

[1] Oracle® Fusion Middleware
Administering Security for Oracle WebLogic Server 12.2.1

12c (12.2.1)

E55207-03

March 2016

Documentation for application architects, developers, and
security administrators that explains how to configure
WebLogic Server 12.2.1 security, including settings for
security realms, providers, identity and trust, single sign-on,
and SSL.

Oracle Fusion Middleware Administering Security for Oracle WebLogic Server 12.2.1, 12c (12.2.1)

E55207-03

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Jon Patt, Swati Thacker

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. xvii

Documentation Accessibility .. xvii
Conventions .. xvii

Part I Overview of WebLogic Server Security Administration

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-2
1.3 Related Information.. 1-3
1.4 Security Samples and Tutorials .. 1-4
1.4.1 Security Examples in the WebLogic Server Distribution... 1-4
1.4.2 Additional Examples Available for Download... 1-4
1.5 What’s New in This Guide .. 1-5

2 Security Management Concepts

2.1 Security Realms in WebLogic Server ... 2-1
2.2 Security Providers... 2-2
2.3 Security Policies and WebLogic Resources ... 2-3
2.3.1 WebLogic Resources ... 2-4
2.3.2 Deployment Descriptors and the WebLogic Server Administration Console............ 2-5
2.4 The Default Security Configuration in WebLogic Server ... 2-5
2.5 Configuring WebLogic Security: Main Steps.. 2-6
2.6 Methods of Configuring Security ... 2-7
2.7 How Passwords Are Protected in WebLogic Server ... 2-8

3 WebLogic Server Security Standards

3.1 Supported Security Standards .. 3-1
3.2 Supported FIPS Standards and Cipher Suites .. 3-3

4 Configuring Security for a WebLogic Domain

4.1 Performing a Secure Installation of WebLogic Server... 4-1
4.1.1 Before Installing WebLogic Server.. 4-1
4.1.2 While Running the Installation Program ... 4-2

iv

4.1.3 Immediately After Installation is Complete .. 4-3
4.2 Creating a WebLogic Domain for Production Use .. 4-3
4.3 Securing the Domain After You Have Created It .. 4-4
4.4 Obtaining Private Keys, Digital Certificates, and Trusted Certificate

Authority Certificates... 4-6
4.5 Storing Private Keys, Digital Certificates, and Trusted Certificate

Authority Certificates... 4-7
4.6 Protecting User Accounts .. 4-7
4.7 Using Connection Filters.. 4-8

5 Customizing the Default Security Configuration

5.1 Why Customize the Default Security Configuration?... 5-1
5.2 Using Automatic Realm Restart ... 5-2
5.3 Before You Create a New Security Realm... 5-2
5.4 Creating and Configuring a New Security Realm: Main Steps.. 5-3

Part II Configuring Security Providers

6 About Configuring WebLogic Security Providers

6.1 When Do You Need to Configure a Security Provider? ... 6-1
6.2 Reordering Security Providers.. 6-2
6.3 Enabling Synchronization in Security Policy and Role Modification at Deployment...... 6-2

7 Configuring Authorization and Role Mapping Providers

7.1 Configuring an Authorization Provider.. 7-1
7.2 Configuring the WebLogic Adjudication Provider ... 7-2
7.3 Configuring a Role Mapping Provider .. 7-2

8 Configuring the WebLogic Auditing Provider

8.1 Auditing Provider Overview .. 8-1
8.2 Events Logged by the WebLogic Auditing Provider .. 8-1
8.3 Configuration Options ... 8-2
8.4 Auditing ContextHandler Elements .. 8-3
8.5 Configuration Auditing ... 8-5
8.5.1 Enabling Configuration Auditing ... 8-5
8.6 Configuration Auditing Messages ... 8-6
8.7 Audit Events and Auditing Providers ... 8-8

9 Configuring Credential Mapping Providers

9.1 Configuring a WebLogic Credential Mapping Provider .. 9-1
9.2 Configuring a PKI Credential Mapping Provider.. 9-2
9.2.1 PKI Credential Mapper Attributes.. 9-2
9.2.2 Credential Actions ... 9-3
9.3 Configuring a SAML Credential Mapping Provider for SAML 1.1 9-3
9.3.1 Configuring Assertion Lifetime... 9-4

v

9.3.2 Relying Party Registry .. 9-4
9.4 Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0 9-4
9.4.1 SAML 2.0 Credential Mapping Provider Attributes .. 9-5
9.4.2 Service Provider Partners ... 9-6
9.4.2.1 Partner Lookup Strings Required for Web Service Partners.................................. 9-7
9.4.2.1.1 Lookup String Syntax ... 9-7
9.4.2.1.2 Specifying Default Partners ... 9-8
9.4.2.2 Management of Partner Certificates .. 9-8
9.4.2.3 Java Interface for Configuring Service Provider Partner Attributes..................... 9-8

10 Configuring the Certificate Lookup and Validation Framework

10.1 Overview of the Certificate Lookup and Validation Framework..................................... 10-1
10.2 CLV Security Providers Provided by WebLogic Server .. 10-2
10.2.1 CertPath Provider ... 10-2
10.2.2 Certificate Registry ... 10-2

Part III Configuring Authentication Providers

11 About Configuring the Authentication Providers in WebLogic Server

11.1 Choosing an Authentication Provider .. 11-1
11.2 Using More Than One Authentication Provider... 11-2
11.2.1 Setting the JAAS Control Flag Option ... 11-2
11.2.2 Changing the Order of Authentication Providers ... 11-4

12 Configuring the WebLogic Authentication Provider

12.1 About the WebLogic Authentication Provider.. 12-1
12.2 Setting User Attributes.. 12-2

13 Configuring LDAP Authentication Providers

13.1 LDAP Authentication Providers Included in WebLogic Server 13-1
13.2 Requirements for Using an LDAP Authentication Provider... 13-2
13.3 Configuring an LDAP Authentication Provider: Main Steps ... 13-3
13.4 Accessing Other LDAP Servers ... 13-5
13.5 Enabling an LDAP Authentication Provider for SSL ... 13-6
13.6 Dynamic Groups and WebLogic Server ... 13-7
13.7 Use of GUID and LDAP DN Data in WebLogic Principals... 13-7
13.8 Configuring Users and Groups in the Oracle Internet Directory

and Oracle Virtual Directory Authentication Providers .. 13-8
13.8.1 Configuring User and Group Name Types .. 13-8
13.8.1.1 Changing the User Name Attribute Type.. 13-9
13.8.1.2 Changing the Group Name Attribute Type .. 13-9
13.8.2 Configuring Static Groups... 13-10
13.9 Example of Configuring the Oracle Internet Directory Authentication Provider........ 13-11
13.10 Configuring Failover for LDAP Authentication Providers ... 13-13
13.10.1 LDAP Failover Example 1 ... 13-14

vi

13.10.2 LDAP Failover Example 2 ... 13-14
13.11 Configuring an Authentication Provider for Oracle Unified Directory 13-14
13.12 Following Referrals in the Active Directory Authentication Provider 13-15
13.13 Configuring Group Search in the LDAP Authentication Provider

for Oracle Directory Server Enterprise Edition 13-15
13.14 Improving the Performance of LDAP Authentication Providers................................... 13-16
13.14.1 Optimizing the Group Membership Caches... 13-16
13.14.2 Optimizing the Connection Pool Size and User Cache... 13-18
13.14.3 Configuring Dynamic Groups in the iPlanet Authentication Provider

to Improve Performance .. 13-18
13.14.4 Optimizing the Principal Validator Cache.. 13-19
13.14.5 Configuring the Active Directory Authentication Provider to Improve

Performance... 13-19
13.14.6 Analyzing the Generic LDAP Authenticator Cache Statistics 13-20
13.14.7 Testing the LDAP Connection During Configuration .. 13-20
13.15 Configuring an Administrator User from an External LDAP Server: an Example...... 13-21

14 Configuring RDBMS Authentication Providers

14.1 About Configuring the RDBMS Authentication Providers ... 14-1
14.2 Common RDBMS Authentication Provider Attributes.. 14-1
14.2.1 Data Source Attribute... 14-1
14.2.2 Group Searching Attributes .. 14-2
14.2.3 Group Caching Attributes ... 14-2
14.3 Configuring the SQL Authentication Provider ... 14-2
14.3.1 Password Attributes ... 14-2
14.3.2 SQL Statement Attributes.. 14-2
14.4 Configuring the Read-Only SQL Authenticator.. 14-3
14.5 Configuring the Custom DBMS Authenticator ... 14-3
14.5.1 Plug-In Class Attributes... 14-3

15 Configuring the Windows NT Authentication Provider

15.1 About the Windows NT Authentication Provider.. 15-1
15.2 Domain Controller Settings.. 15-1
15.3 LogonType Setting... 15-2
15.4 UPN Names Settings ... 15-2

16 Configuring the SAML Authentication Provider

17 Configuring the Password Validation Provider

17.1 About the Password Validation Provider .. 17-1
17.2 Password Composition Rules for the Password Validation Provider 17-2
17.3 Using the Password Validation Provider with the WebLogic Authentication Provider

17-3
17.4 Using the Password Validation Provider with an LDAP Authentication Provider 17-3
17.5 Using WLST to Create and Configure the Password Validation Provider 17-4
17.5.1 Creating an Instance of the Password Validation Provider 17-4
17.5.2 Specifying the Password Composition Rules... 17-5

vii

18 Configuring Identity Assertion Providers

18.1 About the Identity Assertion Providers ... 18-1
18.2 How an LDAP X509 Identity Assertion Provider Works .. 18-2
18.3 Configuring an LDAP X509 Identity Assertion Provider: Main Steps 18-3
18.4 Configuring a Negotiate Identity Assertion Provider.. 18-4
18.5 Configuring a SAML Identity Assertion Provider for SAML 1.1 18-4
18.5.1 Asserting Party Registry .. 18-5
18.5.2 Certificate Registry ... 18-5
18.6 Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0 18-5
18.6.1 Identity Provider Partners... 18-6
18.6.1.1 Partner Lookup Strings Required for Web Service Partners............................... 18-7
18.6.1.2 Management of Partner Certificates ... 18-9
18.6.1.3 Java Interface for Configuring Identity Provider Partner Attributes 18-9
18.7 Ordering of Identity Assertion for Servlets.. 18-10
18.8 Configuring Identity Assertion Performance in the Server Cache................................. 18-10
18.9 Authenticating a User Not Defined in the Identity Store .. 18-11
18.9.1 How Virtual User Authentication Works in a WebLogic Domain.......................... 18-12
18.9.2 Configuring Two-Way SSL and Managing Certificates Securely 18-12
18.9.3 Customizing the WebLogic Identity Assertion Provider

(DefaultIdentityAsserter)... 18-13
18.9.4 Configuring the Virtual User Authentication Provider .. 18-14
18.9.5 Using WLST to Configure Virtual User Authentication... 18-14
18.10 Configuring a User Name Mapper.. 18-15
18.11 Configuring a Custom User Name Mapper... 18-16

19 Configuring the Virtual User Authentication Provider

19.1 About the Virtual User Authentication Provider.. 19-1
19.2 Adding the Virtual User Authentication Provider to the Security Realm 19-1

Part IV Configuring Single Sign-On

20 Configuring Single Sign-On with Microsoft Clients

20.1 Overview of Single Sign-On with Microsoft Clients .. 20-1
20.2 System Requirements for SSO with Microsoft Clients ... 20-2
20.2.1 Host Computer Requirements for Supporting SSO with Microsoft Clients............ 20-2
20.2.2 Client Computer Requirements for Supporting Microsoft Clients Using SSO 20-3
20.3 Single Sign-On with Microsoft Clients: Main Steps.. 20-3
20.4 Configuring Your Network Domain to Use Kerberos ... 20-4
20.5 Creating a Kerberos Identification for WebLogic Server ... 20-5
20.5.1 Step 1: Create a User Account for the Host Computer ... 20-6
20.5.2 Step 2: Configure the User Account to Comply with Kerberos................................. 20-6
20.5.3 Step 3: Define a Service Principal Name and Create a Keytab for the Service 20-7
20.5.3.1 Defining an SPN and Creating a Keytab on Windows Systems......................... 20-7
20.5.3.2 Defining an SPN and Creating a Keytab on UNIX Systems 20-8
20.5.4 Step 4: Verify Correct Setup .. 20-9
20.5.5 Step 5: Update Default JDK Security Policy Files .. 20-9

viii

20.6 Configuring Microsoft Clients to Use Windows Integrated Authentication................ 20-10
20.6.1 Configuring a .NET Web Service ... 20-10
20.6.2 Configuring an Internet Explorer Browser ... 20-10
20.6.2.1 Configure Local Intranet Domains ... 20-11
20.6.2.2 Configure Intranet Authentication ... 20-11
20.6.2.3 Verify the Proxy Settings.. 20-11
20.6.2.4 Set Integrated Authentication for Internet Explorer 6.0 20-11
20.6.3 Configuring a Mozilla Firefox Browser... 20-12
20.6.4 Configuring a Java SE Client Application... 20-12
20.7 Creating a JAAS Login File... 20-13
20.8 Configuring the Identity Assertion Provider... 20-14
20.9 Using Startup Arguments for Kerberos Authentication with WebLogic Server.......... 20-14
20.10 Verifying Configuration of SSO with Microsoft Clients .. 20-15

21 Configuring Single Sign-On with Web Browsers and HTTP Clients Using
SAML

21.1 Configuring SAML Services... 21-1
21.2 Configuring Single Sign-On Using SAML White Paper .. 21-2
21.3 SAML for Web Single Sign-On Scenario API Example.. 21-2

22 Configuring SAML 1.1 Services

22.1 Enabling Single Sign-on with SAML 1.1: Main Steps... 22-1
22.1.1 Configuring a Source Site: Main Steps .. 22-1
22.1.2 Configuring a Destination Site: Main Steps.. 22-2
22.2 Configuring a SAML 1.1 Source Site for Single Sign-On ... 22-2
22.2.1 Configure the SAML 1.1 Credential Mapping Provider... 22-2
22.2.2 Configure the Source Site Federation Services... 22-2
22.2.3 Configure Relying Parties.. 22-3
22.2.3.1 Configure Supported Profiles .. 22-4
22.2.3.2 Assertion Consumer Parameters... 22-4
22.2.4 Replacing the Default Assertion Store... 22-4
22.3 Configuring a SAML 1.1 Destination Site for Single Sign-On... 22-5
22.3.1 Configure SAML Identity Assertion Provider ... 22-5
22.3.2 Configure Destination Site Federation Services... 22-5
22.3.2.1 Enable the SAML Destination Site .. 22-5
22.3.2.2 Set Assertion Consumer URIs ... 22-5
22.3.2.3 Configure SSL for the Assertion Consumer Service... 22-5
22.3.2.4 Add SSL Client Identity Certificate .. 22-5
22.3.2.5 Configure Single-Use Policy and the Used Assertion Cache or Custom

Assertion Cache ... 22-5
22.3.2.6 Configure Recipient Check for POST Profile .. 22-6
22.3.3 Configuring Asserting Parties .. 22-6
22.3.3.1 Configure Supported Profiles .. 22-6
22.3.3.2 Configure Source Site ITS Parameters.. 22-6
22.4 Configuring Relying and Asserting Parties with WLST .. 22-6

ix

23 Configuring SAML 2.0 Services

23.1 Configuring SAML 2.0 Services: Main Steps ... 23-1
23.2 Configuring SAML 2.0 General Services.. 23-2
23.2.1 About SAML 2.0 General Services ... 23-3
23.2.2 Publishing and Distributing the Metadata File .. 23-4
23.3 Configuring an Identity Provider Site for SAML 2.0 Single Sign-On 23-5
23.3.1 Configure the SAML 2.0 Credential Mapping Provider... 23-5
23.3.2 Configure SAML 2.0 Identity Provider Services .. 23-5
23.3.2.1 Enable the SAML 2.0 Identity Provider Site .. 23-6
23.3.2.2 Specify a Custom Login Web Application... 23-6
23.3.2.3 Enable Binding Types .. 23-6
23.3.2.4 Publish Your Site's Metadata File.. 23-6
23.3.3 Create and Configure Web Single Sign-On Service Provider Partners 23-6
23.3.3.1 Obtain Your Service Provider Partner's Metadata File .. 23-6
23.3.3.2 Create Partner and Enable Interactions ... 23-6
23.3.3.3 Configure How Assertions are Generated... 23-7
23.3.3.4 Configure How Documents Are Signed .. 23-7
23.3.3.5 Configure Artifact Binding and Transport Settings ... 23-8
23.4 Configuring a Service Provider Site for SAML 2.0 Single Sign-On.................................. 23-8
23.4.1 Configure the SAML 2.0 Identity Assertion Provider... 23-8
23.4.2 Configure the SAML Authentication Provider .. 23-9
23.4.3 Configure SAML 2.0 General Services .. 23-9
23.4.4 Configure SAML 2.0 Service Provider Services ... 23-9
23.4.4.1 Enable the SAML 2.0 Service Provider Site ... 23-9
23.4.4.2 Specify How Documents Must Be Signed ... 23-9
23.4.4.3 Specify How Authentication Requests Are Managed.. 23-9
23.4.4.4 Enable Binding Types .. 23-9
23.4.4.5 Set Default URL ... 23-10
23.4.5 Create and Configure Web Single Sign-On Identity Provider Partners 23-10
23.4.5.1 Obtain Your Identity Provider Partner's Metadata File..................................... 23-10
23.4.5.2 Create Partner and Enable Interactions ... 23-10
23.4.5.3 Configure Authentication Requests and Assertions .. 23-10
23.4.5.4 Configure Redirect URIs .. 23-11
23.4.5.5 Configure Binding and Transport Settings.. 23-11
23.5 Viewing Partner Site, Certificate, and Service Endpoint Information 23-12
23.6 Web Application Deployment Considerations for SAML 2.0... 23-13
23.6.1 Deployment Descriptor Recommendations.. 23-13
23.6.1.1 Use of relogin-enabled with CLIENT-CERT Authentication............................ 23-13
23.6.1.2 Use of Non-default Cookie Name... 23-13
23.6.2 Login Application Considerations for Clustered Environments............................. 23-14
23.6.3 Enabling Force Authentication and Passive Attributes is Invalid........................... 23-14

24 Enabling Debugging for SAML 1.1 and 2.0

24.1 About SAML Debug Scopes and Attributes .. 24-1
24.2 Enabling Debugging Using the Command Line ... 24-2
24.3 Enabling Debugging Using the WebLogic Server Administration Console................... 24-2

x

24.4 Enabling Debugging Using the WebLogic Scripting Tool... 24-3
24.5 Sending Debug Messages to Standard Out.. 24-4

Part V Managing Security Information

25 Migrating Security Data

25.1 Overview of Security Data Migration... 25-1
25.2 Migration Concepts ... 25-2
25.3 Formats and Constraints Supported by WebLogic Security Providers 25-2
25.4 Migrating Data with WLST .. 25-4

26 Managing the RDBMS Security Store

26.1 Security Providers that Use the RDBMS Security Store... 26-1
26.2 Configuring the RDBMS Security Store ... 26-2
26.2.1 Create a Domain with the RDBMS Security Store ... 26-2
26.2.1.1 Specifying Database Connection Properties.. 26-2
26.2.1.1.1 Oracle Example... 26-3
26.2.1.1.2 MS-SQL Example ... 26-3
26.2.1.1.3 DB2 Example... 26-3
26.2.1.1.4 For More Information About Default Connection Properties 26-4
26.2.1.2 Testing the Database Connection.. 26-4
26.2.2 Create RDBMS Tables in the Security Datastore.. 26-4
26.2.3 Configure a JMS Topic for the RDBMS Security Store.. 26-5
26.2.3.1 Configuring JMS Connection Recovery in the Event of Failure 26-6
26.3 Upgrading a Domain to Use the RDBMS Security Store ... 26-7

27 Managing the Embedded LDAP Server

27.1 Configuring the Embedded LDAP Server ... 27-1
27.2 Embedded LDAP Server Replication.. 27-2
27.3 Viewing the Contents of the Embedded LDAP Server from an LDAP Browser 27-2
27.4 Exporting and Importing Information in the Embedded LDAP Server.......................... 27-3
27.5 LDAP Access Control Syntax... 27-4
27.5.1 The Access Control File.. 27-5
27.5.2 Access Control Location .. 27-5
27.5.3 Access Control Scope ... 27-5
27.5.4 Access Rights... 27-6
27.5.4.1 Attribute Permissions ... 27-6
27.5.4.2 Entry Permissions.. 27-6
27.5.5 Attributes Types.. 27-7
27.5.6 Subject Types... 27-8
27.5.7 Grant/Deny Evaluation Rules.. 27-8
27.6 Backup and Recovery.. 27-8

Part VI Configuring SSL

xi

28 Overview of Configuring SSL in WebLogic Server

28.1 SSL: An Introduction ... 28-1
28.1.1 One-Way and Two-Way SSL .. 28-1
28.1.2 Java Secure Socket Extension (JSSE) SSL Implementation Supported...................... 28-2
28.2 Setting Up SSL: Main Steps .. 28-2
28.3 SSL Session Behavior... 28-3

29 Configuring Keystores

29.1 About Configuring Keystores in WebLogic Server .. 29-1
29.1.1 About Private Keys, Digital Certificates, and Trusted Certificate Authorities........ 29-1
29.1.2 Using Separate Keystores for Identity and Trust... 29-2
29.1.3 Configuring Keystores: Main Steps ... 29-3
29.1.4 How WebLogic Server Locates Trust .. 29-3
29.2 Creating a Keystore ... 29-4
29.2.1 Keystore File Name Requirements... 29-4
29.2.2 Creating a Keystore Using Keytool.. 29-4
29.2.3 Creating a Keystore Using ImportPrivateKey.. 29-6
29.3 Using Keystores and Certificates in a Development Environment.................................. 29-7
29.3.1 Using the Demonstration Keystores .. 29-7
29.3.2 Creating Demonstration Certificates Using CertGen.. 29-7
29.3.2.1 About CertGen... 29-8
29.3.2.2 Using CertGen to Create a Certificate and Private Key....................................... 29-8
29.3.2.3 CertGen Usage Notes.. 29-9
29.3.2.4 Limitation on CertGen Usage ... 29-9
29.3.3 Using Your Own Certificate Authority ... 29-10
29.3.4 Converting a Microsoft p7b Format to PEM Format... 29-11
29.3.5 Configuring Demo Certificates for Clients ... 29-11
29.4 Obtaining and Storing Certificates for Production Environments 29-12
29.4.1 Generating a Certificate Signing Request ... 29-12
29.4.2 Importing Certificates into the Trust and Identity Keystores 29-13
29.5 Configuring Keystores with WebLogic Server.. 29-15
29.5.1 Configuring Keystores Using the Administration Console 29-15
29.5.2 Configuring a Keystore Using WLST .. 29-17
29.6 Viewing Keystore Contents.. 29-18
29.7 Replacing Expiring Certificates ... 29-20
29.8 Creating a Keystore: An Example ... 29-20
29.9 Supported Formats for Identity and Trust Certificates.. 29-23
29.10 Obtaining a Digital Certificate for a Web Browser ... 29-24

30 Configuring Oracle OPSS Keystore Service

30.1 Prerequisites for Using the OPSS Keystore Service .. 30-1
30.2 Where is the OPSS Keystore Service Documented? ... 30-1
30.3 Configuring the OPSS Keystore Service for Demo Identity and Trust: Main Steps 30-2
30.4 Configuring the OPSS Keystore Service for Custom Identity and Trust: Main Steps ... 30-2

xii

31 Using Host Name Verification

31.1 Using the Default WebLogic Server Host Name Verifier .. 31-1
31.1.1 Using the Default Host Name Verifier on Mac OS X Platforms................................ 31-2
31.2 Using the Wildcarded Host Name Verifier.. 31-2
31.2.1 How the Wildcarded Host Name Verifier Works ... 31-2
31.2.2 Configuring the Wildcarded Host Name Verifier ... 31-3
31.3 Using a Custom Host Name Verifier .. 31-3

32 Specifying a Client Certificate for an Outbound Two-Way SSL Connection

32.1 Overview... 32-1
32.2 Add a Client Certificate to the Identity Keystore.. 32-1
32.3 Initiate the Outbound Two-Way SSL Connection .. 32-2
32.4 Restore the Use of the Server Identity Certificate ... 32-3

33 SSL Debugging

33.1 About the SSL Debug Trace ... 33-1
33.2 Command-Line Properties for Enabling SSL Debugging.. 33-2

34 SSL Certificate Validation

34.1 Controlling the Level of Certificate Validation ... 34-1
34.2 Accepting Certificate Policies in Certificates ... 34-2
34.3 Checking Certificate Chains ... 34-3
34.4 Using Certificate Lookup and Validation Providers .. 34-3
34.5 How SSL Certificate Validation Works in WebLogic Server... 34-4
34.6 Troubleshooting Problems with Certificate Validation ... 34-5

35 Using JCE Providers with WebLogic Server

35.1 Using the RSA JCE Provider .. 35-1
35.2 Using the JDK JCE Provider ... 35-2
35.3 Using nCipher JCE Provider .. 35-2
35.3.1 Installing the nCipher JCE Provider .. 35-2

36 Enabling FIPS Mode

36.1 FIPS Overview.. 36-1
36.2 Enabling FIPS 140-2 Mode From Java Options.. 36-1
36.3 Enabling FIPS 140-2 Mode From java.security .. 36-2
36.4 Verifying JCE When FIPS 140-2 Mode is Enabled .. 36-3
36.5 Important Considerations When Using Web Services ... 36-3
36.5.1 SHA-1 Secure Hash Algorithm Not Supported ... 36-4
36.5.2 X509PKIPathv1 token Not Supported ... 36-5

37 Specifying the SSL Protocol Version

37.1 About the SSL Version Used in the Handshake.. 37-1
37.2 Using the weblogic.security.SSL.protocolVersion System Property................................ 37-2

xiii

37.3 Using the weblogic.security.SSL.minimumProtocolVersion System Property 37-3
37.3.1 Protocols Enabled with the JSSE-Based SSL Implementation.................................... 37-3

38 Using the JSSE-Based SSL Implementation

38.1 System Property Differences Between the JSSE-Based
and Certicom SSL Implementations.. 38-1

38.2 SSL Performance Considerations .. 38-3
38.3 Cipher Suites... 38-4
38.3.1 List of Supported Cipher Suites.. 38-4
38.3.2 Backward Compatibility of Supported Cipher Suites... 38-4
38.3.3 Using Anonymous Ciphers... 38-5
38.3.4 Cipher Suite Name Equivalents ... 38-5
38.3.5 Setting Cipher Suites Using WLST: An Example... 38-6
38.4 Using Debugging with JSSE SSL ... 38-6
38.5 Using the RSA JSSE Provider in WebLogic Server ... 38-7

39 X.509 Certificate Revocation Checking

39.1 Certificate Revocation Checking Overview ... 39-1
39.2 Enabling the Default CR Checking Configuration ... 39-2
39.2.1 Configuring Default CR Checking... 39-3
39.2.2 Customizing the CR Checking Configuration.. 39-3
39.3 Choosing the CR Checking Methods to Be Used by WebLogic Server 39-4
39.4 Failing SSL Certificate Path Validation if Revocation Status Cannot Be

Determined ... 39-5
39.5 Using the Online Certificate Status Protocol ... 39-5
39.5.1 Using Nonces in OCSP Requests.. 39-6
39.5.2 Setting the Response Timeout Interval.. 39-6
39.5.3 Enabling and Configuring the OCSP Response Local Cache..................................... 39-7
39.6 Using Certificate Revocation Lists... 39-7
39.6.1 Enabling Updates from Distribution Points ... 39-8
39.6.2 Configuring the CRL Local Cache.. 39-8
39.7 Configuring Certificate Authority Overrides .. 39-9
39.7.1 General Certificate Authority Overrides... 39-9
39.7.2 Configuring OCSP Properties in a Certificate Authority Override 39-10
39.7.2.1 Identifying the OCSP Responder URL... 39-13
39.7.3 Configuring CRL Properties in a Certificate Authority Override 39-13

40 Configuring an Identity Keystore Specific to a Network Channel

40.1 About Network Channels... 40-1
40.2 Channel-Specific SSL Configuration Attributes .. 40-2
40.3 Steps to Configure a Channel-Specific Identity Keystore .. 40-6
40.4 Using WLST to Configure a Channel-Specific Identity Keystore..................................... 40-7

xiv

41 Configuring RMI over IIOP with SSL

42 Using a Certificate Callback Handler to Validate End User Certificates

42.1 How End User Certificate Callback Handlers Work .. 42-1
42.2 Creating a Certificate Callback Implementation ... 42-2
42.3 Configuring the Certificate Callback with WebLogic Server .. 42-2

Part VII Advanced Security Topics

43 Configuring Cross-Domain Security

43.1 Important Information Regarding Cross-Domain Security Support 43-1
43.2 Enabling Trust Between WebLogic Server Domains.. 43-1
43.2.1 Enabling Cross-Domain Security Between WebLogic Server Domains................... 43-2
43.2.1.1 Configuring Cross-Domain Security .. 43-2
43.2.1.2 Excluding Domains From Cross-Domain Security .. 43-3
43.2.1.3 Configuring Cross-Domain Users... 43-3
43.2.1.4 Configure a Credential Mapping for Cross-Domain Security 43-4
43.2.2 Enabling Global Trust .. 43-6
43.3 Using the Java Authorization Contract for Containers .. 43-7
43.4 Viewing MBean Attributes ... 43-7
43.5 Configuring a Domain to Use JAAS Authorization ... 43-8

44 Configuring JASPIC Security

44.1 JASPIC Mechanisms Override WebLogic Server Defaults .. 44-1
44.2 Prerequisites for Configuring JASPIC .. 44-1
44.2.1 Server Authentication Module Must Be in Classpath... 44-2
44.2.2 Custom Authentication Configuration Providers Must Be in Classpath................. 44-2
44.3 Location of Configuration Data ... 44-2
44.4 Configuring JASPIC for a Domain .. 44-3
44.5 Displaying Authentication Configuration Providers ... 44-3
44.6 Configuring JASPIC for a Web Application .. 44-4
44.7 Configuring JASPIC with WLST ... 44-4
44.7.1 Creating a WLS Authentication Configuration Provider ... 44-5
44.7.2 Creating a Custom Authentication Configuration Provider...................................... 44-5
44.7.3 Listing All WLS and Custom Authentication Configuration Providers 44-5
44.7.4 Enabling JASPIC for a Domain... 44-6
44.7.5 Disabling JASPIC for a Domain.. 44-6

45 Security Configuration MBeans

45.1 SSLMBean ... 45-1
45.2 ServerMBean... 45-2
45.3 EmbeddedLDAPMBean.. 45-2
45.4 RDBMSSecurityStoreMBean .. 45-2
45.5 SecurityConfigurationMBean .. 45-2
45.6 RealmMBean... 45-3

xv

45.7 WindowsNTAuthenticatorMBean .. 45-3
45.8 CustomDBMSAuthenticatorMBean.. 45-3
45.9 ReadonlySQLAuthenticatorMBean... 45-3
45.10 SQLAuthenticatorMBean.. 45-3
45.11 DefaultAuditorMBean... 45-3
45.12 UserLockoutManagerMBean ... 45-4
45.13 Other Security Provider MBeans ... 45-4

Part VIII Appendixes

A Keytool Command Summary

B Using Certificate Chains (Deprecated)

C Interoperating With Keystores From Prior Versions

xvi

xvii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Administering Security for Oracle WebLogic Server 12.2.1.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xviii

Part I
Part I Overview of WebLogic Server Security

Administration

This part provides an overview of WebLogic Server security administration and its
concepts related to configuring security in the WebLogic Server environment.

Part I contains the following chapters:

■ Chapter 1, "Introduction and Roadmap"

■ Chapter 2, "Security Management Concepts"

■ Chapter 3, "WebLogic Server Security Standards"

■ Chapter 4, "Configuring Security for a WebLogic Domain"

■ Chapter 5, "Customizing the Default Security Configuration"

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

[2] This chapter describes the contents and organization of this guide, Administering
Security for Oracle WebLogic Server 12c (12.2.1), as well as new and changed security
features in this release. This guide explains how to configure WebLogic Server security,
including settings for security realms, providers, identity and trust, and SSL. See
Section 1.3, "Related Information" for a description of other WebLogic security
documentation.

This chapter includes the following sections:

■ Document Scope and Audience

■ Guide to This Document

■ Related Information

■ Security Samples and Tutorials

■ What’s New in This Guide

1.1 Document Scope and Audience
This document is intended for the following audiences:

■ Application Architects—Architects who, in addition to setting security goals and
designing the overall security architecture for their organizations, evaluate
WebLogic Server security features and determine how to best implement them.
Application Architects have in-depth knowledge of Java programming, Java
security, and network security, as well as knowledge of security systems and
leading-edge, security technologies and tools.

■ Security Developers—Developers who define the system architecture and
infrastructure for security products that integrate with WebLogic Server and who
develop custom security providers for use with WebLogic Server. They work with
Application Architects to ensure that the security architecture is implemented
according to design and that no security holes are introduced, and work with
Server Administrators to ensure that security is properly configured. Security
Developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java
(including Java Management eXtensions (JMX)), and working knowledge of
WebLogic Server and security provider functionality.

■ Application Developers—Java programmers who focus on developing client
applications, adding security to Web applications and Enterprise JavaBeans (EJBs),
and working with other engineering, quality assurance (QA), and database teams
to implement security features. Application Developers have in-depth/working

Guide to This Document

1-2 Administering Security for Oracle WebLogic Server 12.2.1

knowledge of Java (including Java EE components such as servlets/JSPs and JSEE)
and Java security.

■ Server Administrators—Administrators work closely with Application Architects
to design a security scheme for the server and the applications running on the
server; to identify potential security risks; and to propose configurations that
prevent security problems. Related responsibilities may include maintaining
critical production systems; configuring and managing security realms,
implementing authentication and authorization schemes for server and
application resources; upgrading security features; and maintaining security
provider databases. Server Administrators have in-depth knowledge of the Java
security architecture, including Web services, Web application and EJB security,
Public Key security, SSL, and Security Assertion Markup Language (SAML).

■ Application Administrators—Administrators who work with Server
Administrators to implement and maintain security configurations and
authentication and authorization schemes, and to set up and maintain access to
deployed application resources in defined security realms. Application
Administrators have general knowledge of security concepts and the Java Security
architecture. They understand Java, XML, deployment descriptors, and can
identify security events in server and audit logs.

1.2 Guide to This Document
This document is organized as follows:

■ Part I, "Overview of WebLogic Server Security Administration":

– Describes the audience, organization, and related information for this guide.

– Describes basic features of the WebLogic Server security system.

– Describes the security standards supported by WebLogic Server, including
FIPS versions and cipher suites.

– Describes the default security configuration in WebLogic Server, and lists the
configuration steps for security.

– Explains when to customize the default security configuration, the
configuration requirements for a new security realm, and how to set a security
realm as the default security realm.

■ Part II, "Configuring Security Providers" describes the available configuration
options for the security providers supplied by WebLogic Server and how to
configure a custom security provider.

■ Part III, "Configuring Authentication Providers" describes the Authentication and
Identity Assertion providers supplied by WebLogic Server, including information
about how to configure them.

■ Part IV, "Configuring Single Sign-On" describes how to configure the following:

– Authentication between a WebLogic domain and .NET Web service clients or
browser clients (for example, Internet Explorer) in a Microsoft domain, using
Windows authentication based on the Simple and Protected Negotiate
(SPNEGO) mechanism.

– How to configure authentication between a WebLogic domain and Web
browsers or other HTTP clients, using authentication based on the Security
Assertion Markup Language (SAML) 1.1 and 2.0.

■ Part V, "Managing Security Information":

Related Information

Introduction and Roadmap 1-3

– Provides information about exporting and importing security data between
security realms and security providers.

– Describes the management tasks associated with the embedded LDAP server
used by the WebLogic security providers.

– describes the steps required to configure the RDBMS security store, which
enables you to store the security data managed by several security providers
in an external RDBMS system rather than in the embedded LDAP server. The
use of the RDBMS security store is required for SAML 2.0 services when
configured on multiple servers in a domain, such as in a cluster.

■ Part VI, "Configuring SSL" explains:

– The SSL configuration features in WebLogic Server, including details about the
JSSE-based SSL implementation provided in WebLogic Server.

– How to configure keystores in WebLogic Server, including separate keystores
for identity and trust.

– How to configure the Oracle Platform Security Services (OPSS) Keystore
Service for use with WebLogic Server.

– How to use host name verification, which ensures the host name in the URL to
which the client connects matches the host name in the digital certificate that
the server sends back as part of the SSL connection.

– How to specify a client certificate when making an outbound two-way SSL
connection.

– How to configure certificate revocation (CR) status checking and other
certificate validation features.

– The cipher suites and cryptographic libraries supported in WebLogic Server.

– How WebLogic Server supports the use of the RSA, JDK, and nCipher Java
Cryptography Extension (JCE) providers.

– How to configure FIPS 140-2 mode in WebLogic Server.

■ Part VII, "Advanced Security Topics" describes:

– How to set security configuration options for a WebLogic domain, such as
Cross-Domain Security.

– How to configure the Java Authentication Service Provider Interface for
Containers (JASPIC).

– The WebLogic Security MBeans and MBean attributes that are dynamic (can
be changed without restarting the server) and non-dynamic (changes require a
server restart).

1.3 Related Information
The following Oracle Oracle Fusion Middleware documents contain information that
is relevant to the WebLogic Security Service:

■ Understanding Security for Oracle WebLogic Server—Summarizes the features of the
WebLogic Security Service, including an overview of its architecture and
capabilities. It is the starting point for understanding WebLogic security.

■ Developing Security Providers for Oracle WebLogic Server—Provides security vendors
and application developers with the information needed to develop custom
security providers that can be used with WebLogic Server.

Security Samples and Tutorials

1-4 Administering Security for Oracle WebLogic Server 12.2.1

■ Securing a Production Environment for Oracle WebLogic Server—Highlights essential
security hardening and lockdown measures for you to consider before you deploy
WebLogic Server in a production environment.

■ Securing Resources Using Roles and Policies for Oracle WebLogic Server—Introduces
the various types of WebLogic resources, and provides information about how to
secure these resources using WebLogic Server. This document focuses primarily on
securing URL (Web) and Enterprise JavaBean (EJB) resources.

■ Developing Applications with the WebLogic Security Service—Describes how to
develop secure Web applications.

■ Securing WebLogic Web Services for Oracle WebLogic Server—Describes how to
develop and configure secure Web services.

■ Oracle WebLogic Server Administration Console Online Help—Many security
configuration tasks can be performed using the WebLogic Server Administration
Console. The console's online help describes configuration procedures and
provides a reference for configurable attributes.

■ Upgrading Oracle WebLogic Server—Provides procedures and other information you
need to upgrade from earlier versions of WebLogic Server to this release. It also
provides information about moving applications from an earlier version of
WebLogic Server to this release.

■ Java API Reference for Oracle WebLogic Server—Provides reference documentation
for the WebLogic security packages that are provided with and supported by this
release of WebLogic Server.

1.4 Security Samples and Tutorials
In addition to the documents listed in Section 1.3, "Related Information", Oracle
provides a variety of code samples for developers, some packaged with WebLogic
Server and others available at the Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/indexes/samplecode/weblogic-sample-52212
1.html.

1.4.1 Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in EXAMPLES_
HOME/examples/src/examples/security, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured. By default, this
location is ORACLE_HOME/wlserver/samples/server. For more information about the
WebLogic Server code examples, see "Sample Applications and Code Examples" in
Understanding Oracle WebLogic Server.

The following examples are included to illustrate WebLogic security features:

■ Java Authentication and Authorization Service

■ Outbound and Two-way SSL

1.4.2 Additional Examples Available for Download
Additional WebLogic Server security examples are available for download at the
Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/indexes/samplecode/weblogic-sample-52212
1.html. These examples are distributed as .zip files that you can unzip into an existing
WebLogic Server samples directory structure.

What’s New in This Guide

Introduction and Roadmap 1-5

You build and run the downloadable examples in the same manner as you would an
installed WebLogic Server example. See the download pages of individual examples
for more information.

1.5 What’s New in This Guide
WebLogic Server 12.2.1 includes the following new and changed security features,
which are described in this guide:

■ Support for multiple active security realms. See Section 2.1, "Security Realms in
WebLogic Server".

■ Support for Java EE 7 security, including:

– Java Authorization Contract for Containers 1.5 (JSR 115)

– Java Authentication Service Provider Interface for Containers (JASPIC) 1.1
(JSR 196)

– Packaged Permissions (Java EE 7 Platform Specification)

– Uncovered HTTP methods for Servlet 3.1 (JSR 340)

■ LDAP Authentication provider manageability enhancements. See Section 13.14.6,
"Analyzing the Generic LDAP Authenticator Cache Statistics".

■ The default minimum version of the Transport Layer Security (TLS) protocol
configured in WebLogic Server 12.2.1 is Version 1.1.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.

What’s New in This Guide

1-6 Administering Security for Oracle WebLogic Server 12.2.1

2

Security Management Concepts 2-1

2Security Management Concepts

[3] This chapter describes the basic features of the WebLogic Server security system. For a
broader overview, see Understanding Security for Oracle WebLogic Server.

This chapter includes the following sections:

■ Security Realms in WebLogic Server

■ Security Providers

■ Security Policies and WebLogic Resources

■ The Default Security Configuration in WebLogic Server

■ Configuring WebLogic Security: Main Steps

■ Methods of Configuring Security

■ How Passwords Are Protected in WebLogic Server

2.1 Security Realms in WebLogic Server
The security service in WebLogic Server simplifies the configuration and management
of security while offering robust capabilities for securing your WebLogic Server
deployment. Security realms act as a scoping mechanism. Each security realm consists
of a set of configured security providers, users, groups, security roles, and security
policies. You can configure and activate multiple security realms in a domain;
however, only one can be the default administrative realm.

WebLogic Server provides a default security realm, myrealm, which has the WebLogic
Adjudication, Authentication, Identity Assertion, Authorization, Role Mapping, and
Credential Mapping providers configured by default.

You can customize authentication and authorization functions by configuring a new
security realm to provide the security services you want and then set the new security
realm as the default security realm.

For information about the default security configuration in WebLogic Server, see
Section 2.4, "The Default Security Configuration in WebLogic Server".

For information about configuring a security realm and setting it as the default
security realm, see Chapter 5, "Customizing the Default Security Configuration".

Note: Throughout this document, the term 6.x refers to WebLogic
Server 6.0 and 6.1 and their associated service packs.

Security Providers

2-2 Administering Security for Oracle WebLogic Server 12.2.1

2.2 Security Providers
Security providers are modular components that handle specific aspects of security,
such as authentication and authorization. Although applications can leverage the
services offered by the default WebLogic security providers, the WebLogic Security
Service's flexible infrastructure also allows security vendors to write their own custom
security providers for use with WebLogic Server. WebLogic security providers and
custom security providers can be mixed and matched to create unique security
solutions, allowing organizations to take advantage of new technology advances in
some areas while retaining proven methods in others. The WebLogic Server
Administration Console allows you to administer and manage all your security
providers through one unified management interface.

The WebLogic Security Service supports the following types of security providers:

■ Authentication—Authentication is the process whereby the identity of users or
system processes are proved or verified. Authentication also involves
remembering, transporting, and making identity information available to various
components of a system when that information is needed. Authentication
providers supported by the WebLogic Security Service supply the following types
of authentication:

– Username and password authentication

– Certificate-based authentication directly with WebLogic Server

– HTTP certificate-based authentication proxied through an external Web server

■ Identity Assertion—An Authentication provider that performs perimeter
authentication—a special type of authentication using tokens—is called an
Identity Assertion provider. Identity assertion involves establishing a client's
identity through the use of client-supplied tokens that may exist outside of the
request. Thus, the function of an Identity Assertion provider is to validate and
map a token to a username. Once this mapping is complete, an Authentication
provider's LoginModule can be used to convert the username to a principal (an
authenticated user, group, or system process).

■ Authorization—Authorization is the process whereby the interactions between
users and WebLogic resources are limited to ensure integrity, confidentiality, and
availability. In other words, once a user's identity has been established by an
authentication provider, authorization is responsible for determining whether
access to WebLogic resources should be permitted for that user. An Authorization
provider supplies these services.

■ Role Mapping—You can assign one or more roles to multiple users and then
specify access rights for users who hold particular roles. A Role Mapping provider
obtains a computed set of roles granted to a requestor for a given resource. Role
Mapping providers supply Authorization providers with this information so that
the Authorization provider can answer the "is access allowed?" question for
WebLogic resources that use role-based security (for example, Web applications
and Enterprise JavaBeans (EJBs)).

■ Adjudication—When multiple Authorization providers are configured in a
security realm, each may return a different answer to the "is access allowed"
question for a given resource. Determining what to do if multiple Authorization
providers do not agree is the primary function of an Adjudication provider.
Adjudication providers resolve authorization conflicts by weighing each
Authorization provider's answer and returning a final access decision.

Security Policies and WebLogic Resources

Security Management Concepts 2-3

■ Credential Mapping—A credential map is a mapping of credentials used by
WebLogic Server to credentials used in a legacy or remote system, which tell
WebLogic Server how to connect to a given resource in that system. In other
words, credential maps allow WebLogic Server to log into a remote system on
behalf of a subject that has already been authenticated. Credential Mapping
providers map credentials in this way.

■ Keystore—A keystore is a mechanism for creating and managing
password-protected stores of private keys and certificates for trusted certificate
authorities. The keystore is available to applications that may need it for
authentication or signing purposes. In the WebLogic Server security architecture,
the WebLogic Keystore provider is used to access keystores.

■ Certificate Lookup and Validation (CLV)—X.509 certificates need to be located
and validated for purposes of identity and trust. CLV providers receive
certificates, certificate chains, or certificate references, complete the certificate path
(if necessary), and validate all the certificates in the path. There are two types of
CLV providers:

– A CertPath Builder looks up and optionally completes the certificate path and
validates the certificates.

– A CertPath Validator looks up and optionally completes the certificate path,
validates the certificates, and performs extra validation (for example,
revocation checking).

■ Certificate Registry—A certificate registry is a mechanism for adding certificate
revocation checking to a security realm. The registry stores a list of valid
certificates. Only registered certificates are valid. A certificate is revoked by
removing it from the certificate registry. The registry is stored in the embedded
LDAP server. The Certificate Registry is both a CertPath Builder and a CertPath
Validator.

■ Auditing—Auditing is the process whereby information about security requests
and the outcome of those security requests is collected, stored, and distributed for
the purpose of non-repudiation. In other words, auditing provides an electronic
trail of computer activity. An Auditing provider supplies these services.

For information about the functionality provided by the WebLogic security providers,
see Chapter 6, "About Configuring WebLogic Security Providers" and Chapter 11,
"About Configuring the Authentication Providers in WebLogic Server".

For information about the default security configuration, see Section 2.4, "The Default
Security Configuration in WebLogic Server".

For information about writing custom security providers, see Developing Security
Providers for Oracle WebLogic Server.

2.3 Security Policies and WebLogic Resources
WebLogic Server uses security policies (which replace the ACLs and permissions used
in WebLogic Server 6.x) to protect WebLogic resources. Security policies answer the
question "who has access" to a WebLogic resource. A security policy is created when

Note: The WebLogic Server Keystore provider is removed and is
only supported for backward compatibility. Use JDK keystore instead.
For more information about configuring keystores, see Section 29.2,
"Creating a Keystore".

Security Policies and WebLogic Resources

2-4 Administering Security for Oracle WebLogic Server 12.2.1

you define an association between a WebLogic resource and a user, group, or security
role. You can also optionally associate a time constraint with a security policy. A
WebLogic resource has no protection until you assign it a security policy.

Creating security policies is a multi-step process with many options. To fully
understand this process, read Securing Resources Using Roles and Policies for Oracle
WebLogic Server. That document should be used in conjunction with Securing
WebLogic Security to ensure security is completely configured for a WebLogic Server
deployment.

2.3.1 WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic
Server entity, which can be protected from unauthorized access. WebLogic Server
defines the following resources:

■ Administrative resources such as the WebLogic Server Administration Console
and WebLogic Scripting Tool.

■ Application resources that represent Enterprise applications. This type of resource
includes individual EAR (Enterprise Application aRchive) files and individual
components, such as EJB JAR files contained within the EAR.

■ Component Object Model (COM) resources that are designed as program
component objects according to Microsoft's framework. This type of resource
includes COM components accessed through the Oracle bidirectional COM-Java
(jCOM) bridging tool.

■ Enterprise Information System (EIS) resources that are designed as resource
adapters, which allow the integration of Java applications with existing enterprise
information systems. These resource adapters are also known as connectors.

■ Enterprise JavaBean (EJB) resources including EJB JAR files, individual EJBs
within an EJB JAR, and individual methods on an EJB.

■ Java DataBase Connectivity (JDBC) resources including groups of connection
pools, individual connection pools, and multipools.

■ Java Naming and Directory Interface (JNDI) resources.

■ Java Messaging Service (JMS) resources.

■ Server resources related to WebLogic Server instances, or servers. This type of
resource includes operations that start, shut down, lock, or unlock servers.

■ URL resources related to Web applications. This type of resource can be a Web
Application aRchive (WAR) file or individual components of a Web application
(such as servlets and JSPs).

■ Web services resources related to services that can be shared by and used as
components of distributed, Web-based applications. This type of resource can be
an entire Web service or individual components of a Web service (such as a
stateless session EJB, particular methods in that EJB, the Web application that
contains the web-services.xml file, and so on).

■ Remote resources.

Note: Web resources are deprecated. Use the URL resource instead.

The Default Security Configuration in WebLogic Server

Security Management Concepts 2-5

2.3.2 Deployment Descriptors and the WebLogic Server Administration Console
WebLogic Server offers a choice of models for configuring security roles and policies.
Under the standard Java Enterprise Edition model, you define role mappings and
policies in the Web application or EJB deployment descriptors. The WebLogic Security
Service can use information defined in deployment descriptors to grant security roles
and define security policies for Web applications and EJBs. When WebLogic Server is
booted for the first time, security role and security policy information stored in
web.xml, weblogic.xml, ejb-jar.xml, or weblogic-ejb-jar.xml deployment
descriptors is loaded into the Authorization and Role Mapping providers configured
in the default security realm. You can then view the role and policy information from
the WebLogic Server Administration Console. (Optionally, you may configure the
security realm to use a different security model that allows you to make changes to
that information via the WebLogic Server Administration Console as well.)

To use information in deployment descriptors, at least one Authorization and Role
Mapping provider in the security realm must implement the
DeployableAuthorizationProvider and DeployableRoleProvider Security Service
Provider Interface (SSPI). This SSPI allows the providers to store (rather than retrieve)
information from deployment descriptors. By default, the WebLogic Authorization
and Role Mapping providers implement this SSPI.

If you change security role and security policy in deployment descriptors through the
WebLogic Server Administration Console and want to continue to modify this
information through the WebLogic Server Administration Console, you can set
configuration options on the security realm to ensure changes made through the
Console are not overwritten by old information in the deployment descriptors when
WebLogic Server is rebooted.

For more information, see "Options for Securing Web Application and EJB Resources"
in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

2.4 The Default Security Configuration in WebLogic Server
To simplify the configuration and management of security, WebLogic Server provides
a default security configuration. In the default security configuration, myrealm is set as
the default security realm and the WebLogic Adjudication, Authentication, Identity
Assertion, XACML Authorization, Credential Mapping, XACML Role Mapping, and
CertPath providers are defined as the security providers. WebLogic Server's embedded
LDAP server is used as the data store for these default security providers. To use the
default security configuration, you need to define users, groups, and security roles for
the security realm, and create security policies to protect the WebLogic resources in the
domain.

For a description of the functionality provided by the WebLogic Security providers,
see Understanding Security for Oracle WebLogic Server. If the WebLogic security

Note: WebLogic Server includes the WebLogic Authorization
provider, which is referred to in the WebLogic Server Administration
Console and elsewhere as the Default Authorizer, and the WebLogic
Role Mapping provider, which is referred to in the WebLogic Server
Administration Console and elsewhere as the Default RoleMapper.
Beginning with WebLogic Server 9.1, these providers are no longer the
default providers in newly-created security realms. Instead, the
XACML Authorization provider and the XACML Role Mapping
provider are the default providers.

Configuring WebLogic Security: Main Steps

2-6 Administering Security for Oracle WebLogic Server 12.2.1

providers do not fully meet your security requirements, you can supplement or
replace them. See Developing Security Providers for Oracle WebLogic Server.

If the default security configuration does not meet your requirements, you can create a
new security realm with any combination of WebLogic and custom security providers
and then set the new security realm as the default security realm. See Chapter 5,
"Customizing the Default Security Configuration".

2.5 Configuring WebLogic Security: Main Steps
Because WebLogic Server's security features are closely related, it is difficult to
determine where to start when configuring security. In fact, configuring security for
your WebLogic Server deployment may be an iterative process. Although more than
one sequence of steps may work, Oracle recommends the following procedure:

1. If you plan to use WebLogic Server in a production environment, make sure you
do the following:

a. Secure the host environment prior to installing WebLogic Server, as explained
in Section 4.1, "Performing a Secure Installation of WebLogic Server"

b. When creating the WebLogic domain, configure the domain to run in
production mode, as explained in Section 4.2, "Creating a WebLogic Domain
for Production Use"

c. Immediately after starting the domain for the first time, complete the tasks
described in Section 4.3, "Securing the Domain After You Have Created It".

2. Determine whether or not to use the default security configuration by reading
Section 5.1, "Why Customize the Default Security Configuration?"

■ If you are using the default security configuration, begin at step 3.

■ If you are not using the default security configuration, begin at step 2.

3. Configure additional security providers (for example, configure an LDAP
Authentication provider instead of using the WebLogic Authentication provider)
or configure custom security providers in the default security realm. This step is
optional. By default, WebLogic Server configures the WebLogic security providers
in the default security realm (myrealm). For information about the circumstances
that require you to customize the default security configuration, see Section 5.1,
"Why Customize the Default Security Configuration?" For information about
creating custom security providers, see Developing Security Providers for Oracle
WebLogic Server.

4. Optionally, configure the embedded LDAP server. WebLogic Server's embedded
LDAP server is configured with default options. However, you may want to
change those options to optimize the use of the embedded LDAP server in your
environment. See Chapter 27, "Managing the Embedded LDAP Server".

5. Ensure that user accounts are properly secured. WebLogic Server provides a set of
configuration options for protecting user accounts. By default, they are set for
maximum security. However, during the development and deployment of
WebLogic Server, you may need to weaken the restrictions on user accounts.

Note: You can also create a new security realm, configure security
providers (either WebLogic or custom) in the security realm and set
the new security realm as the default security realm. See Chapter 5,
"Customizing the Default Security Configuration".

Methods of Configuring Security

Security Management Concepts 2-7

Before moving to production, check that the options on user accounts are set for
maximum protection. If you are creating a new security realm, you need to set the
user lockout options. See Section 2.7, "How Passwords Are Protected in WebLogic
Server" and Section 4.6, "Protecting User Accounts".

6. Protect WebLogic resources with security policies. Creating security policies is a
multi-step process with many options. To fully understand this process, read
Securing Resources Using Roles and Policies for Oracle WebLogic Server. Administering
Security for Oracle WebLogic Server 12c (12.2.1) should be used in conjunction with
Securing Resources Using Roles and Policies for Oracle WebLogic Server to ensure
security is completely configured for a WebLogic Server deployment.

7. Configure identity and trust for WebLogic Server. (This step is optional but
strongly recommended, especially for production environments.) See Chapter 29,
"Configuring Keystores".

8. Enable SSL for WebLogic Server. (This step is also optional, but strongly
recommended for all production environments.) See Part VI, "Configuring SSL".

9. When you have moved to production, review and implement the additional
security options described in Securing a Production Environment for Oracle WebLogic
Server.

In addition, you can:

■ Configure a connection filter. See Section 4.7, "Using Connection Filters".

■ Enable interoperability between WebLogic domains. See Chapter 43, "Configuring
Cross-Domain Security".

2.6 Methods of Configuring Security
In many cases, this document describes how to configure WebLogic security by using
the WebLogic Server Administration Console. Generally, any configuration task you
can accomplish through the Console you can also accomplish by using the WebLogic
Scripting Tool or the Java Management Extensions (JMX) APIs. The following table
shows where you can get information about using either tool as an alternative to the
WebLogic Server Administration Console for configuring security:

When you manage security realms, you must use two different MBean servers
depending on your task:

■ To set the value of a security MBean attribute, you must use the Edit MBean
Server.

■ To add users, groups, roles, and policies, or to invoke other operations in a
security provider MBean, you must use a Runtime MBean Server or the Domain
Runtime MBean Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke
operations in security provider MBeans if your client or another JMX client has an edit
session currently active. The WebLogic Server Administration Console automatically

For information about using see the following topics

WLST "Managing Security Data (WLST Online)" in Understanding
the WebLogic Scripting Tool

JMX APIs "Choosing an MBean Server to Manage Security Realms" in
Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server

How Passwords Are Protected in WebLogic Server

2-8 Administering Security for Oracle WebLogic Server 12.2.1

enforces this limitation and automatically accesses the proper MBean server. When
you use the WebLogic Server Administration Console, you can override this limitation
by selecting the Domain > Security > General page and enabling Allow Security
Management Operations if Non-dynamic Changes have been Made. Setting this
attribute to true permits users to perform security management operations without
restarting the server. Note that this attribute is reset to false when a new MBean edit
session begins.

For example, the value of the MinimumPasswordLength attribute in
DefaultAuthenticatorMBean is stored in the domain's configuration document.
Because all modifications to this document are controlled by WebLogic Server, to
change the value of this attribute you must use the Edit MBean Server and acquire a
lock on the domain's configuration. The createUser operation in
DefaultAuthenticatorMBean adds data to an LDAP server, which is not controlled by
WebLogic Server. To prevent incompatible changes between the
DefaultAuthenticatorMBean's configuration and the data that it uses in the LDAP
server, you cannot invoke the createUser operation if you or other users are in the
process of modifying the MinimumPasswordLength attribute. In addition, because
changing this attribute requires you to restart WebLogic Server, you cannot invoke the
createUser operation until you have restarted the server.

2.7 How Passwords Are Protected in WebLogic Server
It is important to protect passwords that are used to access resources in a WebLogic
domain. In the past, usernames and passwords were stored in clear text in a WebLogic
security realm. Now the user account passwords in a WebLogic domain are stored in
the embedded LDAP and use a one-way hash that cannot be decrypted.

The SerializedSystemIni.dat file contains the master encryption key for the domain.
It is associated with a specific WebLogic domain so it cannot be moved from domain to
domain.

Sensitive configuration data, including such items as JDBC passwords, is encrypted
with the master encryption key. This encrypted data is kept in config.xml, or in the
security metadata/policy store in the embedded LDAP. (RDBMS is used if
configured.)

If the SerializedSystemIni.dat file is destroyed or corrupted, you must reconfigure
the WebLogic domain. Therefore, you should take the following precautions:

■ Make a backup copy of the SerializedSystemIni.dat file and put it in a safe
location.

■ Set permissions on the SerializedSystemIni.dat file such that the system
administrator of a WebLogic Server deployment has write and read privileges and
no other users have any privileges.

Note: The password digest feature does not use hashed passwords.
Instead, reversible encryption is used so that password digests can be
computed at runtime. For information on the Enable Password
Digests attribute, see "Default Authentication Provider: Provider
Specific" in Oracle WebLogic Server Administration Console Online Help.

3

WebLogic Server Security Standards 3-1

3WebLogic Server Security Standards

[4] This chapter describes the security standards supported by WebLogic Server.

This chapter includes the following topics:

■ Supported Security Standards

■ Supported FIPS Standards and Cipher Suites

3.1 Supported Security Standards
WebLogic Server supports the security standards shown in Table 3–1.

Table 3–1 WebLogic Server Security Standards Support

Standard Version Additional Considerations

JAAS JAAS version depends on the
Java SE version.

See
http://docs.oracle.com/jav
ase/8/docs/technotes/guide
s/security/jgss/tutorials/
AcnOnly.html.

See Section 43.5, "Configuring a Domain
to Use JAAS Authorization".

JASPIC 1.1 See Chapter 44, "Configuring JASPIC
Security".

JACC 1.5 See Section 43.3, "Using the Java
Authorization Contract for Containers".

Java EE application packaged
permissions

Java EE 7 Platform
Specification

JCE 1.4

RSA JCE: Crypto-J V6.2.0.1

JDK 8 JCE provider (SunJCE) is
also supported.

nCipher JCE is also supported.

See Chapter 35, "Using JCE Providers
with WebLogic Server".

See http://www.ncipher.com for
nCipher JCE information.

JSSE Default SSL implementation
based on JDK 8 Java Secure
Socket Extension (JSSE).

RSA JSSE is also supported

See Chapter 38, "Using the JSSE-Based
SSL Implementation".
See Section 38.5, "Using the RSA JSSE
Provider in WebLogic Server".
Note: Although JSSE supports Server
Name Indication (SNI) in its SSL
implementation, WebLogic Server does
not support SNI.

Supported Security Standards

3-2 Administering Security for Oracle WebLogic Server 12.2.1

Kerberos Version 5 See Chapter 20, "Configuring Single
Sign-On with Microsoft Clients".

LDAP v3 See Chapter 13, "Configuring LDAP
Authentication Providers".
Also see Chapter 27, "Managing the
Embedded LDAP Server".

SAML 1.1, 2.0 See Chapter 22, "Configuring SAML 1.1
Services".
See Chapter 23, "Configuring SAML 2.0
Services".

SPNEGO Specified by
http://tools.ietf.org/html
/rfc4178.

See Chapter 20, "Configuring Single
Sign-On with Microsoft Clients".

SSL v3. (WebLogic Server does not
support SSL 2.0.)

See Chapter 37, "Specifying the SSL
Protocol Version" for version-specific
information.

SSO Via Microsoft Clients

Via SAML

See Chapter 20, "Configuring Single
Sign-On with Microsoft Clients".

See Chapter 21, "Configuring Single
Sign-On with Web Browsers and HTTP
Clients Using SAML".

TLS v1.0, v1.1, v1.2 Note: TLS V1.1 is the default minimum
protocol version configured in
WebLogic Server. Oracle recommends
the use of TLS V1.1 or later in a
production environment.

See Chapter 37, "Specifying the SSL
Protocol Version" for version-specific
information.

Uncovered HTTP methods Servlet 3.1

X.509 v3 WebLogic Server supports 4096-bit
keys. (4096-bit keys may require
substantially more compute time for
some operations.)

Certificates generated with CertGen
have a default 2048-bit key size. You
specify the key size with the -strength
option.

The WebLogic Server demo CA has a
2048-bit key length.

As of JDK 8, the use of x.509 certificates
with RSA keys less than 1024 bits in
length are blocked.

xTensible Access Control Markup
Language (XACML)

2.0 See Chapter 7, "Configuring
Authorization and Role Mapping
Providers".

Partial implementation of Core
and Hierarchical Role Based
Access Control (RBAC) Profile of
XACML

2.0

Specified by
http://docs.oasis-open.org
/xacml/2.0/access_
control-xacml-2.0-rbac-pro
file1-spec-os.pdf.

Table 3–1 (Cont.) WebLogic Server Security Standards Support

Standard Version Additional Considerations

Supported FIPS Standards and Cipher Suites

WebLogic Server Security Standards 3-3

3.2 Supported FIPS Standards and Cipher Suites
Table 3–2 lists the supported FIPS versions and cipher suites.

Table 3–2 Cipher Suites and FIPS 140-2 Supported Versions

Standard Version Additional Considerations

FIPS 140-2 RSA Crypto-J V6.2.0.1

RSA SSL-J V6.2

RSA Cert-J V6.2

See Chapter 36, "Enabling
FIPS Mode".

You can also use the RSA
JSSE and JCE providers in
non-FIPS mode:

See Section 35.1, "Using the
RSA JCE Provider"

See Section 38.5, "Using the
RSA JSSE Provider in
WebLogic Server"

Cipher Suites for JSSE JDK 8 The preferred negotiated
cipher combination is AES +
SHA2.

The set of cipher suites
supported by the JDK 8
SunJSSE is listed here:
http://docs.oracle.com/j
avase/8/docs/technotes/g
uides/security/SunProvid
ers.html#SunJSSEProvider.

Cipher Suites for RSA JSSE Product Dependent See
http://www.emc.com/secur
ity/rsa-bsafe.htm

Cipher suites supported in
the (removed) WebLogic
Server Certicom SSL
implementation and the
SunJSSE equivalent.

Product Dependent Documented for backward
compatibility. See
Table 38–2.

When using Certicom,
WebLogic Server does not
support SHA256 hashing, or
signature algorithms that
include SHA256.

Supported FIPS Standards and Cipher Suites

3-4 Administering Security for Oracle WebLogic Server 12.2.1

4

Configuring Security for a WebLogic Domain 4-1

4Configuring Security for a WebLogic Domain

[5] This chapter summarizes the steps to configure security for a WebLogic Server
environment, with emphasis on tasks to perform before, during, and after creating the
WebLogic domains that operate in that environment.

This chapter includes the following sections:

■ Performing a Secure Installation of WebLogic Server

■ Creating a WebLogic Domain for Production Use

■ Securing the Domain After You Have Created It

■ Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authority
Certificates

■ Storing Private Keys, Digital Certificates, and Trusted Certificate Authority
Certificates

■ Protecting User Accounts

■ Using Connection Filters

For a complete checklist of all components in the WebLogic Server that should be
secured in a production environment, including specific tasks recommended for
securing the WebLogic Server host, the WebLogic Security Service, files and databases
used by WebLogic Server, see Securing a Production Environment for Oracle WebLogic
Server.

4.1 Performing a Secure Installation of WebLogic Server
If you are installing WebLogic Server in a production environment, Oracle strongly
recommends the guidelines described in the following sections:

■ Before Installing WebLogic Server

■ While Running the Installation Program

■ Immediately After Installation is Complete

4.1.1 Before Installing WebLogic Server
Before you start the WebLogic Server installation program, complete the following
tasks:

■ Create a My Oracle Support account so that you can register your WebLogic
Server installation with Oracle and receive security updates automatically. For
more information, visit http://www.oracle.com/support/index.html.

Performing a Secure Installation of WebLogic Server

4-2 Administering Security for Oracle WebLogic Server 12.2.1

■ Secure the host machine, operating system, and file system to ensure that access is
restricted only to authorized users. For example:

– Keep your hardware in a secured area to prevent unauthorized operating
system users from gaining access to the machine and its network connections.

– Make sure the host machine has the latest operating system patches and
security updates.

■ Secure networking services and the file system that the operating system provides
to prevent unauthorized access. For example, make sure that any file system
sharing is secured.

■ Set operating system file access permissions to restrict access to data stored on
disk that will be used or managed by WebLogic Server, such as the security LDAP
database and directories into which keystores are created and managed.

■ Limit the number of user accounts on the host machine. Create a group to contain
only the following user accounts:

1. The user who installs WebLogic Server only.

2. The user who creates the WebLogic domain and uses Node Manager to start
the Administration Server and each Managed Server instance in the domain.

Restrict the privileges of these user accounts to only the following directories:

– Oracle home — Root directory created for all Oracle Fusion Middleware
products on a host computer

– WebLogic home — Root directory of the WebLogic Server installation

– Domain home — Root directory of the WebLogic domain

■ Ensure that any Web servers on the host machine run only as an unprivileged user,
never as root. See also "Security Practices & Evaluations" information available
from the CERT Coordination Center at http://www.cert.org/.

■ Ensure no software development tools or sample software is installed.

■ Consider using additional software to secure your operating system, such as a
reputable intrusion detection system (IDS).

See "Securing the WebLogic Server Host" in Securing a Production Environment for
Oracle WebLogic Server for more information.

4.1.2 While Running the Installation Program
During installation, make sure you do the following:

Note: As new patches become available, you should download and
install them promptly.

Note: Some processes also need access to temporary directories by
default, such as /tmp on Unix platforms. If the privileges of a user
account are restricted to only the Oracle home, WebLogic home, and
WebLogic domain directories, the user must change environment
variables, such as TEMP or TMP, to point to a directory to which that
user does have access.

Creating a WebLogic Domain for Production Use

Configuring Security for a WebLogic Domain 4-3

■ Do not install the sample applications component.

■ On the Specify Security Updates installer screen, select I wish to receive security
updates via My Oracle Support.

For more information, see "Read Security Publications" and "Install WebLogic Server
in a Secure Manner" in Securing a Production Environment for Oracle WebLogic Server.

4.1.3 Immediately After Installation is Complete
■ Remove the Derby DBMS database, which is bundled with WebLogic Server for

use by the sample applications and code examples as a demonstration database.
Derby DBMS is located in the WL_HOME/common/derby directory.

■ Visit the Critical Patch Updates and Security Alerts page at the following location
to review WebLogic Server security advisories:

http://www.oracle.com/technetwork/topics/security/alerts-086861.html

4.2 Creating a WebLogic Domain for Production Use
When configuring a WebLogic domain for use in a production environment, using
tools such as the Configuration Wizard, the pack/unpack commands, or WLST:

■ Configure the domain to run in production mode. The domain mode determines
default settings regarding security and logging. In production mode, the security
configuration is relatively stringent, such as requiring a user name and password
to deploy applications and start the Administration Server.

If you are using the unpack command to create a full WebLogic domain, or a
subset of a domain that is used for a Managed Server domain directory on a
remote machine, use the -server_start_mode=prod parameter to configure
production mode.

Note that it is possible to change the domain mode from development to
production, and vice versa. However, for production environments with more
stringent security requirements, Oracle recommends setting the production
domain mode at the time you create the domain (as opposed to changing a
development mode domain to production mode).

For more information, see "Development and Production Modes" in Understanding
Domain Configuration for Oracle WebLogic Server.

■ If the domain will interoperate with other WebLogic domains, or has the potential
for that use at some future point, choose resource names carefully. Many resource
names are fixed at the time a domain is created, and stringent requirements must
be observed for resource names when using Cross-Domain Security, transactions,
and messaging.

For more information, see "Requirements for Transaction Communication" in
Developing JTA Applications for Oracle WebLogic Server.

■ When creating domains using WLST, do not enter unencrypted passwords in
commands for configuring entities that require them, such as passwords for:

– Domain administrator

– Node Manager user

– Database user

Securing the Domain After You Have Created It

4-4 Administering Security for Oracle WebLogic Server 12.2.1

– JKS keystores (both when creating the keystores and again when configuring
them with WebLogic Server)

– Wallet

Specifying unencrypted passwords in WLST commands is a security risk: they can
be easily viewed from the monitor screen by others, and they are displayed in
process listings that log the execution of those commands. Instead, omit the
password from the command. When the command is executed, WLST
automatically prompts you for any passwords needed to complete the domain
configuration.

4.3 Securing the Domain After You Have Created It
After you have created your domain and have started it, perform the following tasks
to optimize the domain's security:

1. Configure the Password Validation provider to manage and enforce password
composition rules. The Password Validation provider is configured out-of-the-box
to work with several WebLogic authentication providers.

For more information, see Chapter 17, "Configuring the Password Validation
Provider".

2. As you create or add users to the security realm, check that the User Lockout
options on user accounts are set for maximum protection. Note that the
configuration of User Lockout is defined on a per realm basis. Therefore, if the
default User Lockout settings are not suitable for your needs, you might need to
customize these settings whenever you create a new security realm.

For more information, see Section 4.6, "Protecting User Accounts" and Section 2.7,
"How Passwords Are Protected in WebLogic Server".

3. If you have configured Node Manager to start, shut down, and restart the
Administration Server and Managed Server instances distributed across multiple
machines, make sure that Node Manager security is properly configured.

If you are using Java Node Manager (recommended for production environments),
see "Configuring Java-based Node Manager Security" in Administering Node
Manager for Oracle WebLogic Server.

If you are using Script Node Manager, which may be suitable for environments
that have less stringent security requirements, see "Step 2: Configure Node
Manager Security" in Administering Node Manager for Oracle WebLogic Server.

4. Enable auditing, which provides an automated way of collecting and storing
information about events and other activity occurring in the system. Auditing is
available through either of the following means:

■ Configuration auditing — When this is enabled, the Administration Server
emits log messages and generates audit events when a user changes the
configuration of any resource within a domain or invokes management
operations on any resource within a domain.

■ WebLogic Auditing provider — Optional security provider that collects,
stores, and distributes information about operating requests and the outcome
of those requests for the purposes of non-repudiation. When configuration
auditing is enabled, the WebLogic Auditing provider also logs configuration
auditing events.

Securing the Domain After You Have Created It

Configuring Security for a WebLogic Domain 4-5

Note that auditing may impose a performance overhead that should be taken into
consideration. However, by adjusting how auditing is configured, this additional
overhead can be minimized. When enabling auditing, make sure that sufficient
disk space is available for the audit log. For more information, see Chapter 8,
"Configuring the WebLogic Auditing Provider".

5. Make sure that the JVM platform MBean server cannot be accessed remotely. For
more information, see "Monitoring and Management Using JMX Technology" at
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.
html.

6. If you have a requirement to comply with Federal Information Processing
Standards (FIPS) 140-2, complete the appropriate procedures described in
Chapter 36, "Enabling FIPS Mode".

7. Make sure configuration settings for complete message time out are sized
appropriately for your system. For more information, see "Configuring Network
Resources" in Administering Server Environments for Oracle WebLogic Server.

8. Create and configure the keystores used for holding identity and trust; that is, the
keystores containing identity certificates and the keystore containing trusted
Certificate Authority (CA) certificates. See Chapter 29, "Configuring Keystores".

If you are using the Oracle OPSS Keystore Service (KSS) for use with WebLogic
Server, see Chapter 30, "Configuring Oracle OPSS Keystore Service".

Configure certificate validation and revocation checking to ensure that:

■ Each certificate in a certificate chain was issued by a certificate authority, as
explained in Chapter 34, "SSL Certificate Validation".

■ The revocation status of each certificate WebLogic Server validates is current.
See Chapter 39, "X.509 Certificate Revocation Checking".

9. Configure a host name verifier. When making an SSL connection, the host name
verifier ensures that the host name in the URL to which the client connects
matches the host name in the digital certificate that the server sends back. For
information, see Chapter 31, "Using Host Name Verification".

10. Configure SSL for the administration port, network channels, database
connections, LDAP server connections, and other resources handling
communication that must be secured. In particular, make sure that connections to
remote server instances in the domain are secured with SSL. The specific
components for which either one- or two-way SSL needs to be configured depends
on the overall topology of the production environment. For details, see the
following topics:

Table 4–1 SSL Configuration Topics

For information about see the following topic

An overview of using SSL to secure
communications in a basic WebLogic
domain

"Secure Sockets Layer (SSL)" in Understanding
Security for Oracle WebLogic Server

Where to use one-way and two-way SSL
in a basic WebLogic domain

"One-way/Two-way SSL Authentication" in
Understanding Security for Oracle WebLogic Server

Steps to configure SSL in a basic
WebLogic domain

Section 28.2, "Setting Up SSL: Main Steps"

Configuring an administration port for
secure communication with the domain
Administration Server

"Administration Port and Administrative Channel"
in Administering Server Environments for Oracle
WebLogic Server

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates

4-6 Administering Security for Oracle WebLogic Server 12.2.1

11. Restrict the size and the time limit of requests on external channels to prevent
Denial of Service attacks. For information, see "Reducing the Potential for Denial
of Service Attacks" in Tuning Performance of Oracle WebLogic Server.

12. If you use multiple Authentication providers, be sure to set the JAAS control flag
correctly. For information, see Section 11.2, "Using More Than One Authentication
Provider".

13. Ensure that you have correctly assigned users and groups to the default WebLogic
Server security roles. For information, see "Users, Groups, And Security Roles" in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

4.4 Obtaining Private Keys, Digital Certificates, and Trusted Certificate
Authority Certificates

You have multiple choices for obtaining private keys, digital certificates, and trusted
CA certificates for your WebLogic Server environment. When choosing, note the
following considerations:

■ For production environments, Oracle strongly recommends obtaining private keys
and digital certificates only from a reputable certificate authority such as Entrust
or Symantec Corporation. For information, see Section 29.4, "Obtaining and
Storing Certificates for Production Environments".

■ For development environments only, you can use the digital certificates, private
keys, and trusted CA certificates provided by WebLogic Server. You can also use
keytool or the CertGen utility to generate self-signed certificates. For information,
see Section 29.3, "Using Keystores and Certificates in a Development
Environment".

Securing database connections "Understanding Data Source Security" in
Administering JDBC Data Sources for Oracle WebLogic
Server

An overview of using SSL in Oracle
Fusion Middleware to secure
components in web, middle, and data
tiers

"About SSL in Oracle Fusion Middleware" in
Administering Oracle Fusion Middleware

Best practices for configuring SSL in
WebLogic Server

"Section 2. Security Best Practices" in Document ID
1074055.1, available from My Oracle Support at
https://support.oracle.com/

Notes: Note the following:

■ By default, WebLogic Server is configured for one-way SSL
authentication; however, the SSL port is disabled. Oracle strongly
recommends enabling the SSL port in all server instances in a
production domain.

■ The demonstration digital certificates, private keys, and trusted
CA certificates provided in WebLogic Server should never be used
in a production environment.

Table 4–1 (Cont.) SSL Configuration Topics

For information about see the following topic

Protecting User Accounts

Configuring Security for a WebLogic Domain 4-7

4.5 Storing Private Keys, Digital Certificates, and Trusted Certificate
Authority Certificates

Once you have obtained private keys, digital certificates, and trusted CA certificates,
you need to store them so that WebLogic Server can use them to find and verify
identity. Private keys, their associated digital certificates, and trusted CA certificates
are stored in keystores. Then you need to configure those keystores with WebLogic
Server.

4.6 Protecting User Accounts
WebLogic Server defines a set of configuration options to protect user accounts from
intruders. In the default security configuration, these options are set for maximum
protection. You can use the WebLogic Server Administration Console to modify these
options using the Configuration > User Lockout page, which is available for each
security realm.

As a system administrator, you have the option of turning off all the configuration
options, increasing the number of login attempts before a user account is locked,
increasing the time period in which invalid login attempts are made before locking the
user account, and changing the amount of time a user account is locked. Remember
that changing the configuration options lessens security and leaves user accounts
vulnerable to security attacks. See "Set user lockout attributes" in the Oracle WebLogic
Server Administration Console Online Help.

For information about unlocking a locked user account, see "Unlock user accounts" in
the Oracle WebLogic Server Administration Console Online Help. Unlocking a locked user

For information about see the following topic

Creating a keystore Section 29.2, "Creating a Keystore"

Configuring a keystore to be used
with WebLogic Server

Section 29.5, "Configuring Keystores with WebLogic
Server"

A step-by-step example of using the
keytool utility to create a keystore
and store keys and certificates in it

Section 29.8, "Creating a Keystore: An Example"

Displaying the certificates contained
in a keystore

Section 29.6, "Viewing Keystore Contents"

Updating certificates that are due to
expire

Section 29.7, "Replacing Expiring Certificates"

Notes: The User Lockout options apply to the default security realm
and all its security providers. User Lockout works in all security
realms, is layered on top of all configured providers, including custom
ones, and is enabled by default.

If you are using an Authentication provider that has its own
mechanism for protecting user accounts, consider if disabling User
Lockout on the security realm is appropriate because other
Authentication providers might be configured in the security realm.

If a user account becomes locked and you delete the user account and
add another user account with the same name and password, the User
Lockout configuration options will not be reset.

Using Connection Filters

4-8 Administering Security for Oracle WebLogic Server 12.2.1

account can be done through either the WebLogic Server Administration Console or
the clearLockout attribute on the UserLockoutManagerRuntimeMBean.

4.7 Using Connection Filters
Connection filters allow you to deny access at the network level. They can be used to
protect server resources on individual servers, server clusters, or an entire internal
network or intranet. For example, you can deny any non-SSL connections originating
outside of your corporate network. Network connection filters are a type of firewall in
that they can be configured to filter on protocols, IP addresses, and DNS node names.

Connection filters are particularly useful when using the Administration port.
Depending on your network firewall configuration, you may be able to use a
connection filter to further restrict administration access. A typical use might be to
restrict access to the Administration port to only the servers and machines in the
WebLogic domain. An attacker who gets access to a machine inside the firewall, still
cannot perform administration operations unless the attacker is on one of the
permitted machines.

WebLogic Server provides a default connection filter called
weblogic.security.net.ConnectionFilterImpl. This connection filter accepts all
incoming connections and also provides static factory methods that allow the server to
obtain the current connection filter. To configure this connection filter to deny access,
simply enter the connection filters rules in the WebLogic Server Administration
Console.

You can also use a custom connection filter by implementing the classes in the
weblogic.security.net package. For information about writing a connection filter,
see "Using Network Connection Filters" in Developing Applications with the WebLogic
Security Service. Like the default connection filter, custom connection filters are
configured in the WebLogic Server Administration Console.

To configure a connection filter:

1. Enable the logging of accepted messages. This Connection Logger Enabled option
logs successful connections and connection data in the server. This information can
be used to debug problems relating to server connections.

2. Choose which connection filter is to be used in the domain.

■ To configure the default connection filter, specify
weblogic.security.net.ConnectionFilterImpl in Connection Filter.

■ To configure a custom connection filter, specify the class that implements the
network connection filter in Connection Filter. This class must also be
specified in the CLASSPATH for WebLogic Server.

3. Enter the syntax for the connection filter rules.

For more information:

■ See "Configure connection filtering" in the Oracle WebLogic Server Administration
Console Online Help.

■ For information about connection filter rules and writing a custom connection
filter, see "Using Network Connection Filters" and "Developing Custom
Connection Filters" in Developing Applications with the WebLogic Security Service.

■ You can also use the WebLogic Scripting Tool or Java Management Extensions
(JMX) APIs to create a new security configuration.

5

Customizing the Default Security Configuration 5-1

5Customizing the Default Security Configuration

[6] This chapter describes how you can customize the default security configuration by
creating a new security realm.

This chapter includes the following sections:

■ Why Customize the Default Security Configuration?

■ Using Automatic Realm Restart

■ Before You Create a New Security Realm

■ Creating and Configuring a New Security Realm: Main Steps

For information about configuring security providers, see Chapter 6, "About
Configuring WebLogic Security Providers" and Chapter 11, "About Configuring the
Authentication Providers in WebLogic Server".

For information about migrating security data to a new security realm, see Chapter 25,
"Migrating Security Data".

5.1 Why Customize the Default Security Configuration?
To simplify the configuration and management of security, WebLogic Server provides
a default security configuration. In the default security configuration, myrealm is set as
the default (active) security realm, and the WebLogic Adjudication, Authentication,
Identity Assertion, Credential Mapping, CertPath, XACML Authorization and
XACML Role Mapping providers are defined as the security providers in the security
realm.

Customize the default security configuration if you want to do any of the following:

■ Replace one of the security providers in the default realm with a different security
provider.

■ Configure additional security providers in the default security realm. (For
example, if you want to use two Authentication providers, one that uses the
embedded LDAP server and one that uses a Windows NT store of users and
groups.)

■ Use an Authentication provider that accesses an LDAP server other than
WebLogic Server's embedded LDAP server.

■ Use an existing store of users and groups (for example, a DBMS database) instead
of defining users and groups in the WebLogic Authentication provider (also
known as the DefaultAuthenticator).

■ When performing authentication, use the GUID or DN attributes of principals, in
addition to user names, specify that principal matching is case-insensitive.

Using Automatic Realm Restart

5-2 Administering Security for Oracle WebLogic Server 12.2.1

■ Add an Auditing provider to the default security realm.

■ Use an Identity Assertion provider that handles SAML assertions or Kerberos
tokens.

■ Use the Certificate Registry to add certificate revocation to the security realm.

■ Change the default configuration settings of the security providers.

■ Use a custom Authorization or Role Mapping provider that does not support
parallel security policy and role modification, respectively, in the security provider
database.

For information about configuring different types of security providers in a security
realm, see Chapter 6, "About Configuring WebLogic Security Providers" and
Chapter 11, "About Configuring the Authentication Providers in WebLogic Server".

The easiest way to customize the default security configuration is to add the security
providers you want to the default security realm (myrealm). However, Oracle
recommends instead that you customize the default security configuration by creating
an entirely new security realm. This preserves your ability to revert more easily to the
default security configuration. You configure security providers for the new realm;
migrate any security data, such as users as groups, from the existing default realm;
and then set the new security realm as the default realm. See Section 5.4, "Creating and
Configuring a New Security Realm: Main Steps".

5.2 Using Automatic Realm Restart
This section is TBD.

5.3 Before You Create a New Security Realm
Before creating a new security realm, you need to decide:

■ Which security providers you want to use. WebLogic Server includes a wide
variety of security providers and, in addition, allows you to create or obtain
custom security providers. A valid security realm requires an Authentication
provider, an Authorization provider, an Adjudication provider, a Credential
Mapping provider, a Role Mapping provider, and a CertPathBuilder. In addition, a
security realm can optionally include Identity Assertion, Auditing, and Certificate
Registry providers. If your new security realm includes two or more providers of
the same type (for example, more than one Authentication provider or more than
one Authorization provider), you need to determine how these providers should
interact with each other. See Section 11.2, "Using More Than One Authentication
Provider".

In addition, custom Authorization and Role Mapping providers may or may not
support parallel security policy and role modification, respectively, in the security
provider database. If your custom Authorization and Role Mapping security
providers do not support parallel modification, the WebLogic Security framework
can enforce a synchronization mechanism that results in each application and
module being placed in a queue and deployed sequentially. To do this, set the
Deployable Provider Synchronization Enabled and Deployable Provider
Synchronization Timeout controls for the realm.

■ What model to use to set security roles and security policies for Web application
and EJB resources. These security roles and policies can be set through
deployment descriptors or through the WebLogic Server Administration Console.

Creating and Configuring a New Security Realm: Main Steps

Customizing the Default Security Configuration 5-3

See "Options for Securing Web Application and EJB Resources" in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

■ Whether or not to use the Web resource.

The Web resource is deprecated. If you are configuring a custom Authorization
provider that uses the Web resource (instead of the URL resource) in the new
security realm, enable Use Deprecated Web Resource on the new security realm.
This option changes the runtime behavior of the Servlet container to use a Web
resource rather than a URL resource when performing authorization.

For more information, see "Configure new security realms" in the Oracle WebLogic
Server Administration Console Online Help.

5.4 Creating and Configuring a New Security Realm: Main Steps
To create a new security realm:

1. Define a name and set the configuration options for the security realm. See
Section 5.3, "Before You Create a New Security Realm" and "Configure new
security realms" in the Oracle WebLogic Server Administration Console Online Help.

2. Configure the required security providers for the security realm. A valid security
realm requires an Authentication provider, an Authorization provider, an
Adjudication provider, a Credential Mapping provider, a Role Mapping provider,
and a CertPathBuilder. See Chapter 6, "About Configuring WebLogic Security
Providers" and Chapter 11, "About Configuring the Authentication Providers in
WebLogic Server".

3. Optionally, define Identity Assertion, Auditing, and Certificate Registry providers.
See Chapter 6, "About Configuring WebLogic Security Providers" and Chapter 11,
"About Configuring the Authentication Providers in WebLogic Server".

4. If you configured the Default Authentication, Authorization, Credential Mapping
or Role Mapping provider or the Certificate Registry in the new security realm,
verify that the settings of the embedded LDAP server are appropriate. See
Chapter 27, "Managing the Embedded LDAP Server".

5. Optionally, configure caches to improve the performance of the WebLogic or
LDAP Authentication providers in the security realm. See Section 13.14,
"Improving the Performance of LDAP Authentication Providers".

6. Protect WebLogic resources in the new security realm with security policies.
Creating security policies is a multi-step process with many options. To fully
understand this process, read Securing Resources Using Roles and Policies for Oracle
WebLogic Server in conjunction with Administering Security for Oracle WebLogic
Server 12c (12.2.1) to ensure security is completely configured for a WebLogic
Server deployment.

7. If the security data (users and groups, roles and policies, and credential maps)
defined in the existing security realm will also be valid in the new security realm,
you can export the security data from the existing realm and import it into the new
security realm. See Chapter 25, "Migrating Security Data".

Note: When you create a new security realm, you must configure at
least one of the Authentication providers to return asserted
LoginModules. Otherwise, run-as tags defined in deployment
descriptors will not work.

Creating and Configuring a New Security Realm: Main Steps

5-4 Administering Security for Oracle WebLogic Server 12.2.1

8. Protect user accounts in the new security realm from dictionary attacks by setting
lockout attributes. See Section 4.6, "Protecting User Accounts".

9. Optionally, set the new realm as the default administrative realm for the WebLogic
domain. See "Change the default security realm" in the Oracle WebLogic Server
Administration Console Online Help.

Note: You can also use the WebLogic Scripting Tool or Java
Management Extensions (JMX) APIs to create a new security
configuration. See Understanding the WebLogic Scripting Tool.

Part II
Part II Configuring Security Providers

This part explains how to configure the security providers provided by WebLogic
Server.

Part II contains the following chapters:

■ Chapter 6, "About Configuring WebLogic Security Providers"

■ Chapter 7, "Configuring Authorization and Role Mapping Providers"

■ Chapter 8, "Configuring the WebLogic Auditing Provider"

■ Chapter 9, "Configuring Credential Mapping Providers"

■ Chapter 10, "Configuring the Certificate Lookup and Validation Framework"

Note: WebLogic Server includes so many Authentication providers
and Identity Assertion providers that they are presented in a separate
section. See Part III, "Configuring Authentication Providers".

6

About Configuring WebLogic Security Providers 6-1

6About Configuring WebLogic Security
Providers

[7] This chapter provides general information about configuring the security providers
supplied by WebLogic Server.

This chapter includes the following sections:

■ When Do You Need to Configure a Security Provider?

■ Reordering Security Providers

■ Enabling Synchronization in Security Policy and Role Modification at Deployment

6.1 When Do You Need to Configure a Security Provider?
By default, most WebLogic security providers are generally configured to run after
you install WebLogic Server. However, the following circumstances require you to
supply configuration information:

■ Before using the WebLogic Identity Assertion provider, define the active token
type. See Chapter 18, "Configuring Identity Assertion Providers".

■ To map tokens to a user in a security realm, configure the user name mapper in the
WebLogic Identity Assertion provider. See Section 9.1, "Configuring a WebLogic
Credential Mapping Provider".

■ To use auditing in the default (active) security realm, configure either the
WebLogic Auditing provider or a custom Auditing provider. See Chapter 8,
"Configuring the WebLogic Auditing Provider".

■ To use HTTP and Kerberos-based authentication in conjunction with WebLogic
Server. See Chapter 20, "Configuring Single Sign-On with Microsoft Clients".

■ To use identity assertion based on SAML assertions. See Chapter 21, "Configuring
Single Sign-On with Web Browsers and HTTP Clients Using SAML".

■ To use certificate revocation. See Chapter 10, "Configuring the Certificate Lookup
and Validation Framework".

■ To use an LDAP server other than the embedded LDAP server, configure one of
the LDAP Authentication providers. An LDAP authentication provider can be
used instead of or in addition to the WebLogic Authentication provider. See
Chapter 13, "Configuring LDAP Authentication Providers".

■ To access user, password, group, and group membership information stored in
databases for authentication purposes. See Chapter 14, "Configuring RDBMS
Authentication Providers". The RDBMS Authentication providers can be used to

Reordering Security Providers

6-2 Administering Security for Oracle WebLogic Server 12.2.1

upgrade from the RDBMS security realm.

■ To use Windows NT users and groups for authentication purposes. See
Chapter 15, "Configuring the Windows NT Authentication Provider". The
Windows NT Authentication provider is the upgrade path for the Window NT
security realm.

■ When you create a new security realm, configure security providers for that realm.
See Section 5.4, "Creating and Configuring a New Security Realm: Main Steps".

■ When you add a custom security provider to a security realm or replace a
WebLogic security provider with a custom security provider, configure options for
the custom security provider.

You can use either the WebLogic-supplied security providers or a custom security
provider in a security realm. To configure a custom security provider, see "Configure
custom security providers" in the Oracle WebLogic Server Administration Console Online
Help.

6.2 Reordering Security Providers
You can configure more than one security provider of a given type in a security realm.
For example, you might use two or more different Role Mapping providers or
Authorization providers. If you have more than one security provider of the same type
in a security realm, the order in which these providers are called can affect the overall
outcome of the security processes. By default, security providers are called in the order
that they were added to the realm. You can use the WebLogic Server Administration
Console to change the order of the providers. See "Re-order security providers" in the
Oracle WebLogic Server Administration Console Online Help.

6.3 Enabling Synchronization in Security Policy and Role Modification at
Deployment

For the best performance, and by default, Weblogic Server supports parallel
modification to security policy and roles during application and module deployment.
For this reason, deployable Authorization and Role Mapping providers configured in
the security realm should support parallel calls. The WebLogic deployable XACML
Authorization and Role Mapping providers meet this requirement.

However, custom deployable Authorization and Role Mapping providers may or may
not support parallel calls. If your custom deployable Authorization or Role Mapping
providers do not support parallel calls, you need to disable the parallel security policy
and role modification and instead enforce a synchronization mechanism that results in
each application and module being placed in a queue and deployed sequentially.
Otherwise, if a provider does not support parallel calls, it generates a
java.util.ConcurrentModificationException exception.

You can turn on this synchronization enforcement mechanism on in two ways:

Note: Enabling the synchronization mechanism affects every
deployable provider configured in the realm, including the WebLogic
Server XACML providers. Enabling the synchronization mechanism
may negatively impact the performance of these providers.

Enabling Synchronization in Security Policy and Role Modification at Deployment

About Configuring WebLogic Security Providers 6-3

■ From the WebLogic Server Administration Console. Set the Deployable Provider
Synchronization Enabled and Deployable Provider Synchronization Timeout
controls for the realm.

The Deployable Provider Synchronization Enabled control enforces a
synchronization mechanism that results in each application and module being
placed in a queue and deployed sequentially.

The Deployable Provider Synchronization Timeout control sets or returns the
timeout value, in milliseconds, for the deployable security provider
synchronization operation. This is the maximum time a deployment cycle wants to
wait in the queue when the previous cycle is stuck.

■ From the DeployableProviderSynchronizationEnabled and
DeployableProviderSynchronizationTimeout attributes of the RealmMBean. From
WLST, set the DeployableProviderSynchronizationEnabled and
DeployableProviderSynchronizationTimeout attributes of the RealmMBean.

See RealmMBean in MBean Reference for Oracle WebLogic Server.

Enabling Synchronization in Security Policy and Role Modification at Deployment

6-4 Administering Security for Oracle WebLogic Server 12.2.1

7

Configuring Authorization and Role Mapping Providers 7-1

7Configuring Authorization and Role Mapping
Providers

[8] This chapter explains how to configure an Authorization provider, a Role Mapping
provider, and the WebLogic Adjudication provider, which resolves conflicts when
multiple Authorization providers are configured in the realm.

This chapter includes the following sections:

■ Section 7.1, "Configuring an Authorization Provider"

■ Section 7.2, "Configuring the WebLogic Adjudication Provider"

■ Section 7.3, "Configuring a Role Mapping Provider"

7.1 Configuring an Authorization Provider
Authorization is the process whereby the interactions between users and resources are
limited to ensure integrity, confidentiality, and availability. In other words,
authorization is responsible for controlling access to resources based on user identity
or other information. You should only need to configure an Authorization provider
when you create a new security realm.

By default, security realms in newly created domains include the XACML
Authorization provider. The XACML Authorization provider uses XACML, the
eXtensible Access Control Markup Language. For information about using the
XACML Authorization provider, see "Using XACML Documents to Secure WebLogic
Resources" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.
WebLogic Server also includes the WebLogic Authorization provider, which uses a
proprietary policy language. This provider is named DefaultAuthorizer, but is no
longer the default authorization provider.

See Section 6.3, "Enabling Synchronization in Security Policy and Role Modification at
Deployment" for information about how Authorization providers support parallel
modification to security policy during application and module deployment.

See "Configure Authorization providers" in the Oracle WebLogic Server Administration
Console Online Help.

Configuring the WebLogic Adjudication Provider

7-2 Administering Security for Oracle WebLogic Server 12.2.1

7.2 Configuring the WebLogic Adjudication Provider
When multiple Authorization providers are configured in a security realm, each may
return a different answer to the "is access allowed" question for a given resource. This
answer may be PERMIT, DENY, or ABSTAIN. Determining what to do if multiple
Authorization providers do not agree on the answer is the primary function of the
Adjudication provider. Adjudication providers resolve authorization conflicts by
weighting each Authorization provider's answer and returning a final decision.

Each security realm requires an Adjudication provider, and can have no more than one
active Adjudication provider. By default, a WebLogic security realm is configured with
the WebLogic Adjudication provider. You can use either the WebLogic Adjudication
provider or a custom Adjudication provider in a security realm.

By default, most configuration options for the WebLogic Adjudication provider are
defined. However, you can set the Require Unanimous Permit option to determine
how the WebLogic Adjudication provider handles a combination of PERMIT and
ABSTAIN votes from the configured Authorization providers.

■ If the option is enabled (the default), all Authorization providers must vote PERMIT
in order for the Adjudication provider to vote true.

■ If the option is disabled, ABSTAIN votes are counted as PERMIT votes.

7.3 Configuring a Role Mapping Provider
Role Mapping providers compute the set of roles granted to a subject for a given
resource. Role Mapping providers supply Authorization providers with this role
information so that the Authorization provider can answer the "is access allowed?"
question for WebLogic resources. By default, a WebLogic security realm is configured
with the XACML Role Mapping provider. The XACML Role Mapping provider uses
XACML, the eXtensible Access Control Markup Language. For information about
using the XACML Role Mapping provider, see "Using XACML Documents to Secure
WebLogic Resources" in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

WebLogic Server also includes the WebLogic Role Mapping provider, which uses a
proprietary policy language. This provider is named DefaultRoleMapper, but is no
longer the default role mapping provider in newly-created security realms. You can
also use a custom Role Mapping provider in your security realm.

By default, most configuration options for the XACML Role Mapping provider are
already defined. However, you can set Role Mapping Deployment Enabled, which
specifies whether or not this Role Mapping provider imports information from

Note: The WebLogic Authorization provider improves performance
by caching the roles, predicates, and resource data that it looks up. For
information on configuring these caches, see "Best Practices:
Configure Entitlements Caching When Using WebLogic Providers" in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.
The XACML Authorization uses its own cache, but this cache is not
configurable.

Note: In the WebLogic Server Administration Console, the WebLogic
Adjudication provider is referred to as the Default Adjudicator.

Configuring a Role Mapping Provider

Configuring Authorization and Role Mapping Providers 7-3

deployment descriptors for Web applications and EJBs into the security realm. This
setting is enabled by default.

In order to support Role Mapping Deployment Enabled, a Role Mapping provider
must implement the DeployableRoleProvider SSPI. Roles are stored by the XACML
Role Mapping provider in the embedded LDAP server.

See Section 6.3, "Enabling Synchronization in Security Policy and Role Modification at
Deployment" for information about how Role Mapping providers support parallel
modification to roles during application and module deployment.

For information about using, developing, and configuring Role Mapping providers,
see:

■ "Users, Groups, And Security Roles" in Securing Resources Using Roles and Policies
for Oracle WebLogic Server

■ "Role Mapping Providers" in Developing Security Providers for Oracle WebLogic
Server

■ "Configure Role Mapping providers" in the Oracle WebLogic Server Administration
Console Online Help

Note: The WebLogic Role Mapping provider improves performance
by caching the roles, predicates, and resource data that it looks up. For
information on configuring these caches, see "Best Practices:
Configure Entitlements Caching When Using WebLogic Providers" in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.
The XACML Role Mapping provider uses its own cache, but this
cache is not configurable.

Configuring a Role Mapping Provider

7-4 Administering Security for Oracle WebLogic Server 12.2.1

8

Configuring the WebLogic Auditing Provider 8-1

8Configuring the WebLogic Auditing Provider

[9] This chapter explains how to configure the WebLogic Auditing provider, an optional
security provider that collects, stores, and distributes information about operating
requests and the outcome of those requests for the purposes of non-repudiation.

This chapter contains the following sections:

■ Auditing Provider Overview

■ Events Logged by the WebLogic Auditing Provider

■ Configuration Options

■ Auditing ContextHandler Elements

■ Configuration Auditing

■ Configuration Auditing Messages

■ Audit Events and Auditing Providers

8.1 Auditing Provider Overview
Auditing is the process whereby information about operating requests and the
outcome of those requests are collected, stored, and distributed for the purposes of
non-repudiation. In other words, Auditing providers produce an electronic trail of
computer activity.

Configuring an Auditing provider is optional. The default security realm (myrealm)
does not have an Auditing provider configured. WebLogic Server includes a provider
named the WebLogic Auditing provider (referred to as DefaultAuditor in the
WebLogic Server Administration Console). You can also develop custom Auditing
providers, as described in "Auditing Providers" in Developing Security Providers for
Oracle WebLogic Server.

8.2 Events Logged by the WebLogic Auditing Provider
The WebLogic Auditing provider can log the events described in Table 8–1. In
addition, if you enable configuration auditing (as described in Section 8.5,
"Configuration Auditing"), the WebLogic Auditing provider can log the events
described in Table 8–1.

Table 8–1 WebLogic Auditing Provider Events

The following audit event indicates

AUTHENTICATE A simple authentication (username and password)
occurred.

Configuration Options

8-2 Administering Security for Oracle WebLogic Server 12.2.1

8.3 Configuration Options
By default, most configuration options for the WebLogic Auditing provider are
already defined and, once it is added to the active security realm, the WebLogic
Auditing provider will begin to record audit events. However, you need to define the
following settings, which you can do in the WebLogic Server Administration Console
by selecting the Configuration > Provider Specific page for the provider. You can also
use WebLogic Scripting tool or the Java Management Extensions (JMX) APIs to
configure the Auditing provider:

■ Rotation Minutes—Specifies how many minutes to wait before creating a new
DefaultAuditRecorder.log file. At the specified time, the audit file is closed and a
new one is created. A backup file named
DefaultAuditRecorder.YYYYMMDDHHMM.log (for example,
DefaultAuditRecorder.200405130110.log) is created in the same directory.

■ Severity—Severity level appropriate for your WebLogic Server deployment. The
WebLogic Auditing provider audits security events of the specified severity, as
well as all events with a higher numeric severity rank. For example, if you set the
severity level to ERROR, the WebLogic Auditing provider audits security events of
severity level ERROR, SUCCESS, and FAILURE. You can also set the severity level
to CUSTOM, and then enable the specific severity levels you want to audit, such
as ERROR and FAILURE events only. Audit events include both the severity name
and numeric rank; therefore, a custom Auditing provider can filter events by
either the name or the numeric rank. Auditing can be initiated when the following
levels of security events occur.

ASSERTIDENTITY A perimeter authentication (based on tokens) occurred.

USERLOCKED A user account is locked because of invalid login
attempts.

USERUNLOCKED The lock on a user account is cleared.

USERLOCKOUTEXPIRED The lock on a user account expired.

ISAUTHORIZED An authorization attempt occurred.

ROLEEVENT A getRoles event occurred.

ROLEDEPLOY A deployRole event occurred.

ROLEUNDEPLOY An undeployRole event occurred.

POLICYDEPLOY A deployPolicy event occurred.

POLICYUNDEPLOY An undeployPolicy event occurred.

START_AUDIT An Auditing provider has been started.

STOP_AUDIT An Auditing provider has been stopped.

Event Severity Rank

INFORMATION 1

WARNING 2

ERROR 3

SUCCESS 4

Table 8–1 (Cont.) WebLogic Auditing Provider Events

The following audit event indicates

Auditing ContextHandler Elements

Configuring the WebLogic Auditing Provider 8-3

All auditing information recorded by the WebLogic Auditing provider is saved in WL_
HOME\yourdomain\yourserver\logs\DefaultAuditRecorder.log by default. Although
an Auditing provider is configured per security realm, each server writes auditing
data to its own log file in the server directory. You can specify a new directory location
for the DefaultAuditRecorder.log file on the command line with the following Java
startup option:

-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be c:\foo\yourserver\logs\DefaultAuditRecorder.log.

For more information, see "Security" in the Command Reference for Oracle WebLogic
Server.

For more information, see "Configure Auditing providers" in the Oracle WebLogic
Server Administration Console Online Help.

8.4 Auditing ContextHandler Elements
An Audit Event includes a ContextHandler that can hold a variety of information or
objects. Set the WebLogic Auditing provider's Active ContextHandler Entries attribute
to specify which ContextElement entries in the ContextHandler are recorded by the
Auditing provider. By default, none of the ContextElements are audited. Objects in the
ContextHandler are in most cases logged using the toString method. Table 8–2 lists the
available ContextHandler entries.

FAILURE 5

Note: Using an Auditing provider affects the performance of
WebLogic Server even if only a few events are logged.

Table 8–2 Context Handler Entries for Auditing

Context Element Name Description and Type

com.bea.contextelement.
servlet.HttpServletRequest

A servlet access request or SOAP message via HTTP

javax.http.servlet.HttpServletRequest

com.bea.contextelement.
servlet.HttpServletResponse

A servlet access response or SOAP message via HTTP

javax.http.servlet.HttpServletResponse

com.bea.contextelement.
wli.Message

An Oracle WebLogic Integration message. The message is
streamed to the audit log.

java.io.InputStream

com.bea.contextelement.
channel.Port

Internal listen port of the network channel accepting or
processing the request

java.lang.Integer

com.bea.contextelement.
channel.PublicPort

External listen port of the network channel accepting or
processing the request

java.lang.Integer

com.bea.contextelement.
channel.RemotePort

Port of the remote end of the TCP/IP connection of the
network channel accepting or processing the request

java.lang.Integer

Event Severity Rank

Auditing ContextHandler Elements

8-4 Administering Security for Oracle WebLogic Server 12.2.1

com.bea.contextelement.
channel.Protocol

Protocol used to make the request of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.Address

The internal listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.PublicAddress

The external listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.RemoteAddress

Remote address of the TCP/IP connection of the network
channel accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.ChannelName

Name of the network channel accepting or processing the
request

java.lang.String

com.bea.contextelement.
channel.Secure

Whether the network channel is accepting or processing
the request using SSL

java.lang.Boolean

com.bea.contextelement.
ejb20.Parameter[1-N]

Object based on parameter

com.bea.contextelement.
wsee.SOAPMessage

javax.xml.rpc.handler.MessageContext

com.bea.contextelement.
entitlement.EAuxiliaryID

Used by a WebLogic Server internal process.

weblogic.entitlement.expression.EAuxiliary

com.bea.contextelement.
security.ChainPrevalidatedBySS
L

SSL framework has validated the certificate chain,
meaning that the certificates in the chain have signed
each other properly; the chain terminates in a certificate
that is one of the server's trusted CAs; the chain honors
the basic constraints rules; and the certificates in the chain
have not expired.

java.lang.Boolean

com.bea.contextelement.
xml.SecurityToken

Not used in this release of WebLogic Server.

weblogic.xml.crypto.wss.provider.SecurityToken

com.bea.contextelement.
xml.SecurityTokenAssertion

Not used in this release of WebLogic Server.

java.util.Map

com.bea.contextelement.
webservice.Integrity{id:XXXXX}

javax.security.auth.Subject

com.bea.contextelement.
saml.SSLClientCertificateChain

SSL client certificate chain obtained from the SSL
connection over which a sender-vouches SAML assertion
was received.

java.security.cert.X509Certificate[]

com.bea.contextelement.
saml.MessageSignerCertificate

Certificate used to sign a Web services message.

java.security.cert.X509Certificate

Table 8–2 (Cont.) Context Handler Entries for Auditing

Context Element Name Description and Type

Configuration Auditing

Configuring the WebLogic Auditing Provider 8-5

8.5 Configuration Auditing
You can configure the Administration Server to emit log messages and generate audit
events when a user changes the configuration of any resource within a domain or
invokes management operations on any resource within a domain. For example, if a
user disables SSL on a Managed Server in a domain, the Administration Server emits
log messages. If you have enabled the WebLogic Auditing provider, it writes the audit
events to an additional security log. These messages and audit events provide an audit
trail of changes within a domain's configuration (configuration auditing).

The Administration Server writes configuration auditing messages to its local log file.
They are not written to the domain-wide message log by default.

Note that configuration audit information is contained in Authorization Events. As a
result, another approach to configuration auditing is to consume Authorization
Events. Note, however, that the information in an Authorization Event tells you
whether access was allowed to perform a configuration change; it does not tell you
whether the configuration change actually succeeded (for instance, it might have failed
because it was invalid).

8.5.1 Enabling Configuration Auditing
Enable configuration auditing by one of these methods:

■ Use the WebLogic Server Administration Console. Select the Configuration >
General page for your domain and set the Configuration Audit Type. See "Enable
configuration auditing" in the Oracle WebLogic Server Administration Console Online
Help.

■ When you start the Administration Server, include one of the following Java
options in the weblogic.Server command:

– -Dweblogic.domain.ConfigurationAuditType="audit"

Causes the domain to emit Audit Events only.

– -Dweblogic.domain.ConfigurationAuditType="log"

Causes the domain to write configuration auditing messages to the
Administration Server log file only.

– -Dweblogic.domain.ConfigurationAuditType="logaudit"

Causes the domain to emit Audit Events and write configuration auditing
messages to the Administration Server log file.

See "weblogic.Server Command-Line Reference" in Command Reference for Oracle
WebLogic Server.

com.bea.contextelement.
saml.subject.ConfirmationMetho
d

Type of SAML assertion: bearer, artifact, sender-vouches,
or holder-of-key.

java.lang.String

com.bea.contextelement.
saml.subject.dom.KeyInfo

 <ds:KeyInfo> element to be used for subject
confirmation with holder-of-key SAML assertions.

org.w3c.dom.Element

Table 8–2 (Cont.) Context Handler Entries for Auditing

Context Element Name Description and Type

Configuration Auditing Messages

8-6 Administering Security for Oracle WebLogic Server 12.2.1

■ Use the WebLogic Scripting Tool to change the value of the
ConfigurationAuditType attribute of the DomainMBean. See Understanding the
WebLogic Scripting Tool.

8.6 Configuration Auditing Messages
Configuration auditing messages are of the following severities:

Configuration auditing messages are identified by message IDs that fall within the
range of 159900-159910.

The messages use MBean object names to identify resources. Object names for
WebLogic Server MBeans reflect the location of the MBean within the hierarchical data
model. To reflect the location, object names contain name/value pairs from the parent
MBean. For example, the object name for a server's LogMBean is:
mydomain:Name=myserverlog,Type=Log,Server=myserver. See "WebLogic Server
MBean Data Model" in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

Table 8–4 summarizes the messages.

Table 8–3 Configuration Auditing Message Severities

Severity Description

SUCCESS A successful configuration change occurred.

FAILURE An attempt to modify the configuration failed due to insufficient user
credentials.

ERROR An attempt to modify the configuration failed due to an internal error.

Table 8–4 Summary of Configuration Auditing Messages

When This Event
Occurs...

WebLogic Server
Generates a Message
With This ID... And This Message Text...

Authorized user creates a
resource.

159900 USER username CREATED MBean-name

where username identifies the WebLogic Server user who
logged in and created a resource.

Unauthorized user
attempts to create a
resource.

159901 USER username CREATED MBean-name
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic
Server user.

Authorized user deletes
a resource.

159902 USER username REMOVED MBean-name
where username identifies the WebLogic Server user
who logged in and deleted a resource.

Unauthorized user
attempts to delete a
resource.

159903 USER username REMOVE MBean-name
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace
where username identifies the unauthorized
WebLogic Server user.

Configuration Auditing Messages

Configuring the WebLogic Auditing Provider 8-7

Authorized user changes
a resource's
configuration.

159904 USER username MODIFIED MBean-name
ATTRIBUTE attribute-name
FROM old-value TO new-value

where username identifies the WebLogic Server user who
logged in and changed the resource's configuration.

Unauthorized user
attempts to change a
resource's configuration.

159905 USER username MODIFY MBean-name
ATTRIBUTE attribute-name
FROM old-value TO new-value
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic
Server user.

Authorized user invokes
an operation on a
resource.

For example, a user
deploys an application or
starts a server instance.

159907 USER username INVOKED ON
MBean-name
METHOD operation-name
PARAMS specified-parameters

where username identifies the WebLogic Server user who
logged in and invoked a resource operation.

Unauthorized user
attempts to invoke an
operation on a resource.

159908 USER username INVOKED ON
MBean-name
METHOD operation-name
PARAMS specified-parameters
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic
Server user.

Authorized user enables
configuration auditing.

159909 USER username, Configuration Auditing is enabled

where username identifies the WebLogic Server user who
enabled configuration auditing.

Authorized user disables
configuration auditing.

159910 USER username, Configuration Auditing is disabled

where username identifies the WebLogic Server user who
disabled configuration auditing.

Note: Each time an authorized user adds, modifies, or deletes a
resource, the Management subsystem also generates an Info message
with the ID 140009 regardless of whether configuration auditing is
enabled. For example:

<Sep 15, 2005 11:54:47 AM EDT> <Info> <Management> <140009>
<Configuration changes for domain saved to the repository.>

While the message informs you that the domain's configuration has
changed, it does not provide the detailed information that
configuration auditing messages provide. Nor does the Management
subsystem generate this message when you invoke operations on
resources.

Table 8–4 (Cont.) Summary of Configuration Auditing Messages

When This Event
Occurs...

WebLogic Server
Generates a Message
With This ID... And This Message Text...

Audit Events and Auditing Providers

8-8 Administering Security for Oracle WebLogic Server 12.2.1

Table 8–5 lists additional message attributes for configuration auditing messages. All
configuration auditing messages specify the same values for these attributes.

8.7 Audit Events and Auditing Providers
An audit event is an object that Auditing providers can read and process in specific
ways. An Auditing provider is a pluggable component that the security realm uses to
collect, store, and distribute information about operating requests and the outcome of
those requests for the purposes of non-repudiation.

If you enable a domain to emit Audit Events, the domain emits the events described in
Table 8–6. All Auditing providers that are configured for the domain can handle these
events.

All of the events are of severity level SUCCESS and describe the security principal who
initiated the action, whether permission was granted, and the object (MBean or MBean
attribute) of the requested action.

Table 8–5 Common Message Attributes and Values

Message Attribute Attribute Value

Severity Info

Subsystem Configuration Audit

User ID kernel identity

This value is always kernel identity, regardless of which user modified
the resource or invoked the resource operation.

Server Name AdminServerName

Because the Administration Server maintains the configuration data
for all resources in a domain, this value is always the name of the
Administration Server.

Machine Name AdminServerHostName

Because the Administration Server maintains the configuration data
for all resources in a domain, this value is always the name of the
Administration Server's host machine.

Thread ID execute-thread

The value depends on the number of execute threads that are currently
running on the Administration Server.

Timestamp timeStamp at which the message is generated.

Table 8–6 Summary of Audit Events for Configuration Auditing

When This Event Occurs... WebLogic Server Generates This Audit Event Object...

A request to create a new
configuration artifact has been
allowed or prevented.

weblogic.security.spi.AuditCreateConfigurationEvent

A request to delete an existing
configuration artifact has been
allowed or prevented.

weblogic.security.spi.AuditDeleteConfigurationEvent

A request to modify an
existing configuration artifact
has been allowed or
prevented.

weblogic.security.spi.AuditInvokeConfigurationEvent

Audit Events and Auditing Providers

Configuring the WebLogic Auditing Provider 8-9

If you enable the default WebLogic Server Auditing provider, it writes all Audit Events
as log messages in its own log file.

Other Auditing providers that you create or purchase can filter these events and write
them to output repositories such as an LDAP server, database, or a simple file. In
addition, other types of security providers can request audit services from an Auditing
provider. See "Auditing Providers" in Developing Security Providers for Oracle WebLogic
Server.

A invoke an operation on an
existing configuration artifact
has been allowed or
prevented.

weblogic.security.spi.AuditSetAttributeConfigurationE
vent

Table 8–6 (Cont.) Summary of Audit Events for Configuration Auditing

When This Event Occurs... WebLogic Server Generates This Audit Event Object...

Audit Events and Auditing Providers

8-10 Administering Security for Oracle WebLogic Server 12.2.1

9

Configuring Credential Mapping Providers 9-1

9Configuring Credential Mapping Providers

[10] This chapter describes how to configure the Credential Mapping providers supplied
by WebLogic Server.

The following topics are included:

■ Configuring a WebLogic Credential Mapping Provider

■ Configuring a PKI Credential Mapping Provider

■ Configuring a SAML Credential Mapping Provider for SAML 1.1

■ Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

9.1 Configuring a WebLogic Credential Mapping Provider
Credential mapping is the process whereby the authentication and authorization
mechanisms of a remote system (for example, a legacy system or application) obtain
an appropriate set of credentials to authenticate remote users to a target WebLogic
resource. The WebLogic Credential Mapping provider maps WebLogic Server subjects
to the username/password pairs to be used when accessing such resources.

By default, most configuration options for the WebLogic Credential Mapping provider
are defined. You do have the option of adjusting the expiration interval of the
weblogic-jwt-token token type, which is used internally to propagate identity for
REST invocations of other applications running in the domain. By default, the
expiration interval is set to 3 minutes. However, you can adjust the interval from the
Provider Specific configuration page for this security provider.

In order to support Credential Mapping Deployment Enabled, a Credential Mapping
provider must implement the DeployableCredentialProvider SSPI. The credential
mapping information is stored in the embedded LDAP server.

For more information:

■ See "Credential Mapping Providers" in Developing Security Providers for Oracle
WebLogic Server.

Note: WebLogic Server provides the option of setting Credential
Mapping Deployment Enabled, which specifies whether or not the
Credential Mapping provider imports credential maps from a resource
adapter's deployment descriptor (weblogic-ra.xml file) into the
security realm. However, this option is now deprecated. Deploying
credential maps from a weblogic-ra.xml file is no longer supported
by WebLogic Server.

Configuring a PKI Credential Mapping Provider

9-2 Administering Security for Oracle WebLogic Server 12.2.1

■ See "Configure Credential Mapping Providers" and "Create outbound credential
mappings" in the Oracle WebLogic Server Administration Console Online Help.

■ For information about using credential maps, see Developing Resource Adapters for
Oracle WebLogic Server.

■ You can also use the WebLogic Scripting Tool or Java Management Extensions
(JMX) APIs to create a new security configuration.

■ For information about other credential mapping providers, see Section 9.2,
"Configuring a PKI Credential Mapping Provider" and Section 9.3, "Configuring a
SAML Credential Mapping Provider for SAML 1.1".

9.2 Configuring a PKI Credential Mapping Provider
The PKI (Public Key Infrastructure) Credential Mapping provider included in
WebLogic Server maps (a) a WebLogic Server subject (the initiator) and target resource
(and an optional credential action) to (b) a key pair or public certificate that can be
used by applications when accessing the targeted resource. The PKI Credential
Mapping provider uses the subject and resource name to retrieve the corresponding
credential from the keystore.

To use the PKI Credential Mapping provider, you need to:

1. Configure keystores with appropriate keys and distribute the keystores on all
machines in a WebLogic Server cluster. Setting up keystores is not a WebLogic
Server function. For information about setting up keystores, see the help for the
Java keytool utility at the following locations:

UNIX:

http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Windows:

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

See also Chapter 29, "Configuring Keystores" for information about keystores and
keys in WebLogic Server.

2. Configure a PKI Credential Mapping provider. A PKI Credential Mapping
provider is not already configured in the default security realm (myrealm). See
Section 9.2.1, "PKI Credential Mapper Attributes" and "Configure Credential
Mapping providers" in the Oracle WebLogic Server Administration Console Online
Help.

3. Create credential mappings. See "Create PKI Credential Mappings" in the Oracle
WebLogic Server Administration Console Online Help.

9.2.1 PKI Credential Mapper Attributes
To configure the PKI Credential Mapping provider, set values for these attributes. See
"Configure Credential Mapping Providers" in the Oracle WebLogic Server Administration
Console Online Help.

■ Keystore Provider—A keystore provider for the Java Security API. If no value is
specified, the default provider class is used.

■ Keystore Type— JKS (the default) or PKCS12.

■ Keystore Pass Phrase—Password used to access the keystore

Configuring a SAML Credential Mapping Provider for SAML 1.1

Configuring Credential Mapping Providers 9-3

■ Keystore File Name—Location of the keystore relative to the directory where the
server was started.

In addition, two optional attributes determine how the PKI Credential Mapping
provider locates credential mappings in cases where the exact resource or subject may
not be available:

■ Use Resource Hierarchy—A credential is located by traversing up the resource
hierarchy for each type of resource. The search for all possible PKI credentials will
start from the specific resource and will walk up the resource hierarchy to find all
possible matches. This attribute is enabled by default.

■ Use Initiator Group Names—When a subject is passed to the PKI Credential
Mapper provider, a credential is located by examining the groups of which the
initiator is a member. This is enabled by default.

9.2.2 Credential Actions
Optionally, you can label a credential mapping with a credential action. You can do
this in the WebLogic Server Administration Console when you create the credential
mapping. The credential action is an arbitrary string that distinguishes credential
mappings used in different circumstances. For example, one credential mapping could
decrypt a message from a remote resource and another credential mapping could sign
messages to be sent to the same resource. The subject initiator and the target resource
are not sufficient to distinguish these two credential mappings. You can use the
credential action to label one of these credential mappings something like decrypt and
the other one sign. Then, the container calling the PKI Credential Mapping provider
can provide the desired credential action value in the ContextHandler that is passed to
the provider.

For information about adding credential actions to PKI credential mappings, see
"Create PKI Credential Mappings" in the Oracle WebLogic Server Administration Console
Online Help.

9.3 Configuring a SAML Credential Mapping Provider for SAML 1.1
This release of WebLogic Server includes two SAML Credential Mapping providers.
SAML Credential Mapping Provider Version 2 provides greatly enhanced
configuration options and is recommended for new deployments. SAML Credential
Mapping Provider Version 1 is deprecated in WebLogic Server 9.1. A security realm
can have not more than one SAML Credential Mapping provider, and if the security
realm has both a SAML Credential Mapping provider and a SAML Identity Assertion
provider, both must be of the same version. Do not use a Version 1 SAML provider in
the same security realm as a Version 2 SAML provider. For information about
configuring the SAML Credential Mapping Provider Version 1, see "Configuring a
SAML Credential Mapping Provider" in Securing WebLogic Server in the WebLogic
Server 9.0 documentation at http://docs.oracle.com/docs/cd/E13222_
01/wls/docs90/secmanage/providers.html#SAML_cred.

For general information about WebLogic Server's support for SAML, see "Security
Assertion Markup Language (SAML)" and "Single Sign-On with the WebLogic
Security Framework" in Understanding Security for Oracle WebLogic Server. For
information about how to use the SAML Credential Mapping provider in a SAML
single sign-on configuration, see Chapter 21, "Configuring Single Sign-On with Web
Browsers and HTTP Clients Using SAML".

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

9-4 Administering Security for Oracle WebLogic Server 12.2.1

9.3.1 Configuring Assertion Lifetime
A SAML Assertion's validity is typically time-limited. The default time-to-live for
assertions generated by the SAML Credential Mapping provider is specified by the
DefaultTimeToLive attribute. You can override the default time-to-live for assertions
generated for different SAML Relying Parties.

Normally, an assertion is valid from the NotBefore time, which defaults to (roughly)
the time the assertion was generated, until the NotOnOrAfter time, which is calculated
as (NotBefore + TimeToLive). To allow the Credential Mapper to compensate for clock
differences between the source and destination sites, you can configure the SAML
Credential Mapping provider's DefaultTimeToLiveDelta attribute. This time-to-live
offset value is a positive or negative integer indicating how many seconds before or
after "now" the assertion's NotBefore value should be set to. If you set a value for
DefaultTimeToLiveDelta, then the assertion lifetime is still calculated as (NotBefore +
TimeToLive), but the NotBefore value is set to (now + TimeToLiveDelta). For example,
given the following settings:

DefaultTimeToLive = 120
DefaultTimeToLiveDelta = -30

an assertion when generated would have a lifetime of two minutes (120 seconds),
starting 30 seconds before it is generated.

9.3.2 Relying Party Registry
When you configure WebLogic Server to act as a source of SAML security assertions,
you need to register the parties that may request SAML assertions to be generated. For
each SAML Relying Party, you can specify the SAML profile used, details about the
Relying Party, and the attributes expected in assertions for the Relying Party. For
information, see:

■ Section 22.2.3, "Configure Relying Parties"

■ "Configure a SAML 1.1 Relying Party" in the Oracle WebLogic Server Administration
Console Online Help

9.4 Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0
The SAML 2.0 Credential Mapping provider included with WebLogic Server generates
SAML 2.0 assertions that can be used to assert identity in the following use cases:

■ SAML 2.0 Web SSO Profile

■ WS-Security SAML Token Profile version 1.1

The SAML 2.0 Credential Mapping provider generates the assertion types listed and
described in Table 9–1.

Table 9–1 Assertion Types Supported by the SAML 2.0 Credential Mapping Provider

Assertion Type Description

bearer The subject of the assertion is the bearer of the assertion, subject to
optional constraints on confirmation using attributes that may be
included in the <SubjectConfirmationData> element of the assertion.

Used for all assertions generated for the SAML 2.0 Web Browser SSO
Profile and with the Web Service Security SAML Token Profile 1.1.

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Configuring Credential Mapping Providers 9-5

For general information about WebLogic Server's support for SAML 2.0, see "Security
Assertion Markup Language (SAML)" and "Single Sign-On with the WebLogic
Security Framework" in Understanding Security for Oracle WebLogic Server. For
information about how to use the SAML 2.0 Credential Mapping provider in a SAML
2.0 single sign-on configuration, see Chapter 21, "Configuring Single Sign-On with
Web Browsers and HTTP Clients Using SAML". For information about specifying the
confirmation method for assertions generated for web service Service provider
partners, see "Using Security Assertion Markup Language (SAML) Tokens For
Identity" in Securing WebLogic Web Services for Oracle WebLogic Server.

9.4.1 SAML 2.0 Credential Mapping Provider Attributes
Configuration of the SAML 2.0 Credential Mapping provider is controlled by setting
attributes on the SAML2CredentialMapperMBean. You can access the
SAML2CredentialMapperMBean using the WebLogic Scripting Tool (WLST), or through
the WebLogic Server Administration Console by selecting the Security Realms >
RealmName > Providers > Credential Mapping page and creating or selecting
SAML2CredentialMapper. For details about these attributes, see the description of the
"SAML2CredentialMapperMBean" in the MBean Reference for Oracle WebLogic Server.

To configure the SAML 2.0 Credential Mapping provider, set the following attributes:

■ Issuer URI

Name of this security provider. The value that you specify should match the Entity
ID specified in the SAML 2.0 General page that configures the per-server SAML
2.0 properties.

■ Name Qualifier

Used by the Name Mapper class as the security or administrative domain that
qualifies the name of the subject. This provides a means to federate names from
disparate user stores while avoiding the possibility of subject name collision.

■ Assertion life time

Values that limit the life time of generated assertions during which they may be
used. Expired assertions cannot be made available for use.

■ Web service assertion signing key alias and passphrase

Used for signing generated assertions.

■ Custom name mapper class

The custom Java class that overrides the default SAML 2.0 Credential Mapping
provider name mapper class, which maps Subjects to identity information
contained in the assertion.

sender-vouches The Identity Provider (different from the subject) vouches for the
verification of the subject. The receiver must have a trust relationship
with the Identity Provider.

Used with the Web Service Security SAML Token Profile 1.1 only.

holder-of-key The subject represented in the assertion uses an X.509 certificate that may
not be trusted by the receiver to protect the integrity of the request
messages.

Used with the Web Service Security SAML Token Profile 1.1 only.

Table 9–1 (Cont.) Assertion Types Supported by the SAML 2.0 Credential Mapping

Assertion Type Description

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

9-6 Administering Security for Oracle WebLogic Server 12.2.1

■ Generate attributes

Specifies whether group membership information associated with the
authenticated Subject is included in generated assertions.

9.4.2 Service Provider Partners
When you configure WebLogic Server to act as an Identity Provider, you need to create
and configure the Service Provider partners for whom SAML 2.0 assertions are
generated. When an Identity Provider site needs to generate an assertion, the SAML
2.0 Credential Mapping provider determines the Service Provider partner for whom
the assertion must be generated, and generates it according to the configuration of that
Service Provider partner.

The way in which you configure a Service Provider partner, and the specific
information you configure for that partner, depends upon whether the partner is used
for web single sign-on or web services. Configuring a web single sign-on Service
Provider partner consists of importing that partner's metadata file and establishing
additional basic information about that partner, such as the following:

■ Determining whether SAML documents, such as authentication responses, SAML
artifacts, and artifact requests, must be signed

■ Certificates used for validating signed documents received from this partner

■ The binding to be used for sending SAML artifacts to this partner

■ The client user name and password used by this partner when connecting to the
local site's binding

For details about configuring a Service Provider partner for web single sign-on, see:

■ Section 23.3.3, "Create and Configure Web Single Sign-On Service Provider
Partners"

■ "Create a SAML 2.0 Web Single Sign-on Service Provider partner" in the Oracle
WebLogic Server Administration Console Online Help

Configuring a Web service Service Provider partner does not use a metadata file, but
does consist of establishing the following information about that partner:

■ Audience URIs, which specify an audience restriction to be included in assertions
generated for this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the
partner lookup string, which is required by the web service run time to discover
the partner. See Section 9.4.2.1, "Partner Lookup Strings Required for Web Service
Partners".

■ Custom name mapper class that overrides the default name mapper and that is to
be used specifically with this partner

■ Values that specify the life span attributes of assertions generated for this partner

■ Confirmation method for assertions received from this partner

For more information about configuring web service Service Provider partners, see
"Create a SAML 2.0 Web service Service Provider partner" in the Oracle WebLogic Server
Administration Console Online Help.

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Configuring Credential Mapping Providers 9-7

9.4.2.1 Partner Lookup Strings Required for Web Service Partners
For web service Service Provider partners, you also configure Audience URIs. In
WebLogic Server, the Audience URI attribute is overloaded to perform two distinct
functions:

■ Specify an audience restriction that consists of the target service URL, per the
OASIS SAML 2.0 specification.

■ Contain a partner lookup string, which is required at run time by WebLogic Server
to discover the Service Provider partner for which a SAML 2.0 assertion needs to
be generated.

The partner lookup string specifies an endpoint URL, which is used for partner lookup
and can optionally also serve as an Audience URI restriction that is included in the
generated assertion. The ability to specify a partner lookup string that is also an
Audience URI eliminates the need to specify a given target URL twice: once for
lookup, and again for audience restriction.

9.4.2.1.1 Lookup String Syntax The partner lookup string has the following syntax:

[target:char:]<endpoint-url>
In this syntax, target:char: is a prefix that designates the partner lookup string,
where char represents one of three special characters: a hyphen, plus sign, or asterisk
(-, +, or *). This prefix determines how partner lookup is performed, as described in
Table 9–2.

Note: You must configure a partner lookup string for a Service
Provider partner so that partner can be discovered at run time by the
web service run time.

Table 9–2 Service Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>. For example,
target:-:http://www.avitek.com:7001/myserver/myservicecontext/myservi
ce-endpoint specifies the endpoint that can be matched to this Service Provider,
for which an assertion should be generated.

This form of partner lookup string excludes the endpoint URL from being added
as an Audience URI in the generated assertion.

target:+:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>.

Using the plus sign (+) in the lookup string results in the endpoint URL being
added as an Audience URI in the assertion generated for this Service Provider
partner.

target:*:<endpoint-url> Specifies that partner lookup is conducted for an initial-string pattern match of
the URL, <endpoint-url>. For example,
target:*:http://www.avitek.com:7001/myserver specifies that any endpoint
URL beginning with http://www.avitek.com:7001/myserver can be matched to
this Service Provider, such as:
http://www.avitek.com:7001/myserver/contextA/endpointA and
http://www.avitek.com:7001/myserver/contextB/endpointB.

If more than one Service Provider partner is discovered that is a match for the
initial string, the partner with the longest initial string match is selected.

This form of partner lookup string excludes the endpoint URL from being added
as an Audience URI in the generated assertion.

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

9-8 Administering Security for Oracle WebLogic Server 12.2.1

9.4.2.1.2 Specifying Default Partners To support the need for a default Service Provider
partner entry, one or more of the default partner's Audience URI entries may contain a
wildcard match that works for all targets. The actual wildcard URI may depend on the
specific format used by the web service run time. For example:

■ target:*:http://

■ target:*:https://

9.4.2.2 Management of Partner Certificates
The SAML 2.0 Credential Mapping provider manages a set of trusted certificates for
each partner configured for web single sign-on. Whenever a signed authentication or
artifact request is received during a message exchange with a partner, the trusted
certificate is used to verify the partner's signature. Partner certificates are used for the
following purposes:

■ To validate trust when the SAML 2.0 Credential Mapping provider receives a
signed authentication request or artifact request.

■ To validate trust in a Service Provider partner that is retrieving a SAML artifact
from the Artifact Resolution Service (ARS) via an SSL connection.

From the WebLogic Server Administration Console, you can view a web single sign-on
Service Provider partner's signing certificate and transport layer client certificate in the
partner management pages of the configured SAML 2.0 Credential Mapping provider.

9.4.2.3 Java Interface for Configuring Service Provider Partner Attributes
For details about the available operations on web service partners, see the
"com.bea.security.saml2.providers.registry.Partner Java" interface in the Java API
Reference for Oracle WebLogic Server.

Note: Configuring one or more partner lookup strings for a Service
Provider partner is required in order for that partner to be discovered
at run time. If this partner cannot be discovered, no assertions for this
partner can be generated.

If you configure an endpoint URL without using the target lookup
prefix, it will be handled as a conventional Audience URI that must be
contained in assertions generated for this Service Provider partner.
(This also enables backwards-compatibility with existing Audience
URIs that may be configured for this partner.)

10

Configuring the Certificate Lookup and Validation Framework 10-1

10Configuring the Certificate Lookup and
Validation Framework

[11] This chapter explains how to configure the Certificate Lookup and Validation
framework (CLV), which looks up and validates X.509 certificate chains.

This chapter includes the following sections:

■ Overview of the Certificate Lookup and Validation Framework

■ CLV Security Providers Provided by WebLogic Server

10.1 Overview of the Certificate Lookup and Validation Framework
WebLogic Server may receive digital certificates as part of Web services requests,
two-way SSL, or other secure interactions. To validate these certificates, WebLogic
Server includes a Certificate Lookup and Validation (CLV) framework. The key
elements of the CLV framework are the CertPathBuilder and the CertPathValidators.
The CLV framework requires one and only active CertPathBuilder which, given a
reference to a certificate chain, finds the chain and validates it, and zero or more
CertPathValidators which, given a certificate chain, validates it.

When WebLogic Server receives a certificate, the CLV framework uses the security
provider configured as the CertPathBuilder to look up and validate the certificate
chain. If the certificate chain is found and valid, the framework then calls each
configured CertPathValidator, in the order the administrator configured them, to
perform extra validation on the chain. The chain is only valid if the builder and all the
validators successfully validate it.

A chain is valid only if all of the following are true:

■ The certificates in the chain have signed each other properly.

■ The chain terminates in a certificate that is one of the server's trusted CAs.

■ The chain honors the basic constraints rules (for example, no certificate in the
chain has been issued by a certificate that is not allowed to issue certificates).

■ The certificates in the chain have not expired.

WebLogic Server includes two CLV security providers: the WebLogic CertPath
provider (which acts as both a CertPathBuilder and a CertPathValidator), described in
Section 10.2.1, "CertPath Provider". and the Certificate Registry, described in
Section 10.2.2, "Certificate Registry". Use just the WebLogic CertPath provider if you
want to use trusted CA-based validation of the full certificate chain. Use just the
Certificate Registry if you want only to validate that certificates are registered. Use

CLV Security Providers Provided by WebLogic Server

10-2 Administering Security for Oracle WebLogic Server 12.2.1

both, designating the Certificate Registry as the current builder, if you want to use
both types of validation.

For more information about certificate lookup and validation, see Chapter 29,
"Configuring Keystores".

10.2 CLV Security Providers Provided by WebLogic Server
WebLogic Server includes the following CLV security providers:

■ CertPath Provider

■ Certificate Registry

10.2.1 CertPath Provider
The default security realm in WebLogic Server is configured with the WebLogic
CertPath provider. The CertPath provider serves two functions: CertPathBuilder and
CertPathValidator. The CertPath provider receives an end certificate or a certificate
chain. It uses the server's list of trusted CAs to complete the certificate chain, if
necessary. After building the chain, the CertPath provider validates the chain,
checking the signatures in the chain, ensuring that the chain has not expired, checking
the chain's basic constraints, and verifying that the chain terminates in a certificate
issued by one of the server's trusted CAs.

The WebLogic CertPath provider requires no configuration, other than its Current
Builder attribute, which indicates whether the CertPath provider should be used as the
active certificate chain builder.

10.2.2 Certificate Registry
The Certificate Registry is a security provider that allows you to explicitly register the
list of trusted certificates that are allowed to access WebLogic Server. If you configure a
Certificate Registry as part of your security realm, then only certificates that are
registered in the Certificate Registry will be considered valid. The Certificate Registry
provides an inexpensive mechanism for performing revocation checking. By removing
a certificate from the Certificate Registry, you can invalidate a certificate immediately.
The registry is stored in the embedded LDAP server.

The Certificate Registry is both a CertPath Builder and a CertPath Validator. In either
case, the Certificate Registry ensures that the chain's end certificate is stored in the
registry, but does no other validation. If you use the Certificate Registry as your
security realm's CertPath Builder and you also want to use the WebLogic CertPath
provider or another security provider to perform full chain validation, make sure that
you register the intermediate and root CAs in each server's trust keystore, and the end
certificates in the Certificate Registry.

The default security realm in WebLogic Server does not include a Certificate Registry.
Once you configure a Certificate Registry, you can use the WebLogic Server
Administration Console to add, remove, and view certificates in the registry. You can
export a certificate from a keystore to a file, using the Java keytool utility. You can
import a certificate that is a PEM or DER file in the file system into the Certificate
Registry using the console. You can also use the Console to view the contents of a
certificate, including its subject DN, issuer DN, serial number, valid dates, fingerprints,
etc.

See "Configure Certification Path providers" in the Oracle WebLogic Server
Administration Console Online Help.

Part III
Part III Configuring Authentication Providers

This part explains how to configure the Authentication providers included in
WebLogic Server.

Part III contains the following chapters:

■ Chapter 11, "About Configuring the Authentication Providers in WebLogic Server"

■ Chapter 12, "Configuring the WebLogic Authentication Provider"

■ Chapter 13, "Configuring LDAP Authentication Providers"

■ Chapter 14, "Configuring RDBMS Authentication Providers"

■ Chapter 15, "Configuring the Windows NT Authentication Provider"

■ Chapter 16, "Configuring the SAML Authentication Provider"

■ Chapter 17, "Configuring the Password Validation Provider"

■ Chapter 18, "Configuring Identity Assertion Providers"

■ Chapter 19, "Configuring the Virtual User Authentication Provider"

11

About Configuring the Authentication Providers in WebLogic Server 11-1

11About Configuring the Authentication
Providers in WebLogic Server

[12] This chapter provides general information about choosing and configuring an
Authentication provider in a security realm. Most of them work in similar fashion:
given a username and password credential pair, the provider attempts to find a
corresponding user in the provider's data store. These Authentication providers differ
primarily in what they use as a data store: one of many available LDAP servers, a SQL
database, or other data store. In addition to these username/password based security
providers, WebLogic Server includes identity assertion Authentication providers,
which use certificates or security tokens, rather than username/password pairs, as
credentials.

This chapter includes the following sections:

■ Choosing an Authentication Provider

■ Using More Than One Authentication Provider

11.1 Choosing an Authentication Provider
Authentication is the process whereby the identity of users and system processes are
proved or verified. Authentication also involves remembering, transporting, and
making identity information available to various components of a system when that
information is needed.

The WebLogic Server security architecture supports: password-based and
certificate-based authentication directly with WebLogic Server; HTTP certificate-based
authentication proxied through an external Web server; perimeter-based
authentication (Web server, firewall, VPN); and authentication based on multiple
security token types and protocols.

WebLogic Server offers the following types of Authentication providers:

■ The WebLogic Authentication provider, also known as the DefaultAuthenticator,
accesses user and group information in WebLogic Server's embedded LDAP
server.

■ The Oracle Internet Directory Authentication provider accesses users and groups in
Oracle Internet Directory, an LDAP version 3 directory.

■ The Oracle Virtual Directory Authentication provider accesses users and groups in
Oracle Virtual Directory, an LDAP version 3 enabled service.

■ LDAP Authentication providers access external LDAP stores. You can use an LDAP
Authentication provider to access any LDAP server. WebLogic Server provides
LDAP Authentication providers already configured for Open LDAP, Oracle

Using More Than One Authentication Provider

11-2 Administering Security for Oracle WebLogic Server 12.2.1

Directory Server Enterprise Edition (ODSEE), Microsoft Active Directory, and
Novell NDS LDAP servers.

■ RDBMS Authentication providers access external relational databases. WebLogic
Server provides three RDBMS Authentication providers: SQL Authenticator,
Read-only SQL Authenticator, and Custom RDBMS Authenticator.

■ The WebLogic Identity Assertion provider validates X.509 and IIOP-CSIv2 tokens and
optionally can use a user name mapper to map that token to a user in a WebLogic
Server security realm.

■ The SAML Authentication provider, which authenticates users based on Security
Assertion Markup Language 1.1 (SAML) assertions.

■ The Negotiate Identity Assertion provider, which uses Simple and Protected
Negotiate (SPNEGO) tokens to obtain Kerberos tokens, validates the Kerberos
tokens, and maps Kerberos tokens to WebLogic users.

■ The SAML Identity Assertion provider, which acts as a consumer of SAML security
assertions. This enables WebLogic Server to act as a SAML destination site and
supports using SAML for single sign-on.

In addition, you can use:

■ Custom (non-WebLogic) Authentication providers, which offer different types of
authentication technologies.

■ Custom (non-WebLogic) Identity Assertion providers, which support different
types of tokens.

11.2 Using More Than One Authentication Provider
Each security realm must have at least one Authentication provider configured. The
WebLogic Security Framework supports multiple Authentication providers (and thus
multiple LoginModules) for multipart authentication. Therefore, you can use multiple
Authentication providers as well as multiple types of Authentication providers in a
security realm. For example, if you want to use both a retina-scan and a
username/password-based form of authentication to access a system, you configure
two Authentication providers.

How you configure multiple Authentication providers can affect the overall outcome
of the authentication process. Configure the JAAS Control Flag for each
Authentication provider to set up login dependencies between Authentication
providers and allow single-sign on between providers. See Section 11.2.1, "Setting the
JAAS Control Flag Option".

Authentication providers are called in the order in which they were configured in the
security realm. Therefore, use caution when configuring Authentication providers.
You can use the WebLogic Server Administration Console to re-order the configured
Authentication providers, thus changing the order in which they are called. See
Section 11.2.2, "Changing the Order of Authentication Providers".

11.2.1 Setting the JAAS Control Flag Option
When you configure multiple Authentication providers, use the JAAS Control Flag for
each provider to control how the Authentication providers are used in the login
sequence. You can set the JAAS Control Flag in the WebLogic Server Administration
Console. See "Set the JAAS control flag" in the Oracle WebLogic Server Administration
Console Online Help. You can also use the WebLogic Scripting Tool or Java Management
Extensions (JMX) APIs to set the JAAS Control Flag for an Authentication provider.

Using More Than One Authentication Provider

About Configuring the Authentication Providers in WebLogic Server 11-3

JAAS Control Flag values are:

■ REQUIRED—The Authentication provider is always called, and the user must
pass its authentication test. However, regardless of whether authentication
succeeds or fails, authentication still continues down the list of providers.

■ REQUISITE—The Authentication provider is always called, and the user is
required to pass its authentication test.

– If authentication succeeds, subsequent providers are executed but can fail
(except for REQUIRED Authentication providers).

– If authentication fails, control is returned to the caller and no subsequent
Authentication provider down the list is executed.

■ SUFFICIENT—The user is not required to pass the authentication test of the
Authentication provider.

– If authentication succeeds, control is returned to the caller and no subsequent
Authentication provider down the list is executed.

– If authentication fails, authentication continues down the list of providers.

Any REQUIRED or REQUISITE Authentication provider in the list must pass its
own authentication test. If no REQUIRED or REQUISITE Authentication provider
is in the list, then the authentication test of at least one OPTIONAL or
SUFFICIENT Authentication provider must pass.

■ OPTIONAL—The user is not required to pass the authentication test of the
Authentication provider. Regardless of whether authentication succeeds or fails,
authentication continues down the list of providers.

The overall authentication of the user succeeds only if all REQUIRED and REQUISITE
Authentication providers configured in the realm succeed. Note also:

■ If a SUFFICIENT Authentication provider is configured and succeeds, then only
the REQUIRED and REQUISITE Authentication providers prior to that
SUFFICIENT Authentication provider need to have succeeded for the overall
authentication to succeed.

■ If no REQUIRED or REQUISITE Authentication providers are configured in the
security realm, then at least one SUFFICIENT or OPTIONAL Authentication
provider must succeed.

When additional Authentication providers are added to an existing security realm, by
default the Control Flag is set to OPTIONAL. If necessary, change the setting of the
Control Flag and the order of Authentication providers so that each Authentication
provider works properly in the authentication sequence.

Note: As part of the startup process, WebLogic Server must be able
to initialize all security providers that are configured in the security
realm, including any Authentication providers that have a JAAS
Control Flag set to OPTIONAL. If the initialization process for any
security provider cannot be completed, WebLogic Server fails to boot,
and an error message similar to the following is displayed:

<BEA-090870> <The realm "myrealm" failed to be loaded:

Using More Than One Authentication Provider

11-4 Administering Security for Oracle WebLogic Server 12.2.1

11.2.2 Changing the Order of Authentication Providers
The order in which WebLogic Server calls multiple Authentication providers can affect
the overall outcome of the authentication process. The Authentication Providers table
lists the authentication providers in the order in which they will be called. By default,
Authentication providers are called in the order in which they were configured. You
can use the WebLogic Server Administration Console to change the order of
Authentication providers. Select the Reorder button on the Security Realms >
RealmName > Providers > Authentication page in the WebLogic Server Administration
Console to change the order in which Authentication providers are called by WebLogic
Server and listed in the console.

See "Re-order Authentication Providers" in the Oracle WebLogic Server Administration
Console Online Help.

12

Configuring the WebLogic Authentication Provider 12-1

12Configuring the WebLogic Authentication
Provider

[13] This chapter explains how to configure the WebLogic Authentication provider, also
known as the DefaultAuthenticator.

This chapter includes the following sections:

■ About the WebLogic Authentication Provider

■ Setting User Attributes

12.1 About the WebLogic Authentication Provider
The WebLogic Authentication provider (also called the DefaultAuthenticator) uses
WebLogic Server's embedded LDAP server to store user and group membership
information and, optionally, a set of user attributes such as phone number, email
address, and so on. This provider allows you to create, modify, list, and manage users
and group membership in the WebLogic Server Administration Console. By default,
most configuration options for the WebLogic Authentication provider are already
defined. You should need to configure a WebLogic Authentication provider only when
creating a new security realm. However, note the following:

■ The WebLogic Authentication provider is configured in the default security realm
with the name DefaultAuthenticator.

■ User and group names in the WebLogic Authentication provider are case
insensitive. For information about creating and managing users and groups in the
WebLogic Server Administration Console, see "Manage users and groups" in the
Oracle WebLogic Server Administration Console Online Help.

■ Ensure that all user names are unique.

■ Specify the minimum length of passwords defined for users that are stored in the
embedded LDAP server, which you can by means of the Minimum Password
Length option that is available on the Configuration > Provider Specific page for
the WebLogic Authentication provider.

■ Users in the WebLogic Authentication provider can be modified to include a set of
attributes. See Section 12.2, "Setting User Attributes".

■ If you are using multiple Authentication providers, set the JAAS Control Flag to
determine how the WebLogic Authentication provider is used in the
authentication process. See Section 11.2, "Using More Than One Authentication
Provider".

Setting User Attributes

12-2 Administering Security for Oracle WebLogic Server 12.2.1

12.2 Setting User Attributes
After you have defined a user in the WebLogic Authentication provider, you can set or
modify for that user one more of the attributes listed in Table 12–1. These attributes
conform to the user schema for representing individuals in the inetOrgPerson LDAP
object class, described in RFC 2798.

When you set a value for an attribute, the attribute is added for the user. Likewise, if
you subsequently delete the value of an attribute, the attribute is removed for the user.
The set of available attributes is limited to the preceding list, however. The attribute
names cannot be customized.

These attributes can be managed for a user by operations on the
UserAttributeEditorMBean, or viewed via operations on the
UserAttributeReaderMBean.

For more information about setting, modifying, or viewing the attributes for a user
created in the WebLogic Authentication provider, see "Manage values for user
attributes" in Oracle WebLogic Server Administration Console Online Help.

Table 12–1 Attributes that Can Be Set for a User

Attribute Description

c Two-letter ISO 3166 country code

departmentnumber Code for department to which the user belongs

displayname Preferred name of the user

employeenumber Numeric or alphanumeric identifier assigned to the user

employeetype Type of employment, which represents the employer to
employee relationship

facsimiletelephonenumber Facsimile (fax) telephone number

givenname First name; that is, not surname (last name) or middle name

homephone Home telephone number

homepostaladdress Home postal address

l Name of a locality, such as a city, county or other geographic
region

mail Electronic address of user (email)

mobile Mobile telephone number

pager Pager telephone number

postaladdress Postal address at location of employment

postofficebox Post office box

preferredlanguage User's preferred written or spoken language

st Full name of state or province

street Physical location of user

telephonenumber User's telephone number in organization

title Title representing user's job function

13

Configuring LDAP Authentication Providers 13-1

13Configuring LDAP Authentication Providers

[14] This chapter explains how to configure the LDAP Authentication providers included
in WebLogic Server.

This chapter includes the following sections:

■ LDAP Authentication Providers Included in WebLogic Server

■ Requirements for Using an LDAP Authentication Provider

■ Configuring an LDAP Authentication Provider: Main Steps

■ Accessing Other LDAP Servers

■ Enabling an LDAP Authentication Provider for SSL

■ Dynamic Groups and WebLogic Server

■ Use of GUID and LDAP DN Data in WebLogic Principals

■ Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual
Directory Authentication Providers

■ Example of Configuring the Oracle Internet Directory Authentication Provider

■ Configuring Failover for LDAP Authentication Providers

■ Configuring an Authentication Provider for Oracle Unified Directory

■ Following Referrals in the Active Directory Authentication Provider

■ Configuring Group Search in the LDAP Authentication Provider for Oracle
Directory Server Enterprise Edition

■ Improving the Performance of LDAP Authentication Providers

■ Configuring an Administrator User from an External LDAP Server: an Example

13.1 LDAP Authentication Providers Included in WebLogic Server
WebLogic Server includes the following LDAP Authentication providers:

■ Oracle Internet Directory Authentication provider

■ Oracle Virtual Directory Authentication provider

■ Oracle Unified Directory Authentication provider

■ iPlanet Authentication provider (for Oracle Directory Server Enterprise Edition)

■ Active Directory Authentication provider

■ Open LDAP Authentication provider

Requirements for Using an LDAP Authentication Provider

13-2 Administering Security for Oracle WebLogic Server 12.2.1

■ Novell Authentication provider

■ Generic LDAP Authentication provider

Each LDAP Authentication provider stores user and group information in an external
LDAP server. They differ primarily in how they are configured by default to match
typical directory schemas for their corresponding LDAP server. For information about
configuring the Oracle Internet Directory and Oracle Virtual Directory Authentication
providers to match the LDAP schema for user and group attributes, see Section 13.8,
"Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual
Directory Authentication Providers".

WebLogic Server does not support or certify any particular LDAP servers. Any LDAP
v2 or v3 compliant LDAP server should work with WebLogic Server. The following
LDAP directory servers have been tested:

■ Oracle Internet Directory

■ Oracle Virtual Directory

■ Oracle Unified Directory

■ Oracle Directory Server Enterprise Edition (formerly known as Sun iPlanet)

■ Active Directory shipped as part of the Microsoft Windows platform

■ Open LDAP

■ Novell Directory Service (NDS)

An LDAP Authentication provider can also be used to access other LDAP servers.
However, you must either use the LDAP Authentication provider
(LDAPAuthenticator) or choose a pre-defined LDAP provider and customize it. See
Section 13.4, "Accessing Other LDAP Servers".

13.2 Requirements for Using an LDAP Authentication Provider
If an LDAP Authentication provider is the only configured Authentication provider
for a security realm, you must have the Admin role to boot WebLogic Server and use a
user or group in the LDAP directory. Do one of the following in the LDAP directory:

■ By default in WebLogic Server, the Admin role includes the Administrators group.
Create an Administrators group in the LDAP directory, if one does not already
exist. Make sure the LDAP user who will boot WebLogic Server is included in the
group.

The Active Directory LDAP directory has a default group called Administrators.
Add the user who will be booting WebLogic Server to the Administrators group
and define Group Base Distinguished Name (DN) so that the Administrators
group is found.

■ If you do not want to create an Administrators group in the LDAP directory (for
example, because the LDAP directory uses the Administrators group for a
different purpose), create a new group (or use an existing group) in the LDAP
directory and include the user from which you want to boot WebLogic Server in
that group. In the WebLogic Server Administration Console, assign that group the
Admin role.

Note: The Active Directory Authentication provider also supports
Microsoft Active Directory Application Mode (ADAM) as a
standalone directory server.

Configuring an LDAP Authentication Provider: Main Steps

Configuring LDAP Authentication Providers 13-3

13.3 Configuring an LDAP Authentication Provider: Main Steps
To configure an LDAP Authentication provider:

1. Choose an LDAP Authentication provider that matches your LDAP server and
create an instance of the provider in your security realm. For information, see the
following topics:

■ If you are using the WebLogic Server Administration Console, see "Configure
Authentication and Identity Assertion providers" in the Oracle WebLogic Server
Administration Console Online Help.

■ If you are using the WebLogic Scripting Tool (WLST), see "Managing Security
Data (WLST Online)" in Understanding the WebLogic Scripting Tool. This section
also explains how to use WLST to switch from one LDAP authentication
provider to another.

2. Configure the provider-specific attributes of the LDAP Authentication provider,
which you can do through the WebLogic Server Administration Console. For each
LDAP Authentication provider, attributes are available to:

a. Enable communication between the LDAP server and the LDAP
Authentication provider. For a more secure deployment, Oracle recommends
using the SSL protocol to protect communications between the LDAP server
and WebLogic Server. Enable SSL with the SSLEnabled attribute.

b. Configure options that control how the LDAP Authentication provider
searches the LDAP directory.

c. Specify where in the LDAP directory structure users are located.

d. Specify where in the LDAP directory structure groups are located.

Note: If the LDAP user who boots WebLogic Server is not properly
added to a group that is assigned to the Admin role, and the LDAP
authentication provider is the only authentication provider with
which the security realm is configured, WebLogic Server cannot be
booted.

Note: The value you enter for principal must be an LDAP
administrator who has the privilege to search users and groups in the
corresponding LDAP server. If the LDAP administrator does not have
privileges to search the LDAP server, an LDAP exception with error
code 50 is generated.

Configuring an LDAP Authentication Provider: Main Steps

13-4 Administering Security for Oracle WebLogic Server 12.2.1

e. Define how members of a group are located.

f. Set the name of the global universal identifier (GUID) attribute defined in the
LDAP server.

g. Set timeout values for the connection to the LDAP server. You can specify two
timeout values: a connection timeout, and a socket timeout.

The connection timeout, specified in the LDAPServerMBean.ConnectTimeout
attribute for all LDAP Authentication providers, has a default value of zero.
This default setting specifies no timeout limit, and can result in a slowdown in
WebLogic Server execution if the LDAP servers configured for an LDAP
Authentication provider are unavailable. In addition, if WebLogic Server has
multiple LDAP Authentication providers configured, the failure to connect to
one LDAP server may block the use of the other LDAP Authentication
providers.

Oracle recommends that you set the LDAPServerMBean.ConnectTimeout
attribute on the LDAP Authentication provider to a non-zero value; for
example, 60 seconds. You can set this value via either the WebLogic Server
Administration Console or WLST. You can also set this value in the
config.xml file by adding the following configuration parameter for the
LDAP Authentication provider:

<wls:connect-time>60</wls:connect-time>

Note: When specifying an LDAP search filter for users or groups
using the following LDAPAuthenticatorMBean attributes, wildcards
are accepted but they can have a negative performance impact on the
LDAP server, particularly if you use a combination of them:

■ AllUsersFilter

■ UserFromNameFilter

■ AllGroupsFilter

■ GroupFromNameFilter

For example, the following filter expression combines five wildcarded
conditions, each condition using two asterisk wildcard characters:

(|(cn=*wall*)(givenname=*wall*)(sn=*wall*)(cn=*wall*)(mail=*wall*))

The preceding example filter would likely cause an unacceptable
overhead on the corresponding LDAP server.

Additionally, group names must not contain any trailing space
characters.

Note: If you are configuring either the Oracle Internet Directory or
Oracle Virtual Directory Authentication provider, see Section 13.8,
"Configuring Users and Groups in the Oracle Internet Directory and
Oracle Virtual Directory Authentication Providers". This section
explains how to match the authentication provider attributes for users
and groups to the LDAP directory structure.

Accessing Other LDAP Servers

Configuring LDAP Authentication Providers 13-5

The socket timeout, specified in the
-Dweblogic.security.providers.authentication.ldap.socketTimeout JVM
configuration option, sets the timeout in seconds for connecting to any one
LDAP server specified in the LDAPServerMBean.Host attribute. The default
value of the socket timeout is 0, which sets no socket timeout on the
connection.

For information about the appropriate values to set for the connection timeout
and socket timeout values for an LDAP Authentication provider, see
Section 13.10, "Configuring Failover for LDAP Authentication Providers".

3. Configure performance options that control the cache for the LDAP server. Use the
Configuration > Provider Specific and Performance pages for the provider in the
WebLogic Server Administration Console to configure the cache. See Section 13.14,
"Improving the Performance of LDAP Authentication Providers".

For more information, see the following sections:

■ Section 13.4, "Accessing Other LDAP Servers"

■ Section 13.5, "Enabling an LDAP Authentication Provider for SSL"

■ Section 13.6, "Dynamic Groups and WebLogic Server"

■ Section 13.7, "Use of GUID and LDAP DN Data in WebLogic Principals"

■ Section 13.8, "Configuring Users and Groups in the Oracle Internet Directory and
Oracle Virtual Directory Authentication Providers"

■ Section 13.9, "Example of Configuring the Oracle Internet Directory
Authentication Provider"

■ Section 13.10, "Configuring Failover for LDAP Authentication Providers"

■ Section 13.11, "Configuring an Authentication Provider for Oracle Unified
Directory"

■ Section 13.12, "Following Referrals in the Active Directory Authentication
Provider"

■ Section 13.14, "Improving the Performance of LDAP Authentication Providers"

13.4 Accessing Other LDAP Servers
The LDAP Authentication providers in this release of WebLogic Server are configured
to work readily with the Oracle Internet Directory, Oracle Virtual Directory, Oracle
Unified Directory, Oracle Directory Server Enterprise Edition (ODSEE), Active
Directory, Open LDAP, and Novell NDS LDAP servers. You can use an LDAP
Authentication provider to access other types of LDAP servers. Choose either the
generic LDAP Authentication provider (LDAPAuthenticator) or the existing LDAP

Note: Oracle recommends that you do not edit the config.xml file
directly.

Note: If the LDAP Authentication provider fails to connect to the
LDAP server, or throws an exception, check the configuration of the
LDAP Authentication provider to make sure it matches the
corresponding settings in the LDAP server.

Enabling an LDAP Authentication Provider for SSL

13-6 Administering Security for Oracle WebLogic Server 12.2.1

provider that most closely matches the new LDAP server and customize the existing
configuration to match the directory schema and other attributes for your LDAP
server.

If you are using Oracle Unified Directory, see Section 13.11, "Configuring an
Authentication Provider for Oracle Unified Directory".

If you are using Active Directory, see Section 13.12, "Following Referrals in the Active
Directory Authentication Provider".

13.5 Enabling an LDAP Authentication Provider for SSL
If you want to secure the connection between WebLogic Server and the LDAP server
— for example, because the LDAP server requires it — you must do the following:

■ Create and configure a custom trust keystore for use with the LDAP server

■ Specify that the SSL protocol should be used by the LDAP Authentication
provider when connecting to the LDAP server

To do this, complete the following steps:

1. Configure the LDAP Authentication provider. Make sure you select SSLEnabled
on the Configuration > Provider Specific page.

2. Obtain the root certificate authority (CA) certificate for the LDAP server.

3. Create a trust keystore using the preceding certificate. For example, the following
example shows using the keytool command to create the keystore ldapTrustKS
with the root CA certificate rootca.pem.:

keytool -import -keystore ./ldapTrustKS -trustcacerts -alias oidtrust -file
rootca.pem -storepass TrustKeystorePwd -noprompt

For more information about creating a trust keystore, see Chapter 29, "Configuring
Keystores".

4. Copy the keystore to a location from which WebLogic Server has access.

5. Start the WebLogic Server Administration Console and navigate to the server-name
> Configuration > Keystores page, where server-name is the WebLogic Server
instance for which you are configuring this keystore.

6. If necessary, in the Keystores field, click Change to select the Custom Identity and
Custom Trust configuration rules.

7. If the communication with the LDAP server uses 2-way SSL, configure the custom
identity keystore, keystore type, and passphrase.

8. In Custom Trust Keystore, enter the path and file name of the trust keystore
created in step 2.

9. In Custom Trust Keystore Type, enter jks.

10. In Custom Trust Keystore Passphrase, enter the password used when creating the
keystore.

11. Reboot the WebLogic Server instance for changes to take effect.

For more information, see Part VI, "Configuring SSL". For more information about
using the WebLogic Server Administration Console to configure keystores and enable
SSL, see the following topics in the Oracle WebLogic Server Administration Console Online
Help:

■ "Configure identity and trust"

Use of GUID and LDAP DN Data in WebLogic Principals

Configuring LDAP Authentication Providers 13-7

■ "Set up SSL"

■ "Configure two-way SSL"

13.6 Dynamic Groups and WebLogic Server
Many LDAP servers have a concept of dynamic groups or virtual groups. These are
groups that, rather than consisting of a list of users and groups, contain some policy
statements, queries, or code that define the set of users that belong to the group. Even
if a group is marked dynamic, users must log out and log back in before any changes
in their group memberships take effect. The term dynamic describes the means of
defining the group and not any runtime semantics of the group within WebLogic
Server.

13.7 Use of GUID and LDAP DN Data in WebLogic Principals
When a user is authenticated into WebLogic Server, an authentication provider creates
a Subject with a set of user and group principals, which include the user and group
names, respectively. The LDAP Authentication providers included in WebLogic Server
also store the global universal identifier (GUID) and LDAP distinguished name (DN)
data of users and groups as attributes of those principals. By default, WebLogic Server
does not use the GUID or DN data in WebLogic principals. However, if the WebLogic
domain is configured to use JAAS authorization, the GUID and DN data can be used
in principal comparison operations that occur with Java policy decisions.

When configuring an LDAP Authentication provider, make sure that the name of the
GUID attribute defined in the LDAP server is specified correctly for that provider. The
default GUID attribute name for each LDAP Authentication provider included in
WebLogic Server is listed in Table 13–1.

Table 13–1 Name of GUID Attribute for LDAP Authentication Providers in WebLogic
Server

Provider Default GUID Attribute Name

WebLogic Authentication provider orclguid1

1 Note that the GUID attribute name for the embedded LDAP server cannot be modified, so the
WebLogic Authentication provider does not have a corresponding attribute that is configurable.

Oracle Internet Directory Authentication provider orclguid

Oracle Virtual Directory Authentication provider orclguid2

2 The GUID attribute name you configure for the Oracle Virtual Directory Authentication provider
depends on whether Oracle Virtual Directory has a mapping of this attribute name. The mapping
specifies a name for this attribute that is renamed from the one defined in the LDAP server with
which Oracle Virtual Directory is connected. If a mapping exists, specify the name that is defined in
the mapping. For example, if the GUID attribute is renamed in the mapping to OVDguid, configure
the Oracle Virtual Directory Authentication provider to use OVDguid as the GUID attribute name. If
a mapping does not exist, specify the name that is defined in the LDAP server. For example, if the
LDAP server is Sun iPlanet Directory, and Sun iPlanet Directory defines the GUID attribute name
as nsuniqueid, configure the Oracle Virtual Directory Authentication provider to use nsuniqueid.
For more information, see "Understanding Oracle Virtual Directory Mapping" in Oracle Fusion
Middleware Administrator's Guide for Oracle Virtual Directory.

Active Directory Authentication provider objectguid3

Oracle Unified Directory Authentication provider entryuuid

iPlanet Authentication provider nsuniqueid

Novell Authentication provider guid

Open LDAP Authentication provider entryuuid

Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual Directory Authentication Providers

13-8 Administering Security for Oracle WebLogic Server 12.2.1

For more information about how GUID and DN data in principal objects may be used,
see Section 43.5, "Configuring a Domain to Use JAAS Authorization".

13.8 Configuring Users and Groups in the Oracle Internet Directory
and Oracle Virtual Directory Authentication Providers

The following sections explain how to change default values in the Oracle Internet
Directory and Oracle Virtual Directory Authentication providers that specify how
users and groups are located in the LDAP server:

■ Section 13.8.1, "Configuring User and Group Name Types"

■ Section 13.8.2, "Configuring Static Groups"

13.8.1 Configuring User and Group Name Types
By default, the Oracle Internet Directory and Oracle Virtual Directory Authentication
providers are configured to search users and groups in the LDAP directory using the
class attribute types identified in the following table:

If the user name attribute type, or group name attribute type, defined in the LDAP
directory structure differs from the default settings for the Authentication provider
you are using, you must change those provider settings. The following sections
explain how to make those changes.

3 The Active Directory Authentication provider also supports Microsoft Active Directory
Application Mode (ADAM) as a standalone directory server.

Table 13–2 Class Attribute Types Used for Searches

Class Attribute Type

User object class user name cn

Group object class group name cn

Note: Neither the Oracle Internet Directory Authentication provider
nor Oracle Virtual Directory Authentication provider can read the
name of a user or group from the LDAP server if the name contains an
invalid character. Invalid characters are:

■ Comma (,)

■ Plus sign (+)

■ Quotes (")

■ Backslash (\)

■ Angle brackets (< or >)

■ Semicolon (;)

If either of these providers encounters a group or user name
containing an invalid character, the name is ignored. (WebLogic Server
in general does not support group names containing any of these
invalid characters. See "Create groups" in the Oracle WebLogic Server
Administration Console Online Help.)

Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual Directory Authentication Providers

Configuring LDAP Authentication Providers 13-9

13.8.1.1 Changing the User Name Attribute Type
By default, the Oracle Internet Directory and Oracle Virtual Directory Authentication
providers are configured with the user name attribute set to type cn. If the user name
attribute type in the LDAP directory structure uses a different type — for example, uid
— you must change the following Authentication provider attributes:

■ AllUsersFilter

■ UserFromNameFilter

■ UserNameAttribute

For example, if the LDAP directory structure has the user name attribute type uid, the
preceding Authentication provider attributes must be changed as shown in Table 13–3.
The required changes are shown in bold.

For information about configuring the user name attribute type, see the following
topics in the Oracle WebLogic Server Administration Console Online Help:

■ "Configure the Oracle Internet Directory Authentication provider"

■ "Configure the Oracle Virtual Directory Authentication provider"

13.8.1.2 Changing the Group Name Attribute Type
By default, the Oracle Internet Directory and Oracle Virtual Directory Authentication
providers are configured with the group name attribute type of cn for the static group
object class and dynamic group object class. If the group name attribute type in the
LDAP directory structure is different — for example, type uid is used — you must
change the following Authentication provider attributes:

■ AllGroupsFilter

■ GroupFromNameFilter

■ StaticGroupNameAttribute (for static groups)

■ DynamicGroupNameAttribute (for dynamic groups)

For example, if the LDAP directory structure of the group object class uses a group
name attribute of type uid, you must change the Authentication provider attributes as
shown in Table 13–4. The required changes are shown in bold.

Table 13–3 Changing the User Name Attribute Type for the User Object Class

Attribute Name Default Setting Required New Setting

UserNameAttribute cn uid

AllUsersFilter1

1 When specifying an LDAP search filter for users or groups, wildcards are accepted. However, using multiple asterisk wildcards,
particularly for a user or group name attribute, have a negative performance impact on the LDAP server.

(&(cn=*)(objectclass=person)) (&(uid=*)(objectclass=person))

UserFromNameFilter1 (&(cn=%u)(objectclass=person)) (&(uid=%u)(objectclass=person))

Table 13–4 Required Changes for the Group Name Attribute Type

Attribute Name Default Setting Required Changes

StaticGroupNameAttribute cn uid

Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual Directory Authentication Providers

13-10 Administering Security for Oracle WebLogic Server 12.2.1

For more information about configuring group name attributes, see the following
topics in the Oracle WebLogic Server Administration Console Online Help

■ "Configure the Oracle Internet Directory Authentication provider"

■ "Configure the Oracle Virtual Directory Authentication provider"

13.8.2 Configuring Static Groups
The Oracle Internet Directory and Oracle Virtual Directory Authentication providers
are configured by default with the following settings for static groups:

■ Static group object class name of groupofuniquenames

■ Static member DN attribute of type uniquemember

However, the directory structure of the Oracle Internet Directory or Oracle Virtual
Directory LDAP server with which you are configuring either of these Authentication
providers may instead define the following for static groups:

■ Static group object class name of groupofnames

■ Static member DN attribute of type member

If the LDAP database schema contains the static group object class name of
groupofnames, and the static member DN attribute of type member, you need to change
the Oracle Internet Directory or Oracle Virtual Directory Authentication provider
attribute settings as shown in Table 13–5. The required changes are shown in bold.

For more information about configuring static groups, see the following topics in the
Oracle WebLogic Server Administration Console Online Help:

DynamicGroupNameAttribute cn uid

AllGroupsFilter1 (&(cn=*)(|(objectclass=groupofUnique
Names)(objectclass=orcldynamicgroup)
))

(&(uid=*)(|(objectclass=groupofUniqueNam
es)(objectclass=orcldynamicgroup)))

GroupFromNameFilter1 (|(&(cn=%g)(objectclass=groupofUniqu
eNames))(&(cn=%g)(objectclass=orcldy
namicgroup)))

(|(&(uid=%g)(objectclass=groupofUniqueNa
mes))(&(uid=%g)(objectclass=orcldynamicg
roup)))

1 When specifying an LDAP search filter for users or groups, wildcards are accepted. However, using multiple asterisk wildcards,
particularly for a user or group name attribute, have a negative performance impact on the LDAP server.

Table 13–5 Attribute Settings for Static Groups in the Oracle Internet Directory and Oracle Virtual
Directory Authentication Providers

Attribute Default Setting Required Changes

StaticGroupObjectClass groupofuniquenames groupofnames

StaticMemberDNAttribute uniquemember member

AllGroupsFilter1

1 When specifying an LDAP search filter for users or groups, wildcards are accepted. However, using multiple asterisk wildcards,
particularly for a user or group name attribute, have a negative performance impact on the LDAP server.

(&(cn=*)(|(objectclass=groupofUnique
Names)(objectclass=orcldynamicgroup)
))

(&(cn=*)(|(objectclass=groupofnames)(objectc
lass=orcldynamicgroup)))

GroupFromNameFilter1 (|(&(cn=%g)(objectclass=groupofUniqu
eNames))(&(cn=%g)(objectclass=orcldy
namicgroup)))

(|(&(cn=%g)(objectclass=groupofnames))(&(cn=
%g)(objectclass=orcldynamicgroup)))

Table 13–4 (Cont.) Required Changes for the Group Name Attribute Type

Attribute Name Default Setting Required Changes

Example of Configuring the Oracle Internet Directory Authentication Provider

Configuring LDAP Authentication Providers 13-11

■ "Configure the Oracle Internet Directory Authentication provider"

■ "Configure the Oracle Virtual Directory Authentication provider"

13.9 Example of Configuring the Oracle Internet Directory Authentication
Provider

This section walks you through the process of configuring a sample Oracle Internet
Directory Authentication provider and describes a quick method to verify the
configuration.

The example does not describe how to configure your Oracle Internet Directory
instance, and instead assumes that you are already knowledgeable about its
configuration and are familiar with the Oracle Fusion Middleware Administrator's Guide
for Oracle Internet Directory.

For example, the default value for the Dynamic Group Object Class attribute is
orcldynamicgroup. This object class is described in detail in the section "Dynamic
Groups" in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.

Perform the following steps to configure this provider:

1. Create a new Oracle Internet Directory Authentication provider from the
WebLogic Server Administration Console:

a. In the Console, navigate to the Security Realms > RealmName > Providers >
Authentication page.

b. Click New to add a new Authentication provider.

c. Enter a name of your choice and choose
OracleInternetDirectoryAuthenticator as the type.

d. Click OK.

2. Configure the new Oracle Internet Directory Authentication provider:

a. Click the name of the new provider you just created.

b. On the Common page, set the Control Flag as needed (REQUIRED,
REQUISITE, OPTIONAL or SUFFICIENT), as described in Section 11.2.1,
"Setting the JAAS Control Flag Option".

c. Navigate to the Provider Specific page.

d. Configure the Connection section with the Oracle Internet Directory server
values you want to use. The port must be the Oracle Internet Directory LDAP
port. For the purpose of this example, assume the following values:

Host: hostname.com
Port: 3060
Principal: cn=orcladmin
Credential: password
SSLEnabled is unchecked

e. Configure the Users section as per your Oracle Internet Directory
configuration.

As described in Section 13.8.1.1, "Changing the User Name Attribute Type",
pay particular attention to the fields All Users Filter and User From Name
Filter. They must reflect the value of the User Name Attribute field.

Example of Configuring the Oracle Internet Directory Authentication Provider

13-12 Administering Security for Oracle WebLogic Server 12.2.1

The default value for User Name Attribute is cn and therefore the default
values for the filter fields include (&(cn=)...) and (&(*cn=%u)...),
respectively. If you change the User Name Attribute value, you must replace
it accordingly in the filter fields as well.

For the purpose of example, assume the following values. Key changes are
marked in bold.

User Base DN: cn=Users,dc=us,dc=oracle,dc=com
All Users Filter: (&(uid=*)(objectclass=person))
User From Name Filter: (&(uid=%u)(objectclass=person))
User Seearch Scope: subtree
User Name Attribute: uid
User Object Class: person

f. Configure the Groups section as per your Oracle Internet Directory
configuration.

As described in Section 13.8.1.2, "Changing the Group Name Attribute Type",
by default the Oracle Internet Directory Authentication provider is configured
with the group name attribute type of cn for the static group object class and
dynamic group object class. If the group name attribute type in the LDAP
directory structure is different, you must change other Authentication
provider attributes to match.

In addition, as described in Section 13.8.2, "Configuring Static Groups", the
Oracle Internet Directory Authentication provider is configured by default
with a Static group object class name of groupofuniquenames and a Static
member DN attribute of type uniquemember. (This configuration is described
in the section "Schema Elements for Creating Static Groups" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Internet Directory.)

If the LDAP database schema instead contains the static group object class
name of groupofnames, and the static member DN attribute of type member,
you need to change the attribute settings as shown in Table 13–5.

For the purpose of example, assume the following values. Key values that
must match are marked in bold.

Group Base DN: cn=Groups,dc=us,dc=oracle,dc=com
All Groups Filter: (&(cn=*)(objectclass=groupofUniqueNames))

Static Group Name Attribute: cn
Static Group Object Class: groupofuniquenames
Static Member DN attribute: uniquemember
Static Group DNs from Member DN Filter:
(&(uniquemember=%M)(objectclass=groupofuniquenames))

Dynamic Group Name Attribute: (empty)
Dynamic Group Object Class: (empty)
Dynamic Member URL Attribute: (empty)
User Dynamic Group DN Attribute: (empty)

Note: If there are any leading or trailing white spaces in these filter
field values, the users list may not be properly fetched from Oracle
Internet Directory and you may not be able to authenticate using the
Oracle Internet Directory Authentication provider.

Configuring Failover for LDAP Authentication Providers

Configuring LDAP Authentication Providers 13-13

g. Configure all other sections as needed, using Section 13.3, "Configuring an
LDAP Authentication Provider: Main Steps" for guidance. In this example, all
of the default values are appropriate.

h. Save your changes.

3. If needed, order the providers to make the Oracle Internet Directory
Authentication provider first in the list.

4. Restart the WebLogic Server to complete the changes.

5. Verify the setup.

In the WebLogic Server Administration Console, navigate to the Security Realms
> RealmName > Users and Groups page. You should be able to see all users and
groups that exist in the Oracle Internet Directory LDAP structure.

13.10 Configuring Failover for LDAP Authentication Providers
You can configure an LDAP provider to work with multiple LDAP servers and enable
failover if one LDAP server is not available. Use the Host attribute (found in the
WebLogic Server Administration Console on the Configuration > Provider Specific
page for the LDAP Authentication provider) to specify the names of the additional
LDAP servers. Each host name may include a trailing space character and a port
number. In addition, set the Parallel Connect Delay and Connection Timeout attributes
for the LDAP Authentication provider:

■ Parallel Connect Delay—Specifies the number of seconds to delay when making
concurrent attempts to connect to multiple servers. An attempt is made to connect
to the first server in the list. The next entry in the list is tried only if the attempt to
connect to the current host fails. This setting might cause your application to block
for an unacceptably long time if a host is down. If the value is greater than 0,
another connection setup thread is started after the specified number of delay
seconds has passed. If the value is 0, connection attempts are serialized.

■ Connection Timeout—Specifies the maximum number of seconds to wait for the
connection to the LDAP server(s) to be established. If the value is set to 0, the
default, there is no maximum time limit and WebLogic Server waits until the
TCP/IP layer times out to return a connection failure.

If multiple hosts are set in the Host attribute, the connection timeout controls the
total timeout value for attempts to connect to all the specified hosts.

Oracle recommends setting the connection timeout to a value of at least 60
seconds, depending upon the configuration of TCP/IP.

■ Socket Timeout—Specifies the maximum number of seconds to wait for the
connection to any one host specified in the Host attribute. The socket timeout is
specified only using the
-Dweblogic.security.providers.authentication.ldap.socketTimeout=seconds
security parameter for the JVM in which WebLogic Server runs. The default value
of the socket timeout is 0, which sets no socket timeout.

Note that setting the socket timeout is not available in the WebLogic Server
Administration Console. For information about the options for configuring
WebLogic Server security parameters, see "Security" in Command Reference for
Oracle WebLogic Server.

The following examples present scenarios that occur when an LDAP Authentication
provider is configured for LDAP failover.

Configuring an Authentication Provider for Oracle Unified Directory

13-14 Administering Security for Oracle WebLogic Server 12.2.1

13.10.1 LDAP Failover Example 1
In the following scenario, an LDAP Authentication provider is configured with three
servers in its Host attribute: directory.knowledge.com:1050, people.catalog.com,
and 199.254.1.2. The status of the LDAP servers is as follows:

■ directory.knowledge.com:1050 is down

■ people.catalog.com is up

■ 199.254.1.2 is up

WebLogic Server attempts to connect to directory.knowledge.com. After three
seconds, or the socket connection throws an exception, the connect attempt times out
and WebLogic Server attempts to connect to the next specified host
(people.catalog.com). WebLogic Server then uses people.catalog.com as the LDAP
Server for this connection. Otherwise, after another three seconds, WebLogic Server
tries to connect to 199.254.1.2. This process continues, but will fail if the overall
LDAP server connection process exceeds 10 seconds.

13.10.2 LDAP Failover Example 2
In the following scenario, WebLogic Server attempts to connect to
directory.knowledge.com. After 1 second (specified by the Parallel Connect Delay
attribute), the connect attempt times out and WebLogic Server tries to connect to the
next specified host (people.catalog.com) and directory.knowledge.com at the same
time. If the connection to people.catalog.com succeeds, WebLogic Server uses
people.catalog.com as the LDAP Server for this connection. WebLogic Server cancels
the connection to directory.knowledge.com after the connection to
people.catalog.com succeeds.

13.11 Configuring an Authentication Provider for Oracle Unified Directory
To configure the Oracle Unified Directory Authentication provider, complete the
following steps:

1. In the WebLogic Server Administration Console, navigate to the Security Realms
> RealmName > Providers > Authentication page.

2. Click New to add a new Authentication provider.

Table 13–6 LDAP Configuration Example 1

LDAP Option Value

Host directory.knowledge.com:1050 people.catalog.com 199.254.1.2

Parallel Connect Delay 0

Connect Timeout 10

Socket Timeout 3

Table 13–7 LDAP Configuration Example 2

LDAP Option Value

Host directory.knowledge.com:1050 people.catalog.com 199.254.1.2

Parallel Connect Delay 1

Connect Timeout 10

Socket Timeout 3

Configuring Group Search in the LDAP Authentication Provider for Oracle Directory Server Enterprise Edition

Configuring LDAP Authentication Providers 13-15

3. Enter a name for the Authentication provider and choose
OracleUnifiedDirectoryAuthenticator as the type.

4. Click OK.

5. In the Security Realms > RealmName > Providers > Authentication page, click the
name of the Oracle Unified Directory Authentication provider you created, and
select the Configuration > Provider Specific page.

6. Configure the connection attributes for Oracle Unified Directory, as well as any
other attributes as appropriate.

7. In the field labeled GUID Attribute, located at the bottom of the page, make sure
entryuuid is displayed.

8. Click Save.

13.12 Following Referrals in the Active Directory Authentication Provider
If Active Directory uses LDAP referrals, you must configure the Active Directory
Authentication provider to follow those referrals by making sure that the
LDAPServerMBean.FollowReferrals attribute is enabled. This attribute is enabled by
default, but Oracle recommends that you make sure it is specifically enabled.

You can enable this attribute using WLST or the WebLogic Server Administration
Console. If you are using the WebLogic Server Administration Console, this attribute is
available from the Configuration > Provider Specific page for the Active Directory
Authentication provider.

13.13 Configuring Group Search in the LDAP Authentication Provider
for Oracle Directory Server Enterprise Edition

You can set up a security realm to use Oracle Directory Server Enterprise Edition
(ODSEE) as the identity store by configuring the iPlanet Authentication provider.
However, note that this identity store has a user/group association that works
differently from other LDAP servers that affects how groups can be searched for a
given user. In particular, a group entry in Oracle Directory Server Enterprise Edition
has an attribute of memberuid that point to a user's uid attribute. This is different from
the typical LDAP static group, which uses the member or uniquemember attributes to
point to a user entry DN.

The IPlanetAuthenticatorMBean includes the following attributes that you can set,
using WLST or the WebLogic Server Administration Console, to search for the groups
in which a given user is a member. This is an alternative to the member or
uniqueMember attribute-based user-to-group membership search (that is, static group
search).

Note: After you configure the Oracle Unified Directory
Authentication provider and subsequently log in to WebCenter as the
LDAP user configured for that provider, you might receive a WCS error
stating that the user is not found in the identity store. You receive this
error if the DefaultAuthenticator provider in your security realm is set
to REQUIRED.

As a workaround, change the JAAS Control Flag for the
DefaultAuthenticator provider to SUFFICIENT. See Section 11.2.1,
"Setting the JAAS Control Flag Option".

Improving the Performance of LDAP Authentication Providers

13-16 Administering Security for Oracle WebLogic Server 12.2.1

■ UseMemberuidForGroupSearch — When enabled, this attribute specifies that the
memberuid attribute of the group entry is used for looking up the groups in which
a user is a member. (By default, the UseMemberuidForGroupSearch attribute is
disabled, which causes the member or uniqueMember attributes to be used for group
lookups.

■ GroupFromUserFilterForMemberuid — Can be used to specify an LDAP search
filter for searching groups for a given username.

To use the WebLogic Server Administration Console to search for the groups in which
a given user is a member:

1. Navigate to the Configuration > Provider Specific page for the iPlanet
Authentication provider.

2. Select Use Memberuid For Group Search.

3. Specify the LDAP search filter in Group From User Filter For Memberuid. The
default value is (&(memberuid=%M)(objectclass=groupofuniquenames)).

13.14 Improving the Performance of LDAP Authentication Providers
To improve the performance of LDAP Authentication providers:

■ Optimize the group membership caches used by the LDAP Authentication
providers. See Section 13.14.1, "Optimizing the Group Membership Caches".

■ Optimize the connection pool size and user cache. See Section 13.14.2, "Optimizing
the Connection Pool Size and User Cache".

■ Expose the Principal Validator cache for the security realm and increase its
thresholds. See Section 13.14.4, "Optimizing the Principal Validator Cache".

■ If you are using the Active Directory Authentication provider, configure it to
perform group membership lookups using the tokenGroups option. The
tokenGroups option holds the entire flattened group membership for a user as an
array of system ID (SID) values. The SID values are specially indexed in the Active
Directory and yield extremely fast lookup response. See Section 13.14.5,
"Configuring the Active Directory Authentication Provider to Improve
Performance."

■ If you are using the generic LDAP Authentication provider, you can use the
LDAPAuthenticatorMBean API to analyze hit/miss statistics collected from the
group membership and user caches. See Section 13.14.6, "Analyzing the Generic
LDAP Authenticator Cache Statistics".

■ When you are configuring a new LDAP Authentication provider or making
changes to an existing one, an API is invoked to test the connection between this
provider and the corresponding LDAP server during the configuration. See
Section 13.14.7, "Testing the LDAP Connection During Configuration".

13.14.1 Optimizing the Group Membership Caches
To optimize the group membership caches for an LDAP Authentication provider, set
the following attributes (found in the WebLogic Server Administration Console on the
LDAP Authentication provider's Configuration > Provider Specific and Performance
pages):

■ Group Membership Searching—Available from the Provider Specific page, this
attribute controls whether group searches are limited or unlimited in depth. This
option controls how deeply to search into nested groups. For configurations that

Improving the Performance of LDAP Authentication Providers

Configuring LDAP Authentication Providers 13-17

use only the first level of nested group hierarchy, this option allows improved
performance during user searches by limiting the search to the first level of the
group.

– If a limited search is defined, Max Group Membership Search Level must be
defined.

– If an unlimited search is defined, Max Group Membership Search Level is
ignored.

■ Max Group Membership Search Level—Available from the Provider Specific
page, this attribute controls the depth of a group membership search if Group
Membership Searching is defined. Possible values are:

– 0—Indicates only direct groups will be found. That is, when searching for
membership in Group A, only direct members of Group A will be found. If
Group B is a member of Group A, the members will not be found by this
search.

– Any positive number—Indicates the number of levels to search. For example,
if this option is set to 1, a search for membership in Group A will return direct
members of Group A. If Group B is a member of Group A, the members of
Group B will also be found by this search. However, if Group C is a member of
Group B, the members of Group C will not be found by this search.

■ Enable Group Membership Lookup Hierarchy Caching— Available from the
Performance page, this attribute indicates whether group membership hierarchies
found during recursive membership lookup are cached. Each subtree found will
be cached. The cache holds the groups to which a group is a member. This setting
only applies if Group Membership is enabled. By default, it is disabled.

■ Max Group Hierarchies in Cache—Available from the Performance page, this
attribute specifies the maximum size of the Least Recently Used (LRU) cache that
holds group membership hierarchies. A value of 1024 is recommended. This
setting only applies if Enable Group Membership Lookup Hierarchy Caching is
enabled.

■ Group Hierarchy Cache TTL—Available from the Performance page, this
attribute specifies the number of seconds cached entries stay in the cache. The
default is 60 seconds. A value of 6000 is recommended.

In planning your cache settings, bear in mind the following considerations:

■ Enabling a cache involves a trade-off of performance and accuracy. Using a cache
means that data is retrieved faster, but runs the risk that the data may not be the
latest available.

■ The time-to-live (TTL) setting how long you are willing to accept potentially stale
data. This depends a lot on your particular business needs. If you frequently
changes group memberships for users, then a long TTL could mean that group
related changes won't show up for a while, and you may want a short TTL. If
group memberships almost never change after a user is added, a longer TTL may
be fine.

■ The cache size is related to the amount of memory you have available, as well as
the cache TTL. Consider the number of entries that might be loaded in the span of
the TTL, and size the cache in relation to that number. A longer TTL will tend to
require a larger cache size.

Improving the Performance of LDAP Authentication Providers

13-18 Administering Security for Oracle WebLogic Server 12.2.1

13.14.2 Optimizing the Connection Pool Size and User Cache
When configuring any of the LDAP Authentication providers, you can improve the
performance of the connection between WebLogic Server and the LDAP server by
optimizing the size of the LDAP connection pool and user cache. To make these
optimizations, complete the following steps:

1. Set the LDAP connection pool size to 100 by using either of the following methods:

■ Define the following system property in the setDomainEnv script, which is
located in the bin directory of the WebLogic domain:

-Dweblogic.security.providers.authentication.LDAPDelegatePoolSize=100

■ In the WebLogic Server Administration Console, select the Provider Specific
page for the LDAP authentication provider you are configuring (Security
Realms > myrealm > Providers > Authentication > your LDAP Authentication
provider > Provider Specific), and specify 100 in the field labeled Connection
Pool Size.

2. Enable and enlarge the cache used with the LDAP server by completing the
following steps in the WebLogic Server Administration Console:

a. Select the Provider Specific page for the LDAP Authentication provider
(Security Realms > myrealm > Providers > Authentication > your LDAP
Authentication provider > Provider Specific).

b. Scroll towards the bottom and make sure that Cache Enabled is checked.

c. In the field labeled Cache Size, specify a value of 3200 KB.

d. In the field labeled Cache TTL, specify a time-to-live value that matches the
Group Hierarchy Cache TTL value (see Section 13.14.1, "Optimizing the
Group Membership Caches"). A value of 6000 is recommended).

e. Set the results timeout value for the LDAP server. On the current Provider
Specific configuration page, specify a value of 1000 ms in the field labeled
Results Time Limit.

3. Restart WebLogic Server for the changes to take effect.

13.14.3 Configuring Dynamic Groups in the iPlanet Authentication Provider
to Improve Performance

Dynamic groups do not list the names of their members. Instead, the membership of
the dynamic group is constructed by matching user attributes. Because group
membership needs to be computed dynamically for dynamic groups, there is a risk of
performance problems for large groups. Configuring the iPlanet Authentication
provider appropriately can improve performance where dynamic groups are involved.

In the iPlanet Authentication provider, the User Dynamic Group DN Attribute
attribute specifies the attribute of an LDAP user object that specifies the distinguished
names (DNs) of dynamic groups to which this user belongs. If such an attribute does
not exist, WebLogic Server determines if a user is a member of a group by evaluating
the URLs on the dynamic group. By default, User Dynamic Group DN Attribute is
null. If you set User Dynamic Group DN Attribute to some other value, to improve
performance set the following attributes for the iPlanet Authentication provider:

UserDynamicGroupDNAttribute="wlsMemberOf"
DynamicGroupNameAttribute="cn"
DynamicGroupObjectClass=""
DynamicMemberURLAttribute=""

Improving the Performance of LDAP Authentication Providers

Configuring LDAP Authentication Providers 13-19

To set these attributes in the WebLogic Server Administration Console:

1. Expand Security Realms > RealmName > Providers > Authentication.

2. On the Provider Specific tab for your iPlanet Authentication provider, set User
Dynamic Group DN Attribute. Set Dynamic Group Object Class and Dynamic
Member URL Attribute to null (delete anything in the fields) and leave Dynamic
Group Name Attribute set to cn.

13.14.4 Optimizing the Principal Validator Cache
To improve the performance of an LDAP Authentication provider, the settings of the
cache used by the WebLogic Principal Validation provider can be increased as
appropriate. The Principal Validator cache used by the WebLogic Principal Validation
provider caches signed WLSAbstractPrincipals. To optimize the performance of the
Principal Validator cache, set these attributes for your security realm (found in the
WebLogic Server Administration Console on the Configuration > Performance page
for the security realm):

■ Enable WebLogic Principal Validator Cache—Indicates whether the WebLogic
Principal Validation provider uses a cache. This setting only applies if
Authentication providers in the security realm use the WebLogic Principal
Validation provider and WLSAbstractPrincipals. By default, it is enabled.

■ Max WebLogic Principals In Cache—The maximum size of the Last Recently
Used (LRU) cache used for validated WLSAbstractPrincipals. The default setting is
500. This setting only applies if Enable WebLogic Principal Validator Cache is
enabled.

13.14.5 Configuring the Active Directory Authentication Provider to Improve
Performance

To configure an Active Directory Authentication provider to use the tokenGroups
option, set the following attributes (found in the WebLogic Server Administration
Console on the Active Directory Authentication provider's Configuration > Provider
Specific page):

■ Use Token Groups for Group Membership Lookup—Indicates whether to use
the Active Directory tokenGroups lookup algorithm instead of the standard
recursive group membership lookup algorithm. By default, this option is not
enabled.

■ Enable SID to Group Lookup Caching—Indicates whether or not SID-to-group
name lookup results are cached. This setting only applies if the Use Token Groups
for Group Membership Lookup option is enabled.

■ Max SID To Group Lookups In Cache—The maximum size of the Least Recently
Used (LRU) cache for holding SID to group lookups. This setting applies only if
both the Use Token Groups for Group Membership Lookup and Enable SID to
Group Lookup Caching options are enabled.

Note: Access to the tokenGroups option is required (meaning, the
user accessing the LDAP directory must have privileges to read the
tokenGroups option and the tokenGroups option must be in the
schema for user objects).

Improving the Performance of LDAP Authentication Providers

13-20 Administering Security for Oracle WebLogic Server 12.2.1

13.14.6 Analyzing the Generic LDAP Authenticator Cache Statistics
If you are using the generic LDAP Authentication provider, then you can use the
LDAPAuthenticatorMBean API to analyze hit/miss statistics collected from the group
membership and user caches. To analyze cache statistics, you must enable cache
collection and statistics of the cache. To do this using the WebLogic Server
Administration Console, complete the following steps:

1. Expand Security Realms > RealmName > Providers > Authentication.

2. On the Provider Specific tab for your LDAP Authentication provider, select the
check boxes for the Cache Enabled and Cache Statistics Enabled entries.

3. Save the changes. If automatic realm restart is enabled, you do not need to restart
the domain after activating your changes.

Cache statistics can be accessed through a runtime MBean,
LdapAuthenticatorRuntimeMBean, using the WebLogic Scripting Tool (WLST). The
following example demonstrates the use of WLST to retrieve cache statistics:

connect('t3://host:port',’adminuser’,’password’)
serverRuntime()
cd("ServerSecurityRuntime/")
cd("$servername")
cd("RealmRuntimes/myrealm/AuthenticatorRuntimes/OracleInternetDirectoryAuthenticat
or")
ls()

The cache statistics data:

-r-- GroupCacheHits 47
-r-- GroupCacheQueries 49
-r-- GroupCacheSize 1
-r-- GroupCacheStatStartTimeStamp 2015-07-15 19:24:02.702
-r-- Name
OracleInternetDirectoryAuthenticator
-r-- ProviderName
OracleInternetDirectoryAuthenticator
-r-- Type LdapAuthenticatorRuntime
-r-- UserCacheHits 296
-r-- UserCacheQueries 300
-r-- UserCacheSize 2
-r-- UserCacheStatStartTimeStamp 2015-07-15 19:24:01.64

13.14.7 Testing the LDAP Connection During Configuration
Similar to the JDBC connection testing, WebLogic Server tests the connection between
the Authentication provider and the LDAP server.

On the Provider Specific page, after you configure a new LDAP Authentication
provider or make changes to an existing one, when you save your configuration
changes, WebLogic Server tests the connection between this provider and the
corresponding LDAP server. If the test succeeds, the configuration settings are saved
and you may activate them. If the test fails, an error message is displayed indicating a
problem. No configuration settings are saved.

Note: Cache statistics is not supported for the
DefaultAuthenticator Authentication provider.

Configuring an Administrator User from an External LDAP Server: an Example

Configuring LDAP Authentication Providers 13-21

13.15 Configuring an Administrator User from an External LDAP Server:
an Example

This section describes the process of configuring an administration user from an
external LDAP server and describes a quick method to verify the configuration.

In this example, the user, orcladmin, is configured for Oracle Unified Directory
Authentication provider. The goal is to configure WebLogic Server to allow orcladmin
to log into the WebLogic Administration console as an administrator.

Perform the following tasks to configure an the user, orcladmin from an external
LDAP server:

1. Create and configure an LDAP Authentication provider.

a. Before you configure the LDAP Authentication provider, you need to obtain
the User Base DN and Groups Base DN details. To obtain these details from
the LDAP server, you must download and install a third party browser tool.
You can find JXplorer, an open source browser tool, at the following location:

http://jxplorer.org/downloads/users.html

This example assumes that you are using JXplorer LDAP browser tool; other
LDAP browser tools may vary in detail.

b. In the LDAP browser tool, configure a new connection and enter your host
and port details along with the Base DN of the LDAP server.

c. In the Security section, choose the User + Password level from the drop-down
list, and enter your user credentials. Alternatively, you can log in as an
anonymous user if permitted.

d. Click OK to configure the connection. The LDAP tree should appear in the
Explore tab on the left pane.

e. Navigate to the hierarchy where your user is created, and right click the user
to copy its DN in a text file, for example, ou=people, o=example.com. This DN
will be used as the User Base DN for configuring the LDAP authentication
provider.

To obtain the Groups Base DN navigate to the groups hierarchy and copy the
DN details in a text file. For example, ou=groups, o=example.com.

f. With the LDAP host, port, Principal credentials, and User and Group base DN
details, configure a new LDAP Authentication provider using the WebLogic
Server Administration Console. In the Administration Console, navigate to the
Security Realms>RealmName>Providers page and click New to add a new
Authentication provider.

g. Enter a name for the Authentication provider and choose
OracleUnifiedDirectoryAuthenticator as the type. Click OK.

h. Click the name of the Oracle Unified Directory Authentication provider you
created, and select the Configuration>Provider Specific page.

i. Configure the mandatory connection attributes, such as the Host, Port,
Principal, Credential, for the user. Enter the User Base DN and the Group Base
DN that you obtained from the third party LDAP browsing tool in the
previous steps.

j. Click Save. If automatic realm restart is enabled, you do not need to restart the
domain after activating your changes.

2. Configure the default WebLogic Authentication provider.

Configuring an Administrator User from an External LDAP Server: an Example

13-22 Administering Security for Oracle WebLogic Server 12.2.1

a. Navigate to Security Realms > RealmName > Providers
>DefaultAuthenticator.

b. On the Common Configuration page, set the Control Flag to SUFFICIENT.

c. If automatic realm restart is enabled, you do not need to restart the domain
after activating your changes.

3. Create and configure global security roles.

a. Verify whether the LDAP user and/or group is successfully configured.
Navigate to Security Realms > RealmName > Users and Groups, and ensure
that you can see the name of the user or group you created.

b. Click the Roles and Policies tab and expand Global Roles> Roles. On the
Admin role row, click the View Role Conditions link, and click Add
Conditions.

c. On the Edit Global Role page, select Group or User from the Predicate List
drop-down menu, and click Next.

d. In the User Argument Name field, enter the LDAP User/Group name you
created in the previous steps, and click Add followed by Finish.

e. Click Save.

4. Verify your configuration.

Log out from the WebLogic Administration Console and log back in with the
LDAP user credentials that you created. You should be able to log in as the new
LDAP user.

Note: For more information about creating and configuring global
security roles, see "Create global security roles" in Oracle WebLogic
Server Administration Console Online Help.

14

Configuring RDBMS Authentication Providers 14-1

14Configuring RDBMS Authentication Providers

[15] This chapter explains how to configure the RDBMS Authentication providers included
in WebLogic Server.

This chapter includes the following sections:

14.1 About Configuring the RDBMS Authentication Providers
In WebLogic Server, an RDBMS Authentication provider is a username/password
based Authentication provider that uses a relational database (rather than an LDAP
directory) as its data store for user, password, and group information. WebLogic
Server includes these RDBMS Authentication providers:

■ SQL Authenticator—Uses a SQL database and allows both read and write access
to the database. This Authentication provider is configured by default with a
typical SQL database schema, which you can configure to match your database's
schema. See Section 14.3, "Configuring the SQL Authentication Provider".

■ Read-only SQL Authenticator—Uses a SQL database and allows only read access
to the database. For write access, you use the SQL database's own interface, not the
WebLogic security provider. See Section 14.4, "Configuring the Read-Only SQL
Authenticator".

■ Custom RDBMS Authenticator—Requires you to write a plug-in class. This may
be a better choice if you want to use a relational database for your authentication
data store, but the SQL Authenticator's schema configuration is not a good match
for your existing database schema. See Section 14.5, "Configuring the Custom
DBMS Authenticator".

For information about adding an RDBMS Authentication provider to your security
realm, see "Configure Authentication and Identity Assertion providers" in the Oracle
WebLogic Server Administration Console Online Help. Once you have created an instance
of the RDBMS Authentication provider, configure it on the RDBMS Authentication
provider's Configuration > Provider Specific page in the WebLogic Server
Administration Console.

14.2 Common RDBMS Authentication Provider Attributes
All three RDBMS Authentication providers include these configuration options.

14.2.1 Data Source Attribute
The Data Source Name specifies the WebLogic Server data source to use to connect to
the database.

Configuring the SQL Authentication Provider

14-2 Administering Security for Oracle WebLogic Server 12.2.1

14.2.2 Group Searching Attributes
The Group Membership Searching and Max Group Membership Search Level
attributes specify whether recursive group membership searching is unlimited or
limited, and if limited, how many levels of group membership can be searched. For
example, if you specify that Group Membership Searching is LIMITED, and the Max
Group Membership Search Level is 0, then the RDBMS Authentication providers will
find only groups that the user is a direct member of. Specifying a maximum group
membership search level can greatly increase authentication performance in certain
scenarios, since it may reduce the number of DBMS queries executed during
authentication. However, you should only limit group membership search if you can
be certain that the group memberships you require are within the search level limits
you specify.

14.2.3 Group Caching Attributes
You can improve the performance of RDBMS Authentication providers by caching the
results of group hierarchy lookups. Use of this cache can reduce the frequency with
which the RDBMS Authentication provider needs to access the database. In the
WebLogic Server Administration Console, you can use the Performance page for your
Authentication provider to configure the use, size, and duration of this cache. See
"Security Realms: Security Providers: SQL Authenticator: Performance" in the Oracle
WebLogic Server Administration Console Online Help.

14.3 Configuring the SQL Authentication Provider
For detailed information about configuring a SQL Authentication provider, see
"Security Realms: Security Providers: SQL Authenticator: Provider Specific" in the
Oracle WebLogic Server Administration Console Online Help. In addition to the attributes
described in Section 14.2, "Common RDBMS Authentication Provider Attributes", the
SQL Authentication provider has the following configurable attributes.

14.3.1 Password Attributes
The following attributes govern how the RDBMS Authentication provider and its
underlying database handle user passwords:

■ Plaintext Passwords Enabled

■ Password Style Retained

■ Password Style

■ Password Algorithm

14.3.2 SQL Statement Attributes
SQL statement attributes specify the SQL statements used by the provider to access
and edit the username, password, and group information in the database. With the

Note: If the RDBMS contains cyclic groups, or groups that are
defined to contain themselves, the RDBMS Authentication provider
may be unable to complete the authentication process. Setting the
Group Membership Searching and Max Group Membership Search
Level attributes can help limit recursive group name lookups.
However, the use of RDBMS Authentication providers with cyclic
groups is not supported and must be avoided.

Configuring the Custom DBMS Authenticator

Configuring RDBMS Authentication Providers 14-3

default values in the SQL statement attributes, it is assumed that the database schema
includes the following tables:

■ users (username, password, [description])

■ groupmembers (group name, group member)

■ groups (group name, group description)

14.4 Configuring the Read-Only SQL Authenticator
For detailed information about configuring a Read-Only SQL Authentication provider,
see "Security Realms: Security Providers: Read-Only SQL Authenticator: Provider
Specific" in the Oracle WebLogic Server Administration Console Online Help. In addition to
the attributes described in Section 14.2, "Common RDBMS Authentication Provider
Attributes", the Read-Only SQL Authentication provider's configurable attributes
include attributes that specify the SQL statements used by the provider to list the
username, password, and group information in the database. You can modify these
attributes as needed to match the schema of your database.

14.5 Configuring the Custom DBMS Authenticator
The Custom DBMS Authentication provider, like the other RDBMS Authentication
providers, uses a relational database as its data store for user, password, and group
information. Use this provider if your database schema does not map well to the SQL
schema expected by the SQL Authenticator. In addition to the attributes described in
Section 14.2, "Common RDBMS Authentication Provider Attributes", the Custom
DBMS Authentication provider's configurable attributes include the following.

14.5.1 Plug-In Class Attributes
A Custom DBMS Authentication provider requires that you write a plug-in class that
implements the
weblogic.security.providers.authentication.CustomDBMSAuthenticatorPlugin
interface. The class must exist in the system classpath and must be specified in the
Plug-in Class Name attribute for the Custom DBMS Authentication provider.
Optionally, you can use the Plugin Properties attribute to specify values for properties
defined by your plug-in class.

Note: The tables referenced by the SQL statements must exist in the
database; the provider will not create them. You can modify these
attributes as needed to match the schema of your database. However,
if your database schema is radically different from this default
schema, you may need to use a Custom DBMS Authentication
provider instead.

Configuring the Custom DBMS Authenticator

14-4 Administering Security for Oracle WebLogic Server 12.2.1

15

Configuring the Windows NT Authentication Provider 15-1

15Configuring the Windows NT Authentication
Provider

[16] This chapter explains how to configure the Windows NT Authentication provider
included in WebLogic Server.

This chapter includes the following sections:

■ About the Windows NT Authentication Provider

■ Domain Controller Settings

■ LogonType Setting

■ UPN Names Settings

15.1 About the Windows NT Authentication Provider
The Windows NT Authentication provider uses account information defined for a
Windows NT domain to authenticate users and groups and to permit Windows NT
users and groups to be listed in the WebLogic Server Administration Console.

To use the Windows NT Authentication provider, create the provider in the WebLogic
Server Administration Console. In most cases, you should not need to do anything
more to configure this Authentication provider. Depending on how your Windows NT
domains are configured, you may want to set the Domain Controllers and Domain
Controller List attributes, which control how the Windows NT Authentication
provider interacts with the Windows NT domain.

15.2 Domain Controller Settings
Usernames in a Windows NT domain can take several different forms. You may need
to configure the Windows NT Authentication provider to match the form of
usernames you expect your users to sign on with. A simple username is one that gives
no indication of the domain, such as smith. Compound usernames combine a
username with a domain name and may take a form like domain\smith or
smith@domain.

If the local machine is not part of a Microsoft domain, then no changes to the Domain
Controllers and Domain Controller List attributes are needed. On a stand-alone
machine, the users and groups to be authenticated are defined only on that machine.

Note: The Windows NT Authentication provider is deprecated as of
WebLogic Server 10.0. Use one or more other supported
authentication providers instead.

LogonType Setting

15-2 Administering Security for Oracle WebLogic Server 12.2.1

If the local machine is part of a Microsoft domain and is the domain controller for the
local domain, then no changes are needed to the Domain Controller List attribute.
Users defined on the local machine and the domain are the same in this case, so you
can use the default Domain Controllers setting.

If the local machine is part of a Microsoft domain, but is not the domain controller for
the local domain, then a simple username might be found on either the local machine
or in the domain. In this case, consider the following:

■ Do you want to prevent the users and groups from the local machine from being
displayed in the Console when the local machine is part of a Microsoft domain?

■ Do you want users from the local machine to be found and authenticated when a
simple username is entered?

If the answer to either question is yes, then set the Domain Controller attribute to
DOMAIN.

If you have multiple trusted domains, you may need to set the Domain Controller
attribute to LIST and specify a Domain Controller List. Do this if:

■ You require the users and groups for other trusted domains to be visible in the
Console, or

■ You expect that your users will be entering simple usernames and expect them to
be located in the trusted domains (that is, users will sign on with a simple
username like smith, not smith@domain or domain\Smith).

If either of these situations is the case, then set the Domain Controllers attribute to
LIST and specify the names of the domain controllers in the Domain Controller List
attribute for the trusted domains that you want to be used. Consider also whether to
use explicit names for the local machine and local domain controller or if you want to
use placeholders in the list for those. You can use the following placeholders in the
Domain Controller List attribute:

■ [Local]

■ [LocalAndDomain]

■ [Domain]

15.3 LogonType Setting
The proper value of the LogonType attribute in the Windows NT Authentication
provider depends on the Windows NT logon rights of the users that you want to be
able to authenticate:

■ If users have the "logon locally" right assigned to them on the machines that will
run WebLogic Server, then use the default value, interactive.

■ If users have the "Access this computer from the Network" right assigned to them,
then change the LogonType attribute to network.

You must assign one of these rights to users in the Windows NT domain or else the
Windows NT Authentication provider will not be able to authenticate any users.

15.4 UPN Names Settings
UPN style usernames can take the form user@domain. You can configure how the
Windows NT Authentication provider handles usernames that include the @ character,
but which may not be UPN names, by setting the mapUPNNames attribute in the
Windows NT Authentication provider.

UPN Names Settings

Configuring the Windows NT Authentication Provider 15-3

If none of your Windows NT domains or local machines have usernames that contain
the @ character other than UPN usernames, then you can use the default value of the
mapUPNNames attribute, FIRST. However, you may want to consider changing the
setting to ALWAYS in order to reduce the amount of time it takes to detect authentication
failures. This is especially true if you have specified a long domain controller list.

If your Windows NT domains do permit non-UPN usernames with the @ character in
them, then:

■ If a username with the @ character is more likely to be a UPN username than a
simple username, set the mapUPNNames attribute to FIRST.

■ If a username with the @ character is more likely to be a simple username than a
UPN username, set the mapUPNNames attribute to LAST.

■ If a username is never in UPN format, set the mapUPNNames attribute to NEVER.

UPN Names Settings

15-4 Administering Security for Oracle WebLogic Server 12.2.1

16

Configuring the SAML Authentication Provider 16-1

16Configuring the SAML Authentication Provider

[17] This chapter explains how to configure the SAML Authentication provider. The SAML
Authentication provider may be used in conjunction with the SAML 1.1 or SAML 2.0
Identity Assertion provider to do the following:

■ Allow virtual users to log in via SAML

If true, the SAML Identity Asserter will create user/group principals, with the
possible result that the user is logged in as a virtual user — a user that does not
correspond to any locally-known user.

■ If the SAML Authentication provider is configured to run before other
authentication providers, and has a JAAS Control Flag set to SUFFICIENT, this
provider creates an authenticated subject using the user name and groups
retrieved from a SAML assertion by the SAML Identity Assertion provider V2 or
the SAML 2.0 Identity Assertion provider.

If the SAML Authentication provider is not configured, or if another authentication
provider (e.g., the default LDAP Authentication provider) is configured before it and
its JAAS Control Flag set is set to SUFFICIENT, then the user name returned by the
SAML Identity Assertion provider is validated by the other authentication provider. In
the case of the default LDAP Authentication provider, authentication fails if the user
does not exist in the identity directory.

If you want groups from a SAML assertion, you must configure the SAML
Authentication provider even if you want the LDAP Authentication provider to verify
the user's existence. Otherwise, the groups with which the user is associated is derived
from the LDAP directory and not with the groups in the assertion.

The SAML Authentication provider creates a subject only for users whose identities
are asserted by either the SAML Identity Assertion provider V2 or SAML 2.0 Identity

Important: If you configure the SAML Authentication provider to
allow virtual users to log in and gain access to a resource, make note
of the following:

1. The resource must be configured with a security policy to control access.
If the resource is unprotected, the subject created for the virtual user has
no principals, which prevents access from being granted.

2. The protected resource must also use the default cookie JSESSIONID. If the
resource uses a cookie name other than JSESSIONID, the subject's identity
is not propagated to the resource.

For information about configuring security policies, see Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

16-2 Administering Security for Oracle WebLogic Server 12.2.1

Assertion provider. The SAML Authentication provider ignores all other
authentication or identity assertion requests.

17

Configuring the Password Validation Provider 17-1

17Configuring the Password Validation Provider

[18] This chapter explains how to configure the Password Validation provider included in
WebLogic Server, the composition rules that may be configured, and how to create and
configure an instance of the Password Validation provider in a security realm

This chapter includes the following sections:

■ About the Password Validation Provider

■ Password Composition Rules for the Password Validation Provider

■ Using the Password Validation Provider with the WebLogic Authentication
Provider

■ Using the Password Validation Provider with an LDAP Authentication Provider

■ Using WLST to Create and Configure the Password Validation Provider

17.1 About the Password Validation Provider
WebLogic Server includes a Password Validation provider, which is configured by
default in each security realm. The Password Validation provider manages and
enforces a set of configurable password composition rules, and is automatically
invoked by a supported authentication provider whenever a password is created or
updated for a user in the realm. When invoked, the Password Validation provider
performs a check to determine whether the password meets the criteria established by
the composition rules. The password is then accepted or rejected as appropriate.

The following authentication providers can be used with the Password Validation
provider:

■ WebLogic Authentication provider

■ SQL Authenticator provider

■ LDAP Authentication provider

■ Oracle Internet Directory Authentication Provider

■ Oracle Virtual Directory Authentication Provider

■ Active Directory Authentication provider

■ ODSEE Authentication provider

■ Novell Authentication provider

■ Open LDAP Authentication provider

Password Composition Rules for the Password Validation Provider

17-2 Administering Security for Oracle WebLogic Server 12.2.1

For information about configuring the Password Validation provider in the WebLogic
Server Administration Console, see "Configure the Password Validation provider" in
the Oracle WebLogic Server Administration Console Online Help.

17.2 Password Composition Rules for the Password Validation Provider
By default, the Password Validation provider is configured to require passwords that
have a minimum length of eight characters. When used with one of the supported
LDAP authentication providers listed in the preceding section, the Password
Validation provider also requires that passwords meet the additional criteria listed in
Table 17–1.

The password composition rules you optionally can configure for the Password
Validation provider include the following:

■ User name policies — Rules that determine whether the password may consist of
or contain the user's name, or the reverse of that name

■ Password length policies — Rules for the minimum or maximum number of
characters in a password (composition rules may specify both a minimum and
maximum length)

■ Character policies — Rules regarding the inclusion of the following characters in
the password:

– Numeric characters

– Lowercase alphabetic characters

– Uppercase alphabetic characters

– Non-alphanumeric characters

For information about the specific composition rules that may be configured for the
Password Validation provider, including the settings for these rules that Oracle
recommends for a production environment, see "System Password Validation
Provider: Provider Specific" in the Oracle WebLogic Server Administration Console Online
Help.

Table 17–1 Additional Password Composition Rules Required by Password Validation
Provider When Used with an LDAP Authentication Provider

LDAP Authentication Provider Additional Password Composition Requirement

■ Oracle Internet Directory
Authentication provider

■ Oracle Virtual Directory
Authentication provider

At least one of the characters in the password must be
numeric.

■ WebLogic Authentication
provider

■ LDAP Authentication provider

■ Active Directory Authentication
provider

■ ODSEE Authentication provider

■ Novell Authentication provider

■ Open LDAP Authentication
provider

At least one of the characters in the password must be
non-alphabetic. For example, a numeric character, an
asterisk (*), or an octothorpe (#).

Using the Password Validation Provider with an LDAP Authentication Provider

Configuring the Password Validation Provider 17-3

17.3 Using the Password Validation Provider with the WebLogic
Authentication Provider

By default, the WebLogic Authentication provider requires a minimum password
length of 8 characters, of which one is non-alphabetic. However, the minimum
password length enforced by this provider can be customized. If the WebLogic
Authentication provider and Password Validation provider are both configured in the
security realm, and you attempt to create a password that does not meet the minimum
length enforced by the WebLogic Authentication provider, an error is generated. For
example, the following message is displayed in the WebLogic Server Administration
Console:

Error [Security:090285]password must be at least 8 characters long
Error Errors must be corrected before proceeding.

If the WebLogic Authentication provider rejects a password because it does not meet
the minimum length requirement, the Password Validation provider is not called. To
ensure that the Password Validator is always used in conjunction with the WebLogic
Authentication provider, make sure that the minimum password length is the same for
both providers.

Using the WebLogic Server Administration Console, you can set the minimum
password length for WebLogic Authentication provider by completing the following
steps:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. In the left pane, select Security Realms and click the name of the realm you are
configuring (for example, myrealm).

3. Select Providers > Authentication and click DefaultAuthenticator.

4. Select Configuration > Provider Specific and enter the minimum password
length in the field labeled Minimum Password Length.

5. Click Save to save your changes.

6. To activate these changes, in the Change Center, click Activate Changes.

For information about how to set the minimum password length in the Password
Validation provider, see Section 17.5, "Using WLST to Create and Configure the
Password Validation Provider".

17.4 Using the Password Validation Provider with an LDAP
Authentication Provider

When the Password Validation provider and an LDAP Authentication provider (for
example, Oracle Internet Directory Authentication provider) are configured in the

Caution: Setting password composition rules is only one component
of hardening the WebLogic Server environment against brute-force
password attacks. To protect user accounts, you should also configure
user lockout. User lockout specifies the number of incorrect
passwords that may be entered within a given interval of time before
the user is locked out of his or her account. For more information, see
Section 4.6, "Protecting User Accounts".

Using WLST to Create and Configure the Password Validation Provider

17-4 Administering Security for Oracle WebLogic Server 12.2.1

security realm, passwords are validated through two separate policy checks: one from
Password Validation provider, and the other from the LDAP server, which has its own
password policy check. For example, Oracle Internet Directory has its own password
validation mechanism, which is controlled by the LDAP server administrator. These
two password validation mechanisms are separate, and each has its own set of
password composition rules. If the composition rules are inconsistent, failures may
occur in the WebLogic Server Administration Console when you try to create or reset a
password, even if the rules for the Password Validation provider are enforced.
Therefore you should make sure that the password composition rules for the Password
Validation provider do not conflict with those for the LDAP server.

17.5 Using WLST to Create and Configure the Password Validation
Provider

The Password Validation provider can be administered in the security realm via a
WLST script that performs operations on the SystemPasswordValidatorMBean,
described in the MBean Reference for Oracle WebLogic Server. You may create and
configure the Password Validation provider from a single WLST script, or you may
have separate scripts that perform these functions separately. The following topics
explain how, providing sample WLST code snippets:

■ Section 17.5.1, "Creating an Instance of the Password Validation Provider"

■ Section 17.5.2, "Specifying the Password Composition Rules"

17.5.1 Creating an Instance of the Password Validation Provider
The Password Validation provider is created automatically in the security realm
when you create a new domain. However, you can use WLST to create one as well, as
shown in Example 17–1. This code does the following:

1. Gets the current realm and Password Validation provider.

2. Determines whether an instance of the Password Validator provider (named
SystemPasswordValidator) has been created:

■ If the provider has been created, the script displays a message confirming its
presence.

■ If the provider has not been created, the script creates it in the security realm
and displays a message indicating that it has been created.

Example 17–1 Creating the System Password Validator

edit()
startEdit()

realm = cmo.getSecurityConfiguration().getDefaultRealm()
pwdvalidator = realm.lookupPasswordValidator('SystemPasswordValidator')

if pwdvalidator:
 print 'Password Validator provider is already created'

else:
Create SystemPasswordValidator
 syspwdValidator = realm.createPasswordValidator('SystemPasswordValidator',

'com.bea.security.providers.authentication.passwordvalidator.SystemPasswordValidat
or')

Using WLST to Create and Configure the Password Validation Provider

Configuring the Password Validation Provider 17-5

 print "--- Creation of System Password Validator succeeded!"

save()
activate()

17.5.2 Specifying the Password Composition Rules
Example 17–2 shows an example of WLST code that sets the composition rules for the
Password Validation provider. For information about the rule attributes that can be set
in this script, see the description of the SystemPasswordValidatorMBean in the MBean
Reference for Oracle WebLogic Server.

Example 17–2 Configuring the Password Composition Rules

edit()
startEdit()

Configure SystemPasswordValidator
try:
 pwdvalidator.setMinPasswordLength(8)
 pwdvalidator.setMaxPasswordLength(12)
 pwdvalidator.setMaxConsecutiveCharacters(3)
 pwdvalidator.setMaxInstancesOfAnyCharacter(4)
 pwdvalidator.setMinAlphabeticCharacters(1)
 pwdvalidator.setMinNumericCharacters(1)
 pwdvalidator.setMinLowercaseCharacters(1)
 pwdvalidator.setMinUppercaseCharacters(1)
 pwdvalidator.setMinNonAlphanumericCharacters(1)
 pwdvalidator.setMinNumericOrSpecialCharacters(1)
 pwdvalidator.setRejectEqualOrContainUsername(true)
 pwdvalidator.setRejectEqualOrContainReverseUsername(true)
 print " --- Configuration of SystemPasswordValidator complete ---"
except Exception,e:
 print e

save()
activate()

Using WLST to Create and Configure the Password Validation Provider

17-6 Administering Security for Oracle WebLogic Server 12.2.1

18

Configuring Identity Assertion Providers 18-1

18Configuring Identity Assertion Providers

[19] If you are using perimeter authentication, you need to use an Identity Assertion
provider. This chapter explains how to configure the Identity Assertion providers
included in WebLogic Server.

This chapter includes the following sections:

■ About the Identity Assertion Providers

■ How an LDAP X509 Identity Assertion Provider Works

■ Configuring an LDAP X509 Identity Assertion Provider: Main Steps

■ Configuring a Negotiate Identity Assertion Provider

■ Configuring a SAML Identity Assertion Provider for SAML 1.1

■ Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

■ Ordering of Identity Assertion for Servlets

■ Configuring Identity Assertion Performance in the Server Cache

■ Authenticating a User Not Defined in the Identity Store

■ Configuring a User Name Mapper

■ Configuring a Custom User Name Mapper

18.1 About the Identity Assertion Providers
In perimeter authentication, a system outside of WebLogic Server establishes trust
through tokens (as opposed to simple authentication, where WebLogic Server
establishes trust through usernames and passwords). An Identity Assertion provider
verifies the tokens and performs whatever actions are necessary to establish validity
and trust in the token. Each Identity Assertion provider is designed to support one or
more token formats.

WebLogic Server includes the following Identity Assertion providers:

■ WebLogic Identity Asserter

■ LDAP X.509 Identity Asserter

■ Negotiate Identity Asserter

■ SAML Identity Asserter (for SAML 1.1)

■ SAML 2.0 Identity Asserter

Multiple Identity Assertion providers can be configured in a security realm, but none
are required. Identity Assertion providers can support more than one token type, but

How an LDAP X509 Identity Assertion Provider Works

18-2 Administering Security for Oracle WebLogic Server 12.2.1

only one token type per Identity Assertion provider can be active at a given time. In
the Active Type field on the Provider Specific configuration page in the WebLogic
Server Administration Console, define the active token type. The WebLogic Identity
Assertion provider supports identity assertion with:

■ X.509 certificates

■ CORBA Common Secure Interoperability version 2 (CSI v2)

If you are using CSI v2 identity assertion, define the list of client principals in the
Trusted Client Principals field, available from the Provider Specific page in the
WebLogic Server Administration Console.

■ weblogic-jwt-token tokens

This token type is used internally for propagating identity in REST invocations of
other applications in the domain, and is configured by default.

If multiple Identity Assertion providers are configured in a security realm, they can all
support the same token type. However, the token can be active for only one provider
at a time.

With the WebLogic Identity Assertion provider, you can use a user name mapper to
map the tokens authenticated by the Identity Assertion provider to a user in the
security realm. For more information about configuring a user name mapper, see
Section 9.1, "Configuring a WebLogic Credential Mapping Provider".

If the authentication type in a Web application is set to CLIENT-CERT, the Web
Application container in WebLogic Server performs identity assertion on values from
request headers and cookies. If the header name or cookie name matches the active
token type for the configured Identity Assertion provider, the value is passed to the
provider.

The Base64 Decoding Required value on the Provider Specific page determines
whether the request header value or cookie value must be Base64 Decoded before
sending it to the Identity Assertion provider. The setting is enabled by default for
purposes of backward compatibility; however, most Identity Assertion providers will
disable this option.

For more information see "Configure Authentication and Identity Assertion providers"
in the Oracle WebLogic Server Administration Console Online Help.

18.2 How an LDAP X509 Identity Assertion Provider Works
The LDAP X509 Identity Assertion provider receives an X509 certificate, looks up the
LDAP object for the user associated with that certificate, ensures that the certificate in
the LDAP object matches the presented certificate, and then retrieves the name of the
user from the LDAP object.

The LDAP X509 Identity Assertion provider works in the following manner:

1. An application is set up to use perimeter authentication (in other words, users or
system process use tokens to assert their identity).

2. As part of the SSL handshake, the application presents it certificate. The Subject
DN in the certificate can be used to locate the object that represents the user in the
LDAP server. The object contains the user's certificate and name.

3. The LDAP X509 Identity Assertion provider uses the certificate in the Subject DN
to construct an LDAP search to find the LDAP object for the user in the LDAP
server. It gets the certificate from that object, ensures it matches the certificate it
holds, and retrieves the name of the user.

Configuring an LDAP X509 Identity Assertion Provider: Main Steps

Configuring Identity Assertion Providers 18-3

4. The username is passed to the authentication providers configured in the security
realm. The authentication providers ensure the user exists and locates the groups
to which the user belongs.

18.3 Configuring an LDAP X509 Identity Assertion Provider: Main Steps
Typically, if you use the LDAP X509 Identity Assertion provider, you also need to
configure an LDAP Authentication provider that uses an LDAP server. The
authentication provider ensures the user exists and locates the groups to which the
user belongs. You should ensure both providers are properly configured to
communicate with the same LDAP server.

To use an LDAP X509 Identity Assertion provider:

1. Obtain certificates for users and put them in an LDAP Server. See Chapter 29,
"Configuring Keystores".

A correlation must exist between the Subject DN in the certificate and the location
of the object for that user in the LDAP server. The LDAP object for the user must
also include configuration information for the certificate and the username that
will be used in the Subject.

2. In your security realm, configure an LDAP X509 Identity Assertion provider. See
"Configure Authentication and Identity Assertion providers" in the Oracle
WebLogic Server Administration Console Online Help.

3. In the WebLogic Server Administration Console, configure the LDAP X509
Identity Assertion provider to find the LDAP object for the user in the LDAP
directory given the certificate's Subject DN.

4. Configure the LDAP X509 Identity Assertion provider to search the LDAP server
to locate the LDAP object for the user. This requires the following pieces of data.

■ A base LDAP DN from which to start searching. The Certificate Mapping
option for the LDAP X509 Identity Assertion provider tells the identity
assertion provider how to construct the base LDAP DN from the certificate's
Subject DN. The LDAP object must contain an attribute that holds the
certificate.

■ A search filter that only returns LDAP objects that match a defined set of
options. The filter narrows the LDAP search. Configure User Filter Search to
construct a search filter from the certificate's Subject DN.

■ Where in the LDAP directory to search for the base LDAP DN. The LDAP
X509 Identity Assertion provider searches recursively (one level down). This
value must match the values in the certificate's Subject DN.

5. Configure the Certificate Attribute attribute of the LDAP X509 Identity Assertion
provider to specify how the LDAP object for the user holds the certificate. The
LDAP object must contain an attribute that holds the certificate.

6. Configure the User Name Attribute attribute of the LDAP X509 Identity Assertion
provider to specify which of the LDAP object's attributes holds the username that
should appear in the Subject DN.

7. Configure the LDAP server connection for the LDAP X509 Identity Assertion
provider. The LDAP server information should be the same as the information
defined for the LDAP Authentication provider configured in this security realm.

8. Configure an LDAP Authentication provider for use with the LDAP X509 Identity
Assertion provider. The LDAP server information should be the same the

Configuring a Negotiate Identity Assertion Provider

18-4 Administering Security for Oracle WebLogic Server 12.2.1

information defined for the LDAP X509 Identity Assertion provider configured in
Step 7. See Chapter 13, "Configuring LDAP Authentication Providers".

18.4 Configuring a Negotiate Identity Assertion Provider
The Negotiate Identity Assertion provider enables single sign-on (SSO) with Microsoft
clients. The identity assertion provider decodes Simple and Protected Negotiate
(SPNEGO) tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps
Kerberos tokens to WebLogic users. The Negotiate Identity Assertion provider utilizes
the Java Generic Security Service (GSS) Application Programming Interface (API) to
accept the GSS security context via Kerberos.

The Negotiate Identity Assertion provider is an implementation of the Security Service
Provider Interface (SSPI) as defined by the WebLogic Security Framework and
provides the necessary logic to authenticate a client based on the client's SPNEGO
token.

For information about adding a Negotiate Identity Assertion provider to a security
realm, see "Configure Authentication and Identity Assertion providers" in the Oracle
WebLogic Server Administration Console Online Help. For information about using the
Negotiate Identity Assertion provider with Microsoft client SSO, see Chapter 20,
"Configuring Single Sign-On with Microsoft Clients"

18.5 Configuring a SAML Identity Assertion Provider for SAML 1.1
The SAML Identity Assertion provider acts as a consumer of SAML 1.1 security
assertions, allowing WebLogic Server to act as a destination site for using SAML 1.1 for
single sign-on. The SAML Identity Assertion provider validates SAML 1.1 assertions
by checking the signature and validating the certificate for trust in the certificate
registry maintained by the provider. If so, identity is asserted based on the
AuthenticationStatement contained in the assertion. The SAML Identity Assertion
provider can also ensure that the assertion has not been previously used. The SAML
Identity Assertion provider must be configured if you want to deploy a SAML
Assertion Consumer Service on a server instance.

This release of WebLogic Server includes two SAML Identity Assertion providers for
SAML 1.1. SAML Identity Asserter Version 2 provides greatly enhanced configuration
options and is recommended for new deployments. SAML Identity Asserter Version 1
has been deprecated in WebLogic Server 9.1. A security realm can have not more than
one SAML Identity Assertion provider, and if the security realm has both a SAML
Identity Assertion provider and a SAML Credential Mapping provider, both must be
of the same version. Do not use a Version 1 SAML provider in the same security realm
as a Version 2 SAML provider. For information about configuring the SAML Identity

Table 18–1 Negotiate Identity Asserter Attributes

Attribute Description

Form Based Negotiation
Enabled

Indicates whether the Negotiate Identity Assertion provider
and servlet filter should negotiate when a Web application is
configured for FORM authentication.

Active Types The token type this Negotiate Identity Assertion provider
uses for authentication. Available token types are
Authorization.Negotiate and
WWW-Authenticate.Negotiate.

Ensure no other identity assertion provider configured in the
same security realm has this attribute set to X509.

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

Configuring Identity Assertion Providers 18-5

Assertion provider Version 1, see "Configuring a SAML Identity Assertion Provider" in
Securing WebLogic Server in the WebLogic Server 9.0 documentation.

For information about how to use the SAML Identity Assertion provider in a SAML
single sign-on configuration, see Chapter 21, "Configuring Single Sign-On with Web
Browsers and HTTP Clients Using SAML". For general information about SAML
support in WebLogic Server, see "Security Assertion Markup Language (SAML)" in
Understanding Security for Oracle WebLogic Server.

18.5.1 Asserting Party Registry
When you configure WebLogic Server to act as a consumer of SAML security
assertions, you need to register the parties whose SAML assertions will be accepted.
For each SAML Asserting Party, you can specify the SAML profile used, details about
the Asserting Party, and the attributes expected in assertions received from the
Asserting Party. For information, see:

■ Section 22.3.3, "Configuring Asserting Parties"

■ "Configure a SAML 1.1 Asserting Party" in the Oracle WebLogic Server
Administration Console Online Help.

18.5.2 Certificate Registry
The SAML Identity Assertion provider maintains a registry of trusted certificates.
Whenever a certificate is received, it is checked against the certificates in the registry
for validity. For each Asserting Party, the following certificates from that partner are
contained in this registry:

■ The certificate used for validating the signature of assertions received from this
Asserting Party.

■ The certificate used for verifying signatures on SAML protocol elements from this
Asserting Party. This certificate must be set for the Browser/POST profile.

■ The TLS/SSL certificate used for verifying trust in the Asserting Party when that
partner is retrieving an artifact from the Assertion Retrieval Service (ARS) via an
SSL connection.

You can add trusted certificates to the certificate registry through the WebLogic Server
Administration Console:

1. In the Console, navigate to the Security Realms > RealmName > Providers >
Authentication page.

2. Click the name of the SAML Identity Assertion provider and open the
Management > Certificates page.

On the Management > Certificates page, you can add, view, or delete certificates from
the registry.

18.6 Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0
The SAML 2.0 Identity Assertion provider acts as a consumer of SAML 2.0 security
assertions, allowing WebLogic Server to act as a Service Provider for the following:

■ Web single sign-on

■ WebLogic Web Services Security: accepting SAML tokens for identity through the
use of the appropriate WS-SecurityPolicy assertions

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

18-6 Administering Security for Oracle WebLogic Server 12.2.1

The SAML 2.0 Identity Assertion provider does the following:

■ Validates SAML 2.0 assertions by checking the signature and validating the
certificate for trust based on data configured for the partner. The SAML 2.0
Identity Assertion provider then extracts the identity information contained in the
assertion, and maps it to a local subject in the security realm.

■ Optionally, extracts attribute information contained in an assertion that the SAML
Authentication provider, if configured in the security realm, can use to determine
the local groups in which the mapped subject belongs. (For more information, see
Chapter 16, "Configuring the SAML Authentication Provider".)

■ Optionally, verifies that an assertion's specified lifespan and re-use settings are
properly valid, rejecting the assertion if it is expired or is not available for reuse.

Configuration of the SAML 2.0 Identity Assertion provider is controlled by setting
attributes on the SAML2IdentityAsserterMBean. You can access the
SAML2IdentityAsserterMBean using the WebLogic Scripting Tool (WLST), or through
the WebLogic Server Administration Console by using the Security Realms >
RealmName > Providers > Authentication page and creating or selecting
SAML2IdentityAsserter. For details about these attributes, see
SAML2IdentityAsserterMBean in the MBean Reference for Oracle WebLogic Server.

For information about how to use the SAML 2.0 Identity Assertion provider in a
SAML single sign-on configuration, see Chapter 21, "Configuring Single Sign-On with
Web Browsers and HTTP Clients Using SAML". For general information about SAML
support in WebLogic Server, see "Security Assertion Markup Language (SAML)" in
Understanding Security for Oracle WebLogic Server. For information about using the
SAML 2.0 Identity Assertion provider in Web Service Security, see "Using Security
Assertion Markup Language (SAML) Tokens For Identity" in Securing WebLogic Web
Services for Oracle WebLogic Server.

18.6.1 Identity Provider Partners
When you configure WebLogic Server to act as a Service Provider, you create and
configure the Identity Provider partners from whom SAML 2.0 assertions are received
and validated. Configuring an Identity Provider partner consists of establishing basic
information about that partner, such as the following:

■ Partner name and general description

■ Name mapper class to be used with this partner

■ Whether to consume attribute statements included in assertions received from this
partner

■ Whether the identities contained in assertions received from this partner should be
mapped to virtual users

■ Certificates used for validating signed assertions received from this partner

The specific information you establish depends upon whether you are configuring the
partner for web single sign-on or web services. Configuring a web single sign-on
Identity Provider partner also involves importing that partner's metadata file and
establishing additional basic information about that partner, such as the following:

■ Redirect URIs, which are URLs that, when invoked by an unauthenticated user,
cause the user request to be redirected to that Identity Provider partner for
authentication

■ Whether SAML artifact requests received from this partner must be signed

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

Configuring Identity Assertion Providers 18-7

■ How SAML artifacts should be delivered to this partner

For details about configuring web single sign-on Identity Provider partners, see:

■ Section 23.4.5, "Create and Configure Web Single Sign-On Identity Provider
Partners"

■ "Create a SAML 2.0 Web Single Sign-on Identity Provider partner" in the Oracle
WebLogic Server Administration Console Online Help

Configuring a web service Identity Provider partner does not use a metadata file, but
does consist of establishing the following information about that partner:

■ Issuer URI, which is a string that uniquely identifies this Identity Provider partner,
distinguishing it from other partners in your SAML federation

■ Audience URIs, which specify an audience restriction to be included in assertions
received from this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the
partner lookup string, which is required by the web service run time to discover
the partner. See Section 18.6.1.1, "Partner Lookup Strings Required for Web Service
Partners".

■ Custom name mapper class that overrides the default name mapper and that is to
be used specifically with this partner

For more information about configuring web service Service Provider partners, see
"Create a SAML 2.0 Web Service Identity Provider partner" in the Oracle WebLogic
Server Administration Console Online Help.

18.6.1.1 Partner Lookup Strings Required for Web Service Partners
For web service Identity Provider partners, you also configure Audience URIs. In
WebLogic Server, the Audience URI attribute is overloaded to perform two distinct
functions:

■ Specify an audience restriction consisting of a target URL, per the OASIS SAML
2.0 specification.

■ Contain a partner lookup string, which is required at run time by WebLogic Server
to discover the Identity Provider partner for which a SAML 2.0 assertion needs to
be validated.

The partner lookup string specifies an endpoint URL, which is used for partner lookup
and can optionally also serve as an Audience URI restriction that must be included in
the assertion received from this Identity Provider partner.

Lookup String Syntax

The partner lookup string has the following syntax:

[target:char:]<endpoint-url>
In this syntax, target:char: is a prefix that designates the partner lookup string,
where char represents one of three special characters: a hyphen, plus sign, or asterisk
(-, +, or *). This prefix determines how partner lookup is performed, as described in
Table 18–2.

Note: You must configure a partner lookup string for an Identity
Provider partner so that partner can be discovered at run time by the
web service run time.

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

18-8 Administering Security for Oracle WebLogic Server 12.2.1

Note: A WebLogic Server instance that is configured in the role of
Service Provider always strips off the transport, host, and port
portions of an endpoint URL that is passed in to the SAML 2.0
Identity Assertion provider. Therefore, the endpoint URLs you
configure in any lookup string for an Identity Provider partner should
contain only the portion of the URL that follows the host and port. For
example, target:*:/myserver/xxx.

When you configure a Service Provider site, this behavior enables you
to configure a single Identity Provider partner that can be used to
validate all assertions for the same web service, regardless of the
variations in the transport protocol (i.e., HTTP vs. HTTPS), host name,
IP address, and port information across all the machines in a domain
that host that web service.

Table 18–2 Identity Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-url> Specifies that partner lookup is conducted for an exact match
of the URL, <endpoint-url>. For example,
target:-:/myserver/myservicecontext/my-endpoint
specifies the endpoint that can be matched to this Identity
Provider partner, for which an assertion should be validated.

This form of partner lookup string excludes the endpoint URL
from being added as an Audience URI for this Identity
Provider partner.

target:+:<endpoint-url> Specifies that partner lookup is conducted for an exact match
of the URL, <endpoint-url>.

Note: Using the plus sign (+) in the lookup string results in the
endpoint URL being added as an Audience URI in the
assertion received from this Identity Provider partner. Because
this form of lookup string is unlikely to produce a match for
an Identity Provider partner, it should be avoided.

target:*:<endpoint-url> Specifies that partner lookup is conducted for an initial-string
pattern match of the URL, <endpoint-url>. For example,
target:*:/myserver specifies that any endpoint URL
beginning with /myserver can be matched to this Identity
Provider, such as: /myserver/contextA/endpointA and
/myserver/contextB/endpointB.

If more than one Identity Provider partner is discovered that
is a match for the initial string, the partner with the longest
initial string match is selected.

This form of partner lookup string excludes the endpoint URL
from being added as an Audience URI for this Identity
Provider partner.

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

Configuring Identity Assertion Providers 18-9

Specifying Default Partners

To support the need for a default Identity Provider partner entry, one or more of the
default partner's Audience URI entries may contain a wildcard match that works for
all targets. For example, target:*:/.

18.6.1.2 Management of Partner Certificates
The SAML 2.0 Identity Assertion provider manages the trusted certificates for
configured partners. Whenever a certificate is received during an exchange of partner
messages, the certificate is checked against the certificates maintained for the partner.
Partner certificates are used for the following purposes:

■ To validate trust when the Service Provider site receives a signed assertion or a
signed SAML artifact request.

■ To validate trust in an Identity Provider partner that is retrieving a SAML artifact
from the Artifact Resolution Service (ARS) via an SSL connection.

The following certificates, which are obtained from each configured Identity Provider
partner, are required:

■ The certificate used to verify signed SAML documents received from the partner,
such as assertions and artifact requests

The certificate used to verify signed SAML documents in web single sign-on is
included in the metadata file received from the Identity Provider partner. When
configuring web service Identity Provider partners, you obtain this certificate from
your partner and import it into this partner's configuration via the Assertion
Signing Certificate tab of the partner management page in the WebLogic Server
Administration Console.

■ The Transport Layer Security (TLS) client certificate that is used to verify the
connection made by the partner to the local site's SSL binding for retrieving SAML
artifacts (used in web single sign-on only)

When configuring a web single sign-on Identity Provider partner, you must obtain
the TLS client certificate directly from the partner. It is not automatically included
in the metadata file. You can import this certificate into the configuration data for
this partner via the Transport Layer Client Certificate tab of the partner
management page in the WebLogic Server Administration Console.

18.6.1.3 Java Interface for Configuring Identity Provider Partner Attributes
Operations on web service partners are available in the
com.bea.security.saml2.providers.registry.Partner Java interface.

Notes: Configuring one or more partner lookup strings for an
Identity Provider partner is required in order for that partner to be
discovered at run time. If this partner cannot be discovered, no
assertions for this partner can be validated.

If you configure an endpoint URL without using the target lookup
prefix, it will be handled as a conventional Audience URI that must be
contained in assertions received from this Identity Provider partner.
(This also enables backwards-compatibility with existing Audience
URIs that may be configured for this partner.)

Ordering of Identity Assertion for Servlets

18-10 Administering Security for Oracle WebLogic Server 12.2.1

18.7 Ordering of Identity Assertion for Servlets
When an HTTP request is sent, there may be multiple matches that can be used for
identity assertion. However, identity assertion providers can only consume one active
token type at a time. As a result there is no way to provide a set of tokens that can be
consumed with one call. Therefore, the servlet contained in WebLogic Server is forced
to choose between multiple tokens to perform identity assertion. The following
ordering is used:

1. An X.509 digital certificate (signifies two-way SSL to client or proxy plug-in with
two-way SSL between the client and the Web server) if X.509 is one of the active
token types configured for the Identity Assertion provider in the default security
realm.

2. Headers with a name in the form WL-Proxy-Client-<TOKEN> where <TOKEN> is one
of the active token types configured for the Identity Assertion provider in the
default security realm.

3. Headers with a name in the form <TOKEN> where <TOKEN> is one of the active
tokens types configured for the Identity Assertion provider in the default security
realm.

4. Cookies with a name in the form <TOKEN> where <TOKEN> is one of the active
tokens types configured for the Identity Assertion provider in the default security
realm.

For example, if an Identity Assertion provider in the default security realm is
configured to have the FOO and BAR tokens as active token types (for the following
example, assume the HTTP request contains nothing relevant to identity assertion
except active token types), identity assertion is performed as follows:

■ If a request comes in with a FOO header over a two-way SSL connection, X.509 is
used for identity assertion.

■ If a request comes in with a FOO header and a WL-Proxy-Client-BAR header, the
BAR token is used for identity assertion.

■ If a request comes in with a FOO header and a BAR cookie, the FOO token will be
used for identity assertion.

The ordering between multiple tokens at the same level is undefined, therefore:

■ If a request comes in with a FOO header and a BAR header, then either the FOO or BAR
token is used for identity assertion, however, which one is used is unspecified.

■ If a request comes in with a FOO cookie and a BAR cookie, then either the FOO or BAR
token is used for identity assertion, however, which one is used is unspecified.

18.8 Configuring Identity Assertion Performance in the Server Cache
When you use an Identity Assertion provider, either for an X.509 certificate or some
other type of token, subjects are cached within the server. (A subject is a grouping of
related information for a single entity (such as a person), including an identity and its
security-related configuration options.) Caching subjects within the server greatly
enhances performance for servlets and EJB methods with <run-as> tags as well as in

Note: This method is deprecated and should only be used for the
purpose of backward compatibility.

Authenticating a User Not Defined in the Identity Store

Configuring Identity Assertion Providers 18-11

other situations where identity assertion is used but not cached in the HTTPSession,
for example, in signing and encrypting XML documents).

You can change the lifetime of items in this cache by setting the maximum number of
seconds a subject can live in the cache via the
-Dweblogic.security.identityAssertionTTL command-line argument. The default
for this command-line argument is 300 seconds (that is, 5 minutes). Possible values for
the command-line argument are:

■ Less than 0—Disables the cache.

■ 0—Caching is enabled and the identities in the cache never time out so long as the
server is running. Any changes in the user database of cached entities requires a
server reboot in order for the server to pick them up.

■ Greater than 0—Caching is enabled and the cache is reset at the specified number
of seconds.

To improve the performance of identity assertion, specify a higher value for this
command-line argument.

18.9 Authenticating a User Not Defined in the Identity Store
The WebLogic Identity Assertion provider supports the ability to authenticate a user
who is not defined in the security realm's identity store. Instead, the user is created as
a virtual user and is authenticated by means of a Subject that is populated with
principals derived from attributes in the X.509 certificate passed in as part of the
two-way SSL connection.

The WebLogic Identity Assertion provider is not configured by default to authenticate
virtual users. However, by customizing this provider's configuration, you can enable
this capability in a WebLogic domain.

The following sections explain how virtual user authentication works and give the
steps to configure it in a WebLogic domain:

Note: Caching can violate the desired semantics.

Note: As identity assertion performance improves, the Identity
Assertion provider is less responsive to changes in the configured
Authentication provider. For example, a change in the user's group
will not be reflected until the subject is flushed from the cache and
recreated. Setting a lower value for the command-line argument
makes authentication changes more responsive at a cost for
performance.

Note: Virtual user authentication is supported only on network ports
that are configured for 2-way SSL, with listening servlets using
CLIENT-CERT authentication.

Virtual user authentication is not supported in topologies where:

■ SSL terminates at a front-end proxy

■ Requests are forwarded to a WebLogic Server instance in which
SSL has not been enabled

Authenticating a User Not Defined in the Identity Store

18-12 Administering Security for Oracle WebLogic Server 12.2.1

■ Section 18.9.1, "How Virtual User Authentication Works in a WebLogic Domain"

■ Section 18.9.2, "Configuring Two-Way SSL and Managing Certificates Securely"

■ Section 18.9.3, "Customizing the WebLogic Identity Assertion Provider
(DefaultIdentityAsserter)"

■ Section 18.9.4, "Configuring the Virtual User Authentication Provider"

■ Section 18.9.5, "Using WLST to Configure Virtual User Authentication"

18.9.1 How Virtual User Authentication Works in a WebLogic Domain
The flow of virtual user authentication follows the standard Weblogic Server security
provider JAAS authentication process. When the WebLogic Identity Assertion
provider is configured to allow virtual users, a user who is not defined in the security
realm's identity store can be authenticated into the domain as described in the
following sequence:

1. When a user issues a request on a resource hosted in the WebLogic domain, a
two-way SSL connection is established between that user and WebLogic Server.

2. The WebLogic Identity Assertion provider is invoked to authenticate the user.
Because virtual users are enabled for this provider, the X.509 client certificate is
passed to the provider as an X.509 type token.

3. The WebLogic Identity Assertion provider invokes the configured user name
mapper to:

a. Extract data from attributes contained in the X.509 certificate.

b. Map the required certificate attribute data to Subject principals and
credentials.

c. Return a virtual user callback handler to the Login Module for the Virtual
User Authentication provider.

If the WebLogic Identity Assertion provider is configured to allow virtual users,
and a configured user name mapper allows virtual users for the given certificate,
the virtual user would be considered allowed.

4. The Login Module uses the virtual user callback handler to build an authenticated
Subject, which is composed of principals derived from the X.509 certificate
attributes. Principals derived from the certificate include the user name and can
also include group name, private credentials, public credentials, and other
principals, depending on the user name mapper that is used.

5. The WebLogic Security Framework invokes the Virtual User Authentication
provider before any other authentication providers. Because the JAAS control flag
is set to SUFFICIENT, the user is authenticated into the WebLogic domain. No
identity store, such as an LDAP server, is used to validate the user or to obtain
additional subject components.

18.9.2 Configuring Two-Way SSL and Managing Certificates Securely
Prior to configuring the WebLogic Security Framework to enable virtual users to be
authenticated into a WebLogic domain, Oracle strongly recommends that you
optimize the SSL configuration in your domain, and leverage the certificate validation
features available in WebLogic Server to ensure that client certificates are properly
trusted and validated, by completing the following steps:

Authenticating a User Not Defined in the Identity Store

Configuring Identity Assertion Providers 18-13

1. Configure two-way SSL (SSL with client authentication), in which the server
presents a certificate to the client and the client presents a certificate to the server.

2. Configure SSL to limit the minimum SSL version that is enabled for SSL
connections. For information, see Chapter 37, "Specifying the SSL Protocol
Version".

3. Make sure that SSL certificate validation is properly configured for your domain.
For information, see Chapter 34, "SSL Certificate Validation".

4. Configure X.509 certificate revocation (CR) checking, which checks a certificate's
revocation status as part of the SSL certificate path validation process. CR checking
improves the security of certificate usage by ensuring that received certificates
have not been revoked by the issuing certificate authority. For information, see
Chapter 39, "X.509 Certificate Revocation Checking".

18.9.3 Customizing the WebLogic Identity Assertion Provider
(DefaultIdentityAsserter)

The WebLogic Identity Assertion provider, also known as the DefaultIdentityAsserter,
is configured by default in WebLogic domains. To enable virtual user authentication,
you can customize the default instance of this provider in your WebLogic domain, or
you can create a separate instance of this provider and customize it instead.

To configure the WebLogic Identity Assertion provider so that virtual user
authentication is enabled, complete the following steps:

1. Configure this provider to process X.509 token types. You can set this in the
DefaultIdentityAsserterMBean.ActiveTypes attribute.

To set this attribute using the WebLogic Server Administration Console, you can
select the WebLogic Identity Assertion provider and navigate to the Configuration
> Common page. In the Active Types field, select the X.509 token type and move
it to the Chosen list.

2. Enable virtual users. You can do this by setting the
DefaultIdentityAsserterMBean.VirtualUserAllowed attribute to true.

To set this attribute using the WebLogic Server Administration Console, you can
navigate to the Configuration > Provider Specific page for the WebLogic Identity
Assertion provider, and select Virtual User Allowed.

3. Enable the default user name mapper. You can do this by setting the
DefaultIdentityAsserterMBean.UseDefaultUserNameMapper attribute to true.

To set this attribute using the WebLogic Server Administration Console, select Use
Default User Name Mapper, which is also on the Configuration > Provider
Specific page for the WebLogic Identity Assertion provider.

For more information about completing these steps, see "Authenticate users not
defined in the identity store" in Oracle WebLogic Server Administration Console Online
Help.

WebLogic Server also supports the use of a custom user name mapper that is an
implementation of the
weblogic.security.providers.authentication.X509SubjectComponentMapper
interface. If you need to map other attributes from the X.509 certificate, such as group
principals, private credentials, or public credentials, a custom user name mapper
might be appropriate.

Authenticating a User Not Defined in the Identity Store

18-14 Administering Security for Oracle WebLogic Server 12.2.1

18.9.4 Configuring the Virtual User Authentication Provider
The Virtual User Authentication Provider is not available by default in a WebLogic
domain. For information about how to configure this provider, see Chapter 19,
"Configuring the Virtual User Authentication Provider". Note that after you add this
provider to the security realm:

1. Re-order the authentication providers so that the Virtual User Authentication
provider is first. For information, see "Re-order Authentication providers" in
Oracle WebLogic Server Administration Console Online Help.

2. Set the JAAS control flag for the Virtual User Authentication provider to
SUFFICIENT. For information, see "Set the JAAS control flag" in Oracle WebLogic
Server Administration Console Online Help.

18.9.5 Using WLST to Configure Virtual User Authentication
This section provides an example of configuring virtual user authentication in a
WebLogic domain. Example 18–1 shows the following:

1. Connecting to the WebLogic Server instance.

2. Creating an instance of a Virtual User Authentication provider.

3. Ordering the Virtual User Authentication provider first among the authentication
providers in the security realm.

4. Enabling virtual users in the WebLogic Identity Assertion provider
(DefaultIdentityAsserter).

5. Enabling the default user name mapper provided by WebLogic Server.

6. Saving and activating changes to the security realm.

Example 18–1 Configuring the Virtual User Authentication Provider and Enabling Virtual
Users

 connect(user, passwd, wlsServer)
 edit()
 startEdit()
 print 1
 cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm')
 print 2
 auth=cmo.lookupAuthenticationProvider('VirtualUserAtnProvider')
 print 3
 if auth == None:
 print 4
 auth =
cmo.createAuthenticationProvider('VirtualUserAtnProvider','weblogic.security.provi
ders.authentication.VirtualUserAuthenticator')
 print auth

set('AuthenticationProviders',jarray.array([ObjectName('Security:Name=myrealmVirtu
alUserAtnProvider'),ObjectName('Security:Name=myrealmDefaultAuthenticator'),Object
Name('Security:Name=myrealmDefaultIdentityAsserter')],ObjectName))
 print 5

 cd('AuthenticationProviders/DefaultIdentityAsserter')
 set('VirtualUserAllowed','true')
 print("VirtualUserAllowed set to true")
 set('UseDefaultUserNameMapper','true')
 print("UseDefaultUserNameMapper set to true")

Configuring a User Name Mapper

Configuring Identity Assertion Providers 18-15

 save()
 activate()

18.10 Configuring a User Name Mapper
WebLogic Server verifies the digital certificate of the Web browser or Java client when
establishing a two-way SSL connection. However, the digital certificate does not
identify the Web browser or Java client as a user in the WebLogic Server security
realm. If the Web browser or Java client requests a WebLogic Server resource protected
by a security policy, WebLogic Server requires the Web browser or Java client to have
an identity. The WebLogic Identity Assertion provider allows you to enable a user
name mapper that can map either of the following:

■ The digital certificate of a Web browser or Java client to a user in a WebLogic
Server security realm.

■ Attributes contained in the X.509 certificate to Subject principals and credentials
for a user that is not defined in the identity store of the security realm (see
Section 18.9, "Authenticating a User Not Defined in the Identity Store").

The user name mapper must be an implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. This
interface maps a token to a WebLogic Server user name according to whatever scheme
is appropriate for your needs. By default, WebLogic Server provides a default
implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. You can
also write your own implementation, as described in Section 18.11, "Configuring a
Custom User Name Mapper".

The WebLogic Identity Assertion provider calls the user name mapper for the
following types of identity assertion token types:

■ X.509 digital certificates passed via the SSL handshake

■ X.509 digital certificates passed via CSIv2

■ X.501 distinguished names passed via CSIv2

The default user name mapper uses the subject DN of the digital certificate or the
distinguished name to map to the appropriate user in the WebLogic Server security
realm. For example, the user name mapper can be configured to map a user from the
Email attribute of the subject DN (smith@example.com) to a user in the WebLogic
Server security realm (smith). Use Default User Name Mapper Attribute Type and
Default Username Mapper Attribute Delimiter attributes of the WebLogic Identity
Assertion provider to define this information:

■ Default User Name Mapper Attribute Type—The subject distinguished name (DN)
in a digital certificate used to calculate a username. Valid values are: C, CN, E, L, O,
OU, S and STREET. The default attribute type is E.

■ Default User Name Mapper Attribute Delimiter—Ends the username. The user
name mapper uses everything to the left of the value to calculate a username. The
default delimiter is @.

For example, when extracting a user name from an email address, the user name
mapper uses all characters in the email address up to the @ character. Therefore, if
you want the user name mapper to map a different attribute in the Subject DN —
for example, the Common Name, or CN — it might be appropriate to specify a
different delimiter.

Configuring a Custom User Name Mapper

18-16 Administering Security for Oracle WebLogic Server 12.2.1

For more information, see "Configure a user name mapper" in the Oracle WebLogic
Server Administration Console Online Help.

18.11 Configuring a Custom User Name Mapper
You can also write a custom user name mapper to map a token to a WebLogic user
name, or to a virtual user, according to whatever scheme is appropriate for your needs,
as follows:

■ A custom user name mapper that maps a token to a WebLogic user must be an
implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.

■ A custom user name mapper that maps an X.509 token to Subject principals that
are used to authenticate a virtual user — that is, a user that is not defined in the
security realm identity store — must be an implementation of the
weblogic.security.providers.authentication.X509SubjectComponentMapper
interface.

If you need to map other attributes from the X.509 certificate, such as group
principals, private credentials, or public credentials, a custom user name mapper
might be appropriate.

For more information, see "Configure a custom user name mapper" in the Oracle
WebLogic Server Administration Console Online Help.

19

Configuring the Virtual User Authentication Provider 19-1

19Configuring the Virtual User Authentication
Provider

[20] This chapter explains how to configure the Virtual User Authentication provider,
which you can use to authenticate users who are not defined in the identity store that
is configured in the security realm.

This chapter includes the following sections:

■ About the Virtual User Authentication Provider

■ Adding the Virtual User Authentication Provider to the Security Realm

19.1 About the Virtual User Authentication Provider
You use the Virtual User Authentication provider as part of the overall capability
supported in WebLogic Server to authenticate users who are not defined in the
identity store with which the security realm is configured. Instead, you create a virtual
user whose identity is based on select attributes contained in an X.509 certificate, such
as in the Subject DN.

For complete details about configuring and using virtual user authentication in a
WebLogic domain, see Section 18.9, "Authenticating a User Not Defined in the Identity
Store".

19.2 Adding the Virtual User Authentication Provider to the Security
Realm

To add the Virtual User Authentication provider to the security realm using the
WebLogic Server Administration Console, complete the following steps:

1. Select realm-name > Configuration > Providers > Authentication, and select New.

Note: Virtual user authentication is supported only on network ports
that are configured for 2-way SSL, with listening servlets using
CLIENT-CERT authentication.

Virtual user authentication is not supported in topologies where:

■ SSL terminates at a front-end proxy

■ Requests are forwarded to a WebLogic Server instance in which
SSL has not been enabled

Adding the Virtual User Authentication Provider to the Security Realm

19-2 Administering Security for Oracle WebLogic Server 12.2.1

2. In the Create a New Authentication Provider page, enter a name for the provider,
select VirtualUserAuthenticator in Type, and click OK.

3. Re-order the authentication providers so that the Virtual User Authentication
provider is listed first. For information, see "Re-order Authentication providers" in
Oracle WebLogic Server Administration Console Online Help.

4. Select the Virtual User Authentication provider, and in the Configuration >
Common page, select SUFFICIENT in the Control Flag field.

5. Click Save.

6. Restart WebLogic Server to have the changes take effect.

Part IV
Part IV Configuring Single Sign-On

This part explains how to configure the single sign-on features available in WebLogic
Server.

Part IV contains the following chapters:

■ Chapter 20, "Configuring Single Sign-On with Microsoft Clients"

■ Chapter 21, "Configuring Single Sign-On with Web Browsers and HTTP Clients
Using SAML"

■ Chapter 22, "Configuring SAML 1.1 Services"

■ Chapter 23, "Configuring SAML 2.0 Services"

■ Chapter 24, "Enabling Debugging for SAML 1.1 and 2.0"

20

Configuring Single Sign-On with Microsoft Clients 20-1

20Configuring Single Sign-On with Microsoft
Clients

[21] This chapter describes how to set up single sign-on (SSO) with Microsoft clients, using
Windows Integrated Authentication based on the Simple and Protected Negotiate
(SPNEGO) mechanism and the Kerberos protocol, together with the WebLogic
Negotiate Identity Assertion provider.

This chapter includes the following sections:

■ Overview of Single Sign-On with Microsoft Clients

■ System Requirements for SSO with Microsoft Clients

■ Single Sign-On with Microsoft Clients: Main Steps

■ Configuring Your Network Domain to Use Kerberos

■ Creating a Kerberos Identification for WebLogic Server

■ Configuring Microsoft Clients to Use Windows Integrated Authentication

■ Creating a JAAS Login File

■ Configuring the Identity Assertion Provider

■ Using Startup Arguments for Kerberos Authentication with WebLogic Server

■ Verifying Configuration of SSO with Microsoft Clients

20.1 Overview of Single Sign-On with Microsoft Clients
Single sign-on (SSO) with Microsoft clients allows cross-platform authentication
between Web applications or Web services running in a WebLogic domain and .NET
Web service clients or browser clients (for example, Internet Explorer) in a Microsoft
domain. The Microsoft clients must use Windows Integrated Authentication based on
the Simple and Protected Negotiate (SPNEGO) mechanism.

Cross-platform authentication is achieved by emulating the negotiate behavior of
native Windows-to-Windows authentication services that use the Kerberos protocol. In
order for cross-platform authentication to work, non-Windows servers (in this case,
WebLogic Server) need to parse SPNEGO tokens in order to extract Kerberos tokens
which are then used for authentication.

For more information about Windows and Kerberos, see
http://technet.microsoft.com/en-us/library/bb742431.aspx.

System Requirements for SSO with Microsoft Clients

20-2 Administering Security for Oracle WebLogic Server 12.2.1

20.2 System Requirements for SSO with Microsoft Clients
To use SSO with Microsoft clients, you need to meet the requirements described in the
following sections:

■ Section 20.2.1, "Host Computer Requirements for Supporting SSO with Microsoft
Clients"

■ Section 20.2.2, "Client Computer Requirements for Supporting Microsoft Clients
Using SSO"

20.2.1 Host Computer Requirements for Supporting SSO with Microsoft Clients
The host computer that supports SSO for Microsoft clients must meet the following
system requirements:

■ A version of Microsoft Windows that is supported by WebLogic Server for SSO
with Microsoft clients

For information about these supported versions, see the Oracle Fusion
Middleware Supported System Configurations page on the Oracle Technology
Network.

■ Fully-configured Active Directory authentication service. Specific Active Directory
requirements include:

– User accounts for mapping Kerberos services

– Service Principal Names (SPNs) for those accounts

– Keytab files created and copied to the start-up directory in the WebLogic
domain

■ WebLogic Server installed and configured properly to authenticate through
Kerberos, as described in this chapter

Oracle recommends encrypting the user accounts that are mapped to Kerberos
services on the WebLogic Server host. However, the ability to encrypt these accounts
imposes additional requirements. The specific requirements depend on the encryption
algorithm used, as shown in Table 20–1. For each encryption algorithm listed in
Table 20–1, see the Oracle Fusion Middleware Supported System Configurations page
on the Oracle Technology Network for information about:

■ The corresponding version of Microsoft Windows that is supported as the Active
Directory platform.

■ The specific versions of the Internet Explorer and Mozilla FireFox client types that
are supported.

Note: WebLogic Server's Single sign-on (SSO) support for Microsoft
clients is available only for Web applications and not for other
application types, such as EJBs.

Single Sign-On with Microsoft Clients: Main Steps

Configuring Single Sign-On with Microsoft Clients 20-3

20.2.2 Client Computer Requirements for Supporting Microsoft Clients Using SSO
The computer hosting a Microsoft client that uses SSO must meet the following
requirements:

■ An installation of Microsoft Windows

■ Include one of the client types listed in the following table, which also includes
links to the instructions for configuring those clients:

Clients must be logged on to a Microsoft Windows domain and have Kerberos
credentials acquired from the Active Directory server in the domain. Local logins
are not supported.

20.3 Single Sign-On with Microsoft Clients: Main Steps
Configuring SSO with Microsoft clients requires set-up procedures in the Microsoft
Active Directory, the client, and the WebLogic domain. (These procedures are detailed
in the sections that follow.)

Table 20–1 Client Type Requirements for Using Encrypted User Accounts

Encryption Algorithm Supported Client Type

DES ■ Internet Explorer

■ Mozilla FireFox

■ .NET Web service

■ Java SE client

AES-128, AES-256, and RC4 ■ Internet Explorer

■ Mozilla FireFox

■ Java SE client1

1 User accounts accessed with a Java SE client can also be encrypted with DES, AES-128, AES-256, and RC4
and defined in Active Directory running on a Microsoft Windows platform supported by WebLogic
Server for this purpose.

For the following client type see the following topic

Internet Explorer1

1 For information about the specific version supported for accessing user accounts that are defined in
Active Directory and encrypted with AES-128, AES-256, or RC4, see the Oracle Fusion Middleware
Supported System Configurations page on the Oracle Technology Network.

Section 20.6.2, "Configuring an Internet Explorer Browser"

Mozilla FireFox1 Section 20.6.3, "Configuring a Mozilla Firefox Browser"

.NET Framework with properly
configured web service client

Section 20.6.1, "Configuring a .NET Web Service"

Standalone Java SE client
application

Section 20.6.4, "Configuring a Java SE Client Application"

Note: For information about the versions of Microsoft Windows that
are supported for hosting clients using SSO, and the encryption
algorithms with which user accounts accessed by those clients can be
defined in Active Directory, see the Oracle Fusion Middleware
Supported System Configurations page on the Oracle Technology
Network.

Configuring Your Network Domain to Use Kerberos

20-4 Administering Security for Oracle WebLogic Server 12.2.1

■ Define a principal in Active Directory to represent the WebLogic Server. The
Kerberos protocol uses the Active Directory server in the Microsoft domain to
store the necessary security information.

■ Any Microsoft client you want to access in the Microsoft domain must be set up to
use Windows Integrated Authentication, sending a Kerberos ticket when available.

■ In the security realm of the WebLogic domain, configure a Negotiate Identity
Assertion provider. The Web application or Web service used in SSO needs to have
authentication set in a specific manner. A JAAS login file that defines the location
of the Kerberos identification for WebLogic Server must be created.

To configure SSO with Microsoft clients:

1. Configure your network domain to use Kerberos. See Section 20.4, "Configuring
Your Network Domain to Use Kerberos".

2. Create a Kerberos identification for WebLogic Server.

a. Create a user account in the Active Directory for the host on which WebLogic
Server is running.

b. Create a service principal name (SPN) for this account.

c. Create a user mapping and keytab file for this account.

See Section 20.5, "Creating a Kerberos Identification for WebLogic Server".

3. Choose a Microsoft client (either a Web service or browser) or a Java SE client and
configure it to use Windows Integrated Authentication. See Section 20.6,
"Configuring Microsoft Clients to Use Windows Integrated Authentication".

4. Set up the WebLogic domain to use Kerberos authentication.

a. Create a JAAS login file that points to the Active Directory server in the
Microsoft domain and the keytab file created in Step 1. See Section 20.7,
"Creating a JAAS Login File".

b. Configure a Negotiate Identity Assertion provider in the WebLogic Server
security realm. See Section 18.4, "Configuring a Negotiate Identity Assertion
Provider".

5. Start WebLogic Server using specific start-up arguments. See Section 20.9, "Using
Startup Arguments for Kerberos Authentication with WebLogic Server".

The following sections describe these steps in detail.

20.4 Configuring Your Network Domain to Use Kerberos
A Windows domain controller can serve as the Kerberos Key Distribution Center
(KDC) server for Kerberos-based client and host systems. On any domain controller,
the Active Directory and the Kerberos services are running automatically.

Java GSS requires a Kerberos configuration file. The default name and location of the
Kerberos configuration file depends on the operating system being used. Java GSS
uses the following order to search for the default configuration file:

1. The file referenced by the Java property java.security.krb5.conf.

2. ${java.home}/lib/security/krb5.conf.

3. %windir%\krb5.ini on Microsoft Windows platforms.

4. /etc/krb5/krb5.conf on Solaris platforms.

Creating a Kerberos Identification for WebLogic Server

Configuring Single Sign-On with Microsoft Clients 20-5

5. /etc/krb5.conf on other UNIX platforms.

To configure Kerberos in your Windows domain controller, you need to configure each
machine that will access the KDC to locate the Kerberos realm and available KDC
servers. For example:

Example 20–1 Sample krb5.ini File

[libdefaults]
default_realm = MYDOM.COM (Identifies the default realm. Set its value to your
Kerberos realm)
default_tkt_enctypes = des-cbc-crc
default_tgs_enctypes = des-cbc-crc
ticket_lifetime = 600

[realms]

MYDOM.COM = {
kdc = <IP address for MachineA> (host running the KDC)
(For UNIX systems, you need to specify port 88, as in <IP-address>:88)
admin_server = MachineA
default_domain = MYDOM.COM
}

[domain_realm]
.mydom.com = MYDOM.COM

[appdefaults]
autologin = true
forward = true
forwardable = true
encrypt = true

20.5 Creating a Kerberos Identification for WebLogic Server
Active Directory provides support for service principal names (SPN), which are a key
component in Kerberos authentication. SPNs are unique identifiers for services
running on servers. Every service that uses Kerberos authentication needs to have an
SPN set for it so that clients can identify the service on the network. An SPN usually
looks something like name@YOUR.REALM. You need to define an SPN to represent your
WebLogic Server in the Kerberos realm. If an SPN is not set for a service, clients have
no way of locating that service. Without correctly set SPNs, Kerberos authentication is
not possible. Keytab files are the mechanism for storing the SPNs. Keytab files are
copied to the WebLogic domain and are used in the login process. This configuration
step describes how to create an SPN, user mapping, and keytab file for WebLogic
Server.

This configuration process requires the use of the following Active Directory utilities:

■ setspn—Microsoft Windows Resource Kit

■ ktpass—Microsoft Windows distribution CD in Program Files\Support Tools

Note: The setspn and ktpass Active Directory utilities are products
of Microsoft. Therefore, Oracle does not provide complete
documentation for this utilities. For more information, see the
appropriate Microsoft documentation.

Creating a Kerberos Identification for WebLogic Server

20-6 Administering Security for Oracle WebLogic Server 12.2.1

The process for creating a Kerberos identification consists of the following steps:

■ Step 1: Create a User Account for the Host Computer

■ Step 2: Configure the User Account to Comply with Kerberos

■ Step 3: Define a Service Principal Name and Create a Keytab for the Service

■ Step 4: Verify Correct Setup

■ Step 5: Update Default JDK Security Policy Files

20.5.1 Step 1: Create a User Account for the Host Computer
In the Active Directory server, create a user account for the host computer on which
WebLogic Server runs. (Select New > User, not New > Machine.)

When creating the user account, use the simple name of the computer. For example, if
the host is named myhost.example.com, create a user in Active Directory called
myhost.

Note the password you defined when creating the user account. You will need it for
the instructions described in Step 3: Define a Service Principal Name and Create a
Keytab for the Service. Do not select the User must change password at next logon
option or any other password options.

20.5.2 Step 2: Configure the User Account to Comply with Kerberos
Configure the new user account to comply with the Kerberos protocol as follows. The
user account's encryption type must be DES, at a minimum, and the account must
require Kerberos pre-authentication. Stronger encryption types are supported,
including AES-128, AES-256, and RC4.

1. Right-click the name of the user account in the Users tree in the left pane and
select Properties.

2. Select the Account tab and check the following:

■ If you plan to use DES encryption, check the box Use DES encryption types
for this account.

■ If you plan to use AES encryption, check the boxes This account supports
Kerberos AES 128 and This account supports Kerberos AES 256, and make
sure that Use Kerberos DES Encryption is unchecked.

Make sure no other boxes are checked, particularly the box "Do not require
Kerberos pre-authentication."

3. Click OK.

Note: The use of a particular encryption type has a dependency on
the version of the Microsoft Windows platform on which Active
Directory runs. For more information, including a list of supported
encryption types, see the Oracle Fusion Middleware Supported
System Configurations page on the Oracle Technology Network.

Creating a Kerberos Identification for WebLogic Server

Configuring Single Sign-On with Microsoft Clients 20-7

20.5.3 Step 3: Define a Service Principal Name and Create a Keytab for the Service
As mentioned in Section 20.5, "Creating a Kerberos Identification for WebLogic
Server", an SPN is a unique name that identifies an instance of a service and is
associated with the logon account under which the service instance runs. The SPN is
used in the process of mutual authentication between the client and the server hosting
a particular service. The client finds a computer account based on the SPN of the
service to which it is trying to connect. So, in a specific project, you need to link the
service that will be invoked by your WebLogic clients to the account you just defined
for your WebLogic Server. For example, the service invoked by the WebLogic browser
clients is HTTP/myhost.example.com, which needs to be linked to the myhost account.

Windows account names are not multipart as Kerberos principal names. Because of
this, it is not possible to directly create an account using the name
HTTP/hostname.dns.com. Such a principal instance is created through SPN mappings.
In this case, an account is created with a meaningful name hostname, and an SPN
mapping is added for HTTP/hostname.dns.com.

The specific steps for defining an SPN and creating a keytab for the service depend on
the underlying platform on which WebLogic Server is running. They are provided in
the following sections:

■ Section 20.5.3.1, "Defining an SPN and Creating a Keytab on Windows Systems"

■ Section 20.5.3.2, "Defining an SPN and Creating a Keytab on UNIX Systems"

20.5.3.1 Defining an SPN and Creating a Keytab on Windows Systems
If WebLogic Server runs on a Windows system, complete the following steps:

1. Use the setspn utility to create the SPN for the HTTP service for the WebLogic
Server account created in Step 1. For example:

setspn -A HTTP/myhost.example.com myhost

2. Identify the SPNs that are associated with your user account by entering the
setspn -L command. For example:

setspn -L myhost

3. Use the ktab utility to create a keytab to be exported to the WebLogic Server
machine. The command to run the ktab utility has the following syntax (note that
the Kerberos realm name must be entered in all uppercase):

ktab -k keytab-file-name -a account-name@REALM.NAME

For example:

Caution: Setting the encryption type may corrupt the password.
Therefore, reset the user password by right-clicking the name of the
user account, selecting Reset Password, and re-entering the password
created in Step 1: Create a User Account for the Host Computer.

Tip: The preceding is an important step. If the same service is linked
to a different account in the Active Directory server, the client will not
send a Kerberos ticket to the server.

Creating a Kerberos Identification for WebLogic Server

20-8 Administering Security for Oracle WebLogic Server 12.2.1

ktab -k mykeytab -a myhost@MYDOM.COM

When prompted for a password, enter the password created in Section 20.5.1,
"Step 1: Create a User Account for the Host Computer."

4. Save the keytab file in a secure location and export it to the domain directory of
your WebLogic Server instance (for example, to myhost).

20.5.3.2 Defining an SPN and Creating a Keytab on UNIX Systems
If WebLogic Server runs on a UNIX system, create a service principal name (SPN) and
a keytab file for the HTTP service for the WebLogic Server account by using the ktpass
command-line tool. This tool enables an administrator to configure a non-Windows
Server Kerberos service as a security principal in the Windows Server Active Directory.

The ktpass command configures the SPN for the service in Active Directory and
generates a Kerberos keytab file containing the shared secret key of the service. The
tool allows UNIX-based services that support Kerberos authentication to use the
interoperability features provided by the Windows Server Kerberos KDC service.

The ktpass command has the following syntax:

ktpass -princ HTTP/hostname@REALM-NAME -mapuser account-name -pass password -out
keytab-file-name -crypto algorithm -ptype KRB5_NT_PRINCIPAL

In the preceding syntax, algorithm identifies the encryption algorithm to use. If you
are using AES, specify AES128-SHA1 or AES256-SHA1. For example:

ktpass -princ HTTP/myhost.example.com@MYDOM.COM -mapuser myhost -pass password
-out mykeytab -crypto AES256-SHA1 -ptype KRB5_NT_PRINCIPAL

To verify that the SPN and the keytab file are set up correctly, you can do the
following:

■ Use the setspn -l command to verify that the SPN is mapped successfully.

■ Use the klist command to show Key type: 17 for AES-128, and Key type: 18 for
AES-256. For example:

-klist -e -k keytab-file-name

■ Use the kinit command to verify that the Kerberos setup and keytab are valid.

Note: On UNIX systems, creating an SPN that uses a DES or an AES
encryption algorithm is supported as of JDK 1.6.0_24 or later.

Creating a Kerberos Identification for WebLogic Server

Configuring Single Sign-On with Microsoft Clients 20-9

20.5.4 Step 4: Verify Correct Setup
You can use the following utilities to verify that your SPN and keytab files are set up
correctly.

■ Use the setspn -l command to verify that the SPN is mapped successfully.

■ Use the klist command to verify the key type. For example:

-klist -e -k keytab-file-name

For AES 128, this command displays Key type: 17. For AES 256, Key type: 18 is
displayed.

■ Use the kinit utility to verify that Kerberos is set up properly and that your
principal and keytab are valid.

The kinit utility is provided by the JRE and may be used to obtain and cache
Kerberos ticket-granting tickets. You can run the kinit utility by entering the
following command:

kinit -k -t keytab-file account-name

The output should appear similar to the following:

New ticket is stored in cache file C:\Documents and Settings\Username\krb5cc_
myhost

20.5.5 Step 5: Update Default JDK Security Policy Files
AES-256 requires the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files, which are available at the following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

If you plan to use AES encryption, complete the following steps:

1. Download JCE Unlimited Strength Jurisdiction Policy Files from the preceding
URL.

2. Uncompress and extract the jurisdiction policy files.

3. Complete the installation procedure described in the included README.txt file.

Note: The ktpass command changes the principal name in the
Active Directory server from account-name to HTTP/account-name.
Consequently, the keytab file is generated for a principal named
HTTP/account-name. However, sometimes the name change does not
happen. If not, you should change it manually in the Active Directory
server; otherwise the keytab you generate will not work properly.

To modify the user logon name manually:

1. Right-click on the user node, select Properties, and click on the Account
tab.

2. Export the generated keytab file to your UNIX machine hosting the
WebLogic Server in the WebLogic domain directory.

Configuring Microsoft Clients to Use Windows Integrated Authentication

20-10 Administering Security for Oracle WebLogic Server 12.2.1

20.6 Configuring Microsoft Clients to Use Windows Integrated
Authentication

Ensure the Microsoft client you want to use for single sign-on is configured to use
Windows Integrated Authentication. The following sections describe how to configure
a .NET Web server, an Internet Explorer browser client, a Mozilla Firefox client, and a
Java SE client to use Windows Integrated Authentication:

■ Section 20.6.1, "Configuring a .NET Web Service"

■ Section 20.6.2, "Configuring an Internet Explorer Browser"

■ Section 20.6.3, "Configuring a Mozilla Firefox Browser"

■ Section 20.6.4, "Configuring a Java SE Client Application"

20.6.1 Configuring a .NET Web Service
To configure a .NET Web service to use Windows Integrated Authentication:

1. In the web.config file for the Web service, set the authentication mode to
Windows for IIS and ASP.NET as follows:

<authentication mode="Windows" />

This setting is usually the default.

2. Add the statement needed for the Web services client to pass to the proxy Web
service object so that the credentials are sent through SOAP.

For example, if you have a Web service client for a Web service that is represented
by the proxy object conv, the syntax is as follows:

/*
* Explicitly pass credentials to the Web Service
*/
conv.Credentials =
System.Net.CredentialCache.DefaultCredentials;

20.6.2 Configuring an Internet Explorer Browser
To configure an Internet Explorer browser to use Windows Integrated Authentication,
complete the procedures described in the following sections:

■ Section 20.6.2.1, "Configure Local Intranet Domains"

■ Section 20.6.2.2, "Configure Intranet Authentication"

■ Section 20.6.2.3, "Verify the Proxy Settings"

■ Section 20.6.2.4, "Set Integrated Authentication for Internet Explorer 6.0"

Note: If the SPN for the user account on the WebLogic Server host to
which the Kerberos ticket is mapped is configured to use DES or
AES-256 encryption (see Section 20.5.2, "Step 2: Configure the User
Account to Comply with Kerberos"), the client must be running with a
supported JDK. For information, see the Oracle Fusion Middleware
Supported System Configurations page on the Oracle Technology
Network.

Configuring Microsoft Clients to Use Windows Integrated Authentication

Configuring Single Sign-On with Microsoft Clients 20-11

20.6.2.1 Configure Local Intranet Domains
In Internet Explorer:

1. Select Tools > Internet Options.

2. Select the Security tab.

3. Select Local intranet and click Sites.

4. In the Local intranet popup, ensure that the "Include all sites that bypass the proxy
server" and "Include all local (intranet) sites not listed in other zones" options are
checked.

5. Click Advanced.

6. In the Local intranet (Advanced) dialog box, add all relative domain names that
will be used for WebLogic Server instances participating in the SSO configuration
(for example, myhost.example.com) and click OK.

20.6.2.2 Configure Intranet Authentication
In Internet Explorer:

1. Select Tools > Internet Options.

2. Select the Security tab.

3. Select Local intranet and click Custom Level... .

4. In the Security Settings dialog box, scroll to the User Authentication section.

5. Select Automatic logon only in Intranet zone. This option prevents users from
having to re-enter logon credentials, which is a key piece to this solution.

6. Click OK.

20.6.2.3 Verify the Proxy Settings
If you have a proxy server enabled:

1. In Internet Explorer, select Tools > Internet Options.

2. Select the Connections tab and click LAN Settings.

3. Verify that the proxy server address and port number are correct.

4. Click Advanced.

5. In the Proxy Settings dialog box, ensure that all desired domain names are entered
in the Exceptions field.

6. Click OK to close the Proxy Settings dialog box.

20.6.2.4 Set Integrated Authentication for Internet Explorer 6.0
If the version of Internet Explorer you are configuring is 6.0, you also must complete
the following steps:

1. In Internet Explorer, select Tools > Internet Options.

2. Select the Advanced tab.

3. Scroll to the Security section.

4. Verify that the Enable Integrated Windows Integrated Authentication option is
checked and click OK.

If this option was not checked, check it, click OK, and restart the computer.

Configuring Microsoft Clients to Use Windows Integrated Authentication

20-12 Administering Security for Oracle WebLogic Server 12.2.1

20.6.3 Configuring a Mozilla Firefox Browser
To configure a Firefox browser to use Windows Integrated Authentication, complete
the following steps:

1. Start Firefox.

2. In the Location Bar, enter about:config.

3. Enter the filter string network.negotiate.

4. Set the preferences as shown in Table 20–2.

20.6.4 Configuring a Java SE Client Application
To configure a Java SE client application to use Windows Integrated Authentication,
complete the following steps:

1. Ensure that your Java SE client is running with a supported JDK. For information,
see the Oracle Fusion Middleware Supported System Configurations page on the
Oracle Technology Network.

2. Create a JAAS configuration file that identifies the Kerberos login module,
com.sun.security.auth.module.Krb5LoginModule. This configuration file defines
two login entries:

■ com.sun.security.jgss.krb5.initiate — Invoked for the Java client.

■ com.sun.security.jgss.krb5.accept — Invoked for the WebLogic Server
instance that is represented by a Kerberos identity and that hosts the Web
application to which the client wants access.

For each login entry, options are included that:

■ Require that authentication of the principal must succeed (that is, the user of
the client application who is defined in the Microsoft domain).

■ Set useKeyTab to true, which causes the principal's key to be obtained from
the keytab.

■ Identify the name of the keytab.

■ Set storeKey to true, which causes the principal's key to be stored in the
Subject.

■ Optionally, set the debug option to true.

The following example shows JAAS configuration file for the Kerberos login
module used for the principal negotiatetester, who is defined in the Microsoft
domain, SECURITYQA.COM, in which the Active Directory server runs:

com.sun.security.jgss.krb5.initiate {

Table 20–2 Preferences Required in Firefox for Windows Integrated Authentication

Preference Name Status Type Value

network.negotiate-auth.allow-proxies default boolean true

network.negotiate-auth.delegation-uris user set string http://,https://

network.negotiate-auth.gsslib default string <blank>1

1 The value for the network.negotiate-auth.gsslib preference should be kept blank.

network.negotiate-auth.trusted-uris user set string http://,https://

network.negotiate-auth.using-native-gsslib default boolean true

Creating a JAAS Login File

Configuring Single Sign-On with Microsoft Clients 20-13

 com.sun.security.auth.module.Krb5LoginModule
 required principal="negotiatetester@SECURITYQA.COM"
 useKeyTab=true
 keyTab=negotiatetester_keytab storeKey=true debug=true; };

com.sun.security.jgss.krb5.accept {
 com.sun.security.auth.module.Krb5LoginModule
 required principal="negotiatetester@SECURITYQA.COM"
 useKeyTab=true keyTab=negotiatetester_keytab storeKey=true debug=true; };

3. In the Java command that starts the client application, pass the following values as
arguments:

■ The Microsoft domain in which the Active Directory server runs

■ The host name of the computer running the Kerberos Key Distribution Center
(KDC) server

■ The JAAS configuration file that identifies the Kerberos login module

■ The javax.security.auth.useSubjectCredsOnly=false property, which
specifies that it is permissible to use an authentication mechanism other than
Subject credentials

■ The name of the Java SE client class

■ The Web application resource to which access is requested

For example:

java -Djava.security.krb5.realm = SECURITYQA.COM\
-Djava.security.krb5.kdc = rno05089.example.com\
-Djava.security.auth.login.config = negotiatetester_krb5Login.conf\
-Djavax.security.auth.useSubjectCredsOnly = false\
RunHttpSpnego http://myhost.example.com:7001/AuthenticatedServlet.jsp

20.7 Creating a JAAS Login File
If you are running WebLogic Server on either the Windows or UNIX platforms, you
need a JAAS login file. The JAAS login file tells the WebLogic Security Framework to
use Kerberos authentication and defines the location of the keytab file which contains
Kerberos identification information for WebLogic Server. You specify the location of
the JAAS login file in the java.security.auth.login.config startup argument for
WebLogic Server, as described in Section 20.9, "Using Startup Arguments for Kerberos
Authentication with WebLogic Server".

Example 20–2 shows a sample JAAS login file for Kerberos authentication. Significant
sections are shown in bold.

Example 20–2 Sample JAAS Login File for Kerberos Authentication

com.sun.security.jgss.krb5.initiate {

 com.sun.security.auth.module.Krb5LoginModule required
 principal="myhost@Example.CORP" useKeyTab="true"
 keyTab="mykeytab" storeKey="true";

Notes: The JAAS Login Entry names are
com.sun.security.jgss.krb5.initiate and
com.sun.security.jgss.krb5.accept.

Configuring the Identity Assertion Provider

20-14 Administering Security for Oracle WebLogic Server 12.2.1

};

com.sun.security.jgss.krb5.accept {

 com.sun.security.auth.module.Krb5LoginModule required
 principal="myhost@Example.CORP" useKeyTab="true"
 keyTab="mykeytab" storeKey="true";

};

For the principal option, specify the value of the userPrincipalName attribute of the
account under which the service is running. (Incorrectly specifying the user principal
name results in an error such as "Unable to obtain password from user.")

The keytab file specified in the keytab option must be accessible by the WebLogic
Server process. Ensure that the appropriate permissions are set. If you are unsure of
the search path WebLogic Server is using, provide the absolute path to the file. Make
sure you enclose the path in double quotes, and replace any backslash (\) in the path
with a double backslash (\\) or a forward slash (/).

20.8 Configuring the Identity Assertion Provider
WebLogic Server includes a security provider, the Negotiate Identity Assertion
provider, to support single sign-on (SSO) with Microsoft clients. This identity assertion
provider decodes Simple and Protected Negotiate (SPNEGO) tokens to obtain
Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to
WebLogic users. You need to configure a Negotiate Identity Assertion provider in your
WebLogic security realm in order to enable SSO with Microsoft clients. See
Section 18.4, "Configuring a Negotiate Identity Assertion Provider" in this document,
and see also "Configure Authentication and Identity Assertion providers" in the Oracle
WebLogic Server Administration Console Online Help.

20.9 Using Startup Arguments for Kerberos Authentication with
WebLogic Server

To use Kerberos authentication with WebLogic Server, use the following arguments in
the Java command to start WebLogic Server:

-Djavax.security.auth.useSubjectCredsOnly=false
-Djava.security.auth.login.config=krb5Login.conf
-Djava.security.krb5.realm=Example.CORP
-Djava.security.krb5.kdc=ADhostname

In the preceding list of arguments:

■ javax.security.auth.useSubjectCredsOnly specifies that it is permissible to use
an authentication mechanism other than Subject credentials.

■ java.security.auth.login.config specifies the JAAS login file, krb5Login.conf,
described in Section 20.7, "Creating a JAAS Login File".

■ java.security.krb5.realm defines the Microsoft domain in which the Active
Directory server runs.

■ java.security.krb5.kdc defines the host name on which the Active Directory
server runs.

Java GSS messages are often very useful during troubleshooting, so you might want to
add -Dsun.security.krb5.debug=true as part of the initial setup.

Verifying Configuration of SSO with Microsoft Clients

Configuring Single Sign-On with Microsoft Clients 20-15

20.10 Verifying Configuration of SSO with Microsoft Clients
To verify that SSO with Microsoft clients is configured properly, point a browser (that
you have configured as described in Section 20.6.2, "Configuring an Internet Explorer
Browser") to the Microsoft Web application or Web service you want to use. If you are
logged on to a Windows domain and have Kerberos credentials acquired from the
Active Directory server in the domain, you should be able to access the Web
application or Web service without providing a username or password.

Verifying Configuration of SSO with Microsoft Clients

20-16 Administering Security for Oracle WebLogic Server 12.2.1

21

Configuring Single Sign-On with Web Browsers and HTTP Clients Using SAML 21-1

21Configuring Single Sign-On with Web Browsers
and HTTP Clients Using SAML

[22] This chapter provides background information about setting up single sign-on (SSO)
with Web browsers or other HTTP clients by using authentication based on the
Security Assertion Markup Language (SAML) versions 1.1 and 2.0. SAML enables
cross-platform authentication between Web applications or Web services running in a
WebLogic domain and Web browsers or other HTTP clients. WebLogic Server supports
single sign-on (SSO) based on SAML. When users are authenticated at one site that
participates in a single sign-on (SSO) configuration, they are automatically
authenticated at other sites in the SSO configuration and do not need to log in
separately.

This chapter includes the following sections:

■ Configuring SAML Services

■ Configuring Single Sign-On Using SAML White Paper

■ SAML for Web Single Sign-On Scenario API Example

For an overview of SAML-based single sign on, see the following topics in
Understanding Security for Oracle WebLogic Server:

■ "Security Assertion Markup Language (SAML)"

■ "Web Browsers and HTTP Clients via SAML"

■ "Single Sign-On with the WebLogic Security Framework"

21.1 Configuring SAML Services
The way to configure SAML services for single sign-on with Web browsers and HTTP
clients depends on the specific version of SAML you plan to use. Refer to the following
table for more information:

Notes: Note the following:

■ A WebLogic Server instance that is configured for SAML 2.0 SSO
cannot sent a request to a server instance configured for SAML
1.1, and vice-versa.

■ WebLogic Server does not support encrypted SAML assertions.

Configuring Single Sign-On Using SAML White Paper

21-2 Administering Security for Oracle WebLogic Server 12.2.1

21.2 Configuring Single Sign-On Using SAML White Paper
The Configuring Single Sign-On using SAML in WebLogic Server 9.2 white paper
(http://www.oracle.com/technetwork/articles/entarch/sso-with-saml-099684.h
tml) provides step-by-step instructions for configuring the single sign-on capability
between two simple Java EE Web applications running on two different WebLogic
domains. The SAML configuration for single sign-on is performed using the WebLogic
Server 9.2 Administration Console with no programming involved. The tutorial also
briefly introduces the basic interactions between WebLogic containers, the security
providers, and the security framework during the single sign-on process.

Although it is based on a previous version of WebLogic Server, you may find this
tutorial to be a useful resource as you develop your own SAML implementation.

21.3 SAML for Web Single Sign-On Scenario API Example
When you install the Server Examples component of WebLogic Server, which is
available by performing a custom installation, WebLogic Server installs several API
code examples. The Server Examples provide access to code examples and sample
applications that offer several approaches to learning about and working with
WebLogic Server.

Included among the security API examples is SAML for Web SSO Scenario. This
example, which you build, run, and deploy, shows a variety of single sign-on (SSO)
configurations for your applications using WebLogic Server and SAML. The following
three scenarios are included:

■ SAML 2.0 POST binding

■ SAML 1.1

■ SAML 2.0 Artifact binding with custom attributes

All files needed to build, deploy, and run the example are included, as are the scripts
that configure the WebLogic domains that are used. For more information about the
examples, including the directories in which they are installed, see "Sample
Application and Code Examples" in Understanding Oracle WebLogic Server.

To configure the following
version of SAML see the following chapter

SAML 1.1 Chapter 22, "Configuring SAML 1.1 Services"

SAML 2.0 Chapter 23, "Configuring SAML 2.0 Services"

22

Configuring SAML 1.1 Services 22-1

22Configuring SAML 1.1 Services

[23] This chapter explains how to configure single sign-on with Web browsers and HTTP
clients using SAML 1.1.

This chapter includes the following sections:

■ Enabling Single Sign-on with SAML 1.1: Main Steps

■ Configuring a SAML 1.1 Source Site for Single Sign-On

■ Configuring a SAML 1.1 Destination Site for Single Sign-On

■ Configuring Relying and Asserting Parties with WLST

In addition to the topics described in these sections, see "Creating Assertions for
Non-WebLogic SAML 1.1 Relying Parties" in Developing Applications with the WebLogic
Security Service for information on how to create a custom SAML name mapper that
maps Subjects to specific SAML 1.1 assertion attributes required by a third-party
SAML Relying Party.

22.1 Enabling Single Sign-on with SAML 1.1: Main Steps
To enable single sign-on with SAML, configure WebLogic Server as either a source site
or destination site as described in the sections that follow.

22.1.1 Configuring a Source Site: Main Steps
To configure a WebLogic Server instance in the role of a source site, complete the
following main steps:

1. Create and configure a SAML Credential Mapping provider V2 in your security
realm.

Note: In this release of WebLogic Server, the SAML 1.1
implementation is changed and no longer uses HttpServletResponse
URL rewriting in SAML responses. Consequently, the JSESSIONID is
no longer appended to SAML responses. However, this change means
that SAML 1.1 cannot be used with browsers that do not support
cookies.

To enable HttpServletResponse URL rewriting, set the Java system
property weblogic.security.saml.enableURLRewriting to true. For
example, you can do this by specifying the following option in the
Java command that starts WebLogic Server:

-Dweblogic.security.saml.enableURLRewriting=true

Configuring a SAML 1.1 Source Site for Single Sign-On

22-2 Administering Security for Oracle WebLogic Server 12.2.1

2. Configure the federation services for the server instance in the realm that will
serve as a source site.

3. Create and configure the relying parties for which SAML assertions will be
produced.

4. If you want to require relying parties to use SSL certificates to connect to the
source site, add any such certificates to the SAML credential mapping provider's
Certificate Registry.

22.1.2 Configuring a Destination Site: Main Steps
To configure a WebLogic Server instance in the role of a destination site, complete the
following main steps:

1. Create and configure a SAML Identity Assertion provider V2 in your security
realm.

2. Configure the federation services for the server instance realm that will serve as a
destination site.

3. Create and configure the asserting parties from which SAML assertions will be
consumed.

4. Establish trust by registering the asserting parties' SSL certificates in the certificate
registry maintained by the SAML Identity Assertion provider.

22.2 Configuring a SAML 1.1 Source Site for Single Sign-On
The following topics explain how to configure a WebLogic Server instance as a SAML
1.1 source site:

■ Section 22.2.1, "Configure the SAML 1.1 Credential Mapping Provider"

■ Section 22.2.2, "Configure the Source Site Federation Services"

■ Section 22.2.3, "Configure Relying Parties"

■ Section 22.2.4, "Replacing the Default Assertion Store"

22.2.1 Configure the SAML 1.1 Credential Mapping Provider
In your security realm, create a SAML Credential Mapping Provider V2 instance. The
SAML Credential Mapping provider is not part of the default security realm. See
Section 9.3, "Configuring a SAML Credential Mapping Provider for SAML 1.1".

Configure the SAML Credential Mapping provider as a SAML authority, using the
Issuer URI, Name Qualifier, and other attributes.

22.2.2 Configure the Source Site Federation Services
Configuration of a WebLogic Server instance as a SAML 1.1 source site is controlled by
the FederationServicesMBean. Access the FederationServicesMBean with the
WebLogic Scripting Tool or through the WebLogic Server Administration Console, on
the Environment > Servers > ServerName > Configuration > Federation Services >
SAML 1.1 Source Site page. See "Configure SAML 1.1 source services" in the Oracle
WebLogic Server Administration Console Online Help.

Configure SAML source site attributes as follows:

Configuring a SAML 1.1 Source Site for Single Sign-On

Configuring SAML 1.1 Services 22-3

■ Enable the SAML Source Site. Allow the WebLogic server instance to serve as a
SAML source site by setting Source Site Enabled to true.

■ Set Source Site URL and Service URIs. Set the URL for the SAML source site.
This is the URL that hosts the Intersite Transfer Service and the Assertion Retrieval
Service. The source site URL is encoded as a source ID in hex and Base64. When
you configure a SAML Asserting Party for Browser/Artifact profile, you specify
the encoded source ID.

Specify the URIs for the Intersite Transfer Service and (to support
Browser/Artifact profile) the Assertion Retrieval Service. (You also specify the
Intersite Transfer Service URI when you configure a Relying Party.)

The default URI FederationServicesMBean.IntersiteTransferURIs values are
shown in Table 22–1.

The Intersite Transfer URI text box allows you to accept the default values as-is, or
modify them as you choose. Each URI includes the application context, followed
by /its, /its/post, or /its/artifact. The provided application contexts are
/samlits_ba (BASIC authentication) or /samlits_cc (client certificate
authentication). You could also specify an application-specific context if needed,
for example /yourapplication/its, but in most cases the defaults provide the
easiest configuration option.

If you specify these URIs as /samlits_ba/its, if a redirect occurs and the user's
session on the source site has timed out, a BASIC authentication dialog is
presented. If you instead want to use a FORM dialog, the URI should point to a
custom Web application that authenticates users and then forwards to the actual
ITS URI.

■ Add signing certificate. The SAML source site requires a trusted certificate with
which to sign assertions. Add this certificate to the keystore and enter the
credentials (alias and passphrase) to be used to access the certificate. The server's
SSL identity key/certificates will be used by default if a signing alias and
passphrase are not supplied.

■ Configure SSL for the Assertion Retrieval Service. You can require all access to
the Assertion Retrieval Service to use SSL by setting
FederationServicesMBean.arsRequiresSSL to true. You can require two-way SSL
authentication for the Assertion Retrieval Service by setting both arsRequiresSSL
and ARSRequiresTwoWaySSL to true.

22.2.3 Configure Relying Parties
A SAML Relying Party is an entity that relies on the information in a SAML assertion
produced by the SAML source site. You can configure how WebLogic Server produces

Table 22–1 Intersite Transfer URIs

Default URI Values Description

/samlits_ba/its BASIC authentication, POST or Artifact profile

/samlits_ba/its/post BASIC authentication, POST profile

/samlits_ba/its/artifact BASIC authentication, Artifact profile

/samlits_cc/its Client cert authentication, POST or Artifact profile

/samlits_cc/its/post Client cert authentication, POST profile

/samlits_cc/its/artifact Client cert authentication, Artifact profile

Configuring a SAML 1.1 Source Site for Single Sign-On

22-4 Administering Security for Oracle WebLogic Server 12.2.1

SAML assertions separately for each Relying Party or use the defaults established by
the Federation Services source site configuration for producing assertion.

You configure a Relying Party in the WebLogic Server Administration Console, on the
Security Realms > RealmName > Providers > Credential Mapper >
SAMLCredentialMapperName > Management > Relying Parties page. See "Create a
SAML 1.1 Relying Party" and "Configure a SAML 1.1 Relying Party" in the Oracle
WebLogic Server Administration Console Online Help.

You can also configure a Relying Party with the WebLogic Scripting Tool. See
Section 22.4, "Configuring Relying and Asserting Parties with WLST".

22.2.3.1 Configure Supported Profiles
When you configure a SAML Relying Party, you can specify support for Artifact
profile or POST profile, for the purposes of SAML SSO. As an alternative configure a
Relying Party to support WSS/Holder-of-Key or WSS/Sender-Vouches profiles for
Web Services Security purposes. Be sure to configure support for the profiles that the
SAML destination sites support.

If you support the POST profile, optionally create a form to use in POST profile
assertions for the Relying Party and set the pathname of that form in the POST Form
attribute.

22.2.3.2 Assertion Consumer Parameters
For each SAML Relying Party, you can configure one or more optional query
parameters that will be added to the ACS URL when redirecting to the destination site.
In the case of POST profile, these parameters will be included as form variables when
using the default POST form. If a custom POST form is in use, the parameters will be
made available as a Map of names and values, but the form may or may not
constructed to include the parameters in the POSTed data.

For WebLogic Server browser SSO configurations that communicate with another
WebLogic Server instance, set the ID of the SAML Asserting Party (APID) in the
relying party ACS parameters.

 This parameter is required with the V2 providers in order for the browser profile
configurations to work. That is, the ACS looks for an asserting party ID (APID) as a
form parameter of the incoming request, and uses this to look up the configuration
before performing any other processing.

The APID parameter also removes the need for you to specify a Target URL parameter
for browser SSO. The Target URL is used for Web service configurations.

22.2.4 Replacing the Default Assertion Store
WebLogic Server uses a simple assertion store to maintain persistence for produced
assertions. You can replace this assertion store with a custom assertion store class that
implements weblogic.security.providers.saml.AssertionStoreV2. Configure
WebLogic Server to use your custom assertion store class, rather than the default class,
using the FederationServicesMBean.AssertionStoreClassName attribute. You can
configure properties to be passed to the initStore() method of your custom assertion
store class by using the FederationServicesMBean.AssertionStoreProperties
attribute. Configure these attributes in the WebLogic Server Administration Console
on the Environment: Servers > ServerName > Configuration > Federation Services >
SAML 1.1 Source Site page.

Configuring a SAML 1.1 Destination Site for Single Sign-On

Configuring SAML 1.1 Services 22-5

22.3 Configuring a SAML 1.1 Destination Site for Single Sign-On
The following topics describe how to configure WebLogic Server as a SAML
destination site:

■ Section 22.3.1, "Configure SAML Identity Assertion Provider"

■ Section 22.3.2, "Configure Destination Site Federation Services"

■ Section 22.3.3, "Configuring Asserting Parties"

22.3.1 Configure SAML Identity Assertion Provider
In your security realm, create and configure a SAML Identity Assertion Provider V2
instance. The SAML Identity Assertion provider is not part of the default security
realm. See Section 18.5, "Configuring a SAML Identity Assertion Provider for SAML
1.1".

22.3.2 Configure Destination Site Federation Services
Before you configure WebLogic as a SAML destination site, you must first create a
SAML Identity Assertion Provider V2 instance in your security realm. Configuration
of a WebLogic Server instance as a SAML destination site is controlled by the
FederationServicesMBean. You can access the FederationServicesMBean using the
WebLogic Scripting Tool or through the WebLogic Server Administration Console,
using the Environment: Servers > ServerName > Configuration > Federation Services
> SAML 1.1 Destination Site page.

Configure the SAML destination site attributes as follows.

22.3.2.1 Enable the SAML Destination Site
Allow the WebLogic Server instance to serve as a SAML destination site by setting
Destination Site Enabled to true.

22.3.2.2 Set Assertion Consumer URIs
Set the URIs for the SAML Assertion Consumer Service. This is the URL that receives
assertions from source sites, so that the destination site can use the assertions to
authenticate users. The Assertion Consumer URI is also specified in the configuration
of a Relying Party.

22.3.2.3 Configure SSL for the Assertion Consumer Service
You can require all access to the Assertion Consumer Service to use SSL by setting
FederationServicesMBean.acsRequiresSSL to true.

22.3.2.4 Add SSL Client Identity Certificate
The SSL client identity is used to contact the ARS at the source site for Artifact profile.
Add this certificate to the keystore and enter the credentials (alias and passphrase) to
be used to access the certificate.

22.3.2.5 Configure Single-Use Policy and the Used Assertion Cache or Custom
Assertion Cache
Optionally, you can require that each POST profile assertion be used no more than
once. WebLogic Server maintains a cache of used assertions so that it can support a
single-use policy for assertions. You can replace this assertion cache with a custom
assertion cache class that implements

Configuring Relying and Asserting Parties with WLST

22-6 Administering Security for Oracle WebLogic Server 12.2.1

weblogic.security.providers.saml.SAMLUsedAssertionCache. Configure WebLogic
Server to use your custom assertion cache class, rather than the default class, using the
FederationServicesMBean.SAMLUsedAssertionCache attribute. You can configure
properties to be passed to the initCache() method of your custom assertion cache
class using the FederationServicesMBean.UsedAssertionCacheProperties attribute.
You can configure these attributes in the WebLogic Server Administration Console on
the Environment > Servers > ServerName > Configuration > Federation Services >
SAML 1.1 Destination Site page.

22.3.2.6 Configure Recipient Check for POST Profile
Optionally, you can require that the recipient of the SAML Response must match the
URL in the HTTP Request. Do this by setting the POST Recipient Check Enabled
attribute.

22.3.3 Configuring Asserting Parties
A SAML Asserting Party is a trusted SAML Authority (an entity that can
authoritatively assert security information in the form of SAML Assertions).

Configure an Asserting Party in the WebLogic Server Administration Console, using
the Security Realms > RealmName > Providers > Authentication >
SAMLIdentityAsserterV2 > Management: Asserting Parties page. See "Create a
SAML 1.1 Asserting Party" and "Configure a SAML 1.1 Asserting Party" in the Oracle
WebLogic Server Administration Console Online Help.

You can also configure an Asserting Party with the WebLogic Scripting Tool. See
Section 22.4, "Configuring Relying and Asserting Parties with WLST".

22.3.3.1 Configure Supported Profiles
When you configure a SAML Asserting Party, you can specify support for Artifact
profile or POST profile, for the purposes of SAML SSO. Alternatively, configure an
Asserting Party to support WSS/Holder-of-Key or WSS/Sender-Vouches profiles for
Web Services Security purposes.

22.3.3.2 Configure Source Site ITS Parameters
For each SAML Asserting Party, configure zero or more optional query parameters
that will be added when redirecting to the source site.

For WebLogic Server browser SSO configurations that communicate with another
WebLogic Server instance, you must set the ID of the SAML Relying Party (RPID) in
the Asserting Party ITS parameters.

This parameter is required with the V2 providers in order for the browser profile
configurations to work. That is, the ITS looks for the RPID as a form parameter of the
incoming request, and uses this to look up the configuration before performing any
other processing.

The RPID parameter also removes the need for you to specify a Target URL parameter
for WebLogic Server-to-WebLogic Server browser SSO configurations only. The Target
URL is used for Web service configurations.

22.4 Configuring Relying and Asserting Parties with WLST
SAML partners (Relying Parties and Asserting Parties) are maintained in a registry.
You can configure SAML partners using the WebLogic Server Administration Console

Configuring Relying and Asserting Parties with WLST

Configuring SAML 1.1 Services 22-7

or using WebLogic Scripting Tool. The following example shows how you might
configure two Relying Parties using WLST in online mode.

Note that the example sets the ID of the SAML Asserting Party (APID) in the relying
party Assertion Consumer Service parameters. For WebLogic Server browser SSO
configurations that communicate with another WebLogic Server instance, you must set
the ID of the SAML Asserting Party (APID) in the relying party ACS parameters. (You
would also set the ID of the SAML Relying Party (RPID) in the asserting party ITS
parameters.)

The demoidentity certificate alias referenced in the example comes from the source
site's demo SSL identity for the domain.

The APID is required for WebLogic Server-to-WebLogic Server browser SSO
configurations only. This parameter is required with the V2 providers in order for the
browser profile configurations to work.

Example 22–1 Creating Relying Parties with WLST

connect('weblogic','weblogic','t3://localhost:7001')
rlm=cmo.getSecurityConfiguration().getDefaultRealm()
cm=rlm.lookupCredentialMapper('samlv2cm')

rp=cm.newRelyingParty()
rp.setDescription('test post profile')
rp.setProfile('Browser/POST')
rp.setAssertionConsumerURL('http://domain.example.com:7001/saml_destination/acs')
rp.setAssertionConsumerParams(array(['APID=ap_00001'],String))
rp.setSignedAssertions(true)
rp.setEnabled(true)
cm.addRelyingParty(rp)

rp=cm.newRelyingParty()
rp.setDescription('test artifact profile')
rp.setProfile('Browser/Artifact')
rp.setAssertionConsumerURL('http://domain.example.com:7001/saml_destination/acs')
rp.setAssertionConsumerParams(array(['APID=ap_00002'],String))
rp.setARSUsername('foo')
rp.setARSPassword('password')
rp.setSSLClientCertAlias('demoidentity')
rp.setEnabled(true)
cm.addRelyingParty(rp)

disconnect()
exit()

The following example shows how you might edit an existing Asserting Party. The
example gets the Asserting Party, using its Asserting Party ID, and sets the Assertion
Retrieval URL.

Example 22–2 Editing an Asserting Party with WLST

connect('weblogic','weblogic','t3://localhost:7001')
rlm=cmo.getSecurityConfiguration().getDefaultRealm()
ia=rlm.lookupAuthenticationProvider('samlv2ia')
ap=ia.getAssertingParty('ap_00002')
ap.setAssertionRetrievalURL('https://hostname:7002/samlars/ars')
ia.updateAssertingParty(ap)
disconnect()
exit()

Configuring Relying and Asserting Parties with WLST

22-8 Administering Security for Oracle WebLogic Server 12.2.1

23

Configuring SAML 2.0 Services 23-1

23Configuring SAML 2.0 Services

[24] This chapter explains how to configure single sign-on with Web browsers and HTTP
clients using SAML 2.0.

This chapter includes the following sections:

■ Configuring SAML 2.0 Services: Main Steps

■ Configuring SAML 2.0 General Services

■ Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

■ Configuring a Service Provider Site for SAML 2.0 Single Sign-On

■ Viewing Partner Site, Certificate, and Service Endpoint Information

■ Web Application Deployment Considerations for SAML 2.0

23.1 Configuring SAML 2.0 Services: Main Steps
A summary of the main steps you take to configure SAML 2.0 services is as follows:

1. Determine whether you plan to have SAML 2.0 services running in more than one
WebLogic Server instance in the domain. If so, do the following:

a. Create a domain in which the RDBMS security store is configured.

The RDBMS security store is required by the SAML 2.0 security providers in
production environments so that the data they manage can be synchronized
across all the WebLogic Server instances that share that data.

Note that Oracle does not recommend upgrading an existing domain in place
to use the RDBMS security store. If you want to use the RDBMS security store,
you should configure the RDBMS security store at the time of domain
creation. If you have an existing domain with which you want to use the
RDBMS security store, create the new domain and migrate your existing
security realm to it.

For information, see Chapter 26, "Managing the RDBMS Security Store".

b. Ensure that all SAML 2.0 services are configured identically in each WebLogic
Server instance. If you are configuring SAML 2.0 services in a cluster, each
Managed Server in that cluster must be configured individually.

c. Note the considerations described in Section 23.6, "Web Application
Deployment Considerations for SAML 2.0".

2. If you are configuring a SAML 2.0 Identity Provider site:

Configuring SAML 2.0 General Services

23-2 Administering Security for Oracle WebLogic Server 12.2.1

a. Create and configure an instance of the SAML 2.0 Credential Mapping
provider in the security realm.

b. Configure the SAML 2.0 general services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

c. Configure the SAML 2.0 Identity Provider services identically and
individually in each WebLogic Server instance in the domain that will run
SAML 2.0 services.

d. Publish the metadata file describing your site, and manually distribute it to
your Service Provider partners.

e. Create and configure your Service Provider partners.

3. If you are configuring a SAML 2.0 Service Provider site:

a. Create and configure an instance of the SAML 2.0 Identity Assertion provider
in the security realm.

If you are allowing virtual users to log in via SAML, you need to create and
configure an instance of the SAML Authentication provider. For information,
see Chapter 16, "Configuring the SAML Authentication Provider".

b. Configure the SAML 2.0 general services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

c. Configure the SAML 2.0 Service Provider services identically and individually
in each WebLogic Server instance in the domain that will run SAML 2.0
services.

d. Publish the metadata file describing your site, and manually distribute it to
your Identity Provider partners.

e. Create and configure your Identity Provider partners.

The sections that follow provide details about each set of main steps.

23.2 Configuring SAML 2.0 General Services
Regardless of the SAML 2.0 role in which you wish to configure a WebLogic Server
instance — that is, as either a Service Provider or Identity Provider — you need to
configure the server's general SAML 2.0 services. Configuration of the SAML 2.0
general services for a WebLogic Server instance is controlled by the
SingleSignOnServicesMBean. You can access the SingleSignOnServicesMBean with
the WebLogic Scripting Tool or through the WebLogic Server Administration Console,

Note: In this release of WebLogic Server, the SAML 2.0
implementation is changed and no longer uses HttpServletResponse
URL rewriting in SAML responses. Consequently, the JSESSIONID is
no longer appended to SAML responses. However, this change means
that SAML 2.0 cannot be used with browsers that do not support
cookies.

To enable HttpServletResponse URL rewriting, set the Java system
property com.bea.common.security.saml2.enableURLRewriting to
true. For example, you can do this by specifying the following option
in the Java command that starts WebLogic Server:

-Dcom.bea.common.security.saml2.enableURLRewriting=true

Configuring SAML 2.0 General Services

Configuring SAML 2.0 Services 23-3

on the Environment > Servers > ServerName > Configuration > Federation Services >
SAML 2.0 General page.

The following sections describe SAML 2.0 general services:

■ Section 23.2.1, "About SAML 2.0 General Services"

■ Section 23.2.2, "Publishing and Distributing the Metadata File"

23.2.1 About SAML 2.0 General Services
The general SAML 2.0 services you configure include the following:

■ Whether you wish to enable the replicated cache

Enabling the replicated cache is required if you are configuring SAML 2.0 services
on two or more WebLogic Server instances in a domain, such as in a cluster. The
replicated cache enables server instances to share and be synchronized with the
data that is managed by the SAML 2.0 security providers; that is, either or both the
SAML 2.0 Identity Assertion provider and the SAML 2.0 Credential Mapping
provider.

The RDBMS security store is required by the SAML 2.0 security providers in
production environments so that the data they manage can be synchronized across
all the WebLogic Server instances that share that data. (Use LDAP as the security
store with the SAML 2.0 security providers only in development environments.)

Therefore, prior to configuring SAML 2.0 services, the preferred approach is first
to create a domain that is configured to use the RDBMS security store. For more
information, see Chapter 26, "Managing the RDBMS Security Store".

■ Information about the local site

The site information you enter is primarily for the benefit of the business partners
in the SAML federation with whom you share it. Site information includes details
about the local contact person who is your partners' point of contact, your
organization name, and your organization's URL.

■ Published site URL

This URL specifies the base URL that is used to construct endpoint URLs for the
various SAML 2.0 services. The published site URL should specify the host name
and port at which the server is visible externally, which might not be the same at
which the server is accessed locally. For example, if SAML 2.0 services are
configured in a cluster, the host name and port may correspond to the load
balancer or proxy server that distributes client requests to the Managed Servers in
that cluster.

The published site URL should be appended with /saml2. For example:

https://www.avitek.com:7001/avitek-domain/aviserver/saml2
■ Entity ID

The entity ID is a human-readable string that uniquely distinguishes your site
from the other partner sites in your federation. When your partners need to

Note: You cannot configure SAML 2.0 general services in a WebLogic
Server instance until you have first configured either the SAML 2.0
Identity Assertion or SAML 2.0 Credential Mapping provider and
restarted the server instance.

Configuring SAML 2.0 General Services

23-4 Administering Security for Oracle WebLogic Server 12.2.1

generate or consume an assertion, the SAML 2.0 services use the entity ID as part
of the process of identifying the partner that corresponds with that assertion.

■ Whether recipient check is enabled

If enabled, the recipient of the authentication request or response must match the
URL in the HTTP Request.

■ Whether TLS/SSL client authentication is required for invocations on the Artifact
Resolution Service. If enabled, SAML artifacts are encrypted when transmitted to
partners.

■ Transport Layer Security keystore alias and passphrase, the values used for
securing outgoing communications with partners.

■ Whether Basic authentication client authentication is required when your partners
invoke the HTTPS bindings of the local site.

If you enable this setting, you also specify the client username and password to be
used. These credentials are then included in the published metadata file that you
share with your federated partners.

■ Whether requests for SAML artifacts received from your partners must be signed.

■ Configuration settings for the SAML artifact cache.

■ Keystore alias and passphrase for the key to be used when signing documents sent
to your federated partners, such as authentication requests or responses.

For information about the steps for configuring SAML 2.0 general services, see
"Configure SAML 2.0 general services" in the Oracle WebLogic Server Administration
Console Online Help.

23.2.2 Publishing and Distributing the Metadata File
The local site information that is needed by your federated partners — such as the
local site contact information, entity ID, published site URL, whether TLS/SSL client
authentication is required, and so on — is published to a metadata file by clicking
Publish Meta Data in the SAML 2.0 General console page.

When you publish the metadata file, you specify an existing directory on the local
machine in which the file can be created. The process of distributing the metadata file
to your federated partners is a detail that is not implemented by WebLogic Server.
However, you may send this file via a number of commonly used mechanisms suitable
for securely transferring electronic documents, such as encrypted email or secure FTP.

Keep the following in mind regarding the metadata file:

■ Before you publish the metadata file, you should configure the Identity Provider
and/or Service Provider services for the SAML 2.0 roles in which the WebLogic
Server instances in your domain are enabled to function.

The configuration data for the SAML 2.0 services your site offers that is needed by
your federated partners is included in this metadata file, greatly simplifying the
tasks your partners perform to import your signing certificates, identify your site's
SAML 2.0 service endpoints, and use the correct binding types for connecting to
your site's services, and so on.

■ You should have only a single version of the metadata file that you share with
your federated partners, even if your site functions in the role of Service Provider
with some partners and Identity Provider with others. By having only a single
version of the metadata file, you reduce the likelihood that your configuration
settings might become incompatible with those of a partner.

Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

Configuring SAML 2.0 Services 23-5

■ If you change the local site's SAML 2.0 configuration, you should update your
metadata file. Because the metadata file is shared with your partners, it will be
convenient to minimize the frequency with which you update your SAML 2.0
configuration so that your partners can minimize the need to make concomitant
updates to their own partner registries.

■ When you receive a metadata file from a federated partner, place it in a location
that can be accessed by all the nodes in your domain in which SAML 2.0 services
are configured. At the time you create a partner, you bring the contents the
partner's metadata file into the partner registry.

Operations on the metadata file are available via the
com.bea.security.saml2.providers.registry.Partner Java interface.

23.3 Configuring an Identity Provider Site for SAML 2.0 Single Sign-On
This section presents the following topics:

■ Section 23.3.1, "Configure the SAML 2.0 Credential Mapping Provider"

■ Section 23.3.2, "Configure SAML 2.0 Identity Provider Services"

■ Section 23.3.3, "Create and Configure Web Single Sign-On Service Provider
Partners"

23.3.1 Configure the SAML 2.0 Credential Mapping Provider
In your security realm, create a SAML 2.0 Credential Mapping provider instance. The
SAML 2.0 Credential Mapping provider is not part of the default security realm. See
Section 9.4, "Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0".

Configure the SAML 2.0 Credential Mapping provider as a SAML authority. Attributes
you specify include the following:

■ Issuer URI

■ Name Qualifier

■ Life span attributes for generated SAML 2.0 assertions

■ Name mapper class name

■ Whether generated assertions should include attribute information, which specify
the groups to which the identity contained in the assertion belongs

After you configure the SAML 2.0 Credential Mapping provider, configure SAML 2.0
general services, as described in Section 23.2, "Configuring SAML 2.0 General
Services".

23.3.2 Configure SAML 2.0 Identity Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Identity Provider site is
controlled by the SingleSignOnServicesMBean. You can access the
SingleSignOnServicesMBean using the WebLogic Scripting Tool (WLST), or through
the WebLogic Server Administration Console by using the Environment > Servers >
ServerName > Configuration > Federation Services > SAML 2.0 Identity Provider
page.

The sections that follow summarize the configuration tasks. For more information
about performing these tasks, see "Configure SAML 2.0 Identity Provider services" in
the Oracle WebLogic Server Administration Console Online Help.

Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

23-6 Administering Security for Oracle WebLogic Server 12.2.1

23.3.2.1 Enable the SAML 2.0 Identity Provider Site
From the SAML 2.0 Identity Provider page in the console, allow the WebLogic Server
instance to serve as an Identity Provider site by setting the Enabled attribute to true.

23.3.2.2 Specify a Custom Login Web Application
Optionally, you may use a custom login web application to authenticate users into the
Identity Provider site. To configure a custom login web application, enable the Login
Customized attribute and specify the URL of the web application.

23.3.2.3 Enable Binding Types
Oracle recommends enabling all the available binding types for the endpoints of the
Identity Provider services; namely, POST, Redirect, and Artifact. Optionally you may
select a preferred binding type.

23.3.2.4 Publish Your Site's Metadata File
After you have configured the SAML 2.0 general services and Identity Provider
services, publish your site's metadata file and distribute it to your federated partners,
as described in Section 23.2.2, "Publishing and Distributing the Metadata File".

23.3.3 Create and Configure Web Single Sign-On Service Provider Partners
A SAML 2.0 Service Provider partner is an entity that consumes the SAML 2.0
assertions generated by the Identity Provider site. The configuration of Service
Provider partners is available from the WebLogic Server Administration Console,
using the Security Realms > RealmName > Providers > Credential Mapper >
SAML2CredentialMapperName > Management page.

The attributes that can be set on this console page can also be accessed
programmatically via a set of Java interfaces, which are identified in the sections that
follow.

See "Create a SAML 2.0 Web Single Sign-on Service Provider partner" in the Oracle
WebLogic Server Administration Console Online Help for complete details about the
specific steps for configuring a Service Provider partner. For a summary of the site
information, signing certificates, and service endpoint information available when you
configure a web single sign-on partner, see Section 23.5, "Viewing Partner Site,
Certificate, and Service Endpoint Information".

23.3.3.1 Obtain Your Service Provider Partner's Metadata File
Before you configure a Service Provider partner for web single sign-on, you need to
obtain the partner's SAML 2.0 metadata file via a trusted and secure mechanism, such
as encrypted email or an SSL-enabled FTP site. Your partner's metadata file describes
the partner site and binding support, includes the partner's certificates and keys,
contains your partner's SAML 2.0 service endpoints, and more. Copy the partner's
metadata file into a location that can be accessed by each node in your domain
configured for SAML 2.0.

The SAML 2.0 metadata file is described in Section 23.2.2, "Publishing and Distributing
the Metadata File".

23.3.3.2 Create Partner and Enable Interactions
To create and enable a Service Provider partner for web single sign-on:

Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

Configuring SAML 2.0 Services 23-7

1. From the Management tab of the SAML 2.0 Credential Mapping provider page,
specify the partner's name and metadata file.

2. From the General tab of the partner configuration page, enable interactions
between the partner and the WebLogic Server instance.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.Partner Java interface for
configuring these attributes.

23.3.3.3 Configure How Assertions are Generated
Optionally from the General tab of the partner configuration page in the console, you
can configure the following attributes of the SAML 2.0 assertions generated
specifically for this Service Provider partner:

■ The Service Provider Name Mapper Class name

This is the Java class that overrides the default username mapper class with which
the SAML 2.0 Credential Mapping provider is configured in this security realm.

■ Time to Live attributes

The Time to Live attributes specify the interval of time during which the assertions
generated for this partner are valid. These attributes prevent expired assertions
from being used.

■ Whether to generate attribute information that is included in assertions

If enabled, the SAML 2.0 Credential Mapping provider adds, as attributes in the
assertion, the groups to which the corresponding user belongs.

■ Whether the assertions sent to this partner must be disposed of immediately after
use

■ Whether this server's signing certificate is included in assertions generated for this
partner

WebLogic Server provides the
com.bea.security.saml2.providers.registry.SPPartner Java interface for
configuring these attributes.

23.3.3.4 Configure How Documents Are Signed
You can use the General tab of the Service Provider partner configuration page to
determine how the following documents exchanged with this partner must be signed:

■ Assertions

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.SPPartner interface.

■ Authentication requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOSPPartner interface.

■ Artifact requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOPartner interface.

The attributes for specifying whether this partner accepts only signed assertions, or
whether authentication requests must be signed, are read-only: they are derived from
the partner's metadata file.

Configuring a Service Provider Site for SAML 2.0 Single Sign-On

23-8 Administering Security for Oracle WebLogic Server 12.2.1

23.3.3.5 Configure Artifact Binding and Transport Settings
Optionally, you also use the General tab of the Service Provider partner configuration
page to configure the following:

■ Whether SAML artifacts are delivered to this partner via the HTTP POST binding.
If so, you may also specify the URI of a custom web application that generates the
HTTP POST form for sending the SAML artifact.

■ The URI of a custom web application that generate the HTTP POST form for
sending request or response messages via the POST binding.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

For added security in the exchange of documents with this partner, you can also
specify a client user name and password to be used by the Service Provider partner
when connecting to the local site's binding using Basic authentication. This attribute is
available via the
com.bea.security.saml2.providers.registry.BindingClientPartner Java
interface.

23.4 Configuring a Service Provider Site for SAML 2.0 Single Sign-On
This section presents the following topics:

■ Section 23.4.1, "Configure the SAML 2.0 Identity Assertion Provider"

■ Section 23.4.2, "Configure the SAML Authentication Provider"

■ Section 23.4.3, "Configure SAML 2.0 General Services"

■ Section 23.4.4, "Configure SAML 2.0 Service Provider Services"

■ Section 23.4.5, "Create and Configure Web Single Sign-On Identity Provider
Partners"

23.4.1 Configure the SAML 2.0 Identity Assertion Provider
In your security realm, create an instance of the SAML 2.0 Identity Assertion provider.
The SAML 2.0 Identity Assertion provider is not part of the default security realm. The
attributes you specify for the SAML 2.0 Identity Assertion provider include the
following:

■ Whether the replicated cache is enabled

If you are configuring SAML 2.0 Identity Provider services in two or more server
instances in the domain, this attribute must be enabled.

■ A custom name mapper class that overrides the default SAML 2.0 assertion name
mapper class

Note: Use of cookie-path.

As described in session-descriptor, the cookie-path element defines
the session tracking cookie path. If not set, this element defaults to /
(slash), where the browser sends cookies to all URLs served by
WebLogic Server.

The WebLogic Server SAML 2.0 Service Providers require that the
cookie-path be / (slash). If you set any other value for cookie-path,
SSO fails for the SAML 2.0 Service Providers.

Configuring a Service Provider Site for SAML 2.0 Single Sign-On

Configuring SAML 2.0 Services 23-9

For more information about this security provider, see Section 18.6, "Configuring a
SAML 2.0 Identity Assertion Provider for SAML 2.0".

23.4.2 Configure the SAML Authentication Provider
If you plan to enable virtual users, or consume attribute statements contained in
assertions that you receive from your Identity Provider partners, you need to create
and configure an instance of the SAML Authentication provider. For more
information, see Chapter 16, "Configuring the SAML Authentication Provider".

23.4.3 Configure SAML 2.0 General Services
After configuring the SAML 2.0 Identity Assertion provider, and optionally the SAML
Authentication provider, configure the SAML 2.0 general services, as described in
Section 23.2, "Configuring SAML 2.0 General Services".

23.4.4 Configure SAML 2.0 Service Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Service Provider site is
controlled by the SingleSignOnServicesMBean. You can access the
SingleSignOnServicesMBean using the WebLogic Scripting Tool (WLST), or through
the WebLogic Server Administration Console using the Environment > Servers >
ServerName > Configuration > Federation Services > SAML 2.0 Service Provider
page.

You configure the SAML 2.0 Service Provider site attributes as summarized in the
sections that follow. For more information about these configuration tasks, see
"Configure SAML 2.0 Service Provider services" in the Oracle WebLogic Server
Administration Console Online Help.

23.4.4.1 Enable the SAML 2.0 Service Provider Site
From the Federation Services: SAML 2.0 Identity Provider page in the console, allow
the WebLogic Server instance to serve as a Service Provider site by setting the Enabled
attribute to true.

23.4.4.2 Specify How Documents Must Be Signed
Optionally you may enable the attributes that set the following document signing
requirements:

■ Whether authentication requests sent to Identity Provider partners are signed

■ Whether assertions received from Identity Provider partners are signed

23.4.4.3 Specify How Authentication Requests Are Managed
Optionally you may enable the following attributes of the authentication request
cache:

■ Maximum cache size

■ Time-out value for authentication requests, which establishes the time interval
beyond which stored authentication requests are expired

23.4.4.4 Enable Binding Types
Oracle recommends enabling all the available binding types for the endpoints of the
Service Provider services; namely, POST, and Artifact. Optionally you may specify a
preferred binding type.

Configuring a Service Provider Site for SAML 2.0 Single Sign-On

23-10 Administering Security for Oracle WebLogic Server 12.2.1

23.4.4.5 Set Default URL
Optionally, you may specify the URL to which unsolicited authentication responses
are sent if they do not contain an accompanying target URL.

23.4.5 Create and Configure Web Single Sign-On Identity Provider Partners
A SAML 2.0 Identity Provider partner is an entity that generates SAML 2.0 assertions
consumed by the Service Provider site. The configuration of Identity Provider partners
is available from the WebLogic Server Administration Console, using the Security
Realms > RealmName > Providers > Authentication > SAML2IdentityAsserterName >
Management page.

The attributes that can be set on this console page can also be accessed
programmatically via a set of Java interfaces, which are identified in the sections that
follow.

See "Create a SAML 2.0 Web Single Sign-on Identity Provider partner" in the Oracle
WebLogic Server Administration Console Online Help for complete details about the
specific steps for configuring a Service Provider partner.

For a summary of the site information, signing certificates, and service endpoint
information available when you configure a web single sign-on partner, see
Section 23.5, "Viewing Partner Site, Certificate, and Service Endpoint Information".

The following sections summarize tasks for configuring an Identity Provider partner.

23.4.5.1 Obtain Your Identity Provider Partner's Metadata File
Before you configure an Identity Provider partner for web single sign-on, you need to
obtain the partner's SAML 2.0 metadata file via a trusted and secure mechanism, such
as encrypted email or an SSL-enabled FTP site. Your partner's metadata file describes
that partner site and binding support, includes the partner's certificates and keys, and
so on. Copy the partner's metadata file into a location that can be accessed by each
node in your domain configured for SAML 2.0.

The SAML 2.0 metadata file is described in Section 23.2.2, "Publishing and Distributing
the Metadata File".

23.4.5.2 Create Partner and Enable Interactions
To create an Identity Provider partner and enable interactions for web single sign-on:

■ From the Management tab of the SAML 2.0 Identity Assertion configuration page,
specify the partner's name and metadata file.

■ From the General tab of the partner configuration page, enable interactions
between the partner and the WebLogic Server instance.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.Partner Java interface for
configuring these attributes.

23.4.5.3 Configure Authentication Requests and Assertions
Optionally, you can configure the following attributes of the authentication requests
generated for, and assertions received from, this Identity Provider partner:

■ The Identity Provider Name Mapper Class name

This is the custom Java class that overrides the default username mapper class
with which the SAML 2.0 Identity Assertion provider is configured in this security

Configuring a Service Provider Site for SAML 2.0 Single Sign-On

Configuring SAML 2.0 Services 23-11

realm. The custom class you specify is used only for identities contained in
assertions received from this particular partner.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

■ Whether the identities contained in assertions received from this partner are
mapped to virtual users in the security realm

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

■ Whether to consume attribute information contained in assertions received from
this partner

If enabled, the SAML 2.0 Identity Assertion provider extracts attribute information
from the assertion, which it uses in conjunction with the SAML Authentication
provider (which must be configured in the security realm) to determine the groups
in the security realm to which the corresponding user belongs.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

■ Whether authentication requests sent to this Identity Provider partner must be
signed. This is a read-only attribute that is derived from the partner's metadata
file.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

■ Whether SAML artifact requests received from this Identity Provider partner must
be signed.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

23.4.5.4 Configure Redirect URIs
You can configure a set of URIs that, if invoked by an unauthenticated user, cause the
user request to be redirected to the Identity Provider partner where the user can be
authenticated.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface for
configuring this attribute.

23.4.5.5 Configure Binding and Transport Settings
Optionally, you also use the General tab of the Service Provider partner configuration
page to configure the following:

Note: To use this attribute, you must have a SAML Authentication
provider configured in the realm.

Note: If you configure one or more redirect URIs, remember to set a
security policies on them as well; otherwise the web container will not
attempt to authenticate the user and, consequently, not redirect the
user's request to the Identity Provider partner.

Viewing Partner Site, Certificate, and Service Endpoint Information

23-12 Administering Security for Oracle WebLogic Server 12.2.1

■ Whether SAML artifacts are delivered to this partner via the HTTP POST method.
If so, you may also specify the URI of a custom web application that generates the
HTTP POST form for sending the SAML artifact.

■ The URL of the custom web application that generates the POST form for carrying
the SAML response for POST bindings to this Identity Provider partner.

■ The URL of the custom web application that generates the POST form for carrying
the SAML response for Artifact bindings to this Identity Provider partner.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

For added security in the exchange of documents with this partner, you can also
specify a client user name and password to be used by this Identity Provider partner
when connecting to the local site's binding using Basic authentication. This attribute is
available via the
com.bea.security.saml2.providers.registry.BindingClientPartner Java
interface.

23.5 Viewing Partner Site, Certificate, and Service Endpoint Information
When you configure SAML 2.0 partners, the partner configuration pages displayed by
the WebLogic Server Administration Console include tabs for viewing and configuring
the following additional information about the partner:

■ The Site tab displays information about the Service Provider partner, which is
derived from the partner's metadata file. The data in this tab is read-only.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.MetadataPartner Java interface
for partner site information.

■ The Single Sign-On Signing Certificate tab displays details about the partner's
signing certificate, which are also derived from the partner's metadata file. The
data in this tab is read-only.

Operations on these attributes are available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

■ The Transport Layer Client Certificate tab displays partner's transport layer client
certificate. You can optionally import this certificate by clicking Import Certificate
from File.

Operations on this attribute are available from the
com.bea.security.saml2.providers.registry.BindingClientPartner Java
interface.

■ When configuring Service Provider partners, the Assertion Consumer Service
Endpoints tab is available, which displays the Service Provider partner's ACS
endpoints. This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOSPPartner Java interface.

■ When configuring Identity Provider partners, the Single Sign-On Service
Endpoints tab is available, which displays the Identity Provider partner's single
sign-on service endpoints. This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

■ The Artifact Resolution Service Endpoints tab displays the partner's ARS
endpoints. This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

Web Application Deployment Considerations for SAML 2.0

Configuring SAML 2.0 Services 23-13

23.6 Web Application Deployment Considerations for SAML 2.0
When deploying web applications for SAML-based SSO in a clustered environment,
note the considerations presented in the following sections for preventing
SAML-based single sign-on from failing:

■ Section 23.6.1, "Deployment Descriptor Recommendations"

■ Section 23.6.2, "Login Application Considerations for Clustered Environments"

■ Section 23.6.3, "Enabling Force Authentication and Passive Attributes is Invalid"

23.6.1 Deployment Descriptor Recommendations
Note the following recommendations regarding the use of the following elements in
deployment descriptor files:

■ relogin-enabled

■ cookie-name

23.6.1.1 Use of relogin-enabled with CLIENT-CERT Authentication
If a user logs in to a web application and tries to access a resource for which that user
is not authorized, an HTTP FORBIDDEN (403) response is generated. This is standard
web application behavior. However, for backwards compatibility with earlier releases,
WebLogic Server permits web applications to use the relogin-enabled element in the
weblogic.xml deployment descriptor file, so that the response to an access failure
results in a request to authenticate. In certain circumstances, it can cause SAML 2.0
based web single sign-on to fail.

Normally, the SAML 2.0 Assertion Consumer Service (ACS) logs the user into the
application and redirects the user request to the target web application. However, if
that web application is enabled for SAML 2.0 single sign-on, is protected by
CLIENT-CERT authentication, and has the relogin-enabled deployment descriptor
element set to true, an infinite loop can occur in which a request to authenticate a user
is issued repeatedly. This loop can occur when a user is logged in to the web
application and attempts to access a resource for which the user is not permitted:
instead of generating a FORBIDDEN message, a new authentication request is
generated that triggers another SAML 2.0 based web single sign-on attempt.

To prevent this situation from occurring in a web application that is protected by
CLIENT-CERT authentication, either remove the relogin-enabled deployment
descriptor element for the web application, or set the element to false. This enables
standard web application authentication behavior.

23.6.1.2 Use of Non-default Cookie Name
When the Assertion Consumer Service logs in the Subject contained in an assertion, an
HTTP servlet session is created using the default cookie name JSESSIONID. After
successfully processing the assertion, the ACS redirects the user's request to the target
web application. If the target web application uses a cookie name other than
JSESSIONID, the Subject's identity is not propagated to the target web application. As a
result, the servlet container treats the user as if unauthenticated, and consequently
issues an authentication request.

To avoid this situation, do not change the default cookie name when deploying web
applications in a domain that are intended to be accessed by SAML 2.0 based single
sign-on.

Web Application Deployment Considerations for SAML 2.0

23-14 Administering Security for Oracle WebLogic Server 12.2.1

23.6.2 Login Application Considerations for Clustered Environments
Note the following two login limitations that are rare in clustered environments, but if
they occur, they may prevent a single sign-on session from succeeding.

■ When an Identity Provider's single sign-on service receives an authentication
request, it redirects that request to the login application to authenticate the user.
The login application must execute on the same cluster node as that single sign-on
service. If not, the Identity Provider is unable to produce a SAML 2.0 assertion
even if the authentication succeeds.

Under normal circumstances, the login application executes on the same node as
the single sign-on service, so likelihood of the authentication request being
redirected to a login application executing on a different node in the domain is
very small. However, it may happen if an authentication request is redirected by a
cluster node different than the one hosting the login application. You can almost
always prevent this situation from occurring if you configure the Identity Provider
to use the default login URI with Basic authentication.

■ When the SAML 2.0 Assertion Consumer Service (ACS) successfully consumes an
assertion, it logs in the Subject represented by the assertion. The ACS then
redirects the user request to the target application. Normally, the target application
executes on the same node as the ACS. However, in rare circumstances, the target
application to which is the user request is redirected executes on a cluster node
other than the one hosting the ACS on which the login occurred. When this
circumstance occurs, the identity represented by the assertion is not propagated to
the target application node. The result is either another attempt at the single
sign-on process, or denied access.

Because the target application executes on the same node as the ACS, this situation
is expected to occur very rarely.

23.6.3 Enabling Force Authentication and Passive Attributes is Invalid
When configuring SAML 2.0 Service Provider services, enabling both the Force
Authentication and Passive attributes is an invalid configuration that WebLogic Server
is unable to detect. If both these attributes are enabled, and an unauthenticated user
attempts to access a resource that is hosted at the Service Provider site, an exception is
generated and the single sign-on session fails.

Note that the Force Authentication attribute has no effect because SAML logout is not
supported in WebLogic Server. So even if the user is already authenticated at the
Identity Provider site and Force Authentication is enabled, the user is not forced to
authenticate again at the Identity Provider site.

24

Enabling Debugging for SAML 1.1 and 2.0 24-1

24Enabling Debugging for SAML 1.1 and 2.0

[25] This chapter explains how to enable debugging for a web application that uses SAML
for SSO by setting the desired ServerDebug configuration attributes to true. WebLogic
Server provides a variety of ways to do this.

This chapter includes the following sections:

■ About SAML Debug Scopes and Attributes

■ Enabling Debugging Using the Command Line

■ Enabling Debugging Using the WebLogic Server Administration Console

■ Enabling Debugging Using the WebLogic Scripting Tool

■ Sending Debug Messages to Standard Out

24.1 About SAML Debug Scopes and Attributes
Table 24–1 and Table 24–2 list and describe the registered debug scopes and attributes
provided in WebLogic Server for SAML 1.1 and 2.0.

Table 24–1 SAML 1.1 Debug Scopes and Attributes

Scope Attribute Description

weblogic.security.saml.atn DebugSecuritySAMLAtn Prints information about
SAML 1.1 authentication
provider processing.

weblogic.security.saml.credma
p

DebugSecuritySAMLCredMap Prints information about
SAML 1.1 credential
mapping provider
processing.

weblogic.security.saml.lib DebugSecuritySAMLLib Prints information about
SAML 1.1 library processing.

weblogic.security.saml.servic
e

DebugSecuritySAMLService Prints information about
SAML 1.1 SSO profile
services.

Table 24–2 SAML 2.0 Debug Scopes and Attributes

Scope Attribute Description

weblogic.security.saml2.atn DebugSecuritySAML2Atn Prints information about
SAML 2.0 authentication
provider processing.

Enabling Debugging Using the Command Line

24-2 Administering Security for Oracle WebLogic Server 12.2.1

24.2 Enabling Debugging Using the Command Line
You can enable debug scopes or attributes by passing them as options in the command
that starts WebLogic Server. The command line options you can use for enabling
SAML debugging by attribute are listed in Table 24–3.

This method for enabling SAML debugging is static and can only be used at server
startup.

24.3 Enabling Debugging Using the WebLogic Server Administration
Console

To configure SAML debugging using the WebLogic Server Administration Console,
complete the following steps:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit (see "Use the Change Center").

2. In the left pane of the console, expand Environment and select Servers.

3. On the Summary of Servers page, click the server on which you want to enable or
disable debugging to open the settings page for that server.

4. Click Debug.

5. Expand weblogic.

6. Expand security.

7. Enable SAML debugging as follows:

■ To enable the SAML 1.1 debug scope, which encompasses all the SAML 1.1
attributes, select saml, then click Enable.

weblogic.security.saml2.credm
ap

DebugSecuritySAML2CredMa
p

Prints information about
SAML 2.0 credential
mapping provider
processing.

weblogic.security.saml2.lib DebugSecuritySAML2Lib Prints information about
SAML 2.0 library processing.

weblogic.security.saml2.servi
ce

DebugSecuritySAML2Servic
e

Prints information about
SAML 2.0 SSO profile
services.

Table 24–3 Command Line Options for SAML Debugging

SAML Version Available Command Line Options for Debugging

SAML 1.1 -Dweblogic.debug.DebugSecuritySAMLAtn=true
-Dweblogic.debug.DebugSecuritySAMLCredMap=true
-Dweblogic.debug.DebugSecuritySAMLLib=true
-Dweblogic.debug.DebugSecuritySAMLService=true

SAML 2.0 -Dweblogic.debug.DebugSecuritySAML2Atn=true
-Dweblogic.debug.DebugSecuritySAML2CredMap=true
-Dweblogic.debug.DebugSecuritySAML2Lib=true
-Dweblogic.debug.DebugSecuritySAML2Service=true

Table 24–2 (Cont.) SAML 2.0 Debug Scopes and Attributes

Scope Attribute Description

Enabling Debugging Using the WebLogic Scripting Tool

Enabling Debugging for SAML 1.1 and 2.0 24-3

■ To enable one or more individual SAML 1.1 debug attributes, expand saml,
expand the scope of the desired attribute, select the desired individual SAML
1.1 attribute, then click Enable. For example, expand saml, expand atn, and
select the DebugSecuritySAMLAtn attribute to debug SAML 1.0
authentication processing.

■ To enable the SAML 2.0 debug scope, which encompasses all the SAML 2.0
attributes, select saml2, then click Enable.

■ To enable one or more individual SAML 2.0 debug attributes, expand saml2,
expand the scope of the desired attribute, select the desired individual SAML
2.0 attribute, then click Enable. For example, expand saml2, expand credmap,
and select the DebugSecuritySAML2Credmap attribute to debug SAML 2.0
credential mapping provider processing.

For a description of each registered SAML debug attribute, see Section 24.1,
"About SAML Debug Scopes and Attributes".

8. To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes (see "Use the Change Center").

Changes to SAML debug scopes and attributes take effect immediately — no restart is
necessary. Using the WebLogic Server Administration Console to enable or disable
SAML debugging is dynamic and can be used while the server is running. For more
information, see "Define debug settings" in the Oracle WebLogic Server Administration
Console Online Help.

24.4 Enabling Debugging Using the WebLogic Scripting Tool
You can use the WebLogic Scripting Tool (WLST) to configure SAML debugging
attributes. For example, the following command runs a program for setting debugging
attributes called debug.py:

java weblogic.WLST debug.py

The debug.py program contains the following code, which enables debugging for the
attribute DebugSecuritySAMLAtn.

user='user1'
password='password'
url='t3://localhost:7001'
connect(user, password, url)
edit()
cd('Servers/myserver/ServerDebug/myserver')
startEdit()
set('DebugSecuritySAMLAtn','true')
save()
activate()

Note that you can also use WLST from Java. The following example shows the source
file of a Java program that sets the DebugSecuritySAMLAtn debugging attribute:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;
import weblogic.jndi.Environment;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class test {
 public static void main(String args[]) {

Sending Debug Messages to Standard Out

24-4 Administering Security for Oracle WebLogic Server 12.2.1

 try {
 WLSTInterpreter interpreter = null;
 String user="user1";
 String pass="pw12ab";
 String url ="t3://localhost:7001";
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(user);
 env.setSecurityCredentials(pass);
 Context ctx = env.getInitialContext();

 interpreter = new WLSTInterpreter();
 interpreter.exec
 ("connect('"+user+"','"+pass+"','"+url+"')");
 interpreter.exec("edit()");
 interpreter.exec("startEdit()");
 interpreter.exec
 ("cd('Servers/myserver/ServerDebug/myserver')");
 interpreter.exec("set('DebugSecuritySAMLAtn','true')");
 interpreter.exec("save()");
 interpreter.exec("activate()");

 } catch (Exception e) {
 System.out.println("Exception "+e);
 }
 }
}

Using the WLST is a dynamic method and can be used to enable debugging while the
server is running.

24.5 Sending Debug Messages to Standard Out
Messages corresponding to enabled debug attributes are sent to the server log file.
Optionally, you can also send debug messages to standard out by passing the
StdoutSeverity=Debug attribute on the LogMBean in the command to start WebLogic
Server. For example, -Dweblogic.log.StdoutSeverity=Debug.

For more information, see "Message Output and Logging" in Command Reference for
Oracle WebLogic Server.

Part V
Part V Managing Security Information

This part explains how to manage security information contained in the security store
with which the security realm is configured.

Part V contains the following chapters:

■ Chapter 25, "Migrating Security Data"

■ Chapter 26, "Managing the RDBMS Security Store"

■ Chapter 27, "Managing the Embedded LDAP Server"

25

Migrating Security Data 25-1

25Migrating Security Data

[26] This chapter describes how to export security data from one security realm or security
provider and import the data into another realm or provider.

This chapter includes the following sections:

■ Overview of Security Data Migration

■ Migration Concepts

■ Formats and Constraints Supported by WebLogic Security Providers

■ Migrating Data with WLST

25.1 Overview of Security Data Migration
WebLogic security realms persist different kinds of security data — for example, users
and groups (for the WebLogic Authentication provider), security policies (for the
XACML Authorization provider), security roles (for the XACML Role Mapping
provider), and credential maps (for the WebLogic Credential Mapping provider).
When you configure a new security realm or a new security provider, you may prefer
to use the security data from your existing realm or provider, rather than recreate all
the users, groups, policies, roles, and credential maps. Several WebLogic security
providers support security data migration. This means you can export security data
from one security realm, and import it into a new security realm. You can migrate
security data for each security provider individually, or migrate security data for all
the WebLogic security providers at once (that is, security data for an entire security
realm). Note that you can only migrate security data from one provider to another if
the providers use the same data format. See Section 25.3, "Formats and Constraints
Supported by WebLogic Security Providers". You migrate security data through the
WebLogic Server Administration Console or by using the WebLogic Scripting Tool
(WLST).

Migrating security data may be helpful when you:

■ Transition from development to production mode.

■ Copy production mode security configurations to security realms in new
WebLogic domains.

■ Move data from one security realm to a new security realm in the same WebLogic
domain, where one or more of the default WebLogic security providers will be
replaced with new security providers.

The remainder of this section describes security migration concepts, the formats and
constraints supported by the WebLogic security providers, and steps for migrating
security data with WLST.

Migration Concepts

25-2 Administering Security for Oracle WebLogic Server 12.2.1

To migrate security data with the WebLogic Server Administration Console, see the
following topics in the Oracle WebLogic Server Administration Console Online Help:

■ "Export data from security realms"

■ "Import data into security realms"

■ "Export data from a security provider"

■ "Import data into a security provider"

25.2 Migration Concepts
A format is a data format that specifies how security data should be exported or
imported. Supported formats are the list of data formats that a given security provider
understands how to process.

Constraints are key/value pairs that specify options to the export or import process.
Use constraints to control which security data is exported to or imported from the
security provider's database (in the case of the WebLogic Server security providers, the
embedded LDAP server). For example, you may want to export only users (not
groups) from an Authentication provider's database. Supported constraints are the list of
constraints you can specify during the migration process for a particular security
provider. For example, you can specify that an Authentication provider's database be
used to import users and groups, but not security policies.

Export files are the files to which security data is written (in the specified format)
during the export portion of the migration process. Import files are files from which
security data is read (also in the specified format) during the import portion of the
migration process. Both export and import files are simply temporary storage locations
for security data as it is migrated from one security provider's data store to another
security provider's data store.

25.3 Formats and Constraints Supported by WebLogic Security Providers
In order for security data to be exported and imported between security providers,
both security providers must process the same format. Some data formats used for the
WebLogic Server security providers are unpublished; therefore, you cannot currently
migrate security data from a WebLogic security provider to a custom security
provider, or vice versa, using the unpublished formats.

WebLogic security providers support the import and export formats provided in
Table 25–1.

Table 25–1 Import and Export Formats Supported by the WebLogic Security Providers

WebLogic Provider Supported Format

WebLogic Authentication provider DefaultAtn—unpublished format

XACML Authorization Provider XACML—standard XACML 2.0 format

DefaultAtz—unpublished format

WebLogic Authorization Provider DefaultAtz—unpublished format

XACML Role Mapping Provider XACML—standard XACML 2.0 format

DefaultRoles—unpublished format

WebLogic Role Mapping Provider DefaultRoles—unpublished format

WebLogic Credential Mapping
Provider

DefaultCreds—unpublished format

Formats and Constraints Supported by WebLogic Security Providers

Migrating Security Data 25-3

WebLogic security providers support the import and export constraints provided in
Table 25–2.

SAML Identity Asserter V2

SAML Credential Mapping Provider
V2

XML Partner Registry—An XML format defined by the
SAML partner registry schema

JKS Key Store—A key store file format for importing
and exporting partner certificates only

LDIF Template—LDIF format

Table 25–2 Constraints Supported by the WebLogic Security Providers

WebLogic Security Provider
Supported
Constraints Description

Default Authentication users

groups

Export all users or all groups

■ XACML Authorization

■ WebLogic Authorization

■ XACML Role Mapping

■ WebLogic Role Mapping

none N/A

WebLogic Credential Mapping passwords With the constraint
passwords=cleartext, passwords will
be exported in clear text. Otherwise,
they will be exported in encrypted
form.

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

partners Which partners to import or export.
The constraint value can be one of:

■ all—all partners

■ none—no partners

■ list—only listed partners

■ enabled—only enabled partners

■ disabled—only disabled
partners

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

certificates Which certificates to import or
export. The constraint value can be
one of the following:

■ all—all certificates

■ none—no certificates

■ list—only listed certificates

■ referenced—only certificates
referenced by a partner

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

passwords With the constraint
passwords=cleartext, passwords will
be exported in clear text. Otherwise,
they will be exported in encrypted
form.

Table 25–1 (Cont.) Import and Export Formats Supported by the WebLogic Security

WebLogic Provider Supported Format

Migrating Data with WLST

25-4 Administering Security for Oracle WebLogic Server 12.2.1

When exporting from the WebLogic Credential Mapping provider, SAML Credential
Mapping provider, or SAML Identity Asserter, you need to specify whether or not the
passwords for the credentials are exported in clear text. The constraint
passwords=cleartext specifies that passwords will be exported in clear text.
Otherwise, they will be exported in encrypted form. The mechanism used to encrypt
passwords in each WebLogic domain is different; therefore, you want to export
passwords in clear text if you plan to use them in a different WebLogic domain. After
the credential maps are imported into the new WebLogic domain, the passwords are
encrypted. Carefully protect the directory and file in which you export credential
maps in clear text as secure data is available on your system during the migration
process.

25.4 Migrating Data with WLST
You can use the WebLogic Scripting Tool (WLST) to export and import data from a
security provider. Access the Runtime MBean for the security provider and use its
importData or exportData operation. For example, you might use WLST to import
data using commands like these:

serverConfig()
cd('SecurityConfiguration/mydomain/DefaultRealm/myrealm/path-to-MBean/mbeanname')
cmo.importData(format,filename,constraints)

where:

■ mbeanname—Name of the security provider MBean.

■ format—A format that is valid for the particular security provider. See Table 25–1.

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

importMode Specifies how to resolve name
conflicts between the imported data
and existing data in the SAML
registry. The constraint value can be
one of the following:

■ fail—the import operation will
fail if conflicts are detected
(default)

■ rename—rename the imported
entry that conflicts

■ replace—replace the existing
entry with the conflicting
imported entry

Note: By default, the WebLogic Authentication provider stores
passwords using a one-way hash. Passwords that have been
encrypted by this provider cannot be unencrypted when you export
data even if you use the passwords=cleartext constraint. If you want
to be able to export passwords in clear text from this provider, you
must set the Enable Password Digests attribute to true prior to
creating or updating those passwords. For more information, see
"Default Authentication Provider: Provider Specific" in Oracle
WebLogic Server Administration Console Online Help.

Table 25–2 (Cont.) Constraints Supported by the WebLogic Security Providers

WebLogic Security Provider
Supported
Constraints Description

Migrating Data with WLST

Migrating Security Data 25-5

■ filename—The directory location and filename in which to export or import the
security data. Remember that, regardless of whether you are using a UNIX or
Windows operating system, you need to use a forward slash, not a back slash, as a
path separator for pathname arguments in WLST commands.

■ constraints—The constraints that limit the data to be exported or imported

For more information, see Understanding the WebLogic Scripting Tool.

Migrating Data with WLST

25-6 Administering Security for Oracle WebLogic Server 12.2.1

26

Managing the RDBMS Security Store 26-1

26Managing the RDBMS Security Store

[27] This chapter describes the WebLogic Server option of using an external RDBMS as a
datastore for the authorization, role mapping, credential mapping, and certificate
registry providers. This datastore, called the RDBMS security store, is strongly
recommended for using SAML 2.0 services in two or more WebLogic Server instances
in that domain, such as in a cluster.

This datastore, called the RDBMS security store, is required by the SAML 2.0 security
providers in production environments so that the data they manage can be
synchronized across all the WebLogic Server instances that share that data. (Use
LDAP as the security store with the SAML 2.0 security providers only in development
environments.)

This chapter includes the following sections:

■ Security Providers that Use the RDBMS Security Store

■ Configuring the RDBMS Security Store

■ Upgrading a Domain to Use the RDBMS Security Store

For the most up-to-date details about the specific database systems that are supported
for use as the RDBMS security store for WebLogic Server, see the Oracle Fusion
Middleware Supported System Configurations page on Oracle Technology Network.

26.1 Security Providers that Use the RDBMS Security Store
The following security providers use the RDBMS security store if that store is
configured in a domain:

■ XACML Authorization provider

■ XACML Role Mapping provider

■ The following providers for SAML 1.1:

– SAML Identity Assertion provider V2

– SAML Credential Mapping provider V2

Note: In order to use the RDBMS security store, the preferred
approach is first to create a domain in which the external RDBMS
server is configured. Prior to booting the domain, you create the tables
in the datastore that are required by the RDBMS security store. The
WebLogic Server installation directory contains a set of SQL scripts
that create these tables for each supported database.

Configuring the RDBMS Security Store

26-2 Administering Security for Oracle WebLogic Server 12.2.1

■ The following providers for SAML 2.0:

– SAML 2.0 Identity Assertion provider

– SAML 2.0 Credential Mapping provider

■ WebLogic Credential Mapping provider

■ PKI Credential Mapping provider

■ Certificate Registry

When the RDBMS security store is configured in a domain, an instance of any of the
preceding security providers that has been created in the security realm automatically
uses only the RDBMS security store as a datastore, and not the embedded LDAP
server. WebLogic security providers configured in the domain that are not among
those in the preceding list continue to use their respective default stores; for example,
the Default Authentication provider continues to use the embedded LDAP server.

Oracle recommends that you configure the RDBMS security store at the time of
domain creation. WebLogic Server includes the RDBMSSecurityStoreMBean, which is
the interface for configuring the RDBMS security store via the WebLogic Scripting Tool
(WLST). (The Configuration Wizard does not provide the ability to configure the
RDBMS security store.)

26.2 Configuring the RDBMS Security Store
To create and configuring the RDBMS security store in a domain, complete the tasks
described in the following sections:

■ Section 26.2.1, "Create a Domain with the RDBMS Security Store"

■ Section 26.2.2, "Create RDBMS Tables in the Security Datastore"

■ Section 26.2.3, "Configure a JMS Topic for the RDBMS Security Store"

26.2.1 Create a Domain with the RDBMS Security Store
To use the RDBMS security store in a domain, Oracle recommends that you configure
the RDBMS security store at the time you create that domain. Modifying an existing
domain in place to use the RDBMS security store is possible; however, it is not
recommended because if the database connection is not configured correctly, the
policies necessary for granting access to the domain could become unavailable,
resulting in a domain that cannot be used.

You configure the RDBMS security store by using the WebLogic Scripting Tool (WLST)
Offline. (The Configuration Wizard does not provide the ability to configure the
RDBMS security store.) Operations for creating and configuring the RDBMS security
store are available via the RDBMSSecurityStoreMBean. You also need to configure the
connection properties for the database that serves as the RDBMS security store as
explained in the following sections.

26.2.1.1 Specifying Database Connection Properties
When configuring the RDBMS security store, you need to specify or configure the
following:

■ RDBMS type

For information about the databases that are supported for containing the RDBMS
security store, see the Oracle Fusion Middleware Supported System
Configurations page on Oracle Technology Network.

Configuring the RDBMS Security Store

Managing the RDBMS Security Store 26-3

■ JDBC driver and class name for connecting to the RDBMS

■ RDBMS name, host, port, and URL

■ Username and password of the domain user who can access the RDBMS system

■ Optionally, any properties that need to be passed to the RDBMS system

The parameters that you specify in the JDBC driver connection properties attribute
must be a comma-separated list. The following examples show the use of WLST to
configure the database connection properties for Oracle, MS-SQL, and DB2.

26.2.1.1.1 Oracle Example Example 26–1 shows an example of configuring Oracle for
the RDBMS security store.

Example 26–1 Configuring Oracle for the RDBMS Security Store

create('base_domain','SecurityConfiguration')
cd('/SecurityConfiguration/base_domain')
a=get('DefaultRealm')
cd('Realm/myrealm')
rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")
rdbms.setUsername('user1')
rdbms.setPasswordEncrypted('password')
rdbms.setConnectionURL('jdbc:oracle:thin:@hostname.domain:port:sid')
rdbms.setDriverName('oracle.jdbc.OracleDriver')
rdbms.setConnectionProperties('user=user1,portNumber=1521,SID=yoursid,serverName=h
ostname.domain')

26.2.1.1.2 MS-SQL Example Example 26–2 shows an example of configuring MS-SQL
for the RDBMS security store.

Example 26–2 Configuring MS-SQL for the RDBMS Security Store

create('base_domain','SecurityConfiguration')
cd('/SecurityConfiguration/base_domain')
a=get('DefaultRealm')
cd('Realm/myrealm')
rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")
rdbms.setUsername('garnett')
rdbms.setPassword('password')
rdbms.setConnectionURL('jdbc:bea:sqlserver://avitek6:1433')
rdbms.setDriverName('weblogic.jdbc.sqlserver.SQLServerDriver')
rdbms.setConnectionProperties('user=garnett,portNumber=1433,databaseName=wls3,serv
erName=avitek6')

26.2.1.1.3 DB2 Example Example 26–3 shows an example of configuring DB2 for the
RDBMS security store.

Caution: For clarity, the WLST examples provided in this section
show passing username and password credentials of the RDBMS
system user in clear text. However, you should avoid entering
clear-text passwords in WLST commands in general, and you should
especially avoid saving on disk WLST scripts that include clear-text
passwords. In these instances you should use a mechanism for
passing encrypted passwords instead.

Configuring the RDBMS Security Store

26-4 Administering Security for Oracle WebLogic Server 12.2.1

Example 26–3 Configuring DB2 for the RDBMS Security Store

create('base_domain','SecurityConfiguration')
cd('/SecurityConfiguration/base_domain')
a=get('DefaultRealm')
cd('Realm/myrealm')
rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")
rdbms.setUsername('brady')
rdbms.setPassword('password')
rdbms.setConnectionURL('jdbc:bea:db2://avitek3:50000')
rdbms.setDriverName('weblogic.jdbc.db2.DB2Driver')
rdbms.setConnectionProperties('user=brady,portNumber=50000,databaseName=wls,server
Name=avitek3,batchPerformanceWorkaround=true')

For more information about specifying connection properties for the WebLogic Type 4
JDBC driver for DB2, see "Using DataDirect Documentation" in Developing JDBC
Applications for Oracle WebLogic Server.

26.2.1.1.4 For More Information About Default Connection Properties Internally, the RDBMS
security store connects to and interoperates with the database using the WebLogic
Type 4 JDBC driver for DB2. The attributes set on the RDBMSSecurityStoreMBean are
converted into attributes set on the javax.sql.DataSource implementation.

For more information about these attributes, see the following topic:

■ For more information about the attributes you can set on the
RDBMSSecurityStoreMBean, see "RDBMSSecurityStoreMBean" in the MBean
Reference for Oracle WebLogic Server.

26.2.1.2 Testing the Database Connection
When you configure the RDBMS security, Oracle strongly recommends testing the
database connection to verify that the connection is set up properly. If there were a
problem with the database connection, you might not be able subsequently to boot the
domain if the security providers that control access to that domain are unable to obtain
the necessary security policies.

26.2.2 Create RDBMS Tables in the Security Datastore
Prior to booting the domain, the database administrator needs to run the SQL script
that creates the RDBMS tables in the datastore used by the RDBMS security store. A set
of SQL scripts for creating these tables for, and also removing them from, each
supported RDBMS system is available in the following WebLogic Server installation
directory:

WL_HOME/server/lib

When running the appropriate SQL script for the database serving as the RDBMS
security store, be sure to specify the same connection properties, including the

Note: If you choose DB2, you have the option of selecting the
WebLogic Type 4 JDBC driver for DB2 that is provided in WebLogic
Server. However, if you use this JDBC driver, you must also specify
the additional property BatchPerformanceWorkaround and set it to
true. If you do not set the BatchPerformanceWorkaround to true in
this configuration, WebLogic Server may fail to boot, generating a
SecurityServiceException message.

Configuring the RDBMS Security Store

Managing the RDBMS Security Store 26-5

credentials of the user who has access, the database URL, etc., as specified for that
RDBMS during domain creation.

Table 26–1 identifies the name of each of these SQL scripts.

26.2.3 Configure a JMS Topic for the RDBMS Security Store
If the RDBMS security store is configured in a domain that includes two or more
WebLogic Server instances, or a cluster, Oracle strongly recommends that you also
perform the following tasks:

1. Enable JMS notifications for that domain.

2. Configure a JMS topic that can be used by the RDBMS security store.

JMS notifications enable the security data that is contained in the RDBMS security
store, and that is managed by security providers in the realm, to be synchronized
among all server instances in the domain.

You can enable JMS notifications by booting the domain in which the RDBMS security
store has been configured, and configuring attributes on the
RDBMSSecurityStoreMBean via either of the following mechanisms:

■ WebLogic Scripting Tool

■ The Security Realms > RealmName > RDBMS Security Store page in the
WebLogic Server Administration Console

The attributes of the RDBMSSecurityStoreMBean that must be set to enable JMS
notifications are listed and described in Table 26–2.

Table 26–1 SQL Scripts for Creating and Removing RDBMS Datastore Tables

RDBMS Script for Creating Datastore Tables Script for Removing Datastore Tables

Oracle 9i, 10g,
11g

rdbms_security_store_oracle.sql rdbms_security_store_oracle_remove.sql

MS-SQL 2000,
2005

rdbms_security_store_sqlserver.sql rdbms_security_store_sqlserver_remove.sql

DB2 9.2, 9.5 rdbms_security_store_db2.sql rdbms_security_store_db2_remove.sql

Derby rdbms_security_store_derby.sql rdbms_security_store_derby_remove.sql

Caution: If you do not configure a JMS topic that can be used by the
RDBMS security store when configured in a multi-server or clustered
domain, care should be taken when making security policy or security
configuration updates. If no JMS topic is configured, it may be
necessary to reboot the domain to ensure that all server instances
function consistently with regards to those security updates.

Configuring the RDBMS Security Store

26-6 Administering Security for Oracle WebLogic Server 12.2.1

For more information, see the following topics:

■ "Configure topics" in the Oracle WebLogic Server Administration Console Online Help

■ "Configuring Basic JMS System Resources" in Administering JMS Resources for
Oracle WebLogic Server

■ "Configure the RDBMS security store" in the Oracle WebLogic Server Administration
Console Online Help

■ "RDBMSSecurityStoreMBean" in the MBean Reference for Oracle WebLogic Server

26.2.3.1 Configuring JMS Connection Recovery in the Event of Failure
Normally, the WebLogic Security Service contained in each WebLogic Server instance
in a multi-node domain connects at startup to the JMS server. If a security provider
that uses the RDBMS security store makes a change to its security data, all WebLogic
Server instances are notified via JMS, and the local caches used by the WebLogic
Security Service in each server instance are synchronized to that change.

If the JMS connection fails in a WebLogic Server instance that has been successfully
started, the WebLogic Security Service associated with that server instance starts the
JMS connection recovery process. The recovery process sleeps one second between
reconnect attempts. The recovery process is stopped if the JMS connection failure
persists after the number of reconnect attempts with which the

Table 26–2 RDBMSSecurityStoreMBean Attributes for Configuring a JMS Topic

Attribute Name Description

JMSTopic The JMS topic to which notifications are published to and to which
notifications sent from other JVMs are subscribed. The target JMS topic
needs to be pre-deployed.

JMSTopicConnectionFactory The JNDI name of a javax.jms.TopicConnectionFactory instance to use
for finding JMS topics.

The topic "Connection Factory Configuration" in Administering JMS
Resources for Oracle WebLogic Server describes the WebLogic JMS
connection factory, weblogic.jms.ConnectionFactory, which is a
javax.jms.TopicConnectionFactory instance. Refer to this topic for
information about configuring a connection factory.

NotificationProperties A comma-delimited list of key-value properties to pass to the JNDI
InitialContext on construction, in the form of xxKey=xxValue,
xxKey=xxValue. The following properties must be specified:

■ java.naming.provider.url — Property for specifying configuration
information for the service provider to use. The value of the property
should contain a URL string. For example:

iiops://localhost:7002

■ java.naming.factory.initial — Property for specifying the initial
context factory to use. The value of the property should be the
fully-qualified class name of the factory class that will create an initial
context. For example:

weblogic.jndi.WLInitialContextFactory

JNDIUserName The identity of any valid user in the security realm who has access to
JNDI.

JNDIPassword The password of the user specified in the JNDIUserName attribute.

JMSExceptionReconnectAttempts The number of reconnect attempts to be made if the JMS system detects a
serious connection error. The default is 0, which causes an error to be
logged, but does not result in a reconnect attempt.

Upgrading a Domain to Use the RDBMS Security Store

Managing the RDBMS Security Store 26-7

JMSExceptionReconnectAttempts property has been configured is reached. No further
reconnect attempts are made: If a change is made to the security data in one WebLogic
Server instance, the local caches managed by the WebLogic Security Service in other
WebLogic Server instances are not synchronized to that change. However, if the JMS
connection is successfully recovered by other means (such as a server reboot), those
caches become synchronized.

If the JMS connection is not successfully started at the time a WebLogic Server instance
is booted, a timer task that makes reconnect attempts is automatically started. The
timer task is cancelled once the connection is successfully made. Two system
properties may be configured for this timer task:

■ com.bea.common.security.jms.initialConnectionRecoverInterval

Specifies the delay, in milliseconds, before the connection recovery task is
executed. The default value is 1000, which causes the connection recovery process
to be executed after a delay of one second.

■ com.bea.common.security.jms.initialConnectionRecoverAttempts

Specifies the maximum number of reconnect attempts that can be made prior to
cancelling the timer task. The default value is 3600, which causes the timer task to
be cancelled once 3600 reconnect attempts have been made. No further reconnect
attempts are made.

You can calculate the maximum connection polling duration by multiplying the values
specified by each of the preceding system properties. For example, multiplying the
default values of these two properties yields a maximum polling duration of one hour
(1000 millisecond delay multiplied by 3600 reconnect attempts).

26.3 Upgrading a Domain to Use the RDBMS Security Store
To upgrade a domain to use the RDBMS security store, Oracle recommends creating a
new domain in which the RDBMS security store is configured. After you create the
new domain, you should export the security data from the security realm of the old
domain, and import it into a security realm of the new domain. When you import
security data into a security realm in a domain that uses the RDBMS security store, the
data for the security providers that use the RDBMS security store is automatically
loaded into that datastore. Data for security providers that do not use the RDBMS
security store is automatically imported into the stores that those providers normally
use by default.

It is possible to selectively migrate security providers individually from one security
realm to another. However, when migrating security data to a domain that uses the
RDBMS security store, Oracle recommends migrating the security realm's data in a
single operation.

For information about migrating security realms, see the following topics:

■ Section 25, "Migrating Security Data"

■ "Export data from security realms" and "Import data into security realms" in the
Oracle WebLogic Server Administration Console Online Help

Upgrading a Domain to Use the RDBMS Security Store

26-8 Administering Security for Oracle WebLogic Server 12.2.1

27

Managing the Embedded LDAP Server 27-1

27Managing the Embedded LDAP Server

[28] This chapter describes how to configure and manage the embedded LDAP server,
which is included in WebLogic Server and that acts as the default security provider
data store for the Default Authentication, Authorization, Credential Mapping, and
Role Mapping providers.

This chapter includes the following sections:

■ Configuring the Embedded LDAP Server

■ Embedded LDAP Server Replication

■ Viewing the Contents of the Embedded LDAP Server from an LDAP Browser

■ Exporting and Importing Information in the Embedded LDAP Server

■ LDAP Access Control Syntax

■ Backup and Recovery

27.1 Configuring the Embedded LDAP Server
The embedded LDAP server contains user, group, group membership, security role,
security policy, and credential map information. By default, each WebLogic domain
has an embedded LDAP server configured with the default values set for each type of
information. The Default Authentication, Authorization, Credential Mapping, and
Role Mapping providers use the embedded LDAP server as their data store. If you use
any of these providers in a new security realm, you may want to change the default
values for the embedded LDAP server to optimize its use in your environment.

See "Configure the embedded LDAP server" in the Oracle WebLogic Server
Administration Console Online Help.

The data file and change log file used by the embedded LDAP server can potentially
grow quite large. You can configure maximum sizes for these files with the following
weblogic.Server command line arguments:

■ -Dweblogic.security.ldap.maxSize=<max bytes>, which limits the size of the
data file used by the embedded LDAP server. When the data file exceeds the
specified size, WebLogic Server eliminates from the data file space occupied by
deleted entries.

Note: The performance of the embedded LDAP server is best with
fewer than 10,000 users. If you have more users, consider using a
different LDAP server and Authentication provider.

Embedded LDAP Server Replication

27-2 Administering Security for Oracle WebLogic Server 12.2.1

■ -Dweblogic.security.ldap.changeLogThreshold=<number of entries>, which
limits the size of the change log file used by the embedded LDAP server. When the
change log file exceeds the specified number of entries, WebLogic Server truncates
the change log by removing all entries that have been sent to all Managed Servers.

27.2 Embedded LDAP Server Replication
The WebLogic Server embedded LDAP server for a domain consists of a master LDAP
server, maintained in the domain's Administration Server, and a replicated LDAP
server maintained in each Managed Server in the domain. When changes are made
using a Managed Server, updates are sent to the embedded LDAP server on the
Administration Server. The embedded LDAP server on the Administration Server
maintains a log of all changes. The embedded LDAP server on the Administration
Server also maintains a list of Managed Servers and the current change status for each
one. The embedded LDAP server on the Administration Server sends appropriate
changes to each Managed Server and updates the change status for each server. This
process occurs when an update is made to the embedded LDAP server on the
Administration Server. However, depending on the number of updates, it may take
several seconds or more for the change to be replicated to the Managed Server.

You can configure the behavior of the embedded LDAP server on the Administration
Server and the Managed Servers in a domain using the WebLogic Server
Administration Console. By selecting the Domain > Security > Embedded LDAP
page in the WebLogic Server Administration Console, you can set these attributes:

■ Refresh Replica At Startup — Specifies whether the embedded LDAP server in a
Managed Server should refresh all replicated data at boot time. This setting is
useful if you have made many changes when the Managed Server was not active,
and you want to download the entire replica instead of having the Administration
Server push each change to the Managed Server.

■ Master First — Specifies whether a Managed Server should always connect to the
embedded LDAP server on the Administration Server, instead of connecting to the
local replicated LDAP server.

See "Configure the embedded LDAP server" in the Oracle WebLogic Server
Administration Console Online Help.

27.3 Viewing the Contents of the Embedded LDAP Server from an LDAP
Browser

To view the contents of the embedded LDAP server through an LDAP browser:

1. Download and install an external LDAP browser. You can find one LDAP browser
at the following location:

http://www.openldap.org/

In this procedure it is assumed that you are using this LDAP browser; other LDAP
browsers may differ in detail.

Note: Deleting and modifying the configured security providers
through the WebLogic Server Administration Console may require
manual clean up of the embedded LDAP server. Use an external
LDAP browser to delete unnecessary information.

Exporting and Importing Information in the Embedded LDAP Server

Managing the Embedded LDAP Server 27-3

2. In the WebLogic Server Administration Console, change the credential for the
embedded LDAP server:

a. Expand Domain > Security > Embedded LDAP.

b. In the Credential field, enter the new credential.

c. In the Confirm Credential field, enter the new credential again.

d. Click Save.

e. Reboot WebLogic Server.

3. Start the LDAP browser. To start the LDAP Browser/Editor mentioned in step 1,
use the following command:

lbe.sh

4. In the LDAP browser, configure a new connection in the LDAP browser:

a. Select the QuickConnect tab.

b. Set the host field to localhost.

c. Set the port field to 7001 (7002 if SSL is being used).

d. Set the Base DN field to dc=mydomain where mydomain is the name of the
WebLogic domain you are using.

e. Uncheck the Anonymous Bind option.

f. Set the User DN field to cn=Admin.

g. Set the Password field to the credential you specified in Step 2.

5. Click the new connection.

Use the LDAP browser to navigate the hierarchy of the embedded LDAP server.

27.4 Exporting and Importing Information in the Embedded LDAP Server
You can export and import data from the embedded LDAP server using either the
WebLogic Server Administration Console or an LDAP browser. To export and import
data with the Console, use the Migration page of each security provider. See "Export
data from a security provider" and "Import data into a security provider" in the Oracle
WebLogic Server Administration Console Online Help.

Caution: Changing the credential can affect the operation of the
domain. Do not perform this step on a production server.

Note: You can also view the contents of the embedded LDAP server
by exporting its data and reviewing the exported file. See Section 27.4,
"Exporting and Importing Information in the Embedded LDAP
Server".

Caution: When you use the WebLogic Server Administration
Console Migration tab to export security data, the export process
deletes any existing files in the target directory with the .dat
extension. Always export security data to an empty directory.

LDAP Access Control Syntax

27-4 Administering Security for Oracle WebLogic Server 12.2.1

This section describes how to use an LDAP browser to export and import data stored
in the embedded LDAP server. Table 27–1 summarizes where data is stored in the
hierarchy of the embedded LDAP server.

To export security data from the embedded LDAP server using the LDAP
Browser/Editor:

1. Enter the following command at a command prompt to start the LDAP
Browser/Editor:

lbe.sh

2. Specify the data to be exported (for example, to export users specify
ou=people,ou=myrealm,dc=mydomain).

3. Select the LDIF > Export option.

4. Select Export all children.

5. Specify the name of the file into which the data will be exported.

To import security data into the embedded LDAP server using the LDAP
Browser/Editor:

1. Enter the following command at a command prompt to start the LDAP browser:

lbe.sh

2. Specify the data to be imported (for example, to import users, specify
ou=people,ou=myrealm,dc=mydomain).

3. In the LDAP Browser/Editor, select the LDIF > Import option.

4. Select Update/Add.

5. Specify the name of the file from which the data will be imported.

27.5 LDAP Access Control Syntax
The embedded LDAP server supports the IETF LDAP Access Control Model for
LDAPv3. This section describes how that access control is implemented within the
embedded LDAP server. You can apply these rules directly to entries within the
directory as intended by the standard or you can configure and maintain them by
editing the access control file (acls.prop).

Table 27–1 Location of Security Data in the Embedded LDAP Server

Security Data Embedded LDAP Server DN

Users ou=people,ou=myrealm,dc=mydomain

Groups ou=groups,ou=myrealm,dc=mydomain

Security roles ou=ERole,ou=myrealm,dc=mydomain

Security policies ou=EResource,ou=myrealm,dc=mydomain

LDAP Access Control Syntax

Managing the Embedded LDAP Server 27-5

27.5.1 The Access Control File
The access control file (acls.prop) maintained by the embedded LDAP server contains
the complete list of access control lists (ACLs) for an entire LDAP directory. Each line
in the access control file contains a single access control rule. An access control rule is
made up of the following components:

■ Location in the LDAP directory where the rule applies. See Section 27.5.2, "Access
Control Location".

■ Scope within that location to which the rule applies. See Section 27.5.3, "Access
Control Scope".

■ Access rights (either grant or deny). See Section 27.5.4, "Access Rights".

■ Permissions (either grant or deny). See Section 27.5.4.1, "Attribute Permissions"
and Section 27.5.4.2, "Entry Permissions".

■ Attributes to which the rule applies. See Section 27.5.5, "Attributes Types".

■ Subject being granted or denied access. See Section 27.5.6, "Subject Types".

Example 27–1 shows a sample access control file.

Example 27–1 Sample acl.props File

[root]|entry#grant:r,b,t#[all]#public

ou=Employees,dc=octetstring,dc=com|subtree#grant:r,c#[all]#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:b,t#[entry]#public:
ou=Employees,dc=octetstring,dc=com|subtree#deny:r,c#userpassword#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:r#userpassword#this:
ou=Employees,dc=octetstring,dc=com|subtree#grant:w,o#userpassword,title,
description,
postaladdress,telephonenumber#this:
cn=schema|entry#grant:r#[all]#public:

27.5.2 Access Control Location
Each access control rule is applied to a given location in the LDAP directory. The
location is normally a distinguished name (DN) but the special location [root] can be
specified in the acls.prop file if the access control rule applies to the entire directory.

If an entry being accessed or modified on the LDAP server does not equal or reside
below the location of the access control rule, the given access control rule is not
evaluated further.

27.5.3 Access Control Scope
The following access control scopes are defined:

Note: The default behavior of the embedded LDAP server is to allow
access only from the Administrator account in WebLogic Server. The
WebLogic security providers use only the Administrator account to
access the embedded LDAP server. If you are not planning to access
the embedded LDAP server from an external LDAP browser or if you
are planning only to use the Administrator account, you do not need
to edit the acls.prop file and can ignore the information in this
section.

LDAP Access Control Syntax

27-6 Administering Security for Oracle WebLogic Server 12.2.1

■ Entry—An ACL with a scope of Entry is only evaluated if the entry in the LDAP
directory shares the same DN as the location of the access control rule. Such rules
are useful when a single entry contains more sensitive information than parallel or
subentries entries.

■ Subtree—A scope of Subtree is evaluated if the entry in the LDAP directory equals
or ends with the location of this access control. This scope protects means the
location entry and all subentries.

If an entry in the directory is covered by conflicting access control rules (for example,
where one rule is an Entry rule and the other is a Subtree rule), the Entry rule takes
precedence over rules that apply because of the Subtree rule.

27.5.4 Access Rights
Access rights apply to an entire object or to attributes of the object. Access can be
granted or denied. Either of the actions grant or deny may be used when you create or
update the access control rule.

Each LDAP access right is discrete. One right does not imply another right. The rights
specify the type of LDAP operations that can be performed.

27.5.4.1 Attribute Permissions
The permissions shown in Table 27–2 apply to actions involving attributes.

The m permission is required for all attributes placed on an object when it is created.
Just as the w and o permissions are used in the Modify operation, the m permission is
used in the Add operation. The w and o permissions have no bearing on the Add
operation and m has no bearing on the Modify operation. Since a new object does not
yet exist, the a and m permissions needed to create it must be granted to the parent of
the new object. This requirement differs from w and o permissions which must be
granted on the object being modified. The m permission is distinct and separate from
the w and o permissions so that there is no conflict between the permissions needed to
add new children to an entry and the permissions needed to modify existing children
of the same entry. In order to replace values with the Modify operation, a user must
have both the w and o permissions.

27.5.4.2 Entry Permissions
The permissions shown in Table 27–3 apply to entire LDAP entries.

Table 27–2 Attribute Permissions

Permission Description

r Read Read attributes. If granted, permits attributes and values to be
returned in a Read or Search operation.

w Write Modify or add attributes. If granted, permits attributes and values
to be added in a Modify operation.

o Obliterate Modify and delete attributes. If granted, permits attributes and
values to be deleted in a Modify operation.

s Search Search entries with specified attributes. If granted, permits
attributes and values to be included in a Search operation.

c Compare Compare attribute values. If granted, permits attributes and values
to be included in a Compare operation.

m Make Make attributes on a new LDAP entry below this entry.

LDAP Access Control Syntax

Managing the Embedded LDAP Server 27-7

27.5.5 Attributes Types
The attribute types to which an access control rule applies should be listed in the ACL
where necessary. The following keywords are available:

■ [entry] indicates the permissions apply to the entire object. This could mean
actions such as delete the object, or add a child object.

■ [all] indicates the permissions apply to all attributes of the entry.

If the keyword [all] and another attribute are both specified within an ACL, the more
specific permission for the attribute overrides the less specific permission specified by
the [all] keyword.

Table 27–3 Entry Permissions

Permission Description

a Add Add an entry below this LDAP entry. If granted, permits creation of an entry
in the DIT subject to control on all attributes and values placed on the new
entry at the time of creation. In order to add an entry, permission must also
be granted to add at least the mandatory attributes.

d Delete Delete this entry. If granted, permits the entry to be removed from the DIT
regardless of controls on attributes within the entry.

e Export Export entry and all subentries to new location.

If granted, permits an entry and its subentries (if any) to be exported; that is,
removed from the current location and placed in a new location subject to the
granting of suitable permission at the destination.

If the last RDN is changed, Rename permission is also required at the current
location.

In order to export an entry or its subentries, there are no prerequisite
permissions to the contained attributes, including the RDN attribute. This is
true even when the operation causes new attribute values to be added or
removed as the result of the changes to the RDN.

i Import Import entry and subentries from specified location.

If granted, permits an entry and its subentries (if any) to be imported; that is,
removed from one location and placed at the specified location (if suitable
permissions for the new location are granted).

When you import an entry or its subentries, the contained attributes,
including the RDN attributes, have no prerequisite permissions. This is true
even when the operation causes new attribute values to be added or
removed as the result of the changes to RDN.

n RenameDN Change the DN of an LDAP entry. Granting the Rename permission is
necessary for an entry to be renamed with a new RDN, taking into account
consequential changes to the DN of subentries. If the name of the superior
entry is unchanged, the grant is sufficient.

When you rename an entry, there are no prerequisite permissions for the
contained attributes, including the RDN attributes. This is true even when
the operation causes new attribute values to be added or removed as the
result of the changes of RDN.

b BrowseDN Browse the DN of an entry. If granted, this permission permits entries to be
accessed using directory operations that do not explicitly provide the name
of the entry.

t ReturnDN Allows DN of entry to be disclosed in an operation result. If granted, this
permission allows the distinguished name of the entry to be disclosed in the
operation result.

Backup and Recovery

27-8 Administering Security for Oracle WebLogic Server 12.2.1

27.5.6 Subject Types
Access control rules can be associated with a number of subject types. The subject of
an access control rule determines whether the access control rule applies to the
currently connected session.

The following subject types are defined:

■ authzID—Applies to a single user that can be specified as part of the subject
definition. The identity of that user in the LDAP directory is typically defined as a
DN.

■ Group—Applies to a group of users specified by one of the following object classes:

– groupOfUniqueNames

– groupOfNames

– groupOfUniqueURLs

The first two types of groups contain lists of users, and the third type allows users
to be included in the group automatically based on defined criteria.

■ Subtree—Applies to the DN specified as part of the subject and all subentries in
the LDAP directory tree.

■ IP Address—Applies to a particular Internet address. This subject type is useful
when all access must come through a proxy or other server. Applies only to a
particular host, not to a range or subnet.

■ Public—Applies to anyone connected to the directory, whether they are
authenticated or not.

■ This—Applies to the user whose DN matches that of the entry being accessed.

27.5.7 Grant/Deny Evaluation Rules
The decision whether to grant or deny a client access to the information in an entry is
based on many factors related to the access control rules and the entry being protected.
Throughout the decision making process, these guiding principles apply:

■ More specific rules override less specific ones (for example, individual user entries
in an ACL take precedence over a group entry).

■ If a conflict still exists in spite of the specificity of the rule, the subject of the rule
determines which rule will be applied. Rules based on an IP Address subject are
given the highest precedence, followed by rules that are applied to a specific
AuthzID or This subject. Next in priority are rules that apply to Group subjects.
Last priority is given to rules that apply to Subtree and Public subjects.

■ When there are conflicting ACL values, Deny takes precedence over Grant.

■ Deny is the default when there is no access control information. Additionally, an
entry scope takes precedence over a subtree scope.

27.6 Backup and Recovery
If any of your security realms use the Default Authentication, Authorization,
Credential Mapping, or Role Mapping providers, you should maintain an up-to-date
backup of the following directory tree:

domain_name/servers/adminServer/data/ldap

Backup and Recovery

Managing the Embedded LDAP Server 27-9

In the preceding directory, domain_name is the domain root directory and adminServer
is the directory in which the Administration Server stores run-time and security data.
For more information backing up the embedded LDAP server data, see the following
topics:

■ "Back Up LDAP Repository" in Administering Server Startup and Shutdown for Oracle
WebLogic Server

■ "Configure backups for embedded LDAP servers" in Oracle WebLogic Server
Administration Console Online Help

If the embedded LDAP server file becomes corrupt or unusable, the Administration
Server will generate a NumberFormatException and fail to start. This situation is rare
but can occur if the disk becomes full and causes the embedded LDAP file to enter into
an invalid state.

To recover from an unusable embedded LDAP server file, complete the following
steps:

1. Change to the following directory:

domain_name/servers/adminServer/data

2. Rename the embedded LDAP server file, as in the following example:

mv ldap ldap.old

By renaming the file, and not deleting it completely, it remains available to you for
analysis and potential data recovery.

3. Start the Administration Server.

When the Administration Server starts, a new embedded LDAP server file is
created.

4. Restore any data to the new embedded LDAP server that was added since the
time the WebLogic domain was created.

If you have configured a backup of the embedded LDAP server, you can restore
the backed up data by importing it. For information, see Section 27.4, "Exporting
and Importing Information in the Embedded LDAP Server".

Backup and Recovery

27-10 Administering Security for Oracle WebLogic Server 12.2.1

Part VI
Part VI Configuring SSL

This part explains how to configure SSL in the WebLogic Server environment.

Part VI contains the following chapters:

■ Chapter 28, "Overview of Configuring SSL in WebLogic Server"

■ Chapter 29, "Configuring Keystores"

■ Chapter 30, "Configuring Oracle OPSS Keystore Service"

■ Chapter 31, "Using Host Name Verification"

■ Chapter 32, "Specifying a Client Certificate for an Outbound Two-Way SSL
Connection"

■ Chapter 33, "SSL Debugging"

■ Chapter 34, "SSL Certificate Validation"

■ Chapter 35, "Using JCE Providers with WebLogic Server"

■ Chapter 36, "Enabling FIPS Mode"

■ Chapter 37, "Specifying the SSL Protocol Version"

■ Chapter 38, "Using the JSSE-Based SSL Implementation"

■ Chapter 39, "X.509 Certificate Revocation Checking"

■ Chapter 40, "Configuring an Identity Keystore Specific to a Network Channel"

■ Chapter 41, "Configuring RMI over IIOP with SSL"

■ Chapter 42, "Using a Certificate Callback Handler to Validate End User
Certificates"

28

Overview of Configuring SSL in WebLogic Server 28-1

28Overview of Configuring SSL in WebLogic
Server

[29] This provides an overview of configuring SSL in WebLogic Server.

This chapter includes the following sections:

■ SSL: An Introduction

■ Setting Up SSL: Main Steps

■ SSL Session Behavior

28.1 SSL: An Introduction
Secure Sockets Layer (SSL) provides secure connections by allowing two applications
connecting over a network to authenticate each other's identity and by encrypting the
data exchanged between the applications. Authentication allows a server and
optionally a client to verify the identity of the application on the other end of a
network connection. Encryption makes data transmitted over the network intelligible
only to the intended recipient.

SSL in WebLogic Server is an implementation of the SSL and Transport Layer Security
(TLS) specifications.

WebLogic Server supports SSL on a dedicated listen port which defaults to 7002. To
establish an SSL connection over HTTP, a Web browser connects to WebLogic Server
by supplying the SSL listen port and the HTTPs protocol in the connection URL, for
example, https://myserver:7002.

Using SSL is compute intensive and adds overhead to a connection. Avoid using SSL
in development environments when it is not necessary. However, always use SSL in a
production environment.

28.1.1 One-Way and Two-Way SSL
SSL can be configured one-way or two-way:

■ With one-way SSL, the server must present a certificate to the client, but the client
is not required to present a certificate to the server. The client must authenticate
the server, but the server accepts a connection from any client. One-way SSL is
common on the Internet where customers want to create secure connections before

Note: See Table 3–1 for the supported TLS and SSL versions.

Setting Up SSL: Main Steps

28-2 Administering Security for Oracle WebLogic Server 12.2.1

they share personal data. Often, clients will also use SSL to log on in order that the
server can authenticate them.

■ With two-way SSL (SSL with client authentication), the server presents a certificate
to the client and the client presents a certificate to the server. WebLogic Server can
be configured to require clients to submit valid and trusted certificates before
completing the SSL connection.

28.1.2 Java Secure Socket Extension (JSSE) SSL Implementation Supported
This release of WebLogic Server uses an SSL implementation based on Java Secure
Socket Extension (JSSE). JSSE is the Java standard framework for SSL and TLS and
includes both blocking-IO and non-blocking-IO APIs, and a reference implementation
including several commonly-trusted CAs.

The JSSE-based SSL implementation interoperates over SSL with instances of Weblogic
Server version 8.1 and later that use the Certicom SSL implementation. That is, when
WebLogic Server with JSSE SSL is used as either an SSL client or as the SSL server, it
can communicate via SSL with instances of WebLogic Server (version 8.1 and later)
that use the Certicom SSL implementation.

See Chapter 38, "Using the JSSE-Based SSL Implementation" for information about
using JSSE.

See the Java Secure Socket Extension (JSSE) Reference Guide
(http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSER
efGuide.html) for complete information on JSSE.

28.2 Setting Up SSL: Main Steps
To set up SSL:

1. Obtain an identity (private key and digital certificates) and trust (certificates of
trusted certificate authorities) for WebLogic Server. Use the digital certificates,
private keys, and trusted CA certificates provided by WebLogic Server, the
CertGen utility, the keytool utility, or a reputable vendor such as Entrust or
Verisign to perform this step.

2. Store the identity and trust. Private keys and trusted CA certificates which specify
identity and trust are stored in keystores.

Note: As of WebLogic Server version 12.1.1, JSSE is the only SSL
implementation that is supported. The Certicom-based SSL
implementation is removed and is no longer supported in WebLogic
Server.

Note: If you use the CertGen utility to generate certificates, see
Section 29.3.2.4, "Limitation on CertGen Usage" for information about
limitations on its use. Certificates generated by CertGen are for demo
purposes only and should not be used in a production environment.

Note: This release of WebLogic Server supports private keys and
trusted CA certificates stored in files, or in the WebLogic Keystore
provider for the purpose of backward compatibility only.

SSL Session Behavior

Overview of Configuring SSL in WebLogic Server 28-3

3. Configure the identity and trust keystores for WebLogic Server in the WebLogic
Server Administration Console. See "Configure keystores" in the Oracle WebLogic
Server Administration Console Online Help.

4. Set SSL configuration options for the private key alias and password in the
WebLogic Server Administration Console. Optionally, set configuration options
that require the presentation of client certificates (for two-way SSL). See "Servers:
Configuration: SSL" and "Configure two-way SSL" in the Oracle WebLogic Server
Administration Console Online Help.

For information about configuring identity and trust for WebLogic Server, see the
following sections:

■ Section 29.4, "Obtaining and Storing Certificates for Production Environments"

■ Section 29.5, "Configuring Keystores with WebLogic Server"

28.3 SSL Session Behavior
WebLogic Server allows SSL sessions to be cached. Those sessions live for the life of
the server.

Clients that use SSL sockets directly can control the SSL session cache behavior. The
SSL session cache is specific to each SSL context. All SSL sockets created by SSL socket
factory instances returned by a particular SSL context can share the SSL sessions.

Clients default to resuming sessions at the same IP address and port. Multiple SSL
sockets that use the same host and port share SSL sessions by default, assuming the
SSL sockets are using the same underlying SSL context.

Clients that are not configured to use SSL sessions must call
setEnableSessionCreation(false) on the SSL socket to ensure that no SSL sessions
are cached. This setting only controls whether an SSL session is added to the cache; it
does not stop an SSL socket from finding an SSL session that was already cached. For
example, SSL socket 1 caches the session, SSL socket 2 sets setEnableSessionCreation
to false but it can still reuse the SSL session from SSL socket 1 because that session was
put in the cache.

SSL sessions exist for the lifetime of the SSL context; they are not controlled by the
lifetime of the SSL socket. Therefore, creating a new SSL socket and connecting to the
same host and port used by a previous session can resume a previous session as long
as you create the SSL socket using an SSL socket factory from the SSL context that has
the SSL session in its cache.

By default, clients that use HTTPS URLs get a new SSL session for each URL because
each URL uses a different SSL context and therefore SSL sessions can not be shared or
reused. You can retrieve the SSL session by using the
weblogic.net.http.HttpsClient class or the
weblogic.net.http.HttpsURLConnection class. Clients can also resume URLs by
sharing a SSLSocket Factory between them.

Session caching is maintained by the SSL context, which can be shared by threads. A
single thread has access to the entire session cache, not just one SSL session, so
multiple SSL sessions can be used and shared in a single (or multiple) thread.

Note: FIPS mode is supported for JSSE via the RSA JSSE provider, as
described in Chapter 36, "Enabling FIPS Mode".

SSL Session Behavior

28-4 Administering Security for Oracle WebLogic Server 12.2.1

You can use the weblogic.security.SSL.sessionCache.ttl command-line argument
to modify the default server-session time-to-live for SSL session caching. For
information, see "SSL" in Command Reference for Oracle WebLogic Server. Note that the
weblogic.security.SSL.sessionCache.size command-line argument is ignored.

29

Configuring Keystores 29-1

29Configuring Keystores

[30] This chapter describes how to configure JKS keystores for WebLogic Server that are
used for identity and trust.

This chapter includes the following sections:

■ About Configuring Keystores in WebLogic Server

■ Creating a Keystore

■ Using Keystores and Certificates in a Development Environment

■ Obtaining and Storing Certificates for Production Environments

■ Configuring Keystores with WebLogic Server

■ Viewing Keystore Contents

■ Replacing Expiring Certificates

■ Creating a Keystore: An Example

■ Supported Formats for Identity and Trust Certificates

■ Obtaining a Digital Certificate for a Web Browser

For background information about identity and trust keystores, see "Identity and
Trust" in Understanding Security for Oracle WebLogic Server. For information about how
to configure the Oracle OPSS Keystore Service (KSS), see Chapter 30, "Configuring
Oracle OPSS Keystore Service".

29.1 About Configuring Keystores in WebLogic Server
The following sections provide concepts about the configuration and use of keystores
in WebLogic Server:

■ Section 29.1.1, "About Private Keys, Digital Certificates, and Trusted Certificate
Authorities"

■ Section 29.1.2, "Using Separate Keystores for Identity and Trust"

■ Section 29.1.3, "Configuring Keystores: Main Steps"

■ Section 29.1.4, "How WebLogic Server Locates Trust"

29.1.1 About Private Keys, Digital Certificates, and Trusted Certificate Authorities
Private keys, digital certificates, and trusted certificate authorities establish and verify
server identity and trust.

About Configuring Keystores in WebLogic Server

29-2 Administering Security for Oracle WebLogic Server 12.2.1

SSL uses public key encryption technology for authentication. With public key
encryption, a public key and a private key are generated for a server. Data encrypted
with the public key can only be decrypted using the corresponding private key and
data encrypted with the private key can only be decrypted using the corresponding
public key. The private key is carefully protected so that only the owner can decrypt
messages that were encrypted using the public key.

The public key is embedded in a digital certificate with additional information
describing the owner of the public key, such as name, street address, and e-mail
address. A private key and digital certificate provide identity for the server.

The data embedded in a digital certificate is verified by a certificate authority (CA) and
digitally signed with the CA's digital certificate. Well-known certificate authorities
include Entrust and Symantec Corporation. The trusted CA certificate establishes trust
for a certificate.

An application participating in an SSL connection is authenticated when the other
party evaluates and accepts the application's digital certificate. Web browsers, servers,
and other SSL-enabled applications generally accept as genuine any digital certificate
that is signed by a trusted CA and is otherwise valid. For example, a digital certificate
can be invalidated because it has expired or the digital certificate of the CA used to
sign it expired. A server certificate can be invalidated if the host name in the digital
certificate of the server does not match the URL specified by the client.

Servers need a private key, a digital certificate containing the matching public key, and
a certificate of at least one trusted certificate authority (CA). WebLogic Server supports
private keys, digital certificates, and trusted CA certificates from the following
sources:

■ Private keys and digital certificates issued by a reputable CA, such as Entrust or
Symantec Corporation.

■ The private key and self-signed digital certificate for WebLogic Server that are
created by the keytool utility.

■ The demonstration digital certificates, private keys, and trusted CA certificates in
the DOMAIN_HOME\security, WL_HOME\server\lib, and JAVA_
HOME\jre\lib\security directories.

■ Use the digital certificates and private keys generated by the CertGen utility only
for testing and demonstration purposes. These certificates should be used in a
development environment only, never in a production environment.

29.1.2 Using Separate Keystores for Identity and Trust
When you configure SSL, you must decide how identity and trust will be stored.
Although one keystore can be used for both identity and trust, Oracle recommends
using separate keystores for both identity and trust because the identity keystore
(holding the private key and associated digital certificate) and the trust keystore
(trusted CA certificates) may have different security requirements. For example:

■ For trust, you only need the certificates (non-sensitive data) in the keystore.
However, for identity, you add the certificate and the private key (sensitive data)
in the keystore.

Note: The demonstration digital certificates, private keys, and
trusted CA certificates should be used in a development environment
only.

About Configuring Keystores in WebLogic Server

Configuring Keystores 29-3

■ The identity keystore may be prohibited by company policy from ever being put
on the corporate network, while the trust keystore can be distributed over the
network.

■ The identity keystore may be protected by the operating system for both reading
and writing by non-authorized users, while the trust keystore only needs to be
write protected.

■ The identity keystore password is generally known to fewer people than the
password for the trust keystore.

In general, systems within a domain have the same trust rules — they use the same set
of trusted CAs — but they tend to have per-server identity. Identity requires a private
key, and private keys should not be copied from one system to another. Therefore, you
should maintain separate identity keystores for each system, each keystore containing
only the server identity needed for that system. However, trust keystores can be
copied from system to system, thus making it easier to standardize trust conventions.

Identity is more likely to be stored in hardware keystores such as nCipher. Trust can be
stored in a file-based JDK keystore without having security issues because a trust store
contains only certificates, not private keys.

29.1.3 Configuring Keystores: Main Steps
To configure identity and trust keystores for a WebLogic Server instance being used in
a production environment, complete the following steps:

1. Create the keystore to hold the server identity certificate. See Section 29.2,
"Creating a Keystore".

2. Create a Certificate Signing Request (CSR), and submit it to a reputable Certificate
Authority. See Section 29.4.1, "Generating a Certificate Signing Request". Oracle
strongly recommends this step for production environments.

3. Import the identity and trust certificates returned by the CA. See Section 29.4.2,
"Importing Certificates into the Trust and Identity Keystores".

4. Configure the trust and identity keystores with WebLogic Server. See Section 29.5,
"Configuring Keystores with WebLogic Server"

If you are working in a development environment where security requirements
typically are less stringent, you can use the demonstration certificates included with
WebLogic Server and create self-signed certificates. However, do not use these
certificates in a production environment. For more information, see Section 29.3,
"Using Keystores and Certificates in a Development Environment".

29.1.4 How WebLogic Server Locates Trust
WebLogic Server uses the following algorithm when it loads its trusted CA certificates:

1. If the keystore is specified by the -Dweblogic.security.SSL.trustedCAkeystore
command-line argument, WebLogic Server loads the trusted CA certificates from
that keystore.

2. Else if the keystore is specified in the configuration file (config.xml), WebLogic
Server loads trusted CA certificates from the specified keystore. If the server is
configured with DemoTrust, trusted CA certificates will be loaded from the WL_
HOME\server\lib\DemoTrust.jks (or kss://system/trust if Oracle OPSS
Keystore Service [KSS] is used) and the JDK cacerts keystores.

Creating a Keystore

29-4 Administering Security for Oracle WebLogic Server 12.2.1

3. Else if the trusted CA file is specified in the configuration file (config.xml),
WebLogic Server loads trusted CA certificates from that file (this is only for
compatibility with 6.x SSL configurations).

4. Else WebLogic Server loads trusted CA certificates from the keystore WL_
HOME\server\lib\cacerts.

29.2 Creating a Keystore
This section explains how to create a JKS keystore using either the keytool or the
ImportPrivateKey utilities. As described in Section 29.1.2, "Using Separate Keystores
for Identity and Trust", Oracle recommends that you keep server certificates and
trusted CA certificates in separate keystores. The following sections explain how to
create a keystore. However, in practice, creating a keystore is typically done in
conjunction with obtaining a server certificate for the identity keystore or importing a
trusted CA certificate into the trust keystore, as explained in Section 29.4, "Obtaining
and Storing Certificates for Production Environments".

This section contains the following topics:

■ Section 29.2.1, "Keystore File Name Requirements"

■ Section 29.2.2, "Creating a Keystore Using Keytool"

■ Section 29.2.3, "Creating a Keystore Using ImportPrivateKey"

29.2.1 Keystore File Name Requirements
When choosing a name for the keystore file:

■ Do not choose a file name longer than 256 characters.

■ Do not use special characters, except for an underscore (_) or hyphen (-).

■ Do not use non-ASCII characters.

■ Follow the operating system-specific rules for directory and file names.

29.2.2 Creating a Keystore Using Keytool
Keytool is a key and certificate management utility that is included in the JDK. It
allows you to administer your own public/private key pairs and associated certificates
for use in self-authentication (in which you authenticate yourself to other users or
services) or data integrity and authentication services, using digital signatures.
Keytool also allows you to cache the public keys, in the form of certificates, of your
communicating peers.

When you use keytool to create a public and private key pair, keytool also creates a
keystore if one does not already exist in the current directory.

To use keytool to create a JKS keystore, complete the following steps:

1. Create a directory to hold the keystore. For example: ORACLE_HOME/keystores.

2. Change to the bin subdirectory of your WebLogic domain root directory. For
example:

Note: The preferred keystore format is JKS (JKS keystore). WebLogic
Server supports private keys and trusted CA certificates stored in files
or in the WebLogic Keystore provider for the purpose of backward
compatibility only.

Creating a Keystore

Configuring Keystores 29-5

prompt> cd DOMAIN_HOME/bin

3. Run the setDomainEnv script, which sets the domain-wide environment for
starting and running WebLogic Server instances.

4. Change to the directory you created for the keystore and enter the following
command:

prompt> keytool -genkeypair -alias alias -keyalg RSA -keysize 1024 -dname dn
-keystore keystore

In the preceding command, enter the following values:

■ A private key alias, represented by alias.

■ The X.500 Distinguished Name associated with the private key alias, represented
by dn.

■ The name of the keystore being created, represented by keystore.

■ The key pair generation algorithm RSA.

When you enter the keytool command as described in the preceding steps, keytool
automatically prompts you for the following:

1. The keystore password

2. The password for the private key, which is represented by its alias

For example:

prompt> keytool -genkeypair -alias server_cert -keyalg RSA -keysize 2048 -dname
"CN=server.avitek.com,OU=Support,O=Avitek,L=Reading,ST=Berkshire,C=GB" -keystore
keystore.jks
Enter keystore password:
Re-enter new password:
Enter key password for <server_cert>
 (RETURN if same as keystore password):
Re-enter new password:

Note the following from the preceding example:

■ The keystore file is named keystore.jks.

■ The private key alias is server_cert.

■ The X.500 Distinguished Name, which consists of the WebLogic Server host and
DNS domain name, is server.avitek.com.

For a summary of keytool commands commonly used with WebLogic Server, see
Appendix A, "Keytool Command Summary". For complete details about keytool, see
"keytool — Key and Certificate Management Tool" at the following locations:

Note: When you use the keytool utility, the default key pair
generation algorithm is Digital Signature Algorithm (DSA). WebLogic
Server does not support DSA. Specify another key pair generation and
signature algorithm when using WebLogic Server.

Note: Make note of the private key alias and passwords you specify,
and be sure to record passwords only in a safe location.

Creating a Keystore

29-6 Administering Security for Oracle WebLogic Server 12.2.1

29.2.3 Creating a Keystore Using ImportPrivateKey
If you have a certificate and private key, you use the ImportPrivateKey utility to create
a keystore in which you can store that certificate and key.

If you used CertGen to create a private key file that is protected by a password, that
password is the one required by ImportPrivateKey to extract the key from the key file
and insert the key in the keystore being created.

To create a keystore using ImportPrivateKey, complete the following steps:

1. Change to the bin subdirectory of your WebLogic domain root directory.

2. Run the setDomainEnv script, which sets the domain-wide environment for
starting and running WebLogic Server instances.

3. Change to the directory in which you want to create the keystore.

4. Generate the certificate and private key.

For example, using CertGen:

a. Enter the following command to generate the certificate file named testcert
and the private key file named testkey:

prompt> java utils.CertGen -keyfilepass mykeyfilepass -certfile testcert
-keyfile testkey
Generating a certificate with common name return and key strength 1024
issued by CA with certificate from CertGenCA.der file and key from
CertGenCAKey.der file

b. Convert the certificate from DER format to PEM format. For example:

prompt> java utils.der2pem CertGenCA.der

5. Concatenate the certificate and the Certificate Authority (CA) certificate. For
example:

prompt> cat testcert.pem CertGenCA.pem >> newcerts.pem

6. Create a new keystore and load the private key.

For example, to create a keystore named mykeystore and load the private key
located in the file testkey.pem, enter the following command:

prompt> java utils.ImportPrivateKey -keystore mykeystore -storepass
mypasswd-keyfile mykey -keyfilepass mykeyfilepass -certfile newcerts.pem
-keyfile
testkey.pem -alias passalias
No password was specified for the key entry
Key file password will be used

Imported private key testkey.pem and certificate newcerts.pem

Note: By default, the CertGen utility looks for the CertGenCA.der
and CertGenCAKey.der files in the current directory, or in the WL_
HOME/server/lib directory, as specified in the weblogic.home system
property or the CLASSPATH.

Alternatively, you can specify CA files on the command line. If you
want to use the default settings, there is no need to specify CA files on
the command line.

Using Keystores and Certificates in a Development Environment

Configuring Keystores 29-7

into a new keystore mykeystore of type jks under alias passalias

For more information about using the ImportPrivateKey utility, see
"ImportPrivateKey" in Command Reference for Oracle WebLogic Server.

29.3 Using Keystores and Certificates in a Development Environment
The tools and procedures described in this section generate digital certificates and
private keys that should be used only for demonstration or testing purposes in a
development environment, and not in a production environment.

This section includes the following topics:

■ Section 29.3.1, "Using the Demonstration Keystores"

■ Section 29.3.2, "Creating Demonstration Certificates Using CertGen"

■ Section 29.3.3, "Using Your Own Certificate Authority"

■ Section 29.3.4, "Converting a Microsoft p7b Format to PEM Format"

■ Section 29.3.5, "Configuring Demo Certificates for Clients"

29.3.1 Using the Demonstration Keystores
By default, WebLogic Server is configured with two keystores, which are located in the
DOMAIN_HOME\security and WL_HOME\server\lib directories, respectively:

■ DemoIdentity.jks—Contains a demonstration private key for WebLogic Server.
This keystore contains the identity for WebLogic Server.

■ DemoTrust.jks—Contains the trusted certificate authorities from the WL_
HOME\server\lib\DemoTrust.jks and the JDK cacerts keystores. This keystore
establishes trust for WebLogic Server.

For testing and development purposes, the keystore configuration is complete. The
digital certificates and trusted CA certificates in the demonstration keystores are
signed by a WebLogic Server demonstration certificate authority. For this reason, a
WebLogic Server installation that uses these demonstration keystores will trust any
WebLogic Server installation that also uses these demonstration keystores. Therefore,
you should never use these demonstration keystores in a production environment. For
information about how to configure keystores for use in a production environment, see
Section 29.4, "Obtaining and Storing Certificates for Production Environments".

29.3.2 Creating Demonstration Certificates Using CertGen
The following sections explain the use of CertGen for creating demonstration
certificates and private keys for use in a development environment:

■ Section 29.3.2.1, "About CertGen"

■ Section 29.3.2.2, "Using CertGen to Create a Certificate and Private Key"

Note: As of version 12.1.2 of WebLogic Server, the DemoIdentity.jks
keystore is generated at domain creation and is located in the DOMAIN_
HOME\security directory. The demo CA certificate has a 2048-bit key
size, uses the SHA256 message digest algorithm, and has a Key
Identifier extension.

Using Keystores and Certificates in a Development Environment

29-8 Administering Security for Oracle WebLogic Server 12.2.1

■ Section 29.3.2.3, "CertGen Usage Notes"

■ Section 29.3.2.4, "Limitation on CertGen Usage"

29.3.2.1 About CertGen
The CertGen utility provides command line options to specify a CA certificate and key
to be used for issuing generated certificates. The digital certificates generated by the
CertGen utility by default have only the host name of the machine on which they were
generated, and not the fully-qualified DNS name, as the value for its common name
field (cn). Command line options let you specify values for the cn and other Subject
domain name (DN) fields, such as orgunit, organization, locality, state, and
countrycode.

Use the CertGen utility if you want to set an expiration date in the digital certificate or
specify a correct host name in the digital certificate so that you can use host name
verification. (The demonstration digital certificate provided by WebLogic Server uses
the machine's default host name as the host name.)

The CertGen utility generates public certificate and private key files in PEM and DER
formats. To view the details of the generated digital certificate on Windows platforms,
double-click .der files in Windows Explorer

By default, the CertGen utility uses the following demonstration digital certificate and
private-key files: CertGenCA.der and CertGenCAKey.der. CertGen looks for these files
in the current directory, or in the WL_HOME/server/lib directory, as specified in the
weblogic.home system property or the CLASSPATH. If you want to use these files, you
do not need to specify CA files in the CertGen command; however, you can specify
those CA files in the command is desired.

For complete details about the CertGen utility's syntax and arguments, see "CertGen"
in the Command Reference for Oracle WebLogic Server.

29.3.2.2 Using CertGen to Create a Certificate and Private Key
To create a certificate and private key using CertGen, complete the following steps:

1. Open a command window and change to the bin subdirectory of your WebLogic
domain root directory.

2. Run the setDomainEnv script. This script sets the domain-wide environment for
starting and running WebLogic Server instances.

3. Optionally, change to the directory in which you want to create the certificate and
private key.

4. Generate the certificate and private key using the following command:

java utils.CertGen -keyfilepass keyfilepass -certfile cert-name -keyfile
keyfile-name

In the preceding command:

■ keyfilepass represents the password for the private key file.

■ cert-name represents the name of the certificate.

■ keyfile-name represents the name of the private key file.

For example, the following command generates the certificate file named testcert
and the private key file named testkey:

prompt> java utils.CertGen -keyfilepass mykeyfilepass -certfile testcert
-keyfile testkey

Using Keystores and Certificates in a Development Environment

Configuring Keystores 29-9

Generating a certificate with common name return and key strength 1024
issued by CA with certificate from CertGenCA.der file and key from
CertGenCAKey.der file

29.3.2.3 CertGen Usage Notes
Note the following about using CertGen:

■ By default, the CertGen utility looks for the CertGenCA.der and CertGenCAKey.der
files in the current directory, or in the WL_HOME/server/lib directory, as specified
in the weblogic.home system property or the CLASSPATH.

Alternatively, you can specify CA files on the command line. If you want to use
the default settings, there is no need to specify CA files on the command line.

■ If you do not explicitly specify a host name with the -cn option, CertGen uses the
JDK InetAddress.getHostname() method to get the host name, which CertGen
inserts in the Subject common name.

However, note that the results of the getHostName() method depends on the
platform on which it is used. For example:

– On some platforms, such as Solaris, this method returns a fully qualified
domain name (FQDN).

– On other platforms, such as Windows NT, this method returns a short host
name.

– On Solaris platforms, the result of InetAddress.getHostname() depends on
how the hosts entry is configured in the /etc/nsswitch.conf file.

If WebLogic Server is acting as a client and host name verification is enabled
(which it is by default), you need to ensure that the host name specified in the URL
matches the Subject common name in the server certificate. Otherwise,
connections fail because the host names do not match.

29.3.2.4 Limitation on CertGen Usage
By default, a WebLogic Server domain is configured with the DemoIdentity.jks
keystore, which contains a demonstration public certificate and private key for
WebLogic Server. This certificate and key are created by CertGen with the default
options of containing only the host name in the common name field (cn), and not the
fully-qualified DNS name. As a result, attempts to establish SSL connections may fail
in some situations due to a host name verification exception. This section describes
this limitation and provides some workarounds.

If you are using the demo certificates in a multi-server domain, Managed Server
instances fail to boot if they cannot establish an SSL connection with the
Administration Server. An error message similar to the following may be generated:

BAD_CERTIFICATE alert was
received from node-name.avitek.com - xxx.yy.zzz.yyy. Check the peer to
determine why it rejected the certificate chain (trusted CA configuration,
hostname verification). SSL debug tracing may be required to determine the
exact reason the certificate was rejected.

This error occurs because the host name verifier, which is enabled by default in all
WebLogic domains and which is used during the SSL handshake, compares the value
of the cn field in the certificate with the fully-qualified DNS name of the SSL server
that accepts the SSL connection. If these names do not match, the SSL connection is
dropped.

Using Keystores and Certificates in a Development Environment

29-10 Administering Security for Oracle WebLogic Server 12.2.1

If you use the demo identity certificates in a WebLogic domain, you can use the
following workarounds:

■ Specify the SSL listen address of each WebLogic Server instance in a domain as the
host name that appears in the certificate's cn field. Avoid using the fully-qualified
DNS name or IP address. This workaround consists of two steps:

1. When using the Configuration Wizard to create the WebLogic domain, specify
the listen address of each WebLogic Server instance as a simple host name as it
appears in the certificate's cn field, not as a fully-qualified DNS name or IP
address. For example, if the host name in the certificate is avitek01, the listen
address for the server instance should be specified simply as avitek01.

2. At run time, when specifying the SSL listen address of a server instance, make
sure the URL also matches the host name for that server as specified as the
certificate's cn field. For example:

https://avitek01:7002

■ When starting a Managed Server instance, pass the URL of the Administration
Server's SSL listening address as a parameter to the startManagedWebLogic script.
The URL should be specified in a form that excludes the domain suffix. For
example:

C:\mydomain\bin> startManagedWebLogic.cmd https://admin01:7002

■ Disable host name verification. This causes WebLogic Server to skip the
verification check of ensuring that the host name in the URL to which a connection
is made matches the host name in the digital certificate that the server sends back
as part of the SSL connection.

You can disable host name verification by including a command similar to the
following in the setDomainEnv script:

set JAVA_OPTIONS=%JAVA_OPTIONS%
-Dweblogic.security.SSL.ignoreHostnameVerification=true

For information about configuring host name verification, see Chapter 31, "Using
Host Name Verification".

29.3.3 Using Your Own Certificate Authority
Many companies act as their own certificate authority. To use those trusted CA
certificates with WebLogic Server:

1. Ensure the trusted CA certificates are in PEM format.

■ If the trusted CA certificate is in DER format, use the der2pem utility to convert
them.

■ If the trusted CA certificate was issued by Microsoft, see Section 29.3.4,
"Converting a Microsoft p7b Format to PEM Format".

■ If the trusted CA certificate has a custom file type, use the steps in
Section 29.3.4, "Converting a Microsoft p7b Format to PEM Format" to convert
the trusted CA certificate to PEM format.

Note: Oracle does not recommend using the demo certificates, or
turning off host name verification, in production environments.

Using Keystores and Certificates in a Development Environment

Configuring Keystores 29-11

2. Create the trust keystore to hold the trusted CA certificate, as explained in
Section 29.2, "Creating a Keystore".

3. Store the trusted CA certificate in the trust keystore. For more information, see
Section 29.4.2, "Importing Certificates into the Trust and Identity Keystores".

4. Configure WebLogic Server to use the trust keystore. For more information, see
Section 29.5, "Configuring Keystores with WebLogic Server".

29.3.4 Converting a Microsoft p7b Format to PEM Format
Digital certificates issued by Microsoft are in a format (p7b) that cannot be used by
WebLogic Server. The following example converts a digital certificate in p7b (PKCS#7)
format to PEM format on Windows XP:

1. In Windows Explorer, select the file (filename.p7b) you want to convert.
Double-click on the file to display a Certificates window.

2. In the left pane of the Certificates window, expand the file.

3. Expand the Certificates folder to display a list of certificates.

4. Select a certificate to convert to PEM format. Right-click on the certificate, then
choose All Tasks > Export to display the Certificate Export Wizard.

5. In the wizard, click Next.

6. Select the Base-64 encoded X.509 (.CER) option. Then click Next. (Base-64
encoded is the PEM format.)

7. In the File name field, enter a name for the converted digital certificate; then click
Next.

8. Verify that the settings are correct. If the settings are correct, click Finish; if they are
not correct, click Back and make any necessary modifications.

29.3.5 Configuring Demo Certificates for Clients
To use SSL in development mode between a client such as Eclipse and WebLogic
Server, configure the demo certificates in the JVM for both the client and the server as
follows:

1. Copy ORACLE_HOME/wlserver/server/lib/cacerts to the jre/lib/security
directory of the client's JVM. For example, if you are using Eclipse with its default
JDK, copy cacerts to ORACLE_HOME/jdk/jre/lib/security.

2. Copy ORACLE_HOME/wlserver/server/lib/cacerts to the jre/lib/security
directory of the WebLogic Server's JVM.

3. Restart both WebLogic Server and the client.

Note: The wizard appends a .cer extension to the output file. The
.cer extension is a generic extension which is appended to both
base-64 encoded certificates and DER certificates. You can change the
extension to .pem after you exit the wizard.

Note: For p7b certificate files that contain certificate chains, you need
to concatenate the issuer PEM digital certificates to the certificate file.
The resulting certificate file can be used by WebLogic Server.

Obtaining and Storing Certificates for Production Environments

29-12 Administering Security for Oracle WebLogic Server 12.2.1

As an alternative, you can import the certificates, rather than copying the cacerts
files.

29.4 Obtaining and Storing Certificates for Production Environments
To obtain a digital certificate for use in a production environment, you must generate a
Certificate Signing Request (CSR) and issue it to a reputable CA. The CA returns a
digital certificate that is signed with the CA's private key and that is used for
establishing identity. The CA also returns the CA's signed public certificate, which is
used for trust. You then import the digital certificate for identity into your identity
keystore, and the CA's public certificate into the trust keystore.

The following sections explain these steps in detail:

■ Section 29.4.1, "Generating a Certificate Signing Request"

■ Section 29.4.2, "Importing Certificates into the Trust and Identity Keystores"

29.4.1 Generating a Certificate Signing Request
Oracle strongly recommends that all certificates used in a production environment are
signed by a reputable Certificate Authority (CA). To obtain a CA-signed certificate,
you must issue an individual Certificate Signing Request (CSR) for each certificate that
you plan to use in that production environment.

To generate a CSR, complete the following steps:

1. Create a keystore to hold the identity of the WebLogic Server instance, if you have
not already done so, as explained in Section 29.2, "Creating a Keystore".

2. Open a command window, change to the bin subdirectory of your WebLogic
domain, and run the setDomainEnv script. For example, on Windows systems:

prompt> cd DOMAIN_HOME/bin
prompt> setDomainEnv

In the preceding path, DOMAIN_HOME represents the WebLogic domain root
directory.

3. Change to the directory that contains your keystore and create a CSR using the
keytool command with the following syntax:

keytool -certreq -v -alias alias -file certreq_file -keystore keystore

In the preceding command syntax:

■ alias represents the private key alias specified when you created the keystore

■ certreq_file represents the name of the file that contains the CSR.

■ keystore represents the keystore.

Note that when you enter the preceding command, you are prompted for the
passwords for the keystore and the private key, which you specified when you
created the keystore.

4. Submit the CSR file to a certificate authority (CA) of your choice.

The CSR file is encoded in PKCS#10 format and may look similar to the following:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBtzCCASACAQAwdzELMAkGA1UEBhMCR0IxEjAQBgNVBAgTCUJlcmtzaGlyZTEQMA
4GA1UEBxMHUmVhZGluZzEPMA0GA1UEChMGT3JhY2xlMRAwDgYDVQQLEwdTdXBwb3J0
MR8wHQYDVQQDExZtYXJzaGFsbC51ay5vcmFjbGUuY29tMIGfMA0GCSqGSIb3DQEBA

Obtaining and Storing Certificates for Production Environments

Configuring Keystores 29-13

QUAA4GNADCBiQKBgQCEopgMZp1lI6jWXxb1rM1kWIc1l8bhiV/0UTcsdKzeaSHxbO
SLO3Ed9kxNWAZgXaR9f5FBlwkaRJ+IR163e64v3SplHenxHfVRaHYWPZx4KlJz/6p
Yd1fAlF0PdQm1DNoFtKmCHVk/cRuvGRpsp38l7K2mYlyQ+GxH38llS7g3owIDAQAB
oAAwDQYJKoZIhvcNAQEFBQADgYEAD/sG1+rSI76OjihHg3WezT+VIbSRJxyly9nbx
4uwXbDHh8DGgQLAXV51C9ioaMrm+dM0eygVDDMESXFxvJiYipS/pphgYt1xDBgnEH
GcNiX3BnTaLNtzYlc5eAMsmbDlpk/qOxvQiH3bKN+UKYQlBXJZWPL6FusXu2LMTrk
zsY=
-----END NEW CERTIFICATE REQUEST-----

29.4.2 Importing Certificates into the Trust and Identity Keystores
After you submit a CSR to a CA, the CA returns the following:

■ The CA's signed public certificate. (This certificate may be an intermediate
certificate that is signed by a high-level CA, or it may be a self-signed (root)
certificate.)

You place this certificate into the keystore designated as the trust keystore.

■ A CA-signed digital certificate for WebLogic Server. This is often referred to
simply as the server certificate.

You place the server certificate into the keystore designated as the identity
keystore.

■ Optionally, one or more intermediate certificates that establish the chain of trust to
the root CA certificate.

To import the CA-signed certificates into the trust and identity keystores, complete the
following steps:

1. Open a command window, change to the bin subdirectory of your WebLogic
domain, and run the setDomainEnv script. For example, on Windows systems:

prompt> cd DOMAIN_HOME/bin
prompt> setDomainEnv

In the preceding path, DOMAIN_HOME represents the WebLogic domain root
directory.

2. Change to the directory to hold the trust keystore and enter the following keytool
command. This command creates the trust keystore, if it does not already exist,
and imports the CA-signed certificate:

keytool -importcert -file CAcert -alias CAcert-alias -keystore keystore

In the preceding command:

■ CAcert represents the name of the CA's signed public certificate.

■ CAcert-alias represents the alias of the CA's signed public certificate.

■ keystore represents the keystore file name.

If you currently have additional trusted CA-signed public certificates or
intermediate certificates, or receive them in the future, you can add them to the
preceding trust keystore using the same keytool command. For example:

keytool -importcert -file CAcert2 -alias CAcert2-alias -keystore keystore

Note: The Certificate Request Generator servlet is deprecated. Use
the keytool utility instead.

Obtaining and Storing Certificates for Production Environments

29-14 Administering Security for Oracle WebLogic Server 12.2.1

If you are importing certificates that are part of a sequentially-ordered certificate
path, you must import those certificates into the trust keystore in the order in
which they exist in that path. If you import them in the wrong sequence, the SSL
handshake when making a connection may fail. For example, consider the
following certificate path:

■ Root CA certificate, rootCA

■ Intermediate certificate ICA1, which is signed by rootCA

■ Intermediate certificate ICA2, which is signed by ICA1

In the preceding certificate path, you would import rootCA into the trust keystore
first, followed by ICA1, then finally by ICA2. If these certificates are imported into
the keystore in the wrong sequence,

3. Make a backup copy of the trust keystore.

4. Change to the directory that contains the identity keystore for WebLogic Server.

5. Import the CA-signed server certificate into your keystore using the following
keytool command:

keytool -importcert -v -alias alias -file servercert_file -keystore keystore

In the preceding syntax:

■ alias represents the alias of the server certificate, which must be the same as
the private key alias assigned in Step 4.)

■ servercert_file represents the name of the file that contains the CA-signed
server certificate.

■ keystore represents the name of your keystore.

■ Using the -v option increases the amount of information displayed in the
command output.

For example, the following command imports the server certificate server.pem
into the keystore, using the alias (server_cert) assigned in Step 4:

prompt> keytool -importcert -v -alias server_cert -file server.pem -keystore
keystore.jks
Enter keystore password:
Certificate reply was installed in keystore
[Storing keystore.jks
]

Notes: Note the following:

■ A root CA may impose a limit on the number of intermediate
certificates that may exist in a certificate path based on a root
certificate issued by that CA. For more information, see
"Certificate Authorities" in Understanding Security for Oracle
WebLogic Server.

■ If your trust keystore does not contain the certificate of the
intermediate CA that signed your server certificate, but that
intermediate CA is trusted by the target of an SSL connection that
you are making, the SSL connection may succeed by means of
transitive trust.

Configuring Keystores with WebLogic Server

Configuring Keystores 29-15

6. Make a backup copy of the identity keystore.

29.5 Configuring Keystores with WebLogic Server
After you have created the identity and trust keystores, you need to configure
WebLogic Server to use them, as explained in the following sections:

■ Section 29.5.1, "Configuring Keystores Using the Administration Console"

■ Section 29.5.2, "Configuring a Keystore Using WLST"

All private key entries in a keystore are accessed by WebLogic Server through the use
of aliases, which you specify when loading private keys into the keystore. Aliases are
case-insensitive: the aliases Hugo and hugo would refer to the same keystore entry.
When subsequently you configure SSL, aliases for private keys are specified in the
Private Key Alias field on the Configuration > SSL page in the WebLogic Server
Administration Console. Although WebLogic Server does not use the alias to access
trusted CA certificates, the keystore does require an alias when loading a trusted CA
certificate into the keystore.

29.5.1 Configuring Keystores Using the Administration Console
To configure the identity and trust keystores for a WebLogic Server instance using the
WebLogic Server Administration Console, complete the following steps:

1. Start the WebLogic Server Administration Console, if necessary.

2. In the left pane of the Console, expand Environment and select Servers.

3. Click the name of the WebLogic Server instance for which you want to configure
the identity and trust keystores.

4. Select Configuration > Keystores.

This displays the console page in which you configure your trust and identity
keystores, shown in Figure 29–1.

Configuring Keystores with WebLogic Server

29-16 Administering Security for Oracle WebLogic Server 12.2.1

Figure 29–1 Keystore Configuration Console Page

5. Select Change to modify the configuration rules that WebLogic Server uses to
locate the server's identity and trust keystores, and select one of the following
choices:

■ Demo Identity and Demo Trust — Keep this configuration setting if you are
using the demo certificates only for development use. This is the default
setting, using the demonstration identity and trust keystores located in the
DOMAIN_HOME/security and ORACLE_HOME/server/lib directories, respectively,
and the JDK cacerts keystore.

■ Custom Identity and Java Standard Trust — Select this configuration to use
an identity keystore you created and the trusted CAs that are defined in the
cacerts file in the JAVA_HOME\jre\lib\security directory.

■ Custom Identity and Custom Trust — Select this configuration to use both
identity and trust keystores that you created (typically you select this for a
production environment).

■ Custom Identity and Command Line Trust — Select this configuration to use
an identity keystore you created, but a trust keystore that is passed as an
argument in the command that starts WebLogic Server.

Depending on the configuration rules you specify, followed by clicking Save, the
Keystore Configuration console page displays the appropriate fields for entering
the identity and trust keystore information that is needed.

6. Specify the identity and trust keystore information required as appropriate for the
selected keystore configuration rules, and click Save.

Configuring Keystores with WebLogic Server

Configuring Keystores 29-17

7. To ensure that all the SSL connections exist according to the specified
configuration, you have two options:

■ Select the Restart SSL button on the Control: Start/Stop page, shown in
Figure 29–2. This option enables you to put keystore changes into effect for
new connections without rebooting WebLogic Server.

■ Reboot WebLogic Server. This option puts keystore changes into effect for all
connections.

Figure 29–2 Restarting SSL

For information about configuring keystores for WebLogic Server using the WebLogic
Server Administration Console, see "Configure keystores" in the Oracle WebLogic Server
Administration Console Online Help.

29.5.2 Configuring a Keystore Using WLST
This section provides an example of using WLST to configure the identity and trust
keystores for WebLogic Server. Example 29–1 does the following:

1. Connects to the Managed Server instance for which the identity and trust
keystores are being configured.

2. Navigates to the MBean that corresponds to the specific server instance for which
the identity and trust keystores are to be configured, myserver.

3. Sets the configuration rule that WebLogic Server uses to locate the identity and
trust keystores, CustomIdentityAndCustomTrust.

4. Sets the name and location of the identity keystore file, Identity.jks.

5. Sets the passphrase for the identity keystore.

6. Sets the identity keystore type to JKS.

7. Sets the name and location of the trust keystore file, Trust.jks.

Viewing Keystore Contents

29-18 Administering Security for Oracle WebLogic Server 12.2.1

8. Sets the passphrase for the trust keystore.

9. Sets the trust keystore type to JKS.

10. Saves and activates the new keystore configuration, then disconnects from the
Managed Server instance.

Example 29–1 Configuring Custom Identity and Trust Keystores

connect('admin-user','password')
edit()
startEdit()
cd ('Servers/myserver/ServerMBean/myserver')

cmo.setKeyStores('CustomIdentityAndCustomTrust')
cmo.setCustomIdentityKeyStoreFileName('/path/keystores/Identity.jks')
cmo.setCustomIdentityKeyStorePassPhrase('passphrase')
cmo.setCustomIdentityKeyStoreType('JKS')
cmo.setCustomIdentityKeyStoreFileName('/path/keystores/Trust.jks')
cmo.setCustomTrustKeyStorePassPhrase('passphrase')
cmo.setCustomTrustKeyStoreType('JKS')

save()
activate()
disconnect()

29.6 Viewing Keystore Contents
To view the contents of a keystore, use the following keytool command syntax, where
keystore represents the name of the keystore you created:

keytool -list -v -keystore keystore

When you enter the preceding command, you are prompted for the keystore
password. For example, the following command lists the contents of keystore.jks:

prompt> keytool -list -v -keystore keystore.jks
Enter keystore password:

Alias name: rootcacert
Creation date: Sep 13, 2010
Entry type: trustedCertEntry

Owner: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Issuer: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Serial number: c47f4774c2ef014c
Valid from: Fri Jan 09 10:27:18 GMT 2009 until: Mon May 26 11:27:18 BST 2036
Certificate fingerprints:
MD5: E9:24:39:56:DE:34:44:DB:46:93:45:93:8E:82:66:AC
SHA1: 17:39:92:C0:43:9B:28:F3:C2:54:55:9B:5E:97:CA:EE:71:5D:9C:26
Signature algorithm name: SHA1withRSA
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 67 57 BA 54 BB 9B C0 38 9A 71 AA 28 82 23 4B 08 gW.T...8.q.(.#K.
0010: 72 B9 FC C1 r...

Viewing Keystore Contents

Configuring Keystores 29-19

]
]

#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
CA:true
PathLen:2147483647
]

#3: ObjectId: 2.5.29.35 Criticality=false

[CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB]
SerialNumber: [c47f4774 c2ef014c]
]

Alias name: server_cert
Creation date: Sep 13, 2010
Entry type: PrivateKeyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=server.avitek.com, OU=Support, O=Avitek, L=Reading, ST=Berkshire,
C=GB
Issuer: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Serial number: e
Valid from: Mon Sep 13 14:02:00 BST 2010 until: Sat Sep 22 14:02:00 BST 2012
Certificate fingerprints:
MD5: CB:B8:07:32:22:B5:76:78:44:BB:94:D2:CE:EF:A3:CA
SHA1: 1E:3E:C6:BC:17:EB:43:50:19:01:0B:11:50:D8:23:60:21:B2:57:3E
Signature algorithm name: MD5withRSA
Version: 1
Certificate[2]:
Owner: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Issuer: CN=SSL Training CA, OU=Support, O=Avitek, L=Readin g, ST=Berkshire, C=GB
Serial number: c47f4774c2ef014c
Valid from: Fri Jan 09 10:27:18 GMT 2009 until: Mon May 26 11:27:18 BST 2036
Certificate fingerprints:
MD5: E9:24:39:56:DE:34:44:DB:46:93:45:93:8E:82:66:AC
SHA1: 17:39:92:C0:43:9B:28:F3:C2:54:55:9B:5E:97:CA:EE:71:5D:9C:26
Signature algorithm name: SHA1withRSA
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 67 57 BA 54 BB 9B C0 38 9A 71 AA 28 82 23 4B 08 gW.T...8.q.(.#K.
0010: 72 B9 FC C1 r...
]
]

#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
CA:true
PathLen:2147483647
]

Replacing Expiring Certificates

29-20 Administering Security for Oracle WebLogic Server 12.2.1

#3: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 67 57 BA 54 BB 9B C0 38 9A 71 AA 28 82 23 4B 08 gW.T...8.q.(.#K.
0010: 72 B9 FC C1 r...
]

[CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB]
SerialNumber: [c47f4774 c2ef014c]
]

29.7 Replacing Expiring Certificates
An expiring certificate should be replaced before it actually expires to avoid or reduce
application downtime.

To replace a certificate, complete the following steps:

1. Open a command window, change to the DOMAIN_HOME/bin directory, and run the
setDomainEnv script.

2. Change to the directory that contains the identity keystore that stores the
certificate needing to be replaced.

3. Generate a CSR, as explained in Section 29.4.1, "Generating a Certificate Signing
Request", using the same private key alias specified when you created the keystore
for which the current expiring certificate was issued.

4. Submit the CSR to the CA that issued the original certificate. The validity date of
the new certificate should be earlier than the expiration date of the current
certificate. This overlap is recommended to reduce downtime.

5. Import the newly issued certificate into the identity keystore using the alias of the
private key.

6. If the new certificate is issued by a CA other than the one that issued the original
certificate, you may also need to import the new CA's trusted certificate before
importing the newly issued identity certificate.

29.8 Creating a Keystore: An Example
This section shows an example of using the keytool utility for creating a keystore and
storing keys and certificates in it. Note that this section shows only how to create one
keystore. In a production environment, Oracle recommends that you have two
keystores: one for trust, and another for identity, as explained in Section 29.1.2, "Using
Separate Keystores for Identity and Trust". For complete details about each of the
keytool command options shown in this section, see the Java keytool help at the
following locations:

UNIX:

Note: Steps 3 and 4 are not required if the CA already maintains the
certificate request in a repository. In that case, simply ask the CA to
issue a new certificate.

Creating a Keystore: An Example

Configuring Keystores 29-21

http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Windows:

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

To create a keystore and populate it with private keys and certificates, complete the
following steps:

1. Create a directory to hold the keystore; for example: ORACLE_HOME/keystores.

2. Run the following script, which sets the domain-wide environment for starting
and running WebLogic Server instances:

DOMAIN_HOME/bin/setDomainEnv

In the preceding path, DOMAIN_HOME represents the WebLogic domain root
directory.

3. Change to the directory to hold the keystore, which you created in Step 1.

4. Create the keystore using the following keytool command syntax. This command
also creates a key pair (a public key and associated private key) and an alias for
the private key.

keytool -genkeypair -alias alias -keyalg RSA -keysize 1024 -dname dn -keystore
keystore

In the preceding command syntax:

■ alias represents the private key alias.

■ dn represents the X.500 Distinguished Name associated with the private key
alias.

■ keystore represents the name of the keystore being created.

For example:

prompt> keytool -genkeypair -alias server_cert -keyalg RSA -keysize 1024
-dname "CN=server.avitek.com,OU=Support,O=Avitek,L=Reading,ST=Berkshire,C=GB"
-keystore keystore.jks

Note the following in the preceding example:

■ server.avitek.com represents the WebLogic Server host and DNS domain
name.

■ Although the keytool command includes the -storepass and -keypass
options for specifying the keystore and private key passwords, respectively,
Oracle recommends that you avoid using these command-line options. When
you enter a keytool command that requires one or more passwords, but you
omit the command-line options for passing them, you are subsequently
prompted to enter them. However, unlike passwords passed in command-line
options, passwords entered in response to a prompt are not displayed in the
command window and are not captured in any log.

■ Make note of the private key alias and passwords you specify, and be sure to
record passwords only in a safe location.

5. Make a backup copy of the keystore created in Step 4.

6. Create a Certificate Signing Request (CSR) using the following keytool command
syntax:

Creating a Keystore: An Example

29-22 Administering Security for Oracle WebLogic Server 12.2.1

keytool -certreq -v -alias alias -file certreq_file -keystore keystore

In the preceding command syntax:

■ alias represents the private key alias specified in Step 4.

■ certreq_file represents the name of the file that contains the CSR.

■ keystore represents the keystore created in Step 4.

Note that when you create a CSR using the preceding command, you are
prompted to enter the passwords for the keystore and the private key.

For example, the following command creates a CSR in the file server.csr:

prompt> keytool -certreq -v -alias server_cert -file server.csr -keystore
keystore.jks

7. Submit the CSR file to a certificate authority (CA) of your choice. The CA returns:

■ A digital certificate for WebLogic Server. This certificate is signed by the CA
and is often referred to simply as the server certificate.

■ The public certificate of the CA that signed your server certificate.

■ Optionally, one or more intermediate CA certificates. For example, if the CA
that signed your certificate is an intermediate CA, you might also receive the
public certificate of the intermediate CA that signed your CA's certificate. (If
your CA's certificate was signed by a root CA, you might also receive the root
certificate.)

8. In the directory you created for your keystore, save the server certificate, and also
the CA certificates, in individual files. For example, the server certificate can be
saved as server.pem, and the CA certificate as rootCA.pem.

If you have an intermediate CA who also returns other intermediate certificates,
save them also in your keystore directory using names such as
intermediateCA2.pem, intermediateCA3.pem, and so on, to properly establish the
certificate path in a way that indicates the correct sequence of that path.

9. Import the CA certificate, including any additional intermediate certificates and
the root certificate if available, into your keystore using the following keytool
command syntax:

keytool -importcert -v -noprompt -trustcacerts -alias alias -file rootca_file
-keystore keystore

In the preceding syntax:

■ alias represents the alias of the root CA certificate.

■ rootca_file represents the name of the file that contains the root CA
certificate.

■ keystore represents the name of your keystore.

For example, the following command imports the root CA certificate in file
rootCA.pem into the keystore, assigning it the alias rootcacert:

prompt> keytool -importcert -v -noprompt -trustcacerts -alias rootcacert -file
rootCA.pem -keystore keystore.jks
Enter keystore password:
Certificate was added to keystore
Storing keystore.jks

Supported Formats for Identity and Trust Certificates

Configuring Keystores 29-23

10. Import the server certificate into your keystore using the following keytool
command syntax:

keytool -importcert -v -alias alias -file servercert_file -keystore keystore

In the preceding syntax:

■ alias represents the alias of the server certificate, which must be the same as
the private key alias assigned in Step 4.)

■ servercert_file represents the name of the file that contains the server
certificate.

■ keystore represents the name of your keystore.

For example, the following command imports the server certificate server.pem
into the keystore, using the alias (server_cert) assigned in Step 4:

prompt> keytool -importcert -v -alias server_cert -file server.pem -keystore
keystore.jks
Enter keystore password:
Certificate reply was installed in keystore
[Storing keystore.jks
]

11. To view the contents of the keystore, use the following keytool command syntax,
where keystore represents the name of your keystore:

keytool -list -v -keystore keystore

29.9 Supported Formats for Identity and Trust Certificates
The PEM (Privacy Enhanced Mail) format is the preferred format for private keys,
digital certificates, and trusted certificate authority (CA) certificates. The preferred
keystore format is JKS.

A .pem format file begins with this line:

----BEGIN CERTIFICATE----

and ends with this line:

----END CERTIFICATE----

A .pem format file supports multiple digital certificates (for example, a certificate chain
can be included). The order of certificates within the file is important. The server's
digital certificate should be the first digital certificate in the file, followed by the issuer
certificate, and so on. Each certificate in the chain is followed by its issuer certificate. If
the last certificate in the chain is the self-signed (self-issued) root certificate of the
chain, the chain is considered complete. Note that the chain does not have to be
complete.

When using the deprecated file-based private keys, digital certificates, and trusted CA
certificates, WebLogic Server can use digital certificates in either PEM or distinguished
encoding rules (DER) format.

Note: If your CA returns a certificate chain, make sure you import
the certificates in the proper sequence, as explained in Section 29.4.2,
"Importing Certificates into the Trust and Identity Keystores".

Obtaining a Digital Certificate for a Web Browser

29-24 Administering Security for Oracle WebLogic Server 12.2.1

A .der format file contains binary data for a single certificate. Thus, a .der file can be
used only for a single certificate, while a .pem file can be used for multiple certificates.

Microsoft is often used as a CA. Microsoft issues trusted CA certificates in p7b format,
which must be converted to PEM before they can be used with WebLogic Server. For
more information, see Section 29.3.4, "Converting a Microsoft p7b Format to PEM
Format".

Private key files (meaning private keys not stored in a keystore) must be in
PKCS#5/PKCS#8 PEM format.

You can still use private keys and digital certificates used with other versions of
WebLogic Server with this version of WebLogic Server. Convert the private key and
digital certificate from distinguished encoding rules (DER) format to
privacy-enhanced mail (PEM) format. For more information, see the description of the
"der2pem" utility in "Using the WebLogic Server Java Utilities" in Command Reference
for Oracle WebLogic Server.

After converting the files, ensure the digital certificate file has the -----BEGIN
CERTIFICATE----- header and the -----END CERTIFICATE----- footer. Otherwise, the
digital certificate will not work.

29.10 Obtaining a Digital Certificate for a Web Browser
Low-security browser certificates are easy to acquire and can be done from within the
Web browser, usually by selecting the Security menu item in Options or Preferences.
Go to the Personal Certificates item and ask to obtain a new digital certificate. You will
be asked for some information about yourself.

The digital certificate you receive contains public information, including your name
and public key, and additional information you would like authenticated by a third
party, such as your E-mail address. Later you will present the digital certificate when
authentication is requested.

As part of the process of acquiring a digital certificate, the Web browser generates a
public-private key pair. The private key should remain secret. It is stored on the local
file system and should never leave the Web browser's machine, to ensure that the
process of acquiring a digital certificate is itself safe. With some browsers, the private
key can be encrypted using a password, which is not stored. When you encrypt your
private key, you will be asked by the Web browser for your password at least once per
session.

Note: OpenSSL can add a header to the PEM certificate it generates.
In order to use such certificates with WebLogic Server, everything in
front of "-----BEGIN CERTIFICATE-----" should be removed from the
certificate, which you can do with a text editor.

Note: Digital certificates obtained from Web browsers do not work
with other types of Web browsers or on different versions of the same
Web browser.

30

Configuring Oracle OPSS Keystore Service 30-1

30Configuring Oracle OPSS Keystore Service

[31] This chapter describes how to configure the Oracle OPSS Keystore Service for use with
WebLogic Server.

Chapter 29, "Configuring Keystores" describes how to configure identity and trust for
WebLogic Server with the default JKS keystore type.

As described in "Managing Keys and Certificates with the Keystore Service" in
Securing Applications with Oracle Platform Security Services, the OPSS Keystore Service
provides an alternate mechanism to manage keys and certificates for message security.
The OPSS Keystore Service makes using certificates and keys easier by providing
central management and storage of keys and certificates for all servers in a domain.
You use the OPSS Keystore Service to create and maintain keystores of type KSS.

This chapter includes the following sections:

■ Prerequisites for Using the OPSS Keystore Service

■ Where is the OPSS Keystore Service Documented?

■ Configuring the OPSS Keystore Service for Demo Identity and Trust: Main Steps

■ Configuring the OPSS Keystore Service for Custom Identity and Trust: Main Steps

This section assumes that you are familiar with a basic overview of the OPSS Keystore
Service, as described in "Managing Keys and Certificates with the Keystore Service".

30.1 Prerequisites for Using the OPSS Keystore Service
You can use the OPSS Keystore Service with WebLogic Server only if you have
installed the Oracle JRF template on the WebLogic Server system as described in
Domain Template Reference and used this template to create the domain.

The OPSS Keystore Service is available only with the JRF template and is not available
with the default WebLogic Server configuration.

30.2 Where is the OPSS Keystore Service Documented?
The OPSS Keystore Service is documented in "Managing Keys and Certificates with
the Keystore Service" in Securing Applications with Oracle Platform Security Services. In
particular, "Managing Keys and Certificates with the Keystore Service" describes how
you create the KSS keystore, how to manage it, and what tools and commands are
available.

This section briefly summarizes the steps you follow to configure the OPSS Keystore
Service, but "Managing Keys and Certificates with the Keystore Service" in Securing
Applications with Oracle Platform Security Services is the definitive source.

Configuring the OPSS Keystore Service for Demo Identity and Trust: Main Steps

30-2 Administering Security for Oracle WebLogic Server 12.2.1

30.3 Configuring the OPSS Keystore Service for Demo Identity and Trust:
Main Steps

You can perform the OPSS Keystore Service operations using either Fusion
Middleware Control or the Keystore Service commands with WLST. This section
demonstrates the Fusion Middleware Control steps, but "Managing Keys and
Certificates with the Keystore Service" describes both options.

The KSS demo identity and demo trust keystores are preconfigured when you create a
domain, and no additional configuration of these keystores is required.

Perform the following steps to configure an OPSS Keystore Service for demo identity
and trust:

1. From the WebLogic Server Administration Console, navigate to the Domain ->
Security -> Advanced page, and verify that the "Use KSS For Demo" check box is
enabled.

2. Configure the WebLogic Server instance to use Demo Identity and Demo Trust, as
described in Configure keystores.

3. Configure SSL for the WebLogic Server instance, as described in Set Up SSL.

Remember that the WebLogic Server DefaultHostnameVerifier has been modified
to accept the non-standard DemoCertFor_<WLS Domain Name> hostname format.
Other hostname verifiers may not support this format.

4. Restart WebLogic Server.

30.4 Configuring the OPSS Keystore Service for Custom Identity and
Trust: Main Steps

You must configure the OPSS Keystore Service before you can use it for custom
identity and trust with WebLogic Server.

You can perform the OPSS Keystore Service operations using either Fusion
Middleware Control or the Keystore Service commands with WLST. This section
demonstrates the Fusion Middleware Control steps, but "Managing Keys and
Certificates with the Keystore Service" describes both options.

Perform the following steps to configure an OPSS Keystore Service for custom identity
and trust:

1. Launch Fusion Middleware Control.

2. From the WebLogic Domain menu, select Security then Keystore.

3. Create a keystore in the system stripe. (See "Creating a Keystore with Fusion
Middleware Control" for more information.)

a. Select the system stripe and click Create Keystore.

The Create Keystore page is shown in Figure 30–1.

Configuring the OPSS Keystore Service for Custom Identity and Trust: Main Steps

Configuring Oracle OPSS Keystore Service 30-3

Figure 30–1 Create Keystore

b. Name this keystore.

c. Set the protection type to Password.

d. Set the password.

e. Uncheck the Grant Permission check box.

f. Do not specify a code base URL.

4. Select the keystore you just created and click Manage.

Enter the password.

The Manage Certificates screen shown in Figure 30–2 appears.

Figure 30–2 Manage Certificates

5. Click Generate Keypair to generate a private/public key pair.

The Generate Keypair screen is shown in Figure 30–3.

Configuring the OPSS Keystore Service for Custom Identity and Trust: Main Steps

30-4 Administering Security for Oracle WebLogic Server 12.2.1

Figure 30–3 Generate Keypair

a. Specify the alias for the key pair.

b. Specify site-specific information as appropriate.

c. You can accept the default RSA key size if appropriate for your environment.
Oracle requires a key length of 1024 bits or larger.

d. Specify the password.

e. Click OK.

6. You have the option to use this KSS Demo CA-signed key pair as-is, or to obtain a
signed certificate from a reputable vendor such as Entrust, Verisign, and so forth.

To obtain the signed certificate from a reputable vendor, select the alias for the key
pair and click Generate CSR. After you create a CSR, send it to your CA, which
will authenticate the certificate request and create a digital certificate based on the
request.

See "Importing a Certificate or Trusted Certificate with Fusion Middleware
Control" in Securing Applications with Oracle Platform Security Services for
instructions on how to import the CA-signed certificate.

7. If you do not use the preconfigured OPSS Keystore Service trust store
kss://system/trust, you must create your own.

To create your own trust store, create another OPSS Keystore Service keystore, and
import trusted certificates. See "Importing a Certificate or Trusted Certificate with
Fusion Middleware Control" in Securing Applications with Oracle Platform Security
Services for instructions on how to import trusted certificates.

8. Configure the WebLogic Server instance to use KSS for Custom Identity and Trust,
as described in Configure keystores. You specify the fully-qualified path to the
keystore as the URI in the form kss://system/keystore-name. The keystore type
is KSS.

9. Configure SSL for the WebLogic Server instance, as described in Set Up SSL.

Note: Oracle recommends you use the preconfigured OPSS Keystore
Service trust store.

Configuring the OPSS Keystore Service for Custom Identity and Trust: Main Steps

Configuring Oracle OPSS Keystore Service 30-5

All the server SSL attributes are dynamic; when modified via the Console, they cause
the corresponding SSL server or channel SSL server to restart and use the new settings
for new connections. Old connections will continue to run with the old configuration.
To ensure that all the SSL connections exist according to the specified configuration,
you must reboot WebLogic Server.

Configuring the OPSS Keystore Service for Custom Identity and Trust: Main Steps

30-6 Administering Security for Oracle WebLogic Server 12.2.1

31

Using Host Name Verification 31-1

31Using Host Name Verification

[32] This chapter explains how to configure host name verification in WebLogic Server. A
host name verifier ensures the host name in the URL to which the client connects
matches the host name in the digital certificate that the server sends back as part of the
SSL connection. A host name verifier is useful when an SSL client (for example,
WebLogic Server acting as an SSL client) connects to an application server on a remote
host. It helps to prevent man-in-the-middle attacks.

WebLogic Server includes two host name verifiers, and also provides the ability to
create and use a custom host name verifier.

This chapter includes the following sections:

■ Using the Default WebLogic Server Host Name Verifier

■ Using the Wildcarded Host Name Verifier

■ Using a Custom Host Name Verifier

31.1 Using the Default WebLogic Server Host Name Verifier
As a function of the SSL handshake, WebLogic Server compares the common name in
the SubjectDN in the SSL server's digital certificate with the host name of the SSL
server used to accept the SSL connection. If these names do not match exactly, the SSL
connection is dropped. The SSL client is the actual party that drops the SSL connection
if the names do not match.

If anything other than the default behavior is desired, either turn off host name
verification or configure a custom host name verifier. Turning off host name
verification leaves WebLogic Server vulnerable to man-in-the-middle attacks. Oracle
recommends leaving host name verification on in production environments.

If you are using the default WebLogic Server host name verifier, host name verification
passes if both of the following conditions exist:

■ The host name in the certificate matches the local machine's host name.

■ The URL specifies localhost, 127.0.01, or the default IP address of the local
machine.

Note: If you are using the demo identity certificates in a multi-server
domain, Managed Server instances will fail to boot if they are started
using the fully-qualified DNS name of the Administration Server. For
information about this limitation and suggested workarounds, see
Section 29.3.2.4, "Limitation on CertGen Usage".

Using the Wildcarded Host Name Verifier

31-2 Administering Security for Oracle WebLogic Server 12.2.1

The default host name verifier is configured by default. No action is needed to use it.

For more information, see the following topics in Oracle WebLogic Server Administration
Console Online Help:

■ "Verify host name verification is enabled"

■ "Disable host name verification"

■ "Servers: Configuration: SSL"

31.1.1 Using the Default Host Name Verifier on Mac OS X Platforms
If WebLogic Server is installed on a Mac OS X platform that is running in a network in
which the DHCP server assigns host names, by default Mac OS X dynamically
overrides the host name set on your machine, using the one assigned by DHCP.
Consequently, if you have generated demo identity certificates, host name verification
may fail if the host name in your certificate does not match the one that has been
dynamically reassigned to your machine. This host name reassignment can occur
frequently, such as whenever the network is restarted.

To use demo identity certificates with WebLogic Server on Mac OS X platforms, do one
of the following:

■ Disable host name verification (not recommended if operating in a production
environment).

■ Prior to installing WebLogic Server, set a fixed host name on your machine.
Depending on your environment, you may be able to do this by changing the
value of the HOSTNAME property in /etc/hostconfig from -AUTOMATIC- to the name
you wish to assign. For example:

HOSTNAME=mymachine.mydomain.com

In addition, you may also verify that your desired host name is set in the file
/Library/Preferences/SystemConfiguration/preferences.plist. For more
information, consult the Mac OS X documentation for your platform.

31.2 Using the Wildcarded Host Name Verifier
In addition to the default WebLogic Server host name verifier, WebLogic Server
includes an alternative host name verifier called the wildcarded host name verifier.
The wildcarded host name verifier works the same as the default WebLogic Server
host name verifier; however, the wildcarded host name verifier also accepts the
following additional SSL session certificates:

■ Certificates that contain the asterisk wildcard character (*) in the host name that is
obtained from the certificate's Subject CommonName attribute (that is, the CN
domain)

■ SubjectAlternativeName dnsName (SAN) certificates

31.2.1 How the Wildcarded Host Name Verifier Works
If the host name in the SSL session certificate contains a wildcard character that meets
the following criteria, the certificate is accepted by the wildcarded host name verifier:

■ The host name contains at least two dot (.) characters.

■ The host name begins with an asterisk (*) and does not contain any additional
asterisks.

Using a Custom Host Name Verifier

Using Host Name Verification 31-3

■ When the asterisk (*) is stripped from the CN string, the remaining string must:

– Represent the domain.

– Include a leading dot (.) character.

– Be identical to the ending string of the incoming request domain.

– Not include an additional dot (.) character. (This prevents the wildcard from
representing subdomains.

If the host name in the SSL session certificate does not exactly match the expected
server name attribute, and the host name also cannot successfully be validated in
accordance with the wildcard acceptance criteria, the wildcarded host name verifier
attempts to validate the SAN extensions.

The SAN extensions are obtained from the SSL session certificate. The SAN extension
values are iterated using a case-insensitive match. For any iterated value, if the
dnsName attribute in the certificate matches the request URL, host name verification
succeeds.

31.2.2 Configuring the Wildcarded Host Name Verifier
The wildcarded host name verifier class name is
weblogic.security.utils.SSLWLSWildcardHostnameVerifier. To configure the
wildcarded host name verifier, specify this class as a custom host name verifier in the
Servers: Configuration: SSL page of the WebLogic Server Administration Console. The
wildcarded host name verifier has no parameters with which it must be configured.
For more information, see "Configure a custom host name verifier" in the Oracle
WebLogic Server Administration Console Online Help.

31.3 Using a Custom Host Name Verifier
The class that implements the custom host name verifier must be specified in the
CLASSPATH of WebLogic Server (when acting as an SSL client) or a standalone SSL
client.

For more information, see "Configure a custom host name verifier" in Oracle WebLogic
Server Administration Console Online Help.

Using a Custom Host Name Verifier

31-4 Administering Security for Oracle WebLogic Server 12.2.1

32

Specifying a Client Certificate for an Outbound Two-Way SSL Connection 32-1

32Specifying a Client Certificate for an Outbound
Two-Way SSL Connection

[33] This chapter explains how to specify a client certificate when making an outbound
two-way SSL connection.

This chapter includes the following topics:

■ Overview

■ Add a Client Certificate to the Identity Keystore

■ Initiate the Outbound Two-Way SSL Connection

■ Restore the Use of the Server Identity Certificate

32.1 Overview
When making an outbound two-way SSL connection, WebLogic Server by default uses
its server certificate to establish its identity as a client. However, you can alternatively
specify a separate client certificate to establish identity instead. This capability is
particularly useful when WebLogic Server is acting as a client making two-way SSL
connection.

To use a client certificate for specifying an outbound two-way SSL connection,
complete the steps described in the following sections:

1. Add a Client Certificate to the Identity Keystore

2. Initiate the Outbound Two-Way SSL Connection

3. Restore the Use of the Server Identity Certificate

32.2 Add a Client Certificate to the Identity Keystore
Add a client certificate to WebLogic Server's identity keystore and note the name of the
alias under which the private key and public certificate are stored. This needs to be
done only once. After completing the following steps, the ability to use a client identity
for making an outbound two-way SSL connection is always available for the current
WebLogic Server instance.

Note: Switching WebLogic Server's identity to a client certificate is
supported only when making an outbound two-way SSL connection.
For inbound SSL connections, where Weblogic Server is acting as an
SSL server, the server certificate is always used for identity.

Initiate the Outbound Two-Way SSL Connection

32-2 Administering Security for Oracle WebLogic Server 12.2.1

To add a client certificate to the identity keystore, complete the following steps:

1. Create a client key pair (a public key and associated private key) and an alias for
the private key and store it the WebLogic Server identity keystore. You can do this
using the keytool utility.

2. Generate a Certificate Signing Request (CSR) and submit it to a certificate
authority (CA), who returns the CA-signed client certificate. Oracle recommends
using the same CA as for the server certificate so that both certificates have the
same trusted root CA.

3. Store the CA-signed client certificate in the identity keystore. (If the client
certificate is signed by the same CA as the server certificate, you can skip the step
of storing the root CA certificate in the trust keystore because it is already there.

32.3 Initiate the Outbound Two-Way SSL Connection
To initiate an outbound two-way SSL connection using the client certificate, create a
WLST script that does the following:

1. Connects to the WebLogic Server instance.

2. Sets the SSLMBean.UseServerCerts attribute to true, which establishes the server
identity for the outbound connection.

3. Switches to the identity of the client certificate by setting the
SSLMBean.UseClientCertForOutbound attribute to true.

4. Specifies the client certificate private key passphrase, using the
SSLMBean.ClientCertPrivateKeyPassPhrase attribute, and the client certificate
keystore alias, using the SSLMBean.ClientCertAlias attribute.

Example 32–1 shows a WLST script that initiates an outbound two-way SSL
connection using a client certificate from the identity keystore configured with
WebLogic Server.

Example 32–1 Sample WLST Script that Initiates an Outbound Two-Way SSL Connection
Using a Client Identity

url="t3://localhost:7001"
adminUsername="weblogic"
adminPassword="password"
connect(adminUsername, adminPassword, url)
edit()
server=cmo.lookupServer('myserver')
cd('Servers')
cd('myserver')
startEdit()
cd('SSL')
cd('myserver')
ssl = server.getSSL()
ssl.setUseServerCerts(true)
ssl.setUseClientCertForOutbound(true)
ssl.setClientCertAlias("myClientCert")
ssl.setClientCertPrivateKeyPassPhrase("myClientCertPrivateKeyPassPhrase")
save()
activate()
disconnect()
exit()

Restore the Use of the Server Identity Certificate

Specifying a Client Certificate for an Outbound Two-Way SSL Connection 32-3

32.4 Restore the Use of the Server Identity Certificate
To restore use of the server identity certificate for outbound SSL connections, enter a
WLST command that sets the SSLMBean.UseClientCertForOutbound attribute to
false.

Note the following:

■ Note that the values of the SSLMBean.ClientCertPrivateKeyPassPhrase and
SSLMBean.ClientCertAlias attributes are persisted and are used the next time an
outbound two-way SSL connection using a client identity is made (that is, the next
time the SSLMBean.UseClientCertForOutbound attribute is set to true).

■ The SSLMBean attributes used for specifying a client certificate for outbound SSL
connections are not available from the WebLogic Server Administration Console.

Restore the Use of the Server Identity Certificate

32-4 Administering Security for Oracle WebLogic Server 12.2.1

33

SSL Debugging 33-1

33SSL Debugging

[34] This chapter describes SSL debugging, which provides detailed information about the
SSL events that occur during an SSL handshake.

This chapter includes the following sections:

■ About the SSL Debug Trace

■ Command-Line Properties for Enabling SSL Debugging

33.1 About the SSL Debug Trace
The SSL debug trace displays information about the following:

■ Trusted certificate authorities

■ SSL server configuration information

■ Server identity (private key and digital certificate)

■ The encryption strength that is allowed

■ Enabled ciphers

■ SSL records that were passed during the SSL handshake

■ SSL failures detected by WebLogic Server (for example, trust and validity checks
and the default host name verifier)

■ I/O related information

SSL debugging dumps a stack trace whenever an ALERT is created in the SSL process.
The types and severity of the ALERTS are defined by the Transport Layer Security
(TLS) specification.

The stack trace dumps information into the log file where the ALERT originated.
Therefore, when tracking an SSL problem, you may need to enable debugging on both
sides of the SSL connection (on both the SSL client or the SSL server). The log file
contains detailed information about where the failure occurred. To determine where
the ALERT occurred, confirm whether there is a trace message after the ALERT. An
ALERT received after the trace message indicates the failure occurred on the peer. To
determine the problem, you need to enable SSL debugging on the peer in the SSL
connection.

When tracking an SSL problem, review the information in the log file to ensure:

■ The correct config.xml file was loaded

■ The setting for domestic, or export, is correct

■ The trusted certificate authority was valid and correct for this server.

Command-Line Properties for Enabling SSL Debugging

33-2 Administering Security for Oracle WebLogic Server 12.2.1

■ The host name check was successful

■ The certificate validation was successful

33.2 Command-Line Properties for Enabling SSL Debugging
Use the following command-line properties to enable SSL debugging:

-Djavax.net.debug=all

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

Note the following:

■ The -Djavax.net.debug=all property enables debug logging within the
JSSE-based SSL implementation.

■ The -Dssl.debug=true and -Dweblogic.StdoutDebugEnabled=true command-line
properties enable debug logging of the SSL calling code within WebLogic Server.

You can include SSL debugging properties in the start script of the SSL server, the SSL
client, and the Node Manager. For a Managed Server started by the Node Manager,
specify this command-line argument on the Remote Start page for the Managed
Server.

For information about using WebLogic logging properties with the JSSE SSL logging
system, see Section 38.4, "Using Debugging with JSSE SSL".

For information about debugging utilities available for JSSE, see "Debugging Utilities"
in the Java™ Secure Socket Extension (JSSE) Reference Guide, available at the following
URL:

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERe
fGuide.html#Debug

Note: Sev 1 type 0 is a normal close ALERT, not a problem.

34

SSL Certificate Validation 34-1

34SSL Certificate Validation

[35] This chapter describes how WebLogic Server ensures that each certificate in a
certificate chain was issued by a certificate authority. All X509 V3 CA certificates used
with WebLogic Server must have the Basic Constraint extension defined as CA, thus
ensuring that all certificates in a certificate chain were issued by a certificate authority.
By default, any certificates for certificate authorities not meeting this criteria are
rejected. This chapter describes the command-line argument that controls the level of
certificate validation.

This chapter includes the following sections:

■ Controlling the Level of Certificate Validation

■ Accepting Certificate Policies in Certificates

■ Checking Certificate Chains

■ Using Certificate Lookup and Validation Providers

■ How SSL Certificate Validation Works in WebLogic Server

■ Troubleshooting Problems with Certificate Validation

34.1 Controlling the Level of Certificate Validation
By default WebLogic Server rejects any certificates in a certificate chain that do not
have the Basic Constraint extension defined as CA. However, you may be using
certificates that do not meet this requirement or you may want to increase the level of
security to conform to the IETF RFC 2459 standard. Use the following command-line
argument to control the level of certificate validation performed by WebLogic Server:

-Dweblogic.security.SSL.enforceConstraints=option

Table 34–1 describes the options for the command-line argument.

Notes: Note the following:

■ Weblogic Server uses RSA Cert-J 3.1 for certain certificate
processing.

■ If WebLogic Server is booted with a certificate chain that will not
pass the certificate validation, an information message is logged
noting that clients could reject it.

Accepting Certificate Policies in Certificates

34-2 Administering Security for Oracle WebLogic Server 12.2.1

34.2 Accepting Certificate Policies in Certificates
WebLogic Server offers limited support for Certificate Policy Extensions in X.509
certificates. Use the weblogic.security.SSL.allowedcertificatepolicyids
argument to provide a comma separated list of Certificate Policy IDs. When WebLogic
Server receives a certificate with a critical Certificate Policies Extension, it verifies
whether any Certificate Policy is on the list of allowed certificate policies and whether
there are any unsupported policy qualifiers. This release of WebLogic Server supports
Certification Practice Statement (CPS) Policy qualifiers and does not support User
Notice qualifiers. A certificate is also accepted if it contains a special policy anyPolicy
with the ID 2.5.29.32.0, which indicates that the CA does not wish to limit the set of
policies for this certificate.

Table 34–1 Options for -Dweblogic.security.SSL.enforceConstraints

Option Description

strong or true Use this option to ensure that the Basic Constraints extension on the CA
certificate is defined as CA.

For example:

-Dweblogic.security.SSL.enforceConstraints=strong

or

-Dweblogic.security.SSL.enforceConstraints=true

By default, WebLogic Server performs this level of certificate validation.

strong_nov1cas Functions the same as the strong option, described in the preceding row,
with the additional constraint that X509 version 1 CA certificates are
rejected.

For example:

-Dweblogic.security.SSL.enforceConstraints=strong_nov1cas

strict Use this option to ensure the Basic Constraints extension on the CA
certificate is defined as CA and set to critical. This option enforces the IETF
RFC 2459 standard.

For example:

-Dweblogic.security.SSL.enforceConstraints=strict

This option is not the default because a number of commercially available
CA certificates do not conform to the IETF RFC 2459 standard.

strict_nov1cas Functions the same as the strict option, described in the preceding row,
with the additional constraint that X509 version 1 CA certificates are
rejected.

For example:

-Dweblogic.security.SSL.enforceConstraints=strict_nov1cas

off Use this option to turn off checking for the Basic Constraints extension. The
rest of the certificate is still validated.

For example:

-Dweblogic.security.SSL.enforceConstraints=off

Oracle does not recommend using this option in a production environment.
Instead, purchase new CA certificates that comply with the IETF RFC 2459
standard. CA certificates from most commercial certificate authorities
should work with the default strong option.

Using Certificate Lookup and Validation Providers

SSL Certificate Validation 34-3

To enable acceptance of Certificate Policies, start WebLogic Server with the following
argument:

-Dweblogic.security.SSL.allowedcertificatepolicyids
<identifier1>,<identifier2>,...

This argument should contain a comma-separated list of Certificate Policy identifiers
for all the certificates with critical extensions that might be present in the certificate
chain, back to the root certificate, in order for WebLogic Server to accept such a
certificate chain.

34.3 Checking Certificate Chains
Use the WebLogic Server ValidateCertChain command-line utility to confirm whether
an existing certificate chain will be rejected by WebLogic Server. The utility validates
certificate chains from PEM files, PKCS-12 files, PKCS-12 keystores, and JKS keystores.
A complete certificate chain must be used with the utility. The following is the syntax
for the ValidateCertChain command-line utility:

java utils.ValidateCertChain -file pemcertificatefilename
java utils.ValidateCertChain -pem pemcertificatefilename
java utils.ValidateCertChain -pkcs12store pkcs12storefilename
java utils.ValidateCertChain -pkcs12file pkcs12filename password
java utils.ValidateCertChain -jks alias storefilename [storePass]

Example of valid certificate chain:

java utils.ValidateCertChain -pem zippychain.pem

Cert[0]: CN=zippy,OU=FOR TESTING
ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Cert[1]: CN=CertGenCAB,OU=FOR TESTING
ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain appears valid

Example of invalid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystore

Cert[0]: CN=corba1,OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

CA cert not marked with critical BasicConstraint indicating it is a CA
Cert[1]: CN=CACERT,OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain is invalid

34.4 Using Certificate Lookup and Validation Providers
WebLogic Server SSL has built-in certificate validation. Given a set of trusted CAs, this
validation:

Note: The weblogic.security.SSL.allowedcertificatepolicyids
argument is currently not supported in WebLogic Server when the
JSSE-based SSL implementation is enabled.

How SSL Certificate Validation Works in WebLogic Server

34-4 Administering Security for Oracle WebLogic Server 12.2.1

■ Verifies that the last certificate in the chain is either a trusted CA or is issued by a
trusted CA.

■ Completes the certificate chain with trusted CAs.

■ Verifies the signatures in the chain.

■ Ensures that the chain has not expired.

You can use certificate lookup and validation (CLV) providers to perform additional
validation on the certificate chain. WebLogic Server includes two CLV providers:

■ WebLogic CertPath Provider—Completes certificate paths and validates
certificates using the trusted CA configured for a particular server instance,
providing the same functionality as the built-in SSL certificate validation. This is
configured by default.

■ Certificate Registry—The system administrator makes a list of trusted CA
certificates that are allowed access to the server; a certificate is valid if the end
certificate is in the registry. The administrator revokes a certificate by removing it
from the certificate registry, which is an inexpensive mechanism for performing
revocation checking. This is not configured by default.

Alternatively, you can write a custom CertPathValidator to provide additional
validation on the certificate chain. See "CertPath Providers" in Developing Security
Providers for Oracle WebLogic Server.

34.5 How SSL Certificate Validation Works in WebLogic Server
Outbound SSL and two-way inbound SSL in a WebLogic Server instance receive
certificate chains during the SSL handshake that must be validated. An example of
two-way inbound SSL is a browser connecting to a Web application over HTTPS
where the browser sends the client's certificate chain to the Web application. The
inbound certificate validation setting is used for all two-way client certificate
validation in the server.

Examples of WebLogic Server using outbound SSL (that is, acting as an SSL client)
include:

■ Connecting to the Node Manager

■ Connecting to another WebLogic Server instance over the Administration port

■ Connecting to an external LDAP server, such as the LDAPAuthenticator

Using any of the administration tools listed in "Summary of System Administration
Tools and APIs" in Understanding Oracle WebLogic Server, you can independently
configure inbound and outbound SSL certificate validation using these SSLMBean
attributes: InboundCertificateValidation and OutboundCertificateValidation.

Legal values for both attributes are:

■ BUILTIN_SSL_VALIDATION: Use the built-in SSL certificate validation code to
complete and validate the certificate chain. That is, configure SSL to work as it has
in previous releases. This is the default behavior.

■ BUILTIN_SSL_VALIDATION_AND_CERT_PATH_VALIDATORS: Use the built-in trusted
CA-based validation and the configured CertPathValidator providers to perform
additional validation. That is, configure SSL to work as it has in previous releases
and to do extra validation.

See:

Troubleshooting Problems with Certificate Validation

SSL Certificate Validation 34-5

■ "SSLMBean" in the MBean Reference for Oracle WebLogic Server

■ "Set Up SSL" in the Oracle WebLogic Server Administration Console Online Help

34.6 Troubleshooting Problems with Certificate Validation
If SSL communications that worked properly in a previous release of WebLogic Server
start failing unexpectedly, the likely problem is that the certificate chain is failing the
validation.

Determine where the certificate chain is being rejected, and decide whether to update
the certificate chain with one that will be accepted, or change the setting of the
-Dweblogic.security.SSL.enforceConstraints command-line argument.

To troubleshoot problems with certificates, use one of the following methods:

■ If you know where the certificate chains for the processes using SSL
communication are located, use the ValidateCertChain command-line utility to
check whether the certificate chains will be accepted.

■ Turn on SSL debug tracing on the processes using SSL communication. The syntax
for SSL debug tracing is:

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

The following message indicates the SSL failure results from problems in the
certificate chain:

<CA certificate rejected. The basic constraints for a CA certificate were not
marked for being a CA, or were not marked as critical>

When you use one-way SSL, look for this error in the client log. With two-way
SSL, look for this error in the client and server logs.

Note: Additional detailed debug logging may be enabled using the
following command-line property:

-Djavax.net.debug=all

For more information, see Section 33.2, "Command-Line Properties for
Enabling SSL Debugging".

Troubleshooting Problems with Certificate Validation

34-6 Administering Security for Oracle WebLogic Server 12.2.1

35

Using JCE Providers with WebLogic Server 35-1

35Using JCE Providers with WebLogic Server

[36] This chapter describes how WebLogic Server supports the use of the RSA, JDK, and
nCipher Java Cryptography Extension (JCE) providers.

This chapter includes the following sections:

■ Using the RSA JCE Provider

■ Using the JDK JCE Provider

■ Using nCipher JCE Provider

35.1 Using the RSA JCE Provider

The RSA JCE provider is included with WebLogic Server. The RSA JCE provider is
located in cryptoj.jar, which is in the WebLogic Server classpath by default.

Using the following URL, download and install the Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files that correspond to the version of
your JDK. These Java policy JAR files affect cipher key sizes greater than 128 bits.
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Open the .ZIP distribution and update local_policy.jar and US_export_policy.jar
in JAVA_HOME/jre/lib/ security. See the README.txt file in the .ZIP distribution for
more information and installation instructions.

The RSA CryptoJ documentation describes at least two ways to use the RSA's JCE
Provider:

■ Static registration (for example, by editing java.security).

security.provider.1=com.rsa.jsafe.provider.JsafeJCE

■ Dynamic registration at runtime.

// Create a Provider object
Provider jceProvider = new com.rsa.jsafe.provider.JsafeJCE();
// Add the JCE Provider class to the current list of providers available on the
system.
Security.insertProviderAt (jceProvider, 1);

Note: This section describes using the RSA JCE provider in non-FIPS
mode. You can also use the RSA JCE provider in FIPS mode as
described in Chapter 36, "Enabling FIPS Mode".

Using the JDK JCE Provider

35-2 Administering Security for Oracle WebLogic Server 12.2.1

35.2 Using the JDK JCE Provider
WebLogic Server supports the use of the JDK JCE provider (SunJCE). For more
information about the features in SunJCE, see the Java™ Cryptography Architecture (JCA)
Reference Guide at
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/Cryp
toSpec.html.

The JCA framework includes an ability to enforce restrictions regarding the
cryptographic algorithms and maximum cryptographic strengths available to
applets/applications in different jurisdiction contexts (locations). Any such restrictions
are specified in "jurisdiction policy files". For more information, see the Java™
Cryptography Architecture (JCA) Reference Guide.

WebLogic Server will continue to control the strength of the cryptography used by the
WebLogic Server Application Programming Interfaces (APIs). Client code without the
appropriate domestic strength cryptography setting will only be able to use the Java
SE export strength default cryptography. On the server, WebLogic Server will enable
either export or domestic strength cryptography.

35.3 Using nCipher JCE Provider
WebLogic Server also supports the use of the nCipher JCE provider, available at
http://www.ncipher.com. SSL is a key component in the protection of resources
available in Web servers. However, heavy SSL traffic can cause bottlenecks that affect
the performance of Web servers. JCE providers like nCipher that use a hardware card
for encryption offload SSL processing from Web servers, which frees the servers to
process more transactions. They also provide strong encryption and cryptographic
processes to preserve the integrity and secrecy of keys.

35.3.1 Installing the nCipher JCE Provider
To install the nCipher JCE provider:

1. Install and configure the hardware for the nCipher JCE provider according to the
product's documentation.

2. Install the files for the nCipher JCE provider. The following files are required:

■ Jurisdiction policy files—The JDK installs these files by default but they are of
limited export strength.

■ Certificate that signed the JAR file

■ The JCE provider JAR files

Choose an installation method for the files:

■ Install files as an extension. Copy the files to one of the following locations:

JAVA_HOME/jre/lib/ext

For example:

ORACLE_HOME/jdk1.7.0_15/jre/lib/ext

Note: This step may have been performed as part of installing the
hardware for nCipher JCE provider. In that case, verify that the files
are correctly installed.

Using nCipher JCE Provider

Using JCE Providers with WebLogic Server 35-3

■ Install files in the CLASSPATH of the server.

3. Edit the Java security properties file (java.security) to add the nCipher JCE
provider to the list of approved JCE providers for WebLogic Server. The Java
security properties file is located in:

JAVA_HOME/jre/lib/security/java.security

Specify the nCipher JCE provider as:

security.provider.n=com.ncipher.provider.km.mCipherKM

where n specifies the preference order that determines the order in which
providers are searched for requested algorithms when no specific provider is
requested. The order is 1-based; 1 is the most preferred, followed by 2, and so on.

The nCipher JCE provider must follow the RSA JCA provider in the security
properties file. For example:

security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=com.ncipher.provider.km.mCipherKM

4. Boot WebLogic Server.

5. To ensure the nCipher JCE provider is working properly, enable debugging
according to the nCipher product documentation.

Using nCipher JCE Provider

35-4 Administering Security for Oracle WebLogic Server 12.2.1

36

Enabling FIPS Mode 36-1

36Enabling FIPS Mode

[37] This chapter describes how to enable FIPS 140-2 mode in WebLogic Server.

This chapter includes the following sections:

■ FIPS Overview

■ Enabling FIPS 140-2 Mode From Java Options

■ Enabling FIPS 140-2 Mode From java.security

■ Verifying JCE When FIPS 140-2 Mode is Enabled

■ Important Considerations When Using Web Services

36.1 FIPS Overview
The Federal Information Processing Standards (FIPS) 140-2 is a standard that describes
U.S. Federal government requirements for sensitive but unclassified use.

 WebLogic Server supports the use of the RSA FIPS-compliant (FIPS 140-2) crypto
module. (See Section 3.2, "Supported FIPS Standards and Cipher Suites" for supported
versions.)

When used in combination with the RSA JSSE and RSA JCE providers, this crypto
module provides a FIPS-compliant (FIPS 140-2) implementation.

 See "FIPS-140 Support in Oracle Fusion Middleware" in Administering Oracle Fusion
Middleware Oracle Fusion Middleware for detailed information about Oracle Fusion
Middleware support for FIPS.

36.2 Enabling FIPS 140-2 Mode From Java Options
To enable FIPS 140-2 mode from Java options, follow these steps:

Note: In addition to using the RSA JSSE and RSA JCE providers in
FIPS mode as described in this section, you can also use them in
non-FIPS mode. For example, you might want to use a particular
encryption algorithm that is unique to the RSA JSSE provider.

For more information see:

■ Section 38.5, "Using the RSA JSSE Provider in WebLogic Server"

■ Section 35.1, "Using the RSA JCE Provider"

Enabling FIPS 140-2 Mode From java.security

36-2 Administering Security for Oracle WebLogic Server 12.2.1

1. Using the following URL, download and install the Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files that correspond to the version of
your JDK. These Java policy JAR files affect cipher key sizes greater than 128 bits.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Open the .ZIP distribution and update local_policy.jar and US_export_
policy.jar in JAVA_HOME/jre/lib/security. See the README.txt file in the .ZIP
distribution for more information and installation instructions.

2. Create your own java.security file. You can use the one that comes with the
installed JDK as a guide.

Add both the RSA JCE provider and the RSA JSSE provider as the first two Java
security providers listed in your java.security properties file:

#
security.provider.1=com.rsa.jsafe.provider.JsafeJCE
security.provider.2=com.rsa.jsse.JsseProvider

security.provider.3=sun.security.provider.Sun
:

3. Set -Djava.security.properties on the WebLogic Server start command line to
override the default configuration in the java.security file. Specify a full file path
to your custom java.security file:

set JAVA_OPTIONS=-Djava.security.properties=C:\Users\user\java.security

4. Put the jcmFIPS.jar jar and sslj.jar JAR files (both are in WL_HOME/server/lib/)
at the head of the classpath. You can use the PRE_CLASSPATH environment variable
to do this.

(The RSA JCE provider Crypto-J is located in cryptoj.jar and is in the classpath
by default.)

For example, you could set jcmFIPS.jar and sslj.jar in the PRE_CLASSPATH
variable before you call the server start script, typically startWebLogic.cmd/sh:

set PRE_CLASSPATH=%MW_HOME%\wlserver\server\lib\jcmFIPS.jar;%MW_
HOME%\wlserver\server\lib\sslj.jar
cd %MW_HOME%\user_projects\domains\base_domain
startWebLogic.cmd

5. Start WebLogic Server.

36.3 Enabling FIPS 140-2 Mode From java.security
To enable FIPS 140-2 mode from the installed JDK java.security file, follow these
steps:

Note: Use a single equal sign (=) to specify a filename if you want
the java.security properties to be appended to the installed JRE
security properties. Use two equal signs (==) if you want to override
all the Java security properties, for instance,
-Djava.security.properties==C:\Users\user\java.security.

Important Considerations When Using Web Services

Enabling FIPS Mode 36-3

1. Using the following URL, download and install the Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files that correspond to the version of
your JDK. These Java policy JAR files affect cipher key sizes greater than 128 bits.

See the README.txt file in the .ZIP distribution for installation instructions.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Open the .ZIP distribution and update local_policy.jar and US_export_
policy.jar in JAVA_HOME/jre/lib/security. See the README.txt file in the .ZIP
distribution for more information and installation instructions.

2. Edit the java.security file. Add both the RSA JCE provider and the RSA JSSE
provider as the first two Java security providers listed in the java.security
properties file:

#
security.provider.1=com.rsa.jsafe.provider.JsafeJCE
security.provider.2=com.rsa.jsse.JsseProvider

security.provider.3=sun.security.provider.Sun
:

3. Put the jcmFIPS.jar jar and sslj.jar JAR files (both are in WL_HOME/server/lib/)
at the head of the classpath. You can use the PRE_CLASSPATH environment variable
to do this.

(The RSA JCE provider Crypto-J is located in cryptoj.jar and is in the classpath
by default.)

For example, you could set jcmFIPS.jar and sslj.jar in the PRE_CLASSPATH
variable before you call the server start script, typically startWebLogic.cmd/sh:

set PRE_CLASSPATH=%MW_HOME%\wlserver\server\lib\jcmFIPS.jar;%MW_
HOME%\wlserver\server\lib\sslj.jar
cd %MW_HOME%\user_projects\domains\base_domain
startWebLogic.cmd

Or, you could add jcmFIPS.jar and sslj.jar to the PRE_CLASSPATH variable in the
server start script itself.

4. Start WebLogic Server.

36.4 Verifying JCE When FIPS 140-2 Mode is Enabled
During normal WebLogic startup, for performance reasons the RSA Crypto-J JCE
Self-Integrity test is disabled.

If you want to make sure that JCE verification is enabled when configuring WLS for
FIPS 140-2 mode, set the
-Dweblogic.security.allowCryptoJDefaultJCEVerification=true JAVA_OPTIONS
environment variable when you start WebLogic Server.

Note that setting this environment variable adds additional processing and time to the
startup.

36.5 Important Considerations When Using Web Services
For FIPS 140-2 mode, all certificates must have a key size of 2048 bits in length.

Important Considerations When Using Web Services

36-4 Administering Security for Oracle WebLogic Server 12.2.1

Please keep the following additional considerations in mind when using web services
in FIPS 140-2 mode:

■ Section 36.5.1, "SHA-1 Secure Hash Algorithm Not Supported"

■ Section 36.5.2, "X509PKIPathv1 token Not Supported"

36.5.1 SHA-1 Secure Hash Algorithm Not Supported
SHA-1 Secure Hash Algorithm is not supported in FIPS 140-2 mode. Therefore the
following WS-SP <sp:AlgorithmSuite> values are not supported in FIPS 140-2 mode:

■ Basic256

■ Basic192

■ Basic128

■ TripleDes

■ Basic256Rsa15

■ Basic192Rsa15

■ Basic128Rsa15

■ TripleDesRsa15

As described in "Use the SHA-256 Secure Hash Algorithm" in Securing WebLogic Web
Services for Oracle WebLogic Server, the WebLogic Server web service security policies
support both the SHA-1 and much stronger SHA-2 (SHA-256) secure hash algorithms
for hashing digital signatures. Specifically, "Use the SHA-256 Policies" describes which
policies use the SHA-1 secure hash algorithm and their SHA-2 equivalents.

If you enable FIPS 140-2 mode, change the <sp:AlgorithmSuite> element in the
Security policy to one of the following supported <sp:AlgorithmSuite> values as
described in "Use the SHA-256 Secure Hash Algorithm":

■ Basic256Sha256

■ Basic192Sha256

■ Basic128Sha256

■ TripleDesSha256

■ Basic256Sha256Rsa15

■ Basic192Sha256Rsa15

■ Basic128Sha256Rsa15

■ TripleDesSha256Rsa15

For example, if Basic256 Algorithm Suite is used in the policy, then change the policy
from

<sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
</sp:AlgorithmSuite>

to

<sp:AlgorithmSuite>
 <wsp:Policy>

Important Considerations When Using Web Services

Enabling FIPS Mode 36-5

 <sp:Basic256Sha256/>
 </wsp:Policy>
</sp:AlgorithmSuite>

36.5.2 X509PKIPathv1 token Not Supported
The X509PKIPathv1 token is not supported for FIPS 140-2 mode in this release of
WebLogic Server. If you use the X509PKIPathv1 token in a custom policy, change the
policy to use the PKCS7 token instead.

Specifically, the following two policy assertions are not supported in FIPS 140-2 mode
in this release of WebLogic Server:

■ <sp:WssX509PkiPathV1Token10/>

■ <sp:WssX509PkiPathV1Token11/>

If you use these two policy assertions, change them to the following two assertions
instead:

■ <sp:WssX509Pkcs7Token10/>

■ <sp:WssX509Pkcs7Token11/>

For example, if the policy has the following assertion in the custom policy:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:WssX509PkiPathV1Token10/>
 </wsp:Policy>
 </sp:X509Token>
</wsp:Policy>

replace it with the following policy assertion:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:WssX509Pkcs7Token10/>
 </wsp:Policy>
 </sp:X509Token>
</wsp:Policy>

Or, if the policy has the following assertion in the custom policy:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509PkiPathV1Token11/>
 </wsp:Policy>
 </sp:X509Token>
</wsp:Policy>

replace it with the following assertion:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509Pkcs7Token11/>
 </wsp:Policy>
 </sp:X509Token>

Important Considerations When Using Web Services

36-6 Administering Security for Oracle WebLogic Server 12.2.1

</wsp:Policy>

37

Specifying the SSL Protocol Version 37-1

37Specifying the SSL Protocol Version

[38] This chapter explains how to configure WebLogic Server to limit the lowest supported
versions of SSL and TLS that are enabled for SSL connections.

This chapter includes the following topics:

■ About the SSL Version Used in the Handshake

■ Using the weblogic.security.SSL.protocolVersion System Property

■ Using the weblogic.security.SSL.minimumProtocolVersion System Property

37.1 About the SSL Version Used in the Handshake
At the start of the SSL handshake, the SSL peers determine the highest protocol
version both peers support. However, you can configure Weblogic Server to limit the
lowest supported versions of SSL and TLS that are enabled for SSL connections.

To specify the SSL and TLS versions enabled for the SSL handshake, you can set either
of the following system properties in the command-line argument that starts WebLogic
Server:

■ weblogic.security.SSL.protocolVersion

■ weblogic.security.SSL.minimumProtocolVersion

Note the following regarding SSL protocol support in WebLogic Server:

■ When the JSSE-based SSL implementation is enabled (see Chapter 38, "Using the
JSSE-Based SSL Implementation"), SSL protocol support is dependent on the JSSE
provider that is installed.

■ When WebLogic Server is acting as an SSL server, the protocol that the client
specifies as preferred in its client hello message is used, if supported.

Note: In versions of WebLogic Server prior to 12.1.3, if a client sent
an SSLv2Hello, WebLogic Server converted it into an SSLv3Hello.
However, WebLogic Server 12.2.1 supports only JDK 8 (clients can use
JDK 7 or 8) and the SSLv2Hello protocol is not supported.

This means that a client that sends an SSLv2Hello will not be able to
connect to a version 12.2.1 WebLogic Server. Clients must send
SSLv3Hello.

Set weblogic.security.SSL.protocolVersion=SSL3, to force a client
to send SSLv3Hello.

Using the weblogic.security.SSL.protocolVersion System Property

37-2 Administering Security for Oracle WebLogic Server 12.2.1

■ WebLogic Server does not support SSL V2.0.

37.2 Using the weblogic.security.SSL.protocolVersion System Property
While in most cases the most recent version of the SSL or TLS protocol is desirable,
peers may not support it. You may want to specify the enabled SSL or TLS protocol
based on circumstances (compatibility, SSL performance, and environments with
maximum security requirements) that make the TLS V1 protocol more desirable for
enabling acceptable SSL and TLS protocols. Specifying the
weblogic.security.SSL.protocolVersion system property in a command-line
argument that starts WebLogic Server lets you specify the protocol that is used for SSL
connections.

The following command-line arguments can be specified so that WebLogic Server
supports only SSL V3.0 or TLS connection.

■ -Dweblogic.security.SSL.protocolVersion=SSL3—Only SSL V3.0 messages are
sent and accepted. Attempts by clients to establish connections with a prior SSL
version will be denied by WebLogic Server, with a denial message returned to the
client.

■ -Dweblogic.security.SSL.protocolVersion=TLS1— This property value enables
any protocol starting with "TLS" for messages that are sent and accepted; for
example, TLS V1.0, TLS V1.1, and TLS V1.2.

■ -Dweblogic.security.SSL.protocolVersion=ALL—This is the default behavior.
If ALL is selected, the default depends on the JSSE provider and JDK version. For
the supported protocol version table for Sun JSSE, see
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProvi
ders.html#SunJSSEProvider.

Note the following:

■ The SSL V3.0 and TLS V1 protocols can not be interchanged. Use only the TLS V1
protocol if you are certain all desired SSL clients are capable of using the protocol.

■ Not setting the weblogic.security.SSL.protocolVersion system property
enables the SSLv3Hello, SSLv3, and TLSv1 protocols. In addition, for JSSE, all
versions starting with "TLS" are also enabled.

■ If you set valid, supported protocols for the
weblogic.security.SSL.minimumProtocolVersion system property, the protocol
value you set for weblogic.security.SSL.protocolVersion is ignored.

Caution: Note the following:

■ If you specify the TLS1 or ALL value in this system property, all
versions of TLS V1 supported by the SSL provider are enabled for
use in SSL connections. The JSSE-based implementation supports
TLS V1.0, TLS V1.1, and TLS V1.2.

■ TLS V1.1 is the default minimum protocol version configured in
WebLogic Server. Oracle recommends the use of TLS V1.1 or later
in a production environment, which is available by using the
weblogic.security.SSL.minimumProtocolVersion system
property. For more information, see Section 37.3, "Using the
weblogic.security.SSL.minimumProtocolVersion System
Property".

Using the weblogic.security.SSL.minimumProtocolVersion System Property

Specifying the SSL Protocol Version 37-3

37.3 Using the weblogic.security.SSL.minimumProtocolVersion System
Property

In a production environment, Oracle recommends TLS V1.1, or later, for sending and
receiving messages in an SSL connection:

To control the minimum versions of SSL V3.0 and TLS V1 that are enabled for SSL
connections, set the weblogic.security.SSL.minimumProtocolVersion=protocol
system property as an option in the command line that starts WebLogic Server. This
system property accepts one of the following values for protocol:

The specific protocols that are enabled by each of the values you can specify for the
weblogic.security.SSL.minimumProtocolVersion system property depend upon the
SSL implementation with which WebLogic Server is configured. The next section
identifies these protocols for the JSSE-based SSL implementation available in
WebLogic Server

37.3.1 Protocols Enabled with the JSSE-Based SSL Implementation
When WebLogic Server is configured to use the JSSE-based SSL implementation and
you specify a minimum protocol version using the
weblogic.security.SSL.minimumProtocolVersion system property, the specific SSL
and TLS protocols that are enabled depend on the protocols that are supported in the
SSL implementation, as follows:

■ If the particular minimum protocol version you specify is supported, WebLogic
Server enables that protocol version and all later protocol versions that are
supported.

For example:

■ If the particular minimum protocol version you specify is not supported, Weblogic
Server enables the next lower protocol and all later protocols that are supported.
Note that the lowest protocol will be limited to SSLv3.

For example:

Value Description

SSLv3 Specifies SSL V3.0 as the minimum protocol version enabled in SSL
connections.

TLSv1 Specifies TLS V1.0 as the minimum protocol version enabled in SSL
connections.

TLSvx.y Specifies TLS Vx.y as the minimum protocol version enabled in SSL
connections, where:

■ x is an integer between 1 and 9, inclusive

■ y is an integer between 0 and 9, inclusive

For example, TLSv1.2.

If you
specify . . .

. . . and the JSSE-based SSL
implementation supports . . .

. . . the following protocols are
enabled

TLSv1 SSLv3
TLSv1
TLSv1.1
TLSv1.2

TLSv1
TLSv1.1
TLSv1.2

Using the weblogic.security.SSL.minimumProtocolVersion System Property

37-4 Administering Security for Oracle WebLogic Server 12.2.1

■ If the exact minimum protocol you specify is not supported, and no older (lower)
protocol is supported that is SSLv3 or higher, WebLogic Server enables all newer
(higher) supported versions. This case usually applies when SSLv3 is set as the
minimum.

For example:

■ If the particular minimum protocol you specify is invalid, WebLogic Server
enables SSLv3 and all later protocol versions that are supported.

For example:

If you
specify . . .

. . . and the JSSE-based SSL
implementation supports . . .

. . . the following protocols are
enabled

TLSv1 SSLv3
TLSv1.1
TLSv1.2

SSLv3
TLSv1.1
TLSv1.2

If you
specify . . .

. . . and the JSSE-based SSL
implementation supports . . .

. . . the following protocols are
enabled

SSLv3 TLSv1
TLSv1.1
TLSv1.2

TLSv1
TLSv1.1
TLSv1.2

If you
specify . . .

. . . and the JSSE-based SSL
implementation supports . . .

. . . the following protocols are
enabled

TSLv0 SSLv3
TLSv1
TLSv1.1
TLSv1.2

SSLv3
TLSv1
TLSv1.1
TLSv1.2

38

Using the JSSE-Based SSL Implementation 38-1

38Using the JSSE-Based SSL Implementation

[39] This explains how to use the JSSE-based SSL implementation, identifies the cipher
suites that are supported, describes key differences with the Certicom-based
implementation, and also explains how to use the RSA JSSE provider in WebLogic
Server.

This chapter includes the following sections:

■ System Property Differences Between the JSSE-Based and Certicom SSL
Implementations

■ SSL Performance Considerations

■ Cipher Suites

■ Using Debugging with JSSE SSL

■ Using the RSA JSSE Provider in WebLogic Server

38.1 System Property Differences Between the JSSE-Based
and Certicom SSL Implementations

Table 38–1 shows the differences in how the JSSE-based SSL implementation handles
the WebLogic system properties.

Notes: Note the following:

■ As of WebLogic Server version 12.1.1, JSSE is the only SSL
implementation that is supported. The Certicom-based SSL
implementation is removed and is no longer supported in
WebLogic Server.

■ SHA-2 signed certificates are supported in the JSSE SSL
implementation provided in WebLogic Server.

■ Although JSSE supports Server Name Indication (SNI) in its SSL
implementation, WebLogic Server does not support SNI.

System Property Differences Between the JSSE-Based and Certicom SSL Implementations

38-2 Administering Security for Oracle WebLogic Server 12.2.1

Table 38–1 System Properties Differences

System Property JSSE Applicability Description

weblogic.security.SSL.ignoreHost
nameVerification

This property continues to work
and is not affected by the JSSE
integration.

Does not verify the hostname in the
URL to the hostname in the
certificate.

weblogic.ReverseDNSAllowed This property continues to work
and is not affected by the JSSE
integration.

If set to true then use reverse DNS
lookup to figure out if urlhostname is
a loopback address ("localhost" or
"127.0.0.1", or the IPV6 equivalent.

weblogic.security.SSL.trustedCAK
eyStore

This property continues to work
and is not affected by the JSSE
integration.

Loads the trusted CA certificates
from that keystore.

weblogic.security.SSL.verbose Use this property in combination
with javax.net.debug=all to get
verbose debug output from the SSL
calling code and the JSSE-based
implementation.1

For additional SSL debugging when
-Dssl.debug=true is used.

ssl.debug=true Use this property in combination
with javax.net.debug=ssl to get
debug output from the SSL calling
code and the JSSE-based
implementation.1

Displays SSL debug information to
the console or logs. This property is
for the calling WebLogic code. The
JSSE-based SSL implementation has
its own logging system, which is
activated by the javax.net.debug
property.

Note: You can set JSSE logging
(javax.net.debug) independently of
WebLogic SSL logging (ssl.debug).

weblogic.security.SSL.disableJss
eCipherSuiteAliases=true|false

The default is false. Disables the conversion of Certicom
cipher suite names to SunJSSE cipher
suite names, where applicable. By
default, Certicom cipher suite names
are converted to JSSE cipher suite
names when JSSE is used for SSL.

For a list of Certicom cipher suite
names and their SunJSSE equivalents,
see Table 38–2.

weblogic.security.SSL.ignoreHost
nameVerify

This property continues to work
and is not affected by the JSSE
integration.

See
weblogic.security.SSL.ignoreHost
nameVerification

weblogic.security.SSL.HostnameVe
rifier=classname

This property continues to work
and is not affected by the JSSE
integration.

Specifies the class name of a custom
hostname verification class.

weblogic.security.SSL.protocolVe
rsion=protocol

This property continues to work
and is not affected by the JSSE
integration.

The supported protocol values are
mapped to the corresponding
protocols supported by JSSE.

See Chapter 37, "Specifying the SSL
Protocol Version".

SSL Performance Considerations

Using the JSSE-Based SSL Implementation 38-3

38.2 SSL Performance Considerations
Because WebLogic Server is configured with JDK 8, you may find that the
out-of-the-box SSL performance slower than in previous WebLogic Server releases.
This performance change is due to the stronger cipher and MAC algorithm used by
default when JDK 8 is used with the JSSE-based SSL provider in WebLogic Server.
Specifically, AES is used for encryption, and SHA1 is used for hashes. (This cipher
combination is typically designated as AES + SHA1 here; that is, cipher + MAC
algorithm.)

Previous versions of WebLogic Server used the RC4 and MD5 cipher combination
(RC4 + MD5) for SSL connections. In terms of performance, AES + SHA1 is slower
than RC4 + MD5. Although AES + SHA1 is recommended, you can configure
WebLogic Server to restrict the stronger ciphers and cause RC4 + MD5 to be used
instead for SSL. Although RC4 + MD5 is less secure than AES + SHA1, it may be
acceptable depending on the security requirements of a particular WebLogic Server
environment.

One of the following:

■ weblogic.security.SSL.allowUnen
cryptedNullCipher

■ SSLMBean.
SetAllowUnencryptedNullCiphe
r(boolean)

■ weblogic.security.disableNullCi
pher

SunJSSE supports the following
two null ciphers, but they are not
enabled by default:

■ SSL_RSA_WITH_NULL_MD5

■ SSL_RSA_WITH_NULL_SHA

If this setting is enabled, these two
null ciphers are added to the
cipher list.

By default, this control is not set and
the use of a null cipher is not allowed
on the server. In such a configuration,
if the SSL clients want to use the null
cipher suite (by indicating SSL_RSA_
WITH_NULL_MD5 as the only supported
cipher suite), the SSL handshake will
fail.

If you set this control, the null cipher
suite (for example, SSL_RSA_WITH_
NULL_MD5) is added to the list of
supported cipher suites by the server.
The SSL connection has a chance to
use the null cipher suite if the client
wants to do so. If the null cipher suite
is used, the message will be
unencrypted.

Caution: Do not set this control in a
production environment unless you
are aware of the implications and
consequences of doing so.

weblogic.security.SSL.enforceCon
straints=option

Off is not supported, but other
options are supported.

Ensures that the Basic Constraints
extension on the CA certificate is
defined as CA. See Section 34.1,
"Controlling the Level of Certificate
Validation".

weblogic.security.SSL.allowedcer
tificatepolicyids

Not supported. WebLogic Server offers limited
support for Certificate Policy
Extensions in X.509 certificates. See
Section 34.2, "Accepting Certificate
Policies in Certificates".

weblogic.security.SSL.nojce Not supported. See Section 28.2, "Setting Up SSL:
Main Steps".

1 This WebLogic system property is applicable to both the Certicom and JSSE-based SSL implementations. However, for JSSE,
this property affects only the SSL calling code, not the JSSE-based implementation. For more information about the
javax.net.debug system property and debugging the JSSE-based SSL implementation, see "Debugging Utilities" in the Java
Secure Socket Extension (JSSE) Reference Guide at
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#Debug.

Table 38–1 (Cont.) System Properties Differences

System Property JSSE Applicability Description

Cipher Suites

38-4 Administering Security for Oracle WebLogic Server 12.2.1

To configure WebLogic Server to use RC4 + MD5, add the following property to the
file JAVA_HOME/jre/lib/security/java.security:

jdk.tls.disabledAlgorithms=AES, DESede, DES, SHA1, SHA

The preceding property disables the stronger ciphers that are used by default for SSL
connections and allows RC4 + MD5 to be used instead.

38.3 Cipher Suites
This topic includes the following sections:

■ Section 38.3.1, "List of Supported Cipher Suites"

■ Section 38.3.2, "Backward Compatibility of Supported Cipher Suites"

■ Section 38.3.3, "Using Anonymous Ciphers"

■ Section 38.3.4, "Cipher Suite Name Equivalents"

■ Section 38.3.5, "Setting Cipher Suites Using WLST: An Example"

38.3.1 List of Supported Cipher Suites
The set of cipher suites supported by the JDK default JSSE provider, SunJSSE, is
available at the following URL:

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProvider
s.html#SunJSSEProvider

38.3.2 Backward Compatibility of Supported Cipher Suites
For backward compatibility, the JSSE-based SSL implementation accepts Certicom
cipher suite names for cipher suites that are compatible with SunJSSE. The Certicom
cipher suite names are converted for you to SunJSSE equivalents, usually replacing the
"TLS_" prefix with "SSL_", as shown in Table 38–2.

Please keep the following in mind as you consider backward compatibility with
Certicom cipher suites:

■ With JSSE, the cipher suites selected by default are stronger as compared to
Certicom SSL and have slower performance. The security policies in your
environment typically set the requirements for the cipher suites that must be used.
However, for highly secure environments, using the strongest available cipher that
provides acceptable performance is recommended.

■ For operations where enabled or supported cipher suites are returned, both the
Certicom and SunJSSE names of the cipher suites are returned. (Note that the
weblogic.security.SSL.disableJsseCipherSuiteAliases=true property,
described in Table 38–1, disables this behavior.)

■ For operations where you specify enabled cipher suites, you can use either the
equivalent Certicom cipher suite names, or the SunJSSE names. The Certicom
cipher suites, and their SunJSSE equivalents, are listed in Table 38–2. (Oracle does
not encourage future use of Certicom cipher suite names.)

Note: Oracle strongly recommends the stronger security provided by
AES + SHA1 for SSL connections.

Cipher Suites

Using the JSSE-Based SSL Implementation 38-5

■ The _DSS_ cipher suites requires certificates signed with DSS, the Digital Signature
Standard defined by NIST FIPS Pub 186. DSA is the key generation scheme as
described in FIPS 186.

■ The _anon_ cipher suites are disabled by default, and cannot be managed from the
WebLogic Server Administration Console. You must use WLST instead, as
described in Setting Cipher Suites Using WLST: An Example.

■ To use the Kerberos cipher suites TLS_KRB5_***, you must have KDC accounts set
up. See the Java Secure Socket Extension (JSSE) Reference Guide
(http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JS
SERefGuide.html#KRB) for more details on the Kerberos requirements.

38.3.3 Using Anonymous Ciphers
The following anonymous ciphers are not supported out-of-the-box in the JSSE-based
WebLogic SSL implementation in WebLogic Server:

■ TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

■ TLS_DH_anon_WITH_RC4_128_MD5

■ TLS_DH_anon_WITH_DES_CBC_SHA

■ TLS_DH_anon_EXPORT_WITH_RC4_40_MD5

■ TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA

However, if you want to enable any of the preceding anonymous ciphers, include the
following argument in the Java command that starts WebLogic Server:

-Dweblogic.security.SSL.AllowAnonymousCipher=true

In most cases, enabling anonymous ciphers is required when WebLogic Server, or its
deployed application, acts as a SSL client that is making an outbound connection to an
SSL server (for example, an LDAP server or RDBMS system) that is configured to use
anonymous ciphers only. A typical use case is connecting to an Oracle Internet
Directory instance that is configured in no-auth mode.

38.3.4 Cipher Suite Name Equivalents
By default, Certicom cipher suite names are converted to SunJSSE cipher suite names
when WebLogic Server is configured to use the JSSE-based SSL implementation.
Table 38–2 lists each cipher suite supported in the (removed) WebLogic Server
Certicom SSL implementation and its SunJSSE equivalent. The TLS_ name is the
Certicom cipher suite name; the SSL_ name is the equivalent SunJSSE provider cipher
suite name.

Note: Oracle does not recommend the use of anonymous ciphers in
production environments.

Table 38–2 Cipher Suite Name Equivalence

Certicom Cipher Suite SunJSSE Equivalent Cipher Suite

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

TLS_DHE_DSS_WITH_DES_CBC_SHA SSL_DHE_DSS_WITH_DES_CBC_SHA

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

Using Debugging with JSSE SSL

38-6 Administering Security for Oracle WebLogic Server 12.2.1

38.3.5 Setting Cipher Suites Using WLST: An Example
The following example shows using a WLST script that sets the cipher suites SSL_RSA_
WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA, and SSL_RSA_WITH_3DES_EDE_CBC_
SHA. After this script is run, the cipher suites are set in the domain configuration (that
is, the config.xml file) and the SSL listeners are restarted with the new cipher suite
settings.

url="t3://localhost:7001"
adminUsername="weblogic"
adminPassword="password"
connect(adminUsername, adminPassword, url)
edit()
server=cmo.lookupServer('myserver')
cd('Servers')
cd('myserver')
startEdit()
cd('SSL')
cd('myserver')
ssl = server.getSSL()
ciphers = ['SSL_RSA_WITH_RC4_128_MD5', 'SSL_RSA_WITH_RC4_128_SHA', 'SSL_RSA_WITH_
3DES_EDE_CBC_SHA']
ssl.setCiphersuites(ciphers)
save()
activate()
disconnect()
exit()

38.4 Using Debugging with JSSE SSL
As described in Chapter 33, "SSL Debugging", SSL debugging provides more detailed
information about the SSL events that occurred during an SSL handshake and other
operations.

If you debug SSL when the JSSE-based SSL implementation is enabled, you can use the
logging properties listed and described in Table 38–1. However, some properties affect

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DHE_RSA_WITH_DES_CBC_SHA SSL_DHE_RSA_WITH_DES_CBC_SHA

TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

TLS_DH_anon_WITH_DES_CBC_SHA SSL_DH_anon_WITH_DES_CBC_SHA

TLS_DH_anon_WITH_RC4_128_MD5 SSL_DH_anon_WITH_RC4_128_MD5

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_RSA_EXPORT_WITH_RC4_40_MD5 SSL_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_RC4_128_MD5 SSL_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA SSL_RSA_WITH_RC4_128_SHA

Table 38–2 (Cont.) Cipher Suite Name Equivalence

Certicom Cipher Suite SunJSSE Equivalent Cipher Suite

Using the RSA JSSE Provider in WebLogic Server

Using the JSSE-Based SSL Implementation 38-7

only the SSL calling code and not the JSSE implementation. The JSSE-based SSL
implementation has its own logging system, which is activated by the
javax.net.debug property. The javax.net.debug property provides multiple levels of
control over the amount of output and can be used independently of WebLogic SSL
logging (ssl.debug).

See the "Debugging Utilities" section of the Java Secure Socket Extension (JSSE) Reference
Guide, available at the following URL, for more details about the javax.net.debug
property:

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERe
fGuide.html#Debug

38.5 Using the RSA JSSE Provider in WebLogic Server

RSA JSSE is a third-party JSSE provider that can be statically registered in the JVM if
you wish to use it. To install and configure the RSA JSSE provider, complete the
following steps:

1. Using the following URL, download and install the Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files that correspond to the version of
your JDK. These Java policy JAR files affect cipher key sizes greater than 128 bits.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Open the .ZIP distribution and update local_policy.jar and US_export_
policy.jar in JAVA_HOME/jre/lib/ security. See the README.txt file in the .ZIP
distribution for more information and installation instructions.

2. Using a text editor, modify the file JAVA_HOME/jre/lib/security/java.security
by making the RSA JSSE provider, com.rsa.jsse.JsseProvider, as the first
provider in the list.

For example, before making this update, the list of providers might appear as
follows:

#
List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
security.provider.6=com.sun.security.sasl.Provider
security.provider.7=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.8=sun.security.smartcardio.SunPCSC
security.provider.9=sun.security.mscapi.SunMSCAPI

After you add the RSA JSSE provider, the list might appear as follows:

#
List of providers and their preference orders (see above):
#
security.provider.1=com.rsa.jsse.JsseProvider

Note: This section describes using the RSA JSSE provider in
non-FIPS mode. You can also use the RSA JSSE provider in FIPS mode
as described in Chapter 36, "Enabling FIPS Mode".

Using the RSA JSSE Provider in WebLogic Server

38-8 Administering Security for Oracle WebLogic Server 12.2.1

security.provider.2=sun.security.provider.Sun
security.provider.3=sun.security.rsa.SunRsaSign
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI

That is, you need to update the sequence number of each subsequent provider. For
example, security.provider.1=sun.security.provider.Sun is changed to
security.provider.2=sun.security.provider.Sun (change shown in bold).

3. Add the SSL-J jar WL_HOME/server/lib/sslj.jar at the head of the classpath. You
can use the PRE_CLASSPATH environment variable to do this.

For example, you could set sslj.jar in the PRE_CLASSPATH variable before you call
the server start script, typically startWebLogic.cmd/sh:

set PRE_CLASSPATH=%MW_HOME%\wlserver\server\lib\sslj.jar

4. Restart WebLogic Server for the change to the RSA JSEE provider to take effect.

39

X.509 Certificate Revocation Checking 39-1

39X.509 Certificate Revocation Checking

[40] This chapter describes the X.509 certificate revocation (CR) checking feature, which is
supported in WebLogic Server's JSSE implementation. This feature checks a
certificate's revocation status as part of the SSL certificate path validation process. CR
checking improves the security of certificate usage by ensuring that received
certificates have not been revoked by the issuing certificate authority.

This chapter includes the following sections:

■ Certificate Revocation Checking Overview

■ Enabling the Default CR Checking Configuration

■ Choosing the CR Checking Methods to Be Used by WebLogic Server

■ Failing SSL Certificate Path Validation if Revocation Status Cannot Be Determined

■ Using the Online Certificate Status Protocol

■ Using Certificate Revocation Lists

■ Configuring Certificate Authority Overrides

39.1 Certificate Revocation Checking Overview
In WebLogic Server, CR checking can be used for several purposes, including the
following:

■ Inbound SSL — validating client certificates

■ Outbound SSL — validating server certificates

WebLogic Server's CR checking mechanism includes the following features:

■ Support for the following certificate revocation methods:

– Online Certificate Status Protocol (OCSP)

– Certificate revocation lists (CRLs)

■ You can configure CR checking on a domain-wide basis for all certificate
authorities (CAs). And optionally, you can also configure certificate authority
overrides for specific CAs.

A certificate authority override contains changes to the domain-wide CR checking
configuration that you want to have in effect for certificates that have been issued
by a specific CA. For example, you can configure a particular OCSP responder
URL to be used, or require SSL certificate path validation to fail if certificate
revocation status cannot be determined. Each certificate authority override you
create applies to only one specific CA.

Enabling the Default CR Checking Configuration

39-2 Administering Security for Oracle WebLogic Server 12.2.1

CR checking is disabled by default in WebLogic Server. But using either the WebLogic
Server Administration Console or WLST, you can enable CR checking and configure
the properties described in the sections that follow.

39.2 Enabling the Default CR Checking Configuration
In WebLogic Server, CR checking is disabled by default. However, when you enable
CR checking, WebLogic Server provides, on a domain-wide basis, a comprehensive set
of mechanisms to obtain current revocation status of each certificates it validates. This
topic describes the default behavior WebLogic Server provides when you enable CR
checking. The subsequent sections explain customizations you can make that can be
applied domain-wide or, selectively, to specific certificate authorities.

When the default CR checking configuration is enabled, WebLogic Server
automatically does the following when performing SSL certificate path validation:

1. Checks the OCSP response local cache to obtain certificate revocation status. The
OCSP response local cache is an in-memory cache that holds the latest certificate
status that is provided by OCSP responders.

Certificate status in OCSP has a specific validity period. If the certificate status has
expired, WebLogic Server does the following:

a. Obtains the OCSP responder URI from the certificate. This URI is included in
the Authority Information Access (AIA) value in the certificate, which
indicates how to access information and services from the issuer of the
certificate.

b. Submits an OCSP request to the OCSP responder.

The OCSP responder returns an OCSP response, which includes a certificate
status of good, revoked, or unknown.

c. Updates the OCSP response local cache with the OCSP response.

For certificates that have a valid, non-expired entry in the OCSP response local
cache, WebLogic Server can obtain its revocation status from the cache instead of
requesting a fresh OCSP response. This provides improved performance and
reduced use of network bandwidth.

2. If the certificate has an OCSP status of unknown, WebLogic Server checks the CRL
local cache for valid CRLs to determine whether the certificate has been revoked.
(If either a revoked or not revoked status is determined by OCSP, CRL is not used
for the certificate.)

By default, the CRL local cache is a file-based store that is maintained on each
server instance in a WebLogic domain and that is updated on demand from CRL

Note: CR checking is available for a WebLogic Server instance only
when JSSE is enabled.

Notes: Note the following:

■ Cached entries expire based on the OCSP validity period, but the
cache behavior can be customized.

■ The local OCSP response cache is never used when OCSP nonce is
enabled. This ensures the freshest response.

Enabling the Default CR Checking Configuration

X.509 Certificate Revocation Checking 39-3

distribution points. A CRL distribution point is a network-accessible server that
provides CRLs for download.

If no valid CRLs are available in the CRL local cache, WebLogic Server does the
following:

a. Obtains the CRL distribution point URL, which is included in the
CRLDistributionPoints extension in the certificate.

b. Using the CRL distribution point URL, downloads a fresh CRL and adds it to
the cache.

c. Searches the CRL for an entry that corresponds to the certificate.

If the certificate serial number is not found in the CRL from the issuer, the
certificate status is set to not revoked.

Note the following:

■ If the certificate has an OCSP status of revoked, or is included in a valid CRL,
WebLogic Server automatically fails SSL certificate path validation.

■ If the revocation status is unknown or cannot be determined after using OCSP and
checking the available CRLs, certificate path validation by default is not failed.

39.2.1 Configuring Default CR Checking
Enabling the default CR checking capability in a WebLogic domain is available
through the following MBean attribute:

For information about how to use the WebLogic Server Administration Console to
enable CR checking in a WebLogic domain, see "Enable certificate revocation checking
in a domain" in the Oracle WebLogic Server Administration Console Online Help.

You can configure a CA override for this MBean attribute. For information, see
Section 39.7, "Configuring Certificate Authority Overrides".

39.2.2 Customizing the CR Checking Configuration
The default CR checking behavior in WebLogic Server is appropriate for deployment
environments in which CR checking is desired, but not required. Depending on your
environment, you might require CR checking, or need to enforce behaviors that are
specific to particular certificate authorities. Table 39–1 lists and summarizes the types
of customizations you can make to CR checking in WebLogic Server and provides
links to the sections in which they are explained.

MBean Attribute Description Default Value

CertRevocMBean.CheckingEnabled Specifies whether CR checking
is enabled domain-wide.

False

Table 39–1 Customizations You Can Make to the CR Checking Configuration

Customization Description

CR checking method order Specifies the order in which the supported CR checking methods
are used; that is, OCSP and CRLs. Optionally, you can choose to
use only OCSP, or only CRLs. See Section 39.3, "Choosing the CR
Checking Methods to Be Used by WebLogic Server".

Choosing the CR Checking Methods to Be Used by WebLogic Server

39-4 Administering Security for Oracle WebLogic Server 12.2.1

39.3 Choosing the CR Checking Methods to Be Used by WebLogic Server
By default, when checking a certificate's revocation status, WebLogic Server first uses
OCSP. If OCSP returns the certificate's status as "unknown," WebLogic Server then
uses CRLs. However, you can change the CR checking method used, or the sequence
in which the methods are used, to one of the following:

■ OCSP only

■ CRLs only

■ OCSP then CRLs — If the OCSP status for a certificate is returned as unknown,
CRLs are checked for certificate status.

■ CRLs then OCSP — If a certificate's revocation status cannot be determined by
checking available CRLs, its OCSP status is checked.

Configuring the CR checking method and order in a WebLogic domain is available
through the following MBean attribute:

Require certificate
revocation status

Specifies that SSL certificate path validation must fail if a
certificate's revocation status is unknown or cannot be
determined. See Section 39.4, "Failing SSL Certificate Path
Validation if Revocation Status Cannot Be Determined".

Domain-wide OCSP settings Customize, domain-wide, one or more of the following OCSP
features or behaviors:

■ Use of nonces in OCSP requests and responses

■ OCSP response cache. For example, capacity or refresh
period

■ OCSP response timeout interval settings

For information, see Section 39.5, "Using the Online Certificate
Status Protocol".

Domain-wide CRL protocol
settings

Customize, domain-wide, one or more of the following CRL
features or behaviors:

■ Use of CRL distribution points

■ CRL cache refresh frequency

■ CRL distribution point download timeout interval settings

For information, see Section 39.6, "Using Certificate Revocation
Lists".

Certificate authority
overrides

Customize the CR checking behavior for certificates issued by a
particular CA. For example:

■ Disable revocation checking for those certificates

■ Change the CR checking method order

■ Automatically fail certificate path validation if revocation
status is unknown or unavailable

■ Customize OCSP or CRL settings (except for the CRL local
cache settings)

■ Designate the OCSP responder URL to use

■ Designate the CRL distribution point URL to use

A certificate authority override always takes precedence over
domain-wide settings that are in place. For more information,
see Section 39.7, "Configuring Certificate Authority Overrides".

Table 39–1 (Cont.) Customizations You Can Make to the CR Checking Configuration

Customization Description

Using the Online Certificate Status Protocol

X.509 Certificate Revocation Checking 39-5

You can configure a CA override for this MBean attribute. For information, see
Section 39.7, "Configuring Certificate Authority Overrides".

For information about how to use the WebLogic Server Administration Console to
configure the CR checking method and order for a WebLogic domain, see "Enable
certificate revocation checking in a domain" in the Oracle WebLogic Server
Administration Console Online Help.

39.4 Failing SSL Certificate Path Validation if Revocation Status Cannot
Be
Determined

By default, if an X.509 certificate's revocation status cannot be determined by any of
the selected checking methods, the certificate can still be accepted if the SSL certificate
path validation is otherwise successful. However, for certificates whose revocation
status cannot be determined, you can optionally configure WebLogic Server to fail
certificate path validation.

Configuring a WebLogic domain to fail SSL certificate path validation when the
revocation status cannot be determined is available through the following MBean
attribute:

You can configure a CA override for this MBean attribute. For information, see
Section 39.7, "Configuring Certificate Authority Overrides".

For information about how to configure this MBean attribute using the WebLogic
Server Administration Console, see "Enable certificate revocation checking in a
domain" in the Oracle WebLogic Server Administration Console Online Help.

39.5 Using the Online Certificate Status Protocol
The Online Certificate Status Protocol (OCSP) is an automated certificate checking
network protocol that is defined in RFC 2560. As part of certificate validation,
WebLogic Server queries the revocation status of a certificate by issuing an OCSP
request to an OCSP responder. Certificate status is maintained by the OCSP
responder. Acceptance of the certificate is suspended until the responder returns an
OCSP response, indicating whether the certificate is still trusted by the CA that issued
it.

OCSP may be used to satisfy some of the operational requirements of providing more
timely revocation information than is possible with CRLs and may also be used to
obtain additional status information. For more information about OCSP, see the
description of RFC 2560 at http://www.ietf.org/rfc/rfc2560.txt.

The following sections describe how to configure OCSP in WebLogic Server:

MBean Attribute Description Default Value

CertRevocMBean.MethodOrder Specifies the domain-wide CR checking
method.

OCSP_THEN_CRL

MBean Attribute Description Default Value

CertRevocMBean.FailOnUnknow
nRevocStatus

Specifies on a domain-wide basis whether a
certificate's path validation should fail if its
revocation status cannot be determined.

False

Using the Online Certificate Status Protocol

39-6 Administering Security for Oracle WebLogic Server 12.2.1

■ Section 39.5.1, "Using Nonces in OCSP Requests"

■ Section 39.5.2, "Setting the Response Timeout Interval"

■ Section 39.5.3, "Enabling and Configuring the OCSP Response Local Cache"

39.5.1 Using Nonces in OCSP Requests
A nonce is a random number that, when included in an OCSP request, forces a fresh
response; pre-signed responses are rejected. The use of nonces can prevent replay
attacks. By default, WebLogic Server does not include nonces in OCSP requests.

However, when WebLogic Server is configured to use nonces in OCSP:

1. WebLogic Server generates a nonce for each OCSP request, and includes it in an
extension in the request.

2. The signed OCSP response must include the same nonce, which is included in an
extension in the response.

You can configure the use of OCSP nonces in a WebLogic domain using the following
MBean attribute:

You can also configure CA overrides for this MBean attribute. For information, see
Section 39.7.2, "Configuring OCSP Properties in a Certificate Authority Override".

For information about how to use the WebLogic Server Administration Console to
configure OCSP nonces, see "Configure domain-wide OCSP settings" in the Oracle
WebLogic Server Administration Console Online Help.

39.5.2 Setting the Response Timeout Interval
The response timeout interval limits the wait time for OCSP responses. Setting a
timeout interval helps minimize blocked threads and also reduces the system's
vulnerability to denial of service attacks. In addition to setting a response timeout
interval, you can configure a time tolerance value for handling clock-skew differences
between WebLogic Server and OCSP responders.

The default response timeout interval is 10 seconds, with a zero time tolerance. The
response timeout interval and time tolerance value can be set domain-wide and,
optionally, set specific to one or more CAs.

You can configure the OCSP response timeout interval and time tolerance value for a
WebLogic domain using the following MBean attributes:

MBean Attribute Description
Default
Value

CertRevocMBean.OcspNonceEnable
d

Specifies whether nonces are generated for
OCSP requests. This setting is
domain-wide.

false

MBean Attribute Description
Default
Value

CertRevocMBean.OcspResponseTimeou
t

Specifies the domain-wide timeout
interval, in seconds, for OCSP
responses. The valid range is between
1 and 300, inclusive.

10

Using Certificate Revocation Lists

X.509 Certificate Revocation Checking 39-7

You can also configure CA overrides for these MBean attributes. For information, see
Section 39.7.2, "Configuring OCSP Properties in a Certificate Authority Override".

For information about how to use the WebLogic Server Administration Console to
configure OCSP response timeout interval and time tolerance values, see "Configure
domain-wide OCSP settings" in the Oracle WebLogic Server Administration Console
Online Help.

39.5.3 Enabling and Configuring the OCSP Response Local Cache
To optimize performance and reduce network bandwidth, WebLogic Server's OCSP
implementation is configured by default to use a local in-memory cache for holding
OCSP responses, called the OCSP response local cache. Cached entries automatically
expire based on the OCSP validity period and other criteria, such as entries least
accessed. If nonces are enabled, OCSP responses obtained using a nonce are not
cached. This ensures the freshest response is always used with nonces.

You can configure the OCSP response local cache in a WebLogic domain using the
following MBean attributes:

You can also configure CA overrides for this MBean attribute. For information, see
Section 39.7.2, "Configuring OCSP Properties in a Certificate Authority Override".

For information about how to use the WebLogic Server Administration Console to
configure the OCSP response local cache, see "Configure domain-wide OCSP settings"
in the Oracle WebLogic Server Administration Console Online Help.

39.6 Using Certificate Revocation Lists
A certificate revocation list (CRL) is a time-stamped list of digital certificates that have
been revoked by the certificate authority (CA) that issued them. Each CRL is signed by
a CA and made available in a public repository.

The CRL implementation in WebLogic Server includes support for the following:

CertRevocMBean.OcspTimeTolerance Specifies the domain-wide OCSP time
tolerance value, in seconds, for OCSP
responses.

0

MBean Attribute Description Default Value

CertRevocMBean.OcspResponseCache
Enabled

Specifies whether the OCSP response
local cache is enabled domain-wide.

true

CertRevocMBean.OcspResponseCache
Capacity

Specifies the maximum number of
entries supported by the OCSP
response local cache.

1024

CertRevocMBean.OcspResponseCache
RefreshPeriodPercent

Specifies the refresh period for the
OCSP response local cache, expressed
as a percentage of the validity period
of the response. For example, for a
validity period of 10 hours, a value of
10% specifies that after one hour, the
cached response expires and a fresh
response is required.

100

MBean Attribute Description
Default
Value

Using Certificate Revocation Lists

39-8 Administering Security for Oracle WebLogic Server 12.2.1

■ CRL local cache, which enables efficient access for CR checking.

■ Automatic import of user supplied CRL files into the CRL cache.

■ Use of distribution points from which the CRL cache can optionally be populated
and refreshed.

The following sections explain how to configure CRL usage in WebLogic Server:

■ Enabling Updates from Distribution Points

■ Configuring the CRL Local Cache

39.6.1 Enabling Updates from Distribution Points
Updating CRLs from distribution points is enabled by default. If the appropriate CRL
for a certificate being validated does not already exist in the local cache, the CRL is
downloaded from an available distribution point.

WebLogic Server also allows you to configure a timeout interval for the CRL
download from a distribution point. This timeout interval limits the wait time for CRL
downloads, and also minimizes the risk of blocked threads and vulnerability to denial
of service attacks. Note that if the CRL download times out, the CRL method reports
that the revocation status is unknown; however, the CRL download continues in a
separate thread until complete and the CRL becomes available for future CRL
checking.

You can configure CRL distribution points for a WebLogic domain using the following
MBean attributes:

You can also configure CA overrides for these MBean attributes. For information, see
Section 39.7.3, "Configuring CRL Properties in a Certificate Authority Override".

For information about how to use the WebLogic Server Administration Console to
configure CRL distribution points for a WebLogic domain, see "Configure
domain-wide CRL settings" in the Oracle WebLogic Server Administration Console Online
Help.

39.6.2 Configuring the CRL Local Cache
The CRL local cache is automatically enabled in WebLogic Server. Because obtaining
CRLs is a time-consuming process, CRLs can be stored, while valid, in local files. In
addition, WebLogic Server allows you to configure the refresh interval for the local
cache, expressed as a percentage of the validity period of the CRL.

You may supply CRL files to be used by copying them into the following CRL import
directory, where server-name represents the name of the WebLogic Server instance:

WL_HOME/servers/server-name/security/certrevocation/crlcache/import

MBean Attribute Description Default Value

CertRevocMBean.CrlDpEnabled Specifies whether CRL distribution points
are enabled domain-wide.

true

CertRevocMBean.CrlDpDownload
Timeout

Specifies the overall timeout interval,
domain-wide, for the distribution point
CRL download, expressed in seconds. The
valid range is between 1 and 300, inclusive.

10

Configuring Certificate Authority Overrides

X.509 Certificate Revocation Checking 39-9

The CRL files are automatically imported and internally cached. This directory is
automatically created, if it does not already exist, when CR checking is enabled and an
SSL connection is attempted.

You can configure the CRL local cache for a WebLogic domain using the following
MBean attributes:

For information about how to use the WebLogic Server Administration Console to
configure the CRL local cache for a WebLogic domain, see "Configure domain-wide
CRL settings" in the Oracle WebLogic Server Administration Console Online Help.

39.7 Configuring Certificate Authority Overrides
Configuring certificate authority overrides allows you to specify CR checking behavior
that is enforced for certificates issued by a particular CA. A certificate authority
override always supersedes the domain-wide CR checking configuration that is
enabled. The following sections explain how to configure CR checking CA overrides:

■ Section 39.7.1, "General Certificate Authority Overrides"

■ Section 39.7.2, "Configuring OCSP Properties in a Certificate Authority Override"

■ Section 39.7.3, "Configuring CRL Properties in a Certificate Authority Override"

39.7.1 General Certificate Authority Overrides
To create a certificate authority override for a specific CA, complete the following
steps:

1. Identify the CA by its distinguished name. This must be the complete issuer
distinguished name (defined in RFC 2253) of the certificates for which this
override applies.

For example, the distinguished name of the WebLogic Server DemoTrust CA is
CN=CertGenCAB, OU=FOR TESTING ONLY, O=MyOrganization, L=MyTown,
ST=MyState, C=US.

Notes: Note the following:

■ After WebLogic Server is started, the import of the CRL file starts
automatically when CR checking is enabled and at least one
attempt to check a certificate's revocation status has occurred. This
minimizes resource usage until necessary.

■ After you import CRL files, they are automatically deleted from
the import directory.

■ The CRL local cache configuration settings are domain-wide. You
cannot configure a certificate authority override for the CRL local
cache.

MBean Attribute Description Default Value

CertRevocMBean.CrlCacheRefresh
PeriodPercent

Specifies the refresh period for the CRL
local cache, expressed as a percentage of
the validity period of the CRL.

100

Configuring Certificate Authority Overrides

39-10 Administering Security for Oracle WebLogic Server 12.2.1

2. Specify whether CR checking is enabled for certificates issued by this CA, if
necessary.

3. Specify the CR checking methods and order performed for certificates issued by
this CA.

4. Specify whether SSL certificate path validation should fail if the revocation status
of certificates issued by this CA cannot be determined.

5. Optionally, specify additional OCSP or CRL customizations, as explained in the
following sections:

■ Configuring OCSP Properties in a Certificate Authority Override

■ Configuring CRL Properties in a Certificate Authority Override

You can configure general certificate authority overrides for a CA by using the
following MBean attributes:

For information about how to use the WebLogic Server Administration Console to
configure certificate authority overrides, see "Configure certificate authority overrides"
in the Oracle WebLogic Server Administration Console Online Help

39.7.2 Configuring OCSP Properties in a Certificate Authority Override
WebLogic Server tries the following trust models in its OCSP implementation:

■ Delegated Trust Model (DTM) — The OCSP response is signed by an OCSP
responder that has been delegated by the CA to sign responses on its behalf.

■ Explicit Trust Model (ETM) — If neither the CA nor an authority to which OCSP
responsibilities have been delegated has signed the OCSP response, an explicitly
trusted signer may be specified. ETM is used when you can supply an additional
trusted certificate that may be used to verify the OCSP response signature. This
can be any certificate, including one unrelated to the CA corresponding to the
override. ETM may be used for OCSP responders which are trusted, but are not
authorized to sign OCSP responses on behalf of issuers. Explicitly trusted public
certificates for OCSP responders may be suitable if the OCSP server is internally
maintained within your enterprise.

■ CA-signed Trust Model — The OCSP response is presumed to be signed by the
same CA that issued the certificate for which the revocation status is being
requested.

MBean Attribute Description Default Value

CertRevocCaMBean.Distingu
ishedName

Specifies the distinguished
name (DN) of the CA subject.

None (required field)

CertRevocCaMBean.Checking
Disabled

For this CA, specifies whether
CR checking is disabled.

false

CertRevocCaMBean.FailOnUn
knownRevocStatus

For this CA, specifies whether
SSL certificate path checking
should fail if the certificate
revocation status cannot be
determined from any of the
available methods.

Same as current setting of
CertRevocMBean.FailOnUnkn
ownRevocStatus.

CertRevocCaMBean.MethodOr
der

Specifies the certificate
revocation checking method
order when checking certificates
issued by this CA.

Same as current setting of
CertRevocMBean.MethodOrde
r.

Configuring Certificate Authority Overrides

X.509 Certificate Revocation Checking 39-11

When you create a certificate authority override, WebLogic Server allows you to
configure the OCSP properties that are described in Table 39–2. This table also
identifies the MBean attributes you can use to configure these override properties.

Table 39–2 OCSP Properties That Can Be Specified in a Certificate Authority Override

Override Description MBean Attribute

OCSP responder URL Specifies the URL to be used for either:

■ Failover, if the OCSP responder URI
from the certificate AIA value is not
available or not acceptable

■ Override, to be always used as the
responder URL instead of the
responder URI from the certificate
AIA.

For more information, see Section 39.7.2.1,
"Identifying the OCSP Responder URL".

CertRevocCaMBean.OcspResponderUrl

The default value is none.

How the OCSP responder
URL is used

Specifies how the OCSP responder URL is
to be used: for failover or override.

CertRevocCaMBean.OcspResponderUrlUsa
ge

The default value is FAILOVER.

OCSP responder certificate
subject name

For this CA, specifies the explicitly trusted
OCSP responder certificate subject name.
For example, CN=OCSP Responder, O=XYZ
Corp. This must correspond to the subject
distinguished name of a certificate in the
configured WebLogic Server trust
keystore.

In cases where the subject name alone is
not sufficient to uniquely identify the
certificate, both the
CertRevocCaMBean.OcspResponderCertIs
suerName and
CertRevocCaMBean.OcspResponderCertSe
rialNumber are used instead.

CertRevocCaMBean.OcspResponderCertSu
bjectName

The default value is NONE.

OCSP responder certificate
issuer name

For this CA, specifies the explicitly trusted
OCSP responder certificate issuer name.
For example, CN=Enterprise CA, O=XYZ
Corp. This must correspond to the issuer
distinguished name of a certificate in the
configured WebLogic Server trust
keystore.

When this attribute is set, the
CertRevocCaMBean.OcspResponderCertSe
rialNumber must also be set.

CertRevocCaMBean.OcspResponderCertIs
suerName

The default value is NONE.

OCSP responder certificate
serial number

For this CA, specifies the explicitly trusted
OCSP responder certificate serial number.
For example, 2A:FF:00. This must
correspond to the serial number of a
certificate in the configured WebLogic
Server trust keystore.

When this attribute is set, the
CertRevocCaMBean.OcspResponderCertIs
suerName attribute must also be set.

CertRevocCaMBean.OcspResponderCertSe
rialNumber

The default value is NONE.

Configuring Certificate Authority Overrides

39-12 Administering Security for Oracle WebLogic Server 12.2.1

For information about how use the WebLogic Server Administration Console to
configure OCSP settings in a certificate authority override, see "Configure certificate
authority overrides" in the Oracle WebLogic Server Administration Console Online Help.

OCSP responder Explicit
Trust Method

For this CA, specifies whether the OCSP
Explicit Trust model is enabled and how a
trusted certificate in the Weblogic Server
trust keystore is specified.

The following values can be specified:

■ NONE specifies that Explicit Trust is
disabled.

■ USE_SUBJECT specifies that the trusted
certificate is identified using the
subject DN that is specified in the
CertRevocCaMBean.OcspResponderCe
rtSubjectName attribute.

■ USE_ISSUER_SERIAL_NUMBER specifies
that the trusted certificate is
identified using the issuer DN and
certificate serial number that are
specified in the
CertRevocCaMBean.OcspResponderCe
rtIssuerName and
CertRevocCaMBean.OcspResponderCe
rtSerialNumber attributes,
respectively.

CertRevocCaMBean.OcspResponderExplic
itTrustMethod

The default value is NONE.

Nonce enabled For this CA, specifies whether nonces are
sent with OCSP requests, which forces a
fresh (not pre-signed) response.

CertRevocCaMBean.OcspNonceEnabled

The default value is the same as the
current setting for
CertRevocMBean.OcspNonceEnabled.

OCSP response local cache For this CA, specifies whether the OCSP
response local cache is enabled.

CertRevocCaMBean.OcspResponseCacheEn
abled

The default value is the same as the
current setting for
CertRevocMBean.OcspResponseCacheEnab
led.

OCSP response timeout For this CA, specifies the timeout interval
for the OCSP response, expressed in
seconds. The valid range is between 1 and
300, inclusive.

For more information, see Section 39.5.2,
"Setting the Response Timeout Interval".

CertRevocCaMBean.OcspResponseTimeout

The default value is the same as the
current setting for
CertRevocMBean.OcspResponseTimeout.

OCSP time tolerance For this CA, specifies the time tolerance
value for handling clock-skew differences
between WebLogic Server and
responders, expressed in seconds. The
valid range is between 0 and 900,
inclusive.

The validity period of the response is
extended both into the future and into the
past by the specified amount of time,
effectively widening the validity interval.

CertRevocCaMBean.OcspTimeTolerance

The default value is the same as the
current setting for
CertRevocMBean.OcspTimeTolerance.

Table 39–2 (Cont.) OCSP Properties That Can Be Specified in a Certificate Authority Override

Override Description MBean Attribute

Configuring Certificate Authority Overrides

X.509 Certificate Revocation Checking 39-13

39.7.2.1 Identifying the OCSP Responder URL
To validate a certificate using an OCSP responder lookup, WebLogic Server uses the
following methods to determine the OCSP responder URL:

■ Authority Information Access (AIA) value in the certificate, which indicates how
to access information and services for the issuer of the certificate. For example, the
AIA contains the URI for the OCSP responder.

■ Default OCSP responder failover or override — If the OCSP responder URI is not
available from the certificate AIA value, or is not acceptable, a default OCSP
responder URL can be configured on a per-CA basis.

Additionally, the default OCSP responder URL per CA can be specified selectively
for either failover, or for override. When specified for override, this URL always
overrides the value obtained from the certificate AIA extension.

For information about how to use the WebLogic Server Administration Console to set
the OCSP responder URL in a certificate authority override, see "Configure certificate
authority overrides" in the Oracle WebLogic Server Administration Console Online Help.

39.7.3 Configuring CRL Properties in a Certificate Authority Override
When you configure a certificate authority override, WebLogic Server allows you to
configure the CRL properties listed and described in Table 39–3. This table also
identifies the MBean attributes you can use to configure these properties.

For information about how to use the WebLogic Server Administration Console to
customize the CRL settings in a certificate authority override, see "Configure certificate
authority overrides" in the Oracle WebLogic Server Administration Console Online Help.

Table 39–3 CRL Properties That Can Be Specified in a Certificate Authority Override

Override Description MBean Attribute

Use of distribution point
to update local CRL cache

For this CA, specifies whether CRL
distribution point processing to update
the local CRL cache is enabled.

CertRevocCaMBean.CrlDpEnabled

The default value is the same as the
current setting for
CertRevocMBean.CrlDpEnabled.

Distribution point URL For this CA, specifies the CRL distribution
point URL to be used for either:

■ Failover, if the URL from the
CRLDistributionPoints extension in
the certificate is unavailable

■ Override, to be always used as the
CRL distribution point URL instead
of the CRLDistributionPoints
extension in the certificate

CertRevocCaMBean.CrlDpUrl

The default value is null.

How the distribution point
URL is used

Specifies how the distribution point URL
is to be used: for failover or override.

CertRevocCaMBean.CrlDpUrlUsage

The default value is FAILOVER.

Distribution point CRL
download timeout

For this CA, specifies the overall timeout
interval for the distribution point CRL
download, expressed in seconds. The
valid range is between 1 and 300,
inclusive.

CertRevocCaMBean.CrlDpDownloadTimeou
t

The default value is the same as the
current setting for
CertRevocMBean.CrlDpDownloadTimeout.

Configuring Certificate Authority Overrides

39-14 Administering Security for Oracle WebLogic Server 12.2.1

40

Configuring an Identity Keystore Specific to a Network Channel 40-1

40Configuring an Identity Keystore Specific to a
Network Channel

[41] This chapter explains how to configure a network channel to have its own custom
identity keystore, and other SSL attributes, that are separate from and that override the
default keystore and SSL configuration settings for the Managed Server instance or the
domain. This enables you to configure a WebLogic Server instance to use one identity
and SSL configuration on one network channel, and another identity and SSL
configuration on other channels.

This chapter includes the following sections:

■ About Network Channels

■ Channel-Specific SSL Configuration Attributes

■ Steps to Configure a Channel-Specific Identity Keystore

■ Using WLST to Configure a Channel-Specific Identity Keystore

40.1 About Network Channels
As explained in "Understanding Network Channels" in Administering Server
Environments for Oracle WebLogic Server, a network channel in a WebLogic Server
instance is a combination of the following four attributes:

■ Communication protocol, which can be t3, t3s, http, or https

■ Listen address

■ Listen port

■ Channel name

By default, when you configure a network channel, the channel uses the SSL
configuration that is set for the server instance. This means that the channel uses the
same identity and trust that is established for the server. The server might use a
custom identity that is specific to that server, or it might be a single domain-wide
identity, depending on how the server instance and domain are configured.

However, rather than using one identity for all network communication in which a
Managed Server instance participates, you might have a need for the server to switch
to a different identity when communicating with a particular client. For example, you
might need to use one identity for the server when communicating with one particular
business group, and a different identity for the server when communicating with other
Managed Server instances in the domain. By customizing a network channel to use a
custom identity keystore that is separate from either the identity keystore configured

Channel-Specific SSL Configuration Attributes

40-2 Administering Security for Oracle WebLogic Server 12.2.1

for the server instance or the one configured for the domain, you can assert one
identity on one network channel, and another identity on a different channel.

40.2 Channel-Specific SSL Configuration Attributes
The NetworkAccessPointMBean contains the attributes that you can set to create a
channel-specific SSL configuration. In addition to enabling a network channel to use a
custom identity keystore, these attributes also allow you to customize other SSL
settings, such as the use of a custom host name verifier, the cipher suites to be used in
SSL communications, and certificate validation rules.

Table 40–1 lists and describes the SSL attributes that can be configured on the
NetworkAccessPointMBean for a specific network channel.

Note: For ease of reference in Table 40–1, the following attributes on
the NetworkAccessPointMBean are referred to collectively as the
CustomIdentityKeyStore* attributes:

■ CustomIdentityKeyStoreFileName

■ CustomIdentityKeyStorePassPhrase

■ CustomIdentityKeyStorePassPhraseEncrypted

■ CustomIdentityKeyStoreType

Table 40–1 NetworkAccessPointMBean Attributes for Customizing a Channel's SSL Configuration

Attribute Description

ChannelIdentityCustomized Specifies whether the channel's custom identity should be used.
This setting has an effect only if the network channel uses a
custom keystore. By default the channel's identity is inherited
from the server's identity.

The CustomIdentityKeyStore* attributes have the following
validation rules related to the ChannelIdentityCustomized
attribute to ensure that the network channel alias relates to the
channel keystore and does not default to an alias in the server
keystore:

1. If any CustomIdentityKeyStore* attributes are set, then all
CustomIdentityKeyStore* attributes must be set.

2. The ChannelIdentityCustomized attribute must be set to
true.

3. The CustomPrivateKeyAlias attribute must be set.

Note that if the CustomIdentityKeyStore* attributes are not set,
the CustomPrivateKeyAlias attribute may be set to refer to the
server keystore.

Channel-Specific SSL Configuration Attributes

Configuring an Identity Keystore Specific to a Network Channel 40-3

CustomIdentityKeyStoreFileName Specifies the custom identity keystore to assign to the channel. If
a value for this attribute is not set, the value of the
ServerMBean.CustomIdentityKeyStoreFileName attribute is
used by default.

This attribute is used only if the ServerMBean.KeyStores
attribute is set to one of the following values:

■ CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST

■ CUSTOM_IDENTITY_AND_CUSTOM_TRUST

■ CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST

If you are using a JKS keystore, specify this value as an absolute
path, or as a relative path to the directory from which the server
is booted. For more information, see Chapter 29, "Configuring
Keystores".

If you are using an Oracle OPSS Key Store Service (KSS)
keystore, specify this value as the KSS URI. For more
information, see Section 30.4, "Configuring the OPSS Keystore
Service for Custom Identity and Trust: Main Steps".

CustomIdentityKeyStorePassPhrase Encrypts and decrypts the plain text form of the passphrase for
the channel's custom identity keystore. When you set the
keystore password using this attribute, WebLogic Server
automatically encrypts the value and stores it in the
CustomIdentityKeyStorePassPhraseEncrypted attribute. If the
value is empty or null, keystores not requiring a passphrase may
be opened.

If a value for this attribute is not set, the value of the
ServerMBean.CustomIdentityKeyStorePassPhrase attribute is
used by default.

This attribute is used only if the ServerMBean.KeyStores
attribute is set to one of the following values:

■ CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST

■ CUSTOM_IDENTITY_AND_CUSTOM_TRUST

■ CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST

Note: Using the CustomIdentityKeyStorePassPhrase attribute
is a potential security risk because the String object that contains
the unencrypted password remains in the JVM memory until
garbage collection removes it and the memory is reallocated,
which potentially can be an indefinite duration. Therefore,
Oracle recommends using the
CustomIdentityKeyStorePassPhraseEncrypted attribute
instead.

CustomIdentityKeyStorePassPhraseEncrypted Specifies the encrypted passphrase that is set when the custom
identity keystore is created. If a value for this attribute is not set,
the value of the
ServerMBean.CustomIdentityKeyStorePassPhraseEncrypted
attribute is used by default.

This attribute is only used if the ServerMBean.KeyStores
attribute is set to one of the following values:

■ CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST

■ CUSTOM_IDENTITY_AND_CUSTOM_TRUST

■ CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST

Table 40–1 (Cont.) NetworkAccessPointMBean Attributes for Customizing a Channel's SSL Configuration

Attribute Description

Channel-Specific SSL Configuration Attributes

40-4 Administering Security for Oracle WebLogic Server 12.2.1

CustomIdentityKeyStoreType Specifies the keystore type of the custom identity keystore. If
you are using a JKS keystore, specify the value as JKS. If you are
using the Oracle OPSS Key Store Service, specify this value as
KSS.

If a value for this attribute is not set, the value of the
ServerMBean.CustomIdentityKeyStoreType attribute is used by
default.

The value of this attribute is used only if the
ServerMBean.KeyStores attribute is set to one of the following
values:

■ CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST

■ CUSTOM_IDENTITY_AND_CUSTOM_TRUST

■ CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST

ClientCertificateEnforced Specifies whether clients must present digital certificates from a
trusted certificate authority to WebLogic Server on this channel.

CustomPrivateKeyAlias Specifies the string alias used to store and retrieve the channel's
private key in the custom identity keystore. This private key is
associated with the server's digital certificate. A value of null
indicates that the network channel uses the alias specified in the
server's SSL configuration.

Note that if the CustomIdentityKeyStore* attributes are not set,
the CustomPrivateKeyAlias attribute may be set to refer to the
server keystore.

CustomPrivateKeyPassPhrase Encrypts and decrypts the plain text form of the passphrase
used to retrieve the channel's private key from the custom
identity keystore. When you set the private key passphrase
using this attribute, WebLogic Server automatically encrypts the
value and stores it in the
CustomPrivateKeyPassPhraseEncrypted attribute. This
passphrase is assigned to the private key when it is generated. A
value of null indicates that the network channel uses the
passphrase specified in the server's SSL configuration.

CustomPrivateKeyPassPhraseEncrypted Specifies the encrypted passphrase used to retrieve the channel's
private key from the custom identity keystore.

OutboundPrivateKeyEnabled Specifies whether the identity specified by the
NetworkAccessPointMBean.CustomPrivateKeyAlias attribute
should be used for outbound SSL connections on this channel.
Typically the outbound identity is determined by the caller's
environment.

TwoWaySSLEnabled Specifies whether this network channel uses two way SSL.

HostnameVerificationIgnored Specifies whether to ignore the configured implementation of
the host name verifier
(weblogic.security.SSL.HostnameVerifier).

This attribute is used only when the server is acting as a client to
another application server on a remote host.

If a value for this attribute is not set, the value of the
SSLMBean.HostnameVerificationIgnored attribute is used by
default.

Table 40–1 (Cont.) NetworkAccessPointMBean Attributes for Customizing a Channel's SSL Configuration

Attribute Description

Channel-Specific SSL Configuration Attributes

Configuring an Identity Keystore Specific to a Network Channel 40-5

HostnameVerifier Specifies the name of the class that implements the
weblogic.security.SSL.HostnameVerifier interface.

A host name verifier is useful when an SSL client (for example,
WebLogic Server acting as an SSL client) connects to an
application server on a remote host. The host name verifier helps
to prevent man-in-the-middle attacks: It ensures that the host
name in the URL to which the client connects matches the host
name in the digital certificate that the server sends back as part
of the SSL connection.

If a value for this attribute is not set, the value of the
SSLMBean.HostnameVerifier attribute is used by default.

Ciphersuites Specifies the cipher suites that are to be used with the SSL
listener for the network channel. During the SSL handshake, the
strongest negotiated cipher suite is chosen.

The cipher suites that are enabled by default depends on the
specific JDK version with which WebLogic Server is configured.
For more information, see Section 38.3, "Cipher Suites".

If a value for this attribute is not set, the value of the
SSLMBean.Ciphersuites attribute is used by default.

Note: You cannot set the SSLMBean.Ciphersuites attribute from
the WebLogic Server Administration Console, but you can set
the NetworkAccessPointMBean.Ciphersuites attribute from the
console.

AllowUnencryptedNullCipher Specifies whether unencrypted null ciphers are allowed on the
network channel. If a value for this attribute is not set, the value
of the SSLMBean.AllowUnencryptedNullCipher attribute is used
by default.

During the SSL handshake, when the server and client negotiate
the set of cipher suites that are to be used, the client might
specify a set of cipher suites that contain only null ciphers. A
null cipher passes data on the wire in clear-text, making it
possible for a network packet sniffer to see the SSL messages.
When null ciphers are used, SSL may be used for authentication,
but messages may not be encrypted.

By default, WebLogic Server does not allow null ciphers. For
more information, see "An Important Note Regarding Null
Cipher Use in SSL" in Securing a Production Environment for
Oracle WebLogic Server.

InboundCertificateValidation Specifies the client certificate validation rules for inbound SSL.
This attribute applies only to a network channel that is
configured to use two-way SSL.

Either of the following values may be set:

■ BuiltinSSLValidationOnly—Uses the built-in trusted
Certificate Authority-based validation. This is the default.

■ BuiltinSSLValidationAndCertPathValidators—Uses the
built-in trusted CA-based validation and also the
configured CertPathValidator providers to perform extra
validation.

For more information about these rules, see Section 34.5, "How
SSL Certificate Validation Works in WebLogic Server".

If a value for this attribute is not set, the value of the
SSLMBean.InboundCertificateValidation attribute is used by
default.

Table 40–1 (Cont.) NetworkAccessPointMBean Attributes for Customizing a Channel's SSL Configuration

Attribute Description

Steps to Configure a Channel-Specific Identity Keystore

40-6 Administering Security for Oracle WebLogic Server 12.2.1

40.3 Steps to Configure a Channel-Specific Identity Keystore
To configure a network channel to use a custom identity keystore separate from the
one used by the Managed Server, complete the following steps:

1. Configure a custom identity keystore, add the private key and the public identity
certificate to be used by the network channel, and assign a private key alias.

■ For information about configuring a JKS keystore, see Chapter 29,
"Configuring Keystores".

■ For information about configuring an Oracle OPSS Key Store Service (KSS)
keystore, see Section 30.4, "Configuring the OPSS Keystore Service for Custom
Identity and Trust: Main Steps".

2. Create a custom network channel and assign the following attributes, ensuring
that the combination of them is unique in the domain:

■ Channel name

■ Listen address

■ Listen port

■ Secure communication protocol (that is, either HTTPS or t3s)

For information, see "Configure custom network channels" in Oracle WebLogic
Server Administration Console Online Help.

3. Configure the channel to use the custom identity keystore created in Step 1 by
setting the following attributes on the NetworkAccessPointMBean:

■ CustomIdentityKeyStoreFileName — If you are using a JKS keystore, specify
the path to the keystore. If you are using a KSS keystore, specify this value as
the KSS URI.

■ CustomIdentityKeyStoreType — Specify the key store type. For example, JKS
or KSS.

■ Either the CustomIdentityKeyStorePassPhraseEncrypted attribute, or the
CustomIdentityKeyStorePassPhrase attribute using the custom identity
keystore passphrase.

■ ChannelIdentityCustomized — Set to true.

OutboundCertificateValidation Specifies the server certificate validation rules for outbound SSL.

Either of the following values may be set:

■ BuiltinSSLValidationOnly—Uses the built-in trusted
Certificate Authority-based validation. This is the default.

■ BuiltinSSLValidationAndCertPathValidators—Uses the
built-in trusted CA-based validation and also the
configured CertPathValidator providers to perform extra
validation.

For more information about these rules, see Section 34.5, "How
SSL Certificate Validation Works in WebLogic Server".

If a value for this attribute is not set, the value of the
SSLMBean.OutboundCertificateValidation attribute is used by
default.

Table 40–1 (Cont.) NetworkAccessPointMBean Attributes for Customizing a Channel's SSL Configuration

Attribute Description

Using WLST to Configure a Channel-Specific Identity Keystore

Configuring an Identity Keystore Specific to a Network Channel 40-7

■ CustomPrivateKeyAlias — Specifies the string alias used to store and retrieve
the channel's private key in the custom identity keystore. This private key is
associated with the channel's identity certificate. Setting this attribute ensures
that the channel alias corresponds to the channel's custom identity keystore
and not to an alias in the server's identity keystore.

■ CustomPrivateKeyPassPhrase — Specify the value of the passphrase of the
private key referenced by the CustomPrivateKeyAlias attribute.

For information, see "Configure keystores and SSL attributes specific to a network
channel" in Oracle WebLogic Server Administration Console Online Help.

4. Configure any additional attributes for the network channel, as appropriate. For
more information, see "Configuring a Channel" in Administering Server
Environments for Oracle WebLogic Server and "Configure custom network channels"
in Oracle WebLogic Server Administration Console Online Help.

For information about specifying a host name verifier class, see Chapter 31, "Using
Host Name Verification".

For information about inbound and outbound certificate validation, see
Chapter 34, "SSL Certificate Validation".

40.4 Using WLST to Configure a Channel-Specific Identity Keystore
This section provides an example of using WLST to configure a channel-specific
identity keystore. Example 40–1 shows the following:

1. Connecting to a Managed Server instance.

2. Navigating to the MBean that corresponds to the specific network channel for
which a custom identity keystore is to be configured, https-override.

3. Setting the name and location of the custom identity keystore file,
channelIdentity.jks.

Note: If any of the CustomIdentityKeyStoreFileName,
CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhraseEncrypted, or
CustomIdentityKeyStorePassPhrase attributes are set, then all the
following conditions must be met to ensure that the channel alias
relates to the channel's custom identity keystore and does not default
to an alias in the server keystore:

1. All the preceding attributes must be set (that is,
CustomIdentityKeyStoreFileName, CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhraseEncrypted, and
CustomIdentityKeyStorePassPhrase must all be set).

2. The NetworkAccessPointMBean.ChannelIdentityCustomized attribute
must be set to true.

3. The NetworkAccessPointMBean.CustomPrivateKeyAlias attribute must
be set.

Note that if none of the CustomIdentityKeyStoreFileName,
CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhraseEncrypted, and
CustomIdentityKeyStorePassPhrase attributes are set, the network
channel's private key alias may be set to refer to the server keystore.

Using WLST to Configure a Channel-Specific Identity Keystore

40-8 Administering Security for Oracle WebLogic Server 12.2.1

4. Setting the passphrase for the custom identity keystore.

5. Setting the custom identity keystore type to JKS.

6. Establishing that the channel's custom identity should be used.

7. Setting the custom private key alias to myID.

8. Setting the custom private key passphrase.

9. Saving and activating the new channel configuration, then disconnecting from the
Managed Server instance.

Example 40–1 Configuring a Custom Identity Keystore

connect('admin-user','password')
edit()
startEdit()
cd ('Servers/myserver/NetworkAccessPoints/https-override')

cmo.setCustomIdentityKeyStoreFileName('/path/keystores/channelIdentity.jks')
cmo.setCustomIdentityKeyStorePassPhrase('passphrase')
cmo.setCustomIdentityKeyStoreType('JKS')
cmo.setChannelIdentityCustomized(true)
cmo.setCustomPrivateKeyAlias('myID')
cmo.setCustomPrivateKeyPassPhrase('keypassphrase')

save()
activate()
disconnect()

41

Configuring RMI over IIOP with SSL 41-1

41Configuring RMI over IIOP with SSL

[42] This chapter explains how to use SSL to protect Internet Interop-Orb-Protocol (IIOP)
connections to Remote Method Invocation (RMI) remote objects. SSL secures
connections through authentication and encrypts the data exchanged between objects.

To use SSL to protect RMI over IIOP connections:

1. Configure WebLogic Server to use SSL.

2. Configure the client Object Request Broker (ORB) to use SSL. Refer to the product
documentation for your client ORB for information about configuring SSL.

3. Use the host2ior utility to print the WebLogic Server IOR to the console. The
host2ior utility prints two versions of the interoperable object reference (IOR), one
for SSL connections and one for non-SSL connections. The header of the IOR
specifies whether or not the IOR can be used for SSL connections.

4. Use the SSL IOR when obtaining the initial reference to the CosNaming service
that accesses the WebLogic Server JNDI tree.

For more information about using RMI over IIOP, see Developing RMI Applications for
Oracle WebLogic Server.

41-2 Administering Security for Oracle WebLogic Server 12.2.1

42

Using a Certificate Callback Handler to Validate End User Certificates 42-1

42Using a Certificate Callback Handler to Validate
End User Certificates

[43] WebLogic Server provides a means to examine details about information passed by an
end user issuing a request to determine whether authentication should succeed or fail.
The details may include the end user's certificate, Subject, and IP address. This
capability is provided by the weblogic.security.SSL.CertificateCallback interface,
which you can implement to create a certificate callback handler. When configured
with WebLogic Server, this callback handler is invoked automatically whenever a
client request is received over a secure RMI connection; for example, one that uses the
T3s or IIOPS protocols.

To configure a certificate callback handler so that it is in effect for all secure inbound
RMI connections, you define it as a WebLogic Server system property that is passed in
the server startup command.

This chapter includes the following topics:

■ How End User Certificate Callback Handlers Work

■ Creating a Certificate Callback Implementation

■ Configuring the Certificate Callback with WebLogic Server

42.1 How End User Certificate Callback Handlers Work
When a client makes a secure RMI connection to a WebLogic Server instance that is
configured with a certificate callback handler, WebLogic Server invokes the callback
handler. The callback evaluates details about the end user that are contained in the
connection request, then returns a boolean value indicating whether authentication is
successful.

The CertificateCallback interface calls the validate method on an
CertificateCallbackInfo instance, which contains methods to obtain the following
information from the end user that is contained in the RMI connection request:

■ Client host name, IP address, and port

■ Client domain name

■ Destination host name, IP address, and port

■ Authenticated Subject

■ Client certificate

The callback implementation includes the logic that evaluates the client data that is
obtained and returns true or false as follows:

Creating a Certificate Callback Implementation

42-2 Administering Security for Oracle WebLogic Server 12.2.1

■ If the callback returns true, authentication succeeds and the client connection to
WebLogic Server is made.

■ If the callback returns false, a RemoteException is thrown containing the
"Authentication denied" message.

42.2 Creating a Certificate Callback Implementation
The weblogic.security.SSL.CertificateCallback interface contains a single
invocation on the validate method on a
weblogic.security.SSL.CertificateCallbackInfo instance. The
CertificateCallbackInfo instance contains methods to obtain details about the end user
that are passed over the secure RMI connection.

You implement logic that evaluates the data that is returned and returns a true or
false. The logic does not need to evaluate all data that is returned. Typically, only the
certificate is evaluated; for example, obtaining the common name (cn) or distinguished
name (dn).

For more information, see the following Javadoc in the Java API Reference for Oracle
WebLogic Server:

■ weblogic.security.SSL.CertificateCallback interface

■ weblogic.security.SSL.CertificateCallbackInfo class

42.3 Configuring the Certificate Callback with WebLogic Server
To configure the callback with WebLogic Server, specify the callback implementation
as a system property in the WebLogic Server start command. The property should
point to the callback implementation class that is on the server's classpath. For
example, if the callback implementation class is MyCertificateCallback.java in the
package com.mycompany.security, and MyCertificateCallback.class is in the
server's classpath, the following command sets the callback implementation property
in WebLogic Server:

java weblogic.Server
-Dweblogic.security.SSL.CertificateCallback=com.mycompany.security.MyCertificateCallback

Note that if WebLogic Server is configured for one-way SSL, a client certificate is never
sent to the server. Oracle recommends using certificate callbacks handlers only when
WebLogic Server is configured for two-way SSL. For more information, see Part VI,
"Configuring SSL".

Note: If you use a certificate callback implementation in WebLogic
Server, a callback is generated whenever a request is received over a
secure port. As a result, using certificate callbacks may impose a
performance overhead that should be taken into consideration.

Part VII
Part VII Advanced Security Topics

This part provides advanced security configuration topics.

Part VII contains the following chapters:

■ Chapter 43, "Configuring Cross-Domain Security"

■ Chapter 44, "Configuring JASPIC Security"

■ Chapter 45, "Security Configuration MBeans"

43

Configuring Cross-Domain Security 43-1

43Configuring Cross-Domain Security

[44] This chapter describes how to set security configuration options for a WebLogic
domain, focusing primarily on Cross-Domain Security.

This chapter includes the following sections:

■ Important Information Regarding Cross-Domain Security Support

■ Enabling Trust Between WebLogic Server Domains

■ Using the Java Authorization Contract for Containers

■ Viewing MBean Attributes

■ Configuring a Domain to Use JAAS Authorization

43.1 Important Information Regarding Cross-Domain Security Support
This section describes important information regarding support for the Cross-Domain
Security solution.

In this release of WebLogic Server, subsystems such as JMS, JTA, MDB, and WAN
replication implement Cross-Domain Security. These subsystems can authenticate and
send the required credentials across domains. However, the EJB container does not
implement the solution for Cross-Domain Security.

43.2 Enabling Trust Between WebLogic Server Domains
WebLogic Server supports a type of domain trust that is referred to as Cross-Domain
Security. Cross-domain security establishes trust between two domains — a domain
pair — such that principals in a subject from one WebLogic domain can make calls in
another domain. WebLogic Server establishes a security role for cross-domain users,
and uses the WebLogic Credential Mapping security provider in each domain to store
the credentials to be used by the cross-domain users.

Previous releases of WebLogic Server supported domain trust, which is now referred
to as global trust. Global trust is established between two or more domains by using
the same domain credential in each domain. If you enable global trust between two or
more domains, the trust relationship is transitive and symmetric. In other words, if
Domain A trusts Domain B, and Domain B trusts Domain C, then:

■ Domain A will also trust Domain C.

Note: These sections apply to WebLogic Server deployments using
the security features in this release of WebLogic Server.

Enabling Trust Between WebLogic Server Domains

43-2 Administering Security for Oracle WebLogic Server 12.2.1

■ Domain B and Domain C will both trust Domain A.

The principal distinction between the two approaches is that Cross-Domain Security
enables trust between two domains using specific credentials. By comparison, in
global trust, the same credentials are used to communicate among all domains.

In most cases, the Cross-Domain Security approach is preferable to the global trust
approach, because its use of a specific user group and role for cross-domain actions
allows for finer-grained security.

The following sections explain how to configure each domain trust type:

■ Section 43.2.1, "Enabling Cross-Domain Security Between WebLogic Server
Domains"

■ Section 43.2.2, "Enabling Global Trust"

43.2.1 Enabling Cross-Domain Security Between WebLogic Server Domains

Configuration and use of Cross-Domain Security is described in the following sections:

■ Section 43.2.1.1, "Configuring Cross-Domain Security"

■ Section 43.2.1.2, "Excluding Domains From Cross-Domain Security"

■ Section 43.2.1.3, "Configuring Cross-Domain Users"

■ Section 43.2.1.4, "Configure a Credential Mapping for Cross-Domain Security"

43.2.1.1 Configuring Cross-Domain Security
You configure Cross-Domain Security between two domains — a domain pair — such
that principals in a subject from one WebLogic domain can make calls in another
domain. You can enable Cross-Domain Security for multiple domain pairs.

For example, assume you have four domains, Domain1 through Domain4. You can
enable Cross-Domain Security on all four domains, and then add users and credential
maps (as described in subsequent sections) for the following domain pairs:

■ Domain1 - Domain2

■ Domain1 - Domain3

■ Domain1 - Domain4

■ Domain2 - Domain3

■ Domain2 - Domain4

■ Domain3 - Domain4

Note: If you enable Cross-Domain Security to communicate between
two domains, you should not enable global trust for those domains.

Cross-domain security provides more secure communication between
two domains.

Note: Please see Section 43.1, "Important Information Regarding
Cross-Domain Security Support" before enabling cross domain
security.

Enabling Trust Between WebLogic Server Domains

Configuring Cross-Domain Security 43-3

To configure Cross-Domain Security in a WebLogic domain, set the
SecurityConfigurationMBean.CrossDomainSecurityEnabled attribute to true. To do
this in the WebLogic Server Administration Console:

1. In the left pane of the Console, under Domain Structure, select the domain name.

2. Select Security.

3. Check Cross Domain Security Enabled.

43.2.1.2 Excluding Domains From Cross-Domain Security
If you enable Cross-Domain Security for some, but not all, of the domains you
administer, you need to add the names of the domains for which Cross-Domain
Security is not enabled to the list of excluded domains in the
SecurityConfigurationMBean.ExcludedDomainNames attributes.

You must do this in each of the WebLogic domains in which you did enable
Cross-Domain Security.

For example, if you have four domains, Domain1 through Domain4 and for some reason
you do not enable Cross-Domain Security on Domain4, you need to specify Domain4 for
the SecurityConfigurationMBean.ExcludedDomainNames attribute in Domain1,
Domain2, and Domain3.

To do this using the WebLogic Server Administration Console:

1. In the left pane of the Console, under Domain Structure, select the domain name.

2. Select Security.

3. In the Excluded Domain Names field, enter the names of any domains that do not
have Cross-Domain Security enabled. Enter the names of these domains separated
either by semicolons or line breaks.

4. Repeat steps one through three, as appropriate, for each domain.

43.2.1.3 Configuring Cross-Domain Users
Cross-domain security in WebLogic Server uses a global security role named
CrossDomainConnector with resource type remote and a group named
CrossDomainConnectors. Invocation requests from remote domains are expected to be
from users who are mapped to the CrossDomainConnector role.

By default, the CrossDomainConnectors group has no users as members.

For each domain in which you enable Cross-Domain Security, you need to create a
user and add that user to the CrossDomainConnectors group. Typically, such a user is a
virtual system user and preferably should have no privileges other than those granted
by the CrossDomainConnector security role.

For example, assume that you enabled Cross-Domain Security on Domain1, Domain2,
Domain3, and Domain4. In each case, create the user account with a password and
assign it to the CrossDomainConnectors group.

■ In Domain1, create a user User1.

■ In Domain2, create User2.

■ In Domain3, create User3.

■ In Domain4, create User4.

To add a user in the WebLogic Server Administration Console:

1. In the left pane of the Console, under Domain Structure, select Security Realms.

Enabling Trust Between WebLogic Server Domains

43-4 Administering Security for Oracle WebLogic Server 12.2.1

2. Select the name of the security realm.

3. Select the Users and Groups page.

4. Click New.

5. Enter the name and password for the user. You can accept the Default
Authenticator provider.

6. Click OK.

7. Select the user you just created from the list of users.

8. Select the Groups page.

9. Select CrossDomainConnectors from the available groups list, and move it to the
Chosen list.

10. Click Save.

43.2.1.4 Configure a Credential Mapping for Cross-Domain Security

In the domain pairs for which you enabled Cross-Domain Security, you need to specify
a credential to be used by each user on the remote domain to be trusted. Do this by
configuring credential mappings for each domain pair in the connection. Each
credential mapping needs to specify:

■ The resource protocol, which is named cross-domain-protocol

■ The name of the remote domain that needs to interact with the local domain

■ The name of the user in the remote domain that will be authorized to interact with
the local domain

■ The password of the user in the remote domain that will be authorized to interact
with the local domain

For example, to extend the user example from Section 43.2.1.3, "Configuring
Cross-Domain Users", you would configure the following domain pairs:

■ Populate the credential map in Domain1 with the remote-domain: Domain2, the
remote-user: User2, and the remote_user_pass: password-for-User2.

Populate the credential map in Domain2 with the remote-domain: Domain1, the
remote-user: User1, and the remote_user_pass: password-for-User1.

■ Populate the credential map in Domain1 with the remote-domain: Domain3, the
remote-user: User3, and the remote_user_pass: password-for-User3.

Populate the credential map in Domain3 with the remote-domain: Domain1, the
remote-user: User1, and the remote_user_pass: password-for-User1.

Note: The Credential Mapper identifies domains by their names.
Therefore, it is important that the domains involved have unique
names.

Note: If you have a several domains to configure, you may find it
easier to configure one pair of domains, then configure the next pair,
and so forth.

Enabling Trust Between WebLogic Server Domains

Configuring Cross-Domain Security 43-5

■ Populate the credential map in Domain1 with the remote-domain: Domain4, the
remote-user: User4, and the remote_user_pass: password-for-User4.

Populate the credential map in Domain4 with the remote-domain: Domain1, the
remote-user: User1, and the remote_user_pass: password-for-User1.

■ Populate the credential map in Domain2 with the remote-domain: Domain3, the
remote-user: User3, and the remote_user_pass: password-for-User3.

Populate the credential map in Domain3 with the remote-domain: Domain2, the
remote-user: User2, and the remote_user_pass: password-for-User2.

■ Populate the credential map in Domain2 with the remote-domain: Domain4, the
remote-user: User4, and the remote_user_pass: password-for-User4.

Populate the credential map in Domain4 with the remote-domain: Domain2, the
remote-user: User2, and the remote_user_pass: password-for-User2.

■ Populate the credential map in Domain3 with the remote-domain: Domain4, the
remote-user: User4, and the remote_user_pass: password-for-User4.

Populate the credential map in Domain4 with the remote-domain: Domain3, the
remote-user: User3, and the remote_user_pass: password-for-User3.

To configure a Cross-Domain Security credential mapping in the WebLogic Server
Administration Console, click Security Realms in the left panel.

1. Click the name of your security realm (default is myrealm).

2. Select Credential Mappings > Default, and click New.

3. On the Creating the Remote Resource for the Security Credential Mapping page:

■ Select Use cross-domain protocol.

■ In the Remote Domain field, enter the name of the remote domain that needs
to interact with the local domain.

4. Click Next.

5. On the Create a New Security Credential Map Entry page, enter the following:

■ Local User: cross-domain

■ Remote User: User configured in the remote domain that is authorized to
interact with the local domain.

■ Password: The password for the remote user.

6. Click Finish.

7. Repeat steps one through six as needed.

For additional help with this task, see "Create a Cross-Domain Security Credential
Mapping" in the Oracle WebLogic Server Administration Console Online Help.

Enabling Trust Between WebLogic Server Domains

43-6 Administering Security for Oracle WebLogic Server 12.2.1

43.2.2 Enabling Global Trust

WebLogic Server enables you to establish global trust between two or more domains.
You do this by specifying the same domain credential for each of the domains. By
default, the domain credential is randomly generated and therefore, no two domains
will have the same domain credential.

If you want two WebLogic domains to interoperate, you need to replace the generated
credential with a credential you select, and set the same credential in each of the
domains. For configuration information, see "Enable global trust between domains" in
the Oracle WebLogic Server Administration Console Online Help.

If you enable global trust between two domains, the trust relationship is transitive and
symmetric. In other words, if Domain A trusts Domain B and Domain B trusts Domain C,
then Domain A will also trust Domain C, and Domain B and Domain C will both trust
Domain A.

Global trust between domains is established so that principals in a Subject from one
WebLogic domain are accepted as principals in another domain. When this feature is
enabled, identity is passed between WebLogic domains over an RMI connection
without requiring authentication in the second domain. (For example, log in to Domain
1 as Joe. Make an RMI call to Domain 2 and Joe is still authenticated). WebLogic Server
signs principals with the domain credential as principals are created. When a Subject is
received from a remote source, its principals are validated. (The signature is recreated
and, if it matches, the remote domain has the same domain credential). If validation
fails, an error is generated. If validation succeeds, the Principals are trusted as if they
were created locally.

If you are enabling global trust between domains in a Managed Server environment,
you must stop the Administration Server and all the Managed Servers in both
domains and then restart them. If this step is not performed, servers that were not
rebooted will not trust the servers that were rebooted.

Keep the following points in mind when enabling global trust between WebLogic
domains:

■ Because a domain will trust remote principals without requiring authentication, it
is possible to have authenticated users in a domain that are not defined in the
domain's authentication database. This situation can cause authorization
problems.

Caution: Enabling global trust between WebLogic domains has the
potential to open the servers up to man-in-the-middle attacks. Great
care should be taken when enabling trust in a production
environment. Oracle recommends having strong network security
such as a dedicated communication channel or protection by a strong
firewall.

In most cases, the credential mapper approach, described in
Section 43.2.1, "Enabling Cross-Domain Security Between WebLogic
Server Domains", is preferable to the global trust approach, because it
is provides closer control over access.

Note: Any credentials in clear text are encrypted the next time the
config.xml file is persisted to disk.

Viewing MBean Attributes

Configuring Cross-Domain Security 43-7

■ Any authenticated user in a domain can access any other domain that has trust
enabled with the original domain without re-authenticating. There is no auditing
of this login and group membership is not validated. Therefore, if Joe is a member
of the Administrators group in the original domain where he authenticated, he is
automatically a member of the Administrators group for all trusted domains to
which he makes RMI calls.

■ If Domain 1 trusts both Domain 1 and Domain 3, Domain 1 and Domain 3 now
implicitly trust each other. Therefore, members of the Administrators Group in
Domain 1 are members of the Administrators group in Domain 3. This may not be
a desired trust relationship.

■ If you extended the WLSUser and WLSGroup principal classes, the custom principal
classes must be installed in the server's classpath in all domains that share trust.

To avoid these issues, Oracle recommends that rather than enabling global trust
between two domains, you should instead use the approach described in
Section 43.2.1, "Enabling Cross-Domain Security Between WebLogic Server Domains".

43.3 Using the Java Authorization Contract for Containers
As of version 12.2.1, WebLogic Server supports the Java Authorization Contract for
Containers (JACC) Standard, Version 1.5. JACC can replace the EJB and servlet
container deployment and authorization provided by WebLogic Server. When you
configure a WebLogic domain to use JACC, EJB and servlet authorization decisions are
made by the classes in the JACC framework. All other authorization decisions within
WebLogic Server are still determined by the WebLogic Security Framework. For
information about the WebLogic JACC provider, see "Using the Java Authorization
Contract for Containers" in Developing Applications with the WebLogic Security Service.

You configure WebLogic Server to use JACC by specifying the following properties in
the command that starts WebLogic Server:

-Djavax.security.jacc.PolicyConfigurationFactory.provider
-Djavax.security.jacc.policy.provider
-Dweblogic.security.jacc.RoleMapperFactory.provider

For more information about these specifying these properties, see "Enabling the
WebLogic JACC Provider" in Developing Applications with the WebLogic Security Service.

Note that an Administration Server and all Managed Servers in a domain need to have
the same JACC configuration. If you change the JACC setting on the Administration
Server, you should shut down the Managed Server and reboot them with the same
settings as the Administration Server to avoid creating a security vulnerability.
Otherwise, it may appear that EJBs and servlets in your domain are protected by
WebLogic Security Framework roles and policies, when in fact the Managed Servers
are still operating under JACC.

43.4 Viewing MBean Attributes
The Anonymous Admin Lookup Enabled option specifies whether anonymous,
read-only access to WebLogic Server MBeans should be allowed from the MBean API.
With this anonymous access, you can see the value of any MBean attribute that is not
explicitly marked as protected by the WebLogic Server MBean authorization process.
This option is enabled by default to assure backward compatibility. For greater
security, you should disable this anonymous access.

Configuring a Domain to Use JAAS Authorization

43-8 Administering Security for Oracle WebLogic Server 12.2.1

To verify the setting of the Anonymous Admin Lookup Enabled option in the
WebLogic Server Administration Console, select Domain > Security > General, or
view the SecurityConfigurationMBean.AnonymousAdminLookupEnabled attribute.

43.5 Configuring a Domain to Use JAAS Authorization
The security configuration in a WebLogic domain can be modified to use JAAS
authorization, which interprets Subjects differently from the way in which the
WebLogic Security Service does. For example, when a principal requests access to a
resource that is protected by the Java policy provider in Oracle Platform Security
Services (OPSS), the principal is compared to another principal that is built from a
name contained in a policy store. (This comparison occurs when the
Principal.equals() method is invoked.) If the appropriate attributes of the two
principal objects match, access is granted.

Principal comparison is not used by the WebLogic Security Service to determine access
decisions to protected resources. However, when principal comparison is performed in
a default WebLogic domain, the comparison of principal names is case sensitive, and
only the names of the principals are compared. To use JAAS authorization, the security
configuration of a WebLogic domain can be modified to accommodate the following
principal comparison behavior:

■ The comparison of principal names is case insensitive

■ The GUID and DN data in WebLogic principal objects are included in the
comparison

To modify the security configuration of a WebLogic domain so that principal objects
can be used with JAAS authorization, the following MBean attributes settings are
available:

SecurityConfigurationMBean.PrincipalEqualsCaseInsensitive="true"
SecurityConfigurationMBean.PrincipalEqualsCompareDnAndGuid="true"

To set these attributes in the WebLogic Server Administration Console:

1. In the left pane of the Console, under Domain Structure, select the domain name.

2. Select Configuration > Security and click Advanced.

3. Select the check box next to each of the following entries:

■ Principal Equals Case Insensitive

■ Principal Equals Compare DN and GUID

For information about principal comparison in the Oracle Platform Security Service,
see "Principal Name Comparison Logic" in Securing Applications with Oracle Platform
Security Services. For information about passing identity to a WebLogic domain, see
Developing Stand-alone Clients for Oracle WebLogic Server.

Note: If a domain is configured to use the GUID and DN data in
principals, there may be an impact when interoperating with other
WebLogic domains, particularly older domains, resulting from
changes made to the way identity is passed.

44

Configuring JASPIC Security 44-1

44Configuring JASPIC Security

[45] This chapter describes how to configure the Java Authentication Service Provider
Interface for Containers (JASPIC).

The Java Authentication Service Provider Interface for Containers (JASPIC)
specification (http://www.jcp.org/en/jsr/detail?id=196) defines a service provider
interface (SPI) by which authentication providers that implement message
authentication mechanisms can be integrated in server Web application message
processing containers or runtimes.

This chapter includes the following sections:

■ JASPIC Mechanisms Override WebLogic Server Defaults

■ Prerequisites for Configuring JASPIC

■ Location of Configuration Data

■ Configuring JASPIC for a Domain

■ Displaying Authentication Configuration Providers

■ Configuring JASPIC for a Web Application

■ Configuring JASPIC with WLST

This section assumes that you are familiar with a basic overview of JASPIC, as
described in Understanding Security for Oracle WebLogic Server.

44.1 JASPIC Mechanisms Override WebLogic Server Defaults
If you configure an Authentication Configuration Provider for a Web application, it is
used instead of the WLS authentication mechanism for that Web Application. The
JASPIC authentication provider assumes responsibility for authenticating the user
credentials and returning a Subject.

You should therefore exercise care when you specify an Authentication Configuration
Provider to make sure that it satisfies your security authentication needs.

44.2 Prerequisites for Configuring JASPIC
This section describes prerequisites for configuring JASPIC in your environment,
including how to make your own or third party server authentication module (SAM)
or Authentication Configuration Providers available to WebLogic Server.

The JASPIC programming model is described in the Java Authentication Service
Provider Interface for Containers (JASPIC) specification
(http://www.jcp.org/en/jsr/detail?id=196).

Location of Configuration Data

44-2 Administering Security for Oracle WebLogic Server 12.2.1

A sample SAM implementation is described in Adding Authentication Mechanisms to
the GlassFish Servlet Container. Although written from the GlassFish Server
perspective, the tips for writing a SAM, and the sample SAM itself, are instructive.

44.2.1 Server Authentication Module Must Be in Classpath
If you plan to configure a WebLogic Server Authentication Configuration Provider,
you must add the jar for your SAM to the system classpath via the startup scripts or
the command line used to start the WebLogic Server instance. If you do not do this,
WebLogic Server is not able to find the appropriate classes.

44.2.2 Custom Authentication Configuration Providers Must Be in Classpath
If you plan to configure a custom Authentication Configuration Provider, you must
add the jar for your custom Authentication Configuration Provider to the system
classpath via the startup scripts or the command line used to start the WebLogic Server
instance. If you do not do this, WebLogic Server is not able to find the appropriate
classes.

44.3 Location of Configuration Data
You can use either the WebLogic Server Administration Console or the WebLogic
Scripting Tool (WLST) to configure JASPIC and the Authentication Configuration
Providers.

After you configure JASPIC and the Authentication Configuration Providers, the
domain-wide Authentication Configuration Provider configuration data is kept in the
domain config.xml file in the <jaspic> element. For example:

<jaspic>
 <auth-config-provider xsi:type="wls-auth-config-providerType">
 <name>WLSAuthConfigProvider-0</name>
 </auth-config-provider>
 </jaspic>

When you configure an Authentication Configuration Provider for a deployed Web
application, the WebLogic Server Administration Console (or WLST) updates the
deployment plan (plan.xml) for the Web application with the application-specific
Authentication Configuration Provider configuration. For example:

<variable>
 <name>JASPICProvider_AuthConfigProviderName_13210476440805</name>
 <value>WLSAuthConfigProvider-0</value>
</variable>
:
<variable-assignment>
 <name>JASPICProvider_AuthConfigProviderName_13210476440805</name>
 <xpath>/weblogic-web-app/jaspic-provider/auth-config-provider-name</xpath>
</variable-assignment>

If you do not use a deployment plan for your application, you can instead add the
jaspic-provider deployment descriptor element to weblogic.xml.

jaspic-provider specifies the authConfigProvider to be registered for use during
authentication. For example,
<wls:jaspic-provider>my-acp</wls:jlaspic-provider>.

Displaying Authentication Configuration Providers

Configuring JASPIC Security 44-3

44.4 Configuring JASPIC for a Domain
By default, JASPIC is enabled for a domain. This means that you can configure JASPIC
properties for the domain, and JASPIC is available for any Web applications for which
you have specified an Authentication Configuration Provider.

See "Configure Web applications for JASPIC" in Oracle WebLogic Server Administration
Console Online Help for the specific steps to follow to configure JASPIC in the WebLogic
Server Administration Console.

If you disable JASPIC for a domain, JASPIC is then disabled for all Web applications in
that domain, regardless of their configuration.

To configure JASPIC for a domain:

1. In the left pane, select the name of the domain for which you want to configure
JASPIC.

2. Select Security > JASPIC > General.

The JASPIC general page appears.

3. Ensure that the Enable JASPIC control is set for this domain.

4. Click Save.

5. Select Security > JASPIC > Authentication Configuration Providers.

The Authentication Configuration Providers page for the domain appears.

6. Click New.

7. From the drop-down list, select Create a New WLS Authentication Configuration
Provider or Create a New Custom Authentication Configuration Provider.

■ On the Create a New WLS Authentication Configuration Provider page, set
the desired values on the Name and Server Authentication Module Class
Name fields.

You can accept the suggested name of WLSAuthConfigProvider-0, or use
another name of your choice. The Server Authentication Module Class Name
identifies the Java class name of the SAM this Authentication Configuration
Provider uses.

■ On the Create a New Custom Authentication Configuration Provider page, set
the desired values on the Name and Class Name fields.

You can accept the suggested name of CustomAuthConfigProvider-0, or use
another name of your choice. The class name is dependent on the
implementation of your custom Authentication Configuration Provider.

8. Enter the configuration properties for the Authentication Configuration Provider
in the Configuration Properties text box.

Each property must be on a separate line. For example: property1=value1.

9. Click Finish.

10. Restart WebLogic Server.

44.5 Displaying Authentication Configuration Providers
To display the Authentication Configuration Providers for a domain:

1. In the left pane, select the name of the domain for which you want to display the
Authentication Configuration Providers.

Configuring JASPIC for a Web Application

44-4 Administering Security for Oracle WebLogic Server 12.2.1

2. Select Security > JASPIC > Authentication Configuration Providers.

The Authentication Configuration Providers page for the domain appears.

3. Select an existing Authentication Configuration Provider for which you want to
display the configuration properties.

The Settings page for this Authentication Configuration Provider appears.

4. Optionally, click the Notes page and enter any site-specific configuration
information you want to capture.

5. If you made changes, click Save.

6. If you made changes, restart WebLogic Server.

44.6 Configuring JASPIC for a Web Application
You can specify which, if any, Authentication Configuration Provider is to apply to a
specific Web application.

Before you can do this, you must first perform the following steps, as described in
Section 44.4, "Configuring JASPIC for a Domain".

1. Enable JASPIC in the domain.

2. Configure a WebLogic Server Authentication Configuration Provider. Or,

3. Configure a Custom Authentication Configuration Provider.

To configure JASPIC properties for this Web application:

1. In the left pane of the Console, select Deployments.

A table that lists the deployments currently installed on WebLogic Server appears
in the right pane. The Type column specifies whether a deployment is an
Enterprise application, a Web application, or an EJB module.

2. In the right pane, click the name of the Web application you want to configure.

3. Select Security > JASPIC to view and change the JASPIC properties.

By default, JASPIC is disabled for Web applications. To enable JASPIC for this Web
application, select one of the existing Authentication Configuration Providers from
the drop-down list.

4. Click Save to save any changes.

5. Save the changes to the deployment plan, as prompted.

6. Redeploy the Web application.

7. Restart WebLogic Server.

44.7 Configuring JASPIC with WLST
This section describes how to use WebLogic Scripting Tool (WLST) to configure
JASPIC. See Understanding the WebLogic Scripting Tool for information on using WLST.

This section requires you to configure the following MBeans via WLST:

■ JASPICMBean

■ CustomAuthConfigProviderMBean

■ WLSAuthConfigProviderMBean

Configuring JASPIC with WLST

Configuring JASPIC Security 44-5

See MBean Reference for Oracle WebLogic Server for additional MBean information.

44.7.1 Creating a WLS Authentication Configuration Provider
Example 44–1 creates a WLS Authentication Configuration Provider, sets the class
name of the SAM, and sets a configuration property.

After you run this example, restart WebLogic Server.

Example 44–1 Create a WLS Authentication Configuration Provider

connect('weblogic', 'password')
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
wacp = jaspic.createWLSAuthConfigProvider('wacp')
am = wacp.getAuthModule()
am.setClassName('com.my.auth.module.Classname')
props = Properties()
props.setProperty('property', 'value')
am.setProperties(props)
save()
activate()

44.7.2 Creating a Custom Authentication Configuration Provider
Example 44–2 creates a custom Authentication Configuration Provider, sets the class
name of this Authentication Configuration Provider, and sets a configuration property.

After you run this example, restart WebLogic Server.

Example 44–2 Create a Custom Authentication Configuration Provider

connect('weblogic', 'password')
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
acp = jaspic.createCustomAuthConfigProvider('cacp')
acp.setClassName('com.my.acp.Classname')
props = Properties()
props.setProperty('property', 'value')
acp.setProperties(props)
save()
activate()

44.7.3 Listing All WLS and Custom Authentication Configuration Providers
Example 44–3 shows how to list all Authentication Configuration Providers for a
domain.

Example 44–3 List All Authentication Configuration Providers

connect('weblogic', 'password')
edit()
startEdit()
cd('SecurityConfiguration')

Configuring JASPIC with WLST

44-6 Administering Security for Oracle WebLogic Server 12.2.1

cd('mydomain')
jaspic = cmo.getJASPIC()
jaspic.getAuthConfigProviders()

44.7.4 Enabling JASPIC for a Domain
Example 44–4 shows how to enable JASPIC for a domain.

After you run this example, restart WebLogic Server.

Example 44–4 Enable JASPIC for a Domain

connect('weblogic', 'password')
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
jaspic.setEnabled(false)
save()
activate()

44.7.5 Disabling JASPIC for a Domain
Example 44–5 shows how to disable JASPIC for a domain.

After you run this example, restart WebLogic Server.

Example 44–5 Disable JASPIC for a Domain

connect('weblogic', 'password')
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
jaspic.setEnabled(false)
save()
activate()

45

Security Configuration MBeans 45-1

45Security Configuration MBeans

[46] This chapter describes the MBeans used in configuring the WebLogic Security
Framework. Each MBean attribute is marked either dynamic, meaning that the
attribute value can be changed without requiring a server restart, or non-dynamic,
meaning that if you change the attribute value, you need to restart the server for the
change to take effect. Note also that if an edit is made to a non-dynamic attribute, no
edits to dynamic attributes will take effect until after restart. This is to assure that a
batch of updates having a combination of dynamic and non-dynamic attribute edits
will not be partially activated.

This chapter includes the following sections:

■ SSLMBean

■ ServerMBean

■ EmbeddedLDAPMBean

■ RDBMSSecurityStoreMBean

■ SecurityConfigurationMBean

■ RealmMBean

■ WindowsNTAuthenticatorMBean

■ CustomDBMSAuthenticatorMBean

■ ReadonlySQLAuthenticatorMBean

■ SQLAuthenticatorMBean

■ DefaultAuditorMBean

■ UserLockoutManagerMBean

■ Other Security Provider MBeans

Any security MBeans not listed are completely non-dynamic (create or destroy MBean,
change any attribute).

For more information about WebLogic Security MBeans, see:

■ "Managing Security Realms with JMX" in Developing Custom Management Utilities
Using JMX for Oracle WebLogic Server

■ "Security MBeans" in the MBean Reference for Oracle WebLogic Server

45.1 SSLMBean
Creating or destroying this bean is dynamic.

ServerMBean

45-2 Administering Security for Oracle WebLogic Server 12.2.1

Dynamic attributes:

Enabled, TwoWaySSLEnabled, ClientCertificateEnforced, ListenPort

Ciphersuites, ExportKeyLifespan, SSLRejectionLoggingEnabled, LoginTimeoutMillis

ServerCertificateChainFileName, ServerKeyFileName, ServerCertificateFileName,
TrustedCAFileName

ServerPrivateKeyAlias, ServerPrivateKeyPassPhrase

IdentityAndTrustLocations

InboundCertificateValidation, OutboundCertificateValidation

All other attributes are non-dynamic.

45.2 ServerMBean
Creating or destroying this bean is dynamic.

Dynamic attributes:

KeyStores

CustomIdentityKeyStoreFileName, CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhrase

CustomTrustKeyStoreFileName, CustomTrustKeyStoreType,
CustomTrustKeyStorePassPhrase

JavaStandardTrustKeyStorePassPhrase

All other attributes are non-dynamic.

45.3 EmbeddedLDAPMBean
Dynamic attributes:

Credential

All other attributes are non-dynamic

45.4 RDBMSSecurityStoreMBean
Creating or destroying this MBean is non-dynamic.

All attributes are non-dynamic.

45.5 SecurityConfigurationMBean
Dynamic attributes:

Credential

ConnectionFilterRules, ConnectionLoggerEnabled,
CompatibilityConnectionFiltersEnabled

NodeManagerUsername, NodeManagerPassword

All other attributes are non-dynamic.

DefaultAuditorMBean

Security Configuration MBeans 45-3

45.6 RealmMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

DeployRoleIgnored, DeployPolicyIgnored, DeployCredentialMappingIgnored

FullyDelegateAuthorization

ValidateDDSecurityData, SecurityDDModel

CombinedRoleMappingEnabled

All other attributes are non-dynamic

45.7 WindowsNTAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

BadDomainControllerRetryInterval

MapUPNNames, LogonType

MapNTDomainName

All other attributes are non-dynamic.

45.8 CustomDBMSAuthenticatorMBean
Creating or destroying this MBean is non-dynamic. The ControlFlag and read-only
provider attributes (such as ProviderClassName and Description) are non-dynamic.
All other attributes are dynamic.

45.9 ReadonlySQLAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

The ControlFlag and read-only provider attributes (such as ProviderClassName and
Description) are non-dynamic. All other attributes are dynamic.

45.10 SQLAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

The ControlFlag and read-only provider attributes (such as ProviderClassName and
Description) are non-dynamic. All other attributes are dynamic.

45.11 DefaultAuditorMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

Severity

All other attributes are non-dynamic

UserLockoutManagerMBean

45-4 Administering Security for Oracle WebLogic Server 12.2.1

45.12 UserLockoutManagerMBean
This MBean is completely non-dynamic (create or destroy MBean, change any
attribute).

45.13 Other Security Provider MBeans
All other security MBeans are completely non-dynamic (create or destroy MBean,
change any attribute).

Part VIII
Part VIII Appendixes

This part contains the following appendixes:

■ Appendix A, "Keytool Command Summary"

■ Appendix B, "Using Certificate Chains (Deprecated)"

■ Appendix C, "Interoperating With Keystores From Prior Versions"

A

Keytool Command Summary A-1

AKeytool Command Summary

[47] Table A–1 summarizes the keytool commands commonly used for creating and using
JKS keystores with WebLogic Server. In this table, an option surrounded by brackets
([]) indicates that if you omit the option from the command, you are subsequently
prompted to enter that option's value. For example, if you follow Oracle's strong
recommendation to omit command options for specifying passwords, you are
prompted for those passwords after you enter the command, as in the following
example. (User input is shown in bold.)

C:\DOMAIN_NAME>keytool -genkeypair -keystore MyKeyStore
Enter keystore password:
Re-enter new password:

Unlike passwords that are specified in command-line options, a password entered in
response to a prompt is not echoed in the command window and is not captured in
logs. This practice helps keep your passwords secure.

Table A–1 Commonly Used keytool Commands

Command Description

keytool -genkeypair -keystore keystorename

-storepass keystorepassword

Generates a key pair (a public key and associated
private key) and self-signed digital certificate in a
keystore. If the keystore does not exist, it is created.

keytool -importcert -alias aliasforprivatekey
-file privatekeyfilename.pem
-keyfilepass privatekeypassword
-keystore keystorename -storepass keystorepassword

Updates the self-signed digital certificate with one
signed by a trusted CA.

keytool -importcert -alias rootCA
-trustcacerts -file RootCA.pem
-keystore trust.jks -storepass keystorepassword

keytool -importcert -alias intermediate
-trustcacerts -file Intermediate.pem
-keystore keystorename -storepass keystorepassword

Creates a custom keystore to be used for holding an
intermediate CA certificate.

■ The first keytool command creates the keystore,
trust.jks, which holds the root CA certificate.

■ The second keytool command imports the
intermediate CA certificate into trust.jks.

This enables WebLogic Server's SSL implementation
to transmit the intermediate certificate with the
server's public certificate to the client during the SSL
handshake.

keytool -importcert -alias aliasfortrustedca
-trustcacerts -file trustedcafilename.pem
-keystore keystorename -storepass keystorepassword

Loads a trusted CA certificate into a keystore. If the
keystore does not exist, it is created.

A-2 Administering Security for Oracle WebLogic Server 12.2.1

keytool -certreq -alias alias
-sigalg sigalg
-file certreq_file
-keyfilepass privatekeypassword
-storetype keystoretype
-keystore keystorename
-storepass keystorepassword

Generates a Certificate Signing Request (CSR), using
the PKCS#10 format, and a self-signed certificate with
a private key.

Stores the CSR in the specified certreq_file, and the
certificate/private key pair as a key entry in the
specified keystore under the specified alias.

keytool -list -keystore keystorename Displays the contents of the keystore.

keytool -delete -keystore keystorename
-storepass keystorepassword
-alias privatekeyalias

Deletes the entry identified by the specified alias from
the keystore.

keytool -help Provides online help for keytool.

Table A–1 (Cont.) Commonly Used keytool Commands

Command Description

B

Using Certificate Chains (Deprecated) B-1

BUsing Certificate Chains (Deprecated)

[48] This appendix explains how to use file-based certificate chains.

To use certificate chains with WebLogic Server, complete the following steps

1. Ensure that all the digital certificates are in PEM format. If they are in DER format,
you can convert them using the der2pem utility. If you are using a digital certificate
issued by Microsoft, see Section 30.12, "Converting a Microsoft p7b Format to PEM
Format". You can use the steps in the section to convert other types of digital
certificates. Save the digital certificate in Base 64 format.

2. Open a text editor and include all the digital certificate files into a single file. The
order is important. The server digital certificate should be the first digital
certificate in the file. The issuer of that digital certificate should be the next in the
file and so on until you get to the self-signed root certificate authority (CA)
certificate. This digital certificate should be the last certificate in the file.

You cannot have blank lines between digital certificates.

3. Specify the file in the Server Certificate File Name field on the Configuration >
SSL page in the WebLogic Server Administration Console.

Example 30–1 shows a sample certificate chain.

Example B–1 Sample File with Certificate Chain

-----BEGIN CERTIFICATE-----
MIICyzCCAjSgAwIBAgIBLDANBgkqhkiG9w0BAQQFADCBtjELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUB
gNVBAcTDVNhbiBGcmFuY2lzY28xFTATBgNVBAoTDEJFQSBXZWJMb2dpYzERMA8GA1UECxMIU2VjdXJpdHkxLzAtBgNVBAMTJk
RlbW8gQ2VydGlmaWNhdGUgQXV0aG9yaXR5IENvbnN0cmFpbnRzMR8wHQYJKoZIhvcNAQkBFhBzZWN1cml0eUBiZWEuY29tMB4
XDTAyMTEwMTIwMDIxMloXDTA2MTAxNTIwMDIxMlowgZ8xCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYD
VQQHEw1TYW4gRnJhbmNpc2NvMRUwEwYDVQQKEwxCRUEgV2ViTG9naWMxETAPBgNVBAsTCFNlY3VyaXR5MRkwFwYDVQQDExB3Z
WJsb2dpYy5iZWEuY29tMR4wHAYJKoZIhvcNAQkBFg9zdXBwb3J0QGJlYS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAo
GBAMJX8nKUgsFej8pEu/1IVcHUkwY0c2JbBzOryu3sce4QjX+rGxiCjoPm2MY=yts2BvonuJ6CztdZf8B/LBEWCz+qRrtdFn9
mKSZWGvrAkmMPz2RhXEOThpoRo5kZz2FQ9XF/PxIJXTYCM7yooRBwXoKYjquRwiZNtUiU9kYi6Z3prAgMBAAEwDQYJKoZIhvc
NAQEEBQADgYEAh2eqQGxEMUnNTwEUD

0tBq+7YuAkjecEocGXvi2G4YSoWVLgnVzJoJuds3c35KE6sxBe1luJQuQkE9SzALG/6lDIJ5ctPsHFmZzZxY7scLl6hWj5ON8
oN2YTh5Jo/ryqjvnZvqiNIWe/gqr2GLIkajC0mz4un1LiYORPig3fBMH0=

Note: The use of file-based certificate chains is deprecated. In the
current release of WebLogic Server, the whole certificate chain is
imported into the keystore. The steps in this section are provided only
for the purpose of compatibility with older releases of WebLogic
Server.

B-2 Administering Security for Oracle WebLogic Server 12.2.1

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIC+jCCAmOgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBtjELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUB
gNVBAcTDVNhbiBGcmFuY2lzY28xFTATBgNVBAoTDEJFQSBXZWJMb2dpYzERMA8GA1UECxMIU2VjdXJpdHkxLzAtBgNVBAMTJk
RlbW8gQ2VydGlmaWNhdGUgQXV0aG9yaXR5IENvbnN0cmFpbnRzMR8wHQYJKoZIhvcNAQkBFhBzZWN1cml0eUBiZWEuY29tMB4
XDTAyMTEwMTIwMDIxMVoXDTA2MTAxNjIwMDIxMVowgbYxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYD
VQQHEw1TYW4gRnJhbmNpc2NvMRUwEwYDVQQKEwxCRUEgV2ViTG9naWMxETAPBgNVBAsTCFNlY3VyaXR5MS8wLQYDVQQDEyZEZ
W1vIENlcnRpZmljYXRlIEF1dGhvcml0eSBDb25zdHJhaW50czEfMB0GCSqGSIb3DQEJARYQc2VjdXJpdHlAYmVhLmNvbTCBnz
ANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA3ynD8l5JfLob4g6d94dNtI0Eep6QNl9bblmswnrjIYz1BVjjRjNVal9fRs+8jvm
85kIWlerKzIMJgiNsj50WlXzNX6orszggSsW15pqV0aYE9Re9K

CNNnORlsLjmRhuVxg9rJFEtjHMjrSYr2IDFhcdwPgIt0meWEVnKNObSFYcCAwEAAaMWMBQwEgYDVR0TAQH/BAgwBgEB/wIBAT
ANBgkqhkiG9w0BAQQFAAOBgQBS+0oqWxGyqbZO028zf9tQT2RKojfuwywrDoGW96Un5IqpFnBHIu5atliJo3OUpiH18KkwLN8
DVP/3t3K3O3kXdIuLbqAL0i5xyBlAhr7gE5eVhIyeMg7ETBPLyGO2BF13Y24LlsO+MX9jW7fxMraPN608QeJXkZw0E0cGwrw2AQ
==

-----END CERTIFICATE-----

C

Interoperating With Keystores From Prior Versions C-1

CInteroperating With Keystores From Prior
Versions

[49] This appendix explains how to use keystores in WebLogic Server version 12.1.2 or later
together with keystores in a previous version of WebLogic Server.

If you are using WebLogic Server version 12.1.2 or later together with a previous
version of WebLogic Server, be aware that the demo trust keystore of the previous
versions does not contain the demo CA certificate used by version 12.1.2 and later.
Therefore, if a 12.1.2 or later instance of WebLogic Server sends its public certificate to
an instance of WebLogic Server running a prior version, that public certificate will not
automatically be trusted.

For interoperability with prior releases, you can use either of the following methods:

■ Use the system property -Dsecurity.use.interopCA=true to generate
interoperable demo certificates signed by the previous demo CA certificate.

■ On the 12.1.2 instance of WebLogic Server, use the CertGen utility with the -cacert
-cakey arguments to generate demo certificates signed by the previous demo CA
certificate. Then, use ImportPrivateKey to import them into DemoIdentity.jks, as
shown in the following example:

java utils.CertGen
 -certfile <cert_file>
 -keyfile <private_key_file>
 -keyfilepass DemoIdentityPassPhrase
 -cacert $WL_HOME/server/lib/CertGenInteropCA.der
 -cakey $WL_HOME/server/lib/CertGenInteropCAKey.der
 -cakeypass password

java utils.ImportPrivateKey
 -certfile <cert_file>
 -keyfile <private_key_file>
 -keyfilepass DemoIdentityPassPhrase
 -keystore DemoIdentity.jks
 -storepass DemoIdentityKeyStorePassPhrase
 -alias DemoIdentity
 -keypass DemoIdentityPassPhrase

C-2 Administering Security for Oracle WebLogic Server 12.2.1

	Contents
	Preface
	Documentation Accessibility
	Conventions

	Part I Overview of WebLogic Server Security Administration
	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Information
	1.4 Security Samples and Tutorials
	1.4.1 Security Examples in the WebLogic Server Distribution
	1.4.2 Additional Examples Available for Download

	1.5 What’s New in This Guide

	2 Security Management Concepts
	2.1 Security Realms in WebLogic Server
	2.2 Security Providers
	2.3 Security Policies and WebLogic Resources
	2.3.1 WebLogic Resources
	2.3.2 Deployment Descriptors and the WebLogic Server Administration Console

	2.4 The Default Security Configuration in WebLogic Server
	2.5 Configuring WebLogic Security: Main Steps
	2.6 Methods of Configuring Security
	2.7 How Passwords Are Protected in WebLogic Server

	3 WebLogic Server Security Standards
	3.1 Supported Security Standards
	3.2 Supported FIPS Standards and Cipher Suites

	4 Configuring Security for a WebLogic Domain
	4.1 Performing a Secure Installation of WebLogic Server
	4.1.1 Before Installing WebLogic Server
	4.1.2 While Running the Installation Program
	4.1.3 Immediately After Installation is Complete

	4.2 Creating a WebLogic Domain for Production Use
	4.3 Securing the Domain After You Have Created It
	4.4 Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates
	4.5 Storing Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates
	4.6 Protecting User Accounts
	4.7 Using Connection Filters

	5 Customizing the Default Security Configuration
	5.1 Why Customize the Default Security Configuration?
	5.2 Using Automatic Realm Restart
	5.3 Before You Create a New Security Realm
	5.4 Creating and Configuring a New Security Realm: Main Steps

	Part II Configuring Security Providers
	6 About Configuring WebLogic Security Providers
	6.1 When Do You Need to Configure a Security Provider?
	6.2 Reordering Security Providers
	6.3 Enabling Synchronization in Security Policy and Role Modification at Deployment

	7 Configuring Authorization and Role Mapping Providers
	7.1 Configuring an Authorization Provider
	7.2 Configuring the WebLogic Adjudication Provider
	7.3 Configuring a Role Mapping Provider

	8 Configuring the WebLogic Auditing Provider
	8.1 Auditing Provider Overview
	8.2 Events Logged by the WebLogic Auditing Provider
	8.3 Configuration Options
	8.4 Auditing ContextHandler Elements
	8.5 Configuration Auditing
	8.5.1 Enabling Configuration Auditing

	8.6 Configuration Auditing Messages
	8.7 Audit Events and Auditing Providers

	9 Configuring Credential Mapping Providers
	9.1 Configuring a WebLogic Credential Mapping Provider
	9.2 Configuring a PKI Credential Mapping Provider
	9.2.1 PKI Credential Mapper Attributes
	9.2.2 Credential Actions

	9.3 Configuring a SAML Credential Mapping Provider for SAML 1.1
	9.3.1 Configuring Assertion Lifetime
	9.3.2 Relying Party Registry

	9.4 Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0
	9.4.1 SAML 2.0 Credential Mapping Provider Attributes
	9.4.2 Service Provider Partners
	9.4.2.1 Partner Lookup Strings Required for Web Service Partners
	9.4.2.1.1 Lookup String Syntax
	9.4.2.1.2 Specifying Default Partners

	9.4.2.2 Management of Partner Certificates
	9.4.2.3 Java Interface for Configuring Service Provider Partner Attributes

	10 Configuring the Certificate Lookup and Validation Framework
	10.1 Overview of the Certificate Lookup and Validation Framework
	10.2 CLV Security Providers Provided by WebLogic Server
	10.2.1 CertPath Provider
	10.2.2 Certificate Registry

	Part III Configuring Authentication Providers
	11 About Configuring the Authentication Providers in WebLogic Server
	11.1 Choosing an Authentication Provider
	11.2 Using More Than One Authentication Provider
	11.2.1 Setting the JAAS Control Flag Option
	11.2.2 Changing the Order of Authentication Providers

	12 Configuring the WebLogic Authentication Provider
	12.1 About the WebLogic Authentication Provider
	12.2 Setting User Attributes

	13 Configuring LDAP Authentication Providers
	13.1 LDAP Authentication Providers Included in WebLogic Server
	13.2 Requirements for Using an LDAP Authentication Provider
	13.3 Configuring an LDAP Authentication Provider: Main Steps
	13.4 Accessing Other LDAP Servers
	13.5 Enabling an LDAP Authentication Provider for SSL
	13.6 Dynamic Groups and WebLogic Server
	13.7 Use of GUID and LDAP DN Data in WebLogic Principals
	13.8 Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual Directory Authentication Providers
	13.8.1 Configuring User and Group Name Types
	13.8.1.1 Changing the User Name Attribute Type
	13.8.1.2 Changing the Group Name Attribute Type

	13.8.2 Configuring Static Groups

	13.9 Example of Configuring the Oracle Internet Directory Authentication Provider
	13.10 Configuring Failover for LDAP Authentication Providers
	13.10.1 LDAP Failover Example 1
	13.10.2 LDAP Failover Example 2

	13.11 Configuring an Authentication Provider for Oracle Unified Directory
	13.12 Following Referrals in the Active Directory Authentication Provider
	13.13 Configuring Group Search in the LDAP Authentication Provider for Oracle Directory Server Enterprise Edition
	13.14 Improving the Performance of LDAP Authentication Providers
	13.14.1 Optimizing the Group Membership Caches
	13.14.2 Optimizing the Connection Pool Size and User Cache
	13.14.3 Configuring Dynamic Groups in the iPlanet Authentication Provider to Improve Performance
	13.14.4 Optimizing the Principal Validator Cache
	13.14.5 Configuring the Active Directory Authentication Provider to Improve Performance
	13.14.6 Analyzing the Generic LDAP Authenticator Cache Statistics
	13.14.7 Testing the LDAP Connection During Configuration

	13.15 Configuring an Administrator User from an External LDAP Server: an Example

	14 Configuring RDBMS Authentication Providers
	14.1 About Configuring the RDBMS Authentication Providers
	14.2 Common RDBMS Authentication Provider Attributes
	14.2.1 Data Source Attribute
	14.2.2 Group Searching Attributes
	14.2.3 Group Caching Attributes

	14.3 Configuring the SQL Authentication Provider
	14.3.1 Password Attributes
	14.3.2 SQL Statement Attributes

	14.4 Configuring the Read-Only SQL Authenticator
	14.5 Configuring the Custom DBMS Authenticator
	14.5.1 Plug-In Class Attributes

	15 Configuring the Windows NT Authentication Provider
	15.1 About the Windows NT Authentication Provider
	15.2 Domain Controller Settings
	15.3 LogonType Setting
	15.4 UPN Names Settings

	16 Configuring the SAML Authentication Provider
	17 Configuring the Password Validation Provider
	17.1 About the Password Validation Provider
	17.2 Password Composition Rules for the Password Validation Provider
	17.3 Using the Password Validation Provider with the WebLogic Authentication Provider
	17.4 Using the Password Validation Provider with an LDAP Authentication Provider
	17.5 Using WLST to Create and Configure the Password Validation Provider
	17.5.1 Creating an Instance of the Password Validation Provider
	17.5.2 Specifying the Password Composition Rules

	18 Configuring Identity Assertion Providers
	18.1 About the Identity Assertion Providers
	18.2 How an LDAP X509 Identity Assertion Provider Works
	18.3 Configuring an LDAP X509 Identity Assertion Provider: Main Steps
	18.4 Configuring a Negotiate Identity Assertion Provider
	18.5 Configuring a SAML Identity Assertion Provider for SAML 1.1
	18.5.1 Asserting Party Registry
	18.5.2 Certificate Registry

	18.6 Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0
	18.6.1 Identity Provider Partners
	18.6.1.1 Partner Lookup Strings Required for Web Service Partners
	18.6.1.2 Management of Partner Certificates
	18.6.1.3 Java Interface for Configuring Identity Provider Partner Attributes

	18.7 Ordering of Identity Assertion for Servlets
	18.8 Configuring Identity Assertion Performance in the Server Cache
	18.9 Authenticating a User Not Defined in the Identity Store
	18.9.1 How Virtual User Authentication Works in a WebLogic Domain
	18.9.2 Configuring Two-Way SSL and Managing Certificates Securely
	18.9.3 Customizing the WebLogic Identity Assertion Provider (DefaultIdentityAsserter)
	18.9.4 Configuring the Virtual User Authentication Provider
	18.9.5 Using WLST to Configure Virtual User Authentication

	18.10 Configuring a User Name Mapper
	18.11 Configuring a Custom User Name Mapper

	19 Configuring the Virtual User Authentication Provider
	19.1 About the Virtual User Authentication Provider
	19.2 Adding the Virtual User Authentication Provider to the Security Realm

	Part IV Configuring Single Sign-On
	20 Configuring Single Sign-On with Microsoft Clients
	20.1 Overview of Single Sign-On with Microsoft Clients
	20.2 System Requirements for SSO with Microsoft Clients
	20.2.1 Host Computer Requirements for Supporting SSO with Microsoft Clients
	20.2.2 Client Computer Requirements for Supporting Microsoft Clients Using SSO

	20.3 Single Sign-On with Microsoft Clients: Main Steps
	20.4 Configuring Your Network Domain to Use Kerberos
	20.5 Creating a Kerberos Identification for WebLogic Server
	20.5.1 Step 1: Create a User Account for the Host Computer
	20.5.2 Step 2: Configure the User Account to Comply with Kerberos
	20.5.3 Step 3: Define a Service Principal Name and Create a Keytab for the Service
	20.5.3.1 Defining an SPN and Creating a Keytab on Windows Systems
	20.5.3.2 Defining an SPN and Creating a Keytab on UNIX Systems

	20.5.4 Step 4: Verify Correct Setup
	20.5.5 Step 5: Update Default JDK Security Policy Files

	20.6 Configuring Microsoft Clients to Use Windows Integrated Authentication
	20.6.1 Configuring a .NET Web Service
	20.6.2 Configuring an Internet Explorer Browser
	20.6.2.1 Configure Local Intranet Domains
	20.6.2.2 Configure Intranet Authentication
	20.6.2.3 Verify the Proxy Settings
	20.6.2.4 Set Integrated Authentication for Internet Explorer 6.0

	20.6.3 Configuring a Mozilla Firefox Browser
	20.6.4 Configuring a Java SE Client Application

	20.7 Creating a JAAS Login File
	20.8 Configuring the Identity Assertion Provider
	20.9 Using Startup Arguments for Kerberos Authentication with WebLogic Server
	20.10 Verifying Configuration of SSO with Microsoft Clients

	21 Configuring Single Sign-On with Web Browsers and HTTP Clients Using SAML
	21.1 Configuring SAML Services
	21.2 Configuring Single Sign-On Using SAML White Paper
	21.3 SAML for Web Single Sign-On Scenario API Example

	22 Configuring SAML 1.1 Services
	22.1 Enabling Single Sign-on with SAML 1.1: Main Steps
	22.1.1 Configuring a Source Site: Main Steps
	22.1.2 Configuring a Destination Site: Main Steps

	22.2 Configuring a SAML 1.1 Source Site for Single Sign-On
	22.2.1 Configure the SAML 1.1 Credential Mapping Provider
	22.2.2 Configure the Source Site Federation Services
	22.2.3 Configure Relying Parties
	22.2.3.1 Configure Supported Profiles
	22.2.3.2 Assertion Consumer Parameters

	22.2.4 Replacing the Default Assertion Store

	22.3 Configuring a SAML 1.1 Destination Site for Single Sign-On
	22.3.1 Configure SAML Identity Assertion Provider
	22.3.2 Configure Destination Site Federation Services
	22.3.2.1 Enable the SAML Destination Site
	22.3.2.2 Set Assertion Consumer URIs
	22.3.2.3 Configure SSL for the Assertion Consumer Service
	22.3.2.4 Add SSL Client Identity Certificate
	22.3.2.5 Configure Single-Use Policy and the Used Assertion Cache or Custom Assertion Cache
	22.3.2.6 Configure Recipient Check for POST Profile

	22.3.3 Configuring Asserting Parties
	22.3.3.1 Configure Supported Profiles
	22.3.3.2 Configure Source Site ITS Parameters

	22.4 Configuring Relying and Asserting Parties with WLST

	23 Configuring SAML 2.0 Services
	23.1 Configuring SAML 2.0 Services: Main Steps
	23.2 Configuring SAML 2.0 General Services
	23.2.1 About SAML 2.0 General Services
	23.2.2 Publishing and Distributing the Metadata File

	23.3 Configuring an Identity Provider Site for SAML 2.0 Single Sign-On
	23.3.1 Configure the SAML 2.0 Credential Mapping Provider
	23.3.2 Configure SAML 2.0 Identity Provider Services
	23.3.2.1 Enable the SAML 2.0 Identity Provider Site
	23.3.2.2 Specify a Custom Login Web Application
	23.3.2.3 Enable Binding Types
	23.3.2.4 Publish Your Site's Metadata File

	23.3.3 Create and Configure Web Single Sign-On Service Provider Partners
	23.3.3.1 Obtain Your Service Provider Partner's Metadata File
	23.3.3.2 Create Partner and Enable Interactions
	23.3.3.3 Configure How Assertions are Generated
	23.3.3.4 Configure How Documents Are Signed
	23.3.3.5 Configure Artifact Binding and Transport Settings

	23.4 Configuring a Service Provider Site for SAML 2.0 Single Sign-On
	23.4.1 Configure the SAML 2.0 Identity Assertion Provider
	23.4.2 Configure the SAML Authentication Provider
	23.4.3 Configure SAML 2.0 General Services
	23.4.4 Configure SAML 2.0 Service Provider Services
	23.4.4.1 Enable the SAML 2.0 Service Provider Site
	23.4.4.2 Specify How Documents Must Be Signed
	23.4.4.3 Specify How Authentication Requests Are Managed
	23.4.4.4 Enable Binding Types
	23.4.4.5 Set Default URL

	23.4.5 Create and Configure Web Single Sign-On Identity Provider Partners
	23.4.5.1 Obtain Your Identity Provider Partner's Metadata File
	23.4.5.2 Create Partner and Enable Interactions
	23.4.5.3 Configure Authentication Requests and Assertions
	23.4.5.4 Configure Redirect URIs
	23.4.5.5 Configure Binding and Transport Settings

	23.5 Viewing Partner Site, Certificate, and Service Endpoint Information
	23.6 Web Application Deployment Considerations for SAML 2.0
	23.6.1 Deployment Descriptor Recommendations
	23.6.1.1 Use of relogin-enabled with CLIENT-CERT Authentication
	23.6.1.2 Use of Non-default Cookie Name

	23.6.2 Login Application Considerations for Clustered Environments
	23.6.3 Enabling Force Authentication and Passive Attributes is Invalid

	24 Enabling Debugging for SAML 1.1 and 2.0
	24.1 About SAML Debug Scopes and Attributes
	24.2 Enabling Debugging Using the Command Line
	24.3 Enabling Debugging Using the WebLogic Server Administration Console
	24.4 Enabling Debugging Using the WebLogic Scripting Tool
	24.5 Sending Debug Messages to Standard Out

	Part V Managing Security Information
	25 Migrating Security Data
	25.1 Overview of Security Data Migration
	25.2 Migration Concepts
	25.3 Formats and Constraints Supported by WebLogic Security Providers
	25.4 Migrating Data with WLST

	26 Managing the RDBMS Security Store
	26.1 Security Providers that Use the RDBMS Security Store
	26.2 Configuring the RDBMS Security Store
	26.2.1 Create a Domain with the RDBMS Security Store
	26.2.1.1 Specifying Database Connection Properties
	26.2.1.1.1 Oracle Example
	26.2.1.1.2 MS-SQL Example
	26.2.1.1.3 DB2 Example
	26.2.1.1.4 For More Information About Default Connection Properties

	26.2.1.2 Testing the Database Connection

	26.2.2 Create RDBMS Tables in the Security Datastore
	26.2.3 Configure a JMS Topic for the RDBMS Security Store
	26.2.3.1 Configuring JMS Connection Recovery in the Event of Failure

	26.3 Upgrading a Domain to Use the RDBMS Security Store

	27 Managing the Embedded LDAP Server
	27.1 Configuring the Embedded LDAP Server
	27.2 Embedded LDAP Server Replication
	27.3 Viewing the Contents of the Embedded LDAP Server from an LDAP Browser
	27.4 Exporting and Importing Information in the Embedded LDAP Server
	27.5 LDAP Access Control Syntax
	27.5.1 The Access Control File
	27.5.2 Access Control Location
	27.5.3 Access Control Scope
	27.5.4 Access Rights
	27.5.4.1 Attribute Permissions
	27.5.4.2 Entry Permissions

	27.5.5 Attributes Types
	27.5.6 Subject Types
	27.5.7 Grant/Deny Evaluation Rules

	27.6 Backup and Recovery

	Part VI Configuring SSL
	28 Overview of Configuring SSL in WebLogic Server
	28.1 SSL: An Introduction
	28.1.1 One-Way and Two-Way SSL
	28.1.2 Java Secure Socket Extension (JSSE) SSL Implementation Supported

	28.2 Setting Up SSL: Main Steps
	28.3 SSL Session Behavior

	29 Configuring Keystores
	29.1 About Configuring Keystores in WebLogic Server
	29.1.1 About Private Keys, Digital Certificates, and Trusted Certificate Authorities
	29.1.2 Using Separate Keystores for Identity and Trust
	29.1.3 Configuring Keystores: Main Steps
	29.1.4 How WebLogic Server Locates Trust

	29.2 Creating a Keystore
	29.2.1 Keystore File Name Requirements
	29.2.2 Creating a Keystore Using Keytool
	29.2.3 Creating a Keystore Using ImportPrivateKey

	29.3 Using Keystores and Certificates in a Development Environment
	29.3.1 Using the Demonstration Keystores
	29.3.2 Creating Demonstration Certificates Using CertGen
	29.3.2.1 About CertGen
	29.3.2.2 Using CertGen to Create a Certificate and Private Key
	29.3.2.3 CertGen Usage Notes
	29.3.2.4 Limitation on CertGen Usage

	29.3.3 Using Your Own Certificate Authority
	29.3.4 Converting a Microsoft p7b Format to PEM Format
	29.3.5 Configuring Demo Certificates for Clients

	29.4 Obtaining and Storing Certificates for Production Environments
	29.4.1 Generating a Certificate Signing Request
	29.4.2 Importing Certificates into the Trust and Identity Keystores

	29.5 Configuring Keystores with WebLogic Server
	29.5.1 Configuring Keystores Using the Administration Console
	29.5.2 Configuring a Keystore Using WLST

	29.6 Viewing Keystore Contents
	29.7 Replacing Expiring Certificates
	29.8 Creating a Keystore: An Example
	29.9 Supported Formats for Identity and Trust Certificates
	29.10 Obtaining a Digital Certificate for a Web Browser

	30 Configuring Oracle OPSS Keystore Service
	30.1 Prerequisites for Using the OPSS Keystore Service
	30.2 Where is the OPSS Keystore Service Documented?
	30.3 Configuring the OPSS Keystore Service for Demo Identity and Trust: Main Steps
	30.4 Configuring the OPSS Keystore Service for Custom Identity and Trust: Main Steps

	31 Using Host Name Verification
	31.1 Using the Default WebLogic Server Host Name Verifier
	31.1.1 Using the Default Host Name Verifier on Mac OS X Platforms

	31.2 Using the Wildcarded Host Name Verifier
	31.2.1 How the Wildcarded Host Name Verifier Works
	31.2.2 Configuring the Wildcarded Host Name Verifier

	31.3 Using a Custom Host Name Verifier

	32 Specifying a Client Certificate for an Outbound Two-Way SSL Connection
	32.1 Overview
	32.2 Add a Client Certificate to the Identity Keystore
	32.3 Initiate the Outbound Two-Way SSL Connection
	32.4 Restore the Use of the Server Identity Certificate

	33 SSL Debugging
	33.1 About the SSL Debug Trace
	33.2 Command-Line Properties for Enabling SSL Debugging

	34 SSL Certificate Validation
	34.1 Controlling the Level of Certificate Validation
	34.2 Accepting Certificate Policies in Certificates
	34.3 Checking Certificate Chains
	34.4 Using Certificate Lookup and Validation Providers
	34.5 How SSL Certificate Validation Works in WebLogic Server
	34.6 Troubleshooting Problems with Certificate Validation

	35 Using JCE Providers with WebLogic Server
	35.1 Using the RSA JCE Provider
	35.2 Using the JDK JCE Provider
	35.3 Using nCipher JCE Provider
	35.3.1 Installing the nCipher JCE Provider

	36 Enabling FIPS Mode
	36.1 FIPS Overview
	36.2 Enabling FIPS 140-2 Mode From Java Options
	36.3 Enabling FIPS 140-2 Mode From java.security
	36.4 Verifying JCE When FIPS 140-2 Mode is Enabled
	36.5 Important Considerations When Using Web Services
	36.5.1 SHA-1 Secure Hash Algorithm Not Supported
	36.5.2 X509PKIPathv1 token Not Supported

	37 Specifying the SSL Protocol Version
	37.1 About the SSL Version Used in the Handshake
	37.2 Using the weblogic.security.SSL.protocolVersion System Property
	37.3 Using the weblogic.security.SSL.minimumProtocolVersion System Property
	37.3.1 Protocols Enabled with the JSSE-Based SSL Implementation

	38 Using the JSSE-Based SSL Implementation
	38.1 System Property Differences Between the JSSE-Based and Certicom SSL Implementations
	38.2 SSL Performance Considerations
	38.3 Cipher Suites
	38.3.1 List of Supported Cipher Suites
	38.3.2 Backward Compatibility of Supported Cipher Suites
	38.3.3 Using Anonymous Ciphers
	38.3.4 Cipher Suite Name Equivalents
	38.3.5 Setting Cipher Suites Using WLST: An Example

	38.4 Using Debugging with JSSE SSL
	38.5 Using the RSA JSSE Provider in WebLogic Server

	39 X.509 Certificate Revocation Checking
	39.1 Certificate Revocation Checking Overview
	39.2 Enabling the Default CR Checking Configuration
	39.2.1 Configuring Default CR Checking
	39.2.2 Customizing the CR Checking Configuration

	39.3 Choosing the CR Checking Methods to Be Used by WebLogic Server
	39.4 Failing SSL Certificate Path Validation if Revocation Status Cannot Be Determined
	39.5 Using the Online Certificate Status Protocol
	39.5.1 Using Nonces in OCSP Requests
	39.5.2 Setting the Response Timeout Interval
	39.5.3 Enabling and Configuring the OCSP Response Local Cache

	39.6 Using Certificate Revocation Lists
	39.6.1 Enabling Updates from Distribution Points
	39.6.2 Configuring the CRL Local Cache

	39.7 Configuring Certificate Authority Overrides
	39.7.1 General Certificate Authority Overrides
	39.7.2 Configuring OCSP Properties in a Certificate Authority Override
	39.7.2.1 Identifying the OCSP Responder URL

	39.7.3 Configuring CRL Properties in a Certificate Authority Override

	40 Configuring an Identity Keystore Specific to a Network Channel
	40.1 About Network Channels
	40.2 Channel-Specific SSL Configuration Attributes
	40.3 Steps to Configure a Channel-Specific Identity Keystore
	40.4 Using WLST to Configure a Channel-Specific Identity Keystore

	41 Configuring RMI over IIOP with SSL
	42 Using a Certificate Callback Handler to Validate End User Certificates
	42.1 How End User Certificate Callback Handlers Work
	42.2 Creating a Certificate Callback Implementation
	42.3 Configuring the Certificate Callback with WebLogic Server

	Part VII Advanced Security Topics
	43 Configuring Cross-Domain Security
	43.1 Important Information Regarding Cross-Domain Security Support
	43.2 Enabling Trust Between WebLogic Server Domains
	43.2.1 Enabling Cross-Domain Security Between WebLogic Server Domains
	43.2.1.1 Configuring Cross-Domain Security
	43.2.1.2 Excluding Domains From Cross-Domain Security
	43.2.1.3 Configuring Cross-Domain Users
	43.2.1.4 Configure a Credential Mapping for Cross-Domain Security

	43.2.2 Enabling Global Trust

	43.3 Using the Java Authorization Contract for Containers
	43.4 Viewing MBean Attributes
	43.5 Configuring a Domain to Use JAAS Authorization

	44 Configuring JASPIC Security
	44.1 JASPIC Mechanisms Override WebLogic Server Defaults
	44.2 Prerequisites for Configuring JASPIC
	44.2.1 Server Authentication Module Must Be in Classpath
	44.2.2 Custom Authentication Configuration Providers Must Be in Classpath

	44.3 Location of Configuration Data
	44.4 Configuring JASPIC for a Domain
	44.5 Displaying Authentication Configuration Providers
	44.6 Configuring JASPIC for a Web Application
	44.7 Configuring JASPIC with WLST
	44.7.1 Creating a WLS Authentication Configuration Provider
	44.7.2 Creating a Custom Authentication Configuration Provider
	44.7.3 Listing All WLS and Custom Authentication Configuration Providers
	44.7.4 Enabling JASPIC for a Domain
	44.7.5 Disabling JASPIC for a Domain

	45 Security Configuration MBeans
	45.1 SSLMBean
	45.2 ServerMBean
	45.3 EmbeddedLDAPMBean
	45.4 RDBMSSecurityStoreMBean
	45.5 SecurityConfigurationMBean
	45.6 RealmMBean
	45.7 WindowsNTAuthenticatorMBean
	45.8 CustomDBMSAuthenticatorMBean
	45.9 ReadonlySQLAuthenticatorMBean
	45.10 SQLAuthenticatorMBean
	45.11 DefaultAuditorMBean
	45.12 UserLockoutManagerMBean
	45.13 Other Security Provider MBeans

	Part VIII Appendixes

