

[1] Oracle® Fusion Middleware
Administering Oracle HTTP Server

12c (12.2.1)

E56040-01

October 2015

This document describes how to configure and use Oracle
HTTP Server as a framework for hosting static pages,
dynamic pages, and applications over the Web.

Oracle Fusion Middleware Administering Oracle HTTP Server, 12c (12.2.1)

E56040-01

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tom Pfaeffle

Contributors: Kevin Clark, M.D. Ibrahim, Brunda Karanam, Prabhat Kishore, Sriram Natarajan, Mike
Rumph, Ken Vincent, Asha Yaranga

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

What's New in Oracle HTTP Server 12c (12.2.1) .. xiii

New and Changed Features in 12c (12.2.1).. xiii

Part I Understanding Oracle HTTP Server

1 Introduction to Oracle HTTP Server

1.1 What is Oracle HTTP Server?.. 1-1
1.2 Oracle HTTP Server 12c (12.2.1) Topologies ... 1-2
1.3 Key Features of Oracle HTTP Server ... 1-4
1.3.1 Restricted-JRF Mode.. 1-4
1.3.2 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) ... 1-5
1.3.3 CGI and Fast CGI Protocol (mod_proxy_fcgi) .. 1-5
1.3.4 Security Features.. 1-5
1.3.4.1 Oracle Secure Sockets Layer (mod_ossl)... 1-5
1.3.4.2 Security: Encryption with Secure Sockets Layer.. 1-5
1.3.4.3 Security: Single Sign-On with WebGate.. 1-6
1.3.5 URL Rewriting and Proxy Server Capabilities.. 1-6
1.4 Domain Types ... 1-6
1.4.1 WebLogic Server Domain (Full-JRF Mode) ... 1-6
1.4.2 WebLogic Server Domain (Restricted-JRF Mode) .. 1-7
1.4.3 Standalone Domain ... 1-7
1.5 Understanding Oracle HTTP Server Directory Structure... 1-8
1.6 Understanding Configuration Files ... 1-8
1.6.1 Staging and Run-time Configuration Directories ... 1-8
1.6.2 Oracle HTTP Server Configuration Files ... 1-9
1.6.3 Modifying an Oracle HTTP Server Configuration File .. 1-9
1.7 Upgrading from Earlier Releases of Oracle HTTP Server ... 1-10
1.8 Oracle HTTP Server Support .. 1-10

iv

2 Understanding Oracle HTTP Server Modules

2.1 Oracle-Developed Modules for Oracle HTTP Server .. 2-1
2.1.1 mod_certheaders Module—Enables Reverse Proxies .. 2-1
2.1.2 mod_context Module—Creates or Propagates ECIDs ... 2-2
2.1.3 mod_dms Module—Enables Access to DMS Data ... 2-2
2.1.4 mod_odl Module—Enables Access to ODL... 2-2
2.1.5 mod_ora_audit—Supports Authentication and Authorization Auditing 2-3
2.1.6 mod_ossl Module—Enables Cryptography (SSL) .. 2-3
2.1.7 mod_webgate Module—Enables Single Sign-on .. 2-3
2.1.8 mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server 2-4
2.2 Apache HTTP Server and Third-party Modules in Oracle HTTP Server........................... 2-4

3 Understanding Oracle HTTP Server Management Tools

3.1 Administering Oracle HTTP Server Using Fusion Middleware Control 3-1
3.1.1 Accessing Fusion Middleware Control .. 3-2
3.1.2 Accessing the Oracle HTTP Server Home Page.. 3-2
3.1.3 Understanding the Oracle HTTP Server Home Page... 3-2
3.1.4 Editing Configuration Files Using Fusion Middleware Control 3-3
3.2 Administering Oracle HTTP Server Using WLST ... 3-4
3.2.1 Oracle HTTP Server-Specific WLST Commands .. 3-4
3.2.2 Using WLST in a Standalone Environment ... 3-4

Part II Managing Oracle HTTP Server

4 Running Oracle HTTP Server

4.1 Before You Begin .. 4-1
4.2 Creating an OHS Instance.. 4-2
4.2.1 Creating an Oracle HTTP Server Instance in a WebLogic Server Domain 4-2
4.2.1.1 Creating an Instance by Using WLST.. 4-2
4.2.1.2 Creating an Instance by Using Fusion Middleware Control 4-3
4.2.1.3 About Instance Provisioning .. 4-5
4.2.2 Creating an Oracle HTTP Server Instance in a Standalone Domain............................ 4-5
4.3 Performing Basic Oracle HTTP Server Tasks ... 4-5
4.3.1 About Using the WLST Commands ... 4-6
4.3.2 Understanding the PID File.. 4-6
4.3.3 Starting Oracle HTTP Server Instances .. 4-6
4.3.3.1 Starting Oracle HTTP Server Instances Using Fusion Middleware Control 4-7
4.3.3.2 Starting Oracle HTTP Server Instances Using WLST.. 4-7
4.3.3.3 Starting Oracle HTTP Server Instances from the Command Line 4-8
4.3.3.3.1 Storing Your Node Manager Password ... 4-8
4.3.3.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)......... 4-9
4.3.3.5 Starting Oracle HTTP Server Instances as a Different User (UNIX Only) 4-9
4.3.4 Stopping Oracle HTTP Server Instances ... 4-10
4.3.4.1 Stopping Oracle HTTP Server Instances Using Fusion Middleware Control .. 4-10
4.3.4.2 Stopping Oracle HTTP Server Instances Using WLST .. 4-10
4.3.4.3 Stopping Oracle HTTP Server Instances from the Command Line 4-11

v

4.3.5 Restarting Oracle HTTP Server Instances .. 4-11
4.3.5.1 Restarting Oracle HTTP Server Instances Using Fusion Middleware Control 4-12
4.3.5.2 Restarting Oracle HTTP Server Instances Using WLST 4-12
4.3.6 Checking the Status of a Running Oracle HTTP Server Instance.............................. 4-13
4.3.6.1 Checking Server Status Using Fusion Middleware Control 4-13
4.3.6.2 Checking Server Status Using WLST.. 4-13
4.3.7 Deleting an Oracle HTTP Server Instance... 4-14
4.3.7.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain 4-14
4.3.7.1.1 Deleting an Instance Using WLST ... 4-15
4.3.7.1.2 Deleting an Instance Using Fusion Middleware Control............................. 4-15
4.3.7.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain............. 4-16
4.3.8 Changing the Default Node Manager Port Number... 4-17
4.3.8.1 Changing the Default Node Manager Port Using WLST 4-17
4.3.8.2 Changing the Default Node Manager Port Using Oracle WebLogic Server

Administration Console 4-17
4.4 Remotely Administering Oracle HTTP Server .. 4-18
4.4.1 Setting Up a Remote Environment... 4-18
4.4.1.1 Host Requirements for a Remote Environment.. 4-18
4.4.1.2 Task 1: Set Up an Expanded Domain on host1 ... 4-18
4.4.1.3 Task 2: Pack the Domain on host1 .. 4-19
4.4.1.4 Task 3: Unpack the Domain on host2 ... 4-19
4.4.1.5 Task 4: Run Oracle HTTP Server Remotely... 4-20

5 Working with Oracle HTTP Server

5.1 About Editing Configuration Files ... 5-1
5.1.1 Editing a Configuration File for a Standalone Domain.. 5-1
5.1.2 Editing a Configuration File for a WebLogic Server Domain 5-1
5.2 Specifying Server Properties ... 5-2
5.2.1 Specifying Server Properties Using Fusion Middleware Control 5-2
5.2.2 Specify Server Properties by Editing the httpd.conf File ... 5-3
5.3 Configuring Oracle HTTP Server Instances.. 5-4
5.3.1 Secure Sockets Layer Configuration ... 5-5
5.3.2 Configuring Secure Sockets Layer in Standalone Mode.. 5-5
5.3.2.1 Configure SSL ... 5-5
5.3.2.1.1 Task 1: Create a Real Wallet... 5-6
5.3.2.1.2 Task 2: (Optional) Customize Your Configuration .. 5-6
5.3.2.1.3 Basic SSL Configuration Example... 5-6
5.3.2.2 Specify SSLVerifyClient on the Server Side.. 5-7
5.3.2.2.1 Forcing Clients to Authenticate Using Certificates .. 5-7
5.3.2.2.2 Forcing a Client to Authenticate for a Particular URL..................................... 5-7
5.3.2.2.3 Authorizing a Client for a Particular URL... 5-7
5.3.2.2.4 Allowing Clients with Strong Ciphers and CA Client Certificate or Basic

Authentication 5-8
5.3.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server 5-9
5.3.3 Exporting the Keystore to an Oracle HTTP Server Instance Using WLST.................. 5-9
5.3.4 Importing Wallets to the KSS Database after an Upgrade Using WLST.................. 5-10
5.3.5 Associating Oracle HTTP Server Instances With a Keystore Using WLST.............. 5-10

vi

5.3.6 Configuring MIME Settings using Fusion Middleware Control 5-10
5.3.6.1 Configuring MIME Types .. 5-11
5.3.6.2 Configuring MIME Encoding .. 5-11
5.3.6.3 Configuring MIME Languages.. 5-12
5.3.7 About Configuring mod_proxy_fcgi ... 5-13
5.3.8 About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)..... 5-13
5.3.8.1 Configuring SSL for mod_wl_ohs... 5-13
5.3.9 Removing Access to Unneeded Content ... 5-13
5.3.9.1 Edit the cgi-bin Section ... 5-14
5.3.9.2 Edit the Fancy Indexing Section .. 5-14
5.3.9.3 Edit the Product Documentation Section... 5-15
5.3.10 Using the apxs Command to Install Extension Modules.. 5-16
5.3.11 Disabling the Options Method ... 5-17
5.3.12 Updating Oracle HTTP Server Component Configurations on a Shared Filesystem

5-18
5.4 Configuring the mod_security Module .. 5-19
5.4.1 Configuring mod_security in the httpd.conf File .. 5-19
5.4.2 Configuring mod_security in a mod_security.conf File ... 5-20
5.4.3 Sample mod_secuirity.conf File.. 5-20

6 Managing and Monitoring Server Processes

6.1 Oracle HTTP Server Processing Model ... 6-1
6.1.1 Request Process Model ... 6-1
6.1.2 Single Unit Process Model.. 6-1
6.2 Monitoring Server Performance ... 6-2
6.2.1 Oracle HTTP Server Performance Metrics ... 6-2
6.2.2 Viewing Performance Metrics ... 6-3
6.2.2.1 Viewing Server Metrics Using Fusion Middleware Control.................................. 6-3
6.2.2.2 Viewing Server Metrics Using WLST.. 6-4
6.3 Oracle HTTP Server Performance Directives ... 6-5
6.3.1 Understanding Performance Directives ... 6-5
6.3.1.1 Changing the MPM Type Value in a Standalone Domain 6-6
6.3.1.2 Changing the MPM Type Value in a WebLogic Server Managed Domain 6-6
6.3.2 Configuring Performance Directives Using Fusion Middleware Control 6-7
6.3.2.1 Setting the Request Configuration Using Fusion Middleware Control 6-8
6.3.2.2 Setting the Connection Configuration Using Fusion Middleware Control 6-8
6.3.2.3 Setting the Process Configuration Using Fusion Middleware Control 6-9
6.4 Understanding Process Security for UNIX .. 6-10

7 Managing Connectivity

7.1 Default Listen Ports .. 7-1
7.2 Defining the Admin Port ... 7-1
7.3 Viewing Port Number Usage .. 7-2
7.3.1 Viewing Port Number Usage Using Fusion Middleware Control 7-2
7.3.2 Viewing Port Number Usage Using WLST ... 7-2
7.4 Managing Ports ... 7-3
7.4.1 Creating Ports Using Fusion Middleware Control... 7-3

vii

7.4.2 Editing Ports Using Fusion Middleware Control ... 7-4
7.4.3 Disabling a Listening Port in a Standalone Environment.. 7-5
7.5 Configuring Virtual Hosts ... 7-5
7.5.1 Creating Virtual Hosts Using Fusion Middleware Control .. 7-6
7.5.2 Configuring Virtual Hosts Using Fusion Middleware Control 7-8

8 Managing Oracle HTTP Server Logs

8.1 Overview of Server Logs ... 8-1
8.1.1 About Error Logs ... 8-2
8.1.2 About Access Logs... 8-2
8.1.3 Configuring Log Rotation .. 8-3
8.1.3.1 Syntax and Examples for Time- and Size-Based Log Rotation.............................. 8-4
8.2 Configuring Oracle HTTP Server Logs.. 8-5
8.2.1 Configuring Error Logs Using Fusion Middleware Control .. 8-5
8.2.1.1 Configuring the Error Log Format and Location... 8-6
8.2.1.2 Configuring the Error Log Level.. 8-7
8.2.1.3 Configuring Error Log Rotation Policy ... 8-7
8.2.2 Configuring Access Logs Using Fusion Middleware Control 8-7
8.2.2.1 Configuring the Access Log Format .. 8-8
8.2.2.2 Configuring the Access Log File .. 8-8
8.2.3 Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)..................... 8-9
8.2.3.1 Configure umask for an Oracle HTTP Server Instance in a Standalone Domain

8-9
8.2.3.2 Configure umask for an Oracle HTTP Server Instance in a WebLogic Server

Managed Domain 8-10
8.3 Configuring the Log Level Using WLST .. 8-10
8.4 Log Directives for Oracle HTTP Server .. 8-11
8.4.1 Oracle Diagnostic Logging Directives ... 8-11
8.4.1.1 OraLogMode .. 8-11
8.4.1.2 OraLogDir... 8-11
8.4.1.3 OraLogSeverity .. 8-12
8.4.1.4 OraLogRotationParams .. 8-12
8.4.2 Apache HTTP Server Log Directives ... 8-13
8.4.2.1 ErrorLog.. 8-13
8.4.2.2 LogLevel.. 8-13
8.4.2.3 LogFormat .. 8-13
8.4.2.4 CustomLog ... 8-14
8.5 Viewing Oracle HTTP Server Logs ... 8-14
8.5.1 Viewing Logs Using Fusion Middleware Control... 8-14
8.5.2 Viewing Logs Using WLST ... 8-15
8.5.3 Viewing Logs in a Text Editor .. 8-16
8.6 Recording ECID Information ... 8-16
8.6.1 About ECID Information ... 8-16
8.6.2 Configuring Error Logs for ECID Information .. 8-16
8.6.3 Configuring Access Logs for ECID Information.. 8-16
8.7 Terminating SSL Requests .. 8-17
8.7.1 About Terminating SSL at the Load Balancer .. 8-17

viii

8.7.1.1 Terminating SSL at the Load Balancer ... 8-17
8.7.2 About Terminating SSL at Oracle HTTP Server... 8-18
8.7.2.1 Terminating SSL at Oracle HTTP Server.. 8-19

9 Managing Application Security

9.1 About Oracle HTTP Server Security .. 9-1
9.2 Classes of Users and Their Privileges .. 9-1
9.3 Resources Protected.. 9-2
9.4 Authentication, Authorization and Access Control .. 9-2
9.4.1 Access Control.. 9-2
9.4.2 User Authentication and Authorization... 9-2
9.4.2.1 Authenticating Users with Apache HTTP Server Modules 9-2
9.4.2.2 Authenticating Users with WebGate... 9-3
9.4.3 Support for FMW Audit Framework.. 9-3
9.4.3.1 Managing Audit Policies Using Fusion Middleware Control 9-3
9.5 Implementing SSL... 9-4
9.5.1 Global Server ID Support ... 9-4
9.5.2 PKCS #11 Support.. 9-4
9.5.3 SSL and Logging .. 9-5
9.6 Using mod_security.. 9-5
9.7 Using Trust Flags .. 9-5

Part III Appendixes

A Oracle HTTP Server WLST Custom Commands

A.1 Getting Help on Oracle HTTP Server WLST Custom Commands..................................... A-1
A.2 Names of WLST Custom Commands Have Changed ... A-1
A.3 Oracle HTTP Server Commands ... A-2
A.3.1 ohs_addAdminProperties ... A-2
A.3.2 ohs_addNMProperties ... A-3
A.3.3 ohs_createInstance.. A-4
A.3.4 ohs_deleteInstance.. A-4
A.3.5 ohs_exportKeyStore ... A-5
A.3.6 ohs_postUpgrade.. A-5
A.3.7 ohs_updateInstances .. A-6

B Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules

B.1 Task 1: Replace LoadModule Directives in htttpd.conf File.. B-1
B.2 Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File B-1
B.3 Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI Server

B-2
B.4 Task 4: Setup an External FastCGI Server .. B-2
B.5 Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications........... B-3

C Frequently Asked Questions

C.1 How Do I Create Application-Specific Error Pages? .. C-2

ix

C.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS? C-2
C.3 Can I Use Different Language and Character Set Versions of Document? C-2
C.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server? C-3
C.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?...................... C-3
C.6 Can I Compress Output From Oracle HTTP Server? ... C-3
C.7 How Do I Create a Namespace That Works Through Firewalls and Clusters? C-3
C.8 How Can I Enhance Website Security?... C-4
C.9 Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors? C-5
C.10 How can I hide information about the Web Server Vendor and Version C-5
C.11 Can I Start OHS by Using apachectl or Other Command-Line Tool?................................ C-5
C.12 How Do I Configure Oracle HTTP Server to Listen at Port 80?.. C-5
C.13 How Do I Terminate Requests Using SSL Within Oracle HTTP Server? C-5
C.14 How Do I Configure End-to-End SSL Within Oracle HTTP Server? C-5
C.15 Can Oracle HTTP Server Front-End Oracle WebLogic Server? ... C-6
C.16 What is the Difference Between Oracle WebLogic Server Domains and Standalone

Domains? C-6
C.17 Can Oracle HTTP Server Cache the Response Data? .. C-7
C.18 How Do I Configure a Virtual Server-Specific Access Log?.. C-7

D Troubleshooting Oracle HTTP Server

D.1 Oracle HTTP Server Unable to Start Due to Port Conflict ... D-1
D.2 System Overloaded by Number of httpd Processes ... D-1
D.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024 D-2
D.4 Using Log Files to Locate Errors.. D-2
D.4.1 Rewrite Log.. D-2
D.4.2 Script Log ... D-2
D.4.3 Error Log .. D-2
D.5 Recovering an OHS Instance on a Remote Host ... D-2
D.6 Oracle HTTP Server Performance Issues.. D-3
D.6.1 Special Runtime Files Reside on a Network File System.. D-3
D.6.2 UNIX Sockets on a Network File System .. D-3
D.6.3 DocumentRoot on a Slow File System... D-3
D.7 Out of DMS Shared Memory.. D-3
D.8 Performance Issues with Instances Created on Shared File Systems................................. D-4
D.9 Node Manager 12c (12.1.2) OHS Throws Java Exception on AIX D-4

E Configuration Files

E.1 httpd.conf File... E-1
E.2 ssl.conf File.. E-1
E.3 admin.conf File ... E-2
E.4 mod_wl_ohs.conf File.. E-2
E.5 mime.types File .. E-2
E.6 ohs.plugins.nodemanager.properties File.. E-2
E.7 magic File .. E-2
E.8 keystores/<wallet-directory> File ... E-3
E.9 auditconfig.xml File ... E-3

x

E.10 component-logs.xml File... E-3
E.11 component_events.xml File.. E-3
E.12 Additional Reference... E-3

F Property Files

F.1 ohs_admin.properties File .. F-1
F.2 ohs_nm.properties File.. F-1
F.3 ohs.plugins.nodemanager.properties File.. F-2
F.3.1 Cross-platform Properties ... F-2
F.3.2 Environment Variable Configuration Properties... F-3
F.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX F-5

G OHS Module Directives

G.1 Note on mod_wl_ohs Module ... G-1
G.2 mod_certheaders Module ... G-1
G.2.1 AddCertHeader Directive ... G-1
G.2.2 SimulateHttps Directive .. G-1
G.3 mod_ossl Module... G-2
G.3.1 SSLCARevocationFile Directive ... G-2
G.3.2 SSLCARevocationPath Directive.. G-3
G.3.3 SSLCipherSuite Directive .. G-3
G.3.4 SSLEngine Directive ... G-6
G.3.5 SSLFIPS Directive ... G-6
G.3.6 SSLHonorCipherOrder Directive ... G-8
G.3.7 SSLInsecureRenegotiation Directive.. G-8
G.3.8 SSLOptions Directive ... G-9
G.3.9 SSLProtocol Directive... G-10
G.3.10 SSLProxyCipherSuite Directive.. G-11
G.3.11 SSLProxyEngine Directive... G-11
G.3.12 SSLProxyProtocol Directive .. G-11
G.3.13 SSLProxyWallet Directive ... G-12
G.3.14 SSLRequire Directive.. G-12
G.3.15 SSLRequireSSL Directive... G-14
G.3.16 SSLSessionCache Directive.. G-14
G.3.17 SSLSessionCacheTimeout Directive... G-15
G.3.18 SSLTraceLogLevel Directive ... G-15
G.3.19 SSLVerifyClient Directive.. G-16
G.3.20 SSLWallet Directive.. G-16

xi

Preface

This guide describes how to manage Oracle HTTP Server, including how to start and
stop Oracle HTTP Server, how to manage network components, configure listening
ports, and extend basic functionality using modules.

Audience
Administering Oracle HTTP Server is intended for application server administrators,
security managers, and managers of databases used by application servers. This
documentation is based on the assumption that readers are already familiar with
Apache HTTP Server.

Unless otherwise mentioned, the information in this document is applicable when
Oracle HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion
Middleware Control. It is assumed that readers are familiar with the key concepts of
Oracle Fusion Middleware as described in the Oracle Fusion Middleware Concepts Guide
and the Administering Oracle Fusion Middleware.

For information about installing Oracle HTTP Server in standalone mode, see Installing
and Configuring Oracle HTTP Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
12c (12.2.1) documentation set:

■ Understanding Oracle Fusion Middleware

■ Administering Oracle Fusion Middleware

■ High Availability Guide

xii

■ Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1

■ Apache documentation included in this library. See:
http://httpd.apache.org/docs/2.4/

Note: Readers using this guide in PDF or hard copy formats will
be unable to access third-party documentation, which Oracle
provides in HTML format only. To access the third-party
documentation referenced in this guide, use the HTML version of
this guide and click the hyperlinks.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What's New in Oracle HTTP Server 12c (12.2.1)

The following topics introduce the new and changed features of Oracle HTTP Server
and other significant changes that this guide describes, and provides pointers to
additional information.

New and Changed Features in 12c (12.2.1)
This section contains the following information:

■ New Features in 12c (12.2.1)

■ Significant Updates in 12c (12.2.1)

New Features in 12c (12.2.1)
This section describes features that have been added to the current release of Oracle
HTTP Server:

■ New and Changed Features Available with Apache httpd 2.4

■ New Operational Mode—Restricted-JRF

■ New Modules

■ iPlanet Migration to Oracle HTTP Server

■ Trust Flags

■ Oracle WebLogic Server Proxy Monitoring

■ Support for Multi-tenancy and Partitions for Oracle WebLogic Server Proxy
Plug-Ins

New and Changed Features Available with Apache httpd 2.4
In this release, the Oracle HTTP Server core runtime is based on the release of Apache
httpd 2.4. Many new features have been added to the release that are outside the scope
of this documentation. For more information on Apache 2.4 and its features, see the
following URLs:

■ http://httpd.apache.org/docs/2.4/

■ http://httpd.apache.org/docs/2.4/new_features_2_4.html

For more information on critical changes in Apache 2.4 from earlier releases, see

■ http://httpd.apache.org/docs/2.4/upgrading.html

■ http://httpd.apache.org/docs/2.4/mod/mpm_winnt.html

xiv

New Operational Mode—Restricted-JRF
In previous 12c releases, the installation of the Oracle HTTP Server in a Weblogic
Server domain required a connection to a database (11g did not). This is known as "full
domain" mode. The current release introduces a new installation and operational
mode for Oracle HTTP Server known as "Restricted-JRF". In this mode, the presence of
a database is not required. All of the functionality is that is available to Oracle HTTP
Server in full domain mode is also available in Restricted-JRF mode, with the
exception of cross component wiring.

With Restricted mode, customers can administer/manage OHS server lifecycle and
handle configuration management by using WebLogic Management framework
(WLST and Fusion Middleware Control) without additional database dependency.
This capability provides customers with the ability to administer an entire OHS farm
through the WebLogic Management Framework. For more information on this feature,
see Section 1.3.1, "Restricted-JRF Mode."

New Modules
The following are among the new modules that have been added to the current release
of Oracle HTTP Server:

■ mod_proxy_fcgi—This module provides FastCGI support for the mod_proxy
module. The mod_proxy_fcgi module requires the service of the mod_proxy
module and provides support for the FastCGI protocol. See Part 5.3.7, "About
Configuring mod_proxy_fcgi" and Appendix B, "Migrating to the mod_proxy_fcgi
and mod_authnz_fcgi Modules."

■ mod_mpm_event (event MPM)—This module is a variant of the worker MPM and
consumes threads only for connections with active processing. Event is the default
MPM used in 12c (12.2.1) for Linux systems. For more information about MPM
types and how to change the MPM type for your environment, see Section 6.3.1,
"Understanding Performance Directives."

■ other modules that are new with Apache 2.4. See Chapter 2, "Understanding
Oracle HTTP Server Modules."

iPlanet Migration to Oracle HTTP Server
The current release defines a migration path from the iPlanet Web Server (iWS) to
Oracle HTTP Server. The migration path is described in Master Note For Migrating From
iPlanet Web Server to Oracle HTTP Server 11g (Doc ID 1536893.1) available at the
following URL:

https://support.oracle.com

This document applies to release 11g and later versions of Oracle HTTP Server.

Trust Flags
The current release adds support for trust flags in Oracle HTTP Server. Trust flags
allow adequate roles to be assigned to SSL certificates to facilitate operations like
certificate chain validation and path building. For more information, see Section 9.7,
"Using Trust Flags."

Oracle WebLogic Server Proxy Monitoring
The current release adds support for monitoring the performance of the Oracle HTTP
Server. The performance metrics are specific to the Oracle WebLogic Server Proxy
Plug-In where a request is proxied to the backend WebLogic server.

xv

The metrics are provided through the Oracle Dynamic Monitoring Service (DMS)
which enables Oracle Fusion Middleware components to provide administration tools,
such as Fusion Middleware Control, with data regarding the component's
performance, state and on-going behavior.

 See "Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics" in
Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1.

Support for Multi-tenancy and Partitions for Oracle WebLogic Server Proxy
Plug-Ins
In the current release, Oracle HTTP Server can now front-end Oracle WebLogic
Server-MT (Multi-Tenancy). For more information, see "Working with Partitions" in
Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1.

Significant Updates in 12c (12.2.1)
This section describes features that have been significantly updated from earlier
versions of Oracle HTTP Server. These updates include:

■ New Ciphers

■ Removal of Modules

■ Replacements for mod_perl

■ Replacements for mod_plsql

■ Names of WLST Custom Command Have Changed

■ createOHSTestDomain (ohs_createTestDomain) WLST Custom Command Has
Been Removed

■ Other Upgrade Notes

New Ciphers
New ciphers that can be used with the TLS security protocols have been added to the
current release. Also, the list of ciphers that can be used with FIPS 140 has been
expanded. For more information, see Section G.3.3, "SSLCipherSuite Directive" and
Section G.3.5, "SSLFIPS Directive."

Removal of Modules
The following modules have been removed and replaced with the mod_proxy_fcgi
and mod_authnz_fcgi modules:

■ mod_perl—This module allows administrators to run Perl scripts within Oracle
HTTP Server. See "Replacements for mod_perl."

■ mod_fastcgi/mod_cgi—These modules allow administrators to efficiently execute
traditional CGI scripts within Oracle HTTP Server. See "Replacements for mod_
fastcgi/mod_cgi."

■ mod_plsql—This module allows administrators to create dynamic web pages from
PL/SQL packages and stored procedures making it ideal for developing fast and
flexible applications that can run on the Internet or an Intranet. See "Replacements
for mod_plsql."

For more information on the mod_proxy_fcgi and mod_authnz_fcgi modules, see
Appendix B, "Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules."

xvi

Replacements for mod_perl
The mod_perl module has been removed from the Oracle HTTP Server 12c (12.2.1)
release. If you have been using the mod_perl module with Oracle HTTP Server 12.1.3
and earlier releases, then you have the following choices:

■ You can continue to run Perl scripts within Oracle HTTP Server 12c (12.2.1) as
either CGI or FastCGI scripts.

If you want to run your Perl script as a CGI script, then you must modify your
Perl script to run as a CGI or FastCGI script.

■ If you are running CGI scripts, then switch to using the mod_cgid module
directives. The directives are described in "Apache Module mod_cgid" at this URL:

http://httpd.apache.org/docs/2.4/mod/mod_cgid.html

■ Oracle HTTP Server 12c (12.2.1) contains a Perl interpreter, however, it is internal
to the product. You cannot use this interpreter for hosting Perl under a FastCGI
environment. You must provide your own Perl environment.

Replacements for mod_fastcgi/mod_cgi
The mod_fastcgi and mod_cgi modules have been removed from the Oracle HTTP
Server 12c (12.2.1) release. Oracle provides an alternate implementation of mod_
fastcgi. If you have any existing FastCGI scripts or configuration, then follow the
migration steps described in Appendix B, "Migrating to the mod_proxy_fcgi and mod_
authnz_fcgi Modules."

If you are running CGI scripts, then use the mod_cgid module directives instead. The
directives are described in "Apache Module mod_cgid" at this URL:

http://httpd.apache.org/docs/2.4/mod/mod_cgid.html

Replacements for mod_plsql
The mod_plsql module has been removed from the Oracle HTTP Server 12c (12.2.1)
release. Many Oracle customers use Oracle HTTP Server with mod_plsql to run Oracle
Application Express (Oracle APEX), and to a lesser extent run stand-alone PL/SQL
Web pages.

For more information, see the Oracle Web Tier - Statement of Direction (document ID
1576588.1) at the following URL:

http://support.oracle.com

Oracle recommends that customers implement Oracle REST Data Services (formerly
known as Oracle APEX Listener) as an alternative. Oracle REST Data Services is a
J2EE-based servlet which offers increased functionality including a web-based
configuration, enhanced security, and file caching.

Oracle REST Data Services is a free product provided under Oracle Technology
Network License Terms. To run in a supported configuration, you must install ORDS
into Oracle WebLogic Server, Oracle Glassfish or Apache Tomcat. Running the
standalone Java servlet (war file), provided in the distribution, is not supported in
production environments. It is only intended for use in development and test
environments.

For more information on Oracle REST Data Services, see the following URL:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/overv
iew/index.html

xvii

Names of WLST Custom Command Have Changed
For ease of use and greater visibility, the names of the Oracle HTTP Server WLST
custom commands have been changed in the current release. Instead of incorporating
"OHS" in the command name, the command is now prefixed with "ohs_". For example,
the createOHSInstance command becomes ohs_createInstance.

The old command names should be considered to be deprecated. They will be
accepted by WLST in the current release, but you should avoid using them. For more
information and a table of old and changed WLST custom commands, see Section A.2,
"Names of WLST Custom Commands Have Changed."

New WLST Commands
The current release adds these WLST custom commands for Oracle HTTP Server. For
more information on these commands, see Appendix A, "Oracle HTTP Server WLST
Custom Commands."

Command Description

ohs_exportKeyStore Exports the keyStore to the specified Oracle HTTP Server instance.

ohs_postUpgrade Imports the contents of wallet for all of the Oracle HTTP Server
instances (valid for those Oracle HTTP Server instances which have
been upgraded from a previous version) in the domain to the KSS
database.

ohs_updateInstances Creates a keyStore in the KSS database in the case where Oracle HTTP
Server instances were created using Configuration Wizard.

createOHSTestDomain (ohs_createTestDomain) WLST Custom Command Has
Been Removed
The createOHSTestDomain (ohs_createTestDomain) WLST custom command has been
removed from the current release. This command is no longer needed because Oracle
HTTP Server 12.2.1 introduces Restricted-JRF (R-JRF) support for domain creation
using the configuration wizard which does not have database dependencies.

Other Upgrade Notes
The current release of Oracle HTTP Server is based on Apache Server 2.4. If you are
using an earlier release of Oracle HTTP Server, please note the following:

FilterProvider

The syntax of the FilterProvider directive under mod_filter has changed in Apache
2.4. This directive must be upgraded manually. For more information, see
http://httpd.apache.org/docs/2.4/mod/mod_filter.html and
http://httpd.apache.org/docs/2.4/upgrading.html

Authorization and Access Control

There have been significant changes in authorization and access control configuration
in Apache 2.4. Oracle HTTP Server Upgrade Assistant does not upgrade the
authorization and access control directives to the new configuration style. Instead,
Oracle HTTP Server includes the mod_access_compat module to provide compatibility
with old configurations.

Oracle recommends that you manually upgrade the authorization and access-control
configuration to Apache 2.4 style. For more information, see the following URL:
http://httpd.apache.org/docs/2.4/upgrading.html#run-time

umask Settings

xviii

Prior to Oracle HTTP Server 12c (12.2.1), the operating system level umask setting was
applicable to Oracle HTTP Server as well. With Oracle HTTP Server 12c (12.2.1), a new
property is introduced in ohs.nodemanager.properties file to specify the umask
setting. By default, a value of 0027 is used. For more information, see section
Section 8.2.3, "Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)."

Features Removed
Support for the ODL-XML file format has been removed.

Part I
Part I Understanding Oracle HTTP Server

This part presents introductory and conceptual information about Oracle HTTP
Server. It contains the following chapters:

■ Chapter 1, "Introduction to Oracle HTTP Server"

■ Chapter 2, "Understanding Oracle HTTP Server Modules"

■ Chapter 3, "Understanding Oracle HTTP Server Management Tools"

1

Introduction to Oracle HTTP Server 1-1

1Introduction to Oracle HTTP Server

[2] This chapter introduces the Oracle HTTP Server (OHS). It describes key features of
OHS and its place within the Oracle Fusion Middleware Web Tier and also provides
information on the OHS directory structure, the OHS configuration files, and how to
obtain OHS support.

Oracle HTTP Server is the web server component for Oracle Fusion Middleware. It
provides a listener for Oracle WebLogic Server and the framework for hosting static
pages, dynamic pages, and applications over the Web.

This chapter includes the following sections:

■ Section 1.1, "What is Oracle HTTP Server?"

■ Section 1.2, "Oracle HTTP Server 12c (12.2.1) Topologies"

■ Section 1.3, "Key Features of Oracle HTTP Server"

■ Section 1.4, "Domain Types"

■ Section 1.5, "Understanding Oracle HTTP Server Directory Structure"

■ Section 1.6, "Understanding Configuration Files"

■ Section 1.7, "Upgrading from Earlier Releases of Oracle HTTP Server"

■ Section 1.8, "Oracle HTTP Server Support"

1.1 What is Oracle HTTP Server?
Oracle HTTP Server 12c (12.2.1) is based on Apache HTTP Server 2.4 infrastructure
(with critical bug fixes from higher versions) and includes additional modules
developed specifically by Oracle. The features of single sign-on, clustered deployment,
and high availability enhance the operation of the Oracle HTTP Server. Oracle HTTP
Server has the following components to handle client requests:

■ HTTP listener, to handle incoming requests and route them to the appropriate
processing utility.

■ Modules (mods), to implement and extend the basic functionality of Oracle HTTP
Server. Many of the standard Apache HTTP Server modules are included with
Oracle HTTP Server. Oracle also includes several modules that are specific to
Oracle Fusion Middleware to support integration between Oracle HTTP Server
and other Oracle Fusion Middleware components.

■ Perl interpreter, which allows Oracle HTTP Server to be set up as a reverse proxy
through the fcgi protocol to a persistent Perl runtime environment using mod_
proxy_fcgi.

Oracle HTTP Server 12c (12.2.1) Topologies

1-2 Oracle Fusion Middleware Administering Oracle HTTP Server

Although Oracle HTTP Server contains a Perl interpreter, it is internal to the
product. You cannot use this interpreter for hosting Perl under a FastCGI
environment. You must provide your own Perl environment.

■ Oracle WebLogic Server Proxy Plug-In, which enables Oracle HTTP Server to
front-end WebLogic Servers and other Fusion Middleware-based applications.

Oracle HTTP Server enables developers to program their site in a variety of languages
and technologies, such as:

■ Perl (through mod_proxy_fcgi, CGI and FastCGI)

■ C and C++ (through mod_proxy_fcgi, CGI and FastCGI)

■ Java, Ruby and Python (through mod_proxy_fcgi, CGI and FastCGI)

Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse
proxy enables content served by different servers to appear as if coming from one
server.

Note: For more information about Fusion Middleware concepts, see
Understanding Oracle Fusion Middleware.

1.2 Oracle HTTP Server 12c (12.2.1) Topologies
Oracle HTTP Server leverages the WebLogic Management Framework to provide a
simple, consistent and distributed environment for administering Oracle HTTP Server,
Oracle WebLogic Server, and the rest of the Fusion Middleware stack. It acts as the
HTTP front-end by hosting the static content from within and by leveraging its built-in
Oracle WebLogic Server Proxy Plug-Ins 12c (12.2.1) to route dynamic content requests
to WebLogic-managed servers. In such cases, there are multiple ways of implementing
Oracle HTTP Server, depending on your requirements. Table 1–1 describes the major
implementations, or "topologies."

Table 1–1 Oracle HTTP Server Topologies

Topology Description For More Information

Standard Installation Topology for
Oracle HTTP Server in a
Standalone Domain

This topology is similar to an Oracle
WebLogic Server Domain topology, but does
not provide an administration server or
managed servers. It is useful when you do not
want your Oracle HTTP Server
implementation to front a Fusion Middleware
domain and do not need the management
functionality provided by Fusion Middleware
Control. This topology is depicted in
Figure 1–1.

To obtain this topology, install Oracle HTTP
Server in standalone mode. Can be paired
with Oracle HTTP Server Collocated mode by
using the Pack or UnPack commands.

See "Standard Installation
Topology for Oracle HTTP
Server in a Standalone
Domain" in Installing and
Configuring Oracle HTTP
Server.

Oracle HTTP Server 12c (12.2.1) Topologies

Introduction to Oracle HTTP Server 1-3

Figure 1–1 illustrates the standard Installation Topology for Oracle HTTP Server in a
Standalone Domain.

Figure 1–1 Standard Installation Topology for OHS in a Standalone Domain

Figure 1–2 illustrates the high-availability implementation, with two separate hosts for
Oracle HTTP Server on a Web Tier, managed by FMW Control.

Standard Installation Topology for
Oracle HTTP Server in a WebLogic
Server Domain (Restricted-JRF)

This topology is similar to the Full-JRF
topology, except that it does not require a
backing database. The Restricted-JRF mode
offers all of the functionality as the Full-JRF
mode, except cross component wiring is not
available.

To obtain this topology, install Oracle HTTP
Server in Collocated mode, then choose the
Oracle HTTP Server Restricted-JRF domain
template for provisioning this domain. This
topology handles most use cases except for
cross-component wiring.

See "Standard Installation
Topology for Oracle HTTP
Server in a WebLogic Server
Domain" in Installing and
Configuring Oracle HTTP
Server

Standard Installation Topology for
Oracle HTTP Server in a WebLogic
Server Domain (Full-JRF)

This topology provides enhanced
management capabilities through the Fusion
Middleware Control and WebLogic
Management Framework. A WebLogic Server
domain can be scaled out to multiple physical
machines and be centrally managed by the
administration server. This topology is
depicted in Figure 1–2.

To obtain this topology, install Oracle HTTP
Server in Collocated mode, then choose the
Oracle HTTP Server Full-JRF domain
template. Note that this topology, requires a
database in back-end and can support
cross-component wiring.

See "Standard Installation
Topology for Oracle HTTP
Server in a WebLogic Server
Domain" in Installing and
Configuring Oracle HTTP
Server.

Table 1–1 (Cont.) Oracle HTTP Server Topologies

Topology Description For More Information

Key Features of Oracle HTTP Server

1-4 Oracle Fusion Middleware Administering Oracle HTTP Server

Figure 1–2 Standard Installation Topology for OHS in a WebLogic Server Domain

1.3 Key Features of Oracle HTTP Server
The following sections describe some key features of Oracle HTTP Server:

■ Section 1.3.1, "Restricted-JRF Mode"

■ Section 1.3.2, "Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)"

■ Section 1.3.3, "CGI and Fast CGI Protocol (mod_proxy_fcgi)"

■ Section 1.3.4, "Security Features"

■ Section 1.3.5, "URL Rewriting and Proxy Server Capabilities"

1.3.1 Restricted-JRF Mode
Oracle HTTP Server12c (12.2.1) introduces the Restricted-JRF mode. If you choose to
install Oracle HTTP Server in a Oracle WebLogic Server domain in this mode, then a
connection to an external database is not required. All of the Oracle HTTP Server
functionality through Fusion MiddleWare Control and WLST described in this
documentation is still available, with the exception of cross component wiring.

Lack of support for cross component wiring means that:

■ There are changes to the Fusion MiddleWare Control menu options: some of the
menu options which support cross component wiring are removed or disabled.

■ Any database dependencies are completely removed.

See Also: "Wiring Components to Work Together" in Administering
Oracle Fusion Middleware.

The management of keys and certificates for an Oracle HTTP Server instance in a
Restricted-JRF domain continue to be keystore services (KSS). In a Restricted-JRF
domain, the database persistency of KSS is replaced with file persistency. To an end
user, there are no visible change in basic KSS APIs to manage keys or certificates.

Oracle HTTP Server continues to support multiple Oracle wallets for complex virtual
server configurations both in Restricted-JRF and full JRF mode.

Key Features of Oracle HTTP Server

Introduction to Oracle HTTP Server 1-5

1.3.2 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
The Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) enables requests to be
proxied from Oracle HTTP Server12c (12.2.1) to Oracle WebLogic Server. This plug-in
enhances an Oracle HTTP server installation by allowing Oracle WebLogic Server to
handle requests that require dynamic functionality. In other words, you typically use a
plug-in where the HTTP server serves static pages such as HTML pages, while Oracle
WebLogic Server serves dynamic pages such as HTTP Servlets and Java Server Pages
(JSPs).

For more information on the Oracle WebLogic Server Proxy Plug-In, see "Configuring
the Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server Proxy Plug-Ins
12.2.1

1.3.3 CGI and Fast CGI Protocol (mod_proxy_fcgi)
CGI programs are commonly used to program Web applications. Oracle HTTP Server
enhances the programs by providing a mechanism to keep them active beyond the
request lifecycle by using the mod_proxy_fcgi module.

The mod_proxy_fcgi module is the Oracle replacement for the deprecated mod_fastcgi
module. The mod_proxy_fcgi module requires the service of the mod_proxy module
and provides support for the FastCGI protocol.

For information on configuring the mod_proxy_fcgi module, see Section 5.3.7, "About
Configuring mod_proxy_fcgi." For information on migrating from the mod_fastcgi
module to mod_proxy_fcgi, see Appendix B, "Migrating to the mod_proxy_fcgi and
mod_authnz_fcgi Modules."

1.3.4 Security Features
Oracle HTTP Server employs many security features. Key among them are:

■ Section 1.3.4.1, "Oracle Secure Sockets Layer (mod_ossl)"

■ Section 1.3.4.2, "Security: Encryption with Secure Sockets Layer"

■ Section 1.3.4.3, "Security: Single Sign-On with WebGate"

1.3.4.1 Oracle Secure Sockets Layer (mod_ossl)
The mod_ossl module, the Oracle Secure Sockets Layer (SSL) implementation used in
the Oracle database, enables strong cryptography for Oracle HTTP Server. It is a
plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar to
the OpenSSL module, mod_ssl. The mod_ossl module supports TLS version 1.0, 1.1
and 1.2.

1.3.4.2 Security: Encryption with Secure Sockets Layer
Secure Sockets Layer (SSL) is required to run any website securely. Oracle HTTP
Server supports SSL encryption based on patented, industry standard, algorithms. SSL
works seamlessly with commonly-supported Internet browsers. Security features
include the following:

■ SSL hardware acceleration support uses dedicated hardware for SSL. Hardware
encryption is faster than software encryption.

■ Variable security per directory allows individual directories to be protected by
different strength encryption.

Domain Types

1-6 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Oracle HTTP Server and Oracle WebLogic Server communicate using the HTTP
protocol to provide both encryption and authentication. You can also enable HTTP
tunneling for the T3 or IIOP protocols to provide non-browser clients access to
WebLogic Server services.

See Also: Securing Applications with Oracle Platform Security Services

1.3.4.3 Security: Single Sign-On with WebGate
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and if
so, retrieves the session information for the user. Through WebGate, Oracle HTTP
Server becomes an SSO partner application enabled to use SSO to authenticate users,
obtain their identity by using Oracle Single Sign-On, and to make user identities
available to web applications accessed through Oracle HTTP Server.

See Also: Securing Applications with Oracle Platform Security Services

1.3.5 URL Rewriting and Proxy Server Capabilities
Active websites usually update their web pages and directory contents often, and
possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the
changes by including an engine that supports URL rewriting so end users do not have
to change their bookmarks.

Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make
content served by different servers to appear from one single server.

1.4 Domain Types
You can install Oracle HTTP Server as collocated with Oracle WebLogic Server, called
a WebLogic Server Domain, in full or Restricted-JRF mode. The server can also be
installed as a standalone domain. You can select which environment you want to use
during server configuration. Be aware that certain functionality will not be available to
standalone domains.

■ Section 1.4.1, "WebLogic Server Domain (Full-JRF Mode)"

■ Section 1.4.2, "WebLogic Server Domain (Restricted-JRF Mode)"

■ Section 1.4.3, "Standalone Domain"

1.4.1 WebLogic Server Domain (Full-JRF Mode)
A WebLogic Server Domain in Full-JRF mode contains a WebLogic Administration
Server, zero or more WebLogic Managed Servers, and zero or more System
Component Instances (for example, an Oracle HTTP Server instance). This type of
domain provides enhanced management capabilities through the Fusion Middleware
Control and WebLogic Management Framework present throughout the system. A
WebLogic Server Domain can span multiple physical machines, and it is centrally
managed by the administration server. Because of these properties, a WebLogic Server
Domain provides the best integration between your System Components and Java EE
Components.

WebLogic Server Domains support all WebLogic Management Framework tools.

Because Fusion Middleware Control provides advanced management capabilities,
Oracle recommends using WebLogic Server Domain, which requires installing a
complete Fusion Middleware infrastructure before you install Oracle HTTP Server.

Domain Types

Introduction to Oracle HTTP Server 1-7

■ For more information on installing a WebLogic Server Domain, see Installing and
Configuring the Oracle Fusion Middleware Infrastructure.

■ For information on installing Oracle HTTP Server either as part of a Fusion
Middleware infrastructure or as standalone component, see Installing and
Configuring Oracle HTTP Server.

1.4.2 WebLogic Server Domain (Restricted-JRF Mode)
The Weblogic Server Domain in Restricted-JRF mode is similar in architecture and
functionality to Weblogic Server Domain in Full mode, except it does not define a
connection to an external database. There are no database dependencies in
Restricted-JRF mode.

This lack of a backing database means that cross component wiring is not supported
by Oracle HTTP Server in a Restricted-JRF domain; this is the major differentiating
factor between a Full JRF- and a Restricted-JRF-based domain.

Like the Full -JRF domain, the management of keys and certificates of an Oracle HTTP
Server instance in a Restricted-JRF domain continues to be keystore service (KSS). In a
Restricted-JRF domain, the database persistency of KSS is replaced with file
persistency, although to an end user there is no visible change in basic KSS APIs to
manage keys and certificates.

Like the Full -JRF domain, Oracle HTTP Server in a Restricted-JRF domain supports
multiple Oracle wallets for complex virtual server configurations.

1.4.3 Standalone Domain
A standalone domain is a container for system components, such as Oracle HTTP
Server. It has a directory structure similar to an Oracle WebLogic Server Domain, but it
does not contain an Administration Server or Managed Servers. It can contain one or
more instances of system components of the same type, such as Oracle HTTP Server,
or a mix of system component types.

For standalone domains, the WebLogic Management Framework supports these tools:

■ Node Manager

■ The WebLogic Scripting Tool (WLST) commands, including:

■ nmStart(), nmKill(), nmSoftRestart(), and nmKill() that start and stop
Oracle HTTP Server instance.

■ nmConnect() to connect to the node manager

■ nmLog() to get the node manager log information

For a complete list of supported WLST Node Manager commands, see "Node
Manager Commands" in "WLST Command Reference for WebLogic Server".

Note: If you have a remote Oracle HTTP Server in a managed mode
and another in standalone with the remote administration mode
enabled, you can use WLST to perform management tasks such as SSL
configuration. A vanilla Oracle HTTP Server in a standalone domain
can be used only as a WebLogic Server Node Manager and for Oracle
HTTP Server start/stop purposes. You can also do this by using a
command-line script.

■ Config Wizard

Understanding Oracle HTTP Server Directory Structure

1-8 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Pack/Unpack

Generally, you would use a standalone domain when you do not want your Oracle
HTTP Server implementation installed with a WebLogic Server domain and do not
need the management functionality provided by Fusion Middleware Control. Nor
would you use it when you want to keep Oracle HTTP Server in a "demilitarized
zone" (DMZ; that is, the zone between the internal and external firewalls) and you do
not want to open management ports used by Node Manager.

1.5 Understanding Oracle HTTP Server Directory Structure
Oracle HTTP Server domains can be either WebLogic Server or standalone. When
installed, each domain has its own directory structure that contains files necessary to
implement the domain type. For a complete file structure topology, see
"Understanding the Directory Structures" in Installing and Configuring Oracle HTTP
Server.

1.6 Understanding Configuration Files
The Oracle HTTP Server configuration is specified through configuration files of
several types, notably .conf files, similar to those used in Apache HTTP Server. This
section explains the layout of the configuration file directories, mechanisms for editing
the files, and more about the files themselves.

This section contains the following topics:

■ Section 1.6.1, "Staging and Run-time Configuration Directories"

■ Section 1.6.2, "Oracle HTTP Server Configuration Files"

■ Section 1.6.3, "Modifying an Oracle HTTP Server Configuration File"

1.6.1 Staging and Run-time Configuration Directories
Two configuration directories are associated with each Oracle HTTP Server instance: a
staging directory and a run-time directory.

■ Staging directory

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

■ Run-time directory

DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName

Each of the configuration directories contain the complete Oracle HTTP Server
configuration -- httpd.conf, admin.conf, auditconfig.xml, and so on.

Modifications to the configuration are made in the staging directory. These
modifications are automatically propagated to the run-time directory during the
following operations:

Warning: Before making any changes to files in the staging
directory manually (that is, without using Fusion Middleware
Control or WLST), stop the Administration Server.

■ Oracle HTTP Server instances which are part of a WebLogic Server Domain

Understanding Configuration Files

Introduction to Oracle HTTP Server 1-9

Modifications are replicated to the run-time directory on the node with the
managed Oracle HTTP Server instance after changes are activated from within
Fusion Middleware Control, or when the administration server initializes and
prior changes need to be replicated. If communication with node manager is
broken at the time of the action, replication will occur at a later time when
communication has been restored.

■ Standalone Oracle HTTP Server instances

Modifications are synchronized with the run-time directory when a start, restart,
or stop action is initiated. Some changes might be written to the run-time directory
during domain update, but the changes will be finalized during synchronization.

Any modifications to the configuration within the run-time directory will be lost
during replication or synchronization.

Note: When a standalone instance is created, the keystores directory
containing a demo wallet is created only in the run-time directory.

Before creating the first new wallet for the instance, the user must
create a keystores directory within the staging directory.

DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/keyst
ores

Wallets must then be created within that keystores directory.

1.6.2 Oracle HTTP Server Configuration Files
The default Oracle HTTP Server configuration contains the files described in
Appendix E, "Configuration Files".

Additional files can be added to the configuration and included in the top-level .conf
file httpd.conf using the Include directive. For information on how to use this
directive, see the Include directive documentation, at:

http://httpd.apache.org/docs/2.4/mod/core.html#include

The default configuration provides an Include directive which includes all .conf files in
the moduleconf/ directory within the configuration.

An Include directive should be added to an existing .conf file, usually httpd.conf, for
.conf files which are not stored in the moduleconf/ directory. This may be required if
the new .conf file must be included at a different configuration scope, such as within
an existing virtual host definition.

1.6.3 Modifying an Oracle HTTP Server Configuration File
For instances that are part of a WebLogic Server Domain, Fusion Middleware Control
and the management infrastructure manages the Oracle HTTP Server configuration.
Direct editing of the configuration in the staging directory is subject to being
overwritten after subsequent management operations, including modifying the
configuration in Fusion Middleware Control. For such instances, direct editing should
only be performed when the administration server is stopped. When the
administration server is subsequently started (with start or restart), the results of any
manual edits will be replicated to the run-time directory on the node of the managed
instance. For more information, see Section 5.1, "About Editing Configuration Files."

Note: Fusion Middleware Control and other Oracle software that
manage the Oracle HTTP Server configuration might save these files
in a different, equivalent format. After using the software to make a
configuration change, multiple configuration files might be rewritten.

Upgrading from Earlier Releases of Oracle HTTP Server

1-10 Oracle Fusion Middleware Administering Oracle HTTP Server

1.7 Upgrading from Earlier Releases of Oracle HTTP Server
Follow the instructions in Upgrading with the Upgrade Assistant to upgrade Fusion
Middleware and Oracle HTTP Server from an earlier release to 12c (12.2.1).

If you are upgrading a collocated Oracle HTTP Server setup (not a standalone
installation), then you must perform the following manual steps after you complete
the Upgrade Assistant.

1. Start the Administration Server (WebLogic) of the upgraded domain, for example

UNIX/Linux: ./startWebLogic.sh

Windows: startWebLogic.cmd

2. Start the version of WLST that resides in the Middleware Home of your 12c
(12.2.1) installation, for example:

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh

Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

3. Connect to the Administration Server of the upgraded domain, for example:

> connect('loginID', 'password', '<adminHost>:<adminPort>')

4. Execute the ohs_postUpgrade() WLST custom command, for example:

> ohs_postUpgrade()

For more information on the ohs_postUpgrade WLST custom command, see
Section 5.3.4, "Importing Wallets to the KSS Database after an Upgrade Using
WLST" and Section A.3.6, "ohs_postUpgrade."

1.8 Oracle HTTP Server Support
Oracle provides technical support for the following Oracle HTTP Server features and
conditions:

■ Modules included in the Oracle distribution. Oracle does not support modules
obtained from any other source, including the Apache Software Foundation.
Oracle HTTP Server will still be supported when non-Oracle-provided modules
are included. If non-Oracle-provided modules are suspect of contributing to
reported problems, customers may be requested to reproduce the problems
without including those modules.

■ Problems that can be reproduced within an Oracle HTTP Server configuration
consisting only of supported Oracle HTTP Server modules.

2

Understanding Oracle HTTP Server Modules 2-1

2Understanding Oracle HTTP Server Modules

[3] This chapter provides a high-level description of the Oracle-developed modules, or
"plug-ins," used by the Oracle HTTP Server (OHS). It also provides a list of all other
Apache- and third party-developed modules for OHS.

Modules (mods) extend the basic functionality of Oracle HTTP Server and support
integration between Oracle HTTP Server and other Oracle Fusion Middleware
components.

This chapter includes the following sections:

■ Section 2.1, "Oracle-Developed Modules for Oracle HTTP Server"

■ Section 2.2, "Apache HTTP Server and Third-party Modules in Oracle HTTP
Server"

2.1 Oracle-Developed Modules for Oracle HTTP Server
The following sections describe modules that have been developed specifically by
Oracle for Oracle HTTP Server:

■ Section 2.1.1, "mod_certheaders Module—Enables Reverse Proxies"

■ Section 2.1.2, "mod_context Module—Creates or Propagates ECIDs"

■ Section 2.1.3, "mod_dms Module—Enables Access to DMS Data"

■ Section 2.1.4, "mod_odl Module—Enables Access to ODL"

■ Section 2.1.5, "mod_ora_audit—Supports Authentication and Authorization
Auditing"

■ Section 2.1.6, "mod_ossl Module—Enables Cryptography (SSL)"

■ Section 2.1.7, "mod_webgate Module—Enables Single Sign-on"

■ Section 2.1.8, "mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server"

2.1.1 mod_certheaders Module—Enables Reverse Proxies
The mod_certheaders module enables reverse proxies that terminate Secure Sockets
Layer (SSL) connections in front of Oracle HTTP Server to transfer information
regarding the SSL connection, such as SSL client certificate information, to Oracle
HTTP Server and the applications running behind Oracle HTTP Server. This
information is transferred from the reverse proxy to Oracle HTTP Server using HTTP
headers. The information is then transferred from the headers to the standard CGI
environment variable. The mod_ossl module or the mod_ssl module populate the
variable if the SSL connection is terminated by Oracle HTTP Server.

Oracle-Developed Modules for Oracle HTTP Server

2-2 Oracle Fusion Middleware Administering Oracle HTTP Server

The mod_certheaders module also enables certain requests to be treated as HTTPS
requests even though they are received through HTTP. This is done using the
SimulateHttps directive.

SimulateHttps takes the container it is contained within, such as <VirtualHost> or
<Location>, and treats all requests received for this container as if they were received
through HTTPS, regardless of the real protocol used by the request.

See Section G.2, "mod_certheaders Module" for a list and description of the directives
accepted by mod_certheaders.

2.1.2 mod_context Module—Creates or Propagates ECIDs
The mod_context module creates or propagates Execution Context IDs, or ECIDs, for
requests handled by Oracle HTTP Server. If an ECID has been created for the request
execution flow before it reaches Oracle HTTP Server, mod_context will make the ECID
available for logging within Oracle HTTP Server and for propagation to other Fusion
Middleware components, such as WebLogic Server. If an ECID has not been created
when the request reaches Oracle HTTP Server, mod_context will create one.

mod_context is not configurable. It enables loading ECIDs into the server with the
LoadModule directive, and disabled by removing or commenting out the LoadModule
directive corresponding to this module. It should always be enabled to aid with
problem diagnosis.

2.1.3 mod_dms Module—Enables Access to DMS Data
The mod_dms module provides FMW infrastructure access to the OHS Oracle
Dynamic Monitoring Service (DMS) data.

2.1.4 mod_odl Module—Enables Access to ODL
The mod_odl module allows Oracle HTTP Server to access Oracle Diagnostic Logging
(ODL). ODL generates log messages in text or XML-formatted logs, in a format which
complies with Oracle standards for generating error log messages. Oracle HTTP Server
uses ODL by default.

ODL provides the following benefits:

■ The capability to limit the total amount of diagnostic information saved. You can
set the level of information saved and you can specify the maximum size of the log
file and the log file directory.

■ When you reach the specified size, older segment files are removed and newer
segment files are saved in chronological fashion.

■ Components can remain active, and do not need to be shutdown, when older
diagnostic logging files are deleted.

You can view log files using Fusion Middleware Control or with WLST commands, or
you can download log files to your local client and view them using another tool (for
example, a text edit or another file viewing utility)

For more information on using ODL with Oracle HTTP Server, see Chapter 8,
"Managing Oracle HTTP Server Logs."

See Also: "Managing Log Files and Diagnostic Data" in
Administering Oracle Fusion Middleware.

Oracle-Developed Modules for Oracle HTTP Server

Understanding Oracle HTTP Server Modules 2-3

2.1.5 mod_ora_audit—Supports Authentication and Authorization Auditing
This module provides the OraAuditEnable directive to support authentication and
authorization auditing by using the FMW Common Audit Framework. Previously the
code for Audit was integrated in Oracle HTTP Server binary itself. In the current
release, this is provided as a separate loadable module. For more information, see
Section 9.4.3, "Support for FMW Audit Framework."

2.1.6 mod_ossl Module—Enables Cryptography (SSL)
The mod_ossl module, the Oracle Secure Sockets Layer (SSL) implementation used in
the Oracle database, enables strong cryptography for Oracle HTTP Server. It is a
plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar to
the OpenSSL module, mod_ssl. The mod_ossl module supports TLS versions 1, 1.1
and 1.2, and is based on Certicom and RSA Security technology.

Oracle HTTP Server complies with the Federal Information Processing Standard
publication 140 (FIPS 140); it uses a version of the underlying SSL libraries that has
gone through formal FIPS certification. As part of Oracle HTTP Server’s FIPS 140
compliance, the mod_ossl plug-in now includes the SSLFIPS directive. For more
information, see Section G.3.5, "SSLFIPS Directive."

Oracle no longer supports the mod_ssl module. A tool is provided to enable you to
migrate from mod_ssl to mod_ossl, and convert your text certificates to Oracle wallets.

The mod_ossl modules provides these features:

■ Encrypted communication between client and server, using RSA or DES
encryption standards.

■ Integrity checking of client/server communication using MD5 or SHA checksum
algorithms.

■ Certificate management with Oracle wallets.

■ Authorization of clients with multiple access checks, exactly as performed in the
mod_ssl module.

mod_ossl Module Directives
See Section G.3 for a list and descriptions of directives accepted by the mod_ossl
module.

See Also: For more information, see "Configuring SSL for the Web
Tier" in Administering Oracle Fusion Middleware.

2.1.7 mod_webgate Module—Enables Single Sign-on
The mod_webgate module enables single sign-on (SSO) for Oracle HTTP Server.
WebGate examines incoming requests and determines whether the requested resource
is protected, and if so, retrieves the session information for the user.

For more information, see Section 9.4.2.2, "Authenticating Users with WebGate" and
Section 1.3.4.3, "Security: Single Sign-On with WebGate." For information on
configuring WebGate, see "Configuring WebGate for Oracle Access Manager" in
Installing and Configuring Oracle HTTP Server.

See Also: Securing Applications with Oracle Platform Security Services

Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2-4 Oracle Fusion Middleware Administering Oracle HTTP Server

2.1.8 mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server
The mod_wl_ohs module is a key feature of Oracle HTTP Server that enables requests
to be proxied from Oracle HTTP Server 12c (12.2.1) to Oracle WebLogic Server. This
module is generally referred to as the Oracle WebLogic Server Proxy Plug-In. This
plug-in enhances an Oracle HTTP server installation by allowing Oracle WebLogic
Server to handle requests that require dynamic functionality. In other words, you
typically use a plug-in where the HTTP server serves static pages such as HTML
pages, while Oracle WebLogic Server serves dynamic pages such as HTTP Servlets and
Java Server Pages (JSPs).

For information about the prerequisites and procedure for configuring mod_wl_ohs,
see "Configuring the Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server
Proxy Plug-Ins 12.2.1. Directives for this module are listed in "Parameters for Oracle
WebLogic Server Proxy Plug-Ins" in that document.

Note: mod_wl_ohs is similar to the mod_wl plug-in, which you can
use to proxy requests from Apache HTTP Server to Oracle WebLogic
server. However, while the mod_wl plug-in for Apache HTTP Server
should be downloaded and installed separately, the mod_wl_ohs
plug-in is bundled with Oracle HTTP Server.

2.2 Apache HTTP Server and Third-party Modules in Oracle HTTP Server
Out-of-the-box, Oracle HTTP Server also includes the Apache HTTP Server and
third-party modules listed in Table 2–1. These modules are not developed by Oracle.

Table 2–1 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module
Enabled by
Default? For more information, see:

mod_access_compat No http://httpd.apache.org/docs/2.4/mod/mod_access_compat.html

mod_actions Yes http://httpd.apache.org/docs/2.4/mod/mod_actions.html

mod_alias Yes http://httpd.apache.org/docs/2.4/mod/mod_alias.html

mod_asis Yes http://httpd.apache.org/docs/2.4/mod/mod_asis.html

mod_auth_basic Yes http://httpd.apache.org/docs/2.4/mod/mod_auth_basic.html

mod_authn_anon Yes http://httpd.apache.org/docs/2.4/mod/mod_authn_anon.html

mod_authn_core Yes http://httpd.apache.org/docs/2.4/mod/mod_authn_core.html

mod_authn_file Yes http://httpd.apache.org/docs/2.4/mod/mod_authn_file.html

mod_authz_core Yes http://httpd.apache.org/docs/2.4/mod/mod_authz_core.html

mod_authnz_fcgi No http://httpd.apache.org/docs/2.4/mod/mod_authnz_fcgi.html

mod_authz_groupfile Yes http://httpd.apache.org/docs/2.4/mod/mod_authz_
groupfile.html

mod_authz_host Yes http://httpd.apache.org/docs/2.4/mod/mod_authz_host.html

mod_authz_owner No http://httpd.apache.org/docs/2.4/mod/mod_authz_owner.html

mod_authz_user Yes http://httpd.apache.org/docs/2.4/mod/mod_authz_user.html

mod_autoindex Yes http://httpd.apache.org/docs/2.4/mod/mod_autoindex.html

mod_cache No http://httpd.apache.org/docs/2.4/mod/mod_cache.html

mod_cache_disk No http://httpd.apache.org/docs/2.4/mod/mod_cache_disk.html

Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Understanding Oracle HTTP Server Modules 2-5

mod_cern_meta Yes http://httpd.apache.org/docs/2.4/mod/mod_cern_meta.html

mod_cgi Yes http://httpd.apache.org/docs/2.4/mod/mod_cgi.html

mod_cgid (UNIX only) Yes http://httpd.apache.org/docs/2.4/mod/mod_cgid.html

mod_deflate No http://httpd.apache.org/docs/2.4/mod/mod_deflate.html

mod_dir Yes http://httpd.apache.org/docs/2.4/mod/mod_dir.html

mod_dumpio No http://httpd.apache.org/docs/2.4/mod/mod_dumpio.html

mod_env Yes http://httpd.apache.org/docs/2.4/mod/mod_env.html

mod_expires Yes http://httpd.apache.org/docs/2.4/mod/mod_expires.html

mod_file_cache Yes http://httpd.apache.org/docs/2.4/mod/mod_file_cache.html

mod_filter No http://httpd.apache.org/docs/2.4/mod/mod_filter.html

Note: The syntax of the FilterProvider directive under mod_filter
has changed in Apache 2.4. This directive must be upgraded
manually. For more information, see
http://httpd.apache.org/docs/2.4/upgrading.html

mod_headers Yes http://httpd.apache.org/docs/2.4/mod/mod_headers.html

mod_imagemap Yes http://httpd.apache.org/docs/2.4/mod/mod_imagemap.html

mod_include Yes http://httpd.apache.org/docs/2.4/mod/mod_include.html

mod_info Yes http://httpd.apache.org/docs/2.4/mod/mod_info.html

mod_lbmethod_
bybusyness

No http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_
bybusyness.html

mod_lbmethod_
byrequests

No http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_
byrequests.html

mod_lbmethod_bytraffic No http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_
bytraffic.html

mod_log_config Yes http://httpd.apache.org/docs/2.4/mod/mod_log_config.html

mod_log_forensic Yes http://httpd.apache.org/docs/2.4/mod/mod_log_forensic.html

mod_logio No http://httpd.apache.org/docs/2.4/mod/mod_logio.html

mod_macro No http://httpd.apache.org/docs/2.4/mod/mod_macro.html

mod_mime Yes http://httpd.apache.org/docs/2.4/mod/mod_mime.html

mod_mime_magic Yes http://httpd.apache.org/docs/2.4/mod/mod_mime_magic.html

mod_mpm_event Yes (Linux
only)

http://httpd.apache.org/docs/2.4/mod/event.html

mod_mpm_prefork No http://httpd.apache.org/docs/2.4/mod/prefork.html

mod_mpm_winnt
(Windows only)

Yes http://httpd.apache.org/docs/2.4/mod/mpm_winnt.html

mod_mpm_worker Yes (on
Non-Window
s and
non-Linux
platforms)

http://httpd.apache.org/docs/2.4/mod/worker.html

mod_negotiation Yes http://httpd.apache.org/docs/2.4/mod/mod_negotiation.html

Table 2–1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module
Enabled by
Default? For more information, see:

Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2-6 Oracle Fusion Middleware Administering Oracle HTTP Server

mod_proxy Yes http://httpd.apache.org/docs/2.4/mod/mod_proxy.html

mod_proxy_balancer Yes http://httpd.apache.org/docs/2.4/mod/mod_proxy_
balancer.html

mod_proxy_connect Yes http://httpd.apache.org/docs/2.4/mod/mod_proxy_connect.html

mod_proxy_fcgi No http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html

mod_proxy_ftp Yes http://httpd.apache.org/docs/2.4/mod/mod_proxy_ftp.html

mod_proxy_http Yes http://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html

mod_remoteip No http://httpd.apache.org/docs/2.4/mod/mod_remoteip.html

mod_reqtimeout No http://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html

mod_rewrite Yes http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html

mod_security2 No http://www.modsecurity.org/documentation/

Also, for Oracle HTTP Server-specific information regarding mod_
security, see Chapter 5.4.1, "Configuring mod_security in the
httpd.conf File.".

mod_sed No http://httpd.apache.org/docs/2.4/mod/mod_sed.html

mod_setenvif Yes http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html

mod_slotmem_shm Yes http://httpd.apache.org/docs/2.4/mod/mod_slotmem_shm.html

mod_socache_shmcb Yes http://httpd.apache.org/docs/2.4/mod/mod_socache_shmcb.html

mod_speling Yes http://httpd.apache.org/docs/2.4/mod/mod_speling.html

mod_status Yes http://httpd.apache.org/docs/2.4/mod/mod_status.html

mod_substitute No http://httpd.apache.org/docs/2.4/mod/mod_substitute.html

mod_unique_id Yes http://httpd.apache.org/docs/2.4/mod/mod_unique_id.html

mod_unixd Yes http://httpd.apache.org/docs/2.4/mod/mod_unixd.html

mod_userdir Yes http://httpd.apache.org/docs/2.4/mod/mod_userdir.html

mod_usertrack Yes http://httpd.apache.org/docs/2.4/mod/mod_usertrack.html

mod_version Yes http://httpd.apache.org/docs/2.4/mod/mod_version.html

mod_vhost_alias Yes http://httpd.apache.org/docs/2.4/mod/mod_vhost_alias.html

Table 2–1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module
Enabled by
Default? For more information, see:

3

Understanding Oracle HTTP Server Management Tools 3-1

3 Understanding Oracle HTTP Server
Management Tools

[4] This chapter describes the management tools available with the Oracle HTTP Server. It
includes information on Oracle HTTP Server management, how to access Fusion
Middleware Control, how to access the Oracle HTTP Server home page, and how to
use the WebLogic Scripting Tool (WLST).

Oracle provides the following management tools for Oracle HTTP Server:

■ Configuration Wizard, which enables you to create and delete Oracle HTTP Server
instances. For more information, see Installing and Configuring Oracle HTTP Server.

■ Fusion Middleware Control, which is a browser-based management tool. For more
information, see Administering Oracle Fusion Middleware.

■ WebLogic Scripting Tool, which is a command-driven scripting tool. For more
information, see Understanding the WebLogic Scripting Tool.

Notes:

■ The management tools available to your Oracle HTTP Server
implementation depend on whether you have configured it in a
WebLogic Server domain (with FMW Infrastructure) or in a
standalone domain. For details, see Section 1.4, "Domain Types".

■ The Oracle HTTP Server MBeans, which might be visible in
Fusion Middleware Control or the WebLogic Scripting Tool
(WLST) are provided for the use of Oracle management tools. The
interfaces are not supported for other use and are subject to
change without notice.

This chapter includes the following sections:

■ Section 3.1, "Administering Oracle HTTP Server Using Fusion Middleware
Control"

■ Section 3.2, "Administering Oracle HTTP Server Using WLST"

3.1 Administering Oracle HTTP Server Using Fusion Middleware Control
The main tool for managing Oracle HTTP Server is Fusion Middleware Control, which
is a browser-based tool for administering and monitoring the Oracle Fusion
Middleware environment. This section described some of the basic Oracle HTTP
Server administration tasks you can perform with Fusion Middleware Control.

Administering Oracle HTTP Server Using Fusion Middleware Control

3-2 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Section 3.1.1, "Accessing Fusion Middleware Control"

■ Section 3.1.2, "Accessing the Oracle HTTP Server Home Page"

■ Section 3.1.3, "Understanding the Oracle HTTP Server Home Page"

■ Section 3.1.4, "Editing Configuration Files Using Fusion Middleware Control"

See Also: Administering Oracle Fusion Middleware

3.1.1 Accessing Fusion Middleware Control
To display Fusion Middleware Control, you enter the Fusion Middleware Control
URL, which includes the name of the WebLogic Administration Server host and the
port number assigned to Fusion Middleware Control during the installation. The
following shows the format of the URL:

http://hostname.domain:port/em

If you saved the installation information by clicking Save on the last installation
screen, the URL for Fusion Middleware Control is included in the file that is written to
disk.

1. Display Fusion Middleware Control by entering the URL in your Web browser.
For example:

http://host1.example.com:7001/em

The Welcome page appears.

2. Enter the Fusion Middleware Control administrator user name and password and
click Login.

The default user name for the administrator user is weblogic. This is the account
you can use to log in to the Fusion Middleware Control for the first time. The
weblogic password is the one you supplied during the installation of Fusion
Middleware Control.

3.1.2 Accessing the Oracle HTTP Server Home Page
When you select a target, such as a WebLogic Managed Server or a component, such as
Oracle HTTP Server, the target's home page is displayed in the content pane and the
target's menu is displayed at the top of the page, in the context pane.

To display the Oracle HTTP Server home page and the server menu, select an Oracle
HTTP Server component from the HTTP Server folder. You can also display the Oracle
HTTP Server menu by right-clicking the Oracle HTTP Server target in the navigation
pane.

Section 3.1.3, "Understanding the Oracle HTTP Server Home Page" describes the target
navigation pane and the home page of Oracle HTTP Server.

3.1.3 Understanding the Oracle HTTP Server Home Page
The Oracle HTTP Server Home page in Fusion Middleware Control contains menus
and regions that enable you to manage the server. Use the menus for monitoring,
managing, routing, and viewing general information.

The Oracle HTTP Server home page contains the following regions:

■ General Region: Shows the name of the component, its state, host, port, and
machine name, and the location of the Oracle Home.

Administering Oracle HTTP Server Using Fusion Middleware Control

Understanding Oracle HTTP Server Management Tools 3-3

■ Key Statistics Region: Shows the processes and requests statistics.

■ Response and Load Region: Provides information such as the number of active
requests, how many requests were submitted, and how long it took for Oracle
HTTP Server to respond to a request. It also provides information about the
number of bytes processed with the requests.

■ CPU and Memory Usage Region: Shows how much CPU (by percentage) and
memory (in megabytes) are being used by an Oracle HTTP Server instance.

■ Resource Center: Provides links to books and topics related to Oracle HTTP
Server.

Figure 3–1 shows the target navigation pane and the home page of Oracle HTTP
Server.

Figure 3–1 Oracle HTTP Server Home in Fusion MIddleware Control

See Also: Administering Oracle Fusion Middleware contains detailed
descriptions of all the items on the target navigation pane and the
home page.

3.1.4 Editing Configuration Files Using Fusion Middleware Control
The Advanced Server Configuration page in Fusion Middleware Control enables you
to edit your Oracle HTTP Server configuration without directly editing the
configuration (.conf) files (for details, see Section 1.6.3, "Modifying an Oracle HTTP
Server Configuration File"). Be aware that Fusion Middleware Control and other
Oracle software that manage the Oracle HTTP Server configuration might save these
files in a different, equivalent format. After using the software to make a configuration
change, multiple configuration files might be rewritten. For instructions on how to edit
a configuration file from Fusion Middleware Control, see Section 5.1.2, "Editing a
Configuration File for a WebLogic Server Domain."

Administering Oracle HTTP Server Using WLST

3-4 Oracle Fusion Middleware Administering Oracle HTTP Server

3.2 Administering Oracle HTTP Server Using WLST
The WebLogic Scripting Tool (WLST) is a command-driven scripting tool. For detailed
information on WLST, see Understanding the WebLogic Scripting Tool.

For more information on the WLST custom commands that are available for Oracle
HTTP Server, see Appendix A, "Oracle HTTP Server WLST Custom Commands."

This section contains the following information:

■ Section 3.2.1, "Oracle HTTP Server-Specific WLST Commands"

■ Section 3.2.2, "Using WLST in a Standalone Environment"

3.2.1 Oracle HTTP Server-Specific WLST Commands
WLST provides Oracle HTTP Server-specific commands for server management in
WebLogic Server Domains. For more information on the commands, see Appendix A,
"Oracle HTTP Server WLST Custom Commands."

The following are online commands, which require a connection between WLST and
the administration server for the domain.

■ ohs_createInstance

■ ohs_deleteInstance

■ ohs_addAdminProperties

■ ohs_addNMProperties

■ ohs_exportKeyStore

■ ohs_postUpgrade

■ ohs_updateInstances

Oracle recommends that you use the ohs_createInstance and ohs_deleteInstance
commands to create and delete Oracle HTTP Server instances instead of using the
Configuration Wizard. These commands perform additional error checking and, in the
case of instance creation, automatic port assignment.

3.2.2 Using WLST in a Standalone Environment
If your Oracle HTTP Server instance is running in a standalone environment, you can
use WLST but must use the offline, or "agent", commands that route tasks through.
The specific WLST commands are described in Chapter 4, "Running Oracle HTTP
Server", in the context of the task they perform (for example, the WLST command for
starting a standalone Oracle HTTP Server instance is documented in Section 4.3.3.2,
"Starting Oracle HTTP Server Instances Using WLST"); however, you must use the
nmConnect() command to actually connect to offline WLST. For both Linux and
Windows, the format of the command is the same:

nmConnect('login','password','hostname','port','<domainName>')

For example:

nmConnect('weblogic','welcome1','localhost','5556','myDomain')

If you have a remote Oracle HTTP Server in a managed mode and another in
standalone with the remote administration mode enabled, you can use WLST to
perform management tasks such as SSL configuration. A vanilla Oracle HTTP Server

Administering Oracle HTTP Server Using WLST

Understanding Oracle HTTP Server Management Tools 3-5

in a standalone domain can be used only as a WebLogic Server and for Oracle HTTP
Server start/stop purposes. You can also do this by using a command-line script.

Administering Oracle HTTP Server Using WLST

3-6 Oracle Fusion Middleware Administering Oracle HTTP Server

Part II
Part II Managing Oracle HTTP Server

This part presents information about management tasks for Oracle HTTP Server. It
contains the following chapters:

■ Chapter 4, "Running Oracle HTTP Server"

■ Chapter 5, "Working with Oracle HTTP Server"

■ Chapter 6, "Managing and Monitoring Server Processes"

■ Chapter 7, "Managing Connectivity"

■ Chapter 8, "Managing Oracle HTTP Server Logs"

■ Chapter 9, "Managing Application Security"

4

Running Oracle HTTP Server 4-1

4Running Oracle HTTP Server

[5] This chapter provides information on how to run Oracle HTTP Server. It contains
procedures for creating a server instance and how to start, stop, and manage an
instance in both a WebLogic and a standalone environment.

This chapter includes the following sections:

■ Section 4.1, "Before You Begin"

■ Section 4.2, "Creating an OHS Instance"

■ Section 4.3, "Performing Basic Oracle HTTP Server Tasks"

■ Section 4.4, "Remotely Administering Oracle HTTP Server"

4.1 Before You Begin
Before performing any of the activities described in this chapter, you must complete
the following tasks.

1. Install and configure Oracle HTTP Server, as described in Installing and Configuring
Oracle HTTP Server.

2. If you run Oracle HTTP Server in a WebLogic Server Domain, start WebLogic
Server as described in "Starting and Stopping Servers" in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

Notes:

■ When you start WebLogic Server from the command line, you
might see many warning messages. Despite these messages,
WebLogic Server should start normally.

■ On the Windows platform, Oracle HTTP Server requires Microsoft
Visual C++ run-time libraries to be installed on the system to
function. For more information, see Installing and Configuring
Oracle HTTP Server.

3. Start Node Manager (required for both WebLogic and standalone domains), as
described in "Using Node Manager" in Administering Node Manager for Oracle
WebLogic Server.

Creating an OHS Instance

4-2 Oracle Fusion Middleware Administering Oracle HTTP Server

4.2 Creating an OHS Instance
The Configuration Wizard enables you to create multiple Oracle HTTP Server
instances simultaneously when you create a domain. If you are creating a WebLogic
Server Domain (Full or Restricted JRF domain types), you are not required to create
any instances. If you elect not to create any instances, a warning appears; however, you
are allowed to proceed with the configuration process.

If you are creating a standalone domain, an Oracle HTTP Server instance is created by
default.

This section contains the following information:

■ Section 4.2.1, "Creating an Oracle HTTP Server Instance in a WebLogic Server
Domain"

■ Section 4.2.2, "Creating an Oracle HTTP Server Instance in a Standalone Domain"

Note: If you are attempting to create an Oracle HTTP Server instance
that uses a TCP port in the reserved range (typically less than 1024),
then you must perform some extra configuration to allow the server to
bind to privileged ports. For more information, see Section 4.3.3.4,
"Starting Oracle HTTP Server Instances on a Privileged Port (UNIX
Only)."

4.2.1 Creating an Oracle HTTP Server Instance in a WebLogic Server Domain
You can create a managed Oracle HTTP Server instance in a WebLogic Server Domain
by using either the WLST custom command ohs_createInstance() or from Fusion
Middleware Control installed as part of a Oracle Fusion Middleware
infrastructure. The following sections describe these procedures.

■ Section 4.2.1.1, "Creating an Instance by Using WLST"

■ Section 4.2.1.2, "Creating an Instance by Using Fusion Middleware Control"

■ Section 4.2.1.3, "About Instance Provisioning"

Note: If you are working with a WebLogic Server Domain, it is
recommended to use the Oracle HTTP Server WLST custom
commands, described in Section 3.2, "Administering Oracle HTTP
Server Using WLST". These commands offer superior error checking,
provide automatic port management, and so on.

4.2.1.1 Creating an Instance by Using WLST
You can create an Oracle HTTP Server instance in a WebLogic Server Domain by using
WLST. Follow these steps.

1. From the command line, launch WLST:

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh

Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to WLST:

■ In a WebLogic Server Domain:

> connect('loginID', 'password', '<adminHost>:<adminPort>')

Creating an OHS Instance

Running Oracle HTTP Server 4-3

For example:

> connect('weblogic', 'welcome1', 'abc03lll.myCo.com:7001')

3. Use the ohs_createInstance() command, with an instance and machine
name—which was assigned during domain creation—to create the instance:

> ohs_createInstance(instanceName='ohs1', machine='abc03lll.myCo.com',
[listenPort=XXXX], [sslPort=XXXX], [adminPort=XXXX])

Note: If Node Manager should be down, the create command will
take place partially. The master copy of the config files will appear at
OHS/componentName. Once Node Manager comes back up, the
system will resync and the runtime copy of the files will appear at
OHS/instances/componentName.

For example:

> ohs_createInstance(instanceName='ohs1', machine='abc03lll.myCo.com')

Note: If you do not provide port numbers, they will be assigned
automatically.

See also: For information on using the WebLogic Scripting Tool
(WLST), see Understanding the WebLogic Scripting Tool.

4.2.1.2 Creating an Instance by Using Fusion Middleware Control
You can create an Oracle HTTP Server instance in a WebLogic Server Domain by using
Fusion Middleware Control installed as part of the Oracle Fusion Middleware
infrastructure. Follow these steps.

1. Log in to Fusion Middleware Control and navigate to the system component
instance home page for the WebLogic Server Domain within which you want to
create the Oracle HTTP Server instance.

2. Open the WebLogic Server Domain menu and select Administration then
Create/Delete OHS.

Note: Create/Delete OHS will appear only if you have extended the
domain by using the Oracle HTTP Server domain template.
Otherwise, this command will not be available.

Creating an OHS Instance

4-4 Oracle Fusion Middleware Administering Oracle HTTP Server

The OHS Instances page appears.

3. Click Create.

The Create OHS Instance page appears.

4. In Instance Name, enter a unique name for the Oracle HTTP Server instance; for
example, ohs_2.

5. In Machine Name, click the drop-down control and select the machine to which
you want to associate the instance.

6. Click OK.

Performing Basic Oracle HTTP Server Tasks

Running Oracle HTTP Server 4-5

The OHS Instance page reappears, showing a confirmation message and the new
instance. The port number is automatically assigned.

After creating the instance, the Column on the OHS Instances page shows a
down-arrow for that instance.

This indicates that the instance is not running. For instructions on starting an instance,
see Section 4.3.3, "Starting Oracle HTTP Server Instances". Once started, the arrow will
point up.

4.2.1.3 About Instance Provisioning
Once an instance is created, it will be provisioned within the DOMAIN_HOME.

■ The master (staging) copy will be in:

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

■ The runtime will be in:

DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName

Node Manager must be running to provision an instance in runtime.

Immediately after creation, the state reported for an Oracle HTTP Server instance will
vary depending on how the instance was created:

■ If ohs_createInstance() was used, the reported state for the instance will be
SHUTDOWN.

■ If the Configuration Wizard was used, the reported state for the instance will be
UNKNOWN.

4.2.2 Creating an Oracle HTTP Server Instance in a Standalone Domain
If you select Standalone as your domain during server configuration, the
Configuration Wizard will create the domain, and during this process an Oracle HTTP
Server instance will also be created. For more information, see Installing and
Configuring Oracle HTTP Server.

4.3 Performing Basic Oracle HTTP Server Tasks
This section contains information on how to use WLST or Fusion Middleware Control
to perform basic administration tasks. It also provides information on WLST and the
process ID (PID) file.

Performing Basic Oracle HTTP Server Tasks

4-6 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Section 4.3.1, "About Using the WLST Commands"

■ Section 4.3.2, "Understanding the PID File"

■ Section 4.3.3, "Starting Oracle HTTP Server Instances"

■ Section 4.3.4, "Stopping Oracle HTTP Server Instances"

■ Section 4.3.5, "Restarting Oracle HTTP Server Instances"

■ Section 4.3.6, "Checking the Status of a Running Oracle HTTP Server Instance"

■ Section 4.3.7, "Deleting an Oracle HTTP Server Instance"

■ Section 4.3.8, "Changing the Default Node Manager Port Number"

4.3.1 About Using the WLST Commands
If you plan to use WLST, you should familiarize yourself with that tool. You should
also be aware of the following restriction on WLST:

■ If you run a standalone version of Oracle HTTP Server, you must use the offline,
or "agent", WLST commands. These commands are described in their appropriate
context.

For more information, see "Getting Started Using the Oracle WebLogic Scripting Tool
(WLST)" in the Oracle® Fusion Middleware Administrator's Guide.

4.3.2 Understanding the PID File
The process ID can be used by the administrator when restarting and terminating the
daemon. If a process stops abnormally, it is necessary to stop the httpd child processes
using the kill command. You must not change the default PID file name or its
location.

When Oracle HTTP Server starts, it writes the process ID (PID) of the parent httpd
process to the httpd.pid file located in the following directory:

DOMAIN_HOME/servers/<componentName>/logs

The PidFile directive in httpd.conf specifies the location of the PID file; however, you
should never modify the value of this directive.

Note: On UNIX/Linux platforms, if you edit the PidFile directive,
you also have to edit the ORACLE_HOME/ohs/bin/apachectl file to
specify the new location of the PID file.

See Also: PidFile directive in the Apache HTTP Server
documentation at:

http://httpd.apache.org/docs/current/mod/mpm_
common.html#pidfile

4.3.3 Starting Oracle HTTP Server Instances
This section contains information on how to start Oracle HTTP Server using Fusion
Middleware Control and WLST.

Note: On the Windows platform, Oracle HTTP Server requires
Microsoft Visual C++ run-time libraries to be installed on the system
to function. For information, see Installing and Configuring Oracle
HTTP Server.

Performing Basic Oracle HTTP Server Tasks

Running Oracle HTTP Server 4-7

■ Section 4.3.3.1, "Starting Oracle HTTP Server Instances Using Fusion Middleware
Control"

■ Section 4.3.3.2, "Starting Oracle HTTP Server Instances Using WLST"

■ Section 4.3.3.3, "Starting Oracle HTTP Server Instances from the Command Line"

■ Section 4.3.3.4, "Starting Oracle HTTP Server Instances on a Privileged Port (UNIX
Only)"

■ Section 4.3.3.5, "Starting Oracle HTTP Server Instances as a Different User (UNIX
Only)"

4.3.3.1 Starting Oracle HTTP Server Instances Using Fusion Middleware Control
In Fusion Middleware Control, you start the Oracle HTTP Server from the Oracle
HTTP Server home page. Navigate to the HTTP Server home page and do one of the
following:

■ From the Oracle HTTP Server menu:

1. Select Control.

2. Select Start Up from the Control menu.

■ From the Target Navigation tree:

1. Right-click the Oracle HTTP Server instance you want to start.

2. Select Control.

3. Select Start Up from the Control menu.

■ From the page header, select Start Up.

The instance will start in the state UNKNOWN.

4.3.3.2 Starting Oracle HTTP Server Instances Using WLST
To start an Oracle HTTP Server instance by using WLST, use the start() command in
a WebLogic Server Domain or nmStart() for a standalone domain. The commands are
illustrated in the following table.

Notes:

■ Node Manager must be running for these commands to work. If it
is down, you will receive an error message.

■ serverType is required for standalone domains. If it is not
included an error will be thrown referencing an inability to find
startWebLogic.

These commands assume you have created as OHS instance, as described in
Section 4.2, "Creating an OHS Instance" and WLST is running.

Domain Syntax Example

WebLogic start('instanceName')

or

nmStart(serverName='name',
serverType='type')

start('ohs1')

or

nmStart(serverName='ohs1',
serverType='OHS')

Standalone nmStart(serverName='name',
serverType='type')

nmStart(serverName='ohs1',
serverType='OHS')

Performing Basic Oracle HTTP Server Tasks

4-8 Oracle Fusion Middleware Administering Oracle HTTP Server

4.3.3.3 Starting Oracle HTTP Server Instances from the Command Line
You can start up Oracle HTTP Server instances from the command line via a script.

1. Ensure that Node Manager is running.

2. Enter the following command:

Linux or UNIX: $DOMAIN_HOME/bin/startComponent.sh componentName

Windows: %DOMAIN_HOME%\bin\startComponent.cmd componentName

For example:

$DOMAIN_HOME/bin/startComponent.sh ohs1

The startComponent script contacts the Node Manager and runs the nmStart()
command.

3. When prompted, enter your Node Manager password. The system responds with
these messages:

Successfully started server componentName...
Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.

Note: If you encounter any odd system messages upon startup, you
can ignore them.

4.3.3.3.1 Storing Your Node Manager Password You can avoid having to enter your Node
Manager password every time you launch the server with startComponent command
by starting it with the storeUserConfig option for the first time. Do the following:

1. At the prompt, enter the following command:

$DOMAIN_HOME/bin/startComponent.sh componentName storeUserConfig

The system will prompt for your Node Manager password.

2. Enter your password.

The system responds with this message:

Creating the key file can reduce the security of your system if it is not kept
in a secured location after it is created. Creating new key...
The username and password that were used for this WebLogic NodeManager
connection are stored in $HOME/.wlst/nm-cfg-myDomainName.props and
$HOME /.wlst/nm-key-myDomainName.props.

Performing Basic Oracle HTTP Server Tasks

Running Oracle HTTP Server 4-9

4.3.3.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)

WARNING: When this procedure is completed, any Oracle HTTP
Server processes running from this Oracle Home will be able to
bind to privileged ports.

On a UNIX system, TCP ports in a reserved range (typically less than 1024) can only be
bound by processes with root privilege. Oracle HTTP Server always runs as a non-root
user; that is, the user who installed Oracle Fusion Middleware. On UNIX, special
configuration is required to allow Oracle HTTP Server to bind to privileged ports.

To enable Oracle HTTP Server to listen on a port in the reserved range (for example,
the default port 80 or port 443) use the following one-time setup on each Oracle HTTP
Server machine:

1. Update the ORACLE_HOME/ohs/bin/launch file by performing the following
steps as the super user (if you do not have access to super user privileges, have
your system administrator perform these steps):

a. Change ownership of the file to root:

chown root $ORACLE_HOME/ohs/bin/launch

b. Change the permissions on the file as follows:

chmod 4750 $ORACLE_HOME/ohs/bin/launch

The steps that require root permissions are now complete.

c. Modify the port settings for Oracle HTTP Server as described in Section 7.4,
"Managing Ports".

2. Configure the User and Group directive in httpd.conf.

The configured user ID for User should be the same user ID that created the
instance. The configured group ID for Group must be the same group ID used to
create the instance. See Section 1.6.2, "Oracle HTTP Server Configuration Files." To
configure Oracle HTTP Server to run as a different user id see Section 4.3.3.5,
"Starting Oracle HTTP Server Instances as a Different User (UNIX Only)."

3. Stop the instance if it is running by using any of the stop methods described in
Section 4.3.4, "Stopping Oracle HTTP Server Instances."

4. Start the instance by using any of the start-up methods described in Section 4.3.3,
"Starting Oracle HTTP Server Instances."

4.3.3.5 Starting Oracle HTTP Server Instances as a Different User (UNIX Only)
On UNIX systems, the Oracle HTTP Server worker processes (the processes that accept
connections and handle requests) may be configured to run as a different user id than
the user id used to create the instance.

Follow the directions in Section 4.3.3.4, "Starting Oracle HTTP Server Instances on a
Privileged Port (UNIX Only)" and configure the User directive with the desired user
id. The configured user id must be in the same group as the group that owns the
instance directory. The Group directive must also be configured and set to the same
group id used to create the instance.

Note:

■ The parent process and logging processes of the Oracle HTTP
Server will run as root—these processes neither accept
connections nor handle requests.

■ If the node manager is configured to use the SSL listener, then
ensure that other users have the appropriate permissions to access
the SSL trust store used by the node manager so that the
startComponent.sh or nmConnect commands can run successfully
as a different user.

For more information on node manager, see "Node Manager
Overview" in Administering Node Manager for Oracle WebLogic
Server.

Performing Basic Oracle HTTP Server Tasks

4-10 Oracle Fusion Middleware Administering Oracle HTTP Server

4.3.4 Stopping Oracle HTTP Server Instances
This section contains information on how to stop Oracle HTTP Server using Fusion
Middleware Control and WLST. Be aware that other services might be impacted when
Oracle HTTP Server is stopped.

■ Section 4.3.4.1, "Stopping Oracle HTTP Server Instances Using Fusion Middleware
Control"

■ Section 4.3.4.2, "Stopping Oracle HTTP Server Instances Using WLST"

■ Section 4.3.4.3, "Stopping Oracle HTTP Server Instances from the Command Line"

4.3.4.1 Stopping Oracle HTTP Server Instances Using Fusion Middleware Control
In Fusion Middleware Control, you can stop Oracle HTTP Server from the Oracle
HTTP Server home page. Navigate to the Oracle HTTP Server home page and do one
of the following:

■ From the Oracle HTTP Server home page:

1. Select the server instance you want to stop.

2. Select Control then Shut Down from the Oracle HTTP Server drop-down
menu on the server instance home page.

■ From the Target Navigation tree:

1. Right-click the Oracle HTTP Server component you want to stop.

2. Select Control.

3. Select Shut Down from the Control menu.

■ From the page header on the server instance home page, select Shut Down.

4.3.4.2 Stopping Oracle HTTP Server Instances Using WLST
You can stop Oracle HTTP Server by using WLST. From within the scripting tool, use
one of the following commands:

Notes:

■ Node Manager must be running for these commands to work. If it
is down, you will receive an error message.

■ serverType is required for standalone domains. If it is not
included, an error will be thrown referencing an inability to find
startWebLogic

Domain Syntax Example

WebLogic shutdown('serverName') shutdown('ohs1')

Standalone nmKill(serverName='serverName',
serverType='type')1

1 nmKill() will also work in a WebLogic domain.

nmKill(serverName='ohs1',
serverType='OHS')

WARNING: If you run shutdown() without specifying any
parameters, WebLogic Server will terminate and exit WLST. Oracle
HTTP Server will continue running. To recover, restart WebLogic
Server, launch WLST, and reconnect to the AdminServer. Then
re-run the shutdown with the Oracle HTTP Server instance name.

Performing Basic Oracle HTTP Server Tasks

Running Oracle HTTP Server 4-11

4.3.4.3 Stopping Oracle HTTP Server Instances from the Command Line
You can stop Oracle HTTP Server instances from the command line via a script.

1. Enter the following command:

$DOMAIN_HOME/bin/stopComponent.sh componentName

For example:

$DOMAIN_HOME/bin/stopComponent.sh ohs1

This command invokes WLST and executes the nmKill() command. The
stopComponent command will not function if the Node Manager is not running.

2. When prompted, enter your Node Manager password.

If you started the Node Manager with the storeUserConfig option as described in
Section 4.3.3.3.1, "Storing Your Node Manager Password", you will not be
prompted.

Once the server is stopped, the system will respond:

Successfully killed server componentName...
Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.

4.3.5 Restarting Oracle HTTP Server Instances
Restarting Oracle HTTP Server causes the Apache parent process to advise its child
processes to exit after their current request (or to exit immediately if they are not
serving any requests). Upon restarting, the parent process re-reads its configuration
files and reopens its log files. As each child process exits, the parent replaces it with a

Performing Basic Oracle HTTP Server Tasks

4-12 Oracle Fusion Middleware Administering Oracle HTTP Server

child process from the new generation of the configuration file, which begins serving
new requests immediately.

The following sections contain information on how to restart Oracle HTTP Server
using Fusion Middleware Control and WLST.

■ Section 4.3.5.1, "Restarting Oracle HTTP Server Instances Using Fusion
Middleware Control"

■ Section 4.3.5.2, "Restarting Oracle HTTP Server Instances Using WLST"

4.3.5.1 Restarting Oracle HTTP Server Instances Using Fusion Middleware Control
In Fusion Middleware Control you restart Oracle HTTP Server from the Oracle HTTP
Server home page. Navigate to the Oracle HTTP Server home page and do one of the
following:

■ From the Oracle HTTP Server home page:

1. Select the server instance you want to restart. Select Control.

2. Click Start Up on the instance home page, or select Control then Restart from
the Oracle HTTP Server drop-down menu.

■ From the Target Navigation tree:

1. Right-click the Oracle HTTP Server instance you want to restart.

2. Select Control.

3. Select Restart from the Control menu.

4.3.5.2 Restarting Oracle HTTP Server Instances Using WLST
To restart Oracle HTTP Server by using WLST, use the softRestart() command.
From within the scripting tool, enter one of the following commands:

Notes:

■ For the WebLogic and the Standalone domains, the Node
Manager must be running (that is, state is RUNNING) for these
commands to work. If it is down, you will receive an error
message.

■ All parameters are required for standalone domains. If they are
not included, an error will be thrown referencing an inability to
find startWebLogic.

■ The nmSoftRestart command can also be used in WebLogic
domains. To do this, you must first connect to the Node Manager
by using the nmConnect command.

Domain Syntax Example

WebLogic softRestart('serverName') softRestart('ohs1')

Standalone nmSoftRestart(serverName='name',
serverType='type')

nmSoftRestart(serverName='ohs1',
serverType='OHS')

Performing Basic Oracle HTTP Server Tasks

Running Oracle HTTP Server 4-13

4.3.6 Checking the Status of a Running Oracle HTTP Server Instance
This section contains information on how to check the status of a running Oracle
HTTP Server instance. You can check this information from either Fusion Middleware
Control installed as part of an Oracle Fusion Middleware infrastructure or by using
WLST.

■ Section 4.3.6.1, "Checking Server Status Using Fusion Middleware Control"

■ Section 4.3.6.2, "Checking Server Status Using WLST"

4.3.6.1 Checking Server Status Using Fusion Middleware Control
An up or down arrow in the top left corner of any Oracle HTTP Server page's header
indicates whether the selected server instance is running. This image shows the up
arrow, indicating that the server instance, in this case, ohs_2, is running:

This image shows a down arrow, indicating that the server instance, in this case, ohs_
2, is not running:

4.3.6.2 Checking Server Status Using WLST
In a WebLogic Server Domain, if you used ohs_createInstance() to create the Oracle
HTTP Server instance, its initial state (that is, before starting it) will be SHUTDOWN.

If you used the Configuration Wizard to generate the instance (both WebLogic Server
Domain and standalone domain), its initial state (that is, before starting) will be
UNKNOWN.

To check the status of a running Oracle HTTP Server instance by using WLST, from
within the scripting tool, enter the following:

Notes:

■ Node Manager must be running for these commands to work. If it
is down, you will receive an error message. If Node Manager goes
down in a WebLogic Server Domain, the state will be returned as
UNKNOWN, regardless of the real state of the instance.
Additionally state() does not inform you that it cannot connect
to Node Manager.

■ Unlike other WLST commands, state() will not tell you when
Node Manager is down so there is no way to distinguish an
instance that truly is in state UNKNOWN as opposed to Node
Manager simply being down.

■ All parameters are required for standalone domains. If they are
not included, then an error will be thrown referencing an inability
to find startWebLogic.

■ The nmServerStatus command can also be used in WebLogic
domains. To do this, you must first connect to the Node Manager
by using the nmConnect command.

Domain Syntax Example

WebLogic state('serverName') state('ohs1')

Standalone nmServerStatus(serverName='name',
serverType='type')

nmServerStatus(serverName='ohs1',
serverType='OHS')

Note: This command does not distinguish between non-existent
components and real components in state UNKNOWN. Thus, if you
enter a non-existent instance (for example, you made a typo), a state of
UNKNOWN will be returned.

Performing Basic Oracle HTTP Server Tasks

4-14 Oracle Fusion Middleware Administering Oracle HTTP Server

4.3.7 Deleting an Oracle HTTP Server Instance
You can delete an Oracle HTTP Server instance in both a WebLogic Server Domain and
a standalone domain.

■ Section 4.3.7.1, "Deleting an Oracle HTTP Server Instance in a WebLogic Server
Domain"

■ Section 4.3.7.2, "Deleting an Oracle HTTP Server Instance from a Standalone
Domain"

4.3.7.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
In a WebLogic Server Domain, you can use either the WLST custom command ohs_
deleteInstance() or from Fusion Middleware Control installed as part of an Oracle
Fusion Middleware infrastructure. The following sections describe these procedures.

■ Section 4.3.7.1.1, "Deleting an Instance Using WLST"

■ Section 4.3.7.1.2, "Deleting an Instance Using Fusion Middleware Control"

Performing Basic Oracle HTTP Server Tasks

Running Oracle HTTP Server 4-15

4.3.7.1.1 Deleting an Instance Using WLST If you are in a WebLogic Server Domain, you
can delete an Oracle HTTP Server instance by using the WLST custom command ohs_
deleteInstance(). When you use this command, the following happens:

■ The selected instance information is removed from config.xml.

■ All OHS configuration directories and their contents are deleted; for example,
OHS/instanceName and OHS/instances/instanceName. These paths refer to both
the runtime and master copies of the configuration.

■ All logfiles associated with the deleted instance are deleted.

■ All state information for the deleted instance is removed.

Note: You cannot delete an instance by using ohs_deleteInstance()
if Node Manager is down.

To delete an instance using WLST:

1. From the command line, launch WLST:

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh

Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to WLST:

■ In a WebLogic Server Domain:

> connect('loginID', 'password', '<adminHost>:<adminPort>')

For example:

> connect('weblogic', 'welcome1', 'abc03lll.myCo.com:7001')

3. At the command prompt, enter:

ohs_deleteInstance(instanceName='instanceName')

For example, to delete an OHS instance named ohs1 use the following command:

ohs_deleteInstance(instanceName='ohs1')

You cannot delete an OHS instance in either an UNKNOWN or a RUNNING state.

Note: For newly created OHS instances in state UNKNOWN (for
example, created with config wizard), one can start and stop the
instance to move the state to SHUTDOWN. It can then be deleted
successfully.

For instances in state RUNNING... first stop the instance to move it to
state SHUTDOWN and then it can be deleted successfully.

4.3.7.1.2 Deleting an Instance Using Fusion Middleware Control To delete an Oracle HTTP
Server instance by using Fusion Middleware Control:

Note: You cannot delete a running Oracle HTTP Server instance. If
the instance is running, stop it, as described in Section 4.3.4, "Stopping
Oracle HTTP Server Instances" and then proceed with the following
steps.

Performing Basic Oracle HTTP Server Tasks

4-16 Oracle Fusion Middleware Administering Oracle HTTP Server

1. Log in to Fusion Middleware Control. Navigate to the system component instance
home page for the WebLogic Server Domain that contains the Oracle HTTP Server
instance you want to delete.

2. Open the WebLogic Server Domain menu and select Administration then
Create/Delete OHS.

3. In the OHS Instances page, select the instance you want to delete and click Delete.

4. In the confirmation window, click Yes to complete the deletion.

The OHS Instances page appears, with an information message indicating that the
selected Oracle HTTP Server instance was deleted.

4.3.7.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain
You can delete an Oracle HTTP Server instance in a standalone domain by using the
Configuration Wizard if it is not the only instance in the domain. The Configuration
Wizard always requires at least one Oracle HTTP Server instance in a standalone
domain; you will not be able to delete the instance if it is the only one in the domain.
To delete the only instance in a standalone domain, you should instead completely
remove the entire domain directory.

Deleting Oracle HTTP Server instances by using the Configuration Wizard is actually
only a partial deletion (and is inconsistent with the way WebLogic Server domain
performs deletion by using ohs_deleteInstance(); see Section 4.3.7.1.1, "Deleting an
Instance Using WLST"). When you delete a standalone instance by using the
Configuration Wizard, the following occurs:

■ Information on the specific instance is removed from config.xml, so this instance is
no longer recognized as valid. When you launch the Configuration Wizard again
for another update, the deleted instance will not appear.

■ The logs compiled for the deleted instance are left intact at: DOMAIN_
HOME/servers/ohs1 (assuming your instance name was ohs1). If a new instance
with the same name is subsequently created, it will inherit and continue logging to
these files.

■ The deleted instance's configuration directories and their contents are not deleted;
they remain intact at: DOMAIN_
HOME/config/fmwconfig/components/OHS/instanceName and DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/instanceName. The only
change in both directories is that the following files are renamed: httpd.conf
becomes httpd.conf.bak; ssl.conf becomes ssl.conf.bak; and admin.conf becomes
admin.conf.bak. This prevents the instance from being started. (If you create a new
instance with the same name as the instance you deleted, this information will be
overwritten, but the *.bak files will remain).

■ The deleted instance's state information is left intact at DOMAIN_HOME/system_
components/... If a new instance of the same name is subsequently created, it will
inherit the state of the old instance. Instead of starting in UNKNOWN state, it
could appear as SHUTDOWN or even FAILED_NOT_RESTARTABLE.

To delete an Oracle HTTP Server instance in a standalone domain, do the following:

Performing Basic Oracle HTTP Server Tasks

Running Oracle HTTP Server 4-17

1. Shutdown all running instances (see Section 4.3.4, "Stopping Oracle HTTP Server
Instances"). Be aware the Configuration Wizard will not check the state of the
Oracle HTTP Server instance so you will need to verify that all instances are
indeed stopped before deletion.

2. If it is running, shut down Node Manager.

3. Launch the Configuration Wizard (see Installing and Configuring Oracle HTTP
Server) and do the following:

a. Select Update an existing domain and select the path to the domain.

b. Skip both the Templates screen and the JDK Selection screen by clicking Next
on each.

c. On the System Components screen, select the instance you want to delete and
click Delete.

The selected instance is deleted.

d. Click Next, and, on the OHS Server screen, click Next again.

e. On the Configuration Summary screen, verify that the selected instance has
been deleted and click Update.

f. On the Success screen, click Finish.

4.3.8 Changing the Default Node Manager Port Number
You can change the default value of the Node Manager port by using either WLST or
the Oracle WebLogic Server Administration console.

■ Section 4.3.8.1, "Changing the Default Node Manager Port Using WLST"

■ Section 4.3.8.2, "Changing the Default Node Manager Port Using Oracle WebLogic
Server Administration Console"

4.3.8.1 Changing the Default Node Manager Port Using WLST
To change the default Node Manager port number using WLST, use the custom
command readDomain to open the domain. Navigate to the directory containing the
node manager for the machine. Set the ListenPort property, then update the domain.

...
readDomain('DOMAIN_HOME')
cd('/Machines/Machine_Name/NodeManager/Node_Manager_Name')
set('ListenPort',9090)
updateDomain()
closeDomain()
...
In this example, DOMAIN_HOME represents the root directory of the domain. Machines
and NodeManager are directories. The Node_Manager_Name is the name of the Node
Manager belonging to the Machine_Name machine. The default Node Manager name is
localmachine. The default Machine_Name is also localmachine. The ListenPort value
is set to 9090.

4.3.8.2 Changing the Default Node Manager Port Using Oracle WebLogic Server
Administration Console
Follow these steps to change the default Node Manager port number using Oracle
WebLogic Server Administration Console.

Remotely Administering Oracle HTTP Server

4-18 Oracle Fusion Middleware Administering Oracle HTTP Server

1. Manually edit the DOMAIN_HOME/nodemanager/nodemanager.properties file to
change the value of the ListenPort property.

2. In the WebLogic Server Administration Console, change the configuration of the
machine associated with the Node Manager, to point it to the new port number.

From the left pane of the Console, expand Environment and then select Machines.
Select the machine whose configuration you want to edit. Select the Configuration
tab, then the Node Manager tab. Change the Listen Port to the port updated in
nodemanager.properties file. Click Save.

4.4 Remotely Administering Oracle HTTP Server
You can remotely manage an Oracle HTTP Server running in a standalone
environment from a collocated Oracle HTTP Server implementation running on a
separate machine. This feature enables you to use WLST or Fusion Middleware
Control installed as part of an Oracle Fusion Middleware infrastructure from the
remote machine to start, restart, stop, and configure the component. This section
describes how to set up Oracle HTTP Server to run remotely.

■ Section 4.4.1, "Setting Up a Remote Environment"

■ Section 4.4.1.5, "Task 4: Run Oracle HTTP Server Remotely"

4.4.1 Setting Up a Remote Environment
The following instructions describe how to set up a remote environment, which will
enable you to run Oracle HTTP Server installed on one machine from an installation
on another. This section contains the following information:

■ Section 4.4.1.1, "Host Requirements for a Remote Environment."

■ Section 4.4.1.2, "Task 1: Set Up an Expanded Domain on host1."

■ Section 4.4.1.3, "Task 2: Pack the Domain on host1."

■ Section 4.4.1.4, "Task 3: Unpack the Domain on host2."

■ Section 4.4.1.5, "Task 4: Run Oracle HTTP Server Remotely"

4.4.1.1 Host Requirements for a Remote Environment
To remotely manage Oracle HTTP Server, you must have separate hosts installed on
separate machines:

■ A collocated installation (for this example, this installation will be called host1).

■ A standalone installation (host2). The path to standalone MW_HOME on host2
must be the same as the path to the collocated MW_HOME on host1; for example:

/scratch/user/work

4.4.1.2 Task 1: Set Up an Expanded Domain on host1
The following steps describe how to set up an expanded domain and link it to a
database on the collocated version of Oracle HTTP Server (host1):

1. Using the Repository Configuration Utility (RCU), set up and install a database for
the expanded domain. For more information, see Oracle Fusion Middleware Creating
Schemas with the Repository Creation Utility.

2. Launch the Configuration Wizard and create an expanded domain. Use the values
specified in Table 4–1.

Table 4–1 Setting Up an Expanded Domain

For... Select or Enter...

Create Domain Create a new domain and specify its path (for example, MW_
HOME/user_projects/domains/ohs1_domain).

Templates Oracle HTTP Server (Collocated)

Application Locations The default.

Administrator Account A username and password (for example, weblogic and welcome1).

Database Configuration
Type

The RCU data. Then, click Get RCU Configuration and then
Next.

Optional Configuration The following items:

■ Administration Server

■ Node Manager

■ System Components

■ Deployment and Services

Administration Server The listen address (All Local Addresses or the valid name or
address for host1) and port.

 Node Manager Per Domain and specify the NodeManager credentials (for
example, weblogic and welcome1).

System Components Add and set the fields, using OHS as the Component Type (for
example, use a System Component value of ohs1).

OHS Server The listen addresses and ports or use the defaults.

Machines Add. This will add a machine to the domain (for example, ohs1_
Machine) and the Node Manager listen and port values. You
must specify a listen address for host2 that is accessible from
host1, such the valid name or address for host2 (do not use
localhost or All Local Addresses).

Assign System Components The OHS component (for example, ohs1) then use the right
arrow to assign the component to the machine (ohs1_machine,
for example).

Configuration Summary Create (the OPSS steps may take some minutes).

Remotely Administering Oracle HTTP Server

Running Oracle HTTP Server 4-19

4.4.1.3 Task 2: Pack the Domain on host1
On host1, use the pack command to pack the domain. The pack command creates a
template archive (.jar) file that contains a snapshot of either an entire domain or a
subset of a domain.

<MW_HOME>/ohs/common/bin/pack.sh -domain=path to domain -template=path to template
-template_name=name -managed=true

For example:

<MW_HOME>/ohs/common/bin/pack.sh -domain=<MW_HOME>/user_projects/domains/ohs1_
domain -template=/tmp/ohs1_tmplt.jar -template_name=ohs1 -managed=true

4.4.1.4 Task 3: Unpack the Domain on host2
The unpack command creates a full domain or a subset of a domain used for a
Managed Server domain directory on a remote machine. Use the following steps to
unpack the domain you packed on host1 in "Task 2: Pack the Domain on host1", on
host2.

Remotely Administering Oracle HTTP Server

4-20 Oracle Fusion Middleware Administering Oracle HTTP Server

1. Copy the template file created in "Task 2: Pack the Domain on host1" from host1 to
host2.

2. Use the unpack command to unpack the domain:

<MW_HOME>/ohs/common/bin/unpack.sh -domain=path to domain -template=path to
template

For example:

<MW_HOME>/ohs/common/bin/unpack.sh -domain=<MW_HOME>/user_
projects/domains/ohs1_domain -template=/tmp/ohs1_tmplt.jar

4.4.1.5 Task 4: Run Oracle HTTP Server Remotely
Once you have unpacked the domain created on host1 onto host2, you can use the
same set of WLST commands and Fusion Middleware Control tools you would in a
collocated environment to start, stop, restart, and configure the component.

To run an Oracle HTTP Server remotely, do the following:

1. Start the WebLogic Administration Server on host1:

<MW_HOME>/user_projects/domains/ohs1_domain/bin/startWebLogic.sh &

2. Start Node Manager on host2:

<MW_HOME>/user_projects/domains/ohs1_domain/bin/startNodeManager.sh &

You can now run the Oracle HTTP Server instance on host2 from the collocated
implementation on host1. You can use any of the WLST commands or any of the
Fusion Middleware Control tools. For example, to connect host2 to Node Manager and
start the server ohs1, from host1 enter:

<MW_HOME>/ohs/common/bin/wlst.sh
nmConnect('weblogic', '<password>', '<nm-host>', '<nm-port>', '<domain-name>',
'<domain-directory>','ssl')
nmStart(serverName='ohs1', serverType='OHS')

See Section 4.3, "Performing Basic Oracle HTTP Server Tasks" for information on
starting, stopping, restarting, and configuring Oracle HTTP Server components.

5

Working with Oracle HTTP Server 5-1

5Working with Oracle HTTP Server

[6] This chapter describes some common tasks you might be required to perform when
working with an installed version of Oracle HTTP Server. It contains the following
sections:

■ Section 5.1, "About Editing Configuration Files"

■ Section 5.2, "Specifying Server Properties"

■ Section 5.3, "Configuring Oracle HTTP Server Instances"

■ Section 5.4, "Configuring the mod_security Module"

5.1 About Editing Configuration Files
For instances that are part of a WebLogic Server Domain, Fusion Middleware Control
and the management infrastructure manages the Oracle HTTP Server configuration.
Direct editing of the configuration in the staging directory is subject to being
overwritten after subsequent management operations, including modifying the
configuration in Fusion Middleware Control. For such instances, direct editing should
only be performed when the administration server is stopped. When the
administration server is subsequently started (or restarted), the results of any manual
edits will be replicated to the run-time directory on the node of the managed instance.

For more information, see Section 1.6, "Understanding Configuration Files."

The following sections provide more information on modifying configuration files.

■ Section 5.1.1, "Editing a Configuration File for a Standalone Domain."

■ Section 5.1.2, "Editing a Configuration File for a WebLogic Server Domain."

5.1.1 Editing a Configuration File for a Standalone Domain
For standalone instances, you can edit the configuration directly within the staging
directory at any time. The runtime config files are updated on start, restart or stopping
of the OHS instance.

5.1.2 Editing a Configuration File for a WebLogic Server Domain
You can open and edit configuration files from within Fusion Middleware Control.
Follow these steps to modify the files.

1. Select Administration from the HTTP Server menu.

2. Select Advanced Configuration from the Administration menu item.

Specifying Server Properties

5-2 Oracle Fusion Middleware Administering Oracle HTTP Server

3. In the Advanced Server Configuration page, select the configuration file from the
Select File drop-down list, such as the httpd.conf file, then click Go.

4. Edit the file, as needed.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server as described in Section 4.3.5, "Restarting Oracle HTTP
Server Instances".

The file is saved and displayed on the Advanced Server Configuration page.

5.2 Specifying Server Properties
You can set Oracle HTTP Server properties only by using Fusion Middleware Control
or by directly editing the Oracle HTTP Server configuration files. You cannot use WLST
commands to specify the server properties.

■ Section 5.2.1, "Specifying Server Properties Using Fusion Middleware Control"

■ Section 5.2.2, "Specify Server Properties by Editing the httpd.conf File"

5.2.1 Specifying Server Properties Using Fusion Middleware Control
Server properties include items like the document root, the administrator’s e-mail
address, the directory index and operating system details. Follow these steps to specify
the server properties by using Fusion Middleware Control.

1. Select Administration from the Oracle HTTP Server menu.

2. Select Server Configuration from the Administration menu.

3. In the Server Configuration page, enter the server properties.

Specifying Server Properties

Working with Oracle HTTP Server 5-3

a. Enter the documentation root directory in the Document Root field that forms
the main document tree visible from the website.

b. Enter the e-mail address in the Administrator's E-mail field that the server
will include in error messages sent to the client.

c. Enter the directory index in the Directory Index field. The is the main (index)
page that will be displayed when a client first accesses the website.

d. Use the Modules region to enable or disable modules. The available modules
are mod_authnz_fcgi and mod_proxy_fcgi. See also Section 5.3.7, "About
Configuring mod_proxy_fcgi."

e. Create an alias, if necessary in the Aliases table. An alias maps to a specified
directory. For example, to use a specific set of content pages for a group you
can create an alias to the directory that has the content pages.

4. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

5. Restart Oracle HTTP Server as described in Section 4.3.5, "Restarting Oracle HTTP
Server Instances".

The server properties are saved, and shown on the Server Configuration page.

5.2.2 Specify Server Properties by Editing the httpd.conf File
You can specify server properties by manually editing the httpd.conf file. Follow these
steps to edit the httpd.conf file.

Note: Before attempting to edit any .conf file, you should
familiarize yourself with the layout of the configuration file
directories, mechanisms for editing the files, and learn more about the
files themselves. For this information, see Section 1.6, "Understanding
Configuration Files".

1. Open the httpd.conf file (the "master" or "staging" copy: $DOMAIN_
HOME/config/fmwconfig/components/OHS/ohs1/httpd.conf)by using either a
text editor or the Advanced Server Configuration page in Fusion Middleware
Control. (See Section 1.6.3, "Modifying an Oracle HTTP Server Configuration
File.")

2. In the DocumentRoot section of the file, enter the directory that stores the main
content for the website. The following is an example of the syntax:

DocumentRoot "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/htdocs"

3. In the ServerAdmin section of the file, enter the administrator's email address.
This is the e-mail address that will appear on client pages. The following is an
example of the syntax:

ServerAdmin WebMaster@example.com

4. In the DirectoryIndex section of the file, enter the directory index. This is the main
(index) page that will be displayed when a client first accesses the website. The
following is an example of the syntax:

DirectoryIndex index.html index.html.var

Configuring Oracle HTTP Server Instances

5-4 Oracle Fusion Middleware Administering Oracle HTTP Server

5. Create aliases, if needed. An alias maps to a specified directory. For example, to
use a specific set of icons, you can create an alias to the directory that has the icons
for the Web pages. The following is an example of the syntax:

Alias /icons/ "${PRODUCT_HOME}/icons/"

<Directory "${PRODUCT_HOME}/icons">
 Options Indexes MultiViews
 AllowOverride None
 Require all granted
</Directory>

6. Save the file.

7. Restart Oracle HTTP Server as described in Section 4.3.5, "Restarting Oracle HTTP
Server Instances".

5.3 Configuring Oracle HTTP Server Instances
This section describes some of the common Oracle HTTP Server instance configuration
procedures, such as secure sockets, MIME settings, Oracle WebLogic Server Proxy
Plug-In (mod_wl_ohs), mod_proxy_fcgi and others.

Note: This section does not include initial system configuration
information; for those configuration instructions, see Installing and
Configuring Oracle HTTP Server.

This section includes the following information:

■ Section 5.3.1, "Secure Sockets Layer Configuration"

■ Section 5.3.2, "Configuring Secure Sockets Layer in Standalone Mode"

■ Section 5.3.3, "Exporting the Keystore to an Oracle HTTP Server Instance Using
WLST"

■ Section 5.3.4, "Importing Wallets to the KSS Database after an Upgrade Using
WLST"

■ Section 5.3.5, "Associating Oracle HTTP Server Instances With a Keystore Using
WLST"

■ Section 5.3.6, "Configuring MIME Settings using Fusion Middleware Control"

■ Section 5.3.7, "About Configuring mod_proxy_fcgi"

■ Section 5.3.8, "About Configuring the Oracle WebLogic Server Proxy Plug-In
(mod_wl_ohs)"

■ Section 5.3.9, "Removing Access to Unneeded Content"

■ Section 5.3.10, "Using the apxs Command to Install Extension Modules"

■ Section 5.3.11, "Disabling the Options Method"

■ Section 5.3.12, "Updating Oracle HTTP Server Component Configurations on a
Shared Filesystem"

Note: Fusion Middleware Control and other Oracle software which
manage the Oracle HTTP Server configuration might save
configuration files in a different, equivalent format. After using the
software to make a configuration change, multiple configuration files
might be rewritten.

Configuring Oracle HTTP Server Instances

Working with Oracle HTTP Server 5-5

5.3.1 Secure Sockets Layer Configuration
Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed to
securely send messages across the Internet. It resides between Oracle HTTP Server on
the application layer and the TCP/IP layer, transparently handling encryption and
decryption when a secure connection is made by a client.

One common use of SSL is to secure Web HTTP communication between a browser
and a Web server. This case does not preclude the use of non-secured HTTP. The
secure version is simply HTTP over SSL (HTTPS). The differences are that HTTPS uses
the URL scheme https:// rather than http://. The default communication port is
4443 in Oracle HTTP Server. Oracle HTTP Server does not use the 443 standard
https:// privileged port because of security implications. For information about
running Oracle HTTP Server on privileged ports see Section 4.3.3.4, "Starting Oracle
HTTP Server Instances on a Privileged Port (UNIX Only)."

By default, an SSL listen port is configured and enabled using a default wallet during
installation. Wallets store your credentials, such as certificate requests, certificates, and
private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for
testing purposes only. A real wallet must be created for your production server. The
default wallet is located in the DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName/keystores/
default directory. You can either place the new wallet in this location, or change the
SSLWallet directive in DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/ssl.conf to point to
the location of your real wallet.

For the changes to take effect, restart Oracle HTTP Server, as described in Section 4.3.5,
"Restarting Oracle HTTP Server Instances".

For information about configuring wallets and SSL by using Fusion Middleware
Control, see "Enabling SSL for Oracle HTTP Server Virtual Hosts" in the Administering
Oracle Fusion Middleware.

5.3.2 Configuring Secure Sockets Layer in Standalone Mode
The following sections contain information about how to enable and configure SSL for
Oracle HTTP Server in standalone mode. These instructions use the mod_ossl module
to Oracle HTTP Server which enables the server to use SSL.

■ Section 5.3.2.1, "Configure SSL"

■ Section 5.3.2.2, "Specify SSLVerifyClient on the Server Side"

■ Section 5.3.2.3, "Enable SSL Between Oracle HTTP Server and Oracle WebLogic
Server"

5.3.2.1 Configure SSL
By default, SSL is enabled when you install Oracle HTTP Server. Perform these tasks
to modify and configure SSL:

Configuring Oracle HTTP Server Instances

5-6 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Section 5.3.2.1.1, "Task 1: Create a Real Wallet"

■ Section 5.3.2.1.2, "Task 2: (Optional) Customize Your Configuration"

■ Section 5.3.2.1.3, "Basic SSL Configuration Example"

5.3.2.1.1 Task 1: Create a Real Wallet To configure Oracle HTTP Server for SSL, you need
a wallet that contains the certificate for the server. Wallets store your credentials, such
as certificate requests, certificates, and private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for
testing purposes only. A real wallet must be created for your production server. The
default wallet is located in $ORACLE_
INSTANCE/config/fmwconfig/components/$COMPONENT_TYPE/instances/$COMPONENT_
NAME/keystores/default. You can either place the new wallet in that location, or
change the SSLWallet directive in $ORACLE_
INSTANCE/config/fmwconfig/components/$COMPONENT_TYPE/$COMPONENT_
NAME/ssl.conf (the pre-installation location) to point to the location of your real
wallet.

See Also: "orapki" in Administering Oracle Fusion Middleware for
instructions on creating a wallet. It is important that you do the
following:

Generate a certificate request: For the Common Name, specify the
name or alias of the site you are configuring. Make sure that you
enable this auto_login_only feature.

5.3.2.1.2 Task 2: (Optional) Customize Your Configuration Optionally, you can further
customize your configuration using mod_ossl directives.

See Also:

■ Section G.3, "mod_ossl Module" for a list and descriptions of
directives accepted by mod_ossl.

■ Section G.3.5, "SSLFIPS Directive" for information on how to
configure the SSLFIPS directive and a list of the cipher suites it
accepts.

Note: The files installed during configuration contain all of the
necessary SSL configuration directives and a default setup for SSL.

5.3.2.1.3 Basic SSL Configuration Example Your SSL configuration must contain, at
minimum, the directives in the following example.

LoadModule ossl_module "${PRODUCT_HOME}/modules/mod_ossl.so"
Listen 4443
ServerName www.testohs.com
SSLEngine on
SSL Protocol Support:
List the supported protocols.
SSLProtocol TLSv1.2 TLSv1.1 TLSv1
SSL Cipher Suite:
List the ciphers that the client is permitted to negotiate.
SSLCipherSuite SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA,SSL_RSA_WITH_
3DES_EDE_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_

Configuring Oracle HTTP Server Instances

Working with Oracle HTTP Server 5-7

TYPE}/instances/${COMPONENT_NAME}/keystores/default"
</VirtualHost>To enable client authentication, do the following:

5.3.2.2 Specify SSLVerifyClient on the Server Side
There are different ways of using the SSLVerifyClient directive to authenticate and
authorize access. Use the appropriate client certificate on your client side for the
HTTPS connection. See your client documentation for information on getting and
using a client certificate. Be sure that your client certificate is trusted by the server
wallet.

■ Section 5.3.2.2.1, "Forcing Clients to Authenticate Using Certificates"

■ Section 5.3.2.2.2, "Forcing a Client to Authenticate for a Particular URL"

■ Section 5.3.2.2.3, "Authorizing a Client for a Particular URL"

■ Section 5.3.2.2.4, "Allowing Clients with Strong Ciphers and CA Client Certificate
or Basic Authentication"

See Also: "Importing a Certificate or a Trusted Certificate Using
WLST" in Administering Oracle Fusion Middleware Guide for instructions
on how to import a trusted certificate into your wallet.

5.3.2.2.1 Forcing Clients to Authenticate Using Certificates You can force the client to
validate its client certificate and allow access to the server using SSLVerifyClient.
This scenario is valid for all clients having a client certificate supplied by the server
Certificate Authority (CA). The server can validate client's supplied certificates against
its CA for additional permission.

require a client certificate which has to be directly
signed by our CA certificate
SSLVerifyClient require
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"

5.3.2.2.2 Forcing a Client to Authenticate for a Particular URL To force a client to
authenticate using certificates for a particular URL, you can use the per-directory
reconfiguration features of mod_ossl. In this case, the SSLVerifyClient appears in a
Location block.

SSLVerifyClient none
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"
<Location /secure/area>
 SSLVerifyClient require
</Location>

5.3.2.2.3 Authorizing a Client for a Particular URL To authorize a client for a particular
URL, check that part of the client certificate matches what you expect. Usually, this
means checking all or part of the Distinguished Name (DN), to see if it contains some
known string. There are two ways to do this, using either mod_auth_basic or
SSLRequire.

The mod_auth_basic method is generally required when the certificates are completely
arbitrary, or when their DNs have no common fields (usually the organization, and so
on). In this case, you should establish a password database containing all of the clients
allowed, for example:

SSLVerifyClient none
<Directory /access/required>

Configuring Oracle HTTP Server Instances

5-8 Oracle Fusion Middleware Administering Oracle HTTP Server

 SSLVerifyClient require
 SSLOptions +FakeBasicAuth
 SSLRequireSSL
 AuthName "Oracle Auth"
 AuthType Basic
 AuthBasicProvider file
 AuthUserFile httpd.passwd
 Require valid-user
</Directory>

The password used in this example is the DES encrypted string password. For more
information on this directive, see Section G.3.8, "SSLOptions Directive" which
describes the SSLOptions directive of the mod_ossl module.

httpd.passwd

Subject: OU=Class 3 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US
Subject: CN=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutions\,
Inc.,O=GTE Corporation,C=US
Subject: CN=localhost,OU=FOR TESTING ONLY,O=FOR TESTING ONLY
Subject: OU=Class 2 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US
Subject: OU=Class 1 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US

When your clients are all part of a common hierarchy, which is encoded into the DN,
you can match them more easily using SSLRequire, for example:

SSLVerifyClient none
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"

<Directory /access/required>
 SSLVerifyClient require
 SSLOptions +FakeBasicAuth
 SSLRequireSSL
 SSLRequire %{SSL_CLIENT_S_DN_O} eq "VeriSign\, Inc." \
and %{SSL_CLIENT_S_DN_OU} in {"Class", "Public", "Primary"}
</Directory>

5.3.2.2.4 Allowing Clients with Strong Ciphers and CA Client Certificate or Basic Authentication
The following examples presume that clients on the Intranet have IPs in the range
192.168.1.0/24, and that the part of the Intranet website you want to allow Internet
access to is /access/required. This configuration should remain outside of your
HTTPS virtual host, so that it applies to both HTTPS and HTTP.

SSLWallet "$ORACLE_INSTANCE/config/fmwconfig/components/$COMPONENT_
TYPE/instances/$COMPONENT_NAME/keystores/default"
<Directory /access/required>
 # Outside the subarea only Intranet access is granted
 Require ip 192.168.1.0/24
</Directory>

<Directory /access/required>
 # Inside the subarea any Intranet access is allowed
 # but from the Internet only HTTPS + Strong-Cipher + Password
 # or the alternative HTTPS + Strong-Cipher + Client-Certificate

 # If HTTPS is used, make sure a strong cipher is used.
 # Additionally allow client certs as alternative to basic auth.

Configuring Oracle HTTP Server Instances

Working with Oracle HTTP Server 5-9

 SSLVerifyClient optional
 SSLOptions +FakeBasicAuth +StrictRequire
 SSLRequire %{SSL_CIPHER_USEKEYSIZE}>= 128
 # Force clients from the Internet to use HTTPS
 RewriteEngine on
 RewriteCond %{REMOTE_ADDR} !^192\.168\.1\.[0-9]+$
 RewriteCond %{HTTPS} !=on
 RewriteRule . - [F]
 # Allow Network Access and/or Basic Auth
 Satisfy any

 # Network Access Control
 Require ip 192.168.1.0/24
 # HTTP Basic Authentication
 AuthType basic
 AuthName "Protected Intranet Area"
 AuthBasicProvider file
 AuthUserFile htpasswd
 Require valid-user
</Directory>

5.3.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server
Use the Oracle WebLogic Server Proxy Plug-In to enable SSL between Oracle HTTP
Server and Oracle WebLogic Server. The plug-ins allow you to configure SSL libraries
and configure one-way and two-way SSL communications. For more information, see
"Use SSL with Plug-Ins" and "Parameters for Oracle WebLogic Server Proxy Plug-In"
in Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1.

5.3.3 Exporting the Keystore to an Oracle HTTP Server Instance Using WLST
Use the WLST custom command ohs_exportKeyStore to export the keystore to a
specified Oracle HTTP Server instance location. For more information on this
command, see Section A.3.5, "ohs_exportKeyStore."

Note: There are conventions governing keystore names. For more
information, see "Naming Conventions for Keystores."

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh

Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to the Administration Server instance:

connect('<userName', ’<password>’, ’<host>:<port>’)

3. Issue the ohs_exportKeyStore WLST custom command:

ohs_exportKeyStore(keyStoreName = '<keystore_name>', instanceName = '<name_of_
the_OHS_instance>')

For example, to export the ohs1_myKeystore keystore to the ohs1 Oracle HTTP
Server instance:

ohs_exportKeyStore(keyStoreName = 'ohs1_myKeystore', instanceName = 'ohs1')

Configuring Oracle HTTP Server Instances

5-10 Oracle Fusion Middleware Administering Oracle HTTP Server

5.3.4 Importing Wallets to the KSS Database after an Upgrade Using WLST
When you use Upgrade Assistant to upgrade from a previous version of Oracle HTTP
Server to release 12c (12.2.1), you must perform some additional wallet management.
Use the ohs_postUpgrade command to import the wallets for Oracle HTTP Server
instances to the KSS database.

This command will parse across all of the Oracle HTTP Server instances in the domain
and import the wallets to the KSS database if an entry does not already exist in the
database for the same keystore name. For more information on this command, see
Section A.3.6, "ohs_postUpgrade."

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh

Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to the Administration Server instance:

connect('<userName', ’<password>’, ’<host>:<port>’)

3. Issue the ohs_postUpgrade WLST custom command, for example:

ohs_postUpgrade()

5.3.5 Associating Oracle HTTP Server Instances With a Keystore Using WLST
After using the Configuration Wizard to create Oracle HTTP Server instances in
collocated mode, use the ohs_updateInstances WLST custom command to associate
the instances with a keystore.

This command will parse across all of the Oracle HTTP Server instances in the domain
and perform the following tasks:

■ Create a new keystore with the name <instanceName>_default if one does not
exist.

■ Put a demonstration certificate, demoCASignedCertificate, in the newly created
keystore.

■ Export the keystore to the instance location.

For more information on this command, see Section A.3.7, "ohs_updateInstances."

To associate Oracle HTTP Server instances with a keystore:

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh

Windows: $ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. Connect to the Administration Server instance:

connect('<userName', ’<password>’, ’<host>:<port>’)

3. Issue the ohs_updateInstances WLST custom command, for example:

ohs_updateInstances()

5.3.6 Configuring MIME Settings using Fusion Middleware Control
Oracle HTTP Server uses Multipurpose Internet Mail Extension (MIME) settings to
interpret file types, encodings, and languages. MIME settings for Oracle HTTP Server

Configuring Oracle HTTP Server Instances

Working with Oracle HTTP Server 5-11

can only be set using Fusion Middleware Control. You cannot use WLST commands to
specify the MIME settings.

The following tasks can be completed on the MIME Configuration page:

■ Section 5.3.6.1, "Configuring MIME Types"

■ Section 5.3.6.2, "Configuring MIME Encoding"

■ Section 5.3.6.3, "Configuring MIME Languages"

5.3.6.1 Configuring MIME Types
MIME type maps a given file extension to a specified content type. The MIME type is
used for filenames containing an extension.

To configure a MIME type using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Types region.

3. Click Add Row in MIME Configuration region. A new, blank row is added to the
list.

4. Enter the MIME type and its associated file extension.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server, as described in Section 4.3.5, "Restarting Oracle HTTP
Server Instances".

The MIME configuration is saved, and shown on the MIME Configuration page.

5.3.6.2 Configuring MIME Encoding
MIME encoding enables Oracle HTTP Server to determine the file type based on the
file extension. You can add and remove MIME encodings. The encoding directive
maps the file extension to a specified encoding type.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Encoding region.

Configuring Oracle HTTP Server Instances

5-12 Oracle Fusion Middleware Administering Oracle HTTP Server

3. Expand the MIME Encoding region, if necessary, by clicking the plus sign (+) next
to MIME Encoding.

4. Click Add Row in MIME Encoding region. A new, blank row is added to the list.

5. Enter the MIME encoding, such as x-gzip.

6. Enter the file extension, such as .gx.

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server as described in Section 4.3.5, "Restarting Oracle HTTP
Server Instances".

5.3.6.3 Configuring MIME Languages
The MIME language setting maps file extensions to a particular language. This
directive is commonly used for content negotiation, in which Oracle HTTP Server
returns the document that most closely matched the preferences set by the client.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Languages region.

3. Expand the MIME Languages region, if necessary, by clicking the plus sign (+)
next to MIME Languages.

4. Click Add Row in MIME Languages region. A new, blank row is added to the list.

5. Enter the MIME language, such as en-US.

6. Enter the file extension, such as en-us.

7. To choose a default MIME language, select the desired row, then click Set As
Default. The default language will appear in the Default MIME Language field.

Configuring Oracle HTTP Server Instances

Working with Oracle HTTP Server 5-13

8. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

9. Restart Oracle HTTP Server as described in Section 4.3.5, "Restarting Oracle HTTP
Server Instances".

5.3.7 About Configuring mod_proxy_fcgi
The mod_proxy_fcgi module does not have configuration directives. Instead, it uses
the directives set on the mod_proxy module. Unlike the mod_fcgid and mod_fastcgi
modules, the mod_proxy_fcgi module has no provision for starting the application
process. The purpose of mod_proxy_fcgi is to move this functionality outside of the
web server for faster performance. So, mod_proxy_fcgi simply will act as a reverse
proxy to an external FastCGI server.

For more information on configuring the mod_proxy_fcgi module, see Section B.3,
"Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI
Server" and Section B.4, "Task 4: Setup an External FastCGI Server."

5.3.8 About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
You can configure the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) either by
using Fusion Middleware Control or by manually editing the mod_wl_ohs.conf
configuration file.

For information about the prerequisites and procedure for configuring the Oracle
WebLogic Server Proxy Plug-In to proxy requests from Oracle HTTP Server to Oracle
WebLogic Server, see "Configuring the WebLogic Proxy Plug-In for Oracle HTTP
Server" in Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1.

5.3.8.1 Configuring SSL for mod_wl_ohs
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
the plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality
and integrity to the data passed between the plug-in and WebLogic Server. For more
information, see "Using SSL with Plug-Ins" in Using Oracle WebLogic Server Proxy
Plug-Ins 12.2.1.

5.3.9 Removing Access to Unneeded Content
By default, the httpd.conf file allows server access to extra content such as
documentation and sample scripts. This access might present a low-level security risk.
Starting with the Oracle HTTP Server 12c (12.2.1) release, some of these sections are
commented out.

You might want to tailor this extra content in your own environment to suit your use
cases. To access the httpd.conf file, see Section 5.1, "About Editing Configuration Files"
to access the file.

■ Section 5.3.9.1, "Edit the cgi-bin Section"

■ Section 5.3.9.2, "Edit the Fancy Indexing Section"

■ Section 5.3.9.3, "Edit the Product Documentation Section"

Configuring Oracle HTTP Server Instances

5-14 Oracle Fusion Middleware Administering Oracle HTTP Server

5.3.9.1 Edit the cgi-bin Section
Examine the contents of the cgi-bin directory. You can either remove the code from
the httpd.conf file that you do not need, or change the following Directory directive to
point to your own CGI script directory.

...

"${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/cgi-bin" should be changed to whatever your
ScriptAliased
CGI directory exists, if you have that configured.
#
<Directory "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/cgi-bin">
 AllowOverride None
 Options None
 Require all granted
</Directory>
...

5.3.9.2 Edit the Fancy Indexing Section
Edit the following sections pertaining to fancy indexing in the httpd.conf file for your
use cases.

...
Uncomment the following line to enable the fancy indexing configuration
below.
Define ENABLE_FANCYINDEXING
<IfDefine ENABLE_FANCYINDEXING>

IndexOptions: Controls the appearance of server-generated directory
listings.
#
IndexOptions FancyIndexing HTMLTable VersionSort

We include the /icons/ alias for FancyIndexed directory listings. If
you do not use FancyIndexing, you may comment this out.
#
Alias /icons/ "${PRODUCT_HOME}/icons/"

<Directory "${PRODUCT_HOME}/icons">
 Options Indexes MultiViews
 AllowOverride None
 Require all granted
</Directory>

#
AddIcon* directives tell the server which icon to show for different
files or filename extensions. These are only displayed for
FancyIndexed directories.
#
AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*
AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe
AddIcon /icons/binhex.gif .hqx

Configuring Oracle HTTP Server Instances

Working with Oracle HTTP Server 5-15

AddIcon /icons/tar.gif .tar
AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip
AddIcon /icons/a.gif .ps .ai .eps
AddIcon /icons/layout.gif .html .shtml .htm .pdf
AddIcon /icons/text.gif .txt
AddIcon /icons/c.gif .c
AddIcon /icons/p.gif .pl .py
AddIcon /icons/f.gif .for
AddIcon /icons/dvi.gif .dvi
AddIcon /icons/uuencoded.gif .uu
AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl
AddIcon /icons/tex.gif .tex
AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..
AddIcon /icons/hand.right.gif README
AddIcon /icons/folder.gif ^^DIRECTORY^^
AddIcon /icons/blank.gif ^^BLANKICON^^

#
DefaultIcon is which icon to show for files which do not have an icon
explicitly set.
#
DefaultIcon /icons/unknown.gif

#
AddDescription allows you to place a short description after a file in
server-generated indexes. These are only displayed for FancyIndexed
directories.
Format: AddDescription "description" filename
#
#AddDescription "GZIP compressed document" .gz
#AddDescription "tar archive" .tar
#AddDescription "GZIP compressed tar archive" .tgz
...

#
ReadmeName is the name of the README file the server will look for by
default, and append to directory listings.
#
HeaderName is the name of a file which should be prepended to
directory indexes.
ReadmeName README.html
HeaderName HEADER.html

#
IndexIgnore is a set of filenames which directory indexing should ignore
and not include in the listing. Shell-style wildcarding is permitted.
#
IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t
</IfDefine>

5.3.9.3 Edit the Product Documentation Section
Uncomment the Define MANUAL_ENABLE line to enable the manual configuration of
product documentation.

...
#

Configuring Oracle HTTP Server Instances

5-16 Oracle Fusion Middleware Administering Oracle HTTP Server

Uncomment the following line to enable the manual configuration below.
Define ENABLE_MANUAL
<IfDefine ENABLE_MANUAL>
AliasMatch ^/manual(?:/(?:de|en|es|fr|ja|ko|pt-br|ru|tr))?(/.*)?$ "${PRODUCT_
HOME}/manual$1"

<Directory "${PRODUCT_HOME}/manual">
 Options Indexes
 AllowOverride None
 Require all granted

 <Files *.html>
 SetHandler type-map
 </Files>
 # .tr is text/troff in mime.types!
 <Files *.html.tr.utf8>
 ForceType text/html
 </Files>

 SetEnvIf Request_URI ^/manual/(de|en|es|fr|ja|ko|pt-br|ru|tr)/
prefer-language=$1
 RedirectMatch 301 ^/manual(?:/(de|en|es|fr|ja|ko|pt-br|ru|tr)){2,}(/.*)?$
/manual/$1$2

 LanguagePriority en de es fr ja ko pt-br ru tr
 ForceLanguagePriority Prefer Fallback
</Directory>
</IfDefine>

5.3.10 Using the apxs Command to Install Extension Modules

Note: This command is only for UNIX and Linux and is necessary
only for modules which are supplied in source code form. Follow the
installation instructions for modules supplied in binary form.

For more information about the apxs command, see the Apache HTTP
Server documentation at:

http://httpd.apache.org/docs/2.4/programs/apxs.html

The Apache Extension Tool (apxs) can build and install Apache HTTP Server extension
modules for Oracle HTTP Server. apxs installs modules in the ORACLE_
HOME/ohs/modules directory for access by any Oracle HTTP Server instances which
run from this installation.

Note: Once any third-party module is created and loaded, it falls
under the third-party criteria specified in the Oracle HTTP Server
support policy. Before continuing with this procedure, you should be
aware of this policy. For more information, see Section 1.8, "Oracle
HTTP Server Support".

Recommended apxs options for use with Oracle HTTP Server are:

Option Purpose Example Command

-c Compile module source $ORACLE_HOME/ohs/bin/apxs -c mod_example.c

-i Install module binary into
ORACLE_HOME

$ORACLE_HOME/ohs/bin/apxs -ci mod_example.c

Configuring Oracle HTTP Server Instances

Working with Oracle HTTP Server 5-17

When the module binary has been installed into ORACLE_HOME, a LoadModule
directive in httpd.conf or other configuration file loads the module into the server
processes; for example:

LoadModule example_module "${ORACLE_HOME}/ohs/modules/mod_example.so"

The directive is required in the configurations for all instances which must load the
module.

When the -a or -A option is specified, apxs will edit httpd.conf to add a LoadModule
directive for the module. Do not use the -a and -A options with Oracle HTTP Server
instances that are part of a WebLogic Server Domain. Instead, use Fusion Middleware
Control to update the configuration, as described in Section 1.6.3, "Modifying an
Oracle HTTP Server Configuration File".

You can use the -a or -A option with Oracle HTTP Server instances that are part of a
standalone domain if the CONFIG_FILE_PATH environment variable is set to the
staging directory for the instance before invoking apxs; for example:

CONFIG_FILE_PATH=$ORACLE_HOME/user_projects/domains/base_
domain/config/fmwconfig/components/OHS/ohs1
export CONFIG_FILE_PATH
$ORACLE_HOME/ohs/bin/apxs -cia mod_example.c

By default, apxs uses the Perl interpreter in /usr/bin. If apxs cannot locate the product
install or encounters other operational errors when using /usr/bin/perl, use the Perl
interpreter within the Middleware home by invoking apxs as follows:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/ohs/bin/apxs -c mod_example.c

Modules often require directives besides LoadModule to properly function. After the
module has been installed and loaded using the LoadModule directive, refer to the
documentation for the module for any additional configuration requirements.

5.3.11 Disabling the Options Method
The Options method enables clients to determine which methods are supported by a
web server. If enabled, it appears in the Allow line of HTTP response headers.

For example, if you send a request such as:

---- Request -------
OPTIONS / HTTP/1.0
Content-Length: 0
Accept: */*
Accept-Language: en-US
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Win32)
Host: host123:80

you might get the following response from the web server:

---- Response --------
HTTP/1.1 200 OK
Date: Wed, 23 Apr 2008 20:20:49 GMT

Configuring Oracle HTTP Server Instances

5-18 Oracle Fusion Middleware Administering Oracle HTTP Server

Server: Oracle-Application-Server-11g/11.1.1.0.0 Oracle-HTTP-Server
Allow: GET,HEAD,POST,OPTIONS
Content-Length: 0
Connection: close
Content-Type: text/html

Some sources consider exposing the Options method a low security risk because
malicious clients could use it to determine the methods supported by a web server.
However, because web servers support only a limited number of methods, disabling
this method will just slow down malicious clients, not stop them. In addition, the
Options method may be used by legitimate clients.

If your Oracle Fusion Middleware environment does not have clients that require the
Options method, you can disable it by including the following lines in the httpd.conf
file:

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^OPTIONS
RewriteRule .* – [F]
</IfModule>

5.3.12 Updating Oracle HTTP Server Component Configurations on a Shared
Filesystem

You might encounter functional or performance issues when an Oracle HTTP Server
component is created on a shared filesystem, such as NFS (Network File System). In
particular, lock files or UNIX sockets used by Oracle HTTP Server might not work or
may have severe performance degradation; Oracle WebLogic Server requests routed
by mod_wl_ohs may have severe performance degradation due to filesystem accesses
in the default configuration.

Table 5–1 provides information about the Lock file issues and the suggested changes in
the httpd.conf file specific to the operating systems.

Table 5–1 Lock File issues

Operating System Description httpd.conf changes

Linux Lock files are not required. The
Sys V semaphore is the preferred
cross-process mutex
implementation.

Change Mutex fnctl:fileloc default
to Mutex sysvsem default where
fileloc is the value of the directive
Mutex (three places in httpd.conf).

Solaris Lock files are not required. The
cross-process pthread mutex is
the preferred cross-process
mutex implementation.

Change Mutex fnctl:fileloc default
to Mutex pthread default where
fileloc is the value of the directive
Mutex (three places in httpd.conf).

Other UNIX
platforms

Change the file location specified in
the Mutex directive to point to a local
file system (three places in httpd.conf).

UNIX socket issues mod_cgid is not enabled by
default. If enabled, use the
ScriptSock directive to place
mod_cgid's UNIX socket on a
local filesystem.

Configuring the mod_security Module

Working with Oracle HTTP Server 5-19

5.4 Configuring the mod_security Module
You can use the open-source mod_security module to detect and prevent intrusion
attacks against Oracle HTTP Server. For example, you can specify a mod_security rule
to screen all incoming requests and deny requests that match the conditions specified
in the rule. The mod_security module (version 2.8.0) and its prerequisites are included
in the Oracle HTTP Server installation as a shared object named mod_security2.so in
the ORACLE_HOME/ohs/modules directory.

This release of Oracle HTTP Server supports only mod_security (version 2.8.0)
directives, variables, action, phases and functions. It will not be supported if you replace
this module with a later version.

For more information, see:

http://www.modsecurity.org/documentation/

Section 5.4.3, "Sample mod_secuirity.conf File" provides a usable example of the mod_
security.conf file, including the LoadModule statement.

Notes: Be aware of the following:

■ mod_security was removed from earlier versions of Oracle HTTP
Server but was reintroduced in version 11.1.1.7. This version
follows the recommendations and practices prescribed for open
source mod_security 2.8.0. Only documentation applicable to
open source mod_security 2.8.0 is applicable to the Oracle HTTP
Server implementation of the module.

■ In Oracle HTTP Server 11.1.1.7 and later, mod_security is not
loaded or configured by default; however, if you have an
installation patched from 11.1.1.6, implementing the patch might
have already loaded and configured the module.

■ Oracle only supports the Oracle-supplied version of mod_security.
Newer versions from modsecurity.org will not be supported.

The mod_security configuration can be added to the httpd.conf configuration file, or it
can appear in a separate mod_security.conf configuration file.

This section contains the following information:

■ Section 5.4.1, "Configuring mod_security in the httpd.conf File"

■ Section 5.4.2, "Configuring mod_security in a mod_security.conf File"

■ Section 5.4.3, "Sample mod_secuirity.conf File"

5.4.1 Configuring mod_security in the httpd.conf File
You can configure the mod_security module by entering mod_security directives in
the httpd.conf file in an IfModule container. To make the mod_security module
available when Oracle HTTP Server is running, ensure that the mod_security
configuration begins with the following lines:

...
#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"
...

Configuring the mod_security Module

5-20 Oracle Fusion Middleware Administering Oracle HTTP Server

5.4.2 Configuring mod_security in a mod_security.conf File
You can specify the mod_security directives in a separate mod_security.conf file and
include that file in the httpd.conf file by using the Include directive.

1. You must create the mod_security.conf file yourself, preferably by using the
template in Section 5.4.3, "Sample mod_secuirity.conf File".

Copy and paste the sample into a text editor, then edit it for your system.

2. To make the mod_security module available when Oracle HTTP Server is running,
ensure that mod_security.conf begins with the following lines:

#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"

3. Save the file with the name "mod_security.conf" and include it in your httpd.conf
file by using the Include directive.

If you implement mod_security.conf file as described, it will use the LoadModule
directive to load mod_security2.so into the run time environment.

5.4.3 Sample mod_secuirity.conf File
The following code illustrates a sample mod_security.conf configuration file.

Example 5–1 mod_security.conf Sample

#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"
-- Rule engine initialization --

Enable ModSecurity, attaching it to every transaction. Use detection
only to start with, because that minimises the chances of post-installation
disruption.
#
SecRuleEngine DetectionOnly

-- Request body handling ---

Allow ModSecurity to access request bodies. If you don't, ModSecurity
won't be able to see any POST parameters, which opens a large security
hole for attackers to exploit.
#
SecRequestBodyAccess On

Enable XML request body parser.
Initiate XML Processor in case of xml content-type
#
SecRule REQUEST_HEADERS:Content-Type "text/xml"
"id:'200000',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XML"

Maximum request body size we will accept for buffering. If you support
file uploads then the value given on the first line has to be as large
as the largest file you are willing to accept. The second value refers
to the size of data, with files excluded. You want to keep that value as
low as practical.
#
SecRequestBodyLimit 13107200
SecRequestBodyNoFilesLimit 131072

Configuring the mod_security Module

Working with Oracle HTTP Server 5-21

Store up to 128 KB of request body data in memory. When the multipart
parser reachers this limit, it will start using your hard disk for
storage. That is slow, but unavoidable.
#
SecRequestBodyInMemoryLimit 131072

What do do if the request body size is above our configured limit.
Keep in mind that this setting will automatically be set to ProcessPartial
when SecRuleEngine is set to DetectionOnly mode in order to minimize
disruptions when initially deploying ModSecurity.
#
SecRequestBodyLimitAction Reject

Verify that we've correctly processed the request body.
As a rule of thumb, when failing to process a request body
you should reject the request (when deployed in blocking mode)
or log a high-severity alert (when deployed in detection-only mode).
#
SecRule REQBODY_ERROR "!@eq 0" \
"id:'200001', phase:2,t:none,log,deny,status:400,msg:'Failed to parse request
 body.',logdata:'%{reqbody_error_msg}',severity:2"

By default be strict with what we accept in the multipart/form-data
request body. If the rule below proves to be too strict for your
environment consider changing it to detection-only. You are encouraged
not to remove it altogether.
#
SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"id:'200002',phase:2,t:none,log,deny,status:44, \
msg:'Multipart request body failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \
DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \
SM %{MULTIPART_MISSING_SEMICOLON}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IP %{MULTIPART_INVALID_PART}, \
IH %{MULTIPART_INVALID_HEADER_FOLDING}, \
FL %{MULTIPART_FILE_LIMIT_EXCEEDED}'"

Did we see anything that might be a boundary?
#
SecRule MULTIPART_UNMATCHED_BOUNDARY "!@eq 0" \
"id:'200003',phase:2,t:none,log,deny,status:44,msg:'Multipart parser detected a possible unmatched
boundary.'"

PCRE Tuning
We want to avoid a potential RegEx DoS condition
#
SecPcreMatchLimit 1000
SecPcreMatchLimitRecursion 1000

Some internal errors will set flags in TX and we will need to look for these.
All of these are prefixed with "MSC_". The following flags currently exist:
#
MSC_PCRE_LIMITS_EXCEEDED: PCRE match limits were exceeded.

Configuring the mod_security Module

5-22 Oracle Fusion Middleware Administering Oracle HTTP Server

#
SecRule TX:/^MSC_/ "!@streq 0" \
 "id:'200004',phase:2,t:none,deny,msg:'ModSecurity internal error flagged: %{MATCHED_VAR_
NAME}'"

-- Response body handling --

Allow ModSecurity to access response bodies.
You should have this directive enabled in order to identify errors
and data leakage issues.

Do keep in mind that enabling this directive does increases both
memory consumption and response latency.
#
SecResponseBodyAccess On

Which response MIME types do you want to inspect? You should adjust the
configuration below to catch documents but avoid static files
(e.g., images and archives).
#
SecResponseBodyMimeType text/plain text/html text/xml

Buffer response bodies of up to 512 KB in length.
SecResponseBodyLimit 524288

What happens when we encounter a response body larger than the configured
limit? By default, we process what we have and let the rest through.
That's somewhat less secure, but does not break any legitimate pages.
#
SecResponseBodyLimitAction ProcessPartial

-- Filesystem configuration --

The location where ModSecurity stores temporary files (for example, when
it needs to handle a file upload that is larger than the configured limit).

This default setting is chosen due to all systems have /tmp available however,
this is less than ideal. It is recommended that you specify a location that's private.
#
SecTmpDir /tmp/

The location where ModSecurity will keep its persistent data. This default setting
is chosen due to all systems have /tmp available however, it
too should be updated to a place that other users can't access.
#
SecDataDir /tmp/

-- File uploads handling configuration -------------------------------------

The location where ModSecurity stores intercepted uploaded files. This
location must be private to ModSecurity. You don't want other users on
the server to access the files, do you?
#
#SecUploadDir /opt/modsecurity/var/upload/

By default, only keep the files that were determined to be unusual
in some way (by an external inspection script). For this to work you
will also need at least one file inspection rule.
#
#SecUploadKeepFiles RelevantOnly

Configuring the mod_security Module

Working with Oracle HTTP Server 5-23

Uploaded files are by default created with permissions that do not allow
any other user to access them. You may need to relax that if you want to
interface ModSecurity to an external program (e.g., an anti-virus).
#
#SecUploadFileMode 0600

-- Debug log configuration ---

The default debug log configuration is to duplicate the error, warning
and notice messages from the error log.
#
#SecDebugLog /opt/modsecurity/var/log/debug.log
#SecDebugLogLevel 3

-- Audit log configuration ---

Log the transactions that are marked by a rule, as well as those that
trigger a server error (determined by a 5xx or 4xx, excluding 404,
level response status codes).
#
SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus "^(?:5|4(?!04))"

Log everything we know about a transaction.
SecAuditLogParts ABIJDEFHZ

Use a single file for logging. This is much easier to look at, but
assumes that you will use the audit log only ocassionally.
#
SecAuditLogType Serial
SecAuditLog "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/modsec_audit.log"

Specify the path for concurrent audit logging.
SecAuditLogStorageDir "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs"
#Simple test
SecRule ARGS "\.\./" "t:normalisePathWin,id:99999,severity:4,msg:'Drive Access'"

-- Miscellaneous ---

Use the most commonly used application/x-www-form-urlencoded parameter
separator. There's probably only one application somewhere that uses
something else so don't expect to change this value.
#
SecArgumentSeparator &

Settle on version 0 (zero) cookies, as that is what most applications
use. Using an incorrect cookie version may open your installation to
evasion attacks (against the rules that examine named cookies).
#
SecCookieFormat 0

Specify your Unicode Code Point.
This mapping is used by the t:urlDecodeUni transformation function
to properly map encoded data to your language. Properly setting
these directives helps to reduce false positives and negatives.
#
#SecUnicodeCodePage 20127

Configuring the mod_security Module

5-24 Oracle Fusion Middleware Administering Oracle HTTP Server

#SecUnicodeMapFile unicode.mapping

6

Managing and Monitoring Server Processes 6-1

6Managing and Monitoring Server Processes

[7] This chapter describes how to manage and monitor Oracle HTTP Server. It discusses
the procedures and tools to manage the server in your environment.

This chapter includes the following sections:

■ Section 6.1, "Oracle HTTP Server Processing Model"

■ Section 6.2, "Monitoring Server Performance"

■ Section 6.3, "Oracle HTTP Server Performance Directives"

■ Section 6.4, "Understanding Process Security for UNIX"

6.1 Oracle HTTP Server Processing Model
The following sections describe the processing models for Oracle HTTP Server.

■ Section 6.1.1, "Request Process Model"

■ Section 6.1.2, "Single Unit Process Model"

6.1.1 Request Process Model
After Oracle HTTP Server is started, it is ready to listen for and respond to HTTP(S)
requests. The request processing model on Microsoft Windows systems differs from
that on UNIX systems.

■ On Microsoft Windows, there is a single parent process and a single child process.
The child process creates threads that are responsible for handling client requests.
The number of created threads is static and can be configured for performance.

■ On UNIX, there is a single parent process that manages multiple child processes.
The child processes are responsible for handling requests. The parent process
brings up additional child processes as necessary, based on configuration.
Although the server can dynamically start additional child processes, it is best to
configure the server to start enough child processes initially so that requests can be
handled without having to spawn more child processes.

6.1.2 Single Unit Process Model
Oracle HTTP Server provides functionality that allows it to terminate as a single unit if
the parent process fails. The parent process is responsible for starting and stopping all
the child processes for an Oracle HTTP Server instance. The failure of the parent
process without first shutting down the child processes leaves Oracle HTTP Server in
an inconsistent state that can only be fixed by manually shutting down all the
orphaned child processes. Until all the child processes are closed, a new Oracle HTTP

Monitoring Server Performance

6-2 Oracle Fusion Middleware Administering Oracle HTTP Server

Server instance cannot be started because the orphaned child processes still occupy the
ports the new Oracle HTTP Server instance needs to access.

To prevent this from occurring, the DMS instrumentation layer in child processes on
UNIX and monitor functionality within WinNT MPM on Windows monitor the parent
process. If they detect that the parent process has failed, then all of the remaining child
processes are shut down.

6.2 Monitoring Server Performance
Oracle Fusion Middleware automatically and continuously measures run-time
performance for Oracle HTTP Server and for the Oracle WebLogic Server Proxy
Plug-In module. The performance metrics are automatically enabled; you do not need
to set options or perform any extra configuration to collect them. If you encounter a
problem, such as an application that is running slowly or is hanging, you can view
particular metrics to find out more information about the problem.

Fusion Middleware Control provides real-time data. If you are interested in viewing
historical data, consider using Cloud Control.

This section contains the following information:

■ Section 6.2.1, "Oracle HTTP Server Performance Metrics"

■ Section 6.2.2, "Viewing Performance Metrics"

6.2.1 Oracle HTTP Server Performance Metrics
This section lists commonly-used metrics that can help you analyze Oracle HTTP
Server performance.

OHS Server Metrics
The OHS Server Metrics folder contains performance metric options for Oracle HTTP
Server. The following table describes the metrics in the OHS Server Metrics folder:

Element Description

CPU Usage CPU usage and idle times

Memory Usage Memory usage and free memory, in MB

Processes Busy and idle process metrics

Request Throughput Request throughput, as measured by requests per second

Request Processing Time Request processing time, in seconds

Response Data Throughput Response data throughput, in KB per second

Response Data Processed Response data processed, in KB per response

Active HTTP Connections Number of active HTTP connections

Connection Duration Length of time for connections

HTTP Errors Number of HTTP 4xx and 5xx errors

OHS Virtual Host Metrics
The OHS Virtual Host Metrics folder contains performance metric options for virtual
hosts, also known as access points. The following table describes the metrics in the
OHS Virtual Host Metrics folder:

Element Description

Request Throughput for a
Virtual Host

Number of requests per second for each virtual host

Request Processing Time for
a Virtual Host

Time to process each request for each virtual host

Response Data Throughput
for a Virtual Host

Amount of data being sent for each virtual host

Response Data Processed
for a Virtual Host

Amount of data being processed for each virtual host

Monitoring Server Performance

Managing and Monitoring Server Processes 6-3

OHS Module Metrics
The OHS Module Metrics folder contains performance metric option for modules. The
following table describes the metrics in the OHS Module Metrics folder.

Element Description

Request Handling
Throughput

Request handling throughput for a module, in requests per
second

Request Handling Time Request handling time for a module, in seconds

Module Metrics Modules including active requests, throughput, and time for
each module

6.2.2 Viewing Performance Metrics
You can view Oracle HTTP Server and Oracle WebLogic Server Proxy Plug-In module
performance metrics by using the procedures described in the following sections:

■ Section 6.2.2.1, "Viewing Server Metrics Using Fusion Middleware Control"

■ Section 6.2.2.2, "Viewing Server Metrics Using WLST"

6.2.2.1 Viewing Server Metrics Using Fusion Middleware Control
You can view metrics from the Oracle HTTP Server home menu of Fusion Middleware
Control:

1. Select the Oracle HTTP Server that you want to monitor.

2. From the Oracle HTTP Server menu on the Oracle HTTP Server home page,
choose Monitoring, and then select Performance Summary.

The Performance Summary page is displayed. It shows performance metrics and
information about response time and request processing time for the Oracle HTTP
Server instance.

3. To see additional metrics, click Show Metric Palette and expand the metric
categories.

Tip: Oracle HTTP Server port usage information is also available
from the Oracle HTTP Server home menu.

The following figure shows the Oracle HTTP Server Performance Summary page
with the Metric Palette displayed:

Monitoring Server Performance

6-4 Oracle Fusion Middleware Administering Oracle HTTP Server

4. Select additional metrics to add them to the Performance Summary.

6.2.2.2 Viewing Server Metrics Using WLST
To obtain and view metrics for an instance from the command line, you must connect
to, and issue the appropriate WLST command. These commands allow you to perform
any of these functions:

■ Display Metric Table Names

■ Display metric tables

■ Dump metrics

Note: For more information on using WLST, see Understanding the
WebLogic Scripting Tool.

Before attempting this procedure:
Before attempting to access server metrics from the command line, ensure the
following:

■ The domain exists and the instance for which you want to see metrics exists.

■ The instance is running.

■ The Node Manager is running on the instance machine.

The Administration server can be running, but this is not required.

To view metrics using WLST:

Note: In both managed and standalone domain types, the following
procedure will work whether you run the commands from the same
machine or from a machine that is remote to the server.

1. Launch WLST:

Oracle HTTP Server Performance Directives

Managing and Monitoring Server Processes 6-5

On Linux or UNIX:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

On Windows:

$ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. From the selected domain directory (for example, ORACLE_HOME/user_
projects/domains/domainName), connect to the instance:

nmConnect('username', 'password', nm_host, nm_port, domainName)

3. Enter one of the following WLST commands, depending on what task you want to
accomplish:

■ displayMetricTableNames(servers=['serverName'], servertype='serverType')

■ displayMetricTables(servers=['serverName'],
servertype='serverType')

■ dumpMetrics(servers=['serverName'], servertype='serverType')

For example:

displayMetricTableNames(servers=['ohs1'], servertype='OHS')
displayMetricTables(servers=['ohs1'], servertype='OHS')
dumpMetrics(servers=['ohs1'], servertype='OHS')

6.3 Oracle HTTP Server Performance Directives
The following sections describe the Oracle HTTP Server performance directives.

■ Section 6.3.1, "Understanding Performance Directives"

■ Section 6.3.2, "Configuring Performance Directives Using Fusion Middleware
Control"

6.3.1 Understanding Performance Directives
Oracle HTTP Server uses directives declared in httpd.conf and other configuration
files. This configuration file specifies the maximum number of HTTP requests that can
be processed simultaneously, logging details, and certain limits and timeouts. Oracle
HTTP Server supports and ships with the following Multi-Processing Modules
(MPMs) which are responsible for binding to network ports on the machine, accepting
requests, and dispatching children to handle the requests:

■ Worker: This is the default MPM for Oracle HTTP Server in UNIX (non-Linux)
environments. This MPM implements a hybrid multi-process multi-threaded
server. By using threads to serve requests, it can serve many requests with fewer
system resources than a process-based server. However, it retains much of the
stability of a process-based server by keeping multiple processes available, each
with many threads. If you are using Worker MPM, then you must configure the
mod_cgid module for your CGI applications instead of the mod_cgi module. For
more information, see the following URL:

http://httpd.apache.org/docs/2.4/mod/mod_cgid.html

■ WinNT: This is the default MPM for Oracle HTTP Server on Windows platforms. It
uses a single control process which launches a single child process which in turn
creates threads to handle requests.

Oracle HTTP Server Performance Directives

6-6 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Prefork: This MPM implements a non-threaded, pre-forking server that handles
requests in a manner similar to Apache 1.3. It is appropriate for sites that need to
avoid threading for compatibility with non-thread-safe libraries. It is also the best
MPM for isolating each request, so that a problem with a single request will not
affect any other. If you are going to implement a CGI module with this MPM, use
only mod_fastcgi.

■ Event: This is the default MPM for Oracle HTTP Server in Linux environments.
This MPM is designed to allow more requests to be served simultaneously by
passing off some processing work to supporting threads, freeing up the main
threads to work on new requests. It is based on the Worker MPM, which
implements a hybrid multi-process multi-threaded server. Run-time configuration
directives are identical to those provided by Worker.

The following sections describe how to change the MPM type value for an Oracle
HTTP Server instance in a standalone and an Oracle WebLogic Server domain

■ Section 6.3.1.1, "Changing the MPM Type Value in a Standalone Domain"

■ Section 6.3.1.2, "Changing the MPM Type Value in a WebLogic Server Managed
Domain"

6.3.1.1 Changing the MPM Type Value in a Standalone Domain
To change the MPM type value for an Oracle HTTP Server instance in a standalone
domain, follow these steps:

1. Navigate to the ohs.plugins.nodemanager.properties file at the following
location: ${ORACLE_INSTANCE}/config/fmwconfig/components/OHS/${COMPONENT_
NAME}.

2. Edit the ohs.plugins.nodemanager.properties file to make the following
changes.

Look for the key mpm in an uncommented line.

■ If you find the key in an uncommented line, then replace the existing value of
mpm with the value you want to set for MPM.

■ If you do not find it in an uncommented line, then add a new line to the file
using the following format:

mpm = mpm_value

where mpm_value is the value you want to set as MPM.

3. Start or re-start the Oracle HTTP Server instance.

6.3.1.2 Changing the MPM Type Value in a WebLogic Server Managed Domain
To change the MPM type value for an Oracle HTTP Server instance in an Oracle
WebLogic Server domain, follow these steps.

Note: The following steps assume that the Administration Server
and the Node Manager for the domain are already up and running.

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/oracle_common/common/bin/wlst.sh

2. Connect to the Administration Server instance:

Oracle HTTP Server Performance Directives

Managing and Monitoring Server Processes 6-7

connect('<userName', ’<password>’, ’<host>:<port>’)

3. Navigate to the Mbean containing the MPM type value key.

You can use the editCustom() command only when WLST is connected to the
Administration Server. Use cd to navigate the hierarchy of management objects.
This example assumes that Oracle HTTP Server instance with name 'ohs1'.

editCustom()
cd('oracle.ohs')
cd('oracle.ohs:type=OHSInstance.NMProp,OHSInstance=ohs1,component=OHS')

4. Set the MPM type value key.

Start an edit session and set the MPM type value key Mpm to the type value. In this
example the type value is set to event.

startEdit()
set('Mpm','event')
save()
activate()

6.3.2 Configuring Performance Directives Using Fusion Middleware Control
The discussion and recommendations in this section are based on the use of Worker,
Event, or WinNT MPM, which uses threads. The thread-related directives listed below
are not applicable if you are using the Prefork MPM.

Use the Performance Directives page of Fusion Middleware Control, illustrated in the
following figure, to tune performance-related directives for Oracle HTTP Server.

Performance directives management consists of these areas: request, connection, and
process configuration. The following sections describe how to set these configurations.

Oracle HTTP Server Performance Directives

6-8 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Section 6.3.2.1, "Setting the Request Configuration Using Fusion Middleware
Control"

■ Section 6.3.2.2, "Setting the Connection Configuration Using Fusion Middleware
Control"

■ Section 6.3.2.3, "Setting the Process Configuration Using Fusion Middleware
Control"

6.3.2.1 Setting the Request Configuration Using Fusion Middleware Control
To specify the Oracle HTTP Server request configuration using Fusion Middleware
Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum number of requests in the Maximum Requests field
(MaxRequestWorkers directive).

This setting limits the number of requests that can be dealt with simultaneously.
The default value is 400. This is applicable for all Linux/UNIX platforms.

4. Set the maximum requests per child process in the Maximum Request per Child
Process field (MaxConnectionsPerChild directive).

You can choose to have no limit, or a maximum number. If you choose to have a
limit, enter the maximum number in the field.

5. Enter the request timeout value in the Request Timeout (seconds) field (Timeout
directive).

This value sets the maximum time, in seconds, Oracle HTTP Server waits to
receive a GET request, the amount of time between receipt of TCP packets on a
POST or PUT request, and the amount of time between ACKs on transmissions of
TCP packets in responses.

6. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

7. Restart Oracle HTTP Server. For more information, see Section 4.3.5, "Restarting
Oracle HTTP Server Instances."

The request configuration settings are saved, and shown on the Performance
Directives page.

6.3.2.2 Setting the Connection Configuration Using Fusion Middleware Control
To specify the connection configuration using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum connection queue length in the Maximum Connection Queue
Length field (ListenBacklog directive).

This is the queue for pending connections. This is useful if the server is
experiencing a TCP SYN overload, which causes numerous new connections to
open up, but without completing the pending task.

Oracle HTTP Server Performance Directives

Managing and Monitoring Server Processes 6-9

4. Set the Multiple Requests per Connection field (KeepAlive directive) to indicate
whether to allow multiple connections. If you choose to allow multiple
connections, enter the number of seconds for timeout in the Allow With
Connection Timeout field.

The Allow With Connection Timeout value sets the number of seconds the server
waits for a subsequent request before closing the connection. Once a request has
been received, the specified value applies. The default is 5 seconds.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server. For more information, see Section 4.3.5, "Restarting
Oracle HTTP Server Instances."

The connection configuration settings are saved, and shown on the Performance
Directives page.

6.3.2.3 Setting the Process Configuration Using Fusion Middleware Control
The child process and configuration settings impact the ability of the server to process
requests. You might need to modify the settings as the number of requests increase or
decrease to maintain a well-performing server.

For UNIX, the default number of child server processes is 3. For Microsoft Windows,
the default number of threads to handle requests is 150.

To specify the process configuration using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the number for the initial child server processes in the Initial Child Server
Processes field (StartServers directive).

This is the number of child server processes created when Oracle HTTP Server is
started. The default is 3. This is for UNIX only.

4. Enter the number for the maximum idle threads in the Maximum Idle Threads
field (MaxSpareThreads directive).

An idle thread is a process that is running, but not handling a request.

5. Enter the number for the minimum idle threads in the Minimum Idle Threads
field (MinSpareThreads directive).

6. Enter the number for the threads per child server process in the Threads per Child
Server Process field (ThreadsPerChild directive).

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server. For more information, see Section 4.3.5, "Restarting
Oracle HTTP Server Instances."

The process configuration settings are saved, and shown on the Performance
Directives page.

Understanding Process Security for UNIX

6-10 Oracle Fusion Middleware Administering Oracle HTTP Server

6.4 Understanding Process Security for UNIX
By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved
range (typically less than 1024). To enable Oracle HTTP Server to listen on ports in the
reserved range (for example, port 80 and port 443) on UNIX, see Section 4.3.3.4,
"Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)."

7

Managing Connectivity 7-1

7Managing Connectivity

[8] This chapter describes how to manage Oracle HTTP Server connectivity. It includes
procedures for viewing port number usage, managing ports, and configuring virtual
hosts.

This chapter includes the following sections:

■ Section 7.1, "Default Listen Ports"

■ Section 7.2, "Defining the Admin Port"

■ Section 7.3, "Viewing Port Number Usage"

■ Section 7.4, "Managing Ports"

■ Section 7.5, "Configuring Virtual Hosts"

7.1 Default Listen Ports
Automatic port assignment occurs only if you use ohs_createInstance() or Fusion
Middleware Control. The default, non-SSL port is 7777. If port 7777 is occupied, the
next available port number, within a range of 7777-65535, is assigned. The default SSL
port is 4443. Similarly, if port 4443 is occupied, the next available port number, within
a range of 4443-65535, is assigned.

If you create instances using Configuration Wizard, then you must perform your own
port management. The Configuration Wizard has no automatic port assignment
capabilities.

For information about specifying ports when creating a new Oracle HTTP Server
component, see Section 4.2, "Creating an OHS Instance".

7.2 Defining the Admin Port
Automatic Admin port assignment occurs only if you use ohs_createInstance() or
Fusion Middleware Control. The Admin port is used internally by Oracle HTTP Server
to communicate with Node Manager. This port is configured in the admin.conf file.

If you create instances using Configuration Wizard, then you must perform your own
Admin port management. The Configuration Wizard has no automatic port
assignment capabilities.

If for any reason you need to use the default port for another purpose, you can
reconfigure the Admin port by using the Configuration Wizard to update the domain
and manually reset ports there.

Viewing Port Number Usage

7-2 Oracle Fusion Middleware Administering Oracle HTTP Server

7.3 Viewing Port Number Usage
This section describes how to view ports using Fusion Middleware Control or WLST.

■ Section 7.3.1, "Viewing Port Number Usage Using Fusion Middleware Control"

■ Section 7.3.2, "Viewing Port Number Usage Using WLST"

7.3.1 Viewing Port Number Usage Using Fusion Middleware Control
You can view how ports are assigned on the Fusion Middleware Control Port Usage
detail page. To view the port number usage using Fusion Middleware Control, do the
following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Port Usage from the Oracle HTTP Server menu.

The Port Usage detail page shows the component, the ports that are in use, the IP
address the ports are bound to, and the protocol being used, as illustrated in the
following figure:

7.3.2 Viewing Port Number Usage Using WLST
If you are using Oracle HTTP Server in collocated mode, then you can use WLST
commands to view the port number information on a given instance.

1. Launch WLST:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

2. Connect to the AdminServer.

3. Use the editCustom() command to navigate to the root of the oracle.ohs MBean.
You can use the editCustom() command only when WLST is connected to the
Administration Server. Use cd to navigate the hierarchy of management objects,
then get() to get the value of the Ports parameter:

editCustom()
cd('oracle.ohs')
cd('oracle.ohs:type=OHSInstance,name=ohs1')
get('Ports')

WLST will return a value similar to the following:

array(java.lang.String,['7777', '4443', '127.0.0.1:9999'])

Tip: You can also cd into the directory of the master copy of the OHS
config files and do a grep for the Listen directives.

Managing Ports

Managing Connectivity 7-3

7.4 Managing Ports
The ports used by Oracle HTTP Server can be set during and after installation. In
addition, you can change the port numbers, as needed. This section describes how to
create, edit, and delete ports using Fusion Middleware Control.

Caution: The Oracle HTTP Server administration virtual host and its
configuration, defined in the admin.conf file, must not be edited with
the WebLogic Scripting Tool (WLST).

See Also: "Changing the Oracle HTTP Server Listen Ports" in the
Administering Oracle Fusion Middleware.

■ Creating Ports Using Fusion Middleware Control

■ Editing Ports Using Fusion Middleware Control

Note: When deleting a port, if there is a virtual host configured to
use the port you want to delete, you must first delete that virtual host
before deleting the port.

7.4.1 Creating Ports Using Fusion Middleware Control
You create a port for an Oracle HTTP Server endpoint on the Fusion Middleware
Control Create port page. To create ports using Fusion Middleware Control, do the
following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

4. Click Create.

Managing Ports

7-4 Oracle Fusion Middleware Administering Oracle HTTP Server

5. Use the IP Address menu to select an IP address for the new port. Ports can listen
on a local IP Address of an associated host or on any available network interfaces.

You can configure SSL for a port on the Virtual Hosts page, as described in
Section 7.5.2, "Configuring Virtual Hosts Using Fusion Middleware Control".

6. In Port, enter the port number.

7. Click OK.

8. Restart Oracle HTTP Server. For more information, see Section 4.3.5, "Restarting
Oracle HTTP Server Instances."

Note: If you change the port or make other changes that affect the
URL, such as changing the host name, enabling or disabling SSL, you
need to re-register partner applications with the SSO server using the
new URL. For more information, see "Registering Oracle HTTP Server
mod_osso with OSSO Server 10.1.4" in Securing Applications with
Oracle Platform Security Services.

7.4.2 Editing Ports Using Fusion Middleware Control
You can edit the values for existing ports on the Fusion Middleware Control Edit Port
page. To edit the ports using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

4. Select the port for which you want to change the port number.

The Admin port cannot be edited by using Fusion Middleware Control. Although
this is a port Oracle HTTP Server uses for its internal communication with the
Node Manager, in most of the cases it does not need to be changed. If you really
want to change it, manually edit the DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/admin.conf file.

5. Click Edit.

Configuring Virtual Hosts

Managing Connectivity 7-5

6. Edit the IP Address and/or Port number for the port.

You can be configure SSL for a port on the Virtual Hosts page, as described in
Section 7.5.2, "Configuring Virtual Hosts Using Fusion Middleware Control".

7. Click OK.

8. Restart Oracle HTTP Server. For more information, see Section 4.3.5, "Restarting
Oracle HTTP Server Instances."

Note: If you change the port or make other changes that affect the
URL, such as changing the host name, enabling or disabling SSL, you
need to re-register partner applications with the SSO server using the
new URL.

7.4.3 Disabling a Listening Port in a Standalone Environment
While you can use Fusion Middleware Control to disable a listen port in a WebLogic
Server environment, to do so in a standalone environment, you must directly update
staging configuration file by commenting-out the line where port is exposed; for
example:

#Listen slc01qtd.us.myCo.com:7777

Note: Before attempting to edit any .conf file, you should familiarize
yourself with the layout of the configuration file directories,
mechanisms for editing the files, and learn more about the files
themselves. For this information, see Section 1.6, "Understanding
Configuration Files".

7.5 Configuring Virtual Hosts
You can create virtual hosts to run more than one website (such as www.company1.com
and www.company2.com) on a single machine. Virtual hosts can be IP-based, meaning
that you have a different IP address for every website, or name-based, meaning that you
have multiple names running on each IP address. The fact that they run on the same
physical server is not apparent to the end user.

Caution: The Oracle HTTP Server administration virtual host and its
configuration, defined in the admin.conf file, must not be edited with
the WebLogic Scripting Tool (WLST).

Configuring Virtual Hosts

7-6 Oracle Fusion Middleware Administering Oracle HTTP Server

The current release of Oracle HTTP Server enables you to use IPv6 and IPv4 addresses
as the virtual host name.

You can also configure multiple addresses for the same virtual host; that is, a virtual
host can be configured to serve on multiple addresses. This allows requests to different
addresses to be served with the same content from the same virtual host.

This section describes how to create and edit virtual hosts using Fusion Middleware
Control.

■ Section 7.5.1, "Creating Virtual Hosts Using Fusion Middleware Control"

■ Section 7.5.2, "Configuring Virtual Hosts Using Fusion Middleware Control"

See Also: For more information about virtual hosts, refer to the
Apache HTTP Server documentation.

7.5.1 Creating Virtual Hosts Using Fusion Middleware Control
You can create a virtual host for Oracle HTTP Server on the Fusion Middleware
Control Create Virtual Hosts page. To create a virtual host using Fusion Middleware
Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Click Create.

Configuring Virtual Hosts

Managing Connectivity 7-7

5. Enter a name for the virtual host field and then choose whether to enter a new
listen address or to use an existing listen address.

■ New listen address—use this option when you want to create a virtual host
that maps to a specific hostname, IP address, or IPv6 address, for example
mymachine.com:8080. This will create the following VirtualHost directive:

<VirtualHost mymachine.com:8080>

■ Use existing listen address—use this option when you want to create a virtual
host using an existing listen port and the one that maps to all IP addresses.
This will create following type VirtualHost directive:

<VirtualHost *:8080>

Note: If you attempt to create a virtual host with a wildcard
character, for example, *:port and no Listen directive exists for that
port, then the virtual host creation will fail.

In this case, you must first add the Listen directive and then try to add
the virtual host.

6. Enter the remaining attributes for the new virtual host.

■ Server Name—the name of the server for Oracle HTTP Server

■ Document Root— documentation root directory that forms the main
document tree visible from the website

■ Directory Index—the main (index) page that will be displayed when a client
first accesses the website

■ Administrator’s E-mail Address—the e-mail address that the server will
include in error messages sent to the client

7. Click OK.

8. Restart Oracle HTTP Server. See Section 4.3.5.

Configuring Virtual Hosts

7-8 Oracle Fusion Middleware Administering Oracle HTTP Server

Removing Unnecessary Listen Directives
Creating a virtual host by using Fusion Middleware Control also adds the Listen
directive for the virtual host. However, virtual host creation will add unnecessary
Listen directives in the following situations:

■ A virtual host is being created for one host name and the Listen directive already
exists for the different host name resolving to the same IP address.

■ A virtual host is being created for one host name and the Listen directive already
exists for the IP address that the host name resolves to.

■ A virtual host is being created for multiple host names that resolve to the same IP
address.

In these situations, Oracle HTTP Server will fail to start because there are multiple
Listen directives for the same IP address. You must remove any extra Listen directives
configured for the same IP address.

7.5.2 Configuring Virtual Hosts Using Fusion Middleware Control
You can use the options on the Configure menu of the Virtual Hosts page to specify
Server, MIME, Log, SSL, and mod_wl_ohs configuration for a selected virtual host.

To configure a virtual host using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Highlight an existing virtual host in the table.

5. Click Configure.

6. Select one of the following options from the Configure menu to open its
corresponding configuration page. The values on these pages apply only to the
virtual host. If the fields are blank, the virtual host uses the values configured at
the server level.

Configuring Virtual Hosts

Managing Connectivity 7-9

■ Server Configuration: Configure basic virtual host properties, such as
document root directory, installed modules, and aliases. See Section 5.2.1,
"Specifying Server Properties Using Fusion Middleware Control".

■ MIME Configuration: Configure MIME settings, which are used by Oracle
HTTP Server to interpret file types, encodings, and languages. Section 5.3.6,
"Configuring MIME Settings using Fusion Middleware Control".

■ Log Configuration: Configure access logs that will record all requests
processed by the virtual host. The logs contain basic information about every
HTTP transaction handled by the virtual host. See Section 8.2, "Configuring
Oracle HTTP Server Logs."

■ SSL Configuration: For instructions on configuring SSL using Fusion
Middleware Control, see "Enabling SSL for Oracle HTTP Server Virtual Hosts"
in the Administering Oracle Fusion Middleware.

■ mod_wl_ohs Configuration: Configure the mod_wl_ohs module to allow
requests to be proxied from an Oracle HTTP Server to Oracle WebLogic Server.
See Section 5.3.8, "About Configuring the Oracle WebLogic Server Proxy
Plug-In (mod_wl_ohs)".

7. Review the settings on each configuration page. If the settings are correct, click OK
to apply the changes. If the settings are incorrect, or you decide to not apply the
changes, click Cancel to return to the original settings.

8. Restart Oracle HTTP Server. See Section 4.3.5, "Restarting Oracle HTTP Server
Instances".

Configuring Virtual Hosts

7-10 Oracle Fusion Middleware Administering Oracle HTTP Server

8

Managing Oracle HTTP Server Logs 8-1

8Managing Oracle HTTP Server Logs

[9] This chapter describes how to manage Oracle HTTP Server logs. It describes how to
configure server logs, how to find information about the cause of an error and its
corrective action, to view and manage log files to assist in monitoring system activity
and to diagnose problems

Oracle HTTP Server generates log files containing messages that record all types of
events, including startup and shutdown information, errors, warning messages, access
information on HTTP requests, and additional information.

This chapter includes the following sections:

■ Section 8.1, "Overview of Server Logs"

■ Section 8.2, "Configuring Oracle HTTP Server Logs"

■ Section 8.3, "Configuring the Log Level Using WLST"

■ Section 8.4, "Log Directives for Oracle HTTP Server"

■ Section 8.5, "Viewing Oracle HTTP Server Logs"

■ Section 8.6, "Recording ECID Information"

■ Section 8.7, "Terminating SSL Requests"

8.1 Overview of Server Logs
You can view Oracle Fusion Middleware log files using either Fusion Middleware
Control or a text editor. The log files for Oracle HTTP Server are located in the
following directory:

ORACLE_HOME/user_projects/domains/<base_domain>/servers/componentName/
logs

Oracle HTTP Server has two types of logs:

■ Error logs, which record server problems.

■ Access logs, which record which components and applications are being accessed
and by whom.

This section contains the following topics:

■ Section 8.1.1, "About Error Logs"

■ Section 8.1.2, "About Access Logs"

■ Section 8.1.3, "Configuring Log Rotation"

Overview of Server Logs

8-2 Oracle Fusion Middleware Administering Oracle HTTP Server

8.1.1 About Error Logs
Oracle HTTP Server enables you to choose the format in which you want to generate
log messages. You can choose to generate log messages in the legacy Apache HTTP
Server message format, or use Oracle Diagnostic Logging (ODL) to generate log
messages in text or XML-formatted logs, which complies with Oracle standards for
generating error log messages.

By default, Oracle HTTP Server error logs use ODL for generating diagnostic
messages. It provides a common format for all diagnostic messages and log files, and a
mechanism for correlating the diagnostic messages from various components across
Oracle Fusion Middleware.

The default name of the error log file is instance_name.log.

Note: ODL error logging cannot have separate log files for each
virtual host. It can only be configured globally for all virtual hosts.

8.1.2 About Access Logs
Access logs record all requests processed by the server. The logs contain basic
information about every HTTP transaction handled by the server. The access log
contains the following information:

■ Host name

■ Remote log name

■ Remote user and time

■ Request

■ Response code

■ Number of transferred bytes

The default name of the access log file is access_log.

Access Log Format
You can specify the information to include in the access log, and the manner in which
it is written. The default format is the Common Log Format (CLF).

LogFormat "%h %l %u %t %E \"%r\" %>s %b" common

The CLF format contains the following fields:

host ident remote_logname remote_usre date ECID request authuser status bytes

■ host: This is the client domain name or its IP number. Use %h to specify the host
field in the log.

■ ident: If IdentityCheck is enabled and the client system runs identd, this is the
client identity information. Use %i to specify the client identity field in the log.

■ remote_logname: Remote log name (from identd, if supplied). Use %l to specify
the remote log name in the log.

■ remote_user: Remote user if the request was authenticated. Use %u to specify the
remote user in the log.

■ date: This is the date and time of the request in the day/month/
year:hour:minute:second format. Use %t to specify date and time in the log.

Overview of Server Logs

Managing Oracle HTTP Server Logs 8-3

■ ECID: Capture ECID information. Use %E to capture ECID in the log. See also
Section 8.6.3, "Configuring Access Logs for ECID Information."

■ request: This is the request line, in double quotes, from the client. Use %r to
specify request in the log.

■ authuser: This is the user ID for the authorized user. Use %a to specify the
authorized user field in the log.

■ status: This is the three-digit status code returned to the client. Use %s to specify
the status in the log. If the request will be forwarded from another server, use %>s
to specify the last server in the log.

■ bytes: This is the number of bytes, excluding headers, returned to the client. Use
%b to specify number of bytes in the log. Use %i to include the header in the log.

See Also: "Access Log" in the Apache HTTP Server
documentation.

8.1.3 Configuring Log Rotation
Oracle HTTP Server supports two types of log rotation policies: size-based and
time-based. You can configure the Oracle HTTP Server logs to use either of the two
rotation polices, by using odl_rotatelogs in ORACLE_HOME/ohs/bin. By default,
Oracle HTTP Server uses odl_rotatelogs for both error and access logs.

odl_rotatelogs supports all the features of Apache HTTP Server's rotatelogs and
the additional feature of log retention.

You can find information about the features and options provided by rotatelogs at
the following URL:

http://httpd.apache.org/docs/2.4/programs/rotatelogs.html

The following is the general syntax of odl_rotatelogs:

odl_rotatelogs [-u:offset] logfile {size-|time-based-rotation-options}

odl_rotatelogs is meant to be used with the piped logfile feature. This feature allows
error and access log files to be written through a pipe to another process, rather than
directly to a file. This increases the flexibility of logging, without adding code to the
main server. To write logs to a pipe, replace the filename with the pipe character "|",
followed by the name of the executable which should accept log entries on its standard
input. For more information on the piped logfile feature, see the following URL:

http://httpd.apache.org/docs/2.4/logs.html#piped

Used with the piped logfile feature, the syntax of odl_rotatelogs becomes the
following:

CustomLog " |${PRODUCT_HOME}/bin/odl_rotatelogs [-u:offset] logfile
{size-|time-based-rotation-options}” log_format

Whenever there is an input to odl_rotatelogs, it checks if the specified condition for
rotation has been met. If so, it rotates the file. Otherwise it simply writes the content. If
no input is provided, then it will do nothing.

Table 8–1 describes the size- and time-based rotation options:

Table 8–1 Options for odl_rotatelogs

Option Description

-u The time (in seconds) to offset from UTC.

logfile The path and name of the log file, followed by a hyphen (-) and then the
timestamp format.

The following are the common timestamp format strings:

■ %m: Month as a two-digit decimal number (01-12)

■ %d: Day of month as a two-digit decimal number (01-31)

■ %Y: Year as a four-digit decimal number

■ %H: Hour of the day as a two-digit decimal number (00-23)

■ %M: Minute as a two-digit decimal number (00-59)

■ %S: Second as a two-digit decimal number (00-59)

It should not include formats that expand to include slashes.

frequency The time (in seconds) between log file rotations.

retentionTime The maximum time for which the rotated log files are retained.

startTime The time when time-based rotation should start.

maxFileSize The maximum size (in MB) of log files.

allFileSize The total size (in MB) of files retained.

Overview of Server Logs

8-4 Oracle Fusion Middleware Administering Oracle HTTP Server

With time-based rotation, log rotation of Oracle HTTP Server using the odl_
rotatelogs is calculated by default according to UTC time. For example, setting log
rotation to 86400 (24 hours) rotates the logs every 12:00 midnight, UTC. If Oracle
HTTP Server is running on a server in IST (Indian Standard Time) which is
UTC+05:30, then the logs are rotated at 05:30 a.m.

As an alternative to using the -u option with the UTC offset, you can use the -l option
provided by Apache. This option causes Oracle HTTP Server to use local time as the
base for the interval. Using the-l option in an environment which changes the UTC
offset (such as British Standard Time (BST) or Daylight Savings Time (DST)) can lead
to unpredictable results.

8.1.3.1 Syntax and Examples for Time- and Size-Based Log Rotation
The following examples demonstrate the odl_rotatelogs syntax to set time- and
size-based log rotation.

■ Time-based rotation

Syntax:

odl_rotatelogs u:offset logfile frequency retentionTime startTime

Example:

CustomLog "| odl_rotatelogs u:-18000 /varlog/error.log-%Y-%m-%d 21600 172800
2014-03-10T08:30:00" common

This configures log rotation to be performed for a location UTC-05:00 (18000
seconds, such as New York). The rotation will be performed every 21600 seconds
(6 hours) starting from 8:30 a.m. on March 10, 2014, and it specifies that the rotated
log files should be retained for 172800 seconds (2 days). The log format is common.

Syntax:

Configuring Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 8-5

odl_rotatelogs logfile frequency retentionTime startTime

Example:

CustomLog "| odl_rotatelogs /varlog/error.log-%Y-%m-%d 21600 172800
2014-03-10T08:30:00" common

This configures log rotation to be performed every 21600 seconds (6 hours)
starting from 8:30 a.m. on March 10, 2014, and it specifies that the rotated log files
should be retained for 172800 seconds (2 days). The log format is common.

■ Size-based rotation

Syntax:

odl_rotatelogs logfile maxFileSize allFileSize

Example:

This configures log rotation to be performed when the size of the log file reaches
10 MB, and it specifies the maximum size of all the rotated log files as 70 MB (up
to 7 log files (=70/10) will be retained). The log format is common.

CustomLog "| odl_rotatelogs /var/log/error.log-%Y-%m-%d 10M 70M" common

8.2 Configuring Oracle HTTP Server Logs
You can use Fusion Middleware Control to configure error and access logs. The
following sections describe logging tasks that can be set from the Log Configuration
page:

■ Section 8.2.1, "Configuring Error Logs Using Fusion Middleware Control"

■ Section 8.2.2, "Configuring Access Logs Using Fusion Middleware Control"

■ Section 8.2.3, "Configuring the Log File Creation Mode (umask) (UNIX/Linux
Only)"

8.2.1 Configuring Error Logs Using Fusion Middleware Control
You configure error logs on the Fusion Middleware Control Log Configuration page.
To configure an error log for Oracle HTTP Server using Fusion Middleware Control,
do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

The Log Configuration page is displayed, as shown in the following figure.

Configuring Oracle HTTP Server Logs

8-6 Oracle Fusion Middleware Administering Oracle HTTP Server

3. The following error log configuration tasks can be set from this page:

■ Configuring the Error Log Format and Location

■ Configuring the Error Log Level

■ Configuring Error Log Rotation Policy

8.2.1.1 Configuring the Error Log Format and Location
You can change the error log format and location on the Fusion Middleware Control
Log Configuration page. By default, Oracle HTTP Server uses ODL-Text as the error
log format and creates the log file with the name component_name.log under the
DOMAIN_HOME/servers/component_name/logs directory. To use a different format
or log location, do the following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select the desired file format.

■ ODL-Text: the format of the diagnostic messages conform to an Oracle
standard and are written in text format.

■ Apache: the format of the diagnostic messages conform to the legacy Apache
HTTP Server message format.

3. Enter a path for the error log in the Log File/Directory field. This directory must
exist before you enter it here.

4. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Configuring Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 8-7

5. Restart Oracle HTTP Server. See Section 4.3.5.

8.2.1.2 Configuring the Error Log Level
You can configure the amount and type of information written to log files by
specifying the message type and level. Error log level for Oracle HTTP Server by
default is configured to WARNING:32. To use a different error log level do the
following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select a level for the logging from the Level menu. The higher the log level, the
more information that is included in the log.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

4. Restart Oracle HTTP Server. See Section 4.3.5.

Note: The log levels are different for the Apache HTTP Server log
format and ODL-Text format.

■ For details on ODL log levels, refer to "Setting the Level of
Information Written to Log Files" in the Administering Oracle
Fusion Middleware.

■ For details on Apache HTTP Server log levels, refer to the
LogLevel Directive in the Apache HTTP Server documentation.

8.2.1.3 Configuring Error Log Rotation Policy
Log rotation policy for error logs can either be time-based, such as once a week, or
sized-based, such as 120MB. By default, the error log file is rotated when it reaches 10
MB and a maximum of 7 error log files will be retained. To use a different rotation
policy, do the following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select a rotation policy.

■ No Rotation: if you do not want to have the log file rotated ever.

■ Size Based: rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

■ Time Based: rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

4. Restart Oracle HTTP Server. See Section 4.3.5.

8.2.2 Configuring Access Logs Using Fusion Middleware Control
You can configure an access log format and rotation policy for Oracle HTTP Server
from the Fusion Middleware Control Log Configuration page.

Configuring Oracle HTTP Server Logs

8-8 Oracle Fusion Middleware Administering Oracle HTTP Server

The following access log configuration tasks can be set from this page:

■ Configuring the Access Log Format

■ Configuring the Access Log File

8.2.2.1 Configuring the Access Log Format
Log format specifies the information included in the access log file and the manner in
which it is written. To add a new access log format or to edit or remove an existing
format, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

3. From the Log Configuration page, navigate to the Access Log section.

4. Click Manage Log Formats.

The Manage Custom Access Log Formats page is displayed, as shown in the
following figure.

5. Select an existing format to change or remove, or click Add Row to create a new
format.

6. If you choose to create a new format, then enter the new log format in the Log
Format Name field and the log format in the Log Format Pattern field.

See Also: Refer to the Apache HTTP Server documentation for
information about log format directives.

7. Click OK to save the new format.

8.2.2.2 Configuring the Access Log File
You can configure rotation policy for the access log on the Fusion Middleware Control
Create or Edit Access Log page. To configure an access log for file Oracle HTTP Server,
do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

3. From the Log Configuration page, navigate to the Access Log section.

Configuring Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 8-9

4. Click Create to create a new access log, or select a row from the table and click
Edit button to edit an existing access log file.

The Create or Edit Access Log page is displayed.

5. Enter the path for the access log in the Log File Path field. This directory must
exist before you enter it.

6. Select an existing access log format from the Log Format menu.

7. Select a rotation policy.

■ No Rotation: if you do not want to have the log file rotated ever.

■ Size Based: rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

■ Time Based: rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

8. Click OK to continue.

You can create multiple access log files.

8.2.3 Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)
Set the value of default file mode creation mask (umask) before starting the Oracle
HTTP Server instance. The value that you set for umask determines the file
permissions for the files created by Oracle HTTP Server instance such as the error log,
access log, and so on. If umask is not set explicitly, then a value of 0027 is used by
default.

This section contains the following information:

■ Section 8.2.3.1, "Configure umask for an Oracle HTTP Server Instance in a
Standalone Domain"

■ Section 8.2.3.2, "Configure umask for an Oracle HTTP Server Instance in a
WebLogic Server Managed Domain"

8.2.3.1 Configure umask for an Oracle HTTP Server Instance in a Standalone
Domain
To configure the default file mode creation mask in a standalone domain, set the umask
property in the ohs.plugins.nodemanager.properties file under the staging location:

Configuring the Log Level Using WLST

8-10 Oracle Fusion Middleware Administering Oracle HTTP Server

DOMAIN_HOME/config/fmwconfig/components/OHS/instanceName/
ohs.plugins.nodemanager.properties

8.2.3.2 Configure umask for an Oracle HTTP Server Instance in a WebLogic Server
Managed Domain
To configure the default file mode creation mask in a WebLogic Server (either Full-JRF
or Restricted-JRF) domain, follow these steps:

1. Start the AdminServer and NodeManager for the domain, for example:

<Domain_HOME>/bin/startWebLogic.sh &
<DOMAIN_HOME>/bin/startNodeManager.sh &

2. Start WLST and connect to the AdminServer.

<ORACLE_HOME>/oracle_common/bin/wlst.sh
connect('<userName', <'password'>, <'adminServerURL'>

3. Navigate to the following MBean. Note that the ObjectName for this MBean is
dependent on the name of Oracle HTTP Server instance. In this example, the name
of Oracle HTTP Server instance is ohs1

editCustom()
cd('oracle.ohs')
cd('oracle.ohs:OHSInstance=ohs1,component=OHS,type=OHSInstance.NMProp')

4. Set the value of umask to the desired value.

startEdit()
set('Umask','0022')

5. Save and activate the changes.

save()
activate()

8.3 Configuring the Log Level Using WLST
You can use WLST commands to set the LogLevel directive, which controls the
verbosity of the error log.

Note: For more information on the LogLevel directive, see the
Apache documentation: http://httpd.apache.org/docs/current/
mod/core.html#loglevel

Follow these steps to set the LogLevel directive using WLST commands.

1. Launch WLST.

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

2. Connect to Administration Server.

connect('<user-name>', '<password>','<host>:<port>')

3. Use the editCustom() command to navigate to the root of the oracle.ohs MBean.
You can use the editCustom() command only when WLST is connected to the
Administration Server. Use cd to navigate the hierarchy of management objects, in

Log Directives for Oracle HTTP Server

Managing Oracle HTTP Server Logs 8-11

this case, ohs1 under oracle.ohs. Use the startEdit() command to start an edit
session.

editCustom()
cd('oracle.ohs')
cd('oracle.ohs:type=OHSInstance,name=ohs1')
startEdit()

4. Use the set command to set the value of the log level attribute. The following
example sets the global log level to trace7, the module status log level to error,
and the module env log level to warn (warning).

set('LogLevel','trace7 status:error env:warn')

5. Save, then activate your changes. The edit lock associated with this edit session is
released once the activation is completed.

save()
activate()

8.4 Log Directives for Oracle HTTP Server
The following sections describe Oracle HTTP Server error and access log-related
directives in the httpd.conf file.

■ Section 8.4.1, "Oracle Diagnostic Logging Directives"

■ Section 8.4.2, "Apache HTTP Server Log Directives"

8.4.1 Oracle Diagnostic Logging Directives
Oracle HTTP Server by default uses Oracle Diagnostic Logging (ODL) for generating
diagnostic messages. The following directives are used to set up logging using ODL:

■ OraLogMode

■ OraLogDir

■ OraLogSeverity

■ OraLogRotationParams

8.4.1.1 OraLogMode
Enables you to choose the format in which you want to generate log messages. You
can choose to generate log messages in the legacy Apache HTTP Server or ODL text
format.

OraLogMode Apache | ODL-Text

Default value: ODL-Text

For example: OraLogMode ODL-Text

Note: The Apache HTTP Server log directives ErrorLog and
LogLevel are only effective when OraLogMode is set to Apache. When
OraLogMode is set to ODL-Text, the ErrorLog and LogLevel directives
are ignored.

8.4.1.2 OraLogDir
Specifies the path to the directory that contains all log files. This directory must exist.

Log Directives for Oracle HTTP Server

8-12 Oracle Fusion Middleware Administering Oracle HTTP Server

This directive is used only when OraLogMode is set to ODL-Text. When OraLogMode is
set to Apache, OraLogDir is ignored and ErrorLog is used instead.

OraLogDir <path>

Default value: ORACLE_INSTANCE/servers/componentName/logs

For example: OraLogDir /tmp/logs

8.4.1.3 OraLogSeverity
Enables you to set message severity. The message severity specified with this directive
is interpreted as the lowest desired message severity, and all messages of that severity
level and higher are logged.

This directive is used only when OraLogMode is set to ODL-Text. When OraLogMode is
set to Apache, OraLogSeverity is ignored and LogLevel is used instead. In the
following syntax, short_module_identifierName is the module name with the trailing
_module omitted.

OraLogSeverity [short_module_identifierName] <msg_type>[:msg_level]

Default value: WARNING:32

For example: OraLogSeverity mime NOTIFICATION:32

msg_type
Message types can be specified in upper or lowercase, but appear in the message
output in upper case. This parameter must be of one of the following values:

■ INCIDENT_ERROR

■ ERROR

■ WARNING

■ NOTIFICATION

■ TRACE

msg_level
This parameter must be an integer in the range of 1–32, where 1 is the most severe, and
32 is the least severe. Using level 1 will result in fewer messages than using level 32.

8.4.1.4 OraLogRotationParams
Enables you to choose the rotation policy for an error log file. This directive is used
only when OraLogMode is set to ODL-Text. When OraLogMode is set to Apache,
OraLogRotationParams is ignored.

OraLogRotationParams <rotation_type> <rotation_policy>

Default value: S 10:70

For example: OraLogRotationParams T 43200:604800 2009-05-08T10:53:29

rotation_type
This parameter can either be S (for sized-based rotation) or T (for time-based rotation).

rotation_policy
When rotation_type is set to S (sized-based), set the rotation_policy parameter to:

Log Directives for Oracle HTTP Server

Managing Oracle HTTP Server Logs 8-13

maxFileSize:allFilesSize (in MB)

For example, when configured as 10:70, the error log file is rotated whenever it
reaches 10MB and a total of 70MB is allowed for all error log files (a maximum of 70/
10=7 error log files will be retained).

When rotation_type is set to T (time-based), set the rotation_policy parameter to:

frequency(in sec) retentionTime(in sec) startTime(in YYYY-MM-DDThh:mm:ss)

For example, when configured as 43200:604800 2009-05-08T10:53:29, the error log is
rotated every 43200 seconds (that is, 12 hours), rotated log files are retained for
maximum of 604800 seconds (7 days) starting from May 5, 2009 at 10:53:29.

8.4.2 Apache HTTP Server Log Directives
Although Oracle HTTP Server uses ODL by default for error logs, you can configure
the OraLogMode directive to Apache to generate error log messages in the legacy
Apache HTTP Server message format. The following directives are discussed in this
section:

■ ErrorLog

■ LogLevel

■ LogFormat

■ CustomLog

8.4.2.1 ErrorLog
The ErrorLog directive sets the name of the file where the server logs any errors it
encounters. If the filepath is not absolute then it is assumed to be relative to the
ServerRoot.

This directive is used only when OraLogMode is set to Apache. When OraLogMode is set
to ODL-Text, ErrorLog is ignored and OraLogDir is used instead.

See Also: For information about the Apache ErrorLog directive, see:

http://httpd.apache.org/docs/current/mod/core.html#errorlog

8.4.2.2 LogLevel
The LogLevel directive adjusts the verbosity of the messages recorded in the error
logs.

This directive is used only when OraLogMode is set to Apache. When OraLogMode is set
to ODL-Text, LogLevel is ignored and OraLogSeverity is used instead.

See Also: For information about the Apache HTTP Server LogLevel
directive see:

http://httpd.apache.org/docs/current/mod/core.html#loglevel

8.4.2.3 LogFormat
The LogFormat directive specifies the format of the access log file. By default, Oracle
HTTP Server comes with the following four access log formats defined:

LogFormat "%h %l %u %t %E \"%r\" %>s %b" common
LogFormat "%h %l %u %t %E \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
LogFormat "%h %l %u %t %E \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %I %O"

Viewing Oracle HTTP Server Logs

8-14 Oracle Fusion Middleware Administering Oracle HTTP Server

combinedio

See Also: For information about the Apache HTTP Server
LogFormat directive, see:

http://httpd.apache.org/docs/current/mod/mod_log_
config.html#logformat

8.4.2.4 CustomLog
Use the CustomLog directive to log requests to the server. A log format is specified and
the logging can optionally be made conditional on request characteristics using
environment variables. By default, the access log file is configured to use the common
log format.

See Also: For information about the Apache CustomLog directive,
see:

http://httpd.apache.org/docs/current/mod/mod_log_
config.html#customlog

8.5 Viewing Oracle HTTP Server Logs
There are mainly two types of log files for Oracle HTTP Server: error logs and access
logs. The error log file is an important source of information for maintaining a
well-performing server. The error log records all of the information about problem
situations so that the system administrator can easily diagnose and fix the problems.
The access log file contains basic information about every HTTP transaction that the
server handles. You can use this information to generate statistical reports about the
server's usage patterns.

See Section 8.1, "Overview of Server Logs" for more information on error logs and
access logs.

The methods for viewing Oracle HTTP Server logs are:

■ Viewing Logs Using Fusion Middleware Control

■ Viewing Logs Using WLST

■ Viewing Logs in a Text Editor

8.5.1 Viewing Logs Using Fusion Middleware Control
To access the log messages for an Oracle HTTP Server instance:

1. Navigate to the Oracle HTTP Server home page.

2. Select the server instance for which you want to view log messages.

3. From the Oracle HTTP Server drop-down list, select Logs, then View Log
Messages.

The Log Messages page opens.

For information about searching and viewing log files, see "Viewing Log Files and
Their Messages Using Fusion Middleware Control" in Administering Oracle Fusion
Middleware.

Viewing Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 8-15

8.5.2 Viewing Logs Using WLST
To obtain and view server logs from the command line, you need to connect to Node
Manager and issue the appropriate WebLogic Scripting Tool (WLST) command. These
commands allow you to perform any of these functions:

■ List server logs.

■ Display the content of a specific log.

Note: For more information on using WLST, see Understanding the
WebLogic Scripting Tool.

Before attempting this procedure:
Before attempting to access server metrics from the command line, ensure the
following:

■ The domain exists.

■ The instance you want to start exists.

■ Node Manager is running on the instance machine.

To use this procedure, the instance and Administration server can be running but do
not need to be.

To view metrics using WLST:

Note: For managed domains, this procedure will work on an
Administration server running on either the Administration machine
or on a remote machine, whether the instance is in a running state or a
shutdown state. For standalone domains, the procedure will work
only on a local machine; however the instance can be either in a
running or shutdown state.

1. Launch WLST:

From Linux or UNIX:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

From Windows:

C:\ORACLE_HOME\oracle_common\common\bin\wlst.cmd

2. From the selected domain directory (for example, ORACLE_HOME/user_projects/
domains/domainName), connect to Node Manager:

nmConnect('username', 'pwd', localhost, 5556, domainName)

3. Enter one of the following WLST commands, depending on what task you want to
accomplish:

■ listLogs(nmConnected=1, ...)

■ displayLogs(nmConnected=1, ...)

For example:

listLogs(nmConnected=1, target='ohs1')

Recording ECID Information

8-16 Oracle Fusion Middleware Administering Oracle HTTP Server

displayLogs(nmConnected=1, target='ohs1', tail=5)

8.5.3 Viewing Logs in a Text Editor
You can also use a text editor to view Oracle HTTP Server log files directly from the
DOMAIN_HOME directory. By default, Oracle HTTP Server log files are located in the
DOMAIN_HOME/servers/component_name/logs directory. Download a log file to
your local client and view the log files using another tool.

8.6 Recording ECID Information
The following sections describe how to configure Oracle HTTP Server to record
Execution Context ID (ECID) information in error logs and access logs.

■ Section 8.6.1, "About ECID Information"

■ Section 8.6.2, "Configuring Error Logs for ECID Information"

■ Section 8.6.3, "Configuring Access Logs for ECID Information"

8.6.1 About ECID Information
An ECID is a globally unique ID that can be attached to requests between Oracle
components. The ECID enables you to track log messages pertaining to the same
request when multiple requests are processed in parallel.

The Oracle HTTP Server module mod_context scans each incoming request for an
ECID-Context key in the URI or cookie, or for the ECID-Context header. If found, then
the value is used as the execution context if it is valid. If it is not, then mod_context
creates a new execution context for the request and adds it as the value of the
ECID-Context header.

8.6.2 Configuring Error Logs for ECID Information
ECID information is recorded as part of Oracle Diagnostic Logging (ODL). ODL is a
method for reporting diagnostic messages which presents a common format for
diagnostic messages and log files, and a method for correlating all diagnostic messages
from various components.

To configure Oracle HTTP Server error logs to record ECID information, ensure that
the OraLogMode directive in the httpd.conf file is set to the default value, odl. The odl
value specifies standard Apache log format and ECID information for log records
specifically associated with a request.

For more information on OraLogMode and other possible values for this directive, see
Section 8.4.1.1, "OraLogMode."

Note: Oracle recommends that you enter the directives before any
modules are loaded (LoadModule directive) in the httpd.conf file so
that module-specific logging severities are in effect before modules
have the opportunity to perform any logging.

8.6.3 Configuring Access Logs for ECID Information
By default, the LogFormat directive in the httpd.conf file is configured to capture
ECID information:

Terminating SSL Requests

Managing Oracle HTTP Server Logs 8-17

LogFormat "%h %l %u %t %E \"%r\" %>s %b" common

If you want to add response time measured in microseconds, then add %D as follows:

LogFormat "%h %l %u %t %E %D \"%r\" %>s %b" common

If you want to suppress the capture of ECID information, then remove %E from the
LogFormat directive:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

8.7 Terminating SSL Requests
The following sections describe how to terminate requests using SSL before or within
Oracle HTTP Server, where the mod_wl_ohs module forwards requests to WebLogic
Server. Whether you terminate SSL before the request reaches Oracle HTTP Server or
when the request is in the server, depends on your topology. A common reason to
terminate SSL is for performance considerations when an internal network is
otherwise protected with no risk of a third-party intercepting data within the
communication. Another reason is when WebLogic Server is not configured to accept
HTTPS requests.

■ Section 8.7.1, "About Terminating SSL at the Load Balancer"

■ Section 8.7.2, "About Terminating SSL at Oracle HTTP Server"

8.7.1 About Terminating SSL at the Load Balancer
If you are using another device such as a load balancer or a reverse proxy which
terminates requests using SSL before reaching Oracle HTTP Server, then you must
configure the server to treat the requests as if they were received through HTTPS. The
server must also be configured to send HTTPS responses back to the client.

Figure 8–1 illustrates an example where the request transmitted from the browser
through HTTPS to WebLogic Server. The load balancer terminates SSL and transmits
the request as HTTP. Oracle HTTP Server must be configured to treat the request as if
it was received through HTTPS.

Figure 8–1 Terminating SSL Before Oracle HTTP Server

8.7.1.1 Terminating SSL at the Load Balancer
To instruct the Oracle HTTP Server to treat requests as if they were received through
HTTPS, configure the httpd.conf file with the SimulateHttps directive in the mod_
certheaders module.

For more information on mod_certheaders module, see Section 2.1.1, "mod_
certheaders Module—Enables Reverse Proxies."

Note: This procedure is not necessary if SSL is configured on Oracle
HTTP Server (that is, if you are directly accessing Oracle HTTP Server
using HTTPS).

Terminating SSL Requests

8-18 Oracle Fusion Middleware Administering Oracle HTTP Server

1. Configure the httpd.conf configuration file with the external name of the server
and its port number, for example:

ServerName <www.company.com:port>

2. Configure the httpd.conf configuration file to load the mod_certheaders module,
for example:

■ On UNIX:

LoadModule certheaders_module libexec/mod_certheaders.so

■ On Windows:

LoadModule certheaders_module modules/ApacheModuleCertHeaders.dll
AddModule mod_certheaders.c

Note: Oracle recommends that the AddModule line should be
included with other AddModule directives.

3. Configure the SimulateHttps directive at the bottom of the httpd.conf file to send
HTTPS responses back to the client, for example:

For use with other load balancers and front-end devices:
SimulateHttps On

4. Restart Oracle HTTP Server and test access to the server. Especially, test whether
you can access static pages such as https://host:port/index.html

Test your configuration as a basic setup. If you are having issues, then you should
troubleshoot from here to avoid overlapping with other potential issues, such as
with virtual hosting.

5. Ideally, you may want to configure a VirtualHost in the httpd.conf file to handle
all HTTPS requests. This separates the HTTPS requests from the HTTP requests as
a more scalable approach. This may be more desirable in a multi-purpose site or if
a load balancer or other device is in front of Oracle HTTP Server which is also
handling both HTTP and HTTPS requests.

The following sample instructions load the mod_certheaders module, then creates
a virtual host to handle only HTTPS requests.

Load correct module here or where other LoadModule lines exist:
LoadModule certheaders_module libexec/mod_certheaders.so
This only handles https requests:
 <VirtualHost <name>:<port>
 # Use name and port used in url:
 ServerName <www.company.com:port>
 SimulateHttps On
 # The rest of your desired configuration for this VirtualHost goes here
 </VirtualHost>

6. Restart Oracle HTTP Server and test access to the server, First test a static page
such as https://host:port/index.html and then your test your application.

8.7.2 About Terminating SSL at Oracle HTTP Server
If SSL is configured in Oracle HTTP Server but not on Oracle WebLogic Server, then
you can terminate SSL for requests sent by Oracle HTTP Server.

Terminating SSL Requests

Managing Oracle HTTP Server Logs 8-19

The following figures illustrate request flows, showing where HTTPS stops. In
Figure 8–2, an HTTPS request is sent from the browser. The load balancer transmits the
HTTPS request to Oracle HTTP Server. SSL is terminated in Oracle HTTP Server and
the HTTP request is sent to WebLogic Server.

Figure 8–2 Terminating SSL at Oracle HTTP Server—With Load Balancer

In Figure 8–3 there is no load balancer and the HTTPS request is sent directly to Oracle
HTTP Server. Again, SSL is terminated in Oracle HTTP Server and the HTTP request
is sent to WebLogic Server.

Figure 8–3 Terminating SSL at Oracle HTTP Server—Without Load Balancer

8.7.2.1 Terminating SSL at Oracle HTTP Server
To instruct the Oracle HTTP Server to treat requests as if they were received through
HTTPS, configure the WLSProxySSL directive in the mod_wl_ohs.conf file and ensure
that the SecureProxy directive is not configured.

1. Configure the mod_wl_ohs.conf file to add the WLSProxySSL directive for the
location of your non-SSL configured managed servers, for example:

WLProxySSL ON

2. If using a load balancer or other device in front of Oracle HTTP Server (which is
also using SSL), you might need to configure the WLProxySSLPassThrough directive
instead, depending on if it already sets WL-Proxy-SSL, for example:

WLProxySSLPassThrough ON

For more information, see your load balancer documentation. For more
information on WLProxySSLPassThrough, see "Parameters for Oracle WebLogic
Server Proxy Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1.

3. Ensure that the SecureProxy directive is not configured, as it will interfere with
the intended communication between the components. This directive is to be used
only when SSL is used throughout. The SecureProxy directive is commented out
in the following example:

To configure SSL throughout (all the way to WLS):
SecureProxy ON
WLSSLWallet "<Path to Wallet>"

4. Restart Oracle HTTP Server and test access to a Java application, for example:
https://host:port/path/application_name.

Terminating SSL Requests

8-20 Oracle Fusion Middleware Administering Oracle HTTP Server

9

Managing Application Security 9-1

9Managing Application Security

[10] This chapter contains an overview of Oracle HTTP Server security features and
provides configuration information for setting up a secure website.

This chapter includes the following sections:

■ Section 9.1, "About Oracle HTTP Server Security"

■ Section 9.2, "Classes of Users and Their Privileges"

■ Section 9.3, "Resources Protected"

■ Section 9.4, "Authentication, Authorization and Access Control"

■ Section 9.5, "Implementing SSL"

■ Section 9.6, "Using mod_security"

■ Section 9.7, "Using Trust Flags"

9.1 About Oracle HTTP Server Security
Security can be organized into the three categories of authentication, authorization,
and confidentiality. Oracle HTTP Server provides support for all three of these
categories. It is based on the Apache HTTP Server, and its security infrastructure is
primarily provided by the Apache modules, mod_auth_basic, mod_authn_file, mod_
auth_user, and mod_authz_groupfile, and WebGate. The mod_auth_basic, mod_
authn_file, mod_auth_user, and mod_authz_groupfile modules provide authentication
based on user name and password pairs, while mod_authz_host controls access to the
server based on the characteristics of a request, such as host name or IP address, mod_
ossl provides confidentiality and authentication with X.509 client certificates over SSL.

Oracle HTTP Server provides access control, authentication, and authorization
methods that you can configure with access control directives in the httpd.conf file.
When URL requests arrive at Oracle HTTP Server, they are processed in a sequence of
steps determined by server defaults and configuration parameters. The steps for
handling URL requests are implemented through a module or plug-in architecture that
is common to many Web listeners.

9.2 Classes of Users and Their Privileges
Oracle HTTP Server authorizes and authenticates users before allowing them to
access, or modify resources on the server. The following are three classes of users that
access the server using Oracle HTTP Server, and their privileges:

■ Users who access the server without providing any authentication. They have
access to unprotected resources only.

Resources Protected

9-2 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Users who have been authenticated and potentially authorized by modules within
Oracle HTTP Server. This includes users authenticated by Apache HTTP Server
modules like mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_
groupfile modules and Oracle's mod_ossl. Such users have access to URLs defined
in http.conf file.

See Also: Section 9.4, "Authentication, Authorization and Access
Control".

■ Users who have been authenticated through Oracle Access Manager. These users
have access to resources allowed by Single Sign-On.

See Also: Securing Applications with Oracle Platform Security
Services

9.3 Resources Protected
You can configure Oracle HTTP Server to protect all resources that it manages. You are
responsible for configuring any protection that your resources require.

9.4 Authentication, Authorization and Access Control
Oracle HTTP Server provides user authentication and authorization at two stages:
access control, and then user authentication and authorization.

■ Access Control (stage one): This is based on the details of the incoming HTTP
request and its headers, such as IP addresses or host names.

■ User Authentication and Authorization (stage two): This is based on different
criteria depending on the HTTP server configuration. You can configure the server
to authenticate users with user name and password pairs that are checked against
a list of known users and passwords. You can also configure the server to use
single sign-on authentication for Web applications or X.509 client certificates over
SSL.

9.4.1 Access Control
Access control refers to any means of controlling access to any resource.

See Also: Refer to the Apache HTTP Server documentation for more
information on how to configure access control to resources.

9.4.2 User Authentication and Authorization
Authentication is any process by which you verify that someone is who they claim
they are. Authorization is any process by which someone is allowed to be where they
want to go, or to have information that they want to have. You can authenticate users
with either Apache HTTP Server modules or with WebGate.

■ Section 9.4.2.1, "Authenticating Users with Apache HTTP Server Modules"

■ Section 9.4.2.2, "Authenticating Users with WebGate"

9.4.2.1 Authenticating Users with Apache HTTP Server Modules
The Apache HTTP Server authentication directives can be used to verify that users are
who they claim to be.

See Also: For more information on how to authenticate users, see
the Apache HTTP Server documentation on "Authentication and
Authorization" at:

http://httpd.apache.org/docs/2.4/howto/auth.html

Authentication, Authorization and Access Control

Managing Application Security 9-3

9.4.2.2 Authenticating Users with WebGate
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and if
so, retrieves the session information for the user.

Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled
to use SSO to authenticate users, obtain their identity by using Oracle Single Sign-On,
and to make user identities available to web applications accessed through Oracle
HTTP Server.

By using WebGate, web applications can register URLs that require SSO
authentication. WebGate detects which requests received by Oracle HTTP Server
require SSO authentication, and redirects them to the SSO server. Once the SSO server
authenticates the user, it passes the user's authenticated identity back to WebGate in a
secure token. WebGate retrieves the user's identity from the token and propagates it to
applications accessed through Oracle HTTP Server, including applications running in
Oracle WebLogic Server and CGIs and static files handled by Oracle HTTP Server.

See Also: Securing Applications with Oracle Platform Security
Services

9.4.3 Support for FMW Audit Framework
Oracle HTTP Server supports authentication and authorization auditing by using the
FMW Common Audit Framework. As part of enabling auditing, Oracle HTTP Server
supports a directive called OraAuditEnable, which defaults to On. When it is enabled,
audit events enabled in auditconfig.xml will be recorded in an audit log. By default, no
audit events are enabled in auditconfig.xml.

When OraAuditEnable is set to Off, auditing is disabled regardless of the settings in
auditconfig.xml.

You can configure audit filters using Fusion Middleware Control or by editing
auditconfig.xml directly.

See Also: "Overview of Audit Features" in Securing Applications with
Oracle Platform Security Services

9.4.3.1 Managing Audit Policies Using Fusion Middleware Control
Use the Audit Policies page in Fusion Middleware Control to assign audit policies to a
selected Oracle HTTP Server instance.

1. Navigate to the Oracle HTTP Server Home Page.

2. Select the server instance to which you want to apply audit policies.

3. From the Oracle HTTP Server drop-down menu, select Security, then Audit
Policy.

The Audit Policy page opens.

For more information on setting audit policies, see "Managing Audit Policies for Java
Components with Fusion Middleware Control" in Securing Applications with Oracle
Platform Security Services

Implementing SSL

9-4 Oracle Fusion Middleware Administering Oracle HTTP Server

9.5 Implementing SSL
Oracle HTTP Server secures communications by using a Secure Sockets Layer (SSL)
protocol. SSL secures communication by providing message encryption, integrity, and
authentication. The SSL standard allows the involved components (such as browsers
and HTTP servers) to negotiate which encryption, authentication, and integrity
mechanisms to use.

For details on how to implement SSL for Oracle HTTP Server, see "Configuring SSL for
the Web Tier" in Administering Oracle Fusion Middleware. For information on using
mod_ossl, Oracle’s SSL module, see Section 2.1.6, "mod_ossl Module—Enables
Cryptography (SSL)". For information on mod_ossl directives, see Section G.3, "mod_
ossl Module."

The mod_wl_ohs module also contains a configuration for SSL. For information, see
"Using SSL with Plug-ins" and "Parameters for Web Server Plug-Ins" in Using Oracle
WebLogic Server Proxy Plug-Ins 12.2.1.

These sections describes SSL features that are supported for this release.

■ Section 9.5.1, "Global Server ID Support"

■ Section 9.5.2, "PKCS #11 Support"

■ Section 9.5.3, "SSL and Logging"

9.5.1 Global Server ID Support
This feature adds support SSL protocol features called variously "step-up", "server
gated crypto" or "global server ID". "Step-up" is a feature that allows old, weak
encryption browsers, to "step-up" so that public keys greater than 512-bits and bulk
encryption keys greater than 64 bits can be used in the SSL protocol. This means that
server X.509 certificates that contain public keys in excess of 512-bits and which
contain "step-up" digital rights can now be used by Oracle Application Server. Such
certificates are often called "128-bit" certificates, even though the certificate itself
typically contains a 1024-bit certificate. The Verisign Secure Site Pro is an example of
such a certificate which can now be used by Oracle Application Server.

Global Server ID functionality is provided by default, there is no configuration
necessary.

9.5.2 PKCS #11 Support
Public-Key Cryptography Standards #11, or PKCS #11 for short, is a public key
cryptography specification that outlines how systems use hardware security modules,
which are basically "boxes" where cryptographic functions (encryption/decryption)
are performed and where encryption keys are stored.

Oracle HTTP Server supports the option of having dedicated SSL hardware through
nCipher. nCipher is a certified third-party accelerator that improves the performance
of the PKI cryptography that SSL uses.

See Also:

■ Administering Oracle Fusion Middleware's Guide

■ http://www.ncipher.com

Using Trust Flags

Managing Application Security 9-5

9.5.3 SSL and Logging
SSL- and communication-related debugging can be set using the SSLTraceLogLevel
directive. Here you can set different verbosity of log level according to your logging
requirements. This directive generates SSL and communication logs. For more
information, see Section G.3.18, "SSLTraceLogLevel Directive."

Note: SSL logs will work when OHS logs is set for INFO or higher
level.

9.6 Using mod_security
mod_security is an open-source module that you can use to detect and prevent
intrusion attacks against Oracle HTTP Server; for example, you can specify a mod_
security rule to screen all incoming requests and deny requests that match the
conditions specified in the rule. The mod_security module (version 2.7.2) and its
prerequisites are included in the Oracle HTTP Server installation as a shared object
named mod_security2.so in the ORACLE_HOME/ohs/modules directory.

For more information on mod_security, see Section 5.4, "Configuring the mod_security
Module".

9.7 Using Trust Flags
Trust flags allow adequate roles to be assigned to certificates to facilitate operations
like certificate chain validation and path building. By default, wallets do not support
trust flags.

You can use the orapki utility to maintain trust flags in the certificates installed in an
Oracle Wallet. You can create and convert wallets to support trust flags, create and
maintain appropriate flags in each certificate, and so on. For more information on trust
flags and instructions on how to incorporate them into your security strategy, see
"Creating and Managing Trust Flags" in Administering Oracle Fusion Middleware.

Using Trust Flags

9-6 Oracle Fusion Middleware Administering Oracle HTTP Server

Part III
Part III Appendixes

This part contains the following appendixes plus a glossary:

■ Appendix A, "Oracle HTTP Server WLST Custom Commands"

■ Appendix B, "Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules"

■ Appendix C, "Frequently Asked Questions"

■ Appendix D, "Troubleshooting Oracle HTTP Server"

■ Appendix E, "Configuration Files"

■ Appendix F, "Property Files"

■ Appendix G, "OHS Module Directives"

A

Oracle HTTP Server WLST Custom Commands A-1

AOracle HTTP Server WLST Custom Commands

[11] The following Oracle HTTP Server-specific WLST custom commands are provided for
managing the server in WebLogic Server domains. Most are online commands, which
require a connection between WLST and the administration server for the domain:

This appendix contains the following information:

■ Section A.1, "Getting Help on Oracle HTTP Server WLST Custom Commands"

■ Section A.2, "Names of WLST Custom Commands Have Changed"

■ Section A.3, "Oracle HTTP Server Commands"

A.1 Getting Help on Oracle HTTP Server WLST Custom Commands
Online help is available for Oracle HTTP Server WLST custom commands. To get
online help, enter help(’manageohs’) from the WLST command line and it will
display all the of the WLST custom commands for Oracle HTTP Server.

To get help for specific WLST custom commands, enter help(’custom_command_
name’) from the WLST command line, for example:

help(’ohs_createInstance’)

A.2 Names of WLST Custom Commands Have Changed
For ease of use and greater visibility, the names of the following Oracle HTTP Server
WLST custom commands have been changed in the current release. Instead of
incorporating "OHS" in the command name, the command is now prefixed with "ohs_".
For example, the createOHSInstance command becomes ohs_createInstance.

The old command names are deprecated. They will be accepted by WLST in the
current release, but you should avoid using them. If you use one of the old command
names, you will receive a message saying that the name is deprecated and containing a
pointer to the new command.

The following table lists the old and new command names.

Table A–1 Old and New Names of Oracle HTTP Server WLST Custom Commands

Old Name (deprecated) New Name

addOHSAdminProperties ohs_addAdminProperties

addOHSNMProperties ohs_addNMProperties

createOHSInstance ohs_createInstance

deleteOHSInstance ohs_deleteInstance

Oracle HTTP Server Commands

A-2 Oracle Fusion Middleware Administering Oracle HTTP Server

A.3 Oracle HTTP Server Commands
You should use the ohs_createInstance and ohs_deleteInstance commands to
create and delete Oracle HTTP Server instances instead of using the Configuration
Wizard. These custom commands perform additional error checking and, in the case of
instance creation, automatic port assignment.

Use the WLST custom commands listed in Table A–2 to manage Oracle HTTP Server
instances in WebLogic Server domains.

Table A–2 Oracle HTTP Server Commands

Use this command... To...
Use with
WLST...

ohs_addAdminProperties Add the LogLevel property to Oracle HTTP Server
Administration server property file.

Online

ohs_addNMProperties Add a property to the Oracle HTTP Server Node
Manager plug-in property file.

Online

ohs_createInstance Create a new instance of Oracle HTTP Server. Online

ohs_deleteInstance Delete the specified Oracle HTTP Server instance. Online

ohs_exportKeyStore Exports the keyStore to the specified Oracle HTTP
Server instance.

Online

ohs_postUpgrade Import the contents of wallet for all of the Oracle
HTTP Server instances (valid for those Oracle HTTP
Server instances which have been upgraded from a
previous version) in the domain to the KSS
database.

Online

ohs_updateInstances Creates a keystore in the KSS database in the case
where Oracle HTTP Server instances were created
using Configuration Wizard.

Online

A.3.1 ohs_addAdminProperties
Use with WLST: Online

Description
The ohs_addAdminProperties command adds the LogLevel property to Oracle HTTP
Server Administration server property file (ohs_admin.properties); LogLevel is the
only parameter ohs_addAdminProperties currently supports. This command is
available when WLST is connected to an Administration Server instance.

Syntax
ohs_addAdminProperties(logLevel = 'value')

Argument Description

LogLevel The granularity of information written to the log. The default is INFO;
other values accepted are:

■ ALL

■ CONFIG

■ FINE

■ FINER

■ FINEST

■ OFF

■ SEVERE

■ WARNING

Oracle HTTP Server Commands

Oracle HTTP Server WLST Custom Commands A-3

Example
This example creates a log file with log level is set to FINEST.

ohs_addAdminProperties(logLevel = 'FINEST')

A.3.2 ohs_addNMProperties
Use with WLST: Online

Description
The ohs_addNMProperties command adds a property to the Oracle HTTP Server Node
Manager plug-in property file (ohs_nm.properties). This command is available when
WLST is connected to an Administration Server instance.

Syntax
ohs_addNMProperties(logLevel = 'value', machine='node-manager-machine-name')

Argument Description

LogLevel The granularity of information written to the log. The default is INFO;
other values accepted are:

■ ALL

■ CONFIG

■ FINE

■ FINER

■ FINEST

■ OFF

■ SEVERE

■ WARNING

machine The name of the machine on which Node Manage is running.

Example
This example creates a log file with name ohs_nm.log under the path <domain_
dir>/system_components/OHS with log level is set to FINEST on the target machine,
my_NM_machine. The user need not restart Node Manager.

ohs_addNMProperties(logLevel = 'FINEST', machine = 'my_NM_machine')

Oracle HTTP Server Commands

A-4 Oracle Fusion Middleware Administering Oracle HTTP Server

A.3.3 ohs_createInstance
Use with WLST: Online

Description
The ohs_createInstance command creates a new instance of Oracle HTTP Server,
allowing critical configuration such as listening ports to be specified explicitly or
assigned automatically.

Syntax
ohs_createInstance(instanceName='xxx', machine='yyy', serverName='zzz', ...)

Argument Definition

instanceName The name of the managed instance being created.

machine The existing machine entry for the instance. This name (often
<hostName>.us.oracle.com) is set during creation of the WebLogic
Server Domain. If you forget the name, you can check $ORACLE_
INSTANCE/config/config.xml and look for the <machine> block.
Alternately, in WLST you can find the machine name by running:

serverConfig()
cd('Machines')
ls()

listenPort (Optional) The port number of the non-SSL server. If this value is not
specified, a port is automatically assigned. Listen ports typically begin
at 7777 and go up from there.

sslPort (Optional) The port number of the SSL virtual host. If this value is not
specified, a port is automatically assigned. SSL ports typically start at
4443 and go up from there.

adminPort (Optional) The port number used for communication with Node
Manager. If this value is not specified, a port is automatically assigned.
Administration ports typically begin at 9999 and go up from there.

serverName (Optional) The value of the ServerName directive of the non-SSL server.
If this value is not specified, the host name of the machine and the listen
port will be used to construct the value.

Example
The following example creates an Oracle HTTP Server instance called ohs1 that runs
on the machine abc03.myCorp.com:

ohs_createInstance(instanceName='ohs1', machine='abc03.myCorp.com')

A.3.4 ohs_deleteInstance
Use with WLST: Online

Description
The ohs_deleteInstance command deletes a specified Oracle HTTP Server instance.
The instance must be stopped before you can delete it. This command will return an
error if the instance is in the UNKNOWN or RUNNING state.

Syntax
ohs_deleteInstance(instanceName='xxx')

instanceName is the name of the Oracle HTTP Server instance.

Oracle HTTP Server Commands

Oracle HTTP Server WLST Custom Commands A-5

Example
The following example deletes the Oracle HTTP Server instance ohs1.

ohs_deleteInstance(instanceName='ohs1')

A.3.5 ohs_exportKeyStore
Use with WLST: Online

Description
The ohs_exportKeyStore command exports the keystore to the specified Oracle HTTP
Server instance location. This command is available when WLST is connected to an
Administration Server instance. For more information on how to use this command,
see Section 5.3.3, "Exporting the Keystore to an Oracle HTTP Server Instance Using
WLST."

Syntax
ohs_exportKeyStore(keyStoreName='<keyStoreName>', instanceName = '<instanceName>')

Argument Description

keyStoreName The name of the keystore.

instanceName The name of the Oracle HTTP Server instance.

Naming Conventions for Keystores
The keystore name (keyStoreName) must start with the string: <instanceName>_.

For example, presume that the keystore must be exported to an Oracle HTTP Server
instance named ohs1. Then the names of all of the keystores that must be exported to
ohs1 must start with ohs1_.

If this syntax is not followed while creating the keystore, then the export of the
keystore might not be successful.

Example
This example exports the keystore ohs1_myKeystore to the Oracle HTTP Server
instance ohs1.

ohs_exportKeyStore(keyStoreName='ohs1_myKeystore', instanceName = 'ohs1')

A.3.6 ohs_postUpgrade
Use with WLST: Online

Description
Use the ohs_postUpgrade command after you have upgraded from a previous version
of Oracle HTTP Server to release 12c (12.2.1).

Prior to release 12c (12.2.1), Oracle HTTP Server instances/components used wallets
without KSS integration. If you use the Upgrade Assistant to upgrade to 12c (12.2.1),
the existing wallet contents must be imported to the KSS database for further
management.

The ohs_postUpgrade command parses across all of the Oracle HTTP Server instances
in the domain and imports their wallets to the KSS database if an entry does not

Oracle HTTP Server Commands

A-6 Oracle Fusion Middleware Administering Oracle HTTP Server

already exist in the database for the same keystore name. This command is available
only when WLST is connected to an Administration Server instance. For more
information on using this command, see Section 1.7, "Upgrading from Earlier Releases
of Oracle HTTP Server" and Section 5.3.4, "Importing Wallets to the KSS Database after
an Upgrade Using WLST."

Syntax
ohs_postUpgrade()

This command does not take any arguments.

Example
ohs_postUpgrade()

A.3.7 ohs_updateInstances
Use with WLST: Online

Description
The ohs_updateInstances command is available only when WLST is connected to an
Administration Server instance. It will parse across all of the Oracle HTTP Server
instances in the domain and perform the following tasks:

■ Create a new keystore with the name <instanceName>_default if one does not
exist.

■ Put a demonstration certificate, demoCASignedCertificate, in the newly created
keystore.

■ Export the keystore to the instance location.

This command is to be used after an Oracle HTTP Server instance is created using
Configuration Wizard in collocated mode only. For more information on using this
command, see Section 5.3.5, "Associating Oracle HTTP Server Instances With a
Keystore Using WLST."

Syntax
ohs_updateInstances()

This command does not take any arguments.

Example
ohs_updateInstances()

B

Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules B-1

BMigrating to the mod_proxy_fcgi and mod_
authnz_fcgi Modules

[12] This appendix provides instructions on how to migrate from using the mod_fastcgi
module to the mod_proxy_fcgi and mod_authnz_fcgi modules.

The mod_fastcgi module was deprecated in the previous release and has been replaced
in the current release by the mod_proxy_fcgi and mod_authnz_fcgi modules. The
mod_proxy_fcgi module uses mod_proxy to provide FastCGI support. The mod_
authnz_fcgi module allows FastCGI authorizer applications to authenticate users and
authorize access to resources.

Complete the following tasks to migrate from the mod_fastcgi module to the mod_
proxy_fcgi and mod_authnz_fcgi modules.

■ Task 1: Replace LoadModule Directives in htttpd.conf File

■ Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File

■ Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External
FastCGI Server

■ Task 4: Setup an External FastCGI Server

■ Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications.

B.1 Task 1: Replace LoadModule Directives in htttpd.conf File
Edit the httpd.conf file to comment out the LoadModule lines for mod_fastcgi and
mod_fcgi. Add LoadModule lines for mod_proxy, mod_proxy_fcgi, and mod_authnz_
fcgi, for example:

LoadModule fastcgi_module modules/mod_fastcgi.so
LoadModule fcgi_module modules/mod_fcgi.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_fcgi_module modules/mod_proxy_fcgi
LoadModule authnz_fcgi_module modules/mod_authnz_fcgi

B.2 Task 2: Delete mod_fastcgi Configuration Directives From the
htttpd.conf File

Delete any of the following mod_fastcgi configuration directives that appear in the
htttpd.conf file. For more information on these directives, see the following URL

http://www.fastcgi.com/drupal/node/25

■ FastCgiServer

Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI Server

B-2 Oracle Fusion Middleware Administering Oracle HTTP Server

■ FastCgiConfig

■ FastCgiExternalServer

■ FastCgiIpcDir

■ FastCgiWrapper

■ FastCgiAuthenticator

■ FastCgiAuthenticatorAuthoritative

■ FastCgiAuthorizer

■ FastCgiAuthorizerAuthoritative

■ FastCgiAccessChecker

■ FastCgiAccessCheckerAuthoritative

B.3 Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an
External FastCGI Server

The mod_proxy_fcgi module does not have configuration directives. Instead, it uses
the directives set on the mod_proxy module. Unlike the mod_fcgid and mod_fastcgi
modules, the mod_proxy_fcgi module has no provision for starting the application
process. The purpose of mod_proxy_fcgi is to move this functionality outside of the
web server for faster performance. So, mod_proxy_fcgi simply will act as a reverse
proxy to an external FastCGI server.

For examples of using mod_proxy_fcgi, see the following URL:

http://httpd.apache.org/docs/trunk/mod/mod_proxy_fcgi.html

For information on the directives available for mod_proxy, including reverse proxy
examples, see the following URL:

http://httpd.apache.org/docs/trunk/mod/mod_proxy.html

Another way to setup the mod_proxy_fcgi module to act as a reverse proxy to a
FastCGI server is to force a request to be handled as a reverse-proxy request. To do
this, you must create a suitable Handler pass-through (also known as "Access via
Handler"). For more information on how to set up a Handler pass-through, see the
following URL:

http://httpd.apache.org/docs/trunk/mod/mod_proxy.html#handler

B.4 Task 4: Setup an External FastCGI Server
An external FastCGI server enables you to run FastCGI scripts external to the web
server or even on a remote machine. The following list provides information on some
available FastCGI server solutions:

■ fcgistarter, a utility for starting FastCGI programs. This solution is provided by
Apache httpd 2.4. It only works on UNIX systems. For more information on
fcgistarter, see the following URL:

http://httpd.apache.org/docs/trunk/programs/fcgistarter.html

■ PHP-FPM, an alternative PHP FastCGI implementation. This solution is included
with PHP release 5.3.3 and later. For more information on PHP-FPM, see the
following URL:

http://php.net/manual/en/install.fpm.configuration.php

Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications.

Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules B-3

■ spawn-fcgi, a utility for spawning remote and local FastCGI processes. For more
information on spawn-fcgi, see the following URL:

http://redmine.lighttpd.net/projects/spawn-fcgi/wiki/WikiStart

B.5 Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer
Applications.

The mod_authnz_fcgi module allows FastCGI authorizer applications to authenticate
users and authorize access to resources. It supports generic FastCGI authorizers which
participate in a single phase for authentication and authorization, and Apache
httpd-specific authenticators and authorizers.

FastCGI authorizers can authenticate using user id and password, such as for Basic
authentication, or can authenticate using arbitrary mechanisms. For more information
on using mod_authnz_fcgi, see the following URL:

http://httpd.apache.org/docs/trunk/mod/mod_authnz_fcgi.html

Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications.

B-4 Oracle Fusion Middleware Administering Oracle HTTP Server

C

Frequently Asked Questions C-1

CFrequently Asked Questions

[13] This appendix provides answers to frequently asked questions about Oracle HTTP
Server (OHS). It includes the following topics:

■ Section C.1, "How Do I Create Application-Specific Error Pages?"

■ Section C.2, "What Type of Virtual Hosts Are Supported for HTTP and HTTPS?"

■ Section C.3, "Can I Use Different Language and Character Set Versions of
Document?"

■ Section C.4, "Can I Apply Apache HTTP Server Security Patches to Oracle HTTP
Server?"

■ Section C.5, "Can I Upgrade the Apache HTTP Server Version of Oracle HTTP
Server?"

■ Section C.6, "Can I Compress Output From Oracle HTTP Server?"

■ Section C.7, "How Do I Create a Namespace That Works Through Firewalls and
Clusters?"

■ Section C.8, "How Can I Enhance Website Security?"

■ Section C.9, "Why is REDIRECT_ERROR_NOTES not set for "File Not Found"
errors?"

■ Section C.10, "How can I hide information about the Web Server Vendor and
Version"

■ Section C.11, "Can I Start OHS by Using apachectl or Other Command-Line Tool?"

■ Section C.12, "How Do I Configure Oracle HTTP Server to Listen at Port 80?"

■ Section C.13, "How Do I Terminate Requests Using SSL Within Oracle HTTP
Server?"

■ Section C.14, "How Do I Configure End-to-End SSL Within Oracle HTTP Server?"

■ Section C.15, "Can Oracle HTTP Server Front-End Oracle WebLogic Server?"

■ Section C.16, "What is the Difference Between Oracle WebLogic Server Domains
and Standalone Domains?"

■ Section C.17, "Can Oracle HTTP Server Cache the Response Data?"

■ Section C.18, "How Do I Configure a Virtual Server-Specific Access Log?"

Documentation from the Apache Software Foundation is referenced when applicable.

Note: Readers using this guide in PDF or hard copy formats will
be unable to access third-party documentation, which Oracle
provides in HTML format only. To access the third-party
documentation referenced in this guide, use the HTML version of
this guide and click the hyperlinks.

How Do I Create Application-Specific Error Pages?

C-2 Oracle Fusion Middleware Administering Oracle HTTP Server

C.1 How Do I Create Application-Specific Error Pages?
Oracle HTTP Server has a default content handler for dealing with errors. You can use
the ErrorDocument directive to override the defaults.

See Also: Apache HTTP Server documentation on the
ErrorDocument directive at:

http://httpd.apache.org/docs/current/mod/core.html#errordo
cument

C.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
(Apache 2.4 required)

For HTTP, Oracle HTTP Server supports both name-based and IP-based virtual hosts.
Name-based virtual hosts are virtual hosts that share a common listening address (IP
plus port combination), but route requests based on a match between the Host header
sent by the client and the ServerName directive set within the VirtualHost. IP-based
virtual hosts are virtual hosts that have distinct listening addresses. IP-based virtual
hosts route requests based on the address they were received on.

For HTTPS, only IP-based virtual hosts are possible with Oracle HTTP Server. This is
because for name-based virtual hosts, the request must be read and inspected to
determine which virtual host processes the request. If HTTPS is used, an SSL
handshake must be performed before the request can be read. To perform the SSL
handshake, a server certificate must be provided. To have a meaningful server
certificate, the host name in the certificate must match the host name the client
requested, which implies a unique server certificate per virtual host. However, because
the server cannot know which virtual host to route the request to until it has read the
request, and it can't properly read the request unless it knows which server certificate
to provide, there is no way to make name-based virtual hosting work with HTTPS.

C.3 Can I Use Different Language and Character Set Versions of
Document?

Yes, you can use multiviews, a general name given to the Apache HTTP Server's
ability to provide language and character-specific document variants in response to a
request.

See Also: Multiviews option in the Apache HTTP Server
documentation on Content Negotiation, at:

http://httpd.apache.org/docs/current/content-negotiation.h
tml

How Do I Create a Namespace That Works Through Firewalls and Clusters?

Frequently Asked Questions C-3

C.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP
Server?

No, you cannot apply the Apache HTTP Server security patches to Oracle HTTP
Server for the following reasons:

■ Oracle tests and appropriately modifies security patches before releasing them to
Oracle HTTP Server users.

■ In many cases, the Apache HTTP Server alerts, such as OpenSSL alerts, may not be
applicable because Oracle has removed those components from the stack.

The latest security related fixes to Oracle HTTP Server are performed through the
Oracle Critical Patch Update (CPU). For more details, refer to Oracle's Critical Patch
Updates and Security Alerts Web page.

Note: After applying a CPU, the Apache HTTP Server-based version
may stay the same, but the vulnerability will be fixed. There are
third-party security detection tools that can check the version, but do
not check the vulnerability itself.

C.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP
Server?

No, you cannot upgrade only the Apache HTTP Server version inside Oracle HTTP
Server. Oracle provides a newer version of Apache HTTP Server that Oracle HTTP
Server is based on, which is part of either a patch update or the next major or minor
release of Oracle Fusion Middleware.

C.6 Can I Compress Output From Oracle HTTP Server?
In general, Oracle recommends using mod_deflate, which is included with Oracle
HTTP Server. For more information pertaining to mod_deflate, see
http://httpd.apache.org/docs/current/mod/mod_deflate.html

C.7 How Do I Create a Namespace That Works Through Firewalls and
Clusters?

The general idea is that all servers in a distributed website should use a single URL
namespace. Every server serves some part of that namespace, and can redirect or
proxy requests for URLs that it does not serve to a server that is closer to that URL. For
example, your namespaces could be the following:

/app1/login.html
/app1/catalog.html
/app1/dologin.jsp
/app2/orderForm.html
/apps/placeOrder.jsp

You could initially map these name spaces to two Web servers by putting app1 on
server1 and app2 on server2. The configuration for server1 might look like the
following:

Redirect permanent /app2 http://server2/app2
Alias /app1 /myApps/application1
<Directory /myApps/application1>

How Can I Enhance Website Security?

C-4 Oracle Fusion Middleware Administering Oracle HTTP Server

 ...
</Directory>

The configuration for Server2 is complementary.

If you decide to partition the namespace by content type (HTML on server1, and JSP
on server2), then you can change server configuration and move files around, but you
do not have to make changes to the application itself. The resulting configuration of
server1 might look like the following:

RedirectMatch permanent (.*) \.jsp$ http://server2/$1.jsp
AliasMatch ^/app(.*) \.html$ /myPages/application$1.html
<DirectoryMatch "^/myPages/application\d">
 ...
</DirectoryMatch>

The amount of actual redirection can be minimized by configuring a hardware load
balancer like F5 system BIG-IP to send requests to server1 or server2 based on the
URL.

C.8 How Can I Enhance Website Security?
The following are some general guidelines for securing your web site.

■ Use a commercial firewall between your ISP and your Web server.

■ Use switched Ethernet to limit the amount of traffic a compromised server can
detect. Use additional firewalls between Web server machines and highly sensitive
internal servers running the database and enterprise applications.

■ Remove unnecessary network services such as RPC, Finger, and telnet from your
server.

■ Always validate all input from Web forms and output from your applications. Be
sure to validate encodings, long input strings and input that contains
non-printable characters, HTML tags, or javascript tags.

■ Encrypt the contents of cookies when it is relevant.

■ Check often for security patches for all your system and application software, and
install them as soon as possible. Only accept patches from Oracle or your Oracle
support representative.

■ When it is relevant, use an intrusion detection package to monitor for defaced Web
pages, viruses, and presence of rootkits. If possible, mount system executables and
Web content on read-only file systems.

■ Consider using Pen testing or other relevant security testing on your application.
Consider configuring web security using the appropriate custom mod_security
rules to protect your application. For more information on mod_security, see
Section 5.4, "Configuring the mod_security Module" and Section 9.6, "Using mod_
security."

■ Remove unneeded content from the httpd.conf file. For more information, see
Section 5.3.9, "Removing Access to Unneeded Content."

■ Take precautions to protect your web pages from clickjacking attempts. There is a
lot of helpful information available on the internet. For more information on
clickjacking, see the Security Best Practices section in "Security Vulnerability FAQ
for Oracle Database and Fusion Middleware Products (Doc ID 1074055.1)".

How Do I Configure End-to-End SSL Within Oracle HTTP Server?

Frequently Asked Questions C-5

C.9 Why is REDIRECT_ERROR_NOTES not set for "File Not Found"
errors?

The REDIRECT_ERROR_NOTES CGI environment variable is not set for "File Not
Found" errors in Oracle HTTP Server because compatibility with Apache HTTP Server
does not make that information available to CGI and other applications for this
condition.

C.10 How can I hide information about the Web Server Vendor and
Version

Specify ServerSignature Off to remove this information from web server generated
responses. Specify ServerTokens Custom some-server-string to disguise the web
server software when Oracle HTTP Server generates the web Server response header.
(When a backend server generates the response, the server response header may come
from the backend server depending on the proxy mechanism.)

Note: ServerTokens Custom some-server-string is a replacement
for the ServerHeader Off setting in Oracle HTTP Server 10g.

C.11 Can I Start OHS by Using apachectl or Other Command-Line Tool?
Oracle HTTP Server 12c (12.2.1) process management is handled by Node Manager.
You can use the startComponent command to start Oracle HTTP Server without using
WLST or Fusion Middleware Control directly. For more information, see
Section 4.3.3.3, "Starting Oracle HTTP Server Instances from the Command Line".

C.12 How Do I Configure Oracle HTTP Server to Listen at Port 80?
By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved
range (typically less than 1024). You can enable Oracle HTTP Server to listen on a port
in the reserved range (for example, the default port 80) by following the instructions in
Section 4.3.3.4, "Starting Oracle HTTP Server Instances on a Privileged Port (UNIX
Only)."

C.13 How Do I Terminate Requests Using SSL Within Oracle HTTP
Server?

You can terminate requests using SSL before or within Oracle HTTP Server, where the
mod_wl_ohs module forwards requests to WebLogic Server. Whether you terminate
SSL before the request reaches Oracle HTTP Server or when the request is in the
server, depends on your topology. For more information, see Section 8.7.1.1,
"Terminating SSL at the Load Balancer" and Section 8.7.2.1, "Terminating SSL at Oracle
HTTP Server."

C.14 How Do I Configure End-to-End SSL Within Oracle HTTP Server?
Support for Secure Sockets Layer (SSL) is provided by the Oracle WebLogic Server
Proxy Plug-In. You can use the SSL protocol to protect the connection between the
plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality and
integrity to the data passed between the plug-in and WebLogic Server. See "Use SSL
with Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1 for information on

Can Oracle HTTP Server Front-End Oracle WebLogic Server?

C-6 Oracle Fusion Middleware Administering Oracle HTTP Server

setting up SSL libraries and for setting up one-way or two-way SSL communications
between the web server and Oracle WebLogic Server.

If you will be configuring SSL in Oracle HTTP Server but not on Oracle WebLogic
Server, then you can terminate SSL for requests sent by Oracle HTTP Server. For
information on configuring this scenario, see Section 8.7.2.1, "Terminating SSL at
Oracle HTTP Server."

C.15 Can Oracle HTTP Server Front-End Oracle WebLogic Server?
Oracle HTTP Server is the web server component for Oracle Fusion Middleware. The
server uses the WebLogic Management Framework to provide a simple, consistent and
distributed environment for administering Oracle HTTP Server, Oracle WebLogic
Server, and the rest of the Fusion Middleware stack. It acts as the HTTP front-end by
hosting the static content from within and by using its built-in Oracle WebLogic Server
Proxy Plug-In (mod_wl_ohs module) to route dynamic content requests to
WebLogic-managed servers.

For information about the topologies you into which you can install Oracle HTTP
Server, see Section 1.2, "Oracle HTTP Server 12c (12.2.1) Topologies."

C.16 What is the Difference Between Oracle WebLogic Server Domains
and Standalone Domains?

Oracle HTTP Server can be installed in either a standalone, a Full-JRF, or a
Restricted-JRF domain. A standalone domain is a container for system components,
such as Oracle HTTP Server. It is ideal for a DMZ environment because it has the least
overhead. A standalone domain has a directory structure similar to an Oracle
WebLogic Server Domain, but it does not contain an Administration Server, or
Managed Servers, or any management support. It can contain one or more instances of
system components of the same type, such as Oracle HTTP Server, or a mix of system
component types.

WebLogic Server Domains support all WebLogic Management Framework tools. An
Oracle WebLogic Server domain can be either Full-JRF or Restricted JRF. A WebLogic
Server Domain in Full-JRF mode contains a WebLogic Administration Server, zero or
more WebLogic Managed Servers, and zero or more System Component Instances (for
example, an Oracle HTTP Server instance). This type of domain provides enhanced
management capabilities through the Fusion Middleware Control and WebLogic
Management Framework present throughout the system. A WebLogic Server Domain
can span multiple physical machines, and it is centrally managed by the
administration server. Because of these properties, a WebLogic Server Domain
provides the best integration between your System Components and Java EE
Components.

The Restricted-JRF domain is a new feature of the 12.2.1 release; its purpose is to
simplify Oracle HTTP Server administration by using the WebLogic server domain. A
Restricted-JRF Oracle WebLogic Server domain is similar to a Full-JRF domain except
that a connection to an external database is not required. All of the Oracle HTTP
Server functionality through Fusion MiddleWare Control and WLST is still available,
with the exception of cross component wiring.

For more details on each of these domains, see Section 1.4, "Domain Types."

How Do I Configure a Virtual Server-Specific Access Log?

Frequently Asked Questions C-7

C.17 Can Oracle HTTP Server Cache the Response Data?
Oracle HTTP Server now includes the Apache mod_cache and mod_cache_disk
modules to cache response data.

For more information, on mod_cache and mod_cache_disk, see mod_cache in the
Apache documentation:

http://httpd.apache.org/docs/2.4/mod/mod_cache.html

C.18 How Do I Configure a Virtual Server-Specific Access Log?
Within every VirtualHost directive, you can use the Apache LogFormat and
CustomLog directives to configure Virtual Host-specific access log format and log files.
For more information, see Section 8.4.2.3, "LogFormat" and Section 8.4.2.4,
"CustomLog."

How Do I Configure a Virtual Server-Specific Access Log?

C-8 Oracle Fusion Middleware Administering Oracle HTTP Server

D

Troubleshooting Oracle HTTP Server D-1

DTroubleshooting Oracle HTTP Server

[14] This appendix describes common problems that you might encounter when using
Oracle HTTP Server (OHS), and explains how to solve them. It includes the following
topics:

■ Section D.1, "Oracle HTTP Server Unable to Start Due to Port Conflict"

■ Section D.2, "System Overloaded by Number of httpd Processes"

■ Section D.3, "Permission Denied When Starting Oracle HTTP Server On a Port
Below 1024"

■ Section D.4, "Using Log Files to Locate Errors"

■ Section D.5, "Recovering an OHS Instance on a Remote Host"

■ Section D.6, "Oracle HTTP Server Performance Issues"

■ Section D.7, "Out of DMS Shared Memory"

■ Section D.8, "Performance Issues with Instances Created on Shared File Systems"

■ Section D.9, "Node Manager 12c (12.1.2) OHS Throws Java Exception on AIX"

D.1 Oracle HTTP Server Unable to Start Due to Port Conflict
You can get the following error if Oracle HTTP Server cannot start due to port conflict:

[VirtualHost: main] (98)Address already in use: make_sock: could not bind to
address [::]:7777

Solution
Determine what process is already using that port, and then either change the IP:port
address of Oracle HTTP Server or the port of the conflicting process.

Note: If the OHS instance was created with the config Wizard, there
is no automated port management. It is possible to create multiple
instances using the same Listen port.

D.2 System Overloaded by Number of httpd Processes
When too many httpd processes run on a system, the response time degrades because
there are insufficient resources for normal processing.

Solution
Lower the value of MaxRequestWorkers to a value the machine can accommodate.

Permission Denied When Starting Oracle HTTP Server On a Port Below 1024

D-2 Oracle Fusion Middleware Administering Oracle HTTP Server

D.3 Permission Denied When Starting Oracle HTTP Server On a Port
Below 1024

You will get the following error if you try to start Oracle HTTP Server on a port below
1024:

[VirtualHost: main] (13)Permission denied: make_sock: could not bind to address
[::]:443

Oracle HTTP Server will not start on ports below 1024 because root privileges are
needed to bind these ports.

Solution
Follow the steps in Section 4.3.3.4, "Starting Oracle HTTP Server Instances on a
Privileged Port (UNIX Only)" to start Oracle HTTP Server on a Privileged Port.

D.4 Using Log Files to Locate Errors
You can use the following log files to help locate errors:

■ Rewrite Log

■ Script Log

■ Error Log

D.4.1 Rewrite Log
This log file is necessary for debugging when mod_rewrite is used. The log file
produces a detailed analysis of how the rewriting engine transforms requests. The
value of the LogLevel directive controls the level of detail.

D.4.2 Script Log
This log file enables you to record the input to and output from the CGI scripts. This
should only be used in testing, and not for production servers.

See Also: ScriptLog in the Apache HTTP Server documentation
at:

http://httpd.apache.org/docs/current/mod/mod_
cgi.html#scriptlog

D.4.3 Error Log
This log file records overall server problems. Refer to Chapter 8, "Managing Oracle
HTTP Server Logs" for details on configuring and viewing error logs.

D.5 Recovering an OHS Instance on a Remote Host
If you need to recover an Oracle HTTP Server instance that is installed on a remote
host (that is, a host with just managed servers but no Administration Server), you
must use tar and untar; pack.sh and unpack.sh do not work in this scenario.

Out of DMS Shared Memory

Troubleshooting Oracle HTTP Server D-3

D.6 Oracle HTTP Server Performance Issues
The following are performance issues, along with their solutions, that you might
encounter when running Oracle HTTP Server:

■ Section D.6.1, "Special Runtime Files Reside on a Network File System"

■ Section D.6.2, "UNIX Sockets on a Network File System"

■ Section D.6.3, "DocumentRoot on a Slow File System"

D.6.1 Special Runtime Files Reside on a Network File System
Oracle HTTP Server uses locks for its internal processing, which in turn use lock files.
These files are created dynamically when the lock is created and are accessed every
time the lock is taken or released. If these files reside on a slower file system (for
example, network file system), then there could be severe performance degradation.
To counter this issue:

On Linux:

In httpd.conf, change Mutex fnctl:fileloc default to Mutex sysvsem default where
fileloc is the value of the directive LockFile (two places).

On Solaris:

In httpd.conf, change Mutex fnctl:fileloc default to Mutex pthread default
where fileloc is the value of the directive LockFile (two places).

D.6.2 UNIX Sockets on a Network File System
The mod_cgid module is not enabled by default. If enabled, this module uses UNIX
sockets internally. If UNIX sockets reside on a slower file system (for example,
network file system), a severe performance degradation could be observed. You can
set the following directive to avoid the issue:

■ If mod_cgid is enabled, use the ScriptSock directive to place mod_cgid's UNIX
socket on a local filesystem.

D.6.3 DocumentRoot on a Slow File System
If you are using mod_wl_ohs to route the requests to back-end WLS server/cluster,
and the DocumentRoot is on a slower file system (for example, network file system),
then every request that mod_wl_ohs routes to the backend server can experience
performance issues. This can be overcome by setting WLSRequest to ON instead of
SetHandler weblogic-handler.

D.7 Out of DMS Shared Memory
In some extreme configurations, you might see the following message in the OHS
error log:

dms_fail_shm_expansion: out of DMS shared memory in pid XXX, disabling DMS;
increase DMSProcSharedMem directive from YYY

This is because of an incorrect calculation of required shared memory for OHS DMS.
This can be resolved by setting DMSProcSharedMem to a larger value than the default of
4096. Continue setting DMSProcSharedMem 50% higher until the problem is resolved.
The minimum value for DMSProcSharedMem is 256 and the maximum value is 65536.

Performance Issues with Instances Created on Shared File Systems

D-4 Oracle Fusion Middleware Administering Oracle HTTP Server

In a configuration with a very large number of virtual hosts (hundreds or thousands),
if the above workaround does not work, you can instead, set the environment variable
OHS_DMS_BLOCKSIZE to a large enough value that Oracle HTTP Server starts without
error. The value of this variable is in kilobytes and a value of 524288 is a good starting
point. If the error persists, continue to increase the value by 50% until Oracle HTTP
Server starts without error.

D.8 Performance Issues with Instances Created on Shared File Systems
If you encounter functional or performance issues when creating an Oracle HTTP
Server instance on a shared filesystem, including NFS (Network File System), it might
be due to filesystem accesses in the default configuration. In this case, you must
update the httpd.conf file specific to your operating systems. For information on
updating the this file, see Section 5.3.12, "Updating Oracle HTTP Server Component
Configurations on a Shared Filesystem".

D.9 Node Manager 12c (12.1.2) OHS Throws Java Exception on AIX
When running Oracle HTTP Server on AIX, if ULIMIT values of file handlers are
small, Node Manager console/log throws"java.io.IOException: error=24, Too many
open files" error on AIX.

Workaround
To resolve the issue, increase the ULIMIT values of file handlers as described here:

1. Log in as the root user.

2. Open /etc/security/limits file.

3. Edit the file and set the following values:

■ nofiles=8192

■ nofiles_hard=65536

4. Reboot the machine to enable the changes.

E

Configuration Files E-1

EConfiguration Files

The default Oracle HTTP Server configuration contains the files described in the
following sections:

■ Section E.1, "httpd.conf File"

■ Section E.2, "ssl.conf File"

■ Section E.3, "admin.conf File"

■ Section E.4, "mod_wl_ohs.conf File"

■ Section E.5, "mime.types File"

■ Section E.6, "ohs.plugins.nodemanager.properties File"

■ Section E.7, "magic File"

■ Section E.8, "keystores/<wallet-directory> File"

■ Section E.9, "auditconfig.xml File"

■ Section E.10, "component-logs.xml File"

■ Section E.11, "component_events.xml File"

■ Section E.12, "Additional Reference"

For more information about the configuration files, see Section 1.6, "Understanding
Configuration Files".

E.1 httpd.conf File
The following table describes the httpd.conf file.

Description Top-level web server configuration file

Format Apache HTTP Server .conf file format

Primary feature configured Various, including non-SSL listening socket

E.2 ssl.conf File
The following table describes the ssl.conf file.

Description Web server configuration file for SSL

Format Apache HTTP Server .conf file format

Primary feature configured mod_ossl

admin.conf File

E-2 Oracle Fusion Middleware Administering Oracle HTTP Server

E.3 admin.conf File
The following table describes the admin.conf file.

Description Web server configuration file for administration port

Format Apache HTTP Server .conf file format

Primary feature configured mod_dms; administration port used for communication
with node manager

Note: Only the listen port and local address are intended for
customer configuration.

E.4 mod_wl_ohs.conf File
The following table describes the mod_wl_ohs.conf file.

Description Web server configuration file for WebLogic plugin

Format Apache HTTP Server .conf file format

Primary feature configured WebLogic plugin (mod_wl_ohs)

E.5 mime.types File
The following table describes the mime.types file.

Description Web server configuration file for mod_mime

Format mod_mime file format

Primary feature configured Mime types used by mod_mime

E.6 ohs.plugins.nodemanager.properties File
The following table describes the ohs.plugins.nodemanager.properties file.

Description Configuration file for Oracle HTTP Server node manager
plug-ins

Format Java property file format

Primary feature configured Oracle HTTP Server plug-ins

E.7 magic File
The following table describes the magic file.

Description Optional, disabled web server configuration file for mod_
mime_magic

Format mod_mime_magic file format

Primary feature configured File content patterns used by mod_mime_magic

Additional Reference

Configuration Files E-3

E.8 keystores/<wallet-directory> File
The following table describes the default keystores file.

Name example: keystores/default

Description Oracle wallet

Format Oracle wallet format

Primary feature configured Oracle wallets for SSL/TLS communication

E.9 auditconfig.xml File
The following table describes the auditconfig.xml file.

Description Configuration of OHS auditing and logging

Format FMW audit framework audit configuration XML format

Primary feature configured FMW audit framework auditing of Oracle HTTP Server
operations

E.10 component-logs.xml File
The following table describes the component-logs.xml file.

Description Configuration of OHS log files for log collection

Format FMW log file configuration XML format

Primary feature configured Log collection

E.11 component_events.xml File
The following table describes the component_event.xml file.

Description Static configuration of OHS audit event definitions

Format FMW audit framework component event XML format

Primary feature configured FMW audit framework

Note: This configuration file is not intended for modification by
customers.

E.12 Additional Reference
For additional information, see the following documentation:

■ Apache HTTP Server .conf file format:

http://httpd.apache.org/docs/2.4/configuring.html

■ mod_mime file format:

http://httpd.apache.org/docs/2.4/mod/mod_mime.html

■ mod_mime_magic file format:

Additional Reference

E-4 Oracle Fusion Middleware Administering Oracle HTTP Server

http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html

F

Property Files F-1

FProperty Files

[15] This appendix documents the property files used by Oracle HTTP Server. The files
include:

■ Section F.1, "ohs_admin.properties File"

■ Section F.2, "ohs_nm.properties File"

■ Section F.3, "ohs.plugins.nodemanager.properties File"

F.1 ohs_admin.properties File
The ohs_admin.properties file is a per domain file used to configure the Oracle HTTP
Server administration server MBeans.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_
admin.properties

Editable properties in this file are listed here:

Property Description

LogLevel The log level for the OHS plug-in.

Accepted Values:

■ SEVERE (highest value)

■ WARNING

■ INFO

■ CONFIG

■ FINE

■ FINER

■ FINEST (lowest value)

Default: INFO

F.2 ohs_nm.properties File
The ohs_nm.properties file is a per domain file used to configure the Oracle HTTP
Server plug-in.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_
nm.properties

Property Description

LogLevel The log level for the OHS undemanding plug-in.

Accepted values:

■ SEVERE (highest value)

■ WARNING

■ INFO

■ CONFIG

■ FINE

■ FINER

■ FINEST (lowest value)

 Default: INFO

ohs.plugins.nodemanager.properties File

F-2 Oracle Fusion Middleware Administering Oracle HTTP Server

F.3 ohs.plugins.nodemanager.properties File
The ohs.plugins.nodemanager.properties file exists for each configured Oracle HTTP
Server and contains configured parameters OHS process management.

File path: DOMAIN_
HOME/config/fmwconfig/components/OHS/ohs1/ohs.plugins.nodemanager.prope
rties

This section contains the following information:

■ Section F.3.1, "Cross-platform Properties"

■ Section F.3.2, "Environment Variable Configuration Properties"

■ Section F.3.3, "Properties Specific to Oracle HTTP Server Instances Running on
Linux and UNIX"

Note: Any paths placed in Windows implementations of
ohs.plugins.nodemanager.properties that include backslashes must
have those backslashes escaped.

You must do this manually after upgrading from Oracle HTTP Server
11g where paths with backslashes were migrated from opmn.xml to
ohs.plugins.nodemanager.properties.

For example:

environment.TMP = C:\Users\user\AppData\Local\Temp\1

Must be modified manually to:

environment.TMP = C:\\Users\\user\\AppData\\Local\\Temp\\1

F.3.1 Cross-platform Properties
The following table lists the cross-platform properties:

Property Description

config-file The base filename of the initial Oracle HTTP Server configuration file.

config-file accepts any valid .conf file in the instance configuration
directory.

Caution: The specified .conf file must include admin.conf in the same
manner as the default httpd.conf.

Default: httpd.conf

command-line Extra arguments to add to the httpd invocation.

command-line accepts any valid httpd command-line parameters.

Caution: These must not conflict with the usual start, stop, and restart
parameters. Using -D and symbol is the expected use of this property.

Default: None

start-timeout The maximum number of seconds to wait for Oracle HTTP Server to
start and initialize.

 start-timeout accepts any numeric value from 5 to 3600.

Default: 120

stop-timeout The maximum number of seconds to wait for the Oracle HTTP Server to
terminate.

stop-timeout accepts any numeric value from 5 to 3600.

Default: 60

restart-timeout The maximum number of seconds to wait for the Oracle HTTP Server to
restart.

restart-timeout accepts any numeric value from 5 to 3600.

Default: 180

ping-interval The number of seconds from the completion of one health check ping to
the Oracle HTTP Server until the start of the next. A value of 0 disables
pings.

ping-interval accepts any numeric value from 0 to 3600.

Default: 30

ping-timeout The maximum number of seconds to wait for an Oracle HTTP Server
health check ping to complete.

ping-tmeout accepts any numeric value from 5 to 3600.

Default: 60

ohs.plugins.nodemanager.properties File

Property Files F-3

Example:
config-file = httpd.conf
command-line = -DSYMBOL
start-timeout = 120
stop-timeout = 60
restart-timeout = 180
ping-interval = 30
ping-timeout = 60

F.3.2 Environment Variable Configuration Properties
Additional environment variables for the OHS server may be specified using
environment properties.

The environment property syntax is:

ohs.plugins.nodemanager.properties File

F-4 Oracle Fusion Middleware Administering Oracle HTTP Server

environment[.append][.<order>].<name> = <value>

Where:

■ The optional .append will append the new <value> to any existing value for
<name>. If <name> has not yet been defined, then <value> will be the new value.

■ The optional .<order> value sets order for this definition's setting in the
environment (the default is 0). The order determines when the configured variable
is added to the process' environment (and its value evaluated). Environment
properties with lower order values are processed before those with higher order
values. The order value must be an integer with a value greater than or equal to 0.

■ <name> is the environment variable name, which must begin with a letter or
underscore, and consist of letters, numeric digits or underscores.

■ <value> is the value of environment variable <name>. The value can reference
other environment variable names, including its own.

The following special references may be included in the value:

– "$:" for the path separator

– "$/" for the file separator

– "$$" for '$'

With the exception of these special characters, UNIX variable syntax references
("$name" or "${name}") and the Windows variable syntax reference ("%name%") are
supported.

Each property name within the same property file must be unique (the behavior is not
defined for multiple properties defined with the same name), thus the .<order> field
is necessary to keep property names unique when multiple definitions are provided
for the same environment variable <name>.

The following environment variables are set by the Oracle HTTP Server plug-in:

■ SHELL: From 's environment, or defaults to /bin/sh, or cmd.exe for Windows

■ ORA_NLS33: Set to $ORACLE_HOME/nls/data

■ NLS_LANG: From 's environment, otherwise default

■ LANG: From 's environment, otherwise default

■ LC_ALL: From 's environment, if set

■ TZ: From 's environment, if set

■ ORACLE_HOME: Full path to the Oracle home

■ ORACLE_INSTANCE: Full path to the domain home

■ INSTANCE_NAME: The name of the domain

■ PRODUCT_HOME: The path to the OHS install: $ORACLE_HOME/ohs

■ PATH: Defaults to

– On UNIX:

$PRODUCT_HOME/bin:$ORACLE_HOME/bin:

$ORACLE_HOME/jdk/bin:/bin:/usr/bin:/usr/local/bin

– On Windows:

%PRODUCT_HOME%\bin;%ORACLE_HOME%\bin;

ohs.plugins.nodemanager.properties File

Property Files F-5

%ORACLE_HOME%\jdk\bin;%SystemRoot%;%SystemRoot%\system32

These variables apply to UNIX only:

■ TNS_ADMIN: From 's environment, or $ORACLE_HOME/network/admin

■ LD_LIBRARY_PATH: $PRODUCT_HOME/lib:$ORACLE_
HOME/lib:$ORACLE_HOME/jdk/lib

■ LIBPATH: Same as LD_LIBARY_PATH

■ X_LD_LIBRARY_PATH_64: Same as LD_LIBRARY_PATH

These variables apply to Windows only:

■ ComSpec: Defaults to %ComSpec% value from the system.

■ SystemRoot: Defaults to %SystemRoot% value from the system.

■ SystemDrive: Defaults to %SystemDrive% value from the system.

Example
On a UNIX like system with the web tier installed as /oracle and the environment
variable "MODX_RUNTIME=special" set in the NodeManager's environment, the
following definitions:

environment.MODX_RUNTIME = $MODX_RUNTIME
environment.1.MODX_ENV = Value A
environment.1.MODX_PATH = $PATH$:/opt/modx/bin
environment.2.MODX_ENV = ${MODX_ENV}, Value B
environment.append.2.MODX_PATH = /var/modx/bin
MODX_ENV = Value A, Value B
MODX_PATH = /oracle/ohs/bin:/oracle/bin:/oracle/jdk/bin:/bin:/usr/bin:
/usr/local/bin:/opt/modx/bin:/var/modx/bin

would result in the following additional environment variables set for Oracle HTTP
Server:

MODX_RUNTIME = special

F.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX
These should only be configured for instances running on Linux or other UNIX like
systems.

Property Description

restart-mode Determines whether to use graceful or hard restart for the Oracle HTTP
Server when configuration changes are activated.

restart-mode accepts these values:

■ restart

■ graceful

Default: graceful

stop-mode Determines whether to use a graceful or hard stop when stopping Oracle
HTTP Server.

stop-mode accepts these values:

■ stop

■ graceful-stop

Default: stop

ohs.plugins.nodemanager.properties File

F-6 Oracle Fusion Middleware Administering Oracle HTTP Server

Example
restart-mode = graceful
stop-mode = stop
mpm = worker
allow-corefiles = no

mpm Determines whether to use the prefork, worker, or event MPM for Oracle
HTTP Server.

mpm accepts these values:

■ prefork

■ worker

■ event

Default: worker for UNIX, event for Linux

allow-corefiles Determines whether ulimit should be set to allow core files to be written
for OHS server crashes.

allow-corefiles accepts these values:

■ yes

■ no

Default: no

Property Description

G

OHS Module Directives G-1

GOHS Module Directives

[16] This appendix describes the directives available in the Oracle-developed modules
supported by OHS. It contains these sections:

■ Section G.1, "Note on mod_wl_ohs Module"

■ Section G.2, "mod_certheaders Module"

■ Section G.3, "mod_ossl Module"

G.1 Note on mod_wl_ohs Module
In addition to the modules and directives described in this appendix, Oracle HTTP
Server also ships with the mod_wl_ohs module, generally referred to as the Oracle
WebLogic Server Proxy Plug-In. For information on this module’s directives, see
"Parameters for Web Server Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins
12.2.1.

G.2 mod_certheaders Module
The mod_certheaders module accepts the following directives:

■ AddCertHeader Directive

■ SimulateHttps Directive

G.2.1 AddCertHeader Directive
Specify which headers should be translated to CGI environment variables. This can be
achieved by using the AddCertHeader directive. This directive takes a single argument,
which is the CGI environment variable that should be populated from a HTTP header
on incoming requests. For example, to populate the SSL_CLIENT_CERT CGI
environment variable.

Category Value

Syntax AddCertHeader environment_variable

Example AddCertHeader SSL_CLIENT_CERT

Default None

G.2.2 SimulateHttps Directive
You can use mod_certheaders to instruct Oracle HTTP Server to treat certain requests
as if they were received through HTTPS even though they were received through

mod_ossl Module

G-2 Oracle Fusion Middleware Administering Oracle HTTP Server

HTTP. This is useful when Oracle HTTP Server is front-ended by a reverse proxy or
load balancer, which acts as a termination point for SSL requests, and forwards the
requests to Oracle HTTP Server through HTTPS.

Category Value

Syntax SimulateHttps on|off

Example SimulateHttps on

Default off

G.3 mod_ossl Module
To configure SSL for your Oracle HTTP Server, enter the mod_ossl module directives
you want to use in the ssl.conf file.

The following sections describe these mod_ossl directives:

■ SSLCARevocationFile Directive

■ SSLCARevocationPath Directive

■ SSLCipherSuite Directive

■ SSLEngine Directive

■ SSLFIPS Directive

■ SSLHonorCipherOrder Directive

■ SSLInsecureRenegotiation Directive

■ SSLOptions Directive

■ SSLProtocol Directive

■ SSLProxyCipherSuite Directive

■ SSLProxyEngine Directive

■ SSLProxyProtocol Directive

■ SSLProxyWallet Directive

■ SSLRequire Directive

■ SSLRequireSSL Directive

■ SSLSessionCache Directive

■ SSLSessionCacheTimeout Directive

■ SSLTraceLogLevel Directive

■ SSLVerifyClient Directive

■ SSLWallet Directive

G.3.1 SSLCARevocationFile Directive
Specifies the file where you can assemble the Certificate Revocation Lists (CRLs) from
CAs (Certificate Authorities) that you accept certificates from. These are used for client
authentication. Such a file is the concatenation of various PEM-encoded CRL files in
order of preference. This directive can be used alternatively or additionally to
SSLCARevocationPath.

Category Value

Syntax SSLCARevocationFile file_name

Example SSLCARevocationFile ${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/crl/ca_bundle.cr

Default None

mod_ossl Module

OHS Module Directives G-3

G.3.2 SSLCARevocationPath Directive
Specifies the directory where PEM-encoded Certificate Revocation Lists (CRLs) are
stored. These CRLs come from the CAs (Certificate Authorities) that you accept
certificates from. If a client attempts to authenticate itself with a certificate that is on
one of these CRLs, then the certificate is revoked and the client cannot authenticate
itself with your server.

This directive must point to a directory that contains the hash value of the CRL To see
the commands that allow you to create the hashes, see "orapki" in Administering Oracle
Fusion Middleware.

Category Value

Syntax SSLCARevocationPath path/to/CRL_directory/

Example SSLCARevocationPath ${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/crl

Default None

G.3.3 SSLCipherSuite Directive
Specifies the SSL cipher suite that the client can use during the SSL handshake. This
directive uses either a comma-separated or colon-separated cipher specification string
to identify the cipher suite. Table 11–2 shows the tags you can use in the string to
describe the cipher suite you want. SSLCipherSuite accepts the following prefixes:

■ none: Adds the cipher to the list

■ + : Adds the cipher to the list and places it in the correct location in the list

■ - : Removes the cipher from the list (can be added later)

■ ! : Removes the cipher from the list permanently

Tags are joined with prefixes to form a cipher specification string. Cipher suite tags are
listed in Table G–1.

Category Value

Example SSLCipherSuite ALL:!MD5

In this example, all ciphers are specified except MD5 strength ciphers.

Syntax SSLCipherSuite cipher-spec

mod_ossl Module

G-4 Oracle Fusion Middleware Administering Oracle HTTP Server

Table G–2 lists the Cipher Suites supported in Oracle Advanced Security 12c (12.2.1).

Default TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_
AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_
ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_
256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_
ECDSA_WITH_RC4_128_SHA,TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_
SHA,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_
AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_
ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_
CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_
RC4_128_SHA,TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,TLS_RSA_WITH_
AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_RSA_
WITH_AES_256_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA256,SSL_
RSA_WITH_AES_256_CBC_SHA,SSL_RSA_WITH_AES_128_CBC_SHA,SSL_RSA_
WITH_RC4_128_SHA,SSL_RSA_WITH_3DES_EDE_CBC_SHA

Table G–1 SSLCipher Suite Tags

Function Tag Meaning

Key exchange kRSA RSA key exchange

Key exchange kECDHE Elliptic curve Diffie–Hellman Exchange key
exchange

Authentication aRSA RSA authentication

Encryption 3DES Triple DES encoding

Encryption RC4 RC4 encoding

Data Integrity SHA SHA hash function

Data Integrity SHA256 SHA256 hash function

Data Integrity SHA384 SHA384 hash function

Aliases TLSv1 All TLS version 1 ciphers

Aliases TLSv1.1 All TLS version 1.1 ciphers

Aliases TLSv1.2 All TLS version 1.2 ciphers

Aliases MEDIUM All ciphers with 128-bit encryption

Aliases HIGH All ciphers with encryption key size greater than
128 bits

Aliases AES All ciphers using AES encryption

Aliases RSA All ciphers using RSA for both authentication
and key exchange

Aliases ECDSA All ciphers using Elliptic Curve Digital Signature
Algorithm for authentication

Aliases ECDHE All ciphers using Elliptic curve Diffie–Hellman
Exchange for key exchange

Aliases AES-GCM All ciphers that use Advanced Encryption
Standard in Galois/Counter Mode (GCM) for
encryption.

Category Value

Table G–2 Cipher Suites Supported in Oracle Advanced Security 12.2.1

Cipher Suite
Key
 Exchange

Authentica
tion Encryption

Data
 Integrity

TLS
v1

TLS
v1.1

TLS
v1.2

SSL_RSA_WITH_RC4_128_SHA RSA RSA RC4 (128) SHA Yes Yes Yes

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA RSA 3DES (168) SHA Yes Yes Yes

SSL_RSA_WITH_AES_128_CBC_SHA RSA RSA AES (128) SHA Yes Yes Yes

SSL_RSA_WITH_AES_256_CBC_SHA RSA RSA AES (256) SHA Yes Yes Yes

TLS_RSA_WITH_AES_128_CBC_SHA256 RSA RSA AES (128) SHA256 No No Yes

TLS_RSA_WITH_AES_256_CBC_SHA256 RSA RSA AES (256) SHA256 No No Yes

TLS_RSA_WITH_AES_128_GCM_SHA256 RSA RSA AES (128) SHA256 No No Yes

TLS_RSA_WITH_AES_256_GCM_SHA384 RSA RSA AES (256) SHA384 No No Yes

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE ECDSA AES (128) SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE ECDSA AES (256) SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_
SHA256

ECDHE ECDSA AES (128) SHA256 No No Yes

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_
SHA384

ECDHE ECDSA AES (256) SHA384 No No Yes

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_
SHA256

ECDHE ECDSA AES (128) SHA256 No No Yes

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_
SHA384

ECDHE ECDSA AES (256) SHA384 No No Yes

TLS_ECDHE_RSA_WITH_RC4_128_SHA Ephemeral ECDH
with RSA
signatures

RSA RC4 (128) SHA Yes Yes Yes

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA Ephemeral ECDH
with RSA
signatures

RSA 3DES SHA Yes Yes Yes

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA Ephemeral ECDH
with RSA
signatures

RSA AES (128) SHA Yes Yes Yes

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA Ephemeral ECDH
with RSA
signatures

RSA AES (256) SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA Ephemeral ECDH
with ECDSA
signatures

ECDSA RC4 (128) SHA Yes Yes Yes

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA Ephemeral ECDH
with ECDSA
signatures

ECDSA 3DES SHA Yes Yes Yes

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 Ephemeral
ECDH with RSA
signatures

RSA AES (256) SHA384 No No Yes

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Ephemeral ECDH
with RSA
signatures

RSA AES (128) SHA256 No No Yes

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 Ephemeral ECDH
with RSA
signatures

RSA AES (256) SHA384 No No Yes

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 Ephemeral ECDH
with RSA
signatures

RSA AES (128) SHA256 No No Yes

mod_ossl Module

OHS Module Directives G-5

mod_ossl Module

G-6 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.4 SSLEngine Directive
Toggles the usage of the SSL Protocol Engine. This is usually used inside a
<VirtualHost> section to enable SSL for a particular virtual host. By default, the SSL
Protocol Engine is disabled for both the main server and all configured virtual hosts.

Category Value

Syntax SSLEngine on|off

Example SSLEngine on

Default Off

G.3.5 SSLFIPS Directive
This directive toggles the usage of the SSL library FIPS_mode flag. It must be set in the
global server context and should not be configured with conflicting settings (SSLFIPS
on followed by SSLFIPS off or similar). The mode applies to all SSL library
operations.

Category Value

Syntax SSLFIPS ON | OFF

Example SSLFIPS ON

Default Off

Configuring an SSLFIPS change requires that the SSLFIPS on/off directive be set
globally in ssl.conf. Virtual level configuration is disabled in SSLFIPS directive. Hence,
setting SSLFIPS to virtual directive will result in an error.

Note: Note the following restriction on SSLFIPS:

■ Enabling SSLFIPS mode in Oracle HTTP Server requires a wallet
created with AES encrypted (compat_v12) headers. To create a
new wallet or to convert an existing wallet with AES encryption,
see these sections in "orapki" in Administering Oracle Fusion
Middleware:

"Creating and Viewing Oracle Wallets with orapki"

"Creating an Oracle Wallet with AES Encryption"

"Converting an Existing Wallet to Use AES Encryption"

The following tables describe the cipher suites that work in SSLFIPS mode with
various protocols. For instructions on how to implement these cipher suites, see
Section G.3.3, "SSLCipherSuite Directive".

Table G–3 lists the cipher suites which work in TLS 1.0, TLS1.1, and TLS 1.2 protocols
in SSLFIPS mode.

Table G–3 Ciphers Which Work in All TLS Protocols in SSLFIPS Mode

Cipher Name Cipher Works in These Protocols:

SSL_RSA_WITH_3DES_EDE_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2

SSL_RSA_WITH_AES_128_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2

mod_ossl Module

OHS Module Directives G-7

Table G–4 lists the cipher suites and protocols that can be used in SSLFIPS mode.

Table G–4 Ciphers Which Work in FIPS Mode

Cipher Name Cipher Works in These Protocols:

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLS 1.0 and later

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS 1.0 and later

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS 1.0 and later

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS1.2 and later

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS1.2 and later

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS1.2 and later

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS1.2 and later

TLS_RSA_WITH_AES_256_CBC_SHA256 TLS1.2 and later

TLS_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 and later

TLS_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLS 1.0 and later

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS 1.0 and later

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS 1.0 and later

Note:

■ If SSLFIPS is set to ON, and a cipher that does not support FIPS is
used at the server, then client requests that use that cipher will
fail.

■ If SSLFIPS is set to ON, and a cipher that supports FIPS is used at
the server, then client requests that use that cipher will succeed.

Table G–5 lists the cipher suites that do not work in SSPFIPS mode.

SSL_RSA_WITH_AES_256_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2

Table G–5 Ciphers That Do Not Work in SSLFIPS Mode

Cipher Name Description

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA Does not work in SSLFIPS mode in any
protocol

SSL_RSA_WITH_RC4_128_SHA Does not work in SSLFIPS mode in any
protocol

Table G–3 (Cont.) Ciphers Which Work in All TLS Protocols in SSLFIPS Mode

Cipher Name Cipher Works in These Protocols:

mod_ossl Module

G-8 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.6 SSLHonorCipherOrder Directive
When choosing a cipher during a handshake, normally the client's preference is used.
If this directive is enabled, then the server's preference will be used instead.

Category Value

Syntax SSLHonorCipherOrder ON | OFF

Example SSLHonorCipherOrder ON

Default OFF

The server's preference order can be configured using the SSLCipherSuite directive.
When SSLHonorCipherOrder is set to ON, the value of SSLCipherSuite is treated as an
ordered list of cipher values.

Cipher values that appear first in this list are preferred by the server over ciphers that
appear later in the list.

Example:
SSLCipherSuite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_AES_
128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_
128_CBC_SHA256

SSLHonorCipherOrder ON

In this case, the server will prefer TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 over
all of the other ciphers configured in SSLCipherSuite directive as it appears first in the
list and chooses this cipher for the SSL connection, if the client supports it.

G.3.7 SSLInsecureRenegotiation Directive
As originally specified, all versions of the SSL and TLS protocols (up to and including
TLS/1.2) were vulnerable to a Man-in-the-Middle attack (CVE-2009-3555) during a
renegotiation. This vulnerability allowed an attacker to "prefix" a chosen plaintext to
the HTTP request as seen by the web server. A protocol extension was developed
which fixed this vulnerability if supported by both client and server.

For more information on Man-in-the-Middle attack (CVE-2009-3555), see:

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3555

Default mode

When the directive SSLInsecureRenegotion is not specified in the configuration, Oracle
HTTP Server operates in compatibility mode.

In this mode, vulnerable peers that do not have Renegotiation Info/Signaling Cipher
Suite Value (RI/SCSV) support are allowed to connect, but renegotiation is allowed
only with those peers that have RI/SCSV support.

SSLInsecureRenegotiation ON

TLS_ECDHE_RSA_WITH_RC4_128_SHA Does not work in SSLFIPS mode in any
protocol

Table G–5 (Cont.) Ciphers That Do Not Work in SSLFIPS Mode

Cipher Name Description

mod_ossl Module

OHS Module Directives G-9

This option allows vulnerable peers that do not have RI/SCSV to perform
renegotiation. Hence, this option must be used with caution, as it leaves the server
vulnerable to the renegotiation attack described in CVE-2009-3555.

SSLInsecureRenegotiation OFF

If this option is used, only peers that support RI/SCSV will be allowed to negotiate
and renegotiate a session. This is the most secure and recommended mode.

Category Value

Syntax SSLInsecureRenegotiation ON | OFF

Example SSLInsecureRenegotiation ON

Default The default value is neither ON nor OFF. By default, Oracle HTTP Server
operates in compatibility mode, as described under the heading
Default mode.

To configure SSLInsecureRenegotiation, edit the ssl.conf file and set
SSLInsecureRenegotiation ON/OFF globally or virtually to enable or disable insecure
renegotiation.

G.3.8 SSLOptions Directive
Controls various runtime options on a per-directory basis. In general, if multiple
options apply to a directory, the most comprehensive option is applied (options are not
merged). However, if all of the options in an SSLOptions directive are preceded by a
plus ('+') or minus ('-') symbol, then the options are merged. Options preceded by a
plus are added to the options currently in force, and options preceded by a minus are
removed from the options currently in force.

Accepted values are:

■ StdEnvVars: Creates the standard set of CGI/SSI environment variables that are
related to SSL. This is disabled by default because the extraction operation uses a
lot of CPU time and usually has no application when serving static content.
Typically, you only enable this for CGI/SSI requests.

■ ExportCertData: Enables the following additional CGI/SSI variables:

SSL_SERVER_CERT

SSL_CLIENT_CERT

SSL_CLIENT_CERT_CHAIN_n (where n= 0, 1, 2...)

These variables contain the Privacy Enhanced Mail (PEM)-encoded X.509
certificates for the server and the client for the current HTTPS connection, and can
be used by CGI scripts for deeper certificate checking. All other certificates of the
client certificate chain are provided. This option is "Off" by default because there is
a performance cost associated with using it.

SSL_CLIENT_CERT_CHAIN_n variables are in the following order: SSL_CLIENT_CERT_
CHAIN_0 is the intermediate CA who signs SSL_CLIENT_CERT. SSL_CLIENT_CERT_
CHAIN_1 is the intermediate CA who signs SSL_CLIENT_CERT_CHAIN_0, and so
forth, with SSL_CLIENT_ROOT_CERT as the root CA.

■ FakeBasicAuth: Translates the subject distinguished name of the client X.509
certificate into an HTTP basic authorization user name. This means that the
standard HTTP server authentication methods can be used for access control. No
password is obtained from the user; the string 'password' is substituted.

mod_ossl Module

G-10 Oracle Fusion Middleware Administering Oracle HTTP Server

■ StrictRequire: Denies access when, according to SSLRequireSSL Directive or
directives, access should be forbidden. Without StrictRequire, it is possible for a
'Satisfy any' directive setting to override the SSLRequire or SSLRequireSSL
directive, allowing access if the client passes the host restriction or supplies a valid
user name and password.

Thus, the combination of SSLRequireSSL or SSLRequire with SSLOptions
+StrictRequire gives mod_ossl the ability to override a 'Satisfy any' directive
in all cases.

■ CompatEnvVars: Exports obsolete environment variables for backward
compatibility to Apache SSL 1.x, mod_ssl 2.0.x, Sioux 1.0, and Stronghold 2.x. Use
this to provide compatibility to existing CGI scripts.

■ OptRenegotiate: This enables optimized SSL connection renegotiation handling
when SSL directives are used in a per-directory context.

Category Value

Syntax SSLOptions [+-] StdEnvVars | ExportCertData | FakeBasicAuth |
StrictRequire | CompatEnvVars | OptRenegotiate

Example SSLOptions -StdEnvVars

Default None

G.3.9 SSLProtocol Directive
Specifies SSL protocol(s) for mod_ossl to use when establishing the server
environment. Clients can only connect with one of the specified protocols. Accepted
values are:

■ TLSv1

■ TLSv1.1

■ TLSv1.2

■ All

Note: SSLv3 is disabled in Release 12.2.1.

You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+"
symbols have the following meaning:

■ + : Adds the protocol to the list

■ - : Removes the protocol from the list

In the current release All is defined as +TLSv1 +TLSv1.1 +TLSv1.2.

Category Value

Syntax SSLProtocol [+-] TLSv1 | TLSv1.1 | TLSv1.2 | All

Example SSLProtocol +TLSv1 +TLSv1.1 +TLSv1.2

Default ALL

mod_ossl Module

OHS Module Directives G-11

G.3.10 SSLProxyCipherSuite Directive
Specifies the SSL cipher suite that the proxy can use during the SSL handshake. This
directive uses a colon-separated cipher specification string to identify the cipher suite.
Table G–1 shows the tags to use in the string to describe the cipher suite you want.
SSLProxyCipherSuite accepts the following values:

■ none: Adds the cipher to the list

■ + : Adds the cipher to the list and places it in the correct location in the list

■ - : Removes the cipher from the list (which can be added later)

■ ! : Removes the cipher from the list permanently

Tags are joined with prefixes to form a cipher specification string. Tags are joined
together with prefixes to form a cipher specification string. The SSLProxyCipherSuite
directive uses the same tags as the SSLCipherSuite directive. For a list of supported
suite tags, see Table G–1.

Category Value

Example SSLProxyCipherSuite ALL:!MD5

In this example, all ciphers are specified except MD5 strength ciphers.

Syntax SSLProxyCipherSuite cipher-spec

Default ALL:!ADH:+HIGH:+MEDIUM

The SSLProxyCipherSuite directive uses the same cipher suites as the SSLCipherSuite
directive. For a list of the Cipher Suites supported in Oracle Advanced Security 12.2.1,
see Table G–2.

G.3.11 SSLProxyEngine Directive
Enables or disables the SSL/TLS protocol engine for proxy. SSLProxyEngine is usually
used inside a <VirtualHost> section to enable SSL/TLS for proxy usage in a particular
virtual host. By default, the SSL/TLS protocol engine is disabled for proxy both for the
main server and all configured virtual hosts.

SSLProxyEngine should not be included in a virtual host that will be acting as a
forward proxy (by using Proxy or ProxyRequest directives). SSLProxyEngine is not
required to enable a forward proxy server to proxy SSL/TLS requests.

Category Value

Syntax SSLProxyEngine ON | OFF

Example SSLProxyEngine on

Default Disable

G.3.12 SSLProxyProtocol Directive
Specifies SSL protocol(s) for mod_ossl to use when establishing a proxy connection in
the server environment. Proxies can only connect with one of the specified protocols.
Accepted values are:

■ TLSv1

■ TLSv1.1

mod_ossl Module

G-12 Oracle Fusion Middleware Administering Oracle HTTP Server

■ TLSv1.2

■ All

You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+"
symbols have the following meaning:

■ + : Adds the protocol to the list

■ - : Removes the protocol from the list

In the current release All is defined as +TLSv1 +TLSv1.1 +TLSv1.2.

Category Value

Syntax SSLProxyProtocol [+-] TLSv1 | TLSv1.1 | TLSv1.2 | All

Example SSLProxyProtocol +TLSv1 +TLSv1.1 +TLSv1.2

Default ALL

G.3.13 SSLProxyWallet Directive
Specifies the location of the wallet with its WRL, specified as a filepath, that a proxy
connection needs to use.

Category Value

Syntax SSLProxyWallet file:path to wallet

Example SSLProxyWallet "${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/proxy"

Default None

G.3.14 SSLRequire Directive
Denies access unless an arbitrarily complex boolean expression is true.

Category Value

Syntax SSLRequire expression (see Understanding the Expression Variable)

Example SSLRequire word ">=" word |word "ge" word

Default None

Understanding the Expression Variable
The expression variable must match the following syntax (given as a BNF grammar
notation):

expr ::= "true" | "false"
"!" expr
expr "&&" expr
expr "||" expr
"(" expr ")"

comp ::=word "==" word | word "eq" word
word "!=" word |word "ne" word
word "<" word |word "lt" word
word "<=" word |word "le" word
word ">" word |word "gt" word
word ">=" word |word "ge" word

mod_ossl Module

OHS Module Directives G-13

word "=~" regex
word "!~" regex
wordlist ::= word
wordlist "," word

word ::= digit
cstring
variable
function

digit ::= [0-9]+

cstring ::= "..."

variable ::= "%{varname}"

Table G–6 and Table G–7 list standard and SSL variables. These are valid values for
varname.

function ::= funcname "(" funcargs ")"

For funcname, the following function is available:

file(filename)

The file function takes one string argument, the filename, and expands to the contents
of the file. This is useful for evaluating the file's contents against a regular expression.

Table G–6 lists the standard variables for SSLRequire Directive varname.

Table G–6 Standard Variables for SSLRequire Varname

Standard Variables Standard Variables Standard Variables

HTTP_USER_AGENT PATH_INFO AUTH_TYPE

HTTP_REFERER QUERY_STRING SERVER_SOFTWARE

HTTP_COOKIE REMOTE_HOST API_VERSION

HTTP_FORWARDED REMOTE_IDENT TIME_YEAR

HTTP_HOST IS_SUBREQ TIME_MON

HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY

HTTP_ACCEPT SERVER_ADMIN TIME_HOUR

HTTP:headername SERVER_NAME TIME_MIN

THE_REQUEST SERVER_PORT TIME_SEC

REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY

REQUEST_SCHEME REMOTE_ADDR TIME

REQUEST_URI REMOTE_USER ENV:variablename

REQUEST_FILENAME

Table G–7 lists the SSL variables for SSLRequire Directive varname.

Table G–7 SSL Variables for SSLRequire Varname

SSL Variables SSL Variables SSL Variables

HTTPS SSL_PROTOCOL SSL_CIPHER_ALGKEYSIZE

SSL_CIPHER SSL_CIPHER_EXPORT SSL_VERSION_INTERFACE

mod_ossl Module

G-14 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.15 SSLRequireSSL Directive
Denies access to clients not using SSL. This is a useful directive for absolute protection
of a SSL-enabled virtual host or directories in which configuration errors could create
security vulnerabilities.

Category Value

Syntax SSLRequireSSL

Example SSLRequireSSL

Default None

G.3.16 SSLSessionCache Directive
Specifies the global/interprocess session cache storage type. The cache provides an
optional way to speed up parallel request processing. The accepted values are:

■ none: disables the global/interprocess session cache. Produces no impact on
functionality, but makes a major difference in performance.

■ nonenotnull: This disables any global/inter-process Session Cache.

SSL_CIPHER_USEKEYSIZE SSL_VERSION_LIBRARY SSL_SESSION_ID

SSL_CLIENT_V_END SSL_CLIENT_M_SERIAL SSL_CLIENT_V_START

SSL_CLIENT_S_DN_ST SSL_CLIENT_S_DN SSL_CLIENT_S_DN_C

SSL_CLIENT_S_DN_CN SSL_CLIENT_S_DN_O SSL_CLIENT_S_DN_OU

SSL_CLIENT_S_DN_G SSL_CLIENT_S_DN_T SSL_CLIENT_S_DN_I

SSL_CLIENT_S_DN_UID SSL_CLIENT_S_DN_S SSL_CLIENT_S_DN_D

SSL_CLIENT_I_DN_C SSL_CLIENT_S_DN_Email SSL_CLIENT_I_DN

SSL_CLIENT_I_DN_O SSL_CLIENT_I_DN_ST SSL_CLIENT_I_DN_L

SSL_CLIENT_I_DN_T SSL_CLIENT_I_DN_OU SSL_CLIENT_I_DN_CN

SSL_CLIENT_I_DN_S SSL_CLIENT_I_DN_I SSL_CLIENT_I_DN_G

SSL_CLIENT_I_DN_Email SSL_CLIENT_I_DN_D SSL_CLIENT_I_DN_UID

SSL_CLIENT_CERT SSL_CLIENT_CERT_CHAIN_n SSL_CLIENT_ROOT_CERT

SSL_CLIENT_VERIFY SSL_CLIENT_M_VERSION SSL_SERVER_M_VERSION

SSL_SERVER_V_START SSL_SERVER_V_END SSL_SERVER_M_SERIAL

SSL_SERVER_S_DN_C SSL_SERVERT_S_DN_ST SSL_SERVER_S_DN

SSL_SERVER_S_DN_OU SSL_SERVER_S_DN_CN SSL_SERVER_S_DN_O

SSL_SERVER_S_DN_I SSL_SERVER_S_DN_G SSL_SERVER_S_DN_T

SSL_SERVER_S_DN_D SSL_SERVER_S_DN_UID SSL_SERVER_S_DN_S

SSL_SERVER_I_DN SSL_SERVER_I_DN_C SSL_SERVER_S_DN_Email

SSL_SERVER_I_DN_L SSL_SERVER_I_DN_O SSL_SERVER_I_DN_ST

SSL_SERVER_I_DN_CN SSSL_SERVER_I_DN_T SSL_SERVER_I_DN_OU

SSL_SERVER_I_DN_G SSL_SERVER_I_DN_I

Table G–7 (Cont.) SSL Variables for SSLRequire Varname

SSL Variables SSL Variables SSL Variables

mod_ossl Module

OHS Module Directives G-15

■ shmcb:/path/to/datafile[bytes]: Uses a high-performance Shared Memory Cyclic
Buffer (SHMCB) session cache to synchronize the local SSL memory caches of the
server processes. Note: in this shm setting, no log files are created under
/path/to/datafile on local disk.

Category Value

Syntax SSLSessionCache none | nonenotnull |
shmcb:/path/to/datafile[bytes]

Examples SSLSessionCache "shmcb:${ORACLE_
INSTANCE}/servers/${COMPONENT_NAME}/logs/ssl_
scache(512000)"

Default SSLSessionCache shmcb:/path/to/datafile[bytes]

G.3.17 SSLSessionCacheTimeout Directive
Specifies the number of seconds before a SSL session in the session cache expires.

Category Value

Syntax SSLSessionCacheTimeout seconds

Example SSLSessionCacheTimeout 120

Default 300

G.3.18 SSLTraceLogLevel Directive
SSLTraceLogLevel adjusts the verbosity of the messages recorded in the Oracle
Security library error logs. When a particular level is specified, messages from all other
levels of higher significance will be reported as well. For example, when
SSLTraceLogLevel ssl is set, messages with log levels of error, warn, user and debug
will also be posted.

Note: This directive can only be set globally in the ssl.conf file.

SSLTraceLogLevel accepts the following log levels:

■ none: Oracle Security Trace disable

■ fatal: Fatal error; system is unusable.

■ error: Error conditions.

■ warn: Warning conditions.

■ user: Normal but significant condition.

■ debug: Debug-level condition

■ ssl: SSL level debugging

Category Value

Syntax SSLTraceLogLevel none | fatal | error | warn | user | debug | ssl

Example SSLTraceLogLevel fatal

Default None

mod_ossl Module

G-16 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.19 SSLVerifyClient Directive
Specifies whether a client must present a certificate when connecting. The accepted
values are:

■ none: No client certificate is required

■ optional: Client can present a valid certificate

■ require: Client must present a valid certificate

Category Value

Syntax SSLVerifyClient none | optional | require

Example SSLVerifyClient optional

Default None

Note: The level optional_no_ca included with mod_ssl (in which
the client can present a valid certificate, but it need not be
verifiable) is not supported in mod_ossl.

G.3.20 SSLWallet Directive
Specifies the location of the wallet with its WRL, specified as a filepath.

Category Value

Syntax SSLWallet file:path to wallet directory

file:path may also be expressed simply as path.

Example SSLWallet "${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"

Default This is the default

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle HTTP Server 12c (12.2.1)
	New and Changed Features in 12c (12.2.1)

	Part I Understanding Oracle HTTP Server
	1 Introduction to Oracle HTTP Server
	1.1 What is Oracle HTTP Server?
	1.2 Oracle HTTP Server 12c (12.2.1) Topologies
	1.3 Key Features of Oracle HTTP Server
	1.3.1 Restricted-JRF Mode
	1.3.2 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	1.3.3 CGI and Fast CGI Protocol (mod_proxy_fcgi)
	1.3.4 Security Features
	1.3.4.1 Oracle Secure Sockets Layer (mod_ossl)
	1.3.4.2 Security: Encryption with Secure Sockets Layer
	1.3.4.3 Security: Single Sign-On with WebGate

	1.3.5 URL Rewriting and Proxy Server Capabilities

	1.4 Domain Types
	1.4.1 WebLogic Server Domain (Full-JRF Mode)
	1.4.2 WebLogic Server Domain (Restricted-JRF Mode)
	1.4.3 Standalone Domain

	1.5 Understanding Oracle HTTP Server Directory Structure
	1.6 Understanding Configuration Files
	1.6.1 Staging and Run-time Configuration Directories
	1.6.2 Oracle HTTP Server Configuration Files
	1.6.3 Modifying an Oracle HTTP Server Configuration File

	1.7 Upgrading from Earlier Releases of Oracle HTTP Server
	1.8 Oracle HTTP Server Support

	2 Understanding Oracle HTTP Server Modules
	2.1 Oracle-Developed Modules for Oracle HTTP Server
	2.1.1 mod_certheaders Module—Enables Reverse Proxies
	2.1.2 mod_context Module—Creates or Propagates ECIDs
	2.1.3 mod_dms Module—Enables Access to DMS Data
	2.1.4 mod_odl Module—Enables Access to ODL
	2.1.5 mod_ora_audit—Supports Authentication and Authorization Auditing
	2.1.6 mod_ossl Module—Enables Cryptography (SSL)
	2.1.7 mod_webgate Module—Enables Single Sign-on
	2.1.8 mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server

	2.2 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

	3 Understanding Oracle HTTP Server Management Tools
	3.1 Administering Oracle HTTP Server Using Fusion Middleware Control
	3.1.1 Accessing Fusion Middleware Control
	3.1.2 Accessing the Oracle HTTP Server Home Page
	3.1.3 Understanding the Oracle HTTP Server Home Page
	3.1.4 Editing Configuration Files Using Fusion Middleware Control

	3.2 Administering Oracle HTTP Server Using WLST
	3.2.1 Oracle HTTP Server-Specific WLST Commands
	3.2.2 Using WLST in a Standalone Environment

	Part II Managing Oracle HTTP Server
	4 Running Oracle HTTP Server
	4.1 Before You Begin
	4.2 Creating an OHS Instance
	4.2.1 Creating an Oracle HTTP Server Instance in a WebLogic Server Domain
	4.2.1.1 Creating an Instance by Using WLST
	4.2.1.2 Creating an Instance by Using Fusion Middleware Control
	4.2.1.3 About Instance Provisioning

	4.2.2 Creating an Oracle HTTP Server Instance in a Standalone Domain

	4.3 Performing Basic Oracle HTTP Server Tasks
	4.3.1 About Using the WLST Commands
	4.3.2 Understanding the PID File
	4.3.3 Starting Oracle HTTP Server Instances
	4.3.3.1 Starting Oracle HTTP Server Instances Using Fusion Middleware Control
	4.3.3.2 Starting Oracle HTTP Server Instances Using WLST
	4.3.3.3 Starting Oracle HTTP Server Instances from the Command Line
	4.3.3.3.1 Storing Your Node Manager Password

	4.3.3.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)
	4.3.3.5 Starting Oracle HTTP Server Instances as a Different User (UNIX Only)

	4.3.4 Stopping Oracle HTTP Server Instances
	4.3.4.1 Stopping Oracle HTTP Server Instances Using Fusion Middleware Control
	4.3.4.2 Stopping Oracle HTTP Server Instances Using WLST
	4.3.4.3 Stopping Oracle HTTP Server Instances from the Command Line

	4.3.5 Restarting Oracle HTTP Server Instances
	4.3.5.1 Restarting Oracle HTTP Server Instances Using Fusion Middleware Control
	4.3.5.2 Restarting Oracle HTTP Server Instances Using WLST

	4.3.6 Checking the Status of a Running Oracle HTTP Server Instance
	4.3.6.1 Checking Server Status Using Fusion Middleware Control
	4.3.6.2 Checking Server Status Using WLST

	4.3.7 Deleting an Oracle HTTP Server Instance
	4.3.7.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
	4.3.7.1.1 Deleting an Instance Using WLST
	4.3.7.1.2 Deleting an Instance Using Fusion Middleware Control

	4.3.7.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain

	4.3.8 Changing the Default Node Manager Port Number
	4.3.8.1 Changing the Default Node Manager Port Using WLST
	4.3.8.2 Changing the Default Node Manager Port Using Oracle WebLogic Server Administration Console

	4.4 Remotely Administering Oracle HTTP Server
	4.4.1 Setting Up a Remote Environment
	4.4.1.1 Host Requirements for a Remote Environment
	4.4.1.2 Task 1: Set Up an Expanded Domain on host1
	4.4.1.3 Task 2: Pack the Domain on host1
	4.4.1.4 Task 3: Unpack the Domain on host2
	4.4.1.5 Task 4: Run Oracle HTTP Server Remotely

	5 Working with Oracle HTTP Server
	5.1 About Editing Configuration Files
	5.1.1 Editing a Configuration File for a Standalone Domain
	5.1.2 Editing a Configuration File for a WebLogic Server Domain

	5.2 Specifying Server Properties
	5.2.1 Specifying Server Properties Using Fusion Middleware Control
	5.2.2 Specify Server Properties by Editing the httpd.conf File

	5.3 Configuring Oracle HTTP Server Instances
	5.3.1 Secure Sockets Layer Configuration
	5.3.2 Configuring Secure Sockets Layer in Standalone Mode
	5.3.2.1 Configure SSL
	5.3.2.1.1 Task 1: Create a Real Wallet
	5.3.2.1.2 Task 2: (Optional) Customize Your Configuration
	5.3.2.1.3 Basic SSL Configuration Example

	5.3.2.2 Specify SSLVerifyClient on the Server Side
	5.3.2.2.1 Forcing Clients to Authenticate Using Certificates
	5.3.2.2.2 Forcing a Client to Authenticate for a Particular URL
	5.3.2.2.3 Authorizing a Client for a Particular URL
	5.3.2.2.4 Allowing Clients with Strong Ciphers and CA Client Certificate or Basic Authentication

	5.3.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server

	5.3.3 Exporting the Keystore to an Oracle HTTP Server Instance Using WLST
	5.3.4 Importing Wallets to the KSS Database after an Upgrade Using WLST
	5.3.5 Associating Oracle HTTP Server Instances With a Keystore Using WLST
	5.3.6 Configuring MIME Settings using Fusion Middleware Control
	5.3.6.1 Configuring MIME Types
	5.3.6.2 Configuring MIME Encoding
	5.3.6.3 Configuring MIME Languages

	5.3.7 About Configuring mod_proxy_fcgi
	5.3.8 About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	5.3.8.1 Configuring SSL for mod_wl_ohs

	5.3.9 Removing Access to Unneeded Content
	5.3.9.1 Edit the cgi-bin Section
	5.3.9.2 Edit the Fancy Indexing Section
	5.3.9.3 Edit the Product Documentation Section

	5.3.10 Using the apxs Command to Install Extension Modules
	5.3.11 Disabling the Options Method
	5.3.12 Updating Oracle HTTP Server Component Configurations on a Shared Filesystem

	5.4 Configuring the mod_security Module
	5.4.1 Configuring mod_security in the httpd.conf File
	5.4.2 Configuring mod_security in a mod_security.conf File
	5.4.3 Sample mod_secuirity.conf File

	6 Managing and Monitoring Server Processes
	6.1 Oracle HTTP Server Processing Model
	6.1.1 Request Process Model
	6.1.2 Single Unit Process Model

	6.2 Monitoring Server Performance
	6.2.1 Oracle HTTP Server Performance Metrics
	6.2.2 Viewing Performance Metrics
	6.2.2.1 Viewing Server Metrics Using Fusion Middleware Control
	6.2.2.2 Viewing Server Metrics Using WLST

	6.3 Oracle HTTP Server Performance Directives
	6.3.1 Understanding Performance Directives
	6.3.1.1 Changing the MPM Type Value in a Standalone Domain
	6.3.1.2 Changing the MPM Type Value in a WebLogic Server Managed Domain

	6.3.2 Configuring Performance Directives Using Fusion Middleware Control
	6.3.2.1 Setting the Request Configuration Using Fusion Middleware Control
	6.3.2.2 Setting the Connection Configuration Using Fusion Middleware Control
	6.3.2.3 Setting the Process Configuration Using Fusion Middleware Control

	6.4 Understanding Process Security for UNIX

	7 Managing Connectivity
	7.1 Default Listen Ports
	7.2 Defining the Admin Port
	7.3 Viewing Port Number Usage
	7.3.1 Viewing Port Number Usage Using Fusion Middleware Control
	7.3.2 Viewing Port Number Usage Using WLST

	7.4 Managing Ports
	7.4.1 Creating Ports Using Fusion Middleware Control
	7.4.2 Editing Ports Using Fusion Middleware Control
	7.4.3 Disabling a Listening Port in a Standalone Environment

	7.5 Configuring Virtual Hosts
	7.5.1 Creating Virtual Hosts Using Fusion Middleware Control
	7.5.2 Configuring Virtual Hosts Using Fusion Middleware Control

	8 Managing Oracle HTTP Server Logs
	8.1 Overview of Server Logs
	8.1.1 About Error Logs
	8.1.2 About Access Logs
	8.1.3 Configuring Log Rotation
	8.1.3.1 Syntax and Examples for Time- and Size-Based Log Rotation

	8.2 Configuring Oracle HTTP Server Logs
	8.2.1 Configuring Error Logs Using Fusion Middleware Control
	8.2.1.1 Configuring the Error Log Format and Location
	8.2.1.2 Configuring the Error Log Level
	8.2.1.3 Configuring Error Log Rotation Policy

	8.2.2 Configuring Access Logs Using Fusion Middleware Control
	8.2.2.1 Configuring the Access Log Format
	8.2.2.2 Configuring the Access Log File

	8.2.3 Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)
	8.2.3.1 Configure umask for an Oracle HTTP Server Instance in a Standalone Domain
	8.2.3.2 Configure umask for an Oracle HTTP Server Instance in a WebLogic Server Managed Domain

	8.3 Configuring the Log Level Using WLST
	8.4 Log Directives for Oracle HTTP Server
	8.4.1 Oracle Diagnostic Logging Directives
	8.4.1.1 OraLogMode
	8.4.1.2 OraLogDir
	8.4.1.3 OraLogSeverity
	8.4.1.4 OraLogRotationParams

	8.4.2 Apache HTTP Server Log Directives
	8.4.2.1 ErrorLog
	8.4.2.2 LogLevel
	8.4.2.3 LogFormat
	8.4.2.4 CustomLog

	8.5 Viewing Oracle HTTP Server Logs
	8.5.1 Viewing Logs Using Fusion Middleware Control
	8.5.2 Viewing Logs Using WLST
	8.5.3 Viewing Logs in a Text Editor

	8.6 Recording ECID Information
	8.6.1 About ECID Information
	8.6.2 Configuring Error Logs for ECID Information
	8.6.3 Configuring Access Logs for ECID Information

	8.7 Terminating SSL Requests
	8.7.1 About Terminating SSL at the Load Balancer
	8.7.1.1 Terminating SSL at the Load Balancer

	8.7.2 About Terminating SSL at Oracle HTTP Server
	8.7.2.1 Terminating SSL at Oracle HTTP Server

	9 Managing Application Security
	9.1 About Oracle HTTP Server Security
	9.2 Classes of Users and Their Privileges
	9.3 Resources Protected
	9.4 Authentication, Authorization and Access Control
	9.4.1 Access Control
	9.4.2 User Authentication and Authorization
	9.4.2.1 Authenticating Users with Apache HTTP Server Modules
	9.4.2.2 Authenticating Users with WebGate

	9.4.3 Support for FMW Audit Framework
	9.4.3.1 Managing Audit Policies Using Fusion Middleware Control

	9.5 Implementing SSL
	9.5.1 Global Server ID Support
	9.5.2 PKCS #11 Support
	9.5.3 SSL and Logging

	9.6 Using mod_security
	9.7 Using Trust Flags

	Part III Appendixes
	A Oracle HTTP Server WLST Custom Commands
	A.1 Getting Help on Oracle HTTP Server WLST Custom Commands
	A.2 Names of WLST Custom Commands Have Changed
	A.3 Oracle HTTP Server Commands
	A.3.1 ohs_addAdminProperties
	A.3.2 ohs_addNMProperties
	A.3.3 ohs_createInstance
	A.3.4 ohs_deleteInstance
	A.3.5 ohs_exportKeyStore
	A.3.6 ohs_postUpgrade
	A.3.7 ohs_updateInstances

	B Migrating to the mod_proxy_fcgi and mod_ authnz_fcgi Modules
	B.1 Task 1: Replace LoadModule Directives in htttpd.conf File
	B.2 Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File
	B.3 Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI Server
	B.4 Task 4: Setup an External FastCGI Server
	B.5 Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications.

	C Frequently Asked Questions
	C.1 How Do I Create Application-Specific Error Pages?
	C.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
	C.3 Can I Use Different Language and Character Set Versions of Document?
	C.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?
	C.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?
	C.6 Can I Compress Output From Oracle HTTP Server?
	C.7 How Do I Create a Namespace That Works Through Firewalls and Clusters?
	C.8 How Can I Enhance Website Security?
	C.9 Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?
	C.10 How can I hide information about the Web Server Vendor and Version
	C.11 Can I Start OHS by Using apachectl or Other Command-Line Tool?
	C.12 How Do I Configure Oracle HTTP Server to Listen at Port 80?
	C.13 How Do I Terminate Requests Using SSL Within Oracle HTTP Server?
	C.14 How Do I Configure End-to-End SSL Within Oracle HTTP Server?
	C.15 Can Oracle HTTP Server Front-End Oracle WebLogic Server?
	C.16 What is the Difference Between Oracle WebLogic Server Domains and Standalone Domains?
	C.17 Can Oracle HTTP Server Cache the Response Data?
	C.18 How Do I Configure a Virtual Server-Specific Access Log?

	D Troubleshooting Oracle HTTP Server
	D.1 Oracle HTTP Server Unable to Start Due to Port Conflict
	D.2 System Overloaded by Number of httpd Processes
	D.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
	D.4 Using Log Files to Locate Errors
	D.4.1 Rewrite Log
	D.4.2 Script Log
	D.4.3 Error Log

	D.5 Recovering an OHS Instance on a Remote Host
	D.6 Oracle HTTP Server Performance Issues
	D.6.1 Special Runtime Files Reside on a Network File System
	D.6.2 UNIX Sockets on a Network File System
	D.6.3 DocumentRoot on a Slow File System

	D.7 Out of DMS Shared Memory
	D.8 Performance Issues with Instances Created on Shared File Systems
	D.9 Node Manager 12c (12.1.2) OHS Throws Java Exception on AIX

	E Configuration Files
	E.1 httpd.conf File
	E.2 ssl.conf File
	E.3 admin.conf File
	E.4 mod_wl_ohs.conf File
	E.5 mime.types File
	E.6 ohs.plugins.nodemanager.properties File
	E.7 magic File
	E.8 keystores/<wallet-directory> File
	E.9 auditconfig.xml File
	E.10 component-logs.xml File
	E.11 component_events.xml File
	E.12 Additional Reference

	F Property Files
	F.1 ohs_admin.properties File
	F.2 ohs_nm.properties File
	F.3 ohs.plugins.nodemanager.properties File
	F.3.1 Cross-platform Properties
	F.3.2 Environment Variable Configuration Properties
	F.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX

	G OHS Module Directives
	G.1 Note on mod_wl_ohs Module
	G.2 mod_certheaders Module
	G.2.1 AddCertHeader Directive
	G.2.2 SimulateHttps Directive

	G.3 mod_ossl Module
	G.3.1 SSLCARevocationFile Directive
	G.3.2 SSLCARevocationPath Directive
	G.3.3 SSLCipherSuite Directive
	G.3.4 SSLEngine Directive
	G.3.5 SSLFIPS Directive
	G.3.6 SSLHonorCipherOrder Directive
	G.3.7 SSLInsecureRenegotiation Directive
	G.3.8 SSLOptions Directive
	G.3.9 SSLProtocol Directive
	G.3.10 SSLProxyCipherSuite Directive
	G.3.11 SSLProxyEngine Directive
	G.3.12 SSLProxyProtocol Directive
	G.3.13 SSLProxyWallet Directive
	G.3.14 SSLRequire Directive
	G.3.15 SSLRequireSSL Directive
	G.3.16 SSLSessionCache Directive
	G.3.17 SSLSessionCacheTimeout Directive
	G.3.18 SSLTraceLogLevel Directive
	G.3.19 SSLVerifyClient Directive
	G.3.20 SSLWallet Directive

