
Oracle® Fusion Middleware
Developing WebCenter Portal Assets and Custom Components

with Oracle JDeveloper

12c (12.2.1)

E48260-05

March 2016

Documentation for developers that explains how to develop
and customize portal assets and components for Oracle
WebCenter Portal using Oracle JDeveloper.

Oracle Fusion Middleware Developing WebCenter Portal Assets and Custom Components with Oracle
JDeveloper, 12c (12.2.1)

E48260-05

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

Contributing Authors: Ingrid Snedecor, Savita Thakur, G Annapoorani, Sonia Nagar, Shoba Rao

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
“commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services.

Contents

Preface ... xv

Audience .. xv

Related Documents.. xvi

Conventions.. xvi

Who's Who ... xvii

Knowledge Worker .. xvii

Application Specialist.. xviii

Web Developer... xix

Developer... xx

System Administrator .. xx

Part I Getting Started

1 Introduction to Developing for Oracle WebCenter Portal

1.1 What Is the Purpose of This Guide?.. 1-1

1.2 What Is My Role as a WebCenter Portal Developer? ... 1-2

2 Setting Up a Development Environment

2.1 Introduction to Setting up a Development Environment.. 2-1

2.2 Basic Setup Tasks ... 2-1

2.2.1 Installing Oracle JDeveloper... 2-1

2.2.2 Installing the WebCenter Portal Extensions for JDeveloper .. 2-2

2.2.3 Setting the User Home Directory Environment Variable... 2-2

2.2.4 Managing the Integrated WebLogic Server.. 2-2

2.2.5 Creating Application Resource Connections ... 2-3

2.3 Setup Tasks Specific to WebCenter Portlet Producer Applications ... 2-4

2.3.1 Deploying the Preconfigured Portlet Producers.. 2-5

2.3.2 Accessing OmniPortlet .. 2-5

2.3.3 WSRP Sample Portlet Producers and Portlets ... 2-6

2.3.4 PDK-Java Sample Portlet Producer and Portlets ... 2-6

iii

Part II Working with WebCenter Portal Assets

3 Introduction to WebCenter Portal Assets

3.1 About Working with WebCenter Portal Assets .. 3-1

3.2 Developing Assets for WebCenter Portal .. 3-2

3.2.1 Setting Up Your JDeveloper Environment for Asset Development 3-2

4 Working with the Portal Asset Application Template

4.1 About the WebCenter Portal Asset Application Template ... 4-1

4.2 Creating a WebCenter Portal Asset Application... 4-2

4.2.1 How to Create a WebCenter Portal Asset Application... 4-2

4.2.2 What You May Need to Know About Asset Application Artifacts 4-5

4.3 Creating and Editing WebCenter Portal Assets .. 4-5

4.4 Publishing WebCenter Portal Assets .. 4-6

4.4.1 Creating a WebCenter Portal Server Connection .. 4-6

4.4.2 Publishing a WebCenter Portal Asset ... 4-8

4.5 Testing WebCenter Portal Assets .. 4-9

5 Developing Layouts

5.1 About Developing Layouts .. 5-1

5.2 Creating a Layout .. 5-1

5.2.1 How to Create a Layout .. 5-1

5.2.2 What You May Need to Know About Layout Artifacts ... 5-2

5.3 Editing a Layout... 5-4

5.4 Publishing a Layout... 5-5

6 Developing Page Styles

6.1 About Developing Page Styles .. 6-1

6.2 Best Practices for Creating Page Styles... 6-2

6.3 Creating a Page Style... 6-3

6.3.1 How to Create a Page Style... 6-4

6.3.2 What You May Need to Know About Page Style Artifacts ... 6-4

6.4 Editing a Page Style ... 6-6

6.5 Publishing a Page Style ... 6-7

7 Developing Page Templates

7.1 Introduction to Developing Page Templates... 7-1

7.1.1 Understanding Page Templates ... 7-1

7.1.2 Understanding Page Template Structure ... 7-2

7.1.3 Understanding Page Template Layout ... 7-3

7.1.4 Understanding Page Template Layout Components ... 7-4

7.2 Best Practices for Developing Page Templates.. 7-7

iv

7.2.1 Best Practices for Creating Stretching Layouts .. 7-11

7.2.2 Best Practices for Creating Flowing Layouts.. 7-12

7.2.3 Best Practices for Developing Page Templates That Can Be Edited at Runtime 7-13

7.2.4 Best Practices for Customizing the Appearance of Components................................ 7-14

7.2.5 Best Practices for Defining Scrolling in a Page Template... 7-15

7.2.6 Best Practices for Defining Margins, Borders, and Padding.. 7-15

7.3 Creating a Page Template... 7-15

7.3.1 About Creating Page Templates .. 7-16

7.3.2 How to Create a Page Template... 7-16

7.3.3 What You May Need to Know About Page Template Artifacts 7-18

7.4 Editing a Page Template ... 7-18

7.5 Adding a Floating Toolbar to a Page Template .. 7-19

7.6 Publishing a Page Template ... 7-19

7.7 Page Template Tutorials and Examples ... 7-19

8 Developing Skins

8.1 Introduction to Developing Skins ... 8-1

8.1.1 About Skins ... 8-1

8.1.2 About Runtime Management of Skins .. 8-1

8.2 Best Practices for Developing Skins .. 8-2

8.3 Creating a Skin ... 8-2

8.3.1 How to Create a Skin ... 8-2

8.3.2 What You May Need to Know About Skin Artifacts.. 8-3

8.4 Editing a Skin ... 8-3

8.5 Publishing a Skin ... 8-5

8.6 Conditionally Changing Skins for Users.. 8-5

9 Developing Visualization Templates

9.1 About Visualization Templates ... 9-1

9.2 Creating a Visualization Template.. 9-2

9.2.1 How to Create a Visualization Template.. 9-2

9.2.2 What You May Need to Know About Visualization Template Artifacts..................... 9-3

9.3 Editing a Visualization Template .. 9-4

9.3.1 Placeholder EL Binding in Visualization Templates... 9-4

9.4 Publishing a Visualization Template .. 9-9

9.5 What Happens at Runtime... 9-9

10 Developing Content Presenter Display Templates

10.1 Introduction to Developing Content Presenter Display Templates..................................... 10-1

10.2 Creating a Content Presenter Display Template... 10-3

10.2.1 How to Create a Content Presenter Display Template... 10-3

10.2.2 What You May Need to Know About Content Presenter Display Templates 10-4

10.3 Editing a Content Presenter Display Template ... 10-6

v

10.3.1 How to Define a Single-Item Display Template .. 10-6

10.3.2 Content Display Template Tags for Single Content Items... 10-8

10.3.3 How to Define a Multiple-Item Display Template.. 10-10

10.3.4 Content Display Template Tags for Multiple Content Items 10-11

10.3.5 How to Use Responsive Templates ... 10-13

10.3.6 How to Extend Responsive Templates ... 10-16

10.3.7 How to Use Image Renditions in Content Presenter Display Templates 10-26

10.3.8 How to Use EL Expressions to Retrieve Content Item Information 10-32

10.3.9 How to Discover Content Type Property Names.. 10-42

10.3.10 How to Reference External Files in Display Templates.. 10-43

10.3.11 How to Reference Site Studio Region Elements in a Custom View...................... 10-43

10.4 Publishing a Content Presenter Display Template... 10-44

10.5 Optimizing Performance for Content Presenter Display Templates 10-44

10.6 Using Content Presenter (Tips, Tutorials, and Examples)... 10-46

Part III Working with Portlets

11 Introduction to Portlets

11.1 About Portlets... 11-1

11.2 About Portlet Anatomy... 11-2

11.3 About Portlet Resources ... 11-4

11.3.1 About Prebuilt Portlets .. 11-5

11.3.2 About Java Server Faces (JSF) Portlets .. 11-5

11.3.3 About Custom Java Portlets.. 11-6

11.3.4 About OmniPortlet... 11-6

11.3.5 Portlet Technologies... 11-7

11.3.6 Portlets Versus Task Flows ... 11-14

11.4 About Portlet Development ... 11-15

11.4.1 Portlet Producer Applications .. 11-15

11.4.2 Portlet Modes .. 11-16

11.4.3 Interportlet Communication... 11-22

11.4.4 Portlet Personalization and Customization.. 11-23

11.4.5 Portlet Performance ... 11-23

11.4.6 Multilanguage Portlets .. 11-25

11.4.7 Portlet Deployment .. 11-26

12 Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge

12.1 About Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-1

12.2 Creating a Portlet from a JSF Application.. 12-2

12.2.1 How to Create a JSF Portlet Based on a Page... 12-2

12.2.2 How to Create a JSF Portlet Based on a Task Flow ... 12-4

12.2.3 What You May Need to Know When Creating a JSF Portlet..................................... 12-8

12.3 Updating the Portlet Entry for a Portletized Page or Task Flow.. 12-17

vi

12.4 Testing a Portletized Page or Task Flow in JDeveloper ... 12-18

12.5 Testing a JSF Portlet Using the Integrated WebLogic Server .. 12-18

12.6 Deploying JSF Portlets to a WebLogic Managed Server .. 12-19

12.7 Using Events to Link JSF Portlets with Other Portlets ... 12-19

12.7.1 About Linking JSF Portlets with Other Portlets... 12-20

12.7.2 How to Link a JSF Portlet to Another JSF Portlet .. 12-20

12.7.3 How to Link a JSF Portlet to a JSR 286 Portlet ... 12-24

12.7.4 How to Link a JSR 286 Portlet to a JSF Portlet ... 12-26

12.7.5 What You May Need to Know About Portlet Events in the Oracle JSF Portlet

Bridge.. 12-28

13 Building Standards-Based Java Portlets Using JSR 286

13.1 About Building Standards-Based Java Portlets Using JSR 286 ... 13-1

13.2 Creating a JSR 286 Java Portlet .. 13-2

13.3 Developing JSR 286 Java Portlets .. 13-9

13.3.1 Example Portlet Deployment Descriptor File .. 13-10

13.3.2 How to Edit the Portlet Deployment Descriptor File.. 13-11

13.3.3 Portlet Modes for JSR 286 Portlets ... 13-11

13.3.4 How to Add Custom Portlet Modes to JSR 286 Portlets... 13-12

13.3.5 How to Access User Information in JSR 286 Portlets.. 13-12

13.3.6 How to Customize the Runtime Environment for JSR 286 Portlets........................ 13-13

13.3.7 How to Use Public Render Parameters in JSR 286 Portlets...................................... 13-23

13.3.8 How to Use Portlet Events in JSR 286 Portlets... 13-27

13.3.9 How to Add Portlet Preferences to JSR 286 Portlets ... 13-33

13.3.10 How to Use Portlet Filters in JSR 286 Portlets.. 13-37

13.3.11 How to Implement Interportlet Communication Across Different Pages........... 13-39

13.3.12 How to Enhance JSR 286 Portlet Performance with Caching 13-41

13.3.13 How to Implement Rewritten URLs for Resource Proxy....................................... 13-44

13.3.14 How to Implement Stateless Resource Proxying... 13-44

13.3.15 How to Manage the Persistence Store for JSR 286 Portlets 13-44

13.4 Testing JSR 286 Portlets... 13-50

13.4.1 How to Run a WSRP Portlet Producer on Integrated WebLogic Server................ 13-50

13.4.2 How to Deploy a WSRP Portlet Producer to the Integrated WebLogic Server..... 13-52

13.4.3 How to Hide or Remove the WSRP Test Page... 13-52

13.5 Migrating WebLogic Portal Portlets to WebCenter Portal .. 13-54

13.6 Files Related to JSR 286 Portlets... 13-56

13.6.1 portlet.xml ... 13-56

13.6.2 oracle-portlet-tags.jar ... 13-58

13.6.3 portlet_mode.jsp... 13-58

13.6.4 portlet_name.java ... 13-59

13.6.5 portlet_nameBundle.jar ... 13-59

13.6.6 web.xml.. 13-59

vii

Part IV Working with Pagelets

14 Introduction to Pagelets

14.1 About Creating Pagelets with Pagelet Producer... 14-1

14.1.1 Overview ... 14-1

14.1.2 Pagelet Producer Architecture ... 14-2

14.1.3 Requirements .. 14-8

14.2 Configuring Pagelet Producer Settings .. 14-8

14.2.1 How to Configure a WCI Data Source .. 14-9

14.2.2 How to Configure Logging Settings.. 14-9

14.2.3 How to Configure Proxy Settings .. 14-9

14.2.4 How to Configure Transform Settings.. 14-11

14.2.5 How to Configure CSP Settings ... 14-11

14.2.6 How to Configure Kerberos Settings... 14-12

14.2.7 How to Configure OpenSocial Settings .. 14-12

15 Creating Pagelet Producer Objects

15.1 Creating Resources ... 15-1

15.1.1 How to Configure Web and CSP Resources .. 15-2

15.1.2 How to Configure WSRP and Oracle PDK-Java Resources 15-9

15.1.3 How to Configure OpenSocial Resources (OpenSocial Gadget Producers).......... 15-10

15.2 Creating Pagelets .. 15-11

15.2.1 How to Configure General Settings... 15-12

15.2.2 How to Configure Preferences ... 15-12

15.2.3 How to Configure Parameters.. 15-13

15.2.4 How to Configure the Clipper.. 15-13

15.2.5 How to Access the Pagelet and Preference Editor .. 15-15

15.3 Creating Web Injectors.. 15-15

15.3.1 How to Configure General Settings... 15-15

15.3.2 How to Inject Content.. 15-16

15.4 Creating Custom Parsers .. 15-17

15.5 Creating Hosted Files .. 15-18

16 Working with Pagelets and Gadgets

16.1 Working with OpenSocial Gadgets... 16-1

16.1.1 How to Configure Authentication ... 16-1

16.1.2 How to Store User Preferences... 16-2

16.1.3 How to Access WebCenter Portal Profile Information... 16-2

16.1.4 How to Access a User's Activity Stream ... 16-3

16.1.5 How to Use Gadget Eventing... 16-4

16.1.6 Example: How to Consume an External OpenSocial Gadget.................................... 16-4

16.1.7 Example: How to Consume a Local OpenSocial Gadget ... 16-5

viii

16.2 Working with Pagelet Chrome for WSRP and Oracle PDK-Java Portlets........................... 16-6

17 Creating Custom Pagelets

17.1 Using the Adaptive Pagelet Scripting Framework ... 17-1

17.1.1 How to Handle Structured HTTP Responses ... 17-1

17.1.2 How to Use Event Notification .. 17-4

17.1.3 How to Use In-Place Refresh .. 17-8

17.1.4 How to Use Session Preferences ... 17-9

17.1.5 What You May Need to Know About Adaptive Pagelet Development 17-12

17.2 Modifying Pagelet Functionality at Runtime .. 17-13

17.2.1 How to Use Web Injectors... 17-13

17.2.2 How to Use Custom Parsers ... 17-13

17.3 Debugging Pagelets... 17-13

17.3.1 How to View HTTP Requests and Responses ... 17-13

17.3.2 How to View Transformation Content ... 17-15

18 Using Pagelets in Web Applications

18.1 Adding a Pagelet to a Web Page ... 18-1

18.1.1 How to Insert Pagelets Using Javascript... 18-1

18.1.2 How to Access Pagelets Using REST... 18-4

18.1.3 How to Use Automatic Resizing with IFrames .. 18-8

18.2 Adding a Pagelet to a Portal Page ... 18-9

19 Creating Pagelets: Examples and Advanced Topics

19.1 Creating a Simple Pagelet (an Example) .. 19-1

19.1.1 Configuring the Initial Pagelet Producer Setup... 19-2

19.1.2 Creating a Resource ... 19-3

19.1.3 Creating a Pagelet... 19-4

19.1.4 Clipping the Pagelet... 19-6

19.2 Consuming a Pagelet in WebCenter Portal (an Example) ... 19-7

19.2.1 Registering the Pagelet Producer with WebCenter Portal ... 19-8

19.2.2 Inserting the Pagelet into a Portal .. 19-8

19.3 Consuming a Pagelet in WebCenter Interaction (an Example) .. 19-9

19.3.1 Registering the Pagelet Producer Remote Server .. 19-9

19.3.2 Creating the "Hello World" Web Service .. 19-12

19.3.3 Creating the "Hello World" Portlet .. 19-13

19.3.4 Using the Hello World Portlet on the WCI Home Page ... 19-14

19.4 Consuming a Pagelet in Oracle WebCenter Sites (an Example)... 19-15

19.4.1 Adding Pagelets to Oracle WebCenter Sites .. 19-15

19.4.2 Using Identity Propagation... 19-20

19.4.3 Propagating Identity from Pagelet Producer to the Backend Application 19-22

19.5 Consuming WSRP Portlets as Pagelets... 19-27

19.6 Exposing Custom ADF Task Flows as WSRP Portlets ... 19-27

ix

19.6.1 Exposing WSRP Portlets Developed for Oracle WebLogic Portal 19-28

19.6.2 Exposing WLP Portlets Using WLP as WSRP Producer .. 19-28

19.6.3 Configuring WS-Security between a WLP WSRP Producer and WebCenter

Consumer... 19-28

19.6.4 Registering the WLP WSRP Producer in Pagelet Producer 19-29

19.6.5 Adding WLP WSRP Portlets to Sites ... 19-29

19.7 Consuming WebCenter Portal Services as Pagelets in Sites.. 19-30

19.7.1 Requirements ... 19-30

19.7.2 Configuring Security and Single Sign-On .. 19-30

19.7.3 Importing WebCenter Services Exposed as WSRP Portlets..................................... 19-32

19.8 Consuming Applications as Pagelets Using EBS11i... 19-33

19.8.1 Creating a Resource for Basic URL Mapping (Proxy)... 19-34

19.8.2 Configuring Autologin .. 19-34

19.8.3 Creating a Pagelet .. 19-35

19.8.4 Making Corrective Configurations.. 19-35

19.9 Consuming OpenSocial Gadgets Using Pagelet Producer .. 19-42

19.10 Guidelines for Effective Geometry Management and Pagination.................................... 19-43

19.10.1 Using an Injector with JavaScript... 19-43

19.10.2 Using an Injector with SSL.. 19-44

19.11 Advanced URL Rewriting .. 19-44

19.11.1 Using Auto-Login... 19-44

19.11.2 Using a Custom Parser .. 19-46

Part V Additional WebCenter Portal Customizations

20 Developing Shared Libraries

20.1 Developing Shared Libraries for Use in WebCenter Portal... 20-1

20.2 Packaging and Deploying ADF Components for Use in WebCenter Portal 20-2

20.2.1 Understanding the WebCenter Portal Server Extension Template 20-3

20.2.2 Understanding Shared Library Development for WebCenter Portal....................... 20-5

20.2.3 Creating a WebCenter Portal Server Extension Workspace 20-11

20.2.4 Using Additional Shared Libraries with WebCenter Portal 20-15

20.2.5 Deploying Extensions to the WebCenter Portal Shared Library

(extend.spaces.webapp.war) ... 20-17

20.2.6 Developing ADF Library Components for WebCenter Portal Using the

PortalExtension Project .. 20-24

21 Localizing Portals

21.1 Guidelines for Building Multilanguage Portals .. 21-1

21.2 Language Support in ADF Faces Components ... 21-2

21.3 Using Resource Bundles to Support Multiple Languages... 21-2

21.4 Adding Support for a New Language .. 21-2

x

22 Extending Oracle Composer

22.1 Adding Custom Actions to Components... 22-1

22.1.1 Adding a Java-Based Custom Action to a Show Detail Frame Component in

Design View... 22-2

22.1.2 Adding a Java-Based Direct Select Custom Action to a Component in Select View

... 22-3

22.1.3 Adding Custom Actions to a Show Detail Frame Component by Using Facets 22-6

22.1.4 Adding Custom Actions to a Task Flow... 22-11

22.1.5 Adding Custom Actions that Display on Task Flows in the Component

Navigator ... 22-20

23 Customizing WebCenter Portal Impersonation Security

23.1 About Customizing WebCenter Portal Impersonation.. 23-1

23.2 Using the WebCenter Portal Impersonation ELs .. 23-1

23.3 Using the WebCenter Portal Impersonation APIs .. 23-2

Part VI Appendixes

A Expression Language Expressions

A.1 Introduction to Expression Language (EL) Expressions... A-1

A.1.1 Introducing the Expression Builder.. A-2

A.1.2 Introducing the Expression Editor in WebCenter Portal .. A-3

A.2 ELs Related to WebCenter Portal Information... A-5

A.3 ELs Related to Specific Pages.. A-7

A.4 ELs Related to Specific Portals.. A-8

A.4.1 Example: Using EL Expressions for Various Portals ... A-13

A.5 ELs Related to Portal Event Contexts .. A-15

A.6 ELs Related to Assets ... A-17

A.6.1 Example: Using EL Expressions for Assets ... A-21

A.7 ELs Related to Security .. A-22

A.8 ELs Related to General Settings.. A-23

A.9 ELs Related to Portal Resources ... A-23

A.10 ELs Related to Navigation... A-27

A.11 ELs Related to Tools and Services.. A-34

A.12 ELs Related to Documents .. A-35

A.13 ELs Related to People Connections.. A-35

A.14 ELs Related to Impersonation... A-39

A.15 EL Expressions Related to the Page Editor ... A-39

A.15.1 Example: Using EL Expressions for the Page Editor ... A-40

A.16 EL Expressions Related to Device Settings ... A-41

A.16.1 Sample Task Flow Code for Discovering Device Attributes A-43

A.17 Utilitarian EL Expressions... A-46

xi

A.18 Built-In Expressions in the Expression Editor.. A-47

A.18.1 Application Info Built-In ELs... A-48

A.18.2 Asset Info Built-In ELs.. A-49

A.18.3 Page Info Built-In ELs ... A-51

A.18.4 Page Parameter Built-In ELs.. A-52

A.18.5 Portal Info Built-In ELs... A-53

A.18.6 Portal Page Info Built-In Paths .. A-58

A.18.7 System Built-In ELs... A-59

A.18.8 User Info Built-In ELs ... A-60

A.18.9 WebCenter Events Built-In ELs... A-63

A.19 Desupport of Freeform JPQL WHERE and SORT Clauses in Portal Queries A-63

B WebCenter Portal Accessibility Features

B.1 Generating Accessible HTML.. B-1

B.2 Accessibility Features at Runtime... B-2

B.3 Accessibility Considerations for Portlets ... B-2

C Using the WebCenter Portal REST APIs

C.1 Introduction to REST.. C-1

C.2 Understanding the Username-Based Security Token Encryption... C-2

C.3 Benefits of Using REST... C-2

C.4 Introduction to the WebCenter Portal REST APIs ... C-3

C.5 Understanding the Link Model .. C-4

C.5.1 Using the Resource Index... C-5

C.5.2 Anatomy of a Link... C-7

C.6 Understanding Items Hypermedia ... C-12

C.7 Navigating Hypermedia Using HTTP.. C-12

C.7.1 HTTP Response Status Codes... C-13

C.8 Security Considerations for WebCenter Portal REST APIs ... C-14

C.9 Security Considerations for CMIS REST APIs... C-15

C.10 Understanding Common Types .. C-15

C.10.1 Common Types... C-15

C.10.2 Portable Contact Types.. C-16

C.11 Managing Caches .. C-18

C.12 Configuring a Proxy Server.. C-18

C.13 WebCenter Portal REST API Examples .. C-19

C.13.1 Navigating the Message Board Hypermedia ... C-19

C.13.2 Displaying Activity Stream Data ... C-26

C.13.3 Updating User Status ... C-28

C.14 Using the People Connections REST APIs ... C-32

C.14.1 Activity Stream REST API... C-32

C.14.2 Connections and Profile REST API .. C-43

C.14.3 Feedback REST API.. C-57

xii

C.14.4 Message Board REST API.. C-61

C.14.5 Creating an Invitation .. C-68

C.15 Content Management REST API ... C-71

C.15.1 CMIS Domain Model ... C-72

C.15.2 CMIS Part II: RESTful AtomPub Binding ... C-79

C.15.3 Best Practices and Examples ... C-81

C.16 Using the Events REST API.. C-83

C.16.1 Events Entry Point.. C-83

C.16.2 Events Resource Type Taxonomy.. C-83

C.16.3 Security Considerations... C-84

C.16.4 Events Resource Types .. C-84

C.17 Using the Tags REST APIs.. C-88

C.17.1 Tags Entry Point ... C-88

C.17.2 Tags Resource Type Taxonomy.. C-89

C.17.3 Security Considerations... C-89

C.17.4 Tags Resource Types.. C-89

C.18 Using the Discussions REST API ... C-97

C.18.1 Discussions Entry Point... C-97

C.18.2 Discussions Resource Type Taxonomy ... C-98

C.18.3 Security Considerations... C-98

C.18.4 Discussions Resource Types ... C-98

C.19 Using the Lists REST API.. C-107

C.19.1 Entry Point for Lists ... C-108

C.19.2 Lists Resource Type Taxonomy.. C-108

C.19.3 Lists Security Considerations ... C-108

C.19.4 Lists Resource Types.. C-109

C.20 Using the Activity Graph REST APIs ... C-139

C.20.1 Activity Graph Entry Point ... C-139

C.20.2 Activity Graph Resource Type Taxonomy ... C-139

C.20.3 Security Considerations... C-140

C.20.4 Activity Graph Resource Types.. C-140

C.21 Using the Search REST APIs .. C-145

C.21.1 Search Entry Point .. C-145

C.21.2 Search Resource Type Taxonomy .. C-146

C.21.3 Security Considerations... C-149

C.21.4 Search Resource Types... C-149

D Troubleshooting

D.1 Troubleshooting WebCenter Portal Shared Library Deployment... D-1

D.2 Troubleshooting Portlet Creation... D-1

D.2.1 Cannot Access the Create Portlet Wizard.. D-2

D.2.2 Cannot Add the Portlet Functionality that I Want to the Portlet D-2

D.3 Troubleshooting Pagelets .. D-2

xiii

D.4 Troubleshooting OmniPortlet... D-3

Index

xiv

Preface

This guide explains how to build WebCenter Portal assets, extensions to WebCenter
Portal Server, and shared libraries using JDeveloper. This guide provides in-depth
information for all of the following tasks:

• How to set up and prepare your development environment

• How to build and deploy WebCenter Portal assets

• How to build and deploy extensions to WebCenter Portal

• How to build and deploy shared libraries that can be used in WebCenter Portal

Note:

For the portable document format (PDF) version of this manual, when a URL
breaks onto two lines, the full URL data is not sent to the browser when you
click it. To get to the correct target of any URL included in the PDF, copy and
paste the URL into your browser's address field. In the HTML version of this
manual, you can click a link to directly display its target in your browser.

Audience
This guide is written for a developer who provides support for WebCenter Portal
applications. The developer is primarily responsible for developing assets (such as
page templates, resource catalogs, skins, portlets, and task flows), which are published
and leveraged by knowledge workers and application specialists. A developer
primarily works with JDeveloper and creates WebCenter Portal Asset application and
leverages one of three asset-related templates: the WebCenter Portal Asset template,
the WebCenter Portlet Producer Application template, or the WebCenter Portal Server
Extension template.

The chapters in Working with WebCenter Portal Assets explain how to develop assets
such as page templates, resource catalogs, skins, portlets, and task flows. Several other
parts of this guide also contain chapters devoted to working with assets such as
portlets, pagelets, and shared libraries.

Developer Tasks

Tasks that are typical of a developer include:

• Developing custom assets, like page templates and for portals in WebCenter Portal

• Developing Java portlets

xv

• Modifying existing WebCenter Portal assets

• Developing and deploying task flows, managed beans, and other custom
components

• Maintaining the source control system

• Maintaining a build system

This guide also assumes that the audience has already read the guide Developing
Fusion Web Applications with Oracle Application Development Framework and is
familiar with the following technologies:

• Java

• Oracle JDeveloper

• JavaServer Faces

• Oracle Application Development Framework (Oracle ADF) (purpose, basic
architecture, basic development skills)

• Oracle ADF Faces components

• Oracle WebLogic Server

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
12c (12.2.1.0.0) documentation set or on Oracle Technology Network (OTN) at
http://www.oracle.com/technology/index.html.

• Administering Oracle WebCenter Portal

• Building Portals with Oracle WebCenter Portal

• Using Oracle WebCenter Portal

• Error Messages

• Developing Fusion Web Applications with Oracle Application Development Framework

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

http://www.oracle.com/technology/index.html

Who's Who

The WebCenter Portal documentation is organized so that the tasks in a particular
guide address a specific user persona. Each persona is associated with a set of skills
required to work with WebCenter Portal, from basic to advanced. For example, this
guide is aimed at the Developer persona.

This preface introduces you to the WebCenter Portal personas and describes the ways
in which they might interact with WebCenter Portal. Each persona is assigned a
default role provided out-of-the-box with WebCenter Portal. The default roles are
given a unique set of permissions appropriate for the work that each persona will
typically do. Note that you can modify these default roles or configure new roles to
meet the unique needs of your organization.

The people who interact with WebCenter Portal typically work together as a team that
is comprised of the following personas:

• Knowledge Worker

• Application Specialist

• Web Developer

• Developer

• System Administrator

Knowledge Worker

Karen is a knowledge worker who typically uses WebCenter Portal to contribute and
review content, participate in social interactions, and leverage the Home portal to
manage her own documents and profile.

xvii

At the application level, Karen has permissions such as those granted to the default
Authenticated-User role, which may be customized for the specific needs of the
organization. At the portal level, the portal manager will likely assign Karen a role that
includes View Pages and Customize Pages permissions.

For more information about roles and permissions, see About Roles and Permissions
for a Portal in Building Portals with Oracle WebCenter Portal.

Knowledge Worker Tasks in WebCenter Portal

Tasks that are typical of a knowledge worker like Karen include:

• Editing and updating pages for which she has been assigned content contribution
permissions

• Connecting to and collaborating with other WebCenter Portal users by sharing
information, files, and links; and by interacting through instant messaging, mail,
message boards, discussions, wikis, and blogs

• Uploading, sharing, and managing documents stored in Content Server

• Joining a team or project portal

• Keeping up with changes in WebCenter Portal by receiving notifications when
content is updated, viewing the activities of the portals she is a member of and
users she's connected to, viewing announcements, participating in discussions, and
monitoring WebCenter Portal RSS feeds

• Staying organized through the use of favorites, notes, calendars, lists, links to
portal objects, and tags

As Karen becomes more familiar with the functionality available in WebCenter Portal,
she may begin to perform more advanced tasks, such as creating portals. As a more
advanced knowledge worker, her role may evolve to overlap with application
specialist tasks.

Information targeted for knowledge workers like Karen is in Using Oracle WebCenter
Portal. Advanced tasks that overlap with those of an application specialist are covered
in Building Portals with Oracle WebCenter Portal.

Application Specialist

Ari is an application specialist who works in WebCenter Portal to create and administer
portals, their structure (hierarchy of pages, navigation, security), and their content
(components on a page, layout, behavior, and so on). In a typical project, Ari

xviii

coordinates the efforts of Karen (knowledge worker), Wendy (web developer), and
Dave (developer).

At the application level, Ari has permissions such as those granted to the default
Application Specialist role, which may be customized for the specific needs of
the organization. In a portal that Ari creates, he performs actions available to the
Portal Manager role to manage the portal.

For more information about roles and permissions, see About Roles and Permissions
for a Portal in Building Portals with Oracle WebCenter Portal.

Application Specialist Tasks in WebCenter Portal

Tasks that are typical of an application specialist like Ari include:

• Planning and creating new portals

• Editing and administering the portals he owns

• Creating and building portal pages using the page editor and the resource catalog
to add and configure page components

• Creating and managing portal assets, tools, and services

• Managing shared assets and portal templates across all portals

Information targeted for application specialists like Ari is in Building Portals with
Oracle WebCenter Portal. To work with his personal view of the Home portal, Ari will
also refer to Using Oracle WebCenter Portal.

Web Developer

Wendy is a web developer who focuses on delivering a consistent, branded look and feel
to all portals. Wendy provides graphics designs and HTML markup from which Ari
(application specialist in WebCenter Portal) or Dave (developer in JDeveloper) can
create content or page style templates, skins, and so on. Once these assets are created,
Ari can leverage them to create portal pages. Wendy typically does not interact with
WebCenter Portal directly.

Web Developer Tasks in WebCenter Portal

Tasks that are typical of a web developer like Wendy include:

• Developing a corporate portal look and feel

• Designing new page templates

Information targeted for web developers like Wendy is in Creating a Look and Feel for
Portals in Building Portals with Oracle WebCenter Portal.

xix

Developer

Dave is a developer who is primarily responsible for developing components (such as
task flows, page templates, and content templates), which are published and leveraged
by Ari (the application specialist). Dave works with JDeveloper to develop and extend
assets for use in WebCenter Portal.

Developer Tasks

Tasks that are typical of a developer like Dave include:

• Developing custom assets such page templates and resource catalogs for portals in
WebCenter Portal

• Developing Java portlets

• Developing and deploying task flows, managed beans, and other custom
components

• Developing custom personalization components

• Maintaining the source control system

• Maintaining a build system

Information targeted for developers like Dave is in Developing WebCenter Portal
Assets and Custom Components with Oracle JDeveloper.

System Administrator

Syed is a system administrator who fields requests from IT employees and business
users to set up new machines; clone or back up existing applications systems and
databases; install patches, packages, and applications; and perform other
administration-related tasks. As the system administrator, Syed works with other tools

xx

such as Fusion Middleware Control and command line tools. He leverages Enterprise
Manager to configure portal settings, and also configures integrations such as
WebCenter Content and other Fusion Middleware products and Oracle applications.

In WebCenter Portal, he has permissions such as those granted to the default
Administrator role, which provides exclusive access to administer and set global
options for all portals (including the Home portal).

For more information about application level roles and permissions, see About
Application Roles and Permissions in Administering Oracle WebCenter Portal.

System Administrator Tasks

Tasks that are typical of a system administrator like Syed include:

• Uses WebCenter Portal administration to administer all portals (including import
and export of portals) and security site-wide

• Uses WebCenter Portal administration to manage site-wide system pages, business
role pages, and personal pages

• Leads security, taxonomy, metadata, workflow, governance

• Uses the management console for administrative functions

• Executes command line utilities for administrative functions

• Installs and configures production versions of developers' efforts

• Performs patching of the production versions and the operating system

• Creates clones and backups of the production versions

• Performs restores of production versions

• Monitors the operating system for issues with the production version

• Deploys and redeploys applications

Information targeted for system administrators like Syed is in Administering Oracle
WebCenter Portal and WLST Command Reference for WebLogic Server.

xxi

Part I
Getting Started

This part contains the following chapters:

• Introduction to Developing for Oracle WebCenter Portal

• Setting Up a Development Environment

1
Introduction to Developing for Oracle

WebCenter Portal

This chapter introduces this guide, Developing WebCenter Portal Assets and Custom
Components with Oracle JDeveloper, and briefly describes the major tasks that
WebCenter Portal developers may be expected to perform.

This chapter includes the following topics:

• What Is the Purpose of This Guide?

• What Is My Role as a WebCenter Portal Developer?

1.1 What Is the Purpose of This Guide?
This chapter describes the intended audience and basic purpose of Developing
WebCenter Portal Assets and Custom Components with Oracle JDeveloper.

This guide discusses developing WebCenter Portal assets, shared libraries and
extensions to WebCenter Portal using Oracle JDeveloper. Many of the tasks described
in this guide involve activities that require Java, CSS, Application Development
Framework (ADF), Expression Language (EL), and related experience.

Major activities described in this guide include:

Setting Up Your Environment

See the chapters on setting up your environment and your team environment in
Getting Started.

Working with Assets

The chapters in Working with WebCenter Portal Assets explain how to develop
WebCenter Portal assets such as layouts, page styles, page templates, skins, Content
Presenter templates, and visualization templates. Several other parts of this guide also
contain chapters devoted to working with other types of assets such as portlets,
pagelets, task flows, and shared libraries.

Working with Portlets

Portlets provide a means of presenting data from multiple sources in a meaningful
and related way. Portlets can display excerpts of other web sites, generate summaries
of key information, perform searches, and access assembled collections of information
from a variety of data sources. Because several different portlets can be placed on a
single page, users benefit from a single-source experience even though, in reality, the
content may be derived from multiple sources. See the chapters of Working with
Portlets for detailed information.

Working with Pagelets

Pagelets are sub-components of a web page accessed through Pagelet Producer that
can be injected into any proxied application. Any application on a Pagelet Producer

Introduction to Developing for Oracle WebCenter Portal 1-1

resource that returns markup can be registered as a pagelet, which can then be
displayed in WebCenter Portal, or any other web application. See the chapters of
Working with Pagelets for detailed information.

Working with Additional WebCenter Portal Customizations

You can provide additional functionality within WebCenter Portal by extending ADF
assets, such as task flows, data controls, and managed beans, as a shared library, or
provide page layout more suitable to mobile devices such as smartphones and tablets.
For more information on these and other ways in which to customize WebCenter
Portal, see the chapters in Additional WebCenter Portal Customizations.

1.2 What Is My Role as a WebCenter Portal Developer?
In some cases, WebCenter Portal may require custom components that do not exist
out-of-the-box or cannot easily be created with WebCenter Portal’s runtime. For
example, design requirements might call for page templates, page styles, and skins
that are branded and organized in a precise way. In this case, you may need to use
ADF Faces and CSS to achieve the desired look and feel, and JDeveloper is well-suited
to such development. Other use cases may include developing custom components
that allow for interaction between portal elements and data (for example, using ADF
task flows or portlets with event handling). For example, as a WebCenter Portal
developer, you may be asked to create and configure:

• Portal infrastructure components like page templates and page styles

• Custom portal extensions like task flows, data controls, and backing beans

• WebCenter Portlet Producer applications

• Pagelet Producer pagelets

What Is My Role as a WebCenter Portal Developer?

1-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

2
Setting Up a Development Environment

This chapter helps you get started using JDeveloper to develop assets and extensions
to WebCenter Portal, providing guidance and tips on how to structure your
development environment.

This chapter includes the following topics:

• Introduction to Setting up a Development Environment

• Basic Setup Tasks

• Setup Tasks Specific to WebCenter Portlet Producer Applications

2.1 Introduction to Setting up a Development Environment
This chapter distinguishes between tasks that are general and tasks that are
application-specific. General tasks apply no matter what kind of application you are
developing. For instance, installing JDeveloper and the WebCenter Portal extensions
are general setup tasks. Other tasks described in this chapter apply only if you are
developing specific kinds of applications, like WebCenter Portal server extensions or
WebCenter Portlet Producer applications.

2.2 Basic Setup Tasks
This section describes setup tasks that do not depend on the kind of application you
are developing.

• Installing Oracle JDeveloper

• Installing the WebCenter Portal Extensions for JDeveloper

• Setting the User Home Directory Environment Variable

• Managing the Integrated WebLogic Server

• Creating Application Resource Connections

2.2.1 Installing Oracle JDeveloper
Oracle JDeveloper provides an integrated development environment (IDE) for
developing portals and custom portal components. For information on obtaining and
installing Oracle JDeveloper, see the Oracle JDeveloper page on OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/overview/
index.html

Setting Up a Development Environment 2-1

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

2.2.2 Installing the WebCenter Portal Extensions for JDeveloper
The WebCenter Portal extensions is an add-in that provides JDeveloper with the
complete set of WebCenter Portal capabilities and features. To install the WebCenter
Portal extensions:

1. Start Oracle JDeveloper.

2. If the Select Default Roles dialog displays, select Default Role to enable all
technologies, and click OK.

3. If a dialog opens asking if you want to migrate settings from an earlier version,
click No.

4. From the Help menu, select Check for Updates.

Note:

If you are behind a firewall, you may need to configure a proxy server to
access the extensions. From the Updates wizard, a dialog appears in which
you can enter your HTTP Proxy Server settings. Click the Help button in any
dialog for more information. For detailed information, see the "Proxy Settings
and JDeveloper" topic in the Oracle JDeveloper online help.

5. On the Source page, select Search Update Centers.

6. Check Oracle Fusion Middleware Products and Official Oracle Extensions and
Updates and click Next.

7. From the generated list, search for the WebCenter Core Design Time and
WebCenter Framework and Services Design Time extensions, select them, and
then click Finish.

8. When prompted, restart JDeveloper.

See also Installing and Configuring Oracle WebCenter Portal.

2.2.3 Setting the User Home Directory Environment Variable
Oracle strongly recommends that you set an environment variable for the user home
directory that is referenced by JDeveloper. By setting this variable, you can avoid
receiving long pathname errors that are known to occur in some circumstances.

For detailed instructions on setting this variable on Windows, Linux, UNIX, and Mac
OS X operating systems, see Setting the User Home Directory in Installing Oracle
JDeveloper.

2.2.4 Managing the Integrated WebLogic Server
The following topics describe the Integrated WebLogic Server used by JDeveloper,
and how to deploy and configure it:

• What is the Integrated WebLogic Server?

• Starting and Stopping Integrated WebLogic Server

Basic Setup Tasks

2-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Configuring the JVM for the Integrated WebLogic Server

2.2.4.1 What is the Integrated WebLogic Server?

The Integrated WebLogic Server is a runtime service that references an instance of
Oracle WebLogic Server and is bundled with JDeveloper. The Integrated WebLogic
Server allows developers to run, test, and debug WebCenter Portal portlet producer
and consumer applications from within JDeveloper. Note that you will need to publish
and test assets within WebCenter Portal to determine their suitability within a
particular portal and/or page.

2.2.4.2 Starting and Stopping Integrated WebLogic Server

For detailed information managing the Integrated WebLogic Server, see the topic
"Deploying to Integrated WebLogic Server" in the JDeveloper Online Help. Other
options, such as running in debug mode and logging into the WebLogic Server
Administration Console, are also covered in that section.

2.2.4.3 Configuring the JVM for the Integrated WebLogic Server

Although it is not required, you have the option of changing the default Java Virtual
Machine (JVM) settings the Integrated WLS in the setDomainEnv.sh. This file is
located in JDEV_SYSTEM_DIRECTORY/DefaultDomain/bin.

The default memory values are:

-Xms512m -Xmx512m

When creating or referring to the JDEV_SYSTEM_DIRECTORY, keep in mind that, on a
Windows platform, a WebCenter domain name cannot contain spaces, and the domain
cannot be created in a folder that has a space in its path. Therefore, ensure that
DOMAIN_HOME and JDEV_SYSTEM_DIRECTORY paths do not contain spaces.

2.2.5 Creating Application Resource Connections
Connections allow applications to access external data and services. For example, to
use the Content Presenter task flow to display content from an Oracle WebCenter
Content Server repository, you need to configure a connection to the repository. If you
intend to consume portlets from a portlet producer, you need to configure the
producer connection.

Tip:

A good practice is to create and test your connections once and check them
into your source control system. Then, other developers on your team can
check out the connections and use them. This technique also allows your team
to keep in sync whenever a connection changes.

This section discusses connections and describes the different ways to access the
wizards for creating new connections.

2.2.5.1 Where Are Connections Located?

Depending on how you invoke a wizard to create a connection, connections are placed
in one of the following locations:

• Under Application Resources in the Application Navigator

Basic Setup Tasks

Setting Up a Development Environment 2-3

Connections created here can be used in the current application only. This is the
most common way to create a repository connection.

For certain features, you can drag and drop a connection from Application
Resources onto a page to create different types of task flow regions. To learn more,
refer to the individual chapters on tools and services for WebCenter Portal.

• Under IDE Connections in the Resource Palette

Connections created here can be reused across applications. To use these
connections in an application, you just have to drag and drop the connection from
the Resource Palette onto the Connections node in that application.

2.2.5.2 How Do I Access the Connection Wizards?

To access a connection wizard from the New Gallery:

1. From the File menu, choose New.

2. In the New Gallery dialog, expand Connections, select the type of connection you
want to create, and click OK.

Depending on your selection, the Create <Connection_Type> Connection dialog
opens.

3. The Create Connection in option is set to Application Resources by default.

You can select IDE Connections to create a connection in the Resource Palette.

To access a connection wizard from the Application Navigator:

1. Right-click the Connections node under Application Resources and select New
Connection, then select the connection type from the context menu.

2. Depending on your selection, the Create <Connection_Type> Connection dialog
or wizard opens.

The Create Connection in option is set to Application Resources by default.

To access a connection wizard from the Resource Palette:

1. Click the New icon in the Resource Palette, select New Connection, then select the
connection type from the context menu.

2. Depending on your selection, the Create <Connection_Type> Connection dialog or
wizard opens.

The Create Connection in option is set to IDE Connections by default.

2.3 Setup Tasks Specific to WebCenter Portlet Producer Applications
WebCenter Portal provides a variety of ready-to-use portlets that you can add to your
portal pages. This section provides a brief description of the preconfigured producers
and the portlets they provide. It contains the following subsections:

• Deploying the Preconfigured Portlet Producers

• Accessing OmniPortlet

• WSRP Sample Portlet Producers and Portlets

• PDK-Java Sample Portlet Producer and Portlets

Setup Tasks Specific to WebCenter Portlet Producer Applications

2-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

For more information about WebCenter Portlet Producer applications, see
Introduction to Portlets.

2.3.1 Deploying the Preconfigured Portlet Producers
The preconfigured portlet producers are not deployed by default, you must deploy
them manually, as explained in this section.

Note:

These producer applications consume memory and require CPU time during
deployment. This contributes to the WebLogic Server startup time and base
memory footprint. For these reasons, it makes sense to only deploy the
applications you need. For more information about tuning the deployment of
internal applications, see On-demand Deployment of Internal Applications in
Deploying Applications to Oracle WebLogic Server.

1. If it is not running, start the Integrated WebLogic Server. The server must be
running for this feature to be enabled.

2. From the Run menu, select WebCenter Portal Deployments.

3. In the WebCenter Portal Deployments dialog (Figure 2-1), select the producer to
deploy (or undeploy) and click OK. Each of the preconfigured producers is
described in more detail in the following sections.

Figure 2-1 WebCenter Portal Deployments Dialog

2.3.2 Accessing OmniPortlet
The Integrated WLS contains PortalTools, which provides access to the design time at
runtime OmniPortlet portlet. Design time at runtime means that users define portlet
content after the portlet is placed on an application page and the page is run.

To access the OmniPortlet portlet producer:

1. Start the Integrated WebLogic Server and open the WebCenter Portal
Deployments dialog as described in Deploying the Preconfigured Portlet
Producers.

2. Select Portal Tools Portlet Producers and click OK to deploy them to the
Integrated WebLogic Server.

The Deployment - Log tab in JDeveloper displays a link that opens the PortalTools
Welcome page, from where you can open two Portal Tools test pages—one for the
OmniPortlet producer and one for the Sample Portlet Producers.

Setup Tasks Specific to WebCenter Portlet Producer Applications

Setting Up a Development Environment 2-5

• The OmniPortlet producer provides OmniPortlet, which is a declarative
portlet-building tool that enables you to build portlets against a variety of data
sources, including XML files, character-separated value files (for example,
spreadsheets), web services, databases, and web pages. OmniPortlet users can
also choose a prebuilt layout for the data. Prebuilt layouts include tabular,
news, bullet, form, chart, or HTML. For more information about OmniPortlet,
see Working with OmniPortlet in Building Portals with Oracle WebCenter Portal.

• The Sample Portlet Producer includes portlets built with OmniPortlet that are
for demonstration purposes only. The portlet samples include a scrolling RSS
portlet and a simple RSS portlet. Note that the sample producer is for
demonstration and should not be used to create real-use portlet instances.

3. On the PortalTools Welcome page, copy the OmniPortlet Producer link, or the
Sample Portlet Producer link, and use it to register OmniPortlet with your portal.
For information about registering a portlet producer, see Registering an Oracle
PDK-Java Portlet Producer in Administering Oracle WebCenter Portal.

2.3.3 WSRP Sample Portlet Producers and Portlets
The Integrated WLS includes sample WSRP portlet producers and portlets you can use
with your application.

Note:

You can find the source code for the sample portlets is in the following EAR
file:

JDEV_HOME/oracle_common/modules/oracle.wccore/wsrp-
samples.ear

where JDEV_HOME is the location where JDeveloper is installed on your
machine.

To access the WSRP sample portlet producers:

1. Start the Integrated WebLogic Server and open the WebCenter Portal
Deployments dialog as described in Deploying the Preconfigured Portlet
Producers.

2. Select WSRP Sample Portlet Producers and click OK to deploy them to the
Integrated WebLogic Server.

The Deployment - Log tab in JDeveloper displays a link that opens the WSRP
Sample Producer Test Page.

3. Copy the Web Services Description Language (WSDL) URL for a WSRP producer
—either WSRP v1 WSDL or WSRP v2 WSDL— and use it to register the producer.
For more information about registering portlet producers, see Managing Portlet
Producers in Administering Oracle WebCenter Portal.

2.3.4 PDK-Java Sample Portlet Producer and Portlets
The Integrated WLS includes sample PDK-Java portlet producers and portlets you can
use to familiarize yourself with the types of functionality that are available through
PDK-Java portlets.

Setup Tasks Specific to WebCenter Portlet Producer Applications

2-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

To access PDK-Java sample portlet producers:

1. Start the Integrated WebLogic Server and open the WebCenter Portal
Deployments dialog as described in Deploying the Preconfigured Portlet
Producers.

2. Select PDK-Java Sample Portlet Producers and click OK to deploy the PDK-Java
Sample Producers Test Page to the Integrated WebLogic Server.

The Deployment - Log tab in JDeveloper displays a link that opens the provider
test page.

3. Open a test page, copy the link and use it to register the producer.

For information about registering a portlet producer, see Managing Portlet
Producers in Administering Oracle WebCenter Portal.

Setup Tasks Specific to WebCenter Portlet Producer Applications

Setting Up a Development Environment 2-7

Setup Tasks Specific to WebCenter Portlet Producer Applications

2-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Part II
Working with WebCenter Portal Assets

This part contains the following chapters:

• Introduction to WebCenter Portal Assets

• Working with the Portal Asset Application Template

• Developing Layouts

• Developing Page Styles

• Developing Page Templates

• Developing Skins

• Developing Visualization Templates

• Developing Content Presenter Display Templates

3
Introduction to WebCenter Portal Assets

This chapter describes the different assets available for you to use in WebCenter
Portal, and an overview of the developer's role in developing and extending those
assets.

This chapter includes the following topics:

• About Working with WebCenter Portal Assets

• Developing Assets for WebCenter Portal

3.1 About Working with WebCenter Portal Assets
WebCenter Portal provides various built-in assets that users can leverage in their
portals. Copies of these built-in assets can be modified within WebCenter Portal to
meet specific local requirements. For more information about modifying built-in assets
in WebCenter Portal, see Creating Assets in Building Portals with Oracle WebCenter
Portal.

Some assets, such as page styles and layouts, cannot be created in WebCenter Portal.
These resources must be created in JDeveloper and deployed to WebCenter Portal. In
some cases, WebCenter Portal may also not be able to add all the required
functionality.

WebCenter Portal assets rely on three application templates that can be used to create
or modify asset applications in JDeveloper:

• WebCenter Portal Asset template – used to create or modify assets for page
templates, skins, layouts, page styles, Content Presenter templates, and
Visualization templates. The resulting asset applications include a default
WebCenter Portal Asset Archive deployment profile that you can use to deploy the
asset to WebCenter Portal across a Portal Server connection. For more information
about creating an asset application for these types of assets, see Working with the
Portal Asset Application Template.

• WebCenter Portlet Producer Application template – used to develop portlets based
on the JSR 286 standards. For more information, see Introduction to Portlets.

• WebCenter Portal Server Extension template – used to develop extensions to
WebCenter Portal Server. For more information about developing extensions for
Portal Server, see Developing Shared Libraries.

Finally, you can use WebCenter Portal's Pagelet Producer to create pagelets. Note that
Pagelet Producer is a standalone application that can be accessed directly through its
URL, or from the Shared Assets tab in WebCenter Portal. For information about
accessing and using Pagelet Producer, see Introduction to Pagelets.

Introduction to WebCenter Portal Assets 3-1

3.2 Developing Assets for WebCenter Portal
This section includes the following topic:

• Setting Up Your JDeveloper Environment for Asset Development

3.2.1 Setting Up Your JDeveloper Environment for Asset Development
Before you start, complete the following steps:

1. Download and install Oracle JDeveloper 12c (12.2.1.0.0).

For details, see Installing Oracle JDeveloper.

2. Install the WebCenter Portal Extension for JDeveloper (12.2.1.0.0).

For details, see Installing the WebCenter Portal Extensions for JDeveloper.

3. Restart JDeveloper if it is open.

Developing Assets for WebCenter Portal

3-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

4
Working with the Portal Asset Application

Template

This chapter provides an overview of how to create, modify, and publish assets for use
in WebCenter Portal using the WebCenter Portal Asset application template.

This chapter includes the following topics:

• About the WebCenter Portal Asset Application Template

• Creating a WebCenter Portal Asset Application

• Creating and Editing WebCenter Portal Assets

• Publishing WebCenter Portal Assets

• Testing WebCenter Portal Assets

4.1 About the WebCenter Portal Asset Application Template
You can use the WebCenter Portal Asset application template to create asset
applications for the following asset types:

• Layouts define the basic properties of a page, such as the number and relationship
of columns, and are part of a page's page style. For more information, see
Developing Layouts.

• Page Styles define the layout of a newly created page, and may also dictate the
type of content the page supports. For more information, see Developing Page
Styles.

• Page Templates define the interface that surrounds page content and help to apply
a consistent look and feel across groups of pages. For more information, see
Developing Page Templates.

• Skins define the appearance and look and feel, including colors and fonts, of a
specific portal or the entire application. For more information, see Developing
Skins.

• Visualization Templates determine the layout of content in a task flow that is
created at runtime. Visualization templates can also include objects that can be
bound to any data visualization that is added to the task flow. For more
information, see Developing Visualization Templates.

• Content Presenter Display Templates define templates for displaying content. For
more information, see Developing Content Presenter Display Templates.

Working with the Portal Asset Application Template 4-1

The resulting asset applications include a default WebCenter Portal Asset Archive
deployment profile that you can use to publish the asset to WebCenter Portal across a
Portal Server Connection.

4.2 Creating a WebCenter Portal Asset Application
To create or edit WebCenter Portal assets in JDeveloper that can be published to
WebCenter Portal, you start by creating a WebCenter Portal asset application using
the WebCenter Portal Asset Application template. The application defines the asset
type (for example, a page template) that you want to create or modify. Within that
application, you can then define or edit properties for the asset, and finally, publish it
to WebCenter Portal as a shared or portal-specific asset.

This section includes the following topics:

• How to Create a WebCenter Portal Asset Application

• What You May Need to Know About Asset Application Artifacts

4.2.1 How to Create a WebCenter Portal Asset Application
To create a WebCenter Portal asset application:

1. From the Navigation pane, click New Application (or click the New Gallery icon
and select Application).

The New Gallery displays (Figure 4-1).

Figure 4-1 New Gallery

2. Select WebCenter Portal Asset Application and click OK.

The Application Name page of the Create WebCenter Portal Application wizard
displays (Figure 4-2).

Creating a WebCenter Portal Asset Application

4-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 4-2 Create WebCenter Portal Asset Application - Step 1

3. Enter an Application Name, optionally choose a Directory other than the default
to store your application, and then click Next.

The Project name page of the Create WebCenter Portal Application wizard displays
(Figure 4-3).

Figure 4-3 Create WebCenter Portal Asset Application - Step 2

4. Enter a Project Name for the project and click Next.

You can optionally change the Directory to store your project in, but note that the
Project Name is automatically appended to the path. The Project Java Settings page
of the Create WebCenter Portal Application wizard displays (Figure 4-4).

Creating a WebCenter Portal Asset Application

Working with the Portal Asset Application Template 4-3

Figure 4-4 Create WebCenter Portal Asset Application - Step 3

5. Optionally update the Project Java Settings fields for the asset project and click
Next.

The Portal Asset page of the Create WebCenter Portal Application wizard displays
(Figure 4-5).

Figure 4-5 Create WebCenter Portal Asset Application - Step 4

6. Select the Asset Type (for example, Page Template), optionally change the
Display Name (note that your changes will be applied to the directory path and
file name), optionally add a Description for the asset project, optionally change the
Directory where the asset will be created, and click Finish. After the asset
application has been created it appears in the Navigation pane (Figure 4-6).

Creating a WebCenter Portal Asset Application

4-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 4-6 Newly Created Portal Asset Application

4.2.2 What You May Need to Know About Asset Application Artifacts
When you create a WebCenter Portal asset application, you create a single named
workspace and a single named project (PortalAsset by default) in that workspace.
A WebCenter Portal asset application project follows JDeveloper's standard for a Web
application. It has the same structure and contains all of the features as an ADF Fusion
Web application's ViewController project plus the following WebCenter Portal specific
features:

• Asset Publishing - lets you publish an asset application to WebCenter Portal.

• Page Editor- lets you consume page components and perform runtime
customizations within the Oracle Application Development Framework (Oracle
ADF).

• Customization Components - also lets you consume Composer components and
perform runtime customizations within the Oracle Application Development
Framework (Oracle ADF).

The asset project is seeded with Fusion ViewController's default JSP Tag and
JDeveloper libraries plus some WebCenter Portal specific JSP Tag and JDeveloper
libraries. It contains a Default Package named portal, which is also used, for
example, as the folder name for DataBindings.cpx.

After an asset application has been created, you can change the values for asset-
specific properties, such as displayName and the Description, by editing the
assetDef.xml file under META-INF/assets/<assetName>.

4.3 Creating and Editing WebCenter Portal Assets
After creating an asset application, as described in Creating a WebCenter Portal Asset
Application, you are now ready to define or modify properties for the asset. Table 4-1
shows where to find further information about creating and modifying the different
types of assets. After creating the asset, continue by publishing it to WebCenter Portal
(see Publishing WebCenter Portal Assets) where you can test and debug it (see Testing
WebCenter Portal Assets).

Table 4-1 Creating WebCenter Portal Assets

Asset Type More Information

Layouts Developing Layouts

Page Styles Developing Page Styles

Page Templates Developing Page Templates

Creating and Editing WebCenter Portal Assets

Working with the Portal Asset Application Template 4-5

Table 4-1 (Cont.) Creating WebCenter Portal Assets

Asset Type More Information

Skins Developing Skins

Visualization Templates Developing Visualization Templates.

Content Presenter Display
Templates

Developing Content Presenter Display Templates

4.4 Publishing WebCenter Portal Assets
This section describes the steps for publishing WebCenter Portal assets to WebCenter
Portal as a shared or portal-specific asset.

This section contains the following topics:

• Creating a WebCenter Portal Server Connection

• Publishing a WebCenter Portal Asset

4.4.1 Creating a WebCenter Portal Server Connection
Before you can publish an asset to WebCenter Portal as a shared asset or to a specific
portal, you need to set up a connection to the target Portal Server. Use the WebCenter
Portal Server connection dialog to configure a connection to a Portal Server. You can
set the connection up either as an application resource, or as an IDE connection that
can be reused in other asset applications.

To create a WebCenter Portal Server connection:

1. Open the Portal Server Connection dialog by doing one of the following:

• From the Resources Catalog, click New and select IDE Connections >
WebCenter Portal Server...

• From the Application Resources pane, right-click Connections and select New
Connection > WebCenter Portal Server...

The WebCenter Portal Server Connection dialog displays (Figure 4-7):

Publishing WebCenter Portal Assets

4-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 4-7 WebCenter Portal Server Connection Dialog

2. For the Create connection in options, choose Application Resources to configure a
Portal Server connection specific to the current application, or choose IDE
Connections to save the connection as an IDE resource that can be used for other
applications.

Tip:

If you will be creating and publishing multiple assets, Oracle recommends
that you choose to save the connection in IDE Connections. To add an IDE
connection to an asset application, select it from the IDE Connections node in
the Resource Catalog, and either right-click the connection and select Add to
Application, or drag it to the Connections node under the Application
Resources node in the Applications panel.

3. Enter a name for the Portal Server connection you are setting up. Note that only
alphanumeric characters can be used.

4. Enter the Host name and Port assignment for the Portal Server you are connecting
to. For the host, you can enter either the fully qualified domain name, localhost,
or the server name.

5. Enter a valid username and password for the Portal Server you are connecting to.

6. After completing your entries, click Test Connection to make sure the connection
works. Note that if the connection test fails due to the server being offline, the
connection will still be set up, and can be used once the server is again available.

Tip:

Although the Service Path field is not editable, you can use the field to copy
and paste into a browser to determine the REST endpoint for the server
connection.

Publishing WebCenter Portal Assets

Working with the Portal Asset Application Template 4-7

4.4.2 Publishing a WebCenter Portal Asset
After creating a WebCenter Portal asset, the next step is to publish it and test it in
WebCenter Portal.

To publish a WebCenter Portal asset:

1. Right-click the Portal Asset project node and select Deploy and the default
deployment profile to deploy (Figure 4-8).

Figure 4-8 Deploying a WebCenter Portal Asset

The Deploy Asset wizard displays (Figure 4-9).

Figure 4-9 Deploy Asset Wizard - Deployment Action Page

Publishing WebCenter Portal Assets

4-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

2. On the Deploy Action page, select Deploy to WebCenter Portal and click Next.

The Portal Server page displays (Figure 4-10).

Figure 4-10 Deploy Asset Wizard - Portal Server Page

3. If you've configured a Portal Server connection, select Shared Assets or the specific
portal for the Portal Server connection to which to publish the asset. If you have not
previously configured a Portal Server connection, click the Add icon and complete
the Portal Server connection fields as shown in Creating a WebCenter Portal Server
Connection.

4. Click Finish to deploy the asset, or click Summary to see a summary of your
deployment selections before deploying.

5. Open the Deployment - Log pane and check the status of the deployment. You can
also click on the target URL on the Portal Server to view the recently deployed
asset.

4.5 Testing WebCenter Portal Assets
After creating or modifying an asset application and publishing the asset to
WebCenter Portal, you can continue by testing the runtime results. Note that you must
test the asset within WebCenter Portal’s runtime. You can iterate by modifying the
asset in the JDeveloper, republishing to Portal Server, and then validating in
WebCenter Portal. There are two ways to republish: you can either right-click on the
Portal Asset project node > Deploy > use the recently used deployment item, or use
the default Alt-Shift-P shortcut key.

Note:

To change or view shortcut key settings, go to Tools > Preferences > Shortcut
Keys > and search for “Republish Portal Asset” or other shortcut key.

Testing WebCenter Portal Assets

Working with the Portal Asset Application Template 4-9

To help with the debug process, you can ask an Administrator (or someone with
Administrator rights) for the test or staging environment to configure error messages
and the calling stack to display in the runtime. For more information, see Viewing and
Configuring Error Messages in WebCenter Portal in Administering Oracle WebCenter
Portal.

Testing WebCenter Portal Assets

4-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

5
Developing Layouts

This chapter describes how to create or modify page layouts and publish them to
WebCenter Portal as a shared or portal-specific asset.

This chapter includes the following topics:

• About Developing Layouts

• Creating a Layout

• Editing a Layout

• Publishing a Layout

5.1 About Developing Layouts
When you create a new page, you select a page style for that page. Every page style
includes a default layout, which is inherited by the new page. WebCenter Portal
provides several built-in layouts that you can select on the Shared Assets or Assets
pages.

If you want to change the layout for a page or page style, you can select a new existing
layout for any page, or you can create a custom layout, and publish it as a shared or
portal-specific asset. You can do this by either making a copy of a built-in layout and
editing it in WebCenter Portal, or you can create a WebCenter Portal asset application,
copy and paste the built-in layout and modify it in JDeveloper.

This chapter describes how to create or modify page layouts in a WebCenter Portal
asset application, and publish them to WebCenter Portal as a shared or portal-specific
asset. For information about modifying layouts in WebCenter Portal, see Working
with Layouts in Building Portals with Oracle WebCenter Portal.

5.2 Creating a Layout
This section describes how to create a WebCenter Portal asset application for a page
layout, and the artifacts that are created along with it.

This section includes the following topics:

• How to Create a Layout

• What You May Need to Know About Layout Artifacts

5.2.1 How to Create a Layout
This section describes how to create a WebCenter Portal Asset application for a new
layout. Once the asset application with its associated artifacts has been created, you
can continue by modifying the layout as described in Editing a Layout.

Developing Layouts 5-1

Note:

Oracle recommends that you store asset-related artifacts, such as images and
icons, on your content server and that you create a folder structure on your
content server specifically for asset artifacts so that content is easy to identify
and move, if required.

To create a custom layout:

1. Create an asset application for the asset specifying Layout as the Asset Type.

For more information about creating WebCenter Portal asset applications, see
Creating a WebCenter Portal Asset Application. For information about the artifacts
that are created when you create an asset application for a layout, see What You
May Need to Know About Layout Artifacts.

2. In the Application Navigator, right-click the newly created layout's CSS and JSPX
files, and choose Open. If you are using an existing WebCenter Portal layout as a
starting point, copy and paste the source into the corresponding file in JDeveloper
(for more information about using an existing asset as a starting point, see Copying
an Asset in Building Portals with Oracle WebCenter Portal).

3. Continue by adding or modifying the layout as described in Editing a Layout.

5.2.2 What You May Need to Know About Layout Artifacts
Creating a layout asset application produces a default layout, with the following
artifacts:

• A CSS file (for example, Layout1.css)

• A JSF file (for example, Layout1.jspx)

Both of these files appear in the Navigation bar as shown in Figure 5-1.

Figure 5-1 Layout Asset Application Artifacts

The following examples show the JSPX file and corresponding CSS file for the built-in
three column (Three Columns) layout from the Shared Assets page in WebCenter
Portal.

Creating a Layout

5-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Example Three-Column JSPX File

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html" xmlns:af="http://
xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <af:componentDef var="attrs" componentVar="comp">
 <af:xmlContent>
 <component xmlns="http://xmlns.oracle.com/adf/faces/rich/component">
 <display-name>ThreeColumnFlow</display-name>
 <facet>
 <facet-name>area1</facet-name>
 </facet>
 <facet>
 <facet-name>area2</facet-name>
 </facet>
 <facet>
 <facet-name>area3</facet-name>
 </facet>
 </component>
 </af:xmlContent>
 <af:group id="threeColumnFlow">
 <af:resource type="css" source="${pageDocBean.layoutCssPath}"/>
 <div xmlns="http://www.w3.org/1999/xhtml" class="area1">
 <af:facetRef facetName="area1"/>
 </div>
 <div xmlns="http://www.w3.org/1999/xhtml" class="area2">
 <af:facetRef facetName="area2"/>
 </div>
 <div xmlns="http://www.w3.org/1999/xhtml" class="area3">
 <af:facetRef facetName="area3"/>
 </div>
 </af:group>
 </af:componentDef>
</jsp:root>

Example Three-Column Layout CSS File

/* one column */
.area1 {
}

.area2 {
}

.area3 {
}

/* two column with area3 under area2 */
@media only screen and (min-width : 481px) {
 .area1 {
 position:absolute;
 left: 0px;
 width:50%;
 }
 .area2 {
 position:relative;
 left:50%;
 width:50%;
 }

Creating a Layout

Developing Layouts 5-3

 .area3 {
 position: relative;
 left: 50%;
 width:50%;
 }
}

/* three column */
@media only screen and (min-width: 769px) {
 .area1 {
 position: static;
 left: auto;
 float:left;
 width:33%;
 }

 .area2 {
 position: static;
 left: auto;
 float:left;
 width:34%;
 }

 .area3 {
 position: static;
 left: auto;
 float:left;
 width:33%;
 }
}

5.3 Editing a Layout
After creating the asset application for the layout, as described in Creating a Layout,
continue by modifying the CSS and JSPX files.

Note:

Oracle recommends that you store asset-related artifacts, such as images and
icons, on your content server and that you create a folder structure on your
content server specifically for asset artifacts so that content is easy to identify
and move, if required.

To edit a layout:

1. In the Application Navigator, right-click the layout's CSS and JSPX files and choose
Open.

2. If you are using an existing WebCenter Portal layout (that is, other than the one
created by default when you create the asset application) as a starting point, copy
and paste the source for the CSS and JSPX files into the corresponding file in
JDeveloper (see Copying an Asset in Building Portals with Oracle WebCenter Portal).

3. In the source code for the layout, make the appropriate changes. .

4. Save the CSS and JSPX files.

Editing a Layout

5-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

5. Publish and test the layout as shown in Publishing a Layout.

5.4 Publishing a Layout
After creating a WebCenter Portal asset application and making the changes you want
to the layout, the next step is to publish it and test it in WebCenter Portal. For
instructions on how to publish a layout to WebCenter Portal as a shared or portal-
specific asset, see Publishing WebCenter Portal Assets.

Publishing a Layout

Developing Layouts 5-5

Publishing a Layout

5-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

6
Developing Page Styles

This chapter describes how to use Oracle JDeveloper to create, edit, and publish page
styles for use in WebCenter Portal.

This chapter includes the following topics:

• About Developing Page Styles

• Best Practices for Creating Page Styles

• Creating a Page Style

• Editing a Page Style

• Publishing a Page Style

6.1 About Developing Page Styles
A page style is a JSPX page used for pages created at runtime. A page style describes
the layout of a newly created page and may also dictate the type of content that the
page supports.

When a user creates a page using a page style, the layout and initial content are copied
from the page style to the newly created page. Unlike page templates, page styles are
not reference-based. That is, if you change a page style, the change is not inherited in
pages that use the style.

Typically, a page style contains components that enhance the usefulness and
appearance of a given page. These include an in-place HTML text editor, images,
layout boxes, hyperlinks, and so on. Content contributors can further populate the
page with content. Figure 6-1 shows a sample portal page that is based on a page style.

Developing Page Styles 6-1

Figure 6-1 Sample Page Using a Page Style

You can create page styles in either JDeveloper, or from the WebCenter Portal Shared
Assets page (or Assets page for individual portals), to use at runtime to create pages.
In the runtime, a user creates pages based on the available page styles. When they
choose Add Page, the Select a Style dialog displays a set of predefined styles, as shown
in Figure 6-2. The user chooses a style and creates a page based on that style. As the
layout is already in place in the new page, the user only needs to add content to
different areas of the page.

Figure 6-2 Select a Style Dialog

6.2 Best Practices for Creating Page Styles
The following prerequisites and guidelines may be helpful when developing page
styles to be exposed as WebCenter Portal assets:

• If a page style is based on a page template, then while designing the page style JSF
(.jspx) file, add the content facet, or any other facet defined in the page
template, to contain page content.

• To make the page customizable, add a Page Customizable component within
the content facet. As the Page Customizable contains a child

Best Practices for Creating Page Styles

6-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

panelCustomizable component by default, users can add content to the page at
runtime.

• To enable dynamic selection of the page template to use for the page style, in the
page style JSF (.jspx) file, specify that the page template is defined in the page
style's page definition, as follows:

<af:pageTemplate value="#{bindings.pageTemplateBinding.templateModel}" id="T">

You can then specify an EL value in the page style page definition to retrieve the
name of the page template from the default page template setting, as follows:

<page viewId="#{preferenceBean.defaultPageTemplateViewId}"
id="pageTemplateBinding" Refresh="ifNeeded"/>

At runtime, users with the appropriate permissions can switch to a different page
template by selecting a new default page template in the runtime administration
console. For more information, see Choosing a Default Page Template in
Administering Oracle WebCenter Portal.

• You can create a managed bean that controls which page template to use, as shown
in the following example:

Example: Managed Bean to Control Page Template

public class siteTemplatesManager {
final private String templateA ="/templateA.jspx";
 final private String templateB ="/templateB.jspx";
 private String currentSiteTemplateViewId;

public siteTemplatesManager() {
super();
 currentSiteTemplateViewId =templateA;
 }
public String gettemplateViewId() {
return currentSiteTemplateViewId;
 }
public void settemplateAViewId(ActionEvent ae) {
currentSiteTemplateViewId =templateA;
 }
public void settemplateBViewId(ActionEvent ae) {
currentSiteTemplateViewId =templateB;
 }
}

6.3 Creating a Page Style
This section describes how to create a WebCenter Portal asset application for a new
page style. Once the asset application with its associated artifacts has been created,
you can continue by modifying the page style's JSPX file as described in Editing a Page
Style.

This section includes the following topics:

• How to Create a Page Style

• What You May Need to Know About Page Style Artifacts

Creating a Page Style

Developing Page Styles 6-3

6.3.1 How to Create a Page Style
This section describes how to create a WebCenter Portal asset application for a new
page style. Once the asset application with its associated artifacts has been created,
you can continue by modifying the page style's JSPX file as described in Editing a Page
Style.

To create a custom page style:

1. Create a WebCenter Portal asset application for the asset, selecting Page Style as
the Asset Type.

See Creating a WebCenter Portal Asset Application for more information about
creating WebCenter Portal asset applications. For information about the artifacts
that are created when you create an asset application for a page style, see What You
May Need to Know About Page Style Artifacts.

2. In the Application Navigator, right-click the newly created page style's JSPX file,
and choose Open (Figure 6-3).

Figure 6-3 Page Style JSPX File

3. Continue by adding to or modifying the page style as shown in Editing a Page
Style.

6.3.2 What You May Need to Know About Page Style Artifacts
Creating a page style asset application produces a default page style, with the
following artifacts:

• A JSP file containing the page elements for the page style (for example,
PageStyle1.jspx)

• The corresponding page definition file for the page style (for example,
PageStyle1PageDef.xml)

Both of these files appear in the Navigation bar as shown in Figure 6-4.

Creating a Page Style

6-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 6-4 Page Style Asset Application Artifacts

The following examples show the page style code for the JSPX file and associated page
definition file for the built-in Three Column page style, which creates a basic page
designed to flow and provide three columns.

JSPX File for Three Column Page Style

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root version="2.1" xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
xmlns:cust="http://xmlns.oracle.com/adf/faces/customizable" xmlns:f="http://
java.sun.com/jsf/core" xmlns:jsp="http://java.sun.com/JSP/Page" xmlns:trh="http://
myfaces.apache.org/trinidad/html">
 <jsp:directive.page deferredSyntaxAllowedAsLiteral="true"/>
 <jsp:directive.page contentType="text/html;charset=utf-8"/>
 <f:view>
 <af:document id="docrt" title="#{pageDocBean.title}">
 <f:facet name="metaContainer">
 <trh:meta content="#{bindings.SEO_KEYWORDS}" name="keywords"/>
 </f:facet>
 <af:form id="f1" usesUpload="true">
 <af:pageTemplate id="T"
value="#{bindings.shellTemplateBinding.templateModel}">
 <f:facet name="content">
 <af:panelGroupLayout id="pgl1"
inlineStyle="replace_with_inline_style" layout="scroll"
styleClass="replace_with_scheme_name">
 <af:declarativeComponent id="dclay"
viewId="#{pageDocBean.layoutViewId}">
 <f:facet name="area1">
 <cust:panelCustomizable id="pcarea1" layout="auto"/>
 </f:facet>
 <f:facet name="area2">
 <cust:panelCustomizable id="pcarea2" layout="auto"/>
 </f:facet>
 <f:facet name="area3">
 <cust:panelCustomizable id="pcarea3" layout="auto"/>
 </f:facet>
 </af:declarativeComponent>
 </af:panelGroupLayout>
 </f:facet>
 </af:pageTemplate>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

Creating a Page Style

Developing Page Styles 6-5

Example: Page Definition File for Three Column Page Style

<?xml version='1.0' encoding='UTF-8'?>
<pageDefinition
Package="oracle.webcenter.siteresources.scopedMD.s8bba98ff_4cbb_40b8_beee_296c916a23e
d.pageStyle.gsr7ae8ef60_d5b9_4411_becb_11239bf4bb63" id="TemplateThreeColumnPageDef"
version="11.1.1.41.30" xmlns="http://xmlns.oracle.com/adfm/uimodel">
 <parameters>
 <parameter id="page_layout" value="gsr22bbc98b_834b_425d_8d48_c136d0956ec8"/>
 <parameter id="page_title" value="Three Column"/>
 </parameters>
 <executables>
 <page Refresh="ifNeeded" id="shellTemplateBinding"
viewId="#{WCAppContext.application.siteTemplatesManager.currentSiteTemplateViewId}"/>
 </executables>
 <bindings/>
 <permission
permissionClass="oracle.webcenter.page.model.security.CustomPagePermission"
target="ps_targetusage" xmlns="http://xmlns.oracle.com/adf/security">
 <privilege-map operation="administer" privilege="manage"/>
 <privilege-map operation="create" privilege="create"/>
 <privilege-map operation="delete" privilege="delete"/>
 <privilege-map operation="edit" privilege="update"/>
 <privilege-map operation="personalize" privilege="personalize"/>
 <privilege-map operation="view" privilege="view"/>
 </permission>
</pageDefinition>

6.4 Editing a Page Style
After creating the WebCenter Portal asset application for the page style, you can
continue by adding content to the newly created page style file.

Note:

Oracle recommends that you copy an existing or built-in page style in
WebCenter Portal and paste it into the page style JSPX file in JDeveloper. You
can then use this page style as the starting point for your new page style and
publish it back to WebCenter Portal once you've modified it. For more
information about how to copy an asset in WebCenter Portal, see Copying an
Asset in Building Portals with Oracle WebCenter Portal.

To edit a page style:

1. In the Application Navigator, right-click the page style's JSPX file, and choose
Open (Figure 6-5).

Figure 6-5 Page Style JSPX File

Editing a Page Style

6-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

2. In the visual editor, make any changes to the layout of content of the page style in
the same way as you would edit any page.

For information about best practices for defining the content of the page style, see
Best Practices for Creating Page Styles. For information about the files created for a
page style asset application, see What You May Need to Know About Page Style
Artifacts.

3. Save your changes.

4. Publish and test the page style as shown in Publishing a Page Style.

6.5 Publishing a Page Style
After creating a WebCenter Portal asset application and editing the JSPX file for the
page style, the next step is to publish it and test it in WebCenter Portal. For
instructions on how to publish an asset to WebCenter Portal as a shared asset, or to a
specific portal as a portal asset, see Publishing WebCenter Portal Assets.

Publishing a Page Style

Developing Page Styles 6-7

Publishing a Page Style

6-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

7
Developing Page Templates

This chapter describes how to use Oracle JDeveloper to create, edit, and publish page
templates for use in WebCenter Portal.

Page templates provide the structure for common areas in portal pages. Using Oracle
JDeveloper, you can design and develop page templates for portal pages displayed in
WebCenter Portal.

This chapter includes the following topics:

• Introduction to Developing Page Templates

• Best Practices for Developing Page Templates

• Creating a Page Template

• Editing a Page Template

• Publishing a Page Template

• Page Template Tutorials and Examples

7.1 Introduction to Developing Page Templates
This section includes the following topics:

• Understanding Page Templates

• Understanding Page Template Structure

• Understanding Page Template Layout

• Understanding Page Template Layout Components

7.1.1 Understanding Page Templates
Page templates define how individual pages and groups of pages display on a user's
screen, and help to ensure that the pages in a portal are consistent in structure and
layout.

If you change a page template, then all pages that reference that template
automatically inherit the changes.

Note:

For general information about page templates, see Using Page Templates in
Developing Web User Interfaces with Oracle ADF Faces.

Developing Page Templates 7-1

For tips and best practices for creating page templates for use in Oracle WebCenter
Portal, see Best Practices for Developing Page Templates. Oracle recommends that you
use Oracle JDeveloper to develop page templates for use in WebCenter Portal. You can
also develop page templates in WebCenter Portal, but the editing capabilities are
limited.

When fully developed, you can publish page templates directly to WebCenter Portal
as a shared asset or to a specific portal for immediate use or for testing. For more
information, see Publishing a Page Template.

7.1.2 Understanding Page Template Structure
Typical elements of a page template include:

• Header, content area (different in each page), and footer. The header and footer
commonly include brand-specific elements. For example, a header usually includes
a logo and possibly a slogan, and a footer usually includes contact and copyright
information.

• Navigation. A page template can expose the navigation for a portal in many ways.
For example, on a mobile device, portal navigation may be shown as a popup or
slide in/out. On a desktop browser, portal navigation is typically shown along the
top of the page, or down the side of the page.

• Branding elements. For example, a page template my include a company logo,
slogan, or copyright message.

• Links and actions. For example, a log in/log out link, drop-down menus, or global
links (such as links to send a mail message to the web administrator or to display a
privacy statement).

• Conditional elements. For example, some elements on the page might differ
depending on whether the user is public or authenticated or depending on the
user's role and privileges.

Figure 7-1 shows a sample application based on a page template that illustrates these
elements.

Introduction to Developing Page Templates

7-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 7-1 Sample Portal that Uses a Page Template

7.1.3 Understanding Page Template Layout
One of the most important aspects of page template design is the layout of
components, both elements of the template and page content.

There are two basic strategies:

• A flowing layout is the most typical layout. Components are arranged side by side
or one below the other, displayed using their natural size. When the content of the
page extends beyond the size of the browser window, the browser displays scroll
bars on the page.

• A stretching layout may be a suitable choice when your page content fills a large
area, or you want the page content to grow and shrink depending on the size of the
browser window. Components are stretched to occupy the available space on the
page. For example, a stretching layout may be suitable when a page contains a
table or graph that you want to fill up the whole content area, no matter what size
it is. Another example is a page that contains an editing area, where you want the
editor to be exactly as tall and wide as the space given to the content area. This
layout has a region for the page content, and adds scroll bars to the region on the
page when the content cannot be contained within the size of the browser window.
In other words, individual components display scroll bars (which might mean that
you have multiple scroll bars on one page).

Stretching enables you to maximize the usage of the viewable area. You can use
tabs, accordions, menus, and popups to expand your viewable area. When scroll
bars are added to the page, the navigation area, page header, and page footer
remain in view while the content area scrolls.

Because most web sites use a flowing layout, you will probably also want to use a
flowing layout as it will likely feel more familiar to your users. However, stretching
layouts are good for dashboards and applications that are rich in nature or when you
want to mimic a desktop experience. You can also combine flowing and stretching
layout on the same page.

Vertical Behavior

Introduction to Developing Page Templates

Developing Page Templates 7-3

Depending on whether your layout is flowing or stretching, the vertical behavior of
the page differs as follows:

• Flowing layout:

– The header and/or footer might not always be visible

– The height of the page is calculated based on the page contents

– The content is never stretched vertically

– The browser might display a scroll bar

• Stretching layout:

– The header and footer are always visible

– The height of the page is determined by the browser window

– The content is stretched vertically

– The content area might display a scroll bar

Horizontal Behavior

Depending on whether your layout is flowing or stretching, the horizontal behavior of
the page differs as follows:

• Flowing layout:

– If your page includes a side bar (for example, left-side navigation), the side bar
might not always be visible

– The width of the page is calculated based on the components

– Some components might be stretched to fill up existing space

– The browser might display a scroll bar

• Stretching layout:

– If your page includes a side bar (for example, left-side navigation), the side bar
is always visible

– The width of the page is determined by the browser window

– The content is stretched horizontally

– The content might display a scroll bar

7.1.4 Understanding Page Template Layout Components
The underlying structure of a page template is provided by Oracle Application
Development Framework (ADF) layout components.

After you decide on the appropriate layout to use for your page template (see
Understanding Page Template Layout), you will use ADF layout components to create
your page template. This is a complex task, and requires knowledge of the ADF
components that will achieve the structure and layout you require, and best practices
to employ (see Best Practices for Developing Page Templates).

Introduction to Developing Page Templates

7-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

• For details on what different layout components look like, see the ADF
Faces Rich Client demo online tool:

http://jdevadf.oracle.com/adf-richclient-demo/faces/
visualDesigns/index.jspx

In the demo tool, you can select Page or Page Template from the View
Source menu to see what layout components and attributes are used to
achieve the page structure.

• Page Template Tutorials and Examples

Figure 7-2 and Figure 7-3 illustrate common ADF components used in a page template
layout, showing the page template code followed by the generated layout:

• af:panelGridLayout—a versatile layout component that uses rows (gridRow)
and cells (gridCell) to define a structured layout. This component is the
preferred general layout component as it offers a small client side footprint while
being very flexible in layout capabilities. It allows you to more naturally define
areas of the page to match your desired layout in the form of rows and columns.
With panelGridLayout, you can easily specify fixed or variable column widths
(% or pixels), which cannot be done as easily with other layout components. See
Figure 7-2.

• af:panelGroupLayout—a flowing series of components arranged horizontally,
vertically, or in scrollable structures. Typically, panelGroupLayout is used with
flowing layouts, and with flowing content inside a stretching layout. It provides
vertical and horizontal scroll bars if the content does not fit into the available space.
See Figure 7-2 and Figure 7-3.

• af:panelSplitter—a stretched box divided into two user-modifiable sections.
See Figure 7-3.

Introduction to Developing Page Templates

Developing Page Templates 7-5

http://jdevadf.oracle.com/adf-richclient-demo/faces/visualDesigns/index.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/visualDesigns/index.jspx

Figure 7-2 Page Template Code and Generated Stretching Layout: Example 1

Introduction to Developing Page Templates

7-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 7-3 Page Template Code and Generated Stretching Layout: Example 2

7.2 Best Practices for Developing Page Templates
Because page templates are present in every page of a portal, the design of your page
templates should be carefully planned to optimize their performance and conform to
best practices.

This section provides tips for developing page templates for WebCenter Portal (as a
shared asset), or a specific portal.

Note:

Oracle recommends that you use JDeveloper to develop page templates for
portals. You can also develop page templates in Oracle WebCenter Portal, but
the editing capabilities are limited.

When fully developed, you can publish page templates to WebCenter Portal
as a shared asset or to a specific portal for immediate use or for testing.
Alternatively, you can export the page template to a file and upload the page
template to WebCenter Portal later.

For more information, see Creating a Page Template, Editing a Page Template,
and Publishing a Page Template.

Table 7-1 provides a quick reference summary of considerations and guidance for
achieving the best results out of your page templates.

Table 7-1 Best Practices Summary for Page Templates

Best Practices for Developing Page Templates

Developing Page Templates 7-7

Table 7-1 (Cont.) Best Practices Summary for Page Templates

Considerations Best Practices

Performance While all of this section is aimed at
improving the performance of your page
templates, there are a few general tips to keep
in mind as overall best practices:

• Minimize the use of embedded task flows.
For examples, refer to the latest out-of-
the-box page templates included with
WebCenter Portal, described in About
Built-in Page Templates in WebCenter
Portal in Building Portals with Oracle
WebCenter Portal.

• Minimize the use of ADF layout
components, using panelGridLayout to
implement your page template structure.
The fewer ADF layout components, the
easier it is to apply skins.

• Avoid using images for decorative
purposes (such as rounded corners).
Consider using CSS instead of images.

• Defer loading of ADF components, such
as menus and dialogs, where possible.
This can be controlled through ADF such
as contentDelivery, childCreation,
and so on.

• Avoid elements that require extra time in
rendering page templates and try to
substitute for elements that require less
processing time.

Layout One of the most important aspects of page
template design is how to lay out
components, both elements of the template
and page content. Page templates can have a
flowing layout or a stretching layout. For
more details about these two strategies, see
Understanding Page Template Layout.

As a page template developer, you can
control whether the content facet is in a
stretching or flowing region of the page. Page
content must be created taking the layout
strategy into consideration.

Once you decide on the best strategy for your
page templates, see the following sections for
tips on creating the layout you choose:

• Best Practices for Creating Stretching
Layouts

• Best Practices for Creating Flowing
Layouts

Best Practices for Developing Page Templates

7-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 7-1 (Cont.) Best Practices Summary for Page Templates

Considerations Best Practices

Navigation A page template can expose the navigation
for a portal in many ways. For example, in a
desktop browser, portal navigation is
typically shown along the top of the page, or
down the side of the page:

• A top navigation page template exposes
the portal navigation in header area. Top
navigation makes effective use of the
horizontal space on the page, and is
recommended when there are seven or
fewer top level pages in the portal
navigation. This page template design
generally has a header, page and footer
sections, and is an ideal starting point for
sites that require a flowing layout.

• A side navigation page template exposes
the portal navigation in a sidebar on the
left side of the page. The vertical nature of
side navigation allows for a more lengthy
list of navigation items, and is
recommended when there are more than
seven top level pages in the portal
navigation. Choose a side navigation
template for more complex navigation
models.

On different devices, navigation can be
exposed differently. For example, in page
templates optimized for mobile devices,
navigation can be provided as either a popup
or slide in/out.

Skin Each page template works together with a
skin to determine the overall look and feel of
the pages in your portal. While the page
template controls the structure of
components on the page, the skin controls the
visual appearance of those components, such
as the colors, fonts, and other aspects such as
the position, height, and width of
components on the page.

Each page template can define a preferred
skin to identify the skin that works best with
that page template. When the page template
is selected as the default page template for a
portal or as the system default, the default
skin automatically updates to the page
template's preferred skin.

For more information, see Developing Skins.

Best Practices for Developing Page Templates

Developing Page Templates 7-9

Table 7-1 (Cont.) Best Practices Summary for Page Templates

Considerations Best Practices

Runtime behavior If you develop a page template in JDeveloper
that you plan to allow authorized users to
edit in Composer at runtime, follow the tips
provided in Best Practices for Developing
Page Templates That Can Be Edited at
Runtime.

Components For details on what different ADF layout
components look like, see the ADF Faces Rich
Client demo online tool (http://
jdevadf.oracle.com/adf-
richclient-demo/faces/
visualDesigns/index.jspx). Select Page
or Page Template from the View Source
menu for a component to see what tags and
attributes are used as well as what the
component structure looks like for the page.

Because a page template layout can be
changed, create pages and design custom
components that display properly in flowing
and stretching context.

For tips on customizing the appearance of
components, see Best Practices for
Customizing the Appearance of Components.

Scrolling Add scrollbars only around flowing island
content. For tips on implementing scrollbars,
see Best Practices for Defining Scrolling in a
Page Template.

Margins, borders, and padding Due to browser CSS Box Model Rules,
defining margins, borders and padding on
components might be complex. For tips on
resolving the complexities of defining
margins, borders and padding on
components, see Best Practices for Defining
Margins, Borders, and Padding.

Attributes Consider attributes that can be set in your
page templates or pages that use the page
templates. For example, showFooter
specifies whether or not to show the page
footer.

A page template without attributes is
syntactically correct. However, page template
attributes are useful when you want to use
one page template for several pages where
the template should render slightly
differently.

Information about using attributes in your
page templates is provided throughout this
chapter, including Creating a Page Template.

Best Practices for Developing Page Templates

7-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://jdevadf.oracle.com/adf-richclient-demo/faces/visualDesigns/index.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/visualDesigns/index.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/visualDesigns/index.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/visualDesigns/index.jspx

Table 7-1 (Cont.) Best Practices Summary for Page Templates

Considerations Best Practices

Links To add links to page templates, copy
components provided in the out-of-the-box
page templates to include links navigation,
menus, breadcrumbs, buttons, and images.

go components such as goButton and
goLink have little to no client side footprint
since they do not carry client side
functionality. They are also preferred over
command components (commandButton,
commandLink) for general navigation in
portals because they enable URLs that are
optimized for search engines.

Internationalization To create page templates with
internationalization techniques in mind, see
Guidelines for Building Multilanguage
Portals for information about recommended
practices such as storing static text in
resource bundle files.

Naming page templates (display name) The display name is exposed to users when
creating a new page. For this reason, you
should make the page template name
something that helps users quickly identify
which type of pages the template should be
used for.

This section includes the following topics:

• Best Practices for Creating Stretching Layouts

• Best Practices for Creating Flowing Layouts

• Best Practices for Developing Page Templates That Can Be Edited at Runtime

• Best Practices for Customizing the Appearance of Components

• Best Practices for Defining Scrolling in a Page Template

• Best Practices for Defining Margins, Borders, and Padding

7.2.1 Best Practices for Creating Stretching Layouts
If your page template is best suited to a stretching layout, follow these tips as you
develop the layout.

For more information about different layouts, see Understanding Page Template
Layout.

• Build the outer structure with containers that can be stretched and can stretch their
children. Inside your document component, use containers such as
panelGridLayout (Figure 7-2) with rows (gridRow) and cells (gridCell), and
panelSplitter (Figure 7-3).

Best Practices for Developing Page Templates

Developing Page Templates 7-11

Note:

Each layout or panel component's tag documentation identifies whether it is
stretchable and how to achieve it in its "Geometry Management"
documentation. Some components have attributes to determine whether
children will be stretched or not. For example: document has a maximized
attribute, showDetailItem has a stretchChildren attribute.

• Create flowing islands. Inside of the stretchable outer structure, create islands of
flowing (non-stretched) components. To make this transition from stretching to
flowing, use panelGroupLayout with layout="scroll" or
layout="vertical" since it supports being stretched but will not stretch its
children.

• On stretching components, set dimensionsFrom="auto" so that the stretching
component (for example, panelStretchLayout) will only try to stretch its child
if it itself is being stretched. If it is not being stretched, then it will flow (not stretch)
its children.

• Do not stretch something vertically (by using a height with a percent value) when
inside a flowing container.

• Do not use the position CSS property in an inlineStyle. Doing so will impede
the ability to override this property with a style specified in the skin.

Note:

The following components are just some of the components that cannot be
reliably stretched:

• Most input components

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (with layout="default")

• panelGroupLayout (with layout="horizontal")

• panelHeader (with type="flow")

• panelLabelAndMessage

• panelList

• panelGrid

7.2.2 Best Practices for Creating Flowing Layouts
If your page template is best suited to a flowing layout, follow these tips as you
develop the layout.

For more information about different layouts, see Understanding Page Template
Layout.

Best Practices for Developing Page Templates

7-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Use panelGridLayout with rows (gridRow) and cells (gridCell) to define a
structured layout that will flow.

• To avoid multiple scroll bars, do not nest scrolling panelGroupLayout
components, instead use layout="vertical".

• Most stretchable ADF components also work in flowing context with
dimensionsFrom="auto".

• To stretch a component horizontally, use styleClass="AFStretchWidth"
(instead of inlineStyle="width:100.0%").

Working with customizable components:

• In panelCustomizable, use layout="auto" to detect whether to stretch its
children.

• To support flowing and stretching layouts, use showDetailFrame with
stretchChildren="auto".

7.2.3 Best Practices for Developing Page Templates That Can Be Edited at Runtime
To create a page template at design time (in Oracle JDeveloper) that is suited to being
editable at runtime (in Oracle WebCenter Portal), follow these tips.

• Add components from the Composer group in the Component Palette.

• Do not add pageCustomizable to a page template.

• Add at least one panelCustomizable component, which provides a container
with horizontal or vertical layout that holds other components.

• Inside a panelCustomizable component, add ADF components (such as
outputText, richTextEditor, or goLink) surrounded by a
showDetailFrame, which provides a chrome for a component that enables you to
add actions like show, hide, and move. You can edit the frame or the embedded
component properties.

Caution:

Use this technique sparingly, as showDetailFrame components impact
processing time. If the end user is not expected to move components around,
do not wrap them in a showDetailFrame.

Many of the components available to add to a page at design time are also available at
runtime in the resource catalog. Table 7-2 maps design time components to runtime
components.

Table 7-2 Component Mapping: Design time to Runtime

Design Time (JDeveloper) Runtime (WebCenter Portal)

panelCustomizable Box

outputText HTML Markup

goLink Hyperlink

Best Practices for Developing Page Templates

Developing Page Templates 7-13

Table 7-2 (Cont.) Component Mapping: Design time to Runtime

Design Time (JDeveloper) Runtime (WebCenter Portal)

goImageLink Image

showDetailFrame Movable Box

richTextEditor Text

inlineFrame Web Page

7.2.4 Best Practices for Customizing the Appearance of Components
To customize the appearance of components, follow these tips.

• For custom styling, use Cascading Style Sheets (CSS), which is easy to maintain and
can be changed without changing the page template source. For example, make the
background color of a page blue using the CSS code background-color: blue.

• Use a custom skin for consistently modified appearances if the existing skin doesn't
provide all that you need.

• For instance-specific alternative styling, use the styleClass attribute. Keep the
corresponding style definitions in an easy-to-maintain location such as in a custom
skin (recommended) or in a style provided by the af:resource tag.

• As a last resort, use component attributes such as inlineStyle, contentStyle,
and labelStyle. These are harder to maintain as they are scattered throughout
components rather than collected in a single style sheet, contribute more to the
page's raw HTML size, and may not even be needed if one or more of the above
mechanisms are used. Styles are directly processed by the web browser, which
gives you a great deal of power but at the cost of being error-prone.

• Browsers do not support all styles on all elements and certain combinations of
styles produce non-obvious results. Here is some guidance on style configurations
to avoid:

– An inlineStyle with a height value with % units

– An inlineStyle with a width value between 90% and 100% (use
styleClass="AFStretchWidth" or
styleClass="AFAuxiliaryStretchWidth" instead)

– An inlineStyle with height, top, and bottom values

– An inlineStyle with width, left, and right values

– An inlineStyle with a position value

– In a child being stretched by a parent component, an inlineStyle with
width or height values

Best Practices for Developing Page Templates

7-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

7.2.5 Best Practices for Defining Scrolling in a Page Template
To define scrolling in a page template, follow these tips.

• Try to avoid the need for end users to scroll horizontally by designing the page
content to occupy the available screen size.

• Add scrollbars only around flowing island content. The recommended transition
component for switching from a stretching outer frame into a flowing island is the
panelGroupLayout with layout="scroll". If the contents of this
panelGroupLayout cannot fit in the space allocated, the browser will determine
whether scrollbars are needed and will add them automatically.

• Do not nest scrolling panelGroupLayout components because this will make the
user see multiple scrollbars. Also, this should only be used at transitions from
stretching to flowing areas and since you should not have stretching areas inside of
flowing areas, you would generally never end up with nested scrollbars. It is best
to minimize the number of areas that users must scroll in order to see what they are
looking to find. Take time to consider what scrolling users will need. In cases
where undesired scrollbars exist, you may want to change the layout attribute of
the panelGroupLayout to vertical.

7.2.6 Best Practices for Defining Margins, Borders, and Padding
Due to browser CSS Box Model Rules, defining margins, borders and padding on
components can be complex. In many cases, to apply these kinds of styles, you need to
use multiple components together.

• In a scrolling area, you can add an extra panelGroupLayout with
layout="vertical" with the padding defined on it, inside of the outer
panelGroupLayout with layout="scroll".

• In a stretching area, you may need to wrap a panelGroupLayout component
inside a panelGridLayout with spacers inside gridCell components. See
Figure 7-2.

Note:

Refer to the Navigation-Master-Detail, Tiled Flowing, and Tiled Stretching
layout pattern examples for various mechanisms to apply padding:

http://jdevadf.oracle.com/adf-richclient-demo/faces/
feature/layoutBasicTest.jspx

7.3 Creating a Page Template
This section contains the following subsections:

• About Creating Page Templates

• How to Create a Page Template

• What You May Need to Know About Page Template Artifacts

Creating a Page Template

Developing Page Templates 7-15

http://jdevadf.oracle.com/adf-richclient-demo/faces/feature/layoutBasicTest.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/feature/layoutBasicTest.jspx

7.3.1 About Creating Page Templates
Before you can design your page template, you must first create a WebCenter Portal
Asset application for the page template.

Before you create a page template, be sure to read through Best Practices for
Developing Page Templates.

Note:

Oracle recommends that you use JDeveloper to develop page templates for
Oracle WebCenter Portal. You can also develop page templates in WebCenter
Portal, but the editing capabilities are limited.

When fully developed, you can publish a page template directly to WebCenter
Portal as a shared asset or to a specific portal for immediate use or for testing.
Alternatively, you can export the page template to a file and upload the page
template to WebCenter Portal later

For more information, see Editing a Page Template and Publishing a Page
Template.

For examples of features that you can include in your own page templates, refer to the
built-in page templates provided with WebCenter Portal, specifically the latest
responsive page templates (Mosaic and Unicorn), and other page templates that
minimize the use of task flows and include the performance-optimizing
panelGridLayout component, which uses rows (gridRow) and cells (gridCell) to
define a structured layout. See About Built-in Page Templates in WebCenter Portal in
Building Portals with Oracle WebCenter Portal.

You can start by copying and pasting one of one of the built-in templates into
JDeveloper, or you can build an entirely new page template from scratch. Even if you
do not intend to base your page templates on the built-in ones at all, it is still worth
studying them for ideas. For example, the built-in page templates include a login form,
and a good example of navigation visualization, which you can modify according to
your requirements.

7.3.2 How to Create a Page Template
This section describes how to create a WebCenter Portal asset application for a new
page template.

To create a custom page template:

1. Create a WebCenter Portal asset application for the asset, selecting Page Template
as the Asset Type.

Creating a Page Template

7-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 7-4 Page Template Asset Type

See Creating a WebCenter Portal Asset Application for more information about
creating WebCenter Portal asset applications.

A JSPX file is created for the page template.

Figure 7-5 Page Template JSPX File

Creating a Page Template

Developing Page Templates 7-17

For more information about the artifacts created when you create an asset
application for a new page template, see What You May Need to Know About Page
Template Artifacts.

2. Continue by editing the contents of the JSPX file as described in Editing a Page
Template.

7.3.3 What You May Need to Know About Page Template Artifacts
Creating a page template asset application produces a default template, with the
following artifacts:

• A JSPX file containing the page elements for the page template (for example,
PageTemplate1.jspx)

• The corresponding page definition file for the page template (for example,
PageTemplate1PageDef.xml)

Both of these files appear in the Application Navigator as shown in Figure 7-6.

Figure 7-6 Page Template Asset Application Artifacts

7.4 Editing a Page Template
After creating a WebCenter Portal asset application and initial page template, continue
by adding or modifying elements.

To edit a page template:

1. In the Application Navigator, right-click the JSPX file of the page template that you
want to edit, and choose Open.

Editing a Page Template

7-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

2. In the editor, make required changes to the layout and content of the page template
by dragging components from the Component Palette.

For more information about how to build your page template, see Introduction to
Developing Page Templates and Best Practices for Developing Page Templates.

The built-in page templates provide useful examples of page templates, and see
also Page Template Tutorials and Examples.

For general information about JSF page templates, see Using Page Templates in
Developing Web User Interfaces with Oracle ADF Faces.

3. Save your changes.

7.5 Adding a Floating Toolbar to a Page Template
When users with the Contribute Page Content permission view a page, they will
see a floating toolbar with a Contribute option when the page template includes the
toolbar.

To add the floating toolbar to a custom page template:

1. Include the following xml namespace declaration (if not already present):

xmlns:wcdc="http://xmlns.oracle.com/webcenter/spaces/taglib"

2. Within the xml namespace declaration, include the following reference to the
floating toolbar:

<wcdc:portalToolbar id="ptbdc"/>

Figure 7-7 shows how the floating toolbar with the Contribute option will appear
when the page template includes the toolbar.

Figure 7-7 The Contribute Button in the Floating Toolbar

For more information, see About Content Contribution and Publishing in Building
Portals with Oracle WebCenter Portal.

7.6 Publishing a Page Template
After creating a page template and editing its JSPX file, the next step is to publish and
test the template in WebCenter Portal.

For instructions on how to publish a page template as a shared asset, or to a specific
portal as a portal asset, see Publishing WebCenter Portal Assets.

7.7 Page Template Tutorials and Examples
The supplementary tutorials and examples listed in this section provide additional
information about page templates.

• Dissecting a Page Template. Analyzes the details of a simple page template, including
recommended practices.

http://www.oracle.com/technetwork/middleware/webcenter/
portal/learnmore/dissectingapagetemplate-1926909.pdf

Adding a Floating Toolbar to a Page Template

Developing Page Templates 7-19

http://xmlns.oracle.com/webcenter/spaces/taglib
http://www.oracle.com/technetwork/middleware/webcenter/portal/learnmore/dissectingapagetemplate-1926909.pdf
http://www.oracle.com/technetwork/middleware/webcenter/portal/learnmore/dissectingapagetemplate-1926909.pdf

• Oracle WebCenter Portal Online Training: Creating and Using Page Templates in Oracle
WebCenter Portal Applications. Provides a recorded presentation and slides to create
and use page templates for a portal in an earlier release.

http://www.oracle.com/technetwork/middleware/webcenter/
portal/learnmore/pagetemplates-1438595.pdf

• Optimizing WebCenter Portal Mobile Delivery. Identifies and analyzes some common
WebCenter Portal performance bottlenecks related to page weight and describes a
generic approach that can streamline a portal while improving the performance
and response times. Of particular interest in the context of developing page
templates is the section "Page Design and Component Choices." A sample
application is available for download.

http://www.ateam-oracle.com/webcenter-mobile-delivery/

• Working with Links in WebCenter Application. Describes considerations for using
links. Pertinent to page templates are links in menus, breadcrumbs, buttons, and
images.

http://www.ateam-oracle.com/working-with-links-in-webcenter-
application/

Page Template Tutorials and Examples

7-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://www.oracle.com/technetwork/middleware/webcenter/portal/learnmore/pagetemplates-1438595.pdf
http://www.oracle.com/technetwork/middleware/webcenter/portal/learnmore/pagetemplates-1438595.pdf
http://www.ateam-oracle.com/webcenter-mobile-delivery/
http://www.ateam-oracle.com/working-with-links-in-webcenter-application/
http://www.ateam-oracle.com/working-with-links-in-webcenter-application/

8
Developing Skins

This chapter describes how to use Oracle JDeveloper to create and edit skins for use in
WebCenter Portal.

This chapter includes the following topics:

• Introduction to Developing Skins

• Best Practices for Developing Skins

• Creating a Skin

• Editing a Skin

• Publishing a Skin

• Conditionally Changing Skins for Users

8.1 Introduction to Developing Skins
Skins help you define the colors, fonts, images, and some dimensional details like the
height and width of your application components to represent your company's
preferred look and feel.

This section includes the following topics:

• About Skins

• About Runtime Management of Skins

8.1.1 About Skins
Skins are based on the Cascading Style Sheet (CSS) specification. A skin is a CSS file
containing various skin selectors that define the styles of your application
components. You can adjust the look and feel of any component by changing its style-
related properties. Use of a skin in an application helps you to avoid specifying styles
for each component individually or inserting a style sheet on each page. Every
component automatically uses the styles defined in the skin. Skins help you to change
an application's appearance without changing the portal pages themselves.

8.1.2 About Runtime Management of Skins
WebCenter Portal supports the runtime administration of skins to help users continue
developing a portal even after it has been deployed. With runtime administration,
authorized users can manage an application's skins, and create new ones, in a
browser-based environment, with no requirement to install or understand JDeveloper.
For more information, see Working with Skins in Building Portals with Oracle WebCenter
Portal.

Developing Skins 8-1

8.2 Best Practices for Developing Skins
You can approach creating or modifying a skin to be used in WebCenter Portal as two
somewhat separate tasks. The first task is to apply basic styling elements to the larger
elements on the page, such as the background and the center of the page, to provide
the look and feel for your corporate brand. This is probably the first thing you will
want to do. Secondarily, you may also want to apply styling to some of the smaller
page elements to fine tune the look and feel.

In many cases a hybrid approach may also work well. Taking the larger elements
(page background, main portion of the body, and so on) and applying traditional CSS
styling with those, but then getting specific using ADF skinning to generate the overall
appearance for WebCenter Portal.

When using CSS-based styling and other techniques in addition to ADF styling, it is
often helpful to store the styling assets outside of WebCenter Portal. To do this you
can use Content Server to manage all of the unstructured assets for WebCenter Portal.
They can include things like CSS and images that you want manage within your
environment and provides revision control and workflow. This best practice lets
design teams access and work with WebCenter Portal without involving the
development team for each and every change.

8.3 Creating a Skin
By default, WebCenter Portal uses the portal skin, which is defined in the portal-
skin.css file. After creating a WebCenter Portal asset application, you can easily
copy and paste this skin into JDeveloper to alter it to meet your specific requirements,
or create a new skin from scratch. For more information about how to copy an asset in
WebCenter Portal, see Copying an Asset in Building Portals with Oracle WebCenter
Portal.

This section includes the following topics:

• How to Create a Skin

• What You May Need to Know About Skin Artifacts

8.3.1 How to Create a Skin
This section describes how to create a WebCenter Portal asset application for a new
skin. Once the asset application with its associated artifacts has been created, you can
continue by modifying the skin's CSS file as described in Editing a Skin.

Note:

Oracle recommends that you store asset-related artifacts, such as images and
icons, on Content Server, and that you create a folder structure on your
content server specifically for asset artifacts so that content is easy to identify
and move, if required. This also allows other users to alter those types of
content without involving a developer.

To create a WebCenter Portal asset application for a skin:

1. Create an asset application for the asset specifying Skin as the Asset Type.

Best Practices for Developing Skins

8-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

See Creating a WebCenter Portal Asset Application for more information about
creating WebCenter Portal asset applications. For information about the artifacts
that are created when you create an asset application for a skin, see What You May
Need to Know About Skin Artifacts.

2. In the Application Navigator, right-click the newly created skin's CSS file, and
choose Open (Figure 8-1).

Figure 8-1 Skin CSS File

3. Continue by editing the skin as described in Editing a Skin.

8.3.2 What You May Need to Know About Skin Artifacts
Creating a skin asset application produces a default skin, with the following artifacts:

• the CSS skin selector file (for example, Skin1.css)

• trinidad-skins.xml, the skin definition file

Both of these files appear in the Navigation bar as shown in Figure 8-2.

Figure 8-2 Skin Asset Application Artifacts

8.4 Editing a Skin
You can edit a skin after its initial creation by editing the CSS file to edit or add style
selectors.

Editing a Skin

Developing Skins 8-3

Note:

Oracle recommends that you copy an existing or built-in skin in WebCenter
Portal and paste it into the page style CSS file in JDeveloper. You can then use
this skin as the starting point for your new skin and publish it back to
WebCenter Portal once you've modified it. For more information about how to
copy an asset in WebCenter Portal, see Copying an Asset in Building Portals
with Oracle WebCenter Portal.

To edit a skin:

1. In the Application Navigator, right-click the skin's CSS file and choose Open
(Figure 8-3).

Figure 8-3 Skin CSS File

2. If you are using an existing WebCenter Portal skin (that is, other than the one
created by default when you create the asset application) as a starting point (for
example, the portal skin), copy and paste it into the CSS file (see Copying an
Asset in Building Portals with Oracle WebCenter Portal).

3. In the source code for the skin, define the required ADF Faces skin selectors for the
components in your application. For example, to define the font family for your
application content, you can use the .AFDefaultFont:alias skin selector as
shown here:

.AFDefaultFontFamily:alias {
font-family: Tahoma, Verdana, Helvetica, sans-serif;
}

For information about:

• ADF Faces skin selectors in general, refer to Customizing the Appearance Using
Styles and Skins in Developing Web User Interfaces with Oracle ADF Faces. Also
refer to the Oracle JDeveloper online help for information about the selectors
that you can use in a skin. These are documented in the "Skin Selectors for
Fusion's ADF Faces Components" and "Skin Selectors for Fusion's Data
Visualization Tools Components" topics in the online help.

• Defining ADF Faces component style selectors, see Enabling End Users to
Change an Application's ADF Skin and Changing the Style Properties of a
Component in Developing Web User Interfaces with Oracle ADF Faces.

4. Save the CSS file.

5. Publish and test the skin as shown in Publishing a Skin.

Editing a Skin

8-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

8.5 Publishing a Skin
After creating a WebCenter Portal asset application and editing the CSS file for the
skin, the next step is to publish it and test it in WebCenter Portal. For instructions on
how to publish an asset to WebCenter Portal as a shared asset, or to a specific portal as
a portal asset, see Publishing WebCenter Portal Assets.

8.6 Conditionally Changing Skins for Users
You can assign different skins per user, page, application, and so on, without
impacting the actual application logic. To conditionally set a skin, you use the <skin-
family> entry in the trinidad-config.xml file.

You can use EL expressions that can be evaluated dynamically to determine the skin to
display. For example, if you want to use the German skin when the user's browser is
set to the German locale, and to use the English skin otherwise, use the following
<skin-family> entry in the trinidad-config.xml file:

<skin-family>#{facesContext.viewRoot.locale.language=='de' ?
'german' : 'english'}</skin-family>

For more information, see Enabling End Users to Change an Application's ADF Skin
in Developing Web User Interfaces with Oracle ADF Faces.

Note:

The default value of <skin-family> is the name of the skin asset you
created with the asset application (for example, Skin1) minus any spaces or
special characters. If you change the default value, your application users
cannot set skins at runtime in the Resource Manager.

You can also use the SkinSetting API to set the skin for a user conditionally. For
more information, refer to Oracle WebCenter Portal Java API Reference.

Publishing a Skin

Developing Skins 8-5

Conditionally Changing Skins for Users

8-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

9
Developing Visualization Templates

This chapter describes how to use Oracle JDeveloper to create and edit templates for
visualizing data in WebCenter Portal.

This chapter includes the following topics:

• About Visualization Templates

• Creating a Visualization Template

• Editing a Visualization Template

• Publishing a Visualization Template

• What Happens at Runtime

9.1 About Visualization Templates
Introduced in WebCenter Portal 12c (12.2.1) is the ability to retrieve data from a REST
or SQL data source using a business object, simplifying the complexities of application
integration. The retrieved data can be rendered on a portal page in a data visualization
using a visualization template. For example, the data can be presented in one of the
built-in visualization templates, or you can build a custom visualization template in
JDeveloper if none of the built-in templates meet the needs of your organization.

See Also: For information about the built-in visualization templates, see
About Visualization Templates in Building Portals with Oracle WebCenter Portal

A visualization template is a JSFF file (JSP page fragment) that defines how the data
retrieved by a business object is presented on a portal page. Unlike built-in
visualization templates, which are generic presentation styles that can be used in
multiple scenarios by binding to different business objects, a custom visualization
template has little to no reusability as each custom template is designed to be used
with a specific business object. Hence, a custom visualization template is also known
as a bound visualization template.

When an application specialist or portal manager adds a data visualization component
to a portal page in WebCenter Portal (as described in Adding a Data Visualization to a
Page in Building Portals with Oracle WebCenter Portal), they configure the data
visualization using the Define Data Visualization wizard to select the data source and
visualization template, which is bound to the business object. The Options page of the
wizard dynamically displays the selected template’s attributes, either those of a built-
in template or the placeholder EL specified in a custom template. For a custom
visualization template, placeholder EL is bound to each business object attribute,
which replaces the EL at runtime. For more information, see Configuring a Data
Visualization in Building Portals with Oracle WebCenter Portal

Developing Visualization Templates 9-1

9.2 Creating a Visualization Template
This section describes how to create a new custom visualization template in the
following topics:

• How to Create a Visualization Template

• What You May Need to Know About Visualization Template Artifacts

9.2.1 How to Create a Visualization Template
This section describes how to create a WebCenter Portal asset application for a new
visualization template. Once the asset application with its associated artifacts has been
created, you can continue by modifying the visualization template as described in
Editing a Visualization Template.

Note:

Oracle recommends that you store asset-related artifacts, such as images and
icons, on your content server and that you create a folder structure on your
content server specifically for asset artifacts so that content is easy to identify
and move, if required.

To create a custom visualization template:

1. Create an asset application for the asset, specifying Visualization Template as the
Asset Type (Figure 9-1).

Figure 9-1 Visualization Template Asset Type

See Creating a WebCenter Portal Asset Application for more information about
creating WebCenter Portal asset applications. For information about the artifacts
that are created when you create an asset application for a visualization template,
see What You May Need to Know About Visualization Template Artifacts.

Creating a Visualization Template

9-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

2. In the Application Navigator, right-click the newly created visualization template's
page fragment file (Figure 9-2), choose Open, then switch to Source view.

Figure 9-2 Visualization Template Page Fragment File

3. Continue by editing the contents of the page fragment as described in Editing a
Visualization Template.

9.2.2 What You May Need to Know About Visualization Template Artifacts
Creating a visualization template asset application produces a default template, with
the following artifact:

• A view fragment file (for example, VisualizationTemplate1.jsff)

This file appears in the Application Navigator as shown in Figure 9-3.

Figure 9-3 Visualization Template Asset Application Artifacts

To expose a visualization template for use when creating data visualizations at
runtime, you must consider the following requirements:

• Create only one view fragment for a task flow that will be used as a visualization
template. The view fragment JSFF file must be created in the same location as the
task flow definition XML file.

Creating a Visualization Template

Developing Visualization Templates 9-3

• If the visualization template references code (for example, using an EL value), then
that code must be present in the deployed application.

9.3 Editing a Visualization Template
After creating the initial framework of a visualization template (see How to Create a
Visualization Template), you must edit it to define the template.

Note: If changes are made to a custom visualization template that is already
selected in a data visualization, you will need to configure a new data
visualization and reselect the revised visualization template in order to reflect
the changes in the data presented on the page.

To edit a visualization template:

1. In the Application Navigator, right-click the visualization template JSFF file, and
choose Open.

2. In the editor, make required changes to the code of the visualization template.

Notes:

• Use af:subform around the root-element to allow any user input
required in the visualization template to be submitted, along with any
input required by other components on the page. Without af:subform,
user input in a custom visualization template may prevent the submission
of other input, such as in another form on the page.

• To add placeholder EL to bind to business object attributes at runtime, see
Placeholder EL Binding in Visualization Templates.

3. Save your changes.

9.3.1 Placeholder EL Binding in Visualization Templates
Custom visualization templates contain placeholder Expression Language (EL) that is
bound to business object attributes at runtime. Using placeholder EL allows you to
add a binding hint to the custom visualization template so that users creating the data
visualization can select the placeholder EL in the Define Data Visualization wizard to
bind to a business object attribute, parameter, or method at runtime.

The following ADF components support binding placeholder EL to a business object:

• af:form

• af:image

• af:inputDate

• af:inputText

• af:iterator

• af:link

Editing a Visualization Template

9-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• af:listView

• af:outputFormatted

• af:outputText

• af:selectBooleanCheckbox

• af:selectOneChoice

• af:selectOneRadio

• af:selectBooleanRadio

• af:table

Within these components, the syntax for binding custom visualization template
placeholder EL to a business object is as follows:

Binding Template Placeholder EL to a Business Object Attribute

Placeholder EL syntax:

#{owcp.appsint.data('displayName','parentInformation','defaultVa
lue','attribute binding hint','')} where:

• owcp.appsint.data is a keyword to indicate that this placeholder is to be bound
to a business object attribute. Only placeholder EL that
containsowcp.appsint.data will be bound to a business object attribute at
runtime.

• displayName is the placeholder display name of the attribute that will be shown
to the user in the Define Data Visualization wizard Options page.

• parentInformation is the value of the id attribute of the parent (iterator), if the
attribute’s component depends on a parent (iterator). For example,
af:outputText inside af:column has parentInformation as the id of the
containing af:table component:

<af:table var="row" id="t1" value="#{owcp.appsint.data('DOCUMENT
Details','','None','','')}" >
 <af:column headerText="Name" id="c1" >
 <af:outputText value="#{owcp.appsint.data('Name','t1','Name','','')}"
id="ot1"/>
 </af:column>
 </af:table>

• defaultValue is the default value for the component to render it in JDeveloper
for testing purposes.

• attribute binding hint is the xpath
(operationName.accessor1.accessor2.attribute) for the attribute, so
that the exposed placeholder in the EL is bound to the business object attribute by
default.

For a SQL data source, the binding hint is GET.ResultSet.column_name. For
example, for a SQL data source that retrieves NAME and ID values (select NAME,
ID from some_table), the binding hint for NAME is GET.ResultSet.NAME and
for ID is GET.ResultSet.ID.

Example JSFF to list employees for a SQL data source:

Editing a Visualization Template

Developing Visualization Templates 9-5

– Using table:

<af:table var="row" id="t1" value="#{owcp.appsint.data('Employee
List','','None','GET.ResultSet','')}" >
 <af::column headerText="Name" id="c1" >
 <af:outputText
value="#{owcp.appsint.data('Name','t1','Name','GET.ResultSet.NAME','')}"
id="ot1"/>
 </af:column>
</af:table>

– Using iterator:

<af:iterator id="i1" value="#{owcp.appsint.data('Employee
List','','None','GET.ResultSet','')}" var="row">
 <af:panelGroupLayout id="pgl2" layout="vertical">
 <af:outputText
value="#{owcp.appsint.data('Name','i1','John','GET.ResultSet.NAME','')}"
id="of1"/>
 <af:inputText label="ID : "
value="#{owcp.appsint.data('ID','i1','1','GET.ResultSet.ID','')}" id="it1"/>
 </af:panelGroupLayout>
</af:iterator>

For a REST data source, given the following example of returned data, where emp
is repeating data:

<emps>
 <emp>
 <name>EMP1</name>
 <id>1</id>
 </emp>
 <emp>
 <name>EMP2</name>
 <id>2</id>
 </emp>
</emps>

The iterator hint is GET.emps.emp and the value hint is GET.emps.emp.name.

Example JSFF with binding hints to list employees for the REST data shown above:

<af:iterator id="i1" value="#{owcp.appsint.data('Employee
List','','None','GET.emps.emp','')}" var="row">
 <af:panelGroupLayout id="pgl2" layout="vertical">
 <af:outputText
value="#{owcp.appsint.data('Name','i1','John','GET.emps.emp.name','')}" id="of1"/>
 <af:inputText label="ID : "
value="#{owcp.appsint.data('ID','i1','1','GET.emps.emp.id','')}" id="it1"/>
 </af:panelGroupLayout>
</af:iterator>

Note: If the data type returned by the Resource Path URL (specified in the
Define Data Visualization wizard) for the REST data source is in JSON format,
then methodReturn must be added after operationName in the binding
hint. For example: GET.methodReturn.name

Binding Template Placeholder EL to a Business Object Parameter

Placeholder EL syntax:

Editing a Visualization Template

9-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

#{owcp.appsint.parameter('displayName','','defaultValue','parame
ter binding hint','')} where:

• owcp.appsint.parameter is a keyword to indicate that this placeholder is to be
bound to a business object parameter. Only placeholder EL that contains
owcp.appsint.parameter will be bound to a business object parameter at
runtime.

• displayName is the placeholder display name of the attribute that will be shown
to the user in the Define Data Visualization wizard Options page.

• defaultValue is the default value for the component to render it in JDeveloper
for testing purposes.

• parameter binding hint is the xpath (operationName.parameter1) for
the parameter, so that the exposed attribute in the EL is bound to the business
object parameter by default.

For a SQL data source, the binding hint is GET.bind_param_name. For example,
for a SQL data source that retrieves data using a bind parameter named type
(select * from some_table where column= :type), the binding hint is
GET.type.

For a REST data source, the binding hint is GET.query_param or
GET.path_param, assuming a GET operation on REST.

Binding Template Placeholder EL to a Business Object Method

Placeholder EL syntax:

#{owcp.appsint.method('displayName','','defaultValue','method
binding hint','')} where:

• owcp.appsint.method is a keyword to indicate that this placeholder is to be
bound to a business object method. Only placeholder EL that contains
owcp.appsint.method will be bound to a business object method at runtime.

• displayName is the placeholder display name of the attribute that will be shown
to the user in the Define Data Visualization wizard Options page.

• defaultValue is the default value for the component to render it in JDeveloper
for testing purposes.

• method binding hint is the xpath for the method, so that the exposed attribute
in the EL is bound to the business object method by default.

Binding Template Placeholder EL to a Business Object Attribute and Parameter

Placeholder EL syntax:

#{owcp.appsint.inout('displayName','','defaultValue','attribute
binding hint','parameter binding hint')} where:

• owcp.appsint.inout is a keyword to indicate that this placeholder is to be
bound to a business object attribute and parameter.

• displayName is the placeholder display name of the attribute that will be shown
to the user in the Define Data Visualization wizard Options page.

• defaultValue is the default value for the component to render it in JDeveloper
for testing purposes.

Editing a Visualization Template

Developing Visualization Templates 9-7

• attribute binding hint is the xpath
(operationName.accessor1.accessor2.attribute) for the attribute, so
that the exposed attribute in the EL is bound to the business object attribute by
default.

• parameter binding hint is the xpath (operationName.parameter1) for
the parameter, so that the exposed attribute in the EL is bound to the business
object parameter by default.

Example: Binding Template Placeholder EL to a Business Object Attribute

This template placeholder EL will display as Name of the Employee in the Define
Data Visualization wizard Options page and it will be bound to the business object
attribute. Parent information is empty for the table component, as the table component
does not depend on any parent.

<af:outputText value="#{owcp.appsint.data('Name of the
Employee','row','John','GET.emp.name','')}" />
<af:table value="#{owcp.appsint.data('Name of the
Employee','' ,None,'GET.emps.emp','')}" id=”t1”>
 <af:column sortable="false" headerText="#{owcp.appsint.data('Fourth Column
Header','t1','Column Header','GET.emps.emp.name','') }" id="c4">
 <af:outputText value="#{owcp.appsint.data('Fourth
Column','t1','Text','GET.emps.emp.name','')}" id="ot4"/>
 </af:column>
</af:table>

Example: Search and Update Employee Data

This example illustrates placeholder EL that binds to a business object parameter,
method, and attribute/parameter.

Assuming the REST data source supports GET and PUT operations:

• For GET - Retrieve employee based on id:

Query parameter: id
Response Payload: <employee><id>1</id><name>Arnold</name></
employee>

• For PUT - Update employee:

Request Payload: <employee><id>1</id><name>Arnold</name></
employee>

Note: Request payload contains id to which the update applies.

The visualization template for this example may look as follows:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:af="http://
xmlns.oracle.com/adf/faces/rich"
 xmlns:f="http://
java.sun.com/jsf/core">
 <af:panelGridLayout id="pgl1">
 <af:gridRow id="gr1">
 <af:gridCell halign="stretch" valign="stretch" id="gc3">
 <af:panelHeader text="Update portal details" id="ph3"/>
 <af:panelFormLayout id="pfl4">
 <af:inputText label="id" editable="always"
value="#{owcp.appsint.parameter('id','','','GET.id','')}" id="search1"/>

Editing a Visualization Template

9-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 <af:spacer height="20" id="s2"/>
 <af:button text="Search emp" id="b1"
actionListener="#{owcp.appsint.method('Search emp','','None','GET','')}"/>
 <af:inputText label="name"
value="#{owcp.appsint.inoutdata('name','','','GET.employee.name','PUT.employee.name')
}"
 id="it8" partialTriggers="::b1"/>
 <af:inputText label="id"
value="#{owcp.appsint.inoutdata('id','','','GET.id','PUT.employee.id')}"
 id="it10" partialTriggers="::b1"/>
 <af:spacer height="20" id="s6"/>
 <af:button text="Update employee" id="b3"
actionListener="#{owcp.appsint.method('update employee','','None','PUT','')}"/>
 </af:panelFormLayout>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
</jsp:root>

9.4 Publishing a Visualization Template
After creating a WebCenter Portal asset application and editing the JSFF file for the
visualization template, the next step is to publish it and test it in WebCenter Portal.
For instructions on how to publish a visualization template to WebCenter Portal as a
shared asset, or to a specific portal as a portal asset, see Publishing WebCenter Portal
Assets.

9.5 What Happens at Runtime
When an application specialist or portal manager configures a data visualization at
runtime and selects a custom visualization template, WebCenter Portal dynamically
renders the wizard’s Options page based on the placeholder EL that needs to be
bound to business object attributes.

Figure 9-4 shows an example Options page for a custom visualization template
selected in the Define Data Visualization wizard.

Publishing a Visualization Template

Developing Visualization Templates 9-9

Figure 9-4 Define Data Visualization Wizard: Options Page

When the user clicks Save in the Define Data Visualization wizard, WebCenter Portal
assigns the selected business object attributes to the visualization template. The page
definition is also updated with the associated information. For example, before
binding, the visualization template code for the Partner Name parameter value shown
in Figure 9-4 may look like this:

...
<af:panelLabelAndMessage label="Partner Name" id="plam3">
 <af:inputText simple="true" value="#{owcp.appsint.parameter('Partner
Name','','None','GET.NAME','')}" id="it7"/>
</af:panelLabelAndMessage>
...

After binding, the visualization fragment will look like this:

...
<af:panelLabelAndMessage label="Partner Name" id="plam3">
 <af:inputText simple="true" value="#{bindings.name.inputValue}" id="it7"/>
</af:panelLabelAndMessage>
...

What Happens at Runtime

9-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

10
Developing Content Presenter Display

Templates

This chapter describes how to use Oracle JDeveloper to create, edit, and publish new
Content Presenter display templates for use in WebCenter Portal.

Note:

Content Presenter can only be used with Oracle WebCenter Content Server-
based content. No other content repository connection types are supported.

This chapter includes the following topics:

• Introduction to Developing Content Presenter Display Templates

• Creating a Content Presenter Display Template

• Editing a Content Presenter Display Template

• Publishing a Content Presenter Display Template

• Optimizing Performance for Content Presenter Display Templates

• Using Content Presenter (Tips, Tutorials, and Examples)

10.1 Introduction to Developing Content Presenter Display Templates
A Content Presenter display template is a JSFF file (JSF page fragment) that defines how
Content Presenter renders content items (including images and text) on a portal page.

WebCenter Portal provides several out-of-the-box display templates to get you started,
but you can also create your own templates to solve specific display requirements.

Some typical situations where Content Presenter display templates provide value are:

• Providing different layouts for different parts of a page. For example, you may
have articles from different sources on the same page, each requiring its own
layout (for more information, see How to Define a Multiple-Item Display
Template).

• Presenting content based on the capabilities of the viewing device. You can provide
display templates that respond to whether the viewing device is a standard
monitor, tablet, or smart phone (for more information, see How to Use Responsive
Templates).

Making content available through Content Presenter display templates lets you solve
complex display issues through a standardized template rather than doing each
individual layout by hand. By making display templates available to others you enable

Developing Content Presenter Display Templates 10-1

them to solve layout requirements based on predefined department or company
standards without developer involvement.

Tip:

You can find sample display templates in $ORACLE_HOME/jdeveloper/
webcenter/samples/contentpresenter. These sample files were
installed as part of WebCenter Portal's extension for Oracle JDeveloper.

Display templates can use the full set of Rich ADF components, so you can quickly
and easily create robust and attractive templates to display your content. Note
however, that you are not required to use these components in your template.

A Content Presenter display template can handle either single-content items, multiple-
content items, or combinations of the two. For example, a multiple content item
template might render tabs for each item and then call a single item template to render
the details of a selected item.

Each content item is associated with a specific content type defined in the Oracle
WebCenter Content Server repository. A content type defines the properties of the
content item. Content types can map to WebCenter Content Server profile definitions
and Site Studio region definitions.

Tip:

Oracle recommends that you use Content Presenter display templates to
integrate Site Studio and WebCenter Portal instead of Site Studio region
templates. The recommended flow is:

• Develop region definitions in Site Studio.

• Develop Content Presenter display templates referencing region
definitions using JDeveloper.

• Publish the templates to WebCenter Portal.

• Use Content Presenter to render the content and to enable users to
contribute content.

Content types are created on the content repository (that is, WebCenter Content
Server). As a Content Presenter display template developer, you need to know the
names of the properties defined for the associated content type so that you can define
how to display the selected content item(s) on the page.

Tip:

One way to determine the properties for the existing content types defined in
WebCenter Content Server is to use the Content Presenter Configuration
dialog in a portal. For a detailed description of this technique, see How to
Discover Content Type Property Names.

At runtime, an authorized end user can choose a display template in the Content
Presenter Configuration dialog. For more information about best practices and
determining when and how to use Content Presenter templates, see the blog entry at:

http://www.ateam-oracle.com/portal-and-content-content-
integration-best-practices.

Introduction to Developing Content Presenter Display Templates

10-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

10.2 Creating a Content Presenter Display Template
This section describes how to create a new custom visualization template and includes
the following topics.

• How to Create a Content Presenter Display Template

• What You May Need to Know About Content Presenter Display Templates

10.2.1 How to Create a Content Presenter Display Template
This section describes how to create a WebCenter Portal asset application for a new
Content Presenter display template.

To create a WebCenter Portal asset application for a Content Presenter display
template:

1. Create an asset application, specifying Content Presenter Template as the Asset
Type (Figure 10-1).

Figure 10-1 Content Presenter Display Template Asset Type

See Creating a WebCenter Portal Asset Application for more information about
creating WebCenter Portal asset applications. For information about the artifacts
that are created when you create an asset application for a Content Presenter
display template see What You May Need to Know About Content Presenter
Display Templates.

2. In the Application Navigator, right-click the newly created Content Presenter
display template’s page fragment file (Figure 10-2), choose Open, then switch to
Source view.

Creating a Content Presenter Display Template

Developing Content Presenter Display Templates 10-3

Figure 10-2 Content Presenter Display Template Page Fragment File

3. Continue by editing the contents of the page fragment as described in Editing a
Content Presenter Display Template.

10.2.2 What You May Need to Know About Content Presenter Display Templates
Depending on your needs, the approach you take to defining Content Presenter
display templates will vary. Typically, you define display templates for specific single
items of content, then define a multiple content item display template that includes
calls to the single item display templates.

Creating a visualization template asset application produces a default template, with
the following artifact:

• A view fragment file (for example, ContentPresenterTemplate-
SingleItem1.jsff)

This file appears in the Application Navigator as shown in Figure 10-3.

Creating a Content Presenter Display Template

10-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 10-3 Content Presenter Display Template Asset Application Artifacts

Template definitions can include calls to other display templates in any of the
following ways:

• A single content item display template can call another single content item display
template.

• A multiple content item display template can call a single content item display
template (as shown in the examples below).

• A multiple content item display template can call another multiple content item
display template.

The basic tasks for creating Content Presenter display templates include:

• Deciding whether to create a single or multiple item display template. See How to
Define a Single-Item Display Template and How to Define a Multiple-Item Display
Template.

• Deciding what kind of information you want to display about the selected content
items. Consider also, for example, using WebCenter Portal's EL expressions in your
template to retrieve and display this information. See How to Use EL Expressions
to Retrieve Content Item Information and Expression Language Expressions for
more information about using EL expressions.

• Designing the look and feel of the template. In addition to standard JSFF
constructs, display templates can use ADF components (see Developing Web User
Interfaces with Oracle ADF Faces).

• Publishing the template, either as a shared or portal-specific asset. See Publishing a
Content Presenter Display Template.

• Configuring Content Presenter to use Coherence as the caching mechanism for
production (optional, but recommended) and HA environments (required) as
described in Modifying Cache Settings for Content Presenter in Administering
Oracle WebCenter Portal.

Creating a Content Presenter Display Template

Developing Content Presenter Display Templates 10-5

10.3 Editing a Content Presenter Display Template
After creating the initial framework of a Content Presenter display template, you must
edit it to define the template.

This section discusses these topics:

• How to Define a Single-Item Display Template

• Content Display Template Tags for Single Content Items

• How to Define a Multiple-Item Display Template

• Content Display Template Tags for Multiple Content Items

• How to Use Responsive Templates

• How to Extend Responsive Templates

• How to Use Image Renditions in Content Presenter Display Templates

• How to Use EL Expressions to Retrieve Content Item Information

• How to Discover Content Type Property Names

• How to Reference External Files in Display Templates

• How to Reference Site Studio Region Elements in a Custom View

10.3.1 How to Define a Single-Item Display Template
Examples of single content items for which you may want to create Content Presenter
display templates are:

• Individual items to display with a specific look and feel on a page.

• Different views of a specific type of item (such as short and detailed views of an
article).

• Different versions of a similar item (such as Press Releases that may be formatted
differently for different groups and using a different set of properties).

To define a single-item display template:

1. In the Application Navigator, right-click the display template JSFF file, and choose
Open.

2. If necessary, select Window, then Components to open the Component Palette.

3. From the dropdown list at the top of the Component Palette (Figure 10-4):

• Select WebCenter Content Display Templates for a list of display template
tags.

• Select WebCenter Content Management Faces for the renderProperty tag.

Editing a Content Presenter Display Template

10-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 10-4 Content Display Template Tags in Component Palette

4. In Source view, drag and drop the required display template tags from the
Component Palette onto the page to define your template. Refer to Content
Display Template Tags for Single Content Items for information about each tag
and required parameter values.

The following two examples show sample single content item display template
definitions. These examples illustrate a use case where a certain kind of document (a
press release) is produced by two different departments inside a company, and each
department has defined its own content type and properties. These sample Content
Presenter display templates allow these two different content types to be displayed in
a consistent manner.

The template shown in the first example handles a press release that uses a property
named xHeading to describe the heading of the press release document, and
xDestinationUrl to describe the location of the document. To learn how you can
retrieve these property names for a given content type, see How to Discover Content
Type Property Names.

<?xml version = '1.0'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates">
 <dt:contentTemplateDef var="node">
 <af:goImageLink text="#{node.propertyMap['xHeading'].value}"
 id="gil1"
 icon="#{node.icon.smallIcon}"
 destination="#{node.propertyMap['xDestinationUrl'].value}"
 targetFrame="_blank">
 </af:goImageLink>
 </dt:contentTemplateDef>
</jsp:root>

The template shown in the next example handles a press release that uses a property
named dDocTitle to describe the heading of the press release document, and
xLinkUrl to describe the location of the document.

<?xml version = '1.0'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates">
 <dt:contentTemplateDef var="node">

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-7

 <af:goImageLink text="#{node.propertyMap['dDocTitle'].value}"
 id="gil1"
 icon="#{node.icon.smallIcon}"
 destination="#{node.propertyMap['xLinkUrl'].value}"
 targetFrame="_blank">
 </af:goImageLink>
 </dt:contentTemplateDef>
</jsp:root>

10.3.2 Content Display Template Tags for Single Content Items
The definition of a single content item display template uses the JSP tasks listed below.

Table 10-1 Content Display Template Tags for Single Content Items

JSP Tag Description Example

contentTemplateDef Required. Defines a single content
item template.

Attributes:

var - Specifies the content node
that will be rendered by this display
template. In the template definition
code, you can use the EL
expressions described in How to
Retrieve Basic Information About a
Content Item to retrieve required
information about the node.

<dt:contentTemplateDef
var="node">
 <af:outputText
value="#{node.name}" />
</dt:contentTemplateDef>

Editing a Content Presenter Display Template

10-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 10-1 (Cont.) Content Display Template Tags for Single Content Items

JSP Tag Description Example

renderProperty Optional. Retrieves and renders the
string value(s) of the specified node
property inline.

Attributes:

id - Identifies this component. This
value must be unique within the
closest parent component that is a
naming container.

name - Specifies the name of the
property to get. If this is a system
property (cm_createdBy,
cm_createdDate,
cm_modifiedDate, and cm_path)
then the value on the node will be
used. If not specified, then the
primaryProperty will be used if
defined.

node - Specifies the node to use.
This value can either be a bound
attribute to a managed bean, or a
request attribute variable.

blockSize - Specifies the size of
the blocks in bytes, to read the bytes
of a binary property. Default is 2048
bytes.

startIndex - Specifies the index
(from 0) in the document's bytes at
which to start printing. Defaults to
0.

endIndex - Specifies the index
(from 0) in the document's bytes at
which to stop printing. Defaults to
value of blockSize.

rendered - Specifies whether or
not this component should be
rendered (during Render Response
Phase), or processed on any
subsequent form submit. The
default value is true.

<!--
 Handling of text-based primary
 properties (HTML, text, etc.).
-->
<dt:contentTemplateDef
var="node">
 <cmf:renderProperty id="rp1"
name="#{node.primaryProperty.nam
e}"
node="#{node}"/>
</dt:contentTemplateDef>

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-9

Table 10-1 (Cont.) Content Display Template Tags for Single Content Items

JSP Tag Description Example

contentTemplate Optional. Nested under
contentTemplateDef.

Calls another single item template.

Attributes:

node - Required. Specifies the
content repository node that should
be displayed.

nodesHint - Optional. When the
display template is called in an
iterating component, allows the pre-
inclusion of all possible templates.
This attribute is not needed when
contentTemplate is used inside a
contentTemplateDef tag.

view - Optional. Specifies the target
view name.

id - Optional. Specifies the JSF
component ID.

rendered - Optional. Specifies
whether the component should be
rendered.

<dt:contentTemplateDef
var="node">
 <af:outputText
value="#{node.name}" >
 <dt:contentTemplate
node="#{node}"
view="templates.pressrelease.ite
m"
/>
 </af:outputText>
</dt:contentTemplateDef>

10.3.3 How to Define a Multiple-Item Display Template
Examples of multiple content items for which you may want to create Content
Presenter display templates are:

• A group of similar items that you want to display on a page, such as a list of books
or an employee directory of pictures.

• Query results, such as all documents modified in the last week.

• A list of all documents in an Oracle WebCenter Content Server folder.

A Content Presenter display template can also combine both single and multiple
items. For example, a multiple content item template might render tabs for each item
and then call a single item template to render the details of a selected item. For an
example of how to do this, see the blog entry at:

http://www.ateam-oracle.com/enable-content-editing-of-iterative-
components

To define a multiple-item display template:

1. In the Application Navigator, right-click the display template JSFF file, and choose
Open.

2. If necessary, select Window, then Components to open the Component Palette.

3. From the dropdown list at the top of the Component Palette (Figure 10-5):

• Select WebCenter Content Display Templates for a list of display template
tags.

Editing a Content Presenter Display Template

10-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://www.ateam-oracle.com/enable-content-editing-of-iterative-components
http://www.ateam-oracle.com/enable-content-editing-of-iterative-components

• Select WebCenter Content Management Faces for the renderProperty tag.

Figure 10-5 Content Display Template Tags in Component Palette

4. In Source view, drag and drop the required display template tags from the
Component Palette onto the page. Refer to Content Display Template Tags for
Multiple Content Items for information about each tag and required parameter
values.

The following example shows a sample multiple content item display template
definition.

This template definition iterates over the data items selected for display, and processes
them according to the referenced view
(view="mycorp.content.templates.pressrelease.listitem").

<?xml version = '1.0'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates">
 <dt:contentListTemplateDef var="nodes">
 <af:panelGroupLayout layout="scroll" id="nodeListPanel" valign="middle">
 <af:iterator rows="0" var="node" varStatus="iterator" value="#{nodes}">
 <dt:contentTemplate node="#{node}"
 view="mycorp.content.templates.pressrelease.listitem"
 nodesHint="#{nodes}"/>
 </af:iterator>
 </af:panelGroupLayout>
 </dt:contentListTemplateDef>
</jsp:root>

10.3.4 Content Display Template Tags for Multiple Content Items
The definition of a multiple content item display template uses the JSP tags listed
below.

Table 10-2 Content Display Template Tags for Multiple Content Items

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-11

Table 10-2 (Cont.) Content Display Template Tags for Multiple Content Items

JSP Tag Description Example

contentListTemplateDef Required. Defines the multiple
content item template.

Attributes:

var - Specifies the content node
that will be rendered by this display
template. In the template definition
code, you can use the EL
expressions described in How to
Retrieve Basic Information About a
Content Item to retrieve required
information about the node.

<dt:contentListTemplateDef
var="nodes">
 <af:iterator value="#{nodes}"
var="node">
 <af:outputText
value="#{node.name}" />
 </af:iterator>
</dt:contentListTemplateDef>

contentListTemplate Optional. Nested under
contentListTemplateDef.

Calls another multiple item
template.

Attributes:

nodes - Required. Provides the list
of VCR nodes that should be
displayed

category - Required. Specifies the
target template category.

view - Required. Specifies the
target view name.

id - Optional. Specifies the JSF
component ID.

rendered - Optional. Specifies
whether the component should be
rendered.

<dt:contentListTemplateDef
var="nodes">
<!--
 Reuse the default bulleted
list view, but
 indent it with a <blockquote>
-->
 <f:verbatim>
 <blockquote>
 </f:verbatim>
 <dt:contentListTemplate
nodes="#{nodes}"

category="oracle.webcenter.conte
nt.

templates.default.category"

view="oracle.webcenter.content.

templates.default.list.bulleted"
/>
 <f:verbatim>
 </blockquote>
 </f:verbatim>
</dt:contentListTemplateDef>

Editing a Content Presenter Display Template

10-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 10-2 (Cont.) Content Display Template Tags for Multiple Content Items

JSP Tag Description Example

contentTemplate Optional. Nested under
contentListTemplateDef.

Calls a single item template.

Attributes:

node - Required. Specifies the
content repository node that should
be displayed.

nodesHint - Optional. When the
display template is called in an
iterating component, allows the pre-
inclusion of all possible templates.
This attribute is usually required
when contentTemplate is used
inside a
contentListTemplateDef tag.

view - Optional. Specifies the target
view name.

id - Optional. Specifies the JSF
component ID.

rendered - Optional. Specifies
whether the component should be
rendered.

<dt:contentListTemplateDef
var="nodes">
 <af:iterator rows="0"
var="node"
 varStatus="iterator"
value="#{nodes}">
 <dt:contentTemplate
node="#{node}"

view="templates.pressrelease.lis
titem"
 nodesHint="#{nodes}"/>
 </af:iterator>
</dt:contentListTemplateDef>

10.3.5 How to Use Responsive Templates
This section includes the following topics:

• About Responsive Templates

• Prerequisites for Responsive Templates

• Displaying Multiple Articles

• Using CSS3 Media Queries

10.3.5.1 About Responsive Templates
Using CSS3 media queries, you can render content to adapt to conditions such as
screen resolution.

The out-of-the-box Content Presenter display templates Articles View and Full
Articles View are examples of how CSS3 media queries can be used in a Content
Presenter display template for a responsive layout. For information about how these
responsive templates can be extended, see How to Extend Responsive Templates. For
information about optimizing viewport settings for mobile devices such as smart
phones and tablets, see Optimizing Portals for Mobile Devices in Building Portals with
Oracle WebCenter Portal.

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-13

10.3.5.2 Prerequisites for Responsive Templates
The out-of-the-box Content Presenter templates Articles View and Full
Articles View rely on the Site Studio RD_ARTICLE region definition.

Consequently, Site Studio must be enabled in Oracle WebCenter Content Server to
enable the Articles View and Full Article View Content Presenter display
templates to be used.

Follow the steps below to enable Site Studio and seed WebCenter Content Server with
the RD_ARTICLE region definition:

1. Enable Site Studio (see Understanding Site Studio Integration in Building Portals
with Oracle WebCenter Portal).

2. Start (or restart) WebCenter Portal after Site Studio has been enabled (this will seed
the RD_ARTICLE region definition).

10.3.5.3 Displaying Multiple Articles
The template definition in the following example iterates over the data items selected
for display, and uses three style classes:

• article - applied to each content item

• article-3 - applied to each content item that will be in the first column if the
page is split into rows of three columns

• article-2 - applied to each content item that will be in the first column if the
page is split into rows of two columns

The style classes are defined in the articles.css style sheet.

<?xml version = '1.0'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:rah="http://xmlns.oracle.com/webcenter/resourcehandler"
 <dt:contentListTemplateDef var="nodes">
 <af:resource type="css" source="/oracle/webcenter/content/templates/seeded/
articles.css"/>
 <af:iterator rows="0" var="node" varStatus="iterator" value="#{nodes}"
 id="it0">
 <h:panelGroup styleClass="#{(iterator.index % 3 == 0) ? 'article-3 ' :
''}#{(iterator.index % 2 == 0) ? 'article-2 ' : ''}article"
 id="pg1">
 <af:commandLink immediate="true" partialSubmit="true" id="cl2">
 <rah:resourceActionBehavior id="rah1"

serviceId="oracle.webcenter.content.presenter"
 resourceId="#{node.id}"

resourceTitle="#{node.propertyMap['RD_ARTICLE:TITLE'].asTextHtml}"
 useResourcePopup="never"/>
 <f:attribute name="taskFlowInstId"
 value="a5fafea8-90e6-4972-997d-314401b6c98b"/>
 <f:attribute name="datasourceType" value="dsTypeSingleNode"/>
 <f:attribute name="datasource"

Editing a Content Presenter Display Template

10-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

value="#{node.id.repositoryName}#dDocName:#{node.propertyMap['dDocName'].value}"/>
 <f:attribute name="templateView"

value="oracle.webcenter.content.templates.sitestudio.fullarticle"/>
 <f:attribute name="regionTemplate" value="#{false}"/>
 <af:outputText
value="#{node.propertyMap['RD_ARTICLE:IMAGE'].asTextHtml}"
 escape="false" id="ot4"/>
 <tr:panelHeader
text="#{node.propertyMap['RD_ARTICLE:TITLE'].asTextHtml}"
 id="ph1">
 <af:outputText
value="#{node.propertyMap['RD_ARTICLE:SUMMARY'].asTextHtml}"
 escape="false" id="ot3"/>
 </af:panelHeader>
 </af:commandLink>
 </h:panelGroup>
 </af:iterator>
 </dt:contentListTemplateDef>
</jsp:root>

10.3.5.4 Using CSS3 Media Queries
The style sheet in the following example uses media queries to render the content in
different ways depending on the width of the browser.

/* Default styles */
.article {
 display: block;
 float: left;
 width: 31.623931623931625%;
 margin-left: 2.564102564102564%;
 margin-bottom: 1em;
}
.article-3 {
 margin-left: 0;
 clear: both;
}
.article img {
 width: 100%;
 margin: 0 0 .25em;
 float: none;
 padding-top: 0;
 display: block;
 border: 0;
}
.article h1 {
 font-size: 1.5em;
}

@media only screen and (max-width : 480px) {
 /* up to width of iPhone (excluding iPhone 5 in landscape) */
 .article {
 margin-top: .5em;
 float: left;
 display: inline;
 width: 100%;
 margin-left: 0;
 }
 .article-3 {
 width: 100%;
 clear: none;

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-15

 }
 .article img {
 margin-right: 4%;
 width: 48%;
 float: left;
 }
 .article {
 font-size: 1em;
 }
 .article h1 {
 font-size: 1.25em;
 }
}

@media only screen and (min-width : 481px) and (max-width : 780px) {
 /* up to the width of iPad in portrait and iPhone 5 in landscape */
 .article {
 display: block;
 float: left;
 width: 48.71794871794871%;
 margin-left: 2.564102564102564%;
 clear: none;
 }
 .article-3 {
 margin-left: 2.564102564102564%;
 clear: none;
 }
 .article-2 {
 margin-left: 0;
 clear: both;
 }
 .article h1 {
 font-size: 1.25em;
 }
}

@media only screen and (min-width : 769px) and (max-width : 1024px) {
 /* up to the width of iPad in landscape */
}

@media only screen and (min-width : 1025px) {
 /* desktop */
}

10.3.6 How to Extend Responsive Templates
These sections describe the steps required to modify the out-of-the-box templates if
they don't meet your local requirements.

For information about optimizing viewport settings for mobile devices such as smart
phones and tablets, see Optimizing Portals for Mobile Devices in Building Portals with
Oracle WebCenter Portal.

This section includes the following topics:

• How to Extend the Articles View Template

• How to Extend the Full Article View Template

• How to Adapt the Out-of-the-Box Templates

Editing a Content Presenter Display Template

10-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

10.3.6.1 How to Extend the Articles View Template
To extend the Articles View template follow the steps below:

1. Create an empty template for displaying multiple items (see How to Define a
Multiple-Item Display Template) and copy the contents of articles.jsff
(located in the JDEVELOPER/webcenter/samples/contentpresenter/
directory) into the empty template.

2. Embed the CSS used by artices.jsff into the new template by changing:

<af:resource type="css" source="/oracle/webcenter/content/templates/seeded/
articles.css"/>

To:

<af:resource type="css">
/* Default styles */
.article {
 display: block;
 float: left;
 width: 31.623931623931625%;
 margin-left: 2.564102564102564%;
 margin-bottom: 1em;
}
.article-3 {
 margin-left: 0;
 clear: both;
}
.article img {
 width: 100%;
 margin: 0 0 .25em;
 float: none;
 padding-top: 0;
 display: block;
 border: 0;
}
.article h1 {
 font-size: 1.5em;
}

@media only screen and (max-width : 480px) {
 /* up to width of iPhone */
 .article {
 margin-top: .5em;
 float: left;
 display: inline;
 width: 100%;
 margin-left: 0;
 }
 .article-3 {
 width: 100%;
 clear: none;
 }
 .article img {
 margin-right: 4%;
 width: 48%;
 float: left;
 }
 .article {
 font-size: 1em;

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-17

 }
 .article h1 {
 font-size: 1.25em;
 }
}

@media only screen and (min-width : 481px) and (max-width : 780px) {
 /* up to the width of iPad in portrait */
 .article {
 display: block;
 float: left;
 width: 48.71794871794871%;
 margin-left: 2.564102564102564%;
 clear: none;
 }
 .article-3 {
 margin-left: 2.564102564102564%;
 clear: none;
 }
 .article-2 {
 margin-left: 0;
 clear: both;
 }
 .article h1 {
 font-size: 1.25em;
 }
}

@media only screen and (min-width : 769px) and (max-width : 1024px) {
 /* up to the width of iPad in landscape */
}

@media only screen and (min-width : 1025px) {
 /* desktop */
}
</af:resource>

3. Edit the new template to adapt it to your requirements (see How to Adapt the Out-
of-the-Box Templates).

4. Publish the new template as a portal asset (see Publishing a Content Presenter
Display Template).

10.3.6.2 How to Extend the Full Article View Template
Follow the steps below to extend the Full Article View template:

1. Create an empty template for displaying a single content item (see How to Define a
Single-Item Display Template) and copy the contents of full-article.jsff
(located in the JDEVELOPER/webcenter/samples/contentpresenter/
directory) into the empty template.

2. Embed the CSS used by full-artice.jsff into the new template by changing:

<af:resource type="css" source="/oracle/webcenter/content/templates/seeded/
articles.css"/>

To:

<af:resource type="css">
/* Default styles */
.full-article h1 {

Editing a Content Presenter Display Template

10-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 font-size: 1.5em;
}
.full-article-image img {
 margin-left: 4%;
 width: 48%;
 float: right;
}

@media only screen and (max-width : 480px) {
 /* up to width of iPhone */
 .full-article-image img {
 margin-left: 0;
 width: 100%;
 float: none;
 }
}

@media only screen and (min-width : 481px) and (max-width : 780px) {
 /* up to the width of iPad in portrait */
}

@media only screen and (min-width : 769px) and (max-width : 1024px) {
 /* up to the width of iPad in landscape */
}

@media only screen and (min-width : 1025px) {
 /* desktop */
}
</af:resource>

3. Edit the new template to adapt it your requirements (see How to Adapt the Out-of-
the-Box Templates).

4. Publish the new template as a portal asset (see Publishing a Content Presenter
Display Template).

10.3.6.3 How to Adapt the Out-of-the-Box Templates
This section describes changes you may want to make to the Articles View and
Full Article View templates, and outlines how you could go about making those
changes.

For example:

• You may want to update the templates to support a responsive layout on older
browsers like Internet Explorer 8.

• You may want to update the templates to work with a different region definition.

These extensions are described in the following sections:

• How to Support Responsive Layouts for Older Browsers

• How to Use Different Region Definitions

• How to Update the Layout in a Template

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-19

10.3.6.3.1 How to Support Responsive Layouts for Older Browsers

The current responsive templates rely on CSS3 media queries, which are not
supported by older browsers, so you may want to use a third-party JavaScript library
that can take the media queries and use JavaScript to enable a responsive design.

To support responsive layouts for older browsers:

1. Create and deploy a custom Shared Library for WebCenter Portal containing the
third-party JavaScript library.

See Developing Shared Libraries.

2. Add a reference to a third-party JavaScript library to the template (where
path/to/3rd/party/library.js is the path to the JavaScript file within the
Custom Shared Library):

<af:resource type="javascript" source="path/to/3rd/party/library.js"/>

10.3.6.3.2 How to Use Different Region Definitions

This section shows you how you can modify the region definitions in your responsive
template.

For example, you might have a region definition called RD_NEWS with four elements:
TITLE, LEAD, IMAGE, and BODY (see How to Reference Site Studio Region Elements in
a Custom View). You could then update the template to reference this new region
definition by changing references of RD_ARTICLES to RD_NEWS and changing the
references of SUMMARY to LEAD.

News View

This template displays a list of news items (of type RD_NEWS) based on the Articles
View template:

<?xml version = '1.0'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:rah="http://xmlns.oracle.com/webcenter/resourcehandler"
 xmlns:tr="http://myfaces.apache.org/trinidad">
 <dt:contentListTemplateDef var="nodes">
 <af:resource type="css" source="/oracle/webcenter/content/templates/seeded/
articles.css"/>
 <af:iterator rows="0" var="node" varStatus="iterator" value="#{nodes}"
 id="it0">
 <h:panelGroup styleClass="#{(iterator.index % 3 == 0) ? 'article-3 ' :
''}#{(iterator.index % 2 == 0) ? 'article-2 ' : ''}article"
 id="pg1">
 <af:commandLink immediate="true" partialSubmit="true" id="cl2">
 <rah:resourceActionBehavior id="rah1"

serviceId="oracle.webcenter.content.presenter"
 resourceId="#{node.id}"

resourceTitle="#{node.propertyMap['RD_NEWS:TITLE'].asTextHtml}"
 useResourcePopup="never"/>
 <f:attribute name="taskFlowInstId"
 value="a5fafea8-90e6-4972-997d-314401b6c98b"/>
 <f:attribute name="datasourceType" value="dsTypeSingleNode"/>

Editing a Content Presenter Display Template

10-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 <f:attribute name="datasource"

value="#{node.id.repositoryName}#dDocName:#{node.propertyMap['dDocName'].value}"/>
 <f:attribute name="templateView"
 value="oracle.webcenter.content.templates.newsitem"/>
 <f:attribute name="regionTemplate" value="#{false}"/>
 <af:outputText value="#{node.propertyMap['RD_NEWS:IMAGE'].asTextHtml}"
 escape="false" id="ot4"/>
 <tr:panelHeader text="#{node.propertyMap['RD_NEWS:TITLE'].asTextHtml}"
 id="ph1">
 <af:outputText
value="#{node.propertyMap['RD_NEWS:LEAD'].asTextHtml}"
 escape="false" id="ot3"/>
 </tr:panelHeader>
 </af:commandLink>
 </h:panelGroup>
 </af:iterator>
 </dt:contentListTemplateDef>
</jsp:root>

News Item View

This template displays a full news item (View ID:
oracle.webcenter.content.templates.newsitem) based on the Full
Articles View template:

<?xml version = '1.0'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:tr="http://myfaces.apache.org/trinidad">
 <dt:contentTemplateDef var="node">
 <af:resource type="css" source="/oracle/webcenter/content/templates/seeded/
articles.css"/>
 <af:panelGroupLayout id="psl1" layout="vertical">
 <tr:panelHeader text="#{node.propertyMap['RD_NEWS:TITLE'].asTextHtml}"
 styleClass="full-article" id="ph1">
 <tr:panelGroupLayout id="pgl1" styleClass="full-article-image">
 <af:outputText
value="#{node.propertyMap['RD_NEWS:IMAGE'].asTextHtml}"
 escape="false" id="ot4"/>
 </tr:panelGroupLayout>
 <af:outputText value="#{node.propertyMap['RD_NEWS:BODY'].asTextHtml}"
 escape="false" id="ot3"/>
 </tr:panelHeader>
 </af:panelGroupLayout>
 </dt:contentTemplateDef>
</jsp:root>

10.3.6.3.3 How to Update the Layout in a Template

You might want to change the layout of the templates to better suit your content.

For example, in the single column layout the Articles View template will flow the
text of an article summary under the image if the text is sufficiently long:

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-21

Figure 10-6 Article with Wide Layout

You could change this so that the text doesn't flow under the image:

Editing a Content Presenter Display Template

10-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 10-7 Article with Narrow Layout

To do this, you could create a new template based on the Articles View template,
add a style class to the block of text (article-text), and set the display CSS
property for this style class to table-cell for the narrow layout:

<?xml version = '1.0'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:rah="http://xmlns.oracle.com/webcenter/resourcehandler"

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-23

 <dt:contentListTemplateDef var="nodes">
 <af:resource type="css">
 /* Default styles */
 .article {
 display: block;
 float: left;
 width: 31.623931623931625%;
 margin-left: 2.564102564102564%;
 margin-bottom: 1em;
 }
 .article-3 {
 margin-left: 0;
 clear: both;
 }
 .article img {
 width: 100%;
 margin: 0 0 .25em;
 float: none;
 padding-top: 0;
 display: block;
 border: 0;
 }
 .article h1 {
 font-size: 1.5em;
 }

 @media only screen and (max-width : 480px) {
 /* up to width of iPhone */
 .article {
 margin-top: .5em;
 float: left;
 display: inline;
 width: 100%;
 margin-left: 0;
 }
 .article-3 {
 width: 100%;
 clear: none;
 }
 .article img {
 margin-right: 4%;
 width: 48%;
 float: left;
 }
 .article {
 font-size: 1em;
 }
 .article h1 {
 font-size: 1.25em;
 }
 /* Set the display CSS property to table-cell for the article-text style
class in the narrow layout */
 .article-text {
 display: table-cell;
 }
 }

 @media only screen and (min-width : 481px) and (max-width : 780px) {
 /* up to the width of iPad in portrait */
 .article {
 display: block;

Editing a Content Presenter Display Template

10-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 float: left;
 width: 48.71794871794871%;
 margin-left: 2.564102564102564%;
 clear: none;
 }
 .article-3 {
 margin-left: 2.564102564102564%;
 clear: none;
 }
 .article-2 {
 margin-left: 0;
 clear: both;
 }
 .article h1 {
 font-size: 1.25em;
 }
 }

 @media only screen and (min-width : 769px) and (max-width : 1024px) {
 /* up to the width of iPad in landscape */
 }

 @media only screen and (min-width : 1025px) {
 /* desktop */
 }
 </af:resource>
 <af:iterator rows="0" var="node" varStatus="iterator" value="#{nodes}"
 id="it0">
 <h:panelGroup styleClass="#{(iterator.index % 3 == 0) ? 'article-3 ' :
''}#{(iterator.index % 2 == 0) ? 'article-2 ' : ''}article"
 id="pg1">
 <af:commandLink immediate="true" partialSubmit="true" id="cl2">
 <rah:resourceActionBehavior id="rah1"

serviceId="oracle.webcenter.content.presenter"
 resourceId="#{node.id}"

resourceTitle="#{node.propertyMap['RD_ARTICLE:TITLE'].asTextHtml}"
 useResourcePopup="never"/>
 <f:attribute name="taskFlowInstId"
 value="a5fafea8-90e6-4972-997d-314401b6c98b"/>
 <f:attribute name="datasourceType" value="dsTypeSingleNode"/>
 <f:attribute name="datasource"

value="#{node.id.repositoryName}#dDocName:#{node.propertyMap['dDocName'].value}"/>
 <f:attribute name="templateView"

value="oracle.webcenter.content.templates.sitestudio.fullarticle"/>
 <f:attribute name="regionTemplate" value="#{false}"/>
 <af:outputText
value="#{node.propertyMap['RD_ARTICLE:IMAGE'].asTextHtml}"
 escape="false" id="ot4"/>
 <af:panelHeader
text="#{node.propertyMap['RD_ARTICLE:TITLE'].asTextHtml}"
 id="ph1" styleClass="article-text">
 <af:outputText
value="#{node.propertyMap['RD_ARTICLE:SUMMARY'].asTextHtml}"
 escape="false" id="ot3"/>
 </af:panelHeader>
 </af:commandLink>
 </h:panelGroup>

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-25

 </af:iterator>
 </dt:contentListTemplateDef>
</jsp:root>

10.3.7 How to Use Image Renditions in Content Presenter Display Templates
This section includes the following topics:

• About Image Renditions

• Prerequisites for Image Renditions

• Retrieving Image Rendition Information for Image Documents

• Retrieving Image Renditions for Site Studio Region Definitions

10.3.7.1 About Image Renditions
In some cases you may want to use different renditions of an image in different
circumstances.

For example, you might want to use a large, high resolution image when the page
containing the image is displayed using a desktop browser. However, if the same page
is displayed on a mobile device, a large, high resolution image might not be
appropriate given the smaller screen size and possible slower download speed. For
mobile devices it would be better to display a smaller, lower resolution version, or
rendition, of the image. Content Presenter display templates provide the capability of
specifying which rendition of an image to display under which circumstances.

To enable the use of different image renditions, you can use EL expressions in your
Content Presenter display templates to determine which image renditions to use
when.

Note:

Image renditions are not supported through CMIS.

10.3.7.2 Prerequisites for Image Renditions
For full image rendition support, the Oracle WebCenter Content Server where your
images are checked in must have Digital Asset Management (DAM) enabled.

If DAM is not enabled, there is support for separate web and thumbnail renditions
only. For information about enabling DAM, see Enabling Digital Asset Manager in
Administering Oracle WebCenter Portal.

When DAM is enabled, different renditions are automatically created when an image
is checked in, determined by the rendition set specified during check in. DAM
provides some built-in rendition sets but the WebCenter Content Server administrator
can also create new rendition sets. The individual renditions can then be referenced by
name in Content Presenter display templates by using the appropriate EL expression.

For more information about DAM and rendition sets, see Working with Image and
Video Conversions in Managing Oracle WebCenter Content.

Note:

WebCenter Portal supports multiple renditions for images only, not video.

Editing a Content Presenter Display Template

10-26 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

In addition, the following other prerequisites must also be met:

• You must be using Oracle WebCenter Content Release 11gR1 (11.1.1.9.0) or later.

• WebCenter Portal and WebCenter Content must be using the same OHS front end.

• The webContextRoot parameter must be set in line with the common OHS front
end so that WebCenter Portal can find WebCenter Content objects, for
example, /cs.

• Single sign-on must be enabled across WebCenter Portal and WebCenter Content.

10.3.7.3 Retrieving Image Rendition Information for Image Documents
To retrieve image rendition information for image documents in your Content
Presenter display template, use the following EL expression:

node.renditionsMap['renditionName:renditionProperty']

Where:

• renditionName is:

– for DAM implementations, the name of the rendition from the appropriate
rendition set. For example, web, thumbnail, preview, or lowres.

– for non-DAM implementations, either web or thumbnail.

Note:

The renditionName is not case sensitive, therefore preview refers to the
same rendition as Preview.

• renditionProperty is the required rendition information.

In most cases, you will want to retrieve the URL of the image rendition so that the
rendition can be displayed on a page. To do this use the url property.

You can also retrieve other information about the rendition, such as name, type,
width, height, resolution, size, or contentType.

Note:

For web and thumbnail renditions, only size, contentType, and url are
applicable; name returns the name of the native file, not of the web or
thumbnail rendition.

For example to display the preview rendition of an image, add the following to your
display template:

<af:image source="#{node.renditionsMap['preview:url']}" shortDesc="Preview
rendition" id="imageContent3"/>

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-27

Note:

Wherever possible, url points to a static rendition URL for the image
rendition on the WebCenter Content Server. If the static URL cannot be
determined, the url uses the WebCenter Portal showProperty servlet.

The following example shows a Content Presenter display template that displays a
carousel of images. If the carousel is displayed on a desktop device
(rendered="#{DeviceAgent.desktop}), then the a200 rendition is used for the
images (node.renditionsMap['a200:url']). If the carousel is displayed on a
mobile device (rendered="#{DeviceAgent.mobile}), then the smaller
thumbnail rendition is used (node.renditionsMap['thumbnail:url']).

<?xml version='1.0' encoding='utf-8'?>
<!-- Copyright (c) 2014 Oracle and/or its affiliates.
All rights reserved. -->

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:dt="http://xmlns.oracle.com/webcenter/content/templates"
 xmlns:f="http://java.sun.com/jsf/core">
 <dt:contentListTemplateDef var="nodes">
 <af:carousel id="c1"
 value="#{nodes}"
 var="node"
 emptyText="#{templateBundle.EMPTY_NODES}"
 inlineStyle="#{DeviceAgent.desktop ? '' : 'height:200px;'}">
 <f:facet name="nodeStamp">
 <af:carouselItem id="ci1"
 text="#{node.isFolder ? node.name : (empty
node.propertyMap['dDocTitle'] ?
 node.name :
node.propertyMap['dDocTitle'].value.stringValue)}"
 shortDesc="#{not empty
node.propertyMap['xComments'].value.stringValue ?
 node.propertyMap['xComments'].value.stringValue :
 node.primaryProperty.value.binaryValue.name}">
 <af:image id="cimg1"
 source="#{node.primaryProperty.isImage ?
node.renditionsMap['a200:url'] :
 node.icon.largeIcon}"
 shortDesc="#{node.primaryProperty.value.binaryValue.name}"
 rendered="#{DeviceAgent.desktop}"/>
 <af:image id="cimg2"
 source="#{node.primaryProperty.isImage ?
node.renditionsMap['thumbnail:url'] : node.icon.largeIcon}"
 shortDesc="#{node.primaryProperty.value.binaryValue.name}"
 rendered="#{DeviceAgent.mobile}"/>

 </af:carouselItem>
 </f:facet>
 </af:carousel>
 </dt:contentListTemplateDef>
</jsp:root>

Editing a Content Presenter Display Template

10-28 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

10.3.7.4 Retrieving Image Renditions for Site Studio Region Definitions
The handling of image renditions for images in Site Studio region definitions is
determined by way the region definitions are defined in Site Studio.

You can either have a region definition that includes a single region element that
defines the base image or a region definition that includes separate region elements for
each image rendition. Your Content Presenter display template must use the
appropriate EL expression according to how the region definition is set up.

For example, your region definition could have a single region element (myimage) for
the base image, therefore to display a particular image rendition, you must use an EL
expression where you can specify which rendition to retrieve from Oracle WebCenter
Content Server, for example, highres or lowres. Alternatively, if your region
definition has separate region elements for the different image renditions, say one
element (desktop) for a rendition suitable for desktop browsers and one (mobile)
for a rendition more suited to mobile devices, you can use an EL expression that refers
directly to the region element that defines the rendition that you want to use.

Tip:

If you anticipate adding further image renditions in the future, for example for
new devices, it makes sense to create region definitions with single image
region elements so that as new renditions are added, they can be included in
your Content Presenter display templates without having to create new region
elements.

• If the region definition includes a single region element that defines the base image,
you can also specify which rendition of the image you want to use:

node.propertyMap['regionDefinitionName:elementName/
Rendition:renditionName'].asTextHtml

• To reference a region element within a region definition that defines a specific
image rendition, use the following EL expression:

node.propertyMap['regionDefinitionName:elementName'].asTextHtml

Where:

• regionDefinitionName is the name of the region definition.

• elementName is the name of the region element.

• renditionName is:

– for DAM implementations, the name of the rendition from the appropriate
rendition set. For example, web, thumbnail, highres or lowres.

– for non-DAM implementations, either web or thumbnail.

Note:

The renditionName is not case sensitive, therefore preview refers to the
same rendition as Preview.

The EL expressions return an HTML img tag with a src element that points to the
URL of the appropriate image rendition.

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-29

Note:

Wherever possible, the src URL points to a static rendition URL for the image
rendition on WebCenter Content Server. If the static URL cannot be
determined, the url uses the WebCenter Portal showProperty servlet.

Figure 10-8 shows a Site Studio region definition (RD_REUSEIMG) for an article. The
definition includes region elements for the title, summary, body and image of the
article. The single image region element defines the original image (Image).

Figure 10-8 Region Definition with Single Image Region Element

To use a lower resolution rendition (lowres) of the image on a mobile device, use the
following code:

<af:outputText value="#{node.propertyMap['RD_REUSEIMG:Image/
Rendition:lowres'].asTextHtml}" escape="false" id="olmaget"
rendered="#{DeviceAgent.mobile}"/>

Note:

If the specified renditionName does not exist for the image, the image's
primary rendition is used instead.

Figure 10-9 shows a different region definition (RD_NAMEDREND) for a different article
that includes separate region elements for the different possible renditions of the
article image: BaseImage, ThumbnailImage, A100Image, and A200Image.

Editing a Content Presenter Display Template

10-30 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 10-9 Region Definition with Region Elements for Named Renditions

To use the ThumbnailImage region element to render the image on a mobile device,
use the following code:

<af:outputText value="#{node.propertyMap['RD_NAMEDREND:ThumbnailImage'].asTextHtml}"
escape="false" id="olmaget" rendered="#{DeviceAgent.mobile}"/>

Note:

If you use an EL expression with a specified renditionName for an region
element that explicitly references a particular image rendition (rather than the
base image), the rendition defined by the region element is returned (not the
rendition specified by renditionName).

Within a WYSIWYG or static list region element you can reference a specific rendition
of an image using the
node.propertyMap['regionDefinitionName:elementName'] EL expression.
Alternatively, you can reference base images in the WYSIWG or static list region
elements and then use the
node.propertyMap['regionDefinitionName:elementName/
Rendition:renditionName'] EL expression to use a specific rendition for all
images within the element.

The following example shows how a particular rendition (Preview) is used for
images within a static list region element (paragraph).

<af:iterator value="#{node.propertyMap['RD_MYREGION:paragraph/
Rendition:Preview'].values}"
 var="row"
 id="i1"
 rendered="#{DeviceAgent.desktop}">
 <af:showDetailItem text="#{row.nestedValue[0].value}" id="sdi1"
stretchChildren="first">

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-31

 <af:panelGroupLayout layout="horizontal" id="tt" inlineStyle="padding:5px;">
 <af:outputText escape="false" value="#{row.nestedValue[1].value}" id="ld1"/>
 <af:outputText escape="false" value="#{row.nestedValue[2].value}" id="ld2"/>
 </af:panelGroupLayout>
 </af:showDetailItem>
</af:iterator>

In the following example RD_MYREGION:body corresponds to a WYSIWYG region
element. All images within that WYSIWYG element will be rendered using the A100
rendition.

<af:outputText value="#{node.propertyMap['RD_MYREGION:body/
Rendition:A100'].asTextHtml}"
 escape="false" id="ot5"/>

Note:

If the WYSIWYG or static list element explicitly references a particular
rendition of an image, that rendition supersedes any rendition specified using
the Rendition:renditionName syntax.

10.3.8 How to Use EL Expressions to Retrieve Content Item Information
This section describes the EL expressions that you can use in your Content Presenter
display template definitions to retrieve and display specific information about content
items.

Use the EL expressions described in the following tables as you define your Content
Presenter display templates as explained in How to Define a Single-Item Display
Template and How to Define a Multiple-Item Display Template. These expressions are
used with the JSP tags described in Table 10-1 and Table 10-2.

This section contains the following topics:

• How to Retrieve Basic Information About a Content Item

• How to Work with Content Item Properties and Values

• How to Work with Content Item Icons and URLs

• How to Work with Image Renditions

• How to Work with Group Portal Information

10.3.8.1 How to Retrieve Basic Information About a Content Item
The EL expressions listed in this section enable you to display basic information about
a content item in a display template.

Table 10-3 EL Expressions for Retrieving Basic Content Information

EL Expression Description

#{node.createdBy} Returns the user name of the node's creator.

#{node.createdDate} Returns the node's creation date.

#{node.hasParentNode} Returns true if the current node has a valid parent
node ID, or a node that has no parent.

Editing a Content Presenter Display Template

10-32 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 10-3 (Cont.) EL Expressions for Retrieving Basic Content Information

EL Expression Description

#{node.icon} Returns the icon service defined in the current web
application.

#{node.id} Returns the node's identifier.

#{node.isFolder} Returns true if this node is associated with a folder or
container.

#{node.isInherited} Returns true if this node is inherited by another object
class definition.

#{node.modifiedBy} Returns the user name of the node's last modifier.

#{node.modifiedDate} Returns the node's last modification date.

#{node.name} Returns the node's name.

#{node.parentId} Returns the parent node's identifier.

#{node.path} Returns the node's path.

#{node.primaryProperty} Returns the node's primary property, if available.

#{node.propertyMap} Creates and returns a map of wrapped property
objects, keyed by property name. Properties can be
accessed as #{node.propertyMap['myProp']} or
#{node.propertyMap.myProp}.

#{node.url} Returns an instance of the node property URL service
for the primary property of this node (if any). By
default, it resolves to #{node.url.renderUrl}. This
is a shortcut for #{node.primaryProperty.url}.

10.3.8.2 How to Work with Content Item Properties and Values
Use the EL expressions described in this section to perform actions on content item
node properties and property values.

Tip:

To determine the names of the properties defined for a given content type, see
How to Discover Content Type Property Names.

Table 10-4 EL Expressions for Content Item Node Properties

EL Expression Description

#{node.propertyMap['myProp'].asTextHtml} Returns this property as text or HTML if the type is text
or HTML. If isHTML or isPlainText is true, the text
or HTML is returned as a string.

#{node.propertyMap['myProp'].hasValue} Returns true if a value is associated with this
property.

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-33

Table 10-4 (Cont.) EL Expressions for Content Item Node Properties

EL Expression Description

#{node.propertyMap['myProp'].icon} Returns the icon service defined in the current web
application.

#{node.propertyMap['myProp'].indexedName} Returns the indexed name of a multi-valued property.
For example, if a multi-valued node property named
color contains blue, red, orange, the indexed name
of the red value is color[1]. The following EL
expression references the color orange in this list:
#{node.propertyMap['color[2]'].value.stri
ngValue}

#{node.propertyMap['myProp'].isAudio} Returns true if the property's mime type is 'audio/'.

#{node.propertyMap['myProp'].isBinary} Returns true if the current property is of type
Property.BINARY.

#{node.propertyMap['myProp'].isBoolean} Returns true if the current property is of type
Property.BOOLEAN.

#{node.propertyMap['myProp'].isCalendar} Returns true if the current property is of type
Property.CALENDAR.

#{node.propertyMap['myProp'].isDouble} Returns true if the current property is of type
Property.DOUBLE.

#{node.propertyMap['myProp'].isExcel} Returns true if the property's mime type is
'application/vnd.ms-excel', 'application/
excel', 'application/x-excel', or
'application/x-msexcel'.

#{node.propertyMap['myProp'].isGIF} Returns true if the property's mime type is 'image/
gif'.

#{node.propertyMap['myProp'].isHTML} Returns true if the property's mime type is 'text/
html'.

#{node.propertyMap['myProp'].isImage} Returns true if the property's mime type is 'image/'.

#{node.propertyMap['myProp'].isJPEG} Returns true if the property's mime type is 'image/
jpeg'.

#{node.propertyMap['myProp'].isLink} Returns true if the current property is of type
Property.LINK.

#{node.propertyMap['myProp'].isLong} Returns true if the current property is of type
Property.LONG.

#{node.propertyMap['myProp'].isMSWord} Returns true if the property's mime type is
'application/vnd.ms-word' or 'application/
msword'.

#{node.propertyMap['myProp'].isMultiValue
d}

Returns true if this property is multi-valued.

#{node.propertyMap['myProp'].isNested} Returns true if the current property is of type
Property.NESTED.

Editing a Content Presenter Display Template

10-34 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 10-4 (Cont.) EL Expressions for Content Item Node Properties

EL Expression Description

#{node.propertyMap['myProp'].isPDF} Returns true if the property's mime type is
'application/pdf'.

#{node.propertyMap['myProp'].isPlainText} Returns true if the property's mime type is 'text/
plain'.

#{node.propertyMap['myProp'].isPNG} Returns true if the property's mime type is 'image/
png'.

#{node.propertyMap['myProp'].isPowerPoint
}

Returns true if the property's mime type is
'application/vnd.ms-powerpoint',
'application/mspowerpoint', or
'application/x-mspowerpoint'.

#{node.propertyMap['myProp'].isPrimaryPro
perty}

Returns true if this property is the primary property.

#{node.propertyMap['myProp'].isRequired} Returns true if this property is required/mandatory.

#{node.propertyMap['myProp'].isRetricted} Returns true if this property is restricted.

#{node.propertyMap['myProp'].isRichText} Returns true if the property's mime type is 'text/
richtext'.

#{node.propertyMap['myProp'].isString} Returns true if the current property is of type
Property.STRING.

#{node.propertyMap['myProp'].isTextBased} Returns true if this property is text-based (isHTML,
isPlainText, isString, isCalendar, isBoolean,
isDouble, isLong).

#{node.propertyMap['myProp'].isVideo} Returns true if the property's mime type is 'video/'.

#{node.propertyMap['myProp'].isXML} Returns true if the property's mime type is 'text/
xml'.

#{node.propertyMap['myProp'].isZip} Returns true if the property's mime type is
'application/zip'.

#{node.propertyMap['myRefNode'].linkAsNod
e}

Returns the myRefNode property as a node, where
myRefNode is a link property type. Properties can be
referenced in EL expressions.

Example:#{node.propertyMap['myRefNode'].li
nkAsNode.primaryProperty.url.renderUrl}

#{node.propertyMap['myProp'].name} Returns the property's name.

#{node.propertyMap['myProp'].nestedProper
ty}

Retrieves nested properties for this single-valued
property, and returns a list of properties.

#{node.propertyMap['myProp'].type} Returns the data type of this property value. For
example: String, Integer, Long, and so on.

#{node.propertyMap['myProp'].url} Returns a URL service for this property.

#{node.propertyMap['myProp'].value} Returns the value service for this property.

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-35

Table 10-4 (Cont.) EL Expressions for Content Item Node Properties

EL Expression Description

#{node.propertyMap['myProp'].nestedProperties} Returns elements from a static list. For example:

 <af:iterator var="listItem"

value="#{node.propertyMap['ARTICLE_RGD:Paragraphs
'].nestedProperties}"
 varStatus="vs">
 <af:outputText id="ot1"
value='#{listItem[0].value}'/>
 <af:outputText id="ot3"
value="#{listItem[1].value}"/>
 </af:iterator>

#node.propertyMap['regionDefName:elementN
ame'].asTextHtml}

Returns Site Studio data as HTML text. For example:

#node.propertyMap['RD_NEWS:LEAD'].asTextH
tml}

The element name (LEAD) is prefixed by the Region
Definition name (RD_NEWS). See also How to Reference
Site Studio Region Elements in a Custom View.

Table 10-5 EL Expressions for Content Item Node Property Values

EL Expression Description

#{node.propertyMap['myProp'].value.binary
Value}

Returns custom attributes for a binary property type or
attachment. Attributes available on binaryValue are:

• contentType –Returns the mime type of the
binary content (for example, text or html).

• name –Returns the filename of the binary content
(for example, index.html).

• size –Returns the size of the binary content, or -1
if the size is unavailable.

#{node.propertyMap['myProp'].value.boolea
nValue}

Returns the value of this property as
java.lang.Boolean.

#{node.propertyMap['myProp'].value.calend
arValue}

Returns the value of this property as
java.util.Calendar.

#{node.propertyMap['myProp'].value.double
Value}

Returns the value of this property as
java.lang.Double.

#{node.propertyMap['myProp'].value.longVa
lue}

Returns the value of this property as
java.lang.Long.

#{node.propertyMap['myProp'].value.ordere
dPosition}

Returns the "index" of the property when the property
is multi-valued.

Example:#{node.propertyMap['address[0]'].v
alue.orderedPosition},

Editing a Content Presenter Display Template

10-36 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 10-5 (Cont.) EL Expressions for Content Item Node Property Values

EL Expression Description

#{node.propertyMap['myProp'].value.string
Value}

Returns the value of this property as
java.lang.String.

Example:#{node.propertyMap['firstName'].va
lue.stringValue}

10.3.8.3 How to Work with Content Item Icons and URLs
Use the the EL expressions described in this section to work with icons and URLs
associated with content items and properties.

Table 10-6 EL Expressions for Content Item Node or Property Icons

EL Expression Description

#{node.icon.largeIcon}

#{node.propertyMap['myDoc'].icon.largeIco
n}

Returns a URL to an image resource for a large icon.

Example: <af:image
source="#{node.propertyMap['projectFolder
'].largeIcon}"/>

#{node.icon.smallIcon}

#{node.propertyMap['myDoc'].icon.smallIco
n}

Returns a URL to an image resource for a small icon.

Example: <af:image
source="#{node.icon.smallIcon}" />

Table 10-7 EL Expressions for Content Item Node URLs

EL Expression Description

#{node.url.downloadUrl} Creates a URL to the binary content. Forces a
download, and the underlying operating system
renders the content based on the content type.

Example: <af:goLink
destination="#{node.url.downloadUrl}"
targetFrame="_blank"/>

#{node.url.renderUrl} Creates a URL to the binary content. Allows the
browser to render the content based on the content
type.

By default, #{node.url} resolves to
#{node.url.renderUrl}.

Example: <af:goLink
destination="#{node.url.renderUrl}"
targetFrame="_blank"/>

10.3.8.4 How to Work with Image Renditions
This section lists the EL expressions available to retrieve information about specific
renditions of image documents and Site Studio region elements, including the URL to
render the image using that rendition.

For more information about image renditions, see How to Use Image Renditions in
Content Presenter Display Templates.

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-37

Table 10-8 EL Expressions for Image Renditions of Image Documents

EL Expression Description

#{node.renditionsMap['renditionName:url']
}

Returns the URL of the image rendition. For example:

http://mymachine.example.com:8888/cs/groups/
personalspaces/@pewebcenter/
@799c4d7d-255c-46c8-80f5-0d06c848dd65/documents/
document/awrf/mdax/~edisp/~extract/
ID_001642~3~staticrendition/preview.gif

Wherever possible, url points to a static rendition URL
for the image rendition on Oracle WebCenter Content
Server. If the static URL cannot be determined, the url
uses the WebCenter Portal showProperty servlet.

#{node.renditionsMap['renditionName:name'
]}

Returns the name of the rendition, for example web,
thumbnail, or highres.

For web and thumbnail renditions, name returns the
name of the native file, not of the web or thumbnail
rendition.

#{node.renditionsMap['renditionName:type'
]}

Returns the file type of the image rendition, for
example, preview.

The type property is not valid for web and
thumbnail renditions.

#{node.renditionsMap['renditionName:width
']}

Returns the width of the image rendition in pixels, for
example 250.

The width property is not valid for web and
thumbnail renditions.

#{node.renditionsMap['renditionName:heigh
t']}

Returns the height of the image rendition in pixels, for
example 34.

The height property is not valid for web and
thumbnail renditions.

#{node.renditionsMap['renditionName:resol
ution']}

Returns the resolution (DPI) of the image rendition, for
example 96 dpi.

The resolution property is not valid for web and
thumbnail renditions.

#{node.renditionsMap['renditionName:size'
]}

Returns the file size of the image rendition, for
example, 3133.

#{node.renditionsMap['renditionName:conte
ntType']}

Returns the MIME type of the image rendition, for
example. image/gif.

Table 10-9 EL Expressions for Image Renditions of Site Studio Region Elements

Editing a Content Presenter Display Template

10-38 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 10-9 (Cont.) EL Expressions for Image Renditions of Site Studio Region Elements

EL Expression Description

#{node.propertyMap['regionDefinitionName:
elementName'].asTextHtml}

Returns an HTML img tag with the src element set to
the URL of the image defined in the specified element.
For example:

<img src="http://mymachine.example.com:9400
/cs/idcplg?IdcService=GET_FILE&dDocName=
id_038497&RevisionSelectionMethod=LatestRelea
sed"
alt="S3-1" class="">

Use this EL to reference a Site Studio region element
that defines a specific rendition of an image.

Wherever possible, the URL points to a static rendition
URL for the image rendition on WebCenter Content
Server. If the static URL cannot be determined, the url
uses the WebCenter Portal showProperty servlet.

#{node.propertyMap['regionDefinitionName:
elementName/
Rendition:renditionName'].asTextHtml}

Returns an HTML img tag with the src element set to
the URL of the specified image rendition of the image
defined in the specified element. For example:

<img src="/cs/groups/wc081512c/
@sb5cdcaa4610341a8bb8387effdf21790/documents/
document/
awrf/mdm4/~edisp/~extract/
ID_038497~1~staticrendition/preview.gif"
alt="S3-1"
class="">

If the specified image rendition does not exist for the
image, then the base image URL is returned.

Use this EL to reference a Site Studio region element
that defines the base image for which you want to
display the specified renditionName.

Wherever possible, the URL points to a static rendition
URL for the image rendition on WebCenter Content
Server. If the static URL cannot be determined, the url
uses the WebCenter Portal showProperty servlet.

10.3.8.5 How to Work with Group Portal Information
This section lists the EL expressions you can use to work with group portal
information in your Content Presenter display templates.

Table 10-10 EL Expressions for Basic Group Portal Information

EL Expression Description

#{spaceContext.currentSpace.metadata.crea
tedBy}

#{spaceContext.space[portalName].metadata
.createdBy}

Returns the user who created the current or specified
group portal.

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-39

Table 10-10 (Cont.) EL Expressions for Basic Group Portal Information

EL Expression Description

#{spaceContext.currentSpace.metadata.crea
tionDate}

#{spaceContext.space[portalName].metadata
.creationDate}

Returns a java.util.Calendar object representing
the date and time on which the current or specified
portal was created.

#{spaceContext.currentSpace.metadata.cust
omAttributes[attributeName]}

#{spaceContext.space[portalName].metadata
.customAttributes[attributeName]}

Returns the value of a specific custom attribute of the
name attributeName for the portal.

#{spaceContext.currentSpace.metadata.defa
ultLanguage}

#{spaceContext.space[portalName].metadata
.defaultLanguage}

Returns the default language for the current or
specified portal.

#{spaceContext.currentSpace.metadata.desc
ription}

#{spaceContext.space[portalName].metadata
.description}

Returns the description associated with the current
portal with the display name in the language in which
the portal was created. If the portal name has been
translated, the translated name is not shown.

Example:
#{spaceContext.space['FinanceProject'].me
tadata.description}

Evaluates to conglomeration of all teams involved in
financial activities.

#{spaceContext.currentSpace.metadata.disp
layName}

#{spaceContext.space[portalName].metadata
.displayName}

Returns the display name associated with the current
or specified portal in the language in which the portal
was created. If the portal name has been translated, the
name in which the portal was created will be shown.

Example:

If a group portal called "Web20Portal" has the display
name "Web 2.0 Portal", then:

#{spaceContext.space['Web20Portal'].metad
ata.displayName}

will evaluate to "Web 2.0 Portal".

#{spaceContext.currentSpace.metadata.guid
}

#{spaceContext.space[portalName].metadata
.guid}

Returns the unique ID associated with the current or
specified portal.

#{spaceContext.space[portalName].metadata
.icon}

#{spaceContext.currentSpace.metadata.icon
}

Returns a URL to the icon associated with the current
or specified portal.

#{spaceContext.currentSpace.metadata.keyw
ords}

#{spaceContext.space[portalName].metadata
.keywords}

Returns a comma-separated list of searchable keywords
associated with the current or specified portal.

Editing a Content Presenter Display Template

10-40 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 10-10 (Cont.) EL Expressions for Basic Group Portal Information

EL Expression Description

#{spaceContext.currentSpace.metadata.last
UpdatedDate}

#{spaceContext.space[portalName].metadata
.lastUpdatedDate}

Returns the java.util.Calendar object
representing the date-time on which the current or
specified portal was last updated.

#{spaceContext.space[portalName].metadata
.logo}

#{spaceContext.currentSpace.metadata.logo
}

Returns the path to the image associated with the logo
of the current or specified portal.

#{spaceContext.currentSpace.metadata.name
}

#{spaceContext.space[portalName].metadata
.name}

Returns the name of the current or specified portal
used generally at the back end of the portal and is used
with the pretty URL.

#{spaceContext.currentSpace.metadata.grou
pSpaceURI}

#{spaceContext.space[portalName].metadata
.groupSpaceURI}

Returns the pretty URL of the current or specified
portal.

#{spaceContext.currentSpace.metadata.clos
ed}

#{spaceContext.space[portalName].metadata
.closed}

Returns Boolean value indicating whether the portal
has been kept closed.

#{spaceContext.currentSpace.metadata.disc
overable}

#{spaceContext.space[portalName].metadata
.discoverable}

Returns Boolean value indicating whether users will be
able to discover the existence of the portal by searching
for it or getting it listed in My Portals.

#{spaceContext.currentSpace.metadata.offl
ine}

#{spaceContext.space[portalName].metadata
.offline}

Returns Boolean value indicating whether the portal
has been taken offline.

#{spaceContext.currentSpace.metadata.publ
ishRSS}

#{spaceContext.space[portalName].metadata
.publishRSS}

Returns Boolean value, indicating whether the portal
publishes RSS feeds.

#{spaceContext.currentSpace.metadata.self
Registration}

#{spaceContext.space[portalName].metadata
.selfRegistration}

Returns a Boolean value indicating whether users are
allowed to subscribe themselves to the portal.

#{spaceContext.currentSpace.metadata.unsu
bscriptionApprovalRequired}

#{spaceContext.space[portalName].metadata
.unsubscriptionApprovalRequired}

Returns a Boolean value representing whether
approval is required to unsubscribe from the current or
specified portal.

Table 10-11 EL Expressions for Portal UI Information

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-41

Table 10-11 (Cont.) EL Expressions for Portal UI Information

EL Expression Description

#{spaceContext.space[portalName].metadata
.uiMetadata.gsSiteTemplateId}

#{spaceContext.currentSpace.metadata.uiMe
tadata.gsSiteTemplateId}

Returns the ID of the page template associated with the
current or specified portal.

#{spaceContext.space[portalName].metadata
.uiMetadata.rcForGSPages}

#{spaceContext.currentSpace.metadata.uiMe
tadata.rcForGSPages}

Returns the ID of the resource catalog associated with
the current or specified portal.

#{spaceContext.space[portalName].metadata
.uiMetadata.rcForGSSiteTemplates}

#{spaceContext.currentSpace.metadata.uiMe
tadata.rcForGSSiteTemplates}

Returns the ID of the resource catalog associated with
the page template of the current portal.

#{spaceContext.space[portalName].metadata
.uiMetadata.gsSiteStructureId}

#{spaceContext.currentSpace.metadata.uiMe
tadata.gsSiteStructureId}

Returns the ID of the navigation model associated with
the current portal.

#{spaceContext.space[portalName].metadata
.uiMetadata.skin}

#{spaceContext.currentSpace.metadata.uiMe
tadata.skin}

Returns the ADF Faces skin family associated with the
current portal.

#{spaceContext.space[portalName].metadata
.uiMetadata.footerHidden}

#{spaceContext.currentSpace.metadata.uiMe
tadata.footerHidden}

Returns the Boolean value representing whether the
footer of the portal is hidden.

#{spaceContext.space[portalName].metadata
.uiMetadata.copyrightMessage}

#{spaceContext.currentSpace.metadata.uiMe
tadata.copyrightMessage}

Returns the copyright message used by the portal.

#{spaceContext.space[portalName].metadata
.uiMetadata.privacyPolicyUrl}

#{spaceContext.currentSpace.metadata.uiMe
tadata.privacyPolicyUrl}

Returns the URL to the privacy policy document
followed.

10.3.9 How to Discover Content Type Property Names
As a Content Presenter display template developer, you will need to know the names
of the properties defined for the associated content type so that you can define how to
display the selected content item(s) on the page.

Each content item is associated with a specific content type defined in the Oracle
WebCenter Content Server repository. Content types can map to WebCenter Content
Server profile definitions and Site Studio region definitions. Types are created in
WebCenter Content Server and define the properties of the content item. The property
names of a content item's content type, however, are different than the display names,
and need to be obtained from WebCenter Content Server. For more information, see
Defining Content Types in Managing Oracle WebCenter Content.

Editing a Content Presenter Display Template

10-42 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

You can also use REST services to obtain content type property names. For
more information see Using the WebCenter Portal REST APIs.

10.3.10 How to Reference External Files in Display Templates
In some cases, a display template needs to reference an external file, like a CSS file. All
such references must be either an absolute path or a path that is relative to the root of
the web application.

For example:

• absolute path –http://host:port/mypath/file.css

• relative path –/webcenter/mypath/file.css

Do not use local references to external files. Local references to external files do not
work because they are not included when you publish a Content Presenter display
template as an asset, as explained in Publishing a Content Presenter Display Template.

10.3.11 How to Reference Site Studio Region Elements in a Custom View
You can use custom display templates to display Site Studio Region Definition
elements.

For example, you might have a Site Studio Region Definition called RD_NEWS with
four elements: TITLE, LEAD, IMAGE, and BODY. A Content Presenter display template
can reference these elements using the node property EL expression like this:

#node.propertyMap['RD_NEWS:LEAD'].asTextHtml}

The following example illustrates how these Site Studio Region elements can be
included in a contentTemplateDef definition:

<dt:contentTemplateDef var="node">
 <af:panelGroupLayout layout="vertical" id="pgl3">
 <af:panelGroupLayout layout="horizontal" valign="top" inlineStyle="background-
color:#FFF; padding:10px;" id="pgl4">
 <af:panelGroupLayout layout="vertical" id="pgl2" valign="top">
 <af:outputText
value="#{node.propertyMap['dInDate'].value.calendarValue}" id="ot3"
styleClass="bodytext" converter="javax.faces.DateTime"/>
 </af:panelGroupLayout>
 <af:spacer width="10px;" id="s1" inlineStyle="background-color:#DDD;
color:white;"/>
 <af:panelGroupLayout layout="vertical" id="pgl1" valign="top">
 <af:outputText value="#{node.propertyMap['xTargetGroup'].value}"
id="ot12" inlineStyle="background-color:#0A9FC0; color:white; text-align:left;
padding:5px;"/>
 <af:goLink text="#{node.propertyMap['RD_NEWS:TITLE'].asTextHtml}"
id="gil1"
 destination="#{'/faces/home/news-viewer?
news_id='}#{node.propertyMap['dDocName'].value}" styleClass="newstitle"/>
 <af:outputText value="#{node.propertyMap['RD_NEWS:LEAD'].asTextHtml}"
id="ot2" styleClass="bodytext"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout layout="vertical" id="pgl32" valign="top"
styleClass="newsimage">
 <af:outputText value="#{node.propertyMap['RD_NEWS:IMAGE'].asTextHtml}"

Editing a Content Presenter Display Template

Developing Content Presenter Display Templates 10-43

escape="false" id="ot1" inlineStyle="max-width:100px;"/>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 <af:panelGroupLayout layout="horizontal" id="aaaa">
 </af:panelGroupLayout>
 </af:panelGroupLayout>
</dt:contentTemplateDef>

For a complete, end-to-end example illustrating how to reference Site Studio Region
elements in multiple templates, see the WebCenter Architecture Team blog entry at:

http://www.ateam-oracle.com/content-presenter-cmis-complete

10.4 Publishing a Content Presenter Display Template
After creating a Content Presenter display template and editing the page fragment, the
next step is to publish and test the template in WebCenter Portal.

For instructions on how to publish a Content Presenter display template as a shared
asset, or to a specific portal as a portal asset, see Publishing WebCenter Portal Assets.

10.5 Optimizing Performance for Content Presenter Display Templates
When content nodes are retrieved for display in a Content Presenter display template,
most content item node property values are retrieved immediately along with the
node, but some are loaded later only if needed. Other than the performance difference,
the selective loading of node property values is transparent to the user or developer.

As a Content Presenter display template developer, you can optimize performance of
your template if you are aware when different property values are loaded. For
example, a typical list display template will render faster if you refer only to properties
that are immediately loaded when the node is first retrieved and avoid properties that
are loaded later when needed.

A secondary consideration is dependent on how the node is retrieved: through search
versus fetched by parent ID. A property that may be loaded immediately on node
retrieval for searches (such as Results of a Query) may be loaded later for other
retrieval methods (such as Contents Under a Folder). Table 10-12 shows whether or
not node properties are loaded immediately upon node retrieval, by retrieval
mechanism.

For information about the node properties, see Configuration Reference for Oracle
WebCenter Content.

Table 10-12 Loading of Node Properties By Node Retrieval Mechanism

OCS Global Profile
Properties

Loaded When Node Is First Retrieved?

GET BY PARENT ID
(Contents Under a
Folder)

SEARCH (Results of
a Query)

GET BY UUID
(Single Content Item
and List of Items)

VaultFileSize N Y Y

dCheckoutUser Y N Y

dCreateDate Y Y Y

dDocAccount Y Y Y

dDocAuthor Y Y Y

Publishing a Content Presenter Display Template

10-44 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://www.ateam-oracle.com/content-presenter-cmis-complete

Table 10-12 (Cont.) Loading of Node Properties By Node Retrieval Mechanism

OCS Global Profile
Properties

Loaded When Node Is First Retrieved?

GET BY PARENT ID
(Contents Under a
Folder)

SEARCH (Results of
a Query)

GET BY UUID
(Single Content Item
and List of Items)

dDocName Y Y Y

dDocTitle Y Y Y

dDocType Y Y Y

dFormat Y Y Y

dID Y Y Y

dInDate Y Y Y

dIsCheckedOut Y N Y

dOutDate Y Y Y

dReleaseDate Y N Y

dReleaseState Y N Y

dRevClassID Y N Y

dRevLabel Y Y Y

dRevRank Y N Y

dRevisionID Y Y Y

dSecurityGroup Y Y Y

dStatus Y N Y

dWebExtension Y Y Y

dWorkflowState N N Y

idcPrimaryFile Y Y Y

idcRenditions N N Y

xCollectionID Y Y Y

xComments Y Y Y

xForceFolderSecu
rity

Y Y Y

xHidden Y Y Y

xInihibitUpdate Y Y Y

xReadOnly Y Y Y

Optimizing Performance for Content Presenter Display Templates

Developing Content Presenter Display Templates 10-45

10.6 Using Content Presenter (Tips, Tutorials, and Examples)
The following supplementary tutorials and examples further illustrate how Content
Presenter can be used.

• UCM, Site Studio and Templates - describes the components (Content Server, Site
Studio, and Content Presenter) that drive content interactions in WebCenter Portal.

http://www.ateam-oracle.com/portal-and-content-components-
part-1-ucm-site-studio-and-templates-2-of-7

• Content Presenter-CMIS-Complete - steps you through using Content Presenter-
based pages and complex CMIS and custom templates to create a filterable content
list viewer.

http://www.ateam-oracle.com/content-presenter-cmis-complete

• Portal and Content - Content Integration - Best Practices - highlights some of the best
practices to consider when integrating content into your portal.

http://www.ateam-oracle.com/portal-and-content-content-
integration-best-practices/

Using Content Presenter (Tips, Tutorials, and Examples)

10-46 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://www.ateam-oracle.com/portal-and-content-components-part-1-ucm-site-studio-and-templates-2-of-7
http://www.ateam-oracle.com/portal-and-content-components-part-1-ucm-site-studio-and-templates-2-of-7
http://www.ateam-oracle.com/content-presenter-cmis-complete
http://www.ateam-oracle.com/portal-and-content-content-integration-best-practices/
http://www.ateam-oracle.com/portal-and-content-content-integration-best-practices/

Part III
Working with Portlets

This part contains the following chapters:

• Introduction to Portlets

• Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge

• Building Standards-Based Java Portlets Using JSR 286

11
Introduction to Portlets

This chapter provides an overview of portlets and describes their uses. It explains
portlet anatomy and the resources you can use to create portlets. This chapter also
explains the features, technologies, and tools to help you decide which portlet
building technology best suits your needs.

This chapter includes the following topics:

• About Portlets

• About Portlet Anatomy

• About Portlet Resources

• About Portlet Development

11.1 About Portlets
A portlet is a reusable web component that can draw content from many different
sources. Portlets can contain anything from static HTML content to Java controls to
complex web services and process-heavy applications.

Portlets provide a means of presenting data from multiple sources in a meaningful
and related way. Portlets can display excerpts of other web sites, generate summaries
of key information, perform searches, and access assembled collections of information
from a variety of data sources. Because several different portlets can be placed on a
single page, users benefit from a single-source experience even though, in reality, the
content may be derived from multiple sources.

Introduction to Portlets 11-1

Figure 11-1 Lottery Sample Portlet

Portlets can communicate with each other using events and other techniques. A single
portlet can also have multiple instances—in other words, it can appear on a variety of
different pages within a single portal, or even across multiple portals. Page designers
can customize portlets to meet the needs of their specific audience. With the correct
privileges, individual end users can further personalize portlets for their own
particular requirements.

WebCenter Portal supports the development of portlets using JSR 286, an industry
standard. You can also create portlets from existing JSF applications using the Oracle
JSF Portlet Bridge. For more information, see About Portlet Resources.

11.2 About Portlet Anatomy
Portlet anatomy is the visual representation of the portlet on a page.

Figure 11-2 shows some aspects of portlet anatomy that you might expect to see in a
typical portlet in WebCenter Portal. Note that the same portlet displayed in a different
application could look different.

About Portlet Anatomy

11-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 11-2 Sample Portlet Showing Typical Portlet Anatomy

Aspects of portlet anatomy (some, but not all, of which are illustrated in Figure 11-2)
include:

• Portlet chrome—A collective term for the different types of decoration that
surround the portlet, including the header, shadow, resize handle, Actions menu,
and icons.

• Portlet header—The area of the portlet that displays the portlet icon, title, Actions
menu, and Customize and Personalize icons.

• Portlet icon—A small image in the portlet header used to visually identify the
portlet.

• Portlet title—Text in the portlet header that indicates the purpose of the portlet.
End users may be able to personalize this title at runtime to make it more
meaningful to their particular usage.

• Personalize icon—An icon in the portlet header that enables end users to make
changes to the portlet that only they can see.

The Personalize icon is displayed only to authenticated users (that is, users who
are logged in). It does not display to public users or unauthenticated users. You
must implement some form of application security for users to be able to
personalize their portlet views.

• Customize icon—An icon in the portlet header that enables application
administrators to make changes to the default settings of the portlet at runtime.
These changes are visible to all users.

A typical customization setting is the portlet title. At runtime, the application
administrator can determine what title should appear in the portlet header.

• Actions icon—An icon in the portlet header that displays the Actions menu when
clicked.

About Portlet Anatomy

Introduction to Portlets 11-3

• Actions menu—A menu that lists various actions that users can perform on the
portlet. The actions listed depend on whether the user is logged in, what privileges
that user has, the functionality provided by the portlet, and the options specified
when the portlet was added to the page at design time. Actions include Move,
Remove, Refresh, Move Up, and Move Down. The Actions menu also provides
access to other portlet modes available for the portlet, such as About, Help,
Configure, and Print.

If the user who added the portlet to the page chose to not display the portlet
header, the Actions menu is displayed on a fade in/fade out toolbar that displays
on mouse rollover.

• Resize handle—An area at the bottom right of the portlet that enables users to
change the size of the portlet.

• Scroll bars—Display when the portlet content does not fit the width and height
specified for the portlet, providing access the content that is not initially displayed.

• Portlet content—The actual content of the portlet as determined by the portlet
logic.

The portlet anatomy rendered on the page is controlled by two factors:

• The portlet's own logic, as determined by the portlet developer. This includes
which portlet modes are supported by the portlet.

• The attributes of the portlet tag that binds the portlet to the page, as determined by
the application developer who added the portlet to the page at design time.

For example, when designing the portlet, the portlet developer may implement Help
mode for the portlet. When a page designer adds the portlet to the page, he or she can
determine, using the portlet property isHelpModeAvailable, whether or not to
include the Help command in the portlet's Actions menu. If the page designer sets
isHelpModeAvailable to false, the Help command is not included in the Actions
menu even though it is provided in the portlet logic. Conversely, if the portlet
developer has not implemented Help mode for a portlet, the Help command is not
displayed in the Actions menu, even if isHelpModeAvailable is set to true.

11.3 About Portlet Resources
The portlets in your applications can come from a variety of sources, including other
Oracle products and third-party vendors.

Portlet resources also include custom built Java portlets built using WebCenter Portal's
Java portlet wizard for JSR 286. Each of these resources offers different product
features and are targeted toward users with different levels of experience.

This section includes the following topics:

• About Prebuilt Portlets

• About Java Server Faces (JSF) Portlets

• About Custom Java Portlets

• About OmniPortlet

• Portlet Technologies

• Portlets Versus Task Flows

About Portlet Resources

11-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

11.3.1 About Prebuilt Portlets
Oracle provides integration with other Oracle applications by enabling you to expose
functionality as portlets:

What Are They?

Supported applications include:

• Peoplesoft—You can expose Peoplesoft applications as WSRP portlets. For more
information, see Integrating PeopleSoft Applications in Administering Oracle
WebCenter Portal.

• JD Edwards—You can expose JD Edwards standalone regions as portlets. For more
information, see Integrating JD Edwards Applications in Administering Oracle
WebCenter Portal.

• Oracle E-Business Suite—Oracle E-Business Suite provides several prebuilt
portlets, such as Applications Navigator, Favorites, and Worklist, that you can add
to WebCenter Portal. For more information, see Integrating E-Business Suite
Applications in Administering Oracle WebCenter Portal.

• Other prebuilt portlets are available through Oracle's partnerships with leading
system integrators, software vendors, and content providers.

Who Is the Intended User?

Fully developed, downloadable portlets are best suited for use by portal developers
who understand how to download, install, and register producers in WebCenter
Portal. They are available for use by all levels of experience.

When Should They Be Used?

Use prebuilt portlets when your needs are met by the functions the portlets offer and
the level of personalization readily available is sufficient to complete the desired task.

Consider alternatives when you want to extend or personalize the portlet, for example,
when you need a different user interface or when the functionality you require is not
available out of the box.

11.3.2 About Java Server Faces (JSF) Portlets
JSF portlets are created from JSF applications using the Oracle JSF Portlet Bridge.

What Are They?

The Oracle JSF Portlet Bridge enables application developers to expose their existing
JSF applications and task flows as JSR 286 Java portlets. The Oracle JSF Portlet Bridge
simplifies the integration of JSF applications with WSRP portlet consumers, such as
WebCenter Portal.

JSF portlets do not require separate source code from that of the JSF application. Since
these portlets are created using the Oracle JSF Portlet Bridge, you need only maintain
one source for both your application and your portlets. Similarly, when you deploy
your portletized JSF application, the JSF portlets are also deployed with it. Therefore,
using the Oracle JSF Portlet Bridge eliminates the requirement to store, maintain, and
deploy your portlets separately from your application.

For more information about creating JSF portlets, see Creating Portlets from JSF
Applications Using the Oracle JSF Portlet Bridge.

About Portlet Resources

Introduction to Portlets 11-5

Who Is the Intended User?

Application developers with knowledge of Faces.

When Should They Be Used?

JSF portlets are best suited when application developers intend to display content
from a JSF application or from individual task flows within the application as a
portlet, without hosting the entire application or without separately building a portlet
for the same. When portletized, the consumption of the portlet is the same as any
WSRP producer.

11.3.3 About Custom Java Portlets
Custom Java portlets are portlets that you write yourself, in Java, using the Java
Portlet Specification 2.0 (JSR 286).

What Are They?

WebCenter Portal provides a declarative wizard in JDeveloper for simplifying the
creation of standards-based JSR 286 Java portlets. This wizard assists in the
construction of the framework within which you create the portlet.

Note:

You can consume legacy JSR 168 and WSRP 1.0 portlets in your portals, for
example from Oracle WebLogic Portal. There is no need to convert these
portlets to JSR 286 first. However, when creating new Java portlets we
recommend using JSR 286 to take advantage of features such as public render
parameters and portlet events.

You can also consume legacy Oracle PDK-Java portlets in your portals.

Who Is the Intended Audience?

Use of the wizard is easy, but creation of the portlet logic is best performed by
experienced and knowledgeable Java developers who are comfortable with JSR 286
and who understand the configuration of producers.

When Should They Be Used?

Consider using custom Java portlets when you cannot find a prebuilt portlet or
existing JSF application to address your requirements.

Use custom Java portlets when you have very specialized business rules or logic, or
when you require personalized authentication, granular processing of dynamic
results, or complete user interface control.

For more information about creating custom Java portlets, see Building Standards-
Based Java Portlets Using JSR 286.

11.3.4 About OmniPortlet
OmniPortlet is a declarative portlet-building tool that enables you to build portlets
against a variety of data sources.

What Is It?

OmniPortlet data sources include XML files, character-separated value files (CSV, for
example, spreadsheets), web services, and databases. OmniPortlet users can also
choose a prebuilt layout for the data. Prebuilt layouts include tabular, news, bullet,

About Portlet Resources

11-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

form, chart, or HTML. HTML layout enables OmniPortlet users to write their own
HTML and inject the data into the HTML.

Who Is the Intended User?

Business users with a minimum knowledge of the URLs to their targeted data and
limited programming skills may find OmniPortlet a valuable tool.

When Should It Be Used?

Use OmniPortlet when you want to build portlets rapidly against a variety of data
sources with a variety of layouts. Consider alternatives when you want complete
control of the design and functionality of the portlet.

For more information about OmniPortlet, see Working with OmniPortlet in Building
Portals with Oracle WebCenter Portal

As an alternative to OmniPortlet, you should consider using data integration and
presentation. For more information, see Working with Data Visualizations in Building
Portals with Oracle WebCenter Portal.

If you want to include data from another web page, consider using a clipper pagelet
using Oracle WebCenter Portal's Pagelet Producer's Pagelet Producer. For more
information, see How to Configure the Clipper.

11.3.5 Portlet Technologies
When creating new portlets, there are several different technologies you can use. The
technology you use depends on several factors.

Figure 11-3 provides a decision tree to enable you to determine which portlet
implementation technology best fits your environment and requirements. The list
below the figure presents the same information in a non-graphical format and
provides additional notes.

About Portlet Resources

Introduction to Portlets 11-7

Figure 11-3 Decision Tree for Portlet Technologies

Use Oracle ADF task
flows

Yes

Yes

No

Use the Oracle
WebCenter WSRP
Producer for .NET

Yes Use the Oracle JSF
Portlet Bridge to

expose your existing
components as portlets

No

Do you
need your

components to be
distributed?

Do you
need to expose

.NET components to the
consuming

application?

Yes Use your existing JSR
168 or JSR 286

portlets

No

Yes Use your existing
Oracle PDK-Java

portlets

No

Yes Write JSR 286 portlets
that do not use markup
that requires them to

be rendered in an inline
frame

No

Yes Use the Oracle JSF
Portlet Bridge to

expose Oracle ADF
pages or task flows as

portlets

Write JSR 286 portlets

No

No

Do you
want to use Oracle

ADF to implement your
component?

Do you
need your

components to be
rendered directly in the

consuming page (that is,
not in an inline

frame)?

Do you
have existing

Oracle PDK-Java portlets
that will work correctly with the

consuming
application?

Do you have existing
JSR 168 or JSR 286

portlets?

Do you
have existing

Oracle ADF or JSF pages
or tasks flows that you want to

expose remotely?

1. Do you need your components to be distributed?

• Yes—Go to Question 2.

About Portlet Resources

11-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• No—You don't need portlets. Use Oracle ADF task flows (or some other
technology) that are local to your consuming application. For more
information, see Creating ADF Task Flows in Developing Fusion Web
Applications with Oracle Application Development Framework.

Having a distributed environment results in a more complicated deployment and
potentially makes it more difficult to track down issues. However, it also means
that you can spread the processing load across multiple servers and enables your
components to be used by several different consumers.

2. Do you need to expose .NET components to the consuming application?

• Yes—Use the Oracle WebCenter WSRP Producer for .NET. For more
information see Developer's Guide for Oracle WebCenter WSRP Producer for .NET.

• No—Go to Question 3.

The Oracle WebCenter WSRP Producer for .NET allows any .NET application to
act as a WSRP producer.

3. Do you have existing Oracle ADF or JSF pages or task flows that you want to
expose remotely?

• Yes—Use the Oracle JSF Portlet Bridge to expose your existing components.
For more information, see Creating Portlets from JSF Applications Using the
Oracle JSF Portlet Bridge.

• No—Go to Question 4.

Using existing Oracle ADF components in this way provides a very convenient
way of developing portlets, but be aware of the implications of using Oracle ADF
to implement portlets, as outlined in Table 11-1.

4. Do you have existing JSR 168 or JSR 286 portlets?

• Yes—Use your existing JSR 168 or JSR 286 portlets. For more information, see
Registering WSRP Producers.

• No—Go to Question 5.

WebCenter Portal exposes JSR 168 and JSR 286 portlets over WSRP, which are
fully compatible with the WebCenter consumer, assuming such portlets do not
make assumptions that are specific to a particular consumer.

5. Do you have existing Oracle PDK-Java portlets that will work correctly with the
WebCenter Portal consumer?

• Yes—Use your existing PDK-Java portlets. For more information, see
Registering an Oracle PDK-Java Portlet Producer

• No—Go to Question 6.

6. Do you have a requirement for your components to be rendered directly in the
consumer page (that is, not in an inline frame)?

• Yes—Write JSR 286 portlets that do not use markup that requires them to be
rendered in an inline frame. For more information, see Building Standards-
Based Java Portlets Using JSR 286.

• No—Go to Question 7.

About Portlet Resources

Introduction to Portlets 11-9

7. Do you want to use Oracle ADF to implement your component?

• Yes—Use the Oracle JSF Portlet Bridge to expose Oracle ADF pages or task
flows as portlets. For more information, see Creating Portlets from JSF
Applications Using the Oracle JSF Portlet Bridge.

• No—Write JSR 286 portlets. For more information, see Building Standards-
Based Java Portlets Using JSR 286.

The decision of whether to use Oracle ADF for implementing portlets is broadly
the same as whether you would choose to use it for implementing a normal web
application. However, the additional network hop (for markup, resource, and
PPR) and consumer processing that is inherent when using remote portlets may
make Oracle ADF a less attractive option than it is in the non-portlet case.

Also, see the Oracle ADF Overview white paper on OTN for specific benefits of
using Oracle ADF to develop Java EE applications. Another benefit of using an
Oracle ADF task flow is that you can later run the same task flow locally if you
encounter any issues running in an inline frame.

Table 11-1 outlines the implications of choosing a particular portlet technology for
implementing components for use with WebCenter Portal against various criteria.

Table 11-1 Portlet Building Technologies Comparison Matrix

Local Oracle ADF Pages
and Task Flows

WebCenter WSRP
Producer for .NET

JSR 286 Portlets JSF Portlets

Distributed Architecture

No. Yes, using WSRP SOAP/
HTTP.

Yes, using WSRP SOAP/
HTTP.

Yes, using WSRP SOAP/
HTTP.

Data Access Support

Full support for working
with databases, web
services, and legacy
systems.

No restrictions. This
leverages the
underlying .NET
framework, which
provides data access to a
wide variety of data
repositories.

No restrictions, but must
be implemented by the
portlet developer,
possibly using a third
party framework.

Full support for working
with databases, web
services, and legacy
systems.

Navigation/Control Flow Support

Provides comprehensive
support for declarative
navigation.

Provides comprehensive
support for declarative
navigation.

No restrictions, but must
be implemented by the
portlet developer,
possibly using a third
party framework.

Provides comprehensive
support for declarative
navigation.

Richness of UI

Provides a rich, web-
based UI with many
AJAX-enabled
components.

No restrictions. Supports
both standard AJAX and
ASP.NET AJAX toolkit.

No restrictions, but must
be implemented by the
portlet developer,
possibly using a third
party framework.

Provides a rich, web-
based UI with many
AJAX-enabled
components.

Security

About Portlet Resources

11-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 11-1 (Cont.) Portlet Building Technologies Comparison Matrix

Local Oracle ADF Pages
and Task Flows

WebCenter WSRP
Producer for .NET

JSR 286 Portlets JSF Portlets

Fully integrated with the
application

User identity propagated
using WS-Security or
asserted by consumer
using WSRP.

Authorization checks
must be implemented by
the developer.

User profile information
can be passed using
WSRP user profile items.

User identity propagated
using WS-Security or
asserted by consumer
using WSRP.

Authorization checks
must be implemented by
the developer.

User profile information
can be passed using
WSRP user profile items.

User identity propagated
using WS-Security.

Authorization is
implemented by Oracle
ADF.

Inter-Component Communication (Events)

ADF contextual events
enable task flows to
communicate.

We provide samples to
show how it can be
accomplished client-side.
Current version does not
support WSRP server-side
eventing model.

Full support for JSR 286
events, including
automatic event delivery
between portlets and
event mapping between
portlet events and ADF
contextual events in the
consumer.

As per JSR 286 portlets in
addition to ADF
contextual events
allowing task flows to
communicate as in the
local case.

Consumer to Component Interaction (Parameters)

Task flow input
parameters can take
values from various
sources.

Full support for WSRP
portlet parameters. All
parameters can be passed
from the consumer
application.

Full support for JSR 286
parameters, including
passing public parameter
values to and from the
consumer and automatic
sharing of parameter
values between portlets.

As per JSR 286 portlets in
addition to task flow
input parameters taking
values from various
sources in the consumer
application as in the local
case.

Performance and Caching

About Portlet Resources

Introduction to Portlets 11-11

Table 11-1 (Cont.) Portlet Building Technologies Comparison Matrix

Local Oracle ADF Pages
and Task Flows

WebCenter WSRP
Producer for .NET

JSR 286 Portlets JSF Portlets

No additional network
hop since the component
runs on the local server.

Remote component
requires additional
network hop.

Configuration parameters
allow for resources (CSS,
JavaScript, and .axd
resource files) to be
proxied via the consumer
or direct access to reduce
load and take advantage
of browser caching.

Remote component
requires additional
network hop.

Resources should be
proxied by the consumer.

Component performance
depends on
implementation.

Expires and validation
based caching are
supported and controlled
by the portlet developer.

Remote component
requires additional
network hop.

Many resources are
proxied via the consumer.

Heavyweight nature of
framework means simple
applications are likely to
suffer performance-wise
versus handcrafted JSR
286 equivalents. However,
for applications offering
more complex
functionality, the
performance benefits of
using the framework (for
example, partial page
rendering) become more
apparent.

JavaScript, CSS, and other
resources are cached in
the browser. Caching is
controlled by the
framework.

Concurrency

Multiple task flows are
invoked sequentially.

Portlets are invoked in
parallel.

Portlets are invoked in
parallel.

Portlets are invoked in
parallel.

Geometry Management

Components are rendered
directly in the containing
page.

Portlets are automatically
rendered in a proxied
inline frame and resized
accordingly. The slider
bars are hidden from
view.

Portlet geometry and
inline versus framed
rendering is controlled by
the portlet developer.

Complex UIs are more
likely to require rendering
in an inline frame.

Portlets must be rendered
in an inline frame.

Use of JavaScript

JavaScript used heavily as
a fundamental part of the
framework to provide a
rich user experience.

Developer does not
generally need to write
JavaScript.

JavaScript used heavily as
a fundamental part of the
framework to provide a
rich user experience.

Developer does not
generally need to write
JavaScript, but samples
are provided to show how
JavaScript can be used.

All scripts can be proxied
via the consumer.

Level of JavaScript use
and packaging are
controlled by the portlet
developer.

Developers must be aware
of special considerations
regarding the use of
JavaScript if portlets are to
be rendered inline.

JavaScript used heavily as
a fundamental part of the
framework to provide a
rich user experience.

Developer does not
generally need to write
JavaScript.

All scripts must be
proxied via the consumer.

About Portlet Resources

11-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 11-1 (Cont.) Portlet Building Technologies Comparison Matrix

Local Oracle ADF Pages
and Task Flows

WebCenter WSRP
Producer for .NET

JSR 286 Portlets JSF Portlets

Skills Requirements/Ease of Development

Requires knowledge of
ADF and possibly Java.

ADF provides an
integrated framework
across all layers.

JDeveloper provides a
fully integrated
environment for
developing ADF
applications. This includes
declarative options for all
layers of the framework.

Requires knowledge
of .NET web parts
development or ASP.NET
web application
development.

Requires knowledge of
Java, Java portlets, and
any other frameworks
used to implement
components.

Development time
comparable with that
required to develop a
servlet-based component.

Requires knowledge of
ADF and possibly Java.
Development time is
likely to be reduced
(versus handcrafted
portlets) for all but the
most simple of
applications due to the
rich UI and control
framework provided by
ADF.

ADF provides an
integrated framework
across all layers.

JDeveloper provides a
fully integrated
environment for
developing ADF
applications. This includes
declarative options for all
layers of the framework.

Debugging

JDeveloper provides a
comprehensive solution
for debugging application
code.

.NET framework provides
a comprehensive solution
for debugging application
code and network trace
for SOAP and HTTP
traffic.

Log4net plug-in for WSRP
consumer-producer debug
messages.

Made more difficult by
remote nature of
deployment.

Producer provides tool for
monitoring consumer-
producer communication.

JDeveloper provides a
comprehensive solution
for debugging application
code.

Made more difficult by
remote nature of
deployment.

Producer provides tool for
monitoring consumer-
producer communication.

JDeveloper provides a
comprehensive solution
for debugging application
code.

Deployment

Components are deployed
as part of the client
application.

Entire application can be
packaged into a single
EAR file and deployed.

Deployment requires
copying .NET applications
under a particular folder
hierarchy and filling out a
configuration XML file.

Components can easily be
run standalone under this
folder hierarchy if
required.

Made more complex by
distributed nature of
deployment and multiple
applications.

Made more complex by
distributed nature of
deployment and multiple
applications.

Components can easily be
run standalone if
required.

Level of Support

About Portlet Resources

Introduction to Portlets 11-13

Table 11-1 (Cont.) Portlet Building Technologies Comparison Matrix

Local Oracle ADF Pages
and Task Flows

WebCenter WSRP
Producer for .NET

JSR 286 Portlets JSF Portlets

The ADF framework is an
Oracle product and is
supported as such.

The WebCenter WSRP
Producer for .NET is an
Oracle product and is
supported as such.

The JSR 286 producer is an
Oracle product and is
supported as such.

The ADF framework,
Oracle JSF Portlet Bridge,
and JSR 286 producer are
Oracle products and are
supported as such.

11.3.6 Portlets Versus Task Flows
A common question asked when creating portal is when to use portlets versus task
flows.

Portlets are reusable Web components that can draw content from many different
sources. Portlets can manage and display anything from static HTML to Java controls
to complex web services and process-heavy applications.

A single portlet can also have multiple instances—in other words, it can appear on a
variety of different pages within a single portal, or even across multiple portals if the
portlet is enabled for Web Services for Remote Portlets (WSRP). You can customize
portlets to meet the needs of specific users or groups.

Task flows let you build customizable applications with reusable units of business
logic. They represent a modular approach for defining control flow in an application.
Each task flow represents a reusable piece of business logic. With isolated memory
and transaction scopes, task flows are decoupled from the surrounding application.
This decoupling allows task flows to be included in Oracle WebCenter Portal's page
editor, for instance.

A task flow encapsulates control flow rules, activities, and managed beans to
implement business modules. Task flows are easily reusable within portals built with
WebCenter Portal. You can drag and drop task flows onto any customizable
WebCenter Portal portal page. In this sense, you can think of a task flow as a "local
portlet" that can be reused and dropped into any ADF application.

While task flows are high-level implementations of business processes, they do not
host data-access or business logic. Task flows must interact with data controls and
declarative bindings for these purposes. These data controls and bindings in turn
interact with the ADF Business Components framework.

Following the Oracle-submitted standard JSR 329, you can expose your task flows as
standards based portlets. When you revise your application, the portlets are naturally
and automatically updated right along with it, rather than requiring a separate
development project. To support JSR 329, WebCenter Portal provides the Oracle JSF
Portlet Bridge. For more information about the Oracle JSF Portlet Bridge, see Creating
Portlets from JSF Applications Using the Oracle JSF Portlet Bridge.

In addition to consuming task flows as portlets, you can consume task flows as shared
libraries in a JSF application to enable you to embed these JSF fragments directly. You
can wrap the transactions around the task flows along with the other functionality in
their application. For more information, see Getting Started with ADF Task Flows in
the Developing Fusion Web Applications with Oracle Application Development Framework.

For more information about when to use portlets versus task flows, see the "Oracle
WebCenter & ADF Architecture Team" blog.

About Portlet Resources

11-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://www.ateam-oracle.com/adf-task-flows-versus-portlets-which-one-to-use/
http://www.ateam-oracle.com/adf-task-flows-versus-portlets-which-one-to-use/

11.4 About Portlet Development
You can develop your portlet producers in Oracle JDeveloper.

This section includes the following topics:

• About Portlet Producer Applications

• How to Create a Portlet Producer Application

• Portlet Modes

• Interportlet Communication

• Portlet Personalization and Customization

• Portlet Performance

• Multilanguage Portlets

• Portlet Deployment

11.4.1 Portlet Producer Applications
This section includes the following topics:

• About Portlet Producer Applications

• How to Create a Portlet Producer Application

11.4.1.1 About Portlet Producer Applications

A portlet producer application is an application specifically configured for building
and deploying Java portlets.

To readily find and use the appropriate components in your portlet producer
application, you must ensure that the appropriate technology scopes are set, tag
libraries added, and required Java classes are added to the class path. Once you do
this, relevant components are included in the Component Palette and relevant context
menus become available in JDeveloper.

JDeveloper provides an application template to ensure that scopes are set properly
and the right tag and Java libraries are added to create portlet producer applications.
The WebCenter Portlet Producer Application template provides a way of easily
creating an application with a single project scoped for the creation of Java portlets.

11.4.1.2 How to Create a Portlet Producer Application
To create portlets, you must first create a portlet producer application.

To create an application using the WebCenter Portlet Producer Application template:

1. Access the New Gallery dialog in any of the following ways:

• From the File menu, choose New, then Application.

• From the Application menu, choose New.

• If you have an existing application open, in the Application Navigator, click the
application name and choose New Application.

About Portlet Development

Introduction to Portlets 11-15

• If you have an existing application open, then in the Application Navigator,
right-click the application name and choose New, then Application.

2. In the New Gallery dialog, select WebCenter Portlet Producer Application, and
then click OK.

3. In the Name your application page of the Create WebCenter Portlet Producer
Application wizard, in the Application Name field, enter a name for the
application.

4. In the Directory field, accept the default path or enter a path to the directory where
the application should be stored.

For example:

C:\JDeveloper\mywork\myApplication

Optionally, click the Browse button to navigate to the desired directory.

5. If required, in the Application Package Prefix field, enter a prefix to use for
packages to be created within the application.

6. Click Finish to create the portlet producer application with default project
configurations.

Figure 11-4 shows a newly created portlet producer application, with its single Portlets
project, in the Application Navigator.

Figure 11-4 New Portlet Producer Application in the Application Navigator

Options exposed in the Oracle JDeveloper user interface are limited to those
appropriate for developing portlets.

For information about how to create portlets within this application, see Building
Standards-Based Java Portlets Using JSR 286.

11.4.2 Portlet Modes
This section includes the following topics:

• About Portlet Modes

• View Mode

• Edit Mode

• Edit Defaults Mode

About Portlet Development

11-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Help Mode

• About Mode

11.4.2.1 About Portlet Modes

Portlet modes exhibit the runtime functionality seen by users. WebCenter Portal
supports the following standard portlet modes:

• View mode

• Edit mode

• Edit Defaults mode

• Help mode

• About mode

WebCenter Portal defines an extended set of modes that it supports. Different modes
are available to JSR 286 portlets. For example, the Create JSR 286 Java Portlet Wizard
includes Print mode, which you can use to provide a printer-friendly version of the
portlet.

If you are coding portlets to JSR 286, then you can also declare your own custom
portlet modes in the portlet.xml file. You can use these to accommodate any other
functionality you may want the portlet to provide.

Defining custom portlet modes is especially useful if the portlet must interoperate
with portal implementations from other vendors. You can offer any of these modes to
users. In fact, it is recommended that some modes like Edit Defaults are offered.

Note:

Third party portal products may have their own set of extended modes (JSR
286 custom modes) that producers can offer. Arbitrary custom modes that a
third party or custom portlet producer offers are ignored and therefore are not
supported.

11.4.2.2 View Mode

A portlet uses View mode to appear on a page with other portlets. This is the mode
most people think about when they envision a portlet. A JSR 286 portlet must have a
View mode, other modes are optional.

When developing portlets, you must consider all of the factors that may influence the
portlet's appearance on the page, such as the portlet's containing object and the other
portlets with which your portlet shares the page. For example, suppose you choose to
place your portlet inside an HTML table cell. The portlet should display only content
that can be rendered within a table cell. Furthermore, the actual size of the table cell
may vary depending on end user settings, the browser width, and the amount and
style of content in the portlet.

11.4.2.2.1 HTML Guidelines for Rendering Portlets

Plain HTML is the most basic way to render portlets and provides a great deal of
flexibility to portlet developers. You can use almost any standard HTML paradigm,
such as links, forms, images, and tables, if it can display within an HTML table cell.
Improperly written HTML may appear inconsistently across different browsers and,

About Portlet Development

Introduction to Portlets 11-17

in the worst case, could cause parts of your page to not appear at all. Ensure that you
adhere to the following rules:

• Use standard HTML—The official HTML specification is available from the W3C.
For more information, see http://www.w3c.org/.

• Avoid lengthy, complex HTML—The HTML you use affects the perceived
performance of your site. Users judge performance based on how long it takes for
them to see the page they requested, and browsers require time to interpret and
display HTML. If portlets must render complex HTML or wait for external
resources, such as third party applications, then it can greatly slow down the
rendering of the page.

• Avoid unterminated and extraneous tags—The behavior of pages with improperly
terminated tags is unpredictable because it depends on what the browser chooses
to do.

• Consider restrictions imposed by container objects—If your portlet is contained
inside an HTML element, such as a table cell, then you must ensure that your
portlet can be rendered within that container. For example, if you place a portlet in
a table cell, then you cannot use frames in the portlet because they do not appear
when inserted in a table.

• Keep portlet content concise—Do not try to take full screen content and expose it
through a small portlet. You may end up with portlet content too small or cramped
for smaller monitors.

• Do not create fixed-width HTML tables in portlet—You have no way to tell how
wide a column your portlet has on a user's page. If your portlet requires more room
than given, then it might overlap with another portlet in some browsers.

• Avoid long, unbroken lines of text—The result is similar to what happens with
fixed-width tables. Your portlet might overlap other portlets in some browsers.

• Check behavior when resizing the page—Test your portlet's behavior when the
browser window is resized to ensure that it works in different browser window
sizes.

• Check behavior when the default browser font changes—End users may choose
whatever font size they want and they can change it at any time. Your portlet
should handle these situations gracefully.

11.4.2.2.2 CSS Guidelines for Rendering Portlets

The fonts and colors of every portlet on a page should match the style settings chosen
by the user. To accomplish this goal, these style selections are embedded automatically
using Cascading Style Sheets (CSS). The portlets access these settings for their fonts
and colors, either directly or using the Application Programming Interface (API).

While different browsers have implemented varying levels of the full CSS
specification, WebCenter Portal uses a very basic subset of this specification to allow
for consistent fonts and colors. CSS implementation levels should not affect the
consistency of your pages across browsers. Consider the following guidelines for
using CSS:

• Use CSS instead of hard coding—Hard coding fonts and colors is not advised. If
you hard code fonts and colors, then your portlet may look out of place if the end
user changes the page style settings. Since you have no way of knowing the end

About Portlet Development

11-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://www.w3c.org/

user's font and color preferences, you might also choose to hard code a font color
that turns out to be the same as the user's chosen background color, in which case
your portlet's content will not be visible to that user.

• Avoid using CSS for absolute positioning—Since users may be able to personalize
pages, you cannot guarantee that your portlet can appear in a particular spot on the
page.

• Follow accessibility standards—You should ensure that you code your style sheets
according to existing accessibility standards. For more information, see http://
www.w3c.org/TR/WCAG10-CSS-TECHS.

11.4.2.3 Edit Mode

A portlet uses Edit mode to enable users to personalize the behavior of the portlet.
Personalizations are visible only to the user who performs them, not to other users.
Edit mode provides a list of settings that the user can change. These settings may
include the title, type of content, formatting, amount of information, defaults for form
elements, and anything else that affects the appearance or content of the portlet.

Users typically access a portlet's Edit mode by clicking the Personalize icon in the
portlet header (Figure 11-5).

Figure 11-5 Personalize Icon

When users click Personalize, a new page appears in the same browser window. The
portlet typically creates a web page representing a dialog to choose the portlet's
settings. After applying the settings, users automatically return to the original page.

11.4.2.3.1 Guidelines for Edit Mode Operations

The following guidelines should govern what you expose to users in Edit mode:

• Enable users to personalize the title of the portlet—The same portlet may be
added to the same page several times. Enabling the end user to personalize the title
helps alleviate confusion.

• If using caching, invalidate the content—If personalizations cause a change in
portlet display or content, then you must ensure that the portlet content is
regenerated from the cache. If you do not do this, the user may see incorrect
content.

• Do not use Edit mode as an administrative tool—Edit mode is meant to give end
users a way of changing the behavior of portlets. If you want to change producer
settings or perform other administrative tasks, then you should create secured
portlets specifically for these tasks.

11.4.2.3.2 Guidelines for Buttons in Edit Mode

For consistency and user convenience, Edit mode should implement the following
buttons in the order listed:

• OK—Saves the end user's personalizations and returns the portlet to View mode.

• Apply—Saves the end user's personalizations and reloads the current page.

• Cancel—Returns the portlet to View mode without saving changes.

About Portlet Development

Introduction to Portlets 11-19

http://www.w3c.org/TR/WCAG10-CSS-TECHS
http://www.w3c.org/TR/WCAG10-CSS-TECHS

11.4.2.4 Edit Defaults Mode

A portlet uses Edit Defaults mode to enable application administrators to customize the
default behavior of a particular portlet instance at runtime. Edit Defaults mode
provides a list of settings that the application administrator can change. These settings
may include the title, type of content, formatting, amount of information, defaults for
form elements, or anything that affects the appearance or content of the portlet.

Whereas personalizations affect a portlet instance for an individual user, customizations
made in Edit Defaults mode affect the portlet instance for all users. Because Edit
Defaults mode defines the system-level defaults for what a portlet displays and how it
displays it, this mode should not be used as an administrative tool or for managing
other portlets.

Application administrators access Edit Defaults mode, when editing a page, by
choosing Customize from the component’s View Actions menu (Figure 11-6).

Figure 11-6 Customize Portlet

When users click Customize, a new page appears in the same browser window. The
portlet typically creates a web page representing a dialog to customize the portlet
instance settings. After applying the settings, users are automatically returned to the
original page.

11.4.2.4.1 Guidelines for Edit Defaults Mode Operation

The following guideline should govern what you expose to application administrators
in Edit Defaults mode:

• Do not use Edit Defaults mode as an administrative tool—Edit Defaults mode
gives application administrators a way of changing the behavior of their portlets. If
you want to change producer settings or do other administrative tasks, then you
should create secured portlets specifically for those tasks.

About Portlet Development

11-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

11.4.2.4.2 Guidelines for Buttons in Edit Defaults Mode

For consistency and user convenience, Edit Defaults mode should implement the
following buttons in the order listed:

• OK—Saves the application administrator's customizations and returns the portlet
to View mode.

• Apply—Saves the application administrator's customizations and reloads the
current page.

• Cancel—Returns the portlet to View mode without saving changes.

11.4.2.4.3 Guidelines for Rendering Customization Values

When you show the forms used to change customization settings, you should default
the values so that the application administrator does not have to constantly reenter
settings. When rendering customization values, use the following sequence to provide
consistent behavior:

• Instance preferences—Query and display system defaults for the portlet instance.

• Portlet defaults—If no system default customizations are found, then display
general portlet defaults, which may be blank. General portlet defaults are
sometimes hard coded into the portlet but should be overwritten by system
defaults.

11.4.2.5 Help Mode

A portlet uses Help mode to display information about the functionality of the portlet
and how to use it. The user should be able to find useful information about the portlet,
its contents, and its capabilities with this mode.

Users access a portlet's Help mode by choosing Help from the Actions menu (Figure
11-7).

Figure 11-7 Help Option in the Portlet Actions Menu

11.4.2.5.1 Guidelines for Help Mode

The following guideline should govern what you expose in Help mode:

• Describe how to use the portlet—Users may not be able to ascertain all the
features your portlet offers just from its interface. Describe the features and how to
get the most out of them.

About Portlet Development

Introduction to Portlets 11-21

11.4.2.6 About Mode

A portlet uses About mode to provide users with information such as the version of the
portlet that is currently running, its publication and copyright information, and how
to contact the portlet developer. Portlets that require registration could also use About
mode to link to a web-based registration application or contact information.

Users access a portlet's About mode by choosing About from the Actions menu
(Figure 11-8).

Figure 11-8 About Option in the Portlet Actions Menu

A new page appears in the same browser window. The portlet can either generate the
content for this page or take the user to an existing page or application.

11.4.2.6.1 Guidelines for About Mode

The following guideline should govern what you expose to users in About mode:

• Display relevant copyright, version, and developer information—Users want to
know what portlet they are using and where they can get more information. The
About page may become important when supporting your portlets.

11.4.3 Interportlet Communication
Interportlet communication enables portlets to share data and react to events.
WebCenter Portal supports interportlet communication through parameters and
events:

• Parameters—Public render parameters enable interportlet communication by
sharing parameter values between portlets. For example, if a Map portlet and a
Weather portlet are both configured to use a Zipcode parameter, entering a zip
code in the Map portlet updates the same parameter value in the Weather portlet.

For information about public render parameters, see How to Use Public Render
Parameters in JSR 286 Portlets.

• Events—Events enable interportlet communication by providing portlets with the
ability to respond to actions that occur outside of the portlet itself, for example, an
action performed on the page that contains the portlet or on another portlet on the
same page. Portlet events can be cascaded so that a portlet may respond to an event
by triggering an event of its own, which in turn affects other portlets on the page.

For information about portlet events, see How to Use Portlet Events in JSR 286
Portlets.

About Portlet Development

11-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

In WebCenter Portal, interportlet communication happens automatically by default, as
long as parameters and events share the same name or define an appropriate alias.
You do not need to supply any extra code to enable this communication.

For interportlet communication guidelines specific to portlets created using the Oracle
JSF Portlet Bridge, see Using Events to Link JSF Portlets with Other Portlets.

11.4.4 Portlet Personalization and Customization
Portlet preferences enable end users to personalize or customize portlets at runtime.
Personalizations are visible only to the user that performs them; not to other users.
Customizations are visible to all users who have not personalized the portlet.

Portlet preferences greatly enhance the reusability of portlets. The same portlet can be
instantiated on multiple pages, or multiple times on the same page. Using portlet
preferences, each instance of the portlet can behave in a different way, but still use the
same code and user interface.

For example, by default when you create a JSR 286 portlet using the JDeveloper
wizard, a portlet preference is created to enable users to change the title of the portlet
at runtime. You can create additional portlet preferences, either during portlet creation
or by editing the portlet.xml file after portlet creation, to enable users to perform
other modifications on the portlet at runtime.

Portlet preferences are stored in the persistence store, along with information about
the registration and portlet instances, such as registration and portlet handles. Portlet
producers can use one of three types of persistence store:

• Consumer—A consumer persistence store ties the producer metadata to the
consumer application. It is recommended that you should use a consumer
persistence store in your production environment.

• Database—A database persistence store persists data using a relational database.

• File—A file-based persistence store persists data using the file system.

A file-based or consumer persistence store may be used for testing, since it removes
the dependency on a database. But, for production configurations, it is recommended
that you use a consumer persistence store.

By default, JSR 286 and JSF portlets use a consumer persistence store. For information
about how to change this default setting, see Setting Up a Persistence Store for a WSRP
Producer.

For information about migrating the persistence store, for example, when moving
from a test to production environment, see Migrating a WSRP Producer Persistence
Store.

11.4.5 Portlet Performance
Caching is a common technique for enhancing the performance of web sites that
include a great deal of dynamic content. The overhead involved in retrieving data and
generating the output for dynamic content can be significantly reduced by proxying
requests through a local agent backed by a large, low-latency data store, known as a
cache. The cache agent responds to a request in one of two ways:

• If a valid version of the requested content exists in the cache, then the agent simply
returns the existing cache copy, thus skipping the costly process of content retrieval
and generation. This condition is known as a cache hit.

About Portlet Development

Introduction to Portlets 11-23

• If a valid version of the requested content does not exist in the cache, then the agent
forwards the request to its destination and awaits the return of the content. The
agent returns the content to the requester and stores a local copy in its cache for
reuse if a subsequent request for the same content arises. This condition is known
as a cache miss.

Portlet producers generate dynamic content (that is, portlets) and they reside remotely
from the WebCenter Portal instance on which they are deployed. As such, caching
might improve their performance. The architecture lends itself well to caching. You
can cache the portlets rendered by your producer and reuse the cached copies to
handle subsequent requests, minimizing the overhead your producer imposes on page
assembly. Portlet caching is key to rapid response to user requests.

For JSR 286 portlets there are two different caching methods. The methods differ
mainly in how they determine whether content is still valid:

• Expiry-based caching—When a producer receives a render request, it stamps its
response with an expiry time. The rendered response remains in the cache and fills
all subsequent requests for the same content until its expiry time passes. This
caching scheme is perhaps the simplest and most performant because the test for
cache validity requires very little overhead and does not involve any network
round trips. Expiry-based caching suits applications where the content has a well-
defined life span. For content with a less certain life span however, expiry-based
caching is less effective.

Consider using expiry-based caching when the portlet content is static or when it is
not critical that the most up-to-date content be displayed.

For information about how to implement expiry-based caching for your portlets,
see Implementing Expiry-Based Caching in JSR 286 Portlets.

• Validation-based caching—When a producer receives a render request, it stamps a
response with a version identifier (or ETag). The response goes into the cache, but
before the consumer can reuse the cached content, it must determine whether the
cached content is still valid. It sends the producer a render request that includes the
version identifier of the cached content. The producer determines whether the
version identifier remains valid. If the version identifier is still valid, then the
producer immediately sends a lightweight response to the consumer without any
content that indicates that the cached version can be used. Otherwise, the producer
generates new content with a new version identifier, which replaces the previously
cached version. In this form of caching, the consumer must always confirm with
the producer whether the content is up to date. The validity of the cached copy is
determined by some logic in the producer. The advantage of this approach is that
the producer controls the use of cached content, rather than relying on a fixed
period.

Consider using validation-based caching for portlets with dynamic content that
changes frequently or unpredictably.

For information about how to implement validation-based caching for your
portlets, see Implementing Validation-Based Caching in JSR 286 Portlets.

Caching rules can be specified at a portlet's container level, encoded in the portlet's
own logic, or established through the portlet wizard.

JSF portlets and custom Java portlets support expiry- and validation-based caching.

At the application level, WebCenter Portal uses Coherence for the establishment of
application-level caching rules. The WebCenter Portal portlet client provides a default
cache configuration file for portlets:

About Portlet Development

11-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
coherence-cache-config.xsd">
 <defaults>
 <scope-name>portlets</scope-name>
 </defaults>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>portlet-consumer-content-cache-*</cache-name>
 <scheme-name>portlet-thin-direct</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <distributed-scheme>
 <scheme-name>portlet-thin-direct</scheme-name>
 <local-storage>true</local-storage>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

You can create your own cache configuration file to use for the portlet consumer cache
and update the portlet client configuration information in adf-config.xml to point
to your file. For more information, see Editing the Portlet Client Configuration in
Administering Oracle WebCenter Portal. Base your file on the default cache configuration
file to ensure that it defines a mapping for the cache name portlet-consumer-
content-cache-*. For more information about Coherence, see Improving Data
Caching Performance in Administering Oracle WebCenter Portal.

11.4.6 Multilanguage Portlets
There are three steps involved in making your portlets available in multiple
languages:

• Declare the locales supported by the portlet using the <supported-locale>
element in the portlet.xml file. For example:

<portlet id="1328624289503">
 ...
 <supported-locale>en</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 ...
</portlet>

• Make the portlet metadata that is displayed in the portlet (for example, the portlet
title, description, keywords, and so on) translatable.

You can include the translations directly in the portlet.xml file, for example:

<portlet id="1328624289503">
 <portlet-name>LotteryPortlet</portlet-name>
 <display-name xml:lang="en">Lottery Numbers</display-name>
 <display-name xml:lang="fr">Numéros de Loterie</display-name>
 <display-name xml:lang="es">Números de la Lotería</display-name>
 ...
 <supported-locale>en</supported-locale>

About Portlet Development

Introduction to Portlets 11-25

 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 ...
</portlet>

Alternatively, you can provide translations in a separate resource bundle. You
must declare the resource bundle in the portlet.xml file, for example:

<portlet id="1328624289503">
 <portlet-name>LotteryPortlet</portlet-name>
 <display-name>Lottery Numbers</display-name>
 ...
 <supported-locale>en</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 <resource-bundle>portlet.resource.LotteryPortletBundle</resource-bundle>
 ...

Then, provide the translations in the resource bundle, for example:

English Resource Bundle
#
filename: LotteryPortletBundle_en.properties
javax.portlet.display-title=Lottery Numbers

French Resource Bundle
#
filename: LotteryPortletBundle_fr.properties
javax.portlet.display-title=Numéros de Loterie

Spanish Resource Bundle
#
filename: LotteryPortletBundle_es.properties
javax.portlet-title=Números de la Lotería

• Make the portlet content translatable the same way as you would for any other web
application.

11.4.7 Portlet Deployment
Before a portlet can be registered with and consumed by an application, you must first
deploy it. JSR 286 portlets are deployed to a WSRP producer, which is remote and
communicates with the consumer application through Web Services for Remote
Portlets (WSRP). JSF portlets are deployed as JSR 286 portlets, that is, to a WSRP
producer, either from JDeveloper or manually.

WebCenter Portal supports WSRP versions 1.0 and 2.0. This standard provides
support for interportlet communication and export or import of portlet
customizations.

WSRP is a communication protocol between portlet consumer applications and portlet
containers. WSRP is a standard that enables the plug-and-play of visual, user-facing
web services with intermediary web applications.

Being a standard, WSRP enables interoperability between a standards-enabled
container based on a particular language (such as JSR 286, .NET, or Perl) and any
WSRP portal. So, a portlet (regardless of language) deployed to a WSRP-enabled
container can be rendered on any application that supports this standard.

Figure 11-9 illustrates the basic architecture of WSRP producers.

About Portlet Development

11-26 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 11-9 WSRP Producer Architecture

When end users display a page in their web browsers, the flow of the request works as
follows:

1. The end user requests a page from the web browser by entering a URL in the
browser's Location field.

2. The browser transmits the request to the consumer application over HTTP.

3. The application contacts the portlet producers that provide the portlets that
display on the requested page.

The producers make the necessary calls to their portlets so that the portlets
generate the portlet content in the form of HTML or XML code.

4. The producers return the portlet content back to the consumer application using
the WSRP 1.0 or 2.0 protocol:

5. The consumer application transmits the portlet content to the browser over HTTP.

To make standards-based portlets available to a consumer application in WebCenter
Portal, you must package them in a Portlet Producer application and deploy them to a
WSRP container.

About Portlet Development

Introduction to Portlets 11-27

About Portlet Development

11-28 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

12
Creating Portlets from JSF Applications

Using the Oracle JSF Portlet Bridge

This chapter describes how to use the Oracle JSF Portlet Bridge to expose a JSF
application as a portlet.

This chapter includes the following topics:

• About Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge

• Creating a Portlet from a JSF Application

• Updating the Portlet Entry for a Portletized Page or Task Flow

• Testing a Portletized Page or Task Flow in JDeveloper

• Testing a JSF Portlet Using the Integrated WebLogic Server

• Deploying JSF Portlets to a WebLogic Managed Server

• Using Events to Link JSF Portlets with Other Portlets

Note:

The Oracle JSF Portlet Bridge extends the Apache Reference implementation
of JSR 329. JSR 329 is the standards effort to define the functionality for the
Portlet 2.0 Bridge for JavaServer Faces. Oracle is the specification lead for this
standard. More information is available at:

http://www.jcp.org/en/jsr/detail?id=329

12.1 About Creating Portlets from JSF Applications Using the Oracle JSF
Portlet Bridge

The Oracle JSF Portlet Bridge enables application developers to quickly and easily
expose their existing JSF applications and Oracle ADF applications and task flows as
JSR 286 portlets.

Note:

Unless otherwise noted, the term JSF applications encompasses Oracle ADF
applications.

The Oracle JSF Portlet Bridge:

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-1

http://www.jcp.org/en/jsr/detail?id=329

• Simplifies portlet development by enabling you to provide portlet functionality
using JSF rather than relying on the JSR 286 portlet APIs.

• Simplifies exposing your JSF application to JSR 286 portlet consumers, such as
WebCenter Portal.

• Eliminates the requirement to store, maintain, and deploy your portlets separately
from your application by enabling the application to run simultaneously as a
regular web application and as a portlet from the same installation.

• Enables you to create portlets at a more granular level by exposing task flows as
portlets. Because portletized task flows are JSR 286 portlets, this also enables you to
use your task flows in a distributed environment.

Note:

The Oracle JSF Portlet Bridge uses WSRP extensions that may prevent JSF
portlets working as intended with third party WSRP consumers.

12.2 Creating a Portlet from a JSF Application
The Oracle JSF Portlet Bridge enables you to expose a JSF application or task flow as a
portlet. You do this declaratively, using the Create Portlet Entry dialog; no coding is
required. Using the Create Portlet Entry dialog, you can configure Oracle JSF Portlet
Bridge on a JSF application to expose the application as a JSR 286 portlet. As part of
this configuration, you indicate the initial JSF view (or task flow) to invoke when the
portlet is rendered. From that point on the Oracle JSF Portlet Bridge works with the
JSF application to navigate through the additional views that are reachable from this
initial view. So in the typical situation when you are exposing the entire JSF
application as the portlet, you configure the Oracle JSF Portlet Bridge to render the
application's initial view in the portlet and the rest of the navigation works naturally
within that same portlet.

This section includes the following topics:

• How to Create a JSF Portlet Based on a Page

• How to Create a JSF Portlet Based on a Task Flow

• What You May Need to Know When Creating a JSF Portlet

12.2.1 How to Create a JSF Portlet Based on a Page
The simplest way to create a portlet from a JSF application is to generate a portlet
based upon a page.

To create a JSF portlet from an existing application page:

1. In JDeveloper, open the application that contains the JSF page that you want to
portletize.

2. In the Application Navigator, right-click the JSF page and choose Create Portlet
Entry.

Creating a Portlet from a JSF Application

12-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

You cannot generated a portlet based on a page that contains a portlet.

3. In the Create Portlet Entry dialog, in the Portlet Name field, enter a name for the
portlet.

4. In the Display Name field, enter a descriptive name for your portlet.

5. In the Portlet Title field, enter a descriptive title for your portlet.

The portlet title is displayed in the Resource Palette or Application Resources
panel, so make the title something to help users decide whether the portlet is useful
to them. The portlet title is also displayed on the portlet header when the portlet
appears on a page.

6. In the Short Title field, enter a shorter title for your portlet. This short title is
displayed on the portlet header when the portlet appears on a page on a mobile
device.

7. In the Description field, enter a description for your portlet.

8. Select Create portlet events for contextual events to create portlet events in the
portlet.xml file for any contextual events exposed by the page. This option is
selected by default.

Portlet events enable a portlet to communicate with the page on which it resides
and with other portlets on that page.

9. Click OK.

When you create a JSF portlet based on a page, a portlet.xml file is created (or
updated if it already exists) to contain the portlet entry (see example below) for the
page. The file is opened ready for viewing or editing. By default, the file is opened in
Design view. To view or edit the source code, click the Source tab.

<portlet id="adf_jsf__testPage_jspx">
 <description>PortletBridgeApplication_testPage_jspx</description>
 <portlet-name>PortletBridgeApplication_testPage_jspx</portlet-name>
 <display-name>PortletBridgeApplication_testPage_jspx</display-name>
 <portlet-class>
 oracle.portlet.bridge.adf.application.ADFBridgePortlet
 </portlet-class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/myPage.jspx</value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 </supports>
 <supported-locale>en</supported-locale>
 <portlet-info>
 <title>PortletBridgeApplication_testPage_jspx</title>
 <short-title>PortletBridgeApplication_testPage_jspx</short-title>
 </portlet-info>
 <supported-processing-event id="DepartmentSelectedEvent">
 <qname xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:DepartmentSelectedEvent

Creating a Portlet from a JSF Application

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-3

 </qname>
 <supported-publishing-event id="DepartmentSelectedEvent">
 <qname xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:DepartmentSelectedEvent
 </qname>
 </supported-publishing-event>
 <supported-public-render-parameter>
 _adf_event_DepartmentSelectedEvent
 </supported-public-render-parameter>
 <container-runtime-option>
 <name>com.oracle.portlet.requireIFrame</name>
 <value>true</value>
 </container-runtime-option>
 <container-runtime-option>
 <name>com.oracle.portlet.minimumWsrpVersion</name>
 <value>2</value>
 </container-runtime-option>
</portlet>

The page you selected is used as the entry point for the portlet View mode. This is
indicated in the portlet.xml file by the
javax.portlet.faces.defaultViewId.view initialization parameter. You can
manually edit the portlet.xml file to define the pages for other default and
extended portlet modes supported by WebCenter Portal:

• Edit mode: javax.portlet.faces.defaultViewId.edit

• Help mode: javax.portlet.faces.defaultViewId.help

• About mode: javax.portlet.faces.defaultViewId.about

• Config mode: javax.portlet.faces.defaultViewId.config

• Edit Defaults mode:
javax.portlet.faces.defaultViewId.edit_defaults

• Preview mode: javax.portlet.faces.defaultViewId.preview

• Print mode: javax.portlet.faces.defaultViewId.print

Note:

The value for the defaultViewId is relative to the application context root
and must always start with a /. In the example above, the value for
defaultViewId.view is /myPage.jspx.

If you add defaultViewId for other portlet modes, then ensure that you also
add the mode to the <supports> tag. For example, <portlet-
mode>HELP</portlet-mode>.

For information about portlet modes, see Portlet Modes.

12.2.2 How to Create a JSF Portlet Based on a Task Flow
This section includes the following topics:

• About Creating Portlets from Tasks Flows

Creating a Portlet from a JSF Application

12-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Creating a Portlet From a Task Flow Using the Create Portlet Entry Dialog

• Creating a Portlet From a Task Flow Using the Manage Portlet Entries of Task
Flows Dialog

12.2.2.1 About Creating Portlets from Tasks Flows

An advantage of using Oracle ADF is the existence of task flows, which provide a
modular approach for defining control flow in an application. Instead of representing
an application as a single large JSF page flow, you can break it up into a collection of
reusable task flows. In each task flow, you identify application activities, the work
units that must be performed in order for the application to complete. An activity
represents a piece of work that can be performed when running the task flow.

Task flows can be unbounded or bounded:

• An unbounded task flow is a set of activities, control flow rules, and managed
beans interacting to allow a user to complete a task. An unbounded task flow
consists of all activities and control flows in an application that are not included
within any bounded task flow.

• A bounded task flow is a specialized form of task flow, having a single entry point
and one or more exit points. It contains its own set of private control flow rules,
activities, and managed beans. An Oracle ADF bounded task flow allows reuse,
parameters, transaction management, and reentry. It can have zero to many exit
points. Bounded task flows can use pages or page fragments, however only those
that use page fragments can be portletized.

A typical application is a combination of an unbounded and one or more bounded
task flows. The application can then call bounded task flows from activities within the
unbounded task flow. For more detailed information about bounded and unbounded
task flows, see Developing Fusion Web Applications with Oracle Application Development
Framework.

12.2.2.2 Creating a Portlet From a Task Flow Using the Create Portlet Entry Dialog

Use the Create Portlet Entry dialog to create a portlet from a single task flow.

To make a portlet from a task flow using the Create Portlet Entry dialog:

1. In JDeveloper, open the JSF application that contains the task flow from which you
want to make a portlet.

2. In the Application Navigator, right-click the task flow that you want to portletize,
and choose Create Portlet Entry.

3. In the Create Portlet Entry dialog, in the Portlet Name field, enter a name for the
portlet.

4. If the task flow is unbounded, the Entry Point View drop-down list displays all the
view activities of the task flow. From this drop-down list, choose the view activity
to use as the entry point for the portlet. By default, the first view activity in the task
flow is chosen.

If the task flow is bounded, there is only a single possible entry point, so you do not
see the Entry Point View drop-down list.

5. In the Display Name field, enter a descriptive name for your portlet.

6. In the Portlet Title field, enter a descriptive title for your portlet.

Creating a Portlet from a JSF Application

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-5

The portlet title is displayed in the Resource Palette or Application Resources
panel, so make the title something to help users decide whether the portlet is useful
to them. The portlet title is also displayed on the portlet header when the portlet
appears on a page.

7. In the Short Title field, enter a shorter title for your portlet. This short title is
displayed on the portlet header when the portlet appears on a page on a mobile
device.

8. In the Description field, enter a description for your portlet.

9. Select Create portlet events for contextual events to create portlet events in the
portlet.xml file for any contextual events exposed by the task flow. This option
is selected by default.

Portlet events enable a portlet to communicate with the page on which it resides
and with other portlets on that page.

10. Click OK.

When your portlet, or portlets, have been created, you should receive a message that
says:

New portlet has been successfully created

In addition, the portlet.xml file is created. The portlet.xml file contains the
portlet entry (see example below) and is opened ready for viewing or editing.

<portlet id="adf_taskflow_WEB_INF_department_xml">
 <description>PortletBridgeApplication department</description>
 <portlet-name>PortletBridgeApplication_department</portlet-name>
 <display-name>PortletBridgeApplication department</display-name>
 <portlet-class>oracle.portlet.bridge.adf.application.ADFBridgePortlet</portlet-
class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>
 /adf.task-flow?adf.tfDoc=/WEB-INF/adfp-portlet-bridge-container.xml
 &adf.tfId=adfp-portlet-bridge-container&_fragmentTaskFlowDoc=/WEB-INF/
 department.xml&_fragmentTaskFlowId=department
 </value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 </supports>
 <supported-locale>en</supported-locale>
 <portlet-info>
 <title>PortletBridgeApplication department</title>
 <short-title>PortletBridgeApplication department</short-title>
 </portlet-info>
 <supported-publishing-event id="DepartmentSelectedEvent">
 <qname xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:DepartmentSelectedEvent
 </qname>
 </supported-publishing-event>
 <supported-public-render-parameter>
 _adf_event_DepartmentSelectedEvent
 </supported-public-render-parameter>
 <container-runtime-option>
 <name>com.oracle.portlet.requireIFrame</name>

Creating a Portlet from a JSF Application

12-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 <value>true</value>
 </container-runtime-option>
 <container-runtime-option>
 <name>com.oracle.portlet.minimumWsrpVersion</name>
 <value>2</value>
 </container-runtime-option>
</portlet>

Note:

The portlet.xml file can include multiple portlets and can have a
combination of pages and task flows exposed as portlets. The file can also
include standard JSR 286 (non bridge) portlets.

12.2.2.3 Creating a Portlet From a Task Flow Using the Manage Portlet Entries of Task
Flows Dialog

If your project includes a lot of task flows, you may find it easier to select the task
flows to create as portlets from a list. You can do this using the Manage Portlet Entries
of Task Flows dialog. This dialog also lets you create portlets from multiple task flows
at the same time, rather than having to create them individually.

To create a portlet from a task flow using the Manage Portlet Entries of Task Flows
dialog:

1. From the main menu, choose File and then New.

2. In the New Gallery, expand Web Tier, select Portlets and then Manage Portlet
Entries of Task Flows, and click OK.

3. In the Manage Portlet Entries of Task Flows dialog, use the shuttle buttons to select
which task flows you want to create as portlets.

4. Select Create portlet events for contextual events to create portlet events in the
portlet.xml file for any contextual events exposed by the task flows. This option
is selected by default.

Portlet events enable a portlet to communicate with the page on which it resides
and with other portlets on that page.

5. Click OK to create portlets for the selected task flows.

When your portlet, or portlets, have been created, you should receive a message that
says:

New portlet has been successfully created

In addition, the portlet.xml file is created. The portlet.xml file contains the
portlet entry (see example below) and is opened ready for viewing or editing.

<portlet id="adf_taskflow_WEB_INF_department_xml">
 <description>PortletBridgeApplication department</description>
 <portlet-name>PortletBridgeApplication_department</portlet-name>
 <display-name>PortletBridgeApplication department</display-name>
 <portlet-class>oracle.portlet.bridge.adf.application.ADFBridgePortlet</portlet-
class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>

Creating a Portlet from a JSF Application

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-7

 /adf.task-flow?adf.tfDoc=/WEB-INF/adfp-portlet-bridge-container.xml
 &adf.tfId=adfp-portlet-bridge-container&_fragmentTaskFlowDoc=/WEB-INF/
 department.xml&_fragmentTaskFlowId=department
 </value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 </supports>
 <supported-locale>en</supported-locale>
 <portlet-info>
 <title>PortletBridgeApplication department</title>
 <short-title>PortletBridgeApplication department</short-title>
 </portlet-info>
 <supported-publishing-event id="DepartmentSelectedEvent">
 <qname xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:DepartmentSelectedEvent
 </qname>
 </supported-publishing-event>
 <supported-public-render-parameter>
 _adf_event_DepartmentSelectedEvent
 </supported-public-render-parameter>
 <container-runtime-option>
 <name>com.oracle.portlet.requireIFrame</name>
 <value>true</value>
 </container-runtime-option>
 <container-runtime-option>
 <name>com.oracle.portlet.minimumWsrpVersion</name>
 <value>2</value>
 </container-runtime-option>
</portlet>

Note:

The portlet.xml file can include multiple portlets and can have a
combination of pages and task flows exposed as portlets. The file can also
include standard JSR 286 (non bridge) portlets.

12.2.3 What You May Need to Know When Creating a JSF Portlet
You must code your JSF pages such that they produce markup that conforms with JSR
286 portlet markup fragment rules. If you have chosen to use Oracle ADF, the markup
in your page comes mainly from the Oracle ADF Faces components, which naturally
render markup in a style that is either compatible with JSF portlets or can be
automatically interpreted by the Oracle JSF Portlet Bridge into a compatible style (for
example, by rendering the portlet in an inline frame).

The sections that follow provide some guidance on how to avoid common issues that
you may encounter as you code Oracle ADF pages that you later choose to publish as
portlets.

This section includes the following topics:

• General Guidelines for Creating a JSF Portlet

• Portlet Guidelines

• Security Guidelines

Creating a Portlet from a JSF Application

12-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• JSF Guidelines

• Oracle ADF Guidelines

12.2.3.1 General Guidelines for Creating a JSF Portlet

Consider the following general guidelines when creating a JSF portlet:

• Application Must Run as a Web Application. Prior to creating a portlet from your
JSF application, the application, including all of its pages and task flows, must run
properly after you deploy it to Integrated WLS. If it cannot run as a regular web
application, it cannot run as a portlet producer either.

• The Portlet Is Contained by a Different Page. One area that you should consider
when creating task flows that will be exposed as portlets is that the page on which
you render the task flow as a portlet is different to the one in the original producer
application.

Some common errors that occur include:

– Expecting to access JavaScript in the consuming page.

– Expecting to find managed beans or objects added to scopes as part of the
consuming page.

– Expecting components in the JSF component tree from the consumer to be
present.

• Servlet Dependencies. When writing an application that is supposed to run in
both servlet and portlet environments, avoid casting to HttpServlet objects (or
you get a ClassCastException when running as a portlet). Instead, use the
abstraction provided by the Faces ExternalContext object. For example, instead
of:

HttpServletRequest request =getRequestFromFacesContext();
String localContextPath =request.getContextPath();

Use the following:

String localContextPath=
FacesContext().getCurrentInstance().getExternalContext().getRequestContextPath();

To the extent that ExternalContext does not provide that abstraction for you,
you can write servlet or portlet specific code. You can use the method shown in the
example below to check if the application runs as portlet:

public static boolean isPortletRequest()
 {
Map<String, Object> m =
FacesContext.getCurrentInstance().getExternalContext().getRequestMap();
 Object phase =m.get("javax.portlet.faces.phase");
 if (phase != null)
 {
return true;
 }
else
 {
return false;
 }
}

Creating a Portlet from a JSF Application

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-9

• Secured Applications. If your application is secured, ensure that you have secured
identity propagation.

• Deep Links. For normal interactions with a portlet, there is a session maintained
between the consumer and the producer. This is done by storing a session cookie in
the consumer and sending it to the producer on each request. On the original
request, the session is established and on subsequent requests, the portlet sends the
session cookie to the producer and the session is reused.

For deep links, that is, links from the portlet to the producer application, the
request is from the browser direct to the producer application. In this case, the
session cookie cannot be sent so a new session is established. If a shared session is
required for deep links, then this must be implemented by the developer. A
common implementation is to write this state to a common location, accessible
from the producer and the application, and pass a reference to this state in the deep
link.

• Java EE Authentication. Java EE login is not supported. Java EE applications can
be configured with different authentication techniques, such as Basic and Digest.
As portlets are fragments incorporated into a consumer's page, it is generally
expected that direct authentication occurs between the client and the consumer, not
the client and the portlet producer. As a result, these authentication techniques are
not supported in JSR 286. In the JSR 286 case, Java EE authentication occurs
through WS-Security mechanisms that allow the Web service consumer to be
authenticated and verified by the producer, and propagate the user identity for
user authentication and authorization. Published Oracle ADF artifacts must not
contain login links that trigger Java EE authentication.

• Timeout Period. For applications that take a long time to render, consider
increasing the time out period when you register a producer that was created by
the Oracle JSF Portlet Bridge. Note however that the time out period specified
during producer registration is limited by the maximum time out period
(maximumTimeout element) specified in adf-config-xml.

12.2.3.2 Portlet Guidelines

Consider the following portlet guidelines when creating a JSF portlet:

• Portlet Sizing. When consuming a JSF portlet, the consumer application
automatically renders the portlet content within an inline frame. This means that
any inline popup is then confined within the inline frame. You should take this into
consideration when specifying the size of the portlet.

If the JSF portlet is a portletized page, then you have full control of the content and
can decide how that content fills the inline frame window, utilizing exactly the
same techniques as you would to determine how the content would fill the browser
window.

If the portlet is being stretched by its ancestor in the consumer application, then the
maximized attribute is set to true on the af:document component in the
document produced by the Oracle JSF Portlet Bridge. This means that components
that support it, such as panelStretchLayout, will fill the entire inline frame.

• Resources and Links. For resources and links, you must specify the location
relative to the web-app-context-root. Otherwise, your images and other
resources cannot be found by the portlet. Do not use relative (../) path notation.
Portlets in Oracle WebCenter Portal run remotely and are accessed using a SOAP
protocol (WSRP). The latter means that the regular web application concept of

Creating a Portlet from a JSF Application

12-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

request path does not apply in a JSR 286 container. The JSR 286 specification
reflects this by mandating that all resource URLs either be absolute or context path
relative.

• Redirecting Requests. Do not redirect or forward a request within your JSP. JSR
286 only supports requestDispatcher.include(). The use of
httpServletResponse.sendRedirect() or
requestDispatcher.forward() results in exceptions and errors. To work
properly in a portlet environment, you must implement JSF navigation rules in
faces-config.xml or Oracle ADF task flow control flow rules.

• Memory Consumption. The Oracle JSF Portlet Bridge stores the content of the
request scope between requests so that the request scope is preserved between a
portlet Action and a portlet Render (which are two separate requests). Because of
this, to minimize overall memory consumption, you must especially avoid storing
too much data in the request scope when the application contains JSF portlets.

• WSRP Version. The Oracle JSF Portlet Bridge makes use of Portlet 2.0 features.
Consequently, it should be used only with WSRP V2. The portlet's
minimumWsrpVersion container runtime option should be set to 2. For more
information, see How to Customize the Runtime Environment for JSR 286 Portlets.

12.2.3.3 Security Guidelines

Consider the following security guidelines when creating a JSF portlet:

• Oracle ADF Secured Applications. When you use the Create Portlet Entry or
Manage Portlet Entries of Task Flows dialog to portletize a task flow in an Oracle
ADF secured application (the security scheme being Authentication and
Authorization), you must manually grant permission to the following wrapper task
flow in the jazn-data.xml file of the producer application:

/WEB-INF/adfp-portlet-bridge-container.xml#adfp-portlet-bridge-container

If you do not grant the permissions, the portlet does not render.

For example, if you have an application with two roles: authenticated-role, with
view permission; and testrole, with customize, edit, grant, personalize, and view
permissions, you must add the following entries inside the <permissions> tag of
each role:

– For authenticated-role:

<permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>
 /WEB-INF/adfp-portlet-bridge-container.xml#adfp-portlet-bridge-container
 </name>
 <actions>view</actions>
</permission>

– For testrole:

<permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>
 /WEB-INF/adfp-portlet-bridge-container.xml#adfp-portlet-bridge-container
 </name>
 <actions>customize,edit,grant,personalize,view</actions>
</permission>

Creating a Portlet from a JSF Application

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-11

• Role Based Authorization. If you are portletizing a task flow or page that has role
based authorization (that is, the task flow or page has been granted certain roles),
WS-Security is required to propagate the user correctly. If you set up WS-Security,
the JSF portlet does not render the content if the propagated user does not have
permission to view the task flow.

12.2.3.4 JSF Guidelines

Consider the following JSF guidelines when creating a JSF portlet:

• Using h:commandLink. When using the h:commandLink JSF standard HTML
component ensure that you set the externalizeJavaScript parameter in
web.xml so that the JSF Reference Implementation does not generate any external
JavaScript resource (see example below). This is to work around an issue in the JSF
Reference Implementation where the reference to the JavaScript resource is not
properly encoded.

<context-param>
 <param-name>com.sun.faces.externalizeJavaScript</param-name>
 <param-value>false</param-value>
</context-param>

12.2.3.5 Oracle ADF Guidelines

Consider the following ADF guidelines when creating a JSF portlet:

• Task Flow Returns. When an ADF bounded task flow completes it may use a task
flow return to send control back to the calling task flow. In a portletized task flow,
there is no calling task flow, so the task flow return does not make any sense in this
context. This may cause what appears to be an empty portlet to display as the task
flow navigates to a state where there is no view selected. The task flow will stay in
this state until it is refreshed either when the input parameters change or the
session on the producer is reset.

If you plan to portletize your task flow, you should avoid using task flow returns.
If you must use a task flow return, you can provide a dummy task flow with a
default activity of the task flow that you want to portletize. When the task flow
return is executed, it returns to the dummy task flow. The dummy task flow then
executes its default activity, which is to call back to the original task flow and thus
restart the task flow when the portlet is next called.

• Mismatched Style Sheets. In general, when you consume a task flow using the
Oracle JSF Portlet Bridge, the portlet producer tries to use the skin of the consumer
page. When the producer cannot match the consumer skin, the portlet generates
and references its own style sheet. This is known as a mismatched skin. A
mismatched skin can occur when:

– The consumer and producer use different versions of ADF Faces. In this case,
the producer still uses the consumer skin.

– The consumer has additional skin-additions that the producer does not
have, or vice versa. In this case, the producer still uses the consumer skin.

– The producer does not have the consumer skin. In this case, the producer uses
the portlet skin.

Mismatched skins can cause performance problems because the browser has to
fetch an extra style sheet and the generated portlet markup uses uncompressed
styles resulting in larger markup.

Creating a Portlet from a JSF Application

12-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

If a mismatched skin occurs, the producer log includes the following:

The skin skinName specified on the requestMap will not be used because the
styleSheetDocument id on the requestMap does not match the local skin's
styleSheetDocument's id. It could mean the jars are not identical. For example,
one might have trinidad-skins.xml skin-additions in a jar file on the class path
that the other does not have.

The portlet markup inside the inline frame also includes a link tag to the portlet
style sheet resource, for example:

<link rel=\"stylesheet\" charset=\"UTF-8\" type=\"text/css\" href=\"http:.../
resourceproxy/portletId...252525252Fadf%252525252Fstyles%252525252Fcache
%252525252Fblafplus-rich-portlet-d1062g-en-ltr-gecko.css...

You can use an HTTP monitoring tool to see that a request is made to the portlet
style sheet resource.

There are a number of reasons for mismatched skins. For a skin to match, the
producer and consumer must be the same for all the following conditions:

– The ADF Faces version; a different version of ADF Faces may have different
style selectors.

– The style compression, defined in web.xml, for example:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
 </param-name>
 <param-value>false</param-name>
</context=param>

– Tonal style or themes, defined in web.xml, for example:

<context-param>
 <param-name>xyz</param-name>
 <param-value>xyz</param-value>
</context-param>

– Availability of skin additions. Skin additions are defined in META-INF/
trinidad-skins.xml in a JAR file. These are then aggregated from all the
JAR files in the class path. If there are any JAR files that exist on the producer
but not on the consumer, or vice versa, you get a mismatch.

<skin-addition>
 <skin-id>blafplus-rich.desktop</skin-id>
 <style-sheet-name>
 adf/styles/flexComponents-blafplus-rich-desktop.css
 </style-sheet-name>
</skin-addition>

To determine if the JAR files match, turn on Trinidad logging to show which
skin-addition it is processing. To do this, update the logging.xml log
level of both the producer and consumer WebLogic Servers to FINEST then
restart the servers:

<logger name="org.apache.myfaces.trinidad.skin.SkinUtils" level=FINEST"/>

When you run the consumer page, any skin entries that do not match in the
consumer and producer log files are the cause of the skin mismatch.

Creating a Portlet from a JSF Application

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-13

• ADF Faces Dialog Framework. ADF Faces Dialog Framework is not supported. If
your application includes any buttons or icons that launch secondary browser
windows, then the contents of the new windows are not displayed properly when
the application is run as a portlet. As such, you should avoid using these
components if you plan to portletize your application. Examples of components
that launch secondary windows are:

– <tr:inputDate>

– <tr:inputColor>

– <tr:popup>

– the useWindow attribute of <af:commandButton>

• Composer Components. Portletization of pages that contain Composer
components is not supported.

• The fileDownloadActionListener Component. The
<af.fileDownloadActionListener> component is not supported.

• The prepareModel Phase. Oracle ADF components/code that handle
prepareModel must be idempotent. Any code running during the
prepareModel phase must be rerunnable without effect to the underlying data/
business logic. When running in the portlet environment, prepareModel is called
twice during the complete JSF life cycle as opposed to being called once when
running within a regular web application.

The reason for this difference is that the Oracle JSF Portlet Bridge runs JSF in two
requests not one. It is implemented as if every JSF request redirected before the
render phase. The consequence of this approach is that the JSF restoreView
phase is called both when the request is first submitted and then again when
request to render is received.

• Accessing Request Parameters. Do not access or reference request parameters from
model code except in page parameters. Besides being a cleaner MVC2
implementation, following this guideline avoids problems when such artifacts are
published as portlets. Where regular JSF artifacts run their entire lifecyle in a single
request, the Oracle JSF Portlet Bridge runs these artifacts in two requests, as if
every JSF request redirected before the render phase.

This two phase model enables the clearing of submitted parameters before
rendering in a manner that allows such clearing to be communicated all the way
back to the client, which makes this request something you could bookmark. As a
result, request parameters do not exist during the render phase. As described
previously, prepareModel is invoked again in this rendering phase. Therefore,
any references to request parameters in this phase handler fail. You should avoid
code like either of the following fragments:

<invokeAction id="doExecuteWithParams"
Binds="ExecuteWithParams"
Refresh="prepareModel"
RefreshCondition="${param.id != null}"
/>

<invokeAction id="doExecuteWithParams"
Binds="ExecuteWithParams"
Refresh="renderModel"

Creating a Portlet from a JSF Application

12-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

RefreshCondition="${param.id != null}"
/>

• Referencing Page Parameters. Do not reference page parameters in the
prepareModel phase. This issue relates to the same problem described for request
parameters in the previous guideline. Generally, page parameters depend on
request parameters and are evaluated during the restoreView phase. As this
phase is called a second time during portlet rendering and request parameters are
not available, such use fails. Instead, move any dependency on a page parameter
value into the model before JSF transitions from its execute phases to its render
phase.

• Using ADF Faces Client-Side APIs to Find Components. Because a portlet is a
naming container, special consideration should be taken when using ADF Faces
client-side APIs to find components. An example component ID:

– When run as a regular web application: id="demoTemplate:popup"

– When run as a Portlet Producer application:
id="__ns12345678:demoTemplate:popup"

Things to watch out for specifically are:

– Avoid using the AdfPage.PAGE.findComponentByAbsoluteId() API. Use
getSource() and findComponent() methods instead. For example:

<trh:script text="
function showPopup(event) {
event.cancel();
 //var popup =
//AdfPage.PAGE.findComponentByAbsoluteId("demoTemplate:popup");
 var source =event.getSource();
 var popup =source.findComponent("popup");
 popup.show({align:"after_end", alignId:"button"});
}
"/>

– Use a relative path for clientId instead of an absolute path (starting with a
':'). For example, use:

<af:showPopupBehavior popupId="demoTemplate:iteratorpop"
 triggerType="mouseHover"/>

Instead of:

<af:showPopupBehavior popupId=":demoTemplate:iteratorpop"
 triggerType="mouseHover"/>

– For more information, see What You May Need to Know About Using Naming
Containers in the Developing Web User Interfaces with Oracle ADF Faces.

• Encoded URLs. By default, URLs in the portletized page or task flow are encoded
such that they are proxied by the consumer application. In some circumstances,
you may not want to encode these URLs, for example, when requesting JavaScript
libraries from content delivery networks or accessing resources directly from the
user's browser to make use of a locally configured HTTP proxy.

Another example is if your task flow includes an inline frame (for example, using
an af:inlineFrame tag). In this case you need to ensure that the inline frame
URL does not get encoded to go via the portlet resource proxy in the consumer. If
you do not do this, any relative URLs in the content inside the inline frame will not

Creating a Portlet from a JSF Application

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-15

work because they will be relative to the URL to the resource proxy rather than
their correct location relative to the original URL for the inline frame.

To bypass the URL encoding, set the _xEncodeUrl parameter to false on URLs
that are passed to the Oracle JSF Portlet Bridge for encoding. This parameter is
picked up by the Oracle JSF Portlet Bridge, which ensures that the URL does not
get encoded via the resource proxy. The parameter is ignored if the task flow is not
running as a portlet.

For example, replace:

<af:inlineFrame source="http://myiframe.example.com">

with:

<af:inlineFrame source="http://myiframe.example.com?_xEncodeUrl=false">

Note:

Do not use this parameter to access resources that reside on the producer
server. These resources must be accessed using the portlet client's proxy.

• Issues with goLink. The adf:goLink component encodes the link URL as an
action for the current JSF application. In other words, it encodes the link using
ExternalContext.encodeActionURL(...). This is different to the JSF
h:outputLink component, which encodes the URL as a resource URL using
ExternalContext.encodeResourceURL(...). If you are using goLink to
link to a resource that is not a Faces View, then the URL must be encoded as a
Resource URL. To do this, you must tell the Oracle JSF Portlet Bridge the link is not
a Faces View by adding the following parameter to the URL:

javax.portlet.faces.ViewLink=false

For example:

<af:goLink text="goLink 1" id="gl1" destination="/mynonfaceslink?
javax.portlet.faces.ViewLink=false"/>

• In-Protocol Resource Requests. Within a JSF application running under the Oracle
JSF Portlet Bridge, when a resource URL is created using
ExternalContext.encodeResourceURL(...), that resource URL is encoded
in such a way that it is executed as an out-of-protocol resource request. This means
that when the portlet consumer accesses that resource it does so by making a direct
call to the target URL. It is also possible for resource URLs to be in-protocol. This
means that the portlet consumer accesses the resource by making a WSRP web
service call to the producer application, which in turn ultimately leads to the
serverResource method being called on the portlet. It is then the portlet's
responsibility to provide the resource which is sent back in the WSRP response.
When that portlet is the Oracle JSF Portlet Bridge, it serves the resource by using a
request dispatcher to forward to the target URL.

Generally out-of-protocol resource requests are to be preferred as they do not incur
the additional overhead of the web service call. In-protocol requests can also cause
large amounts of memory to be allocated as the WSRP SOAP response is
constructed, if the resource being served is large. In the case of the Oracle JSF
Portlet Bridge, the only time that you would want to use in-protocol resources is
when you need to share the portlet scoped HTTP session between the resource
requests and the other portlet requests, such as portlet action or render requests.

Creating a Portlet from a JSF Application

12-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

To cause the Oracle JSF Portlet Bridge to encode resource URLs as in-protocol
resource requests, add the following parameter to the URL, before
ExternalContext.encodeResourceURL(...) is called:

javax.portlet.faces.InProtocolResourceLink=true

For example:

<af:goLink text="goLink 1" id="gl1" destination="/mynonfaceslink?
javax.portlet.faces.ViewLink=false&javax.portlet.faces.InProtocolResourceLink=true
"/>

12.3 Updating the Portlet Entry for a Portletized Page or Task Flow
If you edit a page or task flow that has been previously portletized, if those edits
include updates to the task flow or page's parameters or events, then you must update
the portlet entry for the page or task flow to keep the portlet in sync with the
underlying page or task flow.

Note:

If you delete a page that has been portletized, you must manually remove the
portlet entry for that page from the portlet.xml file.

To update the portlet entry for a portletized page or task flow:

1. In the Application Navigator, open the JSF application that contains the
portletized page or task flow that you want to update.

2. Right-click the page or task flow, and choose Update Portlet Entry.

3. If the portlet entry is for an unbounded task flow, then a dialog prompts you to
select the view activity that was used to create the portlet.

When you update the portlet entry for a portletized page or task flow, the portlet entry
is updated as follows:

• The Create portlet events for contextual events option is set to true.

• No updates are made to the portlet name, display name, title, short title, or
description.

• Any event-definition elements (at the portlet application level) are created as
necessary.

• None of the existing event-definition elements are deleted or updated.

• Any public-render-parameter elements (at the portlet application level) are
created as necessary.

• None of the existing public-render-parameter elements are deleted or
updated.

• The list of supported-processing-event, supported-publishing-event,
and supported-public-render-parameter elements in the portlet entry are
re-created to reflect the current events and input parameters of the page or task
flow. This means that some existing portlet events and public parameters may be
deleted and new ones added.

Updating the Portlet Entry for a Portletized Page or Task Flow

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-17

12.4 Testing a Portletized Page or Task Flow in JDeveloper
After you have portletized a page or task flow, you must test it to ensure that it is
working correctly. Testing a portletized page or task flow requires the following steps:

1. Portletize the page or task flow to create a portlet entry in the portlet.xml file.

2. Deploy the portletized application to a portlet server.

3. Create an application to consume the portletized page or task flow.

4. Register the portletized application with the consumer application.

5. Create a page in the consumer application and add the portletized page or task
flow to it.

6. Deploy the consumer application and display the page that contains the portletized
page or task flow.

12.5 Testing a JSF Portlet Using the Integrated WebLogic Server
When you have created your JSF portlet you can test it using the Integrated WebLogic
Server that comes packaged with JDeveloper.

Before You Begin

Before you test your portletized page or task flow, it is a good idea to first test that the
page or task flow works correctly in the running ADF application. You can do this,
using the Integrated WebLogic Server, by running the page or, for task flows, adding
the task flow to a page and running that page.

For more information, see Running an ADF application in Integrated WebLogic Server
in the Developing Fusion Web Applications with Oracle Application Development
Framework.

To test a JSF portlet:

1. From the main menu, choose Run and then Start Server Instance.

It may take a few moments for the Integrated WLS to start. When the instance has
started, you should see a message similar to the following in your Log panel:

IntegratedWebLogicServer started.

For more information, see Managing the Integrated WebLogic Server.

2. You are now ready to run your Portlet Producer application on the Integrated
WLS. Because your web application and Portlet Producer application are one and
the same (the Portlet Producer application is your existing web application with
additional portlet artifacts), you can run your web application as you normally
would (see Running an ADF application in Integrated WebLogic Server in
Developing Fusion Web Applications with Oracle Application Development Framework)
or you can run your portlet following the instructions in How to Run a WSRP
Portlet Producer on Integrated WebLogic Server.

3. When the application is deployed, you can view the WSRP Producer Test Page by
going to:

http://host:port/context-root/info

Testing a Portletized Page or Task Flow in JDeveloper

12-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

where:

• host is the server to which the application has been deployed.

• port is the HTTP Listener port. Typically it is 7101. When the server is started,
the port is displayed in the console.

• context-root is the web application's context root.

4. Once you have successfully deployed the application containing the portlet, you
can register it as a portlet producer with any other application.

Note:

Because the Oracle JSF Portlet Bridge uses WSRP 2.0 features, you should
register the producer using the WSRP v2 WSDL URL listed in the WSRP
Producer Test Page.

You can continue to access the application as a regular web application or consume
it as a portlet producer.

5. Now that your portlet producer is deployed and registered, you can consume your
JSF portlet as you would any other portlet.

12.6 Deploying JSF Portlets to a WebLogic Managed Server
When you are satisfied that the application works correctly both as a web application
and a portlet application, you can deploy it to your production Oracle WebLogic
Managed Server.

Because your web application and portlet application are one and the same (the portlet
application is your existing web application with additional portlet artifacts),
deploying the web application also deploys the portlet producer application.

For information about how to deploy an application to a WebLogic Managed Server,
see Deploying Fusion Web Applications in the Developing Fusion Web Applications with
Oracle Application Development Framework.

Note:

Ensure that you deploy your application to a Java EE container with the
Oracle Portlet Container installed. The Integrated WLS has the container
installed, which is why it is recommended for testing.

After successful deployment, you can access both the application and the portlet
producer test page. For example, the application URL would be similar to:

http://host:port/appcontextroot/faces/pagename.jspx

And the portlet producer test URL would be similar to:

http://host:port/appcontextroot/info

12.7 Using Events to Link JSF Portlets with Other Portlets
This section includes the following topics:

Deploying JSF Portlets to a WebLogic Managed Server

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-19

• About Linking JSF Portlets with Other Portlets

• How to Link a JSF Portlet to Another JSF Portlet

• How to Link a JSF Portlet to a JSR 286 Portlet

• How to Link a JSR 286 Portlet to a JSF Portlet

• What You May Need to Know About Portlet Events in the Oracle JSF Portlet Bridge

12.7.1 About Linking JSF Portlets with Other Portlets
If you portletize an Oracle ADF task flow that triggers a contextual event, the Oracle
JSF Portlet Bridge creates a JSR 286 portlet event to wrap the contextual event. This
means that when the portletized task flow is consumed on a page, it can be linked to
other JSF portlets or to JSR 286 portlets.

The examples in this section use the following portlets:

• Departments portlet, a portletized ADF task flow that displays a list of
departments. The list of departments can be restricted by location ID. This portlet
raises a contextual event, departmentSelected, when a department row is
selected in the portlet. The payload of the departmentSelected event is an object of
type hr.Department (a Java object representing one row of the Departments table).

• Employees portlet, a portletized ADF task flow that displays a list of employees.
The list of employes can be restricted by department ID.

• Department Address portlet, a JSR 286 portlet that displays the address of a
specified department.

• Department Locations portlet, a JSR 286 portlet that displays a list of locations.
This portlet raises a portlet event, named locationId with the namespace
http://xmlns.oracle.com/adfm/contextualevent, when one of the listed
locations is selected.

12.7.2 How to Link a JSF Portlet to Another JSF Portlet
The Departments task flow raises a contextual event, departmentSelected, when a
department row is selected within the task flow. The event is ultimately raised by an
eventBinding which is triggered from a row selection listener (see example below).

The payload of the event (an object of type hr.Department, a Java object
representing one row of the departments table) is generated by using the
customPayload attribute which points to the current row from the departments
table iterator.

For more information about standard ADF contextual event techniques, like the ones
used in this example, see About Creating Contextual Events in the Developing Fusion
Web Applications with Oracle Application Development Framework.

<eventBinding Listener="org.apache.myfaces.trinidad.event.SelectionListener"
 id="DepartmentSelectedEvent">
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="departmentSelected"
 customPayLoad="#{bindings.departments.currentRow.dataProvider}"/>
 </events>
</eventBinding>

Using Events to Link JSF Portlets with Other Portlets

12-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

When the Departments task flow is portletized, using the steps described in How to
Create a JSF Portlet Based on a Task Flow, a portlet.xml file is created containing a
definition for a portlet event that is used to transfer the corresponding contextual
event during portlet communication with the portlet over WSRP:

<portlet id="adf_taskflow_WEB_INF_departments_xml">
 ...
 <supported-publishing-event id="departmentSelected">
 <qname xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:departmentSelected
 </qname>
 </supported-publishing-event>
 ...
</portlet>

There is also a corresponding event definition in portlet.xml for the Departments
portlet's departmentSelected event:

<event-definition id="departmentSelected">
 <qname xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:departmentSelected
 </qname>
 <value-type>
 oracle.portlet.bridge.adf.lifecycle.ADFmPayloadWrapper
 </value-type>
</event-definition>

Note:

The namespace for contextual events that are converted into portlet events is
always:

http://xmlns.oracle.com/adfm/contextualEvent

The payload type is always:

oracle.portlet.bridge.adf.lifecycle.ADFmPayloadWrapper

The ADFmPayloadWrapper is used to ensure that any serializable contextual
event payload is wrapped in a JAXB marshallable wrapper. It also ensures
that a fixed type can be declared for the portlet event, even though it is not
possible to know the payload type until the event is raised. The payload is
unwrapped when extracting the contextual event from the portlet event.

The Employees task flow uses standard ADF techniques to handle a
departmentSelected event. This is in the form of a methodAction binding that
invokes a method on a data control, delivering the event payload from the
departmentSelected event as a parameter to that method. The example below
shows the definition of the methodAction binding.

<methodAction id="updateTableForDepartmentId" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="updateTableForDepartmentId"
 IsViewObjectMethod="false" DataControl="EmployeesDataControl"
 InstanceName="EmployeesDataControl.dataProvider">
 <NamedData NDName="departmentIdPayLoad" NDType="hr.Department"/>
</methodAction>

The updateTableForDepartmentId method takes the hr.Department object,
passed as the payload of the departmentSelected event, and filters the data

Using Events to Link JSF Portlets with Other Portlets

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-21

queried from the EmployeesDataControl so that it shows only employees who are
in the selected department. It also takes steps to ensure that the iterator is re-executed
and that the table view component is marked as needing to be re-rendered in this
request.

The Employees task flow includes an event map to specifically map the incoming
event onto the appropriate methodAction when the task flow is portletized:

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="departmentSelected">
 <producer region="*">
 <consumer region="" handler="updateTableForDepartmentId"
 handleCondition="${ADFPortletBridge.bridgeRequest}">
 <parameters>
 <parameter name="p1" value="#{payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

Note:

The <producer region="*"> attribute accepts events from any region.
This is because when the task flow is running as a portlet, with the event
coming into the portlet from a remote application, the remote application does
not have any knowledge of the producer region.

The EL expression within handleCondition="$
{ADFPortletBridge.bridgeRequest}" evaluates to true if the current
request is running under the Oracle JSF Portlet Bridge. This ensures that this
event map is used only when the task flow is running as a portlet. It is not
essential to have this handleCondition. However it can be useful to be able
to define a separate eventMap which is used only when the task flow is
running as a portlet.

When the two portletized task flows are added to a page, as long as the name of the
event triggered by the Departments portlet is the same as that expected by the
Employees portlet, no further coding is required; the portlets are automatically linked
and when a department is selected in the Departments portlet, the Employees portlet
is updated to display employees belong to the selected department.

Using Events to Link JSF Portlets with Other Portlets

12-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 12-1 Linked JSF Portlets

You may choose to not use automatic event listening, for example, if you have
multiple portlets on the same page that use the same events and you wish to control
the flow of events between them. Or perhaps the names of the contextual events used
by the JSF portlets that you want to link do not match. In this case you must explicitly
create an event map in the page definition of the page containing the portletized task
flows. This event map links the portlet events of the portlets that you want to wire
together. The example below shows how this would work in our example if the
Employees task flow was expecting an event named departmentId instead of
departmentSelected.

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="departmentSelected">
 <producer region="EventSampleProducerdepartments1_1">
 <consumer handler="EventSampleProduceremployees1_1.
 {http://xmlns.oracle.com/adfm/contextualEvent}departmentId"/>
 </producer>
 </event>
</eventMap>

Note:

In the case of portletized task flows, the handler attribute must specify not
only the specific binding object that is to handle the event, it must also specify
the full QName of the portlet event, using the format
<portletBindingId>.<eventQName>. The namespace does not have to be
the ADFm namespace; it can be any portlet event, provided the payload is
compatible.

Using Events to Link JSF Portlets with Other Portlets

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-23

12.7.3 How to Link a JSF Portlet to a JSR 286 Portlet
As well as linking JSF portlets to other JSF portlets, you can also link a JSF portlet to a
regular JSR 286 portlet. To do this, you must ensure that the JSR 286 portlet explicitly
declares that it can to receive contextual events.

For example, we can link the Departments task flow from our previous example to a
Department Address portlet, a JSR 286 portlet, to display the address of a selected
department.

For automatic event wiring to work, the Department Address portlet must declare that
it can receive the contextual event from the Department portlet. It can do this in two
ways:

• The Department Address portlet directly supports the departmentSelected
contextual event:

<supported-processing-event id="departmentSelected">
 <qname xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:departmentSelected
 </qname>
</supported-processing-event>

• The event definition for the Department Address portlet's event, department,
provides an alias to associate it with the departmentSelected contextual event:

<event-definition id="department">
 <qname xmlns:x="http://xmlns.oracle.com/portlet/EventSample">
 x:department
 </qname>
 <alias xmlns:x="http://xmlns.oracle.com/adfm/contextualEvent">
 x:departmentSelected
 </alias>
 <value-type>hr.Department</value-type>
</event-definition>

Note:

The namespace for portlet events used to carry contextual event is always:

http://xmlns.oracle.com/adfm/contextualEvent

The namespace is used in the event declarations or alias given above. This
namespace indicates to the consumer that the portlet wishes to receive a
contextual event with the given name as a portlet event. This is essential for
automatic event wiring to work.

The Department Address portlet includes code in its processEvent implementation
to handle the event. This method looks for either the departmentSelected or the
department event with the alias as defined above. The payload type for both of these
events is hr.Department. However, the method shown in the example below
illustrates how to use the ADFmPayloadWrapper to unwrap the payload.
ADFmPayloadWrapper is the event type that the Oracle JSF Portlet Bridge uses by
default when raising events.

public void processEvent(EventRequest request, EventResponse response)
 throws PortletException, IOException
 {

Using Events to Link JSF Portlets with Other Portlets

12-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

response.setRenderParameters(request);

Event event =request.getEvent();
 String eventName =event.getName();
 if ("departmentSelected".equals(eventName) ││
"department".equals(eventName))
 {
Object payload =event.getValue();
 if (payload instanceof ADFmPayloadWrapper)
 {
payload =((ADFmPayloadWrapper)payload).getPayload();
 }
if (payload instanceof Department)
 {
Department department =(Department)payload;
 int locationId =department.getLocation();
 response.setRenderParameter("locationId", Integer.toString(locationId));
 }
}
}

When these two portlets are displayed together on a page, selecting a department in
the Departments portlet automatically updates the Department Address portlet to
display the address of the selected department.

Figure 12-2 JSF Portlet Linked to a JSR 286 Portlet

If the Department Address portlet does not explicitly support the
departmentSelected event or define an appropriate alias, you can still link the two
portlets by creating an event map in the page definition:

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="departmentSelected">
 <producer region="EventSampleProducerdepartments1_1">
 <consumer handler="DepartmentAddress1_1.
 {http://xmlns.oracle.com/portlet/EventSample}department"/>
 </producer>
 </event>
</eventMap>

Using Events to Link JSF Portlets with Other Portlets

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-25

The result of this event mapping is that when the departmentSelected contextual
event is raised by the EventSampleProducerdepartments1_1 portlet binding, the
event is delivered to the DepartmentAddress1_1 portlet binding, which in turn
sends the event on to the portlet using the portlet event, department.

Note:

The payload of the departmentSelected contextual event is a
hr.Departments object. This is the same payload type that the portlet's
department portal event is expecting, so that matches and everything works
correctly. It is also possible for the portlet to declare that it expects a payload
of type ADFmPayloadWrapper. In this case, the portlet consumer detects this
and automatically wraps the contextual event payload in an
ADFmPayloadWrapper object.

12.7.4 How to Link a JSR 286 Portlet to a JSF Portlet
You can also send portlet events from a JSR 286 portlet to a JSF portlet. The portlet
event is converted into a contextual event by the Oracle JSF Portlet Bridge and is then
delivered into the producer ADF application to be consumed using standard
contextual event techniques.

The Departments task flow contains a methodAction binding that binds to a method
on the DepartmentsDataControl:

<methodAction id="updateTableForLocationId" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="updateTableForLocationId"
 IsViewObjectMethod="false"
 DataControl="DepartmentsDataControl"
 InstanceName="DepartmentsDataControl.dataProvider">
 <NamedData NDName="locationId" NDType="int"/>
</methodAction>

The updateTableForLocationId method receives, as a parameter, a location ID
that causes the list of departments returned by the data control to be filtered by that
location ID.

The task flow contains an event map to map the contextual event onto the appropriate
methodAction:

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="locationId">
 <producer region="*">
 <consumer region="" handler="updateTableForLocationId"
 handleCondition="${ADFPortletBridge.bridgeRequest}">
 <parameters>
 <parameter name="p1" value="#{payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

Using Events to Link JSF Portlets with Other Portlets

12-26 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

The event map cannot reference the region where the event originates because
it is not present when the task flow is running as a portlet, so we use a
wildcard as the event source in the event map

In the Department Locations portlet, when a location is selected, the processAction
method raises a portlet event, locationId, giving the location ID of the selected
location:

public void processAction(ActionRequest request, ActionResponse response)
 throws PortletException
 {
String locationId =request.getParameter("locationId");
 Location location =getLocation(Integer.parseInt(locationId));

if (location != null)
 {
//QName matches the event declared as a supported-publishing-event in
 //portlet.xml for this portlet.

//LocationId event. Raised in the ContextualEvent namespace makes it readily
 //consumable by ADF Bridge portlets. Likewise we wrap with the
 //ADFmPayloadWrapper payload object that the ADF Bridge expects.
 response.setEvent(new QName("http://xmlns.oracle.com/adfm/contextualEvent",
 "locationId"),
 new ADFmPayloadWrapper(Integer.valueOf(location.getLocationId())));
 }
}

Note:

The locationId event raised in the processAction method has a payload
of type of Integer. However, because JSF portlets always expect portlet
events with the contextual event payloads wrapped with
ADFmPayloadWrapper, we must wrap the payload to suit the receiving
portlet's requirements if we want automatic delivery of events to work.

Likewise, the QName for the event we raise must be:

{http://xmlns.oracle.com/adfm/contextualEvent}locationId

When you drop the portlets on a page, selecting a location in the Department Location
portlet automatically updates the Departments portlet to display the departments at
the selected location.

Using Events to Link JSF Portlets with Other Portlets

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-27

Figure 12-3 JSR 286 Portlet Linked to a JSF Portlet

If the two portlets do not declare events with matching names (for example the
contextual event from the Departments portlet is called locId), or if automatic event
listening is disabled, you can still link the two portlets by creating an event map in the
page definition to map the contextual event from the Departments portlet to the
portlet event from the Department Location portlet:

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="locationId">
 <producer region="DepartmentLocations1_1">
 <consumer handler="DepartmentsADFBridgePortlet1_1.
 {http://xmlns.oracle.com/adfm/contextualEvent}locId">
 </consumer>
 </producer>
 </event>
</eventMap>

12.7.5 What You May Need to Know About Portlet Events in the Oracle JSF Portlet
Bridge

This section includes the following topics:

• What You May Need to Know About Using a Serialized Type for the Contextual
Event Payload

• What You May Need to Know About Raising Undeclared Events

• What You May Need to Know About Partial Page Rendering

12.7.5.1 What You May Need to Know About Using a Serialized Type for the
Contextual Event Payload

Part of the JSR 286 event's payload is the wrapped contextual event payload, which is
serialized. Therefore, while contextual event payloads can be any object type, when
you are sending contextual events via WSRP, only serialized types are supported.

When this wrapped contextual event is delivered, the contextual event payload must
be deserialized on the consumer before the contextual event can be forwarded into the
consumer application. To deserialize the event, the payload class must be available on

Using Events to Link JSF Portlets with Other Portlets

12-28 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

the consumer as well as on the producer. This condition is automatically met when the
original payload is a Java Runtime Environment class, such as java.lang.String.

12.7.5.2 What You May Need to Know About Raising Undeclared Events

If your Oracle ADF task flow includes ADFm events that do not have corresponding
portlet events declared in the portlet.xml file, you can enable the Oracle JSF Portlet
Bridge to raise these undeclared events.

To raise undeclared events, set the following container runtime option for the
portletized task flow:

<portlet id="Application5untitled1jspx1_1">
 ...
 <container-runtime-option>
 <name>oracle.portlet.bridge.adf.raiseUndeclaredContextualEvents</name>
 <value>true</value>
 </container-runtime-option>
 ...
</portlet>

Setting this option to true means that any ADFm event raised is forwarded on as a
portlet event. If this option is not provided or is set to false, then only events with
corresponding portlet event declarations are forwarded. For information about setting
container runtime options, see Setting Container Runtime Options for Individual
Portlets.

You can also enable undeclared portlet events to automatically be forwarded on from
the portlet binding in the consumer application as ADFm events.

In the portlet binding, set the raiseUndeclaredContextualEvent attribute to
true, for example:

<portlet id="Application5untitled1jspx1_1"
 portletInstance="/oracle/adf/portlet/WsrpPortletProducer4/ap/
 Application5untitled1jspx_2943bd23_012e_1000_8004_0aa7c0849010"
 class="oracle.adf.model.portlet.binding.PortletBinding"
 retainPortletHeader="false"
 listenForAutoDeliveredPortletEvents="true"
 listenForAutoDeliveredParameterChanges="true"
 raiseUndeclaredContextualEvents="true"
 xmlns="http://xmlns.oracle.com/portlet/bindings"/>

Setting this option to true means that if a portlet event is received, a corresponding
ADFm event is raised, even if there is no event declaration in the portlet binding. The
name of the ADFm event is directly taken from the QName of the portlet event. This is
so that ADFm events raised from the Oracle JSF Portlet Bridge have the same name as
that used when the event was raised on the remote application.

12.7.5.3 What You May Need to Know About Partial Page Rendering

The Oracle JSF Portlet Bridge uses portlet events to transport contextual events to and
from the consumer application. However, partial page rendering (PPR) requests are
implemented using Portlet 2.0 resource requests. It is not possible to send or receive
portlet events in resource requests. Therefore proprietary mechanisms are used to
transport the contextual events from the JSF Portlet to the consumer application in the
case of PPR requests.

Using Events to Link JSF Portlets with Other Portlets

Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge 12-29

Using Events to Link JSF Portlets with Other Portlets

12-30 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

13
Building Standards-Based Java Portlets

Using JSR 286

This chapter describes how to build standards-based Java portlets using the Java
Portlet Specification, JSR 286.

This chapter includes the following topics:

• About Building Standards-Based Java Portlets Using JSR 286

• Creating a JSR 286 Java Portlet

• Developing JSR 286 Java Portlets

• Testing JSR 286 Portlets

• Migrating WebLogic Portal Portlets to WebCenter Portal

• Files Related to JSR 286 Portlets

13.1 About Building Standards-Based Java Portlets Using JSR 286
WebCenter Portal supports standards-based Java portlets built using the JSR 286
standard.

JSR 286 is a specification that defines a set of APIs to enable interoperability between
portlets and portals, addressing the areas of aggregation, personalization,
presentation, and security. JSR 286 defines container services that provide:

• A portlet API for coding portlet functionality

• The URL-rewriting mechanism for creating user interaction within a portlet
container

• The security and personalization of portlets

• Interportlet communication using portlet events and public render parameters

For more information, see the JSR 286 specification at:

http://jcp.org/en/jsr/detail?id=286

WSRP is a web services standard that enables the plug-and-play of visual, user-facing
web services with portals or other intermediary web applications. Being a standard,
WSRP enables interoperability between a standards-enabled container and any WSRP
portal. WSRP defines:

• Web Services Definition Language (WSDL) interface for the invocation of WSRP
services

• Markup fragment rules for markup emitted by WSRP services

Building Standards-Based Java Portlets Using JSR 286 13-1

http://jcp.org/en/jsr/detail?id=286

• The methods to publish, find, and bind WSRP services and metadata

WSRP provides communication between a portlet client and a portlet container
running on a remote server. JSR 286 describes the Java Portlet API for running portlet
producer applications. Combining these standards enables developers to integrate
their applications from any internal or external source as portlets with WSRP portals.
Building pages becomes as simple as selecting portlets from the JDeveloper Resource
Palette or Application Resources pane of the Application Navigator.

Figure 13-1 shows the architecture of the WSRP specification with JSR 286 portlets.

Figure 13-1 WSRP Specification Architecture

13.2 Creating a JSR 286 Java Portlet
WebCenter Portal provides a wizard, available in JDeveloper, for quickly and easily
creating the initial framework of your JSR 286 standards-based Java portlets.

In the Create JSR 286 Java Portlet wizard, you can choose which portlet modes you
want to implement and the implementation method (JSP, HTTP servlet, Java class, or
HTML) to use for each mode. The wizard then creates a simple implementation for
each of the selected modes.

To create a JSR 286 Java portlet using the JDeveloper wizard:

1. In JDeveloper, open the portlet producer application under which you want to
create your portlet, or create a new portlet producer application.

For information about how to create a portlet producer application, see Portlet
Producer Applications.

Creating a JSR 286 Java Portlet

13-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

If you do not use the WebCenter Portal - Portlet Producer Application
template to create the portlet producer application, you must manually add
the appropriate portlet building technology scopes to the application.

2. Right-click the project under which you want to create your portlet (for example
Portlets), and choose New.

3. In the New Gallery (Figure 13-2), expand Web Tier, select Portlets and then
Standards-based Java Portlet (JSR 286), and click OK.

Figure 13-2 Standards-based Java Portlet (JSR 286) Option in the New Gallery

Tip:

If the project already contains JSR 286 portlets, you can also create a new
portlet by:

• Right-clicking portlet.xml and choosing Add Portlet.

• Opening portlet.xml, clicking the Design tab, and clicking the Add icon
on the Portlets tab.

4. On the General Portlet Information page of the Create JSR 286 Java Portlet wizard,
replace the default name provided in the Name field with one that better
describes the purpose of the portlet.

5. In the Class field, enter a name for the class for the portlet. You can accept the
default name provided or supply your own. If you supply your own name, it
must be a valid Java name.

6. From the Package drop-down list, select the package in which to create the class,
or enter a package name.

Creating a JSR 286 Java Portlet

Building Standards-Based Java Portlets Using JSR 286 13-3

Click the Browse button to find packages within the project, if required. If you do
not select a specific package, the wizard uses the default package of the project.

7. From the Language drop-down list, select the default language that your portlet
supports. The wizard uses English by default.

8. Select Enable users to edit portlet content if you want your portlet to support
Edit mode. In the wizard, this option is selected by default.

Edit mode enables users to personalize the portlet at runtime. For more
information, see Edit Mode.

If you select this option, you can specify implementation details for the portlet's
Edit mode later on in the wizard.

9. Click Next.

10. On the Additional Portlet Information page, in the Portlet Title field, enter a
descriptive title for your portlet.

The portlet title is displayed in the resource catalog, so make the title something to
help users decide whether the portlet is useful to them. The portlet title is also
displayed on the portlet header when the portlet appears on a page.

Tip:

The Display Name, Short Title, Description, and Keyword attributes are not
implemented in WebCenter Portal. You do not need to enter any values for
these fields unless your portlet is likely to be consumed by other applications.

11. At this point in the wizard, you can click Finish to create the portlet immediately,
using the default values for all remaining settings.

To provide additional details for your portlet, click Next and follow the remaining
steps.

12. On the Content Types and Portlet Modes page, in the Content Types and Portlet
Modes list, select view.

13. In the Implementation Method section, select how you want to implement View
mode for your portlet (for more information about View mode, see View Mode):

• Select Generate JSP to generate a skeleton JSP file for the portlet mode. Enter a
name for the JSP in the corresponding field, or accept the default.

When you complete the wizard, the generated JSP displays in the Application
Navigator where you can select it for further development. This is the default
selection for all portlet display modes.

• Select Generate ADF-Faces JSPX to generate a page to which you can add
ADF-Faces components. Enter a name for the JSF page in the corresponding
field, or accept the default.

If you choose this option, the portlet implementation class is created as a
subclass of
oracle.portlet.bridge.adf.application.ADFBridgePortlet,
instead of as a subclass of javax.portlet.GenericPortlet. That is, the
wizard generates a portlet producer application which uses the Oracle JSF
Portlet Bridge. For more information about the Oracle JSF Portlet Bridge, see
Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge.

Creating a JSR 286 Java Portlet

13-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Select Map to Path to map the portlet mode to a web resource in the portlet
producer application, such as a page. The resource is not generated by the
wizard. Enter the name and path in the corresponding field. You can create
this resource after completing the wizard if necessary.

With this selection, you must write the targeted resource or file yourself. The
target could be, for example, a JSP, a servlet, or an HTML file. This selection
enters code in the generated portlet Java class that routes requests for the given
mode to the specified target.

• Select Custom Code to implement the portlet mode through a custom coded
object. You must create this object later. This selection generates a skeleton
method to render content (private void doMODE_NAMECONTENT_TYPE) in
the generated portlet java class. You must update this code to render useful
content.

Tip:

If you want this portlet mode to support a different content type, for example
text/xml, see Step 16.

14. If you selected Enable users to edit portlet content on the first page of the wizard,
select edit and then select the implementation method for Edit mode (for
information about Edit mode, see Edit Mode), as described in step 13.

15. To implement another portlet mode for your portlet:

a. In the Content Types and Portlet Modes list, select an existing mode (for
example, view) under the appropriate content type (for example, text/html).

b. Click Add.

c. In the Portlet Modes dialog, move the required mode or modes to the
Selected list and click OK.

The Portlet Modes dialog lists the standard modes supported by JSR 286 and
the extended modes supported by WebCenter Portal.

For more information, see Portlet Modes.

d. Select each of the portlet modes and specify the implementation method to
use for rendering content, as described in step 13.

16. The content type identifies what type of content the portlet supports. Portlets can
support multiple content types. By default, portlets created using the Create JSR
286 Java Portlet wizard support the text/html content type.

To add a different content type:

a. In the Content Types and Portlet Modes list, select an existing content type
(for example, text/html).

b. Click Add.

c. In the Content Types dialog, move the required content types to the Selected
list and click OK.

• text/html—The portlet supports text encoded with HTML. This is the
default selection.

• text/xml—The portlet supports text encoded with XML.

Creating a JSR 286 Java Portlet

Building Standards-Based Java Portlets Using JSR 286 13-5

• text/plain—The portlet supports plain, unencoded text.

• text/vnd.oracle.mobilexml—The portlet supports text encoded with
Oracle Mobile XML. Note, however, that WebCenter Portal does not
support Oracle Mobile XML.

• application/xhtml+xml—The portlet supports text encoded with XHTML.

• application/xml—The portlet supports any XML content, including
XHTML.

17. Click Next.

If you selected Enable users to edit portlet content on the General Portlet
Information page earlier in the wizard, then you can create portlet preferences to
enable users of the portlet to specify values for the portlet at runtime. Go to step
18.

If you did not select this option, go to step 24.

18. On the Customization Preferences page, click Add to add a new portlet preference
to the portlet.

By default, the wizard includes a portlet preference to enable users to customize
the portlet title.

19. In the Add New Preference dialog, in the Name field, enter a name for the new
preference.

The name must be unique in the portlet and cannot contain spaces.

20. In the Default Values field, enter one or more default values for the new
preference. Separate multiple values with commas.

21. Select the Translate Preference check box if you want to be able to make the
preference available in different languages.

For example, if the portlet is likely to be consumed by a multilingual portal you
want to ensure that the preference displays in the appropriate language.

If you enable this option, then entries for the preference are added to the resource
bundle class that JDeveloper generates for the portlet.

Tip:

Edit the resource bundle to provide translations for the preference name and
default values. The name will almost always require translating, but the
default values may not, for example, if the value is an integer.

22. Click OK.

23. Repeat the preceding steps to add more preferences. When you are done click
Next.

24. On the Security Roles page, to add an existing security role to your portlet, select
the security role and move it to the Selected list.

Security roles enable you to set tiered levels of access to the portlet. For example, a
View user can view the portlet but cannot edit it; a Customize user can
customize portlet settings; a Manage user can perform all available functions
associated with the portlet.

Creating a JSR 286 Java Portlet

13-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

The Available list displays the security roles defined for the application in which
you are creating the portlet. Moving a security role to the Selected list creates a
reference of the security role in the application's portlet deployment file
(portlet.xml) that refers to the security role in the application's web
deployment file (web.xml).

You can create new security roles for the application by editing web.xml. For
more information, see the JDeveloper online help.

25. Click Next.

26. On the Caching Options page, select Cache Portlet to enable expiry-based caching
for your portlet.

For more information about expiry-based caching, see Portlet Performance and
Implementing Expiry-Based Caching in JSR 286 Portlets.

Selecting this option indicates that portlet caching is managed by the portlet
container. The portlet itself may choose to cache content for any given response.
The settings on this page apply only when the portlet itself does not specify a
caching condition for a response.

If you do not want any default caching for this portlet, choose Do Not Cache By
Default. In this case, the wizard actually sets a cache duration of 0 seconds. As
stated earlier, this cache setting only comes into play when the portlet itself does
not specify a caching condition for a response.

If you choose no caching here and you later decide to implement default caching
for the portlet, then you can change the cache duration value in the portlet.xml
file, which is generated by the wizard, to a number greater than zero.

For information about how to implement validation-based caching, see
Implementing Validation-Based Caching in JSR 286 Portlets.

27. If you chose to cache the portlet, in the Default Expiry Conditions section, select:

• Cache Content Expires After []seconds to expire the cached portlet content
after a certain amount of time. Specify the time limit in the corresponding field.

• Cache Content Never Expires to never expire the cached portlet content. You
may want to select this option if the portlet contains static content that is
unlikely to change.

28. Click Next.

29. On the Initialization Parameters page, you can add initialization parameters to
your portlet.

Initialization parameters provide the application developer, who decides what
goes into the WAR file, an alternative to JNDI variables for configuring the
behavior of all of the different components of the application (for example,
servlets and portlets) in a compatible way. These initialization parameters are
added to the portlet.xml file.

For example, you might want to turn on some kind of debugging mode for the
portlet or display different menu options in different environments.

a. Click New to add a new initialization parameter to the portlet.

b. In the newly added row, double-click each field to provide a Name, default
Value, and Description for the parameter.

Creating a JSR 286 Java Portlet

Building Standards-Based Java Portlets Using JSR 286 13-7

c. Repeat these steps to add more initialization parameters.

d. When you are done, click Finish to create the portlet.

When you use the Create JSR 286 Java Portlet wizard, JDeveloper generates a default
implementation of the portlet. Specifically, the following files are created:

• Java classes:

– portletName.java is invoked by the portlet container and contains all the
methods required by the portlet standards.

– portletNameBundle.java contains all the translation strings for the portlet.

– portletNameBacking.java contains the JSF backing bean for the JSF pages
that implement portlet modes. This class is created if you implement portlet
modes as ADF-Facelets JSP pages.

• portlet.xml is the portlet deployment descriptor file for the application.

• web.xml is the web deployment descriptor file for the application.

• Files for each portlet mode you selected for the portlet:

– If you selected Generate JSP for the portlet mode, a JSP page is created for the
mode, for example, view.jsp.

– If you selected Generate ADF-Faces JSPX, a JSF (.jspx) page is created for the
mode, for example, view.jspx. You can add Faces components to this page.

– If you selected Map to Path, no additional files are created as the code for the
portlet mode resides in an existing resource. Code is added to the portlet's Java
class to route requests to the specified target.

– If you selected Custom Code, no additional files are created, but the code for the
portlet mode resides in the portlet's Java class.

• faces-config.xml is a configuration file that registers an application's
resources, such as custom validators and managed beans and describes the page
flow of the application. This file is created if you implement portlet modes as ADF-
Facelets JSF pages.

You can see all the files in the Application Navigator, as shown in Figure 13-3.

Creating a JSR 286 Java Portlet

13-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 13-3 Files Generated for a JSR 286 Java Portlet

13.3 Developing JSR 286 Java Portlets
When you have built your initial portlet implementation using the Create JSR 286 Java
Portlet wizard, the next step is to create the code that drives the portlet content and
behavior. Because JSR 286 portlets adhere to the Java standards, you can find
substantial information about enhancing them from many different sources, such as
third-party books and web pages, including:

http://jcp.org/en/jsr/detail?id=286

This section includes the following topics:

• Example Portlet Deployment Descriptor File

• How to Edit the Portlet Deployment Descriptor File

• Portlet Modes for JSR 286 Portlets

• How to Add Custom Portlet Modes to JSR 286 Portlets

• How to Access User Information in JSR 286 Portlets

• How to Customize the Runtime Environment for JSR 286 Portlets

• How to Use Public Render Parameters in JSR 286 Portlets

• How to Use Portlet Events in JSR 286 Portlets

• How to Add Portlet Preferences to JSR 286 Portlets

• How to Use Portlet Filters in JSR 286 Portlets

• How to Implement Interportlet Communication Across Different Pages

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-9

http://jcp.org/en/jsr/detail?id=286

• How to Enhance JSR 286 Portlet Performance with Caching

• How to Implement Rewritten URLs for Resource Proxy

• How to Implement Stateless Resource Proxying

• How to Manage the Persistence Store for JSR 286 Portlets

13.3.1 Example Portlet Deployment Descriptor File
The following example shows an example portlet deployment descriptor file.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<portlet-app version="2.0"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <portlet id="1328624289503">
 <portlet-name>myPortlet</portlet-name>
 <display-name xml:lang="en-US">Portlet1</display-name>
 <display-name xml:lang="en">English Display Name</display-name>
 <portlet-class>portlet.Portlet1</portlet-class>
 <expiration-cache>300</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 </supports>
 <supported-locale>en-US</supported-locale>
 <resource-bundle>portlet.resource.Portlet1Bundle</resource-bundle>
 <portlet-info>
 <title>This Is My Portlet</title>
 <short-title>My Portlet</short-title>
 <keywords/>
 </portlet-info>
 <portlet-preferences>
 <preference>
 <name>portletTitle</name>
 </preference>
 </portlet-preferences>
 </portlet>
 <custom-portlet-mode>
 <portlet-mode>about</portlet-mode>
 </custom-portlet-mode>
 <custom-portlet-mode>
 <portlet-mode>config</portlet-mode>
 </custom-portlet-mode>
 <custom-portlet-mode>
 <portlet-mode>edit_defaults</portlet-mode>
 </custom-portlet-mode>
 <custom-portlet-mode>
 <portlet-mode>preview</portlet-mode>
 </custom-portlet-mode>
 <custom-portlet-mode>
 <portlet-mode>print</portlet-mode>
 </custom-portlet-mode>
</portlet-app>

Developing JSR 286 Java Portlets

13-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

13.3.2 How to Edit the Portlet Deployment Descriptor File
The portlet deployment descriptor file for the application, portlet.xml, specifies the
portlet resources in the application. After you have created your JSR 286 portlet using
the wizard, you can edit the portlet.xml file to edit the portlet resources.

When you open the portlet.xml file in JDeveloper, you can edit the source code or
you can use the Overview Editor to edit portlet resources without having to manually
modify it in the Source view.

To edit the portlet deployment descriptor file:

1. In the Application Navigator, open the portlet producer application.

2. Expand the portlet project (for example, Portlets).

3. Expand the Web Content node and then the WEB-INF node.

4. Right-click portlet.xml and choose Open.

5. Click the Design tab to open the Overview Editor for portlet.xml.

Tip:

If you prefer to edit the source code directly, click the Source tab.

6. The Overview Editor for portlet.xml contains the following tabs:

• Application—Use to specify general information for the portlet producer
application. These properties apply to all portlets within the application.

• Portlets—Use to specify information for individual portlets within the
application. For example, you can specify the portlet events and public render
parameters supported by a portlet.

• Events—Use to create and manage portlet events for use by all portlets in the
application. For more information, see How to Use Portlet Events in JSR 286
Portlets.

• Parameters—Use to create and manage public render parameters for use by all
portlets in the application. For more information, see How to Use Public Render
Parameters in JSR 286 Portlets.

• Filters—Use to specify filter information for the portlets in the application. For
more information, see How to Use Portlet Filters in JSR 286 Portlets.

• Filter Mappings—Use to assign portlet filters to individual portlets. For more
information, see How to Use Portlet Filters in JSR 286 Portlets.

13.3.3 Portlet Modes for JSR 286 Portlets
The standard modes supported by JSR 286 are:

• View

• Edit

• Help

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-11

WebCenter Portal supports the following additional custom modes for JSR 286
portlets:

• About

• Config

• Edit Defaults

• Preview

• Print

13.3.4 How to Add Custom Portlet Modes to JSR 286 Portlets
In the Create JSR 286 Java Portlet wizard, you add portlet modes by adding them to a
list on the Content Types and Portlet Modes page. For more information about using
the wizard, see Creating a JSR 286 Java Portlet.The wizard enables you to implement
the standard modes supported by JSR 286 and the extended modes provided by
WebCenter Portal.

After the initial creation of the portlet, you can also define your own custom portlet
modes.

The principles of implementing portlet modes are the same for all modes.

To add a custom portlet mode:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Application tab, if necessary.

3. Expand the Custom Modes section, if necessary.

This section lists all the custom modes available to the portlets within the
application. It includes the WebCenter Portal extended portlet modes.

4. Click the Add Custom Mode icon to create a new row for the portlet mode.

5. In the Portlet Mode field, enter the name of the portlet mode.

The name must be unique within the application.

6. In the Description field, enter a brief description to explain the purpose of the
mode.

7. Deselect the Portal Managed check box if applications that consume the portlet do
not need to be aware of the portlet mode, that is, the mode is used internally by the
portlet.

8. Save the portlet.xml file.

9. After adding the custom portlet mode to the application, you must then create the
code for the mode in the portlet implementation file.

13.3.5 How to Access User Information in JSR 286 Portlets
You can create user attributes in the portlet producer application to access commonly
used user information, such as user.login.id or user.name.family. At runtime,

Developing JSR 286 Java Portlets

13-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

these user attributes are mapped to the actual attributes of the current user. Portlets
can use this information to obtain information about the current user.

To access user information:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Application tab, if necessary.

3. Expand the User Attributes section, if necessary.

4. Click the Add User Attribute icon to create a new row for the attribute.

5. In the Name field, enter the name of the user attribute, for example
user.login.id.

For a list of attribute names, see User Information Attribute Names appendix in the
Java Portlet Specification.

Tip:

For a list of the user information attributes supported by WebCenter Portal,
see Mapping User Attributes to LDAP Directories in Securing Applications with
Oracle Platform Security Services.

6. In the Description field, enter a description for the user attribute.

7. Save the portlet.xml file.

At runtime, the portlet container maps the defined user attributes to the
appropriate values. For example, if the current user is John Doe, then the
user.name.family user attribute is mapped to Doe. Portlets can obtain a Map
object containing the user attributes from the PortletRequest interface.

13.3.6 How to Customize the Runtime Environment for JSR 286 Portlets
When a portlet is run, the portlet container provides the runtime environment and
provides an interface between the portlet producer application and the portlet.

Container runtime options provide a way to customize the behavior of the portlet
container and therefore customize the runtime environment.

This section includes the following topics:

• Supported Container Runtime Options

• Setting Container Runtime Options for All Portlets in an Application

• Setting Container Runtime Options for Individual Portlets

13.3.6.1 Supported Container Runtime Options

Table 13-1 lists the container runtime options supported by the WebCenter Portal
portlet container.

For more information about the JSR 286 container runtime options, see the JSR 286
specification at:

http://jcp.org/en/jsr/detail?id=286

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-13

http://jcp.org/en/jsr/detail?id=286

Table 13-1 Supported Container Runtime Options

Container Runtime Option Supported by JSR 286 Standard

javax.portlet.actionScopedRe
questAttributes

Application

Portlet

Yes

javax.portlet.escapeXml Application

Portlet

Yes

java.portlet.renderHeaders Not supported Yes

javax.portlet.servletDefaultSe
ssionScopejavax.portlet.servl
etDefaultSessionScope

Application

Portlet

Yes

com.oracle.portlet.allowEven
tPayloadsWithoutJAXBBindi
ng

Application No

com.oracle.portlet.allowWsrp
Export

Application No

com.oracle.portlet.compatibil
ityMode

Application

Portlet

No

com.oracle.portlet.defaultPro
xiedResourceRequiresWsrpR
ewrite

Application

Portlet

No

com.oracle.portlet.defaultSer
vedResourceRequiresWsrpRe
write

Application

Portlet

No

com.oracle.portlet.disallowRe
sourceServing

Application

Portlet

No

com.oracle.portlet.escapeXml
EncodeUrls

Application

Portlet

No

com.oracle.portlet.eventPaylo
adsXmlType

Application No

com.oracle.portlet.excludedA
ctionScopeRequestAttributes

Application

Portlet

No

com.oracle.portlet.externalSc
opeRequestAttributes

Application

Portlet

No

com.oracle.portlet.importCss
ToIFrame

Application

Portlet

No

com.oracle.portlet.minimum
WsrpVersion

Application

Portlet

No

com.oracle.portlet.offerPortle
tOverWsrp

Application

Portlet

No

Developing JSR 286 Java Portlets

13-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 13-1 (Cont.) Supported Container Runtime Options

Container Runtime Option Supported by JSR 286 Standard

com.oracle.portlet.portalInfo
Provider

Application

Portlet

No

com.oracle.portlet.redirectAft
erAction

Application

Portlet

No

com.oracle.portlet.renderHea
ders

Application

Portlet

No

com.oracle.portlet.requireIFr
ame

Application

Portlet

No

com.oracle.portlet.streaming
Optimized

Application

Portlet

No

com.oracle.portlet.suppressW
srpOptimisticRender

Application

Portlet

No

com.oracle.portlet.trapWsrpR
enderExceptions

Application

Portlet

No

com.oracle.portlet.trimEncod
eUrls

Application

Portlet

No

com.oracle.portlet.useWsrpU
serContextForUserAuthentic
ation

Application No

com.oracle.portlet.wsrpHead
erMode

Application

Portlet

No

com.oracle.portlet.wsrpLegac
yPortletHandle

Portlet No

com.oracle.portlet.wsrpPortle
tHandle

Portlet No

oracle.portlet.bridge.adf.raise
UndeclaredContextualEvents

Portlet No

13.3.6.1.1 javax.portlet.actionScopedRequestAttributes

Specifies whether to store action-scoped request attributes so that they are available to
portlets until a new action occurs.

You can use the WebCenter Portal-specific
excludedActionScopeRequestAttributes container runtime option to limit
which request attributes are stored in the scopes.

Valid values:

• true—store request attributes starting at processAction until the next
processAction. You can specify a second value of numberOfCachedScopes

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-15

and a third value indicating the number of scopes to be cached by the portlet
container.

• false—do not store request attributes.

13.3.6.1.2 javax.portlet.escapeXml

Specifies whether to XML encode URLs returned from actionUrl, renderUrl, and
resourceUrl JSR 286 tag library tags.

You can override this option on a per-tag basis using the encodeXml attribute.

Valid values:

• true—(default) the URLs returned by the actionUrl, renderUrl, and
resourceUrl tags are XML encoded (using ampersand entities for parameter
separation).

• false—the URLs returned by the actionUrl, renderUrl, and resourceUrl tabs are
not XML encoded (and use just ampersand characters).

Note:

This option does not have any effect on the return value of
PortletURL.toString() or ResourceURL.toString(). In both these
cases, for JSR 286, the output uses only ampersand characters. To use
ampersand entities or to be able to specify the XML encoding to use when
generating URLs not using the tag libraries, see the BaseURL.write()
methods.

13.3.6.1.3 javax.portlet.servletDefaultSessionScope

Specifies the scope of the session object provided to servlets or JSPs that are included
or forwarded from a Java portlet.

Valid values:

• APPLICATION_SCOPE—(default) map the portlet session with application scope.

• PORTLET_SCOPE—map the portlet session with portlet scope.

13.3.6.1.4 com.oracle.portlet.allowEventPayloadsWithoutJAXBBinding

Allows event payload types declared in portlet.xml and event payloads sent from
JSR 286 portlets to bypass the JSR 286 spec requirement that these types have a valid
JAXB binding.

Valid values:

• true—event payloads without valid JAXB bindings are allowed.

• false—event payloads without valid JAXB bindings are not allowed, per the JSR
286 specification.

13.3.6.1.5 com.oracle.portlet.allowWsrpExport

Specifies whether the WSRP export-portlets operation should be supported for the
web application.

Developing JSR 286 Java Portlets

13-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

This option is used mainly for backward-compatibility; it is preferred to control the
export-portlets operation through the wsrp-producer-config.xml setting.

Valid values:

• true—(default) export-portlets is allowed.

• false—export-portlets is not allowed. This overrides the setting in WEB-INF/
wsrp-producer-config.xml.

13.3.6.1.6 com.oracle.portlet.compatibilityMode

Set to owc168 to invoke the WebCenter Portal JSR 286 container JSR 168 compatibility
mode.

This also automatically sets the disallowResourceServing runtime option to
true if no other value for that option is specified.

13.3.6.1.7 com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite

Specifies the default WSRP requiresRewrite flag to use when encoding URLs for
resources not served by the portlet. This setting is used for all URLs returned by the
PortletResponse.encodeURL() method, unless overridden by the presence of the
oracle.portlet.server.resourceRequiresRewriting request attribute
when the PortletResponse.encodeURL() method is called.

Valid values:

• true—(default) the requiresRewrite flag is set to true, indicating that the
resource should be rewritten by the consumer.

• false—the requiresRewrite flag is set to false, indicating that the resource
does not necessarily need to be rewritten by the consumer.

13.3.6.1.8 com.oracle.portlet.defaultServedResourceRequiresWsrpRewrite

Specifies the default WSRP requiresRewrite flag to use when generating resource
URLs for portlet-served resources.

This setting is used for all resource URLs created by the portlet, unless overridden by
the presence of the resourceRequiresRewriting request attribute when the
resource URL methods write() or toString() are called. This setting is also used
to specify the WSRP requiresRewriting flag on the served resource response, but
can be overridden by the presence of the resourceRequiresRewriting request
attribute when the portlet's serveResource() method returns.

Valid values:

• true—the requiresRewrite URL flag and requiresRewriting response flag
are set to true, indicating that the resource should be rewritten by the consumer

• false—the requiresRewrite URL flag and requiresRewriting response
flag are set to false, indicating that the resource does not necessarily need to be
written by the consumer, although the consumer may choose to rewrite the URL.

If unspecified, the requiresRewrite URL flag is not given a value, and the
requiresRewriting response flag for a serveResource operation is based on the
MIME type of the response.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-17

13.3.6.1.9 com.oracle.portlet.disallowResourceServing

Specifies whether portlets are allowed to serve resources. This is useful if JSR 168
portlets are run in the 286 container, as any JSR 168 portlet extending
javax.portlet.GenericPortlet automatically inherits the JSR 286 functionality,
which automatically forwards resource requests to a file in the web application named
after the resource ID, creating a potential security problem. For the same security
reason, JSR 286 portlets that do not serve resources are safest to disallow resource
serving.

Valid values:

• true—portlets are not allowed to serve resources.

• false—portlets are allowed to serve resources.

13.3.6.1.10 com.oracle.portlet.escapeXmlEncodeUrls

Specifies whether the JSR 286 container should XML-encode URLs generated from the
PortletResponse.encodeURL() method.

Valid values:

• true—URLs generated by the PortletResponse.encodeURL() method are
XML-encoded.

• false—(default) URLs generated by PortletResponse.encodeURL() are not
XML-encoded.

13.3.6.1.11 com.oracle.portlet.eventPayloadsXmlType

Specifies optional XML schema types for JAXB-bindable Java object event payloads if
events are sent over WSRP. This is a multi-valued runtime option; each value consists
of a Java class name and QName pair, separated by a colon (:). The QName should
use the standard Java String representation of a QName ({namespace}localpart).
For each value specified, the QName is used as the XML schema type to annotate
WSRP event payloads of the specified Java object type after the object has been
marshalled to XML. This may be useful when using events to communicate across
portlets on multiple producers.

13.3.6.1.12 com.oracle.portlet.excludedActionScopeRequestAttributes

This is a multi-valued property with each value being a regular expression. Request
attributes which match any of the regular expressions are not stored as action-scoped
request attributes if the javax.portlet.actionScopedRequestAttributes
container runtime option is used, in addition to any request parameters whose values
match the regular expressions defined in the
com.oracle.portlet.externalScopeRequestAttributes container runtime
option.

13.3.6.1.13 com.oracle.portlet.externalScopeRequestAttributes

This is a multi-valued property with each value being a regular expression. Request
attributes which match any of the regular expressions are considered outside of portlet
scope, and are shared with the underlying portal request.

If the javax.portlet.actionScopedRequestAttributes option is used, any
request attributes matching the regular expressions declared in
externalScopeRequestAttributes are not stored in the action scope request
attributes.

Developing JSR 286 Java Portlets

13-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

13.3.6.1.14 com.oracle.portlet.importCssToIFrame

Specifies to a portal consumer whether the CSS file should be imported to an IFRAME
portlet.

Valid values:

• false—(default) nothing is done.

• true—the CSS file from the consumer is applied to an IFRAME portlet.

13.3.6.1.15 com.oracle.portlet.minimumWsrpVersion

Specifies minimum required WSRP version for the portlet to work. If the WSRP
version being used is less than the value specified, the portlet will not be included in a
WSRP GetServiceDescription, GetPortletDescription, GetMarkup and
other WSRP responses.

Valid values:

• 1

• 2

13.3.6.1.16 com.oracle.portlet.offerPortletOverWsrp

Specifies whether the portlet is offered in the WSRP producer's service description.

Any offerRemote setting in a .portlet file referencing the JSR 168/286 portlet
overrides this container runtime option.

Valid values:

• true—(default) the portlet is offered in the WSRP producer's service description.

• false—the portlet is not included in the service description.

If not specified at all, the default value specified in the WEB-INF/producer-
config.xml is used.

13.3.6.1.17 com.oracle.portlet.portalInfoProvider

Specifies the class name of an optional implementation of
com.bea.portlet.container.IPortalInfo interface. This implementation
defines the value returned by the JSR 286 container's
request.getPortalContext().getPortalInfo(). The default implementation
returns the producer/local server name and version, but a custom implementation
could pass both the consumer server information and the producer server information
in a WSRP scenario.

13.3.6.1.18 com.oracle.portlet.redirectAfterAction

Causes the JSR 286 container to send a redirect to the browser to the portlet's render
URL after a processAction is run (and after events are handled) so that reloading
the resulting page will not result in another processAction.

Valid values:

• true—a redirect is issued after every portlet action.

• false—no redirect is not automatically issued after portlet actions.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-19

13.3.6.1.19 com.oracle.portlet.requireIFrame

Specifies whether the portlet must be rendered inside an IFRAME.

Valid values:

• true—renders the portlet inside an IFRAME.

• false—does not force the portlet to be rendered inside an IFRAME.

13.3.6.1.20 com.oracle.portlet.streamingOptimized

Indicates the portlet is optimized to run in streaming mode, which may enhance
performance.

Valid values:

• true—the portlet is optimized to run in streaming mode.

• false—the portlet is not optimized to run in streaming mode.

13.3.6.1.21 com.oracle.portlet.suppressWsrpOptimisticRender

Suppresses the optimistic render of a portlet after the action and/or event lifecycles if
the portlet is being run over WSRP.

Valid values:

• true—optimistic render is always suppressed.

• false—optimistic render may be performed.

13.3.6.1.22 com.oracle.portlet.trapWsrpRenderExceptions

Specifies whether the JSR 286 container should send exceptions during render as
WSRP SOAP faults, or render an exception message for the portlet markup instead.

Valid values:

• true—exceptions are not sent as SOAP faults but instead as rendered exception
stack traces.

• false—(default) exceptions generated by the portlet during render are treated as
SOAP faults.

13.3.6.1.23 com.oracle.portlet.trimEncodeUrls

Specifies whether the JSR 286 container should trim whitespace from URLs passed to
the PortletResponse.encodeURL() method.

Valid values:

• true—(default) leading and trailing whitespace is trimmed from the URL passed
into PortletResponse.encodeURL().

• false—whitespace is not trimmed from the URL passed into
PortletResponse.encodeURL().

13.3.6.1.24 com.oracle.portlet.useWsrpUserContextForUserAuthentication

Specifies whether the PortletRequest methods getRemoteUser(),
getUserPrincipal() and isUserInRole() are based on the WSRP user context
information or on standard J2EE security.

Developing JSR 286 Java Portlets

13-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Valid values:

• true—the user information is based on the WSRP user context, if the portlet is run
over WSRP. This can be a security problem so use this option with care.

• false—(or the portlet is not being run over WSRP) the user information is based
on the J2EE authenticated user.

13.3.6.1.25 com.oracle.portlet.wsrpHeaderMode

Used only when portlets are being rendered as WSRP remote portlets, to indicate
where cookies and headers should be put in the WSRP SOAP response as a hint to the
WSRP consumer for the header or cookie's intended final destination.

When portlets are run locally (not over WSRP), headers and cookies set by portlets are
always assumed to go to the client. Setting this container runtime option sets a default
value for the PortletRequest attribute
com.oracle.portlet.wsrpHeaderMode, which can still be overridden by the
portlet at runtime on a per-header basis.

Valid values:

• client—headers and cookies set by the portlet are directed to go to the client (for
example, the browser).

• consumer—headers and cookies set by the portlet are directed to go to the
consumer and not passed on to the client.

• both—headers and cookies set by the portlet are directed to go to the client and
the consumer.

If not set, the portlet container assumes the default value for the producer as specified
in the WEB-INF/wsrp-producer-config.xml file.

13.3.6.1.26 com.oracle.portlet.wsrpLegacyPortletHandle

Allows the specification of a legacy WSRP portlet handle to be used for the portlet,
which must be unique within the web application. This is useful for backward-
compatibility with WebCenter Portal consumers that use the legacy, portlet-position-
based WSRP portlet handles.

If specified, the legacy portlet handle is published in the WSRP serviceDescription as a
legacy-handle extension on the portlet, and consumers are able to access the portlet
using the legacy portlet handle, although the portlet will not be published in the
WSRP serviceDescription under the legacy portlet handle.

13.3.6.1.27 com.oracle.portlet.wsrpPortletHandle

Allows the specification of the WSRP portlet handle to be used for the portlet, which
must be unique within the web application.

13.3.6.1.28 oracle.portlet.bridge.adf.raiseUndeclaredContextualEvents

Allows the Oracle JSF Portlet Bridge to raise ADFm events that do not have
corresponding portlet events declared in the portlet.xml file.

Valid values:

• true—any ADFm event raised is forwarded on as a portlet event.

• false—only events with corresponding portlet event declarations are forwarded.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-21

13.3.6.2 Setting Container Runtime Options for All Portlets in an Application

Setting container runtime options at the application level affects all the portlets in the
application.

To set application-level container runtime options:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Application tab, if necessary.

3. Expand the Container Runtime Options section, if necessary.

4. Click the Add Container Runtime Option icon to display a list of available
options.

The list includes all container runtime options supported by the WebCenter Portal
portlet container, which are listed in Table 13-1.

If you are using a different portlet container that supports additional container
runtime options that are not listed, select Customize and enter the name of the
option in the Name field.

If you specify a container runtime option that is not supported by the portlet
container, it is ignored.

5. In the Value field, enter a value for the container runtime option.

The container runtime option is added to the portlet.xml code, as shown below.

<container-runtime-option>
 <name>com.oracle.portlet.requireIFrame</name>
 <value>true</value>
</containter-runtime-option>

6. Save the portlet.xml file.

13.3.6.3 Setting Container Runtime Options for Individual Portlets

You can set container runtime options at the individual portlet level to override the
application-wide settings.

To set portlet-level container runtime options:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Portlets tab, if necessary.

3. Click the Advanced tab.

4. Click the Add Container Runtime Option icon to display a list of available
options.

The list includes all container runtime options supported by the WebCenter Portal
portlet container, which are listed in Table 13-1.

Developing JSR 286 Java Portlets

13-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

If you are using a different portlet container that supports additional container
runtime options that are not listed, select Customize and enter the name of the
option in the Name field.

If you specify a container runtime option that is not supported by the portlet
container, it is ignored.

5. In the Value field, enter a value for the container runtime option.

The container runtime option is added to the portlet.xml code, as shown below.

<container-runtime-option>
 <name>com.oracle.portlet.requireIFrame</name>
 <value>false</value>
</containter-runtime-option>

6. Save the portlet.xml file.

13.3.7 How to Use Public Render Parameters in JSR 286 Portlets
This section includes the following topics:

• About Public Render Parameters

• Declaring a Public Render Parameter at the Application Level

• Defining a Public Render Parameter for a Portlet

• Using Public Render Parameters: An Example

13.3.7.1 About Public Render Parameters

Public render parameters enable portlets to share parameter values, allowing a form of
interportlet communication.

For example, if a Map portlet and a Weather portlet are both configured to use a
Zipcode public render parameter, entering a zip code in the Map portlet updates the
same parameter value in the Weather portlet.

Any public render parameters supported by a portlet must be declared in the
application section of the portlet deployment descriptor file (portlet.xml). Public
render parameters defined at the application level in this way are available to all the
portlets in the application.

Individual portlets within the application can then specify which of these public
render parameters they want to use.

If you declare and define public render parameters as described below, interportlet
communication happens automatically, without any further coding required on your
part.

For more information about public render parameters and how to implement them,
see the JSR 286 specification at:

http://jcp.org/en/jsr/detail?id=286

13.3.7.2 Declaring a Public Render Parameter at the Application Level

For a public render parameter to be available to a portlet, it must first be declared in
the application section of the portlet deployment descriptor file (portlet.xml).

To define a public render parameter at the application level:

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-23

http://jcp.org/en/jsr/detail?id=286

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Parameters tab.

3. Click the Add icon to create a new public render parameter.

4. From the drop-down list, select whether you are specifying a fully qualified name
(QName) for the parameter, or just the local part of the name.

• Qualified Name—A QName uniquely identifies the public render parameter
across applications by specifying a namespace for the parameter as well as a
local name. Within the portlet code, a public render parameter is accessed by
its identifier, which identifies the parameter uniquely within the application.
However, a page typically contains multiple portlets which may come from
different applications. Using QNames ensures that public render parameters
from one portlet do not unintentionally interfere with the other portlets on a
page regardless of where those portlets come from.

• Unqualified Name—If the namespace for the parameter is the same as the
application default namespace, you can omit the namespace when defining the
parameter by specifying an unqualified name. If the application default
namespace has not been defined, a parameter with an unqualified name uses
the XML default namespace.

Tip:

To check whether an application default namespace has been defined, click
the Application tab and see if a value has been entered in the Default
Namespace field.

5. Enter a name for the parameter.

• If you selected Qualified Name—in the Namespace field, enter the namespace
for the parameter and in the Name field, enter the local part of the parameter
name.

• If you selected Unqualified Name—in the Name field, enter the local part of
the parameter name. The parameter uses the application default namespace as
the namespace for the parameter (or the XML default namespace if no default
namespace is defined for the application).

6. In the Identifier field, enter a name to identify the public render parameter within
the application.

The identifier must be unique within the application and is used to identify the
parameters used by a portlet and in the portlet code to access the parameter.
Using the identifier means that portlet developers do not need to be aware of the
parameter's fully qualified name; they simply need to know the simpler
application-specific identifier.

7. In the Description field, enter a description for the public render parameter. The
description should provide enough information so that portlet developers can
determine how to use this parameter in their portlets.

8. (Optional) In the Aliases panel, you can provide a list of aliases so that the
parameter can accept values from other public render parameters even if they
have different QNames.

Developing JSR 286 Java Portlets

13-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

a. Click the Create icon to create a new alias for the parameter.

b. In the Namespace field, enter the namespace of the parameter to use for the
alias.

c. In the Name field, enter the local part of the parameter to use for the alias.

Tip:

When creating aliases for public render parameters, it is a good idea to set up
reciprocal aliases. So if a parameter in portlet A has an alias to a parameter in
portlet B, you should also, if possible, create an alias for the parameter in
portlet B to the parameter in portlet A.

9. The public render parameter is added to the application definition section of the
portlet.xml file, as shown below.

<public-render-parameter>
 <description>Parameter for zip code</description>
 <identifier>Zip</identifier>
 <qname xmlns:x="http://example.com/params">x:Zip</qname>
 <alias xmlns:x="http://example.com/params">x:ZipCode</alias>
</public-render-parameter>

10. Save the portlet.xml file.

13.3.7.3 Defining a Public Render Parameter for a Portlet

If you want a portlet to support a public render parameter, add it to the portlet.

To add a public render parameter to a portlet:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. If the public render parameter has not yet been defined within the Portlet Producer
application, you must do this first.

For more information, see Declaring a Public Render Parameter at the Application
Level.

3. Click the Portlets tab and select the portlet in which you want to use the public
render parameter.

4. Click the Parameters tab.

In the Publishing Events panel, the Available list shows all the portlet events that
have been defined for the application.

5. Click the Parameters tab.

In the Public Render Parameters panel, the Available list shows all the public
render parameters that have been defined for the application.

6. Select the public render parameter that you want to use in the portlet and click the
Add icon to move it to the Selected list.

This adds the public render parameter to the portlet definition in portlet.xml, as
shown below.

<supported-public-render-parameter>Zip</supported-public-render-parameter>

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-25

7. Save the portlet.xml file.

8. You can now use this public render parameter in the code for your portlet.

13.3.7.4 Using Public Render Parameters: An Example

The following example shows how to use public parameters to link the behavior of
two portlets using parameters with different names. In the example, we take a generic
Parameter Form portlet that allows us to update public render parameters, and show
how that can be linked to a Stock Price portlet that renders stock prices, taking the
stock symbol from a public render parameter. The generic name of the parameter from
the Parameter Form portlet (parameter1) does not match the name of the parameter
in the Stock Price portlet (stocksymbol), so the developer of the Stock Price portlet
uses an alias to provide a link between the two parameters.

The example below shows an excerpt from the portlet.xml file for the portlet
producer application that contains the Parameter Form portlet. The portlet producer
application defines a public render parameter (parameter1) that is supported by the
Parameter Form portlet.

<portlet-app ...>
 <portlet id="1234567890">
 ...
 <supported-public-render-parameter>
 parameter1
 </supported-public-render-parameter>
 ...
 </portlet>
 ...
 <public-render-parameter>
 <description xml:lang="en">First parameter set by portlet</description>
 <identifier>parameter1</identifier>
 <qname xmlns:op="http://xmlns.oracle.com/portlet/oracle-portlet-app">
 op:parameter1
 </qname>
 </public-render-parameter>
 ...
</portlet-app>

The code for the Parameter Form portlet sets the value of the parameter1 portlet
when a value is entered in the portlet:

public void processAction(ActionRequest request,
 ActionResponse actionResponse)
 throws PortletException, IOException
{
 //
//Read the new parameter value posted in the portlet form
 //
String param1 =actionResponse.getParameter("form_param1");

 //
//Set the new parameter values. These will be intepreted by the
 //container as public render parameters as the names match the names
 //of the declared parameters.
 //
actionResponse.setRenderParameter("parameter1", param1);
}

The following example shows an excerpt from the portlet.xml file for the portlet
producer application that contains the Stock Price portlet. This portlet producer

Developing JSR 286 Java Portlets

13-26 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

application also defines a public render parameter (stocksymbol) that is supported
by the Stock Price portlet. For the stocksymbol parameter to link to the Parameter
Form portlet's parameter, an alias for parameter1 is added.

<portlet-app ...>
 <portlet>
 ...
 <supported-public-render-parameter>
 stocksymbol
 </supported-public-render-parameter>
 ...
 </portlet>
 ...
 <public-render-parameter>
 <description xml:lang="en">The stock symbol</description>
 <identifier>stocksymbol</identifier>
 <qname xmlns:s="http://www.oracle.com/stocks">s:stocksymbol</qname>
 <!-- Alias matches the Parameter Form portlet's first parameter name -->
 <alias xmlns:op="http://xmlns.oracle.com/portlet/oracle-portlet-app">
 op:parameter1
 </alias>
 </public-render-parameter>
 ...
</portlet-app>

The code for the Stock Price portlet reads the value of the public render parameter
posted by the Parameter Form portlet:

public void doView(RenderRequest request, RenderResponse response)
 throws PortletException, IOException
{
 response.setContentType("text/html; charset=UTF-8");
 PrintWriter out =response.getWriter();

//Retrieve any values for the public render parameter.
 //The parameter is looked up in the request using its identifier in portlet.xml
 //(not it's name or alias).
 String symbol =request.getParameter("stocksymbol");
 ...
}

When these two portlets are dropped onto the same page, they are automatically
linked together. Entering a value in the first parameter field of the Parameter Form
portlet causes the Stock Price portlet to be updated with the new value.

13.3.8 How to Use Portlet Events in JSR 286 Portlets
This section includes the following topics:

• About Portlet Events

• Declaring a Portlet Event at the Application Level

• Defining a Processing Event for a Portlet

• Defining a Publishing Event for a Portlet

• Using Portlet Events: An Example

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-27

13.3.8.1 About Portlet Events

Portlet events are a JSR 286 feature that enables interportlet communication by
providing portlets with the ability to respond to actions that occur outside of the
portlet itself, for example an action performed on the page that contains the portlet or
on another portlet on the same page. Portlet events can be cascaded so that a portlet
may respond to an event by triggering an event of its own, which in turn affects other
portlets on the page.

Any portlet events supported by a portlet must be declared in the application section
of the portlet deployment descriptor (portlet.xml). Portlet events defined at the
application level in this way are available to all the portlets in the application.

Individual portlets within the application can then specify which of these portlet
events they want to use. Portlets can declare events that they are interested in
receiving, called processing events, and events that they trigger, called publishing events.

If you declare and define portlet events as described below, interportlet
communication happens automatically, without any further coding required on your
part.

For more information about portlet events and how to implement them, see the JSR
286 specification at:

http://jcp.org/en/jsr/detail?id=286

13.3.8.2 Declaring a Portlet Event at the Application Level

For a portlet event to be available to a portlet, it must first be declared in the
application section of the portlet deployment descriptor file (portlet.xml).

To define a portlet event at the application level:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Events tab.

3. Click the Add icon to create a new portlet event.

4. From the drop-down list, select whether you are specifying a fully qualified name
(QName) for the portlet event, or just the local part of the name.

• Qualified Name—A QName uniquely identifies the portlet event across
applications by specifying a namespace for the event as well as a local name. A
page typically contains multiple portlets which may come from different
applications. Using QNames ensures that portlet events from one portlet do
not unintentionally interfere with the other portlets on a page regardless of
where those portlets come from.

• Unqualified Name—If the namespace for the portlet event is the same as the
application default namespace, you can omit the namespace when defining the
event by specifying an unqualified name. If the application default namespace
has not been defined, a portlet event with an unqualified name uses the XML
default namespace.

Developing JSR 286 Java Portlets

13-28 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://jcp.org/en/jsr/detail?id=286

Tip:

To check whether an application default namespace has been defined, click
the Application tab and see if a value has been entered in the Default
Namespace field.

5. Enter a name for the portlet event.

• If you selected Qualified Name—In the Namespace field, enter the namespace
for the portlet event and in the Name field, enter the local part of the event
name.

• If you selected Unqualified Name—In the Name field, enter the local part of
the portlet event name. The event uses the application default namespace as
the namespace for the event (or the XML default namespace if no default
namespace is defined for the application).

6. In the Payload Type field, enter or browse for the data type of the payload
provided by the portlet event.

7. In the Description field, enter a description for the portlet event.

8. (Optional) In the Aliases panel, you can provide a list of aliases so that a portlet
event can be recognized by the portlet even if it has a different QName from the
one defined by the portlet.

a. Click the Create icon to create a new alias for the portlet event.

b. In the Namespace field, enter the namespace of the portlet event to use for the
alias.

c. In the Name field, enter the local part of the portlet event to use for the alias.

9. The portlet event is added to the application definition section of the
portlet.xml file, as shown below.

<event-definition id="latLong">
 <qname xmlns:x="http://xmlns.oracle.com/portlet/EventSample">
 x:latLong
 </qname>
 <value-type>portlet.LatLong</value-type>
</event-definition>

10. Save the portlet.xml file.

13.3.8.3 Defining a Processing Event for a Portlet

If you want a portlet to listen for a particular portlet event, define it as a processing
event.

To add a processing event to a portlet:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. If the portlet event has not yet been defined within the Portlet Producer
application, you must do this first.

For more information, see Declaring a Portlet Event at the Application Level.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-29

3. Click the Portlets tab and select the portlet in which you want to use the portlet
event.

4. Click the Events tab.

In the Processing Events panel, the Available list shows all the portlet events that
have been defined for the application.

5. Select the portlet event that you want to use in the portlet and click the Add icon to
move it to the Selected list.

This adds the portlet event as a processing event to the portlet definition in
portlet.xml, as shown below.

<supported-processing-event id="latLong">
 <qname xmlns:x="http://xmlns.oracle.com/portlet/EventSample">
 x:latLong
 </qname>
</supported-processing-event>

6. Save the portlet.xml file.

You can now use this portlet event in the code for your portlet.

13.3.8.4 Defining a Publishing Event for a Portlet

If you want a portlet to trigger a particular portlet event, define it as a publishing
event.

To add a publishing event to a portlet:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. If the portlet event has not yet been defined within the Portlet Producer
application, you must do this first.

For more information, see Defining a Publishing Event for a Portlet.

3. Click the Portlets tab and select the portlet in which you want to use the portlet
event.

4. Click the Events tab.

In the Publishing Events panel, the Available list shows all the portlet events that
have been defined for the application.

5. Select the portlet event that you want to use in the portlet and click the Add icon to
move it to the Selected list.

This adds the portlet event as a publishing event to the portlet definition in
portlet.xml, as shown below.

<supported-publishing-event>
 <qname xmlns:x="http://xmlns.oracle.com/portlet/EventSample">
 x:latLong
 <qname>
</supported-publishing-event>

6. Save the portlet.xml file.

Developing JSR 286 Java Portlets

13-30 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

You can now use this portlet event in the code for your portlet.

13.3.8.5 Using Portlet Events: An Example

The following example shows how to use portlet events to use the actions in one
portlet to affect another portlet on the same page. In the example, we have a portlet,
the Department Locations portlet, that lists the geographical locations of a company's
various offices. The example shows how that portlet can be linked to another portlet,
the Map portlet, which displays a Google map of the location selected in the
Department Locations portlet.

The example below shows an excerpt from the portlet.xml file for the portlet
producer application that contains the two portlets. The portlet producer application
defines a portlet event (latLong) that is supported by the two portlets. The payload
of the event is an object that encapsulates the latitude and longitude of a location.

<event-definition id="latLong">
 <qname xmlns:x="http://xmlns.oracle.com/portlet/EventSample">x:latLong</qname>
 <value-type>portlet.LatLong</value-type>
</event-definition>

The next example shows that the Department Locations portlet uses the latLong
event as a publishing event. That is, it raises the event under particular circumstances.

<portlet id="locations">
 ...
 <supported-publishing-event>
 <qname xmlns:x="http://xmlns.oracle.com/portlet/EventSample">x:latLong<qname>
 </supported-publishing-event>
 ...
</portlet>

The Department Locations portlet raises the latLong event in its processAction
method if a location is selected in the portlet (see example below). It also sets the
payload of the event to the latitude and longitude of the selected location.

public void processAction(ActionRequest request, ActionResponse response)
 throws PortletException
 {
String locationId =request.getParameter("locationId");
 Location location =getLocation(Integer.parseInt(locationId));

 if (location != null)
 {
//QName matches the event declared as a supported-publishing-event in
 //portlet.xml for this portlet.

 //LatLong event used by the Map portlet.
 response.setEvent(new QName("http://xmlns.oracle.com/portlet/EventSample",
"latLong"),
 new LatLong(location.getLatitude(), location.getLongitude()));

 }
}

The example below shows another portlet, the Map portlet, that also uses the
latLong event, but this time as a processing event. That is, it listens out for the event
and takes a particular action if the event is raised elsewhere on the page.

<portlet id="map">
 ...

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-31

 <supported-processing-event id="latLong">
 <qname xmlns:x="http://xmlns.oracle.com/portlet/EventSample">x:latLong</qname>
 </supported-processing-event>
 ...
</portlet>

The processEvent method for the Map portlet receives the latLong event and uses
the payload from that event to set the LAT_LONG_PARAMETER render parameter,
which the portlet uses during rendering to determine the location to display in the
Google map:

@Override
 public void processEvent(EventRequest request,
 EventResponse response)
 throws PortletException, IOException
 {
response.setRenderParameters(request);

Event event =request.getEvent();
 if (event.getName().equals("latLong"))
 {
response.setRenderParameter(LAT_LONG_PARAMETER, event.getValue().toString());
 }
}

Tip:

In this case, the events used by the Department Locations and Map portlets
have the same name (latLong). If the Map portlet listens for an event using a
different name (for example, geolocation), the two portlets could still be
automatically linked by defining an alias for the geolocation event in the
portlet.xml file as follows:

<event-definition id="geolocation"> <qname xmlns:x="http://xmlns.oracle.com/
portlet/Map">
 x:geolocation
 </qname> <alias xmlns:x="http://xmlns.oracle.com/portlet/EventSample">
 x:latLong
 </alias>
 <value-type>portlet.LatLong</value-type>
</event-definition>

Note, however, that the payload type of the two events must be the same for
automatic linking to work.

Developing JSR 286 Java Portlets

13-32 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

For an event payload to be passed between portlets it must be possible to form
an XML payload from event payload. For this to be possible one of the
following must be true:

• The payload must have a JAXB binding, for example by adding the
XmlRootElement annotation to the portlet class:

package portlet;

import java.io.Serializable;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(namespace="http://xmlns.oracle.com/portlet/EventSample")
public class LatLong implements Serializable
{
 private final double _latitude;
 private final double _longitude;
...

• The allowEventPayloadsWithoutJAXBBindings container runtime
option must be set to true in portlet.xml.

For more information, see How to Customize the Runtime Environment
for JSR 286 Portlets.

13.3.9 How to Add Portlet Preferences to JSR 286 Portlets
This section includes the following topics:

• About Portlet Preferences

• Adding a Portlet Preference to a JSR 286 Portlet

• Adding Simple Portlet Personalization: An Example

13.3.9.1 About Portlet Preferences

Portlet preferences enable end users to personalize or customize portlets at runtime.
Personalizations are visible only to the user that performs them; not to other users.
Customizations are visible to all users who have not personalized the portlet.

By default, when you create a JSR 286 portlet using the JDeveloper wizard, a portlet
preference is created to enable users to change the title of the portlet at runtime. You
can create additional portlet preferences, either during portlet creation or by editing
the portlet.xml file after portlet creation, to enable end users to make other
modifications to the portlet at runtime.

For information about how to add a portlet preference to the portlet.xml file after
portlet creation, see Adding a Portlet Preference to a JSR 286 Portlet. For information
about how to add a portlet preference during portlet creation, see Creating a JSR 286
Java Portlet.

13.3.9.2 Adding a Portlet Preference to a JSR 286 Portlet

To enable users to modify portlet behavior or content at runtime, you must create
portlet preferences for those attributes of the portlet that you want users to be able to
modify.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-33

To add a portlet preference to a portlet:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Portlets tab and select the portlet for which you want to add the portlet
preference.

3. Click the Advanced tab.

The Preferences panel lists any existing portlet preferences that exist for the portlet,
for example, the portletTitle preference.

4. Click the Add icon to create a new portlet preference.

5. In the Name field, enter a name for the preference.

The name must be unique within the portlet.

6. In the Value field, enter one or more default values for the preference.

Separate multiple entries with commas.

7. Select Read-only if you do not want users to be able to update the value of the
preference.

The portlet preference is added to the application definition section of the
portlet.xml file, as shown below.

<portlet-preference>
 <name>portletTitle</name>
</portlet-preference>
<portlet-preference>
 <name>myPreference</name>
 <value>7</value>
</portlet-preference>

8. Save the portlet.xml file.

You can now use this preference in your portlet code using the getPreference
method.

Tip:

If you want the preference to be translatable, you must add the appropriate
key-value pairs to the resource bundle class.

13.3.9.3 Adding Simple Portlet Personalization: An Example

The following example provides a simple illustration of how you can enable
personalization in portlets.

To add simple personalization to a portlet:

1. In JDeveloper, create a Portlet Producer application, accepting the default values.

2. Create a JSR 286 portlet, accepting the default values.

3. In the Application Navigator, expand the Portlets project.

4. Right-click portlet.xml and choose Open.

Developing JSR 286 Java Portlets

13-34 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

5. Click the Portlets tab and select portlet1.

6. Click the Advanced tab.

7. Click the Add icon to create a new portlet preference.

8. In the Name field, enter portletContent.

9. In the Application Navigator, right-click view.jsp and choose Open.

10. In the visual editor, click the Source tab and add the code indicated in bold in the
example below to display the portletContent portlet preference:

<%@ page contentType="text/html"
 import="javax.portlet.*,java.util.*,Portlets.Portlet1,
 Portlets.resource.Portlet1Bundle"%>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>

<portlet:defineObjects/>
<%
String[] str ={"Portlet Content"};
PortletPreferences prefs =renderRequest.getPreferences();
str =prefs.getValues("portletContent",str);
for (int i=0; i<str.length; i++)
{
%><%=(i<str.length-1)?str[i]+", ":str[i]%><%}%>

11. In the Application Navigator, right-click edit.jsp and choose Open.

Notice that the JSP consists of a form field, a form input field, and two form button
fields.

12. In the visual editor, click the Source tab and add the code indicated in bold in the
example below to implement a form field for users to enter a value for the
portletContent customization preference:

<%@ page contentType ="text/html; charset=windows-1252"
 pageEncoding ="windows-1252"
 import ="javax.portlet.*, java.util.*,
Portletenhance.Portletenhance,
Portletenhance.resource.PortletenhanceBundle"%>
@ <%@ taglib uri ="http://java.sun.com/portlet" prefix="portlet"%>
<portlet:defineObjects/>
<%
 PortletPreferences prefs =renderRequest.getPreferences();
 ResourceBundle res =
portletConfig.getResourceBundle(renderRequest.getLocale());
%>
<form action="<portlet:actionURL/>" method="POST">
 <table border="0">
 <tr>
 <td width="20%">
 <p class="portlet-form-field" align="right">
 <%= res.getString(PortletenhanceBundle.PORTLETCONTENT) %>
 </p>
 </td>
 <td width="80%">
 <input class="portlet-form-input-field"
 type="TEXT"
 name="<%= Portletenhance.PORTLETCONTENT_KEY %>"
 value="<%= Portletenhance.buildValue(prefs,

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-35

Portletenhance.PORTLETCONTENT_KEY) %>"
 size="20">
 </td>
 </tr>
 <tr>
 <td width="20%">
 <p class="portlet-form-field" align="right">
 <%= res.getString(PortletenhanceBundle.PORTLETTITLE) %>
 </p>
 </td>
 <td width="80%">
 <input class="portlet-form-input-field"
 type="TEXT"
 name="<%= Portletenhance.PORTLETTITLE_KEY %>"
 value="<%= prefs.getValue(Portletenhance.PORTLETTITLE_KEY,
res.getString("javax.portlet.title")) %>"
 size="20">
 </td>
 </tr>
 <%
 String[] str ={"Portlet Content"};
 str =prefs.getValues("portletContent",str);
%>
<tr><td width="20%">
<p class="portlet-form-field" align="right">
Content
</p>
</td><td width="80%">
<textarea rows="10" cols="60" class="portlet-form-input-field"
 name="portletContent"><%
for (int i=0; i<str.length; i++)
{%><%= (i<str.length-1) ? str[i]+", " : str[i] %><%}%>
</textarea>
</td></tr>
 <tr>
 <td colspan="2" align="center">
 <input class="portlet-form-button" type="submit"

name="<%=Portletenhance.OK_ACTION%>"

value="<%=res.getString(PortletenhanceBundle.OK_LABEL)%>">
 <input class="portlet-form-button" type="submit"

name="<%=Portletenhance.APPLY_ACTION%>"

value="<%=res.getString(PortletenhanceBundle.APPLY_LABEL)%>">
 </td>
 </tr>
 </table>
</form>

13. In the Application Navigator, right-click Portlet1.java and choose Open.

14. In the visual editor, click the Source tab and add the code in bold in the example
below to the processAction method.

// Save the preferences.
PortletPreferences prefs =request.getPreferences();
String param =request.getParameter(PORTLETTITLE_KEY);
prefs.setValues(PORTLETTITLE_KEY, buildValueArray(param));
String contentParam =request.getParameter("portletContent");

Developing JSR 286 Java Portlets

13-36 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

if (contentParam != null)
{
 prefs.setValues("portletContent", buildValueArray(contentParam));
}
prefs.store();

When this portlet is available on a page, users can personalize it. The Edit mode of
the portlet provides a Portlet Content field, where users can enter text. The text
entered is then displayed as the content of the portlet.

13.3.10 How to Use Portlet Filters in JSR 286 Portlets
This section includes the following topics:

• About Portlet Filters

• Adding a Portlet Filter to an Application

• Applying a Portlet Filter to a Portlet

13.3.10.1 About Portlet Filters

Portlet filters are a JSR 286 feature that enables you to alter the content of a portlet at
runtime. A portlet filter is a reusable Java component that can transform the content of
portlet requests and portlet responses. Filters do not generally create a response or
respond to a request as portlets do, rather they modify or adapt the requests and
responses.

For more information about portlet filters and how to implement them, see the JSR 286
specification at:

http://jcp.org/en/jsr/detail?id=286

13.3.10.2 Adding a Portlet Filter to an Application

For a portlet to be able to use a portlet filter, the filter must first be defined within the
application.

To add a portlet filter to an application:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Filters tab.

3. Click the Add icon to create a new portlet filter.

4. In the Create Portlet Filter dialog you can either create a new portlet filter, or
select a previously created portlet filter:

• To create a new portlet filter:

a. Select New Portlet Filter.

b. In the Name field, enter a name for the portlet filter.

The name must be unique within the application and use only letters,
numbers, and the underscore character.

c. In the Package field, enter or browse for the package to contain the new
filter class.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-37

http://jcp.org/en/jsr/detail?id=286

d. Select one or more of the Lifecycle Phase check boxes to specify which of
the javax.portlet.filter interfaces the filter class implements:

Action—The filter class implements the ActionFilter interface

Event—The filter class implements the EventFilter interface.

Render—The filter class implements the RenderFilter interface.

Resource—The filter class implements the ResourceFilter interface.

Tip:

When you create a new filter class using the Create Portlet Filter dialog, you
can specify which of the filter interfaces the filter class implements. After the
filter class has been created, you cannot add or remove filter interfaces
through the Overview Editor. Instead, you must edit the source of the filter
class directly to manually add or remove the interfaces and the doFilter
methods defined for those interfaces.

• To select an existing portlet filter:

a. Select Choose from Existing Class.

b. Enter or browse for the filter class.

5. Click OK.

6. In the Display Name field, enter a more user-friendly name for the portlet filter.

7. In the Description field, enter a description for the portlet filter.

8. In the Initialization Parameters panel, you can specify initialization parameters
that pass values to the init() method of the filter class.

a. Click the Add icon to specify an initialization parameter for the portlet filter.

b. In the Name field, enter the name of the initialization parameter.

c. In the Value field, enter the value to pass to the initialization parameter.

d. In the Description field, enter a description of the initialization parameter.

The portlet filter is added to the application definition section of the
portlet.xml file, as shown below.

<filter>
 <display-name>Test Filter</display-name>
 <filter-name>filter_1</filter-name>
 <filter-class>javaportlets.MyFilter</filter-class>
 <lifecycle>ACTION_PHASE</lifecycle>
 <lifecycle>RENDER_PHASE</lifecycle>
</filter>

9. Save the portlet.xml file.

13.3.10.3 Applying a Portlet Filter to a Portlet

After the portlet filter has been defined in the application, you can then apply it to one
or more portlets within the application. You can also specify the order in which portlet
filters are applied to portlets.

To apply a portlet filter to a portlet:

Developing JSR 286 Java Portlets

13-38 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Filter Mappings tab.

3. Click the Add icon to add a row to the filter mappings table.

4. From the Filter Name drop-down list, select the portlet filter that you want to
apply to the portlet.

The drop-down list is populated with all the portlet filters that are defined in the
portlet.xml file.

5. From the Portlet Name drop-down list, select the portlet to which you want to
apply the portlet filter.

The drop-down list is populated with all the portlets that are defined in the
portlet.xml file.

Alternatively, you can use wildcards to apply the portlet filter to more than one
portlet. For example, you can enter *to apply the portlet filter to all the portlets in
the application.

The filter mapping is added to the application definition section of the
portlet.xml file. The example below shows the filter_1 portlet filter applied
to the portlet named Portlet1.

<filter-mapping>
 <filter-name>filter_1</filter-name>
 <portlet-name>Portlet1</portlet-name>
</filter-mapping>

6. Use the Top, Up, Down, and Bottom icons to order the portlet filters in the
portlet.xml file. The order of the portlet filters determines the order in which
the filters are applied to the portlets.

Note:

Portlet filters can be mapped to multiple portlets. If you have multiple portlets
mapped to (sharing) a filter, arbitrarily changing the filter order can produce
undesired side effects. That is, if you change the order in which filters are
applied in one portlet, the reordering will apply to all other portlets that share
the filter.

7. Save the portlet.xml file.

13.3.11 How to Implement Interportlet Communication Across Different Pages
Generally, interportlet communication occurs between portlets that are displayed on
the same page. However, it is possible to communicate between portlets on different
pages, as shown in the following example.

To implement interportlet communication across different pages:

1. Create a custom data control and expose a method to capture the event that
initiates the interportlet communication.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-39

public void handleEvent(Object payload) {
 if(!(payload instanceof HashMap)){
 throw new IllegalArgumentException("Payload not a
HashMap<String,String>.");
 }
 String p1 = "",p2 = "",p3 = "";
 HashMap map = (HashMap) payload;
 String[] pa1 = (String[])map.get("parameter1");
 String[] pa2 = (String[])map.get("parameter2");
 String[] pa3 = (String[])map.get("parameter3");
 if(pa1 != null)
 p1 = pa1[0];
 if(pa2 != null)
 p2 = pa2[0];
 if(pa3 != null)
 p3 = pa3[0];
 //Only forward when all 3 parameters have values
 if(!p1.equals("") && !p2.equals("") && !p3.equals("")){
 HashMap<String,String> paramMap = new HashMap<String,String>();
 paramMap.put("parameter1", p1);
 paramMap.put("parameter2", p2);
 paramMap.put("parameter3", p3);
 Map<String, Object> pageFlowScope =
ADFContext.getCurrent().getPageFlowScope();
 pageFlowScope.put("paramMap", paramMap);
 //now the navigation
 FacesContext fctx = FacesContext.getCurrentInstance();
 Application application = fctx.getApplication();
 NavigationHandler navHandler = application.getNavigationHandler();
 navHandler.handleNavigation(fctx, null, "target");
 }
 }

2. Add this method to the page bindings and create an event from it.

<methodAction id="handleEvent" InstanceName="EventDataControl.dataProvider"
 DataControl="EventDataControl" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="handleEvent"
 IsViewObjectMethod="false">
 <NamedData NDName="payload" NDType="java.lang.Object"/>
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="handleEvent"/>
 </events>
 </methodAction>

3. Wire the event to the portlet event. This ensures that the payload of the event
triggered by the portlet is passed to the custom method.

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="ParameterFormPortlet1_1_Event">
 <producer region="*">
 <consumer region="" handler="handleEvent" handleCondition="">
 <parameters>
 <parameter name="payload" value="#{payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
 </eventMap>

Developing JSR 286 Java Portlets

13-40 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

4. Create a HashMap to pass the payload to the pageFlowScope of the page that
contains the second portlet.

HashMap<String,String> paramMap = new HashMap<String,String>();
 paramMap.put("parameter1", p1);
 paramMap.put("parameter2", p2);
 paramMap.put("parameter3", p3);
 Map<String, Object> pageFlowScope = ADFContext.getCurrent().getPageFlowScope();
 pageFlowScope.put("paramMap", paramMap);

5. Define a navigation rule in the faces-config.xml file to navigate to the target
page.

FacesContext fctx = FacesContext.getCurrentInstance();
 Application application = fctx.getApplication();
 NavigationHandler navHandler = application.getNavigationHandler();
 navHandler.handleNavigation(fctx, null, "target");

6. Pass the parameters in the pageFlowScope to the target portlet using the
parameterMap attribute.

<portlet id="ParameterDisplayPortlet1_1"
 portletInstance="/oracle/adf/portlet/PortletExample/ap/
Ei2default_354ce3c1_013d_1000_8002_c0a83801a490"
 class="oracle.adf.model.portlet.binding.PortletBinding"
 retainPortletHeader="false"
 listenForAutoDeliveredPortletEvents="true"
 listenForAutoDeliveredParameterChanges="true"
 xmlns="http://xmlns.oracle.com/portlet/bindings"
 parameterMap="#{pageFlowScope.paramMap}">
 <events>
 <event eventType="ParametersChange"
 name="ParameterDisplayPortlet1_1_Event"/>
 </events>
 </portlet>

Tip:

You can also create a single generic eventHandler and add it to the page
template. By adding a method binding in the page template, this is available
on all pages. By using a wildcard for the publisher, you can also make sure
that it listens to all events with a specific name.

For more information and to download a sample application, see the blog entry at:

http://www.ateam-oracle.com/inter-portlet-communication-between-
pages/

13.3.12 How to Enhance JSR 286 Portlet Performance with Caching
This section includes the following topics:

• About Portlet Caching

• Implementing Expiry-Based Caching in JSR 286 Portlets

• Implementing Validation-Based Caching in JSR 286 Portlets

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-41

http://www.ateam-oracle.com/inter-portlet-communication-between-pages/
http://www.ateam-oracle.com/inter-portlet-communication-between-pages/

13.3.12.1 About Portlet Caching

When you have completed the basic functionality of your portlet, you may want to
turn your attention to portlet performance.

Caching is a common technique for enhancing the performance of web sites that
include a great deal of dynamic content. JSR 286 portlets support expiry-based and
validation-based caching.

For more information about caching, see Portlet Performance.

13.3.12.2 Implementing Expiry-Based Caching in JSR 286 Portlets

You can choose to implement expiry-based caching when you first create a portlet
using the Create JSR 286 Portlet Wizard. However, during the initial development of a
portlet, you may prefer to turn portlet caching off and implement it later in the
development cycle when the portlet content becomes more stable. You may also want
to edit the expiration period, or change the cache scope.

To implement expiry-based caching:

1. Open the Overview Editor for the portlet.xml file.

For more information, see How to Edit the Portlet Deployment Descriptor File.

2. Click the Portlets tab and select the portlet for which you want to implement
expiry-based caching.

3. Click the Advanced tab.

4. In the Cache Management panel, select Cache Portlet.

Note:

To disable portlet caching, deselect Cache Portlet. This sets the cache
expiration period to 0, meaning that the cached content is always expired.

5. Select the Cache Scope:

• Select Public to share the cached content across users

• Select Private if the cached content should not be shared across users.

6. Specify the cache expiration period:

• Select Cache Content Never Expires to set the cache expiration period to -1.
This means that the cached content never expires and the content is always
retrieved from the cache. Use this option if you are confident that the portlet
contains static content that is unlikely to change. Setting this option results in
the following code being added to the portlet.xml file:

<expiration-cache>-1</expiration-cache>

• Select Cache Content Expires After to expire the cached portlet content after a
specified number of seconds. Enter the expiration period (n), in seconds, in the
adjacent field. Setting this option results in the following code being added to
the portlet.xml file:

<expiration-cache>n</expiration-cache>

Developing JSR 286 Java Portlets

13-42 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

7. Save the portlet.xml file.

13.3.12.3 Implementing Validation-Based Caching in JSR 286 Portlets

Implementation of validation-based caching takes place after the initial portlet
creation and requires hand coding.

The example below shows how a GenericPortlet would typically implement its
doView() method such that the consumer caches the markup using validation-based
caching. The example also shows how expiry-based caching can be defined
programmatically (using the CacheControl.setExpirationTime() method) and
used in conjunction with validation-based caching to further reduce the load on the
producer. This would work equally well for serveResource().

protected void doView (RenderRequest request, RenderResponse response)
 throws PortletException, IOException
{
CacheControl cacheControl =response.getCacheControl();
 String eTag =request.getETag();
 if (isMarkupStillValid(eTag))
{
//Wait 30 seconds before checking ETag again
 cacheControl.setExpirationTime(30);
//Tell consumer to use its cached content
 cacheControl.setUseCachedContent(true);
 return;
 }
//ETag not valid so set a new one ...
 //Define a new ETag
 cacheControl.setETag(generateETag(...));
 //Wait 60 seconds before checking ETag again
 cacheControl.setExpirationTime(60);
 //... and generate fresh portlet markup
 createMarkup(request, response);
}
private boolean isMarkupStillValid(String eTag)
{
 if (eTag ==null)
 {
return false; //No ETag was supplied
 }
//Perform portlet specific checks for the consumer's cached
//copy of the markup still being valid based on the given ETag
 ...
}
private String generateETag(...)
{
 //Portlet specific code to generate an ETag, for example, a hash
//of the data on which the portlet's markup is based
 ...
 return eTag;
}

For more information about validation-based caching in JSR 286 portlets, see the JSR
286 specification at:

http://jcp.org/en/jsr/detail?id=286

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-43

http://jcp.org/en/jsr/detail?id=286

13.3.13 How to Implement Rewritten URLs for Resource Proxy
Resource proxying is the standard way to retrieve resources with WSRP. To avoid
problems with URLs within your portlet, you can set a flag to rewrite all of the URLs
within a specified resource. For example, if you have an HTML fragment that contains
URLs, then you could set this flag to rewrite its URLs taking into account the WSRP
resource proxying.

To indicate that URLs should be rewritten, set the PortletRequest attribute,
oracle.portlet.server.resourceRequiresRewriting, to true. For
example, you might include code similar to the excerpt in the code below to use
resource proxying for a URL that you are encoding. Encapsulate this code within a
method to avoid repeating it for every URL individually.

request.setAttribute("oracle.portlet.server.resourceRequiresRewriting",
Boolean.TRUE);
String url =response.encodeURL(pathToResourceForRewriting);
request.removeAttribute("oracle.portlet.server.resourceRequiresRewriting");

If you do not specifically set
oracle.portlet.server.resourceRequiresRewriting, then it defaults to
false, meaning that URLs are not rewritten. You must explicitly activate the feature
by setting this attribute to true.

You can use the defaultProxiedResourceRequiresWsrpRewrite container
runtime option to specify the default WSRP requiresRewrite flag to use. The
option specified by this container runtime option (which is set to true by default) is
used unless overridden by the request attribute. For more information, see
"com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite."

13.3.14 How to Implement Stateless Resource Proxying
If you have out of protocol resources that do not require rewriting, you may want to
use stateless resource proxying. Stateless resource proxying means that the URLs
returned to the browser do not require portlet IDs or any other contextual information.
This increases the cache hit ratio for such resources. You might find stateless resource
proxying useful for functionality such as static JavaScript files, static images, and so
on.

To indicate that stateless proxying is required, set the PortletRequest attribute
oracle.portlet.server.useStatelessProxying to true. For example, you
might include code similar to the excerpt in the code below to use stateless proxying
for a URL that you are encoding. Encapsulate this code within a method to avoid
repeating it for every URL individually.

request.setAttribute("oracle.portlet.server.useStatelessProxying", Boolean.TRUE);
String url =response.encodeURL(pathToResource);
request.removeAttribute("oracle.portlet.server.useStatelessProxying");

If you do not specifically set oracle.portlet.server.useStatelessProxying,
it defaults to false. You must explicitly activate the feature by setting this attribute to
true.

13.3.15 How to Manage the Persistence Store for JSR 286 Portlets
This section includes the following topics:

• About the Persistence Store

Developing JSR 286 Java Portlets

13-44 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Setting Up a Persistence Store for a WSRP Producer

• Migrating a WSRP Producer Persistence Store

13.3.15.1 About the Persistence Store

The portlet persistence store is used for persisting consumer registration handles and
portlet preference data. Portlet producers can use one of three types of persistence
store:

• Consumer—Ties the producer metadata to the consumer application. This is the
recommended method.

• Database—Persists data using a relational database. This is mainly provided for
backward compatibility but may be useful if there is likely to be a large number of
customizations.

• File—Persists data using the file system. This is provided for backward
compatibility. You should not use a file based persistence store in your production
environment as it does not support multi-tier or high availability environments.
You may, however, want to use a file based persistence store while testing your
application using Integrated WLS.

For more information, see Portlet Personalization and Customization.

13.3.15.2 JNDI Variables for WSRP Producer Persistence Store

Table 13-2 lists and describes the JNDI variables used to specify the persistence store
for WSRP producers.

Table 13-2 WSRP Producer Database Preference Store-Related JNDI Variable

Variable Name Variable Value Description

oracle/portal/wsrp/server/
persistentStore

Database

File

Consumer

Determines which data store (File,
Database, or Consumer) is used for
persisting a portlet producer
application's consumer registration
handles and portlet preferences.

oracle/portal/wsrp/server/
fileStoreRoot

portletdata Defines the path to the root
directory to be used by the file
preference store.

Absolute paths are interpreted
relative to the file system root.
Relative paths are interpreted
relative to the WC_ORACLE_HOME/
portal directory.

Note that all producers running
within the same WebLogic Server
must use the same path for this
variable. Otherwise, you get a
Portlet unavailable error for
some portlets.

13.3.15.3 Setting Up a Persistence Store for a WSRP Producer

WSRP portlet producers use a JNDI variable (persistentStore) to determine
which type of persistence store to use. When you create a portlet for the first time in an

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-45

application, by default this variable is set to Consumer. You can change the value of
this variable in the web.xml file of the portlet producer application.

Note:

If you create a portlet in an application that already contains other portlets, the
existing persistence store setting is maintained.

If you use a File persistence store, you must also use the fileStoreRoot JNDI
variable to specify the path to the root directory to be used by the persistence store.
See JNDI Variables for WSRP Producer Persistence Store.

To set up the persistence store for a WSRP portlet producer:

1. In JDeveloper, open the portlet producer application for which you want to set up
the persistence store.

2. Expand the portlet project (for example, Portlets).

3. Expand the Web Content node and then the WEB-INF node.

4. Right-click web.xml and choose Open.

5. Click the Source tab.

6. To specify a Database persistence store, add the following code:

<env-entry>
 <env-entry-name>oracle/portal/wsrp/server/persistentStore</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>Database</env-entry-value>
</env-entry>

To specify a File-based persistence store, add the following code:

<env-entry>
 <env-entry-name>oracle/portal/wsrp/server/persistentStore</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>File</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>oracle/portal/wsrp/server/fileStoreRoot</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>myPrefStore</env-entry-value>
</env-entry>

To specify a Consumer persistence store, add the following code:

<env-entry>
 <env-entry-name>oracle/portal/wsrp/server/persistentStore</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>Consumer</env-entry-value>
</env-entry>

7. Save the web.xml file.

8. Restart your WebLogic Server.

Developing JSR 286 Java Portlets

13-46 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

13.3.15.4 Migrating a WSRP Producer Persistence Store

If you want to change the type of persistence store used by your portlet producer, for
example when moving from a testing to production environment, you can migrate the
existing data from the old to the new persistence store.

This section includes the following topics:

• Migrating a Database or File-Based Persistence Store

• Migrating to or from a Consumer Persistence Store

• Moving a WSRP Portlet Producer

13.3.15.4.1 Migrating a Database or File-Based Persistence Store

The WSRP portlet producer persistence store migration utility,
PersistenceMigrationTool, enables you to migrate existing data between
Database and File-based persistence stores (for example, from a File-based persistence
store used for testing to a production Database persistence store). This utility also
enables upgrading users to ensure that their existing locale-specific portlet preference
data uses a naming format compatible with the latest JPS release. You can also use this
utility to migrate between source and destination stores of the same type, enabling
data to be moved from one database store to another.

Note:

There are several libraries that must be referenced in the classpath when
running the PersistenceMigrationTool utility:

• wcs-producer-spi.jar

• portlet-utils.jar

• portlet-producer-container-common.jar

• portlet-producer-container-persistence.jar

• oracle-portlet-api.jar

• wsrp-container.jar

• oracle-portlet-tags.jar

• ojdbc6.jar

The ojdbc6.jar library referenced in the classpath must be the same as the
one used by your database.

To migrate a database or file-based persistence store:

1. Ensure that the appropriate libraries are referenced in the classpath:

./java -classpath
ORACLE_COMMON_HOME/modules/oracle.wccore/portlet-producer-container-
persistence.jar:
ORACLE_COMMON_HOME/modules/oracle.wccore/portlet-producer-container-common.jar:
ORACLE_COMMON_HOME/modules/oracle.adf.share.ca/adf-share-base.jar:
ORACLE_COMMON_HOME/modules/oracle.wccore/portlet-utils.jar:

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-47

ORACLE_COMMON_HOME/modules/oracle.wccore/wcs-producer-spi.jar:
ORACLE_COMMON_HOME/modules/oracle.adf.share/adflogginghandler.jar:
DB_ORACLE_HOME/jdbc/lib/ojdbc6.jar

2. Run the PersistenceMigrationTool using the following syntax:

java oracle.portlet.server.containerimpl.PersistenceMigrationTool
-sourceType [file │db]
-destType [file │db]
{-sourcePath [dir │
-sourceUsername username -sourcePassword password -sourceDatabase db
 -sourceDriver srcDriver]}
{-destPath [dir │destUsername username -destPassword password -destDatabase db
 -destDriver dstDriver]}
[-debug]

where:

• sourceType indicates whether the source store is in a file (file) or database
(db). You can have source and destination stores of the same type. Hence, you
can migrate from one database to another or one file system to another.

• destType indicates whether the destination store is in a file (file) or database
(db). You can have source and destination stores of the same type. Hence, you
can migrate from one database to another or one file system to another.

• sourcePath is the location of a file-based persistence store. This argument is
required when sourceType is file.

• sourceUsername is the database user name for a persistence store database.
This argument is required when sourceType is db.

• sourcePassword is the database password for a persistence store database.
This argument is required when sourceType is db.

• sourceDatabase is the name of a persistence store database. This argument is
required when sourceType is db.

• sourceDriver is the name of a database driver to use. For example, for a SQL
Server database, the database driver is
com.microsoft.sqlserver.jdbc.SQLServerDriver. If you do not
specify a value for this argument, the migration tool attempts to determine the
correct driver to use from the sourceDatabase argument.

• destPath is the location of a file-based persistence store. This argument is
required when destType is file.

• destUsername is the database user name for a persistence store database. This
argument is required when destType is db.

• destPassword is the database password for a persistence store database. This
argument is required when destType is db.

• destDatabase is the name of a persistence store database. This argument is
required when destType is db.

• destDriver is the name of a database driver to use. For example, for a SQL
Server database, the database driver is
com.microsoft.sqlserver.jdbc.SQLServerDriver. If you do not

Developing JSR 286 Java Portlets

13-48 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

specify a value for this argument, the migration tool attempts to determine the
correct driver to use from the destDatabase argument.

• debug turns on full logging through standard output to enable users to
diagnose issues that arise when the tool runs.

The example below demonstrates running the PersistenceMigrationTool utility.
In this example, preferences from a File store are copied to a Database store.

./java -classpath

ORACLE_COMMON_HOME/modules/oracle.wccore/portlet-producer-container-persistence.jar:
ORACLE_COMMON_HOME/modules/oracle.wccore/portlet-producer-container-common.jar:
ORACLE_COMMON_HOME/modules/oracle.adf.share.ca/adf-share-base.jar:
ORACLE_COMMON_HOME/modules/oracle.wccore/portlet-utils.jar:
ORACLE_COMMON_HOME/modules/oracle.wccore/wcs-producer-spi.jar:
ORACLE_COMMON_HOME/modules/oracle.adf.share/adflogginghandler.jar:
DB_ORACLE_HOME/jdbc/lib/ojdbc6.jar
oracle.portlet.server.containerimpl.PersistenceMigrationTool
-sourceType file \
-sourcePath /data/prefs
-destType db \
-destUsername scott \
-destPassword tiger \
-destDatabase abc.mycompany.com:1521:yourdatabase \

where:

• ORACLE_COMMON_HOME is your Oracle Common home

• DB_ORACLE_HOME is your database Oracle home if it is on the same machine as the
WebCenter Portal Oracle home. If the database Oracle home is on a separate
machine, then you must copy the DB_ORACLE_HOME/jdbc/lib directory into a
temporary directory on the WebCenter Portal Oracle home and reference the
ojdbc6.jar library from this temporary directory in the classpath.

13.3.15.4.2 Migrating to or from a Consumer Persistence Store

You cannot use the persistence store migration utility to migrate to or from a
consumer persistence store. To migrate to or from a consumer persistence store, you
must export the data from one producer from the consumer and import into another.

To migrate a consumer persistence store:

1. Export the producer metadata from your consumer application to an EAR file.

This contacts the remote producer to get customization data, and so on. You can
use WLST to do this, see exportPortletClientMetadata in WebCenter WLST
Command Reference.

2. Either remap the producer connection to another producer, which can be using any
persistence store type, or change the preference store configuration of the current
producer, and restart it.

3. Import from the exported EAR file back to your consumer application. This pushes
the relevant metadata back to the producers, which then store it in their configured
persistence store.

Developing JSR 286 Java Portlets

Building Standards-Based Java Portlets Using JSR 286 13-49

13.3.15.4.3 Moving a WSRP Portlet Producer

If you move a portlet producer to a different server, you may also have to move the
persistence store for the producer.

After installing the new producer, move the persistence store according to the
following:

• Consumer persistence store—Because the data is stored with the consumer, there is
no requirement to move the persistence store.

• Database persistence store—Perform one of the following:

– Configure the new producer to point the WebLogic Server data source to the
same database as the original producer.

– Migrate the persistence store using the Persistence Store Migration Utility (see
Migrating a WSRP Producer Persistence Store for more information).

• File persistence store—Perform one of the following:

– Configure the new producer to point the same file system location as the
original producer.

– Migrate the persistence store using the Persistence Store Migration Utility (see
Migrating a WSRP Producer Persistence Store for more information).

Finally, update the URL of the producer registration by using Enterprise Manager
Fusion Middleware Control or the WLST command
setWSRPProducerRegistration.

13.4 Testing JSR 286 Portlets
Before making your portlets available in a production environment, it is highly
advisable to test them first to make sure that they behave as expected.

This section includes the following topics:

• How to Run a WSRP Portlet Producer on Integrated WebLogic Server

• How to Deploy a WSRP Portlet Producer to the Integrated WebLogic Server

• How to Hide or Remove the WSRP Test Page

13.4.1 How to Run a WSRP Portlet Producer on Integrated WebLogic Server
The Integrated WebLogic Server (Integrated WLS) provides a quick and easy way of
testing your portlets because it is preconfigured so that you can run applications
within JDeveloper without needing to create deployment profiles.

To test a JSR 286 portlet on Integrated WLS:

1. In JDeveloper, open the portlet producer application that owns the portlet that you
want to test.

2. Expand the portlet project (for example, Portlets).

3. Expand the Web Content node and then the WEB-INF node.

4. Right-click portlet.xml and choose Run.

Testing JSR 286 Portlets

13-50 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Running portlet.xml triggers the packaging and deployment of your portlet
producer application on an Integrated WLS instance named after the application.

5. Check the IntegratedWebLogicServer - Log window to monitor the deployment
progress. The log shows the URL of the application page. The WSRP producer URL
uses the following syntax:

http://host:port/applicationname-Portlets-context-root/info

where:

• host is the server to which your producer has been deployed.

• port is the HTTP Listener port. Typically, it is 7101. When the server is started,
the port is displayed in the console.

• context-root is the Web application's context root.

A test page similar to Figure 13-4displays in a browser window.

Figure 13-4 WSRP Producer Test Page

6. While the application is running, you can switch back and forth between
JDeveloper and your browser to make changes at design time in your application,
save the changes, and then refresh the test page in your browser.

Testing JSR 286 Portlets

Building Standards-Based Java Portlets Using JSR 286 13-51

7. When the producer is successfully running, you should register it with an
application and add one or more portlets to a page to check that it is working
correctly. A producer gives applications the information they require to locate and
communicate with that producer. After you register a producer, it is exposed as a
connection, and the producer and its portlets become available in the Application
Resources panel under the Connections node, or in the Resource Palette.

8. To stop an Integrated WLS instance, in the Run Manager tab, select DefaultServer
and click the red Stop icon. When the instance stops, the application is undeployed,
and therefore, becomes unavailable.

Tip:

You can also stop an Integrated WLS instance by clicking the red Stop icon in
the IntegratedWebLogicServer - Log window and selecting DefaultServer.

What Happens When You Run a WSRP Portlet Producer on Integrated WebLogic
Server

These configurations vary depending upon the portlet requirements.

• WSDLs and other configuration files are added to the WEB-INF directory to
configure the portlets as a web service.

• The web.xml file is updated with listener and server classes, filters, parameters,
and other configurations that are required to run the JSR 286 portlet producer
application successfully.

For example, the
oracle.portlet.server.adapter.web.ServerContextListener class,
WSRP_v2_PortletManagement_Service and WSRPBaseService filters, and
so on.

• Libraries required for JSR 286 portlets are added to the weblogic.xml file, for
example, oracle.portlet-producer.wsrp.

When you run a WSRP portlet producer on Integrated WLS, the following happens:

13.4.2 How to Deploy a WSRP Portlet Producer to the Integrated WebLogic Server
When you run a WSRP portlet producer application on the Integrated WLS instance,
when the instance stops, the application is undeployed and therefore becomes
unavailable. For a more persistent testing scenario, you can deploy your portlet
producer application to the Integrated WLS so that it is always available while the
Default Server is running.

If you choose this method, then you must first create deployment profiles. If you
deploy your application to the Integrated WLS, then the Deployment Configuration
dialog displays to enable you to configure and customize deployment settings. The file
system MDS repository precreated by JDeveloper displays in the Repository Name
field.

13.4.3 How to Hide or Remove the WSRP Test Page
For security purposes, you may want to hide the WSRP test page so that it is visible
only to administrators, or you may want to remove it entirely.

This section includes the following subsections:

Testing JSR 286 Portlets

13-52 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Hiding the WSRP Test Page

• Removing the WSRP Test Page

Note:

There is also a Webservice test page, which enables you to build up SOAP
requests to the producer in a web browser. For WSRP portlet producers this
test page is disabled by default. Although this test page does not provide any
useful information for testing your portlet producers, you can enable it, if
desired, by extracting the oracle-webservices.xml file from the deployed
producer's WAR file, setting the expose-testpage flag to true for both
WSRP v1 and WSRP v2 producers, and then repacking the WAR and EAR
files and redeploying the producer.

13.4.3.1 Hiding the WSRP Test Page

If you do not want all users to be able to see the WSRP test page, you can protect it so
that only administrators can see it.

To hide the WSRP test page:

1. In JDeveloper, open the portlet producer application for which you want to hide
the test page.

2. Expand the portlet project (for example, Portlets).

3. Expand the Web Content node and then the WEB-INF node.

4. Right-click web.xml and choose Open.

5. Click the Source tab.

6. Add the following code:

<security-role>
 <description>AdministratorRole</description>
 <role-name>Admin</role-name>
</security-role>
<security-constraint>
 <display-name>TestPageInfo</display-name>
 <web-resource-collection>
 <web-resource-name>TestPageInfo</web-resource-name>
 <description>Protect the test page servlet.</description>
 <url-pattern>/info/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <description>Administrators</description>
 <role-name>Admin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
</security-constraint>

7. Save the web.xml file.

Testing JSR 286 Portlets

Building Standards-Based Java Portlets Using JSR 286 13-53

13.4.3.2 Removing the WSRP Test Page

You can remove the WSRP test page completely.

To remove the WSRP test page, you must edit an element that is injected into the
web.xml file at packaging time, so you must edit the web.xml file in the resulting
EAR file.

To remove the WSRP test page:

1. Extract the web.xml file from the EAR file created at packaging time and open it in
an editor of your choice.

2. Comment out the following code:

<servlet-mapping>
 <servlet-name>WSRPTestPage</servlet-name>
 <url-pattern>/info</url-pattern>
</servlet-mapping>

3. Save the web.xml file and add the edited file to the EAR file.

13.5 Migrating WebLogic Portal Portlets to WebCenter Portal
In general, JSR 286 standard portlets (Java portlets) that were developed with the
WebLogic Portal's Eclipse IDE can be moved directly to a WebCenter Portal/
JDeveloper environment. Simply copy all of the portlet artifacts
(portlet.xml, .java files, .jsp files, and so on) into a JDeveloper Portlet Producer
application project.

Note:

Any WebLogic Portal specific APIs used by the portlet must be rewritten to
use WebCenter Portal APIs. WebLogic Portal specific APIs will not work in a
WebCenter environment.

Tip:

You can use the WebLogic Portal Export feature to export your Java portlets to
an archive file and then import the archive file into your JDeveloper project.
This technique may be simpler than manually copying all the portlet artifacts
from one environment to another. See Exporting Java Portlets for Use on
Other Systems in the Portlet Development Guide for Oracle WebLogic Portal.

Moving portlets from a WLP development environment to a WebCenter Portal
development environment is not directly supported. In general, this process can
involve substantial rewriting or refactoring of the migrated portlet code and related
files.

Migrating WebLogic Portal Portlets to WebCenter Portal

13-54 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

If a portlet (regardless of type) was capable of running over WSRP in
WebLogic Portal, the portlet can be consumed directly from the WebLogic
Portal's portlet producer in a WebCenter Portal consumer. See WSRP
Interoperability with Oracle WebCenter Portal and Oracle Portal in the
Federated Portals Guide for Oracle WebLogic Portal.

Below are some general guidance on moving WLP portlets into WebCenter Portal's
portlet producer environment.

• JSP portlets –Moving JSP portlets directly into a WebCenter Portal project is not
supported. You can consider refactoring the JSP portlet into a JSR286 portlet and
then migrate it.

• JSR 168/286 portlets –Most Java (JSR 168 /286) portlets can be directly imported to
a WebCenter Portal portlet producer and run as JSR286 portlets. Some JSR168
portlets that take advantage of specific error conditions guaranteed by the JSR168
specification may need to be run in a JSR168 compatibility mode. See JSR-286/
JSR-168 Portlet Compatibility in the Portlet Development Guide for Oracle WebLogic
Portal. JSR168 portlets using WLP's proprietary eventing (event subscriptions
declared in a .portlet file) must be re-written to use JSR286 events.

• Java Page Flow portlets –JPF portlets are not supported by WebCenter Portal's
portlet producer and must be either consumed from a WebLogic Portal WSRP
producer or refactored to become JSR286 or JSF portlets.

• JSF portlets –If the portlet is written to the JSR329 JSF Portlet bridge in WLP, it
should run on a WebCenter producer with no changes. For portlets using the WLP
"native" JSF portlet bridge, the portlet must be consumed from a WebLogic Portal
producer or upgraded to a JSF 1.2 portlet using the JSR329 bridge. See also
Working With JSF-Java Portlets in the Portlet Development Guide for Oracle WebLogic
Portal.

• Clipper portlets –Clipper portlets are not supported in WebCenter portal, but the
web clipping features in WebCenter Portal's pagelet producer provide equivalent
functionality.

• Struts portlets –Moving Struts portlets directly into a WebCenter Portal project is
not supported. You can consider refactoring the JSP portlet into a JSR286 portlet
and then migrate it.

• Content Presenter portlets –WLP Content Presenter portlets will not work over
WSRP and will not work with WebCenter Portal. However, equivalent
functionality is available in WebCenter Portal's Content Presenter. See Publishing
Content Using Content Presenter in Building Portals with Oracle WebCenter Portal.

• Remote (WSRP) portlets –Remote (WSRP) portlets consumed in WLP can be
consumed in a WebCenter Portal's consumer instead. Remote portlets taking
advantage of WLP-specific WSRP features may need modification. For example the
custom data transfer feature must be replaced by using events or shared
parameters to convey data. See WSRP Interoperability with Oracle WebCenter
Portal and Oracle Portal and Configuring WSRP Security Between WLP and a
WebCenter Portal: Framework Application in the Federated Portals Guide for Oracle
WebLogic Portal.

Migrating WebLogic Portal Portlets to WebCenter Portal

Building Standards-Based Java Portlets Using JSR 286 13-55

Problems inherent in moving WebLogic Portal portlets directly to a WebCenter Portal
project in JDeveloper can include the following:

• URL Generation –Some URL types supported by WebLogic Portal do not work in
WebCenter Portal, including DesktopURL, CustomEventURL, PageURL,
WindowURL, StandalonePortletURL, and possibly others.

• Events –The WebCenter Portal consumer does not generate all of the events that
the WebLogic Portal framework generates. These unsupported events include Init,
LookAndFeelReinit, Notification, Refresh, WindowActivation,
WindowDeactivation, and possibly others.

• Render Dependencies –WLP render dependencies do not work in WebCenter
Portal.

• WLP Framework APIs –Many WLP APIs are not supported in WebCenter Portal.

13.6 Files Related to JSR 286 Portlets
This section describes the files that are created for you when you build a JSR 286
portlet. It includes the following topics:

• portlet.xml

• oracle-portlet-tags.jar

• portlet_mode.jsp

• portlet_name.java

• portlet_nameBundle.jar

• web.xml

13.6.1 portlet.xml
portlet.xml defines the characteristics of your JSR 286 portlet. For complete details
on portlet.xml, you should see the Java Portlet Specification available at:

http://jcp.org/en/jsr/detail?id=168

The example below provides a sample fragment from a portlet.xml file. Note that
this example does not include all of the available elements of portlet.xml.

Example portlet.xml

<portlet>
 <description xml:lang="en">JSR 286 map portlet </description>
 <portlet-name>portlet1</portlet-name>
 <display-name xml:lang="en">Map Portlet</display-name>
 <portlet-class>jsrportlet.MapPortlet</portlet-class>
 <expiration-cache>0</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 <portlet-mode>about</portlet-mode>
 </supports>
 <supported-locale>en</supported-locale>
 <resource-bundle>jsrportlet.resource.MapPortletBundle</resource-bundle>

Files Related to JSR 286 Portlets

13-56 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 <portlet-info>
 <title>Map Portlet</title>
 <short-title>Map</short-title>
 <keywords/>
 <portlet-preferences>
 <preference>
 <name>portletTitle</name>
 </preference>
 </portlet-preferences>
 <security-role-ref>
 <role-name>viewer</role-name>
 </security-role-ref>
</portlet>

For JSR 286 portlets, the portlet.xml file contains all information related to portlets
and their settings. Note that not all of these settings are used in the previous sample.

• <description> describes the portlet, providing details to the end user.

• <portlet-name> uniquely identifies the portlet within the Portlet Producer
application.

• <display-name> is used when presenting a list of available portlets to the user.

• <portlet-class> contains the fully qualified class name of the class
implementing the javax.portlet.Portlet interface or extending the
GenericPortlet abstract class that becomes the entry point for the portlet logic.
The portlet container uses this class when it invokes the portlet life cycle methods.
For JSF portlets created using the Oracle JSF Portlet Bridge, this is
oracle.portlet.bridge.adf.application.ADFBridgePortlet.

• <expiration-cache> the default duration (in seconds) of the expiration cache.

• <init-param> defines initialization parameters for configuring the behavior of
the portlet. The Oracle JSF Portlet Bridge uses initialization parameters to identify
the entry points for the different portlet modes supported by the portlet, for
example, for View mode:

<init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/myPage.jspx</value>
</init-param>

Initialization parameters for other WebCenter Portal-supported modes are:

– Edit mode: javax.portlet.faces.defaultViewId.edit

– Help mode: javax.portlet.faces.defaultViewId.help

– About mode: javax.portlet.faces.defaultViewId.about

– Config mode: javax.portlet.faces.defaultViewId.config

– Edit Defaults mode:
javax.portlet.faces.defaultViewId.edit_defaults

– Preview mode: javax.portlet.faces.defaultViewId.preview

– Print mode: javax.portlet.faces.defaultViewId.print

Files Related to JSR 286 Portlets

Building Standards-Based Java Portlets Using JSR 286 13-57

Note:

The value for the defaultViewId is relative to the application context root
and must always start with a /. In the example provided, the value for
defaultViewId.view is /myPage.jspx.

If you add a defaultViewId for other portlet modes, then you must also add
the mode to the <supports> tag. For example, <portlet-mode>HELP</
portlet-mode>.

• <supports> provides information about the portlet modes supported for each
content type. Portlet modes supported by WebCenter Portal include: edit, help,
about, config, edit_defaults, preview, and print.

• <supported-locale> lists the locales supported by the portlet at runtime.

• <resource-bundle> is the fully qualified class name of the resource bundle used
to provide language specific portlet information, such as title and keywords.

• <title> is the static title of the portlet, usually displayed in the portlet decoration
on the portlet window.

• <short-title> is the title that is used on devices (such as mobile phones) that
have limited display capabilities.

• <keywords> are used by applications that offer search capabilities for their users.

• <portlet-preferences> are preference attribute definitions.

• <supported-processing-event> are events that the portlet can receive.

• <supported-publishing-event> are events that the portlet raises.

• <supported-public-render-parameter> is a public render parameter
supported by the portlet.

• <container-runtime-option> an option for defining additional runtime
behavior.

• <security-role-ref> maps a role name to a security role in web.xml. The list
of roles in web.xml that the <security-role-ref> maps to is published to the
consumer as the producer's user categories. In web.xml, <security-role>
appears similar to the following:

<security-role>
 <description>Viewer role</description>
 <role-name>viewer</role-name>
</security-role>

13.6.2 oracle-portlet-tags.jar
oracle-portlet-tags.jar is the Oracle implementation of the JSP tag library
defined by the Java Portlet Specification.

13.6.3 portlet_mode.jsp
Depending on the implementation style of the portlet mode that you choose to create
for your portlet, a corresponding JSP file is created in your portlet_name\html
directory to define that mode. For example, if you choose to have View and Edit

Files Related to JSR 286 Portlets

13-58 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

modes for your portlet, then you need view.jsp and edit.jsp in your
portlet_name\html directory. For JSR 286 portlets, you can have the following JSP
files for your portlet modes:

• about.jsp

• config.jsp

• edit_defaults.jsp

• edit.jsp

• help.jsp

• preview.jsp

• print.jsp

• view.jsp

For further explanation of portlet modes, see Portlet Modes.

13.6.4 portlet_name.java
portlet_name.java is the class that acts as the entry point for the portlet logic. This
class must implement the javax.portlet.Portlet interface or extend the
GenericPortlet abstract class. The portlet container uses this class when it invokes
the portlet lifecycle methods.

13.6.5 portlet_nameBundle.jar
portlet_nameBundle.jar is a resource bundle class, containing translation of the
strings used by the portlet.

13.6.6 web.xml
web.xml is a Java EE standard descriptor that contains details about Web
applications. For more information about web.xml, see Developing Fusion Web
Applications with Oracle Application Development Framework.

Files Related to JSR 286 Portlets

Building Standards-Based Java Portlets Using JSR 286 13-59

Files Related to JSR 286 Portlets

13-60 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Part IV
Working with Pagelets

This part contains the following chapters:

• Introduction to Pagelets

• Creating Pagelet Producer Objects

• Working with Pagelets and Gadgets

• Creating Custom Pagelets

• Using Pagelets in Web Applications

• Creating Pagelets: Examples and Advanced Topics

14
Introduction to Pagelets

This chapter provides an introduction to creating pagelets with Oracle WebCenter
Portal's Pagelet Producer.

This chapter includes the following sections:

• About Creating Pagelets with Pagelet Producer

• Configuring Pagelet Producer Settings

14.1 About Creating Pagelets with Pagelet Producer
This section provides an introduction to Pagelet Producer concepts and features. It
describes how you can use Pagelet Producer, its underlying architecture and
components, and introduces key concepts.

This section includes the following topics:

• Overview

• Pagelet Producer Architecture

• Requirements

14.1.1 Overview
A pagelet is a reusable user interface component. Any HTML fragment can be a
pagelet, but pagelet developers can also write pagelets that are parameterized and
configurable to dynamically interact with other pagelets, and respond to user input.
Pagelets can be run on any web page, including within a portal or other web
application. Pagelets can be used to expose platform-specific portlets in other Web
environments. Oracle WebCenter Portal's Pagelet Producer (previously known as
Oracle WebCenter Ensemble) provides a collection of useful tools and features that
facilitate dynamic pagelet development.

Pagelet Producer lets you leverage investments in existing web infrastructure by
making it usable in new ways. Pagelet Producer can be used to consume:

• Web UI from applications that do not expose integration APIs or portlets out of the
box

• Standard portlets such as WSRP (JSR-168 or JSR-286), Oracle PDK-Java, CSP, and
WebParts

It can also deliver web UI to WebCenter Portal, Sites, or pretty much any HTML page
with the added benefits of role-based access control to Pagelet Producer resources, and
reverse proxying of web resources with HTML markup parsing, clipping, injection
and event handling (inter-pagelet communication).

Introduction to Pagelets 14-1

Pagelet Producer provides:

• Tools for consuming existing web UI and re-using it as portable components called
pagelets

• Alternatives for integrating non-standard/non-compliant containers and
components that do not support portlet standards. For example, you can:

– Capture functionality from web applications that do not expose portlets

– Make existing WSRP, Oracle PDK-Java, or Content Syndication Protocol (CSP)
portlets available for use in a non-portal setting

• Injectors and parsers to modify HTML markup

• A JavaScript framework for inter-pagelet communication and event handling

14.1.2 Pagelet Producer Architecture
This section describes the Pagelet Producer architecture and its key components.

This section includes the following topics:

• Pagelet Producer Architecture and Components

• Pagelet Producer Key Concepts

• Pagelet Producer Console

• Using HTTP and Content Syndication Protocol

• Pagelet Producer Proxy

14.1.2.1 Pagelet Producer Architecture and Components

Figure 14-1 shows a high-level view of the Pagelet Producer components and their
interactions. Figure 14-1 also reflects the way in which the pagelet request is being
handled in Pagelet Producer. The request is received by the Proxy Servlet that maps
incoming requests to the resource. Next, the request is authenticated. If the user can
access the requested resource, pagelet processing starts by requesting HTML markup
from the back-end system. After the markup is received it is modified using any
defined clippers, parsers, and so forth.

About Creating Pagelets with Pagelet Producer

14-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 14-1 Pagelet Producer - High-Level Architecture

Figure 14-2 provides a different view of component interaction:

Figure 14-2 Pagelet Producer - Interaction Flow

A: A Pagelet Producer application runs on a J2EE application server. Note that Pagelet
Producer does not require the WebCenter schema, but it does require an MDS Instance
(typically shared with WebCenter).

B: User calls a WebCenter Portal page that contains a pagelet.

C: WebCenter Portal returns the page, plus the JavaScript that will call Pagelet
Producer to render the pagelet.

D: The JavaScript makes a render call to Pagelet Producer.

E: Pagelet Producer can call external (E1) or internal (E2) web applications as sources
of HTML content. Pagelet Producer transforms the content (i.e., rewrites the URL) and
returns it to the browser for insertion into the page. Pagelet Producer itself can be
externally accessible (i.e., in the DMZ).

14.1.2.2 Pagelet Producer Key Concepts

The following key concepts are useful when working with Pagelet Producer:

About Creating Pagelets with Pagelet Producer

Introduction to Pagelets 14-3

• Resources are core objects used to register applications within Pagelet Producer,
including stand-alone web applications, Pagelet Producers and OpenSocial
containers. Creating a resource allows the proxy to map internal applications to
external URLs, manage authentication, and transform applications. a web
application as a Pagelet Producer resource allows you to do the following:

– Proxy internal web applications to external addresses

– Manage authentication, both at the proxy level and at the resource level

– Transform proxied web applications, including URL rewriting

For more information about creating resources, see Creating Resources

• Pagelets are sub-components of a web page accessed through Pagelet Producer that
can be injected into any proxied application. Any application on a Pagelet Producer
resource that returns markup can be registered as a pagelet, which can then be
displayed in WebCenter Portal, or any other web application.

Any HTML fragment can be a pagelet. Pagelet developers can create pagelets that
are parameterized and configurable, dynamically interact with other pagelets, and
respond to user input using Asynchronous Javascript and XML (AJAX) patterns.

For more information about creating pagelets, see Creating Pagelets .

Pagelet Producer registration is dynamic. Additions and updates to existing producers
are immediately available. In most cases, it is not necessary to restart WebCenter
Portal or the managed server.

14.1.2.3 Pagelet Producer Console

The Pagelet Producer Console is a browser-based administration tool used to create
and manage the various objects in your Pagelet Producer deployment. From the
Console you can register web applications as resources, create pagelets, manage proxy
and transformation settings, and more.

The Pagelet Producer Console is accessible from any web browser at the following
URL:

http://<host>:<port>/pagelets/admin

The Pagelet Producer Console can also be launched in accessibility mode at:

http://<host>:<port>/pagelets/admin/accessible

During runtime, the Pagelet Producer Console is also accessible from the WebCenter
Portal Shared Assets tab.

Note:

Pagelet Producer Console supports the standard administration languages
and Dutch only. If you configure the browser language to something other
than one of these languages, it will revert to the language defined for the
current server.

For more information about using the Pagelet Producer Console to configure Pagelet
Producer and create objects, see Configuring Pagelet Producer Settings and Creating
Pagelet Producer Objects. For information about using the Pagelet Producer Console
to register producers and migrate pagelet data, see Managing the Pagelet Producer in
Administering Oracle WebCenter Portal.

About Creating Pagelets with Pagelet Producer

14-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

14.1.2.4 Using HTTP and Content Syndication Protocol

HTTP is a protocol used mostly for transferring Web page content and XML between a
server and a client. Content Syndication Protocol (CSP) is a platform-independent
protocol based on the open standard of HTTP 1.1 that extends HTTP defining the
syntax of communication between Pagelet Producer and external CSP resources.

Services on external resources communicate with Pagelet Producer using CSP. For
example, when a browser requests a page, Pagelet Producer makes simultaneous
requests to each external resource to retrieve the pagelet content for the page. The
external resource reads the current user's preferences from the CSP headers sent by
Pagelet Producer and sends back the appropriate HTML. Pagelet Producer inserts the
HTML into the page markup. Any images stored in the Image Service are retrieved
and displayed by the browser.

This section contains the following subsections:

• HTTP

• Content Syndication Protocol

14.1.2.4.1 HTTP

HTTP communication is made up of requests and responses. Requests and responses
are essentially lists of name-value pairs of metadata in headers, along with an optional
body. The body is the data that is being transferred (an HTML page or XML file). The
metadata in the headers is information about the request or response itself (for
example, what language the content is in, or how long the browser should cache it).
The request and response each contain specific information as described below. For
more detailed information on HTTP, see RFC 2616 (http://www.faqs.org/rfcs/
rfc2616.html).

The client sends the server an HTTP Request, asking for content. The request body is
used only for requests that transfer data to the server, such as POST and PUT.

HTTP Request Format:

[METHOD] [REQUEST-URI] HTTP/[VERSION]
[fieldname1]: [field-value1]
[fieldname2]: [field-value2]
[request body, if any]

HTTP Request Example:

GET /index.html HTTP/1.1
Host: www.xmlns.oracle.com
User-Agent: Mozilla/3.0 (compatible; Opera/3.0; Windows 95/NT4)
Accept: */*
Cookie: username=JoeSmith

The server sends back an HTTP Response that contains page content and important
details, such as the content type, when the document was last modified, and the server
type. The response contains an error message if the requested content is not found.

HTTP Response Format:

HTTP/[VERSION] [CODE] [TEXT]
[fieldname1]: [field-value1]
[fieldname2]: [field-value2]
[response body, if any (document content here)]

About Creating Pagelets with Pagelet Producer

Introduction to Pagelets 14-5

http://www.faqs.org/rfcs/rfc2616.html
http://www.faqs.org/rfcs/rfc2616.html

HTTP Response Example:

HTTP/1.0 200 Found
Last-modified: Thursday, 20-Nov-97 10:44:53
Content-length: 6372
Content-type: text/html
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 3.2 Final// EN'><HTML>
...followed by document content...

Custom HTTP headers can be configured to include specialized information.

Note:

Header size limits are controlled by the server that hosts the code. The
standard limit for IIS/ASP is 60K. Java Application Servers range from 2K to
10K. These limits are generally configurable; see your server documentation
for more information.

Services can also access standard HTTP headers, such as the Set-Cookie header or
HTTP 1.1 basic authentication header. If you want to investigate HTTP further, you
can view all the headers being passed back and forth between your browser and Web
server using logging (as described in Debugging Pagelets). HTTP is used in
conjunction with SSL to serve up secure content. Single sign-on (SSO) also uses HTTP
headers for basic authentication.

14.1.2.4.2 Content Syndication Protocol

Content Syndication Protocol (CSP) extends HTTP and defines proprietary headers to
pass settings between Pagelet Producer and external CSP resources (specifically,
Oracle WebCenter Interaction portlets). CSP outlines how these services use HTTP to
communicate and modify settings. The latest version of the CSP protocol is 1.4, and is
available from:

http://docs.oracle.com/cd/E13158_01/alui/wci/docs103/devguide/
references/CSP1.4.pdf

The custom CSP headers used to communicate system and user configuration
variables (see Table 14-1) can also be used by pagelets.

Table 14-1 Pagelet Producer Headers

Header Name Description

User ID The User ID of the currently logged in user. This value can be used to determine if the
session has expired. If UserID=2, the default 'Guest' user is logged in; any other user's
session has ended.

User Name The name of the logged in user. The user's name can be used to personalize display or pre-
fill form fields.

Image Service
URL

The URL to the root virtual directory of the Image Service in the user's implementation of
Pagelet Producer. This location should be used for all static images used in services.

Stylesheet URL The URL to the current user's style sheet. In each implementation of Pagelet Producer, the
UI is customized. In some portals, users can choose between a selection of stylesheets. Using
these styles ensures that pagelets appear in the style of the current user's implementation of
Pagelet Producer.

About Creating Pagelets with Pagelet Producer

14-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://docs.oracle.com/cd/E13158_01/alui/wci/docs103/devguide/references/CSP1.4.pdf
http://docs.oracle.com/cd/E13158_01/alui/wci/docs103/devguide/references/CSP1.4.pdf

Table 14-1 (Cont.) Pagelet Producer Headers

Header Name Description

Pagelet ID The ID for the current resource (pagelet), and the instance ID for the current pagelet. This
value is useful for appending to the names of HTML forms and client-side JavaScript
functions to ensure unique form and function names on the page to avoid name conflicts.

Host Page URL The URL to the page that hosts the pagelet. Preference pages need this URL to return the
user to the correct page after settings are configured. This value can also be used to allow a
single pagelet to display different content on different pages.

14.1.2.5 Pagelet Producer Proxy

Pagelet Producer acts as a proxy server, brokering transactions between client
computers and external resources. This configuration is typically used to serve content
to clients that would otherwise be unable to access the external resource, but it can
also be used to impose additional security restrictions on the client, including the use
of policies. The proxy hides the external resource so that the content appears to come
directly from the proxy server.

This architecture makes Pagelet Producer the single point of access for content, and
allows external resources to reside on a private network or behind a firewall. As long
as Pagelet Producer can connect to the external resource, users can view the content,
even if they cannot access it directly. To the browser, Pagelet Producer appears to be
the source of content on the external resource.

When a user interacts with a service, any request made to a URL in the proxy is
automatically rerouted through Pagelet Producer. To the user, the content appears to
come from Pagelet Producer; the external resource is an unknown back-end system.

There are many benefits to this configuration. The most useful to services are:

• Dynamic functionality and personalization: Pagelet Producer intercepts request
from pagelets, which allows the response to be modified dynamically, using
information from MDS, the request, or the response"

• Security: Services can allow users to access content that is not publicly available.
Files stored on a secure server can be made available by including specific URLs in
the configuration of the proxy.

Warning:

The proxy is a powerful feature and can compromise security if incorrectly
configured. Allowing direct access to a external resource that hosts
unprotected private content could create a dangerous security gap.

• Performance: Pagelet Producer caches proxied content, decreasing response time
for end users and improving performance on the external resource. While proxying
works efficiently for content like HTML, it is generally not appropriate for binary
data like static images. Images do not need to be transformed, and proxying large
images can adversely affect performance. This is one reason the Image Service
should be used to prevent routing static images through the proxy.

Note that all URLs to other proxied CSP or Web resources will be proxied by default
unless specified in the Do not proxy hosts field. For more information about
configuring proxying, see How to Configure Proxy Settings.

About Creating Pagelets with Pagelet Producer

Introduction to Pagelets 14-7

Keep the following warnings and best practices in mind when implementing services
that use the proxy:

• URL transformation: Pagelet Producer must transform code so that proxied URLs
open correctly. Before Pagelet Producer sends a response, it parses the HTML and
looks for URLs containing the HTTP Proxy Server URL field prefix (see How to
Configure Proxy Settings). Pagelet Producer transforms any URLs that should be
proxied before returning the response to the client. Relative URLs are transformed
to point to the correct location.

• Scripting limitations: JavaScript constructs that dynamically create URLs can
cause problems, because they are run after content is already transformed.
VBScript is not transformed by the proxy; you can continue to use dynamic scripts
and VBScript as long as your code is proxy-aware. Parsers and Web injectors can be
used to implement targeted control over URL rewriting. For details on parsers and
Web injectors, see Modifying Pagelet Functionality at Runtime.

• URL encoding: It is a best practice to encode all headers that are URLs to prevent
unexpected transformation. In JSP, encode all URLs that are written. If the code
writes URLs in the body of a page (for example, a link to a preferences page) it
should be encoded. The standard Java servlet command
response.encodeURL() is the preferred method, but you can also use
URLEncoder.encode(url). In the .NET framework, the
HttpUtility.URLEncode class provides the necessary functionality. Note that
for .NET, there is no need to encode the redirect URL; this is handled automatically
by the back end.

14.1.3 Requirements
Install WebCenter Portal following the instructions in the Oracle Fusion Middleware
Installation Guide for Oracle WebCenter. Make sure that all dependent components are
also installed and configured, including WebCenter Content Server, the discussions
server, and Pagelet Producer.

14.2 Configuring Pagelet Producer Settings
This section explains important configuration settings that affect all Pagelet Producer
resources and how to set them using the Settings pages of the Pagelet Producer
Console. For an introduction to the Pagelet Producer Console, see Pagelet Producer
Console.

The Settings pages are described in the following topics:

• How to Configure a WCI Data Source

• How to Configure Logging Settings

• How to Configure Proxy Settings

• How to Configure Transform Settings

• How to Configure CSP Settings

• How to Configure Kerberos Settings

• How to Configure OpenSocial Settings

Configuring Pagelet Producer Settings

14-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

14.2.1 How to Configure a WCI Data Source
A CSP login token is required to consume WCI resources, and a data source is
required for that login token to be propagated from Pagelet Producer to CSP portlets.
Pagelet Producer generates a login token that is sent to all remote portlets to propagate
user identity and validate incoming requests. Follow the steps in Configuring JDBC
Data Sources in Administering JDBC Data Sources for Oracle WebLogic Server to configure
the data source. Note that the data source must be named wcidb.

14.2.2 How to Configure Logging Settings
The Logging page lets you set logging levels for Pagelet Producer components.

Figure 14-3 Pagelet Producer Console: Settings - Logging

To enable logging for any component, choose one of the following logging levels:

• Severe

• Warning

• Info

• Config

• Fine

• Finer

• Finest

Logging messages can be viewed in the managed server log files. In Oracle WebLogic
Server, this would be domain_home/servers/managed server name/managed
server name.log and managed server name-diagnostic.log.

14.2.3 How to Configure Proxy Settings
The Proxy page lets you define a list of URLs that will not be proxied, and set the URL,
user name, and password for the HTTP proxy if required.

Configuring Pagelet Producer Settings

Introduction to Pagelets 14-9

You must restart Pagelet Producer after changing the proxy settings.

Note:

If an HTTP proxy is required for external connections in the deployment
environment, initial server startup will report connection errors. These errors
are not an indication of problems with the environment; they indicate that
some external OpenSocial libraries cannot be loaded remotely. The errors can
be resolved by configuring the proxy settings as described above and
restarting the server.

Note:

The HTTP Proxy Server URL entered on the Proxy page is applied to all
applications running on the server that hosts Pagelet Producer (on Oracle
WebLogic Server, this setting is applied to all applications running on the
WC_Portlet managed server). Oracle WebLogic Server users should pay
particular attention to this setting and make sure that the WLS Administrative
Server host and all clustered managed servers are included in the "Do not
proxy hosts" list.

Figure 14-4 Pagelet Producer Console: Settings - Proxy

The Proxy page contains the following settings:

• The Do not proxy hosts field lets you define a list of semicolon-separated list of
URLs that will not be proxied (wildcards are allowed). For Oracle WebLogic Server
deployments, be sure to include the WLS Administrative Server host and all
clustered managed servers in this list.

• The HTTP Proxy Server Password field lets you set the password for the proxy
server.

• The HTTP Proxy Server URL field lets you define the proxy server URL.

Configuring Pagelet Producer Settings

14-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• The HTTP Proxy Server Username field lets you define the username with which
to access the proxy server.

14.2.4 How to Configure Transform Settings
The Transform page lets you enter the path to the credential vault provider and
configure secure and insecure ports for Pagelet Producer. This page also lets you
choose whether or not to log pre- and post-transformation content.

Figure 14-5 Pagelet Producer Console: Settings - Transform

The Transform page contains the following fields:

• The Credential Vault Plugin Path field lets you define a path to the credential
vault, where plug-ins are stored.

• The Nonsecure Port field lets you define a non-secure port for Pagelet Producer.

Note:

The Nonsecure Port defaults to 8889. If Pagelet Producer is deployed on a
different port, change this entry and restart the server.

• The Secure Port field is where you define a secure port for Pagelet Producer.

• The Trace Transformation option, when checked, turns on logging for pre- and
post-transformation content. Note that this option, although useful for debugging,
should not be turned on in production environments.

14.2.5 How to Configure CSP Settings
CSP is a platform-independent protocol based on the open standard of HTTP 1.1. CSP
defines the syntax of communication between Pagelet Producer and external
resources. It also defines custom headers as well as outlines how services use HTTP to
communicate and modify settings.

The CSP page lets you configure the Oracle WebCenter Interaction Credential Mapper,
SOAP API service, and image service.

Configuring Pagelet Producer Settings

Introduction to Pagelets 14-11

Note:

This page may be ignored if Oracle WebCenter Interaction is not present in
your deployment. These settings are used for backwards compatibility with
CSP portlets written for Oracle WebCenter Interaction.

14.2.6 How to Configure Kerberos Settings
The Kerberos page is used to define the paths to the Kerberos configuration files
(java.security.krb5.conf and java.security.auth.login.conf). These
two configuration files are needed to configure the Kerberos realm and KDC to
instruct HTTPClient where to retrieve the Kerberos Service ticket.

14.2.7 How to Configure OpenSocial Settings
The OpenSocial page lets you configure Pagelet Producer for use with OpenSocial
gadgets.

Figure 14-6 Pagelet Producer Console: Settings - OpenSocial

The OpenSocial page includes the following settings:

• The Cache option enables Pagelet Producer internal caching for OpenSocial
gadgets.

• The Context field defines the context to which Pagelet Producer is deployed. This
value should be left at the default setting ("pagelets") unless a change is required by
the OpenSocial container. For details on changing the context, see Redeploying
Pagelet Producer to a Different Context in Administering Oracle WebCenter Portal.

• The Debug option enables debugging for OpenSocial gadgets (disables JavaScript
obfuscation).

• The Host field should contain the fully-qualified domain name of Pagelet Producer
host. This value should be retrieved automatically from the environment; if it is
not, restart the server to pick up the correct configuration settings. As with the
Context setting, this value should be left at the default unless a change is required
by the OpenSocial container.

Configuring Pagelet Producer Settings

14-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• The SSL option enables SSL for OpenSocial gadgets.

Note:

You must also configure the secure (HTTPS) and nonsecure (HTTP) ports
before importing OpenSocial gadgets. For details on these settings, see How to
Configure Transform Settings.

Configuring Pagelet Producer Settings

Introduction to Pagelets 14-13

Configuring Pagelet Producer Settings

14-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

15
Creating Pagelet Producer Objects

This chapter describes how to create and configure the various objects in a Pagelet
Producer deployment, including resources, pagelets, Web injectors, parsers and
hosted files.

As explained in Pagelet Producer Console, the Pagelet Producer Console is a browser-
based administration tool used to create and manage the various objects in a Pagelet
Producer deployment. This chapter describes the settings required for each type of
object.

This chapter includes the following sections:

• Creating Resources

• Creating Pagelets

• Creating Web Injectors

• Creating Custom Parsers

• Creating Hosted Files

15.1 Creating Resources
Resources are applications registered with Pagelet Producer. An application as a
resource allows the proxy to map internal applications to external URLs, manage
authentication, and transform application functionality.

To create a new resource, use the steps below:

1. Select the Resources option from the dropdown list in the Pagelet Producer
Console navigator.

2. Click on any existing resource and click the Create icon in the navigator toolbar.
(This button is only enabled when you have selected an object type that can be
created.)

Figure 15-1 Pagelet Producer Console - Create Resource

Creating Pagelet Producer Objects 15-1

3. In the Select Producer Type dialog box, choose the type of producer that the
resource will be configured to proxy from the dropdown list:

• Web: Any standard web application

• CSP: CSP portlet provider application (for use with Oracle WebCenter
Interaction)

• WSRP/JPDK: WSRP or Oracle PDK-Java portlet producers (before you create a
resource of this type, register the associated producer as described in
Managing the Pagelet Producer in Administering Oracle WebCenter Portal).

• OpenSocial: OpenSocial Container

Figure 15-2 Select Producer Type Dialog

4. Click OK. An entry called "<new>" will be added to the list of resources. This new
resource will include the necessary configuration pages for the producer type
chosen.

5. Configure the resource in the Pagelet Producer Console. The required
configuration pages differ based on the type of producer. To save your changes at
any time, click the Save icon in the navigator toolbar.

• How to Configure Web and CSP Resources

• How to Configure WSRP and Oracle PDK-Java Resources

• How to Configure OpenSocial Resources (OpenSocial Gadget Producers)

Once the resource is defined, create the pagelets and other objects within the resource.
For more information, refer to the following topics:

• Creating Pagelets

• Creating Web Injectors

• Creating Custom Parsers

• Creating Hosted Files

15.1.1 How to Configure Web and CSP Resources
This section describes how to configure web and CSP resources.

This section includes the following topics:

• How to Configure General Settings

• How to Configure CSP settings

• How to Configure Policy Settings

Creating Resources

15-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• How to Configure Autologin

• How to Configure Autologin: Form Login

• How to Configure Autologin: Basic Login and NTLM Login

• How to Configure Autologin: Kerberos Login

• How to Configure Autologin: Authentication Sources

• How to Configure Headers

This section uses the welcome_resource created when Pagelet Producer is installed as an
example.

15.1.1.1 How to Configure General Settings

Use the General page (see Figure 15-3) to enter basic information about the resource.

Figure 15-3 Pagelet Producer Console: Resource - General Page

• Enter a Name for the resource.

• Enter a Description for the resource (optional).

• In the Source URL field, type the URL to the location of the web application
resource to be proxied. For example, http://internalServer/foo/.

Note:

If you are configuring an ADF web application as a resource, the Source URL
cannot be any more specific than http://hostname:portnumber/
context-root/.

• By default, Pagelet Producer attempts to connect to the resource for 30 seconds
before returning an error message. To change this value, enter a new Source
Timeout period in seconds.

Creating Resources

Creating Pagelet Producer Objects 15-3

• In the Destination URL field, type the relative path to be used to access the
resource. This path will be used to create an URL to the resource on the server that
hosts Pagelet Producer.

• To enable Dynamic HTML, choose DHTML Rewriting. This option supports URLs
that are not in the original HTML returned from the server, but are added by
DHTML. In most cases, this option should be enabled.

• To enable rewriting of DHTML through asynchronous Ajax calls select
Asynchronous Rewriting.

15.1.1.2 How to Configure CSP settings

By default, the CSP login token is not passed to the proxied resource. To enable this
feature, choose Send CSP Login Token. Note that the CSP page is only available for
CSP resources.

15.1.1.3 How to Configure Policy Settings

The Policy page (see Figure 15-4) lets you limit access to a resource to specific roles
within WebCenter Portal.

Figure 15-4 Pagelet Producer Console: Resource - Policy Page

The J2EE container hosting Pagelet Producer (such as Oracle WebLogic Server) is
responsible for establishing the role memberships associated with the current user. A
resource can specify multiple roles on the Policy page, and users will be allowed
access if they are a member of any of the specified roles; otherwise they will be
directed to a suitable J2EE container delegated authentication page to establish the
required credentials. If no roles are entered in the list, anonymous access is allowed,
and the resource is termed as an "anonymous resource".

Note:

The role name(s) entered on this page must match those created in the J2EE
container (such as Oracle WebLogic Server).

Creating Resources

15-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

15.1.1.4 How to Configure Autologin

The Autologin feature allows Pagelet Producer to supply credentials to applications
automatically. The Autologin page (see Figure 15-5) lets you configure authentication
information for all users who access the resource.

Figure 15-5 Pagelet Producer Console: Resource - Autologin Page

The following sections describe how to configure credential mapping for
authentication:

• How to Configure Autologin: Form Login describes how to configure autologin for
a resource that prompts for authentication with an HTML form.

• How to Configure Autologin: Basic Login and NTLM Login describes how to
configure autologin for a resource that prompts for authentication with basic
authentication or NTLM.

• How to Configure Autologin: Kerberos Login describes how to configure autologin
for a resource that prompts for authentication with Kerberos.

• How to Configure Autologin: Authentication Sources describes the static, user
profile, and credential vault authentication field sources.

15.1.1.4.1 How to Configure Autologin: Form Login

This section describes how to configure Autologin for a resource that prompts for
authentication with an HTML form.

1. On the Autologin page for the resource, expand the Form Login section (Figure
15-6).

Creating Resources

Creating Pagelet Producer Objects 15-5

Figure 15-6 Autologin Page - Form Login

2. The login page can be identified by an URL or a regular expression. In the Login
Form Identification section, choose one of the following options:

• If the login form is located at a static URL, select URL and enter the URL in the
Value field. You can choose to Automatically Detect Form Fields on the page
or enter them manually as described in step 4 below.

• If the login form is dynamic, select RegEx and type the regular expression
pattern into the box.

3. Set the login form action. In the Form Submit Location section, choose one of the
following options:

• If the login form action is a static URL, select URL and type the URL into the
box. Choose the action for the form submission: POST or GET.

• If the login form is dynamic, select RegEx and type the regular expression
pattern into the box.

4. To map fields from the form to authentication field sources, either click
Automatically Detect Form Fields in the Login Form Identification section as
described above or enter them manually using the process below:

a. Click Create to add a new row to the Form Fields list.

b. Enter the name of the HTML form input in the Field Name box.

c. For details on how to configure the Source and Value properties, see How to
Configure Autologin: Authentication Sources.

Note:

Sensitive fields should be stored securely using the credential vault (User
Vault or Secured).

d. To delete field mappings, click Delete.

5. The logout page and login error pages can also be identified by an URL or a
regular expression. In the Logout Page Identification and Login Error Page
Identification sections, choose one of the following options:

Creating Resources

15-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• If the page is located at a static URL, select URL and type the URL into the
field provided.

• If the page is dynamic, select RegEx and type the regular expression pattern
into the field provided.

15.1.1.4.2 How to Configure Autologin: Basic Login and NTLM Login

This section describes how to configure autologin for a resource that prompts for
authentication with basic authentication or NTLM.

1. On the Autologin page for the resource, expand the Basic Login or NTLM Login
section.

Note:

Basic authentication transmits passwords as plain text, and therefore, it must
not be used in production systems. Further, it is strongly recommended that
the underlying transport is HTTPS.

2. In the Username and Password sections, choose the appropriate authentication
source and enter a value as necessary. For details on how to configure these
properties, see How to Configure Autologin: Authentication Sources.

15.1.1.4.3 How to Configure Autologin: Kerberos Login

This section describes how to configure autologin for a resource that prompts for
authentication using Kerberos. For information on defining basic Kerberos settings,
see Configuring Pagelet Producer Settings.

1. On the Autologin page for the resource, expand the Kerberos Login section.

2. In the Username and Password sections, choose the appropriate authentication
source and enter a value as necessary. For details on how to configure these
properties, see the next section, How to Configure Autologin: Authentication
Sources.

3. In the SPN field, enter the Service Principal Name (SPN) for the Kerberos account,
in the format http://hostname_with_kerberos. (Before the Kerberos
authentication service can use an SPN to authenticate a service, the SPN must be
registered on the account object that the service instance uses to log on.)

15.1.1.4.4 How to Configure Autologin: Authentication Sources

Authentication sources define the source for login fields. Table 15-1describes each of
the authentication field source values:

Table 15-1 Pagelet Producer Authentication Sources

Field Description

Unsecured Uses the provided authentication information for all users accessing
the resource. Type the static value in the field provided.

Creating Resources

Creating Pagelet Producer Objects 15-7

Table 15-1 (Cont.) Pagelet Producer Authentication Sources

Field Description

Secured Uses the field value is entered by an administrator in the Pagelet
Producer Administration Console. The value is stored in the
Credential Vault and is shared among all users, including non-
authenticated (anonymous) users. The field key is auto-generated and
displayed as a read-only field in the Administration Console.

User Vault Prompts the user for credentials the first time the resource is accessed.
The supplied credentials are encrypted and stored in the credential
vault, and each subsequent access to the resource is authenticated
with the stored credentials. The field key is auto-generated and
displayed as a read-only field in the Administration Console.In the
second field, enter the name of the credential vault to use, or leave the
entry as "default" to use the server vault.

Note: When you choose User Vault, the user will be presented with
an error page that includes a link: "Click here to access pagelet
directly." This link opens the authentication dialog. This is a known
issue and occurs only the first time the resource is accessed by a user.

Generated (Form Login only) The field value is taken from the backend server
response markup.

15.1.1.5 How to Configure Headers

The Headers page (see Figure 15-7) lets you choose request and response headers that
should be dropped from the HTTP that is provided by Pagelet Producer.

Figure 15-7 Pagelet Producer Console: Resource - Headers Page

Some header elements should be blocked from being passed to back-end applications.
For example, when using delegated (third-party SSO) authentication, the SSO system
might insert some headers that need not be passed to the back-end applications. When
passed, these headers might interfere with the back-end application functionality.

The following headers are dropped by default:

Creating Resources

15-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Request Headers Response Headers

Cache-Control

Connection

Cookie

Host

Max-Forwards

Pragma

Proxy-Connection

Proxy-Authorization

TE

Trailer

Transfer-Encoding

Upgrade

Max-Forwards

Proxy-Authenticate

Proxy-Connection

Set-Cookie

Trailer

Transfer-Encoding

Upgrade

The Content-Length header is always implicitly dropped, because manipulating
content during the proxying operation renders the content length invalid in almost all
cases.

To add a header to the list, click Create and enter the header name in the field
provided.

Once the web or CSP resource is defined, you can create pagelets and other objects.
For more information, see the following topics:

• Creating Pagelets

• Creating Web Injectors

• Creating Custom Parsers

• Creating Hosted Files

15.1.2 How to Configure WSRP and Oracle PDK-Java Resources
This section describes how to configure WSRP/JPDK resources based on WSRP and
Oracle PDK-Java portlet producers.

Note:

Before you can create a resource based on a WSRP or Oracle PDK-Java portlet
producer, you must register the producer as described in Managing the
Pagelet Producer in Administering Oracle WebCenter Portal.

This section includes the following subsections:

• How to Configure General Settings

• How to Configure Policy Settings

15.1.2.1 How to Configure General Settings

Use the General page to enter basic information about a WSRP or JPDK resource.

Creating Resources

Creating Pagelet Producer Objects 15-9

• Choose the portlet producer type from the Portlet Producer dropdown list. This list
is populated with the producers that have been registered as described in
Managing the Pagelet Producer in Administering Oracle WebCenter Portal.

• Enter a Name for the resource.

• Enter a Description for the resource (optional).

15.1.2.2 How to Configure Policy Settings

The Policy page lets you limit access to a resource to specific roles within WebCenter
Portal.

The J2EE container hosting Pagelet Producer (such as Oracle WebLogic Server) is
responsible for establishing the role memberships associated with the current user. A
resource can specify multiple roles on the Policy page, and users will be allowed
access if they are a member of any of the specified roles; otherwise they will be
directed to a suitable J2EE container delegated authentication page to establish the
required credentials. If no roles are entered in the list, anonymous access is allowed,
and the resource is termed as an "anonymous resource".

Note:

The role name(s) entered on this page must match those created in the J2EE
container (such as Oracle WebLogic Server).

Once the WSRP or JPDK resource is defined, you can create pagelets and Web
injectors. See the following topics for more information:

• Creating Pagelets

• Creating Web Injectors

15.1.3 How to Configure OpenSocial Resources (OpenSocial Gadget Producers)
This section describes how to configure OpenSocial resources based on OpenSocial
gadget producers.

• How to Configure General Settings

• How to Configure Policy Settings

Note:

Configure Pagelet Producer for use with OpenSocial before creating an
OpenSocial resource. For more information, see How to Configure OpenSocial
Settings.

15.1.3.1 How to Configure General Settings

Use the General page to enter basic information about the resource.

• Enter a Name for the resource.

• Enter a Description for the resource (optional).

Creating Resources

15-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

15.1.3.2 How to Configure Policy Settings

The Policy page lets you limit access to a resource to specific roles within WebCenter
Portal.

The J2EE container hosting Pagelet Producer (such as Oracle WebLogic Server) is
responsible for establishing the role memberships associated with the current user. A
resource can specify multiple roles on the Policy page, and users will be allowed
access if they are a member of any of the specified roles; otherwise they will be
directed to a suitable J2EE container delegated authentication page to establish the
required credentials. If no roles are entered in the list, anonymous access is allowed,
and the resource is termed as an "anonymous resource".

Note:

The role name(s) entered on this page must match those created in the J2EE
container (such as Oracle WebLogic Server).

Once the OpenSocial resource is defined, you can create pagelets and files. Refer to the
following topics for more information:

• Creating Pagelets

• Creating Hosted Files

15.2 Creating Pagelets
The pagelets collection lists the pagelets associated with the resource. To create a new
pagelet, select the Pagelets section under the resource you want to use in the Pagelet
Producer Console and click the Create icon in the toolbar. A pagelet called "<new>"
will be added to the list. To modify an existing pagelet, click the pagelet name.

Note:

Do not make updates to the seeded resources (welcome_resource,
login_resource, and pagelet_api). These were not intended to be
modified.

This section contains the following topics:

• How to Configure General Settings

• How to Configure Preferences

• How to Configure Parameters

• How to Configure the Clipper

• How to Access the Pagelet and Preference Editor

Creating Pagelets

Creating Pagelet Producer Objects 15-11

15.2.1 How to Configure General Settings
Enter a Name for the pagelet and the Library name with which to associate the
pagelet. (A pagelet library is a user-defined way to group related pagelets.) Enter a
Description for the pagelet (optional).

• For Web and CSP pagelets, type the relative path to the pagelet in the URL Suffix
field (do not include the Source URL prefix you entered for the resource). If you
leave the URL Suffix blank, then the entire resource will be considered the pagelet.

• For pagelets based on WSRP or Oracle PDK-Java portlets, choose the portlet on
which to base the pagelet from the Portlet dropdown list. This list is populated
with the portlets on the WSRP or Oracle PDK-Java portlet producer associated with
the parent resource. Any public parameters associated with the portlet will
automatically be imported as pagelet parameters. For more information on support
for WSRP or Oracle PDK-Java portlets, see Working with Pagelet Chrome for
WSRP and Oracle PDK-Java Portlets.

• For pagelets based on OpenSocial gadgets, enter the location of the gadget XML
schema in the Gadget URL field. Click the Import Gadget Metadata button to
import the following information from the XML schema:

– Gadget name: This value will be imported into the Description field on the
General page.

– Gadget user preferences: The pagelet parameters on the How to Configure
Parameters page will be populated with the gadget's user preferences.

For more information on support for OpenSocial gadgets, see Working with
OpenSocial Gadgets.

To block access to the pagelet, choose Disabled. If the pagelet is included on any
pages, it will display a simple error message.

15.2.2 How to Configure Preferences
On the Preferences page (see Figure 15-8), enter the relative URLs to any preference
pages required by the pagelet: Global, Customize, or Personalize. Do not include the
Source URL prefix you entered for the resource. (As noted above, for OpenSocial
gadgets with user preferences, a default entry will be created; this entry should not be
modified.)

The Preferences page is not used by WSRP or Oracle PDK-Java based pagelets.

Figure 15-8 Pagelet Producer Console: Pagelets - Preferences Page

Creating Pagelets

15-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

15.2.3 How to Configure Parameters
Data can be passed to pagelets using pagelet parameters. Parameters pass name-value
pairs to the pagelet application as described below.

On the Parameters page (see Figure 15-9), enter the Parameters that should be passed
to the pagelet.

To add a parameter, click Create.

• Enter the Name of the parameter.

• If the parameter is required by the pagelet, select the Required checkbox.

• Choose the appropriate data Type: string or numeric.

• Enter a Description (optional).

Figure 15-9 Pagelet Producer Console: Pagelets - Parameters Page

15.2.4 How to Configure the Clipper
Clipping lets you create a pagelet by clipping a portion of a larger Web page in a
proxied application. A news Web page, for example, may contain a box listing the
latest headlines. By identifying the containing HTML for that box, you can clip only
the headlines and serve that subset of the news Web page as a pagelet.

To create a clipper, select the Clipper section under the pagelet and click the Create
icon in the toolbar. A new clipper will be created with two configuration pages:

• On the General page, enter a name for the clipper.

• On the Content page (see Figure 15-10), define the clipper content.

Creating Pagelets

Creating Pagelet Producer Objects 15-13

Figure 15-10 Pagelet Producer Console: Clipper - Content Page

– To use a graphical tool to select page content, click Launch Clipper.

– To specify HTML tag attributes that describe the section to be clipped, expand
the Advanced Clipper section (Figure 15-11) and enter the Clipping Tag Name
and associated attribute(s).

Figure 15-11 Advanced Clipper

Keep the following in mind when using the clipper:

• If the back-end resource is accessed over HTTPS, make sure the Pagelet Producer
Console is also accessed over a secure port.

• If the clip source is protected by a login form or other form of authentication, make
sure to configure Autologin for the parent resource as described in How to
Configure Autologin. If you are using the vault to store credential values (see How
to Configure Autologin: Authentication Sources), make sure to capture the
credentials prior to using the clipper.

• If you are having problems with the clipper, make sure the configured pagelet URL
can be loaded by the browser without redirects. If necessary, change the pagelet
suffix to reflect the final URL loaded by the browser after following all the
redirects.

• Images and code overwritten using hosted files cannot be clipped. (For more
information about hosted files, see Creating Hosted Files.)

• If the graphical clipper cannot be used (for example, if the page ID is not available),
use the Advanced Clipper to define the page region to clip using a regular
expression.

Creating Pagelets

15-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

15.2.5 How to Access the Pagelet and Preference Editor
Use the Documentation page (see Figure 15-12) to display sample code with which to
access the pagelet and preference editor using either JavaScript or the REST API.

Figure 15-12 Pagelet Producer Console: Pagelets - Documentation Page

15.3 Creating Web Injectors
A Web injector inserts content into a specified location in the proxied resource page.
The content may be any text, including HTML, CSS, JavaScript, and pagelet
declarations. An empty injector may also be used to remove unwanted content from a
page. Injectors cannot be created for OpenSocial resources.

To create a Web injector, select the Injectors section under the resource you want to
use and click the Create icon in the toolbar. A new injector called "<new>" will be
added to the list. Injectors can then be configured using the General and Content
configuration pages as described in the following topics:

• How to Configure General Settings

• How to Inject Content

Note:

Do not make updates to the seeded resources (welcome_resource,
login_resource, and pagelet_api). These were not intended to be
modified.

15.3.1 How to Configure General Settings
Use the General page (see Figure 15-13) to configure basic settings for the injector.

Enter a Name for the Web injector.

The injector can be applied to a subset of the resource by typing a URL pattern into the
URL Filter box. The injector will be applied only to those URLs within the resource
that begin with the text in the URL Filter box. If the box is empty or contains only a '/',
the injector will be applied to the entire resource.

Creating Web Injectors

Creating Pagelet Producer Objects 15-15

To restrict the injector to specific kinds of content, type a comma separated list of
MIME types in the MIME Filter box. For example, text/html restricts the injector to
HTML content, while text/css only restricts the injector to CSS content.

In the Inject Location section, define where in the resource's output the injection will
be made in relation to a unique string. Enter the unique string in the field provided
and choose Before, After or Replace to define where to put the content relative to the
string. If you choose to replace the string, you can use the Enclose tag to replace both
the string and the enclosing tag. You can choose to ignore the case of the string by
selecting Ignore case.

Figure 15-13 Pagelet Producer Console: Injectors - General Page

15.3.2 How to Inject Content
Use the Content page to define content to be injected using the injector. Content to be
injected may be any text, including HTML, CSS, JavaScript, and pagelet declarations.

For example, the following code could be injected at the beginning of a page. The
example registers a handler function with the page load event and then uses the
handler to modify the page markup (by finding and hiding the header and footer).

<script type="text/javascript">
if (window.addEventListener) {
window.addEventListener('load', hideHeaderFooter, false);
} else if (document.attachEvent) {
window.attachEvent('onload', hideHeaderFooter);
}
function hideHeaderFooter() {
var header =null;
 //find the header table by class
if (document.getElementsByClassName) {
header =document.getElementsByClassName('page_header')[0];
 }else {
//for older versions of IE
 var tables =document.getElementsByTagName('table');
 for (var table in tables) {
if (table.class =='page_header') {
header =table;
 break;
 }
}
}

Creating Web Injectors

15-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

if (header != null) {
header.style.display ='none';
 }
//now find and hide the footer (easier to find, since it has an id)
 var footer =document.getElementById('t23PageFooter');
 if (footer != null) {
footer.style.display ='none';
 }
}
</script>

15.4 Creating Custom Parsers
Custom parsers allow you to supplement or change built-in logic for parsing content
and finding URLs. When the built-in parsers fail to identify URLs or identify sections
that must not be rewritten as URLs, custom parsers can be used to change the default
behavior. Note that parsers cannot be created for WSRP or Oracle PDK-Java portlet
producers or OpenSocial gadget producers.

Note:

Do not make updates to the seeded resources (welcome_resource,
login_resource, and pagelet_api). These were not intended to be
modified.

To create a custom parser, select the Parsers section under the resource you want to
use and click the Create icon in the toolbar to display the Parser's General page (see
Figure 15-14):

• Enter a Name for the parser.

• The parser can be applied to a subset of the resource by typing a URL pattern into
the URL Filter box. The parser will be applied only to those URLs within the
resource that begin with the text in the URL Filter box. If the box is empty or
contains only a '/', the parser will be applied to the entire resource.

• To add a new parsing rule, click Create to add a new row to the Fragment
Locations section.

• In the Regular Expressions column, enter the regular expression for identifying the
URL fragment that should be transformed. The first grouping expression (in
parentheses) identifies the fragment, and the rest of the expression provides the
context for finding it.

• Choose the Fragment Type to define how the selected location should be parsed:

– Static URLs are transformed on the server.

– Dynamic URLs are transformed using JavaScript on the client.

– HTML Fragment and Javascript Fragment types are used for content that is
embedded in another content type, such as XML.

– No Rewriting specifies a location that should not be searched for URLs. This
option is used to prevent rewriting of markup mistakenly identified as URLs.

• Click the Save icon in the navigator toolbar.

Creating Custom Parsers

Creating Pagelet Producer Objects 15-17

Figure 15-14 Pagelet Producer Console: Parsers - General Page

For example, the regular expression XMLFile=(.*?)" would identify URLs to XML
files defined within a tag, as in <embed src="/i/flashchart/anychart_5/swf/
OracleAnyChart.swf?>XMLFile=http://apex.oracle.com/pls/apex/
apex_util.flash?
p=53557:1:74175370346201:FLOW_FLASH_CHART5_R45192463162785599619
_en".

15.5 Creating Hosted Files
Pagelet Producer can host all types of content (HTML, JavaScript, CSS, etc.) and
present the file at a virtual URL location. Hosted files can be used for a range of
purposes:

• Overwrite content and functionality in a proxied application, by uploading files
and configuring them to use the same URL as the original file.

• Use hosted files in injectors to insert images or content into a proxied application.

• Host pagelet files on the Pagelet Producer server.

Note:

Do not make updates to the seeded resources (welcome_resource,
login_resource, and pagelet_api). These were not intended to be
modified.

To upload a file, select the Files section under the resource you want to use and click
the Create icon in the toolbar.

• On the General page (see Figure 15-15), enter the relative path to the file in the
Name field. Do not use a leading forward-slash ("/"). The directory structure of the
Files collection in the navigator is updated to match the path to the file.

Enter the MIME type of the file.

Creating Hosted Files

15-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 15-15 Pagelet Producer Console: Files - General Page

• On the Content page, enter the path to the file or click Browse to navigate to the
file.

Click Upload to upload the file to the Pagelet Producer server. If you entered text
or html as the MIME type, you can also use the editor on the Content page to enter
or edit file content. (The editor is only available for text and html files.) If you
entered an image type as the MIME type, the uploaded image will be displayed on
the Content page.

Note:

Text files (text/plain) uploaded to the Pagelet Producer must be saved as
UTF-8.

• Click the Save icon in the navigator toolbar.

After the file is uploaded, it will be available for use in injectors and pagelets at the
following URL: http://<host_name>:<port_number>/pagelets/
<resourcename>/<filepath>.

For example, if the file was uploaded under the "welcome_resource" resource and the
name for the file was entered as "images/myimage.jpg" the path to the hosted file on
the Pagelet Producer server would be: http://<host_name>:<port_number>/
pagelets/welcome_resource/images/myimage.jpg

Keep the following in mind when working with hosted files:

• The hosted file feature should not be used for bulky files.

• If you choose to host OpenSocial gadget XML files, the files must be placed under
an anonymous resource (with no security policy) or gadget functionality will not
work correctly.

• Hosted files cannot be created for WSRP or Oracle PDK-Java portlet producers.

Creating Hosted Files

Creating Pagelet Producer Objects 15-19

Creating Hosted Files

15-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

16
Working with Pagelets and Gadgets

This chapter describes how to create pagelets with Oracle WebCenter Portal's Pagelet
Producer.

This chapter includes the following sections:

• Working with OpenSocial Gadgets

• Working with Pagelet Chrome for WSRP and Oracle PDK-Java Portlets

16.1 Working with OpenSocial Gadgets
Any OpenSocial gadget reachable by the Pagelet Producer server can be registered as
a pagelet and used in any Web application, including a portal. To support OpenSocial
gadgets, you must first define an OpenSocial container as described in How to
Configure OpenSocial Settings.

Pagelet Producer supports most of the standard OpenSocial APIs excluding OAuth.
The complete OpenSocial API reference documentation can be found here:

http://docs.opensocial.org/display/OSD/Specs

Pagelet Producer also allows gadgets to store preferences, retrieve WebCenter Portal
profile and connection information, and access a user's activity stream using
OpenSocial APIs.

This section contains the following topics:

• How to Configure Authentication

• How to Store User Preferences

• How to Access WebCenter Portal Profile Information

• How to Access a User's Activity Stream

• How to Use Gadget Eventing

• Example: How to Consume an External OpenSocial Gadget

• Example: How to Consume a Local OpenSocial Gadget

16.1.1 How to Configure Authentication
In order for gadgets to request user-level data (preferences or people connections), the
end user's identity must be established. If any OpenSocial gadgets need to access user-
level data from the server, you must configure a security policy for the parent
OpenSocial resource in the Pagelet Producer Console (see How to Configure Policy
Settings). The first time a user accesses an OpenSocial gadget, a login page will be

Working with Pagelets and Gadgets 16-1

presented. After the initial login, subsequent requests for OpenSocial gadgets will use
the established user identity.

16.1.2 How to Store User Preferences
OpenSocial gadgets may use user preferences to store data at the container. User
preferences are scoped to a particular user and may optionally be scoped to an appId
(the gadget appId is the pagelet context ID). If you choose to use the OpenSocial
gadget.Prefs API, the user preferences will be scoped to the user and pagelet instance.
Alternatively, you may use the opensocial.DataRequest API to manage preferences at
the user level that can be shared with other pagelets.

When registered as a pagelet, a gadget's user preferences are treated as pagelet
preferences. In WebCenter Portal, for example, non-hidden user preferences can be
edited by the end user using the Personalize button. Additionally, to simulate
preferences shared between users, you may pass in user preferences via pagelet
parameters. Note that a pagelet preference, if set, will always override the
corresponding pagelet parameter (in other words, personalization takes precedence
over customizations).

Outside of WebCenter Portal, gadget-backed pagelets are provided with a simple
chrome that displays the gadget title and buttons for accessing the preference editor
and minimizing/maximizing the gadget. The chrome may be suppressed by passing
in the value of 'none' to the chrome parameter in the Pagelet Inject API. The preference
editor UI supports all four types of user preferences:

• string: rendered as a text field

• bool: rendered as a checkbox

• enum: rendered as a dropdown list

• list: rendered as a text field (values must be separated with a pipe "│" character)

16.1.3 How to Access WebCenter Portal Profile Information
OpenSocial gadgets can query the current user's profile data and people connections
via the standard OpenSocial API. To use this feature, you must manually target the
WebCenterDS data source to the WC_Portlet server as described in Managing the
Pagelet Producer in Administering Oracle WebCenter Portal.

Note:

The OpenSocial API cannot be used to update profile or connection
information.

The supported user profile fields are listed in Table 16-1.

Table 16-1 User Profile Fields

OpenSocial
Field

Type Description

aboutme string A general statement about the person.

Working with OpenSocial Gadgets

16-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 16-1 (Cont.) User Profile Fields

OpenSocial
Field

Type Description

addresses Plural-Field
<Address>

A physical mailing address for the person.

appData Plural-Field
<AppData>

A collection of AppData keys and values, used for preferences.

birthday Date The birthday of the person. The value must be a valid Date. The year
may be set to 0000 when the age of the person is private or the year is
not available.

emails Plural-Field <string> Email address for the person.

location string Physical address for the person.

name Name The broken-out components and formatted version of the person's
real name.

organizations Plural-Field
<Organization>

Current or past organizational affiliation of the person.

phoneNumbers Plural-Field <string> Phone number for the person. In addition to the standard canonical
values for type, this field defines the additional values mobile, fax,
and pager.

photos Plural-Field <string> URL to a photo of the person. The value must point to an actual
image file (e.g. a GIF, JPEG, or PNG image file) rather than to a Web
page containing an image. Note that this field should only be used to
download profile photos of the contact suitable for display when
describing the contact.

preferredUserna
me

string The preferred username of this person on sites that ask for a
username (e.g., jsmarr or daveman692).

status string The person's status, headline or shoutout.

thumbnailUrl string The person's photo thumbnail URL, specified as a string. This URL
MUST be fully qualified.

16.1.4 How to Access a User's Activity Stream
OpenSocial gadgets can operate on a user's activity stream using OpenSocial APIs. The
following operations are supported:

• get activities

• create activity

The following operations are not supported:

• update activity

• delete activity

The supported activity stream fields are listed in Table 16-2.

Working with OpenSocial Gadgets

Working with Pagelets and Gadgets 16-3

Table 16-2 Activity Stream Fields

OpenSocial
Field

Type Description

appId Object-Id The application with which the activity is associated.

body string An optional expanded version of the activity. Bodies may only have the
following HTML tags: <i>, <a>, , but this formatting may be
ignored.

externalId Object-Id An optional ID generated by the posting application.

id Object-Id An ID that is permanently associated with the activity.

postedTime string The time at which the activity took place in milliseconds since the epoch.

priority number A number between 0 and 1 representing the relative priority of the activity in
relation to other activities from the same source.

title string The primary text of the activity. Titles may only have the following HTML
tags: <i>, <a>, , but this formatting may be ignored.

userId Object-Id ID of the user for whom the activity is defined.

16.1.5 How to Use Gadget Eventing
Pagelet Producer supports the OpenSocial pubsub inter-gadget eventing model. A
gadget may publish events over any number of arbitrary channels (defined by simple
string names) in JavaScript. On the receiving end, a gadget may subscribe to receive
events over any number of channels, again in JavaScript, and take appropriate actions
based on the events.

function connSelected(element) {
var connId =element.id;
 var connName =element.lastChild.textContent;
 gadgets.pubsub.publish(channel, {id: connId, name: connName});

For a complete JavaScript reference to the supported eventing API, see:

http://docs.opensocial.org/display/OSD/Specs

16.1.6 Example: How to Consume an External OpenSocial Gadget
The example that follows is simplified for illustration. To support OpenSocial gadgets,
you must first define an OpenSocial container as described in How to Configure
OpenSocial Settings.

1. Using the Pagelet Producer Console, create a new Resource and choose
OpenSocial as the type. Define URLs and policies as necessary. Save the new
Resource.

2. Using the Pagelet Producer Console, create a new pagelet and enter the location of
the gadget XML schema in the Gadget URL field.

• To import the gadget name and any user preferences defined for the gadget,
click the Import Gadget Metadata button. If any of the preferences are

Working with OpenSocial Gadgets

16-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

editable, Pagelet Producer will create a preference editor using the imported
preferences.

• To configure or customize the generated preference editor, go to the Pagelet
Parameters page.

3. Go to the Documentation page to view sample code to access the pagelet and
preference editor using either the JavaScript or REST API.

4. Save the new pagelet.

16.1.7 Example: How to Consume a Local OpenSocial Gadget
The example that follows is simplified for illustration. To support OpenSocial gadgets,
you must first define an OpenSocial container as described in How to Configure
OpenSocial Settings.

1. Using the Pagelet Producer Console, create a new Resource and choose
OpenSocial as the type. Define URLs and policies as necessary. Save the new
Resource.

2. Create or upload the gadget file.

Note:

If you choose to host OpenSocial gadget XML files, the files must be placed
under an anonymous resource (with no security policy) or gadget
functionality will not work correctly.

a. Select the Files section under the resource and click the Create icon in the
toolbar.

b. On the General page, enter the relative path to the file in the Name field. Do
not use a leading forward-slash ("/"). For example, "gadgets/activities.xml".
Any path and name can be used; the path is a ‘virtual’ URL that Pagelet
Producer will use to serve the file. The visual directory structure of the Files
collection in the navigator is updated to match the path to the file.

c. Go to the Content page to upload or create the gadget file.

To upload a gadget file, enter the path to the file or click the Browse button to
navigate to the file, then click the Upload button to upload the file to the
Pagelet Producer server.

To create a gadget file, use the editor on the Content page to enter and edit
content.

d. Click the Save icon in the navigator toolbar.

3. Create or upload any other files required by the gadget (JavaScript, images, etc.)
in the Files section of the resource. Define paths for the files that match the paths
in the gadget code. For example, if the gadget uses JavaScript files in a subfolder
called "js", include that directory in the Name field when you upload the files, (for
example, "gadgets/js/activities.js".)

4. Using the Pagelet Producer Console, create a new pagelet and enter the relative
path to the gadget XML schema (created or uploaded in step 2) in the Gadget

Working with OpenSocial Gadgets

Working with Pagelets and Gadgets 16-5

URL field. For local files, this is the same path defined in the Name field for the
file object (for example, "gadgets/activities.xml").

• To import the gadget name and any user preferences defined for the gadget,
click the Import Gadget Metadata button. If any of the preferences are
editable, Pagelet Producer will create a preference editor using the imported
preferences.

5. Go to the Documentation page to view sample code to access the pagelet and
preference editor using either the JavaScript or REST API.

6. Save the new pagelet.

16.2 Working with Pagelet Chrome for WSRP and Oracle PDK-Java
Portlets

Pagelet Producer can be used to present WSRP and Oracle PDK-Java portlets for use
in any web application. This section explains how to use pagelet chrome to modify
markup at runtime in WSRP or Oracle PDK-Java portlets. For details on configuring
the Pagelet Producer to connect to a WSRP or Oracle PDK-Java portlet producer, see
Managing Pagelet Producer in Administering Oracle WebCenter Portal.

A pagelet chrome template is an HTML file that specifies:

• How portlet markup should be rendered stylistically

• How to display the portlet title

• How to render mode switching options

The default chrome template displays the portlet name and a dropdown menu that
allows the user to switch into different modes. The dropdown menu is dynamically
populated with all the standard modes supported by the underlying portlet.
Templates use the following reserved tokens (see Table 16-3) to identify key portlet
elements that Pagelet Producer then substitutes at runtime.

Table 16-3 Pagelet Chrome Template Tokens

Token Description

$$PORTLET TITLE$$
Portlet title

$$REPEAT MENU ITEM$$
Used to indicate the beginning of a repeating section for
navigational items

$$END REPEAT MENU ITEM$$
Used to indicate the end of a repeating section for navigational
items

$$MENU ITEM URL$$
Navigation URL (to switch portlet modes or window states)

$$MENU ITEM$$
Display name of navigational item (for example, Customize)

Working with Pagelet Chrome for WSRP and Oracle PDK-Java Portlets

16-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 16-3 (Cont.) Pagelet Chrome Template Tokens

Token Description

$$TOKEN$$
Unique identifier for pagelet instance on the page

$$PORTLET CONTENT$$
Portlet content

pt://images
Tag used to indicate the imageserver URL

The example below is a very simple pagelet chrome template:

<script type="text/javascript">
function goto(url)
{
 document.location =url;
 return false;
}
</script>
<div style="border: 1px solid">
<!-- $$PORTLET TITLE$$ -->

 Switch Mode:
 <select size="1" name="mode">
 <!-- $$REPEAT MENU ITEM$$ -->
 <option onclick="goto('$$MENU ITEM URL$$')"><!-- $$MENU ITEM$$ --></option>
 <!-- $$END REPEAT MENU ITEM$$ -->
 </select>

</div>
<!-- $$PORTLET CONTENT$$ -->

Note:

The pagelet chrome template file must be hosted on the classpath of the
Pagelet Producer web application.

If you configured Pagelet Producer to use an external image server, copy the
files from ensemblestatic.war/imageserver/yahoo to your image
server to properly render the default chrome template.

To implement the chrome template, add it as a parameter to the pagelet inject URL
(REST or JavaScript). For details on pagelet inject URLs, see Adding a Pagelet to a Web
Page. For example:

• REST: /inject/v2/pagelet/pagelet_lib/pagelet_name?
chrome=mychrome.html

• JavaScript: injectpagelet(library, name, iframe_options, payload,
params, context_id, element_id, is_in_community, chrome)

Working with Pagelet Chrome for WSRP and Oracle PDK-Java Portlets

Working with Pagelets and Gadgets 16-7

The value of the chrome parameter can be the name of the file containing the chrome
template or the special reserved value "none", which suppresses all chrome and sends
back portlet markup only. If the chrome parameter is omitted, the default chrome is
returned with the portlet markup. The default chrome template uses YUI menu
control to display a gradient title bar and a DHTML dropdown menu for switching
modes. (When ADF content is detected, a different chrome template is used by
default. This template can be overridden with a custom template or with the standard
default template by setting chrome=chrometemplate.html.)

Working with Pagelet Chrome for WSRP and Oracle PDK-Java Portlets

16-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

17
Creating Custom Pagelets

This chapter provides detailed information about building pagelets using Pagelet
Producer, including how to use the Adaptive Pagelet Scripting Framework, configure
security settings for pagelets and resources to manage authentication for users, use
custom web injectors and parsers to modify pagelet functionality at runtime, and
access advanced logging traces for debugging.

This chapter includes the following sections:

• Using the Adaptive Pagelet Scripting Framework

• Modifying Pagelet Functionality at Runtime

• Debugging Pagelets

17.1 Using the Adaptive Pagelet Scripting Framework
The Adaptive Pagelet Scripting Framework is a client-side JavaScript library that provides
services to CSP pagelets and proxied pages. This section explains how to use the
scripting framework to implement dynamic functionality in pagelets.

Note:

CSP (and the Adaptive Pagelet Scripting Framework) only applies to WCI and
its predecessor, Plumtree Portal. WebCenter Portal does not support CSP.

This section includes the following topics:

• How to Handle Structured HTTP Responses

• How to Use Event Notification

• How to Use In-Place Refresh

• How to Use Session Preferences

For a full list of classes and methods, see the JSPortlet API documentation. For
additional information about adaptive pagelets, see What You May Need to Know
About Adaptive Pagelet Development.

17.1.1 How to Handle Structured HTTP Responses
This section describes how the adaptive pagelet scripting framework can be used as a
client-side response handler for structured HTTP, typically encoded as XML.

In many cases it can be expensive and inefficient to send large amounts of HTML back
in response to some HTTP request, if only a small part of the user interface needs to be

Creating Custom Pagelets 17-1

changed. This is especially true with more complex user interfaces. In these cases, the
response can be encoded in XML. The client-side response handler can then parse the
XML, and update the user interface (or perform some other action) based on that
response. Use the Structured Response design pattern to redraw a small area of the
user interface after making an HTTP request, or to access a simple HTTP/URI type
web service from a pagelet. The example code below
(structuredresponse_portlet.html) accesses an RSS feed from a selection of news sites.

<!-- jsxml includes -->

<script type="text/javascript"
src="/images/plumtree/common/private/js/PTLoader.js"></script>
<script type="text/javascript">
var oImgServer =new Object();
oImgServer.location =document.getElementById('imgServerHref').href;
var imageServerURL =document.getElementById('imgServerHref').href;
var imageServerConnectionURL =oImgServer.location;
new PTLoader(imageServerURL, imageServerConnectionURL).include('jsxml','en');
</script>

<!-- jscontrols includes -->
<link rel="stylesheet" type="text/css" href="/portal-remote-server/js/jscontrols/
styles/css/PTMenu.css"/>
<link rel="stylesheet" type="text/css" href="/portal-remote-server/js/jscontrols/
styles/css/PTRichTextEditor.css"/>
<script type="text/javascript" src="/portal-remote-server/js/jscontrols/strings/
PTControls-en.js"></script>
<script type="text/javascript" src="/portal-remote-server/js/jscontrols/
PTControls.js"></script>

<!-- Inline JS helper functions -->
-->

<script defer type="text/javascript" id="structured-response-portlet-A-script">
// Function that gets the RSS XML feed found at the specified url
getRSSFeed =function(url)
 {
//First clear out any existing rows in the table
 channelTable.clearRows();

 //Force the transformer to fix up the url
 var oURL =new Object();
 oURL.location =url;

 //Do the http get
 var get =new PTHTTPGETRequest(oURL.location, handleRSSResponse);
 get.invoke();
 }

//Function that handles the RSS XML response and updates the table based on the RSS
items
handleRSSResponse =function(response)
 {
//Get the rss xml
 var xml =response.responseText;
 if (!xml ││xml.indexOf('<?xml') ==-1) {return; }

//Parse into a dom, and get the channel node
 var xmlDOM =new PTXMLParser(xml);
 var rssNode =xmlDOM.selectSingleNode('rss');
 var channelNode =rssNode.selectSingleNode('channel');

Using the Adaptive Pagelet Scripting Framework

17-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 //Get the channel title and set the status bar text in the table
 var channelTitle =channelNode.selectSingleNode('title').getNodeValue();
 channelTable.statusBarText ='Loaded Channel: ' +channelTitle;

 //Get channel item nodes
 var itemNodes =channelNode.selectNodes('item');

//Build table rows
 channelTable.rows =new Array();
 for (var i=0; i<itemNodes.length; i++)
 {
var itemNode =itemNodes[i];

 //Get channel item properties
 var itemTitle =itemNode.selectSingleNode('title').getNodeValue();
 var itemLink =itemNode.selectSingleNode('link').getNodeValue();
 var itemDescription =itemNode.selectSingleNode('description').getNodeValue();
 if (itemNode.selectSingleNode('author'))
 var itemAuthor =itemNode.selectSingleNode('author').getNodeValue();
 if (itemNode.selectSingleNode('category'))
 var itemCategory =itemNode.selectSingleNode('category').getNodeValue();
 if (itemNode.selectSingleNode('pubDate'))
 var itemPubDate =itemNode.selectSingleNode('pubDate').getNodeValue();

 //Create a row and add it to the table
 var row =new PTRow();
 row.parent =channelTable;
 row.id =i;
 row.uid =i;
 row.previewText =itemDescription;
 row.link =itemLink;
 row.columnValues[0] =new PTTextColumnValue(itemTitle);
 row.columnValues[1] =new PTTextColumnValue(itemCategory);
 row.columnValues[2] =new PTTextColumnValue(itemAuthor);
 row.columnValues[3] =new PTTextColumnValue(itemPubDate);
 channelTable.rows[channelTable.rows.length] =row;
 }

//Redraw the table
 channelTable.draw();
 }
</script>

Select RSS Feed:
<a href="#" onclick="getRSSFeed('http://www.wired.com/news/feeds/
rss2/0,2610,,00.xml'); return false;">Wired News
<a href="#" onclick="getRSSFeed('http://news.com.com/2547-1_3-0-5.xml'); return
false;">CNET News.com
<a href="#" onclick="getRSSFeed('http://partners.userland.com/nytRss/
nytHomepage.xml'); return false;">NY Times

<!-- Set up a table control to display channel items -->
<div id="channelTableContainer"></div>
<script defer type="text/javascript">
 var channelTable =new PTTableControl();
 channelTable.locale ='en_US';
 channelTable.objName ='channelTable';
 channelTable.container ='channelTableContainer';
 channelTable.baseURL ='/imageserver/plumtree/common/private/portal-remote-server/js/

Using the Adaptive Pagelet Scripting Framework

Creating Custom Pagelets 17-3

jscontrols/1/';
 channelTable.statusBarText ='No RSS Feed Selected';
 channelTable.rowDetailAction =new PTJavaScriptAction('window.open(\'${ROW.link}
\');');
 channelTable.columns[0] =new PTColumn();
 channelTable.columns[0].name ='Title';
 channelTable.columns[0].width ='40%';
 channelTable.columns[1] =new PTColumn();
 channelTable.columns[1].name ='Category';
 channelTable.columns[1].width ='20%';
 channelTable.columns[2] =new PTColumn();
 channelTable.columns[2].name ='Author';
 channelTable.columns[2].width ='20%';
 channelTable.columns[3] =new PTColumn();
 channelTable.columns[3].name ='Publication Date';
 channelTable.columns[3].width ='20%';
 channelTable.areColumnsResizable =true;
 channelTable.clientSortEnabled =true;
 channelTable.scrollHeight =250;
 channelTable.init();
 channelTable.draw();
</script>
</div>

17.1.2 How to Use Event Notification
This section describes how the adaptive pagelet scripting framework allows pagelets
to respond to both page-level events and custom events raised by other pagelets.

The registerForWindowEvent and registerOnceForWindowEvent methods in
the scripting framework provide pagelets with access to page-level events. For a
complete list, see How to Use Page-Level Events with the Scripting Framework. To
register for notification of these events, pass in the name of the event and the name of
the method that should be called when it occurs. When a page-level event is raised,
the JavaScript event object is passed to the event handler as an argument. The
scripting framework also allows pagelets to raise and respond to custom events using
raiseEvent and registerForEvent. The Broadcast-Listener design pattern
illustrates an important example of using notification services with session
preferences. Users can select an item or perform some other action in a "broadcast"
pagelet, which causes the content in other related "listener" pagelets to be redrawn. In
the following example, the broadcast pagelet displays a form that allows you to enter a
number in a text box.

Figure 17-1 Broadcast Portlet

When the user enters a number in the text box, the values in the listener pagelets
change. The first listener pagelet displays the square root of the number entered in the
broadcast pagelet.

Using the Adaptive Pagelet Scripting Framework

17-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 17-2 Listener -1 Portlet

The second listener pagelet displays the cube root of the number entered in the
broadcast pagelet.

Figure 17-3 Listener -2 Portlet

The following steps summarize how the pagelets work:

• On load, each listener pagelet calls its own instance method (registerForEvent)
to register for events of type 'onBroadcastUpdate'.

• On each onkeyup event that occurs in the "Enter number" text box, the broadcast
pagelet sets a session preference to the value entered in the text box, and calls its
own instance method (raiseEvent) to raise an event of type 'onBroadcastUpdate'.

• When the onBroadcastUpdate event is raised or the page is reloaded, each listener
pagelet retrieves the session preference set by the broadcast pagelet and computes
a new value to display based on the value of the preference.

Broadcast Pagelet

<div style="padding:10px;" align="center">
<p>Enter number:
 <input type="text" style="font-size:22px;font-weight:bold;text-align:center;"
id="broadcast_prefName" value="4" size="7"
onkeyup="broadcast_setPrefs(this.value)"></p>

</div>

<script type="text/javascript">
function broadcast_setPrefs(val)
{
 var prefName ='broadcastNumber';
 var prefValue =val;
 PTPortlet.setSessionPref(prefName,prefValue);
 var broadcastPortlet =PTPortlet.getPortletByGUID('{D9DFF3F4-
EAE7-5478-0F4C-2DBD94444000}');

 if (!broadcastPortlet)
 {
broadcast_debug('Could not locate PTPortlet object which corresponds to Broadcast
Portlet on page.');
 return;
 }
broadcast_debug('Broadcast Portlet raising onBroadcastUpdate event.');
 broadcastPortlet.raiseEvent('onBroadcastUpdate',false);
}

Using the Adaptive Pagelet Scripting Framework

Creating Custom Pagelets 17-5

function broadcast_debug(str)
{
 if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}
</script>

Listener Pagelet #1

<div style="padding:10px;" align="center">
<p>Square root:
<div style="height:21px;border:2px solid black;padding:2px;overflow:visible;font-
size:14px;"id="listener1-swatch">
</div>
</div>

<script>
function listener1_update()
{
 var broadcastNumber =parseFloat(PTPortlet.getSessionPref('broadcastNumber'));
 if (isNaN(broadcastNumber))
 {
listener1_error('Listener-1 Portlet cannot parse number from session pref
broadcastNumber');
 return;
 }

listener1_debug('Listener-1 Portlet computing square root of '
+broadcastNumber);
 var swatch =document.getElementById('listener1-swatch');
 swatch.innerHTML =Math.sqrt(broadcastNumber);
}

function listener1_debug(str)
{
 if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}

function listener1_error(str)
{
 if (window.PTDebugUtil)
{
PTDebugUtil.error(str);
}
}

function listener1_getPortlet()
{
 var portletGUID ='{D9DFF3F4-EAE7-5478-0F4C-2DBDB4F4A000}';
 var listener1Portlet =PTPortlet.getPortletByGUID(portletGUID);
 return listener1Portlet;
}

var listener1Portlet =listener1_getPortlet();
if (listener1Portlet)
{

Using the Adaptive Pagelet Scripting Framework

17-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 listener1Portlet.registerForEvent('onBroadcastUpdate','listener1_update');
 listener1_debug('Listener-1 Portlet registered refreshOnEvent for event
onBroadcastUpdate');
 listener1Portlet.registerForEvent('onload','listener1_update');
}

</script>

Listener Pagelet #2

<div style="padding:10px;" align="center">
<p>Cube root:
<div style="height:21px;border:2px solid black;padding:2px;overflow:visible;font-
size:14px;"id="listener2-swatch">
</div>
</div>

<script>
var listener2_oneThird =(1/3);
function listener2_update()
{
 var broadcastNumber =parseFloat(PTPortlet.getSessionPref('broadcastNumber'));
 if (isNaN(broadcastNumber))
 {
listener2_error('Listener-2 Portlet cannot parse number from session pref
broadcastNumber');
 return;
 }

listener2_debug('Listener-2 Portlet computing square root of '
+broadcastNumber);
 var swatch =document.getElementById('listener2-swatch');
 swatch.innerHTML =Math.pow(broadcastNumber,listener2_oneThird);
}

function listener2_debug(str)
{
 if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}

function listener2_error(str)
{
 if (window.PTDebugUtil)
{
PTDebugUtil.error(str);
}
}

function listener2_getPortlet()
{
 var portletGUID ='{D9DFF3F4-EAE7-5478-0F4C-2DBDCA1C7000}';
 var listener2Portlet =PTPortlet.getPortletByGUID(portletGUID);
 return listener2Portlet;
}

var listener2Portlet =listener2_getPortlet();
if (listener2Portlet)
{

Using the Adaptive Pagelet Scripting Framework

Creating Custom Pagelets 17-7

 listener2Portlet.registerForEvent('onBroadcastUpdate','listener2_update');
 listener2_debug('Listener-2 Portlet registered refreshOnEvent for event
onBroadcastUpdate');
 listener2Portlet.registerForEvent('onload','listener2_update');
}

</script>

17.1.2.1 How to Use Page-Level Events with the Scripting Framework

The scripting framework automatically has access to the following page-level events.

Table 17-1 Page-Level Events

Event Triggered:

onload immediately after the browser loads the page

onbeforeunload prior to a page being unloaded (browser window closes or
navigates to different location)

onunload immediately before the page is unloaded (browser window
closes or navigates to different location)

onactivate the page is set as the active element (receives focus)

onbeforeactivate immediately before the page is set as the active element
(receives focus)

ondeactivate when the active element is changed from the current page to
another page in the parent document

onfocus when the page receives focus

onblur when the page loses focus

oncontrolselect when the user is about to make a control selection of the page

onresize when the size of the page is about to change

onresizestart when the user begins to change the dimensions of the page in a
control selection

onresizeend when the user finishes changing the dimensions of the page in
a control selection

onhelp when the user presses the F1 key while the browser is the
active window

onerror when an error occurs during page loading

onafterprint immediately after an associated document prints or previews
for printing

17.1.3 How to Use In-Place Refresh
This section describes how pagelets can reload their internal content without
refreshing the page using the scripting framework to implement in-place refresh.

Many pagelets display data that is time sensitive. In some cases, users should be able
to navigate across links within a pagelet without changing or refreshing the rest of the

Using the Adaptive Pagelet Scripting Framework

17-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

page. You can refresh pagelet content on command, associate the refresh action with
an event (refreshOnEvent), or program the pagelet to refresh at a set interval
(setRefreshInterval). The scripting framework also contains methods for
expanding and collapsing pagelets. In the simplified example below, the refresh
pagelet displays a "Refresh Portlet" button. Clicking the button updates the date and
time displayed in the pagelet.

Figure 17-4 Refresh Portlet

The in-place refresh is executed by calling the refresh() method on the pagelet
object instance. You can also set a new URL to be displayed within the pagelet upon
refresh. (The title bar cannot be altered on refresh.)

<div style="padding:10px;" align="center">
<p><button onclick="refresh_portlet()">Refresh Portlet</button></p>
<p>Current time is:
 </p>
</div>

<script type="text/javascript">
function refresh_portlet()
{
var refreshPortlet =PTPortlet.getPortletByID($PORTLET_ID$);
if (!refreshPortlet)
 {
refresh_debug('Could not locate PTPortlet object which corresponds to Refresh
Portlet on page.');
 return;
 }
refresh_debug('Refresh Portlet calling refresh() method.');
refreshPortlet.refresh();
}

function refresh_debug(str)
{
if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}

var t =new Date();
document.getElementById('refreshTimeSpan').innerHTML =t;
</script>

17.1.4 How to Use Session Preferences
This section describes how browser-level variables can be stored and shared among
pagelets, even if they are not on the same page. For example, a value entered by the
user in one pagelet can be retrieved by another. The scripting framework acts as an
intermediary, allowing all pagelets access to all values stored in a common session
using session preferences.

Using the Adaptive Pagelet Scripting Framework

Creating Custom Pagelets 17-9

Pagelets can use preferences to communicate with each other, but accessing
preferences usually requires a round trip to a database. Session preferences provide a
way to store and share settings in the user's session within the client browser. The
Master-Detail design pattern illustrates the most basic usage of session preferences.
This design pattern splits control and display between two pagelets. For example, the
"master" pagelet could summarize data in list form, and the "detail" pagelet could
display details on each data item in response to user selection. In the example below,
the master pagelet displays a form that allows you to enter a color code in a text box.

Figure 17-5 Color Code

When the user enters a color code in the text box, the color in the detail pagelet
changes.

Figure 17-6 Color Swatch

For each onkeyup event that occurs in the "Enter color" text box in the master pagelet,
the following steps are executed:

1. The master pagelet sets the session preference using the current value of the text
box.

2. The master pagelet calls an update method on the detail pagelet.

3. The detail pagelet retrieves the session preference to get the color value.

4. The detail pagelet redraws its color swatch area to reflect the new color value.

Note:

Shared session preferences must be specified by name on the Preferences page
for the pagelet in the Pagelet Producer Console or they will not be sent to the
pagelet.

The adaptive pagelet scripting framework provides an easy way to detach the
relationship between pagelets and use a common event interface for communication.

Using the Adaptive Pagelet Scripting Framework

17-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

The example below is oversimplified; the master pagelet makes a direct call to
a JavaScript method of the detail pagelet. Unless the master pagelet takes extra
measures to ensure that the detail pagelet is actually present on the same
page, calls from master to detail could generate errors.

Master Pagelet

<div style="padding:10px;" align="center">
<p>Enter color:
<input type="text" style="font-size:22px;font-weight:bold;text-align:center;"
id="master_prefName"
value="#FFFFFF" size="8" onkeyup="master_setPrefs(this.value)"></p>

</div>

<script type="text/javascript">
function master_setPrefs(val)
{
var prefName ='masterColor';
var prefValue =val;
PTPortlet.setSessionPref(prefName,prefValue);

master_debug('Master Portlet called PTPortlet.setSessionPref(\'masterColor\',
\'' +prefValue +'\').');

if (window.detail_update)
 {
master_debug('Master Portlet calling detail_update().');
 detail_update();
 }
else
 {
master_debug('Could not locate portlet Detail Portlet on page.');
 }
}
function master_debug(str)
{
if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}
</script>

Detail Pagelet

<div style="padding:10px;" align="center">
<p>Color swatch
<div style="width:100px;height:100px;border:2px solid black;padding:2px;"id="detail-
swatch"></div>
<script>
function detail_update()
{
var color =PTPortlet.getSessionPref('masterColor');
detail_debug('Detail Portlet received value="' +color +'" for
PTPortlet.getSessionPref(\'masterColor\')');

var swatch =document.getElementById('detail-swatch');
if (swatch)

Using the Adaptive Pagelet Scripting Framework

Creating Custom Pagelets 17-11

 {
swatch.innerHTML ='<div style="background-color:' +color +';width:100%;height:
100%;"></div>';
 }
else
 {
detail_debug('Detail Portlet cannot find \'detail-swatch\' DIV element.');
 }
}

function detail_debug(str)
{
if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}
</script>

17.1.5 What You May Need to Know About Adaptive Pagelet Development
These tips apply to most pagelets that use the adaptive pagelet scripting framework.

• Use unique names for all forms and functions. Use the GUID of a pagelet to form
unique names and values to avoid name collisions with other code on the page.

• Proxy all URLs. You cannot make a request to a URL with a host/port that is
different from that of the calling page. All URLs requested through JavaScript must
be proxied.

• If you are using the adaptive pagelet scripting framework, check for support. It is
good practice to include code that determines whether or not the component is
present. Ideally, your pagelet should be able to handle either situation. The
simplest solution is to precede your code with an If statement that alerts the user if
the scripting framework is not supported.

<script>
if (PTPortlet ==null)
{
if (document.PCC ==null)
{
alert("This pagelet only works in portals that support the JSPortlet API .
The pagelet will be displayed with severely reduced
 functionality. Contact your Administrator.");
 }
}
else
{
[scripting code here]
 }
</script>

• Close all popup windows opened by a pagelet when the window closes. The
scripting framework can be used to close popup windows using the onunload
event.

• Add all required JavaScript to the page in advance. Browsers might not process
script blocks/includes added to the page through the innerHTML property.

– Microsoft Internet Explorer: Add the defer attribute to the script tag.

Using the Adaptive Pagelet Scripting Framework

17-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

– Netscape: Use RegExp to parse the response and look for the script, then eval it.

• JavaScript HTTP and proxied HTTP must use the same authentication
credentials. JavaScript brokered HTTP requests send the same authentication token
(cookie) as when you make a normal gatewayed HTTP request.

17.2 Modifying Pagelet Functionality at Runtime
This section describes how to modify pagelet functionality at runtime using custom
injectors and parsers.

This section includes the following topics:

• How to Use Web Injectors

• How to Use Custom Parsers

17.2.1 How to Use Web Injectors
A web injector inserts content into a specified location in the proxied resource page.
The content may be any text, including HTML, CSS, JavaScript, and pagelet
declarations. An empty injector may also be used to remove unwanted content from a
page. Injectors cannot be created for OpenSocial resources. While injecting simple
HTML content has a limited use case, you can also inject JavaScript that directly
modifies the pagelet's HTML markup. For details on creating a web injector, see
Creating Web Injectors.

17.2.2 How to Use Custom Parsers
Custom parsers allow you to supplement or change built-in logic for parsing content
and finding URLs. When the built-in parsers fail to identify URLs or identify sections
that must not be rewritten as URLs, custom parsers can be used to change the default
behavior. Parsers cannot be created for WSRP or Oracle PDK-Java portlet producers or
for OpenSocial gadget producers. For details on creating a custom parser, see Creating
Custom Parsers.

17.3 Debugging Pagelets
This section describes how to use advanced logging traces for debugging pagelets.
Logging is configured in the Settings section of the Pagelet Producer Console, where
you can define different levels of logging for each Pagelet Producer component. For
more information, see Configuring Pagelet Producer Settings.

This section includes the following topics:

• How to View HTTP Requests and Responses

• How to View Transformation Content

17.3.1 How to View HTTP Requests and Responses
To view the HTTP requests and responses received and sent by Pagelet Producer, set
the HTTP component on the Logging Settings page to Finest. The traces in "HTTP
Request Received By Pagelet Producer," "HTTP Response Sent By Pagelet Producer,"
"HTTP Request Sent By Pagelet Producer," and "HTTP Response Received By Pagelet
Producer" were captured from a test environment.

HTTP Request Received By Pagelet Producer

Modifying Pagelet Functionality at Runtime

Creating Custom Pagelets 17-13

URL: http://example.com:7001/pagelets/bidwiki/includes/js/ajax.js
METHOD: GET
SESSION ID: GdYGNJzMhxy1CJBMVTX8xTNq32GmLXYNY9VqFBcdprFnhcyQtzdp!1377086614!
1305769149498
HEADERS:
Host: example.com
 Connection: keep-alive
 Referer: http://example.com:7001/pagelets/bidwiki/dashboard.action
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.16
(KHTML, like Gecko) Chrome/10.0.648.205 Safari/534.16
 Accept: */*
Accept-Encoding: gzip,deflate,sdch
 Accept-Language: en-US,en;q=0.8,ru;q=0.6,it;q=0.4
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
 If-None-Match: W/"736-1124953206000"
 If-Modified-Since: Thu, 25 Aug 2012 07:00:06 GMT
COOKIES:
JSESSIONID: GdYGNJzMhxy1CJBMVTX8xTNq32GmLXYNY9VqFBcdprFnhcyQtzdp!1377086614

HTTP Response Sent By Pagelet Producer

URL: http://example.com:7001/pagelets/bidwiki/styles/main-action.css
Response Code: 200
Reason:
HEADERS:
Date: Thu, 19 May 2011 01:39:14 GMT
 Content-Type: text/css;charset=UTF-8
 Server: Apache-Coyote/1.1
BODY:
.sidebar {
/*background-image: url(http://example.com:7001/pagelets/bidwiki/download/ resources/
leftnav_bg.jpg);*/
 /*background-repeat: repeat-y;*/
 background-color: #F0F0F0;
 /*border-bottom:1px solid #F0F0F0;*/
} ...

HTTP Request Sent By Pagelet Producer

URL: http://xmlns.oracle.com/includes/js/ajax.js
METHOD: GET
HEADERS:
CSP-Ensemble-REST-API: http://example.com:7001/pagelets
 X-Client-IP: example.com
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.16
(KHTML, like Gecko) Chrome/10.0.648.205 Safari/534.16
 CSP-Session-Username: weblogic
 Accept-Language: en-US,en;q=0.8,ru;q=0.6,it;q=0.4
 CSP-Gateway-Type: Proxy
 PT-Proxy-Passes: 1
 If-Modified-Since: Thu, 25 Aug 2012 07:00:06 GMT
 CSP-Protocol-Version: 1.4
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
 Accept-Encoding: gzip,deflate,sdch
 Referer: http://example.com:7001/pagelets/bidwiki/dashboard.action
 If-None-Match: W/"736-1124953206000"
 Accept: */*
CSP-Aggregation-Mode: Single
 PT-Proxy-instance0: {DECBB085-D891-72CF-2B75-005E7FE20000}
 CSP-Gateway-Specific-Config: PT-User-Name=weblogic,PT-Guest-User=0,...

Debugging Pagelets

17-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

HTTP Response Received By Pagelet Producer

Original URI: http://xmlns.oracle.com/styles/main-action.css
Effective URI: http://xmlns.oracle.com/styles/main-action.css
Status Code: 200
Reason: OK
Version: HTTP/1.1
HEADERS:
Content-Type: text/css;charset=UTF-8
 Content-Length: 29178
 Server: Apache-Coyote/1.1
 Date: Thu, 19 May 2011 01:39:14 GMT
TRAILERS:
BODY:
body, p, td, table, tr, .bodytext, .stepfield {
font-family: Verdana, arial, sans-serif;
 font-size: 11px;
 line-height: 16px;
 color: #000000;
 font-weight: normal;
}

17.3.2 How to View Transformation Content
To view the content proxied by Pagelet Producer before and after transformation, set
the Transform component on the Logging Settings page to Finest. The purpose of
these traces is to log response content at different stages of transformation, allowing
you to compare them and view the result of different transformers. The example traces
in the following examples were captured from a test environment.

Example: Untransformed Markup

Original request: URL: http://example.com:7001/pagelets/bidwiki/styles/main-
action.css
METHOD: GET
SESSION ID: GdYGNJzMhxy1CJBMVTX8xTNq32GmLXYNY9VqFBcdprFnhcyQtzdp!1377086614!
1305769149498
HEADERS:
Host: example.com:7001
 Connection: keep-alive
 Referer: http://example.com:7001/pagelets/bidwiki/dashboard.action
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.16
(KHTML, like Gecko) Chrome/10.0.648.205 Safari/534.16
 Accept: text/css,*/*;q=0.1
 Accept-Encoding: gzip,deflate,sdch
 Accept-Language: en-US,en;q=0.8,ru;q=0.6,it;q=0.4
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
COOKIES:
JSESSIONID: GdYGNJzMhxy1CJBMVTX8xTNq32GmLXYNY9VqFBcdprFnhcyQtzdp!1377086614

Untransformed content:
body, p, td, table, tr, .bodytext, .stepfield {
font-family: Verdana, arial, sans-serif;
 font-size: 11px;
 line-height: 16px;
 color: #000000;
 font-weight: normal;
}

Example: Transformed Markup (Transformed by Transformer Class)

Debugging Pagelets

Creating Custom Pagelets 17-15

Transformed by: class com.plumtree.server.impl.portlet.transformers.CSSTurboParser
 Original request: URL: http://example.com:7001/pagelets/bidwiki/styles/main-
action.css
METHOD: GET
SESSION ID: GdYGNJzMhxy1CJBMVTX8xTNq32GmLXYNY9VqFBcdprFnhcyQtzdp!1377086614!
1305769149498
HEADERS:
Host: 10.148.118.211:7001
 Connection: keep-alive
 Referer: http://example.com:7001/pagelets/bidwiki/dashboard.action
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.16
(KHTML, like Gecko) Chrome/10.0.648.205 Safari/534.16
 Accept: text/css,*/*;q=0.1
 Accept-Encoding: gzip,deflate,sdch
 Accept-Language: en-US,en;q=0.8,ru;q=0.6,it;q=0.4
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
COOKIES:
JSESSIONID: GdYGNJzMhxy1CJBMVTX8xTNq32GmLXYNY9VqFBcdprFnhcyQtzdp!1377086614

Transformed content:
body, p, td, table, tr, .bodytext, .stepfield {
font-family: Verdana, arial, sans-serif;
 font-size: 11px;
 line-height: 16px;
 color: #000000;
 font-weight: normal;
}

Debugging Pagelets

17-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

18
Using Pagelets in Web Applications

This chapter describes how to add pagelets to a web or WebCenter Portal page.

Note:

Before you can add a pagelet to any web application, you must deploy and
configure the resource and pagelet in Pagelet Producer as described in
Deploying Portals, Templates, Assets, and Extensions in Administering Oracle
WebCenter Portal.

This chapter includes the following sections:

• Adding a Pagelet to a Web Page

• Adding a Pagelet to a Portal Page

18.1 Adding a Pagelet to a Web Page
Once you have deployed a pagelet, you can:

• Insert pagelets into non-proxied pages using a simple JavaScript function.

• Retrieve information about resources and pagelets from Pagelet Producer, and
inject pagelets into proxied and non-proxied pages using Pagelet Producer’s REST
APIs.

• Automatically resize the IFrame that encapsulates pagelet content using the pagelet
inject function.

This section includes the following topics:

• How to Insert Pagelets Using Javascript

• How to Access Pagelets Using REST

• How to Use Automatic Resizing with IFrames

18.1.1 How to Insert Pagelets Using Javascript
You can insert pagelets into non-proxied pages using a simple JavaScript function.

To activate this feature, add the following HTML snippet in the <HEAD> section of
the page.

<script type="text/javascript" src="http://proxy:port/pagelets/inject/v2/csapi">
</script>

Using Pagelets in Web Applications 18-1

This script injects all CSAPI and pagelet inject functions into the page to display the
pagelet. One of the sections injected is the following function:

function injectpagelet(library, name, iframe_options, params, context_id,
element_id, is_in_community, chrome, forward_params)
{
 ...
}

This function injects a pagelet as a widget into the parent page. The method interface
uses the following parameters:

• library: Required. A string representing the library name of the pagelet to inject.
Accepts Unicode letters and numbers only; no spaces.

• name: Required. A string representing the name of the pagelet to inject. Accepts
Unicode letters and numbers only; no spaces.

• iframe_options: Specifies whether to use IFRAME around the pagelet content.
Sample IFRAME options: iframe width=100% height=auto
frameborder=0. If omitted or left blank, the pagelet content is rendered inline.

• params: The pagelet parameters in query string format. For example,
'param1=value1¶m2=value2¶m3=value3'.

• context_id: The external identifier of the pagelet instance, used to scope
preferences on the Pagelet Producer server. Must be an integer.

• element_id: The HTML element ID in which the pagelet content is injected. If
omitted or left blank, the pagelet content is injected using document.write()
when the injectpagelet call is evaluated.

• is_in_community: Specifies whether this pagelet is on a community or group page.
If the value is set to true, it sends the context_id in the community ID header to
the pagelet. Defaults to false.

• chrome: Specifies the name of the chrome template to use for WSRP/JPDK
pagelets. To suppress chrome, use a value of none.

• forward_params: Specifies whether to forward query string arguments from the
consuming page to the back-end server. To suppress this functionality, use a value
of false.

Note:

These arguments are positional; they must be provided in the given order. If
you do not want to specify a particular argument, but do want to specify an
argument that follows it, you must pass in an empty value ('') for the former.
All arguments are optional except for library and name.

The script also creates a new <div> with a unique name that includes a reference to
the injectpagelet function. Several examples are shown below:

<div>
 <script type="text/javascript">
 injectpagelet('library', 'name');
 </script>
</div>

Adding a Pagelet to a Web Page

18-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

<div>
 <script type="text/javascript">
 injectpagelet('library', 'name', 'iframe', 'payload',
'param1=value1¶m2=value2¶m3=value3');
 </script>
</div>

<div>
 <script type="text/javascript">
 injectpagelet('library', 'name', 'iframe width=100% height=200', 'payload');
 </script>
</div>

18.1.1.1 How to Add a Preference Editor Using Javascript

The injecteditor function lets you add preference editors that enable users to set
personal and shared preferences for pagelets that support this capability. This
functionality is analogous to personalization and customization functionality in
WebCenter Portal.

injecteditor(library, name, type, iframe_options, context_id, element_id,
is_in_community, chrome)

where:

• library: Required. The library name of the pagelet to inject. Accepts Unicode letters
and numbers only; no spaces.

• name: Required. The name of the pagelet to inject. Accepts Unicode letters and
numbers only; no spaces.

• type: The editor type. This argument supports these values: 'admin', 'pagelet',
'community'. In case of the 'community' argument, context_id is sent to pagelet
in the community ID CSP header.

• iframe_options: Specifies whether to use IFRAME around the pagelet editor
content. Sample IFRAME options: iframe width=100% height=auto
frameborder=0. If omitted or left blank, the editor content is rendered inline.

• context_id: The external identifier of the pagelet instance, used to scope
preferences on the Pagelet Producer server. Must be an integer.

• element_id: The HTML element ID in which the pagelet content is injected. If
omitted or left blank, the pagelet content is injected using document.write()
when the injecteditor call is evaluated.

• is_in_community: Specifies whether this pagelet is on a community or group page.
If the value is set to true, it sends the context_id in the community ID header to
the pagelet. Defaults to false.

• chrome: Specifies the name of the chrome template to use for WSRP/JPDK
pagelets. To suppress chrome, use a value of none.

Adding a Pagelet to a Web Page

Using Pagelets in Web Applications 18-3

Note:

These arguments are positional; they must be provided in the given order. If
you do not want to specify a particular argument, but do want to specify an
argument that follows it, you must pass in an empty value ('') for the former.
All arguments are optional except for library and name.

18.1.2 How to Access Pagelets Using REST
REST stands for Representational State Transfer and is a simple way of providing APIs
over HTTP. The basic principles of REST are:

• API URLs point to the resource rather than a generic method endpoint

• Requests use standard HTTP verbs for simplified CRUD methods. This is a read-
only API and allows GET requests only.

• Every request returns a full representation of the object retrieved (pagelet or
resource)

Pagelet Producer REST APIs let you:

• Inject pagelets into non-proxied pages, allowing Pagelet Producer to act as a portlet
provider for Oracle WebCenter Interaction, Oracle WebLogic Portal, or other third-
party portals

• Allow remote Web services to retrieve information about resources and pagelets
from Pagelet Producer

This section contains the following topics:

• What You May Need to Know About the Pagelet Inject API

• What You May Need to Know About Data Retrieval APIs

18.1.2.1 What You May Need to Know About the Pagelet Inject API

The pagelet inject URL can be used in portals to specify the location of a remote portlet
(this is how a pagelet can be used as a portlet). The inject URL can also be used as the
source attribute of an IFrame tag in any HTML page.

The URL must use the following format:

http://host:port/pagelets/inject/v2/pagelet/libraryname/
pageletname?content-type=html

where libraryname and pageletname refer to the library and pagelet configured in
Pagelet Producer.

Note:

When using the pagelet inject API as the URL for a Portlet Web Service in
Oracle WebCenter Interaction, you must switch "pagelet" to "portlet" in the
URL. For example, the above URL would become:

http://host:port/pagelets/inject/v2/portlet/libraryname/
pageletname?content-type=html

Adding a Pagelet to a Web Page

18-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

The query string arguments to the above call define how the pagelet is to be returned.
The following parameters are defined:

• instanceid: Optional. The instance ID of the pagelet, used to uniquely identify the
pagelet on the page to facilitate inter-pagelet communication. Must be unique to
the page.

• context: Optional. The external identifier of the pagelet instance, used for scoping
preferences on the Pagelet Producer server. Must be an integer.

• content-type: The return type. Three types are supported:

– javascript: Returns injectable code.

– html: Returns the pagelet markup with its associated PTPortlet object.

– iframe: Returns an IFrame that points back to the inject api, filling the IFrame
with the pagelet content, instead of directly inline with the page. The IFrame
can be styled by providing a set of query string parameters.

Parameter Description Default

ifwidth Sets the width of the IFrame; can be
specified in percent '%' or pixels 'px', for
example: ifwidth=500px. Can be set to
'auto' to automatically resize the IFrame to
fit the content within. For details, see How
to Use Automatic Resizing with IFrames .

100%

ifheight Sets the height of the IFrame; can be
specified in percent '%' or pixels 'px', for
example: ifheight=500px. Can be set to
'auto' to automatically resize the IFrame to
fit the content within. For details, see How
to Use Automatic Resizing with IFrames .

No default

ifborder Sets the border of the IFrame. 'none'

ifalign Sets the align rule within the IFrame, for
example: ifalign=center.

No default

ifdesc Sets the description of the IFrame. No default

ifmarginheight Sets the margin height; can be specified in
percent '%' or pixels 'px', for example:
ifmarginheight=500px.

No default

ifmarginwidth Sets the margin width; can be specified in
percent '%' or pixels 'px', for example:
ifmarginwidth=500px.

No default

ifscrolling Sets the scrollbars of the IFrame. Accepted
values: yes/no/auto.

auto

ifstyle Sets the CSS style of the IFrame No default

ifclass Sets the CSS class of the IFrame. No default

• csapi: Optional. Sets whether the CSAPI will be included with the pagelet response
(true or false). Including the CSAPI is optional, but the pagelet included in the

Adding a Pagelet to a Web Page

Using Pagelets in Web Applications 18-5

response relies on the CSAPI libraries being present on the page where the pagelet
is to be rendered. If csapi=false, then the CSAPI libraries must be included with the
parent page (usually in the HEAD section).

• onhtttperror: Optional. When a pagelet request results in a 403, 404 or any other
error code, Pagelet Producer can forward the error code and the error page itself to
the browser for display to the user. The onhttperror parameter accepts the
following values:

– comment (default): Pagelet Producer will create an HTML comment in place of
the failing pagelet (the failing pagelet will simply not be displayed).

– inline: The pagelet error along with the server error page will be displayed
inline where the pagelet would normally be shown on the page.

– fullpage: The http error will consume the whole page. This mode is only
available if Pagelet Producer controls the parent page.

• inline-refresh: Optional. Valid values are true or false (default). If the
inline-refresh option is set to true, Pagelet Producer does not use an iFrame
to embed pagelet markup onto the page. When the user interacts with the pagelet,
markup updates are done inline, hence the term 'inline-refresh'. To achieve this,
Pagelet Producer re-writes the URLs in the pagelet markup to use a JavaScript
method call instead. That is, when the user clicks on a link or submits a form
request to the backend, it's done by JavaScript on the browser and then the
response is dynamically injected.

The inline-refresh option works well for relatively simple HTML markup. If
the pagelet exposes a very rich UI, such as an ADF task flow, inline-refresh
may not work well or may simply break. Consequently, the inline-refresh
option is set to false by default (that is, inject pagelet markup in an iFrame).

The following example URL points to the linkspagelet in the samples library:

http://host:port/pagelets/inject/v2/pagelet/samples/
linkspagelet?content-
type=iframe&csapi=true&ifheight=123px&ifclass=myclass

This URL should result in markup similar to the code below.

Note:

The IFrame source points back to the inject API, but this time the content-type
parameter is set to html. This feature adds an additional step in the pagelet
retrieval. The csapi parameter is set to true on the subsequent call to get the
IFrame contents so that the required CSAPI content is included in the IFrame
(if this was not the case, JavaScript resolve errors would be returned because
the pagelet code cannot access any CSAPI script included outside the IFrame).

<html>
 <head>
 </head>
 <body>
 <iframe frameborder="none" class="myclass" width="100%" height="123px"
scrolling="auto" src="http://proxy:port/inject/v2/pagelet/samples/linkspagelet?
asdg=asdfgas¶m=true&content-type=html&jswrap=false&csapi=true">
 <html>
 <head>

Adding a Pagelet to a Web Page

18-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 <script src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/
plumtree/common/private/js/jsutil/LATEST/PTUtil.js" type="text/javascript"> </script>
 <script src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/
plumtree/common/private/js/jsutil/LATEST/PTDateFormats.js" type="text/javascript"></
script>
 <script src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/
plumtree/common/private/js/jsxml/LATEST/PTXML.js" type="text/javascript"></script>
 <script src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/
plumtree/common/private/js/jsportlet/LATEST/PTPortletServices.js" type="text/
javascript"></script>
 </head>

<body>
 <div id="pt-pagelet-content-1" class="pagelet-container" style="display: inline;">

 Pagelet links:

 The first
pagelet

 The second
pagelet

 The csapi
pagelet

 This
pagelet

 </div>
 </body>
 </html>
 </iframe>
 </body>
</html>

18.1.2.2 What You May Need to Know About Data Retrieval APIs

Two REST APIs are available to retrieve data from Pagelet Producer:

• Pagelet API: Allows remote applications to retrieve pagelet data from Pagelet
Producer. (See the example for "All Pagelets" and "Pagelets by Library Name.")

• Resource API: Allows remote applications to retrieve resource data from Pagelet
Producer. (See the example for "All Resources" and the example for "Resource By
Name.")

The base URL for all requests is http://host:port/pagelets/restservice/
pageletproducer/.

Example: All Pagelets

http://host:port/pagelets/restservice/pageletproducer/pagelets/
http://host:port/pagelets/restservice/pageletproducer/pagelets/?format=xml

Example: Pagelets By Library and Name

http://host:port/pagelets/restservice/pageletproducer/pagelet/libraryname/
pageletname/
http://host:port/pagelets/restservice/pageletproducer/pagelet/libraryname/
pageletname/?format=xml

Adding a Pagelet to a Web Page

Using Pagelets in Web Applications 18-7

Example: All Resources

http://host:port/pagelets/restservice/pageletproducer/resources/
http://host:port/pagelets/restservice/pageletproducer/resources/

Example: Resource By Name

http://host:port/pagelets/restservice/pageletproducer/resource/name
http://host:port/pagelets/restservice/pageletproducer/resource/name/?format=xml

18.1.3 How to Use Automatic Resizing with IFrames
The Pagelet Producer pagelet inject API can automatically resize the IFrame that
encapsulates pagelet content. The resizing is done so that the IFrame stretches to fit the
content within. To use this feature, the ifwidth and ifheight parameters must be
set to 'auto' as shown in the example below:

http://proxy:port/inject/v2/pagelet/samples/linkspagelet?content-
type=iframe&csapi=true&ifheight=auto&ifwidth=auto&ifclass=myclass

In addition, this feature relies on an external page on the same domain as the
consumer page. This page is included into the pagelet IFrame as an internal hidden
IFrame. This page collects the sizing information and passes it on to the parent
consumer page. This page must be deployed in the same directory as the consumer
page.

The example below resizes the pagelet IFrame after it finishes loading. To add
dynamic auto-resizing capabilities to user interaction activities after the initial load,
simply add more event listeners for mouse and keyboard events.

<html>
 <head>
 <title>Resizing Page</title>
 <script type="text/javascript">
 function onLoad() {
var params =window.location.search.substring(1).split('&');
 var height;
 var width;
 var iframe;

for(var i =0, l =params.length; i < l; ++i) {
var parts =params[i].split('=');
 switch(parts[0]) {
case 'height':
 height =parseInt(parts[1]);
 break;
 case 'width':
 width =parseInt(parts[1]);
 break;
 case 'iframe':
 iframe =parts[1];
 break;
 }
}
window.top.updateIFrame(iframe, height, width);
 }

if (window.addEventListener) {
window.addEventListener("load", onLoad, false)
 }else if (window.attachEvent) {
window.detachEvent("onload", onLoad)

Adding a Pagelet to a Web Page

18-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 window.attachEvent("onload", onLoad)
 }else {
window.onload=onLoad
 }
</script>
 </head>
<body>
</body>
</html>

18.2 Adding a Pagelet to a Portal Page
Use the Page Editor to add a pagelet to a portal page. By default, pagelets appear in
the Mash-Ups folder in the Default Portal Catalog. To add a pagelet to a page,
navigate to the pagelet in the resource catalog and select it.

For detailed information about how to add resources to pages in a portal, see Adding
and Editing Resource Catalog Components on a Page in Building Portals with Oracle
WebCenter Portal

To configure a pagelet within a page, view the page in Edit mode and click the View
Actions menu for the pagelet, then select Parameters.

Adding a Pagelet to a Portal Page

Using Pagelets in Web Applications 18-9

Adding a Pagelet to a Portal Page

18-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

19
Creating Pagelets: Examples and Advanced

Topics

This chapter provides examples for how to create pagelets with Oracle WebCenter
Portal's Pagelet Producer.

This chapter includes the following topics:

• Creating a Simple Pagelet (an Example)

• Consuming a Pagelet in WebCenter Portal (an Example)

• Consuming a Pagelet in WebCenter Portal (an Example)

• Consuming a Pagelet in WebCenter Interaction (an Example)

• Consuming a Pagelet in Oracle WebCenter Sites (an Example)

• Consuming WSRP Portlets as Pagelets

• Exposing Custom ADF Task Flows as WSRP Portlets

• Consuming WebCenter Portal Services as Pagelets in Sites

• Consuming Applications as Pagelets Using EBS11i

• Consuming OpenSocial Gadgets Using Pagelet Producer

• Guidelines for Effective Geometry Management and Pagination

• Advanced URL Rewriting

19.1 Creating a Simple Pagelet (an Example)
This section will give you a basic feel of how you can use Pagelet Producer to proxy a
web page. We will proxy a simple static "Hello World" web page, cut one section out
of that page, and present it as a pagelet that you can later insert in WebCenter Portal,
WebCenter Interaction, on your own application page.

This section includes the following topics:

• Configuring the Initial Pagelet Producer Setup

• Creating a Resource

• Creating a Pagelet

• Clipping the Pagelet

Creating Pagelets: Examples and Advanced Topics 19-1

19.1.1 Configuring the Initial Pagelet Producer Setup
For this example, let's assume that the Pagelet Producer server is running on http://
pageletserver.company.com:8889/pagelets/.

1. First, let's check that Pagelet Producer is up and running.

To do that we just need to access its URL (for example, http://
pageletserver.company.com:8889/pagelets/). Figure 19-1shows what
should be returned:

Figure 19-1 Pagelet Producer Welcome Page

2. Log into the Pagelet Producer administration screens with your administrator
credentials:

For example, http://pageletserver.company.com:8889/pagelets/
admin

Figure 19-2 Pagelet Producer Administration Screen

3. If you connect to the internet via a proxy server, you need to configure proxy in
the Pagelet Producer settings:

a. In the Navigator pane's Jump To drop down list, select Settings.

b. Click Proxy.

c. Enter your proxy server configuration as shown in Figure 19-3.

Creating a Simple Pagelet (an Example)

19-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-3 Pagelet Producer Proxy Settings

19.1.2 Creating a Resource
The first thing that you need to do is to create a resource for your web page. This will
tell Pagelet Producer that all sub-paths of the web page should be proxied. It also will
allow you to set up common rules for how your web page should be proxied and will
serve as a container for your pagelets.

1. From the Navigator pane's Jump To drop down list select Resources.

2. Click any existing resource (for example, welcome_resource).

3. Click Create selected type.

4. From the Select Producer Type dialog, select Web and click OK.

5. After the resource is created, click the General node in the Navigation pane and
specify the following values as shown in Figure 19-4:

• Name: AppServer

• Source URL: http://appserver.company.com:1234/

• Destination URL: /appserver/

Figure 19-4 Pagelet Producer's General Settings Page

Creating a Simple Pagelet (an Example)

Creating Pagelets: Examples and Advanced Topics 19-3

6. Click Save.

After the resource is created our web page becomes accessible by the URL:
http://pageletserver.company.com:8889/pagelets/appserver/

Figure 19-5 Hello World Pagelet

The original web page address Source URL has now been replaced with the Pagelet
Producer URL (http://pageletserver.company.com:8889/pagelets)
+Destination URL.

19.1.3 Creating a Pagelet
Let's continue by creating our "Hello World" pagelet.

1. Under the Resource node, open the newly created Appserver node.

2. Click Create selected type.

3. Click the General node of the newly created pagelet and specify the following
values as shown in Figure 19-6:

Name: Hello_World

Library: MyLib

Library is used for logical grouping. The portals use the Library value to group
pagelets in their respective UIs. For example, when adding pagelets to a
WebCenter Portal portal you would see the individual pagelets listed under
"Library".

URL Suffix: helloworld/index.html

The URL Suffix is where the Hello World page HTML is served from.

Creating a Simple Pagelet (an Example)

19-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-6 Pagelet Producer Settings for the Hello World Pagelet

4. Click Save.

The Library name can be anything you want, it doesn't have to match the resource
name at all. It is used as a logical grouping of pagelets, and you can include pagelets
from multiple resources into the same library or create a new library for each pagelet.

After you save the pagelet you can access it here:

http://pageletserver.company.com:8889/pagelets/inject/v2/
pagelet/MyLib/Hello_World

which is:

http://pageletserver.company.com:8889/pagelets/inject/v2/
pagelet/ +[Library] +[Name]

Or to test the injection of a pagelet into iFrame you can click on the pagelet's
Documentation node and use the Access Pagelet using REST URL.

Creating a Simple Pagelet (an Example)

Creating Pagelets: Examples and Advanced Topics 19-5

Figure 19-7 Pagelet's Documentation Page

If you click the URL on the Documentation page you should see the following:

Figure 19-8 Hello World Pagelet

19.1.4 Clipping the Pagelet
The pagelet that we just created would cover the whole web page. Since we only want
the "Hello World" segment of it we'll need to clip it as described in the following steps:

1. Under the Hello_World pagelet node, click Clipper.

2. Click Create selected type.

3. Specify a Name for the newly created clipper (for example: c1).

4. Click the clipper's Content node and click Launch Clipper.

Creating a Simple Pagelet (an Example)

19-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-9 Pagelet Producer Clipper

5. In the browser window, use the mouse to select the area you want to clip.

When you click the mouse button the browser window disappears and a Clipping
Path is automatically generated.

6. Save the clipped pagelet and access the link from the Documentation page again.

7. Our pagelet is now nicely clipped and ready to be used in a WebCenter Portal
portal as shown in Figure 19-10:

Figure 19-10 Clipped Hello World Pagelet

19.2 Consuming a Pagelet in WebCenter Portal (an Example)
This section provides an example of how you can consume a simple "Hello World"
pagelet in WebCenter Portal. Before continuing, first follow the instructions in
Creating a Simple Pagelet (an Example) to create the "Hello World" pagelet that will be
used in this example.

This section includes the following subsections:

Consuming a Pagelet in WebCenter Portal (an Example)

Creating Pagelets: Examples and Advanced Topics 19-7

• Registering the Pagelet Producer with WebCenter Portal

• Inserting the Pagelet into a Portal

19.2.1 Registering the Pagelet Producer with WebCenter Portal
In order to use our newly created pagelet from WebCenter Portal, we first need to
register Pagelet Producer:

1. Log in to WebCenter Portal as an administrator.

Note:

You must have the WebCenter Portal Administrator role or a custom role
that grants the following permission:

• Portal Server-Manage Configuration

2. From the Portals menu, select Administration, then click the Settings tab.

3. On the Tools and Service page, click Portlet Producers.

4. Click Register.

5. Select Pagelet Producer and enter the values shown for the following fields:

Producer Name: MyPageletProducer

Server URL: http://pageletserver.company.com:8889/pagelets/

6. Click Test to make sure that the connection was correctly configured.

If everything is successful you should see the Test Status dialog display a message
indicating that the test connection was successful.

7. Click OK.

The Pagelet Producer is now registered.

19.2.2 Inserting the Pagelet into a Portal
For our exercise we will need to create a portal. So let's start by logging into
WebCenter Portal and creating a portal called myportal using the default Portal
template.

1. Log into WebCenter Portal as an administrator.

2. Create a portal called myportal using the Portal template.

The Home page of the new portal opens in the portal editor.

3. Click Add Content in an area of the page where you want to add the pagelet to
open the resource catalog.

4. Click Pagelet Producers.

5. Select the Pagelet Producer you previously registered.

You will see the library MyLib containing the Hello_World pagelet.

Consuming a Pagelet in WebCenter Portal (an Example)

19-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

6. Click MyLib, and select the Hello_World pagelet .

7. Save the page.

8. Click View Portal.

The Hello World pagelet is now inserted into the myportal Home page.

19.3 Consuming a Pagelet in WebCenter Interaction (an Example)
This section provides an example of how you can consume a simple "Hello World"
pagelet in WebCenter Interaction (WCI) 10.3.0 or later. Before continuing, first follow
the instructions in Creating a Simple Pagelet (an Example) to create the "Hello World"
pagelet that will be used in this example.

This section includes the following subsections:

• Registering the Pagelet Producer Remote Server

• Creating the "Hello World" Web Service

• Creating the "Hello World" Portlet

• Using the Hello World Portlet on the WCI Home Page

19.3.1 Registering the Pagelet Producer Remote Server
In order to use our newly created pagelet from WCI, we first need to register Pagelet
Producer:

1. Log into WCI as an administrator.

2. Click Administration.

3. Create the folder where we are going to keep all Pagelet Producer related objects
by following the steps below:

a. Open the Create Object... dropdown and select Administrative Folder.

b. Enter PageletProducer as the Name and click OK.

Consuming a Pagelet in WebCenter Interaction (an Example)

Creating Pagelets: Examples and Advanced Topics 19-9

Figure 19-11 WCI - Create Administration Folder

4. Click the newly created PageletProducer folder.

Figure 19-12 WCI - Newly Created Folder

5. Open the Create Object... dropdown and select Remote Server.

Consuming a Pagelet in WebCenter Interaction (an Example)

19-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-13 WCI - Create Remote Server

6. In the Base URL field, enter http://pageletserver.company.com:8889/
pagelets (this is the address of our Pagelet Producer server in this example).

7. Click Finish.

8. Select the PageletProducer folder and in the Save As field enter Pagelet
Producer Remote Server.

Figure 19-14 WCI - Saving the Pagelet Producer Remote Server Object

9. Click Save.

Consuming a Pagelet in WebCenter Interaction (an Example)

Creating Pagelets: Examples and Advanced Topics 19-11

You've now created a Pagelet Producer Remote Server connection in the
PageletProducer folder.

Figure 19-15 WCI - Pagelet Producer Remote Server Object

19.3.2 Creating the "Hello World" Web Service
In this section we'll continue by creating the "Hello World" web service.

1. Open Create Object... dropdown and select Web Service - Remote Portlet.

2. Click Browse and select Pagelet Producer Remote Server.

Figure 19-16 WCI - Choose Remote Server Dialog

Consuming a Pagelet in WebCenter Interaction (an Example)

19-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

3. Click OK.

4. In the Portlet URL field enter:

inject/v2/portlet/MyLib/Hello_World?content-
type=iframe&csapi=true&ifheight=300px

Where MyLib is a library that contains our "Hello World" pagelet and
Hello_World is the name of our pagelet.

Figure 19-17 WCI - Create Web Service - Remote Portlet Dialog

5. Click Finish.

6. Select the PageletProducer folder and in the Save As field enter Hello World
Web Service.

7. Click Save.

You've now created the Hello World web service.

19.3.3 Creating the "Hello World" Portlet
In this section we'll continue by creating a Hello World portlet.

1. Open the Create Object... dropdown list and select Portlet.

The Choose Template or Web Service dialog displays (Figure 19-18).

Consuming a Pagelet in WebCenter Interaction (an Example)

Creating Pagelets: Examples and Advanced Topics 19-13

Figure 19-18 WCI - Choose Template or Web Service

2. From the list of templates or web services select Hello World Web Service
and click OK.

3. Under Portlet Type/Size, select the portlet type and size you want to use and click
Finish.

4. Select the PageletProducer folder

5. In the Save As field, enter Hello World Portlet and click Save.

You've now created the Hello World portlet.

19.3.4 Using the Hello World Portlet on the WCI Home Page
Now that we've registered the Pagelet Producer, set up the Pagelet Producer web
service, and created the Hello World portlet, let's continue by using the portlet on a
page in WCI. For the sake of simplicity, we'll use the WCI Home Page, but you could
use any other WCI page.

1. In WCI, navigate to My Pages > Home Page.

2. Click Edit Page and open the PageletProducer folder.

3. Click Hello World Portlet.

4. Click Close Editor.

Here's our Hello World pagelet inserted into the Home Page in WCI:

Consuming a Pagelet in WebCenter Interaction (an Example)

19-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-19 WCI - Hello World Pagelet on Home Page

19.4 Consuming a Pagelet in Oracle WebCenter Sites (an Example)
This section is aimed at developers who need to integrate content into Oracle
WebCenter Sites 11g pages, including existing WSRP portlets or elements of web UI
exposed by backend applications such as Oracle EBS. Developers should be familiar
with Oracle WebCenter Sites and Oracle WebCenter Pagelet Producer and have a solid
understanding of web technologies.

This section includes the following subsections:

• Adding Pagelets to Oracle WebCenter Sites

• Using Identity Propagation

• Propagating Identity from Pagelet Producer to the Backend Application

• Consuming WSRP Portlets as Pagelets

• Consuming WebCenter Portal Services as Pagelets in Sites

• Consuming Applications as Pagelets Using EBS11i

19.4.1 Adding Pagelets to Oracle WebCenter Sites
Once a pagelet and its related resources are configured, you can insert it into a web
page using JavaScript or REST. For more information, see Adding a Pagelet to a Web
Page.

Here, we'll use an approach in which pagelets are added directly to a page template in
Oracle WebCenter Sites using an iFrame with a REST URL for accessing pagelets as a
content source. This requires an addition to the page template script tag to load the

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

Creating Pagelets: Examples and Advanced Topics 19-15

CSAPI JavaScript library (which adds necessary functions into the parent page), as
well as the actual iFrame that loads pagelet content:

<script type="text/javascript" src="http://%PAGELET_PRD_HOST%/pagelets/inject/v2/
csapi"/>
<iframe id="pt-pagelet-iframe-1" width="100%" frameborder="0" src="http://
%PAGELET_PRD_HOST%/pagelets/inject/v2/pagelet/lib_name/pagelet_name?content-
type=html&consumepage=true&ifheight=auto"></iframe>

Where lib_name and pagelet_name refer to the library and pagelet configured in
Pagelet Producer. For more information about parameters, see How to Access Pagelets
Using REST.

19.4.1.1 Enabling IFrame Auto-Resizing

To provide a more seamless integration of the pagelet into the consuming page, you
can make the pagelet iFrame behave more like inline markup by dynamically resizing
to accommodate its content. To enable this feature, some extra configuration is
required in both Sites and Pagelet Producer.

This section uses the AviSports sample site shipped with WebCenter Sites. To add any
new asset to this site, you must log in to the Sites Administration page and open the
Dev section in the left hand navigation as shown in Figure 19-20:

Figure 19-20 Sites Administration Page

First, create a new template with the following settings:

• Name

– Name: iFrameResizeRelay (or name of your choice)

– For Asset Type: Applicable to various asset types (typeless)

• Element

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

19-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

– Usage: Element defines a whole HTML page and can be called externally

– Element Storage Path/Filename: iframe-resize.html (or name of your choice)

– Element Logic:

<html>
 <head>
 <title>Resizing Page</title>
 <script type="text/javascript">
function onLoad() {
var params =window.location.search.substring(1).split('&');
var height;
var width;
var iframe;
for(var i =0, l =params.length; i < l; ++i) {
var parts =params[i].split('=');
switch(parts[0]) {
case 'height':
height =parseInt(parts[1]);
break;
case 'width':
width =parseInt(parts[1]);
break;
case 'iframe':
iframe =parts[1];
break;
}
}
window.top.updateIFrame(iframe, height, width);
}
if (window.addEventListener) {
window.addEventListener("load", onLoad, false);
} else if (window.attachEvent) {
window.detachEvent("onload", onLoad);
window.attachEvent("onload", onLoad);
} else {
window.onload=onLoad;
}
 </script>
 </head>
 <body>
 </body>
</html>

• Site Entry

– Cache Rules: Cached (default)

• Save

• Record SiteCatalog Pagename as %PAGENAME% (if you used the default name, this
would be <site_name>/iFrameResizeRelay)

The new template is addressable as follows:

http://%SITES_HOST%/cs/Satellite?pagename=%PAGENAME%

Make a note of this URL; it will be used to configure the Injector for the pagelet.

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

Creating Pagelets: Examples and Advanced Topics 19-17

Next, apply the iFrame resizing feature by adding a new Injector to the pagelet using
the Pagelet Producer Administration Console. Open the pagelet, select Injectors and
create a new Injector with the following settings:

• General

– Name: auto_resizer (or name of your choice)

– URL Filter: <none>

– MIME Filter: text/html

– Inject Location: Before </head>

• Content: Select Text (default) and copy the JavaScript below into the text area

Replace SITES_RESIZE_RELAY_PAGE in the JavaScript below with the URL to the
template you created in the previous step.

<script type="text/javascript">
var SITES_RESIZE_RELAY_PAGE ="http://%SITES_HOST%/cs/Satellite?pagename=%PAGENAME
%"; //CHANGE ME!

if (window.addEventListener) {
window.addEventListener("load", calculateSizeFixed, false);
} else if (window.attachEvent) {
window.attachEvent("onload", calculateSizeFixed);
} else {
window.onload=calculateSizeFixed;
}
function calculateSizeFixed() {
var PTResizeIFrame =PTResizeIFrame ││{};
 if (PTPortalPage && PTPortalPage.portlets) {
for (var i in PTPortalPage.portlets) {
if (PTPortalPage.portlets[i].id != "page") {
PTResizeIFrame.pageletInstanceID =PTPortalPage.portlets[i].id;
 break;
 }
}
}
else if (!PTResizeIFrame.pageletInstanceID) {
PTResizeIFrame.pageletInstanceID =1;
 }

if (!PTResizeIFrame.pageletResizePage) {
var match =window.location.search.match(/resizepage=[^&]*/);
 if (match != null && match.length > 0) PTResizeIFrame.pageletResizePage
=unescape(match[0].substr("resizepage=".length));
 else PTResizeIFrame.pageletResizePage =SITES_RESIZE_RELAY_PAGE;
 }
var agent =navigator.userAgent;
 var ffversion =agent.indexOf("Firefox") >= 0 ?
agent.substring(agent.indexOf("Firefox")).split("/")[1] : -1;
 var FFextraHeight =parseFloat(ffversion)>=0.1? 25 : 0;
 var scrollHeightExtra =15;
 if (agent.indexOf('MSIE') > 0) {
scrollHeightExtra =35;
 }
if (FFextraHeight > 0) scrollHeightExtra =FFextraHeight;
 var wrapper =document.getElementById('pt-inner-iframe-wrapper-'
+PTResizeIFrame.pageletInstanceID);
 if (wrapper ==null) wrapper =createRelayIFrame(PTResizeIFrame.pageletInstanceID);

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

19-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 var iframe =document.getElementById('pt-inner-iframe-'
+PTResizeIFrame.pageletInstanceID);
 var height =0;
 var width =0;
 var iframename ='';

if((document.contentDocument) &&
(document.contentDocument.documentElement.offsetHeight)) {
height =document.contentDocument.documentElement.offsetHeight +FFextraHeight;
}else if((document.contentDocument) &&
(document.contentDocument.body.offsetHeight)) {
height =document.contentDocument.body.offsetHeight+FFextraHeight;
}else if (document && document.documentElement.scrollHeight) {
height =document.documentElement.scrollHeight +scrollHeightExtra;
 }else if(document && document.body.scrollHeight) {
height =document.body.scrollHeight +scrollHeightExtra;
 }else {
height =wrapper.offsetHeight;
 }
width =wrapper.offsetWidth;
 iframename ='pt-pagelet-iframe-' +PTResizeIFrame.pageletInstanceID;
 var qsSeparator =PTResizeIFrame.pageletResizePage.indexOf("?") >= 0 ? "&" : "?";

iframe.setAttribute("src", PTResizeIFrame.pageletResizePage +qsSeparator
+'height=' +height +'&' +'width=' +width +'&' +'iframe=' +iframename);
}

function createRelayIFrame(pageletInstanceId) {
var wrapper =document.createElement("div");
 wrapper.id ="pt-inner-iframe-wrapper-" +pageletInstanceId;
 var iframe =document.createElement("iframe");
 iframe.id ="pt-inner-iframe-" +pageletInstanceId;
 iframe.setAttribute("height", 0);
 iframe.setAttribute("frameborder", 0);
 iframe.setAttribute("width", 0);
 wrapper.appendChild(iframe);
 document.body.appendChild(wrapper);
 return wrapper;
}
</script>

Add the pagelet to the page template in Sites using a REST URL within an IFrame. In
the IFrame, the id parameter should use the unique number identifying the pagelet
IFrame (for example, "pt-pagelet-iframe-1"). You must add the following query string
parameters to the pagelet URL to support IFrame auto-resizing:

• resizepage=http://%SITES_HOST%/cs/Satellite?pagename=
%PAGENAME%

• ifheight=auto

For example:

<script type="text/javascript" src="http://%PAGELET_PRD_HOST%/pagelets/inject/v2/
csapi"/>
<iframe id="pt-pagelet-iframe-1" width="100%" frameborder="0" src="http://
%PAGELET_PRD_HOST%/pagelets/inject/v2/pagelet/lib_name/pagelet_name?content-
type=html& consumepage=true&resizepage=http://%SITES_HOST%/cs/Satellite?pagename=
%PAGENAME%&ifheight=auto">
</iframe>

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

Creating Pagelets: Examples and Advanced Topics 19-19

Note:

In certain situations automatic resizing may not work properly when multiple
pagelets are present on a page. This is known to occur with pagelets that
require form auto-login to external authentication servers. In this case, only
one pagelet can be configured for auto-resizing, while the others should use
static IFrame sizing.

19.4.1.2 Changing Pagelet Styling

To make a pagelet fit better visually in a consuming WebCenter Sites page, an Injector
may be used to add styles that override the original CSS. In order for the override to
work correctly, it is important that the style definitions supplied by the Injector come
after the styles defined by the backend application. The following example does this
by injecting replacement CSS into the end of the <HEAD> section.

To restyle a pagelet, add a new Injector to the pagelet using the Pagelet Producer
Administration Console. Open the pagelet, select Injectors and create a new Injector
with the following settings:

• General:

– Name: new_styles (or name of your choice)

– URL Filter: <none>

– MIME Filter: text/html

– Injector Location: Before </head>

• Content

Injector Location: Before </head>

Consuming Applications as Pagelets Using EBS11i includes a working example of an
Injector used to re-style the EBS UI to match the sample AviSports site in WebCenter
Sites.

19.4.2 Using Identity Propagation
The core purpose of Pagelet Producer is to proxy backend applications. Since Pagelet
Producer acts as a "middle-man" between the browser and the backend application,
identity propagation must be broken into two parts:

• Establishing Identity in Pagelet Producer

• Using a Login Page Supplied by Pagelet Producer

19.4.2.1 Establishing Identity in Pagelet Producer

Pagelet Producer typically injects web content into WebCenter Sites using an IFrame
as shown in Figure 19-21.

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

19-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-21 Pagelet Producer Content as IFrame in Sites

Since the content is injected as an IFrame, user identity must be established in both the
Sites container and the Pagelet Producer container as shown in Figure 19-22. Note that
Figure 19-22leaves out the user directory that is assumed to be shared between the two
authentication schemes.

Figure 19-22 Different authentication schemes for Sites and Pagelet Producer

The ideal way to manage identity between the browser and the two containers would
be to use Oracle Access Manager (OAM) as shown in Figure 19-23. Note that Figure
19-23leaves out the user directory that is assumed to be shared between the two
authentication schemes, and excludes the OAM access server. Note also that this
configuration is not supported for pre-11g versions.

Figure 19-23 Ideal Frontend Authentication Configuration Using OAM

To set up OAM for WebCenter Sites 11g, refer to the chapter on "Oracle Access
Manager Integration Setup" in Oracle WebCenter Sites Configuring Supporting Software.

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

Creating Pagelets: Examples and Advanced Topics 19-21

19.4.2.2 Using a Login Page Supplied by Pagelet Producer

Before setting up OAM, it is sometimes useful to test the integration of Pagelet
Producer in Sites. Without OAM, users must authenticate separately with Pagelet
Producer and with Sites (see Figure 19-22). This section describes how to configure
separate authentication with Pagelet Producer.

If OAM SSO is not present on either Pagelet Producer or Sites, the authentication
scheme shown in Figure 19-24must be supported by ensuring that Pagelet Producer
provides a login form.

To force Pagelet Producer to display a login form:

1. Identify a J2EE role to restrict access to the pagelet(s) or create a new role in the
J2EE application server hosting Pagelet Producer.

This example uses the global WebLogic Server (WLS) "Anonymous" J2EE role that
is present in a default WLS installation.

2. Log in to the Pagelet Producer Administration Console, navigate to the resource(s)
containing the pagelet(s) that must be surfaced in Sites and add the role you chose
in step 1.

Roles are defined on the Policy page for the resource.

Figure 19-24 Pagelet Producer Administration Console - Policy Page

19.4.3 Propagating Identity from Pagelet Producer to the Backend Application
The way in which identity is established depends on the type of application, as
described in the following topics:

• WSRP/JPDK Portlets

• Stand-alone Backend Application Protected with Native Authentication (Non-SSO)

• Identity Propagation with Autologin

• Stand-alone Backend Application Protected with SSO

• Reference: Common Autologin Configurations

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

19-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

19.4.3.1 WSRP/JPDK Portlets

WSRP portlets must use WSS tokens for identity propagation. For details on
configuring security tokens, see Registering WSRP Portlet Producers in Pagelet
Producer in Administering Oracle WebCenter Portal, and Consuming WSRP Portlets as
Pagelets.

Each Oracle PDK-Java portlet that requires an identity will be passed credentials
based upon information supplied by the external application's login form. For details,
see Managing External Applications and Registering an Oracle PDK-Java Portlet
Producer in Administering Oracle WebCenter Portal.

19.4.3.2 Stand-alone Backend Application Protected with Native Authentication (Non-
SSO)

Pagelet Producer has a feature called Autologin that allows Pagelet Producer to
interact with the "native" authentication mechanism established by a backend
application.

19.4.3.3 Identity Propagation with Autologin

Since each backend application has its own means of authentication, a separate login
prompt must be initiated by Pagelet Producer to collect any required credentials.
Pagelet Producer resources can be configured to send credentials to backend
applications as basic authentication headers, NTLM tokens, or Kerberos tokens, as
well as manage forms-based authentication (typically via a session cookie). For
information about configuring Autologin, see How to Configure Autologin.

Note:

Set the Username and Password fields to use the User Vault so that each user
will be prompted for his or her own unique credentials to access the backend
application.

19.4.3.4 Stand-alone Backend Application Protected with SSO

Determining the proper Autologin settings for a backend application can be very
challenging. Doing so requires looking at request headers, identifying redirects, and
examining markup (sometimes dynamically generated). This inspection and
configuration process can be daunting if there are multiple applications for which
Autologin is required. Therefore, if Oracle Access Manager (OAM) or Oracle SSO
(OSSO) is available, it is highly recommended that one of these single sign-on
solutions be used to protect backend applications.

Once the backend application is protected with OAM, there are two ways that Pagelet
Producer can supply credentials as described in the following subsections:

• Using Direct Identity Propagation to OAM Protected Backend Application

• Using Identity Propagation with Autologin and SSO

19.4.3.4.1 Using Direct Identity Propagation to OAM Protected Backend Application

An OAM 11g WebGate is an Apache module running on Oracle HTTP Server (OHS)
that manages all validation of user credentials with the OAM server. Once it has
established the validity of a user it sends the OAM_REMOTE_USER header to the web

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

Creating Pagelets: Examples and Advanced Topics 19-23

application on the application server that OHS is proxying. The application server will
have an OAM identity asserter running on it that will set the JAAS user principal
name to the OAM_REMOTE_USER header value.

If Pagelet Producer is protected with an OAM 11g WebGate it will receive an
OAM_REMOTE_USER header. All web applications that it proxies will also receive
this header. If the web application it proxies is on an application server with the OAM
Identity Asserter, then the OAM Identity Asserter will use the OAM_REMOTE_USER
header value passed from Pagelet Producer to set the user principal. This will all work
as long as Pagelet Producer is not trying to proxy the URL to the WebGate for the
protected web application. The rest of this section describes in details how this can be
achieved in the context of Sites integration.

Example Setup

This example assumes that both WebCenter Sites and Pagelet Producer are protected
by OAM WebGate as illustrated in Figure 19-23, and the following hosts and ports are
used by the applications:

• OAM SSO WebGate: www.example.com:80

• WebCenter Sites: sites_host:8080

• WebCenter Pagelet Producer: pp_host:8889

• Backend application: backendhost:8001

• Full URL to backend application as viewed from browser (via WebGate)

http://www.example.com/backend/console

• Full URL to backend application if accessed directly through application server
(available only in internal network) http://backendhost:8001/console

Set up the Pagelet Producer resource to use the direct URL to the backend application,
thus bypassing the WebGate (i.e., http://backendhost:8001/console).

Figure 19-25 Pagelet Producer Administration Console - General Properties Page

By setting up Pagelet Producer to call directly into the backend application (bypassing
the WebGate) all the OAM secure headers that Pagelet Producer receives are passed to
the OAM Identity Asserter on the application server hosting the backend application.
Once the OAM Identity Asserter on the application server hosting the backend
application receives the OAM headers it will set the proper user principal (see Figure

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

19-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

19-26). Note that Figure 19-26leaves out the user directory that is assumed to be shared
between the two authentication schemes. It also excludes the OAM access server.

Figure 19-26 Pagelet Producer Calling the Backend Application Directly

Note:

Although setting up Pagelet Producer to bypass the WebGate will achieve
single sign-on, this solution should not always be applied. In cases where the
OHS server hosting the WebGate is also managing load balancing for the
backend application, bypassing the WebGate will also bypass load-balancing.
All traffic to the application will be routed to one server. In this case we
recommend configuring Pagelet Producer for Autologin as described in Using
Identity Propagation with Autologin and SSO.

19.4.3.4.2 Using Identity Propagation with Autologin and SSO

If bypassing the OAM WebGate (as described in Using Direct Identity Propagation to
OAM Protected Backend Application) is not a feasible option then credentials can still
be supplied using Pagelet Producer's Autologin feature. The advantage of using
Autologin with an Oracle SSO solution (OAM or OSSO) login page as opposed to
individual login forms for each backend application (see Identity Propagation with
Autologin) is that Autologin only has to be set up once and the configuration steps are
the same for every implementation.

The steps for setting up Autologin with OSSO are described in Configuring
Autologin.In a production environment, these steps can be followed as is with one
exception: the ssousername and password form fields should be linked to the "User
Vault".

Backend applications protected with OAM can also be set up following the steps
described for OSSO in the Configure Autologin section in this document with the
following exceptions:

• The login form URL will be a set location (e.g., http://
oam11g.mycompany.com:14100/oam/server/obrareq.cgi).

Be sure to remove the query string after the fixed location argument when setting
the Autologin form identification URL.

• The form action URL will be a different value, but it should be a static value.
Inspect the OAM form to determine the form action URL.

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

Creating Pagelets: Examples and Advanced Topics 19-25

• The username and password fields may be different values. Inspect the OAM form
fields to determine these values.

• Include the following two generated values: "request_id" and "OAM_REQ".

19.4.3.5 Reference: Common Autologin Configurations

This section provides a quick reference of Autologin settings in Pagelet Producer for
common backend SSO scenarios.

This section contains the following topics:

• Autologin Settings for Oracle Access Manager (OAM)

• Autologin Settings for Oracle SSO (OSSO)

19.4.3.5.1 Autologin Settings for Oracle Access Manager (OAM)

Login Form Identification:

• URL: http://%OAM_ROOT%/server/obrareq.cgi

Form Submit Location:

• URL: /oam/server/auth_cred_submit

Form Fields:

• actionURL: static: /oam/server/auth_cred_submit

• request_id: Generated

• username: Unsecured or Credential Vault

• OAM_REQ: Generated

• password: Unsecured or Credential Vault

19.4.3.5.2 Autologin Settings for Oracle SSO (OSSO)

Login Form Identification:

• URL: %OSSO_HOST%/sso/jsp/login.jsp

Form Submit Location:

• URL: %OSSO_HOST/sso/auth - POST

Form Fields:

• appctx: Generated

• locale: Generated

• password: Unsecured or Credential Vault

• site2pstoretoken: Generated

• ssousername: Unsecured or Credential Vault

• v: Generated

Consuming a Pagelet in Oracle WebCenter Sites (an Example)

19-26 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

19.5 Consuming WSRP Portlets as Pagelets
Pagelet Producer incorporates the WebCenter Common Consumer and therefore can
expose WSRP portlets as pagelets for use in WebCenter Sites or any other web
container that does not include a WSRP consumer.

The WSRP Portlet Producer can be registered with Pagelet Producer using Fusion
Middleware Control, WLST, or the Pagelet Producer Administrative Console. For
more information, see Registering WSRP Portlet Producers In Pagelet Producer in
Administering Oracle WebCenter Portal. Once registration is complete, the WSRP
producer appears as a resource in the Pagelet Producer Administrative Console, and
the portlets associated with the WSRP endpoint will be listed in the pagelets collection
for the resource.

Note:

Auto-generated WSRP resources and pagelets cannot be modified. To create a
version that can be modified, choose the resource in the Pagelet Producer
Administrative Console and click Copy. The cloned version of the resource
can be edited and various elements such as Injectors can be added to
customize pagelet functionality. For example, a custom Injector could be used
to inject CSS classes to modify portlet markup to make it look and feel like the
Sites that will host the pagelet.

If the WSRP Producer that you are with Pagelet Producer requires authentication, the
following steps are required:

• Configure WS-Security between Pagelet Producer and the WSRP Producer as
described in Configuring Web Services Security in Administering Oracle WebCenter
Portal. You must ensure that the Java Key Store (JKS) is properly configured
between the WSRP producer and Pagelet Producer; for details, see Setting Up the
WebCenter Portal Domain Keystore in Administering Oracle WebCenter Portal.

• During the WSRP Producer registration, select the appropriate Token Profile in the
Security section and enter the necessary configuration information. The path to the
keystore must be absolute.

19.6 Exposing Custom ADF Task Flows as WSRP Portlets
Although it is possible to consume an ADF task flow in Pagelet Producer by 'clipping'
it out of the page on which it is hosted, this is not the recommended approach.
Considering the complexity of the markup generated by an ADF page and potential
dependencies on other task flows or ADF page parameters, the recommended
approach is to create a WSRP portlet based on the task flow and then consume the
portlet in Pagelet Producer. One advantage of this approach is that ADF task flow
parameters become portlet parameters that can be mapped to pagelet parameters,
allowing information to be passed from the Sites page to the task flow. For step-by-
step instructions on how to make a portlet from an ADF task flow, see How to Create
a JSF Portlet Based on a Task Flow.

After the ADF task flow is exposed as a portlet, deploy a new WSRP Producer to a
managed server in your WLS domain (for example, the WC_Portlet server on your
WebCenter domain). Obtain the WSDL URL from the info page (http://
%PRODUCER_HOST%/%APP_CONTEXT%/info) and make note of it. To register the

Consuming WSRP Portlets as Pagelets

Creating Pagelets: Examples and Advanced Topics 19-27

new WSRP Producer with Pagelet Producer, see WSRP Portlet Producers in Pagelet
Producer in Administering Oracle WebCenter Portal.

19.6.1 Exposing WSRP Portlets Developed for Oracle WebLogic Portal
Oracle WebLogic Portal (WLP) supports a variety of portlet types, including Java
Portlets, Java Server Faces Portlets, Java Server Page and HTML Portlets (for a
complete list, see Portlet Types in Portlet Development Guide for Oracle WebLogic Portal).
Remote (Proxy) Portlets are WSRP portlets and can be directly exposed as pagelets by
the WSRP Producer with Pagelet Producer.

19.6.2 Exposing WLP Portlets Using WLP as WSRP Producer
WLP can expose Java, Page Flow, JSP, JSF, and Struts Portlets as a "complex producer"
that includes the required WSRP interfaces, optional interfaces and some extended
interfaces (for details see "WebLogic Portal Producers" in Oracle Fusion Middleware
Federated Portals Guide for Oracle WebLogic Portal). Consequently, native WLP portlets
can be consumed by Pagelet Producer as any other WSRP portlets. Configuration and
best practices for WSRP interoperability between WLP and the WebCenter Common
Consumer are described in WSRP Interoperability with Oracle WebCenter Portal and
Oracle Portal in Federated Portals Guide for Oracle WebLogic Portal.

Note:

WLP portlets are WSRP-enabled by default since version 9.2. In earlier
versions, you must edit the portlet properties and set the "Offer as Remote"
property to true.

19.6.3 Configuring WS-Security between a WLP WSRP Producer and WebCenter
Consumer

To consume WSRP portlets exposed by WLP in the WebCenter Common Consumer
(Pagelet Producer), configuration is required on both the producer and consumer
sides.

Typically it is impossible to consume WSRP portlets exposed by WebLogic Portal as
an anonymous user, so it is necessary to configure SAML security on WLP for the
producer and the WebCenter Common Consumer. Step-by-step instructions can be
found in SAML Security Between a WebCenter Portal: Framework Application
Consumer and a WebLogic Portal Producer in Federated Portals Guide for Oracle
WebLogic Portal. These instructions are comprehensive, with the following
adjustments:

• In section 5 of "Configuring the Producer," the steps for configuring keystore
information on the WSRP consumer are executed in JDeveloper. You must
complete this step in the WebCenter Common Consumer (Pagelet Producer). You
can specify the signing alias and keystore password using WLST or Fusion
Middleware Control. For details, see Setting Up the WebCenter Portal Domain
Keystore in Administering Oracle WebCenter Portal.

Exposing Custom ADF Task Flows as WSRP Portlets

19-28 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

Once you have configured the keystore values you must restart both the
managed server hosting Pagelet Producer (by default WC_Portlet) and the
WLS Admin Server for the JPS configuration changes to be picked up.

• In section 4 of "Configuring the Producer", the instructions do not emphasize the
importance of the issuer name. The name placed here must match that sent by the
consumer. For Oracle JPS, the default issuer ID sent is www.oracle.com.

19.6.4 Registering the WLP WSRP Producer in Pagelet Producer
To register the WLP WSRP Producer in Pagelet Producer, follow the standard steps for
creating and configuring a new WSRP Producer described in WSRP Portlet Producers
in Pagelet Producer in Administering Oracle WebCenter Portal. Make sure to include the
following settings:

• WSDL URL:

http://%WLP_HOST%/%PORTAL_APP_NAME%/producer/wsrp-1.0/markup?
WSDL

• Security:

Token Profile: Select "WSS 1.0 Token with Message Integrity"

After registration, a new Pagelet Producer resource is automatically created and
populated with pagelets to represent the WLP portlets associated with this WSRP
endpoint.

Note:

To allow user identity propagation to the portlets, both WLP and Pagelet
Producer should be configured as described in Propagating Identity from
Pagelet Producer to the Backend Application. (For testing purposes or for
portlet content that can be accessed without authentication, you can specify a
valid username in the Default User field under Security.)

19.6.5 Adding WLP WSRP Portlets to Sites
To add WLP WSRP portlets to a page in Sites, follow the steps in Adding Pagelets to
Oracle WebCenter Sites. The URL to use for the src attribute in the IFrame tag that
loads pagelet content can be found under "Documentation" in How to Access Pagelets
Using REST.

Auto-generated WSRP resources and pagelets cannot be modified. To use Pagelet
Producer features to alter the markup of the WLP portlet such as modify look and feel
of the portlet UI by injecting custom CSS styles, you must create a new version of the
resource. Choose the resource that was created for your WLP WSRP Producer in the
Pagelet Producer Administrative Console and click Copy. The cloned version can be
modified, including adding elements such as Injectors to customize pagelet
functionality.

Exposing Custom ADF Task Flows as WSRP Portlets

Creating Pagelets: Examples and Advanced Topics 19-29

19.7 Consuming WebCenter Portal Services as Pagelets in Sites
WebCenter Portal includes services and tools, such as announcements and documents,
that can be used to facilitate user collaboration in WebCenter Sites. For an overview of
these tools, see Staying Informed and Staying Organized in Using Oracle WebCenter
Portal.

The recommended approach for exposing these services and tools in Sites is to
consume the associated WSRP portlets in Pagelet Producer by leveraging the Services
Producer component included with Oracle WebCenter Portal (11.1.1.6 and later).

The following portal tools are exposed as WSRP portlets by default:

• Activity Stream

• Discussion Forums

• Mail

• Document Manager

• Lists

• Tag Cloud

• Blogs

• Announcements

Note:

Additional tools can be exposed by extending the Services Producer to a new
JSF page and then adding the task flow to the page.

19.7.1 Requirements
Install WebCenter Portal following the instructions in Oracle Fusion Middleware
Installation Guide for Oracle WebCenter. Make sure that all dependent components are
also installed and configured, including WebCenter Content Server, the discussions
server, and Pagelet Producer. For more information, see Requirements.

19.7.2 Configuring Security and Single Sign-On
There are two prerequisites to allow access to WebCenter Portal services from a Sites-
driven web site:

• Create a common user base between the web site and WebCenter Portal

• Establish user identity propagation from the web site to WebCenter Portal

These are described in the following topics:

• Creating a Common User Base: LDAP Integration

• Establishing User Identity Propagation: OAM Configuration

• Configuring the GUID Attribute in the Identity Store

Consuming WebCenter Portal Services as Pagelets in Sites

19-30 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Configuring SSO for Discussions Server

19.7.2.1 Creating a Common User Base: LDAP Integration

Creating a common user base requires configuring a common LDAP repository to be
used by WebCenter Sites and all WebCenter Portal components. When selecting an
LDAP server, make sure it is compliant with the WebLogic Server that runs
WebCenter Portal components.

Things to remember when configuring security on WLS:

• Set the priority of the Authenticators to SUFFICIENT

• Set the Control Flag (in parenthesis) and order of authentication providers as
follows:

– OAM Identity Asserter (REQUIRED)

– LDAP Authenticator (SUFFICIENT)

– Default Authenticator (SUFFICIENT)

– Default Identity Asserter (SUFFICIENT)

19.7.2.2 Establishing User Identity Propagation: OAM Configuration

To establish user identity propagation, we recommend configuring the SSO solution
for WebCenter Sites and WebCenter Portal using Oracle Access Manager (OAM).

If you are using OAM, make sure it is configured to pass the user principal name in
the ORACLE_REMOTE_USER header. Both ObSSOCookie and
OAM_REMOTE_USER must be set to active on the OAM Identity Asserter on the
WebLogic Server.

19.7.2.3 Configuring the GUID Attribute in the Identity Store

Specify the GUID attribute value to ensure that the value that is used in the identity
store matches the value configured in the LDAP authentication provider. This value is
configured in the jps-config.xml file.

Set the GUID for your LDAP authenticator in the jps-config.xml file.

<serviceInstance provider="idstore.ldap.provider" name="idstore.ldap">
<property
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"
name="idstore.config.provider"/>
<property value="oracle.security.idm.providers.stdldap.JNDIPool"
name="CONNECTION_POOL_CLASS"/>
<property value="GUID=uuid" name="PROPERTY_ATTRIBUTE_MAPPING"/>
</serviceInstance>

19.7.2.4 Configuring SSO for Discussions Server

To use discussions, configure the discussions server for SSO before ordering the
Authenticators in WebLogic Server (using the Default Authenticator and Default
Identity Asserter). It is also possible to use WLST to configure SSO for the discussions
server. For details, see Configuring the Discussions Server for SSO in Administering
Oracle WebCenter Portal.

Consuming WebCenter Portal Services as Pagelets in Sites

Creating Pagelets: Examples and Advanced Topics 19-31

19.7.3 Importing WebCenter Services Exposed as WSRP Portlets
To import the WSRP portlets that expose WebCenter Services into Pagelet Producer,
simply register the Services Producer as a WSRP Producer in Pagelet Producer using
Enterprise Manager, WLST or the Pagelet Producer Administrative Console.

Figure 19-27 shows an example of WSRP endpoint registration in the Pagelet Producer
Administrative Console. For details, see WSRP Portlet Producers in Pagelet Producer
in Administering Oracle WebCenter Portal.

Figure 19-27 Pagelet Producer Administrative Console - WSRP Endpoint

The Token Profile in the Security section of this page must be set to WSS 1.0 SAML
Token to support the Services Producer. You should also enter a suitable execution
timeout for requests made by Pagelet Producer to the Services Producer (the default is
30 seconds).

Once registration is complete, the Services Producer will appear as a resource in the
Pagelet Producer Administrative Console and all WSRP portlets exposed by the
Producer will be listed in the pagelets collection for the resource:

19.7.3.1 Adding Pagelets to Sites Pages

Any pagelet exposing WebCenter Services can be added to a WebCenter Sites page
following the steps described in Adding Pagelets to Oracle WebCenter Sites. Figure
19-28 shows the Document Manager Service embedded into a page of the AviSports
sample site in WebCenter Sites.

Consuming WebCenter Portal Services as Pagelets in Sites

19-32 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

Auto-generated WSRP resources and pagelets such as the ones associated
with the Services Producer cannot be modified. To add an Injector or make
other modifications, you must create a version that can be edited. Choose the
resource in the Pagelet Producer Administrative Console and click Copy. The
cloned version of the resource can be edited and various elements such as
Injectors can be added to customize pagelet functionality.

Figure 19-28 AviSports Sample Site with Document Embedded

19.8 Consuming Applications as Pagelets Using EBS11i
This section provides detailed instructions for consuming the Oracle E-Business Suite
11i Order Information module UI as a pagelet. It covers autologin, navigation
suppression, restyling, and URL rewriting.

This example was created using an EBS 11i instance that is protected with Oracle SSO.
The following common terms and variables are used in the example:

• %EBS_HOST%: root URL of the EBS host (for example, http://my-
ebs.company.com:port/)

• %OSSO_HOST%: root URL of the OSSO host (for example, http://
sso.company.com:port/)

This section contains the following topics:

• Creating a Resource for Basic URL Mapping (Proxy)

• Configuring Autologin

• Creating a Pagelet

Consuming Applications as Pagelets Using EBS11i

Creating Pagelets: Examples and Advanced Topics 19-33

• Making Corrective Configurations

19.8.1 Creating a Resource for Basic URL Mapping (Proxy)
The following steps set up the basic URL mapping for a new EBS resource in Pagelet
Producer:

1. Create a new a web resource with the following settings:

• Name: EBS 11 (or your choice)

• Source URL: %EBS_HOST%

Make sure the URL is not too specific to avoid missing URLs used in the UI

• Destination URL: /ebs11/ (or your choice)

• URL Rewriting: on

• DHTML Rewriting: on

2. Click Save.

19.8.2 Configuring Autologin
This step assumes that the EBS System is protected by OSSO and that Pagelet
Producer will be configured to provide form Autologin rather than participate in SSO
(a common scenario if the web site is not protected by SSO). EBS credentials may be
shared for all users (useful for testing) or stored in the Pagelet Producer credential
vault for each user.

1. Create a new "Web" resource with the following settings:

• Name: OSSO (or your choice)

• Source URL: %OSSO_HOST%

• Destination URL: /osso/ (or your choice)

• URL Rewriting: on

• DHTML Rewriting: off

2. Click Save.

3. Under the newly created OSSO resource, configure Autologin using the Form
Login option as follows:

• Login Form Identification: URL - %OSSO_HOST%/sso/jsp/login.jsp

• Form Submit Location: URL - %OSSO_HOST/sso/auth - POST

• Form Fields:

appctx: Generated

locale: Generated

password: Unsecured or User Vault

site2pstoretoken: Generated

ssousername: Unsecured or User Vault

Consuming Applications as Pagelets Using EBS11i

19-34 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• v: Generated

4. Click Save.

Note:

The names of login form fields are usually obtained by investigating the
HTML source for the login page that protects the backend resource.

19.8.3 Creating a Pagelet
This step associates a pagelet with the Order Status page in the EBS Order Information
module. To create a new pagelet, select the Pagelets section under the EBS resource
you created and click the Create icon. Create the new pagelet with the following
settings:

• Name: order_status (or your choice)

• Library: ebs11 (or your choice)

• URL Suffix: OA_HTML/RF.jsp?
function_id=1005664&resp_id=22480&resp_appl_id=660&security_group_id=0&la
ng_code=US

• Refresh Inline: off

You can test the configured pagelet by accessing it via the REST link on the
Documentation page. You should be taken to the Sales Order page without logging in
(unless the pagelet uses the User Vault to store credentials and you are accessing it for
the first time). From this page, you can use Simple Search to locate orders, using '%' as
a wildcard character.

19.8.4 Making Corrective Configurations
After a pagelet has been created, it often requires additional features (Parser, Injector
and/or Clipper) to either address issues with URL re-writing in the proxied markup,
or simply to modify the markup for style or to hide unnecessary elements. This section
describes corrective configurations that were applied to the sample pagelet that
exposes the Order Information UI in EBS.

This section includes the following subsections:

• Creating a Pluggable Parser for Popup URL Rewriting

• Creating an Injector to Disable Frame-busting

• Creating an Injector to Auto-Resize the iFrame

• Setting Up Clipping by JavaScript Injection

• Creating an Injector for Pagelet Restyling

• Testing the Pagelets

• Final Result

• Troubleshooting

Consuming Applications as Pagelets Using EBS11i

Creating Pagelets: Examples and Advanced Topics 19-35

19.8.4.1 Creating a Pluggable Parser for Popup URL Rewriting

Parsers allow you to supplement or change the built-in logic for parsing content and
finding URLs that need to be rewritten. When built-in parsers fail to identify URLs,
custom parsers can be used to correct this failure. In the case of the EBS 11i UI, this
step is required to fix popup handling in Advanced Search.

Under the EBS Resource, create a new Parser with the following settings:

• Name: popupRewriter (or your choice)

• URL Filter: *.jsp*

• Use Base Parser: on

• Fragment Locations

– var _jspDir='(.*?)'; (type Static URL)

– <frame .? src="(.?) (type Static URL)

Figure 19-29 shows the settings for the popupRewriter.

Figure 19-29 popupRewriter

19.8.4.2 Creating an Injector to Disable Frame-busting

Injectors insert content into a specified location in the proxied resource page. The
content can be any text, including HTML, CSS, JavaScript, and pagelet declarations.
An empty injector may also be used to remove unwanted content from the page. The
following injector was created for the EBS pagelet to prevent it from taking over the
page, which was happening on the first displayed page where the user is asked to
choose responsibility.

Under the EBS resource create a new Injector with the following settings:

• General

– Name: frameBustDisabler

– URL Filter: <none>

– MIME Filter: text/html

– Inject Location: Replace target=_top

• Content: (Text) alt=''

Figure 19-30 shows the parameter settings for the new Injector.

Consuming Applications as Pagelets Using EBS11i

19-36 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-30 frameBustDisabler Injector

19.8.4.3 Creating an Injector to Auto-Resize the iFrame

In order to provide a more seamless integration into the consuming page, the pagelet
iFrame can be configured to behave more like inline content by dynamically resizing
to accommodate its contents. For details, see Enabling IFrame Auto-Resizing in this
document.

19.8.4.4 Setting Up Clipping by JavaScript Injection

One option for suppressing page elements exposed as a pagelet is to create a clipper
using graphical or Regular Expression-based clipping, available in Pagelet Producer.
However, the recommended approach is to use custom JavaScript that is injected into
the proxied page. This approach is often more flexible as it can easily accommodate
the need to dynamically adjust rules that identify the element(s) to suppress or
accommodate rules for suppressing multiple elements on the page.

Custom JavaScript can be added to the proxied resource page using an injector. To
suppress EBS 11i standard header and navigation elements, use the following injector
definition to insert a snippet of JavaScript that hides the unnecessary elements at page
load time. (The standard Clipper feature in Pagelet Producer is not used due to the
complexity of the EBS web UI.)

Under the EBS Resource, create a new Injector with the following settings:

• General:

– Name: nav_suppressor (or your choice)

– URL Filter: <none>

– MIME Filter: text/html

– Inject Location: Before </body>

• Content: (Text - copy and paste the content below)

<script type="text/javascript">
// this script is injected into the page by ensemble
// it hides header and footer tables at page load

//register handler function to the page load event
if (window.addEventListener) {
window.addEventListener('load', hideHeaderFooter, false);
} else if (document.attachEvent) {
window.attachEvent('onload', hideHeaderFooter);

Consuming Applications as Pagelets Using EBS11i

Creating Pagelets: Examples and Advanced Topics 19-37

}

//this function does the actual hiding
function hideHeaderFooter() {
var form =document.forms[0];
 if (typeof(form) =='undefined') return;
 //main span is form's second child span
 var spansFound =0;
 var mainSpan =null;
 for (var i =0; i < form.childNodes.length; i++) {
var child =form.childNodes[i];
 if (child.tagName && child.tagName.toLowerCase() =='span') {
if (++spansFound ==2) {
mainSpan =child;
 break;
 }
}
}
if (typeof(mainSpan) != "undefined" && mainSpan != null) {
for (var i =0; i < mainSpan.childNodes.length; i++) {
var child =mainSpan.childNodes[i];
 if (child.tagName && child.tagName.toLowerCase() =='table') {
child.style.display ='none';
 }
}
}
}
//call this function directly
hideHeaderFooter();
</script>

19.8.4.5 Creating an Injector for Pagelet Restyling

To make the EBS pagelet fit better visually in the consuming page, an injector can be
used to add styles to override the original CSS.

The example injector definition below shows how to implement restyling for the
AviSports sample web site in WebCenter Sites.

Note:

In order for the override to work correctly, it is important that the style
definitions supplied by the injector come after the styles defined by the
backend application. In the example below, the content is injected into the end
of the <HEAD> section on the page.

Under the EBS Resource, create a new Injector with the following settings:

• General:

– Name: avisports_styles

– URL Filter: <none>

– MIME Filter: text/html

– Inject Location: Before </head>

• Content: (Text - copy and paste the content below)

Consuming Applications as Pagelets Using EBS11i

19-38 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

<style>
* {
font: 11px Arial,Helvetica,sans-serif;
}
body {
background: url("http://sites-host:port/cs/avisports/images/BlueSliver.png")
repeat-x scroll center bottom transparent;
}
.OraTableCellText, .x1l, .OraTableCellNumber, .x1n, .OraTableCellIconButton, .x1p,
 .OraTableCellSelect, .x55,
.OraTableControlBarTop, .x1i, .OraTableControlBarBottom, .x1j {
background-color: #eceef1;
 border-color: #0b2a55;
}
.OraTableColumnHeader, .x1r, .OraTableSortableColumnHeader, .x20, .OraTableSortabl
eHeaderLink, .x23 {
background-color: #0b2a55;
 border-color: #F7F7E7;
 color: #336699;
}
.OraTableHeaderLink, .x24, .OraTableColumnHeaderNumber, .x1s, .OraTableColumnHeade
rIconButton, .x1t {
background-color: #0b2a55;
 color: #ffffff;
}
.p_InContextBrandingText, .x2l, .OraHGridNavRowInactiveLink, .x3v, .OraNavBarInact
iveLink, .x42,
.OraBINavBarInactiveLink, .x7n, .OraBINavBarInactiveLink_small, .x7o {
color: #000000;
}
.OraLink:link, .xd:link, .OraBreadCrumbs, .xh, .OraBulletedList a, .xj
a, .OraLinkText, .x2v,
.OraHGridNavRowActiveLink, .x3u, .OraNavBarActiveLink, .x41, .OraBINavBarActiveLin
k, .x7l, .OraBINavBarActiveLink_small, .x7m {
color: #0b2a55;
}
.OraBreadCrumbs a, .xh a {
color: #0b2a55;
}
</style>

19.8.4.6 Testing the Pagelets

The EBS11 resource now includes the pagelet, the custom injectors, and the custom
parser as shown in Figure 19-31.

Consuming Applications as Pagelets Using EBS11i

Creating Pagelets: Examples and Advanced Topics 19-39

Figure 19-31 EBS11 Project Resources

Test the pagelet by browsing to the Documentation page and using the URL shown
below, substituting the local host ID for "example.com."

http://example.com:8889/pagelets/inject/v2/pagelet/ebs11/order_status?content-
type=iframe&csapi=true&ifheight=300px

19.8.4.7 Final Result

The following screenshots show the EBS 11i Order Information screens embedded into
a page of the AviSports sample site in WebCenter Sites using a REST URL for pagelet
access in an iFrame:

Consuming Applications as Pagelets Using EBS11i

19-40 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

19.8.4.8 Troubleshooting

If some images are not rendered properly, make sure DHTML rewriting is enabled.
(The DHTML Rewriting setting is on the General page for the resource.)

Consuming Applications as Pagelets Using EBS11i

Creating Pagelets: Examples and Advanced Topics 19-41

19.9 Consuming OpenSocial Gadgets Using Pagelet Producer
Pagelet Producer is an OpenSocial container that exposes the following features:

• People (exposes People Connections)

• Activities (exposes Activity Stream)

• Appdata (supports gadget personalization)

• Pub-Sub mechanism

Note that the People and Activities features require WebCenter Portal. To use the
People or Activities features, target the WebCenterDS at the WC_Portlet managed
server (i.e., at Pagelet Producer). For Appdata, Pagelet Producer supports user,
instance and pagelet -scoped preferences.

To follow the example:

1. Open Pagelet Producer and create a new OpenSocial resource.

2. Define the URLs and policies as required.

3. Create a new pagelet specifying the URL for an external gadget.

For example:

http://bayareacoder.com/gogo/localweather/localweather.xml

4. If the gadget supports Preferences, configure the required parameters (see Figure
19-32and Figure 19-33).

Figure 19-32 Preferences Editor

Figure 19-33 Pagelet Parameters Dialog

5. Create or upload the gadget XML file (see Figure 19-34).

Consuming OpenSocial Gadgets Using Pagelet Producer

19-42 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-34 Pagelet Producer with Activities JavaScript and XML Options

Note that the path supplied in the Name field is a ‘virtual' URL that Pagelet
Producer will use to serve the file and any path or name can be used.

6. Create or upload any other files that the new gadget requires (for example, any
JavaScript files, images, and so forth), and you're done.

19.10 Guidelines for Effective Geometry Management and Pagination
Effective geometry management results in efficient sizing and placement of task flows
on the page. If the task flows are not designed properly, you end up with pages that
have a slow response time or lots of unnecessary scroll bars or white spaces between
components. For example, if you include a task flow containing very little data inside
a container that stretches it (for example, a Show Detail Frame component), there is a
lot of white space below the data in the task flow. Poor design can also cause scrolling
to be slow and unpredictable in a task flow with a table displaying a large amount of
data. To avoid such issues, be sure to design your task flows so that they flow and use
a conventional pagination model when displaying large data sets.

Follow the guidelines in this section when designing new task flows for WebCenter
Portal. Also, be sure to adhere to these guidelines when you edit existing WebCenter
Portal task flows.

This section includes the following topics:

• Using an Injector with JavaScript

• Using an Injector with SSL

19.10.1 Using an Injector with JavaScript
To avoid unnecessary white spaces in your task flows, you must ensure that the task
flow content flows and is not stretched by the task flow container. A stretching task
flow is one that is stretched to the height of the container, whereas a flowing task flow
is one whose height is determined by its content, rather than by a stretching container
or by itself having a fixed height. A flowing task flow with a small amount of data is
shorter than one with large amounts of data

To design a flowing task flow, you must ensure that:

• The child component of the task flow does not have a fixed height.

• The Show Detail Frame component surrounding the task flow region does not have
a fixed height (specified using its contentStyle attribute).

Guidelines for Effective Geometry Management and Pagination

Creating Pagelets: Examples and Advanced Topics 19-43

19.10.2 Using an Injector with SSL
Consuming an SSL resource requires a Pagelet Producer connection over HTTPS,
including:

• Secure port mapping between WLS and Pagelet Producer

• Container should also be accessed via HTTPS

The injector can modify HTML markup that Pagelet Producer proxies:

• Based on URL pattern (resource scope)

• Based on MIME type

• Based on location (top or bottom) or exact text match (before, after, replace)

• Content page defines what gets injected

19.11 Advanced URL Rewriting
This section describes how to use Pagelet Producer's auto-login feature, and how to
design a custom parser.

This section contains the following topics:

• Using Auto-Login

• Using a Custom Parser

19.11.1 Using Auto-Login
Auto-login lets you pass username/password credentials to a back-end resource.
These can be passed as either:

• Static credentials – one set for all users

• Dynamically acquired from user at first resource access and then stored in secure
Credential Vault

• User Profile (capture and pass username)

The supported authentication mechanisms for auto-login are:

• Basic login

• Form login (used in the following example)

• NTLM login

• Kerberos login

The example in Figure 19-35and the code snippet below shows how you can use auto-
login to redirect to a login page:

Advanced URL Rewriting

19-44 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 19-35 Pagelet Producer - Auto-Login Example

The following code reflects the settings in Figure 19-35:

<form action="wwv_flow.accept" method="post" name="wwv_flow" id="wwvFlowForm"
autocomplete="off">
 <input type="hidden" name="p_flow_id" value="53557" id="pFlowId" />
<input type="hidden" name="p_flow_step_id" value="101" id="pFlowStepId" />
<input type="hidden" name="p_instance" value="724836084846701" id="pInstance" />
<input type="hidden" name="p_page_submission_id" value="1431956852758801"
id="pPageSubmissionId" />
<input type="hidden" name="p_request" value="" id="pRequest" />
<div id="login"> <div id="messages"></div> <div id="login-main">
<table id="myapp_layout_45149677586857064102" border="0" class="formlayout"
summary="" role="presentation" datatable=0 >
<tr><td align="right"><label for="P101_USERNAME" tabindex="999“><a class="optional-w-
help"
 href="javascript:popupFieldHelp('45149677686365064111','724836084846701')"
tabindex="999">
User Name</label></td> <td colspan="1" rowspan="1" align="left"><input
type="hidden" name="p_arg_names" value="45149677686365064111" /><input type="text"
id="P101_USERNAME" name="p_t01" value="" size="20" maxlength="100" class="text_
field" /></td></tr><tr><td align="right"><label for="P101_PASSWORD"
tabindex="999"><a class="optional-w-help"
href="javascript:popupFieldHelp('45149677888869064121','724836084846701')"
tabindex="999">Password</label></td> <td colspan="1" rowspan="1"

Advanced URL Rewriting

Creating Pagelets: Examples and Advanced Topics 19-45

align="left"><input type="hidden" name="p_arg_names" value="45149677888869064121"/>
<input type="password" name="p_t02" size="20"
maxlength="100" value="" id="P101_PASSWORD" class="password" onkeypress="return
submitEnter(this,event)" /> <input type="button"
value="Login"onclick="myapp.submit('LOGIN');" id="P101_LOGIN" /> </td></tr>
</table> Please refer to "Using Myapp" in the Myapp User's Guide for more
information.</div> </div> <input type="hidden" name="p_md5_checksum" value="" />
<input type="hidden" name="p_page_checksum"
value="D95DBE8607E971820E98E93FC0EC064E" /></form>

19.11.2 Using a Custom Parser
Parsers let you extend or change built-in logic for URL parsing. Using a URL Filter
and regular expressions, you can narrow down the part of the page that the parser
should modify (Figure 19-36).

Figure 19-36 Pagelet Producer - Custom Parser Example

Using regular expressions lets you specify the HTML fragment to parse. The first
grouping expression, denoted by parentheses, identifies the fragment itself, while the
rest of the expression provides the context for finding it. A pluggable parser
framework lets you fine-tune how the proxy recognizes different types of content
based on MIME type, HTTP headers or URL.

In this example, there are three URLs in two places within the page markup that need
to be modified to make Flash work:

<embed src=“ /i/flashchart/anychart_5/swf/OracleAnyChart.swf?
XMLFile=http://example.com/pls/myapp/myapp_ util.flash?
p=53557:1:74175370346201:FLOW_FLASH_CHART5_R45192463162785599619_en"
 <param name="movie" value=“/i/flashchart/anychart_5/swf/AnyChart.swf?
XMLFile=http://example.com/pls/myapp/myapp_ util.flash?
p=53557:1:74175370346201:FLOW_FLASH_CHART5_R45192463162785599619_en"

The following three regular expressions (shown under Regular Expressions in Figure
19-36) are used to achieve this:

• XMLFile=(.*?)“

• param name="movie" value="(.*?\.swf)

• embed src="(.*?\.swf)

Advanced URL Rewriting

19-46 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Part V
Additional WebCenter Portal

Customizations

This part contains the following chapters:

• Developing Shared Libraries

• Localizing Portals

• Extending Oracle Composer

• Customizing WebCenter Portal Impersonation Security

20
Developing Shared Libraries

This chapter provides an introduction to developing, extending, and deploying ADF
assets such as task flows, data controls, and managed beans as a shared library for use
in WebCenter Portal.

This chapter includes the following topics:

• Developing Shared Libraries for Use in WebCenter Portal

• Packaging and Deploying ADF Components for Use in WebCenter Portal

20.1 Developing Shared Libraries for Use in WebCenter Portal
Out-of-the-box, WebCenter Portal provides tools targeted at knowledge workers and
developers to quickly and easily create portals, intranets, extranets, and self-service
applications that offer users a more effective and efficient way to access and interact
with information, business applications, and process. WebCenter Portal can be
customized using browser-based tools and also using JDeveloper.

To help you understand how you can develop, test, deploy, and use your own ADF
task flows, data controls, and managed beans in WebCenter Portal, Figure 20-1 shows
the development lifecycle of a single task flow (called mytaskflow). Development steps
1 through 5 are described in Packaging and Deploying ADF Components for Use in
WebCenter Portal.

Developing Shared Libraries 20-1

Figure 20-1 Development Lifecycle for an ADF Task Flow

20.2 Packaging and Deploying ADF Components for Use in WebCenter
Portal

This section describes how you can package and deploy your ADF task flows, data
controls, and managed beans in your own custom shared libraries (WAR files) for use
in WebCenter Portal.

WebCenter Portal provides a JDeveloper template called WebCenter Portal Server
Extension that enables you to specify one or more custom shared libraries that you
want to use with WebCenter Portal.

You can also use the same WebCenter Portal Server Extension template as a starter
template to build and deploy ADF library components, such as task flows, data
controls, and managed beans for use in WebCenter Portal.

This section includes the following topics:

• Understanding the WebCenter Portal Server Extension Template

• Understanding Shared Library Development for WebCenter Portal

• Creating a WebCenter Portal Server Extension Workspace

• Using Additional Shared Libraries with WebCenter Portal

• Deploying Extensions to the WebCenter Portal Shared Library
(extend.spaces.webapp.war)

• Developing ADF Library Components for WebCenter Portal Using the
PortalExtension Project

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

20.2.1 Understanding the WebCenter Portal Server Extension Template
The WebCenter Portal Server Extension template creates a workspace with two
projects:

• PortalSharedLibrary – A project that when deployed creates
extend.spaces.webapp.war, a shared library that:

– References one or more custom shared libraries for WebCenter Portal.

– Wraps the ADF Library JAR created from the PortalExtension project (only if
used).

Note:

Do not add any code to this project; this project only contains descriptor files
that reference other shared libraries and/or includes ADF Library JARs.

• PortalExtension – A starter project in which you create custom ADF components,
such as task flows, data controls, and managed beans. You can deploy this project
to an ADF Library, which is added to the extend.spaces.webapp.war shared
library.

The components you create in a PortalExtension project typically require Java,
ADF, and other related software development skills.

This section describes:

• How the WebCenter Portal Server Extension Workspace Is Organized

• The PortalSharedLibrary Project

• The PortalExtension Project

20.2.1.1 How the WebCenter Portal Server Extension Workspace Is Organized

The WebCenter Portal Server Extension workspace contains two default projects,
PortalExtension and PortalSharedLibrary, each containing specific libraries and
default files (Figure 20-2).

Figure 20-2 WebCenter Portal Server Extension Workspace in Application
Navigator

20.2.1.2 The PortalSharedLibrary Project

The PortalSharedLibrary project, shown in Figure 20-3, enables you to register one or
more custom shared libraries that you want to use in WebCenter Portal and also

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-3

provides a convenient mechanism for deploying task flows, data controls, and
managed beans (developed in the PortalExtension project) to a managed server
running WebCenter Portal.

The PortalSharedLibrary project includes a WAR deployment profile called
extend.spaces.webapp. When you deploy to extend.spaces.webapp.war, all
the custom shared libraries that you register (in weblogic.xml) and any ADF library
that you create and using a PortalExtension project are automatically included as
dependencies of extend.spaces.webapp.war.

See Using Additional Shared Libraries with WebCenter Portal and Deploying
Extensions to the WebCenter Portal Shared Library (extend.spaces.webapp.war).

Note:

Do not add any code to the PortalSharedLibrary project; this project only
contains descriptor files that reference other shared libraries or include ADF
Library JARs.

For general information on shared libraries, see General Documentation for Shared
Library Deployment.

Figure 20-3 PortalSharedLibrary Project

20.2.1.2.1 Versioning extend.spaces.webapp.war

The PortalSharedLibrary project contains a MANIFEST.MF file. Each time you update
and deploy extend.spaces.webapp.war, edit this MANIFEST.MF file to increment
the shared library implementation version. With each iteration, you must increment
the Implementation-Version number in the MANIFEST.MF file, as shown in the
example Manifest File for extend.spaces.webapp. The default implementation version
is 12.2.1.0.1.

Manifest File for extend.spaces.webapp

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.1
Created-By: 23.7-b01 (Oracle Corporation)
Extension-List: bpmSpaces
bpmSpaces-Extension-Name: oracle.bpm.spaces
Package:
Specification-Version: 2.0
Implementation-Version: 12.2.1.0.1
Implementation-Label: 12.2.1.0.1

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Implementation-Vendor: Oracle
Implementation-Patch-Number:
Implementation-Patch-List:
Implementation-Title: Oracle WebCenter Spaces App Extension View V2
Extension-Name: extend.spaces.webapp

For detailed steps on how to change the implementation version, see Deploying
Extensions to the WebCenter Portal Shared Library (extend.spaces.webapp.war).

20.2.1.3 The PortalExtension Project

The PortalExtension project is a standard ADF project where you can create custom
components like task flows, data controls, and managed beans.

A PortalExtension project is deployed to an ADF Library. This library is automatically
added as a dependency to the extend.spaces.webapp.war shared library file
generated from the PortalSharedLibrary project. See Developing ADF Library
Components for WebCenter Portal Using the PortalExtension Project.

For more information on ADF Libraries, see General Documentation for ADF Library
Development.

Figure 20-4 The PortalExtension Project

20.2.2 Understanding Shared Library Development for WebCenter Portal
WebCenter Portal includes the standard shared library
extend.spaces.webapp.war. This WAR file can include a deployment descriptor
(weblogic.xml) which references other shared libraries containing custom ADF
library components.

If you have custom code or task flows deployed in several shared libraries from
multiple sources that you want to use in WebCenter Portal you can list them in
extend.spaces.webapp.war, as illustrated in Figure 20-5.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-5

Figure 20-5 Reference Multiple Custom Shared Libraries in
extend.spaces.webapp.war

This development model provides an easy way to use additional shared libraries in
WebCenter Portal from multiple contributors, including developers, customers, and
partners.

Whenever you deploy a new shared library that includes extensions for WebCenter
Portal you must register the name of your shared library with WebCenter Portal and
redeploy extend.spaces.webapp.war. For details, see Using Additional Shared
Libraries with WebCenter Portal.

This Guide does not attempt to teach you how to develop ADF task flows, data
controls, and managed beans and package them into custom shared libraries since
those techniques and procedures are not specific to WebCenter Portal. If you are new
to shared library development, Oracle recommends that you familiarize yourself with
the documentation listed at:

• General Documentation for ADF Library Development

• General Documentation for Shared Library Deployment

This Guide explains how to reference shared libraries that you want to use in
WebCenter Portal using the WebCenter Portal Server Extension template. Table 20-1
provides an overview of the ADF library and shared library development processes,
highlighting information that is specific to WebCenter Portal and pointing to other
documentation where applicable.

Table 20-1 Developing and Deploying ADF Libraries and Shared Libraries for WebCenter Portal

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 20-1 (Cont.) Developing and Deploying ADF Libraries and Shared Libraries for WebCenter
Portal

Subject WebCenter Portal Documentation General Documentation

Creating ADF library
components

WebCenter Portal supports several
component types deployed to ADF
Library JARs: task flows, data controls,
and managed beans

Create task flows, data controls, or
managed beans for WebCenter Portal the
same way as any standard ADF Library
component.

Alternatively, use the starter project
supplied with WebCenter Portal. See
Developing ADF Library Components for
WebCenter Portal Using the
PortalExtension Project.

About Reusable Components in
Developing Fusion Web Applications with
Oracle Application Development
Framework describes various types of
reusable ADF components, such as a
task flows, that you can deploy to an
ADF Library JAR.

Note that Extension Libraries does not
apply to WebCenter Portal.

See also, Creating Reusable
Components in Developing Fusion Web
Applications with Oracle Application
Development Framework.

- Naming conventions Every ADF Library JAR file that you want
to use with WebCenter Portal must have a
unique file name. You cannot add two
ADF Library JAR files with the same
name even if their content is completely
different.

See also, Naming Conventions in
Developing Fusion Web Applications with
Oracle Application Development
Framework.

- Managing connections If your ADF Library JAR uses a
connection, you must manually register
that connection with WebCenter Portal
using the same connection name and
details (just including the connection
within the ADF Library JAR does not
expose that connection in WebCenter
Portal).

To create connections for WebCenter
Portal, you must use Fusion Middleware
Control or WLST commands.

To add a WebCenter Portal specific
connection, refer to Managing Tools and
Services in Administering Oracle WebCenter
Portal.

To add a database connection, refer to
Creating and Managing JDBC Data
Sources in the Administering Oracle Fusion
Middleware.

To add a web service connection,
configure the ADFConnections MBean
using the System MBean Browser. Refer
to System MBean Browser in
Administering Oracle WebCenter Portal and
Web Service Connection in the
Administering Oracle ADF Applications.

See also, Naming Considerations for
Connections in Developing Fusion Web
Applications with Oracle Application
Development Framework.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-7

Table 20-1 (Cont.) Developing and Deploying ADF Libraries and Shared Libraries for WebCenter
Portal

Subject WebCenter Portal Documentation General Documentation

- Including descriptors Descriptors in custom shared libraries,
such as web.xml and
application.xml, merge with
corresponding descriptors deployed with
the WebCenter Portal application. To
avoid corrupting your WebCenter Portal
installation, Oracle recommends that you
do not include descriptor files in your
custom shared libraries.

- Versioning Each time you redeploy the WebCenter
Portal shared library WAR file
(extend.spaces.wepapp.war) to add
an ADF library JAR or to reference a
custom shared library you must
increment the shared library
implementation version number.

For details, see Versioning
extend.spaces.webapp.war and
Deploying Extensions to the WebCenter
Portal Shared Library
(extend.spaces.webapp.war).

Packaging components
into ADF Library JAR

Package your task flow, data control, or
managed bean into a standard ADF
Library JAR.

Alternatively, use the starter
PortalExtension project. For details, see
Developing ADF Library Components for
WebCenter Portal Using the
PortalExtension Project.

Packaging a Reusable ADF Component
into an ADF Library in Developing
Fusion Web Applications with Oracle
Application Development Framework
describes how to package a reusable
component, such as a task flow, to a
ADF Library JAR file.

Note that How to Place and Access
JDeveloper JAR Files does not apply to
WebCenter Portal.

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table 20-1 (Cont.) Developing and Deploying ADF Libraries and Shared Libraries for WebCenter
Portal

Subject WebCenter Portal Documentation General Documentation

Adding ADF library
components to a shared
library

To use ADF Library components in
WebCenter Portal, you must:

1. Deploy your ADF Library
components to a shared library WAR
file.

See, Creating Shared Java EE
Libraries and Optional Packages in
Developing Applications for Oracle
WebLogic Server.

2. Deploy your shared library to the
managed server on which
WebCenter Portal is deployed.

3. Register your shared library in the
WebCenter Portal shared library
(extend.spaces.webapp.war).

4. Deploy a new version of the
WebCenter Portal shared library
(extend.spaces.webapp.war).

5. Use Fusion Middleware Control or
WLST to create any connections that
your custom ADF Library
components require.

6. Restart the managed server on which
WebCenter Portal is deployed.

Note: You can add ADF Library
components directly to the WebCenter
Portal shared library WAR
(extend.spaces.webapp.war). For
details, see Deploying Extensions to the
WebCenter Portal Shared Library
(extend.spaces.webapp.war).

Adding ADF Library Components into
Projects in Developing Fusion Web
Applications with Oracle Application
Development Framework describes how
to deploy ADF library components,
such as a task flow, to a project.

The information in this section does not
apply to WebCenter Portal.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-9

Table 20-1 (Cont.) Developing and Deploying ADF Libraries and Shared Libraries for WebCenter
Portal

Subject WebCenter Portal Documentation General Documentation

Using ADF library
components

An ADF Library adapter in WebCenter
Portal's resource catalog automatically
picks up any task flows, data controls and
managed beans that you deploy and
reference through
extend.spaces.webapp.war and adds
them to WebCenter Portal's resource
registry. Custom components in the
resource registry are exposed to
WebCenter Portal users through resource
catalogs as components that you can drop
onto portal pages.

1. Log in to WebCenter Portal.

2. Add your custom component to a
resource catalog.

See, Adding a Resource to a Resource
Catalog in Building Portals with Oracle
WebCenter Portal.

3. Open a page with access to the
resource catalog.

4. Add your custom component to the
page.

See, Adding a Component to a Page
in Building Portals with Oracle
WebCenter Portal.

What You May Need to Know About
Using ADF Library Components in
Developing Fusion Web Applications with
Oracle Application Development
Framework describes how various
different ADF Library component types
appear in JDeveloper. For WebCenter
Portal, only the information pertaining
to task flows, data controls, and
managed beans applies.

Creating a shared library
WAR

The WebCenter Portal Server Extension
template provides a deployment profile
for the WebCenter Portal shared library
WAR extend.spaces.webapp.war.

For details, see Creating a WebCenter
Portal Server Extension Workspace.

Creating Shared Java EE Libraries in
Developing Applications for Oracle
WebLogic Server describes how to create
a shared library WAR file.

Deploying a shared
library WAR

The WebCenter Portal Server Extension
template enables you to redeploy the
WebCenter Portal shared library WAR
extend.spaces.webapp.war.

For details, see Deploying Extensions to
the WebCenter Portal Shared Library
(extend.spaces.webapp.war).

Deploying Shared Java EE Libraries
and Dependent Applications in
Developing Applications for Oracle
WebLogic Server describes how to
deploy any shared library WAR file.

Reverting to a previous
library version

Use the WebLogic Server Administration
Console to revert to a previous shared
library WAR version or remove
unwanted versions.

For details, see Reverting to a Previous
WebCenter Portal Shared Library Version.

Removing an ADF Library JAR from a
Project in Developing Fusion Web
Applications with Oracle Application
Development Framework describes how
to remove ADF Library components in
JDeveloper.

The information in this section does not
apply to WebCenter Portal.

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

20.2.2.1 General Documentation for ADF Library Development

• For information about creating ADF task flows, data controls, and managed beans,
refer to Developing Fusion Web Applications with Oracle Application
Development Framework.

• See also, Reusing Application Components in Developing Fusion Web Applications
with Oracle Application Development Framework.

20.2.2.2 General Documentation for Shared Library Deployment

• For additional information on versioning of shared libraries, see Deploying Shared
Java EE Libraries and Dependent Applications in Developing Applications for Oracle
WebLogic Server.

• See also, Deploying Shared Java EE Libraries and Dependent Applications in
Developing Applications for Oracle WebLogic Server.

20.2.3 Creating a WebCenter Portal Server Extension Workspace
This section explains how to create a WebCenter Portal Server Extension workspace in
JDeveloper in which you can:

• Register one or more custom shared libraries to use with WebCenter Portal.

• Create and deploy a custom ADF component for WebCenter Portal such as a task
flow, data control, or managed bean.

To create a WebCenter Portal Server Extension workspace:

1. Download and install Oracle JDeveloper 12c (12.2.1.0.0).

For details, see Installing Oracle JDeveloper.

2. Install the WebCenter Portal Extension for JDeveloper (12.2.1.0.0).

For details, see Installing the WebCenter Portal Extensions for JDeveloper.

3. Open JDeveloper and choose File > New.

4. In the New Gallery dialog, open the General node and select Applications.

5. In the Items list, select WebCenter Portal Server Extension, and click OK.

See Figure 20-6.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-11

Figure 20-6 New Gallery Dialog

Note:

At this point, you are on the first page of the Create WebCenter Portal Server
Extension wizard. The wizard includes four pages, which are explained in the
following steps.

6. In the Create WebCenter Portal Server Extension dialog, enter a name for the
workspace in the Application Name field, as shown in Figure 20-7.

Figure 20-7 Create WebCenter Portal Extension Wizard Step 1 of 4

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

7. In the Directory field, enter a path to the base directory in which to store the
workspace, or accept the default path.

For example:

/scratch/latest_build/mywork/ExtensionApplication

Optionally, click the Browse button to navigate to the desired directory.

8. Optionally, enter an Application Package Prefix.

This prefix is used for Java classes, interfaces, and packages created within the
workspace. For example, a common prefix pattern is com.companyDomainName,
like com.oracle.

Tip:

At this point, you could click Finish to create a project with default portal
project names and directories. The following steps continue and review the
rest of the wizard pages.

9. Click Next.

10. In the Project 1 Name part of the wizard, enter a Project Name, or use the default
name as shown in Figure 20-8.

This project provides all of the project technology components that are required for
building and testing custom ADF components for WebCenter Portal (task flows,
data controls, and managed beans).

Figure 20-8 Create WebCenter Portal Server Extension Wizard Step 2 of 4

11. If you want to change the default directory for the project, enter it or use the
Browse button to select a directory.

12. Click Next.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-13

13. Optionally, edit the default package name and directories for Java source files and
output class files for the project, as shown in Figure 20-9.

Figure 20-9 Create WebCenter Portal Server Extension Wizard Step 3 of 4

14. In the Project 2 Name part of the wizard, enter a Project Name, or use the default
name as shown in Figure 20-10.

This project allows you to register one or more shared libraries that you want to
use in WebCenter Portal, as well as deploy custom ADF components built using
the PortalExtension project. See Deploying Extensions to the WebCenter Portal
Shared Library (extend.spaces.webapp.war).

Figure 20-10 Create WebCenter Portal Server Extension Wizard Step 4 of 4

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

15. If you want to change the default directory for the project, enter it or use the
Browse button to select a directory.

16. Click Finish.

20.2.4 Using Additional Shared Libraries with WebCenter Portal
If you have one or more shared libraries containing custom task flows, data controls or
managed beans that you want to use in WebCenter Portal, you must register them in
the weblogic.xml file associated with WebCenter Portal's shared library
extend.spaces.webapp.war.

1. Select the PortalSharedLibrary project (Figure 20-11).

If you have not created a WebCenter Portal Extension workspace yet, refer to
Creating a WebCenter Portal Server Extension Workspace.

Figure 20-11 PortalSharedLibrary Project

2. If the deployment descriptor weblogic.xml does not exist yet under
PortalSharedLibrary\Web Content\WEB-INF, create the deployment
descriptor as follows:

a. Select New > Deployment Descriptors > WebLogic Deployment Descriptor

b. Select OK.

c. Select weblogic.xml from the list (Figure 20-12).

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-15

Figure 20-12 Create WebLogic Deployment Descriptor weblogic.xml

d. Select Finish.

3. Open weblogic.xml (under PortalSharedLibrary\Web Content\WEB-
INF).

Initially, no additional shared libraries are listed in the file.

4. In the Overview page, select Libraries.

5. Specify the Library Name for each shared library that you want to use in
WebCenter Portal.

You can register a single shared library or multiple shared libraries, as shown in
Figure 20-13.

Click the Help icon for more information, if required.

Figure 20-13 weblogic.xml - Multiple Shared Library References

6. Ensure each shared library that you reference is deployed on the WebCenter
Portal managed server (named WC_Portal by default).

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

7. Redeploy a new version of the WebCenter Portal shared library WAR
(extend.spaces.webapp.war) that includes your shared library references.

Remember to increment the version number in MANIFEST.MF. For details, see
Deploying Extensions to the WebCenter Portal Shared Library
(extend.spaces.webapp.war).

20.2.5 Deploying Extensions to the WebCenter Portal Shared Library
(extend.spaces.webapp.war)

This section explains how to deploy extensions to the WebCenter Portal shared library
(extend.spaces.webapp.war) where your extensions are either:

• Existing shared libraries containing task flows, data controls, or managed beans
that you have registered in weblogic.xml.

See Using Additional Shared Libraries with WebCenter Portal

• An ADF Library JAR created from the PortalExtension project and included in the
WebCenter Portal shared library.

See Developing ADF Library Components for WebCenter Portal Using the
PortalExtension Project

This section includes the following topics:

• Deploying Extensions Directly to the Portal Server

• Deploying Extensions to an Archive

• Reverting to a Previous WebCenter Portal Shared Library Version

20.2.5.1 Deploying Extensions Directly to the Portal Server

Before deploying extensions to WebCenter Portal from JDeveloper:

• Verify that you have at least the WebLogic Monitor role.

For information on roles, see Users, Groups, And Security Roles in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

• Ensure a connection exists to the WebCenter Portal server.

For information about creating a connection see Creating a WebCenter Portal
Server Connection.

• Review background information on shared libraries in Creating Shared Java EE
Libraries and Optional Packages in Developing Applications for Oracle WebLogic
Server.

To deploy extensions for WebCenter Portal from JDeveloper:

1. In JDeveloper, open the workspace containing extensions to be deployed.

See also Using Additional Shared Libraries with WebCenter Portal and
Developing ADF Library Components for WebCenter Portal Using the
PortalExtension Project.

2. In the Application Navigator, navigate to the PortalSharedLibrary >
Application Sources > META-INF folder.

3. Open the MANIFEST.MF file in a text editor.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-17

4. Increment the Implementation-Version number. The default version is
Implementation-Version: 12.2.1.0.1.

Note:

You must increment the shared library Implementation-Version number
each time you update and redeploy the WebCenter Portal shared library
extend.spaces.webapp.war. Otherwise, an error is reported from
WebLogic Server in the Deployment - Log tab. For more information, see The
PortalSharedLibrary Project.

5. In the Application Navigator, right-click the PortalSharedLibrary project, select
Deploy, and then select extend.spaces.webapp (Figure 20-14).

Note:

Note that extend.spaces.webapp is the name of the deployment profile for
the shared library that you are deploying to the server. The shared library
created by a subsequent deployment action is called
extend.spaces.webapp.war.

Figure 20-14 Selecting the Shared Library extend.spaces.webapp

6. In the Deploy dialog, select Deploy to Application Server and click Next (Figure
20-15).

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure 20-15 Portal Extension Deployment Actions

7. Select the connection that points to the WebLogic Server where you want to
deploy the shared library, for example, WC_Portal, and click Next.

8. In the Deploy extend.spaces.webapp dialog, select Deploy to selected instances
in the domain, as shown in Figure 20-16.

Figure 20-16 Selecting Deployment Option

9. In the list of servers, select the managed server on which WebCenter Portal is
deployed, as shown in Figure 20-17.

Note:

The name of the managed server depends on how the system administrator
set up the server. By default, the name is WC_Portal; however, this name
might be different on your system.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-19

Figure 20-17 Selecting the Managed Server

10. Select Deploy as a shared library, as shown in Figure 20-18

Note:

This step is critical: you must select Deploy as a shared library, otherwise, the
deployment will not be successful.

Figure 20-18 Selecting Deploy As Shared Library

11. Click Next.

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

12. On the Deployment Summary screen, verify the deployment options, and click
Finish to deploy the portal extension to the server.

13. Open the Deployment -Log tab to examine for any deployment issues. If
deployment is successful, you should see this log entry: "Application
Deployed Successfully," as shown in Figure 20-19.

Figure 20-19 Deployment - Log Tab

14. To verify the new deployment, log in to the WebLogic Server Administration
Console, navigate to the Deployments Overview page, and check the
implementation version displayed.

a. Log in to the WebLogic Server Administration Console.

b. Click Deployments, and locate extend.spaces.webapp.

c. Note the entries for the extend.spaces.webapp shared library and verify
the one with the implementation version that you updated previously in the
MANIFEST.MF file. See also Versioning extend.spaces.webapp.war.

Note:

WebLogic Server only uses the latest shared library version when an
application starts up. If you go through several "change-build-deploy-test"
iterations, incremental versions are retained by default. You can use the
Administration Console to remove unwanted shared library versions if you
want, but it is recommended that you retain the first version
(extend.spaces.webapp(12.2.1,12.2.1)) as a backup so you can
revert to the default behavior if necessary.

15. (Optional) Create any connections that your custom ADF Library components
may require:

• To add a database connection, refer to Creating and Managing JDBC Data
Sources in Administering Oracle Fusion Middleware.

• To add a web service connection, configure the ADFConnections MBean using
the System MBean Browser in Fusion Middleware Control. Refer to System
MBean Browser in Administering Oracle WebCenter Portal and Web Service
Connection in Administering Oracle ADF Applications.

• To add a connection type specific to WebCenter Portal, for example to a portlet
producer or content repository connection, refer to Managing Tools and
Services in Administering Oracle WebCenter Portal.

16. Restart the managed server on which WebCenter Portal is running.

This step is required for the task flows, data controls, and managed beans in the
shared library to show up in the WebCenter Portal Resource Registry. For more

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-21

information, see Starting and Stopping Managed Servers for WebCenter Portal
Application Deployments in Administering Oracle WebCenter Portal.

Note:

The name of the managed server depends on how the system administrator
set up the server. By default, the name is WC_Portal; however, this name
might be different on your system.

17. Log in to WebCenter Portal and verify that all newly deployed task flows, data
controls, or managed beans are available in the Resource Registry.

Once successfully deployed components are added to the Resource Registry, you can
add them to resource catalogs where they are made available for drag and drop onto
portal pages. See also, About the Resource Registry in Building Portals with Oracle
WebCenter Portal.

20.2.5.2 Deploying Extensions to an Archive

If you do not have a connection to the portal server or permissions to deploy the
extend.spaces.webapp shared library on the portal server, you can deploy
extensions to the extend.spaces.webapp shared library to an archive (.war file)
and give the .war file to an administrator for deployment to a managed server
running WebCenter Portal.

To deploy extensions to the extend.spaces.webapp shared library to an archive:

1. In JDeveloper, open the workspace containing extensions to be deployed.

See also Using Additional Shared Libraries with WebCenter Portal and Developing
ADF Library Components for WebCenter Portal Using the PortalExtension Project.

2. In the Application Navigator, navigate to the PortalSharedLibrary > Application
Sources > META-INF folder.

3. Open the MANIFEST.MF file in a text editor.

4. If required, increment the Implementation-Version number. The default
version is Implementation-Version: 12.2.1.0.1.

Note:

You do not need to increment the version number every time you generate a
new archive (.war file). You must however, increment the shared library
Implementation-Version number each time you deploy a new extension
version to the server or an error is reported from WebLogic Server in the
Deployment - Log tab. For more information, see The PortalSharedLibrary
Project.

5. In the Application Navigator, right-click the PortalSharedLibrary project, select
Deploy and then select the deployment profile extend.spaces.webapp.

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

Note that extend.spaces.webapp is the name of the deployment profile for
the shared library that you are deploying to a file. The shared library created
by a subsequent deployment action is called extend.spaces.webapp.war.

6. In the Deploy dialog, select Deploy to WAR, and then click Next (Figure 20-20).

Figure 20-20 Deployment Actions

7. Review the Summary page and click Finish.

The location of the .war file displays in the "Deployment - Log Tab." This new
shared library .war file version can now be deployed to any server instance on
which WebCenter Portal is deployed.

For More Information

See "Deploying Applications" in JDeveloper Online Help. See also Creating Shared
Java EE Libraries and Optional Packages in Developing Applications for Oracle WebLogic
Server.

20.2.5.3 Reverting to a Previous WebCenter Portal Shared Library Version

If there is a problem with the latest WebCenter Portal shared library or you want to
revert to a previous version for some reason, you can undeploy (remove) the current
version and revert to the previous version, using the WebLogic Server Administration
Console.

You can remove unwanted shared library versions too. If you go through several
"change-build-deploy-test" iterations, each incremental version is retained by default.
As WebCenter Portal only uses the latest shared library version you can clean up or
delete previous versions if you want.

Before undeploying the latest version, you must shut down the managed server on
which WebCenter Portal is running. Once you have removed the latest version, you
can restart the managed server.

Note: Oracle recommends that you do not delete the original
extend.spaces.webapp shared library (version 12.2.1) as this enables you to revert
to the out-the-box version if necessary.

Packaging and Deploying ADF Components for Use in WebCenter Portal

Developing Shared Libraries 20-23

1. Stop the managed server on which WebCenter Portal is deployed.

For details, see Starting and Stopping Managed Servers for WebCenter Portal
Application Deployments in Administering Oracle WebCenter Portal.

2. Log in to the Weblogic Server Administration Console.

3. Click Deployments, then locate and select the latest extend.spaces.webapp version
you want to remove.

4. Click Delete to undeploy the latest shared library version.

To revert to the original extend.spaces.webapp.war shared library, delete all
other shared library versions, except for extend.spaces.webapp.war version
12.2.1.

5. Start the managed server on which WebCenter Portal is deployed:

For details, see Starting and Stopping Managed Servers for WebCenter Portal
Application Deployments in Administering Oracle WebCenter Portal.

20.2.6 Developing ADF Library Components for WebCenter Portal Using the
PortalExtension Project

Developing an ADF Library for WebCenter Portal is exactly the same as any other
ADF Library. If you are not familiar with ADF library development, refer to the
documentation links in General Documentation for ADF Library Development.

Development teams typically build and deploy ADF libraries to a set of well defined
shared libraries that they can reuse across multiple applications, such as WebCenter
Portal.

To help you get started, Oracle provides the PortalExtension project in which you can
build ADF libraries containing task flows, data controls, and managed beans and
deploy them to WebCenter Portal's own shared library
extend.spaces.webapp.war.

If you want to use the PortalExtension project, follow these steps:

1. Create a WebCenter Portal Server Extension workspace.

For details, see Creating a WebCenter Portal Server Extension Workspace.

2. Open the PortalExtension project and add the custom code for your ADF library.

See also The PortalExtension Project.

3. Deploy the ADF Library to the WebCenter Portal shared library
extend.spaces.webapp.war.

See also Deploying Extensions to the WebCenter Portal Shared Library
(extend.spaces.webapp.war).

Packaging and Deploying ADF Components for Use in WebCenter Portal

20-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

21
Localizing Portals

This chapter describes how to configure your application to display text in the correct
language of a user's browser.

This chapter includes the following topics:

• Guidelines for Building Multilanguage Portals

• Language Support in ADF Faces Components

• Using Resource Bundles to Support Multiple Languages

• Adding Support for a New Language

21.1 Guidelines for Building Multilanguage Portals
If your application will be viewed by users in multiple countries, you can configure
your JSF page or application to use different locales so that it displays the correct
language for the language setting of a user's browser. For example, if you know your
page will be viewed in Italy, you can localize your page so that when a user's browser
is set to use the Italian language, text strings in the browser page appear in Italian.

Additionally, locale selection applies special formatting considerations applicable to
the selected locale. For example, whether information is typically viewed from left to
right or right to left, how numbers are depicted (such as monetary information), and
the like.

When you develop a multi-language portal:

• Make use of the inherent multi-language support in Oracle WebCenter Portal tools
and services. For more information, see Language Support in ADF Faces
Components.

• Put all resources in resource bundles, provide alternate-language resource bundles,
and code your application to respond to users' language selection. For more
information, see Using Resource Bundles to Support Multiple Languages.

• Make sure your database character set supports all required languages.

For more information, see Choosing a Character Set in Oracle Database Globalization
Support Guide.

• Use number, date, and time formatting that supports all required locales.

For more information, see Setting Up a Globalization Support Environment in
Oracle Database Globalization Support Guide.

• Use linguistic sort parameters to get the correct sort ordering for locale.

Localizing Portals 21-1

For example, the same characters have different sort ordering in French and
Canadian-French.

For more information, see Linguistic Sorting and Matching in Oracle Database
Globalization Support Guide.

• Write web pages that correctly render left to right or right to left (for example, if
Arabic languages must be supported).

For more guidelines on globalization, see Internationalizing and Localizing Pages in
Developing Web User Interfaces with Oracle ADF Faces or refer to Oracle Database
Globalization Support Guide.

21.2 Language Support in ADF Faces Components
Some ADF Faces components include text that is part of the component, for example
the af:table component uses the resource string af_table.LABEL_FETCHING for
the message text that is displayed in the browser while the table is fetching data
during the initial load of data or while the table is being scrolled. Oracle JDeveloper
provides translations of these text resources into 28 languages. Therefore, when using
the supplied components, you do not need to perform additional steps to translate the
text in the components.

21.3 Using Resource Bundles to Support Multiple Languages
For any text you add to a component, for example if you define the label of an
af:commandButton component by setting the text attribute, you must provide a
resource bundle that holds the actual text, create a version of the resource bundle for
each locale, and add a <locale-config> element to define default and support
locales in the application's faces-config.xml file. You must also add a <resource-
bundle> element to your application's faces-config.xml file to make the resource
bundles available to all the pages in your application. Once you have configured and
registered a resource bundle, the Expression Language (EL) editor displays the key
from the bundle, making it easier to reference the bundle in application pages.

To simplify the process of creating text resources for text you add to ADF components,
JDeveloper supports automatic resource bundle synchronization for any translatable
string in the visual editor. When you edit components directly in the visual editor or
in the Property Inspector, text resources are automatically created in the base resource
bundle.

For more information about automatic resource bundles, see Using Automatic
Resource Bundle Integration in JDeveloper in Developing Web User Interfaces with Oracle
ADF Faces.

For more information about manually defining resource bundles, see Manually
Defining Resource Bundles and Locales in Developing Web User Interfaces with Oracle
ADF Faces.

21.4 Adding Support for a New Language
Oracle WebCenter Portal provides run-time translations for 28 languages and 100
different locales. If you want to support a language that is not supported out-of-the-
box, you need to provide string files for the new language, and add a <language> tag
for the new language in the supported-languages.xml configuration file.

Language Support in ADF Faces Components

21-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

For information about adding support for a new language, see the "Using WebCenter
Spaces Extension Samples" white paper on the Oracle WebCenter Portal White Papers and
Technical Notes page on Oracle Technology Network.

Adding Support for a New Language

Localizing Portals 21-3

http://www.oracle.com/technetwork/middleware/webcenter/portal/owcs-ps5-wcs-ext-samples-wp-1423852.pdf
http://www.oracle.com/technetwork/middleware/webcenter/portal/owcs-ps5-wcs-ext-samples-wp-1423852.pdf
http://www.oracle.com/technetwork/middleware/webcenter/white-papers-088385.html
http://www.oracle.com/technetwork/middleware/webcenter/white-papers-088385.html

Adding Support for a New Language

21-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

22
Extending Oracle Composer

This chapter describes extensions for WebCenter Portal that can be made to Oracle
Composer (referred to as the page editor in the runtime) using JDeveloper.

This chapter includes the following topic:

• Adding Custom Actions to Components

22.1 Adding Custom Actions to Components
To augment the built-in actions available to users when editing components in a
portal, you can add custom actions to a component.

Figure 22-1 Actions Menu on a Component

There are three types of custom actions that you can add to a component:

• Java-based custom actions are the most flexible choice, as they work for any
component, and can implement any business logic. See:

– Adding a Java-Based Custom Action to a Show Detail Frame Component in
Design View

– Adding a Java-Based Direct Select Custom Action to a Component in Select
View

Extending Oracle Composer 22-1

• ID driven custom actions. See:

– Adding Custom Actions to a Show Detail Frame Component by Using Facets

• Task flow action driven custom actions are only for task flow components, and the
action is navigation for the task flow. See:

– Adding Custom Actions to a Task Flow

– Adding Custom Actions that Display on Task Flows in the Component
Navigator

22.1.1 Adding a Java-Based Custom Action to a Show Detail Frame Component in
Design View

You can add a custom action that displays in an Actions menu in the chrome of a
Show Detail Frame component in Design View in Composer. The custom action is
a Java class that implements interface CustomActionListener. When the action is
selected from the menu, the method processAction performs the indicated
operation on the component (such as opening a dialog, for example).

To add a custom action to a Show Detail Frame component in Composer's Design
view:

1. Implement interface CustomActionListener, using method
processAction() to implement the custom action.

Method processAction takes class CustomActionEvent as parameter. The
public methods in CustomActionEvent are:

• getPagePath. Returns the path of the page that the component is on.

• getComponent. Returns the selected component from Design view.

• setMessageSeverity. Sets the severity level for FacesMessage.

• setShowMessage. Sets the flag to show message after processing the custom
action.

• setMessageSummary. Sets the message summary.

• setMessageDetail. Sets the message detail.

For example:

package custom
public class SaveTaskflowToCatalog implements CustomActionListener
{
 public void processAction(CustomActionEvent event)
 {
 // get the the page the component is on
 String pagePath = event.getPagePath();
 // get the SDF component
 UIComponent sdf = event.getComponent();
 try
 {
 // process the task flow and save to the cata log

 // set the error message in case exception occurs
 event.setErrorSummary("Failed to save the task flow to the resource
catalog");

Adding Custom Actions to Components

22-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 }
 catch(AbortProcessingException ae)
 {
 throw ae;
 }
 catch(Exception ee)
 {
 throw new AbortProcessingException("unexpected error");
 }
 }
}

2. Configure the custom action in pe_ext.xml. For example:

<event-handlers>
 <event-handler event="custom-action">custom.SaveTaskflowToCatalog</event-
handler>
</event-handlers>

3. To configure a custom action for an individual Show Detail Frame component
on a page, <where does this code go?>. For example:

<cust:showDetailFrame shortDesc="Mac Rumors " displayHeader="true"
 id="showDetailFrame1" text="Mac Romors">
 <af:region value="#{bindings.customactionstaskflowdefinition1.regionModel}"=
 id="r1"/>
 <cust:customAction location="menu" action="custom.SaveTaskflowToCatalog"
 id="ca1" text="Save to Catalog"/>
</cust:showDetailFrame>

4. To configure a custom action for all Show Detail Frame components, add the
custom action definition in adf-config.xml. For example:

<cust:adf-config-child xmlns="http://xmlns.oracle.com/adf/faces/customizable/
config">
 <enableSecurity value="true" />
 <customActions>
 <cust:customAction action="custom.SaveTaskflowToCatalog"
 displayName="Save to Catalog"
 location="menu"
 rendered="#{custom.util.isSaveToCatalogEnabled}"/>
 </customActions>

22.1.2 Adding a Java-Based Direct Select Custom Action to a Component in Select
View

You can add a direct select custom action to a component that displays in a popup
menu when the component is selected in Select view in Composer. The custom action
is a Java class that implements interface SelectActionListener. When the action
is selected from the menu, the method processAction performs the indicated
operation on the component (such as opening a dialog, for example).

To add a direct select custom action to a component in Composer's Select view:

1. Implement interface SelectActionListener, using method
processAction() to implement the custom action.

Method processAction takes class SelectActionEvent as parameter. The
public methods in CustomActionEvent are:

Adding Custom Actions to Components

Extending Oracle Composer 22-3

• getPagePath. Returns the path of the page that the component is on.

• getComponent. Returns the selected component from Select view.

• setMessageSeverity. Sets the severity level for FacesMessage.

• setShowMessage. Sets the flag to show message after processing the custom
action.

• setMessageSummary. Sets the message summary.

• setMessageDetail. Sets the message detail.

For example:

package custom
public class RemoveSelectedComponent implements SelectActionListener
{
 public void processAction(SelectActionEvent event)
 {
 // get the the page the component is on
 String pagePath = event.getPagePath();
 // get the selected component
 UIComponent comp = event.getComponent();
 try
 {
 // set the error message in case exception occurs
 event.setErrorSummary("Failed to delete the component");

 // popup deletion confirmation dialog or delete the component here
 }
 catch(AbortProcessingException ae)
 {
 throw ae;
 }
 catch(Exception ee)
 {
 throw new AbortProcessingException("unexpected error");
 }
 }
}

2. Optionally, sequence the menu items using the seq attribute set to first, last,
or an integer representing an item's position on the menu.

If no seq attribute is specified, actions are positioned in the order defined in the
configuration.

The actions with a seq value will be listed before those that do not have seq value.
If a property panel is configured, the built-in actions Edit Component and Edit
Parent Component will always be listed before other custom actions.

For example:

<selection-config>
 <selection-taglib-filter namespace="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="inputText">
 <selection view="design" enabled="true"/>
 <operation name="view.SelectActionText2"
 label="InputText Action2"
 seq="2"
 filtered="false"/>
 <operation name="view.SelectActionTest3"

Adding Custom Actions to Components

22-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 label="InputText Action3"
 seq="3"
 filtered="false"/>
 <operation name="view.SelectActionTest"
 label="InputText Action1"
 seq="first"
 filtered="false"/>
 <operation name="separator" seq="1" filtered="false"/>
 </tag>
 </selection-taglib-filter>
</selection-config>

3. Optionally, add separators to the custom actions menu by setting the operation
name to separator in the selection configuration. For example:

 <selection-taglib-filter namespace="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="goLink">
 <selection view="design" enabled="true"/>
 <operation name="oracle.adf.pageeditor.pane.inline-style-editor"
 label="Inline Style"
 filtered="false"/>
 <operation name="separator" filtered="false"/>
 <operation name="custom.action1" label="Action 1" filtered="false"
icon="icon.png"/>
 <operation name="separator" filtered="false"/>
 <operation name="custom.action2" label="Action 2" filtered="false"/>
 </tag>
 </selection-taglib-filter>

4. Include custom actions in Select view on an individual component, or globally for
all component instances, by adding the adf-custom-actions operation in the
select configuration for the component.

For example:

<selection-config>
 <global-filter>
 <selection view="design" enabled="false"/>
 <operation name="oracle.adf.pageeditor.pane.generic-property-inspector"
 label="Change Property"
 filtered="false"/>
 <operation name="oracle.adf.view.page.editor.event.SelectRemoveListener"
 label="Remove"
 icon="/adf/images/composer_delete_ena.png"
 filtered="#{testBean.compSelected ? 'false' : 'true'}"/>
 </global-filter>

 <selection-taglib-filter namespace="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="goLink">
 <selection view="design" enabled="true"/>
 <operation name="oracle.adf.pageeditor.pane.inline-style-editor"
 label="Inline Style"
 filtered="false"/>
 <operation name="view.SelectActionTest"
 label="#{testBean.goLinkActionLabel}1"
 seq="last"
 filtered="false"/>
 <operation name="view.SelectActionTest2"
 label="#{testBean.goLinkActionLabel}2"
 filtered="false"/>
 <operation name="separator" seq="first" filtered="false"/>

Adding Custom Actions to Components

Extending Oracle Composer 22-5

 </tag>
 </selection-taglib-filter>

</selection-config>

5. In pe_ext.xml, configure the custom action.

For example:

<selection-taglib-filter namespace="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="inputText">
 <selection view="design" enabled="true"/>
 <operation name="oracle.adf.pageeditor.pane.generic-property-inspector"
 label="Change Property"
 filtered="false"/>
 <operation name="custom.RemoveSelectedComponent"
 label="Remove"
 filtered="false"/>
 </tag>
</selection-taglib-filter>

6. In pe_ext.xml, register the event handler.

For example:

<event-handlers>
 <event-handler event="select-action">
 oracle.adf.view.page.editor.event.SelectRemoveListener</event-handler>
</event-handlers>

22.1.3 Adding Custom Actions to a Show Detail Frame Component by Using Facets
You can use the Show Detail Frame component's facets to define and display
custom actions on Show Detail Frame components. For example, if your Show
Detail Frame contains a list of services provided in your application, you can add a
custom action, Show Detailed Information, which opens up a task flow
containing details about the various services.

Oracle JDeveloper displays all facets available to the Show Detail Frame
component in the Structure window, however, only those that contain UI components
appear activated.

To add a Show Detail Frame facet:

1. Right-click a Show Detail Frame component in the Structure window, and
select Facets - Show Detail Frame, and click the arrow displayed to the right of this
option.

2. From the list of supported facets, select the facet you want to add.

Note:

A check mark next to a facet name means the facet is already inserted in the
Show Detail Frame component. Selecting that facet name again would
result in the facet getting deleted from the page.

The f:facet element for that facet is inserted in the page.

3. Add components in the facet according to your design requirements.

Adding Custom Actions to Components

22-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

For an end-to-end example of creating and using Show Detail Frame facets, see
Example: Adding a Custom Action to a Show Detail Frame Component by Using
Facets.

22.1.3.1 Example: Adding a Custom Action to a Show Detail Frame Component by
Using Facets

Assume a JSF page, Page1.jspx, with a Panel Customizable component. Inside
the Panel Customizable is a Show Detail Frame component
(showDetailFrame1). Inside the Show Detail Frame is an ADF task flow. The
Panel Customizable has two other Show Detail Frame components, one above
and the other below showDetailFrame1. The task flow displays two Output Text
components on the page.

You can configure an Additional Actions facet on the Show Detail Frame
component to display a Customize action on the Actions menu along with the Move
Up and Move Down actions. At runtime, the Customize action enables users to
customize the text in the Output Text components. This section describes the steps
you take to achieve this effect. It contains the following subsections:

• How to Create an ADF Task Flow

• How to Include an Additional Actions Facet

• How to Create a Redirection Page

• How to Create Navigation Rules Between Pages

• What Happens at Runtime

22.1.3.1.1 How to Create an ADF Task Flow

To create an ADF task flow:

1. From the File menu, select New.

2. In the New dialog, select JSF under Web Tier node, and select ADF Task Flow
under Items.

3. Click OK.

4. In the Create Task Flow dialog, click OK to create a task flow definition file by
accepting the default values.

5. From the ADF Task Flow tag library in the Component Palette, drop two view
elements, view1 and view2, onto the task flow definition file.

6. Drop a Control Flow Case from view1 to view2.

7. Click the first view element and then click the second view element to draw the
control flow line.

Name this control flow case next.

8. Similarly, drop a Control Flow Case from view2 back to view1 and name it prev.

9. Create a backing bean called BackingBean.java to contain values for two
variables view1 and view2.

view1 and view2 are initialized with initialValue1 and initialValue2
respectively. Ensure that the code of the bean is as shown in the following example:

Adding Custom Actions to Components

Extending Oracle Composer 22-7

package view;

public class BackingBean {
 public BackingBean() {
 }

 private String view2 ="initial Value1";
 private String view1 = "initial Value2";

 public void setView2(String view2) {
 this.view2 = view2;
 }

 public String getView2() {
 return view2;
 }

 public void setView1(String view1) {
 this.view1 = view1;
 }

 public String getView1() {
 return view1;
 }
}

10. In the task flow definition file, double-click view1 to create the page fragment
(view1.jsff) for that element.

11. Add a Panel Group Layout and two Output Text components to view1.jsff.

12. Specify the Value for the first Output Text component to be
#{backingBean.view1}, and specify the Value for the second Output Text
component to be #{backingBean.view2}.

13. Save view1.jsff, and close it.

14. In the task flow definition file, double-click view2 to create the page fragment
(view2.jsff) for that element.

15. Add just one Output Text component to view2.jsff, and specify Value to be
#{backingBean.view2}.

16. Save view2.jsff, and close it.

22.1.3.1.2 How to Include an Additional Actions Facet

To include an Additional Actions facet:

1. Create a JSF page, Page1.jspx, with a Panel Customizable component and a
nested Show Detail Frame component.

2. Add two more Show Detail Frame components, above and below the existing
Show Detail Frame component.

The purpose of adding three Show Detail Frame components is to enable the
display of Move Up and Move Down actions along with the additional action on
the first Show Detail Frame component, showDetailFrame1.

Adding Custom Actions to Components

22-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

3. Add the task flow definition file that you created in the previous step inside
showDetailFrame1.

4. Right-click the first Show Detail Frame in the Structure window, and select
Facets - Show Detail Frame.

5. Click the arrow to the right of this option, and from the list of supported facets,
select Additional Actions.

The f:facet-additionalActions element for that facet is inserted in the page.

6. Add a Panel Group Layout inside the Additional Actions facet, and add a
Button component inside the Panel Group Layout component.

7. Set the Text attribute for the Button to Customize, and specify customize as
the Action value.

The page in the structure navigator should appear as shown in Figure 22-2.

Figure 22-2 Page1.jspx in Structure Navigator

8. Save the page.

22.1.3.1.3 How to Create a Redirection Page

To create the redirection page:

1. Create a JSF page called Page2.jspx, and add two Input Text components and a
Button component.

2. Specify the Value for the first Input Text component to
#{backingBean.view2}, and set the Value attribute for the second Input
Text component to #{backingBean.view1}.

The purpose of adding Input Text components with references to the backing
bean is to enable the passing of a user's input to the bean so that it can be reflected
in the Output Text components on Page1.jspx.

3. On the Button component, set the Text attribute to OK and specify back as the
Action value.

4. Save the page.

You can now enable switching between the two pages by defining navigation rules.

Adding Custom Actions to Components

Extending Oracle Composer 22-9

22.1.3.1.4 How to Create Navigation Rules Between Pages

To define navigation rules between the pages:

1. In the Application Navigator, under the project's WEB-INF folder, double-click the
faces-config.xml file to open it.

2. Click the Overview tab to view the file in Overview mode.

3. Click the Add icon in the Managed Beans section.

4. In the Create Managed Bean dialog, specify backingBean as the name.

5. For the Class Name field, click the Browse button adjacent to it and browse to the
BackingBean Java class that you created earlier. Click OK.

6. Click OK.

7. From the Scope list, select session and click OK.

8. Select the Navigation Rules tab on the page.

9. In the From Views table, select Page1.jspx.

10. Under Navigation Cases, select Page2.jspx in the To View ID column, customize in
the From Outcome column, and true in the Redirect column.

11. In the From Views table, select Page2.jspx.

12. Under Navigation Cases, select Page1.jspx in the To View ID column, back in the
From Outcome column, and true in the Redirect column.

In Source view, these entries appear as follows:

<managed-bean>
 <managed-bean-name>backingBean</managed-bean-name>
 <managed-bean-class>view.BackingBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 <navigation-rule>
 <from-view-id>/Page1.jspx</from-view-id>
 <navigation-case>
 <from-outcome>customize</from-outcome>
 <to-view-id>/Page2.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>/Page2.jspx</from-view-id>
 <navigation-case>
 <from-outcome>back</from-outcome>
 <to-view-id>/Page1.jspx</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

13. Save the file.

Adding Custom Actions to Components

22-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

22.1.3.1.5 What Happens at Runtime

In JDeveloper, run Page1.jspx. The Actions menu on the showDetailFrame1
component displays the Customize action, as shown in Figure 22-3.

Figure 22-3 Customize Action on the Actions Menu

Clicking Customize takes you to Page2.jspx (Figure 22-4), where you can update
the values for Label1 and Label2.

Figure 22-4 Page with Option to Edit Text

Clicking OK takes you back to Page1.jspx, which reflects the recent text changes.

22.1.4 Adding Custom Actions to a Task Flow
You can customize a task flow by including it in a Show Detail Frame component.
The Show Detail Frame component provides certain default actions to rearrange,
show, and hide components. Further, you can define custom actions to trigger the
desired navigational flow within the task flow at runtime. There are two ways in
which you can enable custom actions on a task flow:

• Enable custom actions directly on the task flow so that they are displayed on the
Show Detail Frame component's Actions menu.

• Enable custom actions on the Show Detail Frame component enclosing the task
flow so that they are displayed on the Show Detail Frame component's Actions
menu.

This section describes both approaches. It contains the following subsections:

• Adding a Custom Action Directly on a Task Flow

• Adding a Custom Action on a Show Detail Frame Enclosing a Task Flow

• What Happens at Runtime

• Example: Adding a Custom Action to a Show Detail Frame Enclosing a Task Flow

Adding Custom Actions to Components

Extending Oracle Composer 22-11

22.1.4.1 Adding a Custom Action Directly on a Task Flow

Perform the steps in this section if you want the task flow to be self-contained, without
the need to inherit global custom actions defined at the application level. You can
define custom actions on a task flow by configuring a <customComps-config>
section with a nested <customActions> element in the adf-settings.xml file.
The additional custom actions specified in the adf-settings.xml file are displayed
on the Show Detail Frame component that surrounds this task flow.

Typically, task flows are packaged and deployed as ADF libraries. When you create an
adf-settings.xml file containing custom actions for a task flow, this file is also
packaged in the ADF library.

To enable custom actions on a task flow:

1. If it does not already exist, create the adf-settings.xml file in the META-INF
directory under the project's Web context root (for example, in the
APPLICATION_ROOT/Portal/src/META-INF directory):

a. From the File menu, select New.

b. In the New Gallery dialog, expand General, select XML, then XML
Document.

c. Click OK.

Name the file adf-settings.xml.

2. Add a <custComps-config> section in the file, with a nested
<customActions> element.

3. Add one <customAction> element for each internal task flow action that you
want to display as a custom action on the Show Detail Frame Actions menu.

You can add any number of custom actions under the <customActions>
element.

The following example shows the code of the adf-settings.xml file with a
<customAction> entry.

<cust:custComps-config xmlns="http://xmlns.oracle.com/adf/faces/customizable/
config">
 <customActions>
 <customAction action="next" location="chrome"
 rendered="true"
 icon="/adf/webcenter/editheader_ena.png"
 text="Next"
 taskFlowId="/WEB-INF/task-flow-definition.xml#task-flow-
definition"
 shortDesc="next"/>
 <customAction action="prev" location="chrome"
 rendered="true"
 icon="/adf/webcenter/editheader_ena.png"
 text="Previous"
 taskFlowId="/WEB-INF/task-flow-definition.xml#task-flow-definition"
 shortDesc="prev"/>
 </customActions>
 </cust:custComps-config>

Custom action definitions are similar at the task flow-level and application-level,
except for the taskFlowId attribute that is used in the task flow-level setting.

Adding Custom Actions to Components

22-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

This attribute is used to identify the task flow on which the custom action must be
defined. As an ADF library may have multiple task flows, this attribute helps
identify the task flow that must render the custom action.

Note:

• If you are defining an icon for the custom action, you must ensure that the
image you specify is available in the project root folder.

• You can define custom actions for the internal actions defined in all task
flows on your page; however, at runtime, the Show Detail Frame
displays only those custom actions that correspond to the ADFc outcomes
of the current view of the task flow.

4. Save the adf-settings.xml file.

22.1.4.2 Adding a Custom Action on a Show Detail Frame Enclosing a Task Flow

You can define custom actions for a task flow on the enclosing Show Detail Frame
component. When these actions are invoked at runtime, they trigger the desired
navigational flow in the task flow. For example, you can define a custom action on a
Show Detail Frame that specifies that the target task flow fragment opens in a
separate browser window rather than inside the Show Detail Frame.

You can specify custom actions on Show Detail Frame components by adding
Custom Action components as children of a Show Detail Frame component on
the page. Custom actions defined in this way would be available only on the Show
Detail Frame instance, which has the custom action as its child. Alternatively, you
can specify custom actions in the application's adf-config.xml file. Custom
actions defined in this way are available on all Show Detail Frame instances in the
application.

This section provides information about defining custom actions on a Show Detail
Frame. It contains the following subsections:

• Defining Custom Actions at the Instance Level

• Defining Custom Actions at the Global Level

• Resolving Conflicts Between Global-Level and Instance-Level Custom Actions

• Configuring Custom Actions that Display Task Flow Views in a Separate Browser
Window

22.1.4.2.1 Defining Custom Actions at the Instance Level

Define custom actions on a particular Show Detail Frame component instance
using the Custom Action component. You can find the Custom Action
component in the Composer tag library. Custom actions are stored in the JSF page
definition file of the page that contains the Show Detail Frame.

To define custom actions at the instance level:

1. From the Component Palette, select Composer.

2. Drag a Custom Action and drop it on the page inside the Show Detail Frame
component, below the af:region element.

Adding Custom Actions to Components

Extending Oracle Composer 22-13

Add one Custom Action component for each internal task flow action you want
to display as a custom action on the Show Detail Frame Actions menu.

Note:

Add Custom Action components below the af:region element. You may
face problems if the region is not the first child component of the Show
Detail Frame.

3. Define attributes for the Custom Action by referring to

Ensure that you populate the Action attribute of each Custom Action with the
correct ADFc outcomes of the associated task flow. The code should be similar to
the following:

<cust:showDetailFrame text="showDetailFrame 1" id="sdf1">
 <af:region value="#{bindings.taskflowdefinition1.regionModel}"
 id="r1"/>
 <cust:customAction action="navigatefromview1" id="ca1"
 location="both" icon="/Logo1.JPG"
 text="View1 Action"
 shortDesc="Custom View1 Action"/>
 <cust:customAction action="navigatefromview2"
 location="both" id="ca2"
 icon="/Logo2.JPG" text="View2 Action"
 shortDesc="Custom View2 Action"/>
</cust:showDetailFrame>

Note:

You can add custom actions for all of the task flow's ADFc outcomes, but
depending on the task flow view that is displayed, several or none of the
custom actions are available at runtime.

If you define a custom action without a corresponding task flow action, then
the custom action is not rendered on the Show Detail Frame header at
runtime.

See Also:

Creating a Task Flow in Developing Fusion Web Applications with Oracle
Application Development Framework

4. Save and run the page.

At runtime, when you select an action from the Show Detail Frame's Actions
menu, the associated control flow rule is triggered and the target task flow fragment is
rendered.

22.1.4.2.2 Defining Custom Actions at the Global Level

Defining custom actions at the global level means making those custom actions
available for all Show Detail Frame instances in an application. Though global-
level custom actions are available on all Show Detail Frame components in an
application, at runtime the header of any Show Detail Frame displays only those

Adding Custom Actions to Components

22-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

custom actions that correspond to the ADFc outcomes of the current view of the task
flow.

Define global-level custom actions in your application's adf-config.xml file.

To define custom actions at the global level:

1. Open the application's adf-config.xml file, located in the ADF META-INF
folder under Descriptors in the Application Resources panel.

2. Define custom actions using the <customActions> element with nested
<customAction> tags for each action, as follows:

Tip:

To render a custom action only in page Edit mode, you can set the rendered
attribute on the <customAction> tag to
#{composerContext.inEditMode}. This returns a value of true if the
page is in Edit mode.

<cust:adf-config-child xmlns="http://xmlns.oracle.com/adf/faces/customizable/
config">
 <enableSecurity value="true" />
 <customActions>
 <cust:customAction action="forward" displayName="Move Forward"
 location="menu" rendered="true"
 icon="/move_forward.png"/>
 <cust:customAction action="backward" tooltip="Move Backward"
 location="chrome" rendered="true"
 icon="/move_backward.png"/>
 </customActions>
</cust:adf-config-child>

Note:

• If you implemented restrictions on the Show Detail Frame component's
actions by performing the steps in ??? you already have a
cust:customizableComponentsSecurity section in the adf-
config.xml file. You can define custom actions in that section itself
instead of the cust:adf-config-child section shown in the example.

• If you are defining an icon for the custom action, you must ensure that the
image you specify is available in the project root folder.

• You can define custom actions for the internal actions defined in all task
flows on your page; however, at runtime, the header of any Show Detail
Frame displays only those custom actions that correspond to the ADFc
outcomes of the current view of the task flow.

3. Save the adf-config.xml file.

For additional information about defining custom actions, see Example: Adding a
Custom Action to a Show Detail Frame Enclosing a Task Flow.

22.1.4.2.2.1 Resolving Conflicts Between Global-Level and Instance-Level Custom Actions

Each custom action is uniquely identified by the value of its action attribute. If you
have defined custom actions with the same action attribute value at the global and

Adding Custom Actions to Components

Extending Oracle Composer 22-15

instance levels, then there may be conflicts in how these custom actions are invoked at
runtime, depending on other attribute values. At such times, the
inheritGlobalActions attribute of the Show Detail Frame defines the
behavior of other custom action attributes (other than the action attribute) as
follows:

Note:

Regardless of the inheritGlobalActions setting (true or false) on the
Show Detail Frame component:

• The rendered attribute is not inherited even if it is not specified at the
instance level.

• The location attribute at the global or instance level should be set to the
same value at both the global and instance levels.

• If inheritGlobalActions=true, or you have not specified a value for
inheritGlobalActions (defaults to false), the behavior of custom action
attributes is as follows:

– If you defined a custom action attribute at the global and instance levels, then
the attribute value specified at the instance level is used.

– If you defined a custom action attribute only at the instance level, then that
attribute value is used.

– If you defined a custom action attribute only at the global level, then that value
is ignored and the default value is used.

• If inheritGlobalActions=true, the behavior of custom action attributes is as
follows:

– If you defined a custom action attribute at the instance level, then its value is
used regardless of whether the same attribute is specified at the global level.

– If you defined a custom action attribute only at the global level, then that value
is used.

– If you have not defined a custom action attribute at the global or instance levels,
then the attribute's default value is used.

After you have designed your application pages, you must deploy the application to
the production environment. For more information, see ???

Note:

Runtime customizations that you perform on the page in the development
environment are not carried over when you deploy the application to a target
server.

Adding Custom Actions to Components

22-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

22.1.4.2.3 Configuring Custom Actions that Display Task Flow Views in a Separate Browser
Window

Custom actions typically display the target task flow views in place, inside the Show
Detail Frame component. However, you can define a custom action to display a
task flow view in a separate browser window.

To display a task flow view in a separate browser window, the control flow rule to
that view must be prefixed with dialog: in the task flow definition file and in the
action attribute of the custom action corresponding to that view. The following
example shows an action attribute definition:

<cust:customAction action="dialog:Next" id="ca1"
 location="both" icon="/move_forward.png"
 text="Next Action"
 shortDesc="Next Action"/>

Setting Properties on the Popup Window

For a command component inside a task flow region, you can specify the default
behavior using the useWindow, windowEmbedStyle, windowHeight,
windowWidth, and returnListener attributes. The command component may
have other such attributes that you can use. If you specify a return listener, on closing
the dialog a particular action event is called to decide on the next navigation outcome.
By default, without this setting, a dummy Rich Command Link component is
created to trigger the task flow action.

When you define a listener on a command component, you must also configure the
custom action to call the action event on this component. The actionComponent
attribute on a custom action definition (global- and instance-level) enables you to
specify the ID of the command component that must be queued for the action event.
When the actionComponent attribute is specified, the Show Detail Frame
component queues the action event on this component. Since this command
component is inside your task flow, you change its attribute values at any time.

Example

Consider an example where you have included a task flow inside a Show Detail
Frame component and defined a Simple Edit custom action corresponding to the
task flow's navigation outcomes. A Command Button component inside the task flow
is configured to launch a modal inline popup of size 300x200 on clicking the Simple
Edit custom action. A return listener is configured on the command component so
that it is called whenever the popup is closed.

The source code of the Command Button component inside the region is as follows:

<af:commandButton text="dialog:simpleEditPoup"
 id="SDFCustomActionCmd_simpleEditPoup"
 action="dialog:simpleEditPoup" useWindow="true"
 windowEmbedStyle="inlineDocument" windowWidth="300"
 windowHeight="200"
 windowModalityType="applicationModal"
 returnListener="#{pageFlowScope.recentPagesBean.refreshMainView}"
 visible="false"/>

The following example shows how you can specify a global custom action
corresponding to the task flow outcome by defining the custom action in the adf-
config.xml file. The ID of the Command Button component is specified against the
actionComponent attribute on the custom action.

Adding Custom Actions to Components

Extending Oracle Composer 22-17

<customizableComponentsSecurity xmlns="http://xmlns.oracle.com/adf/faces/
customizable/config">
 <enableSecurity value="true"/>
 <customActions>
 <customAction action="dialog:simpleEditPoup"
 text="Simple Edit"
 shortDesc="Simple Edit"
 location="menu"
 rendered="#{!changeModeBean.inEditMode}"
 icon="/adf/pe/images/editproperties_ena.png"
 actionComponent="SDFCustomActionCmd_simpleEditPoup"/>
 </customActions>
</customizableComponentsSecurity>

The following example shows how you can specify an instance-level custom action
corresponding to the task flow outcome by adding a Custom Action component
from the Composer tag library to the JSF page. The ID of the Command Button
component is specified against the actionComponent attribute on the custom action.

<cust:showDetailFrame id="sdf_for_RecentPagesTF1"
 text="Recent Pages" stretchContent="false"
 showResizer="never">
 <af:region id="RecentPagesTF1"
 value="#{bindings.regionBinding1.regionModel}"/>
 <cust:customAction action="dialog:simpleEditPoup"
 text="My Simple Edit"
 shortDesc="Simple Edit"
 location="menu"
 rendered="#{!changeModeBean.inEditMode}"
 icon="/adf/pe/images/editproperties_ena.png"
 actionComponent="SDFCustomActionCmd_simpleEditPoup"/>
</cust:showDetailFrame>

Note:

A custom action that is launched in a popup dialog is sent as a new request to
the server. If you are using a Composer sandbox and are in Edit mode of a
page, ensure that this request is launched in View mode by adding code in
your servlet filter so that a new sandbox is not created for this page.

22.1.4.3 What Happens at Runtime

Custom actions configured in the adf-settings.xml file are merged with the
custom actions configured in the adf-config.xml file and all actions relevant to the
current view of the selected task flow are displayed on the parent Show Detail
Frame component's Actions menu.

If you enabled custom actions at a global level, then the header of any Show Detail
Frame displays these custom actions if they correspond to the navigation outcomes of
the current view of the child task flow.

If you prefixed the action attribute value with dialog:, then the target view of the
task flow opens in a separate browser window.

22.1.4.4 Example: Adding a Custom Action to a Show Detail Frame Enclosing a Task
Flow

In this example, assume that your application contains a task flow, customactions,
residing inside a Show Detail Frame. The task flow includes three view elements,

Adding Custom Actions to Components

22-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

view_gadget, edit_settings, and about_gadget, and three associated control
flow rules, ViewGadget, EditSettings, and AboutGadget. Your object is to define
custom actions so that the control flow rules are available as actions on the Actions
menu of the Show Detail Frame component.

In this example, the control flow rules are added in such a way that users can navigate
back and forth between the three views. Each view element has an associated page
fragment of the same name:

• The view_gadget.jsff fragment has a Panel Stretch Layout component.
The center facet of this component is populated with an Active Output Text
component whose Value attribute is set to View Gadget.

• The edit_settings.jsff fragment has a Panel Stretch Layout
component. The center facet of this component is populated with an Active
Output Text component whose Value attribute is set to Edit Gadget
Settings.

• The about_gadget.jsff fragment has a Panel Stretch Layout component.
The center facet of this component is populated with an Active Output Text
component whose Value attribute is set to About This Gadget.

To enable custom actions on the task flow:

1. Place the customactions task flow inside a Show Detail Frame component
on a customizable page, MyPage.jspx.

For information about creating a customizable page, see ???

2. Add a Custom Action component from the Composer tag library as a child of
the Show Detail Frame component, and set the Action and Text attributes to
ViewGadget and View Gadget respectively.

3. Add two more Custom Action components to the Show Detail Frame:

• Set the Action and Text attributes for the first component to EditSettings
and Edit Settings respectively.

• Set the Action and Text attributes for the second component to
AboutGadget and About Gadget respectively.

4. Save and run MyPage.jspx.

The view_gadget page fragment is rendered in the Show Detail Frame
component (named My Gadget) on the page. The Actions menu displays the
About Gadget and Edit Settings options. Click About Gadget to navigate to the
about_gadget fragment. Note that the Actions menu now displays the
navigation rules for the other two fragments (Figure 22-5).

Figure 22-5 Custom Actions on a Show Detail Frame Enclosing a Task Flow

Adding Custom Actions to Components

Extending Oracle Composer 22-19

To see this in action, look at the Composer Custom Actions sample application,
ComposerCustomActions.jws, on the Oracle WebCenter Suite 11g Demonstrations
and Samples page on Oracle Technology Network (OTN).

22.1.5 Adding Custom Actions that Display on Task Flows in the Component Navigator
The component navigator in Composer Structure view provides an option to zoom
into a task flow and display the components on its page or fragment, as shown in
Figure 22-6.

Figure 22-6 Edit Action on a Task Flow Instance

Users can zoom in, edit the page or fragment, and zoom out of the task flow to
navigate back to the page containing the task flow. In addition to the Edit Task Flow
and Close links displayed next to a task flow name, you can configure your
application to also display custom actions next to a task flow name, as shown in Figure
22-7.

Figure 22-7 Custom Action on a Task Flow Instance

This section describes the procedure to enable custom actions on task flows in the
component navigator. It contains the following sections:

• How to Configure Custom Actions in the Component Navigator

• What Happens at Runtime

22.1.5.1 How to Configure Custom Actions in the Component Navigator

To display custom actions against a task flow in the component navigator, you must
create a Java bean that defines the custom action behavior and call this bean from the

Adding Custom Actions to Components

22-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://www.oracle.com/technetwork/middleware/webcenter/release11-demos-097468.html
http://www.oracle.com/technetwork/middleware/webcenter/release11-demos-097468.html

application page containing the task flow. This section describes the steps to do so in
detail. It contains the following subsections:

• Defining the Logic for the Custom Action

• Creating a JSF Page Containing the Custom Action

• Calling the JSF Page from the Application Page Containing the Task Flow

22.1.5.1.1 Defining the Logic for the Custom Action

To begin with, you must decide on the custom action you want to provide to users and
create a Java bean with the logic to be implemented when a user selects the custom
action. This section describes the steps to implement simple logic to display a message
to users on clicking the custom action. The sample bean also contains the code to
display the Close/Edit Task Flow links along with the custom link.

To create a Java bean:

1. From the File menu, choose New.

2. In the New Gallery dialog, expand General, select Java, then Java Class, and click
OK.

3. In the Create Java Class dialog, enter BackingBean in the Name field and click
OK.

The BackingBean.java file displays in Source view.

4. Import the required libraries as follows:

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;
import oracle.adf.view.page.editor.sourceview.ComponentInfo;

5. Add the following code:

public class BackingBean {
 public BackingBean() {
 }

 public void action(ActionEvent actionEvent) {
 FacesContext context = FacesContext.getCurrentInstance();
 context.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_INFO, "Sample
message to test whether the custom action works.",
 null));
 }

 public boolean isRendered() {
 return ComponentInfo.isRegion();
 }

 public String getZoomText() {
 return ComponentInfo.isRootNode() ? "Close" : "Edit Task Flow";
 }
}

With this logic, the sample message you defined is displayed when a user clicks the
custom action link against a task flow region.

Adding Custom Actions to Components

Extending Oracle Composer 22-21

Use the isRegion() API to ensure that the custom action link is displayed only
against task flow regions on the page. Use the isRootNode() API to ensure that
the Edit Task Flow or Close link is displayed against the root component of the task
flow.

6. Save the bean.

22.1.5.1.2 Creating a JSF Page Containing the Custom Action

This section describes the procedure to create a JSF page containing the custom action
that you want to display to users in Composer.

To create the JSF page:

1. In your application project, create a JSF page called customList.jspx:

a. From the File menu, select New.

b. In the New Gallery dialog, expand Web Tier, select JSF, then JSF Page.

c. Enter a name for the page and click OK.

2. Design the custom action UI using components like Output Text and Command
Link, as shown in the following sample page:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <af:componentDef var="attrs" componentVar="component">
 <af:panelGroupLayout id="dc_pgl1" rendered="#{backingBean.rendered}">
 <af:outputText value="[" id="dc_ot1"/>
 <af:commandLink text="Test" id="dc_cl1"
 actionListener="#{backingBean.action}"
 binding="#{backingBean.customLink}"/>
 <af:outputText value="]" id="dc_ot2"/>
 </af:panelGroupLayout>
 </af:componentDef>
</jsp:root>

This sample creates a custom action called Test. The actionListener and
binding attributes on this action are bound to BackingBean, which you created
earlier.

3. To ensure that the default Edit Task Flow/Close options are also displayed next to
the task flow, you must define a facet called zoom, as shown in the following
example:

<af:xmlContent>
 <component xmlns="http://xmlns.oracle.com/adf/faces/rich/component">
 <facet>
 <facet-name>zoom</facet-name>
 </facet>
 </component>
</af:xmlContent>

4. Include the zoom facet in the page content as shown in the following example:

Adding Custom Actions to Components

22-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

<af:outputText value="[" id="dc_ot3"/>
<af:facetRef facetName="zoom"/>
<af:outputText value="]" id="dc_ot4"/>

The source of the customLink.jspx page is as follows:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <af:componentDef var="attrs" componentVar="component">
 <af:panelGroupLayout id="dc_pgl1" rendered="#{backingBean.rendered}">
 <af:outputText value="[" id="dc_ot1"/>
 <af:commandLink text="Test" id="dc_cl1"
 actionListener="#{backingBean.action}"
 binding="#{backingBean.customLink}"/>
 <af:outputText value="]" id="dc_ot2"/>
 <af:outputText value="[" id="dc_ot3"/>
 <af:facetRef facetName="zoom"/>
 <af:outputText value="]" id="dc_ot4"/>
 </af:panelGroupLayout>
 <af:xmlContent>
 <component xmlns="http://xmlns.oracle.com/adf/faces/rich/component">
 <facet>
 <facet-name>zoom</facet-name>
 </facet>
 </component>
 </af:xmlContent>
 </af:componentDef>
</jsp:root>

5. Save the JSF page.

22.1.5.1.3 Calling the JSF Page from the Application Page Containing the Task Flow

Let us assume that you have a simple JSF page, MyPage.jspx, containing a task flow.
The source of the page is as shown in the following example:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:pe="http://xmlns.oracle.com/adf/pageeditor"
 xmlns:cust="http://xmlns.oracle.com/adf/faces/customizable">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout topHeight="50px" id="psl1">
 <f:facet name="top">
 <pe:changeModeLink id="cml1"/>
 </f:facet>
 <f:facet name="center">
 <!-- id="af_one_column_header_stretched" -->
 <pe:pageCustomizable id="pageCustomizable1">
 <cust:panelCustomizable id="panelCustomizable1" layout="scroll">
 <af:region value="#{bindings.taskflowdefinition1.regionModel}"
 id="r1"/>
 </cust:panelCustomizable>

Adding Custom Actions to Components

Extending Oracle Composer 22-23

 <f:facet name="editor">
 <pe:pageEditorPanel id="pep1"/>
 </f:facet>
 </pe:pageCustomizable>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

The task flow, taskflowdefinition1, contains the following view.jsff
fragment:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <af:panelGroupLayout layout="scroll" id="pgl1">
 <af:commandButton text="commandButton 1" id="cb1"/>
 <af:commandButton text="commandButton 2" id="cb2"/>
 </af:panelGroupLayout>
</jsp:root>

To display the custom action that you created, you must ensure that the
customLink.jspx page is called from within Composer. Use the
sourceViewNodeAction attribute on the Page Customizable component to
reference the JSF page containing the custom action.

The Page Customizable tag appears as follows in the page source:

<pe:pageCustomizable id="pageCustomizable1"
 sourceViewNodeAction="/customLink.jspx">

The sourceViewNodeAction attribute can take the name of a JSF (.jspx) file or an
EL value that evaluates to a JSF (.jspx) file name.

22.1.5.2 What Happens at Runtime

When you run MyPage.jspx to the browser and open the page in Composer
Structure view, the component navigator displays a Test link and an Edit Task Flow
link next to each task flow instance on the page

Adding Custom Actions to Components

22-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

23
Customizing WebCenter Portal

Impersonation Security

This chapter describes how to use a set of WebCenter Portal Impersonation Expression
Language expressions and a matching Impersonation API to customize impersonation
sessions.

This chapter includes the following topics:

• About Customizing WebCenter Portal Impersonation

• Using the WebCenter Portal Impersonation ELs

• Using the WebCenter Portal Impersonation APIs

23.1 About Customizing WebCenter Portal Impersonation
WebCenter Portal Impersonation lets designated users impersonate other portal users
and perform operations as those users. You can customize those sessions using a set of
WebCenter Portal Impersonation Expression Language expressions (ELs) and a
matching Java API

For instructions on how to initiate an impersonation session (by the impersonator) and
how to allow an Impersonation session (by the impersonatee), see Using WebCenter
Portal Impersonation in Using Oracle WebCenter Portal.

23.2 Using the WebCenter Portal Impersonation ELs
WebCenter Portal Impersonation offers a set of Expression Language expressions
(ELs) that can be used to customize impersonation sessions.

The following ELs are exposed:

• #{WCSecurityContext.impersonationConfigured} - returns whether or
not impersonation has been enabled for the current domain

This EL can be useful when determining if an error was caused by an
impersonation session ending prematurely, or to provide an additional indicator
that a session has ended.

• #{WCSecurityContext.userInImpersonationSession} - returns whether
the current user is in an impersonation session or not.

You can use this EL to protect content and render it inaccessible during an
impersonation session. For example, you could map the rendered attribute of an
administration taskflow on a page to this EL only rendering the taskflow if the user
is not viewing the taskflow in an impersonation session.

Customizing WebCenter Portal Impersonation Security 23-1

• #{WCSecurityContext.currentImpersonator} - returns the current
impersonator, if any.

This EL could be used to modify the page template to display the impersonator or
render content accessible only to a particular impersonator.

For more information about impersonation and other ELs, refer to Expression
Language Expressions.

23.3 Using the WebCenter Portal Impersonation APIs
WebCenter Portal Impersonation also Java APIs that can be used to customize
impersonation sessions.

The following public APIs are exposed in
oracle.webcenter.security.common.WCSecurityUtility:

• isImpersonationConfigured() - returns whether or not impersonation has
been enabled for the current domain.

This API can be useful to determine if an error was caused by an impersonation
session ending prematurely, or to provide an additional indicator that a session has
ended.

• isUserInImpersonationSession() - returns whether the current user is in an
impersonation session or not.

This API is recommended for use to protect content and render it inaccessible
during an impersonation session. For example, you could map the rendered
attribute of an administration taskflow on a page to this API throwing an
authorization exception or returning an empty list if the user is viewing the
taskflow in an impersonation session.

• getCurrentImpersonatorId() - returns the current impersonator, if any.

This API could be used to modify the page template to display the impersonator
(as shown in the example below), or render some content accessible only to a
particular impersonator.

For more information about these and other APIs, refer to Oracle WebCenter Portal Java
API Reference.

Example: getCurrentImpersonatorId API

import oracle.webcenter.security.common.WCSecurityUtility;
if (WCSecurityUtility.isUserInImpersonationSession())
{
 String impersonator =WCSecurityUtility.getCurrentImpersonatorId();
 String currentUser =ADFContext.getCurrent().getSecurityContext().getUserName();
 //Code to be executed when the user is in an impersonation session.
 ..log("User " +impersonator +" is impersonating as user " +currentUser);
}

Using the WebCenter Portal Impersonation APIs

23-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Part VI
Appendixes

This part of Developing WebCenter Portal Assets and Custom Components with Oracle
JDeveloper provides appendixes with supporting information for the chapters in this
guide.

• Expression Language Expressions

• WebCenter Portal Accessibility Features

• Using the WebCenter Portal REST APIs

• Troubleshooting

A
Expression Language Expressions

This appendix describes the Expression Language (EL) expressions that you can use in
portals built with WebCenter Portal.

This appendix includes the following topics:

Introduction to Expression Language (EL) Expressions

ELs Related to WebCenter Portal Information

ELs Related to Specific Pages

ELs Related to Specific Portals

ELs Related to Portal Event Contexts

ELs Related to Assets

ELs Related to Security

ELs Related to General Settings

ELs Related to Portal Resources

ELs Related to Navigation

ELs Related to Tools and Services

ELs Related to Documents

ELs Related to People Connections

ELs Related to Impersonation

EL Expressions Related to the Page Editor

EL Expressions Related to Device Settings

Utilitarian EL Expressions

Built-In Expressions in the Expression Editor

Desupport of Freeform JPQL WHERE and SORT Clauses in Portal Queries

See Also:

For additional information about EL APIs, see Oracle WebCenter Portal Java
API Reference.

A.1 Introduction to Expression Language (EL) Expressions
When configuring page components or assets, you can express values as variables that
take advantage of the current application context. For example, you can use variables
to obtain the name of the current user, the user's assigned role, the state of the current

Expression Language Expressions A-1

page, and so on. Such flexibility is made possible by using EL expressions created in
JDeveloper using the Expression Builder, or at runtime using the Expression Editor.

This section includes the following subsections:

• Introducing the Expression Builder

• Introducing the Expression Editor in WebCenter Portal

A.1.1 Introducing the Expression Builder
You can use EL expressions in JDeveloper to bind attributes to object values
determined at runtime. At runtime, the value of certain components is determined by
their value attribute. While a component can have static text as its value, typically the
value attribute will contain an EL expression that the runtime infrastructure evaluates
to determine what data to display.

You can create EL expressions using the Expression Builder in JDeveloper. You can
access the builder from the Property Inspector. In the Property Inspector, locate the
attribute you wish to modify and click the Property Menu icon, and select choose
Expression Builder from the popup (Figure A-1).

Figure A-1 Accessing the Expression Builder

In the Expression Builder dialog (Figure A-2), you can directly type your EL
expression in the Expression box. You can also use the Variables drop-down list to
select items that you want to include in the expression. Use the operator buttons to
add logical or mathematical operators to the expression.

For more information about Expression Builder, see Getting Started with ADF Faces in
Developing Web User Interfaces with Oracle ADF Faces.

Introduction to Expression Language (EL) Expressions

A-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Figure A-2 Expression Builder Dialog

A.1.2 Introducing the Expression Editor in WebCenter Portal
WebCenter Portal provides a simple Expression Language (EL) editor, called the
Expression Editor. Use the Expression Editor when you want to formulate a dynamic
computation for an otherwise unknown property value, for example, to specify the
current user, the current page mode, and so on.

The Expression Editor is available through the administration and editing screens in
WebCenter Portal. You can open the Expression Editor by clicking the Advanced Edit
Options icon next to a field, check box or drop-down list, and then clicking
Expression Builder (see Figure A-3).

Figure A-3 Advanced Edit Options Icon Next to a Parameter Value Field and the
Resulting Editor

Introduction to Expression Language (EL) Expressions

Expression Language Expressions A-3

See Also:

For information about accessing component properties, see Modifying
Components in Building Portals with Oracle WebCenter Portal.

The Expression Editor provides two options for entering expressions:

• Choose a value, for selecting a seeded EL expression

• Type a value or expression, for entering an expression manually

The options under Choose a value are categorized according to the type of
information an expression returns. Select a category from the first menu, and then
select the type of value you want returned from the second menu (Figure A-4).

Figure A-4 Options Under Choose a Value in the Expression Builder

See Also:

For information about seeded EL expressions, see Built-In Expressions in the
Expression Editor.

The option Type a value or expression is followed by a text box, which you can use to
manually enter the expression you intend (Figure A-5).

Figure A-5 Text Box Under Type a value or expression in the Expression Editor

Many expressions in the tables in this appendix are building blocks for narrowing
down the object or objects you want returned. That is, they are not necessarily meant
to be used by themselves, but rather in an assembly of ELs to form the desired query.

For example, the following expression uses three asset-related ELs to form a single
query that returns a particular portal template. It retrieves the template
storesMasterTemplate from the parent portal stores:

Introduction to Expression Language (EL) Expressions

A-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

#{srmContext.resourceScope['stores'].resourceType['siteTemplate'].displayName[‘stores
MasterTemplate'].singleResult}

In the Expression Editor, you can either:

• Select Choose a value, then select predefined values from the drop-down lists.

• Select Type a value or expression, then enter a value or EL expression. Use the
following formats:

– a literal number: #{123}

– a literal string: #{'string'}

– a literal Boolean: #{true}

– a Java Bean called to return a value:
#{generalSettings.preferredTimeStyle}

The editor provides a Test button for validating your EL entry. The Test button is
available for expressions entered in the text box under Type a value or expression.

Validation checks the EL syntax and evaluates the expression. Because expression
values vary according to the context in which they are executed, the resulting value
that appears in the editor may differ from the value returned during actual use.

Note, however, that only an EL is validated when you click Test; other types of
values are not validated. Test results are shown in a popup.

Note:

Wherever you enter EL on the generic Display Options tab in the Component
Properties dialog, the entry is automatically validated. If the EL syntax is
invalid, an error appears and the value is neither applied nor saved. Generic
Display Options are those cataloged in the Display Options Properties table in
Building Portals with Oracle WebCenter Portal.

EL validation is not performed on non-generic display options.

A.2 ELs Related to WebCenter Portal Information
The following table lists EL expressions relevant to WebCenter Portal information and
describes the type of functionality they provide.

Table A-1 EL Expressions Relevant to WebCenter Portal Information

Expression Function

#{WCAppContext} An
oracle.webcenter.webcenterapp.context.WCAppl
icationContext object that provides an access point in
the current web request for all WebCenter Portal-related
information.

ELs Related to WebCenter Portal Information

Expression Language Expressions A-5

Table A-1 (Cont.) EL Expressions Relevant to WebCenter Portal Information

Expression Function

#{WCAppContext.currentWebCenterURI} Returns a URL representing the current web request with
bookmarkable WebCenter Portal URL parameters of the
request appended to the end (parameters are not
necessarily in a fixed order).

Example:

http://www.example.com/webcenter/faces/oracle/
webcenter/page/scopedMD/someguid/SomePage.jspx?
wc.contextURL=/spaces/somename&wc.pageScope=1234

#{WCAppContext.application.applicatio
nConfig}

An
oracle.webcenter.webcenterapp.beans.WebCente
rType bean with a payload of metadata from WebCenter
Portal.

#{WCAppContext.application.applicatio
nConfig.title}

Returns the display name of the current WebCenter Portal
application (as configured through WebCenter Portal
Administration settings).

Out of the box, this returns WebCenter Portal.

#{WCAppContext.application.applicatio
nConfig.logo}

If an application logo was uploaded through WebCenter
Portal Administration settings, this expression returns the
URL to the application logo image.

Out of the box, this returns null.

#{WCAppContext.application.applicatio
nConfig.helpPage}

Returns the URL to the Help application used for
WebCenter Portal (as configured through WebCenter Portal
Administration settings).

Out of the box, this returns /webcenterhelp/spaces.

<<REVIEWER, should it be /portal instead of /spaces?>>

#{WCAppContext.application.applicatio
nConfig.copyrightMessage.customValue}

If a copyright message was configured through WebCenter
Portal Administration settings, this expression returns the
application copyright message.

Out of the box, this returns null.

#{WCAppContext.application.applicatio
nConfig.privacyPolicyUrl}

Returns the URL to the document that contains the
application's privacy policy (as configured through
WebCenter Portal Administration settings).

Out of the box, this returns http://www.oracle.com/
html/privacy.html

#{WCAppContext.application.applicatio
nConfig.skin}

Returns the name of the default ADF Faces skin family to
use for rendering pages in the application (as configured
through WebCenter Portal Administration settings).

This expression represents only the application-level setting
that may not necessarily be used in all web requests. For
example, you cannot use it successfully if a user has chosen
to override the skin through application Preferences.

ELs Related to WebCenter Portal Information

A-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-1 (Cont.) EL Expressions Relevant to WebCenter Portal Information

Expression Function

#{requestContext.skinFamily} Returns the name of the ADF Faces skin family being used
for the current web request, depending on factors such as
what has been configured at the application level, the
current user's preference setting, and so on.

Returns the same value as
#{adfFacesContext.skinFamily}.

A.3 ELs Related to Specific Pages
Table A-2 lists EL expressions relevant to portal pages and describes the types of
functionality they provide.

Table A-2 EL Expressions Relevant to Specific Pages

Expression Function

#{pageDocBean.title} Returns the page display name, for example:

FinanceProject

#{pageDocBean.createdBy} Returns the user name of the person who created the page,
for example:

monty

#{pageDocBean.createDateString} Returns the date and time the page was created, for
example:

2008-11-19T10:18:36

#{pageDocBean.lastUpdatedBy} Returns the user name of the person who last updated the
page, for example:

monty

#{pageDocBean.lastUpdateDateString} Returns the date and time the page was last updated, for
example:

2008-11-19T10:18:36

#{pageDocBean.pagePath} Returns the file directory path to the page relative to the
application root directory, for example:

/oracle/webcenter/page/scopedMD/
s8bba98ff_4cbb_40b8_beee_296c916a23ed/user/Umonty/
Page4.jspx

#{pageDocBean.name} Returns the file name of the page, for example:

Page4.jspx

#{pageDocBean.UICSSStyle} Returns the name of the style scheme used on the page, for
example:

WCSchemeEggShell

#{pageDocBean.UISchemeBGImage} Returns the directory path and file name of the page
scheme background image.

ELs Related to Specific Pages

Expression Language Expressions A-7

Table A-2 (Cont.) EL Expressions Relevant to Specific Pages

Expression Function

#{pageDocBean.UISchemeBGColorString} Returns the hexadecimal value of the page scheme
background color, for example:

#ffa500

#{pageDocBean.pagePermission} Returns the permission the current user has on the page, for
example:

oracle.webcenter.page.model.security.CustomPagePermission

#{pageDocBean.pageSecurityTarget} A string of 60 or so characters that uniquely identifies the
current page to the security system, for example:

oracle_webcenter_page_scopedMD_s8bba98ff_4cbb_40b8_beee_2
96c916a23ed_user_Umonty_Page4PageDef

#{changeModeBean.inEditMode} Returns true if current page is in Composer mode. Returns
false if current page is not in Composer mode

#{pageDocBean.currentLayout.displayNa
me}

.

Returns the display name of the layout currently used by
the page

#{pageDocBean.layoutViewId} Returns the layout view id used by the page

#{pageDocBean.layoutCssPath} Returns the CSS file used by the layout

A.4 ELs Related to Specific Portals
Table A-3 lists EL expressions relevant to portals and describes the types of
functionality each provides.

Note:

The portal internal name is the name specified for Portal URL on the Overview
page of a portal's administration settings. The portal display name is the name
specified for Name. Many of the EL expressions in Table A-3call for the portal
internal name.

Table A-3 EL Expressions Relevant to Specific Portals

Expression Function

#{spaceContext} An
oracle.webcenter.spaces.context.SpacesContex
t object that provides an access point in the current web
request for all portal-related information.

The value of this expression is whatever is returned on
invoking the java API:
SpacesContext.getCurrentInstance()

ELs Related to Specific Portals

A-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-3 (Cont.) EL Expressions Relevant to Specific Portals

Expression Function

#{spaceContext.currentSpace} An oracle.webcenter.spaces.Space object that
represents the portal associated with the current web
request. If the current web request is in the Home portal
context, it returns a value of null.

The value of this expression is whatever is returned on
invoking the Java API:
SpacesContext.getCurrentInstance().getCurren
tSpace()

#{spaceContext.currentSpaceName} The name of the portal associated with the current web
request. If the current web request is in the Home portal
context, it returns a value of null.

The value of this expression is whatever is returned on
invoking the java API:
SpacesContext.getCurrentInstance().getCurren
tSpace()

#{spaceContext.space['portalName']}

#{spaceContext.currentSpace}

An oracle.webcenter.spaces.Space object that
represents the portal that is named spaceName or the
current portal (currentSpace). For example,
#{spaceContext.space['FinanceProject']}
returns the portal object for the portal called
FinanceProject.

The value of this expression is whatever is returned in Java
on invoking .getSpace(...) on the current
SpacesManager passing in the MDSSession of the current
ADFContext.

#{spaceContext.space['portalName'].me
tadataPath}

#{spaceContext.currentSpace.metadataP
ath}

The MDS path of the portal metadata document for the
portal with specified name portalName or the current
portal (currentSpace). For example,
#{spaceContext.space['FinanceProject'].metad
ataPath} evaluates to /oracle/webcenter/space/
metadata/spaces/FinanceProject/space.xml

The value of this expression is whatever is returned in java
on invoking .getMetadataPath() on the portal object for
the portal.

#{spaceContext.space['portalName'].me
tadata}

#{spaceContext.currentSpace.metadata}

An oracle.webcenter.spaces.beans.SpaceType
bean that carries metadata about the portal that is named
portalName or the current portal (currentSpace).

The value of this expression is whatever is returned in java
on invoking .getMetadata() on the portal object for the
portal passing in the MDSSession of the current
ADFContext.

#{spaceContext.space['portalName'].me
tadata.displayName}

#{spaceContext.currentSpace.metadata.
displayName}

The display name of the portal that is named portalName
or the current portal (currentSpace). For example, if a
portal called Web20Portal has the display name web 2.0
Portal, then
#{spaceContext.space['Web20Portal'].metadata
.displayName} evaluates to web 2.0 Portal.

ELs Related to Specific Portals

Expression Language Expressions A-9

Table A-3 (Cont.) EL Expressions Relevant to Specific Portals

Expression Function

#{spaceContext.space['portalName'].GS
Metadata.groupSpaceURI}

#{spaceContext.currentSpace.GSMetadat
a.groupSpaceURI}

The URL of the portal that is named portalName or the
current portal (currentSpace).

#{WCPrepareImageURL[spaceContext.spac
e['portalName'].metadata.icon]['']}

#{WCPrepareImageURL[spaceContext.curr
entSpace.metadata.icon]['']}

A URL to the icon associated with the portal that is named
portalName or the current portal (currentSpace).

#{spaceContext.space['portalName'].me
tadata.description}

#{spaceContext.currentSpace.metadata.
description}

The description of the portal that is named portalName or
the current portal (currentSpace). For example,
#{spaceContext.space['FinanceProject'].metad
ata.description} evaluates to Conglomeration of all teams
involved in financial activities.

#{spaceContext.space['portalName'].me
tadata.creationDate}

#{spaceContext.currentSpace.metadata.
creationDate}

A java.util.Calendar object representing the date-time on
which the portal with specified name portalName or the
current portal (currentSpace) was created.

#{spaceContext.space['portalName'].me
tadata.createdBy}

#{spaceContext.currentSpace.metadata.
createdBy}

The user-name of the person who created the portal that is
named portalName or the current portal
(currentSpace).

#{spaceContext.space['portalName'].me
tadata.keywords}

#{spaceContext.currentSpace.metadata.
keywords}

A comma-delimited list of searchable keywords associated
with the portal with the name portalName or the current
portal (currentSpace). For example, if the portal
FinanceProject has the keywords finance, project,
money, then
#{spaceContext.space['FinanceProject'].metad
ata.keywords} evaluates to finance, project, money.

#{spaceContext.space['portalName'].me
tadata.offline}

#{spaceContext.currentSpace.metadata.
offline}

Boolean value that indicates whether the portal that is
named portalName or the current portal (currentSpace)
is offline.

#{spaceContext.space['portalName'].me
tadata.closed}

#{spaceContext.currentSpace.metadata.
closed}

Boolean value that indicates whether the portal that is
named portalName or the current portal (currentSpace)
is closed.

#{spaceContext.space['portalName'].me
tadata.selfRegistration}

#{spaceContext.currentSpace.metadata.
selfRegistration}

Boolean value that indicates whether users are allowed to
register themselves with the portal that is named
portalName or the current portal (currentSpace).

#{spaceContext.space['portalName'].me
tadata.discoverable}

#{spaceContext.currentSpace.metadata.
discoverable}

Boolean value that indicates whether users can discover the
existence of the portal that is named portalName or the
current portal (currentSpace) by searching for it or seeing
it listed on the My portals page.

ELs Related to Specific Portals

A-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-3 (Cont.) EL Expressions Relevant to Specific Portals

Expression Function

#{spaceContext.space['portalName'].me
tadata.publishRSS}

#{spaceContext.currentSpace.metadata.
publishRSS}

Boolean value indicating whether the portal that is named
portalName or the current portal (currentSpace)
publishes RSS feeds.

#{spaceContext.space['portalName'].di
stributionList}

#{spaceContext.currentSpace.distribut
ionList}

The email address of the mailing list associated with the
portal that is named portalName or the current portal
(currentSpace).

#{spaceContext.space['portalName'].me
tadata.customAttributes['attributeNam
e']}

#{spaceContext.currentSpace.metadata.
customAttributes['attributeName']}

The value of a specific custom attribute of the name
attributeName for the portal that is named portalName
or the current portal (currentSpace). For example, if the
FinanceProject portal has a custom attribute called
stockPrice with a value of 13.9, then
#{spaceContext.space['FinanceProject'].metad
ata.customAttributes['stockPrice']} evaluates to
13.9.

Note: If you use this EL to provide a value for a field in
WebCenter Portal Administration, clicking the Test button
may return a blank value. However, the value will resolve
correctly in the running portal.

#{WCPrepareImageURL[spaceContext.spac
e['portalName'].metadata.logo]['']}

#{WCPrepareImageURL[spaceContext.curr
entSpace.metadata.logo]['']}

Returns the logo URL for the portal named portalName or
the current portal (currentSpace).

ELs Related to Specific Portals

Expression Language Expressions A-11

Table A-3 (Cont.) EL Expressions Relevant to Specific Portals

Expression Function

#{spaceContext.spacesQuery.property['
value']}

#{spaceContext.spacesQuery.property['
value'].listSpaces}

A means of querying a portal using a query parameter in
the form of property['value'], where property
means the name of the property, for example, unionOf,
shape, and so on; and value means the criteria to use in
fetching the list of all portals, discoverable portals, and so
on.

If listSpaces is appended to the expression, the query
returns the list of portals of type GSMetadata. For more
information, see Interface GSMetadata in Oracle
WebCenter Portal Java API Reference.

For example, the following EL expression returns a list of all
discoverable portals.

#{spaceContext.spacesQuery.unionOf['DISCOVERABLE'].li
stSpaces}

If listSpaces is not appended to the EL, then the EL
evaluates to an object of type SpacesQueryParameter.
This object type must be evaluated using
SpacesManager.getSpaces(SpacesQueryParameter
s), which in turn returns a list of portals of type
GSMetadata.

For example, the following EL expression returns an
instance of type SpacesQueryParameters with all the
query conditions populated.

#{spaceContext.spacesQuery.unionOf['DISCOVERABLE']}

#{spaceContext.spacesQuery.unionOf['U
SER_JOINED'].shape['ROOT_LEVEL'].list
Spaces}

Returns a list of all portals of which the current user is a
member

To see an example, refer to Example: Using EL Expressions
for Various Portals.

#{spaceContext.spacesQuery.unionOf['U
SER_JOINED'].shape['RECURSIVE_FLATTEN
ED'].listSpaces}

Returns a list of all portals of which the current user is a
member

This EL also returns all the subportals under each of the
parent portals to which the current user has access.

#{spaceContext.spacesQuery.unionOf['A
LL_QUERIABLE'].sort['sortBy field
picked from WcSpaceHeader']}

Returns portals sorted into the order specified by the sort
criteria

For example, the following query returns a list of portals to
which the user has access sorted by discoverable and
lastUpdateDate fields.

Note that in the following example, the identifier sp
represents the JPA entity for a portal, WcSpaceHeader.

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].s
ort['sp.discoverable']['asc']['sp.lastUpdateDate']
['desc'].listSpaces}

ELs Related to Specific Portals

A-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-3 (Cont.) EL Expressions Relevant to Specific Portals

Expression Function

#{spaceContext.spacesQuery.unionOf['A
LL_QUERIABLE'].pageNumber[page_num].l
istSpaces}

Allows specifying the page number (0-based) to select from
the results matching the query criteria

For example, the following expression returns a list of all
portals to which a user has access and returns the third page
of the result set:

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].p
ageNumber[2].listSpaces]}

#{spaceContext.spacesQuery.unionOf['A
LL_QUERIABLE'].itemsPerPage[page_num]
.listSpaces}

Allows specifying the number of results to be included in
each page when breaking down the result portal into pages

For example, the following expression returns a list of all
portals to which a user has access, listing 10 records per
page.

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].p
ageNumber[10].listSpaces]}

#{spaceContext.spacesQuery.unionOf.ALL_QUERIA
BLE.where[wCond['sp.createdBy']['like']
['monty%'] ['and']
[wCond['sp.selfSubEnabled']['is']['null']
['or'] [wCond['sp.selfSubEnabled']['=']
['N']] ['not']]].listSpaces}

Returns a list of all portals a user has access which are
created by a specified user, and on which self subscription is
enabled. For more information, see
SpacesQueryParameters and SpacesQueryFilter in
Oracle WebCenter Portal Java API Reference.

#{spaceContext.currentSpace.metadata.
portalColor}

Returns color code used by portal in the portal browser

#{spaceContext.currentSpace.metadata.
acronym}

Returns the acronym used by the portal in the portal
browser

A.4.1 Example: Using EL Expressions for Various Portals
This section provides an example of using EL expressions to query various portals.

In this example, you will use the following EL to display a list of all portals of which
you are a member:

"#{spaceContext.spacesQuery.unionOf['USER_JOINED'].shape['ROOT_LEVEL'].listSpaces}"

You will also use the following methods to display the logo, name, description, and
number of members of a portal.

• displayName - to display the portal name

• description - to display the portal description

• memberCount - to display the number of portal members

To query a portal:

1. Create a new task flow, and mark it as available for use, as described in Working
with Task Flows in Building Portals with Oracle WebCenter Portal.

ELs Related to Specific Portals

Expression Language Expressions A-13

2. Edit the source code of the task flow. On the Assets tab, select the task flow. From
the Actions menu, select Edit Source.

3. In the Edit Source dialog, on the Fragment tab, replace the existing code with the
following code:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:pe="http://xmlns.oracle.com/adf/pageeditor" xmlns:cust="http://
xmlns.oracle.com/adf/faces/customizable"
xmlns:f="http://java.sun.com/jsf/core" xmlns:af="http://xmlns.oracle.com/adf/
faces/rich" xmlns:c="http://java.sun.com/jsp/jstl/core" xmlns:fn="http://
java.sun.com/jsp/jstl/functions">
 <af:panelGroupLayout id="pgl1">
 <cust:panelCustomizable id="pc1">
 <table border="0" width="100%">
 <af:iterator id="it1" var="row"
value="#{spaceContext.spacesQuery.unionOf['USER_JOINED'].shape['ROOT_LEVEL'].list
Spaces}">
 <c:set var="displayName" value="#{row.displayName}"/>
 <c:set var="description" value="#{row.description}"/>
 <c:set var="numMembers" value="#{row.memberCount}"/>
 <tr class="PortletText1">
 <af:image id="img1"
 source="#{WCPrepareImageURL[spaceContext.space[row.name].metadata.icon]}/
ICON16"/>
 </td>
 <td>
 <af:outputText id="otCol1"
 value="#{displayName}"
 inlineStyle="color:#333333; font-size:12px; font-weight:bold;"/>
 </td>
 </tr>
 <tr>
 <td>
 <af:outputText id="otCol3"
 value="#{description}"
 inlineStyle="color:#666666; font-size:12px;"/>
 </td>
 </tr>
 <tr>
 <td>
 <af:outputText id="otCol4"
 value="members (#{numMembers}) -"
 inlineStyle="color:#666666; font-size:10px;"/>
 <af:spacer id="spacer1" width="5px"/>
 <af:goLink id="gl1"
 destination="/spaces/#{row.name}"
 targetFrame="_blank"
 text="view"/>
 </td>
 </tr>
 </af:iterator>
 </table>
 </cust:panelCustomizable>
 </af:panelGroupLayout>
</jsp:root>

4. Add the task flow to a page. In the resource catalog, the custom task flow is
available under UI Components > Task Flows.

ELs Related to Specific Portals

A-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

The page should now show a list of all the portals of which you are is a member.

A.5 ELs Related to Portal Event Contexts
Table A-4 lists EL expressions relevant to the types of portal events that can trigger the
passing of payloads (rather than events relevant to the events feature).

You can access all or part of the event payloads provided in Table A-4 once they have
been raised.

For example, for the whole payload, use the following EL:

#{wcEventContext.events.eventName}

For example:

#{wcEventContext.events.WebCenterUserSelected}

All of the payloads for the ELs in Table A-4 are Maps. To dereference a map entry, use
the standard EL for Maps:

#{wcEventContext.events.WebCenterUserSelected.UserName}

See Also:

For more information about event wiring, see Wiring Pages, Task Flows,
Portlets, and ADF Components in Building Portals with Oracle WebCenter Portal.

Table A-4 EL Expressions Relevant to Event Contexts

Expression Function

Event Context

#{wcEventContext.events.WebCenterResourceSelected}

Document Name

#{wcEventContext.events.WebCenterResourceSelected.n
ame}

Document Creator

#{wcEventContext.events.WebCenterResourceSelected.c
reatedBy}

Document Last Modified By

#{wcEventContext.events.WebCenterResourceSelected.l
astModifiedBy}

Use in context wiring between producer and
consumer task flows. Returns a map that relates
some piece of metadata from the producer to some
piece of metadata from the consumer, for example,
from a document creator to the creator's Profile.

Producer task flows include:

• Document Manager
• Recent Documents
• Document List Viewer

ELs Related to Portal Event Contexts

Expression Language Expressions A-15

Table A-4 (Cont.) EL Expressions Relevant to Event Contexts

Expression Function

Consumer task flows include:

• Links (show the items that are linked to the
selected document)

• Profile (view the Profile of the document's
author)

• Activity Stream (view activities related to this
document)

• Tags (tags on this document and a means of
accessing the Tag Center)

Event Context

#{wcEventContext.events.WebCenterUserSelected}

User Name

#{wcEventContext.events.WebCenterUserSelected.userN
ame}

User GUID

#{wcEventContext.events.WebCenterUserSelected.userG
UID}

Portal Name

#{wcEventContext.events.WebCenterUserSelected.porta
lName}

Portal GUID

#{wcEventContext.events.WebCenterUserSelected.porta
lGUID}

Use in context wiring between producer and
consumer task flows. Returns a map that relates
some piece of metadata from the producer to some
piece of metadata from the consumer, for example,
from a user to the user's connections.

Producer task flows include:

• Connections
• Portal Members
Consumer task flows include:

• Connections (show connections of the selected
user)

• Documents task flows (show documents created
by the selected user)

• Activity Stream (view this user's activities)
• Tags (tags created by this user)
• Profile (show this user's Profile)

ELs Related to Portal Event Contexts

A-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-4 (Cont.) EL Expressions Relevant to Event Contexts

Expression Function

Event Context

#{wcEventContext.events.WebCenterConnectionSelected
}

Profile User Name

#{wcEventContext.events.WebCenterConnectionSelected
.profileUserName}

Profile User GUID

#{wcEventContext.events.WebCenterConnectionSelected
.profileUserGUID}

Connected User Name

#{wcEventContext.events.WebCenterConnectionSelected
.userName}

Connected User GUID

#{wcEventContext.events.WebCenterConnectionSelected
.userGUID}

--

#{wcEventContext.events.WebCenterSpaceSele
cted.SpaceName}

Returns the name of the selected portal

#{wcEventContext.events.WebCenterSpaceSele
cted.SpaceGUID}

Returns the GUID of the selected portal

A.6 ELs Related to Assets
Use the expressions in this section to query for assets. Querying for an asset through
an EL expression is similar to querying for it through an API call. That is, you must set
query parameters in the format ['property']['like']['value'], where
property is the name of the property, for example, id, resourceScope, and so on,
and value is the search value for the attribute.

A query can result in single or multiple results. The query designer must decide what
is wanted. The query designer determines whether to return one or multiple results by
encountering one of the following values in the expression:

• singleResult—Returns a single asset. When no matching asset is found, null is
returned.

• resultList—Returns a list of assets. When no matching assets are found, an
empty list is returned.

ELs Related to Assets

Expression Language Expressions A-17

Note:

Occurrences of singleResult or resultList in the expression are used
internally as the query end point, and, after this, the query is executed
immediately. Anything set after the end point can result in unexpected
behavior.

The following example returns the first page template asset found with a display
name that contains myPage:

#{srmContext[wCond['resourceType']['like']['siteTemplate']]['and']
[wCond['displayName']['like']['myPage']].singleResult}

The following example returns a list of page template assets residing in the directory
resourceDir, with a description that contains sampleDesc:

#{srmContext[wCond['resourceType']['like']['siteTemplate']]['and']
[wCond['description']['like']['sampleDesc']]['and'][wCond['contentDirectory']['like']
['resourceDir'].resultList}

A property of this class includes any attribute of this class. Example properties
include: Id, DisplayName, iconURI, contentDirectory, and so on.

The property value can be an explicit value or an EL expression that returns that type
of value. For example, the following two queries return the same result:

#{srmContext[wCond['id']['like']['resourceId']].singleResult}

#{srmContext[wCond['id']['like']
['spacesContext.currentSpace.uiMetadata.siteTemplateId']].singleResult}

You can use any property of this class in an EL-based query in the format
property['value'] and in any order. For example, the following two queries
return the same result:

#{srmContext[wCond['resourceScope']['like']['scopeName']]['and'][wCond['id]['like']
['resourceId']].singleResult}

#{srmContext[wCond['id']['like']['resourceId']]['and'][wCond['resourceScope']['like']
['scopeName']].singleResult}

Table A-5 lists EL expressions relevant to assets and describes the types of
functionality each provides.

Table A-5 ELs Relevant to Assets

EL Function

#{srmContext[wCond['id']['like']
['resourceGUID']]}

Returns the asset with the specified ID

#{srmContext[wCond['displayName']['like']
['resourceDisplayName']]}

Returns any assets with the specified display
name

#{srmContext[wCond['displayNameKey']['like']
['displayNameKey']]}

Returns any assets with the specified display
name key

ELs Related to Assets

A-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-5 (Cont.) ELs Relevant to Assets

EL Function

#{srmContext[wCond['description']['like']
['resourceDescription']].singleResult}

Returns one result of an asset that contains the
specified value in its description

To get multiple results, use resultList in lieu
of singleResult.

#{srmContext[wCond['descriptionKey']['like']
['descriptionKey']].singleResult}

Returns one result of an asset with the specified
description key

The description key is the key in the xsrt file for
the asset description.

To get multiple results, use resultList in lieu
of singleResult.

#{srmContext[wCond['createdDate']['like']
['resourceCreationDate']]}

Returns any asset with the specified creation date

#{srmContext[wCond['modifiedBy']['like']
['resourceLastModifiedBy']]

Returns any asset that was last modified by the
user with the specified user name

#{srmContext[wCond['modifiedDate']['like']
['resourceLastModifiedDate']]}

Returns any asset that was last modified by the
specified date

#{srmContext[wCond['resourceScope']['like']
['resourceScope']]}

Returns any asset that falls within the specified
scope

#{srmContext[wCond['category']['like']
['categoryName']]}

Returns any asset that falls within the specified
category

For example:

#{srmContext[wCond['category']['like']
['siteTemplates']]}

List of possible category names includes:
siteTemplate, pageStyle, dataPresenter,
contentPresenter, resourceCatalog,
taskFlow, dataControl, taskFlowStyle,
and skin.

#{srmContext[wCond['contentDirectory']
['like']['contentDirectory']]}

Returns any asset that is stored within the
specified directory

#{srmContext[wCond['metadataFile']['like']
['metadataFileLocation']]}

Returns asset metadata from the specified
metadata file

For example, the following expression returns
asset metadata from the following file /home/
metadata/data.xml:

#{srmContext[wCond['metadataFile']['like']
['/home/metadat/data.xml']]}

ELs Related to Assets

Expression Language Expressions A-19

Table A-5 (Cont.) ELs Relevant to Assets

EL Function

#{srmContext[wCond['jspx']['like']
['jspxFileLocation']]}

Returns any jspx file in the specified location

For example, the following expression returns the
page.jspx file:

#{srmContext[wCond['jspx']['like']['/
home/web/page.jspx']]}

#{srmContext[wCond['pageDef']['like']
['pageDefinition']]}

Returns any jspx file with the specified page
definition

#{srmContext[wCond['iconURI']['like']
['iconURI']]}

Returns the icon at the specified icon URI

#{srmContext[wCond['excludeFrom']['like']
['excludeFromScopes']]}

In a larger expression, returns all specified
resources except those available in the excluded
scopes

#{srmContext[wCond['usesCustomSecurity']
['like']['usesCustomSecurity']]}

In a larger expression, returns any asset the either
does or does not use custom security

Set usesCustomSecurity to TRUE or FALSE.
For example:

#{srmContext[wCond['usesCustomSecurity']
['like']['TRUE']]}

#{srmContext[wCond['seeded']['like']
['seeded']]}

In a larger expression, returns any asset that is or
is not seeded, depending on the provided value

Set seeded to TRUE or FALSE. For example:

#{srmContext[wCond['seeded']['like']
['TRUE']]}

#{srmContext[wCond['visibleType']['like']
['visibleType']]}

In a larger expression, returns any asset that is of
the specified type of visibility

Set visibleType to TRUE, FALSE, or NEVER to
indicate that the asset is never shown. For
example, the following expression returns assets
that are visible, that is, assets that are set to
Show:

#{srmContext[wCond['visibleType']['like']
['TRUE']]}

#{srmContext[wCond['visible']['like']
['visible']]}

In a larger expression, returns one or multiple
assets with visibility set to either TRUE or FALSE

#{srmContext[wCond['createdBy']['like']
['resourceCreator']]}

In a larger expression, returns any asset created
by the specified user

ELs Related to Assets

A-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-5 (Cont.) ELs Relevant to Assets

EL Function

#{srmContext[wCond['resourceType']['like']
['resourceType']]}

In a larger expression, returns one or multiple
assets of the specified type

For example, the following expression searches
for an asset of the type SITE_TEMPLATE:

#{srmContext[wCond['resourceType']['like']
['SITE_TEMPLATE']]}

Note that all asset types are listed in Oracle
WebCenter Portal Java API Reference, in the
GenericSiteResourceTypes class.

#{srmContext[wCond['version']['like']
['version']]}

In a larger expression, returns one or multiple
assets available in the application of the specified
version

#{srmContext[wCond['resourceScope']['like']
['scopeName']]}

In a larger expression, returns one or multiple
assets available in the specified scope

For example, the following expression searches
for assets in the scope (in this instance, the portal)
MyPortal:

#{srmContext[wCond['resourceScope']['like']
['MyPortal']]}

To search in the default scope, that is, the
application scope, use defaultScope.

#{srmContext[wCond['searchType']['like']
['searchType']]}

In a larger expression, returns one or multiple
assets that contain or equal the values set by
other included expressions

Set searchType to CONTAINS or EQUALS.

A.6.1 Example: Using EL Expressions for Assets
This section provides an example of using an EL expression to display a page template
based on a user's role.

In this example, you will use an EL expression to enable a specific page template to be
displayed for portal managers so that only they can access the features or links
available in that page template.

To display a page template based on a user role:

1. Go to the desired portal's administration settings.

2. On the Settings page, under Assets , for Page Template click the Advanced Edit
Options icon next to the Page Template drop-down list, and then select
Expression Builder to open the editor.

3. In the Type a value or expression, enter the following expression:

#{srmContext[wCond['resourceType']['like']['siteTemplate']][wCond['displayName']
['like'][WCSecurityContext.userInScopedRole['Moderator'] ? 'Fusion Side
Navigation' : 'WebCenter Portal Top Navigation']].singleResult.id}

ELs Related to Assets

Expression Language Expressions A-21

Where:

• srmContext[wCond['resourceType']['like']['siteTemplate']]

Gets a list of all page templates in the scope

• [wCond['displayName']['like']
[WCSecurityContext.userInScopedRole['Moderator'] ? 'Fusion
Side Navigation' : 'WebCenter Portal Top Navigation']]

Reduces the list down to one depending on whether the current user is a portal
manager. If the user is a portal manager, the Fusion Side Navigation page
template is applied. For all other user roles, the portal is rendered using the
WebCenter Portal Top Navigation page template.

• singleResult.id

Returns the GUID of the required entry.

4. Click OK.

A.7 ELs Related to Security
ELs Related to Security lists EL expressions relevant to application security and
describes the types of functionality they provide.

Table A-6 EL Expressions Relevant to Security

Expression Function

#{security.authenticated} Returns true when the current user is authenticated in the
context in which the EL is being invoked, otherwise false.

#{securityContext.userName} Returns the user name of the currently logged in user. If the
current user is not logged in, this expression returns no
value.

#{WCSecurityContext.currentUser['userN
ame']}

Returns the value true if the current user is the specified
user, otherwise false.

#{WCSecurityContext.userInGroup['group
']}

Returns the value true if the current user is assigned the
specified group, for example:

#{WCSecurityContext.userInGroup['Administrators']}

#{security.pageContextCommunityModerat
or}

Returns the value true if the current user is the Portal
Manager of the current portal.

#{WCSecurityContext.userInScopedRole['
role']}

Returns the value true if the current user is assigned the
specified role in the current scope. Role can be Moderator
(or Portal Manager, which is the display name), or a custom
role defined in that scope.

The scope is implicitly resolved to be the current scope. If
you use this EL in the home portal, it resolves to the home
portal’s GUID and roles defined at the application level. If
you use this EL in a portal scope, it resolves to roles defined
for the portal.

ELs Related to Security

A-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

A.8 ELs Related to General Settings
ELs Related to General Settings lists EL expressions relevant to general application
settings and describes the types of functionality they provide. All listed ELs apply to
both portals built with WebCenter Portal and Portal Framework applications built
with JDeveloper.

Table A-7 EL Expressions Relevant to General Settings

Expression Function

#{generalSettings.userTimeZone} Returns the time zone the current user has selected
in application preferences.

#{generalSettings.preferredDateStyle} Returns the date format the current user has
selected in application preferences.

#{generalSettings.preferredDatePattern} Returns the current user's preferred date format
pattern if it has been set, else, returns null.

#{generalSettings.preferredTimeStyle} Returns the time format the current user has
selected in application preferences.

#{generalSettings.preferredTimePattern} Returns the current user's preferred time format
pattern if it has been set, else, returns null.

#{generalSettings.preferredDateTimePattern} Returns the current user's preferred date and time
format pattern if it has been set, else, returns null.

#{generalSettings.preferredAccessibilityMode
}

Returns the current user's preferred accessibility
mode (either default, inaccessible, or
screenReader)

#{generalSettings.preferredSkinName} The current user's preferred skin name if one is
specified, otherwise the default value.

#{generalSettings.formattedCurrentDate} Returns the current date in the current user's
selected locale.

#{generalSettings.formattedCurrentTime} Returns the current time in the current user's
selected locale.

#{generalSettings.formattedCurrentDateTime} Returns the current date and time in the current
user's selected locale.

#{requestContext.skinFamily} Returns the name of the ADF Faces skin family
being used for the current web request, depending
on factors such as what has been configured at the
application level, the current user's preference
setting, and so on.

A.9 ELs Related to Portal Resources
Use the expressions in this section to query for portal resources. Querying for a portal
resource through an EL expression is similar to querying for it through an API call.
That is, you must set query parameters in the format .property['value'], where
property is the name of the property, for example, id, resourceScope, and so on,
and value is the search value for the attribute.

ELs Related to General Settings

Expression Language Expressions A-23

A query can result in single or multiple results. The query designer must decide what
is wanted. The query designer determines whether to return one or multiple results by
encountering one of the following values in the expression:

• singleResult—Returns a single portal resource. When no matching resource is
found, null is returned.

• resultList—Returns a list of portal resources. When no matching portal
resources are found, an empty list is returned.

Note:

Occurrences of singleResult or resultList in the expression are used
internally as the query end point, and, after this, the query is executed
immediately. Anything set after the end point can result in unexpected
behavior.

The following example returns the first page template portal resource found with a
display name that contains myPage:

#{srmContext.resourceType['siteTemplate'].displayName['myPage'].singleResult}

The following example returns a list of page template portal resources residing in the
directory resourceDir, with a description that contains sampleDesc:

#{srmContext.resourceType['siteTemplate'].description['sampleDesc'].contentDirectory[
'resourceDir'].resultList}

A property of this class includes any attribute of this class. Example properties
include: Id, DisplayName, iconURI, contentDirectory, and so on.

The property value can be an explicit value or an EL expression that returns that type
of value. For example, the following two queries return the same result:

#{srmContext.id['resourceId'].singleResult}

#{srmContext.id['spacesContext.currentSpace.uiMetadata.siteTemplateId'].singleResult}

You can use any property of this class in an EL-based query in the format
property['value'] and in any order. For example, the following two queries
return the same result:

#{srmContext.resourceScope['scopeName'].id['resourceId'].singleResult}

#{srmContext.id['resourceId'].resourceScope['scopeName'].singleResult}

Table A-8 lists EL expressions relevant to portal resources and describes the types of
functionality each provides. Many of the expressions in Table A-8 are building blocks
for narrowing down the portal resource or resources you want returned. That is, they
are not necessarily meant to be used by themselves, but rather in an assembly of ELs to
form the desired query.

For example, the following expression uses three portal resource-related ELs to form a
single query that returns a particular portal template. It retrieves the template
storesMasterTemplate from the parent portal stores:

#{srmContext.resourceScope['stores'].resourceType['siteTemplate'].displayName['stores
MasterTemplate'].singleResult}

ELs Related to Portal Resources

A-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

For information about EL expressions relevant only to WebCenter Portal assets, see
ELs Related to Assets.

Table A-8 ELs Relevant to Portal Resources

EL Function

#{srmContext.id['resourceGUID']} Returns the portal resource with the specified ID

#{srmContext.displayName['resourceDisplayName
']}

Returns any portal resources with the specified
display name

#{srmContext.displayNameKey['displayNameKey']
}

Returns any portal resources with the specified
display name key

#{srmContext.description['resourceDescription
'].singleResult}

Returns one result of a portal resource that
contains the specified value in its description

To get multiple results, use resultList in lieu
of singleResult.

#{srmContext.descriptionKey[descriptionKey].s
ingleResult}

Returns one result of a portal resource with the
specified description key

The description key is the key in the xsrt file for
the portal resource description.

To get multiple results, use resultList in lieu
of singleResult.

#{srmContext.createdDate['resourceCreationDat
e']}

Returns any portal resource with the specified
creation date

#{srmContext.modifiedBy['resourceLastModified
By']}

Returns any portal resource that was last
modified by the user with the specified user
name

#{srmContext.modifiedDate['resourceLastModifi
edDate']}

Returns any portal resource that was last
modified by the specified date

#{srmContext.resourceScope['resourceScope']} Returns any portal resource that falls within the
specified scope

#{srmContext.category['categoryName']} Returns any portal resource that falls within the
specified category

For example:

#{srmContext.category['siteTemplates']}

#{srmContext.contentDirectory['contentDirecto
ry']}

Returns any portal resource that is stored within
the specified directory

#{srmContext.metadataFile['metadataFileLocati
on']}

Returns portal resource metadata from the
specified metadata file

For example, the following expression returns
resource metadata from the following file /
home/metadata/data.xml:

#{srmContext.metadataFile['/home/metadat/
data.xml']}

ELs Related to Portal Resources

Expression Language Expressions A-25

Table A-8 (Cont.) ELs Relevant to Portal Resources

EL Function

#{srmContext.jspx['jspxFileLocation']} Returns any jspx file in the specified location

For example, the following expression returns the
page.jspx file:

#{srmContext.jspx['/home/web/page.jspx']}

#{srmContext.pageDef['pageDefinition']} Returns any jspx file with the specified page
definition

#{srmContext.iconURI['iconURI']} Returns the icon at the specified icon URI

#{srmContext.excludeFrom['excludeFromScopes']
}

In a larger expression, returns all specified portal
resources except those available in the excluded
scopes

#{srmContext.usesCustomSecurity['usesCustomSe
curity']}

In a larger expression, returns any portal resource
that either does or does not use custom security

Set usesCustomSecurity to TRUE or FALSE.
For example:

#{srmContext.usesCustomSecurity['TRUE']}

#{srmContext.seeded['seeded']} In a larger expression, returns any portal resource
that is or is not seeded, depending on the
provided value

Set seeded to TRUE or FALSE. For example:

#{srmContext.seeded['TRUE']}

#{srmContext.visibleType['visibleType']} In a larger expression, returns any portal resource
that is of the specified type of visibility

Set visibleType to TRUE, FALSE, or NEVER to
indicate that the portal resource is never shown.
For example, the following expression returns
portal resources that are visible, that is, portal
resources that are set to Show:

#{srmContext.visibleType['TRUE']}

#{srmContext.visible['visible']} In a larger expression, returns one or multiple
portal resources with visibility set to either TRUE
or FALSE

#{srmContext.createdBy['resourceCreator']} In a larger expression, returns any portal resource
created by the specified user

ELs Related to Portal Resources

A-26 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-8 (Cont.) ELs Relevant to Portal Resources

EL Function

#{srmContext.resourceType['resourceType']} In a larger expression, returns one or multiple
portal resources of the specified type

For example, the following expression searches
for a portal resource of the type
SITE_TEMPLATE:

#{srmContext.resourceType['SITE_TEMPLATE']}

Note that all resource types are listed in Oracle
WebCenter Portal Java API Reference, in the
GenericSiteResourceTypes class.

#{srmContext.version['version']} In a larger expression, returns one or multiple
portal resources available in the application of
the specified version

#{srmContext.resourceScope['scopeName']} In a larger expression, returns one or multiple
portal resources available in the specified scope

For example, the following expression searches
for portal resources in the scope (in this instance,
the portal) MyPortal:

#{srmContext.resourceScope['MyPortal']}

To search in the default scope, that is, the
application scope, use defaultScope.

#{srmContext.searchType['searchType']} In a larger expression, returns one or multiple
portal resources that contain or equal the values
set by other included expressions

Set searchType to CONTAINS or EQUALS.

A.10 ELs Related to Navigation
Table A-9 lists EL expressions relevant to application navigation and describes the
types of functionality they provide.

Table A-9 EL Expressions Relevant to Navigation

Expression Function

Navigation Context Expressions

#{navigationContext.defaultNavigati
onModel}

Returns default navigation model. It gets the value from the
preference bean. The preference bean gets the value based on
the preference setting in adf-config.xml, static value.

The following example returns the specified default tree
model:

#{navigationContext.defaultNavigationModel.defaultTreeM
odel}

You can also use defaultMenuModel and
defaultListModel (see next listing).

ELs Related to Navigation

Expression Language Expressions A-27

Table A-9 (Cont.) EL Expressions Relevant to Navigation

Expression Function

#{navigationContext.currentNavigati
onModel}

Returns the navigation model used to navigate to the current
view (that is, the current page)

The current navigation model is set only when the
processAction is called.

The following example returns the default tree model for the
current navigation model:

#{navigationContext.currentNavigationModel.defaultTreeM
odel}

You can also use defaultMenuModel and
defaultListModel.

See Also: #{navigationContext.processAction}.

#{navigationContext.navigationMode
l['model_path']}

This EL has been deprecated. Use
#{navigationContext.defaultNavigationModel} or
#{navigationContext.currentNavigationModel} in
its place.

ELs Related to Navigation

A-28 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-9 (Cont.) EL Expressions Relevant to Navigation

Expression Function

#{navigationContext.processAction} Returns the default navigation method for binding to UI
component's actionListener attribute. This assumes that
the target resource to navigate to is passed in through the
action UI component's node or path attribute.

The node attribute is typically used for the iterative case;
while the path attribute is typically used to create a static link.
If both are specified, the node attribute is used. Note that
when using the path attribute, you must also specify the
model attribute to pass in the navigation model object. If the
model attribute is not specified, the current navigation model
is used.

Example using the node attribute:

<af:forEach var="node" varStatus="vs"

items="#{navigationContext.defaultNavigationModel.rootN
ode.children}">
 <af:subform id="pt_sfm1">
 <af:commandLink id="pt_cl1"
 text="#{node.title}"
 inlineStyle="font-size:small;color:White;"

actionListener="#{navigationContext.processAction}"
 action="pprnav">
 <f:attribute name="node" value="#{node}"/>
 <af:showPopupBehavior popupId="menuPopup"
 align="afterStart"
 triggerType="mouseOver"/>
 </af:commandLink>

Example using the path attribute:

<af:commandLink id="pt_cl1" text="Prescriptions"
 inlineStyle="font-size:small; color:White;"
 actionListener="#{navigationContext.processAction}"
 action="pprnav">
<f:attribute name="path" value="/prescriptions"/>
<f:attribute name="model"
value="#{navigationContext.defaultNavigationModel}"/>
</af:commandLink>

Navigation Model Expressions

#{navigationContext.defaultNavigati
onModel.defaultTreeModel}

#{navigationContext.defaultNavigati
onModel.defaultMenuModel}

#{navigationContext.defaultNavigati
onModel.defaultListModel}

#{navigationContext.defaultNavigati
onModel.defaultSiteMap}

Returns a tree/menu/list model based on the default settings

The default values for the settings are specified in the next
row. For example, the default value for depth is 0.

For defaultSiteMap, it returns the XML for the site map of
the navigation based on the default settings.

This expression returns a model of type:

• ChildPropertyTreeModel—used in <af:tree>
component

• ChildPropertyMenuModel—used in
<af:breadcrumbs> or <af:menu> component

• ListNavigationResource—used in <af:foreach>

ELs Related to Navigation

Expression Language Expressions A-29

Table A-9 (Cont.) EL Expressions Relevant to Navigation

Expression Function

#{navigationContext.defaultNavigati
onModel.treeModel['parameters']}

#{navigationContext.defaultNavigati
onModel.menuModel['parameters']}

#{navigationContext.defaultNavigati
onModel.listModel['parameters']}

#{navigationContext.defaultNavigati
onModel.siteMap['parameters']}

Returns tree/menu/list model based on the specified comma-
separated parameters. Available parameters (with default
values as examples) are:

• startNode=/—specify the starting node of the model (do
not need "/" prefix unless requesting the root node, for
example, home).

• includeStartNode=true—specify true if you want to
include the starting node (for example, the root node
above) or false to start from its children.

• depth=0—defines the initial depth of fetching. "0" means
fetch the entire tree, which may take a long time. In which
case, use "1" to fetch on demand (when users click the
Expand icon).

• prefetchOnly=false—by default (true), it returns
nodes up to the depth level requested initially; deeper level
nodes are returned on demand. Use false if you want
only the initial sets of nodes. In which case, it does not
return deeper nodes later on when requested, even when
there are deeper nodes.

For siteMap, the available parameters are startNode and
includeStartNode.

Example:

#{navigationContext.defaultNavigationModel.treeModel['s
tartNode=home,includeStartNode=false,depth=2']}

#{navigationContext.defaultNavigati
onModel.rootNode}

Returns a root node (of type NavigationResource) of the
navigation model.

Example:

<af:commandLink id="pt_cl1" text="Prescriptions"
 inlineStyle="font-size:small; color:White;"
 actionListener="#{navigationContext.processAction}"
 action="pprnav">
 <f:attribute name="node"
 value="#{navigationContext.
 defaultNavigationModel.
 rootNode.children[2]"/>
</af:commandLink>

#{navigationContext.defaultNavigati
onModel.node['path']}

Returns a node (of type NavigationResource) based on the
path specified (you do not need "/" prefix unless you are
requesting the root node, for example, '/')

Example:

#{navigationContext.defaultNavigationModel.node['home/
page1']}

#{navigationContext.defaultNavigati
onModel.currentSelection}

Returns currently selected navigation portal resource.

ELs Related to Navigation

A-30 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-9 (Cont.) EL Expressions Relevant to Navigation

Expression Function

#{navigationContext.defaultNavigati
onModel.newCurrentSelection['path']
}

Sets the current selection to a node specified by the given path
(you do not need "/" prefix unless you are requesting the root
node, for example, '/'). If successful, returns the newly
selected node of type NavigationResource.

The user must have the ability to explicitly set the current
selection without having to actually navigate to a node.

This can be used where the user enters a page directly, and no
selection is set. It provides a mechanism for the user to control
what is the default when there is no current selection.

Example:

<c:set value="$
{navigationContext.defaultNavigationModel.newCurrentSel
ection['home/page1']}"
 var="currSel" scope="session"/>
<c:if test="${currSel!=null}">
 <af:forEach items="#{currSel.children}"
 var="cnode" varStatus="cnodestatus">
...</c:if>

#{navigationContext.defaultNavigati
onModel.attributes.Description}

#{navigationContext.defaultNavigati
onModel.attributes['Description']}

Returns the value of the specified attribute of the navigation
model.

#{navigationContext.defaultNavigati
onModel.properties['propertyName']}

Returns the value of the specified property of the navigation
model, where propertyName is either rootNode or
currentSelection.

Navigation Portal Resource Expressions

#{node.attributes.Description}

#{node.attributes['Description']}

Returns the value of the specified attribute of the navigation
portal resource.

#{node.parameters.StockSymbol}

#{node.parameters['StockSymbol']}

Returns the value of the specified parameter of the navigation
portal resource.

#{node.parametersRaw.StockSymbol}

#{node.parametersRaw['StockSymbol']}

Returns the raw value of the specified parameter of the
navigation portal resource (before it is evaluated).

#{node.title} Returns the title of the navigation portal resource.

#{node.path} Returns the path to the navigation portal resource.

#{node.externalURL} Returns the URL for the navigation portal resource of type
External Link.

#{node.prettyUrl} Returns the identifying path for this navigation portal
resource.

ELs Related to Navigation

Expression Language Expressions A-31

Table A-9 (Cont.) EL Expressions Relevant to Navigation

Expression Function

#{node.prettyUrlPath}

#{node.prettyUrlPath[N]}

Returns a collection of identifying paths by depth to enable its
use as a starting path to drive another navigation view.

For example, assuming the currentSelection is home/
company/products/applications, the following EL
returns home/company/products:

#{node.prettyUrlPath[3]}

#{node.goLinkPretty Url} Returns the identifying path for this navigation portal resource
suitable for goLink destination

<af:goLink id="pt_gl2" text="#{node.title}"
 destination="#{node.goLinkPrettyUrl}"
 targetFrame="#{node.attributes['Target']}"
 inlineStyle="font-size:small;#{node.selected ?
 'font-weight:bold;' : ''}"/>

#{node.separator ? ... : ...} Returns whether this portal resource is a separator item.

#{node.navigable ? ... : ...} Returns whether it is possible to navigate to this portal
resource.

#{node.selected ? ... : ...} Returns whether this portal resource is currently selected.

#{node.currentlySelected ? ... : ...
}

Returns whether the portal resource is the currently selected
portal resource and the model is the currently selected model.

#{node.onSelectedPath ? ... : ...} Returns whether this node lies on the selected path. This is
useful for highlighting the selected tab, for example.

For example, assuming the currently selected node is home/
company/products/applications, the following EL
highlights the home tab.

<c:set value="$
{navigationContext.defaultNavigationModel.node['home']}
"
 var="home" scope="session"/>
 <af:commandImageLink id="cil1"
 icon="#{(home.onSelectedPath) ?
 '/images/caremark/nav/HomeSelected.png' :
 '/images/caremark/nav/HomeIcon.png'}"

actionListener="#{navigationContext.processAction}"
 action="pprnav">
 <f:attribute name="node" value="#{home}"/></
af:commandImageLink>

#{node.leaf ? ... : ...} Returns whether this resource is a leaf node.

#{node.parent} Returns the parent node (of type NavigationResource) of
this node. For the root node, null is returned.

ELs Related to Navigation

A-32 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-9 (Cont.) EL Expressions Relevant to Navigation

Expression Function

#{node.ancestors} Returns the hierarchy list of ancestors of this node (of type
NavigationResource) starting with the root node.

For example, assuming the current node is home/company/
products/applications, the following ELs return the
following values:

• #{node.ancestors[1]} returns the node for home
• #{node.ancestors[3]} returns the node for home/

company/products

#{node.depth} Returns the depth of this node from the root node. Root node
has a depth of zero.

#{node.siblings} Returns the list of siblings (of type NavigationResource) of
this node (inclusive).

#{node.nextSibling} Returns the next sibling in the list (of type
NavigationResource) of this node.

For example, the following code ensures that you do not
output two separators in a row:

<c:if test="${(node.separator) && (!
node.nextSibling.separator}">
 <af:separator id="s166"/>
</c:if>

#{node.previousSibling} Returns the previous sibling in the list (of type
NavigationResource) of this node.

#{node.index} Returns the zero-relative index of this node relative to its
siblings.

#{node.children}

#{node.children[N].title}

#{node.children[N].children[N].title
}

Returns a collection of child resources.

#{node.childCount} Returns the number of children of this node.

#{node.childByIndex['index']} Returns the child node (of type NavigationResource)
specified by the zero-relative index.

If not found, this returns null.

#{node.childByPath['admin']} Returns the child node (of type NavigationResource)
specified by the path relative to this node.

The path can be deeper than one level and does not need the
'/' prefix. If not found, this returns null.

#{node.properties['propertyName']} Returns the value of the specified property of the navigation
portal resource, where propertyName is one of the following:
separator, title, prettyUrl, prettyUrlPath, depth,
leaf, childCount, navigable, selected, or
currentlySelected.

ELs Related to Navigation

Expression Language Expressions A-33

A.11 ELs Related to Tools and Services
ELs Related to Tools and Services lists EL expressions relevant to tools and services
and describes the types of functionality they provide. All listed ELs apply to both
portals built with WebCenter Portal and Portal Framework applications built with
JDeveloper.

Table A-10 EL Expressions Relevant to Tools and Services

Expression Function

#{webcenterService['serviceId']} Returns an implementation of
oracle.webcenter.framework.service.Service
object representing the WebCenter Portal tool or service
represented by the service ID serviceId.In the example,
object of class
oracle.webcenter.doclib.internal.spaces.Docl
ibService is returned:

#{webcenterService['oracle.webcenter.doclib']}

For service IDs, see Table A-11.

#{webcenterService['serviceId'].confi
gured}

Returns a Boolean value that indicates whether the
WebCenter Portal tool or service represented by the service
ID serviceId is configured for use in the current
WebCenter Portal instance. For example, the following EL
returns true if discussions can be used in the application,
false otherwise:

#{webcenterService['oracle.webcenter.collab.forum'].c
onfigured}

For service IDs, see Table A-11.

#{sessionContext['oracle.webcenter.co
llab.forum'].groupInfo['portalName'].
forumId}

Returns the forum ID of the specified portal discussion
forum. Enter the portal name in lieu of portalName.

#{sessionContext['oracle.webcenter.co
llab.forum'].groupInfo['portalName'].
categoryId}

Returns the category ID of the specified WebCenter Portal
discussion forums. Enter the portal name in lieu of
portalName.

Table A-11 lists service IDs associated with WebCenter Portal tool and services.

Table A-11 Service and Tool IDs

Service/Tool ID

Announcements oracle.webcenter.collab.announcement

Discussions oracle.webcenter.collab.forum

Documents and Wikis oracle.webcenter.doclib

Events oracle.webcenter.collab.calendar.community

Instant Messaging and Presence (IMP) oracle.webcenter.collab.rtc

ELs Related to Tools and Services

A-34 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-11 (Cont.) Service and Tool IDs

Service/Tool ID

Links oracle.webcenter.relationship

Lists oracle.webcenter.list

Mail oracle.webcenter.collab.mail

Notifications oracle.webcenter.notification

Page oracle.webcenter.page

People Connections: Activity Stream oracle.webcenter.activitystreaming

People Connections: Connections oracle.webcenter.peopleconnections.connections

People Connections: Feedback oracle.webcenter.peopleconnections.kudos

People Connections: Message Board oracle.webcenter.peopleconnections.wall

People Connections: Profile oracle.webcenter.peopleconnections.profile

RSS oracle.webcenter.rss

Search oracle.webcenter.search

Tags oracle.webcenter.tagging

Blogs oracle.webcenter.blog

Worklist oracle.webcenter.worklist

A.12 ELs Related to Documents
Table A-12 lists EL expressions relevant to documents and describes the types of
functionality they provide.

Table A-12 EL Expressions Relevant to Documents

Expression Function

#{documentsService.defaultConnectionName
}

Gets the default content repository connection name.
Returns null if no connection name is defined.

#{documentsService.configured} Checks whether the documents feature is configured.
Returns true if the documents feature is configured,
otherwise false.

A.13 ELs Related to People Connections
Table A-13 lists EL expressions relevant to the people connections Profile feature and
describes the types of functionality they provide.

ELs Related to Documents

Expression Language Expressions A-35

Note:

The entry securityContext.userName, included in every Profile
expression, returns the name of the current user. Note also that information is
returned only if it is present in the user's profile. If the information is not
included in the profile, a null value is returned. Information is also returned
only if the current user is allowed to see it.

Table A-13 EL Expressions Relevant to People Connections (Profile)

Expression Function

#{webCenterProfile[userName].managerDispl
ayName}

#{webCenterProfile[securityContext.userNa
me].managerDisplayName}

The display name of the user's manager.

#{webCenterProfile[userName].employeeNumb
er}

#{webCenterProfile[securityContext.userNa
me].employeeNumber}

The user's employee number.

#{webCenterProfile[userName].businessPOBo
x}

#{webCenterProfile[securityContext.userNa
me].businessPOBox}

The post office box number associated with the user.

#{webCenterProfile[userName].timeZone}

#{webCenterProfile[securityContext.userNa
me].timeZone}

The time zone in which the user's home office is
located.

#{webCenterProfile[userName].description}

#{webCenterProfile[securityContext.userNa
me].description}

A description of the user (from Profile "About Me").

#{webCenterProfile[userName].department}

#{webCenterProfile[securityContext.userNa
me].department}

The department to which the user belongs.

#{webCenterProfile[userName].businessPage
r}

#{webCenterProfile[securityContext.userNa
me].businessPager}

The user's business pager number.

#{webCenterProfile[userName].businessCity
}

#{webCenterProfile[securityContext.userNa
me].businessCity}

The city in which the user is located.

#{webCenterProfile[userName].maidenName}

#{webCenterProfile[securityContext.userNa
me].maidenName}

The user's surname or last name before marriage.

#{webCenterProfile[userName].businessFax}

#{webCenterProfile[securityContext.userNa
me].businessFax}

The user's business fax number.

ELs Related to People Connections

A-36 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-13 (Cont.) EL Expressions Relevant to People Connections (Profile)

Expression Function

#{webCenterProfile[userName].dateofHire}

#{webCenterProfile[securityContext.userNa
me].dateofHire}

The user's date of hire.

#{webCenterProfile[userName].nameSuffix}

#{webCenterProfile[securityContext.userNa
me].nameSuffix}

Additional information appended to the user's name,
such as Esq., Jr., and so on.

#{webCenterProfile[userName].middleName}

#{webCenterProfile[securityContext.userNa
me].middleName}

The user's middle name.

#{webCenterProfile[userName].homePhone}

#{webCenterProfile[securityContext.userNa
me].homePhone}

The user's home phone number.

#{webCenterProfile[userName].employeeType
}

#{webCenterProfile[securityContext.userNa
me].employeeType}

The user's employee type classification, for example,
IC4.

#{webCenterProfile[userName].lastName}

#{webCenterProfile[securityContext.userNa
me].lastName}

The user's surname or last name.

#{webCenterProfile[userName].dateofBirth}

#{webCenterProfile[securityContext.userNa
me].dateofBirth}

The user's birthday.

#{webCenterProfile[userName].businessStat
e}

#{webCenterProfile[securityContext.userNa
me].businessState}

The state in which the user's home office is located.

#{webCenterProfile[userName].homeAddress}

#{webCenterProfile[securityContext.userNa
me].homeAddress}

The user's home street address.

#{webCenterProfile[userName].businessStre
et}

#{webCenterProfile[securityContext.userNa
me].businessStreet}

The street on which the user's home office is located.

#{webCenterProfile[userName].businessPost
alCode}

#{webCenterProfile[securityContext.userNa
me].businessPostalCode}

The user's postal or ZIP code.

#{webCenterProfile[userName].initials}

#{webCenterProfile[securityContext.userNa
me].initials}

The user's initials.

ELs Related to People Connections

Expression Language Expressions A-37

Table A-13 (Cont.) EL Expressions Relevant to People Connections (Profile)

Expression Function

#{webCenterProfile[userName].firstName}

#{webCenterProfile[securityContext.userNa
me].firstName}

The user's first name.

#{webCenterProfile[userName].organization
alUnit}

#{webCenterProfile[securityContext.userNa
me].organizationalUnit}

The organizational unit to which the user belongs, for
example, D10,.

#{webCenterProfile[userName].wirelessAcct
Number}

#{webCenterProfile[securityContext.userNa
me].wirelessAcctNumber}

The user's wireless account number.

#{webCenterProfile[userName].businessPhon
e}

#{webCenterProfile[securityContext.userNa
me].businessPhone}

The user's business telephone number.

#{webCenterProfile[userName].businessCoun
try}

#{webCenterProfile[securityContext.userNa
me].businessCountry}

The country in to which the user is assigned.

#{webCenterProfile[userName].preferredLan
guage}

#{webCenterProfile[securityContext.userNa
me].preferredLanguage}

The user's preferred language.

#{webCenterProfile[userName].displayName}

#{webCenterProfile[securityContext.userNa
me].displayName}

The user's display name.

#{webCenterProfile[userName].userName}

#{webCenterProfile[securityContext.userNa
me].userName}

The user's actual name.

#{webCenterProfile[userName].title}

#{webCenterProfile[securityContext.userNa
me].title}

The user's job title.

#{webCenterProfile[userName].businessEmai
l}

#{webCenterProfile[securityContext.userNa
me].businessEmail}

The user's business email address.

#{webCenterProfile[userName].organization
}

#{webCenterProfile[securityContext.userNa
me].organization}

The organization to which the user belongs, for
example, Sales,.

ELs Related to People Connections

A-38 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-13 (Cont.) EL Expressions Relevant to People Connections (Profile)

Expression Function

#{webCenterProfile[userName].businessMobi
le}

#{webCenterProfile[securityContext.userNa
me].businessMobile}

The user's cell or mobile phone number.

#{webCenterProfile[userName].expertise}

#{webCenterProfile[securityContext.userNa
me].expertise}

The user's business expertise.

A.14 ELs Related to Impersonation
Table A-14 lists EL expressions relevant to WebCenter Portal Impersonation and
describes the types of functionality they provide. All listed ELs apply to both portals
built with WebCenter Portal and Portal Framework applications built with
JDeveloper.

For more information about using these ELs, see Customizing WebCenter Portal
Impersonation Security.

Table A-14 EL Expressions Relevant to Impersonation

Expression Function

#{WCSecurityContext.impersonationConfigur
ed}

Returns whether or not impersonation has been
enabled for the current domain.

This EL can be useful when determining if an error was
caused by an impersonation session ending
prematurely, or to provide an additional indicator that
a session has ended.

#{WCSecurityContext.userInImpersonationSe
ssion}

Returns whether the current user is in an
impersonation session or not.

You can use this EL to protect content and render it
inaccessible during an impersonation session. For
example, you could map the rendered attribute of an
administration taskflow on a page to this EL only
rendering the taskflow if the user is not viewing the
taskflow in an impersonation session.

#{WCSecurityContext.currentImpersonator} This EL could be used to modify the page template to
display the impersonator or render content accessible
only to a particular impersonator.

A.15 EL Expressions Related to the Page Editor
Table A-15 lists EL expressions relevant to the WebCenter Portal page editor. These EL
expressions can be used both in portals built with WebCenter Portal and in asset
applications built with Oracle JDeveloper.

Table A-15 EL Expressions Relevant to Page Editor

ELs Related to Impersonation

Expression Language Expressions A-39

Table A-15 (Cont.) EL Expressions Relevant to Page Editor

Expression Function

#{composerContext.inEditMod
e}

Determines whether the current page is in View mode or Edit mode.

For example:

<af:outputText id="ot1"
 value="#{composerContext.inEditMode ne
 true ? 'View mode' : 'Edit mode'} />

This example shows an ADF Faces outputText component that returns
View mode when the page is in View mode and Edit mode when the
page is in Edit mode.

#{changeModeBean.inEditMode
}

The childCreation attribute determines whether the children of
popup dialogs can be viewed in Composer. By default, this attribute is
set to deferred and users are unable to see the children of popup
dialogs. Setting the value to immediate allows users to view the
children of popup dialogs.

For example:

<af:popup childCreation="#{changeModeBean.inEditMode
 ? 'immediate' : 'deferred'}" />

There is a performance impact by setting the childrenCreation
attribute to immediate. If you do not need to use the popup on the page,
using the default setting of deferred will avoid the penalty of CPU and
memory usage when it is not needed. Note that the popup will be shown
non-modally, thus, the application must be able to handle that fact
without error.

A.15.1 Example: Using EL Expressions for the Page Editor
This section provides an example of using an EL expression to display different pages
in View mode and Edit mode. Consider that you want one of your pages, Page1, to
display another page, Page2, in View mode. However, while editing Page1, instead
of Page2, you want to display a website, www.example.com. You can use the EL of
the following format :

#{ composerContext.inEditMode ? 'http://www.example.com' : 'url_of_Page2' }

This EL displays the specified website when your page is in Edit mode, and shows
Page2 when in View mode.

The following steps demonstrate how to display different pages depending on the
page mode.

1. Open a page named Page1 in the page editor.

2. In Design view, in the resource catalog, click Web Development.

3. Click Add displayed next to Web Page.

4. Click the Edit icon for the newly added Web Page.

5. In the Component Properties dialog, on the Display Options tab, in the Source
field, enter the value as per the following format:

#{ composerContext.inEditMode ? 'website_url' : 'url_of_Page2' }

EL Expressions Related to the Page Editor

A-40 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

6. Click OK.

In Composer, Page1 should now display the website you specified. Save and
close the page. Page1 should now show Page2.

A.16 EL Expressions Related to Device Settings
This section lists ELs for obtaining information about device settings. For information
about device settings, see Administering Device Settings in Administering Oracle
WebCenter Portal.

You can use EL expressions to set assets (skins and page templates) targeted to specific
devices. For information on using EL with device settings, see Administering Device
Settings in Administering Oracle WebCenter Portal.

• Table A-16 lists EL expressions for obtaining information about device group
mappings.

• Table A-17 lists ELs for obtaining information about devices.

• Table A-18 lists ELs for obtaining information about skins and page templates
associated with device groups.

• Sample Task Flow Code for Discovering Device Attributespresents sample code
that can be used in a task flow for discovering the attributes of the device used to
access the portal.

For example, a page designer can use the device's attribute to control the width of the
content area of a page by using the following EL:

#{DeviceAgent.device.attributes['display_resolution_width']

Table A-16 EL Expressions Related to Device Agents

Expression Related Java API Description

#{DeviceAgent} DeviceAgent.getInstanc
e()

The root entry point to all device settings EL.

#{DeviceAgent.device} DeviceAgent.getInstanc
e().getDevice()

The device to which the current request is
mapped.

#{DeviceAgent.deviceG
roups}

DeviceAgent.getInstanc
e().getDeviceGroups()

A list of device groups to which the current
device maps. This operation returns all device
groups, whether they are marked as enabled
or not.

#{DeviceAgent.current
ScopeDeviceGroup}

DeviceAgent.getInstanc
e().getCurrentScopeDevi
ceGroup()

Gets the device group that the incoming request
was mapped to for the given portal. This EL can
help the administrator diagnose issues about
why a page variant is not getting displayed for a
particular device.

Table A-17 EL Expressions Relevant to Devices

Expression Related Java API Description

#{DeviceAgent.device} DeviceAgent.getInstance(
).getDevice()

The device to which the current request is
mapped.

EL Expressions Related to Device Settings

Expression Language Expressions A-41

Table A-17 (Cont.) EL Expressions Relevant to Devices

Expression Related Java API Description

#{DeviceAgent.device.
name}

DeviceAgent.getInstance(
).getDevice().getName()

The name of the device. This is a system
friendly identifier that can be used for internal
linking.

#{DeviceAgent.device.
displayName}

DeviceAgent.getInstance(
).getDevice().getDisplay
Name()

The display name of the device.

#{DeviceAgent.device.
attributes}

DeviceAgent.getInstance(
).getDevice().getAttribu
tes()

A map of attributes associated with a device -
like the screen size, OS version, and so on.

For example, the following EL returns the
display resolution width that was set when the
device was created:

#{DeviceAgent.device.attributes['di
splay_resolution_width']}

Table A-18 EL Expressions Relevant to Device Groups

Expression Related Java API Descriptions

#{DeviceAgent.currentS
copeDeviceGroup}

DeviceAgent.getInstanc
e().getCurrentScopeDev
iceGroup()

The device group to which the current request
has been mapped. The typical flow for
identifying the appropriate device group is as
follows:

1. Identify the device to which the current
request belongs.

2. Get all the device groups that have been
enabled for the current portal.

3. Identify the first device group (from the
above list) to which the device belongs.

#{DeviceAgent.currentS
copeDeviceGroup.name}

DeviceAgent.getInstanc
e().getCurrentScopeDev
iceGroup().getName()

The name of the device group. For example:

#{DeviceAgent.currentScopeDeviceGro
up.name =='androidTablets'}

#{DeviceAgent.currentS
copeDeviceGroup.portal
PageTemplate}

DeviceAgent.getInstanc
e().getCurrentScopeDev
iceGroup().getPortalPa
geTemplate()

Returns the GUID of the portal page template
associated with this device group object. If the
method returns NULL, the default page
template setting for the portal is in effect.

Note: For information on the resource ELs used
to work with the obtained GUID, see ELs
Related to Portal Resources.

#{DeviceAgent.currentS
copeDeviceGroup.portal
Skin}

DeviceAgent.getInstanc
e().getCurrentScopeDev
iceGroup().getPortalSk
in()

Returns the GUID of the portal skin associated
with this device group. If the method returns
NULL, the default skin setting for the portal is
in effect.

Note: For information on the resource ELs used
to work with the obtained GUID, see ELs
Related to Portal Resources.

EL Expressions Related to Device Settings

A-42 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-18 (Cont.) EL Expressions Relevant to Device Groups

Expression Related Java API Descriptions

#{DeviceAgent.currentS
copeDeviceGroup.defaul
t}

DeviceAgent.getInstanc
e().getCurrentScopeDev
iceGroup().isDefault()

Returns true if the device group is the default
for the current device. Returns false if the device
group is not the default for the device. For
example, if the default device group is "Desktop
Browsers" and you access the portal on an iPad,
then the device group will be iPad, but it is not
the default device group. In this case, the
method returns false.

#{DeviceAgent.currentS
copeDeviceGroup.enable
d}

DeviceAgent.getInstanc
e().getCurrentScopeDev
iceGroup().isEnabled()

Identifies whether or not this device group has
been marked as enabled for the current portal.

Note: In this invocation, the device group will
always state true. This EL is useful when
working with all the device groups as obtained
from the EL
#{DeviceAgent.deviceGroups}

A.16.1 Sample Task Flow Code for Discovering Device Attributes
The example below lists a JSF page fragment that can be used to create a task flow for
discovering device attributes. EL is used to return the attributes. The task flow may be
useful for troubleshooting situations where the portal is not rendering properly on a
device. By discovering the device attributes, you can take action to correct the
rendering problem. Figure A-6 shows output from a task flow created with this
sample code.

Example: Task Flow Code for Discovering Device Attributes

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:pe="http://
xmlns.oracle.com/adf/pageeditor" xmlns:cust="http://xmlns.oracle.com/adf/faces/customizable"
xmlns:f="http://java.sun.com/jsf/core" xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <af:panelGroupLayout layout="scroll" id="pgl1">
 <cust:panelCustomizable id="pc1"/>
 <f:facet name="separator">
 <af:separator id="s1"/>
 </f:facet>
 <af:panelFormLayout id="pfl1">
 <af:group id="g1">
 <af:panelLabelAndMessage id="it0" label="Current Device" labelStyle="color:#0000ff;font-
weight:bold;"/>
 <af:panelLabelAndMessage id="it1plm" label="Internal Name">
 <af:outputText id="it1" value="#{DeviceAgent.device.name}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it2plm" label="Display Name">
 <af:outputText id="it2" value="#{DeviceAgent.device.displayName}"/>
 </af:panelLabelAndMessage>
 </af:group>
 <af:group>
 <af:panelLabelAndMessage id="it01" label="Current Device Group" labelStyle="color:#0000ff;font-
weight:bold;"/>
 <af:panelLabelAndMessage id="it3plm" label="Internal Name">
 <af:outputText id="it3" value="#{DeviceAgent.currentScopeDeviceGroup.name}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it4plm" label="Display Name">

EL Expressions Related to Device Settings

Expression Language Expressions A-43

 <af:outputText id="it4" value="#{DeviceAgent.currentScopeDeviceGroup.displayName}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it5plm" label="PageTemplate">
 <af:outputText id="it5"
value="#{srmContext.id[DeviceAgent.currentScopeDeviceGroup.portalPageTemplate].singleResult.displayNam
e}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it6plm" label="Skin">
 <af:outputText id="it6"
value="#{srmContext.id[DeviceAgent.currentScopeDeviceGroup.portalSkin].singleResult.displayName}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it7plm" label="Is Default">
 <af:outputText id="it7" value="#{DeviceAgent.currentScopeDeviceGroup.default}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it8plm" label="Is Enabled">
 <af:outputText id="it8" value="#{DeviceAgent.currentScopeDeviceGroup.enabled}"/>
 </af:panelLabelAndMessage>
 </af:group>
 <af:group>
 <af:panelLabelAndMessage id="it9plm" label="Current Browser User Agent"
labelStyle="color:#0000ff;font-weight:bold;">
 <af:outputText id="it9" value="#{DeviceAgent.userAgent}"/>
 </af:panelLabelAndMessage>
 </af:group>
 <af:group>
 <af:panelLabelAndMessage id="pt0" label="Page Template Info" labelStyle="color:#0000ff;font-
weight:bold;"/>
 <af:panelLabelAndMessage id="it010plm" label="Expected PageTemplate:GUID">
 <af:outputText id="it010" value="#{DeviceAgent.currentScopeDeviceGroup.portalPageTemplate}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it0010plm" label="Expected PageTemplate:Name">
 <af:outputText id="it0010"
value="#{srmContext.id[DeviceAgent.currentScopeDeviceGroup.portalPageTemplate].singleResult.displayNam
e}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it10plm" label="Current PageTemplate:GUID">
 <af:outputText id="it10"
value="#{WCAppContext.application.siteTemplatesManager.currentSiteTemplateId}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it10aplm" label="Current PageTemplate:Name">
 <af:outputText id="it10a"
value="#{srmContext.id[WCAppContext.application.siteTemplatesManager.currentSiteTemplateId].singleResu
lt.displayName}"/>
 </af:panelLabelAndMessage>
 </af:group>
 <af:group>
 <af:panelLabelAndMessage id="sk0" label="Skin Info" labelStyle="color:#0000ff;font-weight:bold;"/>
 <af:panelLabelAndMessage id="it0111plm" label="Expected Skin:GUID">
 <af:outputText id="it0111" value="#{DeviceAgent.currentScopeDeviceGroup.portalSkin}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it0112plm" label="Expected Skin:Name">
 <af:outputText id="it0112"
value="#{srmContext.id[DeviceAgent.currentScopeDeviceGroup.portalSkin].singleResult.displayName}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it111plm" label="Current Skin:GUID">
 <af:outputText id="it111" value=""/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="it112plm" label="Current Skin:Name">
 <af:outputText id="it112"
value="#{requestScope['oracle.webcenter.webcenterapp.view.shell.WebCenterShellManager.SHELLHANDLER'].a
dfFacesSkin}"/>

EL Expressions Related to Device Settings

A-44 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 </af:panelLabelAndMessage>
 </af:group>
 <af:group>
 <af:panelLabelAndMessage id="pg0" label="Page Info" labelStyle="color:#0000ff;font-weight:bold;"/>
 <af:panelLabelAndMessage id="pg10" label="Page Path">
 <af:outputText id="pg1" value="#{pageDocBean.pagePath}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="pg20" label="Page Style">
 <af:outputText id="pg2" value=""/>
 </af:panelLabelAndMessage>
 </af:group>
 <af:group>
 <af:panelLabelAndMessage id="ap90" label="Optional Attributes" labelStyle="color:#0000ff;font-
weight:bold;"/>
 <af:panelLabelAndMessage id="ap1opta" label="brand-name">
 <af:outputText id="ap1" value="#{DeviceAgent.device.attributes['brand-name']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap2opta" label="device-os">
 <af:outputText id="ap2" value="#{DeviceAgent.device.attributes['device-os']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap3opta" label="device-type">
 <af:outputText id="ap3" value="#{DeviceAgent.device.attributes['device-type']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap4opta" label="device_default_aspect_ratio">
 <af:outputText id="ap4" value="#{DeviceAgent.device.attributes['device_default_aspect_ratio']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap5opta" label="device_os-version">
 <af:outputText id="ap5" value="#{DeviceAgent.device.attributes['device_os-version']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap6opta" label="device_preview_css">
 <af:outputText id="ap6" value="#{DeviceAgent.device.attributes['device_preview_css']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap7opta" label="device_preview_horizontal_css">
 <af:outputText id="ap7" value="#{DeviceAgent.device.attributes['device_preview_horizontal_css']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap8opta" label="device_preview_viewport_css">
 <af:outputText id="ap8" value="#{DeviceAgent.device.attributes['device_preview_viewport_css']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap9opta" label="device_preview_viewport_horizontal_css">
 <af:outputText id="ap9"
value="#{DeviceAgent.device.attributes['device_preview_viewport_horizontal_css']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap10opta" label="device_streaming_flv">
 <af:outputText id="ap10" value="#{DeviceAgent.device.attributes['device_streaming_flv']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap11opta" label="device_streaming_preferred_http_protocol">
 <af:outputText id="ap11"
value="#{DeviceAgent.device.attributes['device_streaming_preferred_http_protocol']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap12opta" label="device_streaming_preferred_protocol">
 <af:outputText id="ap12"
value="#{DeviceAgent.device.attributes['device_streaming_preferred_protocol']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap13opta" label="device_video_streaming">
 <af:outputText id="ap13" value="#{DeviceAgent.device.attributes['device_video_streaming']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap14opta" label="display_orientation_support">
 <af:outputText id="ap14" value="#{DeviceAgent.device.attributes['display_orientation_support']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap15opta" label="display_resolution_height">
 <af:outputText id="ap15" value="#{DeviceAgent.device.attributes['display_resolution_height']}"/>

EL Expressions Related to Device Settings

Expression Language Expressions A-45

 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap16opta" label="display_resolution_width">
 <af:outputText id="ap16" value="#{DeviceAgent.device.attributes['display_resolution_width']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap17opta" label="is-wireless_device">
 <af:outputText id="ap17" value="#{DeviceAgent.device.attributes['is-wireless_device']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap18opta" label="marketing-name">
 <af:outputText id="ap18" value="#{DeviceAgent.device.attributes['marketing-name']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap19opta" label="model-name">
 <af:outputText id="ap19" value="#{DeviceAgent.device.attributes['model-name']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap20opta" label="model-version">
 <af:outputText id="ap20" value="#{DeviceAgent.device.attributes['model-version']}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage id="ap21opta" label="icon">
 <af:outputText id="ap21" value="#{DeviceAgent.device.attributes['icon']}"/>
 </af:panelLabelAndMessage>
 </af:group>
 </af:panelFormLayout>
 </af:panelGroupLayout>
</jsp:root>

Figure A-6 Output from Sample Task Flow

A.17 Utilitarian EL Expressions
Table A-19 lists utilitarian EL expressions and describes the types of functionality they
provide.

Utilitarian EL Expressions

A-46 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-19 Utilitarian EL Expressions

Expression Function

#{userPreferences.currentDate} Returns the current date in the format specified in the
current user's preferences.

#{WCTruncator['text']
['numberOfChars']}

Returns a truncation of the string specified as text to the
number of characters specified as numberOfChars,
followed by a trailing ellipsis, for example:
#{WCTruncator['abracadabra']['5']} evaluates to
abrac...

#{facesContext.viewRoot.locale}

#{facesContext.externalContext.reques
tLocale}

Both of these expressions return the request locale (that is,
the browser locale setting).

#{adfFacesContext.skinFamily} Returns the current application skin family. Returns the
same value as #{requestContext.skinFamily}.

A.18 Built-In Expressions in the Expression Editor
In the Expression Editor, when you select the option Choose a value you can populate
the text box in the dialog with a built-in EL expression. First, select an expression
category, and then select the type of information you want the expression to return.
Your selection's associated EL appears in the text box at the bottom of the dialog
(Figure A-7).

Figure A-7 Options Under Choose a value in the Expression Editor

This section is broken into subsections for each category. Each subsection lists and
describes the ELs associated with that category.

This section includes the following subsections:

• Application Info Built-In ELs

• Asset Info Built-In ELs

• Page Info Built-In ELs

• Page Parameter Built-In ELs

• Portal Info Built-In ELs

• Portal Page Info Built-In Paths

• System Built-In ELs

Built-In Expressions in the Expression Editor

Expression Language Expressions A-47

• User Info Built-In ELs

• WebCenter Events Built-In ELs

A.18.1 Application Info Built-In ELs
Application Info built-in EL expressions return values related to Oracle WebCenter
Portal. For example, the expression
#{WCAppContext.application.applicationConfig.title}, returns the
application name specified on the General page in WebCenter Portal administration.

See Also:

For additional EL expressions related to the application, see ELs Related to
WebCenter Portal Information.

Table A-20 lists the built-in EL expressions available under the category Application
Info and provides an example of the types of values they return.

Table A-20 Built-In EL Expressions Under Application Info

Option Expression Example of Returned Value

Current Scope #{serviceCtx.scope} Scope[name=standards,
guid=sa78185d3_9d65_49ab_ac1d_
4809380d0b30]

Current Page Template Scope #{WCAppContext.currentScope
}

Scope[name=standards,
guid=sa78185d3_9d65_49ab_ac1d_
4809380d0b30]

Previously Set Page Template #{WCAppContext.previouslySe
tPageTemplate}

Fusion Side Navigation

Application #{WCAppContext.application} oracle.webcenter.webcenterapp.
internal.view.shell.WCApplicat
ion

Application URL #{WCAppContext.applicationU
RL}

http://host:port/webcenter

Current WebCenter Portal
URI

#{WCAppContext.currentWebCe
nterURI}

/oracle/webcenter/page/
scopedMD/GUID/
businessRolePages/Page3.jspx?
wc.contextURL=%2Fspaces

Application Config #{WCAppContext.application.
applicationConfig}

oracle.webcenter.webcenterapp.
beans.WebCenterMetadataImpl@12
3db9d

Application Config Title #{WCAppContext.application.
applicationConfig.title}

WebCenter

Application Config Logo #{WCAppContext.application.
applicationConfig.logo}

/oracle/webcenter/
webcenterapp/metadata/images/
logo.gif

Built-In Expressions in the Expression Editor

A-48 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-20 (Cont.) Built-In EL Expressions Under Application Info

Option Expression Example of Returned Value

Application Config HelpPage #{WCAppContext.application.
applicationConfig.helpPage}

/webcenterhelp/spaces?
topic=welcome_main

Application Config
CopyrightMessage
CustomValue

#{WCAppContext.application.
applicationConfig.copyright
Message.customValue}

http://www.example.com/html/
copyright.html

Application Config Privacy
Policy URL

#{WCAppContext.application.
applicationConfig.privacyPo
licyUrl}

http://www.example.com/html/
privacy.html

Application Config Skin #{WCAppContext.application.
applicationConfig.skin}

webcenterfx

For example, consider that you want a link to appear in all pages of a portal that lets
you copy and share the current page's URL. You can add an HTML Markup item to a
page template, and add the EL that returns page URL.

These steps demonstrate how to use ELs to retrieve page URLs:

1. Open a custom page template in Edit mode.

2. In Design view, in the resource catalog, click Web Development.

3. Click Add next to HTML Markup.

4. Click the Edit icon for the newly added HTML Markup.

5. In the Component Properties dialog, on the Display Options tab, in the Value
field, enter the following EL:

<a href="javascript:{
 var returnvalue =prompt('#{pageDocBean.title}
URL','#{WCAppContext.applicationURL}/faces#{WCAppContext.currentWebCenterURI}');
}">Share Link

6. Click OK.

7. Apply the page template to your portal.

A.18.2 Asset Info Built-In ELs
Asset Info built-in EL expressions return values related to WebCenter Portal resources,
such as templates, styles, resource catalogs, and so on. For example, the expression
#{srmContext.id['ResourceID'].singleResult}, returns the asset with the
specified GUID.

See Also:

For additional asset-related EL expressions, see ELs Related to Assets.

Table A-21 lists the built-in EL expressions available under the category Asset Info and
provides an example of the types of values each returns.

Built-In Expressions in the Expression Editor

Expression Language Expressions A-49

Table A-21 Built-In EL Expressions Under Asset Info

Option Expression Example of Returned Value

Asset ID #{srmContext[wCond['id']
['like']
['ResourceID']].singleResult}

id:gsr3396194a_3a72_44d6_90b4_
57fd6efe4ff7
resourceScope:Scope[name=defau
ltScope,
guid=s8bba98ff_4cbb_40b8_beee_
296c916a23ed]
resourceType:siteTemplate
serviceId:oracle.webcenter.sit
eresources.sitetemplate
category: displayName:Fusion
Side Navigation
displayNameKey:SITE_TEMPLATE_F
US_SIDE_STRETCH_NAV_DN
description:Stretching Page
Layout with Side Navigation.
Use Fusion FX Skin.
descriptionKey:SITE_TEMPLATE_F
US_SIDE_STRETCH_NAV_DESC
contentDirectory:/oracle/
webcenter/siteresources/shared
metadataFile: jspx:/oracle/
webcenter/webcenterapp/view/
templates/
WCSiteTemplateSideNavStretch.j
spx pageDef:/oracle/webcenter/
webcenterapp/bindings/
pageDefs/
oracle_webcenter_webcenterapp_
view_templates_WCSiteTemplateS
ideNavStretchPageDef.xml
iconURI: excludeFrom:
usesCustomSecurity:false
visible:TRUE seeded:true
createdBy:system
createdDate:Fri Jul 02
05:44:19 PDT 2010
modifiedBy:system
resourceBundle:oracle.webcente
r.sitetemplate.view.resource.S
iteTemplateBundle
modifiedDate:Fri Jul 02
05:44:19 PDT 2010
logoUrl:/adf/webcenter/
srm_dflt_logo_qualifier.png
attributes:[]

Display Name #{srmContext[wCond['displayNam
e']['like']
['DisplayName']].singleResult}

See Asset ID for an example of a
returned value.

Description #{srmContext[wCond['descriptio
n']['like']
['Description']].singleResult}

See Asset ID for an example of a
returned value.

Built-In Expressions in the Expression Editor

A-50 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-21 (Cont.) Built-In EL Expressions Under Asset Info

Option Expression Example of Returned Value

Creation Date #{srmContext[wCond['createdDat
e']['like']
['CreationDate']].singleResult
}

See Asset ID for an example of a
returned value.

Modified By #{srmContext[wCond['modifiedBy
']['like']
['UserName']].singleResult}

See Asset ID for an example of a
returned value.

Modified Date #{srmContext[wCond['modifiedDa
te']['like']
['ModifiedDate']].singleResult
}

See Asset ID for an example of a
returned value.

Asset Scope #{srmContext[wCond['resourceSc
ope']['like']
['ResourceScope']].singleResul
t}

See Asset ID for an example of a
returned value.

A.18.3 Page Info Built-In ELs
Page Info built-in EL expressions return values related to WebCenter Portal pages. For
example, the expression #{pageDocBean.createdBy}, returns the user name of the
person who created the current page.

Table A-22 lists the built-in EL expressions available under the category Page Info and
provides an example of the types of values each returns.

Table A-22 Built-In EL Expressions Under Page Info

Option Expression Example of Returned Value

Title #{pageDocBean.title} Welcome Page (BRP)

Created By #{pageDocBean.createdBy} j.doe

Create Date String #{pageDocBean.createDateStri
ng}

2010-11-17T13:27:52

Last Updated By #{pageDocBean.lastUpdatedBy} j.smith

Last Update Date String #{pageDocBean.lastUpdateDate
String}

2010-11-17T13:27:52

Page Path #{pageDocBean.pagePath} /oracle/webcenter/page/
scopedMD/GUID/
businessRolePages/Page3.jspx

Name #{pageDocBean.name} Page3.jspx

UI CSS Style #{pageDocBean.UICSSStyle} WCSchemeCustom

Built-In Expressions in the Expression Editor

Expression Language Expressions A-51

Table A-22 (Cont.) Built-In EL Expressions Under Page Info

Option Expression Example of Returned Value

UI Scheme BG Image #{pageDocBean.UISchemeBGImag
e}

#{facesContext.externalConte
xt.requestContextPath}/adf/
oracle/webcenter/page/
images/clouds.png

UI Scheme BG Color String #{pageDocBean.UISchemeBGColo
rString}

null

Page Permission #{pageDocBean.pagePermission
}

oracle.webcenter.page.model.
security.CustomPagePermissio
n

Page Security Target #{pageDocBean.pageSecurityTa
rget}

oracle_webcenter_page_scoped
MD_sa78185d3_9d65_49ab_ac1d_
4809380d0b30_COIHomePageDef

A.18.4 Page Parameter Built-In ELs
Page Parameter built-in EL expressions return values related to WebCenter Portal
page parameters. The editor lists all parameters that are defined for the current page.
If no parameters are defined, the Page Parameter category is not available.

For example, the built-in page style Blog provides five built-in page parameters (see
Table A-23). The width parameters describe the percentage of total width allotted to
each column. The show parameters specify whether a page header and footer are
rendered. Any page may have its own custom page parameters.

Whether built-in or custom, available page parameters are exposed in the Expression
Editor under the Page Parameter category.

See Also:

For more information about creating and using page parameters, see Adding
or Modifying Page Parameters in Building Portals with Oracle WebCenter Portal.

Table A-23 lists the EL expressions available under the Page Parameter category for
pages based on the Blog page style. It provides an example of the types of values each
parameter returns.

Table A-23 Built-In EL Expressions Under Page Parameter

Option Expression Example of Returned Value

leftWidth #{bindings.leftWidth} 25%

centerWidth #{bindings.centerWidth} 50%

rightWidth #{bindings.rightWidth} 25%

showHeader #{bindings.showHeader} false

showFooter #{bindings.showFooter} false

Built-In Expressions in the Expression Editor

A-52 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

A.18.5 Portal Info Built-In ELs
Portal Info built-in EL expressions return values related to portals (other than the
Home portal). For example, the expression #{spaceContext.space}, returns the
name of the current portal.

See Also:

For additional portal-related EL expressions, see ELs Related to Specific
Portals.

Table A-24 lists the built-in EL expressions available under the category Portal Info
and provides an example of the types of values each returns.

Note:

Use the EL expressions listed in Table A-24only in the context of portals other
than the Home portal.

Table A-24 Built-In EL Expressions Under Portal Info

Option Expression Example of Returned Value

NamedPortal #{spaceContext.space['portalN
ame']}

oracle.webcenter.spaces.inter
nal.model.SpaceImpl@15fc839

CurrentPortal #{spaceContext.currentSpace} oracle.webcenter.spaces.inter
nal.model.SpaceImpl@d5e197

CurrentPortal Name #{spaceContext.currentSpaceNa
me}

standards

NamedPortal Metadata
Path

#{spaceContext.space['portalN
ame'].metadataPath}

/oracle/webcenter/space/
metadata/spaces/portalName/
space.xml

CurrentPortal Metadata
Path

#{spaceContext.currentSpace.m
etadataPath}

/oracle/webcenter/space/
metadata/spaces/standards/
space.xml

NamedPortal Metadata #{spaceContext.space['portalN
ame'].metadata}

oracle.webcenter.spaces.beans
.SpaceMetadataImpl@1d7320a

CurrentPortal Metadata #{spaceContext.currentSpace.m
etadata}

oracle.webcenter.spaces.beans
.SpaceMetadataImpl@1096c64

NamedPortal Metadata
DisplayName

#{spaceContext.space['portalN
ame'].metadata.displayName}

Standards

CurrentPortal Metadata
DisplayName

#{spaceContext.currentSpace.G
SMetadata.displayName}

Sales

Built-In Expressions in the Expression Editor

Expression Language Expressions A-53

Table A-24 (Cont.) Built-In EL Expressions Under Portal Info

Option Expression Example of Returned Value

NamedPortal Metadata
Icon

#{WCPrepareImageURL[spaceCont
ext.space['portalName'].metad
ata.icon]['']}

/webcenter-spaces-resources/
oracle/webcenter/space/
metadata/spacetemplate/
PortalSite/images/
portal_icon.png

CurrentPortal Metadata
Icon

#{WCPrepareImageURL[spaceCont
ext.currentSpace.metadata.ico
n]['']}

/webcenter-spaces-resources/
oracle/webcenter/space/
metadata/spaces/Test_Space/
images/wc_prj_icon.png

NamedPortal Metadata
Description

#{spaceContext.space['portalN
ame'].metadata.description}

Central point for all
standards, templates, and
stylesheets for company
collateral

CurrentPortal Metadata
Description

#{spaceContext.currentSpace.G
SMetadata.description}

Sales Force Team Site

NamedPortal Metadata
CreationDate

#{spaceContext.space['portalN
ame'].metadata.creationDate} java.util.GregorianCalendar[time=12

90103432242,areFieldsSet=true,areAl
lFieldsSet=false,lenient=false,zone
=java.util.SimpleTimeZone[id=,offse
t=-28800000,dstSavings=3600000,useD
aylight=false,startYear=0,
startMode=0,startMonth=0,startDay=0
,startDayOfWeek=0,startTime=0,start
TimeMode=0,endMode=0,endMonth=0,end
Day=0,endDayOfWeek=0,endTime=0,endT
imeMode=0],firstDayOfWeek=1,minimal
DaysInFirstWeek=1,ERA=1,
YEAR=2010,MONTH=10,WEEK_OF_YEAR=?,W
EEK_OF_MONTH=?,DAY_OF_MONTH=18,DAY_
OF_YEAR=?,DAY_OF_WEEK=?,DAY_OF_WEEK
_IN_MONTH=?,AM_PM=0,HOUR=10,HOUR_OF
_DAY=10,MINUTE=3,SECOND=52,MILLISEC
OND=242,ZONE_OFFSET=?,DST_OFFSET=?]

Built-In Expressions in the Expression Editor

A-54 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-24 (Cont.) Built-In EL Expressions Under Portal Info

Option Expression Example of Returned Value

CurrentPortal Metadata
CreationDate

#{spaceContext.currentSpace.metadata.c
reationDate} java.util.GregorianCalendar[time=12

90103432242,areFieldsSet=true,areAl
lFieldsSet=false,lenient=false,zone
=java.util.SimpleTimeZone[id=,offse
t=-28800000,dstSavings=3600000,useD
aylight=false,startYear=0,
startMode=0,startMonth=0,startDay=0
,startDayOfWeek=0,startTime=0,start
TimeMode=0,endMode=0,endMonth=0,end
Day=0,endDayOfWeek=0,endTime=0,endT
imeMode=0],firstDayOfWeek=1,minimal
DaysInFirstWeek=1,ERA=1,YEAR=2010,M
ONTH=10,
WEEK_OF_YEAR=?,WEEK_OF_MONTH=?,DAY_
OF_MONTH=18,DAY_OF_YEAR=?,DAY_OF_WE
EK=?,DAY_OF_WEEK_IN_MONTH=?,AM_PM=0
,HOUR=10,HOUR_OF_DAY=10,MINUTE=3,SE
COND=52,MILLISECOND=242,ZONE_OFFSET
=?,DST_OFFSET=?]

NamedPortal Metadata
CreatedBy

#{spaceContext.space['portalN
ame'].metadata.createdBy}

j.doe

NamedPortal Metadata
Keywords

#{spaceContext.space['portalN
ame'].metadata.keywords}

standards templates style
sheets collateral

CurrentPortal Metadata
Keywords

#{spaceContext.currentSpace.m
etadata.keywords}

sales salesReports salesNews
salesTeam

NamedPortal Metadata
Offline

#{spaceContext.space['portalN
ame'].metadata.offline}

false or true, depending on whether
the named portal is offline

CurrentPortal Metadata
Offline

#{spaceContext.currentSpace.m
etadata.offline}

false or true, depending on whether
the current portal is offline

NamedPortal Metadata
Closed

#{spaceContext.space['portalN
ame'].metadata.offline}

false or true, depending on whether
the named portal is closed

CurrentPortal Metadata
Closed

#{spaceContext.currentSpace.m
etadata.closed}

false or true, depending on whether
the current portal is closed

NamedPortal Metadata
SelfRegistration

#{spaceContext.space['portalN
ame'].metadata.selfRegistrati
on}

false or true, depending on whether
self registration is enabled for the
named portal

CurrentPortal Metadata
SelfRegistration

#{spaceContext.currentSpace.m
etadata.selfRegistration}

false or true, depending on whether
self registration is enabled for the
current portal

NamedPortal Metadata
Discoverable

#{spaceContext.space['portalN
ame'].metadata.discoverable}

false or true, depending on whether
the named portal is discoverable

CurrentPortal Metadata
Discoverable

#{spaceContext.currentSpace.m
etadata.discoverable}

false or true, depending on whether
the current portal is discoverable

Built-In Expressions in the Expression Editor

Expression Language Expressions A-55

Table A-24 (Cont.) Built-In EL Expressions Under Portal Info

Option Expression Example of Returned Value

NamedPortal Metadata
PublishRSS

#{spaceContext.space['portalN
ame'].metadata.publishRSS}

false or true, depending on whether
the named portal can be published in an
RSS reader

CurrentPortal Metadata
PublishRSS

#{spaceContext.currentSpace.m
etadata.publishRSS}

false or true, depending on whether
the current portal can be published in
an RSS reader

NamedPortal Distribution
List

#{spaceContext.space['portalN
ame'].distributionList}

standardsGroup@myCompany.com

CurrentPortal Distribution
List

#{spaceContext.currentSpace.d
istributionList}

salesTeam@myCompany.com

NamedPortal Metadata
CustomAttributes

#{spaceContext.space['portalN
ame'].metadata.customAttribut
es['attributeName']}

Returns the value provided for the
named custom attribute

Note: If you use this EL to provide a
value for a field in WebCenter Portal
Administration, clicking the Test button
may return a blank value. However, the
value will resolve correctly in the
running portal.

CurrentPortal Metadata
CustomAttributes

#{spaceContext.currentSpace.m
etadata.customAttributes['att
ributeName']}

Returns the value provided for the
named custom attribute

Note: If you use this EL to provide a
value for a field in WebCenter Portal
Administration, clicking the Test button
may return a blank value. However, the
value will resolve correctly in the
running portal.

CurrentPortal Metadata
Logo

#{WCPrepareImageURL[spaceCont
ext.currentSpace.metadata.log
o]['']}

/webcenter-spaces-resources/
oracle/webcenter/space/
metadata/spacetemplate/
PortalSite/images/
portal_logo.png

CurrentPortal Role - Portal
Manager

#{WCSecurityContext.userInSco
pedRole['Moderator']}

false or true, depending whether
any users in the current scope are
assigned the role Portal Manager

CurrentPortal Role -
Participant

#{WCSecurityContext.userInScopedRol
e['Participant']}

false or true, depending whether any
users in the current scope are assigned
the role Participant

CurrentPortal Role - Viewer #{WCSecurityContext.userInScopedRol
e['Viewer']}

false or true, depending whether any
users in the current scope are assigned
the role Viewer

CurrentPortal Role -
Custom

#{WCSecurityContext.userInSco
pedRole['CustomRole']}

false or true, depending on if any
users in the current scope are assigned
the named custom role

Built-In Expressions in the Expression Editor

A-56 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-24 (Cont.) Built-In EL Expressions Under Portal Info

Option Expression Example of Returned Value

NamedPortal Children #{spaceContext.space['portalN
ame'].children}

[oracle.webcenter.spaces.inte
rnal.model.SpaceImpl@5705f4,
oracle.webcenter.spaces.inter
nal.model.SpaceImpl@147d658]

Note: The braces ([]) denote a set.

CurrentPortal Children #{spaceContext.currentSpace.c
hildren}

[oracle.webcenter.spaces.inte
rnal.model.SpaceImpl@5705f4,
oracle.webcenter.spaces.inter
nal.model.SpaceImpl@147d658]

Note: The braces ([]) denote a set.

NamedPortal Parent #{spaceContext.space['portalN
ame'].parent}

oracle.webcenter.spaces.inter
nal.model.SpaceImpl@15fc839

CurrentPortal Parent #{spaceContext.currentSpace.p
arent}

oracle.webcenter.spaces.inter
nal.model.SpaceImpl@15fc839

NamedPortal Security
Parent

#{spaceContext.space['portalN
ame'].securityParent}

oracle.webcenter.spaces.inter
nal.model.SpaceImpl@1392793

CurrentPortal Security
Parent

#{spaceContext.currentSpace.s
ecurityParent}

oracle.webcenter.spaces.inter
nal.model.SpaceImpl@1392793

All visible root level spaces #{spaceContext.spacesQuery.un
ionOf['ALL_QUERIABLE,DISCOVER
ABLE,PUBLIC_ACCESSIBLE,ALLUSE
R_ACCESSIBLE,USER_JOINED,USER
_MODERATED'].shape['ROOT_LEVE
L']}

oracle.webcenter.spaces.query
.SpacesQueryParameters@ae34c8

All children and
descendent portals for
specified Parent Portal
GUID

#{spaceContext.spacesQuery.pa
rentSpaceGuid['portalGuid'].s
hape['RECURSIVE_FLATTENED']}

oracle.webcenter.spaces.query.SpacesQ
ueryParameters@4da22f

Immediate Subportals for
specified Parent Portal
name

#{spaceContext.spacesQuery.pa
rentSpaceName['portalGuid'].s
hape['ROOT_LEVEL']}

oracle.webcenter.spaces.query.SpacesQ
ueryParameters@1089971

List of Portals matching
given Portal Names

#{spaceContext.spacesQuery.co
ntainingNames['portal1,
portal2,portal3']}

oracle.webcenter.spaces.query
.SpacesQueryParameters@68e467

List of Portals matching
given Portal GUID

#{spaceContext.spacesQuery.co
ntainingGuids['portalGuid1,
portalGuid2']}

oracle.webcenter.spaces.query
.SpacesQueryParameters@1c5600
9

List of Portals sorted based
on criteria

#{spaceContext.spacesQuery.un
ionOf.ALL_QUERIABLE.sort['sp.
lastUpdateDate']['desc']}

oracle.webcenter.spaces.query
.SpacesQueryParameters@6c3def

List of Portals based on
search pattern

#{spaceContext.spacesQuery.un
ionOf.ALL_QUERIABLE.search['s
earchKeyword']}

oracle.webcenter.spaces.query
.SpacesQueryParameters@19b2cf
3

Built-In Expressions in the Expression Editor

Expression Language Expressions A-57

Table A-24 (Cont.) Built-In EL Expressions Under Portal Info

Option Expression Example of Returned Value

List of Portals with limited
page size

#{spaceContext.spacesQuery.un
ionOf.USER_JOINED.itemsPerPag
e[n].pageNumber[n]}

oracle.webcenter.spaces.query
.SpacesQueryParameters@4f8818

List of portals matching the
where clause

#{spaceContext.spacesQuery.un
ionOf.USER_JOINED.where[wCon
d['sp.createdBy']['=']
['userName']]}

oracle.webcenter.spaces.query
.SpacesQueryParameters@1ba816
d

A.18.6 Portal Page Info Built-In Paths
Rather than EL expressions, the selections under Portal Page Info are directory paths
to different application pages. Use them, for example, to provide navigation
information to a specified page.

Table A-25 lists the built-in directory paths available under the category Portal Page
Info and provides an example of the types of values each returns. The number of
values in the dropdown list depends on the template used and the pages created by
users.

Table A-25 Built-In Paths Under Portal Page Info

Option Path Destination

PortalSiteHome.jspx /faces/oracle/webcenter/
page/scopedMD/
se2dff4fb_202a_4f4c_b56d_c7
cf59ad1c04/
PortalSiteHome.jspx

Path to the Home page of the
current portal

GroupSpaceDocLibMainView.jspx /faces/oracle/webcenter/
page/scopedMD/
s8bba98ff_4cbb_40b8_beee_29
6c916a23ed/
businessRolePages/
GroupSpaceDocLibMainView.js
px

Path to the Documents page in the
current portal

ForumMainView.jspx /faces/oracle/webcenter/
page/scopedMD/
s8bba98ff_4cbb_40b8_beee_29
6c916a23ed/
businessRolePages/
ForumMainView.jspx

Path to Discussions page in the
current portal

AnnouncementsMainView.jspx /faces/oracle/webcenter/
page/scopedMD/
s8bba98ff_4cbb_40b8_beee_29
6c916a23ed/
businessRolePages/
AnnouncementsMainView.jspx

Path to Announcements page in
current portal

Built-In Expressions in the Expression Editor

A-58 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-25 (Cont.) Built-In Paths Under Portal Page Info

Option Path Destination

ListsMainView.jspx /faces/oracle/webcenter/
page/scopedMD/
s8bba98ff_4cbb_40b8_beee_29
6c916a23ed/
businessRolePages/
ListsMainView.jspx

Path to Lists page in current portal

EventsMainView.jspx /faces/oracle/webcenter/
page/scopedMD/
s8bba98ff_4cbb_40b8_beee_29
6c916a23ed/
businessRolePages/
EventsMainView.jspx

Path to Events page in current portal

GroupSpaceActivityStreamMainVi
ew.jspx

/faces/oracle/webcenter/
page/scopedMD/
s8bba98ff_4cbb_40b8_beee_29
6c916a23ed/
businessRolePages/
GroupSpaceActivityStreamMai
nView.jspx

Path to Activity Stream page in
current portal

A.18.7 System Built-In ELs
System built-in EL expressions return values related to system settings, such as the
user name of the current user or the current user's specified locale. For example, the
expression #{securityContext.userName}, returns the name of the currently
logged in user. For example, if user j.doe is viewing a page where this expression is
used, the returned value in j.doe's view is j.doe. If user j.smith is looking at the same
page, the value returned in j.smith's view is j.smith.

See Also:

For additional utilitarian EL expressions, see Utilitarian EL Expressions.

Table A-26 lists the built-in EL expressions available under the category System and
provides an example of the types of values each returns.

Table A-26 Built-In EL Expressions Under System

Option Expression Example of Returned Value

User #{securityContext.userName} The current user's user name

Built-In Expressions in the Expression Editor

Expression Language Expressions A-59

Table A-26 (Cont.) Built-In EL Expressions Under System

Option Expression Example of Returned Value

Locale #{facesContext.externalCont
ext.requestLocale}

The current user's specified locale

This may be taken from application
or portal-level settings or user
Preferences, whichever is taking
precedence.

For example:

en_US

A.18.8 User Info Built-In ELs
User Info built-in EL expressions return values related to a given user's Profile. For
example, the expression
#{webCenterProfile[securityContext.userName].description}, returns
the content of the About Me attribute of the current user's Profile.

See Also:

For additional user-related expressions, see ELs Related to People
Connections.

Table A-27 lists the built-in EL expressions available under the category User Info and
provides an example of the types of values each returns.

Table A-27 Built-In EL Expressions Under User Info

Option Expression Example of Returned Value

About Me #{webCenterProfile[security
Context.userName].descripti
on}

Returns the content of the About Me
attribute of the current user's Profile

Username #{webCenterProfile[security
Context.userName].userName}

The user name specified in the
current user's Profile

First Name #{webCenterProfile[security
Context.userName].firstName
}

The current user's first name

Middle Name #{webCenterProfile[security
Context.userName].middleNam
e}

The current user's middle name

Last Name #{webCenterProfile[security
Context.userName].lastName}

The current user's last name

Initials used #{webCenterProfile[security
Context.userName].initials}

The current user's initials

Built-In Expressions in the Expression Editor

A-60 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-27 (Cont.) Built-In EL Expressions Under User Info

Option Expression Example of Returned Value

Display Name #{webCenterProfile[security
Context.userName].displayNa
me}

The current user's display name

Email #{webCenterProfile[security
Context.userName].businessE
mail}

The current user's business email
address

Department #{webCenterProfile[security
Context.userName].departmen
t}

The current user's department

Job Title/Designation #{webCenterProfile[security
Context.userName].title}

The current user's job title or
designation

Manager #{webCenterProfile[security
Context.userName].managerDi
splayName}

The current user's manager's display
name

Time zone #{webCenterProfile[security
Context.userName].timeZone}

The time zone associated with the
current user

Employee type #{webCenterProfile[security
Context.userName].employeeT
ype}

The current user's employee type

Employee Number #{webCenterProfile[security
Context.userName].employeeN
umber}

The current user's employee number

Preferred Language Code #{webCenterProfile[security
Context.userName].preferred
Language}

The current user's preferred
language

Organization #{webCenterProfile[security
Context.userName].organizat
ion}

The company organization to which
the current user belongs

Organizational Unit #{webCenterProfile[security
Context.userName].organizat
ionalUnit}

The unit of the company
organization to which the current
user belongs

Expertise #{webCenterProfile[security
Context.userName].expertise
}

The current user's expertise; for
example, Application, system,
and database administration

Business Fax #{webCenterProfile[security
Context.userName].businessF
ax}

The current user's business fax
number

Business Mobile Number #{webCenterProfile[security
Context.userName].businessM
obile}

The current user's business mobile
or cell phone number

Built-In Expressions in the Expression Editor

Expression Language Expressions A-61

Table A-27 (Cont.) Built-In EL Expressions Under User Info

Option Expression Example of Returned Value

Business Phone #{webCenterProfile[security
Context.userName].businessP
hone}

The current user's business phone
number

Business Pager Number #{webCenterProfile[security
Context.userName].businessP
ager}

The current user's business pager
number

Business Street #{webCenterProfile[security
Context.userName].businessS
treet}

The street address of the current
user's business office

Business City #{webCenterProfile[security
Context.userName].businessC
ity}

The city where the current user's
business office is located

Business State #{webCenterProfile[security
Context.userName].businessS
tate}

The state where the current user's
business office is located

Business PO Box #{webCenterProfile[security
Context.userName].businessP
OBox}

The current user's business Post
Office Box number

Business Postal Code #{webCenterProfile[security
Context.userName].businessP
ostalCode}

The postal or ZIP code of the current
user's business office

Business Country #{webCenterProfile[security
Context.userName].businessC
ountry}

The country where the current user's
business office is located

Home Address #{webCenterProfile[security
Context.userName].homeAddre
ss}

The current user's home address

Home phone #{webCenterProfile[security
Context.userName].homePhone
}

The current user's home phone
number

Date of Birth #{webCenterProfile[security
Context.userName].dateofBir
th}

The current user's date of birth

Maiden Name #{webCenterProfile[security
Context.userName].maidenNam
e}

The current user's maiden name

Date of hire #{webCenterProfile[security
Context.userName].dateofHir
e}

The date the current user was hired
by the company

Name Suffix #{webCenterProfile[security
Context.userName].nameSuffi
x}

Titles or credentials appended to the
current user's name, for example,
MD, Esq, and so on

Built-In Expressions in the Expression Editor

A-62 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table A-27 (Cont.) Built-In EL Expressions Under User Info

Option Expression Example of Returned Value

Wireless Account Number #{webCenterProfile[security
Context.userName].wirelessA
cctNumber}

The account number for the current
user's wireless internet account

A.18.9 WebCenter Events Built-In ELs
WebCenter Events built-in EL expressions return values related to document-related
events, such as the name of the selected document, the document's creator, the date
the document was last modified, and so on. For example, the expression
#{wcEventContext.events.WebCenterResourceSelected.name}, returns the
name of the currently selected document.

Table A-28 lists the built-in EL expressions available under the category WebCenter
Events and provides an example of the types of values each returns.

Table A-28 Built-In EL Expressions Under WebCenter Events

Option Expression Example of Returned Value

Selected User Name #{wcEventContext.events.Web
CenterUserSelected.UserName
}

The user name of the currently
selected user

Selected Document Name #{wcEventContext.events.Web
CenterResourceSelected.name
}

The name of the currently selected
document

Selected Document Creator #{wcEventContext.events.Web
CenterResourceSelected.crea
tedBy}

The name of the user who created
the currently selected document

Selected Document Last Modified
By

#{wcEventContext.events.Web
CenterResourceSelected.last
ModifiedBy}

The date the selected document was
last modified

A.19 Desupport of Freeform JPQL WHERE and SORT Clauses in Portal
Queries

In WebCenter Portal, if you have introduced an EL expression for querying portals
based on a JPQL WHERE clause, you should know that the freeform JPQL WHERE clause
is desupported. Instead, use a structured WHERE clause. Freeform SORT clauses are
also desupported. Instead, specify sort criteria on a portal query in a structured way.

For example, suppose that you have used the following syntax to form a WHERE clause
on a portal query:

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].whereClause['sp.keywords like
\'forquery%\' and not
(sp.discoverable is null or sp.discoverable =\'N\')'].listSpaces}

Going forward, you must use the following syntax to form a WHERE clause:

Desupport of Freeform JPQL WHERE and SORT Clauses in Portal Queries

Expression Language Expressions A-63

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].where[wCond['sp.keywords']
['like']['forquery']['and'][wCond['sp.discoverable']
['is']['null']['or'][wCond['sp.discoverable']['=']['N']]['not']]].listSpaces}

Where:

• wCond is an atomic condition that can be expressed as wCond[p][op][v].

Where:

– p is a portal attribute (a field in WcSpaceHeader, see the following bullet list).

– op is one among a restricted set of JPQL comparison operators ('=', 'like', '!=',
'<', '>', '<=', '>=', 'is').

– v is a string whose interpretation depends on the operator op.

If the operator is is, v can be the string 'null' or 'not null', and the
condition is understood as the attribute being checked for null or not null
respectively in JPQL. If the operator is anything else, v is interpreted as a literal,
and the condition is understood to be the attribute being compared with the
literal value.

You can use any field defined in WcSpaceHeader in the WHERE clause, including:

– closed

– createDate

– createdBy

– description

– discoverable

– displayName

– keywords

– icon

– logo

– lastUpdateDate

– selfSubEnabled

– rssEnabled

– spaceGuid

– spaceId

– spaceOffline

– spacePublic

– spacesType

– spacesUser

– updatedBy

Desupport of Freeform JPQL WHERE and SORT Clauses in Portal Queries

A-64 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

– version

– parentGuid

– securityParentGuid

– ancestorPath

– seeded

– groupSpaceMemCount

• sp represents the JPA entity for a portal, WcSpaceHeader.

For example, you can use the following condition to create a filter for all portals
created by users having user names starting with monty on which self subscription
is enabled:

sp.createdBy like 'monty%' and not (sp.selfSubEnabled is null or
sp.selfSubEnabled ='N')

• and, or, not (along with wCond) are types of conditions.

Where:

– and represents a conjunction of two conditions. You can express a conjunction
condition as cond1['and'][cond2] where cond1 and cond2 are the
expressions for the two conditions being conjoined.

– or represents a disjunction condition. You can express a disjunction condition
as cond1['or'][cond2] where cond1 and cond2 are the expressions for the
two conditions being disjoined.

– not represents a negation condition. You can express a negation condition as
cond['not'] where cond is the expression for the condition being conjoined.

For example, the following EL returns a list of all portals (to which the current user
has access) that are created by users having names starting with monty and on which
self subscription is enabled:

#{spaceContext.spacesQuery.unionOf.ALL_QUERIABLE.where[wCond['sp.createdBy']
['like']['monty%'] ['and'] [wCond['sp.selfSubEnabled']['is']['null'] ['or']
[wCond['sp.selfSubEnabled']['=']['N']] ['not']]].listSpaces}

Now imagine that you have used the following syntax to specify SORT criteria on a
portal query:

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].sortCriteria
['sp.discoverabledesc, sp.keywords'].listSpaces}

Going forward, you must use the following syntax to specify SORT criteria on a portal
query:

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].sort['sp.discoverable']
['desc'].sort['sp.keywords']['asc'].listSpaces}

Where:

• sp represents the JPA entity for a portal, WcSpaceHeader (see previous bullet list
for fields defined in WcSpaceHeader).

• desc and asc define sort order, descending and ascending, respectively.

Desupport of Freeform JPQL WHERE and SORT Clauses in Portal Queries

Expression Language Expressions A-65

For example, the following query returns a list of portals to which the user has access
and sorts the result set on the fields discoverable and lastUpdateDate.

#{spaceContext.spacesQuery.unionOf['ALL_QUERIABLE'].sort['sp.discoverable']
['asc'].sort['sp.lastUpdateDate']['desc'].listSpaces}

Oracle strongly recommends that you convert all existing freeform JPQL WHERE and
SORT clauses to the new syntax.

If for any reason you must retain the existing syntax, your WebCenter Portal
administrator must explicitly enable support for freeform JPQL in the webcenter-
config.xml.xml file by setting the following global flag:

oracle.webcenter.spaces.query.DIRECT_JPQL_CLAUSE_SUPPORTED

Note:

The webcenter-config.xml.xml file is the customization document for
webcenter-config.xml.

Set this flag to true for continued support of legacy freeform WHERE and SORT
clauses. When this option is set to true, WebCenter Portal log files will contain
warnings.

To set this flag in webcenter-config.xml.xml:

1. Export the latest webcenter-config.xml.xml from MDS.

For example:

exportMetadata(application='webcenter', server='WC_Portal', toLocation='/tmp/
mydata',docs='/oracle/webcenter/webcenterapp/metadata/mdssys/cust/site/webcenter/
webcenter-config.xml.xml')

2. Open the file in a text editor and modify settings, as required.

For example:

<mds:insert parent="webcenter(xmlns(webcenter=http://
 xmlns.oracle.com/webcenter/webcenterapp))/webcenter:custom-attributes"
 position="last"> <attribute name=
 "oracle.webcenter.spaces.query.DIRECT_JPQL_CLAUSE_SUPPORTED"
 xmlns="http://xmlns.oracle.com/webcenter/webcenterapp">
 <description/>
 <type>java.lang.String</type>
 <value>true</value>
 <visible/>
 </attribute>
</mds:insert>

3. Save and close webcenter-config.xml.xml.

4. Import the updated webcenter-config.xml.xml file to WebCenter Portal.

For example:

importMetadata(application='webcenter', server='WC_Portal', fromLocation='/tmp/
mydata', docs='/oracle/webcenter/webcenterapp/metadata/mdssys/cust/site/
webcenter/webcenter-config.xml.xml')

Desupport of Freeform JPQL WHERE and SORT Clauses in Portal Queries

A-66 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

B
WebCenter Portal Accessibility Features

This appendix describes the accessibility features of WebCenter Portal.

Accessibility involves making your application usable by persons with disabilities
such as low vision or blindness, deafness, or other physical limitations. In the simplest
of terms, this means creating applications that can be used without a mouse (keyboard
only), used with a screen reader for blind or low-vision users, and used without
reliance on sound, color, or animation and timing.

Oracle software implements the standards of Section 508 and WCAG 1.0 AA using an
interpretation of the standards at http://www.oracle.com/accessibility/
standards.html.

This section describes accessibility features that are specific to WebCenter Portal. For
general information about creating accessible ADF Faces pages, see Developing
Accessible ADF Faces Components and Pages in Developing Web User Interfaces with
Oracle ADF Faces. For information about accessibility features in JDeveloper, select the
JDeveloper Accessibility node under JDeveloper Basics in the online help table of
contents.

This appendix includes the following topics:

• Generating Accessible HTML

• Accessibility Features at Runtime

• Accessibility Considerations for Portlets

B.1 Generating Accessible HTML
WebCenter Portal provides several Composer components that you can add to your
application pages to make them editable at runtime. These components provide
attributes that are used to generate accessible HTML. To ensure that the pages you
create are accessible, you must set the attributes listed in Table B-1.

Table B-1 Accessibility Attributes for WebCenter Portal's Composer Components

Component Accessibility Attributes

pe:changeModeButton No accessibility attributes.

pe:changeModeLink No accessibility attributes.

pe:imageLink shortDesc—Mandatory. This attribute transforms into an
HTML alt attribute.

accessKey—Optional. This attribute sets the mnemonic
character used to gain quick access to the component.

pe:pageCustomizable No accessibility attributes

WebCenter Portal Accessibility Features B-1

http://www.oracle.com/accessibility/standards.html
http://www.oracle.com/accessibility/standards.html

Table B-1 (Cont.) Accessibility Attributes for WebCenter Portal's Composer
Components

Component Accessibility Attributes

pe:layoutCustomizable shortDesc—Mandatory. This attribute transforms into an
HTML alt attribute.

accessKey—Optional. This attribute sets the mnemonic
character used to gain quick access to the component.

cust:panelCustomizabl
e

No accessibility attributes

cust:showDetailFrame shortDesc—Mandatory. This attribute transforms into an
HTML alt attribute.

B.2 Accessibility Features at Runtime
When you give users the ability to customize a page at runtime, you must ensure that
any customizations are accessible to all users. For all components that users can create
at runtime, all accessibility-related attributes are shown in the Property Inspector
where users can set them appropriately.

For a list of accessibility-related attributes for WebCenter Portal components, see Table
B-1. For a list of accessibility-related attributes for other components, see Developing
Accessible ADF Faces Components and Pages in Developing Web User Interfaces with
Oracle ADF Faces.

B.3 Accessibility Considerations for Portlets
IFrames are not very well accommodated by today's screen readers and so are not
permitted by some accessibility standards.

Note:

Portlets created using the Oracle JSF Portlet Bridge have the requireIFrame
container runtime option set to true because, due to JavaScript issues, these
portlets are too complex to render directly on Oracle ADF pages.

WebCenter Portal provides an optional attribute in the adf:portlet tag called
renderPortletInIFrame. You can set this attribute to false to avoid ever using
IFrames.

Accessibility Features at Runtime

B-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C
Using the WebCenter Portal REST APIs

This chapter contains the following topics:

• Introduction to REST

• Understanding the Username-Based Security Token Encryption

• Benefits of Using REST

• Introduction to the WebCenter Portal REST APIs

• Understanding the Link Model

• Understanding Items Hypermedia

• Navigating Hypermedia Using HTTP

• Security Considerations for WebCenter Portal REST APIs

• Security Considerations for CMIS REST APIs

• Understanding Common Types

• Managing Caches

• Configuring a Proxy Server

• WebCenter Portal REST API Examples

• Using the People Connections REST APIs

• Content Management REST API

• Using the Events REST API

• Using the Tags REST APIs

• Using the Discussions REST API

• Using the Lists REST API

• Using the Activity Graph REST APIs

• Using the Search REST APIs

C.1 Introduction to REST
REST (REpresentational State Transfer) is an architectural style for making distributed
resources available through a uniform interface that includes uniform resource
identifiers (URIs), well-defined operations, hypermedia links, and a constrained set of

Using the WebCenter Portal REST APIs C-1

media types. Typically, these operations include reading, writing, editing, and
removing, and media types include JSON and XML/ATOM.

REST commands use standard HTTP methods as requests to point to the resource
being used. Every request returns a response, indicating the status of the operation. If
the request results in an object being retrieved, created, or updated, the response
includes a standard representation of that object.

REST supports multiple clients, both from client machines and other servers, and it
can be used from just about any client or development technology, including Java,
JavaScript, Ruby on Rails, PHP, .Net, and so on.

Tip:

For a good general introduction to REST, see the Wikipedia article
Representational State Transfer at http://en.wikipedia.org/wiki/
Representational_State_Transfer.

REST is typically used with Rich Internet Applications (RIA) that are client-side
scripted and require the ability to interact with data from a server-side application. For
example, the WebCenter iPhone App uses WebCenter Portal REST APIs to interact
with a WebCenter Portal application. The native iPhone client is written in Objective-
C, and the REST APIs enable the client to send and retrieve application data.

C.2 Understanding the Username-Based Security Token Encryption
To provide additional security, every URI, for both href and template attributes,
includes a security token parameter that is based on the authenticated username (a
utoken).

The security generation algorithm uses a randomly generated "salt" along with the
username. The salt ensures that if any of the parameters used to perform encryption
become compromised, existing tokens can be invalidated and new ones generated.
Most importantly, because the username is used as part of the user token generation
algorithm, the salt prevents having to change all user names in the event of a
compromise.

The salt is stored in the Credential Store Framework (CSF) in the map
o.webcenter.jf.csf.map against key user.token.salt. You can change the
value of this key (and other keys used for token encryption) by accessing CSF in
Oracle Enterprise Manager.

Caution:

If you change the encryption key values, all existing username based security
tokens will immediately become invalid. Only change these values under
extraordinary circumstances, like an algorithm parameter compromise.

C.3 Benefits of Using REST
Many excellent articles have been published about REST and the benefits of the
RESTful style of software architecture. Some of these benefits include:

• Using "Hypermedia As The Engine Of Application State" (HATEOAS) links to
access the REST API helps promote API robustness. Since the clients only use URIs

Understanding the Username-Based Security Token Encryption

C-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

returned from the server, if the server changes the URI format, the client will
continue to function properly. See also Understanding the Link Model.

• Using the standard HTTP protocol allows network infrastructure to cache REST
requests where appropriate, reducing load on both the client and server. See also
Managing Caches .

• Stateless REST requests allow each request to be served by any number of different
servers, helping with scalability.

• Using the standard HTTP protocol allows a wide variety of clients to interact with
the REST APIs without requiring specialized libraries.

C.4 Introduction to the WebCenter Portal REST APIs
In addition to enabling mobile access, WebCenter Portal REST APIs allow you to take
advantage of Web 2.0 technologies like Ajax, JavaScript, and JSON to create rich,
interactive browser-based user interfaces and to access and modify WebCenter Portal
data. In general, the WebCenter REST commands provide a more natural and easy-to-
use alternative to a SOAP-style Web services approach. For more information, see
REST API for Oracle WebCenter Portal.

Table C-1 describes the Oracle WebCenter Portal REST APIs provided for WebCenter
Portal: Services features.

Table C-1 Summary of WebCenter Tools and Services Features Supported by
REST APIs

REST API Description Section

Discussions Enable a client to post, read, update, and
delete discussion forums, topics, and
messages.

Using the Discussions
REST API

Lists Enables a client to browse all the lists
associated with a named portal; search list
columns given a search term; create new
lists; add, update, and remove list rows; and
similar sorts of list-related tasks

Using the Lists REST API

People
Connections

Enable a client to view profile data; manage
connection lists, feedback, and messages;
create new activities and view activities for
users, lists, and portals.

Using the People
Connections REST APIs

WebCenter Portal Enable a client to retrieve portal metadata
and view, create, update, and delete portal
lists and list items. You can also retrieve
portal membership information.

Introduction to the
WebCenter Portal REST
APIs

Content
Management

Uses the CMIS (Content Management
Interoperability Services) RESTful server
binding to provide access to the CM VCR
(Content Management Virtual Content
Repository).

Content Management
REST API

Activity Graph Enables you to retrieve recommendations for
connections, portals, and items using the
underlying Activity Graph engine.

Using the Activity Graph
REST APIs

Introduction to the WebCenter Portal REST APIs

Using the WebCenter Portal REST APIs C-3

http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=WCPRS

Table C-1 (Cont.) Summary of WebCenter Tools and Services Features Supported
by REST APIs

REST API Description Section

Events Lets you access calendar events associated
with a named portal.

Using the Events REST
API

Feedback Enables a client to create, read, and delete
feedback in a social networking application.

See Using the Lists REST
API

Search Lets you post, read, update, and delete
searches. You can specify keywords and the
scope of the search; for example, the iPhone
could search for "smith" in all portals,
documents and wiki pages.

Using the Search REST
APIs

Tags Enables a client to read, post, update, and
delete tags and tagged items.

Using the Tags REST
APIs

Navigation Use the navigation REST APIs to create your
own interface for displaying navigations.

Note: The navigation REST APIs do not
share the resource index described in this
chapter.

Using the Tags REST
APIs

Note:

XSD files for the following URNs:

urn:oracle:webcenter:activities:stream -> activitystream.xsd
urn:oracle:webcenter:messageBoard -> wall.xsd
urn:oracle:webcenter:people -> people.xsd
urn:oracle:webcenter:people:invitations -> people.xsd
urn:oracle:webcenter:people:person -> people.xsd
urn:oracle:webcenter:search:results -> search.xsd
urn:oracle:webcenter:spaces -> spaces.xsd

can be found in your <WCP_ORACLE_HOME>/webcenter/schemas/
directory.

C.5 Understanding the Link Model
Hypermedia is at the core of two of the most successful Web-based formats: HTML
and ATOM. HTML and ATOM allow consumers to navigate to other hypermedia
documents through links–for example, clicking on a link to go to a news article.

Hypermedia drives the RESTful application state (known as HATEOAS: Hypermedia
As The Engine Of Application State).

Understanding the Link Model

C-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

HATEOAS analogy to define application state:

Suppose you are completing your taxes in your favorite browser. You finish
entering your W-2 data and move on to deductions when the browser crashes.
The state you lost—the fact that you were on deductions and still needed to
enter data—is the application state; not the W-2 data entered (that is, change
states from the current state).

HATEOAS dictates that this state—the application state—be captured wholly
in hypermedia. Application state is where you are in the application, not what
data you've entered into the application. One of the benefits of this approach
is that it simplifies the client and server, because they do not need to be aware
of the state they are in. The link contains all the state information necessary to
process the request, so, when the browser restarts and returns to the link, the
user will be at the same place in the tax process.

Given a set of top-level URI entry points to a RESTful service, all interactions beyond
those entry points are driven by hypermedia links returned in response
representations. This link-centered approach helps keep the client from becoming too
tightly coupled to the server URLs. The client is using URLs given to it by the server,
therefore the client code does not break if the server URLs change format.

Understanding this link model helps you understand how to use the data the service
returns to navigate the REST APIs.

This section describes the hypermedia link model used by WebCenter's RESTful
services. It includes the following topics:

• Using the Resource Index

• Anatomy of a Link

C.5.1 Using the Resource Index
In WebCenter, the Resource Index is your starting point for all authenticated access. The
Resource Index provides access to the set of top-level URI entry points. It provides the
way in to all the available WebCenter RESTful services. The Resource Index URI is the
only URI that you need to know.

Tip:

A REST client is helpful for generating custom REST requests. For example, a
Firefox RESTClient add-on is available at:

http://restclient.net/

Other similar REST clients can also be easily obtained.

The WebCenter Resource Index URI is:

http://host:port/rest/api/resourceIndex

Understanding the Link Model

Using the WebCenter Portal REST APIs C-5

Note:

Access to the Resource Index always requires authentication; however, you
can (optionally) access the CMIS resource entry point anonymously using the
following URI:

http://host:port/rest/api/cmis/repository

See also Security Considerations for CMIS REST APIs and Security
Considerations for WebCenter Portal REST APIs

The first step in using the WebCenter Portal REST APIs is to send a GET request to the
Resource Index. The response varies depending on the services available and the
media type of the request. The example below shows how the response might look if
you made an Ajax request using JavaScript (and possibly a client-side scripting library,
such as Dojo) to retrieve the JSON data for the Resource Index. Note that this is an
abridged sample response and does not include all of the links actually present in a
real response.

Example: Response to a GET on the Resource Index

{
 "resourceType": "urn:oracle:webcenter:resourceindex",
 "links": [
 {
 "template": "opaque-template-uri",
 "resourceType": "urn:oracle:webcenter:messageBoard",
 "href": "opaque-uri",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "resourceType": "urn:oracle:webCenter:cmis",
 "href": "opaque-uri",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "template": "opaque-template-uri",
 "resourceType": "urn:oracle:webcenter:discussions:forums",
 "href": "opaque-uri",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "resourceType": "urn:oracle:webcenter:resourceindex",
 "rel": "self",
 "href": "http://host:port/rest/api/resourceIndex",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "template": "opaque-template-uri",
 "resourceType": "urn:oracle:webcenter:activities:stream",
 "href": "opaque-uri",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "template": "opaque-template-uri",
 "resourceType": "urn:oracle:webcenter:people:person",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "template": "opaque-template-uri",

Understanding the Link Model

C-6 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 "resourceType": "urn:oracle:webcenter:feedback",
 "href": "opaque-uri",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "template": "opaque-template-uri",
 "resourceType": "urn:oracle:webcenter:spaces",
 "href": "opaque-uri",
 "capabilities": "urn:oracle:webcenter:read"
 },
 {
 "template": "opaque-template-uri",
 "resourceType": "urn:oracle:webcenter:people",
 "href": "opaque-uri",
 "capabilities": "urn:oracle:webcenter:read"
 }
]
}

By interpreting the links returned in the Resource Index data, you can retrieve the URI
entry point for an individual service by locating the URI for the resource type you
want to use. You can then continue navigating through the hypermedia until you can
perform the required operation. The following example shows a method that locates a
URI given the Resource Index JSON data.

Example: Locating the URI for a Particular Service in the Resource Index

/* Parse the resourceIndex to find the specified URL and
 * return it.
 *
 * @Param jsonData the JSON data retrieved from calling
 * the /rest/api/resourceIndex URL.
 * @Param strResourceType the resource type of the URL
 * you want to retrieve from the resourceIndex data.
 * E.g., 'urn:oracle:webcenter:activities:stream'
 */
function getResourceURL(jsonData, strResourceType)
{
 // Using the HATEOAS model, we browse the returned links
 // looking for the one with the correct resource type.
 for (var i = 0; i < data.links.length; i++) {
 if (data.links[i].resourceType == strResourceType) {
 return data.links[i].href;
 }
 }
}

C.5.2 Anatomy of a Link
The resourceType, rel, and capabilities attributes of the hypermedia link
provide metadata that enable clients to determine which URI (href or template) to
use, without having to parse the URIs directly. The URIs are opaque—the metadata
determines which link is useful in a given circumstance.

The following examples show the anatomy of a hypermedia link as XML and in JSON
document fragments, respectively.

Example: Link in an XML Document Fragment

<links>
 <link href="opaque-URI"
 template="opaque-template-URI (optional)"

Understanding the Link Model

Using the WebCenter Portal REST APIs C-7

 rel="rel-name"
 title="human-readable-title (optional)"
 type="media-type (optional)"
 resourceType="resource-type"
 capabilities="operation"/>
 ...repeat as needed...
</links>

Example: Link in a JSON Document Fragment

"links": [
 {
 "href":"opaque-URI",
 "template":"opaque-template-URI (optional)",
 "rel":"rel-name",
 "title":"human-readable-title (optional)",
 "type":"media-type (optional)",
 "resourceType":"resource-type",
 "capabilities":"operation"
 },
 ...repeat as needed...
]

Multiword field, element, and attribute names are formatted in camel case, unless the
representation is attempting to conform to a specification not under the service
author's direct control. Acronyms are treated as normal words with their case adjusted
accordingly (for example, fooXml or xmlFoo) as shown in the following examples:

Example: XML Naming Convention

<myElement>text</myElement>

Example: JSON Naming Convention

{"myElement": "text"}

This section includes the following topics that describe the different attributes of the
hypermedia link:

• Resource Type

• Relationship

• Capabilities

• Media Type

• Templates

C.5.2.1 Resource Type

The resourceType link attribute indicates the type of resource to which the link
points. Clients should use the resourceType to determine the expected response
bodies for GET and POST and allowable request bodies for POST and PUT.

For more information, see Navigating Hypermedia Using HTTP.

C.5.2.2 Relationship

The rel link attribute indicates the relationship of the linked object to the current
object (that is, the object that contains the list of links). The value of this attribute is a
space-separated list of the following currently supported values:

Understanding the Link Model

C-8 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• self - The linked object is the current object

• related - The linked object is related to the current object

• via - The linked object is the source of the information for the current object

• alternate - The linked object is a substitute for the current object (typically, the
same object in another format, such as an HTML page that displays the current
object)

• urn:oracle:webcenter:parent - The linked object is the parent of the current
object. That is, the linked object owns the current object

Note:

Some REST APIs for some WebCenter features may contain additional rel
link attributes. See the REST API documentation for each specific feature for
more information.

C.5.2.3 Capabilities

The capabilities link attribute indicates which methods are supported by the
linked resource.

Links are returned only if a client is allowed to access that resource. User authorization
can affect the capabilities a client has with the links returned in a response
representation. In general, services only return the capabilities that the current
authorized user has permission to execute and that the resource supports.

If there is no link, then the client cannot access the resource. If a link has no
capabilities, then it is not returned to the client, meaning that the client does not have
permission to do anything with that link (even read it).

Capability-based expression of hypermedia links communicates the range of
operations that the client can expect to succeed, which allows the client to dynamically
configure any associated UI to provide the best overall user experience.

The value of this attribute is a space-separated list of the following values:

• urn:oracle:webcenter:create - This maps to the HTTP verb POST

• urn:oracle:webcenter:read - This maps to the HTTP verb GET

• urn:oracle:webcenter:update - This maps to the HTTP verb PUT

• urn:oracle:webcenter:delete - This maps to the HTTP verb DELETE

Note:

The top-level resourceIndex links only returns the read capability, even if
the user is authorized with additional capabilities.

Understanding the Link Model

Using the WebCenter Portal REST APIs C-9

Note:

Querying a resource for the allowed HTTP verbs using OPTIONS returns the
verbs that the resource can support in general, and does not take a user's
access into account. The capabilities attribute in a link describes exactly what
the current user can do with the current resource. OPTIONS may return more
HTTP verbs than the current user is allowed.

C.5.2.4 Media Type

The type link attribute indicates the media types supported by the linked object.

All REST services, except for CMIS, support both XML (application/xml) and
JSON (application/json) media type. CMIS currently supports only ATOM. For
more information about the CMIS REST API, see Content Management REST API.

C.5.2.5 Templates

The template link attribute indicates that the client can use a URI template, instead
of the href URI, to provide parameterized values for the linked object. Links must
include at least an href or a template URI, but can include both.

Some hypermedia links support request query parameters that allow the client to
configure the link in different ways. Rather than force the client to know the URI
format and manually build the URI, URI templates are used. These templates allow
client code to easily insert data into a URI without having to understand exactly how
the URI works. This maintains the opacity of hypermedia URIs and protects the client
from changes to the URI format.

The example below shows a URI template including several request query parameters.

Example: URI Template

http://host:port/.../lists?
startIndex={startIndex}&itemsPerPage={itemsPerPage}&q={searchTerms}&projection={proje
ction]

WebCenter Portal REST APIs use a simple slot replacement syntax that follows many
industry URI template schemes.

For example, using the template above, to see 10 list items (default) on the first page,
the client would provide a value of 1 for the startIndex parameter and a value of
10 for the itemsPerPage parameter, as shown below.

Example: URI Template with Parameter Values

http://host:port.../lists?startIndex=1&itemsPerPage=10

Understanding the Link Model

C-10 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

All unused parameters must be removed from a template before it can be
used. Clients may not submit unprocessed templates to the service that
produced it; doing so results in undefined behavior, generally returning a
status code of 500.

Clients must process templates into valid URI form before submitting to the
server. Clients must replace slots with appropriate values, taking care to
properly URI encode any value replacing the slot token. If a client does not
have a suitable value for one or more of the slots in the template, then it must
replace the slot token with an empty string.

You must URL-encode special or reserved character in parameter values. For example,
to search lists for a person named Günter, you must URL-encode the ü as shown
below.

Example: Encoding Special Characters in URI Templates

http://host:port.../lists?q=G%FCnter

C.5.2.5.1 Common Request Query Parameters

Many resources support a common set of request query parameters. For example,
when retrieving a collection of entities, it is common to change the shape of the results
set by limiting the quantity or details of the results. The REST framework uses the
following request parameters to scope results and provide security:

• startIndex - Specifies the index of the first matching result that should be
included in the result set (0-n ... zero based). This is used for pagination.

• itemsPerPage - Specifies the maximum number of results to return in the
response (1-n). This is used for pagination.

• q - Specifies implementation-specific searching. Searches may be specified using
the following format (square brackets [] denote optional values):

[[field1:[operand]][:]value1[;field2:operand:value2]]

For example:

&q=login:equals:monty
&q=title:contains:issues
&q=creator:equals:monty;description:contains:Urgent

While each resource uses the same format for the q parameter, the way search is
implemented is different depending on the resource being searched. For more
information about how each resource implements search, see the topic for the
specific service.

• projection - Reserved for implementation-specific projection of model
representations, such as variable recursion depth, field or attribute filtering. Valid
values are summary or details.

For example, requesting a projection of summary for a collection of lists, returns
only the title, description, and hypermedia links. Requesting a projection of
details results in the server sending back a collection of lists that includes all the
column metadata for each list. This may require additional processing time or
database queries on the server.

Understanding the Link Model

Using the WebCenter Portal REST APIs C-11

The following example request results in the response entity containing a deeper
object graph.

http://host:port/...lists&projection=details

• data - This parameter accepts a comma separated list of data sets and items. This
parameter lets clients specify what data they would like to receive. For example, a
mobile device application might use this parameter to limit the amount of XML
data returned. If both the projection and data query string parameters are
present, the data parameter will be used to determine which data to return. If you
specify the constant 'data' as the data parameter, all the standard information
will be returned for the resource.

For information about how these parameters are supported by specific resources, see
the topic for the appropriate service.

C.6 Understanding Items Hypermedia
A collection of items makes up the actual content of responses. This is at the same
level as the links section described previously. Each item (including the top-level tag
in each response) has one common attribute (resourceType) in addition to resource-
specific content and format. For details beyond the resourceType, see the topic for
the specific service.

C.7 Navigating Hypermedia Using HTTP
You can navigate REST service hypermedia in a similar way to that used to browse
and interact with HTML or an ATOM feed. Interactions are performed on the
resources identified by links using HTTP methods. The REST services return response
codes and response bodies to the client, and the client uses the hypermedia in the
response to drive further interactions.

Table C-2 describes the general pattern followed when constructing opaque resource
URIs. The resourceType differentiates whether the HTTP method operates on a
collection of resources or an individual resource.

Table C-2 HTTP Methods

HTTP
Method

Response for a Collection of
Resources

Response for an Individual Resource

GET Returns resource collection container
(200 HTTP response code)

Returns resource (200 HTTP response
code)

PUT Cannot update a collection of resources
(405 HTTP response code)

Updates and returns resource (200
HTTP response code)

POST Creates and returns a new resource
within the collection.

Note: Can return a 201 or 204 HTTP
response code. The returned code
depends on whether the newly created
object is directly addressable or not. For
instance, activities cannot be addressed
individually, so they return a 204 no-
content response code.

Cannot create a resource within an
individual resource (405 HTTP
response code)

Understanding Items Hypermedia

C-12 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-2 (Cont.) HTTP Methods

HTTP
Method

Response for a Collection of
Resources

Response for an Individual Resource

DELETE Cannot delete a collection of resources
(405 HTTP response code)

Deletes resource (204 HTTP response
code)

Collection resources generally support reading a collection (GET) and creating a
subordinate to that collection (POST). Individual resources generally support reading
a resource (GET), updating a resource (PUT), and deleting a resource (DELETE).

C.7.1 HTTP Response Status Codes
Table C-3 describes the potential response status codes.

Table C-3 HTTP Response Status Codes

HTTP Response
Status Code

Description

200 OK. Upon successful completion of a GET or PUT. This is
accompanied by a resource representation as a response body.

201 Created. Upon successful completion of a POST. This has a location
header to the newly-created resource.

204 No content, or any request that does not return content. For example,
creating an object that cannot be linked. Upon successful completion
of a DELETE.

400 Bad Request. The URI was malformed or could not be processed; for
example, the IDs were not formatted correctly, or the ID was supplied
in the URI on a POST.

401 Unauthorized. Client may retry by submitting credentials. This may
be accompanied with a fault response body to help diagnose the issue.

403 Forbidden. Client does not have permission to perform a particular
action, such as creating or deleting a resource. Re-authenticating as
the same user does not help. This may be accompanied with a fault
response body to help diagnose the issue.

404 Not Found. Referencing a specific resource with an ID, but that
resource does not exist.

405 Method Not Allowed. This includes a list of valid methods for the
requested resource.

406 Not Acceptable. The Accept header media type(s) sent by the client
are not supported for the requested operation.This may be
accompanied with a fault response body to help diagnose the issue.

409 Conflict. Possibly the resource ID is in use, or an entity has been
modified by another process during an update.This may be
accompanied with a fault response body to help diagnose the issue.

Navigating Hypermedia Using HTTP

Using the WebCenter Portal REST APIs C-13

Table C-3 (Cont.) HTTP Response Status Codes

HTTP Response
Status Code

Description

422 Bad entity body, the data in the body, although syntactically correct,
was not valid, or could not be processed; for example, invalid data
when updating a row.

500 Internal server error. The server encountered an unexpected condition
that prevented it from fulfilling the request.

501 Not Implemented. The server does not support the functionality
required to fulfill the request. This is the appropriate response when
the server does not recognize the request method and is not capable of
supporting it for any resource.

C.8 Security Considerations for WebCenter Portal REST APIs
All of the WebCenter REST URIs reference protected resources (similar to protected
web pages) and require authentication for access.

Note:

The one exception to the authenticated access rule is access to the CMIS
resources. CMIS resources can be accessed anonymously through the CMIS
URI entry point:

http://host/port/rest/api/cmis/repository

See also Security Considerations for CMIS REST APIs.

You can pass this authentication in with the request using basic authentication, or you
can configure the client and the WebCenter REST service to use single sign-on. For
more information about single sign-on, see Configuring SSL in Administering Oracle
WebCenter Portal.

Basic authentication sends the user's password in plain text. If you use this type of
authentication, you should consider securing the connection using SSL. For more
information, see Configuring SSL in Administering Oracle WebCenter Portal.

To provide additional security, every URI, for both href and template attributes,
includes a security token parameter. The security token is user-scoped. This means
that it is based on and scoped to an authenticated user and can be bookmarked or
cached across that user's sessions. These security tokens help prevent Cross-Site
Request Forgery (CSRF) attacks.

For example:

<link
 template="opaque-template-uri/@me?startIndex={startIndex}&itemsPerPage={itemsPerPage}
 &token=generated-token" resourceType="urn:oracle:webcenter:messageBoard"
 href="opaque-uri/@me?token=generated-token" capabilities="urn:oracle:webcenter:read"
/>

Security Considerations for WebCenter Portal REST APIs

C-14 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Note:

The security token is not used for authentication or identity propagation.

WebCenter Portal REST APIs operate under the identity of the authenticated user. For
example, the portal REST APIs only return information for, and allow changes to,
portals to which the user has access.

C.9 Security Considerations for CMIS REST APIs
The CMIS REST APIs do not use the same authentication scheme as the other
WebCenter Portal REST APIs. Whereas other WebCenter Portal REST APIs do not
allow unauthenticated access and prompt the user for authentication before allowing
access, the CMIS REST APIs do allow unauthenticated access.

If a document requires authentication information and does not receive that
information (because it is being accessed by an unauthenticated user), a 404 error is
returned. This does not necessarily mean that the document cannot be found, rather
that the (unauthenticated) user does not have the appropriate permissions to access
the document. For the request to succeed, it should include basic authentication
headers to identify the current user.

CMIS stands for Content Management Interoperability Services, a standard REST
interface for Enterprise Content Management Systems. For more information, see
Content Management REST API.

C.10 Understanding Common Types
This section describes the common types that are shared by multiple WebCenter Portal
REST APIs.

• Common Types

• Portable Contact Types

C.10.1 Common Types
Common types provide a consistent way to reference objects used in the WebCenter
Portal REST APIs.

This section includes the following topics:

• personReference

• groupSpaceReference

C.10.1.1 personReference

This is a generic data type that represents a user in the system. It is used by several
APIs, for example to identify the author of a message board or feedback message, or a
user's manager or direct reports. It is made up of the following elements:

• guid - The GUID of the user

• id - The login ID of the user

• displayName - The display name of the user

Security Considerations for CMIS REST APIs

Using the WebCenter Portal REST APIs C-15

The personReference also includes a link to the user's profile icon. You can control
the size of the icon by providing values: small, medium, or large.

Depending on where the personReference type is included, it can also return links
to the associated REST APIs of the generating response. For example, if the
personReference type is included as the author in a message board response, it
includes links to message board services.

C.10.1.2 groupSpaceReference

This is a generic data type that represents a portal. It is used by several APIs, for
example in the activity stream, to identify a portal in which a particular activity
occurred. It is made up on the following elements:

• guid - The GUID of the portal

• name - The name of the portal

• displayName - The display name of the portal

The groupSpaceReference also includes an html link, rest link, and icon link.

C.10.2 Portable Contact Types
Portable Contact types provide users with a standard way to access their address
books and friends lists over the Web. Portable Contact types are used by the Profile
component of the People Connections service.

Note:

These types are based on the Portal Contact Types in WebCenter. They may
include additional data.

This section includes the following topics:

• name Portable Contact Type

• address Portable Contact Type

• organization Portable Contact Type

• value Portable Contact Type

C.10.2.1 name Portable Contact Type

This is a portable contact type that provides information about the user's name. It is
made up of the following elements:

• formatted - The formatted version of the full name of the user, for example,
Michael David Jones Ph.D.

• familyName - The family name, or last name, of the user, for example Jones

• givenName - The given name, or first name, of the user, for example Michael

• honorificSuffix - The honorific suffix of the user, for example, Esq. or Ph.D.

• initials - The first initials of the user, for example, M. D.

Understanding Common Types

C-16 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• maidenName - The maiden name of the user

Some of the elements may not be present depending on the user repository
configuration and data.

C.10.2.2 address Portable Contact Type

This is a portable contact type that provides information about the user's address. It is
made up of the following elements:

• formatted - The formatted version of the full address

• type - The type of the address, for example, Home, Work

• streetAddress - The street address

• poBox - The post office box number

• locality - The city or locality

• region - The state or region

• postalCode - The zip code or postal code

• country - The country

Some of the elements may not be present depending on the user repository
configuration and data.

C.10.2.3 organization Portable Contact Type

This is a portable contact type that provides information about the user's
organizational affiliation. It is made up of:

• name - The name of the organization

• employeeNumber - The employee number of the user

• employeeType - The employee type of the user.

• department - The department within the organization to which the user belongs

• defaultGroup - The default group to which the user belongs

• title - The job title of the user within the organization

• description - A textual description of the user's role within the organization

• expertise - The expertise of the user within the organization

• startDate - The date when the user joined the organization

Some of the elements may not be present depending on the user repository
configuration and data.

C.10.2.4 value Portable Contact Type

This is a generic object that contains data for a wide variety of contact information. It is
made up of the following elements:

Understanding Common Types

Using the WebCenter Portal REST APIs C-17

• primary - A boolean value that identifies whether this is the primary piece of
information of this type for this person. The primary element may not be present
and is only relevant if there are multiple values for the same type of data.

• value - The value for this type

• type - The type of information. Valid types are:

– standard: with valid values of work, home, other

– phoneNumber: with valid values of work, home, fax, pager, mobile

– photos: with a valid value of thumbnail

C.11 Managing Caches
Client-side developers need to know how to handle HTTP cache headers in both
requests and responses. Individual resources that have a "last modified" date are also
return entity tags. The entity tags can be used to make retrieval of a specific entity
more efficient. To learn more about the use of entity tags in caching, refer to the
Hypertext Transfer Protocol specification:

http://www.w3.org/Protocols/

C.12 Configuring a Proxy Server
This section explains how to set up a simple, response-rewriting reverse HTTP proxy
on an Apache server. A proxy server is typically employed to avoid cross-domain
request problems associated with making XMLHttpRequest (XHR) calls from a
browser client. These calls are typically associated with the Ajax development
technique for creating rich, interactive client-side interfaces. REST APIs are typically
used within this kind of client-side development scenario.

Note:

This section illustrates a simple example of setting up a proxy server on
Apache. For more detailed information, refer to the Apache Server
documentation available at http://httpd.apache.org/docs. You can
also use Oracle HTTP Server (OHS) for your proxy server. For more
information, see Administrator's Guide for Oracle HTTP Server.

The basic steps for setting up a proxy server on Apache are:

1. Obtain access to an Apache server. Oracle recommends Apache 2.2.7 or a later
version.

2. Make sure the server has the mod_substitute and mod_proxy modules
installed. Note that Apache versions 2.2.7 and later include mod_substitute by
default. It is also possible to use mod_sed or mod_line_edit, however these
configurations are not supported by Oracle.

3. Open the httpd.conf or the virtual host configuration file, and add the following
lines, substituting your server name/information where appropriate:

ProxyRequests Off
LoadModule substitute_module modules/mod_substitute.so
SetOutputFilter SUBSTITUTE

Managing Caches

C-18 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://httpd.apache.org/docs

ProxyPass /rest/api/ http://myhost:8888/rest/api/
ProxyPassReverse /rest/api/ http://myhost:8888/rest/api/
Substitute s|myhost|yourhost|n

ProxyPass /pathname/rest/api/ http://myhost:8888/rest/api/
ProxyPassReverse /pathname/rest/api/ http://myhost:8888/rest/api/
Substitute s|myhost:8888/rest/api|yourhost/pathname/rest/api|n

Note:

Two servers are being proxied in this example scenario. Note that the
following two calls are actually talking to these two different servers, but they
appear to clients to be the same server host:

http://myhost/rest/api/resourceIndex

http://myhost/pathname/rest/api/resourceIndex

4. Restart the Apache server. For example, on Linux, you could do this:

sudo /etc/init.d/httpd restart

Note that on some configurations of Linux, proxying with Apache in this fashion
requires you tell selinux to allow outbound connections from httpd. You can
accomplish this by enabling the httpd_can_network_connect flag in selinux's
GUI or through the command line.

Developer Tip:

Set the UserDir permissions in httpd.conf to allow users to drop these
files in their own public_html directory. For example, you might hit
http://host/~yourname/sample.html to access your sample
application, and then have the sample application make XHR calls to
http://host/rest/api/resourceIndex.

C.13 WebCenter Portal REST API Examples
This section includes some examples illustrating how to use the WebCenter Portal
REST APIs. It includes the following topics:

• Navigating the Message Board Hypermedia

• Displaying Activity Stream Data

• Updating User Status

C.13.1 Navigating the Message Board Hypermedia
This section includes examples to illustrate how to navigate the REST service
hypermedia. The examples show how to read messages on a message board, post
messages to another user's message board, delete unwanted messages, and filter
message board messages.

This section includes the following topics:

WebCenter Portal REST API Examples

Using the WebCenter Portal REST APIs C-19

• Accessing the Resource Index

• Reading Messages

• Creating a New Message

• Updating a Message

• Deleting a Message

• Filtering Messages

C.13.1.1 Accessing the Resource Index

The first step is always to access the Resource Index as shown in the example below.

Example: Accessing the Resource Index

GET /resourceIndex

This request returns a list of the top-level URI entry points to the RESTful services,
including the entry point for the message board:

Example: Response to Accessing the Resource Index

200 OK
Accept: application/json;charset=UTF-8

{
 "resourceType": "urn:oracle:webcenter:resourceindex",
 "links": [
 {
 "resourceType": "urn:oracle:webcenter:resourceindex",
 "capabilities": "urn:oracle:webcenter:read",
 "rel": "self",
 "href": "http://host:port/rest/api/resourceIndex"
 },
 {
 "resourceType": "urn:oracle:webcenter:messageBoard",
 "capabilities": "urn:oracle:webcenter:read",
 "href": "opaque-messageBoard-URI"
 },
 ...repeating for other services...
}

You can examine this list to find the URI that you require to access your message
board. You should look for the link with a resourceType of
urn:oracle:webcenter:messageBoard. The href for this link is the one that you
require to access your message board.

For other resources rel, type, and template also help find the correct link.

C.13.1.2 Reading Messages

Once you have determined the correct URI for your message board, you can send a
GET request to that URI to read your messages.

To read messages on a message board, you must be logged in.

Example: Retrieving Messages from Your Message Board (GET)

GET /opaque-messageBoard-URI

WebCenter Portal REST API Examples

C-20 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

The response provides information about all the messages on your message board:

Example: Response to Retrieving Messages from Your Message Board

200 OK
Accept: application/json;charset=UTF-8

{
 "resourceType": "urn:oracle:webcenter:messageBoard",
 "links": [
 {
 "resourceType": "urn:oracle:webcenter:messageBoard",
 "capabilities": "urn:oracle:webcenter:read urn:oracle:webcenter:create",
 "rel": "self",
 "href": "opaque-messageBoard-URI"
 }
]
 "items": [
 {
 "resourceType": "urn:oracle:webcenter:messageBoard:message",
 "links": [
 {
 "resourceType": "urn:oracle:webcenter:messageBoard:message",
 "capabilities": "urn:oracle:webcenter:read urn:oracle:webcenter:delete",
 "rel": "self",
 "href": "opaque-message-URI"
 }
]
 "id": "89add57c-7a35-4d35-b24f-ea9259612eb8",
 "body": "What's up? It's been a while. Some of us are going to Conner
O'Neal's after work. Want to go?",
 "created": "2009-09-10T11:18:46.696-0700",
 "author": {
 "id": "carl",
 "displayName": "carl",
 "guid": "649A27F09D5C11DEBFAA799CBD41D9B8",
 "links": [
 {
 "resourceType": "urn:oracle:webcenter:people:person",
 "capabilities": "urn:oracle:webcenter:read",
 "rel": "via",
 "href": "opaque-person-URI"
 },
 {
 "resourceType": "urn:oracle:webcenter:messageBoard",
 "capabilities": "urn:oracle:webcenter:read urn:oracle:webcenter:create",
 "href": "opaque-messageBoard-URI-for-Carl"
 },
 {
 "type": "text/html",
 "resourceType": "urn:oracle:webcenter:spaces:profile",
 "capabilities": "urn:oracle:webcenter:read",
 "rel": "alternate",
 "href": "opaque-profile-URI"
 }
]
 },
 }
],
 "startIndex": 0,
 "itemsPerPage": 1,
}

WebCenter Portal REST API Examples

Using the WebCenter Portal REST APIs C-21

From the response you can see that you have read and create capabilities on your
message board. So you can read its contents and post new messages.

In addition, the response also includes a collection of items (in this case the collection
consists of just a single item). These items, with a resourceType of
urn:oracle:webcenter:messageBoard:message, are the messages on your
message board. The capabilities attribute for the message indicates that, for this
particular message, you can read it or delete it from your message board.

For each message, the response provides the following information:

• id - the identifier of the message

• body - the text of the message

• author - the author of the message. The author element is also made up of several
other elements:

– id - the identifier, or user name, of the author of the message

– displayName - the name of the author, formatted for display

– guid - the globally unique identifier of the author

Within the author element there is also a collection of three links. The
resourceType of these links are:

• urn:oracle:webcenter:people:person - enables you to view information
about the author of the message

• urn:oracle:webcenter:messageBoard - enables you to read or create a
message on the author's message board

• urn:oracle:webcenter:spaces:profile - enables you to read a text/html
document of the author's profile

C.13.1.3 Creating a New Message

Now that you have read the message on your message board, you probably want to
reply to Carl on his message board. To do this you should send a POST request to the
URI for Carl's message board.

To find the correct URI, use the href from the author link with resourceType of
urn:oracle:webcenter:messageBoard.

A POST request creates a subordinate resource of the resource to which you post it. In
this case, we are posting to the messageBoard, so we should post its subordinate
resource: message:

Example: Creating a Message on Another User's Message Board (POST)

POST opaque-messageBoard-URI-for-Carl
Accept: application/json;charset=UTF-8
Content-Type: application/json;charset=UTF-8

{
 "body": "sure; see you guys at 6."
}

The response shows that your message was successfully created on Carl's message
board:

WebCenter Portal REST API Examples

C-22 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Example: Response to Creating a Message on Another User's Message Board

201 Created
Content-Type: application/json;charset=UTF-8

{
 "id": "36b8464f-afda-44b5-90ad-8ecedcb040a3",
 "body": "sure; see you guys at 6.",
 "created": "2009-09-10T12:21:09.785-0700",
 "resourceType": "urn:oracle:webcenter:messageBoard:message",
 "links": [
 {
 "resourceType": "urn:oracle:webcenter:messageBoard:message",
 "capabilities": "urn:oracle:webcenter:read urn:oracle:webcenter:update
urn:oracle:webcenter:delete",
 "rel": "self",
 "href": "opaque-message-URI"
 },
 "author": {
 "id": "mike",
 "displayName": "mike",
 "guid": "649657609D5C11DEBFAA799CBD41D9B8",
 "links": [
 {
 "resourceType": "urn:oracle:webcenter:people:person",
 "capabilities": "urn:oracle:webcenter:read",
 "rel": "self",
 "href": "opaque-person-URI"
 },
 {
 "resourceType": "urn:oracle:webcenter:messageBoard",
 "capabilities": "urn:oracle:webcenter:read urn:oracle:webcenter:create",
 "href": "opaque-messageBoard-URI"
 },
 {
 "type": "text/html",
 "resourceType": "urn:oracle:webcenter:spaces:profile",
 "capabilities": "urn:oracle:webcenter:read",
 "rel": "alternate",
 "href": "opaque:profile:URI"
 }
]
 }
]
}

C.13.1.4 Updating a Message

A PUT request is very similar to a POST request, except that it is performed on the
resource being edited, instead of on the parent resource.

From the response to your earlier POST request, when you created your message on
Carl's message board, you can see that you have read, update, and delete
capabilities on the message. You can also see that the href provides the URI for your
message. Something came up at work and you must stay a bit later. Using the URI for
your message, you can now send a PUT request to update the message and let Carl
know that you are going to be late.

Example: Updating a Message (PUT)

PUT opaque:message:URI
Accept: application/json;charset=UTF-8

WebCenter Portal REST API Examples

Using the WebCenter Portal REST APIs C-23

Content-Type: application/json;charset=UTF-8

{
 "body": "working late; see you guys at 7."
}

The response is nearly identical to that of POST, except that the body contains your
updated message:

Example: Updating a Message

200 OK
Content-Type: application/json;charset=UTF-8

{
 "id": "36b8464f-afda-44b5-90ad-8ecedcb040a3",
 "body": "working late; see you guys at 7.",

...deleted for brevity...

}

C.13.1.5 Deleting a Message

Performing a DELETE request on a resource deletes it, if you have the delete
capability on the resource. The link to your message on Carl's message board supports
delete.

You decide to delete the message that you left on Carl's message board:

Example: Deleting a Message (DELETE)

DELETE opaque:message:URI

The response is simply a status code of 204:

Example: Response to Deleting a Message

204 NO CONTENT

Note:

DELETE is idempotent, meaning that it can be sent multiple times with the
same result. Therefore if you try to delete the same object twice, you still
receive the same 204 response even though it has previously been deleted.

C.13.1.6 Filtering Messages

Messages can be filtered (using the HTTP verbs GET, POST, and PUT) based on
visibility criteria. Messages posted on message boards falls into the following visibility
categories:

• Public

• Private

• Hidden

• Public and hidden

WebCenter Portal REST API Examples

C-24 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Private and hidden

C.13.1.6.1 Public vs Private Messages

The owner of a message board can mark any message as private. When a message is
marked as private, that message is not visible to anyone other than the owner of the
message. By default, all messages are public.

Messages can also be sent as private messages. If Mike, for example, is viewing Carl's
message board, only public messages (including those sent or received as private) will
be visible to user Mike.

C.13.1.6.2 Hidden vs Non-hidden Messages

The owner of a message board can mark any message as hidden. When a message is
marked as hidden, that message will not be visible to the message board's owner, but
will remain visible to anyone else viewing that person's message board.

The following examples show how to retrieve,

Example: Retrieving Filtered Messages (GET)

• me

 all
 rest/api/messageBoards/person/@me
 private
 rest/api/messageBoards/person/@me/private
 public
 rest/api/messageBoards/person/@me/public
 hidden and public
 rest/api/messageBoards/person/@me/hidden
 private and hidden
 rest/api/messageBoards/person/@me/private_hidden

• person

 rest/api/messageBoards/person/<GUID>

Note that the GUID of the logged in user for whom to retrieve messages is
required.

• space-guid

 rest/api/messageBoards/space/<GUID>

Note that visibility-based filtering is not available for space-guid.

Example: Using Filtering for New Messages (POST)

• me

 all
 rest/api/messageBoards/person/@me
 private
 {"body" : "<BODY_CONTENT>","visibilityType" : "private"}
 public
 {"body" : "<BODY_CONTENT>","visibilityType" : "public"}
 hidden and public
 {"body" : "<BODY_CONTENT>","visibilityType" : "hidden"}
 private and hidden
 {"body" : "<BODY_CONTENT>","visibilityType" : "private_hidden"}

WebCenter Portal REST API Examples

Using the WebCenter Portal REST APIs C-25

• person

 rest/api/messageBoards/person/<GUID>

For a GUID other than that of "me":

 public
 {"body" : "<BODY_CONTENT>","visibilityType" : "public"}
 private
 {"body" : "<BODY_CONTENT>","visibilityType" : "private"}

• space-guid

 rest/api/messageBoards/space/<GUID>

Note that visibility-based filtering is not available for space-guid.

Example: Using Filtering for Modified Messages (PUT)

• me

 all
 rest/api/messageBoards/person/@me/messages/<msg guid>
 private
 {"body" : "<BODY_CONTENT>","visibilityType" : "private"}
 public
 {"body" : "<BODY_CONTENT>","visibilityType" : "public"}
 hidden and public
 {"body" : "<BODY_CONTENT>","visibilityType" : "hidden"}
 private and hidden
 {"body" : "<BODY_CONTENT>","visibilityType" : "private_hidden"}

• person

 rest/api/messageBoards/person/<GUID>/messages/<msg guid>

For a GUID other than that of "me":

 public
 {"body" : "<BODY_CONTENT>","visibilityType" : "public"}
 private
 {"body" : "<BODY_CONTENT>","visibilityType" : "private"}

• space-guid

 rest/api/messageBoards/space/<GUID>/messages/<msg guid>

Note that visibility-based filtering is not available for space-guid.

C.13.2 Displaying Activity Stream Data
To properly display Activity Stream data, you must:

• Retrieve the Activity Stream URI entry point

• Retrieve the Activity Stream data

• Process the Activity Stream data for display

WebCenter Portal REST API Examples

C-26 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

This sample is available on the Oracle WebCenter Portal Demonstrations and Samples
page on the Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/middleware/webcenter/ps3-
samples-176806.html

In the following example:

• The getResourceURL method shows you how to retrieve the URI entry point for
the Activity Stream service by retrieving the JSON data for the main Resource
Index (/rest/api/resourceIndex) and locating the URI for the Activity
Stream resource in that data.

• The formatMessage method processes the Activity Stream data into a displayable
format. This involves locating an individual message and replacing any template
parameters in the message with the name of the object or user that corresponds to
that parameter. The parameters also include links to display the object or user.
They may contain links to REST services for those objects or users, if available.

Note:

To get the Resource Index and Activity Stream JSON data, make Ajax requests
using Javascript (and possibly a client-side scripting library like Dojo) and
pass the resulting data into the appropriate methods.

Example: Displaying Activity Stream Data

/* Parse the resourceIndex to find the specified URL and
 * return it.
 *
 * @Param jsonData the JSON data retrieved from calling
 * the /rest/api/resourceIndex URL.
 * @Param strResourceType the resource type of the URL
 * you want to retrieve from the resourceIndex data.
 * E.g., 'urn:oracle:webcenter:activities:stream'
 */
function getResourceURL(jsonData, strResourceType)
{
 // Using the HATEOAS model, we browse the returned links
 // looking for the one with the correct resource type.

 for (var i = 0; i < data.links.length; i++) {
 if (data.links[i].resourceType == strResourceType) {
 return data.links[i].href;
 }
 }
}

/* Parse the resourceIndex to find the activity stream URL and
 * then load it.
 *
 * @Param jsonData the JSON data retrieved from calling
 * the /rest/api/resourceIndex URL.
 */
function getActivitiesURL(jsonData)
{
 // Parse the JSON data to get the activities URI entry point.

 var strHref = getResourceURL(jsonData,

WebCenter Portal REST API Examples

Using the WebCenter Portal REST APIs C-27

http://www.oracle.com/technetwork/middleware/webcenter/ps3-samples-176806.html
http://www.oracle.com/technetwork/middleware/webcenter/ps3-samples-176806.html

 'urn:oracle:webcenter:activities:stream');

 // INSERT CODE HERE: Implement getting the JSON data from the
 // strHref URL with the Accept header set to "application/json",
 // and use the formatMessage(index, jsonData) function to get
 // the displayable activity message for each activity.

}

/* Replace activity message parameters.
 *
 * @Param index the index of the activity to process
 * @Param jsonData the JSON data retrieved from calling
 * the /rest/api/resourceIndex URL.
 */
function formatMessage(index, jsonData)
{
 var activity = jsonData.items[index];
 var strMessage = activity.message;

 // Look for activity parameters and replace them in the message.

 if (activity.templateParams && activity.templateParams.items) {
 for (var i = 0; i < activity.templateParams.items.length; i++) {
 var param = activity.templateParams.items[i];

 // Each parameter also has a set of links which at least
 // includes an HTML link and possibly a REST API link.

 strMessage = strMessage.replace(param.key, param.displayName);
 }
 }
 if (activity.detail) {
 strMessage = strMessage + "
" +
 activity.detail + "";
 }
 return strMessage;
}

C.13.3 Updating User Status
The following example shows how to use REST APIs to update a user's WebCenter
Portal profile status.

Note:

You must host the sample on a web server (for example, Apache or Oracle
HTTP Server) or an application server. To avoid cross site scripting errors, you
should proxy URL access to the REST service. On Apache or OHS, the conf
commands would look like (change myspaceshost and port accordingly):

ProxyPass /webcenter/ http://myspaceshost:port/webcenter/
ProxyPassReverse /webcenter/ http://myspaceshost:port/webcenter/
ProxyPass /rest/ http://myspaceshost:port/rest/
ProxyPassReverse /rest/ http://myspaceshost:port/rest/
ProxyPreserveHost on

WebCenter Portal REST API Examples

C-28 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

This sample is available on the Oracle WebCenter Portal Demonstrations and Samples
page on the Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/middleware/webcenter/ps3-
samples-176806.html

Updating user status involves making a sequence of asynchronous AJAX calls to get
the URL for the status object:

urn:oracle:webcenter:resourceindex
 urn:oracle:webcenter:people
 urn:oracle:webcenter:people:person:status

The HTML page for updating user status includes an input field where users can enter
the new status message (statusMessage). Clicking the Update Status button (or
pressing Enter) calls the updateStatus method to make the initial call to the
Resource Index.

Example: HTML Body

<body>
<div>New status message: <input id="statusMessage" type="text"
 onkeyup="{if (event.keyCode==13) updateStatus();}" maxlength="250"
 size="60" /></div>
<div>
<button id="button1" onclick="updateStatus();">Update Status</button>
</div>
<div id="statusResults"></div>
</body>

The following example shows the HTML page.

Figure C-1 New Status Message HTML Page

The code in the following example retrieves the Resource Index (resourceIndexURL
variable set to /rest/api/resourceIndex). The Resource Index is returned as an
AJAX request object (resourceIndexRequest).

Example: Retrieving the Resource Index

function updateStatus() {
 // Set the UI to busy state. This is cleared in the success and error callbacks
 setUIBusy("Updating status...");
 //get the Resource Index
 resourceIndexRequest.get(
 resourceIndexURL,
 resourceIndexCallback,
 clearUIBusy);
}

The getResourceURL method shown in the following example traverses the links in
the data returned by a REST call to find a specified string (URN) that identifies the
required resource type.

WebCenter Portal REST API Examples

Using the WebCenter Portal REST APIs C-29

http://www.oracle.com/technetwork/middleware/webcenter/ps3-samples-176806.html
http://www.oracle.com/technetwork/middleware/webcenter/ps3-samples-176806.html

Example: Traversing the Links

function getResourceURL(data, strResourceType) {
 for (var i = 0; i < data.links.length; i++) {
 if (data.links[i].resourceType == strResourceType) {
 return data.links[i].href;
 }
 }
 return null;
}

The following example uses getResourceURL to parse the Resource Index to find the
user profile URL. The data is returned as an AJAX request object (profileRequest).

Example: Retrieving the User Profile

function resourceIndexCallback(data) {
 //get my user profile
 profileRequest.get(
 getResourceURL(data, 'urn:oracle:webcenter:people'),
 profileCallback,
 clearUIBusy);
}

The following example takes the new status message provided by the user in the
HTML page (statusMessage) and uses request.put to update the status object
(retrieved by again calling getResourceURL).

Example: Retrieving the Status Object

function profileCallback(data) {
 profile = data;
 // get the URL for the status object
 var url = getResourceURL(data, 'urn:oracle:webcenter:people:person:status');
 // get the new status and escape double quotes
 var newStatus = document.getElementById
 ('statusMessage').value.replace(/\"/g. "\\\"");
 //send a JSON string representing the new status object
 var statusMessage = '{"note": "' + newStatus + '"}';
 statusRequest.put(
 getResourceURL(data, 'urn:oracle:webcenter:people:person:status'),
 statusMessage, renderStatusPutResults, clearUIBusy);
}

The renderStatusPutResults method, shown in the example below, renders the
new status object.

Example: Rendering the New Status Object

function renderStatusPutResults(data) {
 var name = profile.displayName;
 // get the URL for my profile HTML page in WebCenter Portal
 var profileURL = getResourceURL(profile,
 'urn:oracle:webcenter:spaces:profile');
 var html = 'Status for '
 + name + ' is: ' + data.note;
 // clear the UI busy state and print the new status message
 clearUIBusy(html);
}

The following example shows the code for disabling and reenabling the UI.

Example: Disabling the UI

WebCenter Portal REST API Examples

C-30 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

function setUIBusy(message) {
 document.getElementById('statusResults').innerHTML = message;
 document.getElementById('button1').disabled = true;
 document.getElementById('statusMessage').disabled = true;
}

function clearUIBusy(message) {
 document.getElementById('statusResults').innerHTML = message;
 document.getElementById('button1').disabled = false;
 document.getElementById('statusMessage').disabled = false;
}

The example below shows the library that assists in AJAX calls. Most of this is not
WebCenter specific and works for any XHR requests to a service that returns JSON.

The library includes a reusable XHR object. This object supports HTTP GET, POST,
PUT, and DELETE. All functions are asynchronous and take a URL and two callback
functions, one for success, and one for failure. Success calls are made with a JavaScript
object containing the return data. Failure calls are made with an error string. POST
and PUT also take a data argument which must be a JSON string.

Example: AJAX Library

function AjaxRequest() {
 // constructor to create an object oriented AJAX request
 var xhr = null;

 // get XHR object. Should work for IE 6+, Safari, and Mozilla based browsers
 if (window.XMLHttpRequest) {
 xhr = new window.XMLHTTPRequest;
 } else {
 try {
 xhr = new ActiveXObject('MSXML2.XMLHTTP.3.0');
 } catch (ex) {
 xhr = null;
 }
 }
 if (xhr == null) {
 alert("Your browser does not support AJAX");
 }

 this.get = function(url, callback, errorCallback) {
 xhr.open('GET', url, true);
 // the REST APIs return XML by default. Please return JSON
 xhr.setRequestHeader('Accept', 'application/json; charset=utf-8');
 sendRequest(null, callback, errorCallback);
 };

 this.post = function(url, data, callback, errorCallback) {
 xhr.open('POST', url, true);
 // set headers to send and receive JSON
 xhr.setRequestHeader('Accept', 'application/json; charset=utf-8');
 xhr.setRequestHeader('Content-Type', 'application/json; charset=utf-8');
 sendRequest(data, callback, errorCallback);
 };

 this.put = function(url, data, callback, errorCallback) {
 xhr.open('PUT', url, true);
 // set headesr to send and receive JSON
 xhr.setRequestHeader('Accept', 'application/json; charset=utf-8');
 xhr.setRequestHeader('Content-Type', 'application/json; charset=utf-8');

WebCenter Portal REST API Examples

Using the WebCenter Portal REST APIs C-31

 sendRequest(data, callback, errorCallback);
 };

 this.deleteResource = function(url, callback, errorCallback) {
 xhr.open('DELETE', url, true);
 sendRequest(null, callback, errorCallback);
 };

 // set the callbacks and send the request with data, if any
 function sendRequest(data, callback, errorCallback) {
 xhr.onreadystatechange = function () {
 processResponse(xhr, callback, errorCallback);
 };
 xhr.send(data);
 }

 function processResponse(xhr, callback, errorCallback) {
 var data = null;
 // can get called here many times. 4 means really done
 if (xhr.readyState == 4) {
 // let's call any HTTP codes in the 200s success
 if (xhr.status >= 200 && xhr.status <300) {
 // convert response text into a JSON object. This is insecure.
 // data should not be blindly evaluated from the server return.
 // consider using json2.js http://www.JSON.org/js.html
 data = eval('(' + xhr.responseText + ')');
 callback(data);
 } else {
 // we got an error. Format an error string
 data = 'Error: ' + xhr.status + ' ' + xhr.statusText + '
'
 + xhr.responseText;
 errorCallback(data);
 }
 }
 }
}

C.14 Using the People Connections REST APIs
This section includes the following topics:

• Activity Stream REST API

• Connections and Profile REST API

• Feedback REST API

• Message Board REST API

• Creating an Invitation

C.14.1 Activity Stream REST API
Use the Activity Stream REST API to browse user application activities in an activity
stream. This section provides information about the REST API methods you can use to
perform this action.

This section includes the following topics:

• Activity Stream Entry Point

Using the People Connections REST APIs

C-32 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Activity Stream Resource Type Taxonomy

• Activity Stream Security Considerations

• Activity Stream Resource Types

C.14.1.1 Activity Stream Entry Point

Each REST service has a link element within the Resource Index that provides the
entry point for that service. For People Connections, each feature has its own link
element. For example, to find the entry point for the People Connections' Activity
Stream feature, find the link elements with a resourceType of:

urn:oracle:webcenter:activities:stream

The corresponding href or template element provides the URI entry point, which
retrieves application activities for the current user from the Activity Stream. The client
sends HTTP requests to this entry point to work with the People Connections' Activity
Stream feature.

See Also:

For more information about the Resource Index, see Using the Resource Index.

For more information about resource types, see Resource Type.

C.14.1.2 Activity Stream Resource Type Taxonomy

When the client has identified the entry point, it can then navigate through the
resource type taxonomy to perform the required operations. For more information
about the individual resource types, see the appropriate section in Activity Stream
Resource Types.

The resource type taxonomy for the People Connections' Activity Stream feature is:

urn:oracle:webcenter:activities:stream
urn:oracle:webcenter:activities:activity

C.14.1.3 Activity Stream Security Considerations

You must be logged into the REST service to access any of the People Connections
REST APIs. After that, the underlying service handles permission checking and the
like.

See Also:

For general security considerations, see Security Considerations for
WebCenter Portal REST APIs.

C.14.1.4 Activity Stream Resource Types

This section provides you with all the information you need to know about each
resource type. It includes the following topics:

• urn:oracle:webcenter:activities:stream

• Navigation Paths to stream

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-33

C.14.1.4.1 urn:oracle:webcenter:activities:stream

The stream response contains URIs for use in retrieving activities from the Activity
Stream.

You can retrieve the activities from a user's stream or activities from a user's
connections' streams. To have even greater control over which activities to retrieve,
use the activity stream query filter. With the query filter, you can:

• Specify the user to query

• Include the user's connections' activities in the results

• Include activities from portals, including the Home portal, in the results

• Restrict the results to activities from specific services

The options available to you depend on the path you take to get to the stream
resource and the rel of the link that you use. For example, the activity stream query
filter is available only from links with a rel attribute of
urn:oracle:webcenter:activities:stream. If you access the activity stream
query filter from the person resource, the personGuid parameter is prefilled.

Table C-4 shows the activities returned depending on the rel element of the link.

Table C-4 Activities Returned by stream

rel Returns

urn:oracle:webcenter:activities:stream:person Activities from the user's stream (GUID/
@self)1

urn:oracle:webcenter:activities:stream:connection
s

Activities from the user's connections'
streams (GUID/@connections)

urn:oracle:webcenter:activities:stream Activities determined by the activity stream
query filter

urn:oracle:webcenter:activities:stream:space Activities from the portal activity stream

urn:oracle:webcenter:activities:stream:list Activities from the portal activity list

1 GUID can be any valid user GUID or @me.

C.14.1.4.2 Navigation Paths to stream

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceIndex
 stream (rel="urn:oracle:webcenter:activities:stream:person" or
 "urn:oracle:webcenter:activities:stream")

resourceIndex
 person
 stream (rel="urn:oracle:webcenter:activities:stream:person" or
 "urn:oracle:webcenter:activities:stream:connections" or
 "urn:oracle:webcenter:activities:stream")

resourceIndex
 person

Using the People Connections REST APIs

C-34 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 list
 stream

resourceIndex
 space
 stream

stream
 activity
 param
 stream (rel="urn:oracle:webcenter:activities:stream:space")

personReference
 stream

C.14.1.4.3 Supported Methods for stream

The following method is supported by the stream resource:

• GET

– request—Parameters:

◆ startIndex, itemsPerPage

See Also:

For information about REST API parameters, such as startIndex and
itemsPerPage, see Common Request Query Parameters.

The following additional parameters are available for the query filter URI:

◆ fromDate – Specifies activities start date (yyyy-mm-dd).

◆ toDate – Specifies activities end date, (yyyy-mm-dd).

◆ data – Returns specified data only (for more information, see Common
Request Query Parameters). For the stream resource, if you specify the
constant 'data' as the data parameter, all of the basic information about the
resource is returned except "comments" and "likes" summaries. If you want
to return comments or likes, specify the data parameter value
'commentsSummary' or 'likesSummary'.

Note:

You can specify multiple data values as a comma separated list. For example,
data=data, commentsSummary.

◆ personGuid – (Required) Retrieves activities from the stream for the
specified user. Valid values: any valid user GUID or @me.

◆ serviceIds – Retrieves activities only for the specified services. Valid
values: An asterisk (*) returns all services. If null or empty, uses the user
preference settings for service filters (from the settings link in the top bar).

◆ personal – Includes the specified user's activities in the Home portal. Valid
values: true or false. Default value: false.

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-35

◆ connections – Includes activities from the streams of the specified user's
connections. Valid values: true or false. Default value: false.

◆ groupSpaces – Includes activities from all portals of which the specified
user is a member. Valid values: true or false. Default value: false.

◆ connectionListIds – A comma separated list of connection list names
that specifies the connection lists used to show activities.

◆ groupSpaceGuids – A comma separated list of portal GUIDs used to show
activities.

◆ userGroupSpaceActivities – Specifies whether or not to show the
user's activities in their portal. Valid values: true or false. Default value:
false.

◆ followedObjects – Specifies whether or not to show all activities for
followed objects that both the current user and the specified user follow.
Valid values: true or false. Default value: false.

◆ followedObjectsUserActivities – Specifies whether or not to show
the specified user's activities for followed objects that both the current user
and the specified user follow. Valid values: true or false. Default value:
false.

◆ advancedQuery – Specifies filters against streamed activities. Create filters
for user names, service IDs, and object details, such as a document's display
name.

Note:

You must plug actual values into the advancedQuery parameter. You cannot
pass EL expressions directly into the parameter. Typically, the REST API client
handles an EL transformation manually and inserts the actual object data
value into the REST URL. See the example below.

For example, the following URI returns activities from the current user's activity
stream, for all services that the user has configured in their personal preference
settings for service filters. It returns activities from the user's Home portal and
from the streams of the user's connections:

http://host:port/rest/api/activities?
personal=true&connections=true&personGuid=@me&token=utoken

The following URI returns only the user's personal profile and connections
activities:

http://host:port/rest/api/activities?serviceIds=oracle.webcenter.peopleconn
ections.profile,oracle.webcenter.peopleconnections.connections&personal=
true&personGuid=@me&token=utoken

This next example illustrates how to use the advancedQuery parameter. As
explained previously, you cannot pass an EL expression to advancedQuery.
The REST API client must first obtain the actual data object value, and that
value can then be passed to advancedQuery. For example, to filter activities
for a particular portal, you can pass the GUID of the portal's scope to
advancedQuery:

Using the People Connections REST APIs

C-36 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://host:port/rest/api/activities?personGuid=@me&advancedQuery=AE.SCOPE_ID
%20%3D%20\%27s8bba98ff_4cbb_40b8_beee_296c916a23ed\%27&ttoken=token

where s8bba98ff_4cbb_40b8_beee_296c916a23ed is the GUID of the
portal. Note that the query string must be encoded with the appropriate escape
codes.

– response—Body: 0 or more activities

Note:

Because the stream resource includes activity items, the response may also
return resource links for the objects referenced in the activity.

C.14.1.4.4 Resource Types Linked to From stream

Table C-5 lists the resource types that the client can link to from the stream resource.

Table C-5 Related Resource Types for stream

rel resourceType

self urn:oracle:webcenter:activities:stream:person urn:oracle:webcenter:activities:stream

urn:oracle:webcenter:activities:activity

C.14.1.4.5 urn:oracle:webcenter:activities:activity

The activity response contains the data for activities and URIs for use in retrieving
all the data you need from an activity that is included in an Activity Stream.

C.14.1.4.6 Navigation Paths to activity

This section shows how the client can navigate through the hypermedia to access the
activity resource:

resourceIndex
 stream
 activity

resourceIndex
 person
 stream
 activity

resourceIndex
 space
 stream
 activity

C.14.1.4.7 Supported Methods for activity

No methods are supported for activity. Activities are currently available only from
the stream resource type.

C.14.1.4.8 Resource Types Linked to from activity

Table C-6 lists the resource types that the client can link to from this resource.

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-37

Table C-6 Related Resource Types for urn:oracle:webcenter:activities:activity

rel resourceType

self urn:oracle:webcenter:activities:activity

icon urn:oracle:webcenter:activities:activity:icon

C.14.1.4.9 Read-only Elements for activity

Table C-7 lists the read-only elements for the activity resource.

Note:

The activity will also return a link to an activity icon in the links section of the
response, if an icon is available. See
urn:oracle:webcenter:activities:activity:icon.

Table C-7 Read-Only Elements for activity

Element Type Description

activityType String Activity type

Unique within the service. For example,
Discussions can return the activityType
createForum.

commentsCount String If you specify commentsSummary in the
data parameter, then the commentsCount
parameter will be returned.

createdDate Date (String)1 Date the activity was created.

description String The description of the activity.

detail String Detail information for the activity, if
available.

For example, this might return the contents
of a message, the file name of a document,
and the like.

Similar to detailURL. Both, either, or
neither can be used. The detailURL will be
available when creating wiki and blog in a
portal.

detailURL String detailURL is available when creating wikis
and blogs in a portal.In a Web-based
WebCenter Portal, the user can click this
URL and open a wiki or blog page in a
portal.

Similar to detail. Both, either, or neither
can be used.

displayDescriptio
n

String A pre-formatted, internationalized
description.

Using the People Connections REST APIs

C-38 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-7 (Cont.) Read-Only Elements for activity

Element Type Description

displayMessage String A pre-formatted, internationalized
message (does not include template
information).

groupSpace groupSpaceReference Information about the portal in which the
activity was performed

Note: This reference is not present for
activities that did not happen in a portal
(for example, activities that happened in
the Home portal). Also, because creation of
a portal happens in a Home portal, that
activity does not have this element either.

id String Unique ID of the message

isSummary true or false Indicates whether or not this activity is a
summary of other activities.

likesCount String If you specify likesSummary in the data
parameter, then the likesCount
parameter will be returned.

message String Localized string for this activity

This may contain replacement strings
within curly braces ({}).

permission PRIVATE

SHARED

PUBLIC

Permission level of this activity

scope String Scope of the activity

This might return a portal, like the Home
portal.

For example, for a portal, it returns a string
similar to the following:

s8bba98ff_4cbb_40b8_beee_296c916a23ed

serviceId String Unique ID of the service that created the
activity

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-39

Table C-7 (Cont.) Read-Only Elements for activity

Element Type Description

sharedLink_url String Can be used to render a navigation link by
the REST client as shown in the example
below:

<param
resourceType="urn:oracle:webcenter:act
ivities:parameter">
<links>
<link href="http://www.google.com" />
</links>
<displayName>http://www.google.com</
displayName>
<key>_sharedLink_url</key>
<type>custom</type>
</param> "

Note that this parameter cannot be used in
a message template (for example:
{actor[0]} has created the portal
{object[0]}).

templateParams urn:oracle:webcenter:
activities:parameter

A list of param elements that capture data
related to an activity. A key provided with
each templateParam <param> element
allows you to plug one or more data items
into a parameterized activity message. See
Understanding the templateParams
Element.

custom Param The custom parameter includes a
displayName, key, and type, and may
or may not have a URL.

1 Data types, such as DATE and BOOLEAN, are stored in the API as STRING. The DATE data type returns
a Java standard date format, for example, 2009-08-21T14:43:11.0013-0700, with 0700
representing the time zone.

C.14.1.4.10 Understanding the templateParams Element

Suppose you want to display the most recent messages for a user named Carl. You
want to display information like this: "Carl created the portal Customer Feedback".
The templateParams element helps you solve this problem.

The templateParams element is returned in objects of type
oracle:webcenter:activities:activity. This element captures a lot of data
related to an activity. For example, if a user creates a new portal, the
templateParams element for that activity captures information about the user and
about the portal. Keys are provided that allow you to perform string substitutions in a
parameterized message string related to the activity.

For example, if the user creates a portal, the returned activity object contains a
<message> item that is parameterized like this:

<message>{actor[0]} has created the portal {object[0]}</message>

Using the People Connections REST APIs

C-40 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

By parsing the templateParams element for the activity, you can find the available
keys that allow you to perform string substitutions as well as appropriate data to
display, like the name of the user and the activity.

The templateParams element also provides links to comments, likes,
commentsSummary, and likesSummary objects, if they are requested using the
data parameter. These links let you query for all the comments or likes for an object
or post a new comment or like. The summary links returns the comments or likes
count and several recent comments or likes. See also Understanding Comments and
Likes.

The links returned with the templateParams element vary depending on what kind
of object is returned, like a user, document, portal, or custom object. For more
information, see urn:oracle:webcenter:activities:parameter.

Note:

The templateParams element can sometimes contain elements that are not
directly referenced in the message.

If a rel link is marked "via," this means it is a link to the underlying REST object–for
instance, the document not the parameter. If a rel link is marked "alternate" and type
"text/html," it is a link to the HTML page for that object. Portal objects include an
activity stream link for portals. Users have icon and activity stream links. Other objects
can have an alt link to the tagged item, as well as the related tagged items list, if
tagging is enabled for that object. If a regular object supports comments or likes, it can
include the comments/commentsSummary and likes/likesSummary, as explained
previously.

C.14.1.4.11 Understanding Comments and Likes

Hyperlinks to comments, commentsSummary, likes and likesSummary are
included by default (you can expand the commentsSummary and likesSummary by
specifying data=data,commentsSummary,likesSummary). Comments and likes
can be associated with the object referenced by the activity or the activity itself. For
example, if you edit a document, then the comments will be associated with the
document. If you add comments on an edit document activity on the activity stream
page, then comments will be associated with the edit document activity.

The links associated with comments and likes are:

• comments – The comments link lets you query for all the comments for an object.
This link also lets you POST a new comment. For a comments POST, the text
field is required. For example, for body data you would use:

JSON:

 {
 "text" : "REST Comment"
 }

XML:

 <text>REST Comment</text>

• commentsSummary – The commentsSummary link returns the comments count
and several recent comments.

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-41

• likes – The likes link lets you query for all the likes for an object. This link also
lets you POST a new like. There are no required fields for a likes POST.

• likesSummary – The likesSummary link returns the likes count and the current
user's like (if available).

Note:

Like objects themselves only support DELETE, not GET. The likesCount
and commentsCount items return the number of likes or comments for the
current object.

The following URLs show examples of GET requests for comments,
commentSummary, likes and likesSummary for a document object:

"http://example.com:8892/rest/api/activities/services/oracle.webcenter.doclib/
objectTypes/document/objects/(<document_object_id>)/comments?
startIndex=0&itemsPerPage=10&utoken=FCvY3qQSBh0eAByLdxugV-lUgFO3_w**"

"http://example.com:8892/rest/api/activities/services/oracle.webcenter.doclib/
objectTypes/document/objects/(<document_object_id>)/commentsSummary?
utoken=FCvY3qQSBh0eAByLdxugV-lUgFO3_w**"

"http://example.com:8892/rest/api/activities/services/oracle.webcenter.doclib/
objectTypes/document/objects/(<document_object_id>)/likes?
startIndex=0&itemsPerPage=10&utoken=FCvY3qQSBh0eAByLdxugV-lUgFO3_w**"

"http://example.com:8892/rest/api/activities/services/oracle.webcenter.doclib/
objectTypes/document/objects/(<document_object_id>)/likesSummary?
utoken=FCvY3qQSBh0eAByLdxugV-lUgFO3_w**"

Where <document_object_id> is the document object ID.

The following URLs show examples of GET requests for comments,
commentSummary, likes and likesSummary for a create document activity:

"http://example.com:8892/rest/api/activities/ffa9a9f0-d02f-4e30-8c58-8a41b7a6e8a3/
comments?startIndex=0&itemsPerPage=10&utoken=FCvY3qQSBh0eAByLdxugV-
lUgFO3_w**"

"http://example.com:8892/rest/api/activities/ffa9a9f0-d02f-4e30-8c58-8a41b7a6e8a3/
commentsSummary?utoken=FCvY3qQSBh0eAByLdxugV-lUgFO3_w**"

"http://example.com:8892/rest/api/activities/ffa9a9f0-d02f-4e30-8c58-8a41b7a6e8a3/
likes?startIndex=0&itemsPerPage=10&utoken=FCvY3qQSBh0eAByLdxugV-lUgFO3_w**"
 "http://example.com:8892/rest/api/activities/ffa9a9f0-
d02f-4e30-8c58-8a41b7a6e8a3/likesSummary?utoken=FCvY3qQSBh0eAByLdxugV-lUgFO3_w**"

C.14.1.4.12 urn:oracle:webcenter:activities:parameter

The templateParams element returns a set of param elements. The param elements
return data specific to the type of activity object returned. The possible types of param
elements include:

• user – Returns the displayName, guid, id, key, primaryId, and type.

• document – Returns the displayName, iconUrl, id, key, primaryId, and
type.

Using the People Connections REST APIs

C-42 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• custom – Returns displayName, key, and type, and may or may not have a
URL.

A param can also be a variable reference or key of the general form
{prefix[index].variable}.

C.14.1.4.13 urn:oracle:webcenter:activities:activity:icon

Use this resource type to get the icon of the activity, if available (GET).

C.14.1.4.14 Navigation Paths to activities:activity:icon

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 activities
 activity
 icon

C.14.1.4.15 Supported Methods for icon

The following methods are supported by this resource:

• GET – Returns the icon used for the named activity.

C.14.1.4.16 Resource Types Linked to from icon

Table C-8 lists the resource types that the client can link to from this resource.

Table C-8 Related Resource Types for urn:oracle:webcenter:activities:activity:icon

rel resourceType

self

urn:oracle:webcenter:parent urn:oracle:webcenter:activities:activity

C.14.2 Connections and Profile REST API
Use the Connections and Profile REST API to browse a profile or a connections list,
manage connections lists, add or remove connections, send invitations to connect, and
update a profile status message. This section provides information about the REST API
methods to use to perform these actions.

This section includes the following topics:

• Connections and Profile Entry Point

• Connections and Profile Resource Type Taxonomy

• Connections and Profile Security Considerations

• Connections and Profile Resource Types

C.14.2.1 Connections and Profile Entry Point

Each REST service has a link element within the Resource Index that provides the
entry point for that service. For People Connections, each feature has its own link
element. For example, to find the entry points for the People Connections' Connections
and Profile features, find the link elements with a resourceType of:

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-43

urn:oracle:webcenter:people (returns the current user profile)

urn:oracle:webcenter:people:person (enables you to query for a user)

urn:oracle:webcenter:people:invitations (returns invitations sent or
received by the current user)

Note:

The people:person and people:invitations resource types have a
template but not an href.

The corresponding href or template element provides the URI entry point, which
returns a list of people (people) or an individual user (people:person). The client
sends HTTP requests to this entry point to work with the People Connections'
Connections and Profile features.

C.14.2.2 Connections and Profile Resource Type Taxonomy

When the client has identified the entry point, it can then navigate through the
resource type taxonomy to perform the required operations. For more information
about the individual resource types, see the appropriate section in Connections and
Profile Resource Types.

The resource type taxonomy for the People Connections' Connections and Profile
features is:

urn:oracle:webcenter:people
 urn:oracle:webcenter:people:person
 urn:oracle:webcenter:people:icon
 urn:oracle:webcenter:people:person:list
 urn:oracle:webcenter:people:person:listNames
 urn:oracle:webcenter:people:person:listName
 urn:oracle:webcenter:people:person:list:member
 urn:oracle:webcenter:people:person:status
 urn:oracle:webcenter:people:invitations
 urn:oracle:webcenter:people:invitation

C.14.2.3 Connections and Profile Security Considerations

You must be logged in to the REST service to access any of the People Connections
REST APIs. After that, the underlying service handles permission checking and the
like.

C.14.2.4 Connections and Profile Resource Types

This section provides you with all the information you need to know about each
resource type. It includes the following topics:

• urn:oracle:webcenter:people

• Navigation Paths to people

• Supported Methods for people

• Predefined Sets for the links Parameter

• Resource Types Linked to from people

Using the People Connections REST APIs

C-44 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• urn:oracle:webcenter:people:icon

• Supported Methods for icon

• Resource Types Linked to from icon

• urn:oracle:webcenter:people:person

• Supported Methods for person

• Read-only Elements for person

C.14.2.4.1 urn:oracle:webcenter:people

The people response contains URIs for use in retrieving the profile of one or more
users.

C.14.2.4.2 Navigation Paths to people

This section shows how the client can navigate through the hypermedia to access the
people resource:

resourceIndex
 people

C.14.2.4.3 Supported Methods for people

The following method is supported by the people resource:

• GET

– request—Parameters:

◆ startIndex – See Common Request Query Parameters.

◆ itemsPerPage – See Common Request Query Parameters.

◆ projection – See Common Request Query Parameters.

◆ data – The data parameter is a comma separated list that controls which
data will be returned in the response. The predefined set basic is equivalent
to data=guid,id,displayName. The predefined set data is a standard
set that returns all the data for the user, but does not include status,
manager, reportees, or photos. The full list of possible values includes
the predefined sets basic and data, as well as the following individual
data values: guid, id, displayName, birthday, language, timeZone,
name, addresses, organizations, workEmail, phoneNumbers,
manager, reportees, photos, and status.

If you specify the constant 'data' as the data parameter, all the basic
information will be returned for the resource. If both the projection and
data query string parameters are present, the data parameter will be used
to determine which data to return.

The data parameter can also take any of the following values comma-
separated values to return the corresponding data: guid, id,
displayName, birthday, language, timeZone, name, addresses,
organizations, workEmail, phoneNumbers, manager, reportees,
photos, and/or status.

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-45

Note:

The data parameter can accept a predefined set, a collection of values, or a mix
of sets and values. For example, to get the basic data plus the user's birthday,
you can specify data=basic,birthday.

◆ links – The links parameter is a comma-separated list that controls which
links will be returned in the response. This parameter can accept predefined
sets, individual data values, or a combination of predefined sets and
individual data values. The predefined sets are basic, data,
activitiesSet, connectionsSet, and feedbackSet. These predefined
sets are described in Predefined Sets for the links Parameter.

The individual values for the links parameter are: person, profile,
icon, status, messageBoard, activities, personActivities,
connectionActivities, connections, listNames, invitation,
givenFeedback, receivedFeedback, userGivenFeedback, manager,
reportees, member.

If both the projection and links query string parameters are present, the
links parameter will be used to determine which links to return.

– response—Body: One or more person objects.

C.14.2.4.4 Predefined Sets for the links Parameter

The following items are predefined sets that can be returned in the links parameter.
For example, if you specify links=basic, it is the equivalent of specifying
data=person,profile,icon. You can also specify additional parameters as
needed. For example, you could specify data=basic,birthday.

Note:

Links that are not currently available will not be returned even if they are
specified in the links parameter.

• basic – A standard set that returns the basic information for the profile and
includes person, profile, and icon.

• data – A standard set that returns all the basic links for the response plus the
connections list, status, and activity stream template.

• activitiesSet – Includes activities, personActivities, and
connectionActivities.

• connectionsSet – Includes connections, listNames, and invitation.

• feedbackSet – Includes givenFeedback, receivedFeedback, and
userGivenFeedback.

C.14.2.4.5 Resource Types Linked to from people

Table C-9 lists the resource types that the client can link to from the people resource.

Table C-9 Related Resource Types for people

Using the People Connections REST APIs

C-46 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-9 (Cont.) Related Resource Types for people

rel resourceType

urn:oracle:webcenter:people:icon urn:oracle:webcenter:people:person

urn:oracle:webcenter:people:perso
n:list:connections

urn:oracle:webcenter:people:person:list

urn:oracle:webcenter:activities:stre
am:person

urn:oracle:webcenter:activities:stream

urn:oracle:webcenter:activities:stre
am:connections

urn:oracle:webcenter:activities:stream

urn:oracle:webcenter:activities:stre
am

urn:oracle:webcenter:activities:stream

urn:oracle:webcenter:feedback:all-
received

urn:oracle:webcenter:feedback

urn:oracle:webcenter:feedback:all-
given

urn:oracle:webcenter:feedback

self urn:oracle:webcenter:people:person:status

urn:oracle:webcenter:people:perso
n:list:list

urn:oracle:webcenter:people:person:list

self urn:oracle:webcenter:people:person:listName

urn:oracle:webcenter:activities:stre
am:list

urn:oracle:webcenter:activities:stream

C.14.2.4.6 urn:oracle:webcenter:people:icon

Use this resource type to get the icon used for the named profile (GET).

Navigation Paths to people:icon

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 people
 icon

C.14.2.4.7 Supported Methods for icon

The following methods are supported by this resource:

• GET – Returns the icon used for the named profile.

Note:

This resource includes a template that lets you choose the size of the profile
icon to use. The size template parameter can be set to small, medium, or
large.

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-47

C.14.2.4.8 Resource Types Linked to from icon

Table C-10 lists the resource types that the client can link to from this resource.

Table C-10 Related Resource Types for urn:oracle:webcenter:people:icon

rel resourceType

self urn:oracle:webcenter:people:icon

urn:oracle:webcenter:paren
t

urn:oracle:webcenter:people

C.14.2.4.9 urn:oracle:webcenter:people:person

The person response contains profile data and the URIs for use in retrieving a user
profile.

C.14.2.4.10 Navigation Paths to person

This section shows how the client can navigate through the hypermedia to access the
person resource:

resourceIndex
 people

resourceIndex
 people
 person

resourceIndex
 person

author
 person

resourceIndex
 activities:stream
 person

C.14.2.4.11 Supported Methods for person

The following method is supported by the person resource:

• GET

– request—Parameters: q

To retrieve a specified person, the format of q is:

q=[loginid:equals:username]
Or
q=[guid:equals:guid]
Or
q=[email:equals:email]

Note:

The parameter q is only on the resourceIndex template for person.

Using the People Connections REST APIs

C-48 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

– response—Body: message

See Also:

For information about the response message, see Read-only Elements for
person.

C.14.2.4.12 Read-only Elements for person

Table C-11 lists the read-only elements for the person resource.

Note:

The elements present in a person response depend on how the user
repository is configured and the elements it supports. Additionally, several of
the pieces of data represented in Table C-11, such as address, emails,
photos, phoneNumbers, and organization, can have multiple instances.

See Also:

Some of the elements listed in Table C-11 can be returned in predefined sets
described in Predefined Sets for the links Parameter.

Table C-11 Read-Only Elements for person

Element Type Description

guid String Unique GUID of the person

id String Unique login ID of the person (that is, the user name, for
example, pat_coi)

displayName String Display name of the person (the user's name, for example, Pat
Coi). This may have the same value as id, depending on the
repository configuration.

birthday Date (String)1 Birth date of the person

connected Boolean (String)1 Whether or not this person is connected to the current user

language String Preferred language of the person

timeZone String Time zone of the person

name name Name information for the person

name is a portable contact type. For more information, see name
Portable Contact Type.

address address Address information for the person

address is a portable contact type. For more information, see
address Portable Contact Type.

emails value Emails for the person

emails is derived from the value portable contact type. For
more information, see value Portable Contact Type.

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-49

Table C-11 (Cont.) Read-Only Elements for person

Element Type Description

photos value Profile photos for the person

photos is derived from the value portable contact type. For
more information, see value Portable Contact Type.

phoneNumbers value Phone numbers for the person

phoneNumber is derived from the value portable contact type.
For more information, see value Portable Contact Type.

organizations organization Organization information for the person

organization is a portable contact type. For more information, see
organization Portable Contact Type

manager personReference Manager of this person

reportees personReference Direct reports of this person

status urn:oracle:webcenter:peo
ple:person:status

Person's profile status message

1 Data types, such as DATE and BOOLEAN, are stored in the API as STRING.

C.14.2.4.13 Resource Types Linked to from person

Table C-12 lists the resource types that the client can link to from the person resource.

Table C-12 Related Resource Types for person

rel resourceType

self urn:oracle:webcenter:people:person

alternate urn:oracle:webcenter:spaces:profile (HTML)

urn:oracle:webcenter:people:person:list:connections urn:oracle:webcenter:people:person:list

urn:oracle:webcenter:people:person:listNames

urn:oracle:webcenter:people:person:status

urn:oracle:webcenter:activities:stream:person urn:oracle:webcenter:activities:stream

urn:oracle:webcenter:activities:stream:connections urn:oracle:webcenter:activities:stream

urn:oracle:webcenter:activities:stream urn:oracle:webcenter:activities:stream

urn:oracle:webcenter:messageBoard

urn:oracle:webcenter:feedback:all-given urn:oracle:webcenter:feedback

urn:oracle:webcenter:feedback:all-received urn:oracle:webcenter:feedback

Using the People Connections REST APIs

C-50 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.14.2.4.14 urn:oracle:webcenter:people:person:list

The list response contains URIs for use in retrieving all the profiles on a connections
list (GET), inviting a user to be a connection or adding a connection to a connections
list (POST), and removing a connections list (DELETE).

C.14.2.4.15 Navigation Paths to list

This section shows how the client can navigate through the hypermedia to access the
list resource:

resourceIndex
 person
 listNames
 list

resourceIndex
 person
 list (rel="urn:oracle:webcenter:people:person:list:connections")

C.14.2.4.16 Supported Methods for list

The following methods are supported by the list resource:

• GET

– request—Parameters: startIndex, itemsPerPage, projection

See Also:

For information about REST API parameters, such as startIndex and
itemsPerPage, see Common Request Query Parameters.

– response—Body: 0 or more person items

• POST

– request—Body: member

– response—Body: member

See Also:

For information about member in the request and response elements, see
urn:oracle:webcenter:people:person:list:member.

• DELETE

– request

C.14.2.4.17 Resource Types Linked to from list

Table C-13 lists the resource types that the client can link to from the list resource.

Table C-13 Related Resource Types for list

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-51

Table C-13 (Cont.) Related Resource Types for list

rel resourceType

self urn:oracle:webcenter:people:person:list1 urn:oracle:webcenter:people:person:list

urn:oracle:webcenter:activities:stream urn:oracle:webcenter:activities:stream

1 self rel currently includes "urn:oracle:webcenter:people:person:list:list"
instead of the correct "urn:oracle:webcenter:people:person:list". For the
@connections default list, it currently includes
"urn:oracle:webcenter:people:person:list:connections".

C.14.2.4.18 urn:oracle:webcenter:people:person:listNames

The listNames response contains the names of existing connections lists as well as
the URIs for use in retrieving the lists (GET) and creating connections lists (POST).

C.14.2.4.19 Navigation Paths to listNames

This section shows how the client can navigate through the hypermedia to access the
listNames resource:

resourceIndex
 person
 listNames

C.14.2.4.20 Supported Methods for listNames

The following methods are supported by the listNames resource:

• GET

– request

– response: Body: 0 or more listName items

• POST

– request—Body: listName

– response—Body: listName

See Also:

For information about listName, see
urn:oracle:webcenter:people:person:listName.

C.14.2.4.21 Resource Types Linked to from listNames

Table C-14 lists the resource types that the client can link to from the listNames
resource.

Table C-14 Related Resource Types for listNames

rel resourceType

self urn:oracle:webcenter:people:person:listNames

Using the People Connections REST APIs

C-52 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.14.2.4.22 urn:oracle:webcenter:people:person:listName

The listName response contains the names of connections lists and URIs for use in
accessing the connections lists. See also urn:oracle:webcenter:people:person:listName.

C.14.2.4.23 Navigation Paths to listName

This section shows how the client can navigate through the hypermedia to access the
listName resource:

resourceIndex
 person
 listNames
 listName

C.14.2.4.24 Supported Methods for listName

The following method is supported by the listName resource:

• DELETE

– request

C.14.2.4.25 Writable Elements for listName

Table C-15 lists the writable elements for the listName resource.

Table C-15 Writable Elements for listName

Element Type Required Constraints Description

name String Yes 1 or more
characters

A single list name

C.14.2.4.26 Resource Types Linked to from listName

Table C-16 lists the resource types that the client can link to from the listName
resource.

Table C-16 Related Resource Types for listName

rel resourceType

self urn:oracle:webcenter:people:person:list urn:oracle:webcenter:people:person:list

urn:oracle:webcenter:activities:stream:list urn:oracle:webcenter:activities:stream

C.14.2.4.27 urn:oracle:webcenter:people:person:list:member

The member response contains URIs for use in deleting a connection from a
connections list.

C.14.2.4.28 Navigation Paths to member

This section shows how the client can navigate through the hypermedia to access the
member resource:

resourceIndex
 person
 list
 member

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-53

C.14.2.4.29 Supported Methods for member

The following method is supported by the member resource:

• DELETE

– request

C.14.2.4.30 Writable Elements for member

Table C-17 lists the writable elements for the member resource. Writable elements for
member are used when you add a connection to a list or invite a user to be a
connection. The member resource itself is for deleting connections, and does not use
writable elements.

Table C-17 Writable Elements for member

Element Type Required Constraints Description

guid String Yes 1 or more
characters

GUID of the user

message String No 0 or more
characters

Invitation message

Use this only when inviting users to be
connections (that is POSTing to the
@connections list, not to user-created
connections lists).

C.14.2.4.31 urn:oracle:webcenter:people:person:status

The status response contains URIs for use in retrieving (GET) and updating (PUT)
the profile status message of a specified user.

C.14.2.4.32 Navigation Paths to status

This section shows how the client can navigate through the hypermedia to access the
status resource:

resourceIndex
 people
 person
 status

C.14.2.4.33 Supported Methods for status

The following methods are supported by the status resource:

• GET

– request

– response—Body: status

• PUT

– request—Body: status

– response—Body: status

Using the People Connections REST APIs

C-54 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.14.2.4.34 Writable Elements for status

Table C-18 lists the writable elements for the status resource.

Table C-18 Writable Elements for status

Element Type Required Constraints Description

note String Yes 1 or more
characters

Content of status message

C.14.2.4.35 Resource Types Linked to from status

Table C-19 lists the resource types that the client can link to from the status resource.

Table C-19 Related Resource Types for status

rel resourceType

self urn:oracle:webcenter:people:person:status

C.14.2.4.36 urn:oracle:webcenter:people:invitations

The invitations response contains URIs for use in retrieving invitations (GET). You
can also send an invitation (POST) to another user.

C.14.2.4.37 Navigation Paths to invitations

This section shows how the client can navigate through the hypermedia to access the
invitations resource:

resourceIndex
 invitations

If you are not already connected to a user, you can also navigate to the invitations
resource from that user's profile in order to invite them to connect. This path is only
used for POSTing.

resourceIndex
 person
 invitations

C.14.2.4.38 Supported Methods for invitations

The following methods are supported by the invitations resource:

• GET

– Request—Parameters: q

To retrieve invitations sent to the current user, the format of q is:

q=[invitee:equals:@me]

To retrieve invitations sent from the current user, the format of q is:

q=[invitor:equals:@me]

– Response—Body: 1 or more invitations

• POST

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-55

– Request—Body: invitation

– Response—Body: invitation

C.14.2.4.39 Writable Elements for invitations

Table C-20 lists the writable elements for the invitations resource.

Table C-20 Writable Elements for invitations

Element Type Required Constraints Description

message String No 1 or more
characters

Message attached to the
invitation

C.14.2.4.40 Resource Types Linked to from invitations

Table C-21 lists the resource types that the client can link to from the invitations
resource:

Table C-21 Related Resource Types for invitations

rel resourceType

self urn:oracle:webcenter:people:invitation

C.14.2.4.41 urn:oracle:webcenter:people:invitation

The invitation response contains URIs for use in deleting (DELETE) invitations you
have sent, or deleting (DELETE) or updating (PUT) invitations you have received.

C.14.2.4.42 Navigation Paths to invitation

This section shows how the client can navigate through the hypermedia to access the
invitation resource:

resourceIndex
 invitations
 invitation

C.14.2.4.43 Supported Methods for invitation

The following methods are supported by the invitation resource:

• PUT

– Request—Body: invitation

– Response—Body: invitation

• DELETE

– Request

C.14.2.4.44 Writable Elements for invitation

Table C-22 lists the writable elements for the invitation resource.

Table C-22 Writable Elements for invitation

Using the People Connections REST APIs

C-56 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-22 (Cont.) Writable Elements for invitation

Element Type Required Constraints Description

status String Yes
(PUT)

ACCEPTED

IGNORED

The status of the invitation.

Note: When you accept or
ignore an invitation, it is
removed from your list of
invitations.

C.14.2.4.45 Read-only Elements for invitation

Table C-23 lists the read-only elements for the invitation resource.

Table C-23 Read-only Elements for invitation

Element Type Description

id String Unique ID of the invitation

invitee personReference User to whom the invitation is sent

invitor personReference User from whom the invitation is sent

sentDate Date (String)1 Date the invitation was sent

1 Data types, such as DATE and BOOLEAN, are stored in the API as STRING.

C.14.2.4.46 Resource Types Linked to from invitation

Table C-24 lists the resource types that the client can link to from the invitation
response.

Table C-24 Related Resource Types for invitations

rel resourceType

self urn:oracle:webcenter:people:invitation

C.14.3 Feedback REST API
Use the Feedback REST API to read and delete feedback. This section provides
information about the REST API methods to use to perform these actions.

This section includes the following topics:

• Feedback Entry Point

• Feedback Resource Type Taxonomy

• Feedback Security Considerations

• Feedback Resource Types

C.14.3.1 Feedback Entry Point

Each REST service has a link element within the Resource Index that provides the
entry point for that service. For People Connections, each feature has its own link

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-57

element. To find the entry points for the People Connections' Feedback feature, find
the link elements with a resourceType of:

urn:oracle:webcenter:feedback

The corresponding href or template element provides the URI entry point, which
returns all received feedback for the current user. The client sends HTTP requests to
this entry point to work with the People Connections' Feedback feature.

See Also:

For more information about the Resource Index, see Using the Resource Index.

For more information about resource types, see Resource Type.

C.14.3.2 Feedback Resource Type Taxonomy

When the client has identified the entry point, it can then navigate through the
resource type taxonomy to perform the required operations. For more information
about the individual resource types, see the appropriate section in Feedback Resource
Types.

The resource type taxonomy for the People Connections' Feedback feature is:

urn:oracle:webcenter:feedback
 urn:oracle:webcenter:feedback:message

C.14.3.3 Feedback Security Considerations

You must be logged into the REST service to access any of the People Connections
REST APIs. After that, the underlying service handles permission checking and the
like.

See Also:

For general security considerations, see Security Considerations for
WebCenter Portal REST APIs.

C.14.3.4 Feedback Resource Types

This section provides you with all the information you need to know about each
resource type. It includes the following topics:

• urn:oracle:webcenter:feedback

• Navigation Paths to feedback

• Supported Methods for feedback

• Resource Types Linked to from feedback

• urn:oracle:webcenter:feedback:message

• Navigation Paths to message

• Supported Methods from message

• Read-only Elements for message

Using the People Connections REST APIs

C-58 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Resource Types Linked to from feedback

C.14.3.4.1 urn:oracle:webcenter:feedback

The feedback response contains URIs for use in reading Feedback messages.

C.14.3.4.2 Navigation Paths to feedback

This section shows how the client can navigate through the hypermedia to access the
feedback resource:

resourceIndex
 feedback

resourceIndex
 person
 feedback

C.14.3.4.3 Supported Methods for feedback

The following methods are supported by the feedback resource:

• GET

– request—Parameters: startIndex, itemsPerPage

See Also:

For information about REST API parameters, such as startIndex and
itemsPerPage, see Common Request Query Parameters.

– response—Body: message

See Also:

For information about message, see urn:oracle:webcenter:feedback:message.

• POST – If permitted, lets you add feedback for a target user. This method is only
available if the current user is connected to and has permission to add feedback for
the target user.

– request - body: feedback

<message resourceType="urn:oracle:webcenter:feedback:message">
 <body>test from REST API</body>
 <receivedUser>
 <guid>4F16DD80393611DFBF895F177662C511</guid>
 </receivedUser>
</message>

C.14.3.4.4 Resource Types Linked to from feedback

Table C-25 lists the resource types that the client can link to from the feedback
resource.

Table C-25 Related Resource Types for feedback

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-59

Table C-25 (Cont.) Related Resource Types for feedback

rel resourceType

self urn:oracle:webcenter:feedback:all-received urn:oracle:webcenter:feedback

self urn:oracle:webcenter:feedback:all-given urn:oracle:webcenter:feedback

urn:oracle:webcenter:feedback:message

C.14.3.4.5 urn:oracle:webcenter:feedback:message

The message response contains the feedback message data and URIs for use in
deleting a Feedback message.

C.14.3.4.6 Navigation Paths to message

This section shows how the client can navigate through the hypermedia to access the
message resource:

resourceIndex
 feedback
 message

resourceIndex
 person
 feedback
 message

C.14.3.4.7 Supported Methods from message

The following method is supported by the message resource:

• DELETE

– request

C.14.3.4.8 Read-only Elements for message

Table C-26 lists the read-only elements for the message resource.

Table C-26 Read-only Elements for message

Element Type Description

body String Message content

id String Unique ID of the message

author personReference User who created the message

created Date (String)1 Date the message was created

receivedUser personReference A person reference to the user who received
the feedback

1 Data types, such as DATE and BOOLEAN, are stored in the API as STRING.

Using the People Connections REST APIs

C-60 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.14.3.4.9 Resource Types Linked to from feedback

Table C-27 lists the resource types that the client can link to from the feedback
resource.

Table C-27 Related Resource Types for message

rel resourceType

self urn:oracle:webcenter:feedback:message

C.14.4 Message Board REST API
Use the Message Board REST API to post, read, and delete messages to a user's or a
portal message board. This section provides information about the REST API methods
to use to perform these actions.

This section includes the following topics:

• Message Board Entry Point

• Message Board Resource Type Taxonomy

• Message Board Security Considerations

• Message Board Resource Types

• Filtering Messages Based on Visibility

C.14.4.1 Message Board Entry Point

Each REST service has a link element within the Resource Index that provides the
entry point for that service. For People Connections, each feature has its own link
element. To find the entry points for the People Connections' Message Board feature,
find the link elements with a resourceType of:

urn:oracle:webcenter:messageBoard

Note:

As well as an entry point from the Resource Index, to navigate to an
individual user's message board, the Message Board feature also has an entry
point from a portal response for the portal message board.

The corresponding href or template element provides the URI entry point, which
returns the Message Board for the current user. The client sends HTTP requests to this
entry point to work with People Connections' Message Board feature.

See Also:

For more information about the Resource Index, see Using the Resource Index.

For more information about resource types, see Resource Type.

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-61

C.14.4.2 Message Board Resource Type Taxonomy

When the client has identified the entry point, it can then navigate through the
resource type taxonomy to perform the required operations. For more information
about the individual resource types, see the appropriate section in Message Board
Resource Types.

The resource type taxonomy for the Message Board feature for People Connections is:

urn:oracle:webcenter:messageBoard
 urn:oracle:webcenter:messageBoard:message

C.14.4.3 Message Board Security Considerations

You must be logged into the REST service to access any of the People Connections
REST APIs. After that, the underlying service handles permission checking and the
like.

See Also:

For general security considerations, see Security Considerations for
WebCenter Portal REST APIs

C.14.4.4 Message Board Resource Types

This section provides you with all the information you need to know about each
resource type. It includes the following topics:

• urn:oracle:webcenter:messageBoard

• Navigation Paths to messageBoard

• Supported Methods for messageBoard

• Read-only Elements for messageBoard

• Resource Types Linked to from messageBoard

• urn:oracle:webcenter:messageBoard:message

• Navigation Paths to message

• Supported Methods for message

• Writable Elements for message

• Read-only Elements for message

• Resource Types Linked to from message

C.14.4.4.1 urn:oracle:webcenter:messageBoard

The messageBoard response contains URIs for use in reading (GET) and posting
(POST) portal and individual user Message Board messages.

C.14.4.4.2 Navigation Paths to messageBoard

This section shows how the client can navigate through the hypermedia to access the
messageBoard resource:

Using the People Connections REST APIs

C-62 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

resourceIndex
 messageBoard

resourceIndex
 person
 messageBoard

resourceIndex
 spaces
 space
 messageBoard

C.14.4.4.3 Supported Methods for messageBoard

The following methods are supported by the messageBoard resource:

• GET

– request—Parameters: startIndex, itemsPerPage

See Also:

For information about REST API parameters, such as startIndex and
itemsPerPage, see Common Request Query Parameters.

– response—Body: message

Note:

The REST GET command for reading (retrieving) messages retrieves all shown
messages by default. You can also retrieve messages that are private or hidden
through the application user interface as described in Filtering Messages
Based on Visibility. For information about hiding and showing messages, see
"Adding Messages and Feedback to a Portal" in Building Portals with Oracle
WebCenter Portal.

• POST

– request—Body: message

The POST for messages supports including a link URL in the message.

See Also:

For information about message, see
urn:oracle:webcenter:messageBoard:message.

C.14.4.4.4 Read-only Elements for messageBoard

Table C-28 lists the read-only elements for the messageBoard resource.

Table C-28 Read-only Elements for message

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-63

Table C-28 (Cont.) Read-only Elements for message

Element Type Description

messageType String Returns link if the message has a link.
Otherwise, returns null.

link String Contains link data for messages with links:
name, url, icon, description, mimeType,
objectId, objectType, serviceId.

C.14.4.4.5 Resource Types Linked to from messageBoard

Table C-29 lists the resource types that the client can link to from the messageBoard
resource.

Table C-29 Related Resource Types for messageBoard

rel resourceType

self urn:oracle:webcenter:messageBoard

urn:oracle:webcenter:messageBoard:message

C.14.4.4.6 urn:oracle:webcenter:messageBoard:message

The message response contains the Message Board message data and URIs for use in
reading (GET), revising (PUT), and deleting (DELETE) a portal or individual user
Message Board message.

C.14.4.4.7 Navigation Paths to message

This section shows how the client can navigate through the hypermedia to access the
message resource:

resourceIndex
 messageBoard
 message

resourceIndex
 person
 messageBoard
 message

resourceIndex
 spaces
 space
 messageBoard
 message

C.14.4.4.8 Supported Methods for message

The following methods are supported by the message resource:

• GET

– request

– response—Body: message

Using the People Connections REST APIs

C-64 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• PUT

– request—Body: message

– response—Body: message

• DELETE

– request

C.14.4.4.9 Writable Elements for message

Table C-30 lists the writable elements for the message resource.

Table C-30 Writable Elements for message

Element Type Required Constraints Description

body String Yes 1 or more
characters

message content

C.14.4.4.10 Read-only Elements for message

Table C-31 lists the read-only elements for the message resource.

Table C-31 Read-only Elements for message

Element Type Description

id String Unique ID of the message

author personReference User who created the message

created Date (String)1 Date the message was created

1 Data types, such as DATE and BOOLEAN, are stored in the API as STRING.

C.14.4.4.11 Resource Types Linked to from message

Table C-32 lists the resource types that the client can link to from the message
resource.

Table C-32 Related Resource Types for message

rel resourceType

self urn:oracle:webcenter:messageBoard:message

C.14.4.5 Filtering Messages Based on Visibility

Although the REST GET command for retrieving messages retrieves all shown
messages by default, you can also retrieve messages that are private or hidden
through the application user interface using a set of visibility filters.

Messages posted on message boards can have the following visibility criteria:

• Public

• Private

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-65

• Hidden

• Public and hidden

• Private and hidden

By default, messages are public.

C.14.4.5.1 Private Messages:

A person owning a message board can mark any message as private. When a message
is marked as private, that message will not be visible to anyone other than the owner
of the message unless the owner chooses to send a private message to someone else.
Otherwise, other people viewing a message board with private messages will see only
public messages.

C.14.4.5.2 Hidden Messages:

A person owning a message board can mark any message as hidden. When a message
is marked as hidden, that message will not be visible to the owner of the message
board, but will remain visible to other people viewing the message board.

C.14.4.5.3 REST URLs for Message Boards:

The context for message board URL filters is:

rest/api/messageBoards/<BOARD-TYPE>/<GUID>/<FILTER-TYPE>

Where:

• <BOARD-TYPE> is either person or space

• <GUID > is either @me, the person <GUID> (if <BOARD-TYPE> is person) or the
space <GUID> (if <BOARD-TYPE> is portal)

• <FILTER-TYPE> is applicable only for the person <BOARD-TYPE> and can be
one of:

– null - (default) shows all messages

– private - shows private messages

– public - shows public messages

– hidden - shows hidden and public messages

– private_hidden - shows private and hidden messages

Available filters in the context of the applicable HTML methods are shown below.

GET

• @me

– all rest/api/messageBoards/person/@me

– private rest/api/messageBoards/person/@me/private

– public rest/api/messageBoards/person/@me/public

– hidden and public rest/api/messageBoards/person/@me/hidden

Using the People Connections REST APIs

C-66 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

– private and hidden rest/api/messageBoards/person/@me/
private_hidden

• person

rest/api/messageBoards/person/<GUID>

If the GUID matches that of the logged in user then the same filtering as for @me
applies. If the GUID is different, then no filtering is available.

• space

rest/api/messageBoards/space/<GUID>

No filtering based on visibility is available.

POST

• @me

– all rest/api/messageBoards/person/@me

– private

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "private"}

– public

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "public"}

– hidden and public

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "hidden"}

– private and hidden

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "private_hidden"}

• person rest/api/messageBoards/person/<GUID> If the GUID is the same
as the logged in user, then the filters for GET apply. If the users are different, then
the following filters apply:

– public

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "public"}

– private

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "private"}

• space

rest/api/messageBoards/space/<GUID>

No filtering based on visibility is available.

PUT

• @me

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-67

– all est/api/messageBoards/person/@me/messages/<msg guid>

– private

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "private"}

– public

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "public"}

– hidden and public

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "hidden"}

– private and hidden

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "private_hidden"}

• person rest/api/messageBoards/person/<GUID>/messages/<msg
guid> If the GUID is the same as the logged in user, then the filters for GET
apply. If the users are different, then the following filters apply:

– public

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "public"}

– private

{"body" : "<BODY_CONTENT>",
 "visibilityType" : "private"}

• space

rest/api/messageBoards/space/<GUID>/messages/<msg guid>

No filtering based on visibility is available.

C.14.5 Creating an Invitation
This section illustrates how to invite another user to join your connections list using
the People Connections Service REST API. After the invitation is made, the invitee is
given the option to accept or not. This example also illustrates how to delete an
invitation.

This section includes the following topics:

• Creating an Invitation

• Accepting an Invitation

• Deleting an Invitation

C.14.5.1 Creating an Invitation

1. The first step, as always with REST API methods, is to retrieve the resource index:

GET http://<host:port>/rest/api/resourceIndex

2. Next, find the person to whom you want to connect. To do this:

Using the People Connections REST APIs

C-68 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

a. In the resource index listing, scan for the link with the following resource
type:

urn:oracle:webcenter:people:person

b. Execute a search for the user who you wish to invite. In this example, the user
is named Monty.

GET http://<host:port>/rest/api/people?q=loginid:equals:monty&utoken=ASDF

c. Locate Monty's GUID in the response, as shown in Figure C-2.

Figure C-2 Response With User's GUID

d. Save the GUID so that you can use it to connect to the user.

3. Now that you have the invitee's GUID, you must find the resource to which you
would like to add him. In this case, you want to add him to your own
connections list.

To find your connections list, first, scan these People Connections topics for
"connections." You will discover in Table C-12 that connections are linked to
from the person resource. For convenience, this table is shown in Figure C-3.

Figure C-3 Finding the connections Link

Now that you know that connections are linked to from the person resource,
you need to find the person resource. As the URN indicates, you get to the
person resource from the people resource, as described in the following steps.

4. Return to the resource index (or use a cached version of the resourceIndex
from your previous visit):

GET http://<host:port>/rest/api/resourceIndex

Using the People Connections REST APIs

Using the WebCenter Portal REST APIs C-69

5. Scan for the people resource, and you will find:

urn:oracle:webcenter:people

6. Use the link in the people resource to access your lists:

GET http://<host:port>/rest/api/people/@me/lists/@self?utoken=ASDF

7. Scan the returned links for the resourceType and rel listed in Table C-12:

resourceType="urn:oracle:webcenter:people:person:list
rel="urn:oracle:webcenter:people:person:list:connections

8. Make the invitation by using the URI to your connections list to execute a
POST:

POST http://<host:port>/rest/api/people/@me/lists/@connections?utoken=ASDF

Headers -- Accept:application/json, Content-Type:application/json
Body -- {"message":"Monty, do you want to join my connections
list?","guid":"1AE5AF102E2611E09F062B573E287934"}

9. Now, if you log in to Monty's account and you can see the invitation has been
added, as shown in Figure C-4.

Figure C-4 Activity Stream Showing Invitation

C.14.5.2 Accepting an Invitation

After an invitation has been sent, the next step is for the invitee (Monty) to accept the
invitation.

1. Using a second REST client, retrieve the resource index:

GET http://<host:port>/rest/api/resourceIndex

2. Login as Monty.

3. List all the invitations sent to Monty by making the following request:

GET http://<host:port>/rest/api/people/invitations?
q=invitee:equals:@me&utoken=ASDF

Each invitation element listed in the response contains a link that supports the
UPDATE operation and that looks something like this:

<links>
<link capabilities="urn:oracle:webcenter:delete urn:oracle:webcenter:update"
href="http://<host:port>/rest/api/people/invitations/<invitationid>?utoken=ASDF"
rel="self" resourceType="urn:oracle:webcenter:people:invitation"/>
</links>
<id><invitationid></id>

4. To accept the invitation, make the following request:

Using the People Connections REST APIs

C-70 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

PUT http://<host:port>/rest/api/people/invitations/<invitationid>?utoken=ASDF

Headers
 Accept -> application/xml
 Content-Type -> application/xml

Body
 <invitation>
 <id><invitationid></id>
 <status>accepted</status>
 </invitation>

C.14.5.3 Deleting an Invitation

After you initiate an invitation, you can view the invitation from your account by
specifying invitor:equals:@me. For example:

GET http://<host:port>/rest/api/people/invitations?
q=invitor:equals:@me&utoken=ASDF

Each invitation element listed in the response contains a link that supports the
DELETE operation and that looks something like this:

<links>
<link resourceType="urn:oracle:webcenter:people:invitation"
rel="self"
href="http://host_name:port_name/rest/api/people/invitations/
 e9073cdb-56ab-423d-8b1f-1220c802bdd4?
 utoken="FN0SEFwX42OCntwtx9a1dSbhqocO_w**"
 capabilities="urn:oracle:webcenter:delete"/>
</links>

The invitee can also delete an invitation from his or her own account. The invitee can
get a list of his or her invitations by specifying:

GET http://<host:port>/rest/api/people/invitations?
q=invitee:equals:@me&utoken=ASDF

Note that the response from a DELETE is simply a status code of 204.

C.15 Content Management REST API
This section supplements the OASIS CMIS specification, and provides details on the
specific implementation of the .

The OASIS CMIS (Content Management Interoperability Services) Technical
Committee works to standardize a Web services interface specification that will enable
greater interoperability of Enterprise Content Management (ECM) systems. For more
information, see the OASIS CMIS site:

http://www.oasis-open.org/committees/cmis/

Before continuing, all users should review the OASIS CMIS specification. This section
references the Content Management Interoperability Services (CMIS) Version 1.0,
which can be viewed at the following URL:

http://docs.oasis-open.org/cmis/CMIS/v1.0/cmis-spec-v1.0.html.

The provides a server that uses the CMIS RESTful AtomPub server binding to provide
access to Oracle Content Server repositories configured in your application.

Content Management REST API

Using the WebCenter Portal REST APIs C-71

http://www.oasis-open.org/committees/cmis/
http://docs.oasis-open.org/cmis/CMIS/v1.0/cmis-spec-v1.0.html

The specification includes the domain model and two server bindings. As mentioned
above, only the RESTful AtomPub binding is currently implemented by the . Users
should be familiar with Atom and AtomPub, which are the default formats for
responses.

Note:

CMIS provides a lowest common denominator for a wide range of different
content systems; it is not aligned directly with Oracle WebCenter Content
functionality. Refer to the service document to identify available functionality.

This section includes the following topics:

• CMIS Domain Model

• CMIS Part II: RESTful AtomPub Binding

• Best Practices and Examples

C.15.1 CMIS Domain Model
Section 2: Domain Model in the CMIS specification defines a domain model that can be
used by applications to work with one or more Content Management repositories.

• Data Model

• Services

C.15.1.1 Data Model

The service document consists of AtomPub workspaces. Each workspace maps to a
content connection (only Oracle WebCenter Content repositories are supported by
the). For details on the service document, see the next section, CMIS Part II: RESTful
AtomPub Binding.

C.15.1.1.1 Repository

For this release, some of the optional capabilities listed in section 2.1.1 have not been
implemented. Versioning, ACL, Policies, Relationships, Change Log, Folder
Descendants/Tree, and Renditions will be considered for future releases.

Specifically, the implementation has the following optional capabilities:

capabilityGetDescendants = true
capabilityGetFolderTree = false
capabilityContentStreamUpdatability = anytime
capabilityChanges = none
capabilityRenditions = none
capabilityMultifiling = false
capabilityUnfiling = false
capabilityVersionSpecificFiling = false
capabilityPWCUpdateable = false
capabilityPWCSearchable = false
capabilityAllVersionsSearchable = false
capabilityJoin = none
capabilityACL = none
capabilityQuery = none, metadataonly, or both combined

Content Management REST API

C-72 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.15.1.1.2 Object

The supports document and folder objects. In CMIS the cmis:baseTypeId for a
Node will be cmis:folder or cmis:document. Also, the cmis:baseId for a Type
will be cmis:folder or cmis:document.

C.15.1.1.3 Object-Type

A CMIS Object-Type contains fields mapped from the Oracle WebCenter Content:
Content Server metadata field definitions and Oracle WebCenter Content's Site Studio
region definitions.

The mapping from Oracle WebCenter Content metadata fields to CMIS property
definitions is as follows:

Table C-33 Content Server Metadata Mappings

Oracle WebCenter Content Metadata CMIS Property Definition

TEXT metadata field with option list configured with select list
validated and YesNoView or TrueFalseView view

cmis:propertyBoolean

All other TEXT metadata fields cmis:propertyString

LONG TEXT metadata field cmis:propertyString

MEMO metadata field cmis:propertyString

INTEGER metadata field cmis:propertyInteger

DATE metadata field cmis:propertyDateTime

DECIMAL metadata field cmis:propertyDecimal

The mapping from Site Studio region definition fields to CMIS property definitions is
as follows:

Table C-34 Site Studio Region Definition Mappings

Site Studio Region Definition CMIS Property Definition

Image Element Definition fields cmis:propertyString

WYSIWYG Element Definition fields cmis:propertyString

Plain Text Element Definition fields cmis:propertyString

Static List Element Definition fields cmis:propertyString

C.15.1.1.4 Document Object

Document Objects are the elementary information entities managed by the repository.
As defined by the CMIS specification, Document Objects may be version-able, file-
able, query-able, control-able and ACLControl-able. As stated earlier, the does not
support versioning, multi-filing, Policies or ACL for this release.

If a Node is determined to be a Document (not a Folder) then any children it has will
not be exposed through CMIS. In CMIS, each Document Object is associated with a
single content stream, and for WebCenter CMIS REST, this stream is the Oracle
WebCenter Content: Content Server binary associated with the document.

Content Management REST API

Using the WebCenter Portal REST APIs C-73

C.15.1.1.5 Folder Object

The CMIS specification states that Folder Objects do not have a content-stream and are
not version-able. If a Node is determined to be a Folder, then the exposes it in this
manner. (In Oracle WebCenter Content, folders do not have a content stream and are
not versionable).

C.15.1.1.6 Relationship Object

Section 2.1.6: Relationship Object in the CMIS specification is not applicable; the does not
support Relationships for this release.

C.15.1.1.7 Policy Object

Section 2.1.7: Policy Object in the CMIS specification is not applicable; the does not
support Policies for this release.

C.15.1.1.8 Access Control

Most of Section 2.1.8: Access Control in the CMIS specification is not applicable; the does
not support ACL for this release. See the next section for details on allowable actions.

C.15.1.1.8.1 AllowableActions Mapping

This section lists allowable actions defined for Objects. Because of how this release is
implemented, some of these are hard-coded for all objects. Other allowable actions
will be set based on the repository configuration.

• canGetObjectRelationships = false

• canCreateRelationship = false

• canGetDescendants = false

• canGetFolderTree = false

• canCheckOut = false (versioning)

• canCancelCheckOut = false (versioning)

• canCheckIn = false (versioning)

• canAddObjectToFolder = false (multi-filing)

• canRemoveObjectFromFolder = false (unfiling/multi-filing)

• canApplyPolicy = false

• canGetAppliedPolicies = false

• canRemovePolicy = false

• canCreatePolicy = false

• canApplyACL = false

• canGetACL = false

• canGetRenditions = false

• canDeleteTree = true

Content Management REST API

C-74 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• canGetAllVersions = false (versioning)

C.15.1.1.9 Versioning

Section 2.1.9: Versioning in the CMIS specification is not applicable; the does not
support versioning for this release.

C.15.1.1.10 Query

CMIS queries return a Result Set where each Entry object will contain only the
properties that were specified in the query. The does not support JOINs in queries, so
each result entry will represent properties from a single node. Common searches use a
query like "SELECT * FROM …".

• The FROM clause specifies a content-type to be searched.

– FROM cmis:document ==> any Oracle WebCenter Content document (for
example, IDC:GlobalProfile)

– FROM cmis:folder ==> any Oracle WebCenter Content folder (for example,
IDC:Folder)

– FROM typeQueryName ==> type's cmis queryName, as long as the type is
queryable (for example, ora:t:IDC!;GlobalProfile)

• The cmis:document and cmis:folder types are always queryable. Other types will
be queryable if they are searchable in the repository.

• The IN_FOLDER predicate is implemented as the folder ID specified, being the
parent of the results.

• The IN_TREE predicate is implemented as the folder ID specified, being a parent in
the folder structure of the results.

• The CONTAINS() predicate is a full-text query expression operator.

• Properties of cmis:document and cmis:folder will be queryable and orderable if
their corresponding Oracle WebCenter Content system property is searchable and
sortable. The system property mappings are:

– cmis:createdBy ==> dDocAuthor

– cmis:lastModifiedBy ==> dDocCreator

– cmis:creationDate ==> dCreateDate

– cmis:lastModificationDate ==> dLastModifiedDate (for 10g, folders map to
dLastModifiedDate and documents map to dCreateDate)

– cmis:name ==> dOriginalName (for a document) or dCollectionName (for a
folder)

– cmis:contentStreamFileName ==> dOriginalName

– cmis:contentStreamLength ==> VaultFileSize

– cmis:contentStreamMimeType ==> dFormat

– cmis:objectId ==> dDocName

Content Management REST API

Using the WebCenter Portal REST APIs C-75

– cmis:objectTypeId ==> Oracle WebCenter Content profile name or SiteStudio
Region Definition name

Note:

cmis:objectTypeId is never orderable.

– cmis:path ==> use IN_FOLDER or IN_TREE predicate

Note:

Some repositories may have capabilities that are not representable in a CMIS
query, and some repositories may have restrictions which will limit the CMIS-
query predicates (or combinations of predicates) that can be used in a query.
Use the mappings above to translate repository capabilities and restrictions
into corresponding considerations for CMIS queries.

• Nested properties are not queryable or orderable.

• The implementation reports as orderable any properties which Oracle WebCenter
Content specifies as sortable. This list can include properties which Oracle
WebCenter Content cannot actually sort on. To allow ordering on a field for which
Oracle WebCenter Content reports a sort error, follow the steps below to make the
specified Oracle WebCenter Content field sortable:

1. Go to Administration and open Admin Applets.

2. Open the Configuration Manager applet and click Advanced Search Design.

3. Edit the field you wish to make orderable and select Is sortable.

4. Save your changes and exit Administration.

Table C-35 lists specific search considerations and recommendations. For example
queries, see Best Practices and Examples.

Table C-35 Search Considerations and Recommendations

Consideration Recommendation

Oracle WebCenter Content provides limited support
for querying on null or non-null values.

Be aware of the differences in search behavior and do not
write search expressions that depend on unsupported
criteria.

Recursive search for folders is not supported by
Oracle WebCenter Content, but is supported for
documents if configured on the Oracle WebCenter
Content server as described to the right.

Scope the search to only include documents (add a select
clause like select * from cmis:document).

Set the search path on the Search object (add a where
clause like "where IN_TREE('/
StellentRepository/IDC:Folder/2').

Configure the folders_g
CollectiveSearchRecursiveContent and related
settings like CollectionMaxBranch in the Oracle
WebCenter Content config.cfg file.

Content Management REST API

C-76 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-35 (Cont.) Search Considerations and Recommendations

Consideration Recommendation

Multivalued property operators perform substring
matches. This is true for ANY
<multiValuedQueryName> IN
(<literal>, ...) or <literal> = ANY <
multiValuedQueryName>. In Oracle WebCenter
Content, a field with an option list stores values in a
comma-delimited manner. For example, if you have
values "A", "B", and "C", these will be represented as
"A, B, C". Using an ANY or ANY IN search for 'A, B'
will find this item.

Be aware of the differences in search behavior and
consider changing the Oracle WebCenter Content option
list delimiter character in the Configuration Manager
applet to reduce the potential for finding extra matches.

When searching folders (FROM cmis:folder), at
most one value can be specified per criteria. Each
criteria is logically ANDed with the others to make a
more selective query. There is no support for OR or
NOT operators when searching folders.

Do not use OR and NOT in Oracle WebCenter Content
folder search.

Not all properties are searchable, and if the search
encounters a property that is not searchable, it will
return a ParseException (400 error).

Understand which properties are searchable for a given
content type by examining the Oracle WebCenter
Content Configuration Manager information fields
section, or by reviewing the ContentType definition.
Examine the URL for the isSearchable field setting

Example URLS:

http://myContentServer/idc/idcplg?
IdcService=VCR_GET_CONTENT_TYPE&vcrContent
Type=IDC:Folder&IsSoap=1

Or, examine the specific type through CMIS.

Not all ContentTypes are searchable. An attempt to
search for a non-searchable ContentTypes will throw
an exception. For example, the
IDC:FileReference ContentType is not
searchable.

Be aware that not all ContentTypes are searchable.

Only String multi-valued properties can be searched. Do not specify search for multi-valued property types
other than String.

The NOT operator cannot be used for LONG properties. Try to restructure the query using supported syntax.

Only one sort criteria is supported. Do not write search expressions that use more than a
single sort criteria.

Sorting on non-indexed fields results in an exception.

Searching on a non-indexed field throws an
exception, with the embedded exception code of, for
example, "DRG-10837: section dStatus does not exist".

Understand which fields have been indexed before using
them as sort criteria. Examine the URL for the
isSortable field definition.

Example URL: http://myContentServer/idc/
idcplg?
IdcService=GET_ADVANCED_SEARCH_OPTIONS&IsS
oap=1, Or examine the type through CMIS to see if the
property definition is queryable.

Empty values are not allowed in a search query. Do not use a criteria such as cmis:name != ''..

Content Management REST API

Using the WebCenter Portal REST APIs C-77

Table C-35 (Cont.) Search Considerations and Recommendations

Consideration Recommendation

The Notequals operator is not supported for non-
String properties

Be aware of the differences in search behavior and do not
write search expressions that depend on unsupported
criteria.

Multiple search paths on the same Oracle WebCenter
Content repository are not supported.

Be aware of the differences in search behavior and do not
write search expressions that depend on unsupported
criteria.

When searching for documents, recursive search
(folder tree search) is supported if Oracle WebCenter
Content is configured properly.

If the search path is not set, then all documents in the
repository will be searched (both filed and unfiled).

Configure the content server folders_g
CollectionSearchRecursiveContent and related
settings like CollectionMaxBranch in the Oracle
WebCenter Content config.cfg file. These settings are
described in the Oracle WebCenter Content
documentation. To perform a document search scoped to
a folder tree, use the IN_TREE predicate.

When searching for documents and using the LIKE
operator, wildcards (%) are only supported in the last
path element.

Be aware of the differences in search behavior and do not
write search expressions that depend upon unsupported
criteria.

When searching documents (select * from
cmis:document), it is not possible to limit the search
to more than just a single content type; for example,
this is not supported: select * from
IDC:MyProfile, IDC:AnotherProfile because
it has multiple explicit content types and JOINS are
not supported.

If you need to limit the search to more than just a single
content type, issue multiple queries to achieve the same
behavior. If you want to search across all types, use
cmis:document in the select statement.

Oracle WebCenter Content search does not support
OR when cmis:objectTypeId is specified in a
query; other parameters can be ANDed with this
criteria, but OR is not supported.

If this functionality is necessary, issue multiple queries to
achieve the same behavior.

The cmis:objectTypeId criteria only supports
==, !=, and like. Use of != is restricted to the case of
excluding folders (which behaves the same as adding
select * from cmis:document).

Be aware of the valid operators when using
cmis:objectTypeId criteria.

Queries may be case-sensitive depending on the
selected Oracle WebCenter Content search engine.

Be aware that the Oracle WebCenter Content search
engine selection can affect case-sensitivity. Metadata
searches using OracleTextSearch as the search engine are
generally case-insensitive. Metadata searches using
DATABASE.FULLTEXT as the search engine are generally
case-sensitive. The exact behavior sometimes varies by
metadata field.

C.15.1.2 Services

The methods described in Section 2.2 Services of the CMIS specification are
implemented by the ; specific implementation details are covered in CMIS Part II:
RESTful AtomPub Binding.

Content Management REST API

C-78 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.15.2 CMIS Part II: RESTful AtomPub Binding
Section 3: RESTful AtomPub Binding in the CMIS specification defines a specification
based on AtomPub that can be used by applications to work with one or more Content
Management Repositories. REST services are available through a portal instance.

C.15.2.1 Service Document

All navigation of a repository begins with the AtomPub Service Document. From this
document, all accessible content in a repository can be discovered through the
collections, links, and templates. The URI to the service document, relative to the
CMIS web application's context-root, is /rest/cmis/repository.

Therefore, if an application is deployed with a library-context-root-override as in the
example above, the service document would be accessed through the following URL:
http://hostname:port/rest/cmis/repository

By default, this document will contain a workspace for each configured Oracle
WebCenter Content repository (only Oracle WebCenter Content repositories are
supported by CMIS REST in Oracle WebCenter Portal). A service document for a
single repository can be obtained by using the repositoryId query parameter, as
described in section 3.6.2.1 of the CMIS AtomPub binding specification.

As noted in the previous section, the service document consists of AtomPub
workspaces. Each workspace maps to a Oracle WebCenter Portal Content Server
connection.

Specific URIs beyond the service document are not published; it is assumed that users
will start at the service document and navigate the collections and links down
expected paths. The relationships of the links and the titles and types of the collections
are all defined in the CMIS specification, and thus can be commonly navigated by a
client implementation. There are also templates defined for each repository, for easier
access of objects by path, object by ID, type by ID, and queries. The format of the
variables for the path and ID templates can be discovered by viewing the Entries of
Folders and Documents.

C.15.2.2 Response Formats

Section 3.1.3: Response Formats in the CMIS specification indicates that Atom/AtomPub
style formats will be returned by default unless overridden by a supported media type
expressed in the Accept header.

A generic AtomPub feed reader can walk through any of the feeds returned by the
CMIS REST server. It will not see all the CMIS specifics, but will be able to navigate
through links. In general, to set up a feed reader, you need to know the URI of a
particular feed, which can be discovered by navigating through the service document,
for example, the workspace link for "typesdescendants".

For details on query syntax, see the CMIS specification. For best practices and
examples, see Best Practices and Examples.

C.15.2.3 Additional Functionality

The provides the following additional functionality beyond the CMIS specification.

• Folder Children Collection

• Document Entry

Content Management REST API

Using the WebCenter Portal REST APIs C-79

• Content Stream

C.15.2.3.1 Folder Children Collection

The specification defines the following CMIS services:

• GET: getChildren

• POST: createDocument or createFolder or createPolicy or moveObject or
addObjectToFolder

The provides the following additional services:

• POST: create This service has five query parameters: uid, fileName, contentId,
comments, simpleResponse, and one header parameter: Slug. This service is meant
to be used as a simple binary request upload. A new document is created with this
service. Slug and fileName are used to name the binary that is attached to the
request (using both parameters is optional; only one needs to be defined and
fileName is checked first). The comments parameter is optional and contentId is
optional if Oracle WebCenter Content is set up to auto-generate the dDocName.

• POST: create Content-Type: multipart/form-data This service has a single query
parameter: uid, which is the uid of the folder in which the document is to be
created. The boolean query parameter simpleResponse will return a response of
media type: application/atom+xml;type=entry, if set to false. If set to true, a
response of media type: text/html will be returned with a URI pointing to the
newly created document. The comments and simpleResponse parameters are both
optional, contentId is optional if Oracle WebCenter Content is set up to auto-
generate the dDocName, and the name "fileUpload" is required.

<html>
<head>
 <title>simple post</title>
</head>
<body>
<form action="http://<host>:<port>/rest/api/cmis/children/StellentRepository?
uid=IDC:Folder/2"
 method="POST"
 enctype="multipart/form-data">
 Select a document to upload: <input type="file" name="fileUpload"/>

 <input type="hidden" name="comments" value="this is just a comment"/>
 <input type="hidden" name="contentId" value="uniqueID1"/>
 <input type="hidden" name="simpleResponse" value="true"/>
 <input type="submit" value="Submit"/>
</form>
</body>
</html>

C.15.2.3.2 Document Entry

The specification defines the following CMIS services:

• GET: getObject, getObjectOfLatestVersion (getObject)

• PUT: updateProperties

• DELETE: deleteObject

The provides the following additional services:

Content Management REST API

C-80 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• POST: postToDelete This service has two query parameters: uid and _method, and
allows a document to be deleted through POST.

http://<host>:<port>/rest/api/cmis/document/repoName?uid=ABC&_method="delete"

C.15.2.3.3 Content Stream

The specification defines the following CMIS services:

• GET: getContentStream

• PUT: setContentStream

• DELETE: deleteContentStream

The provides the following additional services:

• POST: postTunnelContentStream This service has five query parameters: uid,
overwriteFlag, fileName, comments, _method, and one header parameter: Slug.
This service is meant to be used as a simple binary request upload or delete
through POST. A document must already exist for this service. Slug and fileName
are used to name the binary that is attached to the request (using both parameters
is optional; only one needs to be defined and fileName is checked first). The
overwriteFlag parameter defaults to true, the comments parameter is optional and
valid values for _method are "delete" or "put" (not case sensitive).

http://<host>:<port>/rest/api/cmis/stream/repoName?uid=ABC&_method="delete"

• POST: postTunnelContentStream Content-Type: multipart/form-data This service
has a single query parameter: uid and is meant to be used as a simple html
multipart/form-data upload or delete through POST. A document must already
exist for this service. The attribute name="fileUpload" is required, "comments" is
optional, and valid values for "_method" are "delete" or "put" (not case sensitive).

<form action="http://<host>:<port>/rest/api/cmis/stream/repoName?uid=WDOC019113"
 method="POST"
 enctype="multipart/form-data">
 Select a document to upload: <input type="file" name="fileUpload"/>

 <input type="hidden" name="comments" value="this is just a comment"/>
 <input type="hidden" name="_method" value="PUT"/>
 <input type="submit" value="Submit"/>
</form>

C.15.3 Best Practices and Examples
This section provides best practices and examples using the . For details on query
syntax, see the CMIS specification.

This section includes the following topics:

• Best Practices

• Examples

C.15.3.1 Best Practices

The following list provides suggested best practices for repositories that use the .

• To determine the types that can be used in the "FROM" portion of a query, see the
types collection from the AtomPub service document. The type must be queryable
and the query name of that type must be used.

Content Management REST API

Using the WebCenter Portal REST APIs C-81

For example, IDC:GlobalProfile might have type information similar to the
following:

<cmis:localName>IDC:GlobalProfile</cmis:localName>
<cmis:displayName>IDC:GlobalProfile</cmis:displayName>
<cmis:queryName>ora:t:IDC!;GlobalProfile</cmis:queryName>
<cmis:queryable>true</cmis:queryable>

An example query for the type information above could be: "SELECT * FROM
ora:t:IDC!;GlobalProfile".

• To determine the properties that can be used in the "SELECT" and "WHERE"
portions of a query, see the entry for the associated type. Each property definition
of that type will be listed and will have a setting for queryable and orderable. The
cmis:queryname will be the value to be used in the query.

For example, IDC:GlobalProfile might have property definition information similar
to the following:

<cmis:propertyStringDefinition>
 <cmis:id>/stanl18-ucm11g/IDC:GlobalProfile.ora:p:dDocName</cmis:id>
 <cmis:localName>dDocName</cmis:localName>
 <cmis:displayName>dDocName</cmis:displayName>
 <cmis:queryName>ora:p:dDocName</cmis:queryName>
 <cmis:description>Content ID</cmis:description>
 <cmis:propertyType>string</cmis:propertyType>
 <cmis:cardinality>single</cmis:cardinality>
 <cmis:updatability>readwrite</cmis:updatability>
 <cmis:inherited>false</cmis:inherited>
 <cmis:required>false</cmis:required>
 <cmis:queryable>true</cmis:queryable>
 <cmis:orderable>true</cmis:orderable>
 </cmis:propertyStringDefinition>

An example query for the property definition information above could be:
"SELECT ora:p:dDocName FROM ora:t:IDC!;GlobalProfile"

• To keep queries more readable, avoid non-alphanumeric characters in
ContentType and PropertyDefinition names.

C.15.3.2 Examples

This section provides some example queries. For details on query syntax, see the CMIS
specification. (To get the full URI for a query, see the query URI template in the service
document.)

• SELECT * from cmis:folder

• SELECT cmis:name, cmis:contentStreamFileName, cmis:contentStreamMimeType,
cmis:contentStreamLength FROM cmis:document WHERE
cmis:contentStreamFileName = 'BinaryName' AND cmis:contentStreamMimeType
= 'text/html' AND cmis:contentStreamLength > 1

• SELECT cmis:name, cmis:creationDate, cmis:lastModificationDate FROM
cmis:folder WHERE cmis:name = 'Trash' AND cmis:lastModificationDate >
TIMESTAMP '2008-05-18T10:32:44.703-06:00'

• SELECT * FROM cmis:document WHERE cmis:name LIKE 'baker%'

Content Management REST API

C-82 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• SELECT * FROM cmis:document WHERE cmis:name NOT IN ('nodeBoolean',
'nodeLong')

• SELECT cmis:name from cmis:document where IN_TREE('/StellentRepository')

• SELECT * FROM ora:t:IDC:GlobalProfile WHERE ora:p:xBooleanTestField =
FALSE ORDER BY ora:p:dDocTitle ASC

• SELECT ora:p:xMultiValuedDelimiterTest FROM ora:t:IDC:GlobalProfile WHERE
ANY ora:p:xMultiValuedDelimiterTest NOT IN ('four')

• SELECT cmis:name FROM ora:t:IDC:GlobalProfile WHERE CONTAINS('test')
ORDER BY ora:p:dInDate DESC

• SELECT * FROM cmis:document where IN_TREE('/StellentRepository/
IDC:Folder/2')

C.16 Using the Events REST API
WebCenter Portal provides a REST API to support events. Use the REST API to create
your own interface for providing access to portal events.

Note:

The Events REST API is available for portal events only. You cannot use the
REST API to work with personal events.

This section describes the REST API methods associated with events. It includes the
following topics:

• Events Entry Point

• Events Resource Type Taxonomy

• Security Considerations

• Events Resource Types

C.16.1 Events Entry Point
The entry point for events can be reached only through a portal. First you need to
navigate to the appropriate portal and then find the link element with a
resourceType of:

urn:oracle:webcenter:events:gsEvents

The corresponding href or template element provides the URI entry point. The
client sends HTTP requests to this entry point to work with events.

For more information about the Resource Index, see Using the Resource Index.

For more information about resource types, see Resource Type.

C.16.2 Events Resource Type Taxonomy
When the client has identified the entry point, it can then navigate through the
resource type taxonomy to perform the required operations. For more information

Using the Events REST API

Using the WebCenter Portal REST APIs C-83

about the individual resources types, see the appropriate section in Events Resource
Types.

The taxonomy for events is:

urn:oracle:webcenter:events:gsEvents
 urn:oracle:webcenter:events:gsEvent
urn:oracle:webcenter:events:gsCategories

C.16.3 Security Considerations
There are no specific security considerations for events. For general security
considerations, see Security Considerations for WebCenter Portal REST APIs.

C.16.4 Events Resource Types
This section provides you with all the information you need to know about each
resource type. It includes the following topics:

• urn:oracle:webcenter:events:gsEvents

• urn:oracle:webcenter:events:gsEvent

• urn:oracle:webcenter:events:gsCategories

C.16.4.1 urn:oracle:webcenter:events:gsEvents

Use this resource to identify the URI to use to retrieve (GET) and create (POST) portal
events. The response from a GET operation includes each portal event in this collection
of events, and each event includes links used to operate on that event. The response
from a POST operation includes the event that was created in this collection of events
and a link to operate on that event.

C.16.4.1.1 Navigation Paths to gsEvents

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceIndex
 spaces
 gsEvents

C.16.4.1.2 Supported Methods for gsEvents

The following methods are supported by this resource:

• GET

– request - body: <gsCategory>, Parameters: startIndex, itemsPerPage,
utoken

For information about these common parameters, see Common Request Query
Parameters.

The following additional parameters are available:

◆ startDate—the date from which to start listing portal events

◆ endDate—the date at which to stop listing portal events

For the start and end dates, use the format YYYY-MM-DD, for example
2011-09-01. You can also specify a time (for example,

Using the Events REST API

C-84 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

2011-09-01T09:00:00) and a timezone sign (for example, for UTC,
2011-09-01T09:00:00Z).

– response - body: 0 or more events

• POST

– request - body: event

– response - body: event

C.16.4.1.3 Resource Types Linked to From gsEvents

Table C-36 lists the resource types that the client can link to from this resource.

Table C-36 Related Resource Types for gsEvents

rel resourceType

self urn:oracle:webcenter:events:gsEvents

C.16.4.2 urn:oracle:webcenter:events:gsEvent

Use this resource type to identify the URI to use to read (GET), update (PUT), or delete
(DELETE) a specific portal event. The response from a GET operation includes the
specific event identified by the URI. The response from a PUT operation includes the
modified version of the event identified by the URI. The response from a DELETE
operation is a 204.

C.16.4.2.1 Navigation Paths to gsEvent

resourceIndex
 spaces
 gsEvents
 gsEvent

C.16.4.2.2 Supported Methods for gsEvent

The following methods are supported by this resource:

• GET

– request - body: none

– response - body: event

• PUT

– request - body: event

– response - body: event

• DELETE

– request - body: none

– response - body: none

C.16.4.2.3 Writable Elements for gsEvent

Table C-37 lists the writable elements for this resource.

Using the Events REST API

Using the WebCenter Portal REST APIs C-85

Table C-37 Writable Elements for gsEvent

Element Type Required Constraints Description

category String No The name of an
event category
defined for the
portal

The category to
which the event
belongs.

Note: If the
category does
not exist, the
default is used if
the event is
being created.
However, an
error will occur
if the event is
being modified.

details String No 1 or more
characters

Additional
details about the
event

endTime Date Yes YYYY-MM-
DDTHH:MM:SS

endTime must
be greater than
or equal to
startTime

The date and
time at which
the event ends

location String No 1 or more
characters

The location at
which the event
takes place

priority String? No 1 - Highest

2 - High

3 - Normal

4 - Low

5 - Lowest

The priority of
the event, which
determines
where it appears
when events
clash

startTime Date Yes YYYY-MM-
DDTHH:MM:SS

The date and
time at which
the event starts

summary String Yes 1 or more
characters

A brief
description of
the event to
serve as the title
of the event

C.16.4.2.4 Read-only Elements for gsEvent

Table C-38 lists the read-only elements for this resource.

Table C-38 Read-only Elements for gsEvent

Element Type Description

author personReference User who created the event

Using the Events REST API

C-86 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-38 (Cont.) Read-only Elements for gsEvent

Element Type Description

created Date Date on which the event was
created

duration String The length (in minutes) of the
event

groupSpace groupSpaceReference The portal to which the event
belongs

id String Unique ID of the event

isAllDayEvent Boolean Indicates whether the event
takes place over an entire day

modified Date Date on which the event was
last updated

modifiedByUser personReference User who last updated the
event

C.16.4.2.5 Resource Types Linked to from gsEvent

Table C-39 lists the resource types that the client can link to from this resource.

Table C-39 Related Resource Types for gsEvent

rel resourceType

self urn:oracle:webcenter:events:gsEvent

C.16.4.3 urn:oracle:webcenter:events:gsCategories

Use this resource to identify the URI to use to retrieve (GET) and create (POST) portal
event categories. The response from a GET operation includes each category in this
collection of categories, and each category includes links used to operate on that
category. The response from a POST operation includes the category that was created
in this collection of categories and a link to operate on that category.

C.16.4.3.1 Navigation Paths to gsCategories

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceIndex
 spaces
 gsCategories

C.16.4.3.2 Supported Methods for gsCategories

The following methods are supported by this resource:

• GET

– request - body: category

– response - body: 0 or more categories

Using the Events REST API

Using the WebCenter Portal REST APIs C-87

• POST

– request - body: category

– response - body: category

C.16.4.3.3 Resource Types Linked to From gsCategories

Table C-40 lists the resource types that the client can link to from this resource.

Table C-40 Related Resource Types for gsCategories

rel resourceType

self urn:oracle:webcenter:events:gsCategories

C.17 Using the Tags REST APIs
WebCenter Portal provides REST APIs to support tags. Use the tags REST APIs to do
the following:

• Find all tags or find a subset of tags by criteria

• Get a specific tag

• Delete tags

• Update or rename tags

• Get tagged items

• Untag an item

• Add a new tagged item

• Change tags for a tagged item

• Find all tagged items or find tagged items by a filter, such as a date or a tag word

• Get related users by tag

This section describes the REST APIs associated with tags. It includes the following
topics:

• Tags Entry Point

• Tags Resource Type Taxonomy

• Security Considerations

• Tags Resource Types

For an introduction to the REST APIs, see Introduction to the WebCenter Portal REST
APIs.

C.17.1 Tags Entry Point
Each REST service has a link element within the Resource Index that provides the
entry point for that service. To find the entry point for tags, find the link element with
a resourceType of one of the following:

Using the Tags REST APIs

C-88 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• urn:oracle:webcenter:tagging:tags

• urn:oracle:webcenter:tagging:taggeditems

• urn:oracle:webcenter:tagging:users

The corresponding href or template element provides the URI entry point. The
client sends HTTP requests to this entry point to work with tags.

For more information about the Resource Index, see Using the Resource Index.

For more information about resource types, see Resource Type.

C.17.2 Tags Resource Type Taxonomy
When the client has identified the entry point, it then can navigate through the
resource type taxonomy to perform the required operations. For more information
about the individual resource types, see the appropriate section in Resource Type.

The taxonomy for tags is:

urn:oracle:webcenter:tagging:tags
 urn:oracle:webcenter:tagging:tag
urn:oracle:webcenter:tagging:taggedItems
 urn:oracle:webcenter:tagging:taggedItem
urn:oracle:webcenter:tagging:users

Under users, you can add the resource type for that object, such as peopleprofile.

Beyond the service entry points, URL templates allow clients to pass query parameters
to customize their requests and control the form of returned data.

Collection resources in the tags resources support pagination (itemsPerPage and
startIndex for tags and users and itemsPerPage for taggedItems). Other query
parameters (search and projection) are not supported.

C.17.3 Security Considerations
Authentication is required before using REST API methods.

For general security considerations, see Security Considerations for WebCenter Portal
REST APIs.

C.17.4 Tags Resource Types
This section provides information about each resource type. It includes the following
topics:

• urn:oracle:webcenter:tagging:tags

• urn:oracle:webcenter:tagging:tag

• urn:oracle:webcenter:tagging:taggedItems

• urn:oracle:webcenter:tagging:taggedItem

• urn:oracle:webcenter:tagging:users

Using the Tags REST APIs

Using the WebCenter Portal REST APIs C-89

C.17.4.1 urn:oracle:webcenter:tagging:tags

Use this resource type to identify the URI to use to read (GET) tags. The response from
a GET operation includes all tags, a specific tag, a subset of tags, or a tag related to a
specific list of tags or users.

C.17.4.1.1 Navigation Paths to tags

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 tags

resourceindex
 spaces
 spaces:resourceindex
 spaces:tags

C.17.4.1.2 Supported Methods for tags

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: startIndex, itemsPerPage, keyword,
serviceId, relatedTag, userId, scopeGuid, shared, tags, users

– response - body: tag

where:

– startIndex—Specifies the index of the first matching result that should be
included in the result set (0-n ... zero based). This is used for pagination.

– itemsPerPage—Specifies the maximum number of results to return in the
response (1-n). This is used for pagination.

– keyword—Specifies a keyword for substring matches.

– serviceId—Specifies the service ID for which you want to find tags (null for
all).

– relatedTag—Specifies a tag that is related to the list of tags. For example, if
you have tagged item1 as "webcenter help" and item2 as "webcenter document"
and you set relatedTag=webcenter, then you would get both tags (for help
and document) returned.

– userId—Specifies a single user ID to find tags for (null for all). Uses logged-in
user if null and not looking for shared tags.

– scopeGuid—Specifies the GUID of the portal. When set to the Home portal, it
shows all (unfiltered) tags.

– shared—Specify true to return personal resources only (that is, resources
tagged privately only by that same user); false to return system resources
(that is, resources with at least one public tag).

Using the Tags REST APIs

C-90 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

– tags—Specifies to filter by this list of tags separated by URL-encoded spaces
('+'); for example, an item tagged with "webcenter" and "help" could be searched
with tags=webcenter+help.

– users—Specifies to filter by this list of users separated by URL-encoded spaces
('+'); for example, users=monty+vicki+pat.

Note:

Parameters can be used in certain combinations only.

Table C-41 shows the available parameter combinations for each operation. For
example, the tags parameter cannot be specified with the serviceId parameter.

Table C-41 Parameter Combinations Available for Getting Tags

API Method keyword serviceId relatedTag userId scopeGuid shared tags users

findRelatedSystemTags X X X X

findPopularTagsCommon X X X X

findPopularTags (with
GUID)

X X X X

findPopularTags X X X

C.17.4.1.3 Resource Types Linked to From tags

The resourceType link attribute indicates the type of resource to which the link points.
Clients should use the resourceType to determine the expected response bodies for
GET and POST and allowable request bodies for POST and PUT.

Table C-42 lists the resource types that the client can link to from this resource. Tags
have a reference link to themselves and to the next page or previous page of results.

Table C-42 Related Resource Types for tags

rel resourceType

self urn:oracle:webcenter:tagging:tags

Previous/Next urn:oracle:webcenter:tagging:tags

C.17.4.2 urn:oracle:webcenter:tagging:tag

Use this resource type to identify the URI to use to read (GET), rename (PUT), and
delete (DELETE) a tag. The response from a GET operation includes all tags, a specific
tag, a subset of tags, or a tag related to a specific list of tags or users.

C.17.4.2.1 Navigation Paths to tag

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 tags
 tag

Using the Tags REST APIs

Using the WebCenter Portal REST APIs C-91

resourceindex
 spaces
 spaces:resourceindex
 spaces:tags
 spaces:tag

C.17.4.2.2 Supported Methods for tag

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: none

– response - body: tag

• PUT

– request - body: tag

– response - body: tag

• DELETE

– request - body: none

– response - body: none

Example: Body of the PUT command for Renaming a Tag

<tag>
<name>newId</name>
</tag>

C.17.4.2.3 Resource Types Linked to From tag

The resourceType link attribute indicates the type of resource to which the link points.
Clients should use the resourceType to determine the expected response bodies for
GET and POST and allowable request bodies for POST and PUT.

Table C-43 lists the resource types that the client can link to from this resource. A tag
has a reference link to itself, to related taggedItems, to related users, and to related
tags.

Table C-43 Related Resource Types for tag

rel resourceType

self urn:oracle:webcenter:tagging:tag

urn:oracle:webcenter:tagging:taggedItems

urn:oracle:webcenter:tagging:users

urn:oracle:webcenter:tagging:tags

C.17.4.3 urn:oracle:webcenter:tagging:taggedItems

Use this resource type to identify the URI to use to read tagged items and their related
resources (GET) or to add tagged items (POST).

Using the Tags REST APIs

C-92 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

The response from a GET operation includes a tagged item or all tagged items, which
can be filtered by date, tag words, and so on. Each tag includes links used to operate
on that tag. The response from a POST operation includes the tagged items that were
created in this collection of tags and a link to operate on them.

C.17.4.3.1 Navigation Paths to taggedItems

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 taggedItems

resourceindex
 spaces
 spaces:resourceindex
 spaces:taggedItems

C.17.4.3.2 Supported Methods for taggedtems

The following methods are supported by this resource:

• POST

– request - body: taggedItem

– response - body: taggedItem

<taggeditem>
 <serviceId>oracle.webcenter.page</serviceId>

<resourceId>/oracle/webcenter/page/somepath/someotherpath/a.jspx</resourceId>
 <tagWords>foo bar boo far</tagWords>
 <resourceTitle>This is renamed by me to be foofoo</resourceTitle>
 <scopeGuid>(optional) scope for the item</scopeGuid>
 <shared>(optional) make the item private </shared>
 </taggeditem>

• GET

– request - body: none, Parameters: serviceId, keyword, relatedRID, tags,
users, dt, scopeGuid, shared, itemsPerPage

– response - body: tagged items

where:

– serviceId—Specifies the service ID of the item.

– keyword—Specifies a keyword in the resource title.

– relatedRID—Specifies a related tag. For example, if you tagged item1 as
"webcenter help" and item2 as "fusionapps documents" and item3 as "webcenter
documents" and set relatedRID=item3, then you would get back item1 and
item2, because they share tags in common with item3.

– tags—Specifies to filter by this list of tags separated by URL-encoded spaces
('+'); for example, an item tagged with "webcenter" and "help" could be searched
with tags=webcenter+help.

– users—Specifies to filter by these users, separated by URL-encoded spaces
('+'); for example, {USER}+{USER}+...+{USER}.

Using the Tags REST APIs

Using the WebCenter Portal REST APIs C-93

– dt—Specifies to filter bookmarks by this date, which defaults to the most recent
date on which bookmarks were saved {DD-MM-CCYY}.

– scopeGuid—Specifies the GUID of the portal. When set to the Home portal, it
shows all (unfiltered) tags.

– shared—Specify true to return personal resources only (that is, resources
tagged privately only by that same user); false to return system resources
(that is, resources with at least one public tag).

– itemsPerPage—Specifies the maximum number of results to return in the
response (1-n). This is used for pagination.

Note:

Parameters can be used in certain combinations only.

Table C-44 shows the available parameter combinations for each operation. For
example, the tags parameter cannot be specified with the serviceId parameter.

Table C-44 Parameter Combinations Available for Getting Tagged Items

API Method serviceId keyword relatedRID tags users dt scopeGuid shared

findRelatedSystemResources X X

findUpdatedResources X X

findSystemResources X X X X

findFilterPersonalResources X X X

findPersonalResources X X X X

findFilteredPersonalResource
s (no keyword)

X X

C.17.4.3.3 Resource Types Linked to From taggedItems

The resourceType link attribute indicates the type of resource to which the link points.
Clients should use the resourceType to determine the expected response bodies for
GET and POST and allowable request bodies for POST and PUT.

Table C-45 lists the resource types that the client can link to from this resource. Tagged
items have a reference link to themselves and to the next page or previous page of
results.

Table C-45 Related Resource Types for taggedItems

rel resourceType

self urn:oracle:webcenter:tagging:taggedItems

Previous/Next urn:oracle:webcenter:tagging:taggedItems

Using the Tags REST APIs

C-94 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.17.4.4 urn:oracle:webcenter:tagging:taggedItem

Use this resource type to identify the URI to use to read tagged items and their related
resources (GET), add tagged items (POST), update tags for a tagged item (PUT), and
remove all tags from an item (DELETE).

The response from a GET operation includes a tagged item or all tagged items, which
can be filtered by date, tag words, and so on. Each tag includes links used to operate
on that tag. The response from a POST operation includes the tagged item that was
created in this collection of tags and a link to operate on that tagged item.

Navigation Paths to taggedItem

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 taggedItems
 taggedItem

resourceindex
 spaces
 spaces:resourceindex
 spaces:taggedItems
 spaces:taggedItem

C.17.4.4.1 Supported Methods for taggedItem

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: serviceId, keyword, tags, users, dt,
shared, itemsPerPage

– response - body: tagged item

where:

– serviceId—Specifies the service ID of the item.

– keyword—Specifies a keyword in the resource title.

– tags—Specifies to filter by this list of tags separated by URL-encoded spaces
('+'); for example, an item tagged with "webcenter" and "help" could be searched
with tags=webcenter+help.

– users—Specifies to filter by this list of users separated by URL-encoded spaces
('+'); for example, users=monty+vicki+pat.

– dt—Specifies to filter bookmarks by this date, which defaults to the most recent
date on which bookmarks were saved {DD-MM-CCYY}.

– shared—Specify true to return personal resources only (that is, resources
tagged privately only by that same user); false to return system resources
(that is, resources with at least one public tag).

– itemsPerPage—Specifies the maximum number of results to return in the
response (1-n). This is used for pagination.

• PUT

Using the Tags REST APIs

Using the WebCenter Portal REST APIs C-95

– request - body: taggedItem

– response - body: taggedItem

<taggeditem>
<tagWords>foo bar boo far</tagWords>
</taggeditem>

• DELETE

– request - body: none

– response - body: none

C.17.4.4.2 Resource Types Linked to From taggedItem

The resourceType link attribute indicates the type of resource to which the link points.
Clients should use the resourceType to determine the expected response bodies for
GET and POST and allowable request bodies for POST and PUT.

Table C-46 lists the resource types that the client can link to from this resource. A
tagged item has a reference link to itself, related tagged items, and an external link.

Table C-46 Related Resource Types for taggedItem

rel resourceType

self urn:oracle:webcenter:tagging:taggedItem

urn:oracle:webcenter:tagging:taggedItems

alternate The resource type depends on the type of resource tagged; for example, a
page would be urn:oracle:webcenter:page:page

C.17.4.5 urn:oracle:webcenter:tagging:users

Use this resource type to get a list of people related to a given list of tags.

C.17.4.5.1 Navigation Paths to users

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 taggingusers

resourceindex
 spaces
 spaces:resourceindex
 spaces:taggingusers

C.17.4.5.2 Supported Methods for users

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: startIndex, itemsPerPage, tags, users

– response - body: people profile

where:

Using the Tags REST APIs

C-96 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

– startIndex—Specifies the index of the first matching result that should be
included in the result set (0-n ... zero based). This is used for pagination.

– itemsPerPage—Specifies the maximum number of results to return in the
response (1-n). This is used for pagination.

– tags—Specifies to filter by this list of tags separated by URL-encoded spaces
('+'); for example, an item tagged with "webcenter" and "help" could be searched
with tags=webcenter+help.

– users—Specifies to filter by this list of users separated by URL-encoded spaces
('+'); for example, users=monty+vicki+pat.

C.17.4.5.3 Resource Types Linked to From users

The resourceType link attribute indicates the type of resource to which the link points.
Clients should use the resourceType to determine the expected response bodies for
GET and POST and allowable request bodies for POST and PUT.

Table C-47 lists the resource types that individual users can link to from this resource.
Users have a reference link to themselves and to the next page or previous page of
results.

Table C-47 Related Resource Types for users

rel resourceType

self urn:oracle:webcenter:tagging:users

Previous/Next urn:oracle:webcenter:tagging:users

C.18 Using the Discussions REST API
WebCenter Portal provides a REST API to support discussions. Use the discussions
REST API to post, read, update, and delete discussion forums, topics, and messages.

This section describes the REST API methods associated with discussions. It includes
the following topics:

• Discussions Entry Point

• Discussions Resource Type Taxonomy

• Security Considerations

• Discussions Resource Types

C.18.1 Discussions Entry Point
Each REST service has a link element within the Resource Index that provides the
entry point for that service. To find the entry point for discussions, find the link
element with a resourceType of:

urn:oracle:webcenter:discussions:forums

The corresponding href or template element provides the URI entry point. The
client sends HTTP requests to this entry point to work with discussions.

For more information about the Resource Index, see Using the Resource Index.

For more information about resource types, see Resource Type.

Using the Discussions REST API

Using the WebCenter Portal REST APIs C-97

C.18.2 Discussions Resource Type Taxonomy
When the client has identified the entry point, it can then navigate through the
resource type taxonomy to perform the required operations. For more information
about the individual resource types, see the appropriate section in Resource Type.

The taxonomy for discussions is:

urn:oracle:webcenter:discussions:forums
 urn:oracle:webcenter:discussions:forum
 urn:oracle:webcenter:discussions:forum:topics
 urn:oracle:webcenter:discussions:forum:topic
 urn:oracle:webcenter:discussions:forum:topic:messages
 urn:oracle:webcenter:discussions:forum:topic:message

Beyond the service entry points, URL templates allow clients to pass query parameters
to customize their requests and control the form of returned data.

Collection resources in the discussions resources support pagination (startIndex
and itemsPerPage). Other query parameters are not supported (that is, search and
projection).

C.18.3 Security Considerations
There are no specific security considerations for discussions. For general security
considerations, see Introduction to the WebCenter Portal REST APIs.

C.18.4 Discussions Resource Types
This section provides the information about each resource type. It includes the
following topics:

• urn:oracle:webcenter:discussions:forums

• urn:oracle:webcenter:discussions:forum

• urn:oracle:webcenter:discussions:forum:topics

• urn:oracle:webcenter:discussions:forum:topic

• urn:oracle:webcenter:discussions:forum:topic:messages

• urn:oracle:webcenter:discussions:forum:topic:message

C.18.4.1 urn:oracle:webcenter:discussions:forums

Use this resource type to identify the URI to use to read (GET) and write (POST)
discussion forums. The response from a GET operation includes each forum in this
collection of forums, and each forum includes links used to operate on that forum. The
response from a POST operation includes the forum that was created in this collection
of forums and a link to operate on that forum.

C.18.4.1.1 Navigation Paths to forums

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 forums

Using the Discussions REST API

C-98 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

resourceindex
 spaces
 spaces:resourceindex
 spaces:forums

C.18.4.1.2 Supported Methods for forums

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: startIndex, itemsPerPage (pagination)

– response - body: forums

• POST

– request - body: forum

– response - body: forum

Note that the number of forums displayed per page defaults to 10. For more
information, see Templates.

C.18.4.1.3 Resource Types Linked to From forums

Table C-48 lists the resource types that the client can link to from this resource.

Table C-48 Related Resource Types for forums

rel resourceType

self urn:oracle:webcenter:discussions:forums

urn:oracle:webcenter:discussions:forum

C.18.4.2 urn:oracle:webcenter:discussions:forum

Use this resource type to identify the URI to use to read (GET), update (PUT), and
delete (DELETE) a specific discussion forum. The response from a GET operation
includes the specific forum identified by the URI. The response from a PUT operation
includes the modified version of the forum identified by the URI. The response from a
DELETE operation is a 204.

C.18.4.2.1 Navigation Paths to forum

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 forums
 forum

resourceindex
 spaces
 spaces:resourceindex
 spaces:forums
 forum

resourceindex
 activities
 forum

Using the Discussions REST API

Using the WebCenter Portal REST APIs C-99

C.18.4.2.2 Supported Methods for forum

The following methods are supported by this resource:

• GET

– request - body: none

– response - body: forum

• PUT

– request - body: forum

– response - body: forum

• DELETE

– request - body: none

– response - body: none

C.18.4.2.3 Writable Elements for forum

Table C-49 lists the writable elements for this resource.

Table C-49 Writable Elements for forum

Element Type Required Constraints Description

name String Yes 1 or more
characters

Name of the forum

displayName String No 1 or more
characters

Name used in presentation

description String No 1 or more
characters

Description of the forum

C.18.4.2.4 Read-only Elements for forum

Table C-50 lists the read-only elements for this resource.

Table C-50 Read-only Elements for forum

Element Type Description

id Integer ID of the forum

parentId Integer ID of the parent category

createdBy String ID of the user that created the forum

author personReference User information about the user that created
the forum, including GUID, ID, display
name, and a link to the profile icon (same
user as createdBy)

createdOn Date Date on which the forum was created

Using the Discussions REST API

C-100 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-50 (Cont.) Read-only Elements for forum

Element Type Description

updatedBy String ID of the user that performed the last
modification

modifiedBy personReference User information about the user that
performed the last modification, including
GUID, ID, display name, and a link to the
profile icon (same user as updatedBy)

updatedOn Date Date on which the forum was last modified

webUrl String URL for direct access to the discussions
server

topicCount Integer Number of topics

messageCount Integer Number of messages

locked Boolean True if this forum is locked

favorite Boolean True if this forum is marked as a favorite

C.18.4.2.5 Resource Types Linked to From forum

Table C-51 lists the resource types that the client can link to from this resource.

Table C-51 Related Resource Types for forum

rel resourceType

self urn:oracle:webcenter:discussions:forum

urn:oracle:webcenter:discussions:forum:topics

C.18.4.3 urn:oracle:webcenter:discussions:forum:topics

Use this resource type to identify the URI to use to read (GET) and write (POST)
discussion topics. The response from a GET operation includes each topic in this
collection of topics, and each topic includes links used to operate on that topic. The
response from a POST operation includes the topic that was created in this collection
of topics and a link to operate on that topic.

C.18.4.3.1 Navigation Paths to topics

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 forums
 topics

resourceindex
 spaces
 spaces:resourceindex
 spaces:forums
 topics

Using the Discussions REST API

Using the WebCenter Portal REST APIs C-101

C.18.4.3.2 Supported Methods for topics

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: startIndex, itemsPerPage (pagination)

– response - body: topics

• POST

– request - body: topic

– response - body: topic

For more information, see Templates.

C.18.4.3.3 Resource Types Linked to From topics

Table C-52 lists the resource types that the client can link to from this resource.

Table C-52 Related Resource Types for topics

rel resourceType

self urn:oracle:webcenter:discussions:forum:topics

urn:oracle:webcenter:discussions:forum:topic

C.18.4.4 urn:oracle:webcenter:discussions:forum:topic

Use this resource type to identify the URI to use to read (GET), update (PUT), and
delete (DELETE) a specific discussion topic. The response from a GET operation
includes the specific topic identified by the URI. The response from a PUT operation
includes the modified version of the topic identified by the URI. The response from a
DELETE operation is a 204.

C.18.4.4.1 Navigation Paths to topic

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 forums
 topics
 topic

resourceindex
 spaces
 spaces:resourceindex
 spaces:forums
 topics
 topic

resourceindex
 activities
 topicT

Using the Discussions REST API

C-102 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.18.4.4.2 Supported Methods for topic

The following methods are supported by this resource type:

• GET

– Request—Body: none

– Response—Body: topic

• PUT

– Request—Body: topic

– Response—Body: topic

• DELETE

– Request—Body: none

– Response—Body: none

C.18.4.4.3 Writable Elements for topic

Table C-53 lists the writable elements for this resource type.

Table C-53 Writable Elements for topic

Element Type Required Constraints Description

subject String Yes 1 or more
characters

Subject of the topic

body String No 0 or more
characters

Contents of the topic

C.18.4.4.4 Read-only Elements for topic

Table C-54 lists the read-only elements for this resource type.

Table C-54 Read-only Elements for topic

Element Type Description

id Integer Identifier for the topic

parentId Integer Identifier for the parent message

forumId Integer Identifier for the forum under which this
topic is posted

topicId Integer Identifier for the topic under which this topic
is posted

createdBy String ID of the user who created the topic

author personReference User information about the user who created
the topic, including GUID, ID, display name,
and a link to the profile icon (same user as
createdBy)

Using the Discussions REST API

Using the WebCenter Portal REST APIs C-103

Table C-54 (Cont.) Read-only Elements for topic

Element Type Description

createdOn Date Date on which the topic was created

updatedBy String User who lasted updated the topic

updatedOn Date Date on which the topic was last updated

webUrl String URL for direct access to the discussions
server

depth Integer Depth in the hierarchy of messages

messageCount Integer Number of child messages under this topic

numberOfReplies Integer Number of replies to this topic

favorite Boolean Whether the topic is marked as a favorite for
the user

locked Boolean Whether the topic is locked

hidden Boolean Whether the topic is hidden

hasAttachment Boolean Whether the topic has attachments

C.18.4.4.5 Resource Types Linked to From topic

Table C-55 lists the resource types that the client can link to from this resource.

Table C-55 Related Resource Types for topic

rel resourceType

self urn:oracle:webcenter:discussions:forum:topic

urn:oracle:webcenter:discussions:forum:topic:messages

C.18.4.5 urn:oracle:webcenter:discussions:forum:topic:messages

Use this resource type to identify the URI to use to read (GET) and write (POST)
discussion topic messages. The response from a GET operation includes each message
in this collection of messages, and each message includes links used to operate on that
message. The response from a POST operation includes the message that was created
in this collection of messages and a link to operate on that message.

C.18.4.5.1 Navigation Paths to messages

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 forums
 topics
 messages

resourceindex
 spaces

Using the Discussions REST API

C-104 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 spaces:resourceindex
 spaces:forums
 topics
 messages

C.18.4.5.2 Supported Methods for messages

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: startIndex, itemsPerPage (pagination)

– response - body: messages

• POST

– request - body: message

– response - body: message

For more information, see Templates.

C.18.4.5.3 Resource Types Linked to From messages

Table C-56 lists the resource types that the client can link to from this resource.

Table C-56 Related Resource Types for messages

rel resourceType

self urn:oracle:webcenter:discussions:forum:topic:messages

urn:oracle:webcenter:discussions:forum:topic:message

C.18.4.6 urn:oracle:webcenter:discussions:forum:topic:message

Use this resource type to identify the URI to use to read (GET), update (PUT), and
delete (DELETE) a specific discussion topic message. The response from a GET
operation includes the specific message identified by the URI. The response from a
PUT operation includes the modified version of the message identified by the URI. The
response from a DELETE operation is a 204.

C.18.4.6.1 Navigation Paths to message

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceindex
 forums
 topics
 messages
 message

resourceindex
 spaces
 spaces:resourceindex
 spaces:forums
 topics
 messages
 message

Using the Discussions REST API

Using the WebCenter Portal REST APIs C-105

C.18.4.6.2 Supported Methods for message

The following methods are supported by this resource:

• GET

– request - body: none

– response - body: message

• PUT

– request - body: message

– response - body: message

• DELETE

– request - body: none

– response - body: none

C.18.4.6.3 Writable Elements for message

Table C-57 lists the writable elements for this resource.

Table C-57 Writable Elements for message

Element Type Required Constraints Description

subject String Yes 1 or more
characters

Subject of this message

body String No 0 or more
characters

Content of this message

C.18.4.6.4 Read-only Elements for message

Table C-58 lists the read-only elements for this resource.

Table C-58 Read-only Elements for message

Element Type Description

id Integer ID of the message

parentId Integer ID of the parent message

forumId Integer ID of the forum under which the message is
posted

topicId Integer ID of the topic under which the message is
posted

createdBy String ID of user that created the message

author personReference User information about the user that created
the message, including GUID, ID, display
name and a link to the profile icon (same user
as createdBy)

Using the Discussions REST API

C-106 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-58 (Cont.) Read-only Elements for message

Element Type Description

createdOn Date Date on which the message was created

updatedBy String User that performed the last modification

updatedOn Date Date on which the message was last modified

webUrl String URL for direct access to the discussions
server

depth Integer Depth in the hierarchy of messages

messageCount Integer Number of messages

numberOfReplies Integer Number of replies to this message

hidden Boolean True if this message is hidden

hasAttachment Boolean True if this message has attachments

C.18.4.6.5 Resource Types Linked to From message

Table C-59 lists the resource types that the client can link to from this resource.

Table C-59 Related Resource Types for message

rel resourceType

self urn:oracle:webcenter:discussions:forum:topic:message

urn:oracle:webcenter:discussions:forum:topic:messages

C.19 Using the Lists REST API
Oracle WebCenter Portal provides a REST API to allow access to Lists functionality
through interfaces other than the provided task flows. You can use the Lists REST API
to perform the following actions:

• Work with lists in a portal, such as retrieving a list of lists or adding a new list

• Work with one list, such as retrieving or updating list metadata, or deleting the list

• Work with rows in a list

• Work with a list row, such as retrieving, updating, or deleting the row

• Work with list columns, such as adding a column

• Work with a list column, such as retrieving, updating, or deleting the column

This section describes the REST API methods associated with lists. It includes the
following topics:

• Entry Point for Lists

• Lists Resource Type Taxonomy

Using the Lists REST API

Using the WebCenter Portal REST APIs C-107

• Lists Security Considerations

• Lists Resource Types

See Also:

For an introduction to the REST APIs, see Introduction to the WebCenter
Portal REST APIs.

C.19.1 Entry Point for Lists
To get to the REST entry point for lists in a portal in WebCenter Portal, you search for
the specific portal and retrieve the resource index. The corresponding href or
template element provides the URI entry point, which retrieves the lists in the
portal.

1. Navigate to the portal for which to retrieve the lists.

2. Retrieve the resource index:

urn:oracle:webcenter:resourceindex

3. Navigate to the returned href.

4. Search for the resource type. For example, for all the lists in a portal, search for:

urn:oracle:webcenter:space:lists

See Also:

For more information about the Resource Index, see Using the Resource Index

For more information about resource types, see Resource Type

C.19.2 Lists Resource Type Taxonomy
When the client has identified the entry point, it can then navigate through the
resource type taxonomy to perform the required operations. The resource type
taxonomy for lists is:

urn:oracle:webcenter:space:lists
urn:oracle:webcenter:space:list
 urn:oracle:webcenter:space:list:rows
 urn:oracle:webcenter:space:list:row
 urn:oracle:webcenter:space:list:columns
 urn:oracle:webcenter:space:list:column

C.19.3 Lists Security Considerations
You must be logged in to the REST service to access any of the Lists REST API
methods. After that, the underlying service handles permission checking.

See Also:

For general security considerations, see Security Considerations for
WebCenter Portal REST APIs.

Using the Lists REST API

C-108 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.19.4 Lists Resource Types
This section provides you with all the information you need to know about each
resource type. It includes the following topics:

• urn:oracle:webcenter:space:lists

• urn:oracle:webcenter:space:list

• urn:oracle:webcenter:space:list:rows

• urn:oracle:webcenter:space:list:row

• urn:oracle:webcenter:space:list:columns

• urn:oracle:webcenter:space:list:column

C.19.4.1 urn:oracle:webcenter:space:lists

The lists response provides a means of retrieving the lists in a given portal (GET)
and adding lists to a portal (POST). This section includes the following topics:

• Navigation Paths to lists

• Supported Methods for lists

• Method (lists): GET

• Method (lists): POST

• Resource Types Linked to from lists

C.19.4.1.1 Navigation Paths to lists

This section shows how the client can navigate through the hypermedia to access the
lists resource:

urn:oracle:webcenter:resourceindex
 urn:oracle:webcenter:spaces
 urn:oracle:webcenter:space:resourceindex
 urn:oracle:webcenter:space:lists

C.19.4.1.2 Supported Methods for lists

The lists resource type supports the following methods:

• Method (lists): GET

• Method (lists): POST

C.19.4.1.2.1 Method (lists): GET

This method retrieves the lists in a portal.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists?
q=name:equals:ProjectIssues&utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Request headers: [Accept = application/xml | application/json]

Using the Lists REST API

Using the WebCenter Portal REST APIs C-109

• Request parameters - startIndex, itemsPerPage, q, projection

– q parameter for query, format 'q=attribute:operator:value', for
example:

'q=name:equals:ProjectIssues'

◆ Supported operators for Strings: equals, not.equals, contains,
starts.with

◆ Supported operators for Dates: equals, not.equals, greater.than,
greater.than.or.equals, less.than, less.than.or.equals

◆ May specify several conditions separated by semicolon (;)

• Searchable attributes (Table C-60)

Table C-60 Searchable Attributes for lists GET Method

Element Type Description

name string Name of list

description string Description of list

creator string User who created list

created date Date the list was created

modifier string User who modified list

modified date Date the list was last modified

• Response status: 200 [OK]

• Response body: <lists>

• Example:

<lists resourceType="urn:oracle:webcenter:space:lists">
 <links>
 <link resourceType="urn:oracle:webcenter:list:lists"
 rel="self" href="opaque"/>
 <link template="opaque?startIndex={startIndex}&
 itemsPerPage={itemsPerPage}&q={searchTerms}&
 projection={projection}
 &stoken=FDgsOu7a2NTTM1cLJvnpkDXfihtHx5Q*"
resourceType="urn:oracle:webcenter:list:lists"/>
 </links>
 <items>
 <list resourceType="urn:oracle:webcenter:space:list">
 <links>
 <link resourceType="urn:oracle:webcenter:list" rel="self"
 href="opaque"
 capabilities="urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>
 <link resourceType="urn:oracle:webcenter:list:rows"
 href="opaque"
 capabilities="urn:oracle:webcenter:create"/>
 <link template="opaque?
 startIndex={startIndex}&

Using the Lists REST API

C-110 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 itemsPerPage={itemsPerPage}&q={searchTerms}&
 stoken=FDgsOu7a2NTTM1cLJvnpkDXfihtHx5Q*"
 resourceType="urn:oracle:webcenter:list:rows"/>
 <link resourceType="urn:oracle:webcenter:list:columns"
 href="opaque"
 capabilities="urn:oracle:webcenter:create"/>
 </links>
 <id>/oracle/webcenter/list/scopedMD/
 se0dea180_e2c1_45ac_b08b_
 ba2c0b26aa72/lists/ProjectIssues.xml</id>
 <name>Project Issues</name>
 <description/>
 </list>
 </items>
</lists>

C.19.4.1.2.2 Method (lists): POST

This method creates a list in a portal.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: <list>

• Writable elements (Table C-61)

Table C-61 Create List Writable Elements

Element Type Constraints Description

name1 string — Name of list

description string — Description of list

columns2 urn:oracle:webcenter:space:list:columns 1 to 30 List columns

1 Denotes required element
2 Denotes required element

• Example:

<list>
 <name>RestExample</name>
 <description>Created using rest api</description>
 <columns>
 <items>
 <metaColumn>
 <name>No.</name>
 <dataType>number</dataType>
 </metaColumn>
 <metaColumn>
 <name>Description</name>
 <dataType>string</dataType>
 </metaColumn>
 </items>
 </columns>
</list>

• Request headers: Content-Type = application/xml | application/json,
[Accept = application/xml | application/json]

Using the Lists REST API

Using the WebCenter Portal REST APIs C-111

• Response status: 201 [Created]

• Response body: <list>

• Retrieved elements (Table C-62)

Table C-62 Retrieved Elements from lists

Element Type Description

id string List ID

name string List name

description string List description

scope.guid string GUID of portal to which the list belongs

scope.name string Name of the portal to which the list
belongs

creator string Name of the user who created the list

created date Date the list was created

modifier string Name of the user who last modified the
list

modified date Date the list was last modified

columns urn:oracle:webcenter:spac
e:list:columns

List columns

• Example:

<list resourceType="urn:oracle:webcenter:space:list">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list" rel="self"
 href="http://host:port/rest/api/spaces/vs1/
 lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_
 83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update urn:oracle:webcenter:delete"/>
 <link template="http://host:port
 /rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_
 417b_a35f_fb03874979c0.xml)/rows?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_
 w**&startIndex={startIndex}&itemsPerPage={itemsPerPage}
 &q={searchTerms}&utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 resourceType="urn:oracle:webcenter:space:list:rows"
 href="http://host:port/rest/api/spaces/
 vs1/lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_
 83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/rows?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 <link resourceType="urn:oracle:webcenter:space:list:columns"
 href="http://host:port/rest/api/spaces/
 vs1/lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_

Using the Lists REST API

C-112 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/columns?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_
 w**" capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 </links>
 <id>/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_fb03874979c0.xml</id>
 <name>RestExample</name>
 <description>Created using rest api</description>
 <scope>
 <guid>s355923f0_2f04_4fd0_83ad_f7dac2a7ceed</guid>
 <name>vs1</name>
 </scope>
 <creator>weblogic</creator>
 <author>
 <links>
 <link resourceType="urn:oracle:webcenter:people:person"
 rel="via" href="http://host:port/
 rest/api/people/E9A35E80F0BC11DFBFBE0FE339E55B21/lists/
 @self?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/
 webcenter/profilephoto/45394133354538304630424
 33131444642464245304645333339453535423231/{size}?
 _xResourceMethod=wsrp"
 resourceType="urn:oracle:webcenter:people:person"
 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/webcenter/
 profilephoto/
4539413335453830463042433131444642464245304645
 333339453535423231/SMALL?_xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:profile"
 rel="alternate" href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/view/pages/
 peopleconn/UserProfileGallery.jspx?wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </author>
 <created>2010-11-18T06:10:32.250-08:00</created>
 <modifier>weblogic</modifier>
 <modifiedByUser>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </modifiedByUser>
 <modified>2010-11-18T06:10:32.250-08:00</modified>
 <columns resourceType="urn:oracle:webcenter:space:list:columns">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:columns"
 rel="self"
 href="http://host:port/rest/api/spaces
 /vs1/lists/(/oracle/webcenter/list/scopedMD/
 s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/columns?utoken=

Using the Lists REST API

Using the WebCenter Portal REST APIs C-113

 FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 <link resourceType="urn:oracle:webcenter:space:list"
 rel="urn:oracle:webcenter:parent"
 href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/
scopedMD/
 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/
 ls_c9cecbc7_756b_417b_a35f_fb03874979c0.xml)?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"/>
 </links>
 <items>
 <metaColumn resourceType=
 "urn:oracle:webcenter:space:list:column">
 <links>
 <link
resourceType="urn:oracle:webcenter:space:
 list:column" rel="self
 "href="http://host:port/
 rest/api/spaces/vs1/lists/
 (/oracle/webcenter/list/scopedMD/
 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/
 lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/columns/

(lco_9bdd1418_6004_40ba_a052_04e8335b7ee8)?

utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>
 </links>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <name>No.</name>
 <dataType>number</dataType>
 <required>false</required>
 <displayLength>10</displayLength>
 <format>number</format>
 <allowLinks>false</allowLinks>
 </metaColumn>
 <metaColumn resourceType=
 "urn:oracle:webcenter:space:list:column">
 <links>
 <link resourceType=

"urn:oracle:webcenter:space:list:column"
 rel="self"
 href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/
 webcenter/list/scopedMD/
 s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_
 417b_a35f_fb03874979c0.xml)/columns/

(lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24)?

utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>

Using the Lists REST API

C-114 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 </links>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <name>Description</name>
 <dataType>string</dataType>
 <required>false</required>
 <maxLength>500</maxLength>
 <displayLength>20</displayLength>
 <allowLinks>false</allowLinks>
 <editLines>1</editLines>
 </metaColumn>
 </items>
 </columns>
</list>

C.19.4.1.3 Resource Types Linked to from lists

Table C-63 lists the resource types that the client can link to from the lists resource.

Table C-63 Resource Types Linked to from lists

rel resourceType

self urn:oracle:webcenter:space:lists

urn:oracle:webcenter:space:list

C.19.4.2 urn:oracle:webcenter:space:list

The list response provides a means of retrieving, updating, and deleting an
individual list. This section includes the following topics:

• Navigation Paths to list

• Supported Methods for list

• Method (list): GET

• Method (list): PUT

• Method (list): DELETE

• Resource Types Linked to from list

C.19.4.2.1 Navigation Paths to list

This section shows how the client can navigate through the hypermedia to access the
list resource:

urn:oracle:webcenter:resourceindex
 urn:oracle:webcenter:spaces
 urn:oracle:webcenter:space:resourceindex
 urn:oracle:webcenter:space:lists
 urn:oracle:webcenter:space:list

C.19.4.2.2 Supported Methods for list

The list resource type supports the following methods:

• Method (list): GET

• Method (list): PUT

Using the Lists REST API

Using the WebCenter Portal REST APIs C-115

• Method (list): DELETE

C.19.4.2.3 Method (list): GET

Use this method to retrieve a list.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_
5fb62dc3514d.xml)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Request headers: [Accept = application/xml | application/json]

• Response status: 200 [OK]

• Response body: <list>

• Retrieved elements (Table C-64)

Table C-64 Retrieved Elements for list

Element Type Description

id string ID of the list

name string Name of the list

description string Description of the list

scope.guid string GUID of the portal to which the list belongs

scope.name string Name of the portal to which the list belongs

creator string User who created the list

created Date Date on which the list was created

modifier string User who last modified the list

modified Date Date on which the list was last modified

columns urn:oracle:webcenter:space:list:columns The columns that make up the list

• For example:

<list resourceType="urn:oracle:webcenter:space:list">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list" rel="self"
 href="http://host:port/rest/api/spaces/vs1/
 lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>
 <link template="http://host:port
 /rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_
 417b_a35f_fb03874979c0.xml)/rows?

Using the Lists REST API

C-116 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**&
 startIndex={startIndex}&itemsPerPage={itemsPerPage}&q=
 {searchTerms}&utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 resourceType="urn:oracle:webcenter:space:list:rows"
 href="http://host:port/rest/api/
 spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/s355923f0_
 2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/rows?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 <link resourceType="urn:oracle:webcenter:space:list:columns"
 href="http://host:port/rest/api/spaces/
 vs1/lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_
 83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/columns?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_
 w**" capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 </links>
 <id>/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_fb03874979c0.xml</id>
 <name>RestExample</name>
 <description>Created using rest api</description>
 <scope>
 <guid>s355923f0_2f04_4fd0_83ad_f7dac2a7ceed</guid>
 <name>vs1</name>
 </scope>
 <creator>weblogic</creator>
 <author>
 <links>
 <link resourceType="urn:oracle:webcenter:people:person"
 rel="via" href="http://host:port/
 rest/api/people/E9A35E80F0BC11DFBFBE0FE339E55B21/lists/
 @self?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/
 webcenter/profilephoto/4539413335453830463042433131444
 642464245304645333339453535423231/{size}?
 _xResourceMethod=wsrp"
 resourceType="urn:oracle:webcenter:people:person"
 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/
 webcenter/profilephoto/4539413335453830463042433131444
 642464245304645333339453535423231/SMALL?
 _xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:profile"
 rel="alternate" href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/view/pages/
 peopleconn/UserProfileGallery.jspx?wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </author>
 <created>2010-11-18T06:10:32.250-08:00</created>
 <modifier>weblogic</modifier>
 <modifiedByUser>
 <displayName>weblogic</displayName>

Using the Lists REST API

Using the WebCenter Portal REST APIs C-117

 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </modifiedByUser>
 <modified>2010-11-18T06:10:32.250-08:00</modified>
 <columns resourceType="urn:oracle:webcenter:space:list:columns">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:columns"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/
scopedMD/
 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_
 756b_417b_a35f_fb03874979c0.xml)/
 columns?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 <link resourceType="urn:oracle:webcenter:space:list"
 rel="urn:oracle:webcenter:parent"
 href="http://host:port/rest/api/spaces/
 vs1/lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_
 4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)?utoken=
 FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"/>
 </links>
 <items>
 <metaColumn resourceType=
 "urn:oracle:webcenter:space:list:column">
 <links>
 <link resourceType=
 "urn:oracle:webcenter:space:list:column"
 rel="self"
 href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/
 list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_
 756b_417b_a35f_fb03874979c0.xml)/columns/(lco_
 9bdd1418_6004_40ba_a052_04e8335b7ee8)?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>
 </links>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <name>No.</name>
 <dataType>number</dataType>
 <required>false</required>
 <displayLength>10</displayLength>
 <format>number</format>
 <allowLinks>false</allowLinks>
 </metaColumn>
 <metaColumn resourceType=
 "urn:oracle:webcenter:space:list:column">
 <links>
 <link resourceType=
 "urn:oracle:webcenter:space:list:column"
 rel="self"
 href="http://host:port
 /rest/api/spaces/vs1/lists/(/oracle/webcenter/
 list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/columns/(lco_3a31fd20_24f1_
 4422_99fd_c00d7bed4b24)?

Using the Lists REST API

C-118 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read

urn:oracle:webcenter:update
urn:oracle:webcenter:delete"/>
 </links>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <name>Description</name>
 <dataType>string</dataType>
 <required>false</required>
 <maxLength>500</maxLength>
 <displayLength>20</displayLength>
 <allowLinks>false</allowLinks>
 <editLines>1</editLines>
 </metaColumn>
 </items>
 </columns>
</list>

C.19.4.2.4 Method (list): PUT

Use this method to update a list name or description.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_
5fb62dc3514d.xml)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: <list>

• Writable elements for list (Table C-65)

Table C-65 Writable Elements for list

Element Type Required Constraints Description

name1 string Yes 1 or more characters Name of this list

description string No none Description of this list

1 Denotes required element

• For example:

<list>
 <name>RestExampleUpdate</name>
 <description>Updated using rest api</description>
</list>

• Request headers: Content-Type = application/xml | application/json,
[Accept = application/xml | application/json]

• Response status: 200 [OK]

• Response body: <list>

C.19.4.2.5 Method (list): DELETE

Use this method to delete a list.

• Resource URI, for example:

Using the Lists REST API

Using the WebCenter Portal REST APIs C-119

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_
5fb62dc3514d.xml)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Response status: 204 [No Content]

• Response body: none

C.19.4.2.6 Resource Types Linked to from list

Table C-66 lists the resource types that the client can link to from the list resource.

Table C-66 Resource Types Linked to from list

rel resourceType

self urn:oracle:webcenter:space:list

urn:oracle:webcenter:space:list:rows

urn:oracle:webcenter:space:list:columns

C.19.4.3 urn:oracle:webcenter:space:list:rows

The rows response provides a means of retrieving and adding rows to a list. This
section includes the following topics:

• Navigation Paths to rows

• Supported Methods for rows

• Resource Types Linked to from rows

C.19.4.3.1 Navigation Paths to rows

This section shows how the client can navigate through the hypermedia to access the
rows resource:

urn:oracle:webcenter:resourceindex
 urn:oracle:webcenter:spaces
 urn:oracle:webcenter:space:resourceindex
 urn:oracle:webcenter:space:lists
 urn:oracle:webcenter:space:list
 urn:oracle:webcenter:space:list:rows

C.19.4.3.2 Supported Methods for rows

The rows resource type supports the following methods:

• Method (rows): GET

• Method (rows): POST

Method (rows): GET

Use this method to retrieve list rows.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_

Using the Lists REST API

C-120 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

5fb62dc3514d.xml)/rows?q=lco_9bdd1418_6004_40ba_a052_
04e8335b7ee8:equals:2&utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Request headers: [Accept = application/xml | application/json]

• Request parameters - startIndex, itemsPerPage, q, projection

– q parameter for query, format 'q=columnId:operator:value', for
example:

'q=lco_9bdd1418_6004_40ba_a052_04e8335b7ee8:equals:2'

◆ Supported operators for Strings: equals, not.equals, contains,
starts.with

◆ Supported operators for Numbers, Dates: equals, not.equals,
greater.than, greater.than.or.equals, less.than,
less.than.or.equals

◆ May specify several conditions separated by semi-colon (;)

• Searchable attributes for rows: Rows are searchable by column values.

• Response status: 200 [OK]

• Response body: <rows>

• For example:

<rows resourceType="urn:oracle:webcenter:space:list:rows">
 <links>
 <link template="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/
 scopedMD/s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_
 c9cecbc7_756b_417b_a35f_fb03874979c0.xml)/rows?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**&
 startIndex={startIndex}&itemsPerPage={itemsPerPage}&
 q={searchTerms}&utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 resourceType="urn:oracle:webcenter:space:list:rows" rel="self"
 href="http://host:port/rest/api/spaces/
 vs1/lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_
 83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/rows?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 <link resourceType="urn:oracle:webcenter:space:list"
 rel="urn:oracle:webcenter:parent"
 href="http://host:port/rest/api/spaces/
 vs1/lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_
 83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"/>
 </links>
 <itemsPerPage>1</itemsPerPage>
 <startIndex>0</startIndex>
 <items>
 <row resourceType="urn:oracle:webcenter:space:list:row">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:row"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/

Using the Lists REST API

Using the WebCenter Portal REST APIs C-121

 scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/rows/(lr_a14d427f_8515_4c82_956f_
 a60e6e08668c)?
utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>
 </links>
 <id>lr_a14d427f_8515_4c82_956f_a60e6e08668c</id>
 <listId>/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_
 83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml</listId>
 <scope>s355923f0_2f04_4fd0_83ad_f7dac2a7ceed</scope>
 <creator>weblogic</creator>
 <author>
 <links>
 <link resourceType=
 "urn:oracle:webcenter:people:person"
 rel="via"
 href="http://host:port/
 rest/api/people/
E9A35E80F0BC11DFBFBE0FE339E55B21/
 lists/@self?
utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_
 w**"
capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/
 webcenter/profilephoto/45394133354538304630424
 33131444642464245304645333339453535423231/
 {size}?_xResourceMethod=wsrp"

resourceType="urn:oracle:webcenter:people:person"
 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/
 webcenter/profilephoto/45394133354538304630424
 33131444642464245304645333339453535423231/
SMALL?
 _xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:
 profile" rel="alternate"
 href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/
 view/pages/peopleconn/UserProfileGallery.jspx?
 wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </author>
 <created>2010-11-18T07:12:06.599-08:00</created>
 <modifier>weblogic</modifier>
 <modifiedByUser>
 <links>
 <link resourceType=
 "urn:oracle:webcenter:people:person"
rel="via"

Using the Lists REST API

C-122 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 href="http://host:port/rest/
 api/people/E9A35E80F0BC11DFBFBE0FE339E55B21/
lists
 /@self?
utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/
 webcenter/profilephoto/45394133354538304630424
 33131444642464245304645333339453535423231/
 {size}?_xResourceMethod=wsrp"

resourceType="urn:oracle:webcenter:people:person"
 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/
 webcenter/profilephoto/45394133354538304630424
 33131444642464245304645333339453535423231/
SMALL?
 _xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:
 profile" rel="alternate"
 href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/
 view/pages/peopleconn/UserProfileGallery.jspx?
 wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </modifiedByUser>
 <modified>2010-11-18T07:12:06.599-08:00</modified>
 <columns>
 <column>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <name>No.</name>
 <value>1.0</value>
 </column>
 <column>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <name>Description</name>
 <value>test</value>
 </column>
 </columns>
 </row>
 </items>
</rows>

Method (rows): POST

Use this method to create a row in a list.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_
5fb62dc3514d.xml)/rows?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: <row>

Using the Lists REST API

Using the WebCenter Portal REST APIs C-123

• Writable elements (Table C-67)

Table C-67 Writable Elements for rows

Element Type Constraints Description

columns.column.id1 string — Column ID

columns.column.valu
e2

string Valid value for column data
type

Column value

1 Denotes required element
2 Denotes required element

• For example:

<row>
 <columns>
 <column>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <value>1</value>
 </column>
 <column>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <value>test</value>
 </column>
 </columns>
</row>

• Request headers: Content-Type = application/xml | application/json,
[Accept = application/xml | application/json]

• Response status: 201 [Created]

• Response body: <row>

• Retrieved elements (Table C-68)

Table C-68 Retrieved Elements for rows

Element Type Description

id string Row ID

list id string List ID

scope string GUID of portal to which list belongs

creator string Person who created the list

created date Date the list was created

modifier string Last user to modify the list

modified date Date the list was last modified

columns — Column values

• For example:

Using the Lists REST API

C-124 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

<row resourceType="urn:oracle:webcenter:space:list:row">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:row" rel="self"
 href="http://host:port/rest/api/spaces/vs1/
 lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_
 5fb62dc3514d.xml)/rows/(lr_4cc07327_49cb_4cd5_a270_
 182ddcc8db4a)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update urn:oracle:webcenter:delete"/>
 </links>
 <id>lr_4cc07327_49cb_4cd5_a270_182ddcc8db4a</id>
 <listId>/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_
 5fb62dc3514d.xml</listId>
 <scope>s355923f0_2f04_4fd0_83ad_f7dac2a7ceed</scope>
 <creator>weblogic</creator>
 <author>
 <links>
 <link resourceType="urn:oracle:webcenter:people:person"
 rel="via" href="http://host:port
 /rest/api/people/E9A35E80F0BC11DFBFBE0FE339E55B21/lists/
 @self?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/
 webcenter/profilephoto/4539413335453830463042433131
 444642464245304645333339453535423231/{size}?
 _xResourceMethod=wsrp"
 resourceType="urn:oracle:webcenter:people:person"
 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/webcenter/
 profilephoto/453941333545383046304243313144464246424530
 4645333339453535423231/SMALL?_xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:profile"
 rel="alternate" href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/view/pages/
 peopleconn/UserProfileGallery.jspx?wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </author>
 <created>2010-11-17T06:34:25.042-08:00</created>
 <modifier>weblogic</modifier>
 <modifiedByUser>
 <links>
 <link resourceType="urn:oracle:webcenter:people:person"
 rel="via" href="http://host:port/
 rest/api/people/E9A35E80F0BC11DFBFBE0FE339E55B21/lists/
 @self?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/
 webcenter/profilephoto/4539413335453830463042433131
 444642464245304645333339453535423231/{size}?
 _xResourceMethod=wsrp"
 resourceType="urn:oracle:webcenter:people:person"

Using the Lists REST API

Using the WebCenter Portal REST APIs C-125

 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/webcenter/
 profilephoto/453941333545383046304243313144464246424530
 4645333339453535423231/SMALL?_xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:profile"
 rel="alternate" href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/view/pages/
 peopleconn/UserProfileGallery.jspx?wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </modifiedByUser>
 <modified>2010-11-17T06:34:25.042-08:00</modified>
 <columns>
 <column>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <name>No.</name>
 <value>1.0</value>
 </column>
 <column>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <name>Description</name>
 <value>test</value>
 </column>
 </columns>
</row>

C.19.4.3.3 Resource Types Linked to from rows

Table C-69 lists the resource types that the client can link to from the rows resource.

Table C-69 Resource Types Linked to from rows

rel resourceType

self urn:oracle:webcenter:space:list.rows

parent urn:oracle:webcenter:space:list

urn:oracle:webcenter:space:list:row

C.19.4.4 urn:oracle:webcenter:space:list:row

The row response provides a means of retrieving and adding, and deleting an
individual list row. This section includes the following topics:

• Navigation Paths to row

• Supported Methods for row

• Method (row): GET

• Method (row): PUT

• Method (row): DELETE

• Resource Types Linked to from row

Using the Lists REST API

C-126 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.19.4.4.1 Navigation Paths to row

This section shows how the client can navigate through the hypermedia to access the
row resource:

urn:oracle:webcenter:resourceindex
 urn:oracle:webcenter:spaces
 urn:oracle:webcenter:space:resourceindex
 urn:oracle:webcenter:space:lists
 urn:oracle:webcenter:space:list
 urn:oracle:webcenter:space:list:rows
 urn:oracle:webcenter:space:list:row

C.19.4.4.2 Supported Methods for row

The row resource type supports the following methods:

• Method (row): GET

• Method (row): PUT

• Method (row): DELETE

C.19.4.4.3 Method (row): GET

Use this method to retrieve data from a list row.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/rows/(lr_a14d427f_8515_4c82_956f_
a60e6e08668c)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Request headers: [Accept = application/xml | application/json]

• Response status: 200 [OK]

• Response body: <row>

• Retrieved elements (Table C-70)

Table C-70 Retrieved Elements for row

Element Type Description

id string ID of the row

listId string ID of the parent list

scope string GUID of the portal to which the list belongs

creator string User who created the row

created Date Date on which the row was created

modifier string User who last modified the row

modified Date Date on which the row was last modified

Using the Lists REST API

Using the WebCenter Portal REST APIs C-127

Table C-70 (Cont.) Retrieved Elements for row

Element Type Description

columns urn:oracle:webcenter:space:list:columns Column values

• For example:

<row resourceType="urn:oracle:webcenter:space:list:row">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:row"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD
 /s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_bb806754_0652_
 4d49_9354_5fb62dc3514d.xml)/rows/(lr_4cc07327_49cb_4cd5_a270_
 182ddcc8db4a)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update urn:oracle:webcenter:delete"/>
 </links>
 <id>lr_4cc07327_49cb_4cd5_a270_182ddcc8db4a</id>
 <listId>/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_bb806754_0652_4d49_9354_
 5fb62dc3514d.xml</listId>
 <scope>s355923f0_2f04_4fd0_83ad_f7dac2a7ceed</scope>
 <creator>weblogic</creator>
 <author>
 <links>
 <link resourceType="urn:oracle:webcenter:people:person"
 rel="via" href="http://host:port/
 rest/api/people/E9A35E80F0BC11DFBFBE0FE339E55B21/lists/
 @self?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/webcenter/
 profilephoto/453941333545383046304243313144464246424530
 4645333339453535423231/{size}?_xResourceMethod=wsrp"
 resourceType="urn:oracle:webcenter:people:person"
 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/webcenter/
 profilephoto/453941333545383046304243313144464246424530
 4645333339453535423231/SMALL?_xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:profile"
 rel="alternate" href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/view/pages/
 peopleconn/UserProfileGallery.jspx?wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </author>
 <created>2010-11-17T06:34:25.042-08:00</created>
 <modifier>weblogic</modifier>
 <modifiedByUser>
 <links>
 <link resourceType="urn:oracle:webcenter:people:person"
 rel="via" href="http://host:port/
 rest/api/people/E9A35E80F0BC11DFBFBE0FE339E55B21/lists/
 @self?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"

Using the Lists REST API

C-128 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 capabilities="urn:oracle:webcenter:read"/>
 <link type="image/png"
 template="http://host:port/webcenter/
 profilephoto/453941333545383046304243313144464246424530
 4645333339453535423231/{size}?_xResourceMethod=wsrp"
 resourceType="urn:oracle:webcenter:people:person"
 rel="urn:oracle:webcenter:people:icon"
 href="http://host:port/webcenter/
 profilephoto/453941333545383046304243313144464246424530
 4645333339453535423231/SMALL?_xResourceMethod=wsrp"
 capabilities="urn:oracle:webcenter:read"/>
 <link type="text/html"
 resourceType="urn:oracle:webcenter:spaces:profile"
 rel="alternate" href="http://host:port/
 webcenter/faces/oracle/webcenter/webcenterapp/view/pages/
 peopleconn/UserProfileGallery.jspx?wc.username=weblogic"
 capabilities="urn:oracle:webcenter:read"/>
 </links>
 <displayName>weblogic</displayName>
 <guid>E9A35E80F0BC11DFBFBE0FE339E55B21</guid>
 <id>weblogic</id>
 </modifiedByUser>
 <modified>2010-11-17T06:34:25.042-08:00</modified>
 <columns>
 <column>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <name>No.</name>
 <value>1.0</value>
 </column>
 <column>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <name>Description</name>
 <value>test</value>
 </column>
 </columns>
</row>

C.19.4.4.4 Method (row): PUT

Use this method to update row data.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/rows/(lr_a14d427f_8515_4c82_956f_
a60e6e08668c)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: <row>

• Writable elements (Table C-71)

Table C-71 Writable Elements for row

Element Type Constraints Description

columns.column.id1 string — Column ID

columns.column.value2 string valid value for column data type Column value

1 Denotes required element

Using the Lists REST API

Using the WebCenter Portal REST APIs C-129

2 Denotes required element

• For example:

<row>
 <columns>
 <column>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <value>1</value>
 </column>
 <column>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <value>test</value>
 </column>
 </columns>
</row>

• Request headers: Content-Type = application/xml | application/json,
[Accept = application/xml | application/json]

• Response status: 200 [OK]

• Response body: <row>

C.19.4.4.5 Method (row): DELETE

Use this method to delete a list row.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/rows/(lr_a14d427f_8515_4c82_956f_
a60e6e08668c)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Response status: 204 [No Content]

• Response body: none

C.19.4.4.6 Resource Types Linked to from row

Table C-72 lists the resource types that the client can link to from the row resource.

Table C-72 Resource Types Linked to from row

rel resourceType

self urn:oracle:webcenter:space:list:row

C.19.4.5 urn:oracle:webcenter:space:list:columns

The columns response provides a means of retrieving and adding list columns. This
section includes the following topics:

• Navigation Paths to columns

• Supported Methods for columns

• Method (columns): GET

Using the Lists REST API

C-130 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Method (columns): POST

• Resource Types Linked to from columns

C.19.4.5.1 Navigation Paths to columns

This section shows how the client can navigate through the hypermedia to access the
columns resource:

urn:oracle:webcenter:resourceindex
 urn:oracle:webcenter:spaces
 urn:oracle:webcenter:space:resourceindex
 urn:oracle:webcenter:space:lists
 urn:oracle:webcenter:space:list
 urn:oracle:webcenter:space:list:columns

C.19.4.5.2 Supported Methods for columns

The columns resource type supports the following methods:

• Method (columns): GET

• Method (columns): POST

C.19.4.5.3 Method (columns): GET

Use this method to retrieve columns in a list.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/columns?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Request headers: [Accept = application/xml | application/json]

• Request parameters: none

• Response status: 200 [OK]

• Response body: <metaColumns>

• For example:

<metaColumns resourceType="urn:oracle:webcenter:space:list:columns">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:columns"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_
 417b_a35f_fb03874979c0.xml)/columns?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:create"/>
 <link resourceType="urn:oracle:webcenter:space:list"
 rel="urn:oracle:webcenter:parent"
 href="http://host:port/rest/api/spaces/vs1/
 lists/(/oracle/webcenter/list/scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"/>
 </links>

Using the Lists REST API

Using the WebCenter Portal REST APIs C-131

 <items>
 <metaColumn resourceType="urn:oracle:webcenter:space:list:column">
 <links>
 <link
resourceType="urn:oracle:webcenter:space:list:column"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/
 scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/columns/(lco_9bdd1418_6004_40ba_
 a052_04e8335b7ee8)?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>
 </links>
 <id>lco_9bdd1418_6004_40ba_a052_04e8335b7ee8</id>
 <name>No.</name>
 <dataType>number</dataType>
 <required>false</required>
 <displayLength>10</displayLength>
 <format>number</format>
 <allowLinks>false</allowLinks>
 </metaColumn>
 <metaColumn resourceType="urn:oracle:webcenter:space:list:column">
 <links>
 <link
resourceType="urn:oracle:webcenter:space:list:column"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/
 scopedMD/s355923f0_2f04_4fd0_83ad_
 f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
 fb03874979c0.xml)/columns/(lco_3a31fd20_24f1_4422_
 99fd_c00d7bed4b24)?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update
 urn:oracle:webcenter:delete"/>
 </links>
 <id>lco_3a31fd20_24f1_4422_99fd_c00d7bed4b24</id>
 <name>Description</name>
 <dataType>string</dataType>
 <required>false</required>
 <maxLength>500</maxLength>
 <displayLength>20</displayLength>
 <allowLinks>false</allowLinks>
 <editLines>1</editLines>
 </metaColumn>
 </items>
</metaColumns>

C.19.4.5.4 Method (columns): POST

Use this method to create a column in a list.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/columns?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: <metaColumn>

Using the Lists REST API

C-132 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Writable elements (Table C-73)

Table C-73 Writable Elements for columns

Element Type Constraints Description

name1 string — The name of the column

dataType2 string – string

– number

– datetime

– boolean

– person

– image

– richtext

The data type of the column

required boolean – true

– false

Whether a value is required for the column

defaultValue data type of
column

Object must match data type The default value of the column

maxLength int Valid only for string data type The maximum length for a string value

rangeLow int Valid only for number data type The low range value for a number data type

rangeHigh int Valid only for number data type The high range value for a number data
type

format string For number data type:

– number
– currency
– percent
For datetime data type:

– date
– time
– both

The format of the column

allowLinks boolean – true

– false

Valid only for string data type

Whether a hyperlink can be specified for a
column value

linkTarget string – _blank

– _self

Valid only if allowLinks=true

_blank opens link in a new window,
_self opens link in the same window

editLines int Valid only for string data type The number of lines when editing a column
value (default=1)

peopleScope string – GLOBAL
– SUB_SCOPE
Valid only for person data type

Whether valid users are all users in directory
or members of the portal that contains the
list

displayWidth int — Display width of column in pixels

hint string — Hint displayed to help user when entering
column value

Using the Lists REST API

Using the WebCenter Portal REST APIs C-133

1 Denotes required element
2 Denotes required element

• For example:

<metaColumn>
 <name>Notes</name>
 <dataType>richtext</dataType>
</metaColumn

• Request headers: Content-Type = application/xml | application/json,
[Accept = application/xml | application/json]

• Response status: 201 [Created]

• Response body: <metaColumn>

• Retrieved elements (Table C-74)

Table C-74 Retrieved Elements from columns

Element Type Description

id string Column ID

name string The name of the column

dataType string The data type of the column

required boolean Whether a value is required for the column

defaultValue data type of column The default value of the column

maxLength int The maximum length for a string value

rangeLow int The low range value for a number data type

rangeHigh int The high range value for a number data type

format string The format of the column

allowLinks boolean Whether a hyperlink can be specified for a column value

linkTarget string _blank opens link in a new window, _self opens link in the
same window

editLines int The number of lines when editing a column value (default=1)

peopleScope string Whether valid users are all users in directory or members of the
portal that contains the list

displayWidth int Display width of column in pixels

hint string Hint displayed to help user when entering column value

• For example:

<metaColumn resourceType="urn:oracle:webcenter:space:list:column">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:column"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/

Using the Lists REST API

C-134 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/
 ls_c9cecbc7_756b_417b_a35f_fb03874979c0.xml)/columns/
 (lco_fe2b9856_32f3_449a_a277_18dc7f6a779e)?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update urn:oracle:webcenter:delete"/>
 </links>
 <id>lco_fe2b9856_32f3_449a_a277_18dc7f6a779e</id>
 <name>Notes</name>
 <dataType>richtext</dataType>
 <required>false</required>
 <displayLength>20</displayLength>
 <allowLinks>false</allowLinks>
</metaColumn>

C.19.4.5.5 Resource Types Linked to from columns

Table C-75 lists the resource types that the client can link to from the columns
resource.

Table C-75 Resource Types Linked to from columns

rel resourceType

self urn:oracle:webcenter:space:list.columns

parent urn:oracle:webcenter:space:list

urn:oracle:webcenter:space:list:column

C.19.4.6 urn:oracle:webcenter:space:list:column

The column response provides a means of retrieving, adding, and deleting an
individual list column. This section includes the following topics:

• Navigation Paths to column

• Supported Methods for column

• Resource Types Linked to from column

C.19.4.6.1 Navigation Paths to column

This section shows how the client can navigate through the hypermedia to access the
column resource:

urn:oracle:webcenter:resourceindex
 urn:oracle:webcenter:spaces
 urn:oracle:webcenter:space:resourceindex
 urn:oracle:webcenter:space:lists
 urn:oracle:webcenter:space:list
 urn:oracle:webcenter:space:list:columns
 urn:oracle:webcenter:space:list:column

C.19.4.6.2 Supported Methods for column

The column resource type supports the following methods:

• Method (column): GET

• Method (column): PUT

Using the Lists REST API

Using the WebCenter Portal REST APIs C-135

• Method (column): DELETE

Method (column): GET

Use this method to retrieve a list column.

• Resource URI. for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/columns/(lco_fe2b9856_32f3_449a_a277_
18dc7f6a779e)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: none

• Request headers: [Accept = application/xml | application/json]

• Response status: 200 [OK]

• Response body: <metaColumn>

• Retrieved elements (Table C-76)

Table C-76 column Retrieved Elements

Element Type Description

id string Column ID

name string The name of the column

dataType string The data type of the column

required boolean Whether a value is required for the column

defaultValue data type of column The default value of the column

maxLength int The maximum length for a string value

rangeLow int The low range value for a number data type

rangeHigh int The high range value for a number data type

format string The format of the column

allowLinks boolean Whether a hyperlink can be specified for a column value

linkTarget string _blank opens link in a new window, _self opens link in the
same window

editLines int The number of lines when editing a column value (default=1)

peopleScope string Whether valid users are all users in directory or members of the
portal that contains the list

displayWidth int Display width of column in pixels

hint string Hint displayed to help user when entering column value

• For example:

Using the Lists REST API

C-136 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

<metaColumn resourceType="urn:oracle:webcenter:space:list:column">
 <links>
 <link resourceType="urn:oracle:webcenter:space:list:column"
 rel="self" href="http://host:port/
 rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
 s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/
 ls_c9cecbc7_756b_417b_a35f_fb03874979c0.xml)/
 columns/(lco_fe2b9856_32f3_449a_a277_18dc7f6a779e)?
 utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**"
 capabilities="urn:oracle:webcenter:read
 urn:oracle:webcenter:update urn:oracle:webcenter:delete"/>
 </links>
 <id>lco_fe2b9856_32f3_449a_a277_18dc7f6a779e</id>
 <name>Notes</name>
 <dataType>richtext</dataType>
 <required>false</required>
 <displayLength>20</displayLength>
 <allowLinks>false</allowLinks>
</metaColumn>

Method (column): PUT

Use this method to update column data.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/columns/(lco_fe2b9856_32f3_449a_a277_
18dc7f6a779e)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

• Request body: <metacolumn>

• Writable elements (Table C-77)

Table C-77 column Writable Elements

Element Type Constraints Description

name1 string — The name of the column

dataType2 string – string

– number

– datetime

– boolean

– person

– image

– richtext

The data type of the column

required boolean – true

– false

Whether a value is required for the
column

defaultValue data type of column Object must match data type The default value of the column

maxLength int Valid only for string data type The maximum length for a string value

rangeLow int Valid only for number data type The low range value for a number data
type

rangeHigh int Valid only for number data type The high range value for a number
data type

Using the Lists REST API

Using the WebCenter Portal REST APIs C-137

Table C-77 (Cont.) column Writable Elements

Element Type Constraints Description

format string For number data type:

– number
– currency
– percent
For datetime data type:

– date
– time
– both

The format of the column

allowLinks boolean – true

– false

Valid only for string data type

Whether a hyperlink can be specified
for a column value

linkTarget string – _blank

– _self

Valid only if allowLinks=true

_blank opens link in a new window,
_self opens link in the same window

editLines int Valid only for string data type The number of lines when editing a
column value (default=1)

peopleScope string – GLOBAL

– SUB_SCOPE

Valid only for person data type

Whether valid users are all users in
directory or members of the portal that
contains the list

displayWidth int — Display width of column in pixels

hint string — Hint displayed to help user when
entering column value

1 Denotes required element
2 Denotes required element

• For example:

<metaColumn>
 <name>Comments</name>
 <dataType>richtext</dataType>
</metaColumn>

• Request headers: Content-Type = application/xml | application/json,
[Accept = application/xml | application/json]

• Response status: 200 [OK]

• Response body: <metaColumn>

Method (column): DELETE

Use this method to delete a list column.

• Resource URI, for example:

http://host:port/rest/api/spaces/vs1/lists/(/oracle/webcenter/list/scopedMD/
s355923f0_2f04_4fd0_83ad_f7dac2a7ceed/lists/ls_c9cecbc7_756b_417b_a35f_
fb03874979c0.xml)/columns/(lco_fe2b9856_32f3_449a_a277_
18dc7f6a779e)?utoken=FKld8lalI3QRdi8TgQkOCGEzxL5x_w**

Using the Lists REST API

C-138 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• Request body: none

• Response status: 204 [No Content]

• Response body: none

C.19.4.6.3 Resource Types Linked to from column

Table C-78 lists the resource types that the client can link to from the column resource.

Table C-78 Resource Types Linked to from column

rel resourceType

self urn:oracle:webcenter:space:list:column

C.20 Using the Activity Graph REST APIs
WebCenter Portal provides REST APIs to support the activity graph. Use the activity
graph REST APIs to create your own interface for providing recommendations for
connections, portals, and items.

This section describes the REST APIs associated with the activity graph. It includes the
following topics:

• Activity Graph Entry Point

• Activity Graph Resource Type Taxonomy

• Security Considerations

• Activity Graph Resource Types

For an introduction to the REST APIs, see Introduction to the WebCenter Portal REST
APIs.

C.20.1 Activity Graph Entry Point
Each REST service has a link element within the Resource Index that provides the
entry point for that service. For the activity graph, there are two entry points: one for
recommendations and one for items. To find the entry points for the activity graph,
find the link element with one of the following resourceTypes:

urn:oracle:webcenter:activitygraph:recommendations
urn:oracle:webcenter:activitygraph:items

The corresponding href or template element provides the URI entry point. The
client sends HTTP requests to this entry point to work with the activity graph.

For more information about the Resource Index, see Using the Resource Index.

For more information about resource types, see Resource Type.

C.20.2 Activity Graph Resource Type Taxonomy
When the client has identified the entry point to use, it can then navigate through the
resource type taxonomy to perform the required operations.

The taxonomy for the activity graph is:

Using the Activity Graph REST APIs

Using the WebCenter Portal REST APIs C-139

urn:oracle:webcenter:activitygraph:recommendations
 urn:oracle:webcenter:activitygraph:recommendations:recommendation
urn:oracle:webcenter:activitygraph:items
 urn:oracle:webcenter:activitygraph:items:item

C.20.3 Security Considerations
For general security considerations, see Security Considerations for WebCenter Portal
REST APIs.

C.20.4 Activity Graph Resource Types
This section provides you with all the information you need to know about each
resource type. It includes the following topics:

• urn:oracle:webcenter:activitygraph:recommendations

• urn:oracle:webcenter:activitygraph:recommendations:recommendation

• urn:oracle:webcenter:activitygraph:items

• urn:oracle:webcenter:activitygraph:items:item

C.20.4.1 urn:oracle:webcenter:activitygraph:recommendations

Use this resource to identify the URI to use to retrieve (GET) recommended
connections, portals, or items based on their similarity to the specified object. The
response from a GET operation includes each object in the requested list, and each
object includes links used to operate on that object.

Nodes in the activity graph are identified by a combination of node class URN and
object URN.

For example, to identify the user, monty, you can specify:

• classURN=WC.user

• objectURN=monty

The nodes provided out of the box are all WebCenter Portal resources (users,
documents, portals, and so on) and so have WebCenter Portal service and resource
IDs. The activity graph REST APIs provide another way for you to identify these out
of the box nodes using the serviceId and objectURN (which contains the resource
ID).

For example, to identify the user, monty, you can specify:

• serviceId=oracle.webcenter.people

• objectURN=monty

If a service's objects are further classified by resource type, for example, the
Documents tool, you must also specify the resource type.

For example, to identify a particular document, you can specify:

• serviceId=oracle.webcenter.doclib

• resourceType=document

• objectURN=document1

Using the Activity Graph REST APIs

C-140 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Any new node classes that are created (that is, non-native WebCenter Portal objects)
should be identified using node class and object URNs.

C.20.4.1.1 Navigation Paths to recommendations

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceIndex
 recommendations

C.20.4.1.2 Supported Methods for recommendations

The following methods are supported by this resource:

• GET

– request - Parameters: startIndex, itemsPerPage, utoken

For information about these common parameters, see Common Request Query
Parameters.

The following additional parameters are available:

◆ classURN—The node class URN that identifies the type of the object for
which you are requesting recommendations. For example WC.user,
WC.group-document.

◆ objectURN—The object URN that provides a unique identifier for the object
for which you are requesting recommendations. For example monty, 1000.

◆ recipe—A semicolon-separated list of similarity URNs and optional
associated weights (indicated by a colon) that is used to determine which
objects to recommend. For example, gs-edit:10;gs-all:1

◆ classURNRestrictions—A comma-separated list of types of objects,
identified by node class URN, to exclude from the recommendations

◆ excludeObjectActions—A comma-separated list of actions, identified
by action URN, used to exclude objects from the recommendations if the
current user has performed that action on the object. For example, if the
client is retrieving recommended portals, then the gs-edit action could be
specified to exclude portals that the current user has edited (since the user
already knows about those portals).

◆ serviceId—The WebCenter Portal service ID that identifies the type of
object for which you are requesting recommendations (you can use this
instead of classURN for out of the box objects).

◆ resourceType—The WebCenter Portal resource type of the object for
which you are requesting recommendations, used in combination with
serviceId if necessary.

◆ userCredentialClassURN—The node class URN of the user exercising
the REST API. The default value is WC.user. If you are integrating the
activity graph engine with another application, this may need to be a
different node class.

– response - body: 0 or more recommendations

For more information, see Templates.

Using the Activity Graph REST APIs

Using the WebCenter Portal REST APIs C-141

C.20.4.1.3 Resource Types Linked to from recommendations

Table C-79 lists the resource types that the client can link to from this resource.

Table C-79 Related Resource Types for recommendations

rel resourceType

self urn:oracle:webcenter:activitygraph:recommendations

C.20.4.2 urn:oracle:webcenter:activitygraph:recommendations:recommendation

The recommendation response contains the recommended objects and the URIs for
use in accessing those objects.

C.20.4.2.1 Navigation Paths to recommendation

This section shows how the client can navigate through the hypermedia to access the
recommendation resource:

resourceIndex
 recommendations
 recommendation

C.20.4.2.2 Read-only Elements for recommendation

Table C-80 lists the read-only elements for the recommendations resource.

Table C-80 Read-only Elements for recommendation

Element Type Description

score Float The overall score of this recommendation
relative to the other recommendations in the
list. This is the weighted sum of the
component scores associated with each of the
similarity URNs that comprise the recipe and
is a floating point number between 0 and 1.

item urn:oracle:webcen
ter:activitygraph:it
ems:item

The recommended user, item, or portal.

componentScores A list of
componentScor
e elements

A list of the component scores associated
with the different similarity URNs in the
recipe for the recommendation. A component
score may have a reason and a link that can
be used to retrieve the common items with
which the user and the recommended object
have interacted.

C.20.4.3 urn:oracle:webcenter:activitygraph:items

Use this resource to identify the URI to use to retrieve (GET) objects that the source
object and recommended object have in common. You can use this to determine the
reasons why a particular object was recommended. The response from a GET
operation includes each item in this collection of items, and each item includes links
used to operate on that item.

Using the Activity Graph REST APIs

C-142 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

C.20.4.3.1 Navigation Paths to items

This section shows how the client can navigate through the hypermedia to access this
resource:

resourceIndex
 items

C.20.4.3.2 Supported Methods for items

The following methods are supported by this resource:

• GET

– request - Parameters: startIndex, itemsPerPage, utoken

For information about these common parameters, see Common Request Query
Parameters.

The following additional parameters are available:

◆ similarityURN—The URN of the similarity calculation to be used
determine which objects are similar to the recommended object. For example
item-tag, gs-edit, user-connect

◆ srcClassURN—The node class URN that identifies the type of the object
that was used to request the recommendations. For example WC.user,
WC.group-document.

◆ srcObjectURN—The URN of the object that was used to request the
recommendations. For example monty, 1000.

◆ trgClassURN—The node class URN that identifies the type of the
recommended object

◆ trgObjectURN—The object URN that provides a unique identifier for the
recommended object

◆ userCredentialClassURN—The node class URN of the user exercising
the REST API. The default value is WC.user. If you are integrating the
activity graph engine with another application, this may need to be a
different node class.

– response - body: 1 or more items

For more information, see Templates.

C.20.4.3.3 Resource Types Linked to from items

Table C-81 lists the resource types that the client can link to from this resource.

Table C-81 Related Resource Types for items

rel resourceType

self urn:oracle:webcenter:activitygraph:items

C.20.4.4 urn:oracle:webcenter:activitygraph:items:item

Use this resource type to identify the URI to use to update (PUT) a recommendation to
indicate user interest in the recommended object.

Using the Activity Graph REST APIs

Using the WebCenter Portal REST APIs C-143

C.20.4.4.1 Navigation Paths to item

This section shows how the client can navigate through the hypermedia to access the
item resource:

resourceIndex
 recommendations
 recommendation
 item
resourceIndex
 items
 item

C.20.4.4.2 Supported Methods for item

The following method is supported by this resource type:

• PUT

– Request—Body: item

– Response—Body: item

C.20.4.4.3 Writable Elements for item

Table C-82 lists the writable elements for this resource type.

Table C-82 Writable Elements for item

Element Type Required Constraints Description

status String Yes interested

not interested

Whether the
user is interested
in the object

C.20.4.4.4 Read-only Elements for item

Table C-83 lists the read-only elements for this resource type. Not all of these elements
are available for all objects.

Table C-83 Read-only Elements for item

Element Type Description

classURN String Node class of the object

objectURN String Identifier for the object

name String Name of the object

description String Description of the object

modified Date Date on which the object was
last updated

modifiedByUser PersonReference User information about the
user who last updated the
object, including GUID, ID,
display name, and a link to
the profile icon

Using the Activity Graph REST APIs

C-144 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-83 (Cont.) Read-only Elements for item

Element Type Description

author PersonReference User information about the
user who created the object,
including GUID, ID, display
name, and a link to the
profile icon

C.20.4.4.5 Resource Types Linked to from item

Table C-84 lists the resource types that the client can link to from this resource.

Table C-84 Related Resource Types for item

rel resourceType

self urn:oracle:webcenter:activitygraph:items:item

via resourceType of the underlying object

C.21 Using the Search REST APIs
WebCenter Portal provides REST APIs that let you build a customized search user
interface. With Oracle SES 11.2.2.2, you can use the search REST APIs to read (GET)
searches and facets. Facets are returned with search results and can be used to filter
the results. You can specify keywords and the scope of the search; for example,
suppose a search for the term 'webcenter' produces thousands of results. A user could
use facets (such as author or last modified date) in the URL to get the results for
particular facet values, like author=Karen and last-modified-date=this week.

This section includes the following topics:

• Search Entry Point

• Search Resource Type Taxonomy

• Security Considerations

• Search Resource Types

For an introduction to the REST APIs, see Introduction to the WebCenter Portal REST
APIs.

C.21.1 Search Entry Point
Each REST service has a link element within the resource index that provides the entry
point for that service. To find the entry point for search, find the link element with a
resourceType of:

urn:oracle:webcenter:searchcollection

The corresponding href or template element provides the URI entry point. The
client sends HTTP requests to this entry point to work with search.

Using the Search REST APIs

Using the WebCenter Portal REST APIs C-145

See Also:

There are two entries for search in the resource index:

• urn:oracle:webcenter:searchcollection (This requires
WebCenter Portal to be configured with Oracle SES 11.2.2.2.)

• urn:oracle:webcenter:searchresults (This requires WebCenter
Portal to be configured with Oracle SES--any supported version.)

This topic describes only urn:oracle:webcenter:searchcollection.
For detailed information about urn:oracle:webcenter:searchresults,
see:

http://docs.oracle.com/cd/E28280_01/webcenter.1111/e10148/
jpsdg_search.htm.

For more information about the resource index, see Using the Resource Index.

For more information about resource types, see Resource Type.

C.21.2 Search Resource Type Taxonomy
When the client has identified the entry point, it then can navigate through the
resource type taxonomy to perform the required operations. For more information
about the individual resource types, see the appropriate section in Resource Type.

The taxonomy for the search is:

urn:oracle:webcenter:searchcollection
 urn:oracle:webcenter:searchcollection:results

Beyond the service entry points, URL templates allow clients to pass query parameters
to customize their requests and control the form of returned data.

Collection resources in the search resources support pagination (startIndex and
itemsPerPage). The entry point returns all the results in searchcollection
element. Query various components by specifying appropriate values in dataType
argument.

Support for searchTerms, data, and dataType where dataType has one or more
of the following values:

• resultCount - number of results satisfying the query

• results - actual results

• facetCount - number of facets for the query result

• facets - facets for the current results

Specify more than one dataType with comma separated values. For example:

http://host:port//rest/api/searchcollection?&dataType=results,facets
&facetParams=author:weblogic&utoken=FDX7xKPzzrnsbWRHNP-b-iUoWiJ4_w**

C.21.2.1 Navigation Paths to results

This section shows how the client can navigate through the hypermedia to access this
resource:

Using the Search REST APIs

C-146 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

http://docs.oracle.com/cd/E28280_01/webcenter.1111/e10148/jpsdg_search.htm
http://docs.oracle.com/cd/E28280_01/webcenter.1111/e10148/jpsdg_search.htm

resourceindex
 searchcollection

resourceindex
 spaces
 spaces:resourceindex
 spaces:searchcollection

C.21.2.2 Supported Methods for results

The following methods are supported by this resource:

• GET

– request - body: none, Parameters: q, dataType, startIndex (pagination),
itemsPerPage (pagination), data, facetParams

– response - body: search results, and optionally facets

where:

• q={queryString}

Searches may be specified using the following format:

[[field1:[operand]][:]value1[;field2:operand:value2]]

Where multiple clauses are joined by an implicit AND and are syntactically
separated by the ";" semicolon. Square brackets [] denote optional values. Each
clause can be a keyword simple string with no ":" colon separator.

The query string does not support anything other than a query keyword.

• dataType is the type of results

For example, if you want only results, then dataType=results (or left empty).
To include facets in the results, then dataType=results,facets.

• data is parameters for custom attributes

For example:

data=numberofreplies,wc_tagsWords

• facetParams is parameters for facet refinement

Default set is Service ID, scope GUID, Tags, Author, Last Modified Date,
Mimetype.

For example, to refine by people, set the facet Service ID only to
oracle.webcenter.people:

facetParams=Service%20ID:oracle.webcenter.people

Note:

If you want to use the facetParams parameter, then the dataType
parameter must include facets.

Example: Search REST Commands

Using the Search REST APIs

Using the WebCenter Portal REST APIs C-147

http://examplehost:8888/rest/api/searchcollection?q=document&utoken={utoken}

http://examplehost:8888/rest/api/searchcollection?q={keyword}
&data=dDocName,dOriginalName&dataType=results,facets
&facetParams=Service%20ID:oracle.webcenter.people

For more information, see Templates.

Table C-85 Writable Elements for results

Element Type Description

author String Any user who has written to the result

resourceId String Unique identifier

serviceId String Service ID of the result; for example,
oracle.webcenter.doclib

title String Title of result

description String Description of result

modified Date Last modified date

size Number Size of result

docid String Document identifier

created Date Original author of result

icon String Icon for result type

url String URL of result

mimetype String Mimetype of result

guid String GUID value of result

scope String GUID value of the portal

scopename String Portal name

resourceType String Type of result

language String Language of result

snippet String Snippet of result

modifier String Modifier of result

customattribute
s

any List of any custom attributes specified in data

C.21.2.3 Resource Types Linked to From results

Table C-86 lists the resource types that the client can link to from this resource.

Table C-86 Related Resource Types for search

Using the Search REST APIs

C-148 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

Table C-86 (Cont.) Related Resource Types for search

rel resourceType

self

C.21.3 Security Considerations
Authentication is required before using search REST API methods.

For general security considerations, see Security Considerations for WebCenter Portal
REST APIs.

C.21.4 Search Resource Types
This section provides information about each resource type. It includes the following
topics:

• urn:oracle:webcenter:searchcollection:links

• urn:oracle:webcenter:searchcollection:results

• urn:oracle:webcenter:searchcollection:facets

C.21.4.1 urn:oracle:webcenter:searchcollection:links

Use this resource type for template links and pagination links.

C.21.4.2 urn:oracle:webcenter:searchcollection:results

Use this resource type to identify the URI to use to read (GET) a query containing
keywords and facets.

The request is represented by the URL and the response is a list of search results, each
with metadata to help the end user choose an item to drill down, as well as cross links
to the owning REST services, if available. If the owning REST service is unavailable,
then an HREF link is provided.

The response XML can be paginated with standard URL parameters, and appropriate
previous and next links provided along with a general template (with the query
prepopulated) for the consuming application to do its own custom pagination.

C.21.4.3 urn:oracle:webcenter:searchcollection:facets

Use this resource type to identify the URI to use to read (GET) a query containing
facets. Facets are returned with the query results and can be used to filter the results.
Users can use these facets in the URL to get the results for particular facet values, like
author=weblogic and last-modified-date=this week.

The request is represented by the URL and the response is a list of facets, each with
metadata to help the end user choose an item to drill down, as well as cross links to
the owning REST services, if available. If the owning REST service is unavailable, then
an HREF link is provided.

The response XML can be paginated with standard URL parameters, and appropriate
previous and next links provided along with a general template (with the query
prepopulated) for the consuming application to do its own custom pagination.

Using the Search REST APIs

Using the WebCenter Portal REST APIs C-149

Using the Search REST APIs

C-150 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

D
Troubleshooting

This appendix provides troubleshooting information for WebCenter Portal assets.

This appendix contains the following topics:

• Troubleshooting WebCenter Portal Shared Library Deployment

• Troubleshooting Portlet Creation

• Troubleshooting Pagelets

• Troubleshooting OmniPortlet

D.1 Troubleshooting WebCenter Portal Shared Library Deployment
• Changes are not available after deployment even though deployment successful.

WebCenter Portal always uses the latest shared library version. Check that the
implementation version in MANIFEST.MF matches the implementation version
displayed in the WebLogic Server Administration Console.

For example, check the value in PortalSharedLibrary/Application
Sources/META-INF/MANIFEST.MF is the same as that displayed in the
Administration Console under Deployments> extend.spaces.webapp>Overview

• "DeployerException: Task 9 failed" displays:

weblogic.Deployer$DeployerException:
weblogic.deploy.api.tools.deployer.DeployerException: Task 9 failed:
[Deployer:149117]deploy library com.mycompanyname.shared.lib
[LibSpecVersion=11.1.1.2,LibImplVersion=11.1.1.2.5] on AdminServer,WC_Portal.

This error occurs if the implementation version of the new deployment and the
existing deployment are the same. Use the Administration Console to verify the
current implementation version and if necessary change the version and redeploy
the shared library.

• "java.lang.IllegalArgumentException" displays:

Restart the managed server on which WebCenter Portal is deployed.

D.2 Troubleshooting Portlet Creation
This section includes the following topics:

• Cannot Access the Create Portlet Wizard

• Cannot Add the Portlet Functionality that I Want to the Portlet

Troubleshooting D-1

D.2.1 Cannot Access the Create Portlet Wizard
In the New Gallery, I cannot find the Standards-based Java Portlet (JSR 286) option.

Problem

In the New Gallery, I cannot find the Standards-based Java Portlet (JSR 286) option.

Cause

Cause

The application in which you are trying to create the portlet was created using
WebCenter Portal's Portal Framework template and therefore is not scoped for portlet
creation.

Solution

Perform the following steps:

1. Try creating the portlet in a Portlet Producer Application or any application
scoped for portlet creation (any application except for those built using
WebCenter Portal's Portal Framework template).

2. In the New Gallery, click the All Technologies tab to list all available options
regardless of the technology scope of the application.

D.2.2 Cannot Add the Portlet Functionality that I Want to the Portlet
I cannot find the option to add certain features, for example portlet events or public
render parameters, to the portlet in the Create JSR 286 Java Portlet wizard.

Problem

I cannot find the option to add certain features, for example portlet events or public
render parameters, to the portlet in the Create JSR 286 Java Portlet wizard.

Cause

The wizard does not provide the option to add certain features to portlets.

Solution

After you create a portlet using the Create JSR 286 Java Portlet wizard, edit the
portlet.xml file using the Overview Editor to add advanced functionality. For more
information, see Developing JSR 286 Java Portlets.

D.3 Troubleshooting Pagelets
Keep the following common configuration errors in mind when troubleshooting
resources and pagelets. For details on configuring Pagelet Producer settings, see
Section 23.2, "Configuring Pagelet Producer Settings."

• If you are using SSL, make sure both HTTP (nonsecure) and HTTPS (secure) ports
are configured properly on the Transform page of the Pagelet Producer settings.

Troubleshooting Pagelets

D-2 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

• If you are proxying external sites on a network that requires an HTTP proxy, you
must configure the proxy URL on the Proxy page of the Pagelet Producer settings.

• Confirm that the login_resource and pagelet_api resources, created by
default, are present and correctly configured.

• If you are proxying KD Browser or other CSP pagelets, make sure the image service
URL is absolute and the CSP SOAP API URL is set correctly in the CSP page of the
Pagelet Producer settings.

• Due to restrictions in the Sun Java Virtual Machine (JVM), pagelets cannot use
HTTPS content where the underlying certificate uses MD2 signing algorithm.

For additional troubleshooting information, use logging. Pagelet Producer logs
messages to the standard Oracle Diagnostic Logging facility. In Oracle WebLogic
Server, that location is: user-projects/domains/<domain>/servers/
<server>/logs/<server>-diagnostic.log. For details on configuring logging,
see Section 23.2.2, "How to Configure Logging Settings." For more information on
debugging pagelets, see the "Creating Pagelets with Oracle WebCenter Portal's Pagelet
Producer" chapter in Developing WebCenter Portal Assets and Custom Components with
Oracle JDeveloper.

D.4 Troubleshooting OmniPortlet
This section provides information to help you troubleshoot problems you may
encounter while using OmniPortlet.

Note:

As the OmniPortlet producer exists and executes in a tier different from
WebCenter Portal, and does not have access to the session information, you
must expose XML files as PUBLIC in order for OmniPortlet to access them.

Cannot Define OmniPortlet Using the Define Link

You are not able to define the OmniPortlet at runtime.

Problem

OmniPortlet only supports a RenderPortletInIFrame value of true, meaning that
OmniPortlet must be rendered within an IFRAME. Therefore, the OmniPortlet
property, RenderPortletInIFrame, must be set to true. In the Property Inspector,
the RenderPortletInIFrame property is available under Display Options.

Currently, the RenderPortletInIFrame property has a value of false.
Consequently, when you click the Define link at runtime, the Type tab may not
display and you cannot proceed with defining the OmniPortlet.

Solution

You can choose Customize from the Action list to define OmniPortlet, or select the
OmniPortlet in the Structure window in Oracle JDeveloper, and in the Property
Inspector, set RenderPortletInIFrame to true.

Troubleshooting OmniPortlet

Troubleshooting D-3

Troubleshooting OmniPortlet

D-4 Developing WebCenter Portal Assets and Custom Components with Oracle JDeveloper

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	Who's Who
	Knowledge Worker
	Application Specialist
	Web Developer
	Developer
	System Administrator

	Part I Getting Started
	1 Introduction to Developing for Oracle WebCenter Portal
	1.1 What Is the Purpose of This Guide?
	1.2 What Is My Role as a WebCenter Portal Developer?

	2 Setting Up a Development Environment
	2.1 Introduction to Setting up a Development Environment
	2.2 Basic Setup Tasks
	2.2.1 Installing Oracle JDeveloper
	2.2.2 Installing the WebCenter Portal Extensions for JDeveloper
	2.2.3 Setting the User Home Directory Environment Variable
	2.2.4 Managing the Integrated WebLogic Server
	2.2.4.1 What is the Integrated WebLogic Server?
	2.2.4.2 Starting and Stopping Integrated WebLogic Server
	2.2.4.3 Configuring the JVM for the Integrated WebLogic Server

	2.2.5 Creating Application Resource Connections
	2.2.5.1 Where Are Connections Located?
	2.2.5.2 How Do I Access the Connection Wizards?

	2.3 Setup Tasks Specific to WebCenter Portlet Producer Applications
	2.3.1 Deploying the Preconfigured Portlet Producers
	2.3.2 Accessing OmniPortlet
	2.3.3 WSRP Sample Portlet Producers and Portlets
	2.3.4 PDK-Java Sample Portlet Producer and Portlets

	Part II Working with WebCenter Portal Assets
	3 Introduction to WebCenter Portal Assets
	3.1 About Working with WebCenter Portal Assets
	3.2 Developing Assets for WebCenter Portal
	3.2.1 Setting Up Your JDeveloper Environment for Asset Development

	4 Working with the Portal Asset Application Template
	4.1 About the WebCenter Portal Asset Application Template
	4.2 Creating a WebCenter Portal Asset Application
	4.2.1 How to Create a WebCenter Portal Asset Application
	4.2.2 What You May Need to Know About Asset Application Artifacts

	4.3 Creating and Editing WebCenter Portal Assets
	4.4 Publishing WebCenter Portal Assets
	4.4.1 Creating a WebCenter Portal Server Connection
	4.4.2 Publishing a WebCenter Portal Asset

	4.5 Testing WebCenter Portal Assets

	5 Developing Layouts
	5.1 About Developing Layouts
	5.2 Creating a Layout
	5.2.1 How to Create a Layout
	5.2.2 What You May Need to Know About Layout Artifacts

	5.3 Editing a Layout
	5.4 Publishing a Layout

	6 Developing Page Styles
	6.1 About Developing Page Styles
	6.2 Best Practices for Creating Page Styles
	6.3 Creating a Page Style
	6.3.1 How to Create a Page Style
	6.3.2 What You May Need to Know About Page Style Artifacts

	6.4 Editing a Page Style
	6.5 Publishing a Page Style

	7 Developing Page Templates
	7.1 Introduction to Developing Page Templates
	7.1.1 Understanding Page Templates
	7.1.2 Understanding Page Template Structure
	7.1.3 Understanding Page Template Layout
	7.1.4 Understanding Page Template Layout Components

	7.2 Best Practices for Developing Page Templates
	7.2.1 Best Practices for Creating Stretching Layouts
	7.2.2 Best Practices for Creating Flowing Layouts
	7.2.3 Best Practices for Developing Page Templates That Can Be Edited at Runtime
	7.2.4 Best Practices for Customizing the Appearance of Components
	7.2.5 Best Practices for Defining Scrolling in a Page Template
	7.2.6 Best Practices for Defining Margins, Borders, and Padding

	7.3 Creating a Page Template
	7.3.1 About Creating Page Templates
	7.3.2 How to Create a Page Template
	7.3.3 What You May Need to Know About Page Template Artifacts

	7.4 Editing a Page Template
	7.5 Adding a Floating Toolbar to a Page Template
	7.6 Publishing a Page Template
	7.7 Page Template Tutorials and Examples

	8 Developing Skins
	8.1 Introduction to Developing Skins
	8.1.1 About Skins
	8.1.2 About Runtime Management of Skins

	8.2 Best Practices for Developing Skins
	8.3 Creating a Skin
	8.3.1 How to Create a Skin
	8.3.2 What You May Need to Know About Skin Artifacts

	8.4 Editing a Skin
	8.5 Publishing a Skin
	8.6 Conditionally Changing Skins for Users

	9 Developing Visualization Templates
	9.1 About Visualization Templates
	9.2 Creating a Visualization Template
	9.2.1 How to Create a Visualization Template
	9.2.2 What You May Need to Know About Visualization Template Artifacts

	9.3 Editing a Visualization Template
	9.3.1 Placeholder EL Binding in Visualization Templates

	9.4 Publishing a Visualization Template
	9.5 What Happens at Runtime

	10 Developing Content Presenter Display Templates
	10.1 Introduction to Developing Content Presenter Display Templates
	10.2 Creating a Content Presenter Display Template
	10.2.1 How to Create a Content Presenter Display Template
	10.2.2 What You May Need to Know About Content Presenter Display Templates

	10.3 Editing a Content Presenter Display Template
	10.3.1 How to Define a Single-Item Display Template
	10.3.2 Content Display Template Tags for Single Content Items
	10.3.3 How to Define a Multiple-Item Display Template
	10.3.4 Content Display Template Tags for Multiple Content Items
	10.3.5 How to Use Responsive Templates
	10.3.5.1 About Responsive Templates
	10.3.5.2 Prerequisites for Responsive Templates
	10.3.5.3 Displaying Multiple Articles
	10.3.5.4 Using CSS3 Media Queries

	10.3.6 How to Extend Responsive Templates
	10.3.6.1 How to Extend the Articles View Template
	10.3.6.2 How to Extend the Full Article View Template
	10.3.6.3 How to Adapt the Out-of-the-Box Templates
	10.3.6.3.1 How to Support Responsive Layouts for Older Browsers
	10.3.6.3.2 How to Use Different Region Definitions
	10.3.6.3.3 How to Update the Layout in a Template

	10.3.7 How to Use Image Renditions in Content Presenter Display Templates
	10.3.7.1 About Image Renditions
	10.3.7.2 Prerequisites for Image Renditions
	10.3.7.3 Retrieving Image Rendition Information for Image Documents
	10.3.7.4 Retrieving Image Renditions for Site Studio Region Definitions

	10.3.8 How to Use EL Expressions to Retrieve Content Item Information
	10.3.8.1 How to Retrieve Basic Information About a Content Item
	10.3.8.2 How to Work with Content Item Properties and Values
	10.3.8.3 How to Work with Content Item Icons and URLs
	10.3.8.4 How to Work with Image Renditions
	10.3.8.5 How to Work with Group Portal Information

	10.3.9 How to Discover Content Type Property Names
	10.3.10 How to Reference External Files in Display Templates
	10.3.11 How to Reference Site Studio Region Elements in a Custom View

	10.4 Publishing a Content Presenter Display Template
	10.5 Optimizing Performance for Content Presenter Display Templates
	10.6 Using Content Presenter (Tips, Tutorials, and Examples)

	Part III Working with Portlets
	11 Introduction to Portlets
	11.1 About Portlets
	11.2 About Portlet Anatomy
	11.3 About Portlet Resources
	11.3.1 About Prebuilt Portlets
	11.3.2 About Java Server Faces (JSF) Portlets
	11.3.3 About Custom Java Portlets
	11.3.4 About OmniPortlet
	11.3.5 Portlet Technologies
	11.3.6 Portlets Versus Task Flows

	11.4 About Portlet Development
	11.4.1 Portlet Producer Applications
	11.4.1.1 About Portlet Producer Applications
	11.4.1.2 How to Create a Portlet Producer Application

	11.4.2 Portlet Modes
	11.4.2.1 About Portlet Modes
	11.4.2.2 View Mode
	11.4.2.2.1 HTML Guidelines for Rendering Portlets
	11.4.2.2.2 CSS Guidelines for Rendering Portlets

	11.4.2.3 Edit Mode
	11.4.2.3.1 Guidelines for Edit Mode Operations
	11.4.2.3.2 Guidelines for Buttons in Edit Mode

	11.4.2.4 Edit Defaults Mode
	11.4.2.4.1 Guidelines for Edit Defaults Mode Operation
	11.4.2.4.2 Guidelines for Buttons in Edit Defaults Mode
	11.4.2.4.3 Guidelines for Rendering Customization Values

	11.4.2.5 Help Mode
	11.4.2.5.1 Guidelines for Help Mode

	11.4.2.6 About Mode
	11.4.2.6.1 Guidelines for About Mode

	11.4.3 Interportlet Communication
	11.4.4 Portlet Personalization and Customization
	11.4.5 Portlet Performance
	11.4.6 Multilanguage Portlets
	11.4.7 Portlet Deployment

	12 Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge
	12.1 About Creating Portlets from JSF Applications Using the Oracle JSF Portlet Bridge
	12.2 Creating a Portlet from a JSF Application
	12.2.1 How to Create a JSF Portlet Based on a Page
	12.2.2 How to Create a JSF Portlet Based on a Task Flow
	12.2.2.1 About Creating Portlets from Tasks Flows
	12.2.2.2 Creating a Portlet From a Task Flow Using the Create Portlet Entry Dialog
	12.2.2.3 Creating a Portlet From a Task Flow Using the Manage Portlet Entries of Task Flows Dialog

	12.2.3 What You May Need to Know When Creating a JSF Portlet
	12.2.3.1 General Guidelines for Creating a JSF Portlet
	12.2.3.2 Portlet Guidelines
	12.2.3.3 Security Guidelines
	12.2.3.4 JSF Guidelines
	12.2.3.5 Oracle ADF Guidelines

	12.3 Updating the Portlet Entry for a Portletized Page or Task Flow
	12.4 Testing a Portletized Page or Task Flow in JDeveloper
	12.5 Testing a JSF Portlet Using the Integrated WebLogic Server
	12.6 Deploying JSF Portlets to a WebLogic Managed Server
	12.7 Using Events to Link JSF Portlets with Other Portlets
	12.7.1 About Linking JSF Portlets with Other Portlets
	12.7.2 How to Link a JSF Portlet to Another JSF Portlet
	12.7.3 How to Link a JSF Portlet to a JSR 286 Portlet
	12.7.4 How to Link a JSR 286 Portlet to a JSF Portlet
	12.7.5 What You May Need to Know About Portlet Events in the Oracle JSF Portlet Bridge
	12.7.5.1 What You May Need to Know About Using a Serialized Type for the Contextual Event Payload
	12.7.5.2 What You May Need to Know About Raising Undeclared Events
	12.7.5.3 What You May Need to Know About Partial Page Rendering

	13 Building Standards-Based Java Portlets Using JSR 286
	13.1 About Building Standards-Based Java Portlets Using JSR 286
	13.2 Creating a JSR 286 Java Portlet
	13.3 Developing JSR 286 Java Portlets
	13.3.1 Example Portlet Deployment Descriptor File
	13.3.2 How to Edit the Portlet Deployment Descriptor File
	13.3.3 Portlet Modes for JSR 286 Portlets
	13.3.4 How to Add Custom Portlet Modes to JSR 286 Portlets
	13.3.5 How to Access User Information in JSR 286 Portlets
	13.3.6 How to Customize the Runtime Environment for JSR 286 Portlets
	13.3.6.1 Supported Container Runtime Options
	13.3.6.1.1 javax.portlet.actionScopedRequestAttributes
	13.3.6.1.2 javax.portlet.escapeXml
	13.3.6.1.3 javax.portlet.servletDefaultSessionScope
	13.3.6.1.4 com.oracle.portlet.allowEventPayloadsWithoutJAXBBinding
	13.3.6.1.5 com.oracle.portlet.allowWsrpExport
	13.3.6.1.6 com.oracle.portlet.compatibilityMode
	13.3.6.1.7 com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite
	13.3.6.1.8 com.oracle.portlet.defaultServedResourceRequiresWsrpRewrite
	13.3.6.1.9 com.oracle.portlet.disallowResourceServing
	13.3.6.1.10 com.oracle.portlet.escapeXmlEncodeUrls
	13.3.6.1.11 com.oracle.portlet.eventPayloadsXmlType
	13.3.6.1.12 com.oracle.portlet.excludedActionScopeRequestAttributes
	13.3.6.1.13 com.oracle.portlet.externalScopeRequestAttributes
	13.3.6.1.14 com.oracle.portlet.importCssToIFrame
	13.3.6.1.15 com.oracle.portlet.minimumWsrpVersion
	13.3.6.1.16 com.oracle.portlet.offerPortletOverWsrp
	13.3.6.1.17 com.oracle.portlet.portalInfoProvider
	13.3.6.1.18 com.oracle.portlet.redirectAfterAction
	13.3.6.1.19 com.oracle.portlet.requireIFrame
	13.3.6.1.20 com.oracle.portlet.streamingOptimized
	13.3.6.1.21 com.oracle.portlet.suppressWsrpOptimisticRender
	13.3.6.1.22 com.oracle.portlet.trapWsrpRenderExceptions
	13.3.6.1.23 com.oracle.portlet.trimEncodeUrls
	13.3.6.1.24 com.oracle.portlet.useWsrpUserContextForUserAuthentication
	13.3.6.1.25 com.oracle.portlet.wsrpHeaderMode
	13.3.6.1.26 com.oracle.portlet.wsrpLegacyPortletHandle
	13.3.6.1.27 com.oracle.portlet.wsrpPortletHandle
	13.3.6.1.28 oracle.portlet.bridge.adf.raiseUndeclaredContextualEvents

	13.3.6.2 Setting Container Runtime Options for All Portlets in an Application
	13.3.6.3 Setting Container Runtime Options for Individual Portlets

	13.3.7 How to Use Public Render Parameters in JSR 286 Portlets
	13.3.7.1 About Public Render Parameters
	13.3.7.2 Declaring a Public Render Parameter at the Application Level
	13.3.7.3 Defining a Public Render Parameter for a Portlet
	13.3.7.4 Using Public Render Parameters: An Example

	13.3.8 How to Use Portlet Events in JSR 286 Portlets
	13.3.8.1 About Portlet Events
	13.3.8.2 Declaring a Portlet Event at the Application Level
	13.3.8.3 Defining a Processing Event for a Portlet
	13.3.8.4 Defining a Publishing Event for a Portlet
	13.3.8.5 Using Portlet Events: An Example

	13.3.9 How to Add Portlet Preferences to JSR 286 Portlets
	13.3.9.1 About Portlet Preferences
	13.3.9.2 Adding a Portlet Preference to a JSR 286 Portlet
	13.3.9.3 Adding Simple Portlet Personalization: An Example

	13.3.10 How to Use Portlet Filters in JSR 286 Portlets
	13.3.10.1 About Portlet Filters
	13.3.10.2 Adding a Portlet Filter to an Application
	13.3.10.3 Applying a Portlet Filter to a Portlet

	13.3.11 How to Implement Interportlet Communication Across Different Pages
	13.3.12 How to Enhance JSR 286 Portlet Performance with Caching
	13.3.12.1 About Portlet Caching
	13.3.12.2 Implementing Expiry-Based Caching in JSR 286 Portlets
	13.3.12.3 Implementing Validation-Based Caching in JSR 286 Portlets

	13.3.13 How to Implement Rewritten URLs for Resource Proxy
	13.3.14 How to Implement Stateless Resource Proxying
	13.3.15 How to Manage the Persistence Store for JSR 286 Portlets
	13.3.15.1 About the Persistence Store
	13.3.15.2 JNDI Variables for WSRP Producer Persistence Store
	13.3.15.3 Setting Up a Persistence Store for a WSRP Producer
	13.3.15.4 Migrating a WSRP Producer Persistence Store
	13.3.15.4.1 Migrating a Database or File-Based Persistence Store
	13.3.15.4.2 Migrating to or from a Consumer Persistence Store
	13.3.15.4.3 Moving a WSRP Portlet Producer

	13.4 Testing JSR 286 Portlets
	13.4.1 How to Run a WSRP Portlet Producer on Integrated WebLogic Server
	13.4.2 How to Deploy a WSRP Portlet Producer to the Integrated WebLogic Server
	13.4.3 How to Hide or Remove the WSRP Test Page
	13.4.3.1 Hiding the WSRP Test Page
	13.4.3.2 Removing the WSRP Test Page

	13.5 Migrating WebLogic Portal Portlets to WebCenter Portal
	13.6 Files Related to JSR 286 Portlets
	13.6.1 portlet.xml
	13.6.2 oracle-portlet-tags.jar
	13.6.3 portlet_mode.jsp
	13.6.4 portlet_name.java
	13.6.5 portlet_nameBundle.jar
	13.6.6 web.xml

	Part IV Working with Pagelets
	14 Introduction to Pagelets
	14.1 About Creating Pagelets with Pagelet Producer
	14.1.1 Overview
	14.1.2 Pagelet Producer Architecture
	14.1.2.1 Pagelet Producer Architecture and Components
	14.1.2.2 Pagelet Producer Key Concepts
	14.1.2.3 Pagelet Producer Console
	14.1.2.4 Using HTTP and Content Syndication Protocol
	14.1.2.4.1 HTTP
	14.1.2.4.2 Content Syndication Protocol

	14.1.2.5 Pagelet Producer Proxy

	14.1.3 Requirements

	14.2 Configuring Pagelet Producer Settings
	14.2.1 How to Configure a WCI Data Source
	14.2.2 How to Configure Logging Settings
	14.2.3 How to Configure Proxy Settings
	14.2.4 How to Configure Transform Settings
	14.2.5 How to Configure CSP Settings
	14.2.6 How to Configure Kerberos Settings
	14.2.7 How to Configure OpenSocial Settings

	15 Creating Pagelet Producer Objects
	15.1 Creating Resources
	15.1.1 How to Configure Web and CSP Resources
	15.1.1.1 How to Configure General Settings
	15.1.1.2 How to Configure CSP settings
	15.1.1.3 How to Configure Policy Settings
	15.1.1.4 How to Configure Autologin
	15.1.1.4.1 How to Configure Autologin: Form Login
	15.1.1.4.2 How to Configure Autologin: Basic Login and NTLM Login
	15.1.1.4.3 How to Configure Autologin: Kerberos Login
	15.1.1.4.4 How to Configure Autologin: Authentication Sources

	15.1.1.5 How to Configure Headers

	15.1.2 How to Configure WSRP and Oracle PDK-Java Resources
	15.1.2.1 How to Configure General Settings
	15.1.2.2 How to Configure Policy Settings

	15.1.3 How to Configure OpenSocial Resources (OpenSocial Gadget Producers)
	15.1.3.1 How to Configure General Settings
	15.1.3.2 How to Configure Policy Settings

	15.2 Creating Pagelets
	15.2.1 How to Configure General Settings
	15.2.2 How to Configure Preferences
	15.2.3 How to Configure Parameters
	15.2.4 How to Configure the Clipper
	15.2.5 How to Access the Pagelet and Preference Editor

	15.3 Creating Web Injectors
	15.3.1 How to Configure General Settings
	15.3.2 How to Inject Content

	15.4 Creating Custom Parsers
	15.5 Creating Hosted Files

	16 Working with Pagelets and Gadgets
	16.1 Working with OpenSocial Gadgets
	16.1.1 How to Configure Authentication
	16.1.2 How to Store User Preferences
	16.1.3 How to Access WebCenter Portal Profile Information
	16.1.4 How to Access a User's Activity Stream
	16.1.5 How to Use Gadget Eventing
	16.1.6 Example: How to Consume an External OpenSocial Gadget
	16.1.7 Example: How to Consume a Local OpenSocial Gadget

	16.2 Working with Pagelet Chrome for WSRP and Oracle PDK-Java Portlets

	17 Creating Custom Pagelets
	17.1 Using the Adaptive Pagelet Scripting Framework
	17.1.1 How to Handle Structured HTTP Responses
	17.1.2 How to Use Event Notification
	17.1.2.1 How to Use Page-Level Events with the Scripting Framework

	17.1.3 How to Use In-Place Refresh
	17.1.4 How to Use Session Preferences
	17.1.5 What You May Need to Know About Adaptive Pagelet Development

	17.2 Modifying Pagelet Functionality at Runtime
	17.2.1 How to Use Web Injectors
	17.2.2 How to Use Custom Parsers

	17.3 Debugging Pagelets
	17.3.1 How to View HTTP Requests and Responses
	17.3.2 How to View Transformation Content

	18 Using Pagelets in Web Applications
	18.1 Adding a Pagelet to a Web Page
	18.1.1 How to Insert Pagelets Using Javascript
	18.1.1.1 How to Add a Preference Editor Using Javascript

	18.1.2 How to Access Pagelets Using REST
	18.1.2.1 What You May Need to Know About the Pagelet Inject API
	18.1.2.2 What You May Need to Know About Data Retrieval APIs

	18.1.3 How to Use Automatic Resizing with IFrames

	18.2 Adding a Pagelet to a Portal Page

	19 Creating Pagelets: Examples and Advanced Topics
	19.1 Creating a Simple Pagelet (an Example)
	19.1.1 Configuring the Initial Pagelet Producer Setup
	19.1.2 Creating a Resource
	19.1.3 Creating a Pagelet
	19.1.4 Clipping the Pagelet

	19.2 Consuming a Pagelet in WebCenter Portal (an Example)
	19.2.1 Registering the Pagelet Producer with WebCenter Portal
	19.2.2 Inserting the Pagelet into a Portal

	19.3 Consuming a Pagelet in WebCenter Interaction (an Example)
	19.3.1 Registering the Pagelet Producer Remote Server
	19.3.2 Creating the "Hello World" Web Service
	19.3.3 Creating the "Hello World" Portlet
	19.3.4 Using the Hello World Portlet on the WCI Home Page

	19.4 Consuming a Pagelet in Oracle WebCenter Sites (an Example)
	19.4.1 Adding Pagelets to Oracle WebCenter Sites
	19.4.1.1 Enabling IFrame Auto-Resizing
	19.4.1.2 Changing Pagelet Styling

	19.4.2 Using Identity Propagation
	19.4.2.1 Establishing Identity in Pagelet Producer
	19.4.2.2 Using a Login Page Supplied by Pagelet Producer

	19.4.3 Propagating Identity from Pagelet Producer to the Backend Application
	19.4.3.1 WSRP/JPDK Portlets
	19.4.3.2 Stand-alone Backend Application Protected with Native Authentication (Non-SSO)
	19.4.3.3 Identity Propagation with Autologin
	19.4.3.4 Stand-alone Backend Application Protected with SSO
	19.4.3.4.1 Using Direct Identity Propagation to OAM Protected Backend Application
	19.4.3.4.2 Using Identity Propagation with Autologin and SSO

	19.4.3.5 Reference: Common Autologin Configurations
	19.4.3.5.1 Autologin Settings for Oracle Access Manager (OAM)
	19.4.3.5.2 Autologin Settings for Oracle SSO (OSSO)

	19.5 Consuming WSRP Portlets as Pagelets
	19.6 Exposing Custom ADF Task Flows as WSRP Portlets
	19.6.1 Exposing WSRP Portlets Developed for Oracle WebLogic Portal
	19.6.2 Exposing WLP Portlets Using WLP as WSRP Producer
	19.6.3 Configuring WS-Security between a WLP WSRP Producer and WebCenter Consumer
	19.6.4 Registering the WLP WSRP Producer in Pagelet Producer
	19.6.5 Adding WLP WSRP Portlets to Sites

	19.7 Consuming WebCenter Portal Services as Pagelets in Sites
	19.7.1 Requirements
	19.7.2 Configuring Security and Single Sign-On
	19.7.2.1 Creating a Common User Base: LDAP Integration
	19.7.2.2 Establishing User Identity Propagation: OAM Configuration
	19.7.2.3 Configuring the GUID Attribute in the Identity Store
	19.7.2.4 Configuring SSO for Discussions Server

	19.7.3 Importing WebCenter Services Exposed as WSRP Portlets
	19.7.3.1 Adding Pagelets to Sites Pages

	19.8 Consuming Applications as Pagelets Using EBS11i
	19.8.1 Creating a Resource for Basic URL Mapping (Proxy)
	19.8.2 Configuring Autologin
	19.8.3 Creating a Pagelet
	19.8.4 Making Corrective Configurations
	19.8.4.1 Creating a Pluggable Parser for Popup URL Rewriting
	19.8.4.2 Creating an Injector to Disable Frame-busting
	19.8.4.3 Creating an Injector to Auto-Resize the iFrame
	19.8.4.4 Setting Up Clipping by JavaScript Injection
	19.8.4.5 Creating an Injector for Pagelet Restyling
	19.8.4.6 Testing the Pagelets
	19.8.4.7 Final Result
	19.8.4.8 Troubleshooting

	19.9 Consuming OpenSocial Gadgets Using Pagelet Producer
	19.10 Guidelines for Effective Geometry Management and Pagination
	19.10.1 Using an Injector with JavaScript
	19.10.2 Using an Injector with SSL

	19.11 Advanced URL Rewriting
	19.11.1 Using Auto-Login
	19.11.2 Using a Custom Parser

	Part V Additional WebCenter Portal Customizations
	20 Developing Shared Libraries
	20.1 Developing Shared Libraries for Use in WebCenter Portal
	20.2 Packaging and Deploying ADF Components for Use in WebCenter Portal
	20.2.1 Understanding the WebCenter Portal Server Extension Template
	20.2.1.1 How the WebCenter Portal Server Extension Workspace Is Organized
	20.2.1.2 The PortalSharedLibrary Project
	20.2.1.2.1 Versioning extend.spaces.webapp.war

	20.2.1.3 The PortalExtension Project

	20.2.2 Understanding Shared Library Development for WebCenter Portal
	20.2.2.1 General Documentation for ADF Library Development
	20.2.2.2 General Documentation for Shared Library Deployment

	20.2.3 Creating a WebCenter Portal Server Extension Workspace
	20.2.4 Using Additional Shared Libraries with WebCenter Portal
	20.2.5 Deploying Extensions to the WebCenter Portal Shared Library (extend.spaces.webapp.war)
	20.2.5.1 Deploying Extensions Directly to the Portal Server
	20.2.5.2 Deploying Extensions to an Archive
	20.2.5.3 Reverting to a Previous WebCenter Portal Shared Library Version

	20.2.6 Developing ADF Library Components for WebCenter Portal Using the PortalExtension Project

	21 Localizing Portals
	21.1 Guidelines for Building Multilanguage Portals
	21.2 Language Support in ADF Faces Components
	21.3 Using Resource Bundles to Support Multiple Languages
	21.4 Adding Support for a New Language

	22 Extending Oracle Composer
	22.1 Adding Custom Actions to Components
	22.1.1 Adding a Java-Based Custom Action to a Show Detail Frame Component in Design View
	22.1.2 Adding a Java-Based Direct Select Custom Action to a Component in Select View
	22.1.3 Adding Custom Actions to a Show Detail Frame Component by Using Facets
	22.1.3.1 Example: Adding a Custom Action to a Show Detail Frame Component by Using Facets
	22.1.3.1.1 How to Create an ADF Task Flow
	22.1.3.1.2 How to Include an Additional Actions Facet
	22.1.3.1.3 How to Create a Redirection Page
	22.1.3.1.4 How to Create Navigation Rules Between Pages
	22.1.3.1.5 What Happens at Runtime

	22.1.4 Adding Custom Actions to a Task Flow
	22.1.4.1 Adding a Custom Action Directly on a Task Flow
	22.1.4.2 Adding a Custom Action on a Show Detail Frame Enclosing a Task Flow
	22.1.4.2.1 Defining Custom Actions at the Instance Level
	22.1.4.2.2 Defining Custom Actions at the Global Level
	22.1.4.2.2.1 Resolving Conflicts Between Global-Level and Instance-Level Custom Actions

	22.1.4.2.3 Configuring Custom Actions that Display Task Flow Views in a Separate Browser Window

	22.1.4.3 What Happens at Runtime
	22.1.4.4 Example: Adding a Custom Action to a Show Detail Frame Enclosing a Task Flow

	22.1.5 Adding Custom Actions that Display on Task Flows in the Component Navigator
	22.1.5.1 How to Configure Custom Actions in the Component Navigator
	22.1.5.1.1 Defining the Logic for the Custom Action
	22.1.5.1.2 Creating a JSF Page Containing the Custom Action
	22.1.5.1.3 Calling the JSF Page from the Application Page Containing the Task Flow

	22.1.5.2 What Happens at Runtime

	23 Customizing WebCenter Portal Impersonation Security
	23.1 About Customizing WebCenter Portal Impersonation
	23.2 Using the WebCenter Portal Impersonation ELs
	23.3 Using the WebCenter Portal Impersonation APIs

	Part VI Appendixes
	A Expression Language Expressions
	A.1 Introduction to Expression Language (EL) Expressions
	A.1.1 Introducing the Expression Builder
	A.1.2 Introducing the Expression Editor in WebCenter Portal

	A.2 ELs Related to WebCenter Portal Information
	A.3 ELs Related to Specific Pages
	A.4 ELs Related to Specific Portals
	A.4.1 Example: Using EL Expressions for Various Portals

	A.5 ELs Related to Portal Event Contexts
	A.6 ELs Related to Assets
	A.6.1 Example: Using EL Expressions for Assets

	A.7 ELs Related to Security
	A.8 ELs Related to General Settings
	A.9 ELs Related to Portal Resources
	A.10 ELs Related to Navigation
	A.11 ELs Related to Tools and Services
	A.12 ELs Related to Documents
	A.13 ELs Related to People Connections
	A.14 ELs Related to Impersonation
	A.15 EL Expressions Related to the Page Editor
	A.15.1 Example: Using EL Expressions for the Page Editor

	A.16 EL Expressions Related to Device Settings
	A.16.1 Sample Task Flow Code for Discovering Device Attributes

	A.17 Utilitarian EL Expressions
	A.18 Built-In Expressions in the Expression Editor
	A.18.1 Application Info Built-In ELs
	A.18.2 Asset Info Built-In ELs
	A.18.3 Page Info Built-In ELs
	A.18.4 Page Parameter Built-In ELs
	A.18.5 Portal Info Built-In ELs
	A.18.6 Portal Page Info Built-In Paths
	A.18.7 System Built-In ELs
	A.18.8 User Info Built-In ELs
	A.18.9 WebCenter Events Built-In ELs

	A.19 Desupport of Freeform JPQL WHERE and SORT Clauses in Portal Queries

	B WebCenter Portal Accessibility Features
	B.1 Generating Accessible HTML
	B.2 Accessibility Features at Runtime
	B.3 Accessibility Considerations for Portlets

	C Using the WebCenter Portal REST APIs
	C.1 Introduction to REST
	C.2 Understanding the Username-Based Security Token Encryption
	C.3 Benefits of Using REST
	C.4 Introduction to the WebCenter Portal REST APIs
	C.5 Understanding the Link Model
	C.5.1 Using the Resource Index
	C.5.2 Anatomy of a Link
	C.5.2.1 Resource Type
	C.5.2.2 Relationship
	C.5.2.3 Capabilities
	C.5.2.4 Media Type
	C.5.2.5 Templates
	C.5.2.5.1 Common Request Query Parameters

	C.6 Understanding Items Hypermedia
	C.7 Navigating Hypermedia Using HTTP
	C.7.1 HTTP Response Status Codes

	C.8 Security Considerations for WebCenter Portal REST APIs
	C.9 Security Considerations for CMIS REST APIs
	C.10 Understanding Common Types
	C.10.1 Common Types
	C.10.1.1 personReference
	C.10.1.2 groupSpaceReference

	C.10.2 Portable Contact Types
	C.10.2.1 name Portable Contact Type
	C.10.2.2 address Portable Contact Type
	C.10.2.3 organization Portable Contact Type
	C.10.2.4 value Portable Contact Type

	C.11 Managing Caches
	C.12 Configuring a Proxy Server
	C.13 WebCenter Portal REST API Examples
	C.13.1 Navigating the Message Board Hypermedia
	C.13.1.1 Accessing the Resource Index
	C.13.1.2 Reading Messages
	C.13.1.3 Creating a New Message
	C.13.1.4 Updating a Message
	C.13.1.5 Deleting a Message
	C.13.1.6 Filtering Messages
	C.13.1.6.1 Public vs Private Messages
	C.13.1.6.2 Hidden vs Non-hidden Messages

	C.13.2 Displaying Activity Stream Data
	C.13.3 Updating User Status

	C.14 Using the People Connections REST APIs
	C.14.1 Activity Stream REST API
	C.14.1.1 Activity Stream Entry Point
	C.14.1.2 Activity Stream Resource Type Taxonomy
	C.14.1.3 Activity Stream Security Considerations
	C.14.1.4 Activity Stream Resource Types
	C.14.1.4.1 urn:oracle:webcenter:activities:stream
	C.14.1.4.2 Navigation Paths to stream
	C.14.1.4.3 Supported Methods for stream
	C.14.1.4.4 Resource Types Linked to From stream
	C.14.1.4.5 urn:oracle:webcenter:activities:activity
	C.14.1.4.6 Navigation Paths to activity
	C.14.1.4.7 Supported Methods for activity
	C.14.1.4.8 Resource Types Linked to from activity
	C.14.1.4.9 Read-only Elements for activity
	C.14.1.4.10 Understanding the templateParams Element
	C.14.1.4.11 Understanding Comments and Likes
	C.14.1.4.12 urn:oracle:webcenter:activities:parameter
	C.14.1.4.13 urn:oracle:webcenter:activities:activity:icon
	C.14.1.4.14 Navigation Paths to activities:activity:icon
	C.14.1.4.15 Supported Methods for icon
	C.14.1.4.16 Resource Types Linked to from icon

	C.14.2 Connections and Profile REST API
	C.14.2.1 Connections and Profile Entry Point
	C.14.2.2 Connections and Profile Resource Type Taxonomy
	C.14.2.3 Connections and Profile Security Considerations
	C.14.2.4 Connections and Profile Resource Types
	C.14.2.4.1 urn:oracle:webcenter:people
	C.14.2.4.2 Navigation Paths to people
	C.14.2.4.3 Supported Methods for people
	C.14.2.4.4 Predefined Sets for the links Parameter
	C.14.2.4.5 Resource Types Linked to from people
	C.14.2.4.6 urn:oracle:webcenter:people:icon
	C.14.2.4.7 Supported Methods for icon
	C.14.2.4.8 Resource Types Linked to from icon
	C.14.2.4.9 urn:oracle:webcenter:people:person
	C.14.2.4.10 Navigation Paths to person
	C.14.2.4.11 Supported Methods for person
	C.14.2.4.12 Read-only Elements for person
	C.14.2.4.13 Resource Types Linked to from person
	C.14.2.4.14 urn:oracle:webcenter:people:person:list
	C.14.2.4.15 Navigation Paths to list
	C.14.2.4.16 Supported Methods for list
	C.14.2.4.17 Resource Types Linked to from list
	C.14.2.4.18 urn:oracle:webcenter:people:person:listNames
	C.14.2.4.19 Navigation Paths to listNames
	C.14.2.4.20 Supported Methods for listNames
	C.14.2.4.21 Resource Types Linked to from listNames
	C.14.2.4.22 urn:oracle:webcenter:people:person:listName
	C.14.2.4.23 Navigation Paths to listName
	C.14.2.4.24 Supported Methods for listName
	C.14.2.4.25 Writable Elements for listName
	C.14.2.4.26 Resource Types Linked to from listName
	C.14.2.4.27 urn:oracle:webcenter:people:person:list:member
	C.14.2.4.28 Navigation Paths to member
	C.14.2.4.29 Supported Methods for member
	C.14.2.4.30 Writable Elements for member
	C.14.2.4.31 urn:oracle:webcenter:people:person:status
	C.14.2.4.32 Navigation Paths to status
	C.14.2.4.33 Supported Methods for status
	C.14.2.4.34 Writable Elements for status
	C.14.2.4.35 Resource Types Linked to from status
	C.14.2.4.36 urn:oracle:webcenter:people:invitations
	C.14.2.4.37 Navigation Paths to invitations
	C.14.2.4.38 Supported Methods for invitations
	C.14.2.4.39 Writable Elements for invitations
	C.14.2.4.40 Resource Types Linked to from invitations
	C.14.2.4.41 urn:oracle:webcenter:people:invitation
	C.14.2.4.42 Navigation Paths to invitation
	C.14.2.4.43 Supported Methods for invitation
	C.14.2.4.44 Writable Elements for invitation
	C.14.2.4.45 Read-only Elements for invitation
	C.14.2.4.46 Resource Types Linked to from invitation

	C.14.3 Feedback REST API
	C.14.3.1 Feedback Entry Point
	C.14.3.2 Feedback Resource Type Taxonomy
	C.14.3.3 Feedback Security Considerations
	C.14.3.4 Feedback Resource Types
	C.14.3.4.1 urn:oracle:webcenter:feedback
	C.14.3.4.2 Navigation Paths to feedback
	C.14.3.4.3 Supported Methods for feedback
	C.14.3.4.4 Resource Types Linked to from feedback
	C.14.3.4.5 urn:oracle:webcenter:feedback:message
	C.14.3.4.6 Navigation Paths to message
	C.14.3.4.7 Supported Methods from message
	C.14.3.4.8 Read-only Elements for message
	C.14.3.4.9 Resource Types Linked to from feedback

	C.14.4 Message Board REST API
	C.14.4.1 Message Board Entry Point
	C.14.4.2 Message Board Resource Type Taxonomy
	C.14.4.3 Message Board Security Considerations
	C.14.4.4 Message Board Resource Types
	C.14.4.4.1 urn:oracle:webcenter:messageBoard
	C.14.4.4.2 Navigation Paths to messageBoard
	C.14.4.4.3 Supported Methods for messageBoard
	C.14.4.4.4 Read-only Elements for messageBoard
	C.14.4.4.5 Resource Types Linked to from messageBoard
	C.14.4.4.6 urn:oracle:webcenter:messageBoard:message
	C.14.4.4.7 Navigation Paths to message
	C.14.4.4.8 Supported Methods for message
	C.14.4.4.9 Writable Elements for message
	C.14.4.4.10 Read-only Elements for message
	C.14.4.4.11 Resource Types Linked to from message

	C.14.4.5 Filtering Messages Based on Visibility
	C.14.4.5.1 Private Messages:
	C.14.4.5.2 Hidden Messages:
	C.14.4.5.3 REST URLs for Message Boards:

	C.14.5 Creating an Invitation
	C.14.5.1 Creating an Invitation
	C.14.5.2 Accepting an Invitation
	C.14.5.3 Deleting an Invitation

	C.15 Content Management REST API
	C.15.1 CMIS Domain Model
	C.15.1.1 Data Model
	C.15.1.1.1 Repository
	C.15.1.1.2 Object
	C.15.1.1.3 Object-Type
	C.15.1.1.4 Document Object
	C.15.1.1.5 Folder Object
	C.15.1.1.6 Relationship Object
	C.15.1.1.7 Policy Object
	C.15.1.1.8 Access Control
	C.15.1.1.8.1 AllowableActions Mapping

	C.15.1.1.9 Versioning
	C.15.1.1.10 Query

	C.15.1.2 Services

	C.15.2 CMIS Part II: RESTful AtomPub Binding
	C.15.2.1 Service Document
	C.15.2.2 Response Formats
	C.15.2.3 Additional Functionality
	C.15.2.3.1 Folder Children Collection
	C.15.2.3.2 Document Entry
	C.15.2.3.3 Content Stream

	C.15.3 Best Practices and Examples
	C.15.3.1 Best Practices
	C.15.3.2 Examples

	C.16 Using the Events REST API
	C.16.1 Events Entry Point
	C.16.2 Events Resource Type Taxonomy
	C.16.3 Security Considerations
	C.16.4 Events Resource Types
	C.16.4.1 urn:oracle:webcenter:events:gsEvents
	C.16.4.1.1 Navigation Paths to gsEvents
	C.16.4.1.2 Supported Methods for gsEvents
	C.16.4.1.3 Resource Types Linked to From gsEvents

	C.16.4.2 urn:oracle:webcenter:events:gsEvent
	C.16.4.2.1 Navigation Paths to gsEvent
	C.16.4.2.2 Supported Methods for gsEvent
	C.16.4.2.3 Writable Elements for gsEvent
	C.16.4.2.4 Read-only Elements for gsEvent
	C.16.4.2.5 Resource Types Linked to from gsEvent

	C.16.4.3 urn:oracle:webcenter:events:gsCategories
	C.16.4.3.1 Navigation Paths to gsCategories
	C.16.4.3.2 Supported Methods for gsCategories
	C.16.4.3.3 Resource Types Linked to From gsCategories

	C.17 Using the Tags REST APIs
	C.17.1 Tags Entry Point
	C.17.2 Tags Resource Type Taxonomy
	C.17.3 Security Considerations
	C.17.4 Tags Resource Types
	C.17.4.1 urn:oracle:webcenter:tagging:tags
	C.17.4.1.1 Navigation Paths to tags
	C.17.4.1.2 Supported Methods for tags
	C.17.4.1.3 Resource Types Linked to From tags

	C.17.4.2 urn:oracle:webcenter:tagging:tag
	C.17.4.2.1 Navigation Paths to tag
	C.17.4.2.2 Supported Methods for tag
	C.17.4.2.3 Resource Types Linked to From tag

	C.17.4.3 urn:oracle:webcenter:tagging:taggedItems
	C.17.4.3.1 Navigation Paths to taggedItems
	C.17.4.3.2 Supported Methods for taggedtems
	C.17.4.3.3 Resource Types Linked to From taggedItems

	C.17.4.4 urn:oracle:webcenter:tagging:taggedItem
	C.17.4.4.1 Supported Methods for taggedItem
	C.17.4.4.2 Resource Types Linked to From taggedItem

	C.17.4.5 urn:oracle:webcenter:tagging:users
	C.17.4.5.1 Navigation Paths to users
	C.17.4.5.2 Supported Methods for users
	C.17.4.5.3 Resource Types Linked to From users

	C.18 Using the Discussions REST API
	C.18.1 Discussions Entry Point
	C.18.2 Discussions Resource Type Taxonomy
	C.18.3 Security Considerations
	C.18.4 Discussions Resource Types
	C.18.4.1 urn:oracle:webcenter:discussions:forums
	C.18.4.1.1 Navigation Paths to forums
	C.18.4.1.2 Supported Methods for forums
	C.18.4.1.3 Resource Types Linked to From forums

	C.18.4.2 urn:oracle:webcenter:discussions:forum
	C.18.4.2.1 Navigation Paths to forum
	C.18.4.2.2 Supported Methods for forum
	C.18.4.2.3 Writable Elements for forum
	C.18.4.2.4 Read-only Elements for forum
	C.18.4.2.5 Resource Types Linked to From forum

	C.18.4.3 urn:oracle:webcenter:discussions:forum:topics
	C.18.4.3.1 Navigation Paths to topics
	C.18.4.3.2 Supported Methods for topics
	C.18.4.3.3 Resource Types Linked to From topics

	C.18.4.4 urn:oracle:webcenter:discussions:forum:topic
	C.18.4.4.1 Navigation Paths to topic
	C.18.4.4.2 Supported Methods for topic
	C.18.4.4.3 Writable Elements for topic
	C.18.4.4.4 Read-only Elements for topic
	C.18.4.4.5 Resource Types Linked to From topic

	C.18.4.5 urn:oracle:webcenter:discussions:forum:topic:messages
	C.18.4.5.1 Navigation Paths to messages
	C.18.4.5.2 Supported Methods for messages
	C.18.4.5.3 Resource Types Linked to From messages

	C.18.4.6 urn:oracle:webcenter:discussions:forum:topic:message
	C.18.4.6.1 Navigation Paths to message
	C.18.4.6.2 Supported Methods for message
	C.18.4.6.3 Writable Elements for message
	C.18.4.6.4 Read-only Elements for message
	C.18.4.6.5 Resource Types Linked to From message

	C.19 Using the Lists REST API
	C.19.1 Entry Point for Lists
	C.19.2 Lists Resource Type Taxonomy
	C.19.3 Lists Security Considerations
	C.19.4 Lists Resource Types
	C.19.4.1 urn:oracle:webcenter:space:lists
	C.19.4.1.1 Navigation Paths to lists
	C.19.4.1.2 Supported Methods for lists
	C.19.4.1.2.1 Method (lists): GET
	C.19.4.1.2.2 Method (lists): POST

	C.19.4.1.3 Resource Types Linked to from lists

	C.19.4.2 urn:oracle:webcenter:space:list
	C.19.4.2.1 Navigation Paths to list
	C.19.4.2.2 Supported Methods for list
	C.19.4.2.3 Method (list): GET
	C.19.4.2.4 Method (list): PUT
	C.19.4.2.5 Method (list): DELETE
	C.19.4.2.6 Resource Types Linked to from list

	C.19.4.3 urn:oracle:webcenter:space:list:rows
	C.19.4.3.1 Navigation Paths to rows
	C.19.4.3.2 Supported Methods for rows
	C.19.4.3.3 Resource Types Linked to from rows

	C.19.4.4 urn:oracle:webcenter:space:list:row
	C.19.4.4.1 Navigation Paths to row
	C.19.4.4.2 Supported Methods for row
	C.19.4.4.3 Method (row): GET
	C.19.4.4.4 Method (row): PUT
	C.19.4.4.5 Method (row): DELETE
	C.19.4.4.6 Resource Types Linked to from row

	C.19.4.5 urn:oracle:webcenter:space:list:columns
	C.19.4.5.1 Navigation Paths to columns
	C.19.4.5.2 Supported Methods for columns
	C.19.4.5.3 Method (columns): GET
	C.19.4.5.4 Method (columns): POST
	C.19.4.5.5 Resource Types Linked to from columns

	C.19.4.6 urn:oracle:webcenter:space:list:column
	C.19.4.6.1 Navigation Paths to column
	C.19.4.6.2 Supported Methods for column
	C.19.4.6.3 Resource Types Linked to from column

	C.20 Using the Activity Graph REST APIs
	C.20.1 Activity Graph Entry Point
	C.20.2 Activity Graph Resource Type Taxonomy
	C.20.3 Security Considerations
	C.20.4 Activity Graph Resource Types
	C.20.4.1 urn:oracle:webcenter:activitygraph:recommendations
	C.20.4.1.1 Navigation Paths to recommendations
	C.20.4.1.2 Supported Methods for recommendations
	C.20.4.1.3 Resource Types Linked to from recommendations

	C.20.4.2 urn:oracle:webcenter:activitygraph:recommendations:recommendation
	C.20.4.2.1 Navigation Paths to recommendation
	C.20.4.2.2 Read-only Elements for recommendation

	C.20.4.3 urn:oracle:webcenter:activitygraph:items
	C.20.4.3.1 Navigation Paths to items
	C.20.4.3.2 Supported Methods for items
	C.20.4.3.3 Resource Types Linked to from items

	C.20.4.4 urn:oracle:webcenter:activitygraph:items:item
	C.20.4.4.1 Navigation Paths to item
	C.20.4.4.2 Supported Methods for item
	C.20.4.4.3 Writable Elements for item
	C.20.4.4.4 Read-only Elements for item
	C.20.4.4.5 Resource Types Linked to from item

	C.21 Using the Search REST APIs
	C.21.1 Search Entry Point
	C.21.2 Search Resource Type Taxonomy
	C.21.2.1 Navigation Paths to results
	C.21.2.2 Supported Methods for results
	C.21.2.3 Resource Types Linked to From results

	C.21.3 Security Considerations
	C.21.4 Search Resource Types
	C.21.4.1 urn:oracle:webcenter:searchcollection:links
	C.21.4.2 urn:oracle:webcenter:searchcollection:results
	C.21.4.3 urn:oracle:webcenter:searchcollection:facets

	D Troubleshooting
	D.1 Troubleshooting WebCenter Portal Shared Library Deployment
	D.2 Troubleshooting Portlet Creation
	D.2.1 Cannot Access the Create Portlet Wizard
	D.2.2 Cannot Add the Portlet Functionality that I Want to the Portlet

	D.3 Troubleshooting Pagelets
	D.4 Troubleshooting OmniPortlet

