Hello World " + input2 + onewaySavedInput);
 return input + onewaySavedInput;
 }
}

In the example, the custom ReliableHelloWorldPolicy.xml policy file is attached to
the web service at the class level, which means that the policy file is applied to all
public operations of the web service. The policy file is applied only to the request web
service message (as required by the reliable messaging feature) and it is attached to the
WSDL file. For information about the pre-packaged policies available and creating a
custom policy, see Section 8.5, "Creating the Web Service Reliable Messaging
WS-Policy File".

The JMS queue that WebLogic Server uses internally to enable the web service reliable
messaging has a JNDI name of webservices.reliable.queue, as specified by the
@BufferQueue annotation.

The helloWorld() method has been marked with both the @WebMethod and @Oneway
JWS annotations, which means it is a public operation called helloWorld. Because of
the @Policy annotation, the operation can be invoked reliably. The web services
runtime attempts to deliver reliable messages to the service a maximum of 10 times, at
10-second intervals, as described by the @ReliabilityBuffer annotation. The message
may require re-delivery if, for example, the transaction is rolled back or otherwise does
not commit.

The echo() method has been marked with the @WebMethod and JWS annotation, which
means it is a public operation called echo. Because of the @Policy annotation, the
operation can be invoked reliably. It uses the same reliability buffer configuration as
the helloWorld() method.

8.6.1 Using the @Policy Annotation
Use the @Policy annotation in your JWS file to specify that the web service has a
WS-Policy file attached to it that contains reliable messaging assertions. WebLogic
Server delivers a set of pre-packaged WS-Policy files, as described in Appendix A,
"Pre-Packaged WS-Policy Files for Reliable Messaging."

Follow the following guidelines when using the @Policy annotation for web service
reliable messaging:

■ Use the uri attribute to specify the build-time location of the policy file, as follows:

Programming Guidelines for the Reliable JWS File

Using Web Services Reliable Messaging 8-17

– If you have created your own WS-Policy file, specify its location relative to the
JWS file. For example:

@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true)

In this example, the ReliableHelloWorldPolicy.xml file is located in the same
directory as the JWS file.

– To specify one of the pre-packaged WS-Policy files or a WS-Policy file that is
packaged in a shared Java EE library, use the policy: prefix along with the
name and path of the policy file. This syntax tells the jwsc Ant task at
build-time not to look for an actual file on the file system, but rather, that the
web service will retrieve the WS-Policy file from WebLogic Server at the time
the service is deployed.

– To specify that the policy file is published on the Web, use the http: prefix
along with the URL, as shown in the following example:

@Policy(uri="http://someSite.com/policies/mypolicy.xml"
 direction=Policy.Direction.both,
 attachToWsdl=true)

■ By default, WS-Policy files are applied to both the request (inbound) and response
(outbound) SOAP messages. You can change this default behavior with the
direction attribute by setting the attribute to Policy.Direction.inbound or
Policy.Direction.outbound.

■ You can specify whether the web service requires the operations to be invoked
reliably and have the responses delivered reliably using the wsp:optional
attribute within the policy file specified by uri.

If the optional attribute is set to false for outbound on any operation, then:

– The client must provide an offer sequence (<wsrm: Offer...> as described in
the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pd
f) for use when sending reliable responses.

– Responses will be sent reliably for all operations requiring a response.

If the optional attribute is set to true for outbound on all operations, then:

– The client is not required to provide an offer sequence.

– Responses will be sent reliably if the client provides an offer sequence;
otherwise, responses will be sent non-reliably.

Note: Shared Java EE libraries are useful when you want to share a
WS-Policy file with multiple web services that are packaged in
different Enterprise applications. As long as the WS-Policy file is
located in the META-INF/policies or WEB-INF/policies directory of
the shared Java EE library, you can specify the policy file in the same
way as if it were packaged in the same archive at the web service. See
"Creating Shared Java EE Libraries and Optional Packages" in
Developing Applications for Oracle WebLogic Server for information about
creating libraries and setting up your environment so the web service
can locate the policy files.

Programming Guidelines for the Reliable JWS File

8-18 Developing JAX-RPC Web Services for Oracle WebLogic Server

■ Set the attachToWsdl attribute of the @Policy annotation to specify whether the
policy file should be attached to the WSDL file that describes the public contract of
the web service. Typically, you want to publicly publish the policy so that client
applications know the reliable messaging capabilities of the web service. For this
reason, the default value of this attribute is true.

For more information about the @Policy annotation, see "weblogic.jws.Policy" in
WebLogic Web Services Reference for Oracle WebLogic Server.

8.6.2 Using the @Oneway Annotation
If you plan on invoking the reliable web service operation synchronously (or in other
words, not using the asynchronous request-response feature), then you must annotate
the implementing method with the @Oneway annotation to specify that the method is
one-way. This means that the method cannot return a value, but rather, must explicitly
return void.

Conversely, if the method is not annotated with the @Oneway annotation, then you must
invoke it using the asynchronous request-response feature. If you are unsure how the
operation is going to be invoked, consider creating two flavors of the operation:
synchronous and asynchronous.

See Chapter 7, "Invoking a Web Service Using Asynchronous Request-Response," and
Chapter 11, "Using the Asynchronous Features Together."

8.6.3 Using the @BufferQueue Annotation
Use the @BufferQueue annotation to specify the JNDI name of the JMS queue which
WebLogic Server uses to store reliable messages internally. The JNDI name is the one
you configured when creating a JMS queue in step 4 in Section 8.3, "Configuring the
Destination WebLogic Server Instance".

The @BufferQueue annotation is optional; if you do not specify it in your JWS file then
WebLogic Server uses a queue with a JNDI name of weblogic.wsee.DefaultQueue.
You must, however, still explicitly create a JMS queue with this JNDI name using the
WebLogic Server Administration Console.

For more information about the @BufferQueue annotation, see
"weblogic.jws.BufferQueue" in WebLogic Web Services Reference for Oracle WebLogic
Server.

8.6.4 Using the @ReliabilityBuffer Annotation
Use the @ReliabilityBuffer annotation to specify the number of times WebLogic
Server should attempt to deliver the message from the JMS queue to the web service
implementation and the amount of time that the server should wait in between retries.

Use the retryCount attribute to specify the number of retries and the retryDelay
attribute to specify the wait time. The format of the retryDelay attribute is a number
and then one of the following strings:

■ seconds

■ minutes

■ hours

■ days

■ years

Configuring Reliable Messaging for a Reliable Web Service

Using Web Services Reliable Messaging 8-19

For example, to specify a retry count of 20 and a retry delay of two days, use the
following syntax:

@ReliabilityBuffer(retryCount=20, retryDelay="2 days")

The retry count and delay default to 3 and 5 seconds, respectively.

For more information about the @ReliabilityBuffer annotation, see
"weblogic.jws.ReliabilityBuffer" in WebLogic Web Services Reference for Oracle WebLogic
Server.

8.7 Configuring Reliable Messaging for a Reliable Web Service
If necessary, you can edit the reliable message configuration options for a reliable web
service that are stored in the weblogic-webservices.xml descriptor by updating the
application deployment plan. The deployment plan associates new values with specific
locations in the descriptors for your application. At deployment time, a deployment
plan is merged with the descriptors in the application by applying the values in its
variable assignments to the locations in the application descriptors to which the
variables are linked.

The following table summarizes the reliable messaging options that can be configured
for the reliable web service.

Table 8–9 Configuration Options for Reliable Messaging

Configuration Option Description

Customize Reliable Message
Configuration

Flag that specifies whether you want to customize the
reliable message configuration defined in the web service
descriptor or deployment plan at the web service endpoint
level. This flag is available only when configuring reliable
messaging at the web service endpoint level If not
checked, the reliable message configuration specified for
the WebLogic Server is used.

Note: This flag does not reflect the configuration of
Reliable Messaging in other forms, such as, WS-RM policy
directly specified in the WSDL.

Base Retransmission Interval Interval of time that must pass before a message is
retransmitted to the RM destination.

If the source endpoint does not receive an
acknowledgement for a given message within the
specified interval, the source endpoint retransmits the
message. The source endpoint can modify this
retransmission interval at any point during the lifetime of
the sequence of messages.

This element can be used in conjunction with the
Retransmission Exponential Backoff element to specify the
algorithm that is used to adjust the retransmission
interval.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT3S (3 seconds).

Configuring Reliable Messaging for a Reliable Web Service

8-20 Developing JAX-RPC Web Services for Oracle WebLogic Server

Enable Retransmission
Exponential Backoff

Flag that specifies whether the message retransmission
interval will be adjusted using the exponential backoff
algorithm.

This element is used in conjunction with the Base
Retransmission Interval element. If a destination endpoint
does not acknowledge a sequence of messages for the time
interval specified by the Base Retransmission Interval, the
exponential backoff algorithm is used for timing
successive retransmissions by the source endpoint, should
the message continue to go unacknowledged.

The exponential backoff algorithm specifies that
successive retransmission intervals should increase
exponentially, based on the base retransmission interval.
For example, if the base retransmission interval is 2
seconds, and the exponential backoff element is set,
successive retransmission intervals if messages continue to
go unacknowledged are 2, 4, 8, 16, 32, and so on.

This value defaults to false, the same retransmission
interval is used in successive retries; the interval does not
increase exponentially.

Acknowledgement Interval Maximum interval during which the destination endpoint
must transmit a stand-alone acknowledgement.

A destination endpoint can send an acknowledgement on
the return message immediately after it has received a
message from a source endpoint, or it can send one
separately as a stand-alone acknowledgement. If a return
message is not available to send an acknowledgement, a
destination endpoint may wait for up to the
acknowledgement interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the destination endpoint may choose not to
send an acknowledgement.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT0.2S (200 milliseconds).

Inactivity Timeout Inactivity interval. If, during the inactivity timeout
interval, an endpoint (the RM source or destination) has
not received messages application or control messages, the
endpoint may consider the RM sequence to have been
terminated due to inactivity.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT600S (600 seconds).

Table 8–9 (Cont.) Configuration Options for Reliable Messaging

Configuration Option Description

Configuring Reliable Messaging for a Reliable Web Service

Using Web Services Reliable Messaging 8-21

You can set the reliable messaging configuration options using the WebLogic Server
Administration Console or WLST, as described in the following sections.

■ Section 8.7.1, "Using the Administration Console"

■ Section 8.7.2, "Using WLST"

8.7.1 Using the Administration Console
To configure reliable messaging for the web service endpoint using the WebLogic
Server Administration Console:

1. Invoke the WebLogic Server Administration Console, as described in "Invoking
the Administration Console" in Understanding WebLogic Web Services for Oracle
WebLogic Server.

2. In the left navigation pane, select Deployments.

3. Click the name of the web service in the Deployments table.

4. Select the Configuration tab, then the Ports tab.

5. Click the name of the web service endpoint in the Ports table.

6. Select the Reliable Message tab.

7. Click Customize Reliable Message Configuration and follow the instructions to
save the deployment plan, if required.

8. Set the reliable messaging properties, as required.

9. Click Save.

Sequence Expiration Expiration time for a sequence regardless of activity.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P1D (1 day).

Buffer Retry Count Number of times to retry a reliable request. This value
defaults to 3.

Buffer Retry Delay Amount of time to wait before retrying a reliable request.

The retry attempts are between the client's request
message on the JMS queue and delivery of the message to
the web service implementation.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT5S (5 seconds).

Table 8–9 (Cont.) Configuration Options for Reliable Messaging

Configuration Option Description

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

8-22 Developing JAX-RPC Web Services for Oracle WebLogic Server

8.7.2 Using WLST
For a complete description and example of using WLST to update an application's
deployment plan to configure reliable messaging, see "Updating the Deployment Plan"
in Understanding the WebLogic Scripting Tool.

For your reference, the following table summarizes the XPath values for the WS-RM
configuration options.

8.8 Programming Guidelines for the JWS File That Invokes a Reliable
Web Service

If you are using the WebLogic client APIs, you must invoke a reliable web service from
within a web service; you cannot invoke a reliable web service from a stand-alone
client application.

Table 8–10 WS_RM Configuration Variable Names and XPath Values

Configuration
Option Example Variable Name XPath Value

Inactivity Timeout ReliabilityConfig_
InactivityTimeout

/weblogic-webservices/webservice-description/
[webservice-description-name="
service_name"]/port-component/
[port-component-name="port_name"]
/reliability-config/inactivity-timeout

Base Retransmission
Interval

ReliabilityConfig_
BaseRetransmission
Interval

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/base-retransmission-interval

Retransmission
Exponential Backoff

ReliabilityConfig_
Retransmission
ExponentialBackoff

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]/reliability-
config/retransmission-exponential-backoff

Acknowledgement
Interval

ReliabilityConfig_
AcknowledgementInterval

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/acknowledgement-interval

Sequence Expiration ReliabilityConfig_
SequenceExpiration

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/sequence-expiration

Buffer Retry Count ReliabilityConfig_
BufferRetryCount

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/buffer-retry-count

Buffer Retry Delay ReliabilityConfig_
BufferRetryDelay

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/buffer-retry-delay

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

Using Web Services Reliable Messaging 8-23

The following example shows a simple JWS file for a web service that invokes a
reliable operation from the service described in Section 8.6, "Programming Guidelines
for the Reliable JWS File".

package examples.webservices.reliable;

import java.rmi.RemoteException;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.rpc.Stub;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.ReliabilityErrorHandler;

import weblogic.jws.AsyncFailure;
import weblogic.jws.AsyncResponse;

import examples.webservices.reliable.ReliableHelloWorldPortType;

import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;
import weblogic.wsee.reliability.WsrmUtils;

@WebService(name="ReliableClientPortType",
 serviceName="ReliableClientService")

@WLHttpTransport(contextPath="ReliableClient",
 serviceUri="ReliableClient",
 portName="ReliableClientServicePort")

public class ReliableClientImpl
{
 private static String responseMessage = null;

 @ServiceClient(
 serviceName="ReliableHelloWorldService",
 portName="ReliableHelloWorldServicePort")

 private ReliableHelloWorldPortType port;

 @WebMethod
 public void callHelloWorld(String input, String input2, String serviceUrl)
 throws RemoteException {

 ((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, serviceUrl);

 port.helloWorld(input);

 System.out.println(" Invoked the ReliableHelloWorld.helloWorld operation
reliably.");
 WsrmUtils.setFinalMessage((Stub)port);
 port.echo(input2);
 System.out.println(" Invoked the ReliableHelloWorld.echo operation reliably."
);
 }

 @AsyncResponse(target = "port", operation = "echo")
 public void onEchoAsyncResponse(String msg) {

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

8-24 Developing JAX-RPC Web Services for Oracle WebLogic Server

 System.out.println("ClientService: Got async response for request : " + msg);
 responseMessage = msg;
 }

 @AsyncFailure(target = "port", operation = "echo")
 public void onEchoAsyncFailure(Throwable t) {
 System.out.println("ClientService: Got async FAILURE for request : " + t);
 t.printStackTrace();
 }

 @ReliabilityErrorHandler(target="port")
 public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {

 ReliableDeliveryException fault = ctx.getFault();
 String message = null;
 if (fault != null) {
 message = ctx.getFault().getMessage();
 }
 String operation = ctx.getOperationName();
 System.out.println("Reliable operation " + operation + " may have not invoked.
The error message is " + message);
 }

}

As illustrated in the previous examples (in bold text), follow these guidelines when
programming the JWS file that invokes a reliable web service:

■ Import the @ServiceClient and @ReliabilityErrorHandler JWS annotations:

import weblogic.jws.ServiceClient;
import weblogic.jws.ReliabilityErrorHandler;

■ Import the WebLogic APIs that you will use in the method that handles the error
that results when the client web service does not receive an acknowledgement of
message receipt from the reliable web service:

import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;

■ Import the APIs used for asynchronous response and failure.

import weblogic.jws.AsyncFailure;
import weblogic.jws.AsyncResponse;

■ Import the JAX-RPC stub, created later by the <clientgen> child element of the
jwsc Ant task, of the port type of the reliable web service you want to invoke. The
stub package is specified by the packageName attribute of <clientgen>, and the
name of the stub is determined by the WSDL of the invoked web service.

import examples.webservices.reliable.ReliableHelloWorldPortType;

■ Import the APIs used for life cycle management (to set properties and specify the
final message later).

import javax.xml.rpc.Stub;
import weblogic.wsee.reliability.WsrmUtils;

■ In the body of the JWS file, use the @ServiceClient JWS annotation to specify the
name and port of the reliable web service you want to invoke. You specify this

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

Using Web Services Reliable Messaging 8-25

annotation at the field-level on a private variable, whose data type is the JAX-RPC
port type of the web service you are invoking.

@ServiceClient(
 serviceName="ReliableHelloWorldService",
 portName="ReliableHelloWorldServicePort")

 private ReliableHelloWorldPortType port;

■ Use the port._setProperty method to dynamically specify the target service
endpoint address within the web service client.

((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, serviceUrl);

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
helloWorld reliable operation:

port.helloWorld(input);

Because the operation has been marked one-way, it does not return a value.

■ Create a method that handles the error when the client web service does not
receive an acknowledgement from the reliable web service that the latter has
received a message and annotate this method with the
@weblogic.jws.ReliabilityErrorHandler annotation:

@ReliabilityErrorHandler(target="port")
public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {
 ReliableDeliveryException fault = ctx.getFault();
 String message = null;
 if (fault != null) {
 message = ctx.getFault().getMessage();
 }
 String operation = ctx.getOperationName();
 System.out.println("Reliable operation " + operation + " may have not
invoked. The error message is " + message);
 }

This method takes ReliabilityErrorContext as its single parameter and returns
void.

See "weblogic.jws.ReliabilityErrorHandler" in WebLogic Web Services Reference for
Oracle WebLogic Server for details about programming this error-handling method.

■ Because the service is not conversational, any state kept in the port field will be
lost when this method returns. In the case of reliable messaging, this state includes
the ID of the reliable sequence being used to send messages. The setFinalMessage
method specifies that this is the final message to be sent on this sequence. This will
allow the reliable messaging subsystem to proactively clean up the reliable
sequence instead of timing out.

WsrmUtils.setFinalMessage((Stub)port);

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
echo reliable operation:

port.echo(input2);

■ Create methods to handle the asynchronous response or failure. Use the
@weblogic.jws.AsyncResponse and @weblogic.jws.AsyncFailure annotations:

@AsyncResponse(target = "port", operation = "echo")
public void onEchoAsyncResponse(String msg) {

Updating the build.xml File for a Client of a Reliable Web Service

8-26 Developing JAX-RPC Web Services for Oracle WebLogic Server

 System.out.println("ClientService: Got async response for request : " + msg);
 responseMessage = msg;
}

@AsyncFailure(target = "port", operation = "echo")
public void onEchoAsyncFailure(Throwable t) {
 System.out.println("ClientService: Got async FAILURE for request : " + t);
 t.printStackTrace();
}

For more information about generating asynchronous response and failure
methods, see Section 7.4, "Writing the Asynchronous JWS File".

When programming the client web service:

■ Do not specify any reliable messaging annotations (other than
@ReliabilityErrorHandler) or use any reliable messaging assertions in the
associated WS-Policy files.

■ Do not specify the wsdlLocation attribute of the @ServiceClient annotation. This
is because the runtime retrieval of the specified WSDL might not succeed;
therefore, it is better for WebLogic Server to use a local WSDL file instead.

8.9 Updating the build.xml File for a Client of a Reliable Web Service
To update a build.xml file to generate the JWS file that invokes the operation of a
reliable web service, add taskdef and a build-reliable-client targets similar to the
following:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-reliable-client">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${client-ear-dir}" >

 <jws file="examples/webservices/reliable/ReliableClientImpl.java">

 <clientgen

wsdl="http://${wls.destination.host}:${wls.destination.port}/ReliableHelloWorld/Re
liableHelloWorld?WSDL"
 packageName="examples.webservices.reliable"/>

 </jws>

 </jwsc>

</target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed ReliableHelloWorld web service. The jwsc Ant task
automatically packages them in the generated WAR file so that the client web service

Using Reliable Messaging With MTOM

Using Web Services Reliable Messaging 8-27

can immediately access the stubs. You do this because the ReliableClientImpl JWS
file imports and uses one of the generated classes.

8.10 Using Reliable Messaging With MTOM
The following example shows a simple JWS file that implements a reliable web service
and uses MTOM/XOP to optimize the transmission of XML data of type
xs:base64Binary in SOAP messages; see the explanation after the example for coding
guidelines that correspond to the Java code in bold. This example builds on the
example provided in Section 8.8, "Programming Guidelines for the JWS File That
Invokes a Reliable Web Service".

package examples.webservices.reliable;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;
import weblogic.jws.WLHttpTransport;

import weblogic.jws.ReliabilityBuffer;
import weblogic.jws.BufferQueue;
import weblogic.jws.Policy;
import weblogic.jws.Policies;

/**
 * Simple reliable Web Service.
 */

@WebService(name="ReliableHelloWorldPortType",
 serviceName="ReliableHelloWorldService")

@WLHttpTransport(contextPath="ReliableHelloWorld",
 serviceUri="ReliableHelloWorld",
 portName="ReliableHelloWorldServicePort")

@Policies({@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true),
 @Policy(uri = "policy:Mtom.xml")})

@BufferQueue(name="webservices.reliable.queue")

public class ReliableHelloWorldImpl {

 @WebMethod()
 @Oneway()
 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")

 public void helloWorld(String input) {
 System.out.println(" Hello World " + input);

 }

 @WebMethod

 public byte[] echoBinary(byte[] bytes) {
 return bytes;
 }
}

Client Considerations When Redeploying a Reliable Web Service

8-28 Developing JAX-RPC Web Services for Oracle WebLogic Server

As illustrated in the previous example (in bold text), follow these guidelines when
programming the JWS file that invokes a reliable web service with MTOM:

■ Use the "@weblogic.jws.Policy" annotation to specify that the pre-packaged
Mtom.xml file should be applied to your web service. Use the
"@weblogic.jws.Policies" annotation to group multiple WS-Policy files, including
the reliable messaging policy file and the MTOM policy file.

@Policies({@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true),
 @Policy(uri = "policy:Mtom.xml")})

■ Use the Java byte[] data type in your web service operations as either a return
value or input parameter whenever you want the resulting SOAP message to use
MTOM/XOP to send or receive the binary data.

public byte[] echoBinary(byte[] bytes) {
 return bytes;
}

8.11 Client Considerations When Redeploying a Reliable Web Service
WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated reliable WebLogic web service alongside an older
version of the same web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
web service. If the client is connected to a reliable web service, its work is considered
complete when the existing reliable message sequence is explicitly ended by the client
or as a result of a timeout.

For additional information about production redeployment and web service clients,
see "Client Considerations When Redeploying a Web Service" on page 6-17.

8.12 Using Reliable Messaging With a Proxy Server
Client applications that invoke reliable web services might not invoke the operation
directly, but rather, use a proxy server. Reasons for using a proxy include the presence
of a firewall or the deployment of the invoked web service to a cluster.

In this case, the WebLogic Server instance that hosts the invoked web service must be
configured with the address and port of the proxy server. If your web service is
deployed to a cluster, you must configure every server in the cluster.

This procedure describes how to create a network channel, the primary configurable
WebLogic Server resource for managing network connection. Network channels
enable you to provide a consistent way to access the front-end address of a cluster. For
more information about network channels, see "Understanding Network Channels" in
Administering Server Environments for Oracle WebLogic Server.

Note: In this release of WebLogic Server, the only supported Java
data type when using MTOM/XOP is byte[]; other binary data types,
such as image, are not supported.

Using Reliable Messaging With a Proxy Server

Using Web Services Reliable Messaging 8-29

For each server instance:

1. Create a network channel for the protocol you use to invoke the web service. You
must name the network channel weblogic-wsee-proxy-channel-XXX, where XXX
refers to the protocol. For example, to create a network channel for HTTPS, call it
weblogic-wsee-proxy-channel-https.

See "Configure custom network channels" in Oracle WebLogic Server Administration
Console Online Help for general information about creating a network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

3. Disable the asynchronous response service on the WebLogic Server proxy server
by starting the WebLogic Server instance using the
-Dweblogic.wsee.skip.async.response=true Java system property.

By default, every WebLogic Server instance deploys an internal asynchronous web
service that handles the asynchronous request-response feature. If you do not
specify this system property, asynchronous messages will never get to the cluster,
as required, because the asynchronous service on the proxy server will consume
them instead.

Using Reliable Messaging With a Proxy Server

8-30 Developing JAX-RPC Web Services for Oracle WebLogic Server

9

Creating Conversational Web Services 9-1

9Creating Conversational Web Services

[10] This chapter describes how to create conversational WebLogic Java API for
XML-based RPC (JAX-RPC) web services.

This chapter includes the following sections:

■ Overview of Conversational Web Services

■ Creating a Conversational Web Service: Main Steps

■ Programming Guidelines for the Conversational JWS File

■ Programming Guidelines for the JWS File That Invokes a Conversational Web
Service

■ ConversationUtils Utility Class

■ Updating the build.xml File for a Client of a Conversational Web Service

■ Updating a Stand-Alone Java Client to Invoke a Conversational Web Service

■ Example Conversational Web Service .NET Client

■ Client Considerations When Redeploying a Conversational Web Service

9.1 Overview of Conversational Web Services
A web service and the client application that invokes it may communicate multiple
times to complete a single task. Also, multiple client applications might communicate
with the same web service at the same time. Conversations provide a straightforward
way to keep track of data between calls and to ensure that the web service always
responds to the correct client.

Conversations meet two challenges inherent in persisting data across multiple
communications:

■ Conversations uniquely identify a two-way communication between one client
application and one web service so that messages are always returned to the
correct client. For example, in a shopping cart application, a conversational web
service keeps track of which shopping cart belongs to which customer. A
conversational web service implements this by creating a unique conversation ID
each time a new conversation is started with a client application.

■ Conversations maintain state between calls to the web service; that is, they keep
track of the data associated with a particular client application between its calls to
the service. Conversations ensure that the data associated with a particular client
is saved until it is no longer needed or the operation is complete. For example, in a
shopping cart application, a conversational web service remembers which items
are in the shopping cart while the customer continues shopping. Maintaining state

Creating a Conversational Web Service: Main Steps

9-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

is also needed to handle failure of the computer hosting the web service in the
middle of a conversation; all state-related data is persisted to disk so that when the
computer comes up it can continue the conversation with the client application.

WebLogic Server manages this unique ID and state by creating a conversation context
each time a client application initiates a new conversation. The web service then uses
the context to correlate calls to and from the service and to persist its state-related data.

Conversations between a client application and a web service have three distinct
phases:

■ Start—A client application initiates a conversation by invoking the start operation
of the conversational web service. The web service in turn creates a new
conversation context and an accompanying unique ID, and starts an internal timer
to measure the idle time and the age of the conversation.

■ Continue—After the client application has started the conversation, it invokes one
or more continue operations to continue the conversation. The conversational web
service uses the ID associated with the invoke to determine which client
application it is conversing with, what state to persist, and which idle timer to
reset. A typical continue operation would be one that requests more information
from the client application, requests status, and so on.

■ Finish—A client application explicitly invokes the finish operation when it has
finished its conversation; the web service then marks any data or resources
associated with the conversation as deleted.

Conversations typically occur between two WebLogic web services: one is marked
conversational and defines the start, continue, and finish operations and the other web
service uses the @ServiceClient annotation to specify that it is a client of the
conversational web service. You can also invoke a conversational web service from a
stand-alone Java client, although there are restrictions.

As with other WebLogic web service features, you use JWS annotations to specify that
a web service is conversational.

9.2 Creating a Conversational Web Service: Main Steps
The following procedure describes how to create a conversational web service, as well
as a client web service and stand-alone Java client application, both of which initiate
and conduct a conversation. The procedure shows how to create the JWS files that

Note: The client web service that invokes a conversational web
service is not required to also be conversational. However, if the client
is not conversational, there is a danger of multiple instances of this
client accessing the same conversational web service stub and possibly
corrupting the saved conversational state. If you believe this might
true in your case, then specify that the client web service also be
conversational. In this case you cannot use a stand-alone Java client,
because there is no way to mark it as conversational using the
WebLogic APIs.

A conversational web service on its own does not guarantee message
delivery or that the messages are delivered in order, exactly once. If
you require this kind of message delivery guarantee, you must also
specify that the web service be reliable. See Section 8.2, "Using Web
Service Reliable Messaging: Main Steps" and Chapter 11, "Using the
Asynchronous Features Together."

Creating a Conversational Web Service: Main Steps

Creating Conversational Web Services 9-3

implement the two web services from scratch. If you want to update existing JWS files,
you can also use this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the jwsc
Ant task and deploying the generated conversational web service. It is further
assumed that you have a similar setup for the WebLogic Server instance that hosts the
client web service that initiates the conversation. For more information, see the
following sections:

■ "Examples for JAX-RPC Web Service Developers" on page 2-1

■ "Developing JAX-RPC Web Services" on page 3-1

■ "Programming the JWS File" on page 4-1

■ "Developing JAX-RPC Web Service Clients" on page 6-1

Table 9–1 Steps to Create a Conversational Web Service

Step Description

1 Create a new JWS file, or
update an existing one, that
implements the
conversational web service.

Use your favorite IDE or text editor. See Section 9.3,
"Programming Guidelines for the Conversational JWS
File".

2 Update your build.xml file to
include a call to the jwsc Ant
task to compile the
conversational JWS file into a
web service.

See "Running the jwsc WebLogic Web Services Ant Task"
on page 3-7.

3 Run the Ant target to build
the conversational web
service.

For example:

prompt> ant build-mainService

4 Deploy the target web service
as usual.

See "Deploying and Undeploying WebLogic Web
Services" on page 3-14.

5 Create a new JWS file, or
update an existing one, that
implements the client web
service.

If the client application is a stand-alone Java client, see
Section 9.7, "Updating a Stand-Alone Java Client to
Invoke a Conversational Web Service". Skip Steps 6-9.

If the client application is itself a web service, follow
Steps 6-9.

6 Create a new JWS file, or
update an existing one, that
initiates and conducts the
conversation with the
conversational web service.

Use your favorite IDE or text editor. It is assumed that the
client web service is deployed to a different WebLogic
Server instance form the one that hosts the conversational
web service. See Section 9.4, "Programming Guidelines
for the JWS File That Invokes a Conversational Web
Service".

7 Update the build.xml file
that builds the client web
service.

See Section 9.6, "Updating the build.xml File for a Client
of a Conversational Web Service".

8 Run the Ant target to build
the client web services.

For example:

prompt> ant build-clientService

9 Deploy the client web service
as usual.

See "Deploying and Undeploying WebLogic Web
Services" on page 3-14.

Programming Guidelines for the Conversational JWS File

9-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

9.3 Programming Guidelines for the Conversational JWS File
The following example shows a simple JWS file that implements a conversational web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.conversation;

import java.io.Serializable;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Conversation;
import weblogic.jws.Conversational;
import weblogic.jws.Context;
import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.ServiceHandle;

import javax.jws.WebService;
import javax.jws.WebMethod;
@Conversational(maxIdleTime="10 minutes",
 maxAge="1 day",
 runAsStartUser=false,
 singlePrincipal=false)
@WebService(name="ConversationalPortType",
 serviceName="ConversationalService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="conv",
 serviceUri="ConversationalService",
 portName="ConversationalServicePort")

/**
 * Conversational web service.
 */

public class ConversationalServiceImpl implements Serializable {

 @Context
 private JwsContext ctx;
 public String status = "undefined";

 @WebMethod
 @Conversation (Conversation.Phase.START)
 public String start() {

 ServiceHandle handle = ctx.getService();
 String convID = handle.getConversationID();

 status = "start";
 return "Starting conversation, with ID " + convID + " and status equal to " + status;

 }

 @WebMethod
 @Conversation (Conversation.Phase.CONTINUE)
 public String middle(String message) {

 status = "middle";
 return "Middle of conversation; the message is: " + message + " and status is " + status;

 }

Programming Guidelines for the Conversational JWS File

Creating Conversational Web Services 9-5

 @WebMethod
 @Conversation (Conversation.Phase.FINISH)
 public String finish(String message) {

 status = "finish";
 return "End of conversation; the message is: " + message + " and status is " + status;

 }

}

Follow these guidelines when programming the JWS file that implements a
conversational web service. Code snippets of the guidelines are shown in bold in the
preceding example.

■ Conversational web services must implement java.io.Serializable, so you
must first import the class into your JWS file:

import java.io.Serializable;

■ Import the conversational JWS annotations:

import weblogic.jws.Conversation;
import weblogic.jws.Conversational;

■ If you want to access runtime information about the conversational web service,
import the @Context annotation and context APIs:

import weblogic.jws.Context;

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.ServiceHandle;

■ Use the class-level @Conversational annotation to specify that the web service is
conversational. Although this annotation is optional (assuming you are specifying
the @Conversation method-level annotation), it is a best practice to always use it
in your JWS file to clearly specify that your web service is conversational.

Specify any of the following optional attributes: maxIdleTime is the maximum
amount of time that the web service can be idle before WebLogic Server finishes
the conversation; maxAge is the maximum age of the conversation; runAsStartUser
indicates whether the continue and finish phases of an existing conversation are
run as the user who started the conversation; and singlePrincipal indicates
whether users other than the one who started a conversation are allowed to
execute the continue and finish phases of the conversation.

@Conversational(maxIdleTime="10 minutes",
 maxAge="1 day",
 runAsStartUser=false,
 singlePrincipal=false)

If a JWS file includes the @Conversational annotation, all operations of the web
service are conversational. The default phase of an operation, if it does not have an
explicit @Conversation annotation, is continue. However, because a conversational
web service is required to include at least one start and one finish operation, you
must use the method-level @Conversation annotation to specify which methods
implement these operations.

See "weblogic.jws.Conversational" in WebLogic Web Services Reference for Oracle
WebLogic Server for additional information and default values for the attributes.

Programming Guidelines for the JWS File That Invokes a Conversational Web Service

9-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

■ Your JWS file must implement java.io.Serializable:

public class ConversationalServiceImpl implements Serializable {

■ To access runtime information about the web service, annotate a private class
variable, of data type weblogic.wsee.jws.JwsContext, with the field-level
@Context JWS annotation:

 @Context
 private JwsContext ctx;

■ Use the @Conversation annotation to specify the methods that implement the
start, continue, and finish phases of your conversation. A conversation is required
to have at least one start and one finish operation; the continue operation is
optional. Use the following parameters to the annotation to specify the phase:
Conversation.Phase.START, Conversation.Phase.CONTINUE, or
Conversation.Phase.FINISH. The following example shows how to specify the
start operation:

 @WebMethod
 @Conversation (Conversation.Phase.START)
 public String start() {...

If you mark just one method of the JWS file with the @Conversation annotation,
then the entire web service becomes conversational and each operation is
considered part of the conversation; this is true even if you have not used the
optional class-level @Conversational annotation in your JWS file. Any methods
not explicitly annotated with @Conversation are, by default, continue operations.
This means that, for example, if a client application invokes one of these continue
methods without having previously invoked a start operation, the web service
returns a runtime error.

Finally, if you plan to invoke the conversational web service from a stand-alone
Java client, the start operation is required to be request-response, or in other
words, it cannot be annotated with the @Oneway JWS annotation. The operation can
return void. If you are going to invoke the web service only from client
applications that run in WebLogic Server, then this requirement does not apply.

See "weblogic.jws.Conversation" in WebLogic Web Services Reference for Oracle
WebLogic Server for additional information.

■ Use the JwsContext instance to get runtime information about the web service.

For example, the following code in the start operation gets the ID that WebLogic
Server assigns to the new conversation:

ServiceHandle handle = ctx.getService();
String convID = handle.getConversationID();

9.4 Programming Guidelines for the JWS File That Invokes a
Conversational Web Service

The following example shows a simple JWS file for a web service that invokes the
conversational web service described in Section 9.3, "Programming Guidelines for the
Conversational JWS File"; see the explanation after the example for coding guidelines
that correspond to the Java code in bold.

package examples.webservices.conversation;

Programming Guidelines for the JWS File That Invokes a Conversational Web Service

Creating Conversational Web Services 9-7

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;

import weblogic.wsee.conversation.ConversationUtils;

import javax.jws.WebService;
import javax.jws.WebMethod;

import javax.xml.rpc.Stub;

import examples.webservices.conversation.ConversationalPortType;

import java.rmi.RemoteException;

@WebService(name="ConversationalClientPortType",
 serviceName="ConversationalClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="convClient",
 serviceUri="ConversationalClient",
 portName="ConversationalClientPort")

/**
 * client that has a conversation with the ConversationalService.
 */

public class ConversationalClientImpl {

 @ServiceClient(
 wsdlLocation="http://localhost:7001/conv/ConversationalService?WSDL",
 serviceName="ConversationalService",
 portName="ConversationalServicePort")

 private ConversationalPortType port;

 @WebMethod
 public void runConversation(String message) {

 try {

 // Invoke start operation
 String result = port.start();
 System.out.println("start method executed.");
 System.out.println("The message is: " + result);

 // Invoke continue operation
 result = port.middle(message);
 System.out.println("middle method executed.");
 System.out.println("The message is: " + result);

 // Invoke finish operation
 result = port.finish(message);
 System.out.println("finish method executed.");
 System.out.println("The message is: " + result);
 ConversationUtils.renewStub((Stub)port);

 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

Programming Guidelines for the JWS File That Invokes a Conversational Web Service

9-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

 }

}

Follow these guidelines when programming the JWS file that invokes a conversational
web service; code snippets of the guidelines are shown in bold in the preceding
example:

■ Import the @ServiceClient JWS annotation:

import weblogic.jws.ServiceClient;

■ Optionally import the WebLogic utility class for further configuring a
conversation:

import weblogic.wsee.conversation.ConversationUtils;

■ Import the JAX-RPC stub of the port type of the conversational web service you
want to invoke. The actual stub itself will be created later by the jwsc Ant task.
The stub package is specified by the packageName attribute of the <clientgen>
child element of <jws>, and the name of the stub is determined by the WSDL of
the invoked web service.

import examples.webservices.conversation.ConversationalPortType;

■ In the body of the JWS file, use the @ServiceClient JWS annotation to specify the
WSDL, name, and port of the conversational web service you want to invoke. You
specify this annotation at the field-level on a private variable, whose data type is
the JAX-RPC port type of the web service you are invoking.

@ServiceClient(
 wsdlLocation="http://localhost:7001/conv/ConversationalService?WSDL",
 serviceName="ConversationalService",
 portName="ConversationalServicePort")

 private ConversationalPortType port;

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
start operation of the conversational web service to start the conversation. You can
invoke the start method from any location in the JWS file (constructor, method,
and so on):

String result = port.start();

■ Optionally invoke the continue methods to continue the conversation. Be sure you
use the same stub instance so that you continue the same conversation you started:

result = port.middle(message);

■ Once the conversation is completed, invoke the finish operation so that the
conversational web service can free up the resources it used for the current
conversation:

result = port.finish(message);

■ If you want to reuse the web service conversation stub to start a new conversation,
you must explicitly renew the stub using the renewStub() method of the
weblogic.wsee.conversation.ConversationUtils utility class:

ConversationUtils.renewStub((Stub)port);

Updating the build.xml File for a Client of a Conversational Web Service

Creating Conversational Web Services 9-9

9.5 ConversationUtils Utility Class
WebLogic Server provides a utility class for use with the conversation feature. Use this
class to perform common tasks such as getting and setting the conversation ID and
setting configuration options. Some of these tasks are performed in the conversational
web service, some are performed in the client that invokes the conversational web
service. See Section 9.4, "Programming Guidelines for the JWS File That Invokes a
Conversational Web Service" for an example of using this class.

9.6 Updating the build.xml File for a Client of a Conversational Web
Service

You update a build.xml file to generate the JWS file that invokes a conversational web
service by adding taskdefs and a build-clientService target that looks something
like the following example. See the description after the example for details.

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-clientService">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws
file="examples/webservices/conversation/ConversationalClientImpl.java" >
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/conv/ConversationalService?WSDL"
 packageName="examples.webservices.conversation"/>

 </jws>

 </jwsc>

 </target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed ConversationalService web service. The jwsc Ant
task automatically packages them in the generated WAR file so that the client web
service can immediately access the stubs. You do this because the
ConversationalClientImpl JWS file imports and uses one of the generated classes.

Note: The client web service that invokes a conversational web
service is not required to also be conversational. However, if the client
is not conversational, there is a danger of multiple instances of this
client accessing the same conversational web service stub and possibly
corrupting the saved conversational state. If you believe this might
true in your case, then specify that the client web service also be
conversational.

Updating a Stand-Alone Java Client to Invoke a Conversational Web Service

9-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

9.7 Updating a Stand-Alone Java Client to Invoke a Conversational Web
Service

The following example shows a simple stand-alone Java client that invokes the
conversational web service described in Section 9.3, "Programming Guidelines for the
Conversational JWS File". See the explanation after the example for coding guidelines
that correspond to the Java code in bold.

package examples.webservices.conv_standalone.client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
import weblogic.wsee.jaxrpc.WLStub;

/**
 * stand-alone client that invokes and converses with ConversationlService.
 */

public class Main {

 public static void main(String[] args)
 throws ServiceException, RemoteException{

 ConversationalService service = new ConversationalService_Impl(args[0] + "?WSDL");
 ConversationalPortType port = service.getConversationalServicePort();

 // Set property on stub to specify that client is invoking a web service
 // that uses advanced features; this property is automatically set if
 // the client runs in a WebLogic Server instance.

 Stub stub = (Stub)port;
 stub._setProperty(WLStub.COMPLEX, "true");

 // Invoke start operation to begin the conversation
 String result = port.start();
 System.out.println("start method executed.");
 System.out.println("The message is: " + result);

 // Invoke continue operation
 result = port.middle("middle");
 System.out.println("middle method executed.");
 System.out.println("The message is: " + result);

 // Invoke finish operation
 result = port.finish("finish");
 System.out.println("finish method executed.");
 System.out.println("The message is: " + result);

 }

}

Follow these guidelines when programming the stand-alone Java client that invokes a
conversational web service. Code snippets of the guidelines are shown in bold in the
preceding example.

■ Import the weblogic.wsee.jaxrpc.WLStub class:

Example Conversational Web Service .NET Client

Creating Conversational Web Services 9-11

import weblogic.wsee.jaxrpc.WLStub;

■ Set the WLStub.Complex property on the JAX-RPC stub of the
ConversationalService using the _setProperty method:

Stub stub = (Stub)port;
stub._setProperty(WLStub.COMPLEX, "true");

This property specifies to the web services runtime that the client is going to
invoke an advanced web service, in this case a conversational one. This property is
automatically set when invoking a conversational web service from another
WebLogic web service.

■ Invoke the start operation of the conversational web service to start the
conversation:

 String result = port.start();

■ Optionally invoke the continue methods to continue the conversation:

result = port.middle(message);

■ Once the conversation is completed, invoke the finish operation so that the
conversational web service can free up the resources it used for the current
conversation:

result = port.finish(message);

9.8 Example Conversational Web Service .NET Client
This section demonstrates how to create a .NET WSE3.0 client for a WebLogic
conversational web service. The example includes the following files:

■ ConversationService.java -- JWS file that uses the @Conversation and
@Callback annotations to implement a conversational web service.
ConversationService.java can optionally communicate results to its client via a
callback.

■ Service.cs -- The C# source file of the ConversationClient .NET web service that
acts as a client to the ConversationService web service.

The sample .NET client can participate in conversations with
ConversationService, as well as receiving results via callback.

■ build.xml -- Ant build file that contains targets for building and deploying the
Conversational web service.

These files are described in detail in the sections that follow.

9.8.1 ConversationService.java File
The example ConversationService.java file is shown in Example 9–1. The example
includes extensive comments that describe its function.

Example 9–1 ConversationService.java File

package conv;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

Example Conversational Web Service .NET Client

9-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

import weblogic.jws.Conversation;
import weblogic.jws.Callback;
import weblogic.jws.CallbackService;

import java.io.Serializable;

/**
 * Demonstrates use of the @Conversation annotation to manage the lifetime of the
service
 * and provide data persistence and message correlation.
 *
 * Remember that multiple clients might invoke a web service simultaneously. When
the
 * web service stores data relevant to the client or calls additional services
 * in order to process a client's request, the service must be able to process
returned
 * data from the external services in the context of the specific client it
relates
 * to. This is all automatic when conversations are used.
 *
 * Remember that not all clients are capable of accepting callbacks.
Specifically,
 * clients operating from behind firewalls may not be able to receive asynchronous
 * callbacks. You may wish to provide a synchronous interface, like this one,
 * for such clients. If a client can accept callbacks, it must send a callback
endpoint refrence
 * as part of any "start conversation" method invocation.
 *
 * To see the behavior in the Test View, invoke startRequest and then
getRequestStatus
 * several times quickly.
 */
@WebService(serviceName = "ConversationService", portName = "conversation",
targetNamespace = "http://www.openuri.org/")
public class ConversationService implements Serializable {

 @Callback
 public CallbackInterface callback;
 private boolean useCallbacks;
 private int num;

 /**
 * Starts the conversation
 */
 @Conversation(Conversation.Phase.START)
 @WebMethod
 public void startRequest(boolean useCallbacks) {
 this.useCallbacks = useCallbacks;
 }

 @WebMethod
 @Conversation(Conversation.Phase.CONTINUE)
 public String getRequestStatus() {

 num++;
 if (num == 1)
 return "This is the first time you call getRequestStatus method.";
 if (num == 2 && useCallbacks) {
 callback.onResultReady("finished");
 return "This is the second time you call getRequestStatus method, the

Example Conversational Web Service .NET Client

Creating Conversational Web Services 9-13

conversation has been terminated automtically when the onResultReady callback
method is invoked.";
 } else
 return "You have called getRequestStatus method " + num + " times";

 }

 /**
 * Used to tell Conversation.jws that the current conversation is
 * no longer needed.
 */
 @WebMethod
 @Conversation(Conversation.Phase.FINISH)
 public void terminateRequest() {

 }

 @CallbackService(serviceName = "ConversationCallbackService")
 public interface CallbackInterface {

 /**
 * Callback to invoke on the client when the external service
 * returns its result. Will only be called it the client can
 * accept callbacks and told us where to send them.
 * <p/>
 * If this callback is used, it implicitly terminates the
 * conversation with no action required on the part of the
 * client.
 */
 @WebMethod
 @Oneway
 @Conversation(Conversation.Phase.FINISH)
 public void onResultReady(String result);
 }

}

9.8.2 Service.cs File
The example Service.cs file is shown in Example 9–2.

This conversation proxy file was created using the Microsoft WSDL to Proxy Class tool
WseWsdl3.exe (see http://msdn.microsoft.com/en-us/library/aa529578.aspx) and
the ConversationService web service's WSDL file.

The example includes extensive comments that describe its function.

Example 9–2 Service.cs File

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Diagnostics;
using System.IO;
using System.Xml;
using Microsoft.Web.Services3.Addressing;
using Microsoft.Web.Services3;
using System.Collections.Generic;
using Microsoft.Web.Services3.Design;

Example Conversational Web Service .NET Client

9-14 Developing JAX-RPC Web Services for Oracle WebLogic Server

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

 public Service () {

 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 /*
 * start invokes the Conversation web service's startRequest
 * operation.
 *
 * Since the Conversation web service is conversational,
 * we must also persist the ReplyTo endpoint reference SOAP header
 * for subsequent calls.
 *
 * Since the Conversation web service can optionally communicate
 * the result of it's work via a callback, we must prepare a
 * second SOAP header CallbackTo SOAP header, which is the endpoint reference
 * of the recipient to which callbacks should be sent.
 */
 [WebMethod(EnableSession = true)]
 public void start(Boolean useCallbacks, Boolean useIPAddress)
 {
 /*
 * The Conversation proxy was created using .NET WSE3.0's WseWsdl3.exe
 * application and the Conversation.jws's WSDL file. The WSDL
 * file for any WLS web service may be obtained
 * by hitting the web service's URL with "?WSDL" appended to
 * the end. For example:
 *
 * http://somehost:7001/samples/async/Conversation.jws?WSDL
 *
 * WseWsdl3.exe produces a C# proxy class. Place the resulting
 * ConversationService.cs file in your .NET project, then use Visual
 * Studio's Project->Add Existing Item menu action to "import"
 * the class into the project.
 */
 ConversationServiceSoapBinding conv;
 String callbackLocation;
 int asmxIndex;

 /*
 * Construct the callback URL from various pieces of
 * server and HttpRequest info.
 */
 Uri requestUrl = Context.Request.Url;

 if (useIPAddress)
 {
 /*
 * if useIPAddress is true, construct the callback address
 * with the IP address of this host.
 */
 callbackLocation = requestUrl.Scheme + "://" +
System.Net.Dns.GetHostByName(requestUrl.Host).AddressList[0] +

Example Conversational Web Service .NET Client

Creating Conversational Web Services 9-15

 ":" + requestUrl.Port + requestUrl.AbsolutePath;
 }
 else
 {
 /*
 * if useIPAddress is false, construct the callback address
 * with the hostname of this host.
 */
 callbackLocation = requestUrl.Scheme + "://" + requestUrl.Host +
 ":" + requestUrl.Port + requestUrl.AbsolutePath;
 }

 // Remove everything after ".asmx"
 asmxIndex = callbackLocation.IndexOf(".asmx") + 5;
 callbackLocation = callbackLocation.Remove(asmxIndex,
 callbackLocation.Length - asmxIndex);

 /*
 * Create an instance of the proxy for the Conversation
 * web service.
 *
 */
 conv = new ConversationServiceSoapBinding();

 /*
 * When callback is enabled, a custom callback header should be added into
 * the outbound soap message.
 *
 */
 if (useCallbacks)
 enableSoapFilterToAddCallbackHeader(conv, callbackLocation);

 /*
 * Invoke the startRequest method of the web service. The
 * single boolean parameter determines whether the Conversation
 * web service will use callbacks to communicate the result
 * back to this client.
 *
 * If the argument is true, an onResultReady callback will
 * be sent when the result is ready. This client must implement
 * a method with that name that expects the message shape defined
 * by the target web service (returns void and accepts a single
 * string argument). See the onResultReady method below.
 *
 * If the argument to startRequest is false, callbacks will not
 * be used and this client must use the getRequestStatus method
 * to poll the Conversation web service for the result.
 */
 conv.startRequest(useCallbacks);
 /*
 * Persist the ReplyTo header in session state so that it can
 * be used in other methods that take part in the conversation.
 *
 * This is not safe since one session could start multiple
 * conversations, but there is no other apparent way to persist
 * this information. Member variables of WebService classes
 * are not persisted across method invocations.
 */

Example Conversational Web Service .NET Client

9-16 Developing JAX-RPC Web Services for Oracle WebLogic Server

 Session["ConversationReplyTo"] =
conv.ResponseSoapContext.Addressing.ReplyTo;

 }

 /* the CallbackTo header defintion isn't exposed by WLS9x/WLS10x callback
service.
 * So we need to use SOAPFilter to add the CallbackTo header.
 *
 */
 private static void
enableSoapFilterToAddCallbackHeader(ConversationServiceSoapBinding conv, String
callbackLocation)
 {
 //Create a custom policy.
 Policy myPolicy = new Policy();
 // Create a new policy assertion
 MyPolicyAssertion myAssertion = new MyPolicyAssertion(callbackLocation);
 // Add the assertion to the policy
 myPolicy.Assertions.Add(myAssertion);
 //Set the custom policy you have created on the client proxy
 conv.SetPolicy(myPolicy);
 }

 /*
 * getStatus invokes Conversation's getRequestStatus method.
 * getRequestStatus is a polling method that is an alternative
 * for web services that cannot recieve callbacks.
 *
 * Note that a conversation must be started with startRequest before
 * this method may be invoked. If not, or if this method is invoked
 * outside of a conversation for any reason, it will get back a SOAP
 * fault indicating that the conversation does not exist.
 */
 [WebMethod(EnableSession = true)]
 public String getStatus()
 {
 String result;

 /*
 * Create an instance of the proxy for the Conversation
 * web service. We could probably persist the proxy instance
 * in session state, but chose not to.
 */
 ConversationServiceSoapBinding conv = new
ConversationServiceSoapBinding();

 /*
 * change the destination to the ReplyTo endpoint reference we cached on
session state in
 * the start method.
 */
 conv.RequestSoapContext.Addressing.Destination =
(EndpointReference)Session["ConversationReplyTo"];
 /*
 * Invoke the getRequestStatus method of the web service.
 */
 result = conv.getRequestStatus();
 return result;

Example Conversational Web Service .NET Client

Creating Conversational Web Services 9-17

 }

 /*
 * finish invokes Conversation's terminateRequest method, which
 * terminates the current conversation.
 *
 * Note that a conversation must be started with startRequest before
 * this method may be invoked. If not, or if this method is invoked
 * outside of a conversation for any reason, it will get back a SOAP
 * fault indicating that the conversation does not exist.
 */
 [WebMethod(EnableSession = true)]
 public void finish()
 {
 /*
 * Create an instance of the proxy for the Conversation
 * web service. We could probably persist the proxy instance
 * in session state, but chose not to.
 */
 ConversationServiceSoapBinding conv = new
ConversationServiceSoapBinding();

 /*
 * change the destination to the ReplyTo endpoint reference we cached on
session state in
 * the start method. Both "continue" and "finish" methods use the same
destination.
 */
 conv.RequestSoapContext.Addressing.Destination =
(EndpointReference)Session["ConversationReplyTo"];
 /*
 * Invoke the terminateRequest method of the web service.
 */
 conv.terminateRequest();
 }

 /*
 * onResultReady is a callback handler for the onResultReady
 * callback that Conversation.jws can optionally use to return
 * its results.
 *
 * .NET WSE3.0 does not support callbacks directly, but a callback is just
 * a method invocation message. So if you construct a WebMethod with
 * the same signature as the callback and set the XML namespace
 * properly, it serves as a callback handler.
 *
 */
 [WebMethod]
 [SoapDocumentMethod(OneWay = true,
 Action = "http://www.openuri.org/ConversationService_
CallbackInterface/onResultReady",
 RequestElementName = "http://www.openuri.org/",
 ResponseNamespace = "http://www.openuri.org/"
)]
 public void onResultReady(String result)
 {
 /*
 * When the callback is invoked, log a message to the
 * hardcoded file c:\temp\ConversationClient.log.
 *

Example Conversational Web Service .NET Client

9-18 Developing JAX-RPC Web Services for Oracle WebLogic Server

 * Note: if c:\temp does not exist on this server, an
 * Exception will be raised. Since it is not handled here,
 * it will be returned as a SOAP fault to the Conversation
 * web service.
 */
 TextWriter output;
 output = File.AppendText("c:\\temp\\ConversationClient.log");
 String msg = "[" + DateTime.Now.ToString() + "] callback received";
 output.WriteLine(msg);
 output.Flush();
 output.Close();
 }

}

public class MyFilter : Microsoft.Web.Services3.SoapFilter
{
 private String callbackLocation;

 public MyFilter(String callbackLocation)
 {
 this.callbackLocation = callbackLocation;
 }

 public override SoapFilterResult ProcessMessage(SoapEnvelope envelope)
 {

 //create the CallbackTo soap element.
 XmlDocument xmldoc = new XmlDocument();
 XmlElement xmlEle = xmldoc.CreateElement("callback", "CallbackTo",
"http://www.openuri.org/2006/03/callback");

 //create the CallbackTo endpoint reference.
 Address callbacto = new Address(new Uri(callbackLocation));
 XmlElement xmlEle2 =new EndpointReference(callbacto).GetXml(xmldoc);
 //add the CallbackTo endpoint reference into CallbackTo SOAP element.
 xmlEle.AppendChild(xmlEle2.FirstChild);
 //add the whole CallbackTo SOAP element into SOAP header.
 XmlNode callbackheader = envelope.ImportNode(xmlEle, true);
 envelope.DocumentElement.FirstChild.AppendChild(callbackheader);
 return SoapFilterResult.Continue;

 }
}

public class MyPolicyAssertion : Microsoft.Web.Services3.Design.PolicyAssertion
{
 private String callbackLocation;

 public MyPolicyAssertion(String callbackLocation)
 {
 this.callbackLocation = callbackLocation;
 }

 public override SoapFilter CreateClientInputFilter(FilterCreationContext
context)
 {
 return null;
 }

Example Conversational Web Service .NET Client

Creating Conversational Web Services 9-19

 public override SoapFilter CreateClientOutputFilter(FilterCreationContext
context)
 {
 //use MyFilter to add the CallbackTo header in the outbound soap message.
 return new MyFilter(callbackLocation);
 }

 public override SoapFilter CreateServiceInputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override SoapFilter CreateServiceOutputFilter(FilterCreationContext
context)
 {
 return null;
 }

}

9.8.3 build.xml File
The example build.xml file is shown in Example 9–3.

build.xml assumes that you copy the example source files to a new directory ORACLE_
HOME\wlserver\samples\server\examples\src\examples\webservices\conv, where
ORACLE_HOME represents the directory in which you installed WebLogic Server. For
more information about the WebLogic Server code examples, see "Sample Applications
and Code Examples" in Understanding Oracle WebLogic Server.

build.xml also requires that you first set your examples environment correctly via
ORACLE_HOME\user_projects\domains\wl_server>setExamplesEnv.cmd(sh and that
the examples server is already started.

The example includes comments that describe the build file function and targets.

Example 9–3 build.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="webservices.conversation" default="all" basedir=".">

 <!-- set global properties for this build -->
 <property file="../../../examples.properties"/>

 <property name="client.dir" value="${client.classes.dir}/webservices_
conversation" />
 <property name="package.dir" value="examples/webservices/conv"/>
 <property name="package" value="examples.webservices.conv"/>
 <property name="ear.dir"
value="${examples.build.dir}/webservicesConversationEar" />

 <path id="client.class.path">
 <pathelement path="${java.class.path}"/>
 </path>

 <!-- Web service WLS Ant task definitions -->
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

Example Conversational Web Service .NET Client

9-20 Developing JAX-RPC Web Services for Oracle WebLogic Server

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="all" depends="build, deploy"/>

 <target name="clean">
 <delete dir="${ear.dir}"/>
 </target>

 <!-- Target that builds the conversational web service -->
 <target name="build" description="Target that builds the MTOM web service">
 <jwsc
 srcdir="${examples.src.dir}/${package.dir}"
 sourcepath="${examples.src.dir}"
 destdir="${ear.dir}"
 classpath="${java.class.path}"
 keepGenerated="true"
 deprecation="${deprecation}"
 debug="${debug}">
 <jws file="ConversationService.java">
<WLHttpTransport contextPath="/samples/async" serviceURI="conversation.jws"/>
</jws>
 </jwsc>
 </target>

 <!-- Target that deploys the conversational web service -->
 <target name="deploy" description="Target that deploys the conversational web
service">
 <wldeploy
 action="deploy"
 source="${ear.dir}"
 user="${wls.username}"
 password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"
 failonerror="${failondeploy}"/>
 </target>

 <!-- Target that undeploys the conversational web service -->
 <target name="undeploy" description="Target that deploys the conversational web
service">
 <wldeploy
 action="undeploy"
 name="webservicesConversationEar"
 user="${wls.username}"
 password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"
 failonerror="${failondeploy}"/>
 </target>

</project>

Client Considerations When Redeploying a Conversational Web Service

Creating Conversational Web Services 9-21

9.9 Client Considerations When Redeploying a Conversational Web
Service

WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated conversational WebLogic web service alongside
an older version of the same web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
web service. If the client is connected to a conversational web service, its work is
considered complete when the existing conversation is explicitly ended by the client or
because of a timeout.

For additional information about production redployment and web service clients, see
"Client Considerations When Redeploying a Web Service" on page 6-17.

Client Considerations When Redeploying a Conversational Web Service

9-22 Developing JAX-RPC Web Services for Oracle WebLogic Server

10

Creating Buffered Web Services 10-1

10Creating Buffered Web Services

[11] This chapter describes how to create buffered WebLogic Java API for XML-based RPC
(JAX-RPC) web services.

This chapter includes the following sections:

■ Overview of Buffered Web Services

■ Creating a Buffered Web Service: Main Steps

■ Configuring the Host WebLogic Server Instance for the Buffered Web Service

■ Programming Guidelines for the Buffered JWS File

■ Programming the JWS File That Invokes the Buffered Web Service

■ Updating the build.xml File for a Client of the Buffered Web Service

10.1 Overview of Buffered Web Services
When a buffered operation is invoked by a client, the method operation goes on a JMS
queue and WebLogic Server deals with it asynchronously. As with web service reliable
messaging, if WebLogic Server goes down while the method invocation is still in the
queue, it will be dealt with as soon as WebLogic Server is restarted. When a client
invokes the buffered web service, the client does not wait for a response from the
invoke, and the execution of the client can continue.

10.2 Creating a Buffered Web Service: Main Steps
The following procedure describes how to create a buffered web service and a client
web service that invokes an operation of the buffered web service. The procedure
shows how to create the JWS files that implement the two web services from scratch. If
you want to update existing JWS files, use this procedure as a guide. The procedure
also shows how to configure the WebLogic Server instance that hosts the buffered web
service.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the jwsc
Ant task and deploying the generated buffered web service. It is further assumed that

Note: Unless you are also using the asynchronous request-response
feature, you do not need to invoke a buffered web service from
another web service, you can also invoke it from a stand-alone Java
application.

Creating a Buffered Web Service: Main Steps

10-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

you have a similar setup for the WebLogic Server instance that hosts the client web
service that invokes the buffered web service. For more information, see the following
sections:

■ "Examples for JAX-RPC Web Service Developers" on page 2-1

■ "Developing JAX-RPC Web Services" on page 3-1

■ "Programming the JWS File" on page 4-1

■ "Developing JAX-RPC Web Service Clients" on page 6-1

Table 10–1 Steps to Create a Buffered Web Service

Step Description

1 Configure the WebLogic
Server instance that hosts the
buffered web service.

See Section 10.3, "Configuring the Host WebLogic Server Instance for the
Buffered Web Service".

2 Create a new JWS file, or
update an existing one, that
implements the buffered web
service.

Use your favorite IDE or text editor. See Section 10.4, "Programming
Guidelines for the Buffered JWS File".

3 Update your build.xml file to
include a call to the jwsc Ant
task to compile the JWS file
into a buffered web service.

For example:

<jwsc
 srcdir="src"
 destdir="${service-ear-dir}" >
 <jws
 file="examples/webservices/async_
buffered/AsyncBufferedImpl.java"
 />
</jwsc>

See "Running the jwsc WebLogic Web Services Ant Task" on page 3-7 for
general information about using the jwsc Ant task.

4 Recompile your JWS file by
calling the appropriate target,
then redeploy the web service
to the WebLogic Server.

For example:

prompt> ant build-clientService deploy-clientService

For more information about deployment, see "Deploying and Undeploying
WebLogic Web Services" on page 3-14.

5 Create a new JWS file, or
update an existing one, that
implements the client web
service that invokes the
buffered web service.

See Section 10.5, "Programming the JWS File That Invokes the Buffered Web
Service".

6 Update the build.xml file
that builds the client web
service.

See Section 10.6, "Updating the build.xml File for a Client of the Buffered Web
Service".

7 Recompile your client JWS
file by calling the appropriate
target, then redeploy the web
service to the client WebLogic
Server.

For example:

prompt> ant build-clientService deploy-clientService

For more information about deployment, see "Deploying and Undeploying
WebLogic Web Services" on page 3-14.

Configuring the Host WebLogic Server Instance for the Buffered Web Service

Creating Buffered Web Services 10-3

10.3 Configuring the Host WebLogic Server Instance for the Buffered
Web Service

Configuring the WebLogic Server instance on which the buffered web service is
deployed involves configuring JMS resources, such as JMS servers and modules, that
are used internally by the web services runtime.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" on page 3-2.

If you prefer to configure the resources manually, perform the following steps.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Understanding the WebLogic
Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for web services has not been
completely deployed.

Programming Guidelines for the Buffered JWS File

10-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

10.4 Programming Guidelines for the Buffered JWS File
The following example shows a simple JWS file that implements a buffered web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.buffered;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.MessageBuffer;
import weblogic.jws.BufferQueue;

@WebService(name="BufferedPortType",
 serviceName="BufferedService",

Table 10–2 Steps to Configure Host WebLogic Server Instance Manually for the Buffered Web Service

Step Description

1 Invoke the WebLogic Server
Administration Console for
the domain that contains the
host WebLogic Server
instance.

To invoke the WebLogic Server Administration Console in your browser, enter
the following URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Understanding WebLogic Web
Services for Oracle WebLogic Server.

3 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you can use it if you do not
want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server Administration Console
Online Help.

4 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the module. If a JMS
module already exists, you can use it if you do not want to create a new one.
Target the JMS queue to the JMS server you created in the preceding step. Be
sure you specify that this JMS queue is local, typically by setting the local
JNDI name. See "Create JMS system modules" and "Create queues in a system
module" in Oracle WebLogic Server Administration Console Online Help.

If you want the buffered web service to use the default web services queue, set
the JNDI name of the JMS queue to weblogic.wsee.DefaultCallbackQueue.
Otherwise, if you use a different JNDI name, be sure to use the @BufferQueue
annotation in the JWS file to specify this JNDI name to the reliable web
service. See Section 10.4, "Programming Guidelines for the Buffered JWS File".

Clustering Considerations:

If you are using the web service buffering feature in a cluster, you must:

■ Create a local JMS queue, rather than a distributed queue, when creating
the JMS queue.

■ Explicitly target this JMS queue to each server in the cluster.

4 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve Web Service
Performance" in WebLogic Server Performance and Tuning.

Programming Guidelines for the Buffered JWS File

Creating Buffered Web Services 10-5

 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="buffered",
 serviceUri="BufferedService",
 portName="BufferedPort")

// Annotation to specify a specific JMS queue rather than the default
@BufferQueue(name="my.jms.queue")

/**
 * Simple buffered Web Service.
 */

public class BufferedImpl {

 @WebMethod()
 @MessageBuffer(retryCount=10, retryDelay="10 seconds")
 @Oneway()
 public void sayHelloNoReturn(String message) {
 System.out.println("sayHelloNoReturn: " + message);

 }
}

Follow these guidelines when programming the JWS file that implements a buffered
web service. Code snippets of the guidelines are shown in bold in the preceding
example.

■ Import the JWS annotations used for buffered web services:

import javax.jws.Oneway;
import weblogic.jws.MessageBuffer;
import weblogic.jws.BufferQueue;

See the following bullets for guidelines on which JWS annotations are required.

■ Optionally use the class-level @BufferQueue JWS annotation to specify the JNDI
name of the JMS queue used internally by WebLogic Server when it processes a
buffered invoke; for example:

 @BufferQueue(name="my.jms.queue")

If you do not specify this JWS annotation, then WebLogic Server uses the default
web services JMS queue (weblogic.wsee.DefaultQueue).

You must create both the default JMS queue and any queues specified with this
annotation before you can successfully invoke a buffered operation. See
Section 10.3, "Configuring the Host WebLogic Server Instance for the Buffered Web
Service" for details.

■ Use the @MessageBuffer JWS annotation to specify the operations of the web
service that are buffered. The annotation has two optional attributes:

– retryCount: The number of times WebLogic Server should attempt to deliver
the message from the JMS queue to the web service implementation (default
3).

– retryDelay: The amount of time that the server should wait in between retries
(default 5 minutes).

For example:

@MessageBuffer(retryCount=10, retryDelay="10 seconds")

Programming the JWS File That Invokes the Buffered Web Service

10-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

You can use this annotation at the class-level to specify that all operations are
buffered, or at the method-level to choose which operations are buffered.

■ If you plan on invoking the buffered web service operation synchronously (or in
other words, not using the asynchronous request-response feature), then the
implementing method is required to be annotated with the @Oneway annotation to
specify that the method is one-way. This means that the method cannot return a
value, but rather, must explicitly return void. For example:

@Oneway()
public void sayHelloNoReturn(String message) {

Conversely, if the method is not annotated with the @Oneway annotation, then you
must invoke it using the asynchronous request-response feature. If you are unsure
how the operation is going to be invoked, consider creating two flavors of the
operation: synchronous and asynchronous.

See Chapter 7, "Invoking a Web Service Using Asynchronous Request-Response,"
and Chapter 11, "Using the Asynchronous Features Together."

10.5 Programming the JWS File That Invokes the Buffered Web Service
You can invoke a buffered web service from both a stand-alone Java application (if not
using asynchronous request-response) and from another web service. Unlike other
WebLogic web services asynchronous features, however, you do not use the
@ServiceClient JWS annotation in the client web service, but rather, you invoke the
service as you would any other. For details, see "Invoking a Web Service from Another
Web Service" on page 6-9.

The following sample JWS file shows how to invoke the sayHelloNoReturn operation
of the BufferedService web service:

package examples.webservices.buffered;

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic.jws.WLHttpTransport;

import examples.webservices.buffered.BufferedPortType;
import examples.webservices.buffered.BufferedService_Impl;
import examples.webservices.buffered.BufferedService;

@WebService(name="BufferedClientPortType",
 serviceName="BufferedClientService",
 targetNamespace="http://examples.org")

@WLHttpTransport(contextPath="bufferedClient",
 serviceUri="BufferedClientService",
 portName="BufferedClientPort")

public class BufferedClientImpl {

 @WebMethod()
 public String callBufferedService(String input, String serviceUrl)
 throws RemoteException {

Updating the build.xml File for a Client of the Buffered Web Service

Creating Buffered Web Services 10-7

 try {

 BufferedService service = new BufferedService_Impl(serviceUrl + "?WSDL");
 BufferedPortType port = service.getBufferedPort();

 // Invoke the sayHelloNoReturn() operation of BufferedService

 port.sayHelloNoReturn(input);

 return "Invoke went okay!";

 } catch (ServiceException se) {

 System.out.println("ServiceExcpetion thrown");
 throw new RuntimeException(se);

 }
 }
}

10.6 Updating the build.xml File for a Client of the Buffered Web Service
To update a build.xml file to generate the JWS file that invokes a buffered web service
operation, add taskdefs and a build-clientService targets that look something like
the following example. See the description after the example for details.

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws file="examples/webservices/buffered/BufferedClientImpl.java">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/buffered/BufferedService?WSDL"
 packageName="examples.webservices.buffered"/>

 </jws>

 </jwsc>

 </target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed BufferedService web service. The jwsc Ant task
automatically packages them in the generated WAR file so that the client web service
can immediately access the stubs. You do this because the BufferedClientImpl JWS
file imports and uses one of the generated classes.

Updating the build.xml File for a Client of the Buffered Web Service

10-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

11

Using the Asynchronous Features Together 11-1

11Using the Asynchronous Features Together

[12] This chapter describes how to use the asynchronous features together with WebLogic
Java API for XML-based RPC (JAX-RPC) web services.

This chapter includes the following sections:

■ Using the Asynchronous Features Together

■ Example of a JWS File That Implements a Reliable Conversational Web Service

■ Example of Client Web Service That Asynchronously Invokes a Reliable
Conversational Web Service

11.1 Using the Asynchronous Features Together
The preceding sections describe how to use the WebLogic web service asynchronous
features (web service reliable messaging, conversations, asynchronous
request-response, and buffering) on their own. Typically, however, web services use
the features together; see Section 11.2, "Example of a JWS File That Implements a
Reliable Conversational Web Service" and Section 11.3, "Example of Client Web Service
That Asynchronously Invokes a Reliable Conversational Web Service" for examples.

When used together, some restrictions described in the individual feature sections do
not apply, and sometimes additional restrictions apply. The following table
summarizes considerations for various feature combinations.

Example of a JWS File That Implements a Reliable Conversational Web Service

11-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

11.2 Example of a JWS File That Implements a Reliable Conversational
Web Service

The following sample JWS file implements a web service that is both reliable and
conversational:

package examples.webservices.async_mega;

import java.io.Serializable;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Conversation;
import weblogic.jws.Policy;

import javax.jws.WebService;

Table 11–1 Considerations When Using Asynchronous Features Together

Feature Combination Consideration

Asynchronous request-response
with web service reliable
messaging or buffering

■ The asynchronous response from the reliable web service is also reliable.
This means that you must also configure a JMS server, module, and
queue on the source WebLogic Server instance, in a similar way you
configured the destination WebLogic Server instance, to handle the
response.

When you create the JMS queue on the source WebLogic Server instance,
you are required to specify a JNDI name of
weblogic.wsee.DefaultQueue; you can name the queue anything you
want. You must also ensure that you specify that this JMS queue is local,
typically by setting the local JNDI name.

■ The reliable or buffered operation cannot be one-way; in other words, you
cannot annotate the implementing method with the @Oneway annotation.

Asynchronous request-response
with web service reliable
messaging

If you set a property in one of the asynchronous contexts
(AsyncPreCallContext or AsyncPostCallContext), then the property must
implement java.io.Serializable.

Asynchronous request-response
with buffering

You must use the @ServiceClient JWS annotation in the client web service
that invokes the buffered web service operation.

Conversations with web service
reliable messaging

■ JWS conversations are not the same as reliable sequences, and are not
linked in any way. You must consider the management of reliable
sequences separately from the life cycle of a conversation. For example,
when using reliable messaging to send messages between a client service
and a reliable and conversational service, finishing the conversation does
not terminate the reliable sequence. You must explicitly cause the reliable
sequence to be terminated (using WsrmUtils.setFinalMessage() or other
acceptable method) or allows the reliable sequence to remain active until
it expires when the sequence lifetime is exceeded). For more information
about reliable message sequence life cycle, see Section 8.1.2, "Managing
the Life Cycle of the Reliable Message Sequence".

■ If you set the property WLStub.CONVERSATIONAL_METHOD_BLOCK_TIMEOUT
on the stub of the client web service, the property is ignored because the
client does not block.

■ At least one method of the reliable conversational web service must not
be marked with the @Oneway annotation.

Conversations with asynchronous
request-response

Asynchronous responses between a client conversational web service and any
other web service also participate in the conversation. For example, assume
WebServiceA is conversational, and it invokes WebServiceB using
asynchronous request-response. Because WebServiceA is conversational the
asynchronous responses from WebServiceB also participates in the same
conversation.

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

Using the Asynchronous Features Together 11-3

import javax.jws.WebMethod;

@WebService(name="AsyncMegaPortType",
 serviceName="AsyncMegaService",
 targetNamespace="http://examples.org/")

@Policy(uri="AsyncReliableConversationPolicy.xml",
 attachToWsdl=true)

@WLHttpTransport(contextPath="asyncMega",
 serviceUri="AsyncMegaService",
 portName="AsyncMegaServicePort")

/**
 * Web Service that is both reliable and conversational.
 */

public class AsyncMegaServiceImpl implements Serializable {

 @WebMethod
 @Conversation (Conversation.Phase.START)
 public String start() {
 return "Starting conversation";
 }

 @WebMethod
 @Conversation (Conversation.Phase.CONTINUE)
 public String middle(String message) {
 return "Middle of conversation; the message is: " + message;
 }

 @WebMethod
 @Conversation (Conversation.Phase.FINISH)
 public String finish(String message) {
 return "End of conversation; the message is: " + message;
 }

}

11.3 Example of Client Web Service That Asynchronously Invokes a
Reliable Conversational Web Service

The following JWS file shows how to implement a client web service that reliably
invokes the various conversational methods of the web service described in
Section 11.2, "Example of a JWS File That Implements a Reliable Conversational Web
Service"; the client JWS file uses the asynchronous request-response feature as well.

package examples.webservices.async_mega;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.AsyncResponse;
import weblogic.jws.AsyncFailure;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.xml.rpc.Stub;

import weblogic.wsee.async.AsyncPreCallContext;

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

11-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPostCallContext;
import weblogic.wsee.reliability.WsrmUtils;

import examples.webservices.async_mega.AsyncMegaPortType;
import examples.webservices.async_mega.AsyncMegaService;
import examples.webservices.async_mega.AsyncMegaService_Impl;

import java.rmi.RemoteException;

@WebService(name="AsyncMegaClientPortType",
 serviceName="AsyncMegaClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="asyncMegaClient",
 serviceUri="AsyncMegaClient",
 portName="AsyncMegaClientServicePort")

/**
 * Client Web Service that has a conversation with the AsyncMegaService
 * reliably and asynchronously.
 */

public class AsyncMegaClientImpl {

 @ServiceClient(
 wsdlLocation="http://localhost:7001/asyncMega/AsyncMegaService?WSDL",
 serviceName="AsyncMegaService",
 portName="AsyncMegaServicePort")

 private AsyncMegaPortType port;

 @WebMethod
 public void runAsyncReliableConversation(String message) {

 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("message", message);

 try {
 port.startAsync(apc);
 System.out.println("start method executed.");

 port.middleAsync(apc, message);
 System.out.println("middle method executed.");

 // Since this service is not conversational, any state kept in the port
 // field will be lost when this method returns. In the case of reliable
 // messaging, this state includes the ID of the reliable sequence being
 // used to send messages. The setFinalMessage method specifies
 // that this is the final message to be sent on this sequence. This
 // will allow the reliable messaging subsystem to proactively clean up
 // the reliable sequence instead of timing out.
 WsrmUtils.setFinalMessage((Stub)port);
 port.finishAsync(apc, message);
 System.out.println("finish method executed.");

 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

Using the Asynchronous Features Together 11-5

 }

 @AsyncResponse(target="port", operation="start")
 public void onStartAsyncResponse(AsyncPostCallContext apc, String message) {
 System.out.println("-------------------");
 System.out.println("Got message " + message);
 System.out.println("-------------------");
 }

 @AsyncResponse(target="port", operation="middle")
 public void onMiddleAsyncResponse(AsyncPostCallContext apc, String message) {
 System.out.println("-------------------");
 System.out.println("Got message " + message);
 System.out.println("-------------------");
 }

 @AsyncResponse(target="port", operation="finish")
 public void onFinishAsyncResponse(AsyncPostCallContext apc, String message) {
 System.out.println("-------------------");
 System.out.println("Got message " + message);
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="start")
 public void onStartAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="middle")
 public void onMiddleAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="finish")
 public void onFinishAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }
}

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

11-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

12

Using Callbacks to Notify Clients of Events 12-1

12Using Callbacks to Notify Clients of Events

[13] This chapter describes how to callbacks with WebLogic Java API for XML-based RPC
(JAX-RPC) web services to notify clients of events.

This chapter includes the following sections:

■ Overview of Callbacks

■ Callback Implementation Overview and Terminology

■ Programming Callbacks: Main Steps

■ Programming Guidelines for Target Web Service

■ Programming Guidelines for the Callback Client Web Service

■ Programming Guidelines for the Callback Interface

■ Updating the build.xml File for the Client Web Service

12.1 Overview of Callbacks
Callbacks notify a client of your web service that some event has occurred. For
example, you can notify a client when the results of that client's request are ready, or
when the client's request cannot be fulfilled.

When you expose a method as a standard public operation in your JWS file (by using
the @WebMethod annotation), the client sends a SOAP message to the web service to
invoke the operation. When you add a callback to a web service, however, you define
a message that the web service sends back to the client web service, notifying the client of
an event that has occurred. So exposing a method as a public operation and defining a
callback are completely symmetrical processes, with opposite recipients.

WebLogic Server automatically routes the SOAP message from client invoke to the
target web service. In order to receive callbacks, however, the client must be operating
in an environment that provides the same services. This typically means the client is a
web service running on a Web server. If the client does not meet these requirements, it
is likely not capable of receiving callbacks from your web service.

The protocol and message format used for callbacks is always the same as the protocol
and message format used by the conversation start method that initiated the current
conversation. If you attempt to override the protocol or message format of a callback,
an error is thrown.

12.2 Callback Implementation Overview and Terminology
To implement callbacks, you must create or update the following three Java files:

Callback Implementation Overview and Terminology

12-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

■ Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a
message from the target web service back to the client web service. The generated
web service is deployed to the same WebLogic Server that hosts the client web
service.

In the example in this section, the callback interface is called CallbackInterface.
The interface defines a single callback method called callbackOperation().

■ JWS file that implements the target web service: The target web service includes
one or more standard operations that invoke a method defined in the callback
interface; this method in turn sends a message back to the client web service that
originally invoked the operation of the target web service.

In the example, this web service is called TargetService and it defines a single
standard method called targetOperation().

■ JWS file that implements the client web service: The client web service invokes
an operation of the target web service. This web service includes one or more
methods that specify what the client should do when it receives a callback
message back from the target web service via a callback method.

In the example, this web service is called CallbackClient and the method that is
automatically invoked when it receives a callback is called callbackHandler().
The method that invokes TargetService in the standard way is called
clientOperation().

The following graphic shows the flow of messages:

1. The clientOperation() method of the CallbackClient web service, running in
one WebLogic Server instance, explicitly invokes the targetOperation()
operation of the TargetService. The TargetService service might be running in a
separate WebLogic Server instance.

2. The implementation of the TargetService.targetOperation() method explicitly
invokes the callbackOperation() operation of the CallbackInterface, which
implements the callback service. The callback service is deployed to the WebLogic
Server which hosts the client web service.

3. The jwsc-generated implementation of the
CallbackInterface.callbackOperation() method simply sends a message back
to the CallbackClient web service. The client web service includes a method
callbackHandler() that handles this message.

Programming Guidelines for Target Web Service

Using Callbacks to Notify Clients of Events 12-3

12.3 Programming Callbacks: Main Steps
The procedure in this section describes how to program and compile the three JWS
files that are required to implement callbacks: the target web service, the client web
service, and the callback interface. The procedure shows how to create the JWS files
from scratch; if you want to update existing JWS files, you can also use this procedure
as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the jwsc
Ant task and deploying the web services.

12.4 Programming Guidelines for Target Web Service
The following example shows a simple JWS file that implements the target web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.callback;

import weblogic.jws.WLHttpTransport;

Table 12–1 Steps to Program Callbacks

Step Description

1 Create a new JWS file, or
update an existing one, that
implements the target web
service.

Use your favorite IDE or text editor. See Section 12.4, "Programming
Guidelines for Target Web Service".

Note: The JWS file that implements the target web service invokes one or
more callback methods of the callback interface. However, the step that
describes how to program the callback interface comes later in this
procedure. For this reason, programmers typically program the three JWS
files at the same time, rather than linearly as implied by this procedure. The
steps are listed in this order for clarity only.

2 Update your build.xml file to
include a call to the jwsc Ant
task to compile the target JWS
file into a web service.

See "Running the jwsc WebLogic Web Services Ant Task" on page 3-7.

3 Run the Ant target to build
the target web service.

For example:

prompt> ant build-mainService

4 Deploy the target web service
as usual.

See "Deploying and Undeploying WebLogic Web Services" on page 3-14.

5 Create a new JWS file, or
update an existing one, that
implements the client web
service.

It is assumed that the client web service is deployed to a different WebLogic
Server instance from the one that hosts the target web service. See
Section 12.5, "Programming Guidelines for the Callback Client Web Service".

6 Create the callback JWS
interface that implements the
callback web service.

See Section 12.6, "Programming Guidelines for the Callback Interface".

7 Update the build.xml file
that builds the client web
service.

The jwsc Ant task that builds the client web service also implicitly generates
the callback web service from the callback interface file. See Section 12.7,
"Updating the build.xml File for the Client Web Service".

8 Run the Ant target to build
the client and callback web
services.

For example:

prompt> ant build-clientService

9 Deploy the client web service
as usual.

See "Deploying and Undeploying WebLogic Web Services" on page 3-14.

Programming Guidelines for Target Web Service

12-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

import weblogic.jws.Callback;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService(name="CallbackPortType",
 serviceName="TargetService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="callback",
 serviceUri="TargetService",
 portName="TargetServicePort")

/**
 * callback service
 */

public class TargetServiceImpl {

 @Callback
 CallbackInterface callback;

 @WebMethod
 public void targetOperation (String message) {

 callback.callbackOperation (message);
 }

}

Follow these guidelines when programming the JWS file that implements the target
web service. Code snippets of the guidelines are shown in bold in the preceding
example.

■ Import the required JWS annotations:

import weblogic.jws.Callback;

■ Use the @weblogic.jws.Callback JWS annotation to specify that a variable is a
callback, which means that you can use the annotated variable to send callback
events back to a client web service that invokes an operation of the TargetService
web service. The data type of the variable is the callback interface, which in this
case is called CallbackInterface.

@Callback
CallbackInterface callback;

■ In a method that implements an operation of the TargetService, use the
annotated variable to invoke one of the callback methods of the callback interface,
which in this case is called callbackOperation():

callback.callbackOperation (message);

See "JWS Annotation Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for additional information about the WebLogic-specific JWS annotations
discussed in this section.

Programming Guidelines for the Callback Client Web Service

Using Callbacks to Notify Clients of Events 12-5

12.5 Programming Guidelines for the Callback Client Web Service
The following example shows a simple JWS file for a client web service that invokes
the target web service described in Section 12.4, "Programming Guidelines for Target
Web Service"; see the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package examples.webservices.callback;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.CallbackMethod;
import weblogic.jws.security.CallbackRolesAllowed;
import weblogic.jws.security.SecurityRole;

import javax.jws.WebService;
import javax.jws.WebMethod;

import examples.webservices.callback.CallbackPortType;

import java.rmi.RemoteException;

@WebService(name="CallbackClientPortType",
 serviceName="CallbackClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="callbackClient",
 serviceUri="CallbackClient",
 portName="CallbackClientPort")

public class CallbackClientImpl {

 @ServiceClient(
 wsdlLocation="http://localhost:7001/callback/TargetService?WSDL",
 serviceName="TargetService",
 portName="TargetServicePort")
 @CallbackRolesAllowed(@SecurityRole(role="mgr", mapToPrincipals="joe"))
 private CallbackPortType port;

 @WebMethod
 public void clientOperation (String message) {

 try {

 port.targetOperation(message);
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

 }
 @CallbackMethod(target="port", operation="callbackOperation")
 @CallbackRolesAllowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell"))
 public void callbackHandler(String msg) {

 System.out.println (msg);
 }

}

Programming Guidelines for the Callback Client Web Service

12-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

Follow these guidelines when programming the JWS file that invokes the target web
service; code snippets of the guidelines are shown in bold in the preceding example:

■ Import the required JWS annotations:

import weblogic.jws.ServiceClient;
import weblogic.jws.CallbackMethod;

■ Optionally import the security-related annotations if you want to specify the roles
that are allowed to invoke the callback methods:

import weblogic.jws.security.CallbackRolesAllowed;
import weblogic.jws.security.SecurityRole;

■ Import the JAX-RPC stub of the port type of the target web service you want to
invoke. The actual stub itself will be created later by the jwsc Ant task. The stub
package is specified by the packageName attribute of the <clientgen> child
element of <jws>, and the name of the stub is determined by the WSDL of the
invoked web service.

import examples.webservices.callback.CallbackPortType;

■ In the body of the JWS file, use the @ServiceClient JWS annotation to specify the
WSDL, name, and port of the target web service you want to invoke. You specify
this annotation at the field-level on a private variable, whose data type is the
JAX-RPC port type of the web service you are invoking.

@ServiceClient(
 wsdlLocation="http://localhost:7001/callback/TargetService?WSDL",
 serviceName="TargetService",
 portName="TargetServicePort")
@CallbackRolesAllowed(@SecurityRole(role="mgr", mapToPrincipals="joe"))
private CallbackPortType port;

The preceding code also shows how to use the optional @CallbackRolesAllowed
annotation to specify the list of @SecurityRoles that are allowed to invoke the
callback methods.

■ Using the variable you annotated with the @ServiceClient annotation, invoke an
operation of the target web service. This operation in turn will invoke a callback
method of the callback interface:

port.targetOperation(message);

■ Create a method that will handle the callback message received from the callback
service. You can name this method anything you want. However, its signature
should exactly match the signature of the corresponding method in the callback
interface.

Annotate the method with the @CallbackMethod annotation to specify that this
method handles callback messages. Use the target attribute to specify the name of
the JAX-RPC port for which you want to receive callbacks (in other words, the
variable you previously annotated with @ServiceClient). Use the operation
attribute to specify the name of the callback method in the callback interface from
which this method will handle callback messages.

 @CallbackMethod(target="port", operation="callbackOperation")
 @CallbackRolesAllowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell"))
 public void callbackHandler(String msg) {
 System.out.println (msg);

Programming Guidelines for the Callback Interface

Using Callbacks to Notify Clients of Events 12-7

 }

The preceding code also shows how to use the optional @CallbackRolesAllowed
annotation to further restrict the security roles that are allowed to invoke this
particular callback method.

See "JWS Annotation Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for additional information about the WebLogic-specific JWS annotations
discussed in this section.

12.6 Programming Guidelines for the Callback Interface
The callback interface is also a JWS file that implements a web service, except for one
big difference: instead of using the standard @javax.jws.WebService annotation to
specify that it is a standard web service, you use the WebLogic-specific
@weblogic.jws.CallbackService to specify that it is a callback service. The attributes
of @CallbackService are a restricted subset of the attributes of @WebService.

Follow these restrictions on the allowed data types and JWS annotations when
programming the JWS file that implements a callback service:

■ You cannot use any WebLogic-specific JWS annotations other than
@weblogic.jws.CallbackService.

■ You can use all standard JWS annotations except for the following:

– javax.jws.HandlerChain

– javax.jws.soap.SOAPMessageHandler

– javax.jws.soap.SOAPMessageHandlers

■ You can use all supported data types as parameters or return values except Holder
classes (user-defined data types that implement the
javax.xml.rpc.holders.Holder interface).

The following example shows a simple callback interface file that implements a
callback web service. The target web service, described in Section 12.4, "Programming
Guidelines for Target Web Service", explicitly invokes a method in this interface. The
jwsc-generated implementation of the callback interface then automatically sends a
message back to the client web service that originally invoked the target web service;
the client service is described in Section 12.5, "Programming Guidelines for the
Callback Client Web Service". See the explanation after the example for coding
guidelines that correspond to the Java code in bold.

package examples.webservices.callback;

import weblogic.jws.CallbackService;

import javax.jws.Oneway;
import javax.jws.WebMethod;

@CallbackService
public interface CallbackInterface {

 @WebMethod
 @Oneway
 public void callbackOperation (String msg);

}

Updating the build.xml File for the Client Web Service

12-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

Follow these guidelines when programming the JWS interface file that implements the
callback web service. Code snippets of the guidelines are shown in bold in the
preceding example.

■ Import the required JWS annotation:

import weblogic.jws.CallbackService;

■ Annotate the interface declaration with the @CallbackService annotation to
specify that the JWS file implements a callback service:

@CallbackService
public interface CallbackInterface {

■ Create a method that the target web service explicitly invokes; this is the method
that automatically sends a message back to the client service that originally
invoked the target web service. Because this is a Java interface file, you do not
provide an implementation of this method. Rather, the WebLogic web services
runtime generates an implementation of the method via the jwsc Ant task.

public void callbackOperation (String msg);

See "JWS Annotation Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for additional information about the WebLogic-specific JWS annotations
discussed in this section.

12.7 Updating the build.xml File for the Client Web Service
When you run the jwsc Ant task against the JWS file that implements the client web
service, the task implicitly also generates the callback web service, as described in this
section.

You update a build.xml file to generate a client web service that invokes the target
web service by adding taskdefs and a build-clientService target that looks
something like the following example. See the description after the example for details.

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

 <jwsc
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws file="examples/webservices/callback/CallbackClientImpl.java" >

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/callback/TargetService?WSDL"
 packageName="examples.webservices.callback"
 serviceName="TargetService" />

 </jws>

 </jwsc>

Note: Although the example shows the callback method returning
void and annotated with the @Oneway annotation, this is not a
requirement.

Updating the build.xml File for the Client Web Service

Using Callbacks to Notify Clients of Events 12-9

</target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed TargetService web service. The jwsc Ant task
automatically packages them in the generated WAR file so that the client web service
can immediately access the stubs. You do this because the CallbackClientImpl JWS
file imports and uses one of the generated classes.

Because the WSDL of the target web service includes an additional <service> element
that describes the callback web service (which the target web service invokes), the
<clientgen> child element of the jwsc Ant task also generates and compiles the
callback web service and packages it in the same EAR file as the client web service.

Updating the build.xml File for the Client Web Service

12-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

13

Using JMS Transport as the Connection Protocol 13-1

13Using JMS Transport as the Connection
Protocol

[14] This chapter describes how to use JMS transport as the connection protocol with
WebLogic Java API for XML-based RPC (JAX-RPC) web service using asynchronous
request-response.

This chapter includes the following sections:

■ Overview of Using JMS Transport

■ Using JMS Transport Starting From Java: Main Steps

■ Using JMS Transport Starting From WSDL: Main Steps

■ Configuring the Host WebLogic Server Instance for the JMS Transport Web Service

■ Using the @WLJmsTransport JWS Annotation

■ Using the <WLJmsTransport> Child Element of the jwsc Ant Task

■ Updating the WSDL to Use JMS Transport

■ Invoking a WebLogic Web Service Using JMS Transport

13.1 Overview of Using JMS Transport
Typically, client applications use HTTP/S as the connection protocol when invoking a
WebLogic web service. You can, however, configure a WebLogic web service so that
client applications use JMS as the transport instead.

Using JMS transport offers the following benefits: reliability, scalability, and quality of
service. As with web service reliable messaging, if WebLogic Server goes down while
the method invocation is still in the queue, it will be dealt with as soon as WebLogic
Server is restarted. When a client invokes a web service, the client does not wait for a
response from the invoke, and the execution of the client can continue. Using JMS
transport does require slightly more overhead and programming complexity than
HTTP/S.

You configure transports using either JWS annotations or child elements of the jwsc
Ant task, as described in later sections. When a WebLogic web service is configured to
use JMS as the connection transport, the endpoint address specified for the
corresponding port in the generated WSDL of the web service uses jms:// in its URL
rather than http://. An example of a JMS endpoint address is as follows:

jms://myHost:7001/transports/JMSTransport?URI=JMSTransportQueue

The URI=JMSTransportQueue section of the URL specifies the JMS queue that has been
configured for the JMS transport feature. Although you cannot invoke the web service

Using JMS Transport Starting From Java: Main Steps

13-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

using HTTP, you can view its WSDL using HTTP, which is how the clientgen is still
able to generate JAX-RPC stubs for the web service.

For each transport that you specify, WebLogic Server generates an additional port in
the WSDL. For this reason, if you want to give client applications a choice of transports
they can use when they invoke the web service (JMS, HTTP, or HTTPS), you should
explicitly add the transports using the appropriate JWS annotations or child elements
of jwsc.

13.2 Using JMS Transport Starting From Java: Main Steps
To use JMS transport when starting from Java, you must perform at least one of the
following tasks:

■ Add the @WLJmsTransport annotation to your JWS file.

■ Add a <WLJmsTransport> child element to the jwsc Ant task. This setting
overrides the transports defined in the JWS file.

The following procedure describes the complete set of steps required so that your web
service can be invoked using the JMS transport when starting from Java.

Note: Using JMS transport is an added-value WebLogic feature;
non-WebLogic client applications, such as a .NET client, may not be
able to invoke the web service using the JMS port.

Note: Because you might not know at the time that you are coding
the JWS file which transport best suits your needs, it is often better to
specify the transport at build-time using the <WLJmsTransport> child
element.

Note: It is assumed that you have created a basic JWS file that
implements a web service and that you want to configure the web
service to be invoked using JMS. It is also assumed that you have set
up an Ant-based development environment and that you have a
working build.xml file that includes targets for running the jwsc Ant
task and deploying the service.

Table 13–1 Steps to Use JMS Transport Starting From Java

Step Description

1 Configure the WebLogic
Server domain for the
required JMS components.

See Section 13.4, "Configuring the Host WebLogic Server Instance for the JMS
Transport Web Service".

2 Add the @WLJmsTransport
annotation to your JWS file.
(Optional)

This step is optional. If you do not add the @WLJmsTransport annotation to
your JWS file, then you must add a <WLJmsTransport> child element to the
jwsc Ant task, as described in Step 3.

See Section 13.5, "Using the @WLJmsTransport JWS Annotation".

Using JMS Transport Starting From WSDL: Main Steps

Using JMS Transport as the Connection Protocol 13-3

See Section 13.8, "Invoking a WebLogic Web Service Using JMS Transport" for
information about updating your client application to invoke the web service using
JMS transport.

13.3 Using JMS Transport Starting From WSDL: Main Steps
To use JMS transport when starting from WSDL, you must perform at least one of the
following tasks:

■ Update the WSDL to use JMS transport before running the wsdlc Ant task.

■ Update the stubbed-out JWS implementation file generated by the wsdlc Ant task
to add the @WLJmsTransport annotation.

■ Add a <WLJmsTransport> child element to the jwsc Ant task used to build the JWS
implementation file. This setting overrides the transports defined in the JWS file.

The following procedure describes the complete set of steps required so that your web
service can be invoked using the JMS transport when starting from WSDL.

3 Add a <WLJmsTransport>
child element to the jwsc Ant
task. (Optional)

Use the <WLJmsTransport> child element to override the transports defined
in the JWS file. This step is required if you did not add the @WLJmsTransport
annotation to your JWS file in Step 2. Otherwise, this step is optional.

See Section 13.6, "Using the <WLJmsTransport> Child Element of the jwsc
Ant Task" for details.

4 Build your web service by
running the target in the
build.xml Ant file that calls
the jwsc task.

For example, if the target that calls the jwsc Ant task is called build-service,
then you would run:

prompt> ant build-service

See "Running the jwsc WebLogic Web Services Ant Task" on page 3-7.

5 Deploy your web service to
WebLogic Server.

See "Deploying and Undeploying WebLogic Web Services" on page 3-14.

Note: Because you might not know at the time that you are coding
the JWS file which transport best suits your needs, it is often better to
specify the transport at build-time using the <WLJmsTransport> child
element.

Note: It is assumed in this procedure that you have an existing
WSDL file.

Table 13–1 (Cont.) Steps to Use JMS Transport Starting From Java

Step Description

Configuring the Host WebLogic Server Instance for the JMS Transport Web Service

13-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

See Section 13.8, "Invoking a WebLogic Web Service Using JMS Transport" for
information about updating your client application to invoke the web service using
JMS transport.

13.4 Configuring the Host WebLogic Server Instance for the JMS
Transport Web Service

Configuring the WebLogic Server instance on which the JMS transport web service is
deployed involves configuring JMS resources, such as JMS servers and modules, that
are used internally by the web services runtime.

Table 13–2 Steps to Use JMS Transport Starting From WSDL

Step Description

1 Configure the WebLogic
Server domain for the
required JMS components.

See Section 13.4, "Configuring the Host WebLogic Server Instance for the JMS
Transport Web Service".

2 Update the WSDL to use JMS
transport. (Optional)

This step is optional. If you do not update the WSDL to use JMS transport,
then you must do at least one of the following:

■ Edit the stubbed out JWS file to add the @WLJmsTransport annotation to
your JWS file, as described in Step 4.

■ Add a <WLJmsTransport> child element to the jwsc Ant task, as
described in Step 5.

See Section 13.7, "Updating the WSDL to Use JMS Transport".

3 Run the wsdlc Ant task
against the WSDL file.

For example, if the target that calls the wsdlc Ant task is called
generate-from-wsdl, then you would run:

prompt> ant generate-from-wsdl

See "Running the wsdlc WebLogic Web Services Ant Task" on page 3-11.

4 Update the stubbed-out JWS
file.

The wsdlc Ant task generates a stubbed-out JWS file.You need to add your
business code to the web service so it behaves as you want. See "Updating
the Stubbed-out JWS Implementation Class File Generated By wsdlc" on
page 3-13

If you updated the WSDL to use the JMS transport in Step 2, the JWS file
includes the @WLJmsTransport annotation that defines the JMS transport. If
the @WLJmsTransport annotation is not included in the JWS file, you must do
at least one of the following:

■ Edit the JWS file to add the @WLJmsTransport annotation to your JWS
file, as described in Section 13.5, "Using the @WLJmsTransport JWS
Annotation".

■ Add a <WLJmsTransport> child element to the jwsc Ant task, as
described in Step 5.

5 Add a <WLJmsTransport>
child element to the jwsc Ant
task. (Optional)

Use the <WLJmsTransport> child element to override the transports defined
in the JWS file. This step is required if the JWS file does not include the
@WLJmsTransport annotation, as noted in Step 4. Otherwise, this step is
optional.

See Section 13.6, "Using the <WLJmsTransport> Child Element of the jwsc
Ant Task" for details.

6 Run the jwsc Ant task against
the JWS file to build the web
service.

Specify the artifacts generated by the wsdlc Ant task as well as your updated
JWS implementation file, to generate an Enterprise Application that
implements the web service. See "Running the jwsc WebLogic Web Services
Ant Task" on page 3-7.

7 Deploy the web service to
WebLogic Server.

See "Deploying and Undeploying WebLogic Web Services" on page 3-14.

Configuring the Host WebLogic Server Instance for the JMS Transport Web Service

Using JMS Transport as the Connection Protocol 13-5

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" on page 3-2.

If you prefer to configure the resources manually, perform the following steps.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Understanding the WebLogic
Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for web services has not been
completely deployed.

Using the @WLJmsTransport JWS Annotation

13-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

13.5 Using the @WLJmsTransport JWS Annotation
If you know at the time that you program the JWS file that you want client
applications to use JMS transport (instead of HTTP/S) to invoke the web service, you
can use the @WLJmsTransport to specify the details of the invocation. Later, at
build-time, you can override the invocation defined in the JWS file and add additional
JMS transport specifications, by specifying the <WLJmsTransport> child element of the
jwsc Ant task, as described in Section 13.6, "Using the <WLJmsTransport> Child
Element of the jwsc Ant Task".

Follow these guidelines when using the @WLJmsTranport annotation:

■ You can include only one @WLJmsTransport annotation in a JWS file.

■ Use the queue attribute to specify the JNDI name of the JMS queue you configured
earlier in the section. If you want to use the default web services queue
(weblogic.wsee.DefaultQueue) then you do not have to specify the queue
attribute.

Table 13–3 Steps to Configure Host WebLogic Server Instance Manually for the JMS Transport Web
Service

Step Description

1 Invoke the WebLogic Server
Administration Console for
the domain that contains the
host WebLogic Server
instance.

To invoke the WebLogic Server Administration Console in your browser, enter
the following URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Understanding WebLogic Web
Services for Oracle WebLogic Server.

3 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you can use it if you do not
want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server Administration Console
Online Help.

4 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the module. If a JMS
module already exists, you can use it if you do not want to create a new one.
Target the JMS queue to the JMS server you created in the preceding step. Be
sure you specify that this JMS queue is local, typically by setting the local
JNDI name. See "Create JMS system modules" and "Create queues in a system
module" in Oracle WebLogic Server Administration Console Online Help.

If you want the JMS transport web service to use the default web services
queue, set the JNDI name of the JMS queue to weblogic.wsee.DefaultQueue.
Otherwise, if you use a different JNDI name, be sure to specify the queue
name when specifying the @WLJmsTransport annotation or <WLJmsTransport>
child element of the jwsc Ant task.

Clustering Considerations:

If you are using the web service JMS transport feature in a cluster, you must:

■ Create a local JMS queue, rather than a distributed queue, when creating
the JMS queue.

■ Explicitly target this JMS queue to each server in the cluster.

Using the <WLJmsTransport> Child Element of the jwsc Ant Task

Using JMS Transport as the Connection Protocol 13-7

■ Use the connectionFactory attribute to specify the JNDI name of the connection
factory. The default value of this attribute is the default JMS connection factory for
your WebLogic Server instance.

The following example shows a simple JWS file that uses the @WLJmsTransport
annotation, with the relevant code in bold:

package examples.webservices.jmstransport;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

import weblogic.jws.WLJmsTransport;

@WebService(name="JMSTransportPortType",
 serviceName="JMSTransportService",
 targetNamespace="http://example.org")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and
// service URI used to build the URI of the Web Service is
// "transports/JMSTransport"

@WLJmsTransport(contextPath="transports", serviceUri="JMSTransport",
 queue="JMSTransportQueue", portName="JMSTransportServicePort",
 connectionFactory="JMSTransportConnectionFactory")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 */

public class JMSTransportImpl {

 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

13.6 Using the <WLJmsTransport> Child Element of the jwsc Ant Task
You can also specify the JMS transport at build-time by using the <WLJmsTransport>
child element of the <jws> element of the jwsc Ant task. Reasons for specifying the
transport at build-time include:

■ You need to override the attribute values specified in the JWS file.

■ The JWS file specifies a different transport, and at build-time you decide that JMS
should be the transport.

■ The JWS file does not include a @WLXXXTransport annotation; thus by default the
HTTP transport is used, but at build-time you decide you want to clients to use the
JMS transport to invoke the web service.

Updating the WSDL to Use JMS Transport

13-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

If you specify a transport to the jwsc Ant task, it takes precedence over any transport
annotation in the JWS file.

The following example shows how to specify a transport to the jwsc Ant task:

 <target name="build-service">

 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/jmstransport/JMSTransportImpl.java">

 <WLJmsTransport
 contextPath="transports"
 serviceUri="JMSTransport"
 portName="JMSTransportServicePort"
 queue="JMSTransportQueue"
 connectionFactory="JMSTransportConnectionFactory"/>

 </jws>

 </jwsc>

 </target>

The preceding example shows how to specify the same values for the URL and JMS
queue as were specified in the JWS file shown in Section 13.5, "Using the
@WLJmsTransport JWS Annotation".

For more information about using the jwsc Ant task, see "jwsc" in WebLogic Web
Services Reference for Oracle WebLogic Server.

13.7 Updating the WSDL to Use JMS Transport
To update the WSDL to use JMS transport, you need to add <wsdl:binding> and
<wsdl:service> definitions that define JMS transport information. You can add the
definitions in one of the following ways:

■ Edit the existing HTTP <wsdl:binding> and <wsdl:service> definitions.

■ To specify multiple transport options in the WSDL, copy the existing HTTP
<wsdl:binding> and <wsdl:service> definitions and edit them to use JMS
transport.

In either case, you must modify the <wsdl:binding> and <wsdl:service> definitions
to use JMS transport as follows:

■ Set the transport attribute of the <soapwsdl:binding> child element of the
<wsdl:binding> element to http://www.openuri.org/2002/04/soap/jms/. For
example:

<binding name="JmsTransportServiceSoapBindingjms"
type="tns:JmsTransportPortType">
 <soap:binding style="document"
transport="http://www.openuri.org/2002/04/soap/jms/"/>

■ Specify a JMS-style endpoint URL for the location attribute of the
<soapwsdl:address> child element of the <wsdl:service>. For example:

<s0:service name="JmsTransportService">
 <s0:port binding="s1:JmsTransportServiceSoapBindingjms"
name="JmsTransportServicePort">

Invoking a WebLogic Web Service Using JMS Transport

Using JMS Transport as the Connection Protocol 13-9

 <s2:address
location="jms://localhost:7001/transports/JmsTransport?URI=JMSTransportQueue"/>
 </s0:port>
 </s0:service>

13.8 Invoking a WebLogic Web Service Using JMS Transport
You write a client application to invoke a web service using JMS transport in the same
way as you write one using the HTTP transport; the only difference is that you must
ensure that the JMS queue (specified by the @WLJmsTransport annotation or
<WLJmsTransport> child element of the jwsc Ant task) and other JMS objects have
been created. See Section 13.2, "Using JMS Transport Starting From Java: Main Steps"
or Section 13.3, "Using JMS Transport Starting From WSDL: Main Steps" for more
information.

Although you cannot invoke a JMS-transport-configured web service using HTTP, you
can view its WSDL using HTTP, which is how the clientgen Ant task is still able to
create the JAX-RPC stubs for the web service. For example, the URL for the WSDL of
the web service shown in this section would be:

http://host:port/transports/JMSTransport?WSDL

However, because the endpoint address in the WSDL of the deployed web service uses
jms:// instead of http://, and the address includes the qualifier ?URI=JMS_QUEUE,
the clientgen Ant task automatically creates the stubs needed to use the JMS
transport when invoking the web service, and your client application need not do
anything different than normal. An example of a JMS endpoint address is as follows:

jms://host:port/transports/JMSTransport?URI=JMSTransportQueue

For general information about invoking a web service, see "Developing JAX-RPC Web
Service Clients" on page 6-1.

13.8.1 Overriding the Default Service Address URL
When you write a client application that uses the clientgen-generated JAX-RPC stubs
to invoke a web service, the default service address URL of the web service is the one
specified in the <address> element of the WSDL file argument of the Service
constructor.

Sometimes, however, you might need to override this address, in particular when
invoking a WebLogic web service that is deployed to a cluster and you want to specify
the cluster address or a list of addresses of the managed servers in the cluster. You
might also want to use the t3 protocol to invoke the web service. To override this
service endpoint URL when using JMS transport, use the
weblogic.wsee.jaxrpc.WLStub.JMS_TRANSPORT_JNDI_URL stub property as shown in
the following example:

package examples.webservices.jmstransport.client;

Note: If you have specified that the web service you invoke using
JMS transport also runs within the context of a transaction (in other
words, the JWS file includes the @weblogic.jws.Transactional
annotation), you must use asynchronous request-response when
invoking the service. If you do not, a deadlock will occur and the
invocation will fail.

Invoking a WebLogic Web Service Using JMS Transport

13-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

import weblogic.wsee.jaxrpc.WLStub;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;

/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the JMSTransport web service.
 */

public class Main {

 public static void main(String[] args)
 throws ServiceException, RemoteException{

 JMSTransportService service = new JMSTransportService_Impl(args[0] + "?WSDL"
);
 JMSTransportPortType port = service.getJMSTransportServicePort();

 Stub stub = (Stub) port;

 stub._setProperty(WLStub.JMS_TRANSPORT_JNDI_URL,
 "t3://shackell01.amer.com:7001");
 try {
 String result = null;

 result = port.sayHello("Hi there! ");

 System.out.println("Got JMS result: " + result);

 } catch (RemoteException e) {
 throw e;
 }
 }
}

13.8.2 Using JMS BytesMessage Rather Than the Default TextMessage
When you use JMS transport, the web services runtime uses, by default, the
javax.jms.TextMessage object to send the message. This is usually adequate for most
client applications, but sometimes you might need to send binary data rather than
ordinary text; in this case you must request that the web services runtime use
javax.jms.BytesMessage instead. To do this, use the WLStub.JMS_TRANSPORT_
MESSAGE_TYPE stub property in your client application and set it to the value
WLStub.JMS_BYTESMESSAGE, as shown in the following example:

 stub._setProperty(WLStub.JMS_TRANSPORT_MESSAGE_TYPE,
 WLStub.JMS_BYTESMESSAGE);

The web services runtime sends back the response using the same message data type
as the request.

See Section 13.8.1, "Overriding the Default Service Address URL" for a full example of
a client application in which you can set this property.

Invoking a WebLogic Web Service Using JMS Transport

Using JMS Transport as the Connection Protocol 13-11

13.8.3 Disabling HTTP Access to the WSDL File
As described in Section 13.8, "Invoking a WebLogic Web Service Using JMS Transport",
the WSDL of the deployed web service is, by default, still accessible using HTTP. If
you want to disable access to the WSDL file, in particular if your web service can be
accessed outside of a firewall, then you can do one of the following:

■ Use the weblogic.jws.WSDL annotation in your JWS file to programmatically
disable access. For details, see "weblogic.jws.WSDL" in WebLogic Web Services
Reference for Oracle WebLogic Server.

■ Use the WebLogic Server Administration Console to disable access to the WSDL
file after the web service has been deployed. In this case, the configuration
information will be stored in the deployment plan rather than through the
annotation.

To use the WebLogic Server Administration Console to perform this task, go to the
Configuration -> General page of the deployed web service and uncheck the View
Dynamic WSDL Enabled check box. After saving the configuration to the
deployment plan, you must redeploy (update) the web service, or Enterprise
Application which contains it, for the change to take effect.

Invoking a WebLogic Web Service Using JMS Transport

13-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

14

Creating and Using SOAP Message Handlers 14-1

14Creating and Using SOAP Message Handlers

[15] This chapter describes how to create and use SOAP message handlers with WebLogic
Java API for XML-based RPC (JAX-RPC) web services.

This chapter includes the following sections:

■ Overview of SOAP Message Handlers

■ Adding SOAP Message Handlers to a Web Service: Main Steps

■ Designing the SOAP Message Handlers and Handler Chains

■ Creating the GenericHandler Class

■ Configuring Handlers in the JWS File

■ Creating the Handler Chain Configuration File

■ Compiling and Rebuilding the Web Service

■ Creating and Using Client-Side SOAP Message Handlers

14.1 Overview of SOAP Message Handlers
Some web services need access to the SOAP message, for which you can create SOAP
message handlers.

A SOAP message handler provides a mechanism for intercepting the SOAP message
in both the request and response of the web service. You can create handlers in both
the web service itself and the client applications that invoke the web service.

A simple example of using handlers is to access information in the header part of the
SOAP message. You can use the SOAP header to store web service specific information
and then use handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your web
service. After your web service has been deployed for a while, you might discover that
many consumers invoke it with the same parameters. You could improve the
performance of your web service by caching the results of popular invokes of the web
service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the web
service. You implement this performance improvement by using handlers to check the
request SOAP message to see if it contains the popular parameters.

The following table lists the standard JWS annotations that you can use in your JWS
file to specify that a web service has a handler chain configured; later sections discuss
how to use the annotations in more detail. For additional information, see the web
services MetaData for the Java Platform (JSR-181) specification at
http://www.jcp.org/en/jsr/detail?id=181.

Overview of SOAP Message Handlers

14-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

The following table describes the main classes and interfaces of the
javax.xml.rpc.handler API, some of which you use when creating the handler itself.
These APIs are discussed in detail in a later section. For additional information about
these APIs, see the JAX-RPC 1.1 specification at
http://java.net/projects/jax-rpc/.

Table 14–1 JWS Annotations Used To Configure SOAP Message Handler Chains

JWS Annotation Description

javax.jws.HandlerChain Associates the web service with an externally defined
handler chain. Use this annotation when multiple
web services need to share the same handler
configuration, or if the handler chain consists of
handlers for multiple transports.

javax.jws.soap.SOAPMessageHandler
s

Specifies a list of SOAP handlers that run before and
after the invocation of each web service operation.
Use this annotation (rather than @HandlerChain) if
embedding handler configuration information in the
JWS file itself is preferred, rather than having an
external configuration file.

The @SOAPMessageHandler annotation is an array of
@SOAPMessageHandlers. The handlers are executed in
the order they are listed in this array.

Note; This annotation works with JAX-RPC web
services only.

javax.jws.soap.SOAPMessageHandler Specifies a single SOAP message handler in the
@SOAPMessageHandlers array.

Table 14–2 JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes
and Interfaces Description

Handler Main interface that is implemented when creating a
handler. Contains methods to handle the SOAP request,
response, and faults.

GenericHandler Abstract class that implements the Handler interface.
User should extend this class when creating a handler,
rather than implement Handler directly.

The GenericHandler class is a convenience abstract class
that makes writing handlers easy. This class provides
default implementations of the life cycle methods init
and destroy and also different handle methods. A
handler developer should only override methods that it
needs to specialize as part of the derived handler
implementation class.

HandlerChain Interface that represents a list of handlers. An
implementation class for the HandlerChain interface
abstracts the policy and mechanism for the invocation of
the registered handlers.

HandlerRegistry Interface that provides support for the programmatic
configuration of handlers in a HandlerRegistry.

HandlerInfo Class that contains information about the handler in a
handler chain. A HandlerInfo instance is passed in the
Handler.init method to initialize a Handler instance.

Adding SOAP Message Handlers to a Web Service: Main Steps

Creating and Using SOAP Message Handlers 14-3

14.2 Adding SOAP Message Handlers to a Web Service: Main Steps
The following procedure describes the high-level steps to add SOAP message handlers
to your web service.

It is assumed that you have created a basic JWS file that implements a web service and
that you want to update the web service by adding SOAP message handlers and
handler chains. It is also assumed that you have set up an Ant-based development
environment and that you have a working build.xml file that includes a target for
running the jwsc Ant task. For more information, see the following sections:

■ "Examples for JAX-RPC Web Service Developers" on page 2-1

■ "Developing JAX-RPC Web Services" on page 3-1

■ "Programming the JWS File" on page 4-1

■ "Developing JAX-RPC Web Service Clients" on page 6-1

For information about creating client-side SOAP message handlers and handler chains,
see Section 14.8, "Creating and Using Client-Side SOAP Message Handlers".

MessageContext Abstracts the message context processed by the handler.
The MessageContext properties allow the handlers in a
handler chain to share processing state.

soap.SOAPMessageContext Sub-interface of the MessageContext interface used to
get at or update the SOAP message.

javax.xml.soap.SOAPMessage Object that contains the actual request or response SOAP
message, including its header, body, and attachment.

Table 14–3 Steps to Add SOAP Message Handlers to a Web Service

Step Description

1 Design the handlers and
handler chains.

See Section 14.3, "Designing the SOAP Message Handlers
and Handler Chains".

2 For each handler in the
handler chain, create a Java
class that extends the
javax.xml.rpc.handler.Gen
ericHandler abstract class.

See Section 14.4, "Creating the GenericHandler Class".

3 Update your JWS file, adding
annotations to configure the
SOAP message handlers.

See Section 14.5, "Configuring Handlers in the JWS File".

4 If you are using the
@HandlerChain standard
annotation in your JWS file,
create the handler chain
configuration file.

See Section 14.6, "Creating the Handler Chain
Configuration File".

5 Compile all handler classes in
the handler chain and rebuild
your web service.

See Section 14.7, "Compiling and Rebuilding the Web
Service".

Table 14–2 (Cont.) JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes
and Interfaces Description

Designing the SOAP Message Handlers and Handler Chains

14-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

14.3 Designing the SOAP Message Handlers and Handler Chains
When designing your SOAP message handlers and handler chains, you must decide:

■ The number of handlers needed to perform all the work

■ The sequence of execution

Each handler in a handler chain has one method for handling the request SOAP
message and another method for handling the response SOAP message. An ordered
group of handlers is referred to as a handler chain. You specify that a web service has a
handler chain attached to it with one of two JWS annotations: @HandlerChain or
@SOAPMessageHandler. When to use which is discussed in a later section.

When invoking a web service, WebLogic Server executes handlers as follows:

1. The handleRequest() methods of the handlers in the handler chain are all
executed in the order specified by the JWS annotation. Any of these
handleRequest() methods might change the SOAP message request.

2. When the handleRequest() method of the last handler in the handler chain
executes, WebLogic Server invokes the back-end component that implements the
web service, passing it the final SOAP message request.

3. When the back-end component has finished executing, the handleResponse()
methods of the handlers in the handler chain are executed in the reverse order
specified in by the JWS annotation. Any of these handleResponse() methods
might change the SOAP message response.

4. When the handleResponse() method of the first handler in the handler chain
executes, WebLogic Server returns the final SOAP message response to the client
application that invoked the web service.

For example, assume that you are going to use the @HandlerChain JWS annotation in
your JWS file to specify an external configuration file, and the configuration file
defines a handler chain called SimpleChain that contains three handlers, as shown in
the following sample:

<jwshc:handler-config xmlns:jwshc="http://www.bea.com/xml/ns/jws"
 xmlns:soap1="http://HandlerInfo.org/Server1"
 xmlns:soap2="http://HandlerInfo.org/Server2"
 xmlns="http://java.sun.com/xml/ns/j2ee" >

 <jwshc:handler-chain>

 <jwshc:handler-chain-name>SimpleChain</jwshc:handler-chain-name>

 <jwshc:handler>
 <handler-name>handlerOne</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler1</handler-class>
 </jwshc:handler>

 <jwshc:handler>
 <handler-name>handlerTwo</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler2</handler-class>
 </jwshc:handler>

 <jwshc:handler>
 <handler-name>handlerThree</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler3</handler-class>

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 14-5

 </jwshc:handler>

 </jwshc:handler-chain>

</jwshc:handler-config>

The following graphic shows the order in which WebLogic Server executes the
handleRequest() and handleResponse() methods of each handler.

Figure 14–1 Order of Execution of Handler Methods

Each SOAP message handler has a separate method to process the request and
response SOAP message because the same type of processing typically must happen
for the inbound and outbound message. For example, you might design an Encryption
handler whose handleRequest() method decrypts secure data in the SOAP request
and handleResponse() method encrypts the SOAP response.

You can, however, design a handler that process only the SOAP request and does no
equivalent processing of the response.

You can also choose not to invoke the next handler in the handler chain and send an
immediate response to the client application at any point.

14.4 Creating the GenericHandler Class
Your SOAP message handler class should extend the
javax.rpc.xml.handler.GenericHandler abstract class, which itself implements the
javax.rpc.xml.handler.Handler interface.

The GenericHandler class is a convenience abstract class that makes writing handlers
easy. This class provides default implementations of the life cycle methods init() and
destroy() and the various handleXXX() methods of the Handler interface. When you
write your handler class, only override those methods that you need to customize as
part of your Handler implementation class.

In particular, the Handler interface contains the following methods that you can
implement in your handler class that extends GenericHandler:

■ init()

See Section 14.4.1, "Implementing the Handler.init() Method".

■ destroy()

See Section 14.4.2, "Implementing the Handler.destroy() Method".

■ getHeaders()

See Section 14.4.3, "Implementing the Handler.getHeaders() Method".

■ handleRequest()

See Section 14.4.4, "Implementing the Handler.handleRequest() Method".

Creating the GenericHandler Class

14-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

■ handleResponse()

See Section 14.4.5, "Implementing the Handler.handleResponse() Method".

■ handleFault()

See Section 14.4.6, "Implementing the Handler.handleFault() Method".

Sometimes you might need to directly view or update the SOAP message from within
your handler, in particular when handling attachments, such as image. In this case, use
the javax.xml.soap.SOAPMessage abstract class, which is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification at https://saaj.dev.java.net/. For
details, see Section 14.4.7, "Directly Manipulating the SOAP Request and Response
Message Using SAAJ".

The following example demonstrates a simple SOAP message handler that prints out
the SOAP request and response messages to the WebLogic Server log file:

package examples.webservices.soap_handlers.global_handler;

import javax.xml.namespace.QName;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.GenericHandler;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.rpc.JAXRPCException;

import weblogic.logging.NonCatalogLogger;

/**
 * This class implements a handler in the handler chain, used to access the SOAP
 * request and response message.
 * <p>
 * This class extends the <code>javax.xml.rpc.handler.GenericHandler</code>
 * abstract classs and simply prints the SOAP request and response messages to
 * the server log file before the messages are processed by the backend
 * Java class that implements the Web Service itself.
 */

public class ServerHandler1 extends GenericHandler {

 private NonCatalogLogger log;

 private HandlerInfo handlerInfo;

 /**
 * Initializes the instance of the handler. Creates a nonCatalogLogger to
 * log messages to.
 */

 public void init(HandlerInfo hi) {

 log = new NonCatalogLogger("WebService-LogHandler");
 handlerInfo = hi;
 }

 /**
 * Specifies that the SOAP request message be logged to a log file before the
 * message is sent to the Java class that implements the Web Service.
 */

 public boolean handleRequest(MessageContext context) {

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 14-7

 SOAPMessageContext messageContext = (SOAPMessageContext) context;

 System.out.println("** Request: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;

 }

 /**
 * Specifies that the SOAP response message be logged to a log file before the
 * message is sent back to the client application that invoked the Web
 * service.
 */

 public boolean handleResponse(MessageContext context) {

 SOAPMessageContext messageContext = (SOAPMessageContext) context;

 System.out.println("** Response: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;

 }

 /**
 * Specifies that a message be logged to the log file if a SOAP fault is
 * thrown by the Handler instance.
 */

 public boolean handleFault(MessageContext context) {

 SOAPMessageContext messageContext = (SOAPMessageContext) context;

 System.out.println("** Fault: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;

 }

 public QName[] getHeaders() {

 return handlerInfo.getHeaders();

 }

}

14.4.1 Implementing the Handler.init() Method
The Handler.init() method is called to create an instance of a Handler object and to
enable the instance to initialize itself. Its signature is:

 public void init(HandlerInfo config) throws JAXRPCException {}

The HandlerInfo object contains information about the SOAP message handler, in
particular the initialization parameters. Use the HandlerInfo.getHandlerConfig()
method to get the parameters; the method returns a java.util.Map object that
contains name-value pairs.

Creating the GenericHandler Class

14-8 Developing JAX-RPC Web Services for Oracle WebLogic Server

Implement the init() method if you need to process the initialization parameters or if
you have other initialization tasks to perform.

Sample uses of initialization parameters are to turn debugging on or off, specify the
name of a log file to which to write messages or errors, and so on.

14.4.2 Implementing the Handler.destroy() Method
The Handler.destroy() method is called to destroy an instance of a Handler object. Its
signature is:

 public void destroy() throws JAXRPCException {}

Implement the destroy() method to release any resources acquired throughout the
handler's life cycle.

14.4.3 Implementing the Handler.getHeaders() Method
The Handler.getHeaders() method gets the header blocks that can be processed by
this Handler instance. Its signature is:

 public QName[] getHeaders() {}

14.4.4 Implementing the Handler.handleRequest() Method
The Handler.handleRequest() method is called to intercept a SOAP message request
before it is processed by the back-end component. Its signature is:

 public boolean handleRequest(MessageContext mc)
 throws JAXRPCException,SOAPFaultException {}

Implement this method to perform such tasks as decrypting data in the SOAP message
before it is processed by the back-end component, and so on.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message request. The SOAP message request itself is stored in a
javax.xml.soap.SOAPMessage object. For detailed information on this object, see
Section 14.4.7, "Directly Manipulating the SOAP Request and Response Message Using
SAAJ".

The SOAPMessageContext class defines two methods for processing the SOAP request:

■ SOAPMessageContext.getMessage()returns a javax.xml.soap.SOAPMessage object
that contains the SOAP message request.

■ SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage)updates the
SOAP message request after you have made changes to it.

After you code all the processing of the SOAP request, code one of the following
scenarios:

■ Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as either the next <handler>
subelement of the <handler-chain> element in the configuration file specified by
the @HandlerChain annotation, or the next @SOAPMessageHandler in the array
specified by the @SOAPMessageHandlers annotation. If there are no more handlers
in the chain, the method either invokes the back-end component, passing it the

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 14-9

final SOAP message request, or invokes the handleResponse() method of the last
handler, depending on how you have configured your web service.

■ Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the back-end
component does not get executed for this invoke of the web service. You might
want to do this if you have cached the results of certain invokes of the web service,
and the current invoke is on the list.

Although the handler request chain does not continue processing, WebLogic
Server does invoke the handler response chain, starting at the current handler. For
example, assume that a handler chain consists of two handlers: handlerA and
handlerB, where the handleRequest() method of handlerA is invoked before that
of handlerB. If processing is blocked in handlerA (and thus the handleRequest()
method of handlerB is not invoked), the handler response chain starts at handlerA
and the handleRequest() method of handlerB is not invoked either.

■ Throw the javax.xml.rpc.soap.SOAPFaultException to indicate a SOAP fault.

If the handleRequest() method throws a SOAPFaultException, WebLogic Server
catches the exception, terminates further processing of the handler request chain,
and invokes the handleFault() method of this handler.

■ Throw a JAXRPCException for any handler-specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server
catches the exception, terminates further processing of the handler request chain,
logs the exception to the WebLogic Server log file, and invokes the handleFault()
method of this handler.

14.4.5 Implementing the Handler.handleResponse() Method
The Handler.handleResponse() method is called to intercept a SOAP message
response after it has been processed by the back-end component, but before it is sent
back to the client application that invoked the web service. Its signature is:

 public boolean handleResponse(MessageContext mc) throws JAXRPCException {}

Implement this method to perform such tasks as encrypting data in the SOAP message
before it is sent back to the client application, to further process returned values, and
so on.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message response. The SOAP message response itself is stored in
a javax.xml.soap.SOAPMessage object. See Section 14.4.7, "Directly Manipulating the
SOAP Request and Response Message Using SAAJ".

The SOAPMessageContext class defines two methods for processing the SOAP
response:

■ SOAPMessageContext.getMessage(): returns a javax.xml.soap.SOAPMessage
object that contains the SOAP message response.

■ SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage): updates the
SOAP message response after you have made changes to it.

Creating the GenericHandler Class

14-10 Developing JAX-RPC Web Services for Oracle WebLogic Server

After you code all the processing of the SOAP response, code one of the following
scenarios:

■ Invoke the next handler on the handler response chain by returning true.

The next response on the handler chain is specified as either the preceding
<handler> subelement of the <handler-chain> element in the configuration file
specified by the @HandlerChain annotation, or the preceding
@SOAPMessageHandler in the array specified by the @SOAPMessageHandlers
annotation. (Remember that responses on the handler chain execute in the reverse
order that they are specified in the JWS file. See Section 14.3, "Designing the SOAP
Message Handlers and Handler Chains" for more information.)

If there are no more handlers in the chain, the method sends the final SOAP
message response to the client application that invoked the web service.

■ Block processing of the handler response chain by returning false.

Blocking the handler response chain processing implies that the remaining
handlers on the response chain do not get executed for this invoke of the web
service and the current SOAP message is sent back to the client application.

■ Throw a JAXRPCException for any handler specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server
catches the exception, terminates further processing of the handler request chain,
logs the exception to the WebLogic Server logfile, and invokes the handleFault()
method of this handler.

14.4.6 Implementing the Handler.handleFault() Method
The Handler.handleFault() method processes the SOAP faults based on the SOAP
message processing model. Its signature is:

 public boolean handleFault(MessageContext mc) throws JAXRPCException {}

Implement this method to handle processing of any SOAP faults generated by the
handleResponse() and handleRequest() methods, as well as faults generated by the
back-end component.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message. The SOAP message itself is stored in a
javax.xml.soap.SOAPMessage object. See Section 14.4.7, "Directly Manipulating the
SOAP Request and Response Message Using SAAJ".

The SOAPMessageContext class defines the following two methods for processing the
SOAP message:

■ SOAPMessageContext.getMessage(): returns a javax.xml.soap.SOAPMessage
object that contains the SOAP message.

■ SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage): updates the
SOAP message after you have made changes to it.

After you code all the processing of the SOAP fault, do one of the following:

■ Invoke the handleFault() method on the next handler in the handler chain by
returning true.

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 14-11

■ Block processing of the handler fault chain by returning false.

14.4.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
The javax.xml.soap.SOAPMessage abstract class is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification (see https://saaj.dev.java.net/). You
use the class to manipulate request and response SOAP messages when creating SOAP
message handlers. This section describes the basic structure of a SOAPMessage object
and some of the methods you can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual SOAP
XML document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class.

14.4.7.1 The SOAPPart Object
The SOAPPart object contains the XML SOAP document inside of a SOAPEnvelope
object. You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getMessage();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();
SOAPHeader soapHeader = soapEnvelope.getHeader();

14.4.7.2 The AttachmentPart Object
The javax.xml.soap.AttachmentPart object contains the optional attachments to the
SOAP message. Unlike the rest of a SOAP message, an attachment is not required to be
in XML format and can therefore be anything from simple text to an image file.

Use the following methods of the SOAPMessage class to manipulate the attachments:

■ countAttachments(): returns the number of attachments in this SOAP message.

■ getAttachments(): retrieves all the attachments (as AttachmentPart objects) into
an Iterator object.

■ createAttachmentPart(): create an AttachmentPart object from another type of
Object.

■ addAttachmentPart(): adds an AttachmentPart object, after it has been created, to
the SOAPMessage.

14.4.7.3 Manipulating Image Attachments in a SOAP Message Handler
It is assumed in this section that you are creating a SOAP message handler that
accesses a java.awt.Image attachment and that the Image has been sent from a client
application that uses the client JAX-RPC stubs generated by the clientgen Ant task.

Note: If you are going to access a java.awt.Image attachment from
your SOAP message handler, see Section 14.4.7.3, "Manipulating
Image Attachments in a SOAP Message Handler" for important
information.

Configuring Handlers in the JWS File

14-12 Developing JAX-RPC Web Services for Oracle WebLogic Server

In the client code generated by the clientgen Ant task, a java.awt.Image attachment
is sent to the invoked WebLogic web service with a MIME type of text/xml rather
than image/gif, and the image is serialized into a stream of integers that represents
the image. In particular, the client code serializes the image using the following
format:

■ int width

■ int height

■ int[] pixels

This means that, in your SOAP message handler that manipulates the received Image
attachment, you must deserialize this stream of data to then re-create the original
image.

14.5 Configuring Handlers in the JWS File
There are two standard annotations you can use in your JWS file to configure a
handler chain for a web service: @javax.jws.HandlerChain and
@javax.jws.soap.SOAPMessageHandlers.

14.5.1 @javax.jws.HandlerChain
When you use the @javax.jws.HandlerChain annotation (also called @HandlerChain
in this chapter for simplicity) you use the file attribute to specify an external file that
contains the configuration of the handler chain you want to associate with the web
service. The configuration includes the list of handlers in the chain, the order in which
they execute, the initialization parameters, and so on.

Use the @HandlerChain annotation, rather than the @SOAPMessageHandlers annotation,
in your JWS file if one or more of the following conditions apply:

■ You want multiple web services to share the same configuration.

■ Your handler chain includes handlers for multiple transports.

■ You want to be able to change the handler chain configuration for a web service
without recompiling the JWS file that implements it.

The following JWS file shows an example of using the @HandlerChain annotation; the
relevant Java code is shown in bold:

package examples.webservices.soap_handlers.global_handler;

import java.io.Serializable;

import javax.jws.HandlerChain;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

import weblogic.jws.WLHttpTransport;

@WebService(serviceName="HandlerChainService",
 name="HandlerChainPortType")

// Standard JWS annotation that specifies that the handler chain called
// "SimpleChain", configured in the HandlerConfig.xml file, should fire
// each time an operation of the Web Service is invoked.

Configuring Handlers in the JWS File

Creating and Using SOAP Message Handlers 14-13

@HandlerChain(file="HandlerConfig.xml", name="SimpleChain")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="HandlerChain", serviceUri="HandlerChain",
 portName="HandlerChainServicePort")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello. The Web Service also
 * has a handler chain associated with it, as specified by the
 * @HandlerChain annotation.
 */

public class HandlerChainImpl {

 public String sayHello(String input) {
 weblogic.utils.Debug.say("in backend component. input:" +input);
 return "'" + input + "' to you too!";
 }
}

Before you use the @HandlerChain annotation, you must import it into your JWS file,
as shown in the preceding example.

Use the file attribute of the @HandlerChain annotation to specify the name of the
external file that contains configuration information for the handler chain. The value of
this attribute is a URL, which may be relative or absolute. Relative URLs are relative to
the location of the JWS file at the time you run the jwsc Ant task to compile the file.

Use the name attribute to specify the name of the handler chain in the configuration file
that you want to associate with the web service. The value of this attribute
corresponds to the name attribute of the <handler-chain> element in the configuration
file.

For details about creating the external configuration file, see Section 14.6, "Creating the
Handler Chain Configuration File".

For additional detailed information about the standard JWS annotations discussed in
this section, see the web services Metadata for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

14.5.2 @javax.jws.soap.SOAPMessageHandlers

Note: It is an error to specify more than one @HandlerChain
annotation in a single JWS file. It is also an error to combine the
@HandlerChain annotation with the @SOAPMessageHandlers
annotation.

Note: This annotation has been deprecated as of the web services
Metadata for the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181.

Configuring Handlers in the JWS File

14-14 Developing JAX-RPC Web Services for Oracle WebLogic Server

When you use the @javax.jws.soap.SOAPMessageHandlers (also called
@SOAPMessageHandlers in this section for simplicity) annotation, you specify, within
the JWS file itself, an array of SOAP message handlers (specified with the
@SOAPMessageHandler annotation) that execute before and after the operations of a
web service. The @SOAPMessageHandler annotation includes attributes to specify the
class name of the handler, the initialization parameters, list of SOAP headers processed
by the handler, and so on. Because you specify the list of handlers within the JWS file
itself, the configuration of the handler chain is embedded within the web service.

Use the @SOAPMessageHandlers annotation if one or more of the following conditions
apply:

■ You prefer to embed the configuration of the handler chain inside the web service
itself, rather than specify the configuration in an external file.

■ Your handler chain includes only SOAP handlers and none for any other
transport.

■ You prefer to recompile the JWS file each time you change the handler chain
configuration.

The following JWS file shows a simple example of using the @SOAPMessageHandlers
annotation; the relevant Java code is shown in bold:

package examples.webservices.soap_handlers.simple;

import java.io.Serializable;

import javax.jws.soap.SOAPMessageHandlers;
import javax.jws.soap.SOAPMessageHandler;
import javax.jws.soap.SOAPBinding;
import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic.jws.WLHttpTransport;

@WebService(name="SimpleChainPortType",
 serviceName="SimpleChainService")

// Standard JWS annotation that specifies a list of SOAP message handlers
// that exeucte before and after an invocation of all operations in the
// Web Serice.

@SOAPMessageHandlers ({
 @SOAPMessageHandler (
 className="examples.webservices.soap_handlers.simple.ServerHandler1"),
 @SOAPMessageHandler (
 className="examples.webservices.soap_handlers.simple.ServerHandler2")
 })

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="SimpleChain", serviceUri="SimpleChain",
 portName="SimpleChainServicePort")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello. The Web Service also
 * has a handler chain associated with it, as specified by the

Creating the Handler Chain Configuration File

Creating and Using SOAP Message Handlers 14-15

 * @SOAPMessageHandler/s annotations.
 */

public class SimpleChainImpl {

 // by default all public methods are exposed as operations

 public String sayHello(String input) {
 weblogic.utils.Debug.say("in backend component. input:" +input);
 return "'" + input + "' to you too!";
 }
}

Before you use the @SOAPMessageHandlers and @SOAPMessageHandler annotations, you
must import them into your JWS file, as shown in the preceding example. Note that
these annotations are in the javax.jws.soap package.

The order in which you list the handlers (using the @SOAPMessageHandler annotation)
in the @SOAPMessageHandlers array specifies the order in which the handlers execute:
in forward order before the operation, and in reverse order after the operation. The
preceding example configures two handlers in the handler chain, whose class names
are examples.webservices.soap_handlers.simple.ServerHandler1 and
examples.webservices.soap_handlers.simple.ServerHandler2.

Use the initParams attribute of @SOAPMessageHandler to specify an array of
initialization parameters expected by a particular handler. Use the @InitParam
standard JWS annotation to specify the name/value pairs, as shown in the following
example:

@SOAPMessageHandler(
 className = "examples.webservices.soap_handlers.simple.ServerHandler1",
 initParams = { @InitParam(name="logCategory", value="MyService")}
)

The @SOAPMessageHandler annotation also includes the roles attribute for listing the
SOAP roles implemented by the handler, and the headers attribute for listing the
SOAP headers processed by the handler.

For additional detailed information about the standard JWS annotations discussed in
this section, see the web services Metadata for the Java Platform specification
http://www.jcp.org/en/jsr/detail?id=181.

14.6 Creating the Handler Chain Configuration File
If you decide to use the @HandlerChain annotation in your JWS file to associate a
handler chain with a web service, you must create an external configuration file that
specifies the list of handlers in the handler chain, the order in which they execute, the
initialization parameters, and so on.

Because this file is external to the JWS file, you can configure multiple web services to
use this single configuration file to standardize the handler configuration file for all
web services in your enterprise. Additionally, you can change the configuration of the
handler chains without needing to recompile all your web services. Finally, if you
include handlers in your handler chain that use a non-SOAP transport, then you are

Note: It is an error to combine the @SOAPMessageHandlers annotation
with the @HandlerChain annotation.

Compiling and Rebuilding the Web Service

14-16 Developing JAX-RPC Web Services for Oracle WebLogic Server

required to use the @HandlerChain annotation rather than the @SOAPMessageHandler
annotation.

The configuration file uses XML to list one or more handler chains, as shown in the
following simple example:

<jwshc:handler-config xmlns:jwshc="http://www.bea.com/xml/ns/jws"
 xmlns:soap1="http://HandlerInfo.org/Server1"
 xmlns:soap2="http://HandlerInfo.org/Server2"
 xmlns="http://java.sun.com/xml/ns/j2ee" >
 <jwshc:handler-chain>
 <jwshc:handler-chain-name>SimpleChain</jwshc:handler-chain-name>
 <jwshc:handler>
 <handler-name>handler1</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler1</handler-class>
 </jwshc:handler>
 <jwshc:handler>
 <handler-name>handler2</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler2</handler-class>
 </jwshc:handler>
 </jwshc:handler-chain>
</jwshc:handler-config>

In the example, the handler chain called SimpleChain contains two handlers: handler1
and handler2, implemented with the class names specified with the <handler-class>
element. The two handlers execute in forward order before the relevant web service
operation executes, and in reverse order after the operation executes.

Use the <init-param>, <soap-role>, and <soap-header> child elements of the
<handler> element to specify the handler initialization parameters, SOAP roles
implemented by the handler, and SOAP headers processed by the handler,
respectively.

For the XML Schema that defines the external configuration file, additional
information about creating it, and additional examples, see the web services Metadata
for the Java Platform specification at http://www.jcp.org/en/jsr/detail?id=181.

14.7 Compiling and Rebuilding the Web Service
It is assumed in this section that you have a working build.xml Ant file that compiles
and builds your web service, and you want to update the build file to include handler
chain. See "Developing JAX-RPC Web Services" on page 3-1 for information on
creating this build.xml file.

Follow these guidelines to update your development environment to include message
handler compilation and building:

■ After you have updated the JWS file with either the @HandlerChain or
@SOAPMessageHandlers annotation, you must rerun the jwsc Ant task to recompile
the JWS file and generate a new web service. This is true anytime you make a
change to an annotation in the JWS file.

If you used the @HandlerChain annotation in your JWS file, reran the jwsc Ant task
to regenerate the web service, and subsequently changed only the external
configuration file, you do not need to rerun jwsc for the second change to take
affect.

Creating and Using Client-Side SOAP Message Handlers

Creating and Using SOAP Message Handlers 14-17

■ The jwsc Ant task compiles SOAP message handler Java files into handler classes
(and then packages them into the generated application) if all the following
conditions are true:

– The handler classes are referenced in the @HandlerChain or
@SOAPMessageHandler(s) annotations of the JWS file.

– The Java files are located in the directory specified by the sourcepath
attribute.

– The classes are not currently in your CLASSPATH.

If you want to compile the handler classes yourself, rather than let jwsc compile
them automatically, ensure that the compiled classes are in your CLASSPATH
before you run the jwsc Ant task.

■ You deploy and invoke a web service that has a handler chain associated with it in
the same way you deploy and invoke one that has no handler chain. The only
difference is that when you invoke any operation of the web service, the WebLogic
web services runtime executes the handlers in the handler chain both before and
after the operation invoke.

14.8 Creating and Using Client-Side SOAP Message Handlers
The preceding sections describe how to create server-side SOAP message handlers that
execute as part of the web service running on WebLogic Server. You can also create
client-side handlers that execute as part of the client application that invokes a web
service operation. In the case of a client-side handler, the handler executes twice:

■ Directly before the client application sends the SOAP request to the web service

■ Directly after the client application receives the SOAP response from the web
service

You can configure client-side SOAP message handlers for both stand-alone clients and
clients that run inside of WebLogic Server.

You create the actual Java client-side handler in the same way you create a server-side
handler: write a Java class that extends the javax.xml.rpc.handler.GenericHandler
abstract class. In many cases you can use the exact same handler class on both the web
service running on WebLogic Server and the client applications that invoke the web
service. For example, you can write a generic logging handler class that logs all sent
and received SOAP messages, both for the server and for the client.

Similar to the server-side SOAP handler programming, you use an XML file to specify
to the clientgen Ant task that you want to invoke client-side SOAP message handlers.
However, the XML Schema of this XML file is slightly different, as described in the
following procedure.

14.8.1 Using Client-Side SOAP Message Handlers: Main Steps
The following procedure describes the high-level steps to add client-side SOAP
message handlers to the client application that invokes a web service operation.

It is assumed that you have created the client application that invokes a deployed web
service, and that you want to update the client application by adding client-side SOAP
message handlers and handler chains. It is also assumed that you have set up an
Ant-based development environment and that you have a working build.xml file that
includes a target for running the clientgen Ant task. For more information, see
"Developing JAX-RPC Web Service Clients" on page 6-1.

Creating and Using Client-Side SOAP Message Handlers

14-18 Developing JAX-RPC Web Services for Oracle WebLogic Server

1. Design the client-side SOAP handlers and the handler chain which specifies the
order in which they execute. This step is almost exactly the same as that of
designing the server-side SOAP message handlers, except the perspective is from
the client application, rather than a web service.

See Section 14.3, "Designing the SOAP Message Handlers and Handler Chains".

2. For each handler in the handler chain, create a Java class that extends the
javax.xml.rpc.handler.GenericHandler abstract class. This step is very similar
to the corresponding server-side step, except that the handler executes in a chain
in the client rather than the server.

See Section 14.4, "Creating the GenericHandler Class" for details about
programming a handler class. See Section 14.8.2, "Example of a Client-Side
Handler Class" for an example.

3. Create the client-side SOAP handler configuration file. This XML file describes the
handlers in the handler chain, the order in which they execute, and any
initialization parameters that should be sent.

See Section 14.8.3, "Creating the Client-Side SOAP Handler Configuration File".

4. Update the build.xml file that builds your client application, specifying to the
clientgen Ant task the name of the SOAP handler configuration file. Also ensure
that the build.xml file compiles the handler files into Java classes and makes them
available to your client application.

See Section 14.8.5, "Specifying the Client-Side SOAP Handler Configuration File to
clientgen".

5. Rebuild your client application by running the relevant task:

prompt> ant build-client

When you next run the client application, the SOAP messaging handlers listed in the
configuration file automatically execute before the SOAP request message is sent and
after the response is received.

14.8.2 Example of a Client-Side Handler Class
The following example shows a simple SOAP message handler class that you can
configure for a client application that invokes a web service.

package examples.webservices.client_handler.client;

import javax.xml.namespace.QName;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.GenericHandler;
import javax.xml.rpc.handler.MessageContext;

public class ClientHandler1 extends GenericHandler {

 private QName[] headers;

 public void init(HandlerInfo hi) {

Note: You do not have to update your actual client application to
invoke the client-side SOAP message handlers; as long as you specify
to the clientgen Ant task the handler configuration file, the generated
JAX-RPC stubs automatically take care of executing the handlers in
the correct sequence.

Creating and Using Client-Side SOAP Message Handlers

Creating and Using SOAP Message Handlers 14-19

 System.out.println("in " + this.getClass() + " init()");
 }

 public boolean handleRequest(MessageContext context) {
 System.out.println("in " + this.getClass() + " handleRequest()");
 return true;
 }

 public boolean handleResponse(MessageContext context) {
 System.out.println("in " + this.getClass() + " handleResponse()");
 return true;
 }

 public boolean handleFault(MessageContext context) {
 System.out.println("in " + this.getClass() + " handleFault()");
 return true;
 }

 public QName[] getHeaders() {
 return headers;
 }
}

14.8.3 Creating the Client-Side SOAP Handler Configuration File
The client-side SOAP handler configuration file specifies the list of handlers in the
handler chain, the order in which they execute, the initialization parameters, and so
on. See Section 14.8.4, "XML Schema for the Client-Side Handler Configuration File"
for a full description of this file.

The configuration file uses XML to describe a single handler chain that contains one or
more handlers, as shown in the following simple example:

<weblogic-wsee-clientHandlerChain
 xmlns="http://www.bea.com/ns/weblogic/90"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">

 <handler>
 <j2ee:handler-name>clienthandler1</j2ee:handler-name>
 <j2ee:handler-class>examples.webservices.client_
handler.client.ClientHandler1</j2ee:handler-class>
 <j2ee:init-param>
 <j2ee:param-name>ClientParam1</j2ee:param-name>
 <j2ee:param-value>value1</j2ee:param-value>
 </j2ee:init-param>
 </handler>

 <handler>
 <j2ee:handler-name>clienthandler2</j2ee:handler-name>
 <j2ee:handler-class>examples.webservices.client_
handler.client.ClientHandler2</j2ee:handler-class>
 </handler>

</weblogic-wsee-clientHandlerChain>

In the example, the handler chain contains two handlers: clienthandler1 and
clienthandler2, implemented with the class names specified with the
<j2ee:handler-class> element. The two handlers execute in forward order directly
before the client application sends the SOAP request to the web service, and then in

Creating and Using Client-Side SOAP Message Handlers

14-20 Developing JAX-RPC Web Services for Oracle WebLogic Server

reverse order directly after the client application receives the SOAP response from the
web service.

The example also shows how to use the <j2ee:init-param> element to specify one or
more initialization parameters to a handler.

Use the <soap-role>, <soap-header>, and <port-name> child elements of the
<handler> element to specify the SOAP roles implemented by the handler, the SOAP
headers processed by the handler, and the port-name element in the WSDL with which
the handler is associated with, respectively.

14.8.4 XML Schema for the Client-Side Handler Configuration File
The following XML Schema file defines the structure of the client-side SOAP handler
configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<schema
 targetNamespace="http://www.bea.com/ns/weblogic/90"
 xmlns:wls="http://www.bea.com/ns/weblogic/90"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 >
 <include schemaLocation="weblogic-j2ee.xsd"/>

 <element name="weblogic-wsee-clientHandlerChain"
 type="wls:weblogic-wsee-clientHandlerChainType">
 <xsd:key name="wsee-clienthandler-name-key">
 <xsd:annotation>
 <xsd:documentation>

 Defines the name of the handler. The name must be unique within the
 chain.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="j2ee:handler"/>
 <xsd:field xpath="j2ee:handler-name"/>
 </xsd:key>
 </element>

 <complexType name="weblogic-wsee-clientHandlerChainType">
 <sequence>
 <xsd:element name="handler"
 type="j2ee:service-ref_handlerType"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 </sequence>
 </complexType>
</schema>

A single configuration file specifies a single client-side handler chain. The root of the
configuration file is <weblogic-wsee-clientHandlerChain>, and the file contains zero
or more <handler> child elements, each of which describes a handler in the chain.

Creating and Using Client-Side SOAP Message Handlers

Creating and Using SOAP Message Handlers 14-21

The structure of the <handler> element is described by the Java EE service-ref_
handlerType complex type, specified in the Java EE 1.4 web service client XML
Schema http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_1_1.xsd.

14.8.5 Specifying the Client-Side SOAP Handler Configuration File to clientgen
Use the handlerChainFile attribute of the clientgen Ant task to specify the
client-side SOAP handler configuration file, as shown in the following excerpt from a
build.xml file:

 <clientgen
 wsdl="http://ariel:7001/handlers/ClientHandlerService?WSDL"
 destDir="${clientclass-dir}"
 handlerChainFile="ClientHandlerChain.xml"
 packageName="examples.webservices.client_handler.client"/>

The JAX-RPC stubs generated by clientgen automatically ensure that the handlers
described by the configuration file execute in the correct order before and after the
client application invokes the web service operation.

Creating and Using Client-Side SOAP Message Handlers

14-22 Developing JAX-RPC Web Services for Oracle WebLogic Server

15

Using Database Web Services 15-1

15Using Database Web Services

[16] This chapter describes how to use database web services.

This chapter includes the following sections:

■ Overview of Database Web Services

■ Type Mapping Between SQL and XML

15.1 Overview of Database Web Services

In heterogeneous and disconnected environments, there is an increasing need to access
stored procedures, data and metadata, through web service interfaces. Database web
service technology enables web services for databases. It works in two directions:

■ Database Call-in—Access database resources as a web service

■ Database Call-out—Consuming external web services from the database itself

15.1.1 Database Call-in
Turning the Oracle database into a web service provider takes advantage of your
investment in Java stored procedures, PL/SQL packages, Advanced Queues,
pre-defined SQL queries and DML.

Client applications can query and retrieve data from Oracle databases and invoke
stored procedures using standard web service protocols. There is no dependency on
Oracle specific database connectivity protocols. Applications can employ any cached

Note: With the removal of JAX-RPC support in Oracle JDeveloper,
there is no longer development time support for PL/SQL database
web services; however, they will continue to be supported in the
WebLogic Server runtime environment.

You can create Oracle TopLink database JAX-WS web service
providers at design time, as described in "Creating TopLink Database
Web Service Providers" in Developing Applications with Oracle
JDeveloper.

Note: Creating web services out of Query, Java, DML, and Advanced
Queues is not supported in this release.

Overview of Database Web Services

15-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

WebLogic Server connection. This approach is very beneficial in heterogeneous,
distributed, and non-connected environments.

Since database web services are a part of WebLogic web services, they can participate
in a consistent and uniform development and deployment environment. Messages
exchanged between the web service exposed database and the web service client can
take advantage of all of the management features provided by WebLogic web services,
such as security, reliability, auditing and logging.

The following figure illustrates web service call-in.

Figure 15–1 Web Service Calling in to the Database

The following steps describe the process shown in the previous figure:

1. A request for a type of database service arrives at the application server. The
service endpoint implicitly specifies the type of service requested.

2. The JAX-RPC processing servlet references the SOAP libraries and XML parser to
decode the request.

3. The servlet passes the request to the classes that correspond to the exposed
database operations. The generated classes can represent PL/SQL packages,
queries, DML, AQ Streams, or Java classes in the database.

4. The database passes the response to the JAX-RPC processing servlet, which
references the SOAP libraries and XML parser to encode it.

5. A SOAP response formed in accordance with the WSDL is returned to the client.

15.1.2 Database Call-out
You can extend a relational database's storage, indexing, and searching capabilities to
include web services. By calling a web service, the database can track, aggregate,
refresh, and query dynamic data produced on-demand, such as stock prices, currency
exchange rates, or weather information. An example of using the database as a service
consumer would be to call an external web service from a predefined database job to
obtain inventory information from multiple suppliers, then update your local
inventory database. Another example is that of a Web Crawler: a database job can be
scheduled to collate product and price information from a number of sources.

The following figure illustrates database call-out.

Type Mapping Between SQL and XML

Using Database Web Services 15-3

Figure 15–2 Calling Web Services from Within the Database

The following steps describe the process shown in the previous figure:

■ SQL and PL/SQL call specs—Invoke a web service through a user-defined
function call either directly within a SQL statement or view, or through a variable.

■ Dynamic web service invocation using the UTL_DBWS PL/SQL package. A Call
object can be dynamically created based on a WSDL and subsequently, web
services operations can be invoked.

Oracle Database PL/SQL Packages and Types Reference provides more
information on using the UTL_DBWS PL/SQL package.

■ Pure Java static proxy class—Generate a client proxy class which uses JAX-RPC.
This method simplifies the web service invocation as the location of the service is
already known without needing to look up the service in the UDDI registry. The
client proxy class does all of the work to construct the SOAP request, including
marshalling and unmarshalling parameters.

■ Pure Java using DII (dynamic invocation interface) over JAX-RPC—Dynamic
invocation provides the ability to construct the SOAP request and access the
service without the client proxy.

Which method to use depends on whether you want to execute from SQL or PL/SQL,
from Java classes, or whether the service is known ahead of time (static invocation) or
only at runtime (DII).

15.2 Type Mapping Between SQL and XML
The following sections describe the type mappings between SQL and XML for call-ins
and call-outs when the web service is known ahead of time (static invocation).

When the web service is known at runtime you can use only the Dynamic Invocation
Interface (DII) or the UTL_DBWS PL/SQL package.

15.2.1 SQL to XML Type Mappings for Web Service Call-Ins
In a database web service call-in, a SQL operation, such as a PL/SQL stored procedure
or a SQL statement, is mapped into one or more web service operations. The
parameters to the SQL operation are mapped from SQL types into XML types.

Note: The reason there may be more than one operation is because
OracleAS web services may be providing additional data
representation choices for the SQL values in XML, such as different
representations of SQL result sets.

Type Mapping Between SQL and XML

15-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

The following table illustrates the SQL-to-XML mappings for web service call-ins. The
first column lists the SQL types. The second column of the table, XML Type (Literal),
shows SQL-to-XML type mappings for the default literal value of the use attribute.
The third column, XML Type (Encoded), shows the mappings for the encoded value of
the use attribute. The literal and encoded values refer to the rules for encoding the
body of a SOAP message.

A query or a PL/SQL function returning REF CURSOR will be mapped into the three
methods listed below, where name is the name of the query or the PL/SQL function.

■ nameBeans—This method returns an array, where each element is an instance of an
XSD complex type that represents one row in the cursor. A complex type
sub-element corresponds to a column in that row.

Table 15–1 SQL-to-XML Type Mappings for Web Services Call-ins

SQL Type XML Type (Literal) XML Type (Encoded)

INT int int

INTEGER int int

FLOAT double double

NUMBER decimal decimal

VARCHAR2 string string

DATE dateTime dateTime

TIMESTAMP dateTime dateTime

BLOB byte[] byte[]

CLOB String String

LONG String String

RAW byte[] byte[]

Primitive PL/SQL indexby
table

Array Array

PL/SQL Boolean boolean boolean

PL/SQL indexby table complexType complexType

PL/SQL record complexType complexType

REF CURSOR (nameBeans) Array Array

REF CURSOR

nameXML)

any test_xml

REF CURSOR

nameMLRowSet

swaRef test_xml

SQL object complexType complexType

SQL table complexType complexType

SYS.XMLTYPE any test_xml

Note: If National Language Support (also known as "NLS" or
"Globalization Support") characters are used in a SQL SYS.XMLTYPE
value, they may not be properly handled.

Type Mapping Between SQL and XML

Using Database Web Services 15-5

■ nameXMLRowSet—This method returns a swaRef or text_xml response that
contains an OracleWebRowSet instance in XML format.

■ nameXML—this method returns an XML any or text_xml response that contains an
Oracle XDB row set.

Both OUT and IN OUT PL/SQL parameters are mapped to IN OUT parameters in the
WSDL file.

Note that Table 15–1 provides two different mappings: one for literal and another for
encoded use. The default mapping is literal. From a database web service's
perspective, there is no special reason why encoded should be used. The mapping for
encoded is provided in case you encounter scenarios which call for the encoded use
setting. All of the descriptions in this chapter assume that you will be using the literal
use setting unless otherwise specified.

15.2.2 XML-to-SQL Type Mapping for Web Service Call-outs
In database web services call-outs, XML types are mapped into SQL types. The
following table lists the XML-to-SQL type mappings used in call-outs.

Table 15–2 XML-to-SQL Type Mappings for Web Service Call-outs

XML Type SQL Type

int NUMBER

float NUMBER

double NUMBER

decimal NUMBER

dateTime DATE

String VARCHAR2

byte[] RAW

complexType SQL OBJECT

Array SQL TABLE

test_xml XML Type

Type Mapping Between SQL and XML

15-6 Developing JAX-RPC Web Services for Oracle WebLogic Server

A

Pre-Packaged WS-Policy Files for Reliable Messaging A-1

APre-Packaged WS-Policy Files for Reliable
Messaging

[17] This appendix describes the pre-packaged WS-Policy files that contain typical reliable
messaging assertions that you can use to support reliable messaging with WebLogic
Java API for XML-based RPC (JAX-RPC) web services.

This appendix includes the following sections:

■ DefaultReliability1.1.xml (WS-Policy File)

■ Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)

■ Reliability1.1_SequenceSTR.xml (WS-Policy File)

■ Reliability1.0_1.1.xml (WS-Policy.xml File)

■ DefaultReliability.xml (WS-Policy File) [Deprecated]

■ LongRunningReliability.xml (WS-Policy File) [Deprecated]

You cannot change these pre-packaged files. If their values do not suit your needs, you
must create your own WS-Policy file. See Section 8.5, "Creating the Web Service
Reliable Messaging WS-Policy File" for details. See "Web Service Reliable Messaging
Policy Assertion Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for reference information about the reliable messaging policy assertions.

A.1 DefaultReliability1.1.xml (WS-Policy File)
The DefaultRealiability1.1.xml WS-Policy file specifies policy assertions related to
quality of service. The web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf.

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 >
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702"
 >
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce />
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>

Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)

A-2 Developing JAX-RPC Web Services for Oracle WebLogic Server

</wsp:Policy>

A.2 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)
The Reliability1.1_SequenceTransportSecurity.xml file specifies policy assertions
related to transport-level security and quality of service. The web service reliable
messaging assertions are based on WS Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceTransportSecurity/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

A.3 Reliability1.1_SequenceSTR.xml (WS-Policy File)
The Reliability1.1_SequenceSTR.xml file specifies that in order to secure messages
in a reliable sequence, the runtime will use the wsse:SecurityTokenReference that is
referenced in the CreateSequence message. The web service reliable messaging
assertions are based on WS Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

A.4 Reliability1.0_1.1.xml (WS-Policy.xml File)
The Reliability1.0_1.1.xml WS-Policy.xml file combines 1.1 and 1.0 WS-Reliable
Messaging policy assertions. This sample relies on smart policy selection to determine
the policy assertion that is applied at runtime. For more information about smart
policy selection, see Section 8.5.3, "Using Multiple Policy Alternatives".

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp10:RMAssertion

Note: The 1.0 web service reliable messaging assertions are prefixed
by wsrmp10.

DefaultReliability.xml (WS-Policy File) [Deprecated]

Pre-Packaged WS-Policy Files for Reliable Messaging A-3

 xmlns:wsrmp10="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp10:InactivityTimeout Milliseconds="600000"/>
 <wsrmp10:BaseRetransmissionInterval Milliseconds="3000"/>
 <wsrmp10:ExponentialBackoff/>
 <wsrmp10:AcknowledgementInterval Milliseconds="200"/>
 </wsrmp10:RMAssertion>
 </wsp:All>
 <wsp:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

A.5 DefaultReliability.xml (WS-Policy File) [Deprecated]
This WS-Policy file is deprecated. The web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/. In the current release, many
of the reliable messaging policy assertions are managed through JWS annotations or
configuration.

The DefaultReliability.xml WS-Policy file specifies typical values for the reliable
messaging policy assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base retransmission interval of 3
seconds.

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >

 <wsrm:RMAssertion >

 <wsrm:InactivityTimeout
 Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="200" />
 <beapolicy:Expires Expires="P1D" optional="true"/>
 </wsrm:RMAssertion>

</wsp:Policy>

LongRunningReliability.xml (WS-Policy File) [Deprecated]

A-4 Developing JAX-RPC Web Services for Oracle WebLogic Server

A.6 LongRunningReliability.xml (WS-Policy File) [Deprecated]
This WS-Policy file is deprecated. The web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/. In the current release, many
of the reliable messaging policy assertions are managed through JWS annotations or
configuration.

The LongRunningRelibility.xml WS-Policy files specifies values that are similar to
the DefaultReliability.xml WS-Policy file, except that it specifies a much longer
activity timeout interval (24 hours). See Section A.6, "LongRunningReliability.xml
(WS-Policy File) [Deprecated]".

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >

 <wsrm:RMAssertion >

 <wsrm:InactivityTimeout
 Milliseconds="86400000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="200" />
 <beapolicy:Expires Expires="P1M" optional="true"/>
 </wsrm:RMAssertion>

</wsp:Policy>

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1)
	New and Changed Features for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)

	Part I Introduction
	1 Introduction to JAX-RPC Web Services
	2 Examples for JAX-RPC Web Service Developers
	2.1 Creating a Simple HelloWorld Web Service
	2.1.1 Sample HelloWorldImpl.java JWS File
	2.1.2 Sample Ant Build File for HelloWorldImpl.java

	2.2 Creating a Web Service With User-Defined Data Types
	2.2.1 Sample BasicStruct JavaBean
	2.2.2 Sample ComplexImpl.java JWS File
	2.2.3 Sample Ant Build File for ComplexImpl.java JWS File

	2.3 Creating a Web Service from a WSDL File
	2.3.1 Sample WSDL File
	2.3.2 Sample TemperaturePortType Java Implementation File
	2.3.3 Sample Ant Build File for TemperatureService

	2.4 Invoking a Web Service from a Java SE Client
	2.4.1 Sample Java Client Application
	2.4.2 Sample Ant Build File For Building Java Client Application

	2.5 Invoking a Web Service from a WebLogic Web Service
	2.5.1 Sample ClientServiceImpl.java JWS File
	2.5.2 Sample Ant Build File For Building ClientService

	Part II Developing Basic JAX-RPC Web Services
	3 Developing JAX-RPC Web Services
	3.1 Overview of the WebLogic Web Service Programming Model
	3.2 Configuring Your Domain For Web Services Features
	3.3 Developing WebLogic Web Services Starting From Java: Main Steps
	3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps
	3.5 Creating the Basic Ant build.xml File
	3.6 Running the jwsc WebLogic Web Services Ant Task
	3.6.1 Specifying the Transport Used to Invoke the Web Service
	3.6.2 Defining the Context Path of a WebLogic Web Service
	3.6.3 Examples of Using jwsc

	3.7 Running the wsdlc WebLogic Web Services Ant Task
	3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc
	3.9 Deploying and Undeploying WebLogic Web Services
	3.9.1 Using the wldeploy Ant Task to Deploy Web Services
	3.9.2 Using the Administration Console to Deploy Web Services

	3.10 Browsing to the WSDL of the Web Service
	3.11 Configuring the Server Address Specified in the Dynamic WSDL
	3.11.1 Web Service is not a callback service and can be invoked using HTTP/S
	3.11.2 Web Service is not a callback service and can be invoked using JMS Transport
	3.11.3 Web Service is a callback service
	3.11.4 Web Service is invoked using a proxy server

	3.12 Testing the Web Service
	3.13 Integrating Web Services Into the WebLogic Split Development Directory Environment

	4 Programming the JWS File
	4.1 Overview of JWS Files and JWS Annotations
	4.2 Java Requirements for a JWS File
	4.3 Programming the JWS File: Typical Steps
	4.3.1 Example of a JWS File
	4.3.2 Specifying that the JWS File Implements a Web Service (@WebService Annotation)
	4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol (@SOAPBinding Annotation)
	4.3.4 Specifying the Context Path and Service URI of the Web Service (@WLHttpTransport Annotation)
	4.3.5 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and @OneWay Annotations)
	4.3.6 Customizing the Mapping Between Operation Parameters and WSDL Elements (@WebParam Annotation)
	4.3.7 Customizing the Mapping Between the Operation Return Value and a WSDL Element (@WebResult Annotation)

	4.4 Accessing Run-Time Information About a Web Service
	4.4.1 Using JwsContext to Access Run-Time Information
	4.4.1.1 Guidelines for Accessing the Web Service Context
	4.4.1.2 Methods of the JwsContext

	4.4.2 Using the Stub Interface to Access Run-Time Information

	4.5 Should You Implement a Stateless Session EJB?
	4.5.1 Programming Guidelines When Implementing an EJB in Your JWS File
	4.5.2 Example of a JWS File That Implements an EJB

	4.6 Programming the User-Defined Java Data Type
	4.7 Throwing Exceptions
	4.8 Invoking Another Web Service from the JWS File
	4.9 Programming Additional Miscellaneous Features Using JWS Annotations and APIs
	4.9.1 Sending Binary Data Using MTOM/XOP
	4.9.2 Streaming SOAP Attachments
	4.9.3 Using SOAP 1.2
	4.9.4 Specifying that Operations Run Inside of a Transaction
	4.9.5 Getting the HttpServletRequest/Response Object

	4.10 JWS Programming Best Practices

	5 Understanding Data Binding
	5.1 Overview of Data Binding
	5.2 Supported Built-In Data Types
	5.2.1 XML-to-Java Mapping for Built-in Data Types
	5.2.2 Java-to-XML Mapping for Built-In Data Types

	5.3 Supported User-Defined Data Types
	5.3.1 Supported XML User-Defined Data Types
	5.3.2 Supported Java User-Defined Data Types

	6 Developing JAX-RPC Web Service Clients
	6.1 Overview of JAX-RPC Web Service Clients
	6.1.1 Invoking Web Services Using JAX-RPC
	6.1.2 Examples of Clients That Invoke Web Services

	6.2 Invoking a Web Service from a Java SE Client
	6.2.1 Using the clientgen Ant Task To Generate Client Artifacts
	6.2.2 Getting Information About a Web Service
	6.2.3 Writing the Java Client Application Code to Invoke a Web Service
	6.2.4 Compiling and Running the Client Application
	6.2.5 Sample Ant Build File for a Java Client

	6.3 Invoking a Web Service from Another Web Service
	6.3.1 Sample build.xml File for a Web Service Client
	6.3.2 Sample JWS File That Invokes a Web Service

	6.4 Using a Standalone Client JAR File When Invoking Web Services
	6.5 Using a Proxy Server When Invoking a Web Service
	6.5.1 Using the HttpTransportInfo API to Specify the Proxy Server
	6.5.2 Using System Properties to Specify the Proxy Server

	6.6 Client Considerations When Redeploying a Web Service
	6.7 WebLogic Web Services Stub Properties
	6.8 Setting the Character Encoding For the Response SOAP Message

	Part III Developing Advanced Features of JAX-RPC Web Services
	7 Invoking a Web Service Using Asynchronous Request-Response
	7.1 Overview of the Asynchronous Request-Response Feature
	7.2 Using Asynchronous Request-Response: Main Steps
	7.3 Configuring the Host WebLogic Server Instance for the Asynchronous Web Service
	7.4 Writing the Asynchronous JWS File
	7.4.1 Coding Guidelines for Invoking a Web Service Asynchronously
	7.4.2 Using Asynchronous Pre- and Post-call Contexts
	7.4.3 Example of a Synchronous Invoke

	7.5 Updating the build.xml File When Using Asynchronous Request-Response
	7.6 Disabling The Internal Asynchronous Service
	7.7 Using Asynchronous Request Response With a Proxy Server

	8 Using Web Services Reliable Messaging
	8.1 Overview of Web Service Reliable Messaging
	8.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions
	8.1.2 Managing the Life Cycle of the Reliable Message Sequence

	8.2 Using Web Service Reliable Messaging: Main Steps
	8.2.1 Prerequisites

	8.3 Configuring the Destination WebLogic Server Instance
	8.4 Configuring the Source WebLogic Server Instance
	8.5 Creating the Web Service Reliable Messaging WS-Policy File
	8.5.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Version 1.1
	8.5.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Version 1.0 (Deprecated)
	8.5.3 Using Multiple Policy Alternatives

	8.6 Programming Guidelines for the Reliable JWS File
	8.6.1 Using the @Policy Annotation
	8.6.2 Using the @Oneway Annotation
	8.6.3 Using the @BufferQueue Annotation
	8.6.4 Using the @ReliabilityBuffer Annotation

	8.7 Configuring Reliable Messaging for a Reliable Web Service
	8.7.1 Using the Administration Console
	8.7.2 Using WLST

	8.8 Programming Guidelines for the JWS File That Invokes a Reliable Web Service
	8.9 Updating the build.xml File for a Client of a Reliable Web Service
	8.10 Using Reliable Messaging With MTOM
	8.11 Client Considerations When Redeploying a Reliable Web Service
	8.12 Using Reliable Messaging With a Proxy Server

	9 Creating Conversational Web Services
	9.1 Overview of Conversational Web Services
	9.2 Creating a Conversational Web Service: Main Steps
	9.3 Programming Guidelines for the Conversational JWS File
	9.4 Programming Guidelines for the JWS File That Invokes a Conversational Web Service
	9.5 ConversationUtils Utility Class
	9.6 Updating the build.xml File for a Client of a Conversational Web Service
	9.7 Updating a Stand-Alone Java Client to Invoke a Conversational Web Service
	9.8 Example Conversational Web Service .NET Client
	9.8.1 ConversationService.java File
	9.8.2 Service.cs File
	9.8.3 build.xml File

	9.9 Client Considerations When Redeploying a Conversational Web Service

	10 Creating Buffered Web Services
	10.1 Overview of Buffered Web Services
	10.2 Creating a Buffered Web Service: Main Steps
	10.3 Configuring the Host WebLogic Server Instance for the Buffered Web Service
	10.4 Programming Guidelines for the Buffered JWS File
	10.5 Programming the JWS File That Invokes the Buffered Web Service
	10.6 Updating the build.xml File for a Client of the Buffered Web Service

	11 Using the Asynchronous Features Together
	11.1 Using the Asynchronous Features Together
	11.2 Example of a JWS File That Implements a Reliable Conversational Web Service
	11.3 Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

	12 Using Callbacks to Notify Clients of Events
	12.1 Overview of Callbacks
	12.2 Callback Implementation Overview and Terminology
	12.3 Programming Callbacks: Main Steps
	12.4 Programming Guidelines for Target Web Service
	12.5 Programming Guidelines for the Callback Client Web Service
	12.6 Programming Guidelines for the Callback Interface
	12.7 Updating the build.xml File for the Client Web Service

	13 Using JMS Transport as the Connection Protocol
	13.1 Overview of Using JMS Transport
	13.2 Using JMS Transport Starting From Java: Main Steps
	13.3 Using JMS Transport Starting From WSDL: Main Steps
	13.4 Configuring the Host WebLogic Server Instance for the JMS Transport Web Service
	13.5 Using the @WLJmsTransport JWS Annotation
	13.6 Using the <WLJmsTransport> Child Element of the jwsc Ant Task
	13.7 Updating the WSDL to Use JMS Transport
	13.8 Invoking a WebLogic Web Service Using JMS Transport
	13.8.1 Overriding the Default Service Address URL
	13.8.2 Using JMS BytesMessage Rather Than the Default TextMessage
	13.8.3 Disabling HTTP Access to the WSDL File

	14 Creating and Using SOAP Message Handlers
	14.1 Overview of SOAP Message Handlers
	14.2 Adding SOAP Message Handlers to a Web Service: Main Steps
	14.3 Designing the SOAP Message Handlers and Handler Chains
	14.4 Creating the GenericHandler Class
	14.4.1 Implementing the Handler.init() Method
	14.4.2 Implementing the Handler.destroy() Method
	14.4.3 Implementing the Handler.getHeaders() Method
	14.4.4 Implementing the Handler.handleRequest() Method
	14.4.5 Implementing the Handler.handleResponse() Method
	14.4.6 Implementing the Handler.handleFault() Method
	14.4.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
	14.4.7.1 The SOAPPart Object
	14.4.7.2 The AttachmentPart Object
	14.4.7.3 Manipulating Image Attachments in a SOAP Message Handler

	14.5 Configuring Handlers in the JWS File
	14.5.1 @javax.jws.HandlerChain
	14.5.2 @javax.jws.soap.SOAPMessageHandlers

	14.6 Creating the Handler Chain Configuration File
	14.7 Compiling and Rebuilding the Web Service
	14.8 Creating and Using Client-Side SOAP Message Handlers
	14.8.1 Using Client-Side SOAP Message Handlers: Main Steps
	14.8.2 Example of a Client-Side Handler Class
	14.8.3 Creating the Client-Side SOAP Handler Configuration File
	14.8.4 XML Schema for the Client-Side Handler Configuration File
	14.8.5 Specifying the Client-Side SOAP Handler Configuration File to clientgen

	15 Using Database Web Services
	15.1 Overview of Database Web Services
	15.1.1 Database Call-in
	15.1.2 Database Call-out

	15.2 Type Mapping Between SQL and XML
	15.2.1 SQL to XML Type Mappings for Web Service Call-Ins
	15.2.2 XML-to-SQL Type Mapping for Web Service Call-outs

	A.1 DefaultReliability1.1.xml (WS-Policy File)
	A.2 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)
	A.3 Reliability1.1_SequenceSTR.xml (WS-Policy File)
	A.4 Reliability1.0_1.1.xml (WS-Policy.xml File)
	A.5 DefaultReliability.xml (WS-Policy File) [Deprecated]
	A.6 LongRunningReliability.xml (WS-Policy File) [Deprecated]

