ORACLE"

Oracle® Fusion Middleware

Developing Remote Clients for Oracle Coherence
12¢(12.2.1)

E55616-05

May 2016

Documentation for Developers and Architects that describes
how to configure Coherence*Extend and how to develop
remote clients in Java, C++, and .NET. Includes instructions for
developing remote clients using Coherence REST.

Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence, 12¢ (12.2.1)
E55616-05

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ... xiii
ATUAIEIICE ...ttt et b bttt b et et et et et eat e bt e bt eb e e bt e besb et et et et et et et et entene Xiii
Documentation AcCeSSIDILILYcccvviiimiiiiiiiiiiiiiiiic e Xiii
Related DOCUIMENTS.couerieiiietiieiiieirte ettt ettt ettt ettt ettt b et b bbb e st e st be st seneesenes Xiii
COMVEINTIONS ... ettt ettt ettt ettt et st et e et e bt ea e e bt ea s e s bt et e saeenbesat e seeatesbeembesbeensebeenteeseanseeatenseeatenseensas Xiv

What's NeW iN THIS GUITE.........c.ire st XV
New and Changed Features for 12¢ (12.2.1) ..c.c.cvrirririiriireeeerereeeeeeereeeeeee e XV
Other Significant Changes in This Document for 12¢ (12.2.1).....ccccceuviivniniinnnniirrrrccrreeenes XV

Part | Getting Started

1 Introduction to Coherence*Extend

1.1 Overview of Coherence*EXtENdcooviiiirrinniniiirnrrrr s 11
1.2 EXTENA CLENES ..ottt ettt 1-2
1.3 Extend CHent APIS.........ccoiiiiie et 1-3
1.4 POF SerialiZationcccccuiiiiiiiiiiiiiiiiiicci e 1-3
1.5 Understanding Extend Client Configuration Filescccooovviviiniiiiiiiiiiinns 1-3
1.6 Non-Native CHEeNt SUPPOTt ..o s 1-4

1.6.1 REST CHENt SUPPOTTcucuiiiiiiiiiiiiiiiiiiiciiicceciee e 1-4

1.6.2 Memcached Client SUPPOItc.cceuiiiiiieieiicc e 1-5

2 Building Your First Extend Application

2.1 Overview of the Extend Example.........c.coooiiiiiiiiiiiccc 2-1
2.2 Step 1: Configure the Cluster Side...........cccooeuiiiiiiiiiiiiicicc s 2-1
2.3 Step 2: Configure the CLent Side.........cccociiriiiiiiceeeeeee s 2-2
2.4 Step 3: Create the Sample CHENt..........cccciviiiririiiiiiiicrrree s 2-3
2.5 Step 4: Start the Cache Server ProCessccouoieruiiiiiicieiicec e 2-5
2.6 Step 5: Run the Application...........coooiuiiiiii 2-5

Configuring Extend Proxies

3.1
3.2

3.3
34
3.5

Overview of Configuring Extend ProXies.........c.cccooeruiiiiiicieiniiciceccc e 3-1
Defining Extend Proxy SeIvicescccoeiiriiiiiiiiiiiiiicice s 3-1
3.2.1 Defining a Single Proxy Service INStance..........cccccoviiiiiiiiiiiiiicciiccccceeenene 3-2
3.2.2 Defining Multiple Proxy Service INStancesccccocoeeeeinivicnerniiceeiceecennen, 3-2
3.2.3 Defining Multiple ProXy Services ..o 3-3
3.2.4 Explicitly Configuring Proxy Addressescccoceeioirieieinincieiciicieeeceeeie 3-3
3.2.5 Disabling Cluster Service PrOXies ..ot 3-4
3.2.6 Specifying Read-Only NamedCache ACCeSS.........ccouiimiuiiiiiiiiniiiiiiicccceeeeees 3-5
Defining Caches for Use By Extend Clients..........ccccccoeeiiiiiiiiiiiiiiiiiicccccccecccceas 3-5
Disabling Storage on a ProXy SeIrver...........coiiiiiiiieciee s 3-8
Starting @ PrOXY SEIVETooiiiiiiiici e 3-9

Configuring Extend Clients

4.1
4.2
4.3
44
4.5
4.6
4.7

Overview of Configuring Extend CHents..........c.ccooovriiiiiiiiiniiciice e 4-1
Defining a Remote CaChec.ccciiiiiiiiiiccceeeeeee e 4-2
Using a Remote Cache as a Back Cacheccccoociiiiiiiiiiiiicccccccccccceeeennas 4-3
Defining Remote Invocation SChemesccccviiiiiiiiiiiiiiiiiiiiiccc e 4-4
Connecting to Specific Proxy Addresses..........ccoorieiiiiiciiioiciciecc e 4-5
Detecting Connection EITOTS.........ccuiiiiiriiiiiciee it 4-6
Disabling TCMP COmMMUNICAIONcccuuiuimimimimiieiiieieieieieieieneeeiee et enenese e nenenenes 4-7

Advanced Extend Configuration

51
52
53

54

Using Address Provider References for TCP Addresses.........c.cocoeucueueucuecueucuecccmereneeeenenenas 5-1
Using a Custom Address Provider for TCP Addresses...........ccocoeeueiiiiiieiciicicicicicicecnennas 5-2
Load Balancing CONNECIONS..........ccccuiiiiiiiiiiiiiiiiiiici e 5-3
5.3.1 Using Proxy-Based Load Balancing.............ccccouoiiiieiniiiiiiiiiccccec 5-3
5.3.2 Using Client-Based Load Balancing ..o, 5-6
Using Network Filters with Extend CHents.........c.ccocooiiiiiiiiiiiiiiccecceeeeeeeenennes 5-6

Best Practices for Coherence*Extend

6.1
6.2
6.3

6.4
6.5
6.6
6.7

Do Not Run a Near Cache on a ProXy Server..........c.cccccccccciiiiiiiiiceeeccereieeeeenenenas 6-1
Configure Heap NIO Space to be Equal to the Max Heap Sizecccccceeuiuiiiiiiiiiiiinnnns 6-1
Configure Proxy Service Thread POOLNG.........cccooiiiiiiiiiiciec e 6-1
6.3.1 Understanding Proxy Service Threadingcccccoooiiiiiiiiiiiiiiicc, 6-2
6.3.2 Setting Proxy Service Thread Pooling Thresholdscccccovvvvrrnvnnnnnirrene 6-2
6.3.3 Setting an Exact Number of Threads............ccocovuviviiriniiiiniiirrrccccereeeenes 6-3
Be Careful When Making InvocationService Calls..........cccoeoiiiiiiiiniiiicceece 6-3
Be Careful When Placing Collection Classes in the Cache............cccoooociiiiiiiiicie 6-3
Configure POF Serializers for Cache Servers ..o 6-4
Configuring Firewalls for Extend CHENtScccccoceiiiiiiiiiicceceeeeeeeeeeeeeenenenes 6-4

Part Il

Part Il

Creating Java Extend Clients

Creating C++ Extend Clients

7 Introduction to Coherence C++ Clients

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8
8.9

9.1

9.2

Overview of Coherence for Ca.......ciiiiiiiiiic e 7-1
Setting Up C++ Application Builds ..o 7-1
7.2.1 Setting up the Compiler for Coherence-Based Applications..........ccccccoevuririnirinininnes 7-2
7.2.2 Including Coherence Header Files...........ccooovviviiiiiiiiiniiiiiiiccc, 7-2
7.2.3 Linking the Coherence Library ... 7-2
724 Setting the run-time Library and Search Pathccccccooviiiininnn 7-3
7.2.5 Deploying Coherence for C+.......ooiiiiiiiiiiiicicie e 7-4

Configuration and Usage for C++ Clients

General INStIUCHONScuvvieiecii e 8-1
Implement the C++ APPLCation..........ooeueueieiiciiic e 8-2
Compile and Link the APPLCation........cccciiiiiiiiiiieccceeceee e nenenes 8-2
ConfigUre Pathis..........ccoiiiiiiiiii e 8-3
Obtaining a Cache Reference with CH+ccooiiiiiiiiiiiiica 8-3
Cleaning up Resources Associated with a Cacheccoooo 8-3
Configuring and Using the Coherence for C++ Client Libraryccccooooveiiiiincnicnn, 8-3
8.7.1 Setting the Configuration File Location with an Environment Variable 8-4
8.7.2 Setting the Configuration File Location Programmaticallyccccccooovirnininicnnnnnn. 8-4
Operational Configuration File (tangosol-coherence-override.xml)ccccooeeiiiiiininnnnen. 8-4
Configuring @ LOZGOTc.oiuiiiiicicit e 8-6

Using the Coherence C++ Object Model

Using the Object Modelc.cooiiiii e 9-1
9.1.1 Coherence NamMESPACEScocvruiuimiriririiririric e 9-1
9.1.2 Understanding the Base ODJect ... 9-1
9.1.3 Automatically Managed MemOTY.........ccccciiiiiiiiiiiiiiiiciccccees 9-2
9.1.4 Managed StrINES........ccooiiiiiiiiciee 9-3
9.1.5 Type Safe CastiNgccccoeuevrueiiieiiieiiee e 9-4
9.1.6 ManAed ATTAYScceuimimimimiieiiiiiieeierrcee ittt 9-5
9.1.7 Collection Classes..........ccvurmiiiiiiieriiiiiieiceie e 9-5
9.1.8 Managed EXCEPLIONS........ccciuimiiiiiiiiiicicccc e 9-6
9.1.9 Object IMMUtaADILItY ...c.ovvereeieiiici e 9-6
9.1.10 Integrating Existing Classes into the Object Modelccoooeiiiiiiiiiiiii, 9-7
Writing New Managed CLaSSESc.cccuiuiuiiiiiieceeeeceeieeeeee e e nenenenes 9-7
9.2.1 Specification-Based Managed Class Definitioncccooiiiiniiiiniiiiiiine. 9-7
9.2.2 Equality, Hashing, Cloning, Immutability, and Serializationccccccceevviininnnnce. 9-10
9.2.3 TRIEAdiNgcocououiieiei s 9-11

10

11

Vi

9.2.4 WeEaK REEIOINCES.......eeieeeeieieeeeeeeeeeeeeeee ettt ettt ettt ettt st e et e eat e e aeesaaeeans 9-12

9.2.5 Virtual CoNSLIUCLOTLS.cvoiviviviiiiiiiiiic e 9-13
9.2.6 Advanced Handle TYPes........cccooiiiiiiiiiiiiiiiicccccc e 9-13
9.2.7 Thread Safety ... 9-14
9.3 Diagnostics and TroubleShOOtingcoriiiiiiii e 9-19
9.3.1 Thread-Local Allocator LOZScccceuiiiuiueiiiiiicicieicit i 9-19
9.3.2 Thread DUMPSccciiuiiiiiiiiicccrccetccc ettt 9-19
9.3.3 Memory Leak Detection ... 9-20
9.3.4 Memory Corruption Detection...........cccoovviiiiiiiiiiiiii 9-20
9.4 Application Launcher - Sanka...........cooorueiiiiieioiiiiieci e 9-21
9.41 Command liNe SYNTAX......ccccviiiiiiiiiiii s 9-21
9.42 Built-in EXxecutables...........ccoooviiiiiiiiiiiii 9-21
9.4.3 Sample Custom Executable Classcccccooviiiieiniiieiiiiccece e 9-22
Using the Coherence for C++ Client API
10.1 CaCheFactOrY ..o 10-1
10.2 NAMEACACKE «....ciriiiieiieteiee ettt ettt ettt ettt ettt b et b et b et b et bt sesenenen 10-2
10.3 QUETIYMAD ..ottt 10-2
10.4 ODSEIVADIEMADcuueiiiiiiiiiiiiiiiiiccici et 10-3
10.5 INVOCADIEMAP ... 10-3
10.6 FAIEET oot 10-4
10.7 Value EXtTaCtOTS ... 10-5
10.8 ENtry PrOCESSOIS...cciviviiiiiiiiiiiiitiiitittititiit ittt tnas 10-5
10.9 Entry AgEregators ... 10-6
Building Integration Objects (C++)
11.1 Overview of Building Integration Objects (CH+)cooueeiiiiiiiiiiccceeeeeeeeeenenenes 11-1
11.2 POF INtHNSICS «.vviviiiiiiiciiiictccc s 11-1
11.3 Serialization OPtiONS.......cccciiiiiiiiiiii e 11-2
11.3.1 Managed<T> (Free-Function Serialization) ... 11-3
11.3.2 PortableObject (Self-SerialiZation)ccccococeeceeeeeeceeeeeeeeeeeereeeeenenenes 11-5
11.3.3 PofSerializer (External SerialiZation)cceceevveererierieriesieieieieeeeeeeeeeeeesesee e e 11-7
11.4 Using POF Object References. ..o 11-9
11.4.1 Enabling POF Object References...........c.cococoeuiiiiiicieiiicciecccecce e 11-10
11.4.2 Registering POF Object Identities for Circular and Nested Objects........................ 11-10
11.5 Registering Custom C+ TYPES.....coiiiiiiiiiiiicccccccrs s 11-12
11.6 Implementing a Java Version of a C++ ODbjectccooiiiiiiiiiiiiiiiiccccccccccnes 11-13
11.7 Understanding Serialization Performance...........c.ccocoooiiiiiiiiiiiiiiiiiiccccccnns 11-14
11.8 Using POF Annotations to Serialize Objects..........cccooviiiiiiiiiiiiii 11-14
11.8.1 Annotating Objects for POF Serialization...........cccococevoiiiiieinieiinicccc 11-14
11.8.2 Registering POF Annotated ODJEctscccoeiuiuiiiucuiiiiieiciicceececeeneeenenenes 11-15
11.8.3 Enabling Automatic INdeXingc.ccccciiiiiiiiiiiiiiiiciccccccceeeeennes 11-15
11.8.4 Providing a Custom Codec........cciiuiiiiiiiiiiiiiiiicce e 11-16

12

13

14

15

Querying a Cache (C++)
12.1 Overview of Query Functionality ..o 12-1
122 Performing Simple QUETIES............cccceuiueiiieiiiiiicicic e 12-1
12.2.1 Querying Partitioned Caches..........c.ccociiiiiiiiiiiiiicceceeceeeeeeee e e 12-3
12.2.2 Querying Near Caches...........ccooviviiiiieieiiiiicce e 12-3
12.3 Understanding QUeTry CONCEPLS.......ccviimimiiiiiiiiiiiiiiiiicccicie e 12-3
124 Performing Queries Involving Multi-Value Attributes ... 12-4
12.5 Using a Chained Extractor in @ QUeTYccoooeueiiiiiiiiiiiiiiici 12-4
12.6 Using a QUEry RECOTETccoiiiiiiiiiiiiiicccccceceee e 12-5
Performing Continuous Queries (C++)
13.1 Overview of Performing Continuous Queries (CH+)cccoceiieieiiicieciccccceeeenenas 13-1
13.1.1 Understanding the Use Cases for Continuous Query Caching.........c.c.cococoeueverennen. 13-1
13.2 Understanding Continuous Query Caching Implementationcccooveiiiiiiiinenn 13-2
13.3 Defining a Continuous Query Cache............cccooeuiiminiriniiiniic s 13-2
13.4 Cleaning up Continuous Query Cache RESOUICES..........cccocuiuiuiuimiiemiuiimcceeeeeeeeneeeenenes 13-3
13.5 Caching Only Keys Versus Keys and Values ... 13-3
13.5.1 CacheValues Property and Event Listenersccccocooeeiiiniiiiiicceceee 13-4
13.5.2 Using ReflectionExtractor with Continuous Query Caches...........cccoceveiiriiiennnne. 13-4
13.6 Listening to a Continuous Query Cacheccooooiiiiiiiiiiic 13-4
13.6.1 Avoiding Unexpected ReSUILS........ccccoeuiuiiiiiiiiiiiicccceeeccceee e 13-4
13.6.2 Achieving a Stable Materialized VIEW ..., 13-5
13.7 Making a Continuous Query Cache Read-Onlycccoiiiiiiiiiiiiiiiiiiiiienas 13-5
Performing Remote Invocations (C++)
14.1 Overview of Performing Remote Invocations (C++)........ccceiiiiiiiiiiiiiiiccciinas 14-1
14.2 Configuring and Using the Remote Invocation Service............ccooeeieiiiiiiiiiiiiiicc 14-1
14.3 Registering Invocable Implementation Classescccocoreieiiinieiiiiciciccc 14-2
Using Cache Events (C++)
15.1 Overview of Map EVENts (CH+)...cccoiiiiiiiiiiiiceececceeeieieeie e sesenenenes 15-1
15.1.1 Caches and Classes that SUPpOrt EVENtsc.cccccocuiiiiiiiiiiiiiiiccccceeecnnes 15-1
15.2 Signing Up for all EVENtS ... 15-2
15.3 Using a Multiplexing Map LiStenerccoooriioiiiiiiiiieiice et 15-3
15.4 Configuring a MapListener for a Cachec.ccccooeiriiiii 15-4
15.5 Signing Up for Events on Specific Identitiescccooiiiiiiiiieiiiicecccccceceeenenes 15-4
15.6 FIltering EVENLSccoouiiiiiiiiiiiiciccccc e 15-4
15.7 Using Lite EVENLSccooviiiiiiiiicic s 15-5
15.8 Listening t0 QUETIESccooiuriiiiiiiiieieiiccie et 15-6
15.9 Using Synthetic EVENtScoooiiiiiii s 15-8
15.10 Using Backing Map EVENLScccccoiiiiiiiiiiiiiccccccccccee e senenenas 15-9
15.11 Using Synchronous Event LiStENers ... 15-9

Vii

16

Performing Transactions (C++)
16.1 Using the Transaction API within an Entry Processor.............cccooeeeiiiiieiiiiciciiccici 16-1
16.2 Creating a Stub Class for a Transactional Entry Processor............ccccooeuvveiiiniiicinicinicinne. 16-3
16.3 Registering a Transactional Entry Processor User TYpe..........ccccocoeeiieccciiccceeccenenes 16-4
16.4 Configuring the Cluster-Side Transactional Caches...........cccccoouvvieiniiiniiniciecce 16-4
16.5 Configuring the Client-Side Remote Cache..........cccooiiiiiiiiiiiiiiicccccces 16-5
16.6 Using a Transactional Entry Processor from a C++ Client.........cccccooiiiiiiiiiicce 16-6

Part IV Creating .NET Extend Clients

17

18

19

viii

Introduction to Coherence .NET Clients
17.1 Overview of Coherence for .INETcccooiiiiiiiiiiiiiiiicnas 17-1
17.2 Configuration and Usage for .NET CLents...........cccocoevvirnimniiiniiineeces 17-1
1721 General INStruCtONS........ccvvviiiiiiiiiiiiii s 17-2
17.2.2 Configuring Coherence*Extend for .INET ..., 17-2
17.2.3 Obtaining a Cache Reference with .INETcccccccooiiiiiiiiiiiiiicccccccnas 17-2
17.24 Cleaning Up Resources Associated with a Cacheccccoooiiii 17-2
17.2.5 Using Network Filterscoooiiiiiiiiii e 17-3
Building Integration Objects (.NET)
18.1 Overview of Building Integration Objects (.INET)ccccocoviiiiiiiiniiieiieec 18-1
18.2 Creating an IPortableObject Implementation..............cccccocciiiiiiiiiceccceeceeeceenenes 18-2
18.3 Implementing a Java Version of a .NET Object........cccccoovviriiiininiiiiiicec 18-3
18.3.1 Creating a PortableObject Implementation (Java)........cccccoeeveerieiriecncieieiiceene 18-4
18.4 Registering Custom Types on the INET Clientcccoooooiiiiiiii 18-4
18.5 Registering Custom Types in the CIUSteT...........ccovoiiiiiiiiii 18-6
18.6 Evolvable Portable USer TYPES.......cooiiiiiiiiiiiiiiceecceeeieeeieiee e sesenenenas 18-6
18.7 Making Types Portable Without Modification..........ccooveerueiiiniciieniceecccc 18-9
18.8 Using POF Object References. ..ot 18-11
18.8.1 Enabling POF Object References...........ccccocvueuiiriiiciniiieiicceceecs 18-12
18.8.2 Registering POF Object Identities for Circular and Nested Objects....................... 18-13
18.9 Using POF Annotations to Serialize Objects..........cccooiiiiiiiiiiiiiicceccccccceeenenes 18-14
18.9.1 Annotating Objects for POF Serialization............cccccoeiiiiiiiiiiiiiiiiiciicnes 18-14
18.9.2 Registering POF Annotated Objects..........cccouoiiiiiiiiicec 18-15
18.9.3 Enabling Automatic INdeXingcccceuevoiiriiiiiiiic 18-15
18.9.4 Providing a Custom COAECccruiuiuiuiuiuiiiiiiiiicceeieeeeee e enenes 18-16
Using the Coherence .NET Client Library
19.1 Setting Up the Coherence .NET Client Libraryccocociiiiiiiiiicceeeccceeecenenes 19-1
19.2 Using the Coherence .NET APIs.........cocooiiiiiiiiiiiiccccccceeeeeeeeeenenas 19-3
19.2.1 CaCheFaCtOIYc.cviviiiiiiiiiiiciici e 19-4
19.2.2 IConfigurableCacheFactory ... 19-5

20

21

22

23

19.2.3 DefaultConfigurableCacheFactory ..o 19-5

19.2.4 LOZGET .ot 19-5
19.2.5 Using the Common.Logging Library ... 19-7
19.2.6 INAMEACACKE ..ot 19-7
19.2.7 IQUETYCACKE ... e 19-8
19.2.8 QUErYRECOTAET......ouiiiiiicit e 19-9
19.2.9 IODbservableCache..........ccoiiiiiiiiiiniiiii s 19-9
19.2.10 IInvocableCache..........c.coiiiiiiiiiiiicccc e 19-11
19211 FAIEIS oot bbb 19-11
19.2.12 Value EXTTactors.......cooiiiiiiiiiiiiiiciic s 19-12
19.2.13 ENtry PTOCESSOTS ...oovviviiiiietcecietctect ettt 19-13
19.2.14 Entry Ag@regators ... 19-13
19.3 Configuring .NET Clients Programmaticallyccccooiiiiiiiiiiiiiiiiiicicnns 19-14
Performing Continuous Queries (.NET)
20.1 Overview of Performing Continuous Queries (.INET)cccccoviiinnnnninnnniinn, 20-1
20.1.1 Understanding Use Cases for Continuous Query Cachingccccccoeeinivirennnes 20-1
20.2 Understanding the Continuous Query Caching Implementation...........cccccooeerieininnnnnnn. 20-2
20.3 Constructing a Continuous Query Cache ..o 20-2
20.4 Cleaning Up Continuous Query Cache Resources............ccccceueuvvviriviiirirnciiicnereceene 20-3
20.5 Caching Only Keys Versus Keys and Values ..o, 20-3
20.6 Listening to a Continuous Query Cache ..., 20-4
20.6.1 Achieving a Stable Materialized VIeWcccoooiiiiiiiiiiiiiic 20-4
20.6.2 Support for Synchronous and Asynchronous Listeners............cccoooeevinnenccnininennce. 20-5
20.7 Making a Continuous Query Cache Read-Onlyccccccoviiiiiiiinninininniiinccccee 20-5
Performing Remote Invocations (.NET)
21.1 Opverview of Performing Remote INVOCations...........cccceuvuviviiiiiiinniininiiiriiicccccee 21-1
21.2 Configuring and Using the Remote Invocation Service..........cccccooviivinininininnnnnnnnninnn. 21-1
Performing Transactions (.NET)
22.1 Using the Transaction API within an Entry Processor..........ccccooeoeeieiniineniccccieeicce, 22-1
22.2 Creating a Stub Class for a Transactional Entry Processor.........c.cccoccouoeurieiniciniciniicinicinnes 22-3
22.3 Registering a Transactional Entry Processor User Type.........cccocevvviririiiiiieeciecenennen 22-3
22.4 Configuring the Cluster-Side Transactional Caches...........cccccccevvriiinnniiiincccccee 22-4
22.5 Configuring the Client-Side Remote Cache...........cccccooviiiiiiniiicce, 22-5
22.6 Using a Transactional Entry Processor from a .NET Clientccccoovoiiiiiiniiniinnnn, 22-6
Managing ASP.NET Session State
231 OVEIVIEW .ot s 23-1
23.2 Setting Up Coherence Session Managementcooorueioiiiicieiiinieeiecce s 23-1
23.2.1 Enable the Coherence Session Provider ... 23-2
23.2.2 Configure the Cluster-Side ASP Session Cachesccooveiivininininininininincncinicne. 23-2

23.2.3 Configure a Client-Side ASP Session Remote Cache.........ccccocoovoriiiiiiniiciiiicinen, 23-3

23.2.4 Overriding the Default Session Cache Name..........cccooioiviiiiiinininnnnicccceene, 23-4
23.3 Selecting a Session Model..........ccccocuriiiiiiiiininiiiiiiii s 23-4
23.3.1 Specify the Session Model...........cccciiiiiiiiiiiiiii s 23-5
23.4 Specifying @ SeTialiZercoocueiiiiiiieiiecci 23-7
23.4.1 Using POF for Session Serializationc.ccoooeeviieiiiniiiniiiciicccc e, 23-7
23.5 Sharing Session State Across AppliCatioNscccceeurueueiriririiiiiiirreeecreeeeeeeee s 23-8

Part V Using Coherence REST

24

25

26

Introduction to Coherence REST
24.1 Overview of Coherence RESTcccoooviiiiiiiiiiiiiic s 24-1
242 Dependencies for Coherence RESTcccccoiiiiiiiiiiniiiiiicncccceeecceeeeeeeee s 24-1
24.3 Overview of Configuration for Coherence REST............cccccooooiininiiiniiiieececce, 24-2
24.4 Understanding Data Format SUppOrt.........coooiiiiiiiiiii e, 24-3
2441 Using XML as the Data Format.........cccoouoiiiiiiiiii 24-3
24.4.2 Using JSON as the Data FOrmat.........ccccooooiiiiiiiiiiiiicccccccee e 24-4
245 Authenticating and Authorizing Coherence REST Clientsccccccceuvuvvviiinnvnincnnnnes 24-5
Building Your First Coherence REST Application
251 Opverview of the Basic Coherence REST Example.........cccccoeuvuiiiivninininiinnniiirrccccene 25-1
252 Step 1: Configure the Cluster Side.........ccoooiiiiiiiiiiiiii 25-2
25.3 Step 2: Create @ USer TYPe.....ccuoiiiriiieiiiici e 25-2
25.4 Step 3: Configure REST SeIViCes.........ccoeeiiuiiiieiiieiiieiieices s 25-3
25.5 Step 4: Start the Cache Server ProCeSsccoceuieiiiriiiiiiiririccccceeeeee s 25-4
25.6 Step 5: Access REST Services From a Client ..o 25-5
Performing Grid Operations with REST
26.1 Specifying Key and Value TYPeS.......ccccceuvuruririiiiiiininiiiiiiiicrciniciciceeseeeee s 26-1
26.2 Performing Single-Object REST Operations............ccococeieiiiiiiioiiiciecceecce, 26-2
26.3 Performing Multi-Object REST Operationscccceeeueimueiiieiiieiniieiieicsicee s 26-3
264 Performing Partial-Object REST Operations ..o 26-4
26.5 Performing Queries with RESTcccccccciiiiiiiiiiiirccccee s 26-4
26.5.1 Using Direct QUETIESs........ccovuiiiiiiiiiiiiiiiciccc s 26-5
26.5.2 Using Named QUETIESc.coooviuiiiiiiiiciiccte e 26-5
26.5.3 Specifying a Query Sort Orderccoocevieiieiiciiee e 26-6
26.5.4 Limiting Query ReSUlt SIZecccccoiiiiiiiiiiiiicccce e 26-7
26.5.5 Retrieving Only KeYs........ccooiiiiiiiiiiiiiiccecccee e 26-7
26.5.6 Using Custom Query ENginesccccoviiiiiiiiiniiiniiccccccenns 26-8
26.6 Performing Aggregations with RESTcccooooiiiiii, 26-10
26.6.1 Aggregation Syntax for RESTcccoooiiiiiiiiiic e, 26-11
26.6.2 Listing of Pre-Defined Aggregators..........ccccccuiuiuiuiieiiiiicieieieieecieeieeeeneeeeeeeeenenenes 26-11
26.6.3 Creating Custom Aggregators...........cccouvueriiiiiiiiiiiiiiiiic s 26-12

27

28

Al
A2

26.7 Performing Entry Processing with RESTcccccooiiiiiiinii e, 26-13

26.7.1 Entry Processor Syntax for RESTc.ccccccciiiiiiiiiiiccceececeeeeeeeneeees 26-13
26.7.2 Listing of Pre-defined Entry Processors...........cccccoecucuiiiiiiiiiiiiiciciciiciccccccceees 26-13
26.7.3 Creating Custom Entry Processors...........cccoveiiiniiiniiinininicicccecceenns 26-14
26.8 Understanding Concurrency COntrol...........ooiiiiieiiiciceccc e 26-14
26.9 Specifying Cache ALIASesccooeuiueiiimiiiiiiiiic e 26-15
26.10 Using Server-Sent EVENtSsccoviiiiiiiiiiniiiiicns 26-16
26.10.1 Receiving Server-Sent EVeNts ... 26-16
Deploying Coherence REST
271 Deploying with the Embedded HTTP Server...........ccccccoevviiiiiininniiiiiinirciiccrceceenes 27-1
27.2 Deploying to WebLOgic SEIVeTccoiiiiiiiiiiicieiicci e 27-2
27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST 27-2
2722 Task 2: Package the Coherence REST Web Application..........cccccevviiiviiiinininnnnnns 27-2
27.2.3 Task 3: Package the Coherence Application...........cccceiiiriiiiiininiiniiicccceene. 27-3
27.2.4 Task 4: Package the Enterprise Applicationcccoeiiiiiiiiininininininccne, 27-4
27.2.5 Task 5: Deploy the Enterprise Application..........ccoceuevoiiriieiiiiiiieiicceccie 27-5
27.3 Deploying to a Java EE Server (Generic).......ccccooerueieiiiurieieiicicieccieesic e 27-5
27.3.1 Packaging Coherence REST for Deployment..........ccccccoeviniiiininincnininineneccceeenen. 27-5
27.3.2 Deploying to a Servlet COntainer.............cccooiiiiiiiiiiniiiiiiicceccceeeee 27-6
274 Configuring REST Server Access to POF-Enabled Services...........cccocooviiniiiinininiincninnnnnn. 27-7
Modifying the Default REST Implementation
28.1 Using Custom Providers and RESOUICES...........cccovviiiiiiiiiiiiiiiiins 28-1
28.2 Changing the Embedded HTTP Server ... 28-2
28.2.1 Using Grizzly HTTP Server ..ot 28-3
28.2.2 Using Simple HTTP SEIVET ..ottt 28-3
28.2.3 Using Jetty HTTP SeIVer ... 28-4
REST Configuration Elements

REST Configuration File ... A-1

Element RefETeNCe.c.oiiiiiiiiiiiiiiiic e A-2
A2T AGEIOZATOT ..ttt A-2
A2.2 AGEIEZALOLS .vovivviereieieieie s A-3
A23 BNEINE oo A-3
A24 MATSRAILETeiiic et A-4
AL2D PIOCESSOT ...cuieieieiiiiiieitit s A-4
AL2.0 PIOCESSOTS ..ocvivirinisisisisisisisisisiststs sttt s s s a s s e e s eees A-5
A7 QUETY it A-5
A28 QUETY-ENEZINES.....cooiimiiiiiiiitiiicicc e A-6
A 2.9 TESOUICE ..ttt ettt A-6
A 210 TESOUICES ...vvieiiretiniitetcece ettt a et a et b bt a et aene e A-8
A2TT TSt A-8

Xi

B Integrating with F5 BIG-IP LTM
Bl Basic CONCEPLS...uuiiieitiecect ettt B-1
B2 Creating INOAEScooiiiiiiit e B-2
B.3 Configuring a Load Balancing PoOol............cccccciiiiiiiiicccccccccceeec e B-3
B.3.1 Creating a Load Balancing Pool............cccccvviiiiiiniiiiiiincccneceeeeeas B-4
B.3.2 Adding a Load Balancing Pool Member.............ccccccceuvivininniniiinniniiiiiiiinnns B-5
B.4 Configuring a Virtual SEIVET ..ottt B-6
B.5 Configuring Coherence*Extend to Use BIG-IP LTM...........cccccouoeiiiiinininininiciiccc e B-8
B.6 Using Advanced Health MONItOTINGccccociuiiiiiiiiiiiiiiiccccccccc e B-9
B.6.1 Creating a Custom Health Monitor to Ping Coherence..........ccccocooovriniiivirieinicccnen, B-10
B.6.2 Manually Creating a Custom Health Monitor to Ping Coherencecccccccevvvivirininnnnne. B-11
B.6.3 Associating a Custom Health Monitor With a Load Balancing Poolcccoeueeeaie. B-13
B.7 Enabling SSL Offloadingccccovviiiiiiiiiiiiiiiiiiiic s B-14
B.7.1 Import the Server's SSL Certificate and Keycccccccvurviiiinnniiiiccicceceeceees B-15
B.7.2 Create the Client SSL Profile..........cccccccoeiiviiiiiiiiiiiniiiiiiiiiiiicses B-16
B.7.3 Associate the Client SSL Profileccccocovviiiiiiiiinininiiiiiiiiess B-17
Index

Xii

Audience

Preface

Welcome to Developing Remote Clients for Oracle Coherence. This document describes
how to configure Coherence*Extend and how to develop remote clients in Java, C++,
and .NET. This document also includes instructions for developing remote clients
using Coherence REST.

Developing Remote Clients for Oracle Coherence is intended for the following audiences:

® Primary Audience — Application developers who want to write and deploy clients
that use C++, .NET, and REST to interact with remote caches that reside in a
Coherence cluster.

* Secondary Audience — System architects who want to understand core Oracle
Coherence concepts and want to build data grid-based solutions that include
remote clients.

The audience must be familiar with the respective client technologies as well as Java to
use this guide. In addition, the examples in this guide require the installation and use
of the Oracle Coherence product. For details about installing Coherence for Java and
the respective client technologies, see Installing Oracle Coherence. The use of an IDE is
not required to use this guide, but is recommended to facilitate working through the
examples.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documents that are included in the Oracle
Coherence documentation set:

¢ Administering HTTP Session Management with Oracle Coherence*Web

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

* Administering Oracle Coherence

* Developing Applications with Oracle Coherence
o Installing Oracle Coherence

* Integrating Oracle Coherence

* Managing Oracle Coherence

o Securing Oracle Coherence

® Java API Reference for Oracle Coherence

® C++ API Reference for Oracle Coherence

.NET API Reference for Oracle Coherence

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nmonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiv

What's New Iin This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide and provides pointers to
additional information.

New and Changed Features for 12c (12.2.1)

Oracle Coherence 12¢ (12.2.1) includes the following new and changed features for this
document.

Proxy addresses, which allow extend clients to connect to a cluster automatically
bind to a name service address. See “Defining a Single Proxy Service Instance.”

Remote cache addresses, which are used to connect to a proxy service do not need
to be specified if the client runs on the same network as the cluster. See “Defining a
Remote Cache.”

DNS names, which can be used to connect to a proxy server can be associated with
a list of IP addresses. See “Connecting to Specific Proxy Addresses.”

Server-Sent events, which allow Coherence REST applications to automatically
receive cache events from the Coherence cluster. “Using Server-Sent Events.”

Jetty HTTP Server integration, which allows Coherence REST to use Jetty. See
“Using Jetty HTTP Server.”

Other Significant Changes in This Document for 12¢ (12.2.1)

For 12c (12.2.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

Removed the instructions for installing Coherence C++ and .NET client
components. For details about installing Coherence, see Installing Oracle Coherence.

Revised the instructions for setting up Coherence*Extend. The content is now
organized into a chapter about proxy configuration and a chapter about client
configuration. See Configuring Extend Proxies and Configuring Extend Clients
respectively.

Added a new chapter that organizes advanced configuration topics. See Advanced
Extend Configuration .

Revised the proxy setup configuration instructions to use the name service over
explicit proxy address configuration, which is documented in a separate section.
See “Defining Extend Proxy Services.”

XV

XVi

Revised the extend client setup configuration instructions to use the name service
over explicit socket address configuration, which is documented in a separate
section. See “Defining a Remote Cache.”

Added instructions for configuring firewalls. See “Configuring Firewalls for
Extend Clients.”

Revised the instructions on REST dependencies to us Apace Maven. See
“Dependencies for Coherence REST.”

Revised the instructions for deploying Coherence REST to WebLogic Server. See
“Deploying to WebLogic Server.”

Part |

Part I contains the following chapters:

¢ Introduction to Coherence*Extend

* Building Your First Extend Application
¢ Configuring Extend Proxies

¢ Configuring Extend Clients

e Advanced Extend Configuration

e Best Practices for Coherence*Extend

Getting Started

1

Introduction to Coherence*Extend

This chapter describes Coherence*Extend and includes information about native
Coherence clients (Java, C++, and .NET) and non-native Coherence clients (REST and
Memcached).

This chapter includes the following sections:

¢ Overview of Coherence*Extend

¢ Extend Clients

e Extend Client APIs

e POF Serialization

¢ Understanding Extend Client Configuration Files

¢ Non-Native Client Support

1.1 Overview of Coherence*Extend

Coherence*Extend "extends" the reach of the core Coherence TCMP cluster to a wider
range of consumers, including desktops, remote servers, and computers located across
WAN connections. Typical uses of Coherence*Extend include providing desktop
applications with access to Coherence caches (including support for Near Cache and
Continuous Query) and linking multiple Coherence clusters connected through a
high-latency, unreliable WAN.

Coherence*Extend consists of two basic components: an extend client running outside
the cluster and an extend proxy service running in the cluster hosted by one or more
cache servers (Def aul t CacheSer ver) that are storage disabled. The client APIs
include implementations of both the CacheSer vi ce and | nvocat i onSer vi ce
interfaces which route all requests to the proxy. The proxy responds to client requests
by delegating to an actual Coherence clustered services (for example, a partitioned or
replicated cache service or an invocation service).

Coherence*Extend uses the Extend-TCP transport binding (a low-level messaging
protocol) to communicate between the client and the cluster. The protocol is a high
performance, scalable TCP /IP-based communication layer. The transport binding is
configuration-driven and is completely transparent to the client application that uses
Coherence*Extend.

Figure 1-1 provides a conceptual view of the Coherence*Extend components and
shows an extend client connecting to an extend proxy service using Extend-TCP.

Introduction to Coherence*Extend 1-1

Extend Clients

Figure 1-1 Conceptual View of Coherence*Extend Components

Extend Client

Extend-TCP
(TCP/IP) :

Cache Server (S

Like cache clients, an extend client retrieves Coherence clustered service using a cache
factory. After a service is obtained, a client uses the service in the same way as if it
were part of the Coherence cluster. The fact that operations are being sent to a remote
cluster node is transparent to the client application.

1.2 Extend Clients

Extend clients (also referred to as real-time clients) can be created for the Java, .NET,
and C++ platforms and have access to the same API as the standard Coherence API
without being full data members of the cluster. Typically, client applications are
granted only read access to cluster data, although it is possible to enable direct read/
write access. Extend clients provide:

¢ Key-based cache access through the NamedCache interface
¢ Attribute-based cache access using filters

¢ Custom processing and aggregation of cluster side entries using the
| nvocabl eMap interface

® In-Process caching through Local Cache
* Remote invocation of custom tasks in the cluster through the Invocation Service

¢ Event Notifications using the standard Coherence event model. Data changes that
occur within the cluster are visible to the client application. Only events that a
client application registers for are delivered over the wire. This model results in
efficient use of network bandwidth and client processing.

* Near Caching and Continuous Query Caching to maintain cache data locally. If the
server to which the client application is attached happens to fail, the connection is
automatically reestablished to another server, and any locally cached data is re-
synchronized with the cluster.

1-2 Developing Remote Clients for Oracle Coherence

Extend Client APIs

For a complete list of real-time client features, see Oracle Fusion Middleware Licensing
Information.

1.3 Extend Client APIs

Java, C++, and .NET (C#) native libraries are available for building extend clients.
Each APl is delivered in its own distribution and must be installed separately. Extend
clients use their respective APIs to perform cache operations such as access, modity,
and query data that is in a cluster. The C++ and C# APIs follow the Java API as close
as possible to provide a consistent experience between platforms.

As an example, a Java client gets a NamedCache instance using the
CacheFact ory. get Cache method as follows:

NamedCache cache = CacheFactory. get Cache("di st -extend");

For C++, the APl is as follows:

NamedCache: : Handl e hCache = CacheFactory:: get Cache("di st-extend");

For C#, the API is as follows:
I NanedCache cache = CacheFact ory. Get Cache("di st-extend");

This and many other API features are discussed throughout this guide:

* Java - See Creating Java Extend Clients for details on using the API and refer to
Java API Reference for Oracle Coherence for detailed API documentation.

® C++ — See Creating C++ Extend Clients for details on using the API and refer to C+
+ API Reference for Oracle Coherence for detailed API documentation.

® .NET - See Creating .NET Extend Clients for details on using the API and refer
to .NET API Reference for Oracle Coherence for detailed API documentation.

1.4 POF Serialization

Like cache clients, extend clients must serialize objects that are to be stored in the
cluster. C++ and C# clients use Coherence's Portable Object Format (POF), which is a
language agnostic binary format. Java extend clients typically use POF for serialization
as well; however, there are several other options for serializing Java objects, such as
Java native serialization and custom serialization routines. See Developing Applications
with Oracle Coherence for details.

Clients that serialize objects into the cluster can perform get and put based operations
on the objects. However, features such as queries and entry processors require Java-
based cache servers to interact with the data object, rather then simply holding onto a
serialized representation of it. To interact with the object and access its properties, a
Java version of the object must be made available to the cache servers.

See Developing Applications with Oracle Coherence for detailed information on using POF
with Java. For more information on using POF with C++ and C#, see Building
Integration Objects (C++), and Building Integration Objects (.NET) , respectively.

1.5 Understanding Extend Client Configuration Files

Extend clients are configured using several configurations files. The configuration files
are the same as the cluster configuration files. However, client configuration files are
deployed with the client. The files include:

Introduction to Coherence*Extend 1-3

Non-Native Client Support

Cache Configuration Deployment Descriptor — This file is used to define client-side
cache services and invocation services and must provide the address and port of
the cluster-side extend proxy service to which the client connects. The schema for
this file is the coher ence- cache- conf i g. xsd file for Java and C++ clients and
the cache- confi g. xsd file for .NET clients. See Developing Applications with
Oracle Coherence for a complete reference of the elements in this file.

At run time, the first cache configuration file that is found on the classpath is used.
The coher ence. cacheconfi g system property can also be used to explicitly
specify a cache configuration file. The file can also be set programmatically. See
Developing Applications with Oracle Coherence for general information about the
cache configuration deployment descriptor.

POF Configuration Deployment Descriptor — This file is used to specify custom
data types when using POF to serialize objects. The schema for this file is the
coher ence- pof - confi g. xsd file for Java and C++ clients and the pof -

confi g. xsd file for .NETclients. See Developing Applications with Oracle Coherence
for a complete reference of the elements in this file.

At run time, the first POF configuration file that is found on the classpath is used.
The coher ence. pof . conf i g system property can also be used to explicitly
specify a POF configuration file. When using POF, a client application uses a
Coherence-specific POF configuration file and a POF configuration file that is
specific to the user types used in the client. See Developing Applications with Oracle
Coherence for general information about the POF configuration deployment
descriptor.

Operational Override File — This file is used to override the operational deployment
descriptor, which is used to specify the operational and run-time settings that are
used to create, configure and maintain clustering, communication, and data
management services. For extend clients, this file is typically used to override
member identity, logging, security, and licensing. The schema for this file is the
coher ence- oper ati onal - confi g. xsd file for Java and C++ clients and the
coher ence. xsd file for .NET clients. See Developing Applications with Oracle
Coherence for a complete reference of the elements in this file.

At run time, the first operational override file (t angosol - coher ence-
override. xm) that is found on the classpath is used. The

coher ence. over ri de system property can also be used to explicitly specify an
operational override file. The file can also be set programmatically. See Developing
Applications with Oracle Coherence for general information about the operational
override file,

1.6 Non-Native Client Support

Coherence provides remote access to caches from REST-based or Memcached-based
clients. As with Coherence*Extend clients, non-native clients use the resources of a
cluster without becoming cluster members. Both REST and Memcached client APIs are
available for many popular programming languages, allowing Coherence to be used
in heterogeneous environments. Non-native clients can also be used to ease the
migration to a Coherence solution that uses the native Coherence client APIs.

1.6.1 REST Client Support

Coherence provides a REST implementation that provides access to cache operations
over the HTTP protocol. Any REST client API can use Coherence caching. REST
support is provided either through an embedded HTTP server that is configured as an

1-4 Developing Remote Clients for Oracle Coherence

Non-Native Client Support

extend-like acceptor on a proxy server, or through deployment to any Java EE-based
application server. For details about using Coherence REST, see Using Coherence
REST

1.6.2 Memcached Client Support

Coherence can be used as a drop-in replacement for memcached servers. Any
memcached client API that supports the memcached binary protocol can use
Coherence distributed caching. Memcached support is provided through a
memcached adaptor that is implemented as an extend-like acceptor that runs on a
proxy server. For details about configuring Coherence to accept memcached client
connections, see Integrating Oracle Coherence.

Introduction to Coherence*Extend 1-5

Non-Native Client Support

1-6 Developing Remote Clients for Oracle Coherence

2

Building Your First Extend Application

This chapter demonstrates basic tasks that are required to build and run
Coherence*Extend clients. The example client that is used in this chapter is a Java-
based extend client; however, the concepts that are demonstrated are common to both
C++ and .NET extend clients. For complete C++ and .NET examples, see the
Coherence Examples that are distributed as part of the Coherence for Java distribution.

This chapter includes the following sections:
¢ Overview of the Extend Example

® Step 1: Configure the Cluster Side

e Step 2: Configure the Client Side

¢ Step 3: Create the Sample Client

e Step 4: Start the Cache Server Process

¢ Step 5: Run the Application

2.1 Overview of the Extend Example

This chapter is organized into a set of steps that are used to create, configure, and run
a basic Coherence*Extend client. The steps demonstrate many fundamental
Coherence*Extend concepts, such as: configuring an extend proxy, configuring a
remote cache, configuring the remote invocation service, and using the Coherence
APL

Coherence for Java must be installed to complete the steps. For simplicity and ease of
deployment, the client and cache server in this example are run on the same computer.
Typically, extend clients and cache servers are located on separate systems.

2.2 Step 1: Configure the Cluster Side

The example extend client requires a proxy and cache to be configured in the cluster's
cache configuration deployment descriptor. The extend proxy configured in this
example is automatically assigned a proxy port to listen for client TCP/IP
communication. A distributed cache named di st - ext end is defined and is used to
store client data in the cluster.

To configure the cluster side:

1. Create an XML file named exanpl e- confi g. xnl .

2. Copy the following XML to the file.

<?xm version="1.0"?>

Building Your First Extend Application 2-1

Step 2: Configure the Client Side

<cache-config xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence- cache-config
coher ence- cache-confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>di st - ext end</ cache- nane>
<schene- nane>ext end</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>

<di stri but ed- scheme>
<schene- nane>ext end</ schenme- name>
<l ease-granul arity>nenber</| ease-granul arity>
<backi ng- map- scheme>

<l ocal - schene/ >

</ backi ng- map- scheme>
<autostart>true</autostart>

</ distributed-schene>

<pr oxy- scheme>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- nane>
<autostart>true</autostart>
</ proxy- scheme>
</ cachi ng- schenes>
</ cache-config>

3. Save and close the file.

2.3 Step 2: Configure the Client Side

The example client queries a remote cache and also invokes a task which is run on a
remote cluster node. To complete these operations, the example extend client requires
a remote cache scheme and a remote invocation scheme. Invoking tasks is considered
a more advanced use case.

The remote cache scheme includes a service name that matches the service name of a
proxy service on the cluster to which the client connects. In addition, the cache name
that is used in the cluster must also be used as the name of the remote cache scheme.
For this example (based on Step 1), the remote cache scheme service name is

Ext endTcpCacheSer vi ce and the cache name is di st - ext end. Lastly, the remote
cache scheme includes the address and port of the cluster's name service, which is
used to find a proxy. The name service runs on the cluster port which is 7574 by
default.

The example extend client invokes a task on the remote cache and therefore requires a
remote invocation scheme. The remote invocation scheme defines the

Ext endTcpl nvocat i onSer vi ce service, which allows the client to create an

I nvocabl e instance and send it to the cluster for processing. The remote invocation
scheme uses the name service to find a proxy and includes the name of the proxy
service to which it connects.

To configure the client side:

1. Create an XML file named exanpl e-cl i ent-confi g. xm .
2. Copy the following XML to the file.

<?xm version="1.0"?>

2-2 Developing Remote Clients for Oracle Coherence

Step 3: Create the Sample Client

<cache-config xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence- cache-config
coher ence- cache-confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>di st - ext end</ cache- nane>
<schene- nane>r enot e</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<renot e- cache- schene>
<schene- nane>r enot e</ schene- name>
<servi ce- nane>Ext endTcpCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<name- servi ce- addr esses>
<socket - addr ess>
<address>127. 0. 0. 1</ addr ess>
<port>7574</ port >
</ socket - addr ess>
</ name- servi ce- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request - ti meout >5s</request - t i mneout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ remot e- cache- schene>

<renot e-i nvocat i on- schene>
<schene- nane>ext end- i nvocat i on</ schene- nane>
<servi ce- nanme>Ext endTcpl nvocat i onSer vi ce</ servi ce- nane>
<pr oxy- servi ce- name>Ext endTcpCacheSer vi ce</ pr oxy- servi ce- name>
<initiator-config>
<tcp-initiator>
<name- servi ce- addr esses>
<socket - addr ess>
<address>127. 0. 0. 1</ addr ess>
<port>7574</ port >
</ socket - addr ess>
</ name- servi ce- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request - ti meout >5s</request -t i neout >
</ out goi ng- nessage- handl er >
</initiator-config>
</remot e-i nvocat i on- schenme>
</ cachi ng- schenes>
</ cache-config>

3. Save and close the file.

2.4 Step 3: Create the Sample Client

#unique_50/unique_50_Connect_42_CHDFDFBA is a simple client that increments an
| nt eger value in a remote cache using the CacheSer vi ce and then retrieves the
value from the cache using the | nvocat i onSer vi ce. Lastly, the client writes the
value to the system output before exiting.

Building Your First Extend Application 2-3

Step 3: Create the Sample Client

Note:

* The client class must be on the classpath for all cache servers in the cluster.
The Test A i ent $1 class is an anonymous inner class that is generated
during compilation. It is serialized and sent to the | nvocat i onSer vi ce
running on a cluster member. In this example, the client and cluster
member run on a single computer. Therefore, both Java invocations use the
same classpath.

¢ This example could also be run on a Coherence node (that is, within the
cluster) as is. The fact that operations are being sent to a remote cluster
node over TCP/IP is completely transparent to the client application.

To create the sample application:

1. Create a text file.

2. Copy the following Java code to the file:

i mport com tangosol . net. Abstract | nvocabl e;
i mport com tangosol . net. CacheFact ory;

i mport com tangosol . net. | nvocationService;
i mport com tangosol . net. NamedCache;

inport java.util.Mp;

public class TestCient {
public static void main(String[] asArgs)
throws Throwabl e
{

NamedCache cache = CacheFactory. get Cache("dist-extend");
Integer IValue = (Integer) cache.get("key");
if (Ivalue == null)

{
| Val ue = new Integer(1);
}
el se
{
| Val ue = new Integer(IValue.intValue() + 1);
}

cache. put ("key", |Val ue);
I nvocationService service = (lnvocationService)
CacheFact ory. get Conf i gur abl eCacheFact ory()
.ensureServi ce("ExtendTcpl nvocati onService");

Map map = service. query(new Abstract|nvocabl e()

{
public void run()
{
Systemout. println("This has been run by
Ext endTcpl nvocationService on: " +
CacheFactory. get C uster().getLocal Menber());
set Resul t (CacheFact ory. get Cache("di st-extend"). get ("key"));
}
},onull);

Integer IValuel = (Integer) map.get(service.getCuster().

2-4 Developing Remote Clients for Oracle Coherence

Step 4: Start the Cache Server Process

get Local Menber ());
Systemout. print("The value of the key is " + I|Valuel);

}
}

3. Save the file as Test C i ent . j ava and close the file.
4. Compile Testd i ent.java:

javac -cp .; COHERENCE_HOWE\ | i b\ coherence.jar TestCdient.java

Coherence*Extend InvocationService

Since, by definition, a Coherence*Extend client has no direct knowledge of the cluster
and the members running within the cluster, the Coherence*Extend

I nvocat i onSer vi ce only allows | nvocabl e tasks to be executed on the JVM to
which the client is connected. Therefore, you should always pass a null member set to
the quer y() method. As a consequence, the single result of the execution is keyed by
the local Menber , which is null if the client is not part of the cluster. This Merber can
be retrieved by calling ser vi ce. get O ust er () . get Local Menber ().
Additionally, the Coherence*Extend | nvocat i onSer vi ce only supports
synchronous task execution (that is, the execut e() method is not supported).

2.5 Step 4: Start the Cache Server Process

Extend Proxies are started as part of a cache server process(Def aul t CacheSer ver).
The cache server must be configured to use the cache configuration that was created in
Step 1. In addition, the cache server process must be able to find the Test O i ent
application on the classpath at run time.

The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the coher ence. cacheconfi g
system property:

java -cp COHERENCE_HOME\ | i b\ coherence. j ar; PATH_TO CLI ENT - Dcoher ence. cacheconfi g=PATH
\ exanpl e-config.xm comtangosol . net. Def aul t CacheSer ver

Check the console output to verify that the proxy service is started. The output

message is similar to the following;:

(thread=Proxy: Ext endTcpProxyServi ce: TcpAccept or, nenber=1): TcpAcceptor now
l'istening for connections on 192.168.1.5:7077

2.6 Step 5: Run the Application

The Test A i ent application is started using the j ava command and must be
configured to use the cache configuration file that was created in Step 2.

The following command line runs the application and assumes that the Test Cl i ent
class is located in the current directory. The cache configuration file is explicitly named
using the coher ence. cacheconfi g system property:

java -cp .; COHERENCE_HOME\ i b\ coherence.jar -Dcoherence. cacheconfi g=PATH exanpl e-
client-config.xm Testdient

The output displays (among other things) that the client successfully connected to the
extend proxy TCP address and the current value of the key in the cache. Run the client
again to increment the key's value.

Building Your First Extend Application 2-5

Step 5: Run the Application

Note:

Check the cache server process output for the message confirming that the
invocation task was executed remotely using the
Ext endTcpl nvocat i onSer vi ce service.

This has been run...

2-6 Developing Remote Clients for Oracle Coherence

3

Configuring Extend Proxies

This chapter provides instructions for configuring Coherence*Extend proxies. Extend
proxies allow clients to access and use the caches that are defined in a Coherence
cluster. The instructions in this chapter provide basic setup and do not represent a
complete configuration reference.

This chapter includes the following sections:
e Overview of Configuring Extend Proxies

¢ Defining Extend Proxy Services

¢ Defining Caches for Use By Extend Clients
¢ Disabling Storage on a Proxy Server

e Starting a Proxy Server

3.1 Overview of Configuring Extend Proxies

Extend proxies are servers (Def aul t CacheSer ver processes) in the cluster that
allow extend clients to access and use the caches in a Coherence cluster. Proxy servers
are not responsible for storing data and are only used to accept client requests. A
proxy server is configured with a proxy service, which is the underlying cluster
service that provide access to cache service instances and invocation service instances
that run on the cluster. A Coherence cluster must include an extend proxy service to
accept extend client connections and must include a cache that is used by clients to
retrieve and store data.

Extend proxy services are configured in a cache configuration deployment descriptor.
This deployment descriptor is often referred to as the cluster-side cache configuration
file. It is the same cache configuration file that is used to set up caches on the cluster.
See Developing Applications with Oracle Coherence for detailed information about the
cache configuration deployment descriptor.

3.2 Defining Extend Proxy Services

The extend proxy service (Pr oxySer vi ce) is a cluster service that allows extend
clients to access a Coherence cluster using TCP/IP. A proxy service proxies two types
of cluster services: the CacheSer vi ce cluster service, which is used by clients to
access caches; and, the | nvocat i onSer vi ce cluster service, which is used by clients
to execute | nvocabl e objects on the cluster.

The following topics are included in this section:
¢ Defining a Single Proxy Service Instance

¢ Defining Multiple Proxy Service Instances

Configuring Extend Proxies 3-1

Defining Extend Proxy Services

¢ Defining Multiple Proxy Services
e Explicitly Configuring Proxy Addresses
¢ Disabling Cluster Service Proxies

¢ Specifying Read-Only NamedCache Access

3.2.1 Defining a Single Proxy Service Instance

Extend proxy services are configured within a <cachi ng- schenmes> node using the
<pr oxy- schene> element. Example 3-1 defines a proxy service named

Ext endTcpPr oxySer vi ce and includes the <aut ost ar t > element that is set to

t r ue so that the service automatically starts at a cluster node. See the <pr oxy-
scheme> element reference in the Developing Applications with Oracle Coherence for a
complete list and description of all <pr oxy- schene> subelements.

As configured in Example 3-1, a proxy address and ephemeral port is automatically
assigned and registered with a cluster name service. Extend clients connect to the
name service, which then redirects the client to the address of the requested proxy.
The use of the name service allows proxies to run on ephemeral addresses, which
simplifies port management and configuration. For details about explicitly defining
the address and port of a proxy, see “Explicitly Configuring Proxy Addresses ”.

Example 3-1 Extend Proxy Service Configuration

<cachi ng- schenes>
<pr oxy- scheme>
<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<autostart>true</autostart>
</ pr oxy- schenme>
</ cachi ng- schenes>

3.2.2 Defining Multiple Proxy Service Instances

Multiple extend proxy service instances can be defined in order to support an
expected number of client connections and to support fault tolerance and load
balancing. Client connections are automatically balanced across proxy service
instances. The algorithm used to balance connections depends on the load balancing
strategy that is configured. See “Load Balancing Connections”, for more information
on load balancing.

To define multiple proxy service instances, include a proxy service definition in
multiple proxy servers and use the same service name for each proxy service. Proxy
services that share the same service name are considered peers.

The following examples define two instances of the Ext endTcpPr oxySer vi ce proxy
service. The proxy service definition is included in each cache server's respective cache
configuration file within the <pr oxy- scheme> element. The same configuration can
be used on all proxies including proxies that are co-located on the same machine.

On proxy server 1:

<cachi ng- schenmes>
<pr oxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi ce</ servi ce- name>
<autostart>true</autostart>
</ pr oxy- scheme>

3-2 Developing Remote Clients for Oracle Coherence

Defining Extend Proxy Services

</ cachi ng- schenes>

On proxy server 2:

<cachi ng- schenes>
<pr oxy- scheme>
<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<autostart>true</autostart>
</ pr oxy- schene>
</ cachi ng- schenes>

3.2.3 Defining Multiple Proxy Services

Multiple extend proxy services can be defined in order to provide different
applications with their own proxies. Extend clients for a particular application can be
directed toward specific proxies to provide a more predictable environment.

The following example defines two extend proxy services:
Ext endTcpPr oxyServi cel and Ext endTcpPr oxySer vi ce2:

<cachi ng- schenmes>
<pr oxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi cel</ servi ce- nane>
<autostart>true</autostart>
</ pr oxy- scheme>
<pr oxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi ce2</ servi ce- nane>
<autostart>true</autostart>
</ pr oxy- scheme>
</ cachi ng- schenes>

3.2.4 Explicitly Configuring Proxy Addresses

Older extend clients that predate the name service or clients that have specific firewall
constraints may require specific proxy addresses. In this case, the proxy can be
explicitly configured to listen on a specific address and port. For additional details
about firewall configuration, see “Configuring Firewalls for Extend Clients”.

The <t cp- accept or > subelement includes the address (IP, or DNS name, and port)
that an extend proxy service listens to for TCP/IP client communication. The address
can be explicitly defined using the <addr ess- pr ovi der > element, or the address
can be defined within an operational override configuration file and referenced using
the <addr ess- pr ovi der > element. The latter approach decouples the address
configuration from the proxy scheme definition and allows the address to change at
runtime without having to change the proxy definition. For details on referencing an
address definition, see “Using Address Provider References for TCP Addresses”.

Example 3-2 defines a proxy service named Ext endTcpPr oxySer vi ce and is set up
to listen for client requests on a TCP/IP socket that is bound to 198. 168. 1. 5 and
port 7077.

Example 3-2 Explicitly Configured Proxy Service Address

<cachi ng- schenes>
<pr oxy- scheme>

Configuring Extend Proxies 3-3

Defining Extend Proxy Services

<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<t cp-accept or >
<addr ess- provi der >
<l ocal - addr ess>
<address>192. 168. 1. 5</ addr ess>
<port>7077</ port>
</l ocal - addr ess>
</ addr ess- provi der >
</tcp-acceptor>
</ acceptor-confi g>
<autostart>true</autostart>
</ pr oxy- schene>
</ cachi ng- schenes>

The specified port should be outside of the computer's ephemeral port range to ensure
that it is not automatically assigned to other applications. If the specified port is not
available, then the default behavior is to select the next available port. To disable
automatic port adjustment, add a <port - aut o- adj ust > element that includes the
value f al se. Or, to specify a range of ports from which the port is selected, include a
port value that represents the upper limit of the port range. The following example
sets a port range from 7077 to 8000:

<acceptor-config>
<t cp- accept or >
<l ocal - addr ess>
<addr ess- provi der >
<addr ess>192. 168. 1. 5</ addr ess>
<port>7077</ port >
<port - aut o- adj ust >8000</ port - aut o- adj ust >
</ addr ess- provi der >
</l ocal - address>
</tcp-acceptor>
</ accept or - confi g>

The <addr ess> element supports using CIDR notation as a subnet and mask (for
example 192. 168. 1. 0/ 24). CIDR simplifies configuration by allowing a single
address configuration to be shared across computers on the same sub-net. Each cluster
member specifies the same CIDR address block and a local NIC on each computer is
automatically found that matches the address pattern. The / 24 prefix size matches up
to 256 available addresses: from 192. 168. 1. 0 to 192. 168. 1. 255.

For solutions that do not require a firewall, you can omit the IP and port values which
causes the proxy to use the same IP address and port as TCMP (7574 by default). The
port can also be configured with a listen port of O, which causes the proxy to listen on
a system assigned ephemeral port. This configuration is the same as omitting the
<accept or - conf i g> element as shown in “Defining a Single Proxy Service
Instance”. If the proxy is configured to use ephemeral ports, then clients must use the
cluster name service to locate the proxy.

3.2.5 Disabling Cluster Service Proxies

The cache service and invocation service proxies can be disabled within an extend
proxy service definition. Both of these proxies are enabled by default and can be
explicitly disabled if a client does not require a service.

3-4 Developing Remote Clients for Oracle Coherence

Defining Caches for Use By Extend Clients

Cluster service proxies are disabled by setting the <enabl ed> element to f al se
within the <cache- ser vi ce- pr oxy> and <i nvocati on- servi ce- pr oxy>
respectively.

The following example disables the inovcation service proxy so that extend clients
cannot execute | nvocabl e objects within the cluster:

<pr oxy- schene>

<proxy- confi g>
<i nvocati on- servi ce- proxy>
<enabl ed>f al se</ enabl ed>
</invocation-service-proxy>
</ proxy-confi g>

</ pr oxy- scheme>

Likewise, the following example disables the cache service proxy to restrict extend
clients from accessing caches within the cluster:

<pr oxy- schene>

<proxy- confi g>
<cache- servi ce- proxy>
<enabl ed>f al se</ enabl ed>
</ cache- servi ce- proxy>
</ proxy-confi g>

</ proxy- scheme>

3.2.6 Specifying Read-Only NamedCache Access

By default, extend clients are allowed to both read and write data to proxied
NarredCache instances. The <r ead- onl y> element can be specified within a
<cache- servi ce- pr oxy> element to prohibit extend clients from modifying cached
content on the cluster. For example:

<pr oxy- scheme>

<proxy- confi g>
<cache- servi ce- proxy>
<read- onl y>t r ue</read- onl y>
</ cache- servi ce- proxy>
</ proxy-confi g>

</ proxy- scheme>

3.3 Defining Caches for Use By Extend Clients

Extend clients read and write data to a cache on the cluster. Any of the cache types can
store client data. For extend clients, the cache on the cluster must have the same name
as the cache that is being used on the client side; see “Defining a Remote Cache”. For
more information about defining caches, see "Using Caches" in the Developing
Applications with Oracle Coherence. This section provides basic examples of three cache
types that are commonly used be extend clients

A Basic Partitioned (distributed) Cache

The following example defines a basic partitioned cache named di st - ext end.

Configuring Extend Proxies 3-5

Defining Caches for Use By Extend Clients

<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>di st - ext end</ cache- name>
<scheme- nanme>di st - def aul t </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schenes>
<di stri but ed- schene>
<scheme- nanme>di st - def aul t </ schene- name>
<backi ng- map- scheme>
<l ocal - schene/ >
</ backi ng- map- scheme>
<autostart>true</autostart>
</ di stribut ed-schene>
</ cachi ng- schenes>

A Basic Near Cache

A typical near cache is configured to use a local cache (thread safe, highly concurrent,
size-limited and possibly auto-expiring) as the front cache and a remote cache as a
back cache. A near ache is configured by using the near-scheme which has two child
elements: a front-scheme for configuring a local (front) cache and a back-scheme for
defining a remote (back) cache.

A Near Cache is configured by using the <near - schene> element in the

coher ence- cache- confi g file. This element has two required subelements:

f ront - schene for configuring a local (front-tier) cache and a back- schemne for
defining a remote (back-tier) cache. While a local cache (<l ocal - schenme>)is a
typical choice for the front-tier, you can also use non-JVM heap based caches,

(<ext er nal - scheme> or <paged- ext er nal - scheme>) or schemes based on Java
objects (<cl ass- scheme>).

The remote or back-tier cache is described by the <back- scheme> element. A back-
tier cache can be either a distributed cache (<di st ri but ed- schene>) or a remote
cache (<r enot e- cache- schene>). The <r enpt e- cache- schenme> element enables
you to use a clustered cache from outside the current cluster.

Optional subelements of <near - scheme> include <i nval i dat i on- st r at egy> for
specifying how the front-tier and back-tier objects are kept synchronized and

<l i st ener > for specifying a listener which is notified of events occurring on the
cache.

Example 3-3 demonstrates a near cache configuration.
Example 3-3 Near Cache Configuration

<?xm version="1.0"?>

<cache-config xm ns: xsi="http:// ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. com coher ence/ coher ence- cache-config
coher ence- cache-confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>di st - ext end- near </ cache- nane>
<schene- nane>ext end- near </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>
<cachi ng- schemes>

3-6 Developing Remote Clients for Oracle Coherence

Defining Caches for Use By Extend Clients

<near - scheme>
<scheme- name>ext end- near </ schene- name>
<front-schene>
<l ocal - schene>
<hi gh- uni t $>1000</ hi gh- uni t s>
</l ocal - schene>
</front-schene>
<back- scheme>
<renot e- cache- scheme>
<scheme-r ef >ext end- di st </ schene-ref>
</ renot e- cache- scheme>
</ back- schene>
<invalidation-strategy>all</invalidation-strategy>
</ near - scheme>
</ cachi ng- schenes>
</ cache-confi g>

A Basic Local Cache

A local cache is a cache that is local to (completely contained within) a particular
application. There are several attributes of a local cache that are particularly
interesting:

* A lJocal cache implements the same interfaces that the remote caches implement,
meaning that there is no programming difference between using a local and a
remote cache.

* Alocal cache can be size-limited. Size-limited means that the local cache can restrict
the number of entries that it caches, and automatically evict entries when the cache
becomes full. Furthermore, both the sizing of entries and the eviction policies can
be customized, for example allowing the cache to be size-limited based on the
memory used by the cached entries. The default eviction policy uses a combination
of Most Frequently Used (MFU) and Most Recently Used (MRU) information,
scaled on a logarithmic curve, to determine what cache items to evict. This
algorithm is the best general-purpose eviction algorithm because it works well for
short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

* Alocal cache supports automatic expiration of cached entries, meaning that each
cache entry can be assigned a time-to-live value in the cache. Furthermore, the
entire cache can be configured to flush itself on a periodic basis or at a preset time.

® A local cache is thread safe and highly concurrent.

* Alocal cache provides cache "get" statistics. It maintains hit and miss statistics.
These run-time statistics accurately project the effectiveness of the cache and are
used to adjust size-limiting and auto-expiring settings accordingly while the cache
is running.

The element for configuring a local cache is <l ocal - schene>. Local caches are
generally nested within other cache schemes, for instance as the front-tier of a near-
scheme. The <I| ocal - schene> provides several optional subelements that let you
define the characteristics of the cache. For example, the <I ow- uni t s> and <hi gh-
uni t s> subelements allow you to limit the cache in terms of size. When the cache
reaches its maximum allowable size, it prunes itself back to a specified smaller size,
choosing which entries to evict according to a specified eviction-policy (<evi cti on-
pol i cy>). The entries and size limitations are measured in terms of units as
calculated by the scheme's unit-calculator (<uni t - cal cul at or >).

Configuring Extend Proxies 3-7

Disabling Storage on a Proxy Server

You can also limit the cache in terms of time. The <expi r y- del ay> subelement
specifies the amount of time from last update that entries are kept by the cache before
being marked as expired. Any attempt to read an expired entry results in a reloading
of the entry from the configured cache store (<cachest or e- scheme>). Expired
values are periodically discarded from the cache based on the flush-delay.

If a <cache- st or e- schene> is not specified, then the cached data only resides in
memory, and only reflect operations performed on the cache itself. See <I ocal -
schene> for a complete description of all of the available subelements.

Example 3-4 demonstrates a local cache configuration.
Example 3-4 Local Cache Configuration

<?xnm version='1.0"?>

<cache-config xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. com coher ence/ coher ence- cache-config
coher ence- cache-confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>exanpl e- | ocal - cache</ cache- nane>
<schene- nane>exanpl e- | ocal </ schene- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>
<cachi ng- schemes>
<l ocal - schene>
<schene- nane>exanpl e- | ocal </ schene- nane>
<evi ction-pol i cy>LRW/ evi cti on- pol i cy>
<hi gh- uni t $>32000</ hi gh- uni t s>
<l ow uni t s>10</ | ow uni t s>
<uni t-cal cul at or >FI XED</ uni t - cal cul at or>
<expi ry-del ay>10ns</ expi ry- del ay>
<cachest or e- schene>
<cl ass- schene>
<cl ass- nane>Exanpl eCacheSt or e</ ¢l ass- name>
</ cl ass- schenme>
</ cachest or e- scheme>
<pre-|oad>true</pre-|oad>
</l ocal - schene>
</ cachi ng- schenes>
</ cache-confi g>

3.4 Disabling Storage on a Proxy Server

Proxy services run on cluster members that also store data in the cluster (cache
servers). This is generally recommended because scaling cache servers increases both
cluster storage capacity as well as aggregate proxy bandwidth. However it is also
possible to run proxies and storage nodes in two separate tiers and scale them
independently; although, this is generally not necessary and requires more careful
planning. To run separate tiers, a proxy must be explicitly configured to not store any
cache data.

Note:

Storage-enabled proxies bypass the front cache of a near cache and operate
directly against the back cache if it is a partitioned cache.

3-8 Developing Remote Clients for Oracle Coherence

Starting a Proxy Server

To disable storage on a proxy server, use the
coherence. di stri but ed. | ocal st or age Java property set to f al se when
starting the cluster member. For example:

- Dcoherence. di stributed. | ocal storage=fal se

Storage can also be disabled in the cache configuration file as part of a distributed
cache definition by setting the <I ocal - st or age> element to f al se. For additional
details, see the <di st ri but ed- scheme> element reference in the Developing
Applications with Oracle Coherence.

<di st ri but ed- schene>
<scheme- name>di st - def aul t </ schene- name>
<l ocal - st orage>f al se</| ocal - st or age>
<backi ng- map- schenme>

<l ocal - scheme/ >

</ backi ng- map- scheme>
<autostart>true</autostart>

</ di stribut ed-scheme>

3.5 Starting a Proxy Server

A proxy server can be started using the Def aul t CacheSer ver class. To start a proxy
server:

1. Change the current directory to the Oracle Coherence library directory
(YCOHERENCE_HOVE% | i b on Windows and $COHERENCE._HOME/ | i b on UNIX).

2. Make sure that the paths are configured so that the Java command runs.

3. Run the Def aul t CacheSer ver class and include the location of the cache
configuration file and the operational configuration file. For example:

java -cp path_to_configuration_files;coherence.jar
com tangosol . net. Def aul t CacheSer ver

Configuring Extend Proxies 3-9

Starting a Proxy Server

3-10 Developing Remote Clients for Oracle Coherence

A

Configuring Extend Clients

This chapter provides instructions for configuring Coherence*Extend. The instructions
provide basic setup and do not represent a complete configuration reference. In
addition, refer to the platform-specific parts of this guide for additional configuration
instructions.

For a complete Java example that also includes configuration and setup, see Building
Your First Extend Application.

This chapter includes the following sections:
¢ Overview of Configuring Extend Clients
¢ Defining a Remote Cache

e Using a Remote Cache as a Back Cache

¢ Defining Remote Invocation Schemes

¢ Connecting to Specific Proxy Addresses
¢ Detecting Connection Errors

¢ Disabling TCMP Communication

4.1 Overview of Configuring Extend Clients

Coherence*Extend requires configuration both on the client side and the cluster side.
On the cluster side, extend proxy services are setup to accept client requests. Proxy
services provide access to cache service instances and invocation service instances that
run on the cluster. On the client side, remote cache services and the remote invocation
services are configured and used by clients to access cluster data through the extend
proxy service. Extend clients and extend proxy services communicate using TCP/IP.

Extend proxy services are configured in a cache configuration deployment descriptor.
This deployment descriptor is often referred to as the cluster-side cache configuration
file. It is the same cache configuration file that is used to set up caches on the cluster.
Extend clients are also configured using a cache configuration deployment descriptor.
This deployment descriptor is deployed with the client and is often referred to as the
client-side cache configuration file. See Developing Applications with Oracle Coherence for
detailed information about the cache configuration deployment descriptor

Extend clients use the remote cache service and the remote invocation service to
interact with a Coherence cluster. Both remote cache services and remote invocation
services are configured in a cache configuration deployment descriptor that must be
found on the classpath when an extend client application starts.

Configuring Extend Clients 4-1

Defining a Remote Cache

4.2 Defining a Remote Cache

A remote cache is specialized cache service that routes cache operations to a cache on
the cluster. The remote cache and the cache on the cluster must have the same cache
name. Extend clients use the NamedCache interface as normal to get an instance of the
cache. At run time, the cache operations are not executed locally but instead are sent
using TCP/IP to an extend proxy service on the cluster. The fact that the cache
operations are delegated to a cache on the cluster is transparent to the extend client.

A remote cache is defined within a <cachi ng- schemes> node using the <r enot e-
cache- schene> element. Example 4-1 creates a remote cache scheme that is named
Ext endTcpCacheSer vi ce and connects to the name service, which then redirects
the request to the address of the requested proxy service. The use of the name service
simplifies port management and firewall configuration. For details about <r enpt e-
cache- schene> subelements, see the Developing Applications with Oracle Coherence.

Example 4-1 Remote Cache Definition

<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>di st - ext end</ cache- name>
<scheme- name>ext end- di st </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schenes>
<renot e- cache- scheme>
<schene- nane>ext end- di st </ scheme- name>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<name- servi ce- addr esses>
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<port>7574</ port>
</ socket - addr ess>
</ nane- servi ce- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i meout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ renot e- cache- schene>
</ cachi ng- schenes>

If the <ser vi ce- nanme> value is different than the proxy scheme <ser vi ce- name>
value on the cluster, use the <pr oxy- ser vi ce- nane> element to enter the value of
the <ser vi ce- nane> element that is configured in the proxy scheme. For example:

<renot e- cache- scheme>
<schene- nane>ext end- di st </ scheme- name>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<proxy- servi ce- name>SoneQ her Pr oxySer vi ce</ pr oxy- servi ce- name>

As configured in Example 4-1, the remote cache scheme uses the <nane- servi ce-
addr esses> element to define the socket address (IP, or DNS name, and port) of the

4-2 Developing Remote Clients for Oracle Coherence

Using a Remote Cache as a Back Cache

name service on the cluster. The name service listens on the cluster port (7574) by
default and is available on all machines running cluster nodes. If the target cluster uses
the default cluster port, then the port can be omitted from the configuration.
Moreover, extend clients by default use the cluster discovery addresses to find the
cluster and proxy. If the extend client is on the same network as the cluster, then no
specific configuration is required as long as the client uses a cache configuration file
that specifies the same cluster-side cluster name.

The <nare- ser vi ces- addr esses> element also supports the use of the

<addr ess- provi der > element for referencing a socket address that is configured in
the operational override configuration file. For details, see “Using Address Provider
References for TCP Addresses”. For details about explicitly defining the address and
port of a proxy, see “Connecting to Specific Proxy Addresses”.

Note:

Clients that are configured to use a name service can only connect to
Coherence versions that also support the name service. In addition, for
previous Coherence releases, the name service automatically listened on a
member's unicast port instead of the cluster port.

4.3 Using a Remote Cache as a Back Cache

Extend clients typically use remote caches as part of a near cache. In such scenarios, a
local cache is used as a front cache and the remote cache is used as the back cache. The
following example creates a near cache that uses a local cache and a remote cache.

<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>di st - ext end- near </ cache- name>
<schene- nane>ext end- near </ schene- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schenmes>
<near - schene>
<schene- nane>ext end- near </ schene- nane>
<front-schene>
<l ocal - scheme>
<hi gh- uni t $>1000</ hi gh- uni t s>
</l ocal - schene>
</front-schenme>
<back- schene>
<renot e- cache- schenme>
<scheme- r ef >ext end- di st </ schene-ref >
</ renot e- cache- schene>
</ back- schene>
<invalidation-strategy>all</invalidation-strategy>
</ near - schene>

<renot e- cache- scheme>
<schene- nane>ext end- di st </ schene- nane>
<servi ce- name>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<name- servi ce- addr esses>
<socket - addr ess>

Configuring Extend Clients 4-3

Defining Remote Invocation Schemes

<address>198. 168. 1. 5</ addr ess>
<port>7574</ port>
</ socket - addr ess>
</ nane- servi ce- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i meout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ renot e- cache- schene>
</ cachi ng- schenes>

4.4 Defining Remote Invocation Schemes

A remote invocation scheme defines an invocation service that is used by clients to
execute tasks on the remote Coherence cluster. Extend clients use the

| nvocat i onSer vi ce interface as normal. At run time, a TCP/IP connection is made
to an extend proxy service and an | nvocat i onSer vi ce implementation is returned
that executes synchronous | nvocabl e tasks within the remote cluster JVM to which
the client is connected.

Remote invocation schemes are defined within a <cachi ng- schemes> node using
the <r enot e- i nvocat i on- schene> element. Example 4-2 defines a remote
invocation scheme that is called Ext endTcpl nvocat i onSer vi ce and uses the
<name- servi ce- addr ess> element to configure the address that the name service
is listening on. For details about the <r enot e- i nvocat i on- scheme> subelements,
see the Developing Applications with Oracle Coherence.

Example 4-2 Remote Invocation Scheme Definition

<cachi ng- schenes>
<renot e- i nvocat i on- schene>
<schene- nane>ext end- i nvocat i on</ schene- nane>
<servi ce- nanme>Ext endTcpl nvocat i onSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<name- servi ce- addr esses>
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<port>7574</ port>
</ socket - addr ess>
</ nane- servi ce- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i meout >
</ out goi ng- nessage- handl er >
</initiator-config>
</remot e-i nvocat i on- schene>
</ cachi ng- schenes>

If the <ser vi ce- name> value is different than the proxy scheme <ser vi ce- name>
value on the cluster, then use the <pr oxy- ser vi ce- name> element to enter the
value of the <ser vi ce- name> element that is configured in the proxy scheme. For
example:

<renot e- cache- schene>
<scheme- name>ext end- di st </ scheme- name>

4-4 Developing Remote Clients for Oracle Coherence

Connecting to Specific Proxy Addresses

<servi ce- name>Ext endTcpl nvocat i onSer vi ce</ servi ce- name>
<proxy- servi ce- name>SoneQ her Pr oxySer vi ce</ pr oxy- servi ce- name>

4.5 Connecting to Specific Proxy Addresses

Clients can connect to specific proxy addresses if the client predates the name service
feature or if the client has specific firewall constraints. For additional details about
firewall configuration, see “Configuring Firewalls for Extend Clients”.

Example 4-1 uses the <socket - addr ess> element to explicitly configure the address
that an extend proxy service is listening on (198. 168. 1. 5 and port 7077). The
address can also be defined within an operational override configuration file and
referenced using the <addr ess- pr ovi der > element. The latter approach decouples
the address configuration from the remote cache definition and allows the address to
change at runtime without having to change the remote cache definition. For details
on referencing an address definition, see “Using Address Provider References for TCP
Addresses”.

Example 4-3 Remote Cache Definition with Explicit Address

<cachi ng- schene- mappi ng>
<cache- mappi ng>
che- nane>di st - ext end</ cache- name>
<scheme- name>ext end- di st </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schenes>
<renot e- cache- scheme>
<schene- nane>ext end- di st </ scheme- name>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<port>7077</ port>
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i meout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ renot e- cache- schene>
</ cachi ng- schenes>

If multiple proxy service instances are configured, then a remote cache scheme or
invocation scheme can include each proxy service addresses to ensure a client can
always connect to the cluster. The algorithm used to balance connections depends on
the load balancing strategy that is configured. See “Load Balancing Connections”, for
more information on load balancing.

To configure multiple addresses, add additional <socket - addr ess> child elements
within the <t cp-i ni ti at or > element of a <r enot e- cache- schene> and

<r enot e- i nvocat i on- schenme> node as required. The following example defines
two extend proxy addresses for a remote cache scheme:

Configuring Extend Clients 4-5

Detecting Connection Errors

<cachi ng- schenes>
<renot e- cache- schene>
<scheme- name>ext end- di st </ scheme- name>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<address>192. 168. 1. 5</ addr ess>
<port>7077</ port>
</ socket - addr ess>
<socket - addr ess>
<address>192. 168. 1. 6</ addr ess>
<port>7077</ port>
</ socket - addr ess>
</renot e- addr esses>
</tcp-initiator>
</initiator-config>
</ renot e- cache- schenme>
</ cachi ng- schenes>

While either an IP address or DNS name can be used, DNS names have an additional
advantage: any IP addresses that are associated with a DNS name are automatically
resolved at runtime. This allows the list of proxy addresses to be stored in a DNS
server and centrally managed and updated in real time. For example, if the proxy
address list is going to be 192. 168. 1. 1,192. 168. 1. 2,and 192. 168. 1. 3, thena
single DNS entry for hostname Ext endTcpCacheSer vi ce can contain those
addresses and a single address named Ext endTcpCacheSer vi ce can be specified
for the proxy address:

<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>Ext endTcpCacheSer vi ce</ addr ess>
<port>7077</ port >
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>

4.6 Detecting Connection Errors

When a Coherence*Extend service detects that the connection between the client and
cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, CacheSer vi ce
or I nvocat i onServi ce) dispatches a Menber Event . MEMBER _LEFT event to all
registered Menber Li st ener s and the service is stopped. For cases where the
application calls CacheFact ory. shut down(), the service implementation
dispatches a Menber Event . MEMBER _LEAVI NGevent followed by a

Menber Event . MEMBER _LEFT event. In both cases, if the client application attempts
to subsequently use the service, the service automatically restarts itself and attempts to
reconnect to the cluster. If the connection is successful, the service dispatches a
Menber Event . MEMBER _JO NED event; otherwise, a irrecoverable error exception is
thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some mechanisms are inherit to the underlying protocol (such as TCP/IP
in Extend-TCP), whereas others are implemented by the service itself. The latter

4-6 Developing Remote Clients for Oracle Coherence

Disabling TCMP Communication

mechanisms are configured by using the <out goi ng- nessage- handl er > element.
For details on this element, see Developing Applications with Oracle Coherence. In
particular, the <r equest - t i meout > value controls the amount of time to wait for a
response before abandoning the request. The <hear t beat - i nt er val > and

<hear t beat - t i meout > values control the amount of time to wait for a response to a
ping request before the connection is closed. As a best practice, the heartbeat timeout
should be less than the heartbeat interval to ensure other members are not
unnecessarily pinged and to not have multiple pings outstanding.

The following example is taken from Example 4-1 and demonstrates setting the
request timeout to 5 seconds.

<initiator-config>

<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i mneout >
</ out goi ng- nessage- handl er >
<linitiator-config>

The following example sets the heartbeat interval to 3 seconds and the heartbeat
timeout to 2 seconds.

<initiator-config>

<out goi ng- nessage- handl er >
<heartbeat -i nt erval >3s</ heartbeat-i nterval >
<heartbeat - ti meout >2s</ heart beat - t i meout >
</ out goi ng- nessage- handl er >
<linitiator-config>

4.7 Disabling TCMP Communication

Java-based extend clients that are located within the network must disable TCMP
communication to exclusively connect to clustered services using extend proxies. If
TCMP is not disabled, Java-based extend clients may cluster with each other and may
even join an existing cluster. TCMP is disabled in the client-side t angosol -
coherence-override. xni file.

To disable TCMP communication, set the <enabl ed> element within the <packet -
publ i sher > element to f al se. For example:

<cl uster-config>
<packet - publ i sher >
<enabl ed system property="coherence.tcnp. enabl ed">f al se
</ enabl ed>
</ packet - publ i sher >
</cluster-config>

The coher ence. t cnp. enabl ed system property is used to specify whether TCMP
is enabled instead of using the operational override file. For example:

- Dcoher ence. t cnp. enabl ed=f al se

Configuring Extend Clients 4-7

Disabling TCMP Communication

4-8 Developing Remote Clients for Oracle Coherence

5

Advanced Extend Configuration

This is a chapter provides instructions for completing advanced configuration for
extend clients and extend proxies. The instructions in this section are not required and
are typically used to change the default configuration or to address specific use cases.

This chapter includes the following sections:

e Using Address Provider References for TCP Addresses
* Using a Custom Address Provider for TCP Addresses
* Load Balancing Connections

* Using Network Filters with Extend Clients

5.1 Using Address Provider References for TCP Addresses

Proxy service, remote cache, and remote invocation definitions can use the

<addr ess- pr ovi der > element to reference a TCP socket address that is defined in
an operational override configuration file instead of explicitly defining an addresses in
a cache configuration file. Referencing socket address definitions allows network
addresses to change without having to update a cache configuration file.

To use address provider references for TCP addresses:

1. Edit thet angosol - coherence-overri de. xnl file (both on the client side and
cluster side) and add a <socket - addr ess> definition, within an <addr ess-
provi der > element, that includes the socket's address and port. Use the
<addr ess- provi der > elements's i d attribute to define a unique ID for the socket
address. For details on the <addr ess- pr ovi der > element in an operational
override configuration file, see Developing Applications with Oracle Coherence. The
following example defines an address with pr oxy1 ID:

<cl uster-config>
<addr ess- provi der s>
<addr ess-provi der id="proxyl">
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<port>7077</ port>
</ socket - addr ess>
</ addr ess- provi der >
</ addr ess- provi der s>
</cluster-config>

2. Edit the cluster-side coher ence- cache- confi g. xnml and create, or update, a
proxy service definition and reference a socket address definition by providing the
definition's ID as the value of the <addr ess- pr ovi der > element within the

Advanced Extend Configuration 5-1

Using a Custom Address Provider for TCP Addresses

<t cp- accept or > element. The following example defines a proxy service that
references the address that is defined in step 1:

<cachi ng- schemes>
<pr oxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<t cp-acceptor>
<addr ess- provi der >pr oxy1</ addr ess- provi der >
</tcp-acceptor>
</ acceptor-confi g>
<autostart>true</autostart>
</ pr oxy- scheme>
</ cachi ng- schenmes>

3. Edit the client-side coher ence- cache- confi g. xm and create, or update, a
remote cache or remote invocation definition and reference a socket address
definition by providing the definition's ID as the value of the <addr ess-
provi der > element within the <t cp-i ni ti at or > element. The following
example defines a remote cache that references the address that is defined in step 1:

<renot e- cache- scheme>
<schene- name>ext end- di st </ schene- name>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<addr ess- provi der >pr oxy1</ addr ess- provi der >
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti neout >5s</request - t i neout >
</ out goi ng- message- handl er >
</initiator-config>
</ renvot e- cache- scheme>

5.2 Using a Custom Address Provider for TCP Addresses

A custom address provider dynamically assigns TCP address and port settings when
binding to a server socket. The address provider must be an implementation of the
com t angosol . net . Addr essProvi der interface. Dynamically assigning
addresses is typically used to implement custom load balancing algorithms.

Address providers are defined using the <addr ess- pr ovi der > element, which can
be used within the <t cp- accept or > element for extend proxy schemes and within
the <t cp-i ni ti at or > element for remote cache and remote invocation schemes.

The following example demonstrates configuring an Addr essPr ovi der
implementation called MyAddr essPr ovi der for a TCP acceptor when configuring an
extend proxy scheme.

<pr oxy- schene>
<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<t cp-accept or >
<addr ess- provi der >
<cl ass- nane>com MyAddr essProvi der </ ¢l ass- nane>
</ addr ess- provi der >

5-2 Developing Remote Clients for Oracle Coherence

Load Balancing Connections

</tcp-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

The following example demonstrates configuring an Addr essPr ovi der
implementation called MyCl i ent Addr essPr ovi der for a TCP initiator when
configuring a remote cache scheme.

<r enot e- cache- scheme>
<schene- name>ext end- di st </ schene- name>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<addr ess- provi der >
<cl ass- name>com MyCl i ent Addr essProvi der </ ¢l ass- nane>
</ addr ess- provi der >
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i mneout >
</ out goi ng- message- handl er >
</initiator-config>
</ renot e- cache- schene>

In addition, the <addr ess- pr ovi der > element also supports the use of a <cl ass-
f act or y- name> element to use a factory class that is responsible for creating

Addr essProvi der instances and a <met hod- nanme> element to specify the static
factory method on the factory class that performs object instantiation.

5.3 Load Balancing Connections

Extend client connections are load balanced across proxy service members. By default,
a proxy-based strategy is used that distributes client connections to proxy service
members that are being utilized the least. Custom proxy-based strategies can be
created or the default strategy can be modified as required. As an alternative, a client-
based load balance strategy can be implemented by creating a client-side address
provider or by relying on randomized client connections to proxy service members.
The random approach provides minimal balancing as compared to proxy-based load
balancing.

Coherence*Extend can be used with F5 BIG-IP Local Traffic Manager (LTM), which
provides hardware-based load balancing. See Integrating with F5 BIG-IP LTM, for
detailed instructions.

The following topics are included in this section:
¢ Using Proxy-Based Load Balancing

¢ Using Client-Based Load Balancing

5.3.1 Using Proxy-Based Load Balancing

Proxy-based load balancing is the default strategy that is used to balance client
connections between two or more members of the same proxy service. The strategy is

Advanced Extend Configuration 5-3

Load Balancing Connections

weighted by a proxy's existing connection count, then by its daemon pool utilization,
and lastly by its message backlog.

The proxy-based load balancing strategy is configured within a <pr oxy- schemne>
definition using a <| oad- bal ancer > element that is set to pr oxy. For clarity, the
following example explicitly specifies the strategy. However, the strategy is used by
default if no strategy is specified and is not required in a proxy scheme definition.

<pr oxy- schene>
<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<l oad- bal ancer >pr oxy</ | oad- bal ancer >
<autostart>true</autostart>

</ proxy-scheme>

Note:

If multiple proxy address are explicitly specified, clients are not required to
list the full set of proxy service members in their cache configuration.
However, a minimum of two proxy service members should always be
configured for redundancy sake.

5.3.1.1 Understanding the Proxy-Based Load Balancing Default Algorithm

The proxy-based load balancing algorithm distributes client connections equally
across proxy service members. The algorithm redirects clients to proxy service
members that are being utilized the least. The following factors are used to determine
a proxy's utilization:

¢ Connection Utilization — this utilization is calculated by adding the current
connection count and pending connection count. If a proxy has a configured
connection limit and the current connection count plus pending connection count
equals the connection limit, the utilization is considered to be infinite.

e Daemon Pool Utilization — this utilization equals the current number of active
daemon threads. If all daemon threads are currently active, the utilization is
considered to be infinite.

¢ Message Backlog Utilization — this utilization is calculated by adding the current
incoming message backlog and the current outgoing message backlog.

Each proxy service maintains a list of all members of the proxy service ordered by
their utilization. The ordering is weighted first by connection utilization, then by
daemon pool utilization, and then by message backlog. The list is resorted whenever a
proxy service member's utilization changes. The proxy service members send each
other their current utilization whenever their connection count changes or every 10
seconds (whichever comes first).

When a new connection attempt is made on a proxy, the proxy iterates the list as
follows:

e If the current proxy has the lowest connection utilization, then the connection is
accepted; otherwise, the proxy redirects the new connection by replying to the
connection attempt with an ordered list of proxy service members that have a
lower connection utilization. The client then attempts to connect to a proxy service
member in the order of the returned list.

5-4 Developing Remote Clients for Oracle Coherence

Load Balancing Connections

e [f the connection utilizations of the proxies are equal, the daemon pool utilization
of the proxies takes precedence. If the current proxy has the lowest daemon pool
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
service members that have a lower daemon pool utilization. The client then
attempts to connect to a proxy service member in the order of the returned list.

¢ If the daemon pool utilization of the proxies are equal, the message backlog of the
proxies takes precedence. If the current proxy has the lowest message backlog
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
service members that have a lower message backlog utilization. The client then
attempts to connect to a proxy service member in the order of the returned list.

¢ If all proxies have the same utilization, then the client remains connected to the
current proxy.

5.3.1.2 Implementing a Custom Proxy-Based Load Balancing Strategy

The com t angosol . coher ence. net . pr oxy package includes the APIs that are
used to balance client load across proxy service members. See Java API Reference for
Oracle Coherence for details on using the proxy-based load balancing APIs that are
discussed in this section.

A custom strategy must implement the Pr oxySer vi ceLoadBal ancer interface.
New strategies can be created or the default strategy

(Def aul t ProxySer vi ceLoadBal ancer) can be extended and modified as required.
For example, to change which utilization factor takes precedence on the list of proxy
services, extend Def aul t Pr oxySer ver LoadBal ancer and pass a custom

Conpar at or object in the constructor that imposes the desired ordering. Lastly, the
client's Mermber object (which uniquely defines each client) is passed to a strategy. The
Menber object provides a means for implementing client-weighted strategies. See
Developing Applications with Oracle Coherence for details on configuring a client's
member identity information.

To enable a custom load balancing strategy, include an <i nst ance> subelement
within the <| oad- bal ancer > element and provide the fully qualified name of a class
that implements the Pr oxySer vi ceLoadBal ancer interface. The following example
enables a custom proxy-based load balancing strategy that is implemented in the

MyPr oxySer vi ceLoadBal ancer class:

<l oad- bal ancer >
<i nstance>
<cl ass- nane>package. MyPr oxySer vi ceLoadBal ancer </ cl ass- name>
</instance>
</ | oad- bal ancer >

In addition, the <i nst ance> element also supports the use of a <cl ass-f act ory-
name> element to use a factory class that is responsible for creating

ProxySer vi ceLoadBal ancer instances, and a <nmet hod- nane> element to specify
the static factory method on the factory class that performs object instantiation. See
Developing Applications with Oracle Coherence for detailed instructions on using the

<i nst ance> element.

Advanced Extend Configuration 5-5

Using Network Filters with Extend Clients

5.3.2 Using Client-Based Load Balancing

The client-based load balancing strategy relies upon a client address provider
implementation to dictate the distribution of clients across proxy service members. If
no client address provider implementation is provided, the extend client tries each
configured proxy service in a random order until a connection is successful. See
“Using a Custom Address Provider for TCP Addresses” for more information on
providing an address provider implementation.

The client-based load balancing strategy is configured within a <pr oxy- schene>
definition using a <| oad- bal ancer > element that is set to cl i ent . For example:

<pr oxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi cel</ servi ce- nane>
<| oad- bal ancer>cl i ent </ | oad- bal ancer >
<autostart>true</autostart>

</ proxy- scheme>

The above configuration sets the client strategy on a single proxy service and must be
repeated for all proxy services that are to use the client strategy. To set the client
strategy as the default strategy for all proxy services if no strategy is specified,
override the | oad- bal ancer parameter for the proxy service type in the operational
override file. For example:

<cl uster-config>
<servi ces>
<service id="7">
<init-parans>
<init-paramid="12">
<par am name>| oad- bal ancer </ par am name>
<par am val ue>cl i ent </ par am val ue>
</init-paranm
</init-params>
</ service>
</ services>
</cl uster-config>

5.4 Using Network Filters with Extend Clients

Coherence*Extend services support pluggable network filters in the same way as
Coherence clustered services. Filters modify the contents of network traffic before it is
placed on the wire. For more information on configuring filters, see the Developing
Applications with Oracle Coherence.

To use network filters with Coherence*Extend, a <use-fi | t er s> element must be
added to the <i ni ti at or - conf i g> element in the client-side cache configuration
descriptor and to the <accept or - conf i g> element in the cluster-side cache
configuration descriptor.

Note:

The contents of the <use-fi | t er s> element must be the same in the client
and cluster-side cache configuration descriptors.

5-6 Developing Remote Clients for Oracle Coherence

Using Network Filters with Extend Clients

For example, to compress network traffic exchanged between an extend client and the
clustered service using the predefined gzi p filter, configure the client-side <r enot e-
cache- scheme> and <r enot e-i nvocat i on- schene> elements as follows:

<rent e- cache- schene>
<schene- nane>ext end- di st </ scheme- name>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>l ocal host </ addr ess>
<port>7077</ port>
</ socket - addr ess>
</renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i mneout >
</ out goi ng- nessage- handl er >
<use-filters>
<filter-name>gzip</filter-name>
</use-filters>
</initiator-config>
</ renot e- cache- schene>

<renot e-i nvocat i on- scheme>
<scheme- nane>ext end- i nvocat i on</ scheme- nane>
<servi ce- name>Ext endTcpl nvocat i onSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>l ocal host </ addr ess>
<port>7077</ port>
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - t i mneout >
</ out goi ng- nessage- handl er >
<use-filters>
<filter-name>gzip</filter-name>
</use-filters>
</initiator-config>
</renot e-invocati on-scheme>

For the cluster side, add a <use-fi | t er s> element within the <pr oxy- scheme>
element that specifies a filter with the same name as the client-side configuration:

<pr oxy- schene>
<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<t cp- accept or>
<l ocal - addr ess>
<addr ess>l ocal host </ addr ess>
<port>7077</ port >
</l ocal - address>
</tcp-acceptor>
<use-filters>
<filter-name>gzip</filter-name>
</use-filters>

Advanced Extend Configuration 5-7

Using Network Filters with Extend Clients

</ acceptor-config>
<autostart>true</autostart>
</ proxy-scheme>

5-8 Developing Remote Clients for Oracle Coherence

6

Best Practices for Coherence*Extend

This chapter describes best practices and guidelines for configuring and running
Coherence*Extend.

This chapter includes the following sections:

* Do Not Run a Near Cache on a Proxy Server

* Configure Heap NIO Space to be Equal to the Max Heap Size
¢ Configure Proxy Service Thread Pooling

¢ Be Careful When Making InvocationService Calls

¢ Be Careful When Placing Collection Classes in the Cache

* Configure POF Serializers for Cache Servers

¢ Configuring Firewalls for Extend Clients

6.1 Do Not Run a Near Cache on a Proxy Server

By definition, a near cache provides local cache access to both recently and often-used
data. If a proxy server is configured with a near cache, it locally caches data accessed
by its remote clients. It is unlikely that these clients are consistently accessing the same
subset of data, thus resulting in a low hit ratio on the near cache. Running a near cache
on a proxy server results in higher heap usage and more network traffic on the proxy
nodes with little to no benefit. For these reasons, it is recommended that a near cache
not be used on a proxy server. To ensure that the proxy server is not running a near
cache, remove all near schemes from the cache configuration being used for the proxy.

6.2 Configure Heap NIO Space to be Equal to the Max Heap Size

NIO memory is used for the TCP connection into the proxy and for POF serialization
and deserialization. The amount of off-heap NIO space should be equal to the
maximum heap space. On Oracle JVMs, this can be set manually if it is not already set:

- XX: MaxDi r ect MenorySi ze=MAX_HEAP_S| ZE

6.3 Configure Proxy Service Thread Pooling

Proxy services use a dynamic thread pool for daemon (worker) threads. The thread
pool automatically adds and removes threads based on the number of client requests,
total backlog of requests, and the total number of idle threads. The thread pool helps
ensure that there are enough threads to meet the demand of extend clients and that
resources are not waisted on idle threads. Change the thread pool default settings to
optimize client performance.

Best Practices for Coherence*Extend 6-1

Configure Proxy Service Thread Pooling

This section includes the following topics:
¢ Understanding Proxy Service Threading
® Setting Proxy Service Thread Pooling Thresholds

® Setting an Exact Number of Threads

6.3.1 Understanding Proxy Service Threading

Each application has different thread requirements based on the number of clients and
the amount of operations being performed. Performance should be closely monitored
to ensure that there are enough threads to service client requests without saturating
clients with too many threads. In addition, log messages are emitted when the thread
pool is using its maximum amount of threads, which may indicate additional threads
are required.

Client applications are classified into two general categories: active applications and
passive applications. In active applications, the extend clients send many requests
(put, get, and so on) which are handled by the proxy service. The proxy service
requires a large number of threads to sufficiently handle these numerous tasks.

In passive applications, the client waits on events (such as map listeners) based on
some specified criteria. Events are handled by a distributed cache service. This service
uses worker threads to push events to the client. For these tasks, the thread pool
configuration for the distributed cache service should include enough worker threads.
See Developing Applications with Oracle Coherence for details on configuring a
distributed service thread count.

Note:

Near caches on extend clients use map listeners when performing invalidation
strategies of ALL, PRESENT, and AUTQO. Applications that are write-heavy that
use near caches generate many map events.

6.3.2 Setting Proxy Service Thread Pooling Thresholds

To set thread pooling thresholds for a proxy service, add the <t hr ead- count - max>
and <t hr ead- count - m n> elements within the <pr oxy- schene> element. See
Developing Applications with Oracle Coherence for a detailed reference of these elements.
The following example changes the default pool settings.

Note:

Setting a minimum and maximum thread count of zero, forces the proxy
service thread to handle all requests; no worker threads are used. Using the
proxy service thread to handle client requests is not a best practice.

<proxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi ce</ servi ce- nane>
<t hr ead- count - max>75</ t hr ead- count - max>
<t hr ead- count - mi n>10</t hr ead- count - m n>
<autostart>true</autostart>

</ proxy- scheme>

6-2 Developing Remote Clients for Oracle Coherence

Be Careful When Making InvocationService Calls

The coher ence. proxy. t hr eads. max and coher ence. proxy. t hreads. ni n
system properties specify the dynamic thread pooling thresholds instead of using the
cache configuration file. For example:

- Dcoher ence. proxy. t hreads. nax=75
- Dcoher ence. proxy. t hreads. mi n=10

6.3.3 Setting an Exact Number of Threads

In most scenarios, dynamic thread pooling is the best way to ensure that a proxy
service always has enough threads to handle requests. In controlled applications
where client usage is known, an explicit number of threads can be specified by setting
the <t hr ead- count - mi n> and <t hr ead- count - max> element to the same value.
The following example sets 10 threads for use by a proxy service. Additional threads
are not created automatically.

<pr oxy- schenme>
<servi ce- nane>Ext endTcpPr oxySer vi ce</ servi ce- name>
<t hr ead- count - m n>10</t hr ead- count - m n>
<t hr ead- count - max>10</t hr ead- count - max>
<autostart>true</autostart>

</ pr oxy- scheme>

6.4 Be Careful When Making InvocationService Calls

InvocationService allows a member of a service to invoke arbitrary code on any node
in the cluster. On Coherence*Extend however, InvocationService calls are serviced by
the proxy that the client is connected to by default. You cannot choose the particular
node on which the code runs when sending the call through a proxy.

6.5 Be Careful When Placing Collection Classes in the Cache

If a Coherence*Extend client puts a collection object, (such as an Arr ayLi st,
HashSet , HashMap, and so on) directly into the cache, it is deserialized as an
immutable array. If you then extract it and cast it to its original type, then a

Cd assCast Except i ons is returned. As an alternative, use a Java interface object
(such as a Li st, Set , Map, and so on) or encapsulate the collection object in another
object. Both of these techniques are illustrated in the following example:

Example 6-1 Casting an ArrayList Object

public class ExtendExanmple
{
@uppr ess\War ni ngs({ "unchecked" })
public static void main(String asArgs[])
{
Syst em set Property("coherence. cacheconfig", "client-config.xm");
NamedCache cache = CacheFactory. get Cache("test");

/] Create a sanple collection

List list = new ArraylList();

for (int i =0; i <5; i+4)
{
I'ist.add(String.valued(i));
}

cache.put ("list", list);

List IistFronCache = (List) cache.get("list");

Best Practices for Coherence*Extend 6-3

Configure POF Serializers for Cache Servers

Systemout.printIn("Type of list put in cache: " + list.getCass());
Systemout.println("Type of list in cache: " + |istFronCache.getC ass());

Map map = new TreeMap();
for (Iterator i =list.iterator(); i.hasNext();)

{
oject 0 = i.next();
map. put (0, 0);

cache. put ("map", map);
Map mepFronCache = (Map) cache. get ("map");

Systemout. printIn("Type of map put in cache: " + map.getdass());
Systemout. println("Type of map in cache: " + mapFronCache. get dass());
}

}

6.6 Configure POF Serializers for Cache Servers

Proxy servers are responsible for deserializing POF data into Java objects. If you run C
++ or .NET applications and store data to the cache, then the conversion to Java objects
could be viewed as an unnecessary step. Coherence provides the option of configuring
a POF serializer for cache servers and has the effect of storing POF format data directly
in the cache.

This can have the following impact on your applications:

¢ .NET or C++ clients that only perform puts or gets do not require a Java version of
the object. Java versions are still required if deserializing on the server side (for
entry processors, cache stores, and so on).

® POF serializers remove the requirement to serialize/deserialze on the proxy, thus
reducing their memory and CPU requirements.

¢ Key manipulation within the proxy is discouraged. This could interfere with the
Object decoration used by the POF serializer causing the extend client to not
recognize the key.

Example 6-2 illustrates a fragment from a cache configuration file, which configures
the default POF serializer that is defined in the operational deployment descriptor.

Example 6-2 Configuring a POFSerializer for a Distributed Cache

<di st ri but ed- schene>
<scheme- name>di st - def aul t </ schene- name>
<serializer>pof</serializer>
<backi ng- map- schenme>
<l ocal - scheme/ >
</ backi ng- map- scheme>
<autostart>true</autostart>
</ distributed-scheme>

6.7 Configuring Firewalls for Extend Clients

Firewalls are often used between extend clients and cluster proxies. When using
firewalls, the recommended best practice is to configure the proxy to use a range of
ports and then open that range of ports in the firewall. In addition, the cluster port

6-4 Developing Remote Clients for Oracle Coherence

Configuring Firewalls for Extend Clients

(7574 by default) must be opened for TCP if the name service is used. Alternatively, a
fixed (non-ephemeral, non-range) port can be used. In this legacy configuration, only
the specific fixed port needs to be opened in the firewall, and clients need to be
configured to connect directly to the proxy's IP and port.

Best Practices for Coherence*Extend 6-5

Configuring Firewalls for Extend Clients

6-6 Developing Remote Clients for Oracle Coherence

Part Il

Creating Java Extend Clients

Coherence for Java allows Java applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses for Java extend clients include desktop and Web applications that require
access to Coherence caches.

The Coherence for Java library connects to a Coherence*Extend clustered service
instance running within the Coherence cluster using a high performance TCP /IP-
based communication layer. This library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a partitioned or
replicated cache service).

Like cache clients that are members of the cluster, Java extend clients use the
CacheFact ory. get Cache() API call to retrieve a NanedCache instance. After it is
obtained, a client accesses the NamedCache in the same way as it would if it were part
of the Coherence cluster. The fact that NamedCache operations are being sent to a
remote cluster node (over TCP/IP) is completely transparent to the client application.

Unlike the C++ and .NET distributions, Java does not have a separate client
distribution. The API that is delivered with Coherence for Java is used to create extend
clients. When building Java extend clients, refer to Getting Started in this guide (for
basic setup) and Developing Applications with Oracle Coherence for API details.

Part Il

Creating C++ Extend Clients

Coherence for C++ contains the following chapters:
¢ Introduction to Coherence C++ Clients

* Configuration and Usage for C++ Clients

e Using the Coherence C++ Object Model

* Using the Coherence for C++ Client API

¢ Building Integration Objects (C++)

* Querying a Cache (C++)

¢ Performing Continuous Queries (C++)

® Performing Remote Invocations (C++)

¢ Using Cache Events (C++)

® Performing Transactions (C++)

v

Introduction to Coherence C++ Clients

This chapter describes Coherence for C++ and provides instructions for setting up C+
+ application builds to use Coherence for C++.

This chapter includes the following sections:
e Overview of Coherence for C++

* Setting Up C++ Application Builds

7.1 Overview of Coherence for C++

Coherence for C++ allows C++ applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for C++ include desktop and web applications that require
access to Coherence caches. For details about installing the C++ client distribution, see
Installing Oracle Coherence.

Coherence for C++ consists of a native C++ library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
partitioned or replicated cache service).

A NarredCache instance is retrieved by using the CacheFact ory: : get Cache(...)
API call. After it is obtained, a client accesses the NamedCache in the same way as it
would if it were part of the Coherence cluster. The fact that NamedCache operations
are being sent to a remote cluster node (over TCP/IP) is completely transparent to the
client application.

Note:

The C++ client follows the interface and concepts of the Java client, and users
familiar with Coherence for Java should find migrating to Coherence for C++
straight forward.

7.2 Setting Up C++ Application Builds

This section includes instructions for setting up C++ applications to use Coherence.
This section includes the following topics:

* Setting up the Compiler for Coherence-Based Applications
¢ Including Coherence Header Files

¢ Linking the Coherence Library

Introduction to Coherence C++ Clients 7-1

Setting Up C++ Application Builds

¢ Setting the run-time Library and Search Path

¢ Deploying Coherence for C++

7.2.1 Setting up the Compiler for Coherence-Based Applications

When integrating Coherence for C++ into your application's build process, it is
important that certain compiler and linker settings be enabled. Some settings are
optional, but still highly recommended.

MSVC (Visual Studio)

Table 7-1 Compiler Settings for MSVC (Visual Studio)

Setting Build Type Required? Description

/EHsc All Yes Enables C++ exception support

/GR All Yes Enables C++ RTTI

/02 Release No Enables speed optimizations

/MD Release Yes Link against multi-threaded DLLs
/MDd Debug Yes Link against multi-threaded debug DLLs

g++/SunPro

Table 7-2 Compiler Settings for g++

Setting Build Type Required Description
-O3 Release No Enables speed optimizations
-m32 /-m64 All No Explicitly set compiler to 32 or 64 bit mode

7.2.2 Including Coherence Header Files

Coherence ships with a set of header files that uses the Coherence API and must be
compiled with your application. The header files are available under the installation's
i ncl ude directory. The i ncl ude directory must be part of your compiler's include
search path.

7.2.3 Linking the Coherence Library

Coherence for C++ ships with a release version of the Coherence library. This library is
also suitable for linking with debug versions of application code. The library is located
in the installation's | i b directory. During linking, this directory must be part of your
linkers library path.

Table 7-3 Names of Linking Libraries for Release and Debug Versions

Operating System Library
Windows coherence.lib
Solaris libcoherence.so

7-2 Developing Remote Clients for Oracle Coherence

Setting Up C++ Application Builds

Table 7-3 (Cont.) Names of Linking Libraries for Release and Debug Versions

Operating System Library
Linux libcoherence.so
Apple OS X libcoherence.dylib

7.2.4 Setting the run-time Library and Search Path

During execution of a Coherence enabled application the Coherence for C++ shared
library must be available from your application's library search path. This is achieved
by adding the directory which contains the shared library to an operating system

dependent environment variable. The installation includes libraries in its lib
subdirectory.

Table 7-4 Name of the Coherence for C++ Library and Environment Variables

Operating System Environment Variable
Windows PATH

Solaris LD_LIBRARY_PATH
Linux LD_LIBRARY_PATH
Apple (Mac) OS X DYLD_LIBRARY_PATH

For example, to set the PATH environment variable on Windows execute:

c:\ coherence\ coher ence- cpp\ exanpl es> set PATH=UPATHY% c: \ coher ence\ coherence-cpp\lib

As with the Java version of Coherence, the C++ version supports a concept of System
Properties to override configuration defaults. System Properties in C++ are set by
using standard operating system environment variables, and use the same names as
their Java counterparts. The coher ence. cacheconf i g system property specifies the
location of the cache configuration file. You may also set the configuration location
programmatically (CacheFact ory: : confi gur e()) from application code, the
examples however do not do this.

Table 7-5 Cache Configuration System Property Value for Various Operating

Systems
Operating System System Property
Windows coherence.cacheconfig
Linux CoherenceCacheConfig
Solaris CoherenceCacheConfig
Apple (Mac) OS X CoherenceCacheConfig

Introduction to Coherence C++ Clients 7-3

Setting Up C++ Application Builds

Note:

Some operating system shells, such as the UNIX bash shell, do not support
environment variables which include the ". ' character. In this case, you may
specify the name in camel case, where the first letter, and every letter
following a . ' is capitalized. That is, "coher ence. cacheconf i g" becomes
"Coher enceCacheConfi g".

For example, to set the configuration location on Windows execute:

c:\coherence\ coher ence- cpp\ exanpl es> set coherence. cacheconfi g=confi g\ ext end- cache-
config.xn

7.2.5 Deploying Coherence for C++

Coherence for C++ requires no specialized deployment configuration. Simply link
your application with the Coherence library. See the C++ examples included in the
Coherence Examples for sample build scripts and configuration. The examples are
included as part of the Coherence for Java distribution.

Note:
When deploying to Microsoft Windows the Visual Studio 2005 SP1 C++ run-

time libraries are required. To build the samples, a version of Visual Studio
2005 SP1 or higher is required.

7-4 Developing Remote Clients for Oracle Coherence

http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=7B0B0339-613A-46E6-AB4D-080D4D4A8C4E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=7B0B0339-613A-46E6-AB4D-080D4D4A8C4E&displaylang=en

8

Configuration and Usage for C++ Clients

This chapter includes instructions for setting up Coherence for C++ clients.

This chapter includes the following sections:

* General Instructions

¢ Implement the C++ Application

¢ Compile and Link the Application

* Configure Paths

* Obtaining a Cache Reference with C++

¢ Cleaning up Resources Associated with a Cache

¢ Configuring and Using the Coherence for C++ Client Library

® Operational Configuration File (tangosol-coherence-override.xml)

¢ Configuring a Logger

8.1 General Instructions
Configuring and using Coherence for C++ requires the following steps:
1. Implement the C++ Application
2. Compile and Link the Application
3. Configure Paths
4. Defining Extend Proxy Services
5. Defining Caches for Use By Extend Clients
6. Defining a Remote Cache

7. Building Integration Objects (C++) (See also Developing Applications with Oracle
Coherence)

8. Starting a Proxy Server

9. Launch the client application.

Configuration and Usage for C++ Clients 8-1

Implement the C++ Application

8.2 Implement the C++ Application

Coherence for C++ provides an API that allows C++ applications to access Coherence
clustered services, including data, data events, and data processing from outside the
Coherence cluster.

Coherence for C++ API consists of:
¢ aset of C++ public header files
* version of static libraries build by all supported C++ compilers

¢ several samples

The library allows C++ applications to connect to a Coherence*Extend clustered
service instance running within the Coherence cluster using a high performance
TCP/1P-based communication layer. The library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a Partitioned or
Replicated cache service).

Using the Coherence for C++ Client API, provides an overview of the key classes in
the API. For a detailed description of the classes, see the APl itself which is included in
the doc directory of the Coherence for C++ distribution.

8.3 Compile and Link the Application

The platforms on which you can compile applications that employ Coherence for C++
are listed in the Supported Platforms and Operating Systems topic.

For example, the following bui | d. cnd file for the Windows 32-bit platform builds,
compiles, and links the files for the Coherence for C++ demo.

@cho of f
set | ocal

set EXAMPLE=%%

if "YEXAMPLEY =="" (
echo You nust supply the nane of an example to build.
goto exit

)

set OPT=/c /nologo /EHsc /Zi /RTCL /MD / GR / DW N32
set LOPT=/ NOLOGO / SUBSYSTEM CONSOLE /| NCREMENTAL: NO
set | NC=/ | YEXAMPLE% / | common /1. .\incl ude

set SRC=YEXAMPLE% *. cpp common*. cpp

set OUT=Y%EXAMPLE% YEXAMPLE% exe

set LIBPATH=..\lib

set LI BS=%.| BPATH% coherence.lib

echo building %OUT% . ..

cl YOPT% % NC% %BRC%

l'ink %.0PT% %.1 BS% *. obj /OUT: %0UT%

del *.obj

echo To run this exanple execute 'run YEXAMPLE%

cexit

8-2 Developing Remote Clients for Oracle Coherence

Configure Paths

The variables in the file have the following meanings:

OPT and LOPT point to compiler options
* | NCpoints to the Coherence for C++ API files in the include directory
* SRCpoints to the C++ header and code files in the common directory

e QUT points to the file that the compiler/linker should generate when it is finished
compiling the code

¢ LI BPATHpoints to the library directory

* LI BS points to the Coherence for C++ shared library file

After setting these environment variables, the file compiles the C++ code and header
files, the API files and the OPT files, links the LOPT, the Coherence for C++ shared
library, the generated object files, and the OUT files. It finishes by deleting the object
files.

8.4 Configure Paths

Set up the configuration path to the Coherence for C++ library. This involves setting
an environment variable to point to the library. The name of the environment variable
and the file name of the library are different depending on your platform
environment. For a list of the environment variables and library names for each
platform, see Introduction to Coherence C++ Clients.

8.5 Obtaining a Cache Reference with C++

A reference to a configured cache can be obtained by name by using the
coherence: : net:: CacheFact ory class as follows:

NanmedCache: : Handl e hCache = CacheFactory: : get Cache("cache_nane");

8.6 Cleaning up Resources Associated with a Cache

Instances of all NanmedCache implementations should be explicitly released by calling
the NamedCache: : r el ease() method when they are no longer needed, to free up
any resources they might hold.

If the particular NanmedCache is used for the duration of the application, then the
resources are cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its r el ease()
method when finished using it.

8.7 Configuring and Using the Coherence for C++ Client Library

To use the Coherence for C++ library in your C++ applications, you must link
Coherence for C++ library with your application and provide a Coherence for C++
cache configuration and its location.

The location of the cache configuration file can be set by an environment variable
specified in the sample application section or programmatically.

Configuration and Usage for C++ Clients 8-3

Operational Configuration File (tangosol-coherence-override.xml)

8.7.1 Setting the Configuration File Location with an Environment Variable

As described in “Setting the run-time Library and Search Path ”, the
coher ence. cacheconf i g system property specifies the location of the cache
configuration file. To set the configuration location on Windows execute:

c:\ coherence_cpp\ exanmpl es> set coherence. cacheconfi g=confi g\ ext end- cache-confi g. xm

8.7.2 Setting the Configuration File Location Programmatically

You can set the location programmatically by using either

Def aul t Conf i gur abl eCacheFactory: : createor

CacheFact ory: : confi gur e (using the CacheFact ory: : | oadXml Fi | e helper
method, if needed).

The cr eat e method of the Def aul t Conf i gur abl eCacheFact ory class creates a
new Coher ence cache factory. The vsFi | e parameter specifies the name and
location of the Coherence configuration file to load. For example:

static Handl e coherence::net:: Defaul t Configurabl eCacheFactory::create (String::View
vsFile = String:: NULL_STRI NG

The conf i gur e method configures the CacheFact or y and local member. The

vXm Cache parameter specifies an XML element corresponding to a coher ence-
cache-confi g. xsd and vXr Coher ence specifies an XML element corresponding
to coher ence-operati onal - confi g. xsd. For example:

static void coherence::net:: CacheFactory::configure (Xm El enent:: Vi ew vXm Cache,
Xm El ement: : View vXnl Coherence = NULL)

The | oadXm Fi | e method reads an X El enent from the named file. This method
does not configure the CacheFact or y, but obtains a configuration which can be
supplied to the conf i gur e method. The parameter vsFi | e specifies the name of the
file to read from. For example:

static Xm El enent:: Handl e coherence::net:: CacheFactory::loadXm File (String::View
vsFile)

The CacheFact ory: : confi gur e method is used to set the location of the cache
configuration files for the server/cluster (coher ence- ext end- confi g. xm) and for
the C++ client (t angosol - oper ati on-confi g. xri). For example:

/1 Configure the cache

CacheFactory: : confi gure(CacheFactory::loadXm File(String::create(
"C:\coherence-extend-config.xm ")), CacheFactory::|oadXm File(String::create(
"C:\tangosol -operation-config.xm")));

8.8 Operational Configuration File (tangosol-coherence-override.xml)

The operational configuration override file (called t angosol - coher ence-
override. xm by default), controls the operational and run-time settings used by
Oracle Coherence to create, configure and maintain its clustering, communication, and
data management services. As with the Java client use of this file is optional for the C+
+ client. For details about the operational configuration override file, see Developing
Applications with Oracle Coherence.

8-4 Developing Remote Clients for Oracle Coherence

Operational Configuration File (tangosol-coherence-override.xml)

For a C++ client, the file specifies or overrides general operations settings for a
Coherence application that are not specifically related to caching. For a C++ client, the
key elements are for logging, the Coherence product edition, and the location and role
assignment of particular cluster members.

The operational configuration can be configured either programmatically or in the

t angosol - coher ence-overri de. xm file. To configure the operational
configuration programmatically, specify an XML file that follows the coher ence-
oper ati onal - confi g. xsd schema and contains an element in the

vXm Coher ence parameter of the CacheFact ory: : conf i gur e method
(coherence: : net:: CacheFactory::configure (View vXnl Cache, View
vXm Coherence)):

e |icense-confi g—Thel i cense-confi gelement contains subelements that
allow you to configure the edition and operational mode for Coherence. The
edition-name subelement specifies the product edition (such as Grid Edition,
Enterprise Edition, Real Time Client, and so on) that the member uses. This allows
multiple product editions to be used within the same cluster, with each member
specifying the edition that it uses. Only the RTC (real time client) and DC (data
client) values are recognized for the Coherence for C++ client. The | i cense-
confi g is an optional subelement of the coher ence element, and defaults to
RTC.

e | oggi ng- confi g— Thel oggi ng- conf i g element contains subelements that
allow you to configure how messages are logged for your system. This element
enables you to specify destination of the log messages, the severity level for logged
messages, and the log message format. The | oggi ng- confi g is a required
subelement of the coher ence element. For more information on logging, see
“Configuring a Logger”.

¢ nenber-identity—The menber-identity element specifies detailed identity
information that is useful for defining the location and role of the cluster member.
You can use this element to specify the name of the cluster, rack, site, computer
name, role, and so on, to which the member belongs. The menber -i dentity isan
optional subelement of the cl ust er - conf i g element.

The following example illustrates a sample t angosol - coher ence. xmi file.

<?xm version='1.0"?>

<coherence xm ns: xsi="http://wwmv. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi : schemalLocation="http://xm ns. oracl e. conf coherence/
coherence-operational - config coherence-operational -config.xsd">
<cl uster-config>
<nenber-identity>
<site-name>extend site</site-nane>
<rack- name>rack 1</rack- name>
<machi ne- nanme>conput er 1</ machi ne- nane>
</ menber-identity>
</cluster-config>

<l oggi ng- confi g>
<destination>st derr</destination>
<severity-|evel >5</severity-|evel >
<nessage-format>(thread={thread}): {text}</nessage-format>
<character-linit>8192</character-linit>

</l oggi ng- confi g>

Configuration and Usage for C++ Clients 8-5

Configuring a Logger

<license-config>
<edi ti on- name>RTC</ edi t i on- name>
<l i cense- node>prod</ | i cense- node>
</license-config>
</ coherence>

8.9 Configuring a Logger

The Logger is configured using the | 0ggi ng- conf i g element in the operational
configuration file. The element provides the following attributes that can record
detailed information about logged errors.

¢ destinati on—determines the type of LogQut put used by the Logger. Valid
values are:

— stderr for Consol e. Error
- stdout for Consol e. Qut
— file path if messages should be directed to a file

e severity-| evel —determines the log level that a message must meet or exceed
to be logged.

e message- f or mat —determines the log message format.

e character-|imt—determines the maximum number of characters that the
logger daemon processes from the message queue before discarding all remaining
messages in the queue.

The following example illustrates an operational configuration that contains a logging
configuration. For more information on operational configuration, see “Operational
Configuration File (tangosol-coherence-override.xml) ”.

<?xm version="1.0"?>

<coherence xn ns:xsi="http://ww. w3. org/ 2001/ XM.Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi : schemalLocation="http://xm ns. oracl e. conl coher ence/
coherence- operational - confi g coherence-operational -config. xsd">
<l oggi ng- confi g>
<destination>stderr</destination>
<severity-level >5</severity-|evel >
<nessage-format>(thread={thread}): {text}</message-format>
<character-1init>8192</character-limt>
</l oggi ng- confi g>
</ coherence>

8-6 Developing Remote Clients for Oracle Coherence

9

Using the Coherence C++ Object Model

This chapter describes the Coherence for C++ object model. The object model is the
foundation on which Coherence for C++ is built.

This chapter includes the following sections:

Using the Object Model

Writing New Managed Classes

Diagnostics

Application

and Troubleshooting

Launcher - Sanka

9.1 Using the Object Model

The following sections contains general information for writing code which uses the
object model.

9.1.1 Coherence Namespaces

This coher ence namespace contains the following general purpose namespaces:

coher ence

coher ence: :
coher ence: :

coher ence:

coher ence

. . | ang—the essential classes that comprise the object model
uti | —utility code, including collections

net —network and cache

: st | —C++ Standard Template Library integration

. . 1 0—serialization

Although each class is defined within its own header file, you can use namespace-
wide header files to facilitate the inclusion of related classes. As a best practice include,
at a minimum, coher ence/ | ang. ns in code that uses this object model.

9.1.2 Understanding the Base Object

The coher ence: : | ang: : Qbj ect class is the root of the class hierarchy. This class

provides the common interface for abstractly working with Coherence class instances.
Object is an instantiable class that provides default implementations for the following
functions.

equal s

hashCode

¢ cl one (optional)

Using the Coherence C++ Object Model 9-1

Using the Object Model

* toStream(thatis, writing an Cbj ect toanstd: : ostream

See coher ence: : | ang: : bj ect in the C++ API for more information.

9.1.3 Automatically Managed Memory

In addition to its public interface, the Object class provides several features used
internally. Of these features, the reference counter is perhaps the most important. It
provides automatic memory management for the object. This automatic management
eliminates many of the problems associated with object reference validity and object
deletion responsibility. This management reduces the potential of programming errors
which may lead to memory leaks or corruption. This results in a stable platform for
building complex systems.

The reference count, and other object "life-cycle" information, operates in an efficient
and thread-safe manner by using lock-free atomic compare-and-set operations. This

allows objects to be safely shared between threads without the risk of corrupting the
count or of the object being unexpectedly deleted due to the action of another thread.

9.1.3.1 Referencing Managed Objects

To track the number of references to a specific object, there must be a level of
cooperation between pointer assignments and a memory manager (in this case the
object). Essentially the memory manager must be informed each time a pointer is set to
reference a managed object. Using regular C++ pointers, the task of informing the
memory manager would be left up to the programmer as part of each pointer
assignment. In addition to being quite burdensome, the effects of forgetting to inform
the memory manager would lead to memory leaks or corruption. For this reason the
task of informing the memory manager is removed from the application developer,
and placed on the object model, though the use of smart pointers. Smart pointers offer a
syntax similar to normal C++ pointers, but they do the bookkeeping automatically.

The Coherence C++ object model contains a variety of smart pointer types, the most
prominent being;:

* Vi ew—A smart pointer that can call only const methods on the referenced object

¢ Handl e—A smart pointer that can call both const and non-const methods on
the referenced object.

* Hol der —A special type of handle that enables you to reference an object as either
const or non-const . The holder remembers how the object was initially assigned,
and returns only a compatible form.

Other specialized smart pointers are described later in this section, but the View,
Handle, and Holder smart pointers are used most commonly.

Note:

In this documentation, the term handle (with a lowercase "h") refers to the
various object model smart pointers. The term Handle (with an uppercase
"H") refers to the specific Handle smart pointer.

9-2 Developing Remote Clients for Oracle Coherence

Using the Object Model

9.1.3.2 Using handles

By convention each managed class has these nested-types corresponding to these
handles. For instance the managed coher ence: : | ang: : St ri ng class defines
String::Handl e, String::ViewString:: Hol der.

9.1.3.2.1 Assignment of handles

Assignment of handles follows normal inheritance assignment rules. That is, a Handle
may be assigned to a View, but a View may not be assigned to a Handle, just like a
const pointer cannot be assigned to a non-const pointer.

9.1.3.2.2 Dereferencing handles

When dereferencing a handle that references NULL, the system throws a
coherence: : | ang: : Nul | Poi nt er Except i on instead of triggering a traditional
segmentation fault.

For example, this code would throw a Nul | Poi nt er Excepti on if hs == NULL:
String::Handl e hs = get StringFronEl sewhere();

cout << "length is " << hs->length() << endl;

9.1.3.3 Managed Obiject Instantiation

All managed objects are heap allocated. The reference count—mnot the stack—
determines when an object can be deleted. To prevent against accidental stack-based
allocations, all constructors are marked protected, and public factory methods are
used to instantiate objects.

The factory method is named create and there is one create method for each
constructor. The create method returns a Handle rather than a raw pointer. For
example, the following code creates a new instance of a string:

String::Handle hs = String::create("hello world");

By comparison, these examples are incorrect and do not compile:
String str("hello world");
String* ps = new String("hello world");

9.1.4 Managed Strings

All objects within the model, including strings, are managed and extend from Cbj ect .
Instead of using char * or st d: : stri ng, the object model uses its own managed
coherence: : | ang: : String class. The St ri ng class supports ASCII and the full
Unicode BML character set.

9.1.4.1 String Instantiation

String objects can easily be constructed from char * or st d: : st ri ng strings. For

example:
const char* pcstr = "hello world";
std:string stdstr(pcstr);

String::Handle hs = String::create(pcstr);
String::Handle hs2 = String::create(stdstr);

The managed string is a copy of the supplied string and contains no references or

pointers to the original. You can convert back, from a managed String to any other
string type, by using get CSt ri ng() method. This returns a pointer to the original

Using the Coherence C++ Object Model 9-3

Using the Object Model

const char *. Strings can also be created using the standard C++ << operator, when
coupled with the COH_TO_STRI NGmacro.

String::Handle hs = COH. TO STRING "hello " << getNanme() << " it is currently " <<
get Time());
9.1.4.2 Auto-Boxed Strings

To facilitate the use of quoted string literals, the St ri ng: : Handl e and
St ring: : Vi ewsupport auto-boxing from const char*,and const std::string.
Auto-boxing allows the code shown in the prior samples to be rewritten:

String::Handl e hs
String::Handl e hs2

"hell o world";
stdstr;

Auto-boxing is also available for other types. See coher ence: : | ang: : BoxHandl e
for details.

9.1.5 Type Safe Casting

Handles are type safe, in the following example, the compiler does not allow you to
assign an Cbj ect : : Handl e toa St ri ng: : Handl e, because not all Objects are
Strings.

oj ect:: Handl e ho
String::Handel hs

get Obj ect Fr onSonmewhere() ;
ho; // does not conpile

However, the following example does compile, as all Strings are Objects.

String::Handle hs
oj ect:: Handl e ho

String::create("hello world");
hs; // does conpile

9.1.5.1 Down Casting

For situations in which you want to down-cast to a derived Object type, you must
perform a dynamic cast using the C++ RTTI (run-time type information) check and
ensure that the cast is valid. The Object model provides helper functions to ease the
syntax.

e cast <H>(0) —attempt to transform the supplied handle o to type H, throwing an
Cl assCast Except i on on failure

* instanceof <H>(0) —test if a cast of 0 to His allowable, returning t r ue for
success, or f al se for failure

These functions are similar to the standard C++ dynam c_cast <T>, but do not
require access to the raw pointer.

The following example shows how to down cast a Qbj ect : : Handl e toa
String:: Handl e:

oj ect:: Handl e ho
String:: Handl e hs

get Obj ect FronSonewher e() ;
cast<String:: Handl e>(ho);

The cast <H> function throws a coher ence: : | ang: : Cl assCast Except i on if the
supplied object was not of the expected type. The i nst anceof <H> function tests if an
Object is of a particular type without risking an exception being thrown. Such checks
or generally only needed for places where the actual type is in doubt. For example:

(bj ect:: Handl e ho = get Cbj ect Fr onSonewher e() ;

9-4 Developing Remote Clients for Oracle Coherence

Using the Object Model

if (instanceof<String::Handl e>(ho))

{
String::Handl e hs = cast<String:: Handl e>(ho);

}

el se if (instanceof<lnteger32::Handl e>(ho))

{
I nteger32:: Handl e hn = cast<Integer32:: Handl e>(ho);

}

el se

{

9.1.6 Managed Arrays

Managed arrays are provided by using the coher ence: : | ang: : Ar r ay<T> template
class. In addition to being managed and adding safe and automatic memory
management, this class includes the overall length of the array, and bounds checked
indexing.

You can index an array by using its Handle's subscript operator, as shown in this

example:

Array<int32_t>::Handl e harr = Array<int32_t>::create(10);

int32_t nTotal = O;
for (size32_t i =0, ¢ = harr->length; i <c; ++i)

nTotal += harr[i];

}

The object model supports arrays of C++ primitives and managed Cbj ect s. Arrays of
derived Obj ect types are not supported, only arrays of Cbj ect, casting must be
employed to retrieve the derived handle type. Arrays of Objects are technically

Ar ray<Menber Hol der <bj ect > >, and defined to Obj ect Arr ay for easier
readability.

9.1.7 Collection Classes

The coher ence: : uti | * namespace includes several collection classes and interfaces
that may be useful in your application. These include:

e coherence::util::Collection—interface

e coherence::util::List—interface

e coherence::util:: Set —interface

e coherence:: util:: Queue—interface

e coherence::util:: Map—interface

e coherence::util::Arrays—implementation

e coherence::util::LinkedLi st —implementation
e coherence::util::HashSet —implementation

e coherence: :util:: Dual Queue—implementation
e coherence::util::HashMap—implementation

Using the Coherence C++ Object Model 9-5

Using the Object Model

e coherence: : util:: Saf eHashMap—implementation
e coherence: :util:: WakHashMap—implementation
e coherence::util::ldentityHashMap—implementation

These classes also appear as part of the Coherence Extend API.

Similar to Cbj ect Array, Col | ecti ons contain Cbj ect : : Hol der s, allowing them
to store any managed object instance type. For example:

Map: : Handl e hMap
String::View vKey

HashMap: : create();
"hello world";

hMap- >put (vKey, Integer32::create(123));

I nteger 32: : Handl e hVal ue = cast <l nteger 32: : Handl e>(hMap- >get (vKey)) ;

9.1.8 Managed Exceptions

In the object model, exceptions are also managed objects. Managed Exceptions allow
caught exceptions to be held as a local variable or data member without the risk of
object slicing.

All Coherence exceptions are defined by using a t hr owabl e_spec and derive from
the coherence: : | ang: : Excepti on class, which derives from Cbj ect . Managed
exceptions are not explicitly thrown by using the standard C++ t hr owstatement, but
rather by using a COH_THROWmacro. This macro sets stack information and then calls
the exception's r ai se method, which ultimately calls throw. The resulting thrown
object may be caught an the corresponding exceptions Vi ewtype, or an inherited

Vi ewtype. Additionally these managed exceptions may be caught as standard const
st d: : excepti on classes. The following example shows a try/catch block with
managed exceptions:

try
{
(oj ect:: Handl e h = NULL;
h->hashCode(); // trigger an exception

catch (Nul | Poi nt er Exception:: View e)

{

cerr << "caught" << e <<endl;
COH_THRONe); // rethrow

}

Note:

This exception could also have been caught as Except i on: : Vi ewor const
std::excepti on&

9.1.9 Object Immutability

In C++ the information of how an object was declared (such as const) is not available
from a pointer or reference to an object. For instance a pointer of type const Foo*,
only indicates that the user of that pointer cannot change the objects state. It does not
indicate if the referenced object was actually declared const, and is guaranteed not to
change. The object model adds a run-time immutability feature to allow the
identification of objects which can no longer change state.

9-6 Developing Remote Clients for Oracle Coherence

Writing New Managed Classes

The Obj ect class maintains two reference counters: one for Handles and one for
Views. If an object is referenced only from Views, then it is by definition immutable,
as Views cannot change the state, and Handles cannot be obtained from Views. The

i sl mmut abl e() method (included in the Obj ect class) can test for this condition.
The method is virtual, allowing subclasses to alter the definition of immutable. For
example, String contains no non-const methods, and therefore has an isimmutable()
method that always returns true.

Note that when immutable, an object cannot revert to being mutable. You cannot cast
away const -ness to turn a Vi ewinto a Handl e as this would violate the proved
immutability.

Immutability is important with caching. The Coherence Near Cache and

Cont i nuouQuer yCache can take advantage of the immutability to determine if a
direct reference of an object can be stored in the cache or if a copy must be created.
Additionally, knowing that an object cannot change allows safe multi-threaded
interaction without synchronization.

9.1.10 Integrating Existing Classes into the Object Model

Frequently, existing classes must be integrated into the object model. A typical
example would be to store a data-object into a Coherence cache, which only supports
storage of managed objects. As it would not be reasonable to require that pre-existing
classes be modified to extend from coher ence: : | ang: : Obj ect, the object model
provides an adapter which automatically converts a non-managed plain old C++ class
instance into a managed class instance at run time.

This is accomplished by using the coher ence: : | ang: : Managed<T> template class.
This template class extends from Object and from the supplied template parameter
type T, effectively producing a new class which is both an Object and a T. The new
class can be initialized from a T, and converted back to a T. The result is an easy to use,
yet very powerful bridge between managed and non-managed code.

See the API doc for coher ence: : | ang: : Managed for details and examples.

9.2 Writing New Managed Classes

The following section provides information necessary to write new managed classes,
that is, classes which extend from Obj ect . The creation of new managed classes is
required when you are creating new Event Li st eners, EntryProcessors, or

Fil t er types. They are not required when you are working with existing C++ data
objects or making use of the Coherence C++ APL See the previous section for details
on integration non-managed classes into the object model.

9.2.1 Specification-Based Managed Class Definition

Specification-based definitions (specs) enable you to quickly define managed classes in
C++.

Specification-based definitions are helpful when you are writing your own
implementation of managed objects.

There are various forms of specs used to create different class types:
e cl ass_spec—standard instantiatable class definitions

e cl oneabl e_spec—cloneable class definitions

Using the Coherence C++ Object Model 9-7

Writing New Managed Classes

* abstract_spec—non-instantiatable class definitions, with zero or more pure
virtual methods

e interface_spec—for defining interfaces (pure virtual, multiply inheritable
classes)

* throwabl e_spec—managed classes capable of being thrown as exceptions

Specs automatically define these features on the class being spec'd:

e Handles, Views, Holders

e static cr eat e() methods which delegate to protected constructors

e virtual cl one() method delegating to the copy constructor

e virtual si zeOf () method based on: : si zeof ()

e supertypedef for referencing the class from which the defined class derives

¢ inheritance from coher ence: : | ang: : Qbj ect, when no parent class is specified
by using ext ends<>

To define a class using specs, the class publicly inherits from the specs above. Each of
these specs are parametrized templates. The parameters are as follows:

® The name of the class being defined.

¢ The class to publicly inherit from, specified by using an ext ends <> statement,
defaults to ext ends<Obj ect >

— This element is not supplied in interface_spec
— Except for ext ends<Qbj ect >, the parent class is not derived from virtually

¢ A list of interfaces implemented by the class, specified by using an i npl ement s<>
statement

— Allinterfaces are derived from using public virtual inheritance
Note that the ext ends<> parameter is note used in defining interfaces.

The following example illustrates using i nt er f ace_spec to define a Conpar abl e
interface:

cl ass Conparabl e
: public interface_spec<Conparabl e>

{
public:

virtual int32_t conpareTo(Object::Viewv) const = 0;
¥

The following example illustrates using i nt er f ace_spec to define a derived
interface Nunber :

cl ass Number
: public interface_spec<Nunber,
i mpl ement s<Conpar abl e> >
{

public:
virtual int32_t getValue() const = 0;
¥

9-8 Developing Remote Clients for Oracle Coherence

Writing New Managed Classes

The following example uses cl oneabl e_spec to produce an implementation.

Note:

To support the auto-generated create methods, instantiatable classes must
declare the coher ence: : | ang: : f act or y<> template as a friend. By
convention this is the first statement within the class body.

class Integer
public cloneabl e_spec<Integer,
ext ends<Qbj ect >,
i mpl enent s<Nunber > >

{

friend class factory<lnteger>;

pr ot ect ed:
Integer(int32_t n)
© super(), m.n(n)

{
}
I nteger(const Integer& that)
: super(that), mn(that.mn)

{
}
public:
virtual int32_t getValue() const
{
return mn;
}
virtual int32_t conpareTo(Object::View v) const
{
return getValue() - cast<Integer::View>(v)->getVal ue();
}
virtual void toStreanm(std::ostream& out) const
{
out << get Val ue();
}
private:
int32_t mn;
i

The class definition can also be defined without the use of specs. For example:

class Integer
public virtual Ooject, public virtual Number

{

public:
typedef TypedHandl e<const Integer> View, // was auto-generated
typedef TypedHandl e<I nt eger> Handl e; // was auto-generated
typedef TypedHol der <I nt eger > Hol der; // was auto-generated
typedef super Qbject; // was auto-generated

/1 was auto-generated
static Integer::Handl e create(const int32_té& n)

Using the Coherence C++ Object Model 9-9

Writing New Managed Classes

{

return new I nteger(n);

}

prot ect ed:
Integer(int32_t n)
© super(), mn(n)

{
}
I nteger(const Integeré& that)
: super(that), mn(that.n)

{
}
public:

virtual int32_t getValue() const
{
return mn;
}

virtual int32_t conpareTo(Object::View v) const
{
return getValue() - cast<Integer::Views(v)->getVal ue();
}

virtual void toStrean(std::ostream& out) const
{
out << getVal ue();
}

/1 was auto-generated
virtual bject::Handl e clone() const

{

return new I nteger(*this);

}

/1 was auto-generated
virtual size32_t sizeOf() const

{

return ::sizeof (Integer);

}

private:
int32_t mn;

b
The following example illustrates using the spec'd class:

Integer::Handl e hNunl = Integer::create(123);
Integer::Handl e hNun2 = | nteger::create(456);

i f (hNuml- >conpareTo(hNunR) > 0)

{
std::cout << hNuml << " is greater then " << hNunR << std::endl;

}

9.2.2 Equality, Hashing, Cloning, Inmutability, and Serialization

Equality, Hashing, Cloning, Immutability, and Serialization all identify the state of an
object and generally have similar implementation concerns. Simply put, all data

9-10 Developing Remote Clients for Oracle Coherence

Writing New Managed Classes

members referenced in one of these methods, are likely referenced in all of the
methods. Conversely any data members which are not referenced by one, should
likely not be referenced by any of these methods.

Consider the simple case of a HashSet : : Ent ry, which contains the well known key
and value data members. These are to be considered in the equals method and would
likely be tested for equality by using a call to their own equals method rather than
through reference equality. If Ent r y also contains, as part of the implementation of
the HashSet , a handle to the next Ent r y within the HashSet 's bucket and perhaps
also contains a handle back to the HashSet itself, should these be considered in equals
as well? Likely not, it would seem reasonable that comparing two entries consisting of
equal keys and values from two maps should be considered equal. Following this line
of thought the hashCode method on Ent r y would completely ignore data members
except for key and value, and hashCode would be computed using the results of its
key and value hashCode, rather then using their identity hashCode. that is, a deep
equality check in equals implies a deep hash in hashCode.

For clone, only the key and value (not all the data members) require cloning. To clone
the parent Map as part of clone, the Ent r y would make no sense and a similar
argument can be made for cloning the handle to the next Ent r y. This line of thinking
can be extended to the i s| mmut abl e method, and to serialization as well. While it is
certainly not a hard and fast rule, it is worth considering this approach when
implementing any of these methods.

9.2.3 Threading

The object model includes managed threads, which allows for easy creation of
platform independent, multi-threaded, applications. The threading abstraction
includes support for creating, interrupting, and joining threads. Thread local storage is
available from the coher ence: : | ang: : Thr eadLocal r ef er ence class. Thread
dumps are also available for diagnostic and troubleshooting purposes. The managed
threads are ultimately wrappers around the system's native thread type, such as
POSIX or Windows Threads. This threading abstraction is used internally by
Coherence, but is available for the application, if necessary.

The following example illustrates how to create a Runnabl e instance and spawn a
thread:

class Hel | oRunner
: public class_spec<Hel | oRunner,
ext ends<Qbj ect >,
i npl enent s<Runnabl e> >

{

friend class factory<Hel | oRunner>;

pr ot ect ed:
Hel | oRunner (int cReps)
. super(), m.cReps(cReps)
{
}

public:
virtual void run()

{

for (int i =0; i < mReps; ++)

{
Thread: : sl eep(1000);

std::cout << "hello world" << std::endl;

}

Using the Coherence C++ Object Model 9-11

Writing New Managed Classes

}

prot ect ed:
int mcReps;
¥

Thread: : Handl e hThread = Thread:: create(Hel | oRunner: :create(10));
hThread->start();
hThread- >j oi n();

Refer to coher ence: : | ang: : Thr ead and coher ence: : | ang: : Runnabl e for
more information.

9.2.4 Weak References

The primary functional limitation of a reference counting scheme is automatic cleanup
of cyclical object graphs. Consider the simple bi-directional relationship illustrated in
Figure 9-1.

Figure 9-1 A Bi-Directional Relationship

In this picture, both A and B have a reference count of one, which keeps them active.
What they do not realize is that they are the only things keeping each other active, and
that no external references to them exist. Reference counting alone is unable to handle
these self sustaining graphs and memory would be leaked.

The provided mechanism for dealing with graphs is weak references. A weak
reference is one which references an object, but not prevent it from being deleted. As
illustrated in Figure 9-2, the A->B->A issue could be resolved by changing it to the
following.

Figure 9-2 Establishing a Weak Reference

N e Y

O==9

Where A now has a weak reference to B. If B were to reach a point where it was only
referenced weakly, it would clear all weak references to itself and then be deleted. In
this simple example that would also trigger the deletion of A, as B had held the only
reference to A.

Weak references allow for construction of more complicated structures then this. But it
becomes necessary to adopt a convention for which references are weak and which are
strong. Consider a tree illustrated in Figure 9-3. The tree consists of nodes A, B, C; and
two external references to the tree X, and Y.

9-12 Developing Remote Clients for Oracle Coherence

Writing New Managed Classes

Figure 9-3 Weak and Strong References to a Tree

In this tree parent (A) use strong references to children (B, C), and children use weak
references to their parent. With the picture as it is, reference Y could navigate the
entire tree, starting at child B, and moving up to A, and then down to C. But what if
reference X were to be reset to NULL? This would leave A only being weakly
referenced and it would clear all weak references to itself, and be deleted. In deleting
itself there would no longer be any references to C, which would also be deleted. At
this point reference Y, without having taken any action would now refer to the
situation illustrated in Figure 9-4.

Figure 9-4 Artifacts after Deleting the Weak References

4

' N
vy L+ of =&
S _)

This is not necessarily a problem, just a possibility which must be considered when
using weak references. To work around this issue, the holder of Y would also likely
maintain a reference to A to ensure the tree did not dissolve away unexpectedly.

See the Javadoc for coher ence: : | ang: : WeakRef er ence, WeakHandl e, and
WeakVi ewfor usage details.

9.2.5 Virtual Constructors

As is typical in C++, referencing an object under construction can be dangerous.
Specifically references to t hi s are to be avoided within a constructor, as the object
initialization has not yet completed. For managed objects, creating a handle to t hi s
from the constructor usually causes the object to be destructed before it ever finishes
being created. Instead, the object model includes support for virtual constructors. The
virtual constructor onl ni t is defined by Obj ect and can be overridden on derived
classes. This method is called automatically by the object model just after construction
completes, and just before the new object is returned from its static create method.
Within the onl ni t method, it is safe to reference t hi s to call virtual functions and to
hand out references to the new object to other class instances. Any derived
implementation of onl ni t must include a call to super : : onl ni t () to allow the
parent class to also initialize itself.

9.2.6 Advanced Handle Types

In addition to the Handle and View smart pointers (discussed previously), the object
model contains several other specialized variants that can be used. For the most part
use of these specialized smart pointers is limited to writing new managed classes, and
they do not appear in normal application code.

Using the Coherence C++ Object Model 9-13

Writing New Managed Classes

Table 9-1 Advanced Handle Types Supported by Coherence for C++
- - - |

Type Thread-safe? View Notes

coherence:lang: TypedHandle<T> No Conditional on T The implementation of Handl e
and Vi ew

coherence:lang:BoxHandle<T> No Conditional on T Allows automatic creating of
managed objects from primitive
types.

coherence:lang:TypedHolder<T> No May May act as a Handl e or a Vi ew.
Basic types stored in collections

coherence:lang:Immutable<T> No Yes Ensures const -ness of referring
object.

coherence:lang:WeakHandle<T> Yes No Does not prevent destruction of

referring object.

coherence:lang:WeakView<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:WeakHolder<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:MemberHandle<T> Yes No Transfers const -ness of
enclosing object.

coherence:lang:MemberView<T> Yes Yes Thread-safe Vi ew.

coherence:lang:MemberHolder<T> Yes May May act a thread-safe Handl e or
Vi ew.

coherence:lang:FinalHandle<T> Yes No Thread-safe const transferring

read-only Handl e.
coherence:lang:Final View<T> Yes Yes Thread-safe read-only Vi ew.

coherence:lang:FinalHolder<T> Yes May May act a thread-safe read-only
Handl e or Vi ew.

9.2.7 Thread Safety

Although the base Qbj ect class is thread-safe, this cannot provide automatic thread
safety for the state of derived classes. As is typical it is up to each individual derived
class implementation to provide for higher level thread-safety. The object model
provides some facilities to aid in writing thread-safe code.

9.2.7.1 Synchronization and Notification

Every Qbj ect in the object model can be a point of synchronization and notification.
To synchronize an object and acquire its internal monitor, use a COH_SYNCHRONI ZED
macro code block. For example:

SoneC ass: : Handl e h = get Obj ect FronSonmewher e() ;
COH_SYNCHRONI ZED (h)
{

/1 monitor of Chject referenced by h has been acquired

9-14 Developing Remote Clients for Oracle Coherence

Writing New Managed Classes

if (h->checkSomeState())

{
h->act OnThat State();

} I/ nonitor is automatically rel eased

The COH_SYNCHRONI ZED block performs the monitor acquisition and release. You can
safely exit the block with r et ur n, t hr ow, COH_THROW br eak, cont i nue, and got o
statements.

The Qbj ect class includeswai t (), wai t (tined),notify(),andnotifyAll()
methods for notification purposes. To call these methods, the caller must have
acquired the Obj ect s' s monitor. Refer to coher ence: : | ang: : Qbj ect for details.

Read-write locks are also provided, see coher ence: : util :: Thr eadGat e for
details.

9.2.7.2 Thread Safe Handles

The Handle, View, and Holder nested types defined on managed classes are
intentionally not thread-safe. That is it is not safe to have multiple threads share a
single handle. There is an important distinction here: thread-safety of the handle is
being discussed not the object referenced by the handle. It is safe to have multiple
distinct handles that reference the same object from different threads without
additional synchronization.

This lack of thread-safety for these handle types offers a significant performance
optimization as the vast majority of handles are stack allocated. So long as references
to these stack allocated handles are not shared across threads, there is no thread-safety
issue to be concerned with.

Thread-safe handles are needed any time a single handle may be referenced by
multiple threads. Typical cases include:

* Global handles - using the standard handle types as global or static variable is not
safe.

¢ Non-managed multi-threaded application code - Use of standard handles within
data structures which may be shared across threads is unsafe.

¢ Managed classes with handles as data members - It should be assumed that any
instance of a managed class may be shared by multiple threads, and thus using
standard handles as data members is unsafe. Note that while it may not be strictly
true that all managed classes may be shared across threads, if an instance is passed
to code outside of your explicit control (for instance put into a cache), there is no
guarantee that the object is not visible to other threads.

The use of standard handles should be replaced with thread-safe handles in such
cases. The object model includes the following set of thread-safe handles.

coherence: : | ang: : Menber Handl e<T>—thread-safe version of T: : Handl e
e coherence:: | ang: : Menber Vi ew<T>—thread-safe version of T: : Vi ew
e coherence: : | ang: : Menber Hol der <T>—thread-safe version of T: : Hol der

e coherence:: | ang: : Fi nal Handl e<T>—thread-safe final version of
T:: Handl e

Using the Coherence C++ Object Model 9-15

Writing New Managed Classes

e coherence:: | ang: : Fi nal Vi ew<T>—thread-safe final version of T: : Vi ew

e coherence: : | ang: : Fi nal Hol der <T>—thread-safe final version of
T: : Hol der

e coherence:: | ang: : WeakHandl e<T>—thread-safe weak handle to T
e coherence: : | ang: : WakVi ew<T>—thread-safe weak view to T

e coherence:: | ang: : WeakHol der <T>—thread-safe weak T: : Hol der

These handle types may be read and written from multiple thread without the need
for additional synchronization. They are primarily intended for use as the data-
members of other managed classes, each instance is provided with a reference to a
guardian managed Qbj ect . The guardian's internal thread-safe atomic state is used to
provide thread-safety to the handle. When using these handle types it is
recommended that they be read into a normal stack based handle if they are
continually accessed within a code block. This assignment to a standard stack based
handle is thread-safe, and, after completed, allows for essentially free dereferencing of
the stack based handle. Note that when initializing thread-safe handles a reference to a
guardian Obj ect must be supplied as the first parameter, this reference can be
obtained by calling sel f () on the enclosing object.

The following example demonstrates a thread-safe handle.

class Enpl oyee
: public class_spec<Enpl oyee>

{

friend class factory<Enpl oyee>;

prot ect ed:
Enmpl oyee(String::View vsName, int32_t nld)
: super(), mvsNane(self(), vsName), mnld(nld)

{
}
public:
String::View get Name() const
{
return mvsName; // read is automatically thread-safe
}
voi d set Name(String::View vsNane)
{
mvsNane = vsNane; // wite is automatically thread-safe
}
int32_t getld() const
{
return mnld;
}
private:
Menmber Vi ew<St ri ng> m vsNang;
const int32_t m nl d;
1

The same basic technique can be applied to non-managed classes as well. Since non-
managed classes do not extend coher ence: : | ang: : Cbj ect, they cannot be used as
the guardian of thread-safe handles. It is possible to use another Qbj ect as the
guardian. However, it is crucial to ensure that the guardian Cbj ect outlives the

9-16 Developing Remote Clients for Oracle Coherence

Writing New Managed Classes

guarded thread-safe handle. When using another object as the guardian, obtain a
random immortal guardian from coher ence: : | ang: : Syst emthrough a call to
Syst em : common() . For example:

class Enpl oyee

{
public:
Enpl oyee(String::View vsNane, int32_t nld)
: mvsNane(System:comon(), vsNane), mnld(nld)
{
}
public:
String::View get Name() const
{
return myvsNane,
}
voi d set Name(String::View vsNane)
{
m vsName = vsNane;
}
int32_t getld() const
{
return mnld;
}
private:
Mermber Vi ew<St ri ng> m vsNane;
const int32_t mnld;
¥

When writing managed classes it is preferable to obtain a guardian through a call to
sel f () thento System : conmon().

Note:

In the rare case that one of these handles is declared through the nut abl e
keyword, it must be informed of this fact by setting f Mut abl e tot r ue during
construction.

Thread-safe handles can also be used in non-class shared data as well. For example,
global handles:

Menber Vi ew<NanmedCache> MY_CACHE(Syst em : common()) ;

int main(int argc, char** argv)

{
MY_CACHE = CacheFactory:: get Cache(argv[0]);
}

9.2.7.3 Escape Analysis

The object model includes escape analysis based optimizations. The escape analysis is
used to automatically identify when a managed object is only visible to a single thread
and in such cases optimize out unnecessary synchronizations. The following types of
operations are optimized for non-escaped objects.

Using the Coherence C++ Object Model 9-17

Writing New Managed Classes

* reference count updates
* COH_SYNCHRONI ZED acquisition and release
¢ reading/writing of thread-safe handles

¢ reading of thread-safe handles from immutables

Escape analysis is automatic and is completely safe so long as you follow the rules of
using the object model. Most specifically is that it is not safe to pass a managed object
between threads without using a provided thread-safe handle. Passing it by an
external mechanism does not allow escape analysis to identify the "escape" which
could cause memory corruption or other run-time errors.

9.2.7.3.1 Shared handles

Each managed class type includes nested definitions for a Handles, View, and Holder.
These handles are used extensively throughout the Coherence API, and is application
code. They are intended for use as stack based references to managed objects. They are
not intended to be made visible to multiple threads. That is a single handle should not
be shared between two or more threads, though it is safe to have a managed Object
referenced from multiple threads, so long as it is by distinct Handles, or a thread-safe
MemberHandle/View /Holder.

It is important to remember that global handles to managed Objects should be
considered to be "shared", and therefore must be thread-safe, as demonstrated
previously. The failure to use thread-safe handles for globals causes escaped objects to
not be properly identified leading to memory corruption.

In 3.4 these non thread-safe handles could be shared across threads so long as external
synchronization was employed, or if the handles were read-only. In 3.5 and later this
is no longer true, even when used in a read-only mode or enclosed within external
synchronization these handles are not thread-safe. This is due to a fundamental
change in implementation which drastically reduces the cost of assigning one handle
to another, which is an operation which occurs constantly. Any code which was using
handles in this fashion should be updated to make use of thread-safe handles. See
“Thread Safe Handles” for more information.

9.2.7.3.2 Const Correctness

Coherence escape analysis, among other things, leverages the computed mutability of
an object to determine if state changes on data members are still possible. Namely,
when an object is only referenced from views, it is assumed that its data members do
not undergo further updates. The C++ language provides some mechanisms to bypass
this const-only access and allow mutation from const methods. For instance, the use of
the mutable keyword in a data member declaration, or the casting away of constness.
The arguably cleaner and supported approach for the object model is the mutable
keyword. For the Coherence object model, when a thread-safe data member handle is
declared as mutable this information must be communicated to the data member. All
thread-safe data members support an optional third parameter fMutable which should
be set to true if the data member has been declared with the mutable keyword. This
informs the escape analysis routine to not consider the data member as "const" when
the enclosing object is only referenced using Views. Casting away of the constness of
managed object is not supported, and can lead to run time errors if the object model
believes that the object can no longer undergo state changes.

9-18 Developing Remote Clients for Oracle Coherence

Diagnostics and Troubleshooting

9.2.7.4 Thread-Local Allocator

Coherence for C++ includes a thread-local allocator to improve performance of
dynamic allocations which are heavily used within the API. By default, each thread
grows a pool to contain up to 64KB of reusable memory blocks to satisfy the majority
of dynamic object allocations. The pool is configurable using the following system
properties:

¢ coherence. heap. sl ot . si ze controls the maximum size of an object which is
considered for allocation from the pool, the default is 128 bytes. Larger objects call
through to the system's mal | oc routine to obtain the required memory.

e coherence. heap. sl ot. count controls the number of slots available to each
thread for handling allocations, the default is 512 slots. If there are no available
slots, allocations fall back on mal | oc.

¢ coherence. heap. sl ot.refill controls the rate at which slots misses trigger
refilling the pool. The default of 10000 causes 1/10000 pool misses to force an
allocation which is eligible for refilling the pool.

The pool allocator can be disabled by setting the size or count to 0.

9.3 Diagnostics and Troubleshooting

This section provides information which can aid in diagnosing issues in applications
which make use of the object mode.

9.3.1 Thread-Local Allocator Logs

Logs can be enabled to view the efficiency of the thread-local allocator pool. To enable
the logs, set the coher ence. heap. | oggi ng system property tot r ue.

The log entries indicate the memory location of the pool, the size of the pool, how
many allocation areas are in the pool and the fraction of successful hits on the pool
(the rate of finding a slot within the pool). The following example demonstrates a
typical allocator log entry:

(thread=main): Allocator hit: pool =0x7f8e5ac039d0, size=128, slots=512, hit
rate=0. 62963

9.3.2 Thread Dumps

Thread dumps are available for diagnostic and troubleshooting purposes. These
thread dumps also include the stack trace. You can generate a thread dump by
performing a CTRL+BREAK (Windows) or a CTRL+BACKSLASH (UNIX). The following
output illustrates a sample thread dump:

Thread dunp Oracle Coherence for Ct++ v3.4b397 (Pre-rel ease) (Apple Mac OS X x86
debug) pi d=0xf 853; spanning 190ns

"main" tid=0x101790 runnabl e: <native>
at coherence::lang:: Qbject::wait(long long) const
at coherence::lang:: Thread: : dunpSt acks(std::ostream®, |ong |ong)
at main
at start

"coherence: :util::logging::Logger" tid=0x127eb0 runnabl e:

Daenon{ St at e=DAEMON_RUNNI NG, Not i fi cati on=fal se,
Start Ti neSt anp=1216390067197, Wit Ti ne=0,

Using the Coherence C++ Object Model 9-19

Diagnostics and Troubleshooting

Thr eadName=coher ence: : util:: 1 ogging: : Logger}
at coherence::lang:: (bject::wait(long long) const
at coherence::conmponent::util:: Daenmon::onWit()
at coherence:: conmponent::util::Daemon::run()
at coherence::lang:: Thread::run()

9.3.3 Memory Leak Detection

While the managed object model reference counting helps prevent memory leaks they
are still possible. The most common way in which they are triggered is through
cyclical object graphs. The object model includes heap analysis support to help
identify if leaks are occurring, by tracking the number of live objects in the system.
Comparing this value over time provides a simple means of detecting if the object
count is consistently increasing, and thereby likely leaking. After a probable leak has
been detected, the heap analyzer can help track it down as well, by provided statistics
on what types of objects appeared to have leaked.

Coherence provides a pluggable coher ence: : | ang: : HeapAnal yzer interface. The
HeapAnal yzer implementation can be specified by using the

coher ence. heap. anal yzer syst emproperty. The property can be set to the
following values:

* none—No heap analysis is performed. This is the default.

e obj ect —The coher ence: : | ang: : Obj ect Count HeapAnal yzer is used. It
provides simple heap analysis based solely on the count of the number of live
objects in the system.

e class—The coherence: : | ang: : Cl assBasedHeapAnal yzer is used. It
provides heap analysis at the class level, that is it tracks the number of live
instances of each class, and the associated byte level usage.

¢ al | oc —Specialization of coher ence: : | ang: : Cl assBasedHeapAnal yzer
which additionally tracks the allocation counts at the class level.

® cust om—Lets you define your own analysis routines. You specify the name of a
class registered with the Syst enCl assLoader .

Heap information is returned when you perform a CTRL+BREAK (Windows) or CTRL
+BACKSLASH (UNIX).

The following output illustrates heap analysis information returned by the class-based
analyzer. It returns the heap analysis delta resulting from the insertion of a new entry

into a Map.

Space Count C ass

44 B 1 coherence: : lang: : I nteger 32

70 B 1 coherence::lang::String

132 B 1 coherence:: util:: Saf eHashMap: : Entry

Total : 246 B, 3 objects, 3 classes

9.3.4 Memory Corruption Detection

For all that the object model does to prevent memory corruption, it is typically used
along side non-managed code which could cause corruption. Therefore, the object
model includes memory corruption detection support. When enabled, the object
model's memory allocator pads the beginning and end of each object allocation by a
configurable number of pad bytes. This padding is encoded with a pattern which can

9-20 Developing Remote Clients for Oracle Coherence

Application Launcher - Sanka

later be validated to ensure that the pad has not been touched. If memory corruption
occurs, and affects a pad, subsequent validations detect the corruption. Validation is
performed when the object is destroyed.

The debug version of the Coherence C++ API has padding enabled by default, using a
pad size of 2*(word size), on each side of an object allocation. In a 32-bit build, this
adds 16 bytes per object. Increasing the size of the padding increases the chances of
corruption affecting a pad, and thus the chance of detecting corruption.

The size of the pad can be configured by using the coher ence. heap. paddi ng
system property, which can be set to the number of bytes for the pre/post pad. Setting
this system property to a nonzero value enables the feature, and is available even in
release builds.

The following output illustrates the results from an instance of memory corruption
detection:

Error during ~MenberHol der: coherence::lang::11|egal StateException: nemory
corruption detected in 5B post-padding at offset 4 of menory allocated at 0x132095

9.4 Application Launcher - Sanka

Coherence uses an application launcher for invoking executable classes embedded
within a shared library. The launcher allows for a shared library to contain utility or
test executables without shipping individual standalone executable binaries.

9.4.1 Command line syntax

The launcher named sanka works similar to j ava, in that it is provided with one or
more shared libraries to load, and a fully qualified class name to execute.

ge: sanka [-options] <native class> [args...]

avail abl e options include:
-1 <native library list> dynanic libraries to |oad, separated by : or ;

- D<propert y>=<val ue> set a system property

-version print the Coherence version

-? print this hel p nessage

<native class> the fully qualified class. For exanple,

coherence: : net:: CacheFactory

The specified libraries must either be accessible from the operating system library path
(PATH, LD_LI BRARY_PATH, DYLD_LI BRARY_PATH), or they may be specified with an
absolute or relative path. Library names may also leave off any operating specific
prefix or suffix. For instance the UNIX | i bf 00. so or Windows f 00. dI | can be
specified simply as f 00. The Coherence shared library which the application was
linked against must be accessible from the system's library path as well.

9.4.2 Built-in Executables

Several utility executables classes are included in the Coherence shared library:
e coherence:: net:: CacheFact ory runs the Coherence C++ console

e coherence:: | ang:: SystenC assLoader prints out the registered managed
classes

e coherence: :io::pof:: SystenPof Cont ext prints out the registered POF
types

Using the Coherence C++ Object Model 9-21

Application Launcher - Sanka

The later two executables can be optionally supplied with shared libraries to inspect,
in which case they output the registration which exists in the supplied library rather
then all registrations.

Note:

The console which was formerly shipped as an example, is now shipped as a
built-in executable class.

9.4.3 Sample Custom Executable Class

Applications can of course still be made executable in the traditional C++ means using
a global main function. If desired you can make your own classes executable using
Sanka as well. The following is a simple example of an executable class:

#incl ude "coherence/l ang. ns"
COH_OPEN_NAMESPACE2(ny, t est)

usi ng nanmespace coherence::|ang;

class Echo
. public class_spec<Echo>
{
friend class factory<Echo>;
public:
static void main(ObjectArray::View vasArg)
{
for (size32_t i =0, ¢ = vasArg->length; i <c; ++)
{
std::cout << vasArg[i] << std::endl;
}
}
¥

COH_REQ STER_EXECUTABLE_CLASS(Echo); // nust appear in .cpp

OOH_CLCSE_NAVESPACE2

As you can see the specified class must have been registered as an Execut abl eCl ass
and have a mai n method matching the following signature:

static void main(ojectArray:: View

The supplied Obj ect Arr ay parameter is an array of St ri ng: : Vi ewobjects

corresponding to the command-line arguments which followed the executable class
name.

When linked into a shared library, for instance | i becho. so or echo. dl | , the Echo
class can be run as follows:

> sanka -1 echo ny::test::Echo Hello Wrld
Hello
orl d

9-22 Developing Remote Clients for Oracle Coherence

10

Using the Coherence for C++ Client API

This chapter describes the Coherence for C++ API, which allows C++ applications to
use Coherence clustered services from outside the Coherence cluster.

Documentation of the Coherence for C++ APl is available in two locations. The C++
API Reference for Oracle Coherence and also in the doc directory of the Coherence for C+
+ distribution.

This chapter includes the following sections:

CacheFactory
NamedCache
QueryMap
ObservableMap
InvocableMap
Filter

Value Extractors
Entry Processors

Entry Aggregators

10.1 CacheFactory

CacheFact or y provides several static methods for retrieving and releasing
NamedCache instances:

NanedCache: : Handl e get Cache(String:: Vi ew vsNanme) —retrieves a
NanmedCache implementation that corresponds to the NamedCache with the
specified name running within the remote Coherence cluster.

voi d rel easeCache(NanedCache: : Handl e hCache) —releases all local
resources associated with the specified instance of the cache. After a cache is
released, it can no longer be used. The content of the cache, however, is not
affected.

voi d destroyCache(NamedCache: : Handl e hCache) —destroys the
specified cache across the Coherence cluster.

Using the Coherence for C++ Client API 10-1

NamedCache

10.2 NamedCache

A NarredCache is a map of resources shared among members of a cluster. The
NanmedCache provides several methods used to retrieve the name of the cache and the
service, and to release or destroy the cache:

e String::View get CacheNane() —returns the name of the cache asa Stri ng.

e CacheService:: Handl e get CacheServi ce() —returns a handle to the
CacheSer vi ce that this NamedCache is a part of.

* bool isActive()—specifies whether this NamedCache is active.

e voi d rel ease() —releases the local resources associated with this instance of the
NanmedCache. The cache is no longer usable, but the cache contents are not
affected.

e voi d destroy()—releases and destroys this instance of the NamedCache.

NanmedCache interface also extends the following interfaces: Quer y Map,
| nvocabl eMap, Concur r ent Map, CacheMap and Cbser vabl eMap.

10.3 QueryMap

A Quer yMap can be thought of as an extension of the Map class with additional query
features. These features allow the ability to query a cache using various filters. Filters
are described in “Filter ”.

e Set::ViewkeySet(Filter::View vFilter)—returns a set of the keys
contained in this map for entries that satisfy the criteria expressed by the filter.

e Set::ViewentrySet(Filter::View vFilter)—returns a set of the entries
contained in this map that satisfy the criteria expressed by the filter. Each element
in the returned set is a Map: : Ent ry object.

e Set::ViewentrySet(Filter::View vFilter, Conparator::View
vConpar at or) —returns a set of the entries contained in this map that satisfy the
criteria expressed by the filter. Each element in the returned setis a Map: : Entry
object. This version of ent r ySet further guarantees that its iterator traverses the
set in ascending order based on the entry values which are sorted by the specified
Conpar at or or according to the natural ordering.

Additionally, the Quer yMap class includes the ability to add and remove indexes.
Indexes are used to correlate values stored in the cache to their corresponding keys
and can dramatically increase the performance of the keySet and ent r y Set
methods.

e voi d addl ndex(Val ueExtractor::View vExtractor, bool ean_t
f Ordered, Conparator::View vConpar at or) —adds an index to this
Quer yMap. The index correlates values stored in this indexed Map (or attributes of
those values) to the corresponding keys in the indexed Map and increase the
performance of keySet and ent r ySet methods.

e void renovel ndex(Val ueExtractor:: Vi ew VEXxtract or) —removes an
index from this Quer yMap.

See “Querying a Cache (C++)” for a more in depth look at queries. See also the C++
examples in “Performing Simple Queries”

10-2 Developing Remote Clients for Oracle Coherence

ObservableMap

10.4 ObservableMap

An Qobser vabl eMap provides an application with the ability to listen for cache
changes. Applications that implement Coser vabl eMap can add key and filter
listeners to receive events from any cache, regardless of whether that cache is local,
partitioned, near, replicated, using read-through, write-through, write-behind,
overflow, disk storage, and so on. Cbser vabl eMap also provides methods to remove
these listeners.

e voi d addKeyLi st ener (MapLi st ener:: Handl e hLi st ener,
Qbj ect::View vKey, bool fLite)—addsamap listener for a specific key.

e void renoveKeylLi st ener (MapLi st ener: : Handl e hLi st ener,
Qbj ect : : Vi ew vKey) —removes a map listener that previously signed up for
events about a specific key.

e void addFilterlListener(MpListener::Handl e hLi stener,
Filter::View vFilter = NULL, bool fLite = fal se)—addsamap
listener that receives events based on a filter evaluation.

e void renoveFilterlListener(MpListener::Handl e hLi stener,
Filter::View vFilter = NULL) —removes a map listener that previously
signed up for events based on a filter evaluation.

See the C++ examples in “Signing Up for all Events”.

10.5 InvocableMap

An InvocableMap is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
efficient in a distributed environment because it localizes processing: the processing of
the cache contents are moved to the location at which the entries-to-be-processed are
being managed. For more information about processors and aggregators, see “Entry
Processors” and “Entry Aggregators”.

e (bj ect:: Hol der invoke(Object::View vKey,
EntryProcessor: : Handl e hAgent) —invokes the passed processor
(Ent r yPr ocessor) against the entry (Ent r y) specified by the passed key,
returning the result of the invocation.

e Map::View invokeAl |l (Collection::View vCol |l Keys,
EntryProcessor: : Handl e hAgent) —invokes the passed processor
(Ent r yPr ocessor) against the entries (Ent r y objects) specified by the passed
keys, returning the result of the invocation for each.

e Map::View invokeAl |l (Filter::View vFilter,
EntryProcessor: : Handl e hAgent) —invokes the passed processor
(Ent r yPr ocessor) against the entries (Ent r y objects) that are selected by the
given filter, returning the result of the invocation for each.

e (bj ect::Holder aggregate(Collection::View vColl Keys,
Ent r yAggr egat or : : Handl e hAgent) —performs an aggregating operation
against the entries specified by the passed keys.

Using the Coherence for C++ Client API 10-3

Filter

10.6 Filter

oj ect:: Hol der aggregate(Filter::View vFilter,
Ent r yAggr egat or : : Handl e hAgent) —performs an aggregating operation
against the entries that are selected by the given filter.

Filter provides the ability to filter results and only return objects that meet a given set
of criteria. All filters must implement Filter. Filters are commonly used with the

Quer yMap API to query the cache for entries that meet a given criteria. See also
“QueryMap”.

bool eval uat e(Obj ect:: Vi ew v) —applies a test to the specified object and
returns true if the test passes, false otherwise.

Coherence for C++ includes many concrete Fi | t er implementations in the
coherence: :util::filter namespace. Below are several commonly used filters:

Equal sFi | t er is used to test for equality. The following example creates an
Equal sFi | t er to test that an object equals 5:

Equal sFilter::View vEqual sFilter =
Equal sFilter::create(ldentityExtractor::getlnstance(), Integer32::valueX(5));

G eat er Equal sFi | t er is used to test a "Greater or Equals" condition. The
following example creates a G- eat er Equal sFi | t er that tests that an objects
value is >= 55:

G eaterEqual sFilter::View vGeaterEqual sFilter =
GeaterEqual sFilter::create(ldentityExtractor::getlnstance(),
I nteger 32: : val ue(X (55));

Li keFi | t er is used for pattern matching. The followiung example creates a
Li keFi | t er that tests that the string representation of an object begins with
n Be I g Yl:

LikeFilter::View vLikeFilter =
LikeFilter::create(ldentityExtractor::getlnstance(), "Belg%);

Sone filters conbine two filters to create a conpound

condi tion. AndFilter isused to combine two filters to create an "AND"
condition. The following example creates an AndFi | t er that tests that an objects
value is greater than 10 and less than 20:

AndFilter::View vAndFilter = AndFilter::create(
GeaterFilter::create(ldentityExtractor::getlnstance(),

I nteger 32: : val ueC (10)),
LessFilter::create(ldentityExtractor::getlnstance(),

I nteger 32: :val ue((20)));

O Fi | ter is used to combine two filters to create an "OR" condition. The following
example create an Or Fi | t er that tests that an object’s value is less than 10 or
greater than 20:

OFilter::ViewvOFilter = OFilter::create(
LessFilter::create(ldentityExtractor::getlnstance(),

I nteger 32: : val ued (10)),
GeaterFilter::create(ldentityExtractor::getlnstance(),

I nteger 32: :val ued (20)));

10-4 Developing Remote Clients for Oracle Coherence

Value Extractors

10.7 Value Extractors

A value extractor is used to extract values from an object and to provide an identity for
the extraction. All extractors must implement Val ueExt r act or.

Note:

All concrete extractor implementations must also explicitly implement the
hashCode and equal s functions in a way that is based solely on the object's
serializable state.

bj ect: : Hol der extract (Object:: Hol der ohTar get) —extracts the value
from the passed object.

bool equal s(Cbj ect: : Vi ew v) —compares the Val ueExt r act or with
another object to determine equality. Two Val ueExt r act or objects, vel and ve2
are considered equal if and only if vel- >extract (v) equals ve2- >extract (v)
for all values of v.

si ze32_t hashCode() —determine a hash value for the Val ueExt r act or
object according to the general Obj ect #hashCode() contract.

Coherence for C++ includes the following extractors:

Chai nedExt r act or —is a composite Val ueExt r act or implementation based
on an array of extractors. The extractors in the array are applied sequentially left-
to-right, so a result of a previous extractor serves as a target object for a next one.

Conpari sonVal ueExt r act or —returns a result of comparison between two
values extracted from the same target.

| denti t yExt r act or —is a trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

KeyExt r act or —is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

Mul ti Extract or —is a composite ValueExtractor implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extraction is a List of extracted values.

Ref | ect i onExt r act or —extracts a value from a specified object property.

See the C++ examples in “Understanding Query Concepts”.

10.8 Entry Processors

An entry processor is an agent that operates against the entry objects within a cache.
All entry processors must implement Ent r yPr ocessor .

nj ect: : Hol der process(1nvocabl eMap: : Entry:: Handl e hEntry) —
process the specified entry.

Map: : Vi ew processAl | (Set:: Vi ew vSet Entri es) —process a collection of
entries.

Using the Coherence for C++ Client API 10-5

Entry Aggregators

Coherence for C++ includes several Ent r yPr ocessor implementations in the
coherence: :util::processor namespace.

See the C++ examples that are part of the Coherence Java distribution.

10.9 Entry Aggregators

An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an | nvocabl eMap, resulting in an aggregated result. Common
examples of aggregation include functions such as minimum, maximum, sum, and
average. However, the concept of aggregation applies to any process that must
evaluate a group of entries to come up with a single answer. Aggregation is explicitly
capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the Ent r yAggr egat or interface:

e (oject::Hol der aggregate(Collection::View vCol| Keys) — processes
a collection of entries to produce an aggregate result.

Coherence for C++ includes several Ent r yAggr egat or implementations in the
coherence: :util:: aggregat or namespace.

Note:

Like cached value objects, all custom Fi | t er, Val ueExt r act or,

Ent ryProcessor, and Ent r yAggr egat or implementation classes must be
correctly registered in the POF context of the C++ application and cluster-side
node to which the client is connected. As such, corresponding Java
implementations of the custom C++ types must be created, compiled, and
deployed on the cluster-side node. Note that the actual execution of these
custom types is performed by the Java implementation and not the C++
implementation. See Building Integration Objects (C++), for additional details.

10-6 Developing Remote Clients for Oracle Coherence

11

Building Integration Objects (C++)

This chapter provides instructions for using Portable Object Format (POF) serialization
when creating C++ clients.

Note:

This document assumes familiarity with the Coherence C++ Object Model,
including advanced concepts such as specification-based class definitions. For
more information on these topics, see Using the Coherence C++ Object Model.

This chapter includes the following sections:

* Overview of Building Integration Objects (C++)
* POF Intrinsics

¢ Serialization Options

¢ Using POF Object References

* Registering Custom C++ Types

¢ Implementing a Java Version of a C++ Object

* Understanding Serialization Performance

¢ Using POF Annotations to Serialize Objects

11.1 Overview of Building Integration Objects (C++)

Enabling C++ clients to successfully store C++ based objects within a Coherence
cluster relies on a platform-independent serialization format known as POF (Portable
Object Format). POF allows value objects to be encoded into a binary stream in such a
way that the platform and language origin of the object is irrelevant. The stream can
then be deserialized in an alternate language using a similar POF-based class
definition. For more information on the POF binary stream, see Developing Applications
with Oracle Coherence

While the Coherence C++ API includes several POF serializable classes, custom data
types require serialization support as described in this chapter.

11.2 POF Intrinsics

The following types are internally supported by POF, and do not require special
handling by the user:

e String

Building Integration Objects (C++) 11-1

Serialization Options

¢ Integerl6 .. Integer64
e Float32, Float64

® Array<> of primitives
¢ ObjectArray

e Boolean

e Octet

¢ Characterl6

Additionally, automatic POF serialization is provided for classes implementing these
common interfaces:

e Map
e (Collection

* Exception

11.3 Serialization Options

While the Coherence C++ API offers a single serialization format (POF), it offers a
variety of APIs for making a class serializable. Ultimately whichever approach is used,
the same binary POF format is produced. The following approaches are available for
making a class serializable:

* Use the Managed<T> adapter template, and add external free-function serializers.
See “Managed<T> (Free-Function Serialization) ” for more information.

* Modify the data object to extend Obj ect, and implement the Por t abl eChj ect
interface, to allow for object to self-serialize. See “PortableObject (Self-
Serialization) ” for more information.

¢ Modify the data object to extend Qbj ect, and produce a Pof Seri al i zer class to

perform external serialization. See “PofSerializer (External Serialization) ” for more
information.

Table 11-1 lists some requirements and limitations of each approach.

Table 11-1 Requirements and Limitations of Serialization Options

__|

Approach Coherence Requires Supports External Requires
headersin derivation constdata- serializatio zero-arg
data-object from Object members n routine constructor

Managed<T> No No Yes Yes Yes
PortableObject Yes Yes No No Yes
PofSerializer Yes Yes Yes Yes No

All of these approaches share certain similarities:

¢ Serialization routines that allow the data items to be encoded to POF must be
implemented.

11-2 Developing Remote Clients for Oracle Coherence

Serialization Options

* The data object's fields are identified by using numeric indexes.

¢ The data object class and serialization mechanism must be registered with
Coherence.

* Data objects used as cache keys must support equality comparisons and hashing.

11.3.1 Managed<T> (Free-Function Serialization)

For most pre-existing data object classes, the use of Managed<T> offers the easiest
means of integrating with Coherence for C++.

For a non-managed class to be compatible with Managed<T> it must have the
following characteristics:

® zero parameter constructor (public or protected): CustomType::CustomType()

* copy constructor (public or protected): CustomType::CustomType(const
CustomType&)

® equality comparison operator: bool operator==(const CustomType&, const
CustomType&)

e std::ostreamoutput function: std:: ostream&
oper at or <<(st d: : ost r eam&, const CustomType&)

¢ hash function: si ze_t hash_val ue(const CustomType&)

The following example presents a simple Addr ess class, which has no direct
knowledge of Coherence, but is suitable for use with the Managed<T> template.

Note:

In the interest of brevity, example class definitions are in-lined within the
declaration.

Example 11-1 A Non-Managed Class

#include <iostreanp
#include <string>
usi ng nanmespace std;

class Address
{
public:
Address(const std::string& sGity, const std::string& sState, int nZp)
: msCty(sCty), msState(sState), mnzip(nZip) {}

Addr ess(const Address& that) // required by Managed<T>
: msCity(that.msGty), msState(that. msState), mnZip(that.mnZp) {}

prot ect ed:
Address() // required by Managed<T>
© mnZip(0) {}
publ i c:

std::string getCity() const {return msCty;}
std::string getState() const {return msState;}
int getZip() const {return mnZp;}

Building Integration Objects (C++) 11-3

Serialization Options

private:
const std::string msCty;
const std::string msState;

const int m nZi p;
¥
bool operator==(const Address& addra, const Address& addrb) // required by Managed<T>
{
return addra.getZip() == addrb.getZip() &&
addra. get State() == addrb.getState() &&
addra.getCty() == addrb.getCity();
1
std::ostream® operator<<(std::ostream& out, const Address& addr) // required by
Managed<T>
{
out << addr.getCity() << ", " << addr.getState() << " " << addr.getZp();
return out;
1
size_t hash_val ue(const Address& addr) // required by Managed<T>
{
return (size_t) addr.getZip();
1

When combined with Managed<T>, this simple class definition becomes a true
"managed object", and is usable by the Coherence C++ API. This definition has yet to
address serialization. Serialization support is added Example 11-2:

Example 11-2 Managed Class using Serialization

#incl ude "coherence/i ol pof / Syst enPof Cont ext . hpp"
#incl ude "Address. hpp"
usi ng nanmespace coherence::io:: pof;

COH_REG STER_MANAGED CLASS(1234, Address); // type ID registration—this nust
/| appear in the .cpp not the .hpp

tenmpl ate<> voi d serialize<Address>(Pof Witer::Handl e hQut, const Address& addr)
{
hQut->writeString(0, addr.getGity());
hQut->writeString(l, addr.getState());
hQut->writelnt32 (2, addr.getZip());

}

tenpl at e<> Address deseri al i ze<Addr ess>(Pof Reader : : Handl e hln)
{
std::string sCty hln->readString(0);
std::string sState = hln->readString(1);
int nZip = hin->readint32 (2);
return Address(sCity, sState, nZip);
}

11-4 Developing Remote Clients for Oracle Coherence

Serialization Options

Note:

The serialization routines must have knowledge of Coherence. However, they
are not required as part of the class definition file. They can be placed in an
independent source file, and if they are linked into the final application, they
take effect.

With the above pieces in place, Example 11-3 illustrates instances of the Addr ess class
wrapped by using Managed<T> as Managed<Addr ess>, and supplied to the
Coherence APIs:

Example 11-3 Instances of a Class Wrapped with Managed<T>

/] construct the non-nanaged version as usual
Address of fice("Redwood Shores", "CA", 94065);

/1 the managed version can be initialized fromthe non-nanaged version
[l the result is a new object, which does not reference the original
Managed<Address>:: View vOf fi ce = Managed<Address>::create(office);
String::View vKey = "Oracle";

/1 the managed version is suitable for use with caches
hCache- >put (vKey, vAddr);
vOffice = cast<Managed<Address>; : Vi ew>(hCache- >get (vKey));

/1 the non-managed class's public nethods/fields remain accessible
assert(vOfice->getCity() == office.getCity());
assert(vOfice->getState() == office.getState());
assert(vOfice->getZip() == office.getZip());

/'l conversion back to the non-managed type may be perforned using the
/'l non-managed class's copy constructor.
Address of ficeQut = *vOfice;

11.3.2 PortableObject (Self-Serialization)

The Por t abl eQoj ect interface is similar in concept to j ava. i 0. Ext er nal i zabl e,
which allows an object to control how it is serialized. Any class which extends from
coherence: : | ang: : Obj ect is free to implement the

coherence: :io:: pof::Portabl etbj ect interface to add serialization support.
Note that the class must extend from Cbj ect , which then dictates its life cycle.

In Example 11-4, the above Addr ess example can be rewritten as a managed class,
and implement the Por t abl eCbj ect interface, which fully embraces the Coherence
object model as part of the definition of the class. For example, using

coherence: : I ang: : Stri ng rather then st d: : stri ng for data members.

Example 11-4 A Managed Class that Implements PortableObject

#incl ude "coherence/l ang. ns"

#include "coherence/i o/ pof / Pof Reader . hpp"
#include "coherence/i o/ pof/Pof Witer. hpp"

#incl ude "coherence/i o/ pof/ Portabl eChj ect. hpp"
#incl ude "coherence/i o/ pof/ Syst enPof Cont ext . hpp"

usi ng nanmespace coherence::|ang;

Building Integration Objects (C++) 11-5

Serialization Options

usi ng coherence::io:: pof:: Pof Reader;
usi ng coherence::io::pof::Pof Witer;
usi ng coherence::io::pof::Portabl eQject;

cl ass Address
. public cloneabl e_spec<Address,
ext ends<Qhj ect >,
i npl enent s<Port abl eCbj ect> >

{

friend class factory<Address>;

protected: // constructors
Address(String::ViewvsCity, String::ViewvsState, int32_t nZp)
: mvsGty(self(), vsCty), mvsState(sel f(), vsState), mnZp(nZip) {}

Address(const Address& that)

: super(that), mvsCty(self(), that.mvsCty), mvsState(self(),
that.mvsState), mnZip(that.mnZp) {}

Address() // required by Portabl eQj ect
: mvsCty(self()),
mvsState(self()),
m nZip(0) {}

public: // Address interface
virtual String::View getCty() const {return mvsCty;}
virtual String::View getState() const {return mvsState;}
virtual int32_t getZip() const {return mnZp;}

public: // Portableoject interface virtual void
writeExternal (Pof Witer::Handl e hQut) const
{
hQut->writeString(0, getCty());
hQut->writeString(l, getState());
hQut->writelnt32 (2, getzip());
1

virtual void readExternal (Pof Reader:: Handl e hln)
{
initialize(mvsGty, hlin->readString(0));
initialize(muvsState, hin->readString(1));
mnZip = hin->readlnt32 (2);
1

public: // ojectinterface virtual bool equal s(hject::Viewthat) const
{

i f (instanceof <Address::View>(that))

{
Address:: View vThat = cast<Address:: View>(that);

return getZip() == vThat->getZip() &&
bj ect::equal s(getState(), vThat->getState()) &&
bj ect::equal s(getCity(), vThat->getCity());

}

return fal se;

}

virtual size32_t hashCode() const

{

return (size32_t) mnZip;

11-6 Developing Remote Clients for Oracle Coherence

Serialization Options

}

virtual void toStrean(std::ostream& out) const

{
out << getCity() << ", " << getState() << " " << getZip();

}

private:
Fi nal View<String> mvsCity;
Fi nal Vi ew<String> mvsState;
int32_t m nZi p;
1
COH_REGQ STER PORTABLE_CLASS(1234, Address); // type ID registration—this must
/] appear in the .cpp not the .hpp

Example 11-5 illustrates a managed variant of the Addr ess that does not require the
use of the Managed<T> adapter and can be used directly with the Coherence API:
Example 11-5 A Managed Class without Managed<T>

Addr ess: : Vi ew vAddr
String::View vKey

Address: : creat e("Redwood Shores", "CA", 94065);
"Oracle";

hCache- >put (vKey, vAddr);
Address:: View vO fice = cast<Address:: Vi ew>(hCache- >get (vKey));

Serialization by using Por t abl eCbj ect is a good choice when the application has
decided to make use of the Coherence object model for representing its data objects.
One drawback to PortableObject is that it does not easily support const data members,
as the r eadExt er nal method is called after construction, and must assign these
values.

11.3.3 PofSerializer (External Serialization)

The third serialization option is also the lowest level one. Pof Seri al i zer s are
classes that provide the serialization logic for other classes. For example, an

Addr essSeri al i zer is written which can serialize a non-Por t abl eObj ect version
of the above managed Addr ess class. Under the covers the prior two approaches
were delegating through Pof Seri al i zer s, they were just being created
automatically rather then explicitly. Typically, it is not necessary to use this approach,
as either the Managed<T> or Por t abl eQbj ect approaches suffice. This approach is
primarily of interest when you have a managed object with const data members.
Consider Example 11-6, a non-Por t abl eCbj ect version of a managed Addr ess.

Example 11-6 A non-PortableObject Version of a Managed Class

#include "coherence/l ang. ns"
usi ng namespace coherence: :|ang;

class Address
. public cloneabl e_spec<Address> // extends<Cbject> is inplied

{
friend class factory<Address>;
protected: // constructors

Address(String::ViewvsCity, String::ViewvsState, int32_t nZip)
: mvsGity(self(), vsGty), mvsState(self(), vsState), mnZp(nZp) {}

Addr ess(const Address& that)

Building Integration Objects (C++) 11-7

Serialization Options

. super(that), mvsCty(self(), that.getCity()), mvsState(self(),
that.getState()), mnZp(that.getZip()) {}

public: // Address interface
virtual String::View getCty() const {return mvsCty;}
virtual String::View getState() const {return mvsState;}
virtual int32_t getZip() const {return mnZp;}

public: // ojectinterface
virtual bool equal s(Object::Viewthat) const
{

i f (instanceof <Address::View>(that))

{
Address:: View vThat = cast<Address:: View>(that);

return getZip() == vThat->getZip() &&
bj ect::equal s(get State(), vThat->getState()) &&
bj ect::equal s(getCity(), vThat->getCity());

}
return fal se;
1
virtual size32_t hashCode() const
{
return (size32_t) mnZip;
1
virtual void toStrean(std::ostream& out) const
{
out << getCity() << ", " << getState() << " " << getZp();
1
private:

const MenberViewString> mvsCity;
const Menber Vi ew<String> myvsState;
const int32_t m nZi p;

B

Note that this version uses const data members, which makes it not well-suited for
Por t abl eCbj ect . Example 11-7 illustrates an external class, Addr essSeri al i zer,
which is registered as being responsible for serialization of Addr ess instances.

Example 11-7 An External Class Responsible for Serialization

#incl ude "coherence/l ang. ns"

#include "coherence/i o/ pof / Pof Reader . hpp"
#include "coherence/i o/ pof/Pof Witer. hpp"
#incl ude "coherence/i o/ pof/ Portabl eChj ect. hpp"
#incl ude "coherence/iol pof/ Pof Seri al i zer. hpp"
#incl ude "coherence/i o/ pof / Syst enPof Cont ext . hpp"
#incl ude "Address. hpp"

usi ng nanmespace coherence::|ang;

usi ng coherence::io:: pof:: Pof Reader;

usi ng coherence::io::pof::Pof Witer;

usi ng coherence::io::pof::PofSerializer;

class AddressSerializer

11-8 Developing Remote Clients for Oracle Coherence

Using POF Object References

. public class_spec<AddressSeriali zer,
ext ends<Qhj ect >,
i mpl ement s<Pof Seri al i zer> >

{

friend class factory<AddressSerializer>;

prot ect ed:
AddressSerializer();

public: // PofSerializer interface virtual void serialize(Pof Witer::Handle
hQut, Qbject::Viewv) const
{
Address: : Vi ew vAddr = cast <Address:: Vi ew>(v);
hQut->writeString(0, vAddr->getCity());
hQut->writeString(1l, vAddr->getState());
hQut->witelnt32 (2, vAddr->getZip());
hQut - >wr i t eRemai nder (NULL) ;
}

virtual oject::Hol der deserialize(PofReader::Handl e hin) const
{
String::ViewvsCty
String::View vsState
int32_t nzZip
hl n- >r eadRemai nder () ;

hl n->readString(0);
hi n->readString(1);
hin->readlnt32 (2);

return Address::create(vsGity, vsState, nZip);

1
b
COH_REG STER PCF_SERI ALI ZER(1234,
TypedBar renCl ass<Address>: : create(), AddressSerializer::create()); // This nust
appear in the .cpp not the .hpp

Usage of the Addr ess remains unchanged:

Addr ess: : Vi ew vAddr
String::View vKey

Address: : creat e("Redwood Shores", "CA", 94065);
"Oracle";

hCache- >put (vKey, vAddr);
Address:: View vO fice = cast<Address:: Vi ew>(hCache- >get (vKey));

11.4 Using POF Object References

POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its identity.

Using references avoids encoding the same object multiple times and helps reduce the
data size. References are typically used when a large number of sizeable objects are
created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the
use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The use of object identity and references has the following limitations:
¢ Object references are only supported for user defined object types.
* Object references are not supported for Evol vabl e objects.

¢ Object references are not supported for keys.

Building Integration Objects (C++) 11-9

Using POF Object References

¢ Objects that have been written out with a POF context that does not support
references cannot be read by a POF context that supports references. The opposite
is also true.

¢ POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the Val ueExt r act or API to query object values or disable
object references.

® The use of the Pof Navi gat or and Pof Val ue API has the following restrictions
when using object references:

— Only read operations are allowed. Write operations result in an
Unsupport edOper at i onExcept i on.

— User objects can be accessed in non-uniform collections but not in uniform
collections.

— For read operations, if an object appears in the data stream multiple times, then
the object must be read where it first appears before it can be read in the
subsequent part of the data. Otherwise, an | OExcepti on: ni ssing
identity: <ID>maybe thrown. For example, if there are 3 lists that all
contain the same person object, p. The p object must be read in the first list
before it can be read in the second or third list.

The following topics are included in this section:
¢ Enabling POF Object References

¢ Registering POF Object Identities for Circular and Nested Objects

11.4.1 Enabling POF Object References

Object references are not enabled by default and must be enabled using
set Ref er enceEnabl ed when creating a POF context. For example:

Syst enPof Cont ext : : Handl e hCtx = Syst enPof Cont ext : : get | nst ance();
hCt x- >set Ref er enceEnabl ed(true);

11.4.2 Registering POF Object Identities for Circular and Nested Objects

Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the Pof Reader . r egi st er | dent i t y method.

The following examples demonstrate two objects (Cust orrer and Pr oduct) that
contain a circular reference and a serializer implementation that registers an identity
on the Cust orrer object.

The Cust orrer object is defined as follows:

class Custoner
. public class_spec<Custoner,
ext ends<Qhj ect > >
{

friend class factory<Custoner>;
prot ect ed:

Cust oner ()
: mvsNane(sel f(), String::null_string),

11-10 Developing Remote Clients for Oracle Coherence

Using POF Object References

m vProduct (sel f(), NULL)

{
}

Custoner (String:: View vsNane)
: mvsNane(sel f(), vsName),
m vProduct (sel f(), NULL)
{

}

Custoner (String::View vsNane, Product::View vProduct)
: mvsNane(sel f(), vsName),

m vProduct (sel f(), vProduct)

{

}

public:
String::View get Nane() const
{

return mvsNane,

}

voi d set Nane(String::View vsNane)
{

m vsName = vsNane;

}

Product:: Vi ew get Product () const

{

return mvProduct;

}

voi d set Product (Product:: Vi ew vProduct)

{

m vProduct = vProduct;

}

private:
Mermber Vi ew<St ri ng> m vsNane;
Menber Vi ew<Pr oduct > m vProduct;

b
The Pr oduct object is defined as follows:

class Product
. public class_spec<Product,
ext ends<Qhj ect > >

{
friend class factory<Product>;
prot ect ed:
Product ()
: mvCustoner(sel f(), NULL)
{
}

Product (Cust onmer: : Vi ew vCust oner)
. mvCustomer(sel f(), vCustomer)
{
}

Building Integration Objects (C++) 11-11

Registering Custom C++ Types

public:
Custoner:: Vi ew get Custoner () const

{

return mvCustoner;

}

voi d set Cust oner (Cust oner: : Vi ew vCust oner)
{
m vCust omer = vCust oner;

}

private:
Mermber Vi ew<Cust oner > m vCust oner ;
b

The serializer implementation registers an identity during deserialization and is
defined as follows:

class CustonerSerializer
. public class_spec<CustonerSerializer,
ext ends<Qhj ect >,
i mpl ement s<Pof Seri al i zer> >

{
friend class factory<CustonerSerializer>;
public:
void serialize(Pof Witer::Handle hQut, Object::Viewv) const
{

Custoner:: View vCustoner = cast<Custoner::Views(v);
hQut->writeString(0, vCustoner->getNane());

hQut - >writebject (1, vCustoner->getProduct());

hQut - >wr i t eRemai nder (NULL) ;

}

hj ect:: Hol der deserial i ze(Pof Reader: : Handl e hln) const
{
String::View vsName = cast<String::Views(hln->readString(0));
Cust oner: : Hol der ohCustonmer = Custoner::create(vsName);

hl n->regi sterldentity(ohCustoner);

ohCust omer - >set Product (cast <Product : : Vi ew>(hl n->readQbj ect(1)));
hl n->r eadRemai nder () ;

return ohCust omer;

}
b

11.5 Registering Custom C++ Types

In addition to being made serializable, each class must also be associated with numeric
type IDs. These IDs are well-known across the cluster. Within the cluster, the ID-to-
class mapping is configured by using POF user type configuration elements; within C
++, the mapping is embedded within the class definition in the form of an ID
registration, which is placed within the class's . cpp source file.

The registration technique differs slightly with each serialization approach:
e COH_REG STER_MANAGED_CLASS(| D, TYPE) —for use with Managed<T>

e COH REGQ STER PORTABLE CLASS(| D, TYPE) —for use with
Por t abl eQbj ect

11-12 Developing Remote Clients for Oracle Coherence

Implementing a Java Version of a C++ Object

e COH REG STER POF_SERI ALI ZER(1 D, CLASS, SERI ALI ZER) —for use with
Pof Seri al i zer

Examples of these registrations can be found in above examples.

Note:

Registrations must appear only in the implementation (. cpp) files. A POF
configuration file is only needed on the nodes where objects are serialized and
deserialize.

11.6 Implementing a Java Version of a C++ Object

The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the Pof Ext r act or and Pof Updat er APIs add
flexibility in working with non-primitive types in Coherence. For many extend client
cases, a corresponding Java classes in the grid is not required. Because POF extractors
and POF updaters can navigate the binary, the entire key and value does not have to
be deserialized into object form. This implies that indexing can be achieved by simply
using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers
must directly interact with a data object rather then simply holding onto a serialized
representation of it. For example, a Java class is still required when using a cache store.
In this case, the deserialized version of the key and value is passed to the cache store
to write to the back end. In addition, queries, filters, entry processors, and aggregators
require a Java implementation if direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the
cache servers. The approach to making the Java version serializable over POF is
similar to the above examples, see Por t abl eObj ect and Pof Seri al i zer for
details. These APIs are compatible with all three of the C++ approaches.

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using KeyAssoci at i on. Key classes are checked on the client
side and a decorated binary is created and used by the cluster. However, existing
client implementations that do rely on a Java key class for key association must set the
def er - key- associ at i on- check parameter in order to force the use of the Java
key class. Existing client applications that use key association but want to leverage
client-side key binaries, must port the get Associ at edKey() implementation from
the existing Java class to the corresponding client class.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <def er - key- associ at i on- check> element, within a

<r enot e- cache- schene> element, in the client-side cache configuration to t r ue.
For example:

<r enot e- cache- scheme>

<def er - key- associ at i on- check>t r ue</ def er - key- associ at i on- check>
</ renot e- cache- schenme>

Building Integration Objects (C++) 11-13

Understanding Serialization Performance

Note:

If the parameter is set to t r ue, a Java key class implementation must be found
on the cluster even if key association is no being used.

11.7 Understanding Serialization Performance

Both Managed<T> and Por t abl ehj ect behind the scenes use a Pof Seri al i zer
to perform serialization. Each of these approaches also adds some of its own overhead,
for instance the Managed<T> approach involves the creation of a temporary version of
non-managed form of the data object during deserialization. For Por t abl eCbj ect,
the lack of support for const data members can have a cost as it avoids optimizations
which would have been allowed for const data members. Overall the performance
differences may be negligible, but if seeking to achieve the maximum possible
performance, direct utilization of Pof Ser i al i zer may be worth consideration.

11.8 Using POF Annotations to Serialize Objects

POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the Pof Annot ati onSeri al i zer class which is an implementation of the

Pof Seri al i zer interface. Annotations offer an alternative to using the Managed<T>
adapter, Por t abl ebj ect interface, and Pof Seri al i zer interface and reduce the
amount of time and code that is required to make objects serializable.

The following topics are included in this section:
* Annotating Objects for POF Serialization

* Registering POF Annotated Objects

* Enabling Automatic Indexing

* Providing a Custom Codec

11.8.1 Annotating Objects for POF Serialization

Two annotations are available to indicate that a class and its methods are POF
serializable:

e Portabl e - Marks the class as POF serializable. The annotation is only permitted
at the class level and has no members.

e Portabl eProperty —Marks a method accessor as a POF serialized property.
Annotated methods must conform to accessor notation (get , set , i s). Members
can be used to specify POF indexes as well as custom codecs that are executed
before or after serialization or deserialization. Index values may be omitted and
automatically assigned. If a custom codec is not entered, the default codec is used.

The following example demonstrates annotating a class and method and also
explicitly assigns property index values. Note that the class must be registered with
the system class loader COH_REG STER_CLASS.

class Person
. public class_spec<Person>

{

friend class factory<Person>;

11-14 Developing Remote Clients for Oracle Coherence

Using POF Annotations to Serialize Objects

Publ i c:

String::View getFirstNane() const
{
return mvsFirst Nane;
}

voi d setFirstName(String::View vsFirstNane)
{
m vsFirstName = vsFirst Nane;
}

private: String mfirstName;
Member Vi ewsSt ri ng> m vsFi r st Nane;
Menber Vi ew<String> m vslLast Nane;

int32_t m_nAge;

public:
static const int32_t FIRST_NAME = 0;
static const int32_t LAST_NAME = 1,
static const int32_t ACE =2,

b

COH_REGQ STER_CLASS(TypedC ass<Person>: : creat ()
->annot ate(Portabl e::create())
->decl ar e(COH_PROPERTY(Person, FirstName, String::View
->annot at e(Port abl eProperty:: create(Person:: FI RST_NAME)))
->decl ar e(COH_PROPERTY(Person, LastNane, String::View)
->annot at e(Port abl eProperty:: create(Person: : LAST_NAME)))
->decl ar e(COH_PROPERTY(Person, Age, BoxHandl e<const Integer32>)
->annot at e(Port abl eProperty:: create(Person:: AGE)))

)i
11.8.2 Registering POF Annotated Objects

POF annotated objects must be registered as a user type using the
COH_REG STER_POF_ANNOTATED_CLASS macro. The following example registers a
user type for an annotated Per son object:

COH_REG STER_POF_ANNOTATED CLASS(1001, Person);

11.8.3 Enabling Automatic Indexing

POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. The index value can be omitted whenever defining
the Por t abl ePr oper t y annotation. Any property that does assign an explicit index
value is not assigned an automatic index value. The automatic index algorithm can be
described as follows:

Name Explicit Index Determined
Index

c 1 1

a omitted 0

b omitted 2

Building Integration Objects (C++) 11-15

Using POF Annotations to Serialize Objects

Note:

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, use the COH REG STER_POF_ANNOTATED_CLASS Al
pre-processor macro when registering the user type. The following example registers a
user type for an annotated Per son object that uses automatic indexing:

COH_REG STER POF_ANNOTATED CLASS Al (1001, Person);

11.8.4 Providing a Custom Codec

Codecs allow code to be executed before or after serialization or deserialization. The
codec defines how to encode and decode a portable property using the Pof Wi t er
and Pof Reader interfaces. Codecs are typically used for concrete implementations
that could get lost when being deserialized or to explicitly call a specific method on the
Pof Wi t er interface before serializing an object.

To create a codec, create a class that implements the Codec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked list

type:

class LinkedLi st Codec
public class_spec<Li nkedLi st Codec,
ext ends<Qhj ect >,
i npl enent s<Codec> >

{

friend class factory<LinkedLi st Codec>;

public:

voi d encode(Pof Witer::Handl e hQut, int32_t nlndex, Object::View ovVal ue)
const
{
hQut - >writeCol | ection(nlndex, cast<Collection::View>(ovValue));

}

vj ect: : Hol der decode(Pof Reader:: Handl e hin, int32_t nlndex) const

Li nkedLi st: : Handl e hLinkeList = LinkedList::create();
return hln->readCol | ection(nlndex, hLinkeList);

}

COH_REGI STER TYPED CLASS(Li nkedLi st Codec) ;

To assign a codec to a property, enter the codec as a member of the

Por t abl ePr oper t y annotation. If a codec is not specified, a default codec

(Def aul t Codec) is used. The following example demonstrates assigning the above
Li nkedLi st Codec codec:

COH_REQ STER_CLASS(TypedC ass<Per son>: : creat e()
->annot at e(Portabl e:: create())
->decl ar e(COH_PROPERTY(Person, FirstName, String::View
->annot at e(Port abl eProperty: : create(Person:: FI RST_NAME)))
->decl ar e(COH_PROPERTY(Person, LastName, String::View)
->annot at e(Port abl eProperty: : creat e(Person: : LAST_NAME)))
->decl ar e(COH_PROPERTY(Person, Age, BoxHandl e<const Integer32>)
->annot at e(Port abl eProperty:: create(Person: : ALl ASES,
Syst en assLoader : : get I nst ance() - >l oadByType(t ypei d(Li nkedLi st Codec)))))

K

11-16 Developing Remote Clients for Oracle Coherence

12

Querying a Cache (C++)

This chapter provides instructions for querying Coherence caches from C++ clients.

This chapter includes the following sections:

¢ Overview of Query Functionality

¢ Performing Simple Queries

¢ Understanding Query Concepts

¢ Performing Queries Involving Multi-Value Attributes
¢ Using a Chained Extractor in a Query

* Using a Query Recorder

12.1 Overview of Query Functionality

Coherence can perform queries and indexes against currently cached data that meets a
given set of criteria. Queries and indexes can be simple, employing filters packaged
with Coherence, or they can be run against multi-value attributes such as collections
and arrays. The result set may be sorted if desired. Queries are evaluated with Read
Committed isolation.

It should be noted that queries apply only to currently cached data (and do not use the
Cacheloader interface to retrieve additional data that may satisfy the query). Thus,
the data set should be loaded entirely into cache before queries are performed. In cases
where the data set is too large to fit into available memory, it may be possible to
restrict the cache contents along a specific dimension (for example, "date") and
manually switch between cache queries and database queries based on the structure of
the query. For maintainability, this is usually best implemented inside a cache-aware
data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; For
dedicated CacheSer ver instances, this implies (usually) that application classes must
be installed in the CacheSer ver classpath.

For Local and Replicated caches, queries are evaluated locally against unindexed data.
For Partitioned caches, queries are performed in parallel across the cluster, using
indexes if available. Coherence includes a Cost-Based Optimizer (CBO). Access to
unindexed attributes requires object deserialization (though indexing on other
attributes can reduce the number of objects that must be evaluated).

12.2 Performing Simple Queries

The following example uses an a value extractor and filter to query a cache.

Querying a Cache (C++) 12-1

Performing Simple Queries

Val ueExtract or:: Handl e hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqual sFilter::create(hExtractor,
I nteger32::val ue(X(18));

for (Iterator::Handl e hiter = hCache->entrySet (vFilter)->iterator(); hlter-
>hasNext ();)
{
Map: : Entry:: Handl e hEntry
I nteger32::View vKey

cast<Map:: Entry:: Handl e>(hlter->next());
cast<Integer32::Views(hEntry->getKey());
cast <Person: : Handl e>(hEnt ry->get Val ue());

Person: : Handl e hPer son
std::cout << "key=" << vKey << " person=" << hPerson;
}
Coherence provides a wide range of filters in the coherence: :util::Filter

package. ALi mitFilter may be used to limit the amount of data sent to the client,
and also to provide "paging" for users:

int32_t nPageSi ze = 25;

Val ueExtract or:: Handl e hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqual sFilter::create(hExtractor,
I nteger32::val ueC (18));

/] get entries 1-25
LimtFilter::Handl e hLimtFilter
Set::View vEntries

LinmtFilter::create(vFilter, nPageSize);
hCache->entrySet (hLimtFilter);

/] get entries 26-50
hLi m t Fi | ter->next Page();
VEntries = hCache->entrySet(hLinmitFilter);

Any queryable attribute may be indexed with the addl ndex method of the Quer yMap
class:

/1 addl ndex(Val ueExtractor::View vExtractor, boolean_t fOrdered, Conparator::View
vConpar at or)
hCache- >addl ndex(hExtractor, true, NULL);

The f Or der ed argument specifies whether the index structure is sorted. Sorted
indexes are useful for range queries, including "select all entries that fall between two
dates" and "select all employees whose family name begins with 'S™. For "equality”
queries, an unordered index may be used, which may have better efficiency in terms
of space and time.

The comparator argument provides a custom j ava. uti | . Conpar at or for ordering
the index.

Note:

This method is only intended as a hint to the cache implementation, and as
such it may be ignored by the cache if indexes are not supported or if the
desired index (or a similar index) exists. It is expected that an application calls
this method to suggest an index even if the index exists, just so that the
application is certain that index has been suggested. For example, in a
distributed environment each server likely suggests the same set of indexes
when it starts, and there is no downside to the application blindly requesting
those indexes regardless of whether another server has requested the same
indexes.

12-2 Developing Remote Clients for Oracle Coherence

Understanding Query Concepts

Note that queries can be combined by Coherence if necessary, and also that Coherence
includes a cost-based optimizer (CBO) to prioritize the usage of indexes. To take
advantage of an index, queries must use extractors that are equal ((Cbj ect -

>equal s()) to the one used in the query.

12.2.1 Querying Partitioned Caches

The Partitioned Cache implements the QueryMap interface using the Parallel Query
feature and results in high performance queries even for large data sets.

12.2.2 Querying Near Caches

Although queries can be executed through a near cache, the query does not use the
front portion of a near cache. If using a near cache with queries, the best approach is to
use the following sequence:

Set::View vSetKeys = hCache->keySet (vFilter);
Map: : Vi ew vMapResul t = hCache->get Al | (vSet Keys);

12.3 Understanding Query Concepts

This section goes into more detail on the design of the query interface, building up
from the core components.

The concept of querying is based on the Val ueExt r act or interface. A value
extractor is used to extract an attribute from a given object for querying (and similarly,
indexing). Most developers only need the Ref | ect i onExt r act or implementation
of this interface. The ReflectionExtractor uses reflection to extract an attribute from a
value object by referring to a method name, typically a "getter" method like

get Name() .

Refl ectionExtractor::Handl e hExtractor = ReflectionExtractor::create("getNanme");

Any void argument method can be used, including Obj ect methods like
toString() (useful for prototyping/debugging). Indexes may be either traditional
field indexes (indexing fields of objects) or function-based indexes (indexing virtual
object attributes). For example, if a class has field accessors get Fi r st Nanme and

get Last Nane, the class may define a function get Ful | Name which concatenates
those names, and this function may be indexed.

To query a cache that contains objects with get Nane attributes, a Fi | t er must be
used. A filter has a single method which determines whether a given object meets a
criterion.

Filter::Handl e hEqual sFilter = Equal sFilter::create(hExtractor, String::create("Bob
Smth"));

To select the entries of a cache that satisfy a particular filter:

for (lterator::Handle hiter = hCache->entrySet(hEqual sFilter)->iterator(); hlter-
>hasNext ();)
{
Map: : Entry:: Handl e hEntry
I nteger32::View vKey

cast<Map:: Entry:: Handl e>(hlter->next());
cast<Integer32::Views(hEntry->getKey());

Person: : Handl e hPerson = cast <Person: : Handl e>(hEnt ry->get Val ue());
std::cout << "key=" << vKey << " person=" << hPerson;
}

To select and also sort the entries:

Querying a Cache (C++) 12-3

Performing Queries Involving Multi-Value Attributes

Il entrySet(Filter::View vFilter, Conparator::View vConparator)
Iterator::Handl e hiter = hCache->entrySet (hEqual sFilter, NULL)->iterator();

The additional NULL argument specifies that the result set should be sorted using the
"natural ordering" of Comparable objects within the cache. The client may explicitly
specify the ordering of the result set by providing an implementation of Comparator.
Note that sorting places significant restrictions on the optimizations that Coherence
can apply, as sorting requires that the entire result set be available before sorting.

Using the keySet form of the queries—combined with get Al | () —may provide
more control over memory usage:

Il keySet(Filter::View vFilter)

Set::View vSetKeys = hCache- >keySet (vFilter);

Set:: Handl e hSet PageKeys = HashSet::create();

int32_t PAGE SIZE = 100;

for (Iterator::Handle hiter = vSetKeys->iterator(); hlter->hasNext();)
{

hSet PageKeys- >add(hl ter->next());
i f (hSetPageKeys->size() == PAGE_SIZE || !hlter->hasNext())
{

/1 get a block of values
Map: : Vi ew vMapResul t = hCache->get Al | (hSet PageKeys) ;

[l process the block
...

hSet PageKeys- >cl ear () ;

}
}

12.4 Performing Queries Involving Multi-Value Attributes

Coherence supports indexing and querying of multi-value attributes including
collections and arrays. When an object is indexed, Coherence verifies if it is a multi-
value type, and then indexes it as a collection rather than a singleton. The

Cont ai nsAl | Fil ter,Cont ai nsAnyFi |l ter,and Cont ai nsFi | t er are used to
query against these collections.

Set:: Handl e hSearchTerms = HashSet::create();
hSear chTer ns- >add(String::create("java"));

hSear chTer ns- >add(String::create("clustering"));
hSear chTer ns- >add(String: : creat e("books"));

/1 The cache contains instances of a class "Docunent” which has a nethod

/1 "getWords" which returns a Collection<String> containing the set of

/1 words that appear in the document.

Val ueExtractor:: Handl e hExtractor = ReflectionExtractor::create("getWrds");
Filter::View vFilter = ContainsAll Filter::create(hExtractor,
hSear chTerns) ;

Set::View vEntrySet = hCache->entrySet (vFilter);

[l iterate through the search results
...

12.5 Using a Chained Extractor in a Query

The Chai nedExt r act or implementation allows chained invocation of zero-
argument (accessor) methods. In #unique_185/unique_185_Connect_42_CDEDBFDG,

12-4 Developing Remote Clients for Oracle Coherence

Using a Query Recorder

the extractor first uses reflection to call get Narme() on each cached Per son object,
and then use reflection to call | engt h() on the returned St r i ng. This extractor could
be passed into a query, allowing queries (for example) to select all people with names
not exceeding 10 letters.

Chai nedExtractor:: Handl e hExtractor =
Chai nedExtractor: : create(Chai nedExtractor: : creat eExtract ors("get Nane. [ength"));

Method invocations may be chained indefinitely, for example:
get Narme.trim |l ength.

POF extractors and POF updaters offer the same functionality as

Chai nedExt r act or s through the use of the Si npl ePof Pat h class. For details
about POF extractors and POF updaters, see Developing Applications with Oracle
Coherence and refer to the C++ API Reference for Oracle Coherence.

12.6 Using a Query Recorder

The Quer yRecor der class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes
in a cluster and aggregating the results. The class supports two record types: an
Quer yRecor der : : expl ai n record that provides the estimated cost of evaluating a
filter as part of a query operation and a Quer yRecor der : : t r ace record that
provides the actual cost of evaluating a filter as part of a query operation. Both query
records take into account whether or not an index can be used by a filter. See
Developing Applications with Oracle Coherence for detailed information on
understanding the data provided in an explain plan record and trace record.

To create a query record, create a new Quer yRecor der instance that specifies a
Recor dType parameter. Include the instance and the filter to be tested as parameters
of the Aggr egat e method. The following example creates an explain record:

NamedCache: : Handl e hCache = CacheFactory:: get Cache("M/Cache");

IdentityExtractor::View hExtract = IdentityExtractor::getlnstance();
OFilter::Handle hFilter = OrFilter::create(
GreaterEqual sFilter::create(hExtract, Integer32::create(50)),
LessEqual sFilter::create(hExtract, Integer32::create(20)));

QueryRecord: : View vRecord = cast<QueryRecord: : Vi ew>(hCache- >aggr egat e(
(Filter::View) hFilter, QueryRecorder::create(QueryRecorder::explain)));

cout << vRecord;

To create a trace record, change the Recor dType parameter tot r ace:

QueryRecord: : View vRecord = cast<QueryRecord: : Vi ew>(hCache- >aggr egat e(
(Filter::View hFilter, QueryRecorder::create(QueryRecorder::trace)));

Querying a Cache (C++) 12-5

Using a Query Recorder

12-6 Developing Remote Clients for Oracle Coherence

13

Performing Continuous Queries (C++)

This chapter provides instructions for using continuous query caching in a C++ client
to ensure that a query always retrieves the latest results from a cache in real-time.

This chapter includes the following sections:

e Overview of Performing Continuous Queries (C++)

¢ Understanding Continuous Query Caching Implementation
¢ Defining a Continuous Query Cache

¢ (leaning up Continuous Query Cache Resources

® Caching Only Keys Versus Keys and Values

¢ Listening to a Continuous Query Cache

¢ Making a Continuous Query Cache Read-Only

13.1 Overview of Performing Continuous Queries (C++)

Queries provide the ability to obtain a point in time query result from a Coherence
cache and it is possible to receive events that would change the result of that query.
However, the continuous query feature combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times every
millisecond.

A continuous query cache is similar to a materialized view in the Oracle database. A
materialized view copies data queried from the database tables into the view. If there
are any changes to the data in the database, then the data in the view is automatically
updated. Materialized views enable you to see changes to the result set. In continuous
query, a local copy of the cache is created on the client. Filters allow you to limit the
size and content of the cache. Combined with an event listener, the cache can be
updated in real time.

For example, to monitor, in real time, all sales orders for several customers. You can
create a continuous query cache and set up an event listener that listens for any events
pertaining to the customers. Coherence queries for all of the data objects on the grid
that pertain to a particular customer and copies them to a local cache. The event
listener on the query listens for any inserts, updates, or deletes that take place on the
grid for the customer. When an event occurs, the local copy of the customer data is
updated.

13.1.1 Understanding the Use Cases for Continuous Query Caching

There are several different general use cases for Continuous Query Caching:

Performing Continuous Queries (C++) 13-1

Understanding Continuous Query Caching Implementation

e [tis an ideal building block for Complex Event Processing (CEP) systems and event
correlation engines.

¢ Itisideal for situations in which an application repeats a particular query and
would benefit from always having instant access to the up-to-date result of that

query.

* A Continuous Query Cache is analogous to a materialized view and is useful for
accessing and manipulating the results of a query using the standard NamedCache
API, and receiving an ongoing stream of events related to that query.

¢ A Continuous Query Cache can be used in a manner similar to a Near Cache
because it maintains an up-to-date set of data locally where it is being used, for
example, on a particular server node or on a client. Note that while a Near Cache is
invalidation-based, a Continuous Query Cache actually maintains its data in an up-
to-date manner.

By combining the Coherence*Extend functionality with Continuous Query Caching,
an application can support literally tens of thousands of concurrent users.

Note:

Continuous Query Caches are useful in almost every type of application,
including both client-based and server-based applications, because they
provide the ability to very easily and efficiently maintain an up-to-date local
copy of a specified sub-set of a much larger and potentially distributed cached
data set.

13.2 Understanding Continuous Query Caching Implementation

The Coherence implementation of Continuous Query is found in the
Cont i nuousQuer yCache class. This class, like all Coherence caches, implements the
standard NanmedCache interface, which includes the following capabilities:

® Cache access and manipulation using the Map interface: NanmedCache extends the
Map interface, which is based on the Map interface from the Java Collections
Framework.

¢ Events for all object modifications that occur within the cache: NanedCache
extends the Cbser vabl eMap interface.

* Querying the objects in the cache: NamedCache extends the Quer yMap interface.

¢ Distributed Parallel Processing and Aggregation of objects in the cache:
NanmedCache extends the | nvocabl eMap interface.

Since the Cont i nuousQuer yCache implements the NamedCache interface, which is
the same API provided by all Coherence caches, it is extremely simple to use, and it
can be easily substituted for another cache when its functionality is called for.

13.3 Defining a Continuous Query Cache

There are two features that define a Continuous Query Cache:

® The underlying cache that the Continuous Query is based on.

13-2 Developing Remote Clients for Oracle Coherence

Cleaning up Continuous Query Cache Resources

¢ A query of the underlying cache that produces the sub-set that the Continuous
Query Cache caches.

The underlying cache can be any Coherence cache, including another Continuous
Query Cache. The most straight-forward way of obtaining a cache is by using the
CacheFact ory class. This class enables you to create a cache simply by specifying its
name. It is created automatically and its configuration is based on the application's
cache configuration elements. For example, the following line of code creates a cache
named orders:

NamedCache: : Handl e hCache = CacheFactory:: get Cache("orders");
The query is the same type of query that would be used to query any other cache. The

following example illustrates how you can use code filters to find a given trader with a
given order status:

Val ueExtract or: : Handl e hTrader Extract or
Val ueExtract or:: Handl e hStat usExtract or

Refl ectionExtractor::create("get Trader");
Refl ectionExtractor::create("getStatus");

Filter::Handle hFilter = AndFilter::create(Equal sFilter::create(hTraderExtractor,
vTraderld),
Equal sFilter::create(hStatusExtractor, vStatus));

Normally, to query a cache, you could use a method from the Quer yNMap class. For
example, to obtain a snap-shot of all open trades for this trader:

Set::View vSet QpenTrades = hCache->entrySet (hFilter);

In contrast, the Continuous Query Cache is constructed from the
Cont i nuousQuer yCache: : cr eat e method, passing the cache and the filter:

Conti nuousQueryCache: : Handl e hCacheQpenTrades =
Cont i nuousQueryCache: : create(hCache, hFilter);

13.4 Cleaning up Continuous Query Cache Resources

A Continuous Query Cache places one or more event listeners on its underlying cache.
If the Continuous Query Cache is used for the duration of the application, then the
resources is cleaned up when the node is shut down or otherwise stops. However, if
the Continuous Query Cache is only used for a period, then the application must call
the release() method on the Continuous Query Cache when it is done using it.

13.5 Caching Only Keys Versus Keys and Values

When constructing a Continuous Query Cache, you can specify that the cache should
only keep track of the keys that result from the query and obtain the values from the
underlying cache only when they are asked for. This feature may be useful for creating
a Continuous Query Cache that represents a very large query result set or if the values
are never or rarely requested. To specify that only the keys should be cached, pass
false when creating the Cont i nuousQuer yCache; for example:

Cont i nuousQueryCache: : Handl e hCacheQpenTrades =
Conti nuousQueryCache: : create(hCache, hFilter, false);

If necessary, the CacheVal ues property can be modified after the cache has been
instantiated; for example:

hCacheOpenTr ades- >set CacheVal ues(true);

Performing Continuous Queries (C++) 13-3

Listening to a Continuous Query Cache

13.5.1 CacheValues Property and Event Listeners

If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the CacheVal ues property is automatically set to
t r ue. This is because the Continuous Query Cache uses the locally cached values to
filter events and to supply the old and new values for the events that it raises.

13.5.2 Using ReflectionExtractor with Continuous Query Caches

When the Continuous Query Cache is configured to cache values, the use of the

Ref | ecti onExtract or is not supported. This is because the

Ref | ecti onExtract or does not support reflection in C++. In this case, you must
provide a custom extractor. When the Continuous Query Cache is not caching values
locally, the Ref | ecti onExt ract or can be used since it does not perform the
extraction on the client but instead passes the necessary extraction information to the
cluster to perform the query.

13.6 Listening to a Continuous Query Cache

Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Cont i nuousQueryCache: : Handl e hCacheCpenTrades =
Conti nuousQueryCache: : create(hCache, hFilter);
hCacheQpenTr ades- >addFi | t er Li st ener (hLi st ener);

If your application has to perform some processing against every item that is in the
cache and every item added to the cache, then provide the listener during
construction. The resulting cache receives one event for each item that is in the
Continuous Query Cache, whether it was there to begin with (because it was in the
query) or if it got added during or after the construction of the cache. One form of the
factory create method of Cont i nuousQuer yCache enables you to specify a cache, a
filter, and a listener:

Cont i nuousQuer yCache: : Handl e hCacheOpenTrades = ContinuousQueryCache: : creat e(
hRenot eCache, hFilter, true, hListener);

By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the Cont i nuousQuer yCache implementation does
respect the option for synchronous events as provided by the

Synchr onousLi st ener interface.

13.6.1 Avoiding Unexpected Results

There are two alternate approaches to processing the items in the Continuous Query
Cache, both of which could yield unexpected and unwanted results. First, if you
perform the processing and then add the listener to handle any later additions, then
events that occur in the split second after the iteration and before the listener is added
are missed. For example:

Cont i nuousQueryCache: : Handl e hCacheCpenTrades =
Cont i nuousQueryCache: : creat e(hCache, hFilter);

for (Iterator::Handl e hiter = hCacheOpenTrades->entrySet()->iterator(); hlter-
>hasNext ();)

{
Map: : Entry::View VEntry = cast<Map::Entry::Views(hlter->next());

13-4 Developing Remote Clients for Oracle Coherence

Making a Continuous Query Cache Read-Only

/1 .. process the cache entry
hCacheQpenTr ades- >addFi | t er Li st ener (hLi st ener);

The second approach is to add a listener first, so that no events are missed, and then
do the processing. Although, the same entry may appear in both an event and in the
| t er at or . The events can be asynchronous, so the sequence of operations cannot be
guaranteed.

Conti nuousQueryCache: : Handl e hCacheCpenTrades =
Cont i nuousQueryCache: : creat e(hRenot eCache, hFilter);

hCacheQpenTr ades- >addFi | t er Li st ener (hLi st ener);
for (Iterator::Handl e hiter = hCacheOpenTrades->entrySet()->iterator(); hlter-
>hasNext ();)

{
Map:: Entry::View vEntry = cast<Map::Entry::Views(hlter->next());
/1 .. process the cache entry

}

13.6.2 Achieving a Stable Materialized View

The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence supports an option for synchronous events, which provides a set of
ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first
phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the Cont i nuousQuer yCache allows a developer
to pass a listener during construction, thus avoiding exposing these same complexities
to the application developer.

13.7 Making a Continuous Query Cache Read-Only

The Continuous Query Cache can be made into a read-only cache by using the boolean
set ReadOnl y method on the Cont i nuousQuer yCache class; for example:

hCacheQpenTr ades- >set ReadOnl y(true);

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from, or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back
to read /write.

Performing Continuous Queries (C++) 13-5

Making a Continuous Query Cache Read-Only

13-6 Developing Remote Clients for Oracle Coherence

14

Performing Remote Invocations (C++)

This chapter provides instructions for performing remote invocations on Coherence
caches from C++ clients.

This chapter includes the following sections:
¢ Overview of Performing Remote Invocations (C++)
* Configuring and Using the Remote Invocation Service

* Registering Invocable Implementation Classes

14.1 Overview of Performing Remote Invocations (C++)

An | nvocabl e can execute any arbitrary action and can use any cluster-side services
(cache services, grid services, and so on) necessary to perform their work. The
Invocable operations can also be stateful, which means that their state is serialized and
transmitted to the grid nodes on which the Invocable is run.

Coherence for C++ provides a Remote Invocation Service which allows the execution
of | nvocabl es within the cluster-side JVM to which the client is connected. In Java,
Invocables are simply runnable application classes that implement the

com t angosol . net. I nvocabl e interface. To employ an | nvocabl e in Coherence
for C++, you must deploy a compiled Java implementation of the | nvocabl e task on
the cluster-side node, in addition to providing a C++ implementation of | nvocabl e:
coherence: : net:: | nvocabl e. Since execution is server-side (that is, Java), the C+
+ invocable need only be concerned with state; the methods themselves can be no-
operations.

14.2 Configuring and Using the Remote Invocation Service

A Remote Invocation Service is configured using the r enot e- i nvocat i on- schene
element in the cache configuration descriptor. The following example illustrates a
remote invocation scheme configuration.

<renot e- i nvocat i on- schene>
<schene- name>exanpl e-i nvocat i on</ scheme- nane>
<servi ce- name>Ext endTcpl nvocat i onSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>| ocal host </ addr ess>
<port>7077</ port>
</ socket - addr ess>
</renot e- addr esses>
</tcp-initiator>

<out goi ng- nessage- handl er >

Performing Remote Invocations (C++) 14-1

Registering Invocable Implementation Classes

<request -ti neout >30s</request - t i neout >
</ out goi ng- message- handl er >
<linitiator-config>
</renote-invocation-scheme>

A reference to a configured Remote Invocation Service can then be obtained by name
by using the coher ence: : net : : CacheFact ory class:

I nvocationService:: Handl e hService =
hServi ce: : get Servi ce("ExtendTcpl nvocat i onService");

To execute an agent on the grid node to which the client is connected requires only
one line of code:

Map: : Vi ew hResult = hService->query(nmyTask::create(), NULL);

The Map returned from query is keyed by the member on which the query is run. For
Extend clients, there is no concept of membership, so the result is keyed by the local
member which can be retrieved by calling

CacheFact ory: : get Confi gur abl eCacheFact ory():: Get Local Menber ()

14.3 Registering Invocable Implementation Classes

Like cached value objects, all | nvocabl e implementation classes must be correctly
registered in the POF context of the C++ application (see “PortableObject (Self-
Serialization) ") and cluster-side node to which the client is connected. As such, a Java
implementation of the | nvocabl e task (a com t angosol . net. | nvocabl e
implementation) must be created, compiled, and deployed on the cluster-side node.

See “Registering Custom C++ Types” for additional details.

14-2 Developing Remote Clients for Oracle Coherence

15

Using Cache Events (C++)

This chapter provides C++-specific instructions for using map event listeners to
receive cache events and events from any class in Coherence that implements the
Qoser vabl eMap interface.

This chapter includes the following sections:
¢ Overview of Map Events (C++)

* Signing Up for all Events

e Using a Multiplexing Map Listener

* Configuring a MapListener for a Cache

¢ Signing Up for Events on Specific Identities
¢ Filtering Events

* Using Lite Events

¢ Listening to Queries

e Using Synthetic Events

¢ Using Backing Map Events

e Using Synchronous Event Listeners

15.1 Overview of Map Events (C++)

The event model is comprised of an Event Li st ener interface that all listeners must
extend. Coherence provides a MapLi st ener interface, which allows application logic
to receive events when data in a Coherence cache is added, modified or removed.

An application object that implements the MapLi st ener interface can sign up for
events from any Coherence cache or class that implements the Cbser vabl eMap
interface, simply by passing an instance of the application's MapLi st ener
implementation to an addMapLi st ener () method.

The MapEvent object that is passed to the MapLi st ener carries all of the necessary
information about the event that has occurred, including the source (Cbser vabl eMap)
that raised the event, the identity (key) that the event is related to, what the action was
against that identity (insert, update or delete), what the old value was and what the
new value is.

15.1.1 Caches and Classes that Support Events

All Coherence caches implement Cbser vabl eMap; in fact, the NamedCache interface
that is implemented by all Coherence caches extends the Cbser vabl eMap interface.

Using Cache Events (C++) 15-1

Signing Up for all Events

That means that an application can sign up to receive events from any cache,
regardless of whether that cache is local, partitioned, near, replicated, using read-
through, write-through, write-behind, overflow, disk storage, and so on.

Note:

Regardless of the cache topology and the number of servers, and even if the
modifications are being made by other servers, the events are delivered to the
application's listeners.

In addition to the Coherence caches (those objects obtained through a Coherence cache
factory), several other supporting classes in Coherence also implement the
Qbser vabl eMap interface:

e (bservabl eHashMap

e Local Cache

e Overfl owvap

e Near Cache

e ReadWiteBacki ngvap

e AbstractSerializationCache,SerializationCache,and
Seri al i zati onPagedCache

e W apper Qbser vabl eMap, W apper Concur r ent Map, and
W apper NanedCache

For a full list of published implementing classes, see the Coherence API for
ObservableMap.

15.2 Signing Up for all Events

To sign up for events, simply pass an object that implements the MapLi st ener
interface to an addMapLi st ener method on Gbser vabl eMap:

virtual void addKeyListener(MapListener::Handl e hListener, Object::View vKey, bool
fLite) = 0;

virtual void removeKeyListener(MapListener::Handl e hListener, Object::View vKey) = 0;
virtual void addFilterListener(MpListener::Handl e hListener, Filter::ViewvFilter =
NULL, bool fLite = false) = 0;

virtual void removeFilterlListener(MpListener::Handl e hListener, Filter::View
vFilter = NULL) = 0;

Let's create an example MapLi st ener implementation:

#incl ude "coherence/ util/MpEvent. hpp"
#include "coherence/ util/MapListener. hpp"

#include <iostreanp
usi ng coherence::util::MpEvent;

using coherence::util::MplListener;
usi ng nanmespace std;

/**

* A MapListener inplenentation that prints each event as it receives

15-2 Developing Remote Clients for Oracle Coherence

Using a Multiplexing Map Listener

* them
*|
class EventPrinter
public class_spec<EventPrinter,
ext ends<Qnj ect >,
i mpl enent s<MapLi st ener> >

{
friend class factory<EventPrinter>;
public:
virtual void entrylnserted(MpEvent Vi ew vEvent)
{
cout << vEvent << endl;
}
virtual void entryUpdat ed(MapEvent Vi ew vEvent)
{
cout << vEvent << endl;
}
virtual void entryDel et ed(MapEvent Vi ew vEvent)
{
cout << vEvent << endl;
}

b

Using this implementation simplifies printing all events from any given cache (since
all caches implement the Cbser vabl eMap interface):

NamedCache: : Handl e hCache;
hCache->addFi | terLi stener(EventPrinter::create());

Of course, to be able to later remove the listener, it is necessary to hold on to a
reference to the listener:

MapLi st ener:: Handl e hListener = EventPrinter::create();
hCache- >addFi | t er Li st ener (hLi st ener);
m hLi stener = hListener; // store the listener in a nenber field

Later, to remove the listener:

MapLi st ener: : Handl e hListener = m hLi stener;
if (hListener !'= NULL)
{

hCache- >removeFi | t er Li st ener (hLi st ener);
m hLi stener = NULL; // clean up the listener field

}

Each add* Li st ener method on the Qbser vabl eMap interface has a corresponding
remove*Li st ener method. To remove a listener, use the r enove* Li st ener
method that corresponds to the add* Li st ener method that was used to add the
listener.

15.3 Using a Multiplexing Map Listener

Another helpful base class for creating a MapLi st ener is the

Mul ti pl exi nghVapLi st ener , which routes all events to a single method for
handling. The following example illustrates a simplified version of the

Event Pri nt er example:

Using Cache Events (C++) 15-3

Configuring a MapListener for a Cache

#include "coherence/ util/Miltiplexi ngMapLi stener. hpp"
#incl ude <iostreanp

usi ng coherence::util::MiltiplexingMplListener;

class EventPrinter

: public class_spec<EventPrinter,
ext ends<Mil ti pl exi ngMapLi st ener> >

{
public:
virtual void onMapEvent (MapEvent Vi ew vEvent)
{
std::cout << vEvent << std::endl;
}
¥

15.4 Configuring a MapListener for a Cache

If a listener should always be on a particular cache, then place it into the cache
configuration using the <I i st ener > element and Coherence automatically adds the
listener when it configures the cache.

15.5 Signing Up for Events on Specific Identities

Signing up for events that occur against specific identities (keys) is just as simple. The
following code in prints all events that occur against the | nt eger key 5:

hCache- >addKeyLi st ener (Event Printer::create(), Integer32::create(5), false);

The following code only triggers an event when the | nt eger key 5 is inserted or

updated:
for (int32_t i =0; i <10; ++i)
{
Integer32::View vKkey = Integer32::create(i);

I nteger32::View vVal ue = vKey;
hCache- >put (vKey, vVal ue);

}

15.6 Filtering Events

It is possible to listen to particular events. In the following example, a listener is added
to the cache with a filter that allows the listener to only receive delete events.

/1 Filters used with partitioned caches nust inplement
coherence: :io:: pof::Portabl ethj ect

#include "coherence/i o/ pof / Pof Reader . hpp"
#include "coherence/i o/ pof/Pof Witer. hpp"
#incl ude "coherence/i o/ pof/ Portabl eChj ect. hpp"
#include "coherence/util/Filter.hpp"

#include "coherence/ util/MapEvent. hpp"

usi ng coherence::io:: pof:: Pof Reader;
using coherence::io::pof::PofWiter;

usi ng coherence::io::pof::Portabl eQject;
using coherence::util::Filter;

using coherence::util::MpEvent;

15-4 Developing Remote Clients for Oracle Coherence

Using Lite Events

class DeletedFilter
. public class_spec<Del etedFilter,
ext ends<Qnj ect >,
i mpl enent s<Filter, PortableCbject> >

{
public:
Il Filter interface virtual bool evaluate(Cbject::Viewv) const
{
MapEvent:: Vi ew vEvt = cast<MapEvent:: View>(v);
return MapEvent::entry_del eted == vEvt->getld();
}
/'l Portabl ethject interface virtual void
readExt er nal (Pof Reader: : Handl e hln)
{
}
virtual void witeExternal (Pof Witer::Handl e hQut) const
{
}
b

hCache->addFi | ter Li st ener (Event Printer::create(), DeletedFilter::create(), false);

For example, if the following sequence of calls were made:

cache: :put(String::create("hello"), String::create("world"));
cache::put(String::create("hello"), String::create("again"));
cache: :renove(String::create("hello"));

The result would be:

CacheEvent { Local Cache del eted: key=hello, val ue=again}

For more information, see “Listening to Queries ”.
Filtering Events Versus Filtering Cached Data

When building a Fi | t er for querying, the object that is passed to the evaluate
method of the Fi | t er is a value from the cache, or, if the Fi | t er implements the
Ent ryFi | t er interface, the entire Map: : Ent r y from the cache. When building a
Fi | ter for filtering events for a MapLi st ener, the object that is passed to the
eval uat e method of the Fi | t er is always of type MapEvent .

For more information on how to use a query filter to listen to cache events, see
Advanced: Listening to Queries.

15.7 Using Lite Events

By default, Coherence provides both the old and the new value as part of an event.
Consider the following example:

MapLi stener:: Handl e hLi stener = EventPrinter::create();
/1 add listener with the default"lite" value of falsehCache-
>addFi | t er Li stener (hLi stener);

/1 insert a 1KB val ue
String::View vKey = String::create("test");
hCache->put (vKey, Array<octet t>::create(1024));

/1 update with a 2KB val ue

Using Cache Events (C++) 15-5

Listening to Queries

hCache->put (vKey, Array<octet _t>::create(2048));

/I renpove the val ue
hCache- >renove(vKey);

When the above code is run, the insert event carries the new 1KB value, the update
event carries both the old 1KB value and the new 2KB value and the remove event
carries the removed 2KB value.

When an application does not require the old and the new value to be included in the
event, it can indicate that by requesting only "lite" events. When adding a listener, you
can request lite events by using either the addFi | t er Li st ener or the

addKeyLi st ener method that takes an additional boolean f Li t € parameter. In the
above example, the only change would be:

cache->addFi | terListener(hListener, (Filter::View NULL, true);

Note:

Obviously, a lite event's old value and new value may be NULL. However,
even if you request lite events, the old and the new value may be included if
there is no additional cost to generate and deliver the event. In other words,
requesting that a MapLi St ener receive lite events is simply a hint to the
system that the MapLi st ener does not require knowledge of the old and new
values for the event.

15.8 Listening to Queries

All Coherence caches support querying by any criteria. When an application queries
for data from a cache, the result is a point-in-time snapshot, either as a set of identities
(keySet) or a set of identity /value pairs (ent r ySet). The mechanism for
determining the contents of the resulting set is referred to as filtering, and it allows an
application developer to construct queries of arbitrary complexity using a rich set of
out-of-the-box filters (for example, equals, less-than, like, between, and so on), or to
provide their own custom filters (for example, XPath).

The same filters that are used to query a cache are used to listen to events from a
cache. For example, in a trading system it is possible to query for all open Or der
objects for a particular trader.

Note:

Executing Queries in the Cluster: #unique_210/
unique_210_Connect_42_BEICHICC uses the

coherence: :util::extractor::ReflectionExtractor class. While
the C++ client does not support reflection, Ref | ect i onExt r act or can be
used for queries which are executed in the cluster. In this case, the

Ref | ecti onExtract or simply passes the necessary extraction information
to the cluster to perform the query. In cases where the

Ref | ecti onExt r act or would extract the data on the client, such as the
Cont i nuousQuer yCache when caching values locally, the use of the

Ref | ecti onExtract or is not supported. For these cases, you must provide
a custom extractor.

15-6 Developing Remote Clients for Oracle Coherence

Listening to Queries

NarmedCache: : Handl e hMapTrades = ...
Filter::Handle hFilter = AndFilter::create(
Equal sFilter::create(ReflectionExtractor::create("getTrader"), vTraderld),
Equal sFilter::create(ReflectionExtractor::create("getStatus"),
Status::CPEN));
Set:: View vSet OpenTrades = hMapTrades->entrySet (hFilter);

To receive notifications of new trades being opened for that trader, closed by that
trader or reassigned to or from another trader, the application can use the same filter:

/'l receive events for all trade IDs that this trader is interested in
hMapTrades- >addFi | t er Li st ener (hLi stener, MapEventFilter::create(hFilter), true);

The MapEvent Fi | t er converts a query filter into an event filter.

Note:

Filtering events versus filtering cached data: When building a Fi | t er for
querying, the object that is passed to the eval uat e method of the Filter is a
value from the cache, or, if the Fi | t er implements the EntryFi | ter
interface, the entire Map: : Ent r y from the cache. When buildinga Fi | t er
for filtering events for a MapLi st ener, the object that is passed to the

eval uat e method of the Fi | t er is always be of type MapEvent .

The MapEvent Fi | t er converts a Fi | t er thatis used to do a query into a

Fi | t er thatis used to filter events for a MapLi st ener . In other words, the
MapEvent Fi | t er is constructed from a Fi | t er that queries a cache, and the
resulting MapEvent Fi | t er is a filter that evaluates MapEvent objects by
converting them into the objects that a query Fi | t er would expect.

The MapEvent Fi | t er has several very powerful options, allowing an application
listener to receive only the events that it is specifically interested in. More importantly
for scalability and performance, only the desired events have to be communicated
over the network, and they are communicated only to the servers and clients that have
expressed interest in those specific events. For example:

Il receive all events for all trades that this trader is interested in

int32_t nMask = MapEventFilter::e_all;

hMapTrades- >addFi | t er Li st ener (hLi stener, MapEventFilter::create(nMask, hFilter),
true);

Il receive events for all this trader's trades that are closed or

/] re-assigned to a different trader

nMask = MapEventFilter::e_updated_|eft | MapEventFilter::e_deleted;

hMapTr ades- >addFi | t er Li st ener (hLi stener, MapEventFilter::create(nMask, hFilter),
true);

/'l receive events for all trades as they are assigned to this trader

nMask = MapEventFilter::e_inserted | MapEventFilter::e_updated_entered,;
hMapTrades- >addFi | t er Li st ener (hLi stener, MapEventFilter::create(nMask, hFilter),
true);

/1 receive events only for new trades assigned to this trader

nMask = MapEventFilter::e_inserted;

hMapTrades- >addFi | t er Li st ener (hLi stener, MapEventFilter::create(nMask, hFilter),
true);

Using Cache Events (C++) 15-7

Using Synthetic Events

For more information on the various options supported, see the API documentation
for MapEvent Fil ter.

15.9 Using Synthetic Events

Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache; while, another server is adding several items to a
cache; while, a third server is removing an item from the same cache; while, fifty
threads on each server in the cluster is accessing data from the same cache. All the
modifying actions produce events that any server within the cluster can choose to
receive. These actions are referred to as client actions and the events as being dispatched
to clients, even though the "clients" in this case are actually servers. This is a natural
concept in a true peer-to-peer architecture, such as a Coherence cluster: Each and
every peer is both a client and a server, both consuming services from its peers and
providing services to its peers. In a typical Java Enterprise application, a "peer" is an
application server instance that is acting as a container for the application, and the
"client" is that part of the application that is directly accessing and modifying the
caches and listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the
most common cases are:

¢ When entries automatically expire from a cache;

e When entries are evicted from a cache because the maximum size of the cache has
been reached;

¢ When entries are transparently added to a cache as the result of a Read-Through
operation;

* When entries in a cache are transparently updated as the result of a Read-Ahead or
Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and
typically automatic) operations from within a cache. These events are referred to as
synthetic events.

When necessary, an application can differentiate between client-induced and synthetic
events simply by asking the event if it is synthetic. This information is carried on a
sub-class of the MapEvent, called CacheEvent . Using the previous Event Pri nt er
example, it is possible to print only the synthetic events:

class EventPrinter
. public class_spec<EventPrinter,
ext ends<Mil ti pl exi ngMapLi st ener> >

{
friend class factory<EventPrinter>;
public:
voi d onMapEvent (MapEvent: : Vi ew vEvt)
{
if (instanceof <CacheEvent::View>(VEvt) &&
(cast <CacheEvent: : Vi ew>(VvEvt)->i sSynthetic()))
{
std::cout << VEvt:
1
1
1

15-8 Developing Remote Clients for Oracle Coherence

Using Backing Map Events

For more information on this feature, see the API documentation for CacheEvent .

15.10 Using Backing Map Events

While it is possible to listen to events from Coherence caches, each of which presents a
local view of distributed, partitioned, replicated, near-cached, continuously-queried,
read-through/write-through, and write-behind data, it is also possible to peek behind
the curtains, so to speak.

For some advanced use cases, it may be necessary to peek behind the curtain—or more
correctly, to "listen to" the "map" behind the "service." Replication, partitioning and
other approaches to managing data in a distributed environment are all distribution
services. The service still has to have something in which to actually manage the data,
and that something is called a "backing map".

Backing maps are configurable. If all the data for a particular cache should be kept in
object form on the heap, then use an unlimited and non-expiring Local Cache (or a
Saf eHashMap if statistics are not required). If only a small number of items should be
kept in memory, use a Local Cache. If data are to be read on demand from a
database, then use a ReadW i t eBacki ngMap (which knows how to read and write
through an application's DAO implementation), and in turn give the

ReadW i t eBacki nghvap a backing map such as a Saf eHashMap or a Local Cache
to store its data in.

Some backing maps are observable. The events coming from these backing maps are
not usually of direct interest to the application. Instead, Coherence translates them into
actions that must be taken (by Coherence) to keep data synchronized and properly
backed up, and it also translates them when appropriate into clustered events that are
delivered throughout the cluster as requested by application listeners. For example, if
a partitioned cache has a Local Cache as its backing map, and the local cache expires
an entry, that event causes Coherence to expire all of the backup copies of that entry.
Furthermore, if any listeners have been registered on the partitioned cache, and if the
event matches their event filter(s), then that event is delivered to those listeners on the
servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where
the data are being maintained, and it must do so on the structure (backing map) that is
actually managing the data. In these cases, if the backing map is an observable map, a
listener can be configured on the backing map or one can be programmatically added
to the backing map. (If the backing map is not observable, it can be made observable
by wrapping it in an W apper Cbser vabl eMap.)

See C++ API Reference for Oracle Coherence for more information on these APIs.

15.11 Using Synchronous Event Listeners

Some events are delivered asynchronously, so that application listeners do not disrupt
the cache services that are generating the events. In some rare scenarios, asynchronous
delivery can cause ambiguity of the ordering of events compared to the results of
ongoing operations. To guarantee that the cache API operations and the events are
ordered as if the local view of the clustered system were single-threaded, a

MapLi st ener must implement the Synchr onousLi st ener marker interface.

One example in Coherence itself that uses synchronous listeners is the Near Cache,
which can use events to invalidate locally cached data ("Seppuku").

See C++ API Reference for Oracle Coherence for more information on this APL

Using Cache Events (C++) 15-9

Using Synchronous Event Listeners

15-10 Developing Remote Clients for Oracle Coherence

16

Performing Transactions (C++)

This chapter provides instructions for using the Transaction Framework API to ensure
cache operations are performed within a transaction when using a C++ client. The
instructions do not provide detailed transaction API usage. See "Using the Transaction
Framework API" in Developing Applications with Oracle Coherence for detailed
transaction API usage.

The following sections are included in this chapter and are required to perform
transactions:

e Using the Transaction API within an Entry Processor

¢ Creating a Stub Class for a Transactional Entry Processor
® Registering a Transactional Entry Processor User Type

* Configuring the Cluster-Side Transactional Caches

¢ Configuring the Client-Side Remote Cache

* Using a Transactional Entry Processor from a C++ Client

16.1 Using the Transaction API within an Entry Processor

C++ clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction API is not supported natively on C++
and must be used within an entry processor. The entry processor is implemented in
Java on the cluster and an entry processor stub class is implemented in C++ on the
client. Both classes use POF to serialize between Java and C++.

Example 16-1 demonstrates an entry processor that performs a simple updat e
operation within a transaction using the transaction API. At run time, the class must
be located on the classpath of the extend proxy server.

Example 16-1 Entry Processor for Extend Client Transaction

package coherence.tests;

i mport com tangosol . coherence. transaction. Connecti on;

i mport com tangosol . coherence. transaction. Connecti onFactory;

i mport com tangosol . coherence. transaction. Def aul t Connecti onFact ory;

i mport com tangosol . coherence. transaction. Opti ni sti cNamedCache;

i mport

com tangosol . coherence. transacti on. exception. Predi cat eFai | edExcepti on;
i mport com tangosol . coherence. transaction. exception. Rol | backExcepti on;
i mport

com tangosol . coherence. transacti on. exception. Unabl eToAcqui r eLockExcepti on;
import comtangosol.util.Filter;

i mport com tangosol . util.lnvocabl eMap;

import comtangosol.util.extractor.ldentityExtractor;

Performing Transactions (C++) 16-1

Using the Transaction API within an Entry Processor

import comtangosol.util.filter.Equal sFilter;
inport com tangosol . util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor inplenents Portabl eQbject

public Object process(lnvocabl eMap. Entry entry)

{
/1 obtain a connection and transaction cache
ConnectionFactory connFactory = new Def aul t Connecti onFactory();
Connection conn = connFactory. creat eConnection("Transacti onal Cache");
Optini sticNanedCache cache = conn. get NamedCache(" MyTxCache");
conn. set Aut oConmi t (f al se);
Il get a value for an existing entry
String sValue = (String) cache.get("existingEntry");
Il create predicate filter
Filter predicate = new Equal sFilter(ldentityExtractor.|NSTANCE, sVal ue);
try
{
/] update the previously obtained val ue
cache. updat e("exi stingEntry", "newval ue", predicate);
}
catch (PredicateFail edException e)
{
/1 value was updated after it was read
conn. rol | back();
return fal se;
}
catch (Unabl eToAcqui reLockException e)
{
/1 rowis being updated by another tranaction
conn. rol | back();
return fal se;
}
try
{
conn. commi t();
}
catch (Rol | backException e)
{
/1 transaction was rolled back
return fal se;
}
return true;
}

public void readExternal (Pof Reader in)
throws | OException

{
}

public void witeExternal (Pof Witer out)
throws | CException

16-2 Developing Remote Clients for Oracle Coherence

Creating a Stub Class for a Transactional Entry Processor

16.2 Creating a Stub Class for a Transactional Entry Processor

An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C++ and uses POF for serialization.
POF allows an entry processor to be serialized between C++ and Java. The entry
processor stub class does not require any transaction logic and is a skeleton of the
transactional entry processor. See Building Integration Objects (C++), for detailed
information on using POF with C++.

Example 16-2 and Example 16-3 demonstrate a stub class and associated header file for
the transactional entry processor created in Example 16-1. In the example, POF
registration is performed within the class.

Example 16-2 Transaction Entry Processor C++ Stub Class

#incl ude "coherence/tests/ MyTxProcessor. hpp"
#incl ude "coherence/i ol pof / Syst enPof Cont ext . hpp"

COH_OPEN_NAMESPACE2(coher ence, t est s)
COH_REGQ STER _PORTABLE_CLASS(1599, MyTxProcessor);

MyTxProcessor: : MyTxProcessor ()

{
}

voi d MyTxProcessor: : readExt er nal (Pof Reader: : Handl e hln)

{
}

voi d MyTxProcessor::witeExternal (Pof Witer::Handl e hQut) const
{
}

vj ect: : Hol der MyTxProcessor:: process(|nvocabl eMap: : Entry:: Handl e hEntry) const
{
return NULL;

}

OOH_CLOSE_NAVESPACE2

Example 16-3 Transaction Entry Processor C++ Stub Class Header File

fndef COH_TX_EP_HPP
#define OOH TX_EP_HPP

#incl ude "coherence/l ang. ns"

#include "coherence/i o/ pof / Pof Reader . hpp"

#include "coherence/i o/ pof/Pof Witer. hpp"

#incl ude "coherence/i o/ pof/ Portabl eChj ect. hpp"

#incl ude "coherence/ util/lnvocabl eMap. hpp"

#include "coherence/ util/processor/AbstractProcessor. hpp"

COH_OPEN_NAMESPACE2(coher ence, t est s)

usi ng coherence::io:: pof:: Pof Reader;

using coherence::io::pof::PofWiter;

usi ng coherence::io::pof::Portabl eQject;

usi ng coherence::util::Invocabl eMap;

using coherence::util::processor::AbstractProcessor;

Performing Transactions (C++) 16-3

Registering a Transactional Entry Processor User Type

class MyTxProcessor
. public class_spec<MyTxProcessor,
ext ends<Abstract Processor >,
i npl enent s<Port abl eChj ect> >

{

friend class factory<M/TxProcessor>;

prot ect ed:
MyTxProcessor();

public:
virtual Onject::Holder process(Invocabl eMap::Entry:: Handl e hEntry)
const;

public:

virtual void readExternal (Pof Reader:: Handl e hin);

virtual void witeExternal (PofWiter::Handle hQut) const;
b

COH_CLOSE_NAVESPACE2
#endif // COH_TX_EP_HPP

16.3 Registering a Transactional Entry Processor User Type

An entry processor class must be registered as a POF user type in the cluster-side POF
configuration file. The registration must use the same type ID that was used to register
the stub class on the client side. The following example demonstrates registering the
M/ TxPr ocessor class that was created in Example 16-1 and uses the same type ID
that was registered in Example 16-2:

<?xm version="1.0"?>

<pof-config xm ns: xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- pof - confi g"
xsi : schemalLocation="http://xn ns. oracl e. con coher ence/ coher ence- pof - confi g
coher ence- pof - confi g. xsd">
<user-type-list>
<i ncl ude>coher ence- pof - confi g. xn </ i ncl ude>
<i ncl ude>t xn- pof - confi g. xm </ i ncl ude>
<user-type>
<type-i d>1599</type-id>
<cl ass- nane>coherence. t est s. MyTxProcessor </ cl ass- name>
</ user-type>
</user-type-list>
</ pof - confi g>

16.4 Configuring the Cluster-Side Transactional Caches

Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See "Defining Transactional Caches" in Developing
Applications with Oracle Coherence for details on transactional caches.

The following example creates a transactional cache that is named My TxCache, which
is the cache name that was used by the entry processor in Example 16-1. The
configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on | ocal host at port 7077. See Configuring

16-4 Developing Remote Clients for Oracle Coherence

Configuring the Client-Side Remote Cache

Extend Proxies , for detailed information on configuring cluster-side caches when
using Coherence*Extend.

<?xm version="1.0"?>

<cache-config xm ns: xsi="http:// ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. com coher ence/ coher ence- cache-config
coher ence- cache- confi g. xsd" >
<def aul t s>
<serial i zer>pof </serializer>
</ defaul t s>
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>MyTxCache</ cache- nane>
<schene- nane>exanpl e-t ransact i onal </ schene- nanme>
</ cache- mappi ng>
<cache- mappi ng>
<cache- nane>di st - exanpl e</ cache- name>
<schene- nane>exanpl e- di st ri but ed</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>

<transactional - scheme>
<schene- nane>exanpl e-t ransact i onal </ schene- nanme>
<servi ce-name>Transact i onal Cache</ servi ce- name>
<t hread- count - mi n>2</ t hr ead- count - m n>
<t hr ead- count - max>10</t hr ead- count - max>
<hi gh- uni t s>15M/ hi gh- uni t s>
<t ask-ti meout >0</t ask-ti meout >
<autostart>true</autostart>

</transactional - schene>

<di stri but ed- schene>
<schene- nane>exanpl e- di st ri but ed</ scheme- nane>
<servi ce-nane>Di stri but edCache</ servi ce- nane>
<backi ng- map- scheme>

<l ocal - schene/ >

</ backi ng- map- scheme>
<autostart>true</autostart>

</ di stribut ed- schene>

<pr oxy- scheme>
<servi ce- nane>Ext endTcpPr oxySer vi ce</ servi ce- nane>
<autostart>true</autostart>
</ proxy- scheme>
</ cachi ng- schenes>
</ cache-confi g>

16.5 Configuring the Client-Side Remote Cache

Remote clients require a remote cache to connect to the cluster's proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Configuring Extend Proxies , for detailed information on
configuring client-side caches.

The following example configures a remote cache to connect to a proxy that is located
on | ocal host at port 7077. In addition, the name of the remote cache (di st -

Performing Transactions (C++) 16-5

Using a Transactional Entry Processor from a C++ Client

exanpl e) must match the name of a cluster-side cache that is used when initiating the
transactional entry processor.

<?xm version="1.0"?>

<cache-config xm ns: xsi="http:// ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. com coher ence/ coher ence- cache-config
coher ence- cache- confi g. xsd" >
<def aul t s>
<serializer>pof</serializer>
</ def aul t s>
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>di st - exanpl e</ cache- name>
<schene- nane>ext end</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<renot e- cache- schene>
<schene- nane>ext end</ schene- name>
<servi ce- nane>Ext endTcpCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>l ocal host </ addr ess>
<port>7077</ port >
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request - ti meout >30s</request - t i meout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ renot e- cache- schene>
</ cachi ng- schenes>
</ cache-confi g>

16.6 Using a Transactional Entry Processor from a C++ Client

A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked. The client
is unaware that the invocation has been delegated to the Java class. The following
example demonstrates a client that uses the entry processor stub class and results in an
invocation of the transactional entry processor that was created in Example 16-1:

String:: View vsCacheNane
String::View vsKey

= "di st-exanpl e";

= "AnyKey";

Il retrieve the named cache

NamedCache: : Handl e hCache = CacheFact ory: : get Cache(vsCacheNane) ;

/'l invoke the cache
oj ect:: View oResult = hCache->i nvoke(vsKey, MyTxProcessor::create());
std::cout << "Result of extend transaction execution: " << oResult << std::endl;

16-6 Developing Remote Clients for Oracle Coherence

Part IV

Coherence for .NET contains the following chapters:

Creating .NET Extend Clients

Introduction to Coherence .NET Clients
Building Integration Objects (.NET)
Using the Coherence .NET Client Library
Performing Continuous Queries (NET).
Performing Remote Invocations (.NET)
Performing Transactions (.NET)

Managing ASP.NET Session State

17

Introduction to Coherence .NET Clients

This chapter describes Coherence for .NET and provides instructions for setting
up .NET application to use Coherence for .NET.

This chapter includes the following sections:
e Overview of Coherence for NET

¢ Configuration and Usage for .NET Clients

17.1 Overview of Coherence for .NET

Coherence for .NET allows .NET applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for .NET include desktop and web applications that require
access to Coherence caches. For details about installing the .NET client distribution,
see Installing Oracle Coherence.

Coherence for .NET consists of a lightweight .NET library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
Partitioned or Replicated cache service).

An | NamredCache instance is retrieved by using the

CacheFact ory. Get Cache(...) APIcall. After it is obtained, a client accesses the
I NarredCache in the same way as it would if it were part of the Coherence cluster.
The fact that | NamedCache operations are being sent to a remote cluster node (over
TCP/1IP) is completely transparent to the client application.

17.2 Configuration and Usage for .NET Clients

This section includes instructions for setting up .NET applications to use Coherence.
This section includes the following topics:

* General Instructions

¢ Configuring Coherence*Extend for .NET

® Obtaining a Cache Reference with .NET

¢ Cleaning Up Resources Associated with a Cache

* Using Network Filters

Introduction to Coherence .NET Clients 17-1

Configuration and Usage for .NET Clients

17.2.1 General Instructions

Configuring and using Coherence for .NET requires the following steps:
1. Configuring Coherence*Extend for .NET

2. Building Integration Objects (NET) (See also Developing Applications with Oracle
Coherence)

3. Using the Coherence .NET APIs
4. Starting a Proxy Server

5. Launching the .NET client application

17.2.2 Configuring Coherence*Extend for .NET

For details on configuring Coherence*Extend, refer to:
¢ Defining Extend Proxy Services
¢ Defining Caches for Use By Extend Clients

¢ Defining a Remote Cache

Coherence for .NET clients must use a specific XML schema for the Coherence cache
configuration file. Make sure the cache configuration file uses the following schema:

<cache-config xm ns="http://schemas. t angosol . coni cache"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemaLocation="http://schemas. t angosol . conl cache
assenbl y: // Coher ence/ Tangosol . Confi g/ cache- confi g. xsd" >

17.2.3 Obtaining a Cache Reference with .NET

A reference to a configured cache can be obtained by name by using the
CacheFact ory class:

I NamedCache cache = CacheFactory. Get Cache("exanpl e- 1 ocal - cache");

17.2.4 Cleaning Up Resources Associated with a Cache

Instances of all | NanmedCache implementations, including Local Cache, should be
explicitly released by calling the | NamedCache. Rel ease() method when they are
no longer needed, to free up any resources they might hold.

If the particular | NanedCache is used for the duration of the application, then the
resources are cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Rel ease()
method when finished using it.

Alternatively, you can leverage the fact that | NamedCache extends | Di sposabl e
and that all cache implementations delegate a call to | Di sposabl e. Di spose() to

I NamredCache. Rel ease() . If you want to obtain and release a cache instance within
a single method, you can do so with a usi ng block:

using (I NamedCache cache = CacheFactory. Get Cache("ny-cache"))
{

17-2 Developing Remote Clients for Oracle Coherence

Configuration and Usage for .NET Clients

/1 use cache as usual

}

After the usi ng block terminates, | Di sposabl e. Di spose() is called on the
| NamedCache instance, and all resources associated with it are released.

17.2.5 Using Network Filters

A network filter is a mechanism that allows transformation of data sent through
TCP/IP sockets to be performed in a pluggable, layered fashion. Coherence for .NET
supports custom filters, thus enabling users to modify the contents of the network
traffic and is commonly used to add compression and encryption to data.

This section includes the following topics:
e Custom Filters

¢ Configuring Filters

17.2.5.1 Custom Filters

To create a filter, create a .NET class that implements the

Tangosol . | O | W apper St r eanfact or y interface and optionally implements the
Tangosol . Util .| Xm Confi gur abl e interface. The | W apper St r eanfact ory
interface defines two methods:

Stream Get | nput St rean(Stream strean);
Stream Get Qut put Stream(Stream strean;

that provide the I/O stream to be wrapped ("filtered") (on input—received message,
or output—sending message) and expects a stream back that wraps the original
stream. This method is called for each incoming and outgoing message.

17.2.5.2 Configuring Filters

There are two steps to configuring a filter. The first is to declare the filter in the
<filters>XML element in an operational override file. For more information on
configuring filters, see the Developing Applications with Oracle Coherence.

<cl uster-config>
<filters>
<filter>
<filter-name>gzip</filter-name>
<filter-class>Tangosol . Net. Conpressi onFilter, Coherence</filter-class>
</filter>
</filters>
</cluster-config>

Note:

GZip compression filter is supported in .NET framework version 2.0 or
higher.

The second step is to attach the filter to one or more specific services. To specify the
filter for a specific service, for example the Ext endTcpCacheSer vi ce service, add a

Introduction to Coherence .NET Clients 17-3

Configuration and Usage for .NET Clients

<filter-nane>element to the <use-filter s> element of the service declaration
in the cache configuration file.

<renot e- cache- schene>
<schene- nane>ext end- di r ect </ schene- nane>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>

<use-filters>
<filter-name>gzip</filter-name>
</use-filters>

</initiator-config>
</ renot e- cache- scheme>

If the filter implements | X Conf i gur abl e, after instantiating the filter, Coherence
sets the Conf i g property with the following XML element:

<config>
<par aml>val uel</ paranil>
<par an2>val ue2</ par an2>
</ config>

17-4 Developing Remote Clients for Oracle Coherence

18

Building Integration Objects (.NET)

This chapter provides instructions for using Portable Object Format (POF) serialization
when creating .NET clients.

The following section is included in this chapter:

¢ Overview of Building Integration Objects (.NET)
® C(Creating an IPortableObject Implementation

¢ Implementing a Java Version of a .NET Object

¢ Registering Custom Types on the .NET Client

e Registering Custom Types in the Cluster

* Evolvable Portable User Types

e Making Types Portable Without Modification

* Using POF Object References

¢ Using POF Annotations to Serialize Objects

18.1 Overview of Building Integration Objects (.NET)

Coherence caches are used to cache value objects. Enabling .NET clients to successfully
communicate with a Coherence JVM requires a platform-independent serialization
format that allows both .NET clients and Coherence JVMs (including
Coherence*Extend Java clients) to properly serialize and deserialize value objects
stored in Coherence caches. The Coherence for .NET client library and
Coherence*Extend clustered service use a serialization format known as Portable
Object Format (POF). POF allows value objects to be encoded into a binary stream in
such a way that the platform and language origin of the object is irrelevant. For more
information on the POF binary stream, see Developing Applications with Oracle
Coherence.

POF supports all common .NET types out-of-the-box. Custom .NET classes can also be
serialized to a POF stream by completing the following steps:

1. Create a .NET class that implements the | Por t abl eQbj ect interface. See
“Creating an IPortableObject Implementation.”

2. Create a matching Java class that implements the Por t abl eCbj ect interface in
the same way. See “Creating a PortableObject Implementation (Java).”

3. Register your custom .NET class on the client. See “Registering Custom Types on
the NET Client.”

Building Integration Objects (.NET) 18-1

Creating an IPortableObject Implementation

4. Register your custom Java class on each of the servers running the
Coherence*Extend clustered service. See “Registering Custom Types in the
Cluster.”

After these steps are complete, you can cache your custom .NET classes in a Coherence
cache in the same way as a built-in data type. Additionally, you can retrieve,
manipulate, and store these types from a Coherence or Coherence*Extend JVM using
the matching Java classes.

18.2 Creating an IPortableObject Implementation

Each class that implements | Por t abl eQbj ect can self-serialize and deserialize its
state to and from a POF data stream. This is achieved in the ReadExt er nal
(deserialize) and Wi t eExt er nal (serialize) methods. Conceptually, all user types
are composed of zero or more indexed values (properties) which are read from and
written to a POF data stream one by one. The only requirement for a portable class,
other than the requirement to implement the | Por t abl eQbj ect interface, is that it
must have a default constructor which allows the POF deserializer to create an
instance of the class during deserialization.

Example 18-1 illustrates a user-defined portable class:
Example 18-1 A User-Defined Portable Class

public class Contactlnfo : |Portabl e(ject

{

private string name;

private string street;

private string city;

private string state;

private string zip;

public Contactlnfo()

{}

public Contactlnfo(string nane, string street, string city, string state, string

zip)

{
Name = nang;
Street = street;
Gty =city;
State = state;
Zip = zip;

}

public voi d ReadExternal (| Pof Reader reader)

{
Name = reader. ReadString(0);
Street = reader.ReadString(1);
City = reader.ReadString(2);
State = reader.ReadString(3);
Zip = reader. ReadString(4);

}

public void WiteExternal (I Pof Witer witer)

{
witer. WiteString(0, Name);
witer. WiteString(l, Street);
witer. WiteString(2, Gty);
witer. WiteString(3, State);
witer. WiteString(4, Zip);

}

18-2 Developing Remote Clients for Oracle Coherence

Implementing a Java Version of a .NET Object

Il property definitions onmitted for brevity

}

18.3 Implementing a Java Version of a .NET Object

The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the Pof Ext r act or and Pof Updat er APIs add
flexibility in working with non-primitive types in Coherence. For many extend client
cases, a corresponding Java classes in the grid is not required. Because POF extractors
and POF updaters can navigate the binary, the entire key and value does not have to
be deserialized into object form. This implies that indexing can be achieved by simply
using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers
must directly interact with a data object rather then simply holding onto a serialized
representation of it. For example, a Java class is still required when using a cache store.
In this case, the deserialized version of the key and value is passed to the cache store
to write to the back end. In addition, queries, filters, entry processors, and aggregators
require a Java implementation if direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the
cache servers. The approach to making the Java version serializable over POF is
similar to the above example and is demonstrated in “Creating a PortableObject
Implementation (Java)”. See the | Por t abl eObj ect and | Pof Seri al i zer APIs for
details. These APIs are compatible with the .NET approaches.

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using the | KeyAssoci at i on interface. Key classes are checked
on the client side and a decorated binary is created and used by the cluster. However,
existing client implementations that do rely on a Java key class for key association
must set the def er - key- associ at i on- check parameter in order to force the use
of the Java key class. Existing client applications that use key association but want to
leverage client-side key binaries, must port the get Associ at edKey()
implementation from the existing Java class to the corresponding client class (see
IKeyAssoci ati on. Associ at edKey.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <def er - key- associ at i on- check> element, within a

<r enot e- cache- schene> element, in the client-side cache configuration to t r ue.
For example:

<renot e- cache- scheme>

<def er - key- associ at i on- check>t r ue</ def er - key- associ at i on- check>
</ renot e- cache- schene>

Note:

If the parameter is set to t r ue, a Java key class implementation must be found
on the cluster even if key association is no being used.

Building Integration Objects (.NET) 18-3

Registering Custom Types on the .NET Client

18.3.1 Creating a PortableObject Implementation (Java)

An implementation of the portable class in Java is very similar to the one in .NET.
Example 18-2 illustrates the Java version of the .NET class in Example 18-1.

Example 18-2 A User-Defined Class in Java

public class Contactlnfo inplements Portabl etject
{ private String m sNang;

private String msStreet;
private String msCity;
private String msState;
private String msZip;
public Contactlnfo()

{

public Contactlnfo(String sName, String sStreet, String sCty, String sState,
String sZip)

set Nane(sNane) ;
setStreet(sStreet);
setCity(sCty);
setState(sState);
setZi p(sZip);

public void readExternal (Pof Reader reader)
throws | CException

set Nane(reader.readString(0));

set Street(reader.readString(1));

setCity(reader.readString(2));
3));
)

set State(reader.readString(
set Zi p(reader.readString(4)

)
1
)
)
public void witeExternal (Pof Witer witer)
throws | OException

{
witer.witeString(0, getName())
witer.witeString(l, getStreet(
witer.witeString(2, getGty())
(3 ()
(4,):

?);
)

witer.witeString getState
witer.witeString get Zi p()

/| accessor nethods onitted for brevity

}

18.4 Registering Custom Types on the .NET Client

Each POF user type is represented within the POF stream as an integer value. As such,
POF requires an external mechanism that allows a user type to be mapped to its
encoded type identifier (and the opposite is true as well). This mechanism uses an
XML configuration file to store the mapping information as shown below. See
Developing Applications with Oracle Coherence for a detailed reference of the POF
configuration elements.

<?xm version="1.0"?>
<pof-config xm ns="http://schemas. t angosol . com pof ">
<user-type-list>
<I-- include all "standard" Coherence POF user types -->

18-4 Developing Remote Clients for Oracle Coherence

Registering Custom Types on the .NET Client

<i ncl ude>assenbl y: // Coher ence/ Tangosol . Confi g/ coher ence- pof - confi g. xn
</include>
<I-- include all application POF user types -->

<user-type>
<type-i d>1001</type-id>
<cl ass- nane>My. Exanpl e. Cont act | nfo, MyAssenbl y</cl ass- name>

</ user-type>

<luser-type-list>
</ pof - confi g>

There are few things to note:

¢ Type identifiers for your custom types should start from 1001 or higher, as the
numbers below 1000 are reserved for internal use. As shown in the above example,
the <user -type-1i st >includes the coher ence- pof - confi g. xm file. This is
where Coherence specific user types are defined and should be included in all of
your POF configuration files

* You need not specify a fully qualified type name within the class-name element.
The type and assembly name is enough.

After you have configured mappings between type identifiers and your custom types,
you must configure Coherence for .NET to use them by adding a serializer element to
your cache configuration descriptor. The following examples assumes that the user
type mappings are saved in the my- dot net - pof - confi g. xmi file:

<r enot e- cache- scheme>
<schene- name>ext end- di r ect </ schene- nane>
<servi ce- nane>Ext endTcpCacheSer vi ce</ servi ce- nane>
<initiator-config>

<serializer>
<cl ass- name>Tangosol . | O. Pof . Conf i gur abl ePof Cont ext, Coherence
</ cl ass- name>
<init-parans>
<init-paranp
<param type>string</paramtype>
<par am val ue>ny- dot net - pof - confi g. xm </ par am val ue>
</init-paranm
</init-parans>
</serializer>
</initiator-config>
</ renot e- cache- scheme>

If a serializer is not explicitly specified, the Conf i gur abl ePof Cont ext type is used
for the POF serializer and uses a default configuration file called pof - confi g. xni .
The Coherence .Net application looks for the default POF configuration file in both the
folder where the application is deployed and, for Web applications, in the root of the
Web application. If a POF configuration file is not found, it tries to located the file by
the contents of the pof - conf i g element in the Coherence for .NET application
configuration file. For example:

<?xm version="1.0"?>
<configuration>
<configSecti ons>
<section nane="coherence" type="Tangosol . Config. CoherenceConfi gHandl er
Coherence"/ >
</ configSections>
<coherence>
<pof - confi g>ny- dot net - pof - confi g. xm </ pof - confi g>

Building Integration Objects (.NET) 18-5

Registering Custom Types in the Cluster

</ coherence>
</ confi guration>

18.5 Registering Custom Types in the Cluster

Each Coherence node running the TCP/IP Coherence*Extend clustered service
requires a similar POF configuration for the custom types to be able to send and
receive objects of these types.

The cluster-side POF configuration file looks similar to the file created on the client.
The only difference is that instead of .NET class names, you must specify the fully
qualified Java class names within the class-name element. The following illustrates a
sample cluster-side POF configuration file called my- j ava- pof - confi g. xm :

<?xm version="1.0"?>

<pof-config xm ns: xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- pof - confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence- pof - confi g
coher ence- pof - confi g. xsd">
<user-type-list>

<I-- include all "standard" Coherence POF user types -->
<i ncl ude>coher ence- pof - confi g. xn </ i ncl ude>
<I-- include all application POF user types -->

<user-type>
<type-id>1001</type-id>
<cl ass- nane>com myconpany. exanpl e. Cont act | nf o</ cl ass- name>
</ user-type>
</user-type-list>
</ pof - confi g>

After your custom types have been added, you must configure the server to use your
POF configuration when serializing objects:

<pr oxy- scheme>
<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<acceptor-config>

<serializer>
<cl ass- name>com t angosol . i 0. pof . Confi gur abl ePof Cont ext </ cl ass- name>
<init-parans>
<init-paranp
<param type>string</paramtype>
<par am val ue>ny- j ava- pof - confi g. xnl </ par am val ue>
</init-paranm
</init-params>
</serializer>
</ acceptor-config>

</ proxy- scheme>

18.6 Evolvable Portable User Types

PIF-POF includes native support for both forward- and backward-compatibility of the
serialized form of portable user types. In .NET, this is accomplished by making user
types implement the | Evol vabl ePor t abl eCoj ect interface instead of the

| Por t abl eQbj ect interface. The | Evol vabl ePor t abl eObj ect interface is a
marker interface that extends both the | Por t abl eObj ect and | Evol vabl e
interfaces. The | Evol vabl e interface adds three properties to support type
versioning.An | Evol vabl e class has an integer version identifier n, where n >= 0.

18-6 Developing Remote Clients for Oracle Coherence

Evolvable Portable User Types

When the contents, or semantics, or both of the serialized form of the | Evol vabl e
class changes, the version identifier is increased. Two versions identifiers, n1 and n2,
indicate the same version if N1 == n2; the version indicated by n2 is newer than the
version indicated by n1 if n2 > n1.

The | Evol vabl e interface is designed to support the evolution of types by the
addition of data. Removal of data cannot be safely accomplished if a previous version
of the type exists that relies on that data. Modifications to the structure or semantics of
data from previous versions likewise cannot be safely accomplished if a previous
version of the type exists that relies on the previous structure or semantics of the data.

When an | Evol vabl e object is deserialized, it retains any unknown data that has
been added to newer versions of the type, and the version identifier for that data
format. When the IEvolvable object is subsequently serialized, it includes both that
version identifier and the unknown future data.

When an | Evol vabl e object is deserialized from a data stream whose version
identifier indicates an older version, it must default and calculate the values for any
data fields and properties that have been added since that older version. When the

| Evol vabl e object is subsequently serialized, it includes its own version identifier
and all of its data. Note that there is no unknown future data in this case; future data
can only exist when the version of the data stream is newer than the version of the
IEvolvable type.

Example 18-3 demonstrates how the Cont act | nf o .INET type can be modified to
support class evolution:

Example 18-3 Modifying a Class to Support Class Evolution

public class Contactlnfo : |Evol vabl ePortabl ebj ect

{

private string nane;

private string street;

private string city;

private string state;

private string zip;

/1 1Evol vabl e menbers

private int Version;

private byte[] data;

public Contactlnfo()

{}

public ContactInfo(string name, string street, string city, string state, string

zip)

{
Nane = nang;
Street = street;
Gty =city;
State = state;
Zip = zip;

public voi d ReadExternal (| Pof Reader reader)

{
Name = reader. ReadString(0)
Street = reader.ReadString(1)
City = reader.ReadString(2);
State = reader.ReadString(3)
Zip = reader. ReadString(4)

public void WiteExternal (I Pof Witer witer)

{
witer. WiteString(0, Name);

Building Integration Objects (.NET) 18-7

Evolvable Portable User Types

witer. WiteString(l, Street);
witer. WiteString(2, Gty);
witer. WiteString(3, State);
witer.WiteString(4, Zp);

}

public int DataVersion

{

get { return version; }
set { version = value; }

public byte[] FutureData

{
get { return data; }
set { data = value; }
}
public int InplVersion
{
get { return 0; }
}

[l property definitions onmtted for brevity

}

Likewise, the Cont act | nf o Java type can also be modified to support class evolution
by implementing the Evol vabl ePor t abl eQbj ect interface:

Example 18-4 Modifying a Java Type Class to Support Class Evolution

public class Contactlnfo
i mpl enents Evol vabl ePor t abl ehj ect
{

private String msNang;
private String msStreet;
private String msCty;
private String msState;
private String msZip;

/1 Evol vabl e menbers
private int m nVer si on;
private byte[] m abData;

public Contactlnfo()
{}

public Contactlnfo(String sName, String sStreet, String sCty,
String sState, String sZip)
{

set Nane(sNane) ;
setStreet(sStreet);
setCity(sCty);
setState(sState);
set Zi p(sZip);

public void readExternal (Pof Reader reader)
throws | CException
{

set Nane(reader. readString(0)
set Street (reader. readString(
setCity(reader.readString(2)
3
)

);

1);

);
set State(reader.readString(3));
set Zi p(reader.readString(4));

}

18-8 Developing Remote Clients for Oracle Coherence

Making Types Portable Without Modification

public void witeExternal (Pof Witer witer)
throws | CException

{
witer.witeString(0, getNanme());
witer.witeString(l, getStreet());
witer.witeString(2, getCty());
witer.witeString(3, getState());
witer.witeString(4, getzip());
}

public int getDataVersion()
{
return mnVersion;
}

public void setDataVersion(int nVersion) {
m nVersion = nVersion;
}

public Binary getFutureData()

return mbinData;

}
public void setFutureData(Binary binFuture)
{
m bi nData = bi nFuture;
}

public int getlnplVersion()

return 0;

}

/] accessor nethods onitted for brevity

}

18.7 Making Types Portable Without Modification

In some cases, it may be undesirable or impossible to modify an existing user type to
make it portable. In this case, you can externalize the portable serialization of a user
type by creating an implementation of the | Pof Seri al i zer in .NET, or an
implementation of the Pof Seri al i zer interface in Java, or both.

Example 18-5 illustrates, an implementation of the | Pof Seri al i zer interface for the
Cont act | nf o type.

Example 18-5 An Implementation of IPofSerializer for the .NET Type

public class ContactInfoSerializer : |PofSerializer

{

public object Deserialize(lPofReader reader)

{
string nane = reader. ReadString(0)
string street = reader.ReadString(1)
string city = reader.ReadString(2);
string state = reader.ReadString(3)
string zip = reader. ReadString(4)

ContactInfo info = new Contactlnfo(name, street, city, state, zip);

Building Integration Objects (.NET) 18-9

Making Types Portable Without Modification

i nfo. Dat aVer si on
i nfo. FutureData

reader. Versi onl d;
reader . ReadRenai nder () ;

return info;

}

public void Serialize(lPofWiter witer, object o)

{

ContactInfo info = (Contactlnfo) o;

writer.Versionld = Math. Max(info. DataVersion, info.lnplVersion);

witer.WiteString
witer.WiteString

i nfo. Nane) ;
info.Street);

(0,

(L,
witer.WiteString(2, info.CGty);

(3,

witer.WiteString

info.State);

witer.WiteString(4, info.Zip);
writer. WiteRemainder(info.FutureData);

}

An implementation of the Pof Seri al i zer interface for the Cont act | nf o Java type
would look similar:

Example 18-6 An Implementation of PofSerializer for the Java Type Class

public class ContactlnfoSerializer
i mpl ement's Pof Serializer

public Cbject deserialize(PofReader in)

throws | CException

{

String sName = in.readString(0)
String sStreet = in.readString(1)
String sCty =in.readString(2);
String sState = in.readString(3)
String sZip = in.readString(4)

ContactInfo info = new Contactlnfo(sName, sStreet, sCity, sState, sZip);
i nfo.setDataVersion(in.getVersionld());
i nfo.setFutureData(in.readRenai nder());

return info;

}

public void serialize(Pof Witer out, Cbject o)

{

throws | CException

ContactInfo info = (Contactlnfo) o;

out.
out.
out.
out.
out.
out.
out.

}
}

set Versi onl d(Mat h. max(i nf o. get Dat aVersion(), info.getlnplVersion()));
writeString(0, info.getNane());

witeString(1l, info.getStreet());

witeString(2, info.getCity());

witeString(3, info.getState());

witeString(4, info.getZip());

wri t eRemai nder (i nfo. get Futurebata());

To register the | Pof Seri al i zer implementation for the Cont act | nf o .NET type,
specify the class name of the | Pof Seri al i zer within a serializer element under the

18-10 Developing Remote Clients for Oracle Coherence

Using POF Object References

user-type element for the Cont act | nf o user type in the POF configuration file. For
example:

<?xm version="1.0"?>

<pof-config xm ns="http://schenmas. tangosol . conl pof "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalLocation="http://schemas. t angosol . conl pof
assenbl y: // Coher ence/ Tangosol . Confi g/ pof - confi g. xsd" >
<user-type-list>

<I-- include all "standard" Coherence POF user types -->
<i ncl ude>assenbl y: // Coher ence/ Tangosol . Confi g/ coher ence- pof - confi g. xm
</incl ude>

<I-- include all application POF user types -->

<user-type>
<type-i d>1001</type-id>
<cl ass- nane>My. Exanpl e. Cont act | nfo, MyAssenbl y</cl ass- name>
<serializer>

<cl ass- name>M. Exanpl e. Cont act I nfoSeri al i zer, M/Assenbl y</cl ass- nane>

</serializer>

</ user-type>

</user-type-list>
</ pof - confi g>

Similarly, you can register the Pof Seri al i zer implementation for the
Cont act | nf o Java type:

<?xm version="1.0"?>

<pof-config xm ns: xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- pof - confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence- pof - confi g
coher ence- pof - confi g. xsd">
<user-type-list>

<I-- include all "standard" Coherence POF user types -->
<i ncl ude>exanpl e- pof - confi g. xm </ i ncl ude>
<I-- include all application POF user types -->

<user-type>
<type-id>1001</type-id>
<cl ass- nane>com nmyconpany. exanpl e. Cont act | nf o</ cl ass- name>
<serializer>

<cl ass- name>com myconpany. exanpl e. Cont act I nfoSeri al i zer </ cl ass- nane>
</serializer>
</ user-type>
</user-type-list>
</ pof - confi g>

18.8 Using POF Object References

POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its identity.

Using references avoids encoding the same object multiple times and helps reduce the
data size. References are typically used when a large number of sizeable objects are
created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the
use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The use of object identity and references has the following limitations:

Building Integration Objects (NET) 18-11

Using POF Object References

* Object references are only supported for user defined object types.
* Object references are not supported for | Evol vabl e objects.
* Object references are not supported for keys.

* Objects that have been written out with a POF context that does not support
references cannot be read by a POF context that supports references. The opposite
is also true.

* POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the | Val ueExt r act or API to query object values or
disable object references.

* The use of the | Pof Navi gat or and | Pof Val ue API has the following restrictions
when using object references:

— Only read operations are allowed. Write operations result in an
Unsupport edOQper at i onExcepti on.

— User objects can be accessed in non-uniform collections but not in uniform
collections.

— For read operations, if an object appears in the data stream multiple times, then
the object must be read where it first appears before it can be read in the
subsequent part of the data. Otherwise, an | OExcepti on: i ssing
identity: <ID>may bethrown. For example, if there are 3 lists that all
contain the same person object, p. The p object must be read in the first list
before it can be read in the second or third list.

The following topics are included in this section:
¢ Enabling POF Object References

¢ Registering POF Object Identities for Circular and Nested Objects

18.8.1 Enabling POF Object References

Object references are not enabled by default and must be enabled either within a pof -
confi g. xm configuration file or programmatically when using the
Si npl ePof Cont ext class.

To enable object references in the POF configuration file, include the <enabl e-
r ef er ences> element, within the <pof - conf i g> element, and set the value to
t r ue. For example:

<?xm version="1.0"?>
<pof-config xm ns="http://schenas. tangosol . conl pof "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"

xsi : schemalLocation="http://schemas. t angosol . conl pof
assenbl y: // Coher ence/ Tangosol . Confi g/ pof - confi g. xsd" >

<enabl e-ref erences>t rue</ enabl e-r ef erences>
</ pof - confi g>

To enable object references when using the Si npl ePof Cont ext class, call the
set Ref er enceEnabl ed method and set it to t r ue. For example:

18-12 Developing Remote Clients for Oracle Coherence

Using POF Object References

Si mpl ePof Cont ext ctx = new Si npl ePof Cont ext ();
ctx. | sRef erenceEnabl ed = true;

18.8.2 Registering POF Object Identities for Circular and Nested Objects

Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the

Tangosol . | O Pof . | Pof Reader . Regi st erl dentity method.

The following examples demonstrate two objects (Cust orer and Pr oduct) that
contain a circular reference and a serializer implementation that registers an identity
on the Cust omer object.

The Cust orrer object is defined as follows:

public class Customer

{
String mnnane;
Product m product;

public Custoner(String nane)

{

m nane = nane;

}

public Customer(String name, Product product)

{
mnane = nane;
m product = product;

}

public String getNane()

return mnane;

}

public Product getProduct()
{

return mproduct;

}

public void setProduct (Product product)
{

}
}

m product = product;

The Pr oduct object is defined as follows:

public class Product

{

private Custoner m custoner;
public Product (Custonmer customner)

{

m cust oner = cust oner;

}

public Custoner getCustoner()

Building Integration Objects (.NET) 18-13

Using POF Annotations to Serialize Objects

{

return mcustomner;

}
}

The serializer implementation registers an identity during deserialization and is
defined as follows:

public class CustonmerSerializer : |PofSerializer

public void Serialize(lPofWiter pof Witer, object o)
{

var ¢ = (Custoner) o;
pof Witer. WiteString(0, c.getNane());
pof Witer. Witeoject(1, c.getProduct());
pof Witer. WiteRemai nder(null);

}

public object Deserialize(lPofReader pofReader)

{
String nane = pof Reader. ReadString(0);
var custoner = new Custoner(nane);

pof Reader . Regi sterldentity(custoner);

cust oner . set Product ((Product) pof Reader. ReadObj ect(1));
pof Reader . ReadRemai nder () ;

return custoner;

}
}

18.9 Using POF Annotations to Serialize Objects

POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the Pof Annot ati onSeri al i zer class which is an implementation of the

| Pof Seri al i zer interface. Annotations offer an alternative to using the

| Port abl eoj ect and | Pof Seri al i zer interfaces and reduce the amount of time
and code that is required to make objects serializable.

The following topics are included in this section:
¢ Annotating Objects for POF Serialization

* Registering POF Annotated Objects

¢ Enabling Automatic Indexing

* Providing a Custom Codec

18.9.1 Annotating Objects for POF Serialization

Two annotations are available to indicate that a class and its properties are POF
serializable:

e [Portabl e]—Marks the class as POF serializable. The annotation is only
permitted at the class level and has no members.

e [Portabl eProperty]—-Marks a property, accessor, or member variable as a POF
serialized property. Annotated methods must conform to accessor notation (Get ,
Set, | s). Members can be used to specify POF indexes as well as custom codecs

18-14 Developing Remote Clients for Oracle Coherence

Using POF Annotations to Serialize Objects

that are executed before or after serialization or deserialization. Index values may
be omitted and automatically assigned. If a custom codec is not entered, the default
codec is used.

The following example demonstrates annotating a class, property, and member
variable. In addition Por t abl ePr oper t y indexes are explicitly specified.

[Portabl e]
public class Person

{
[Portabl eProperty(0)]

public string GetFirstNane()
{

}

return mfirstNang;

private String mfirstNane;

[Portabl eProperty(1)]
public string LastNane;

{
}

[Portabl eProperty(2)]
private int mage;

get; set;

}
18.9.2 Registering POF Annotated Objects

POF annotated objects must be registered in a pof - confi g. xnl file within a <user -
t ype> element. See Developing Applications with Oracle Coherence for a detailed
reference of the POF configuration elements. POF annotated objects use the

Pof Annot ati onSeri al i zer serializer if an object does not implement

| Port abl ebj ect and is annotated as Por t abl e; however, the serializer is
automatically assumed if an object is annotated and does not need to be included in
the user type definition. The following example registers a user type for an annotated
Per son object:

<?xm version="1.0"?>
<pof-config xm ns="http://schemas. tangosol . com pof ">
<user-type-list>
<I-- include all "standard" Coherence POF user types -->
<i ncl ude>assenbl y: // Coher ence/ Tangosol . Confi g/ coher ence- pof - confi g. xm
<I-- User types nust be above 1000 -->
<user-type>
<type-id>1001</type-id>
<cl ass- name>M. Exanpl es. Person, MyAssenbl y</cl ass- name>
</ user-type>
</ user-type-list>
</ pof - confi g>

18.9.3 Enabling Automatic Indexing

POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. Omit the index value when defining the

[Port abl eProperty] annotation. Index allocation is determined by the property
name. Any property that does assign an explicit index value is not assigned an
automatic index value. The following table demonstrates the ordering semantics of the
automatic index algorithm. Notice that automatic indexing maintains explicitly

Building Integration Objects (.NET) 18-15

Using POF Annotations to Serialize Objects

defined indexes (as shown for property) and assigns an index value if an index is

omitted.
Name Explicit Index Determined
Index
C 1 1
a omitted 0
b omitted 2
Note:

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, the Pof Annot ati onSeri al i zer serializer class must
be explicitly defined when registering the object as a user type in the POF
configuration file. The aut ol ndex boolean parameter in the constructor enables
automatic indexing and must be set to t r ue. For example:

<user-type>
<type-id>1001</type-id>
<cl ass- name>Exanpl es. Per son</ cl ass- nane>
<serializer>
<cl ass- name>Tangosol . | O Pof . Pof Annot ati onSeri al i zer, Coherence</ cl ass-nanme>
<init-parans>
<init-paran
<paramtype>i nt </ paramt ype>
<par am val ue>{t ype-i d} </ param val ue>
</init-paranm
<init-paranm
<param t ype>cl ass</ paramt ype>
<param val ue>{ cl ass} </ par am val ue>
<linit-paranm
<init-paran
<par am t ype>bool </ param t ype>
<param val ue>t r ue</ param val ue>
</init-paranm
</init-paranms>
</serializer>
</ user-type>

18.9.4 Providing a Custom Codec

Codecs allow code to be executed before or after serialization or deserialization. A
codec defines how to encode and decode a portable property using the | Pof Wi t er
and | Pof Reader interfaces. Codecs are typically used for concrete implementations
that could get lost when being deserialized or to explicitly call a specific method on the
| Pof Wit er interface before serializing an object.

To create a codec, create a class that implements the | Codec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked list

type:

public class LinkedListCodec<T> : | Codec

{
public object Decode(lPof Reader reader, int index)

18-16 Developing Remote Clients for Oracle Coherence

Using POF Annotations to Serialize Objects

{
return reader. ReadCol | ection(index, (ICollection)new LinkedList<T>());
1
public void Encode(lPof Witer witer, int index, object value)
{
witer. WiteCollection(index, (ICollection)value);
1

}

To assign a codec to a property, enter the codec as a member of the
[Port abl eProperty] attribute. If a codec is not specified, a default codec

(Def aul t Codec) is used. The following example demonstrates assigning the above
Li nkedLi st Codec codec:

[Portabl eProperty(typeof (Li nkedLi st Codec<string>))]

Building Integration Objects (.NET) 18-17

Using POF Annotations to Serialize Objects

18-18 Developing Remote Clients for Oracle Coherence

19

Using the Coherence .NET Client Library

This chapter provides instructions for adding the Coherence for .NET client library to
an application and describes the Coherence for .NET API, which allows .NET
applications to use Coherence clustered services from outside the Coherence cluster.

Documentation of the Coherence for .NET APl is available in two locations. The .NET
API Reference for Oracle Coherence and also in the doc directory of the Coherence
for .NET distribution.

This chapter includes the following sections:
e Setting Up the Coherence .NET Client Library
* Using the Coherence .NET APIs

¢ Configuring .NET Clients Programmatically

19.1 Setting Up the Coherence .NET Client Library

To use the Coherence for .NET library in your .NET applications, you must add a
reference to the Coher ence. dl | library in your project and create the necessary
configuration files.

Creating a reference to the Coher ence. dl | :

1. Inyour project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference.... The Add Reference Window
displays.

2. From the Add Reference window, choose the Browse tab and find the
Coher ence. dl | library on your file system as shown in Figure 19-1.

Using the Coherence .NET Client Library 19-1

Setting Up the Coherence .NET Client Library

Figure 19-1 Add Reference Window

Add Reference

MET | COM | Projects | Browse | Recent
Look in: | £ buid v o 2 E
Coberence. dll
%] Coherence, NET, Tests. dl
4] lngenet. di
File name: | Coherence.dl hd |
Files of bype: | Compaonent Files [*.dll;" Hb;" olb;”. ocx;® exe;” manifest) w |
oK] [Zancel]
3. Click OK.

4. Create the necessary configuration files and specify their paths in the application
configuration settings. This is done by adding an application configuration file to
your project (if one does not exist) and adding a Coherence for .NET configuration
section (that is, <coher ence/ >) to it.

Note:

If these configuration files are not specified in the app. confi g/

web. conf i g, Coherence looks for them in both the folder where the
application is deployed or, for Web applications, in the root of the Web
application. You can also specify the cache configuration file
programmatically as described in “Configuring .NET Clients
Programmatically.”

<?xm version="1.0"?>
<configuration>
<configSections>
<section nanme="coherence" type="Tangosol . Config. CoherenceConfi gHandl er
Coherence"/ >
</ configSections>
<coherence>
<cache-fact ory- confi g>ny- coherence. xm </ cache-f act ory- confi g>

<cache- confi g>ny- cache- confi g. xn </ cache- confi g>
<pof - confi g>ny- pof - confi g. xm </ pof - confi g>
</ coherence>
</ confi guration>

19-2 Developing Remote Clients for Oracle Coherence

Using the Coherence .NET APIs

Elements within the Coherence for .NET configuration section are:

¢ cache-factory-confi g—contains the path to a operational configuration
descriptor used by the CacheFact or y to configure
| Confi gur abl eCacheFact ory and Logger .

e cache- confi g—contains the path to a cache configuration file which contains the
cache configuration (see “Configuring Coherence*Extend for .NET”). This cache
configuration descriptor is used by Def aul t Conf i gur abl eCacheFact ory.

¢ pof - confi g—contains the path to the configuration descriptor used by the
Conf i gur abl ePof Cont ext to register custom types used by the application. For
detailed instructions on using POF, see Using the Coherence .NET Client Library.

Figure 19-2 illustrates what the solution should look like after adding the
configuration files:

Figure 19-2 File System Displaying the Configuration Files

J Solution "ContactCache. Windows' {1 project)
= E ContactCache.Windows
+|-- |=d| Properties
=l | References
=} nherence
A System
< System.Data
+3J Swskem,Deployment

A3 System.Drawing
430 Syskem.Windows,Forms
+3 Swskerm, Xml

_:; App.config

% cache-config.xml

% coherence.xmi

] ContactCacheClient.cs
+ _:I CantackFarmm.cs

] ContactInfo.cs

ﬁ pof-config.xml

19.2 Using the Coherence .NET APIs

This section highlights the primary Coherence .NET APIs that are used to interact with
Coherence caches within a .NET application. The following topics are included in this
section:

¢ CacheFactory

¢ IConfigurableCacheFactory

¢ DefaultConfigurableCacheFactory
* Logger

¢ Using the Common.Logging Library

Using the Coherence .NET Client Library 19-3

Using the Coherence .NET APIs

INamedCache

* IQueryCache

* QueryRecorder

¢ [ObservableCache
e IInvocableCache

e Filters

e Value Extractors

* Entry Processors

¢ Entry Aggregators

19.2.1 CacheFactory

The CacheFact or y is the entry point for Coherence for .NET client applications. The
CacheFact ory is a factory for | NamedCache instances and provides various
methods for logging. If not configured explicitly, it uses the default configuration file
coher ence. xm which is an assembly embedded resource. It is possible to override
the default configuration file by adding a cache-f act ory- conf i g element to the
Coherence for .NET configuration section in the application configuration file and
setting its value to the path of the desired configuration file. You can also specify the
cache configuration file programmatically as described in “Configuring .NET Clients
Programmatically.”

<?xm version="1.0"?>

<configuration>
<confi gSections>
<section name="coherence" type="Tangosol . Config. CoherenceConfi gHandl er,
Coherence"/ >
</ configSections>
<coher ence>
<cache-factory-confi g>ny- coherence. xn </ cache- f act ory- confi g>

</ coherence>
</ configuration>

This file contains the configuration of two components exposed by the
CacheFact or y by using static properties:

e CacheFact ory. Confi gur abl eCacheFact or y—the
| Confi gur abl eCacheFact ory implementation used by the CacheFact ory to
retrieve, release, and destroy | NamedCache instances.

e CacheFactory. Logger —the Logger instance used to log messages and
exceptions.

When you are finished using the CacheFact or y (for example, during application
shutdown), the CacheFact or y should be shutdown by using the Shut down()
method. This method terminates all services and the Logger instance.

19-4 Developing Remote Clients for Oracle Coherence

Using the Coherence .NET APIs

19.2.2 IConfigurableCacheFactory

The | Conf i gur abl eCacheFact or y implementation is specified by the contents of
the <confi gur abl e- cache-f act ory- confi g> element:

e cl ass- name—specifies the implementation type by it's assembly qualified name.

* init-parans—defines parameters used to instantiate the
I Confi gur abl eCacheFact ory. Each parameter is specified by using a
corresponding par am t ype and par am val ue child element.

<coher ence>
<confi gurabl e- cache-fact ory- confi g>
<cl ass- nane>Tangosol . Net . Def aul t Confi gur abl eCacheFact ory, Coherence</cl ass- name>
<init-parans>
<init-paranm
<param type>string</ paramtype>
<par am val ue>si npl e- cache- confi g. xm </ par am val ue>
</init-paranp
</init-parans>
</ configurabl e- cache-factory-confi g>
</ coher ence>

If an | Conf i gur abl eCacheFact or y implementation is not defined in the
configuration, the default implementation is used
(Def aul t Conf i gur abl eCacheFact ory).

19.2.3 DefaultConfigurableCacheFactory

19.2.4 Logger

The Def aul t Confi gur abl eCacheFact ory provides a facility to access caches
declared in the cache configuration descriptor. The default configuration file used by
the Def aul t Confi gur abl eCacheFact ory is $AppRoot / coher ence- cache-
confi g. xm , where $AppRoot is the working directory (for a Windows Forms
application) or the root of the application (for a Web application).

If you want to specify another cache configuration descriptor file, you can do so by
adding a cache- conf i g element to the Coherence for .NET configuration section in
the application configuration file with its value set to the path of the configuration file.
You can also specify the cache configuration file programmatically as described in
“Configuring .NET Clients Programmatically.”

<?xm version="1.0"?>
<configuration>
<confi gSections>
<section nanme="coherence" type="Tangosol . Config. CoherenceConfi gHandl er
Coherence"/ >
</ configSections>
<coher ence>
<cache- confi g>ny- cache- confi g. xn </ cache- confi g>

</ coher ence>
</ configuration>

The Logger is configured using the | 0ggi ng- conf i g element:

e destinati on—determines the type of LogQut put used by the Logger. Valid
values are:

Using the Coherence .NET Client Library 19-5

Using the Coherence .NET APIs

— conmon- | ogger for Conrmon. Loggi ng

st derr for Consol e. Error

st dout for Consol e. Qut

file path if messages should be directed to a file

severity-| evel —specifies the log level that a message must meet or exceed to
be logged.

| ogger - name—specifies the name of the logger. The default value is Coher ence.
message- f or mat —determines the log message format.

character-1|im t—determines the maximum number of characters that the
logger daemon processes from the message queue before discarding all remaining
messages in the queue.

<l oggi ng- confi g>

<desti nati on>common- | ogger </ desti nati on>

<l ogger - nane>Coher ence</ | ogger - nane>

<severity-|evel >5</severity-|evel >
<message-format>(thread={thread}): {text}</nmessage-format>
<character-1init>8192</character-limt>

</l oggi ng- confi g>

The CacheFact or y provides several static methods for retrieving and releasing
| NarredCache instances:

Get Cache(String cacheNane) —retrieves an | NanmedCache implementation
that corresponds to the NamedCache with the specified cacheNane running
within the remote Coherence cluster.

Rel easeCache(| NanedCache cache) —releases all local resources associated
with the specified instance of the cache. After a cache is release, it can no longer be
used.

Dest r oyCache(| NanedCache cache) —destroys the specified cache across the
Coherence cluster.

Methods used to log messages and exceptions are:

| sLogEnabl ed(i nt | evel) —determines if the Logger would log a message
with the given severity level.

Log(Exception e, int severity)—logsan exception with the specified
severity level.

Log(String nessage, int severity)—logsa text message with the
specified severity level.

Log(String message, Exception e, int severity)—logsa text
message and an exception with the specified severity level.

Logging levels are defined by the values of the CacheFact ory. LogLevel enum
values (in ascending order):

Al ways

19-6 Developing Remote Clients for Oracle Coherence

Using the Coherence .NET APIs

e Error

e Warn

e Info

¢ Debug—(default log level)
e Quiet

e Max

19.2.5 Using the Common.Logging Library

Common. Loggi ng is an open source library that enables you to plug in various
popular open source logging libraries behind a well-defined set of interfaces. The
libraries currently supported are Log4Net (versions 1.2.9 and 1.2.10) and NLog.
Common. Loggi ng is currently used by the Spring NET framework and are likely to
be used in the future releases of IBatis. NET and NHibernate, so you might want to
consider it if you are using one or more of these frameworks in combination with
Coherence for .NET, as it allows logging to be consistently configured throughout the
application layers.

Coherence for .NET does not include the Conmron. Loggi ng library. To use the
common- | ogger Logger configuration, download the Conmon. Loggi ng assembly
and include a reference to it in your project. You can download the Conmon. Loggi ng
assembly for .NET from the following location:

http:// net conmon. sour cef or ge. net/

The Coherence for NET Common.Logging Logger implementation was compiled
against the signed release version of these assemblies.

19.2.6 INamedCache

The | NanmedCache interface extends | Di cti onary, so it can be manipulated in ways
similar to a dictionary. When obtained, | NamedCache instances expose several
properties:

e CacheNane—the cache name.
e Count —the cache size.

e | sActi ve—determines if the cache is active (that is, it has not been released or
destroyed).

* Keys—collection of all keys in the cache mappings.

* Val ues—collection of all values in the cache mappings.

The value for the specified key can be retrieved by using cache[key] . Similarly, a
new value can be added, or an old value can be modified by setting this property to
the new value: cache[key] =val ue.

The collection of cache entries can be accessed by using Get Enuner at or () which
iterates over the mappings in the cache.

The | NaredCache interface provides several methods used to manipulate the
contents of the cache:

¢ (ear () —removes all the mappings from the cache.

Using the Coherence .NET Client Library 19-7

http://netcommon.sourceforge.net/

Using the Coherence .NET APIs

Cont ai ns(Obj ect key) —determines if the cache has a mapping for the
specified key.

Get Al'l (1 Col | ection keys)—returns all values mapped to the specified keys
collection.

I nsert (Chj ect key, Chject val ue)—places a new mapping into the cache.
If a mapping for the specified key exists, its value is overwritten by the specified
value and the old value is returned.

I nsert (Chj ect key, Cbject value, long mllis)—placesanew
mapping into the cache, but with an expiry period specified by several
milliseconds.

Insert All (I Dictionary dictionary)—copies all the mappings from the
specified dictionary to the cache.

Rermove(Cbj ect key) —Removes the mapping for the specified key if it is
present and returns the value it was mapped to.

I NamredCache interface also extends the following three interfaces: IQueryCache,
IObservableCache, and IInvocableCache.

19.2.7 IQueryCache

The | Quer yCache interface exposes the ability to query a cache using various filters.

Get Keys(I Filter filter)—returnsa collection of the keys contained in this
cache for entries that satisfy the criteria expressed by the filter.

GetEntries(lFilter filter)—returnsa collection of the entries contained in
this cache that satisfy the criteria expressed by the filter.

GetEntries(lFilter filter, |Conparer conparer)—returnsa
collection of the entries contained in this cache that satisfy the criteria expressed by
the filter. It is guaranteed that the enumerator traverses the collection in the order
of ascending entry values, sorted by the specified comparer or according to the
natural ordering if the "comparer" is null.

Additionally, the | Quer yCache interface includes the ability to add and remove
indexes. Indexes are used to correlate values stored in the cache to their corresponding
keys and can dramatically increase the performance of the Get Keys and Get Entri es
methods.

Addl ndex (| Val ueExtractor extractor, bool isOrdered, |Conparer
conpar at or) —adds an index to this cache that correlates the values extracted by
the given | Val ueExt r act or to the keys to the corresponding entries.
Additionally, the index information can be optionally ordered.

Renovel ndex(| Val ueExt ract or extract or) —removes an index from this
cache.

The following example performs an efficient query of the keys of all entries that have
an age property value greater or equal to 55.

| Val ueExtractor extractor = new ReflectionExtractor("getAge");

cache. Addl ndex(extractor, true, null);
| Col I ection keys = cache. Get Keys(new G eat er Equal sFil ter (extractor, 55));

19-8 Developing Remote Clients for Oracle Coherence

Using the Coherence .NET APIs

19.2.8 QueryRecorder

The Quer yRecor der class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes
in a cluster and aggregating the results. The class supports two record types: an

Expl ai n record that provides the estimated cost of evaluating a filter as part of a
query operation and a Tr ace record that provides the actual cost of evaluating a filter
as part of a query operation. Both query records take into account whether or not an
index can be used by a filter. See Developing Applications with Oracle Coherence for
detailed information on understanding the data provided in an explain plan record
and trace record.

To create a query record, create a new Quer yRecor der instance that specifies a
Recor dType parameter. Include the instance and the filter to be tested as parameters
of the Aggr egat e method. The following example creates an explain record:

I NanedCache cache = CacheFact ory. Get Cache(MyCache);

IFilter filter = new OFilter(
new GeaterFilter(ldentityExtractor.|nstance, 100),
new LessFilter(ldentityExtractor.|nstance, 30));

QueryRecor der aggregator = new QueryRecor der (QueryRecor der. Recor dType. Expl ai n);
| QueryRecord record = (1 QueryRecord) cache. Aggregate(filter, aggregator);

Consol e. Wi teLine(record. ToString());

To create a trace record, change the Recor dType parameter to Tr ace:

QueryRecor der aggregator = new QueryRecor der (QueryRecorder. RecordType. Trace);

19.2.9 I0bservableCache

| Cbser vabl eCache interface enables an application to receive events when the
contents of a cache changes. To register interest in change events, an application adds
aLi st ener implementation to the cache that receives events that include information
about the event type (inserted, updated, deleted), the key of the modified entry, and
the old and new values of the entry.

e AddCachelLi st ener (|1 CacheLi stener |i stener)—adds a standard cache
listener that receives all events (inserts, updates, deletes) emitted from the cache,
including their keys, old, and new values.

e RenobveCachelLi st ener (| CacheLi st ener |i stener)—removes a standard
cache listener that was previously registered.

e AddCachelLi st ener (| CachelLi stener |istener, object key, bool
i sLi t e) —adds a cache listener for a specific key. If i sLi t e ist r ue, the events
may not contain the old and new values.

e RenoveCacheli st ener (| CachelLi stener |istener, object key)—
removes a cache listener that was previously registered using the specified key.

e AddCacheli st ener (I CachelLi stener listener, IFilter filter,
bool i sLite)—adds a cache listener that receive events based on a filter
evaluation. If isLite is true, the events may not contain the old and new values.

Using the Coherence .NET Client Library 19-9

Using the Coherence .NET APIs

e RenpveCachelLi stener (| CacheLi stener listener, IFilter filter)
—removes a cache listener that previously registered using the specified filter.

Li st ener s registered using the filter-based method receives all event types (inserted,
updated, and deleted). To further filter the events, wrap the filter in a

CacheEvent Fi | t er using a CacheEvent Mask enumeration value to specify which
type of events should be monitored.

The following example filter evaluates to t r ue if an Enpl oyee object is inserted into a
cache with an | sMar ri ed property value settot r ue.

new CacheEvent Fi | ter (CacheEvent Mask. | nserted, new Equal sFilter("IsMarried", true));

The following example filter evaluates to t r ue if any object is removed from a cache.

new CacheEvent Fi | t er (CacheEvent Mask. Del et ed) ;

The following example filter evaluates to t r ue when an Enpl oyee object Last Nane
property is changed from Smi t h.

new CacheEvent Fi | t er (CacheEvent Mask. Updat edLeft, new Equal sFilter("LastName",
"Smth"));

19.2.9.1 Responding to Cache Events

A feature of the | NanedCache interface is the ability to add cache listeners that
receive events emitted by a cache as its contents change. These events are sent from
the server and dispatched to registered listeners by a background thread.

The .NET Single-Threaded Apartment model prohibits windows form controls created
by one thread from being updated by another thread. If one or more controls should
be updated because of an event notification, you must ensure that any event handling
code that must run as a response to a cache event is executed on the Ul thread. The

W ndowsFor msCacheli st ener helper class allows end users to ignore this fact and
to handle Coherence cache events (which are always raised by a background thread)
as if they were raised by the Ul thread. This class ensures that the call is properly
marshalled and executed on the Ul thread.

Here is the sample of using this class:

public partial class ContactlnfoForm: Form

{
I'istener = new W ndowsFor msCacheLi stener(this);
I'istener.Entrylnserted += new CacheEvent Handl er (AddRow) ;
|istener.EntryUpdated += new CacheEvent Handl er (Updat eRow) ;
Iistener.EntryDel eted += new CacheEvent Handl er (Del et eRow) ;
cache. AddCachelLi stener(listener);

}

The AddRow, Updat eRowand Del et eRowmethods are called in response to a cache
event:

private void AddRow object sender, CacheEventArgs args)
{

private void Updat eRow(obj ect sender, CacheEvent Args args)
{

19-10 Developing Remote Clients for Oracle Coherence

Using the Coherence .NET APIs

private void Del et eRow(obj ect sender, CacheEvent Args args)
{

The CacheEvent Ar gs parameter encapsulates the | Cbser vabl eCache instance that
raised the cache event; the CacheEvent Type that occurred; and the Key, NewVal ue
and A dVal ue of the cached entry.

19.2.10 linvocableCache

19.2.11 Filters

An | I nvocabl eCache is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
useful in a distributed environment, because it enables the processing to be moved to
the location at which the entries-to-be-processed are being managed, thus providing
efficiency by localization of processing.

* | nvoke(object key, |EntryProcessor agent)—invokes the passed
processor against the entry specified by the passed key, returning the result of the
invocation.

e I nvokeAll (I Collection keys, |EntryProcessor agent)—invokes the
passed processor against the entries specified by the passed keys, returning the
result of the invocation for each.

e |InvokeAll (IFilter filter, IEntryProcessor agent)—invokes the
passed processor against the entries that are selected by the given filter, returning
the result of the invocation for each.

e Aggregate(lCollection keys, |EntryAggregator agent)—performs
an aggregating operation against the entries specified by the passed keys.

e Aggregate(lFilter filter, |EntryAggregator agent)—performsan
aggregating operation against the entries that are selected by the given filter.

The | Quer yCache interface provides the ability to search for cache entries that meet a
given set of criteria, expressed using a | Fi | t er implementation.

All filters must implement the IFilter interface:

e Eval uat e(obj ect 0) —apply a test to the specified object and return t r ue if the
test passes, f al se otherwise.

Coherence for .NET includes several | Fi | t er implementations in the
Tangosol . Util . Fil ter namespace.

The following example retrieves the keys of all entries that have a value equal to 5.

Equal sFilter equal sFilter
I Col l ection keys

new Equal sFilter(ldentityExtractor.|nstance, 5);
cache. Get Keys(equal sFilter);

The following example retrieves all keys that have a value greater or equal to 55.

Using the Coherence .NET Client Library 19-11

Using the Coherence .NET APIs

GreaterEqual sFilter greaterEquals = new
GreaterEqual sFilter(ldentityExtractor.Instance, 55);
| Col l ection keys = cache. Get Keys(great erEqual s);

The following example retrieves all cache entries that have a value that begins with

Bel g.

LikeFilter likeFilter = new LikeFilter(ldentityExtractor.Instance, "Bel g%, '\\',
true);

| Col l ection entries = cache. GetEntries(likeFilter);

The following example retrieves all cache entries that have a value that ends with an
(case sensitive) or begins with An (case insensitive).

OFilter orFilter = new OrFilter(new LikeFilter(ldentityExtractor.|nstance,
"9%n", '\\', false), new LikeFilter(ldentityExtractor.Instance, "An%, '\\', true));
I Col lection entries = cache.GetEntries(orFilter);

19.2.12 Value Extractors

Extractors are used to extract values from an object. All extractors must implement the
| Val ueExt r act or interface:

e Extract(object target)—extractthe value from the passed object.

Coherence for .NET includes the following extractors:

e |dentityExtractor isa trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

e KeyExtract or is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

* Refl ectionExtractor extracts a value from a specified object property.

e MiltiExtractor is composite | Val ueExt r act or implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extractionis a | Li st of extracted values.

¢ Chai nedExtract or is composite | Val ueExt r act or implementation based on
an array of extractors. The extractors in the array are applied sequentially left-to-
right, so a result of a previous extractor serves as a target object for a next one.

POF extractors and POF updaters offer the same functionality as

Chai nedExt r act or s through the use of the Si npl ePof Pat h class. For details
about POF extractors and POF updaters, see Developing Applications with Oracle
Coherence and refer to the .NET API Reference for Oracle Coherence.

The following example retrieves all cache entries with keys greater than 5:

| Val ueExtractor extractor = new KeyExtractor(ldentityExtractor.|nstance);
IFilter filter = new GreaterFilter(extractor, 5);
| Col l ection entries = cache. GetEntries(filter);

The following example retrieves all cache entries with values containinga Ci ty
property equal toci t y1:

| Val ueExt ractor extractor
IFilter filter
| Col I ection entries

new ReflectionExtractor("Gity");
new Equal sFilter(extractor, "cityl");
cache. GetEntries(filter);

19-12 Developing Remote Clients for Oracle Coherence

Using the Coherence .NET APIs

19.2.13 Entry Processors
An entry processor is an agent that operates against the entry objects within a cache.

All entry processors must implement the | Ent r yPr ocessor interface:
* Process(IlInvocabl eCacheEntry entry)—process the specified entry.

* ProcessAl | (I Collection entries)—process a collection of entries.

Coherence for .NET includes several | Ent r yPr ocessor implementations in the
Tangosol . Util. Processor namespace.

The following example demonstrates a conditional put. The value mapped to key1 is
set to 680 only if the current mapped value is greater than 600.

IFilter great er Then600
| EntryProcessor processor
cache. I nvoke("keyl", processor);

new GreaterFilter(ldentityExtractor.|nstance, 600);
new Condi ti onal Put (greater Then600, 680);

The following example uses the Updat er Processor to update the value of the
Degr ee property on a Tenper at ur e object with key BGD to the new value 26.

cache. Insert ("BGD', new Tenperature(25, 'c', 12));

| Val ueUpdat er updat er new Refl ectionUpdater ("setDegree");
| EntryProcessor processor = new Updat er Processor (updater, 26);
obj ect resul t cache. I nvoke("BGD", processor);

19.2.14 Entry Aggregators

An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an | | nvocabl eCache, resulting in an aggregated result.
Common examples of aggregation include functions such as minimum, maximum,
sum and average. However, the concept of aggregation applies to any process that
must evaluate a group of entries to come up with a single answer. Aggregation is
explicitly capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the | Ent r yAggr egat or interface:

e Aggregate(lCollection entries)—process a collection of entries to produce
an aggregate result.

Coherence for .NET includes several | Ent r yAggr egat or implementations in the
Tangosol . Uti|. Aggr egat or namespace.

The following example returns the size of the cache:

| Ent ryAggr egat or aggr egat or
obj ect result

= new Count();

= cache. Aggr egat e(cache. Keys, aggregator);

The following example returns an | Di cti onar y with keys equal to the unique values
in the cache and values equal to the number of instances of the corresponding value in
the cache:

| EntryAggregator aggregator =
G oupAggregat or. Createl nstance(ldentityExtractor.|nstance, new Count());
obj ect resul t = cache. Aggr egat e(cache. Keys, aggregator);

Using the Coherence .NET Client Library 19-13

Configuring .NET Clients Programmatically

Note:

#unique_268/unique_268_Connect_42_CBAHGDEG and #unique_268/
unique_268_Connect_42_CBABJJCH are simple examples and not practical for
passing a large amount of keys or keys that are themselves very large. In such
scenarios, use the G oupAggr egat or . Cr eat el nst ance(Stri ng,

| EntryAggregator, |Filter) methodand passan Al waysFilter
object.

Like cached value objects, all custom | Fi | ter, | Extractor, | Processor and

| Aggr egat or implementation classes must be correctly registered in the POF context
of the .NET application and cluster-side node to which the client is connected. As
such, corresponding Java implementations of the custom .NET types must be created,
compiled, and deployed on the cluster-side node. Note that the actual execution of
these custom types is performed by the Java implementation and not the NET
implementation.

See Building Integration Objects (.NET) for additional details.

19.3 Configuring .NET Clients Programmatically

Clients can load Coherence configuration files programmatically at runtime. The
configuration files overwrite any configuration files that are specified in the
application configuration file. For details about specifying Coherence configuration
files in the application configuration file, see “Setting Up the Coherence .NET Client
Library.”

The following example loads the pof Confi g. xmi , cacheConfi g. xm , and
coher enceConfi g. xm files.

using System

using Systeml1Q

usi ng Tangosol . | O Pof;
usi ng Tangosol . Net;

usi ng Tangosol . Run. Xni ;

nanespace confi gExanpl e

{
internal class TestPofContext : Configurabl ePof Cont ext
{
public Test Pof Cont ext ()
. base("confi g/ pof Config. xm™")
{
}
}
internal class TestCient
{
private static void Min(string[] args)
{
try
{

CacheFactory. Confi gure("confi g/ cacheConfig. xm",
"confi g/ coherenceConfig. xm™");

var cache = CacheFactory. Get Cache("dist-test");

cache["key"] = new TestValue(1, "Test");

Consol e. Qut. WiteLine("key=" + cache["key"]);

19-14 Developing Remote Clients for Oracle Coherence

Configuring .NET Clients Programmatically

}
catch (Exception e)
{
Consol e. WiteLine(e);
}

Consol e. ReadLi ne() ;

Using the Coherence .NET Client Library 19-15

Configuring .NET Clients Programmatically

19-16 Developing Remote Clients for Oracle Coherence

20

Performing Continuous Queries (.NET)

This chapter provides instructions for using continuous query caching in a .NET client
to ensure that a query always retrieves the latest results from a cache in real-time.

This chapter includes the following sections:

¢ Overview of Performing Continuous Queries (.NET)

¢ Understanding the Continuous Query Caching Implementation
¢ Constructing a Continuous Query Cache

¢ (leaning Up Continuous Query Cache Resources

¢ Caching Only Keys Versus Keys and Values

¢ Listening to a Continuous Query Cache

¢ Making a Continuous Query Cache Read-Only

20.1 Overview of Performing Continuous Queries (.NET)

Queries provide the ability to obtain a point in time query result from a Coherence
cache and it is possible to receive events that would change the result of that query.
However, the continuous query feature combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times every
millisecond.

Coherence for NET implements the Continuous Query functionality by materializing
the results of the query into a Continuous Query Cache, and then keeping that cache
up-to-date in real-time using event listeners on the query. In other words, a Coherence
for NET Continuous Query is a cached query result that never gets out-of-date.

20.1.1 Understanding Use Cases for Continuous Query Caching

There are several different general use cases for Continuous Query Caching:

¢ Itis anideal building block for Complex Event Processing (CEP) systems and event
correlation engines.

e [tisideal for situations in which an application repeats a particular query, and
would benefit from always having instant access to the up-to-date result of that

query.

¢ A Continuous Query Cache is analogous to a materialized view, and is useful for
accessing and manipulating the results of a query using the standard

Performing Continuous Queries (.NET) 20-1

Understanding the Continuous Query Caching Implementation

| NaredCache API, and receiving an ongoing stream of events related to that
query.

¢ A Continuous Query Cache can be used in a manner similar to a near cache,
because it maintains an up-to-date set of data locally where it is being used, for
example on a particular server node or on a client desktop; note that a Near Cache
is invalidation-based, but the Continuous Query Cache actually maintains its data
in an up-to-date manner.

An example use case is a trading system desktop in which a trader's open orders and
all related information must always be maintained in an up-to-date manner. By
combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

Note:

Continuous Query Caches are useful in almost every type of application,
including both client-based and server-based applications, because they
provide the ability to very easily and efficiently maintain an up-to-date local
copy of a specified sub-set of a much larger and potentially distributed cached
data set.

20.2 Understanding the Continuous Query Caching Implementation

The Coherence for .NET implementation of Continuous Query is found in the
Tangosol . Net . Cache. Cont i nuousQuer yCache class. This class, like all
Coherence for .NET caches, implements the standard | NamedCache interface, which
includes the following capabilities:

® Cache access and manipulation using the | Di ct i onary interface: | NamedCache
extends the standard | Di ct i onary interface from the .NET Collections
Framework, which is the same interface implemented by the .NET Hasht abl e
class.

¢ Events for all objects modifications that occur within the cache: | NamedCache
extends the | Obser vabl eCache interface.

* Querying the objects in the cache: | NamedCache extends the | Quer yCache
interface.

¢ Distributed Parallel Processing and Aggregation of objects in the cache:
| NamedCache extends the | | nvocabl eCache interface.

Since the Cont i nuousQuer yCache class implements the | NamedCache interface,
which is the same API provided by all Coherence for .NET caches, it is extremely
simple to use, and it can be easily substituted for another cache when its functionality
is called for.

20.3 Constructing a Continuous Query Cache

There are two items that define a Continuous Query Cache:

® The underlying cache that it is based on;

* A query of that underlying cache that produces the sub-set that the Continuous
Query Cache caches.

20-2 Developing Remote Clients for Oracle Coherence

Cleaning Up Continuous Query Cache Resources

The underlying cache is any Coherence for .NET cache, including another Continuous
Query Cache. A cache is usually obtained from a CacheFact or y, which allows the
developer to simply specify the name of the cache and have it automatically
configured based on the application's cache configuration information; for example:

I NanedCache cache = CacheFactory. Get Cache("orders");
The query is the same type of query that would be used to query any other cache; for
example:

Filter filter = new AndFilter(new Equal sFilter("getTrader", traderid),
new Equal sFilter("getStatus", Status.OPEN));

Normally, to query a cache, a method from the | Quer yCache is used; for examples,
to obtain a snap-shot of all open trades for this trader:

| Col l ection setOpenTrades = cache. GetEntries(filter);

Similarly, the Continuous Query Cache is constructed from those same two pieces:

Cont i nuousQueryCache cacheQpenTrades = new Conti nuousQueryCache(cache, filter);

20.4 Cleaning Up Continuous Query Cache Resources

Instances of all | NanmedCache implementations, including Cont i nuousQuer yCache,
should be explicitly released by calling the | NamedCache. Rel ease() method when
they are no longer needed, to free up any resources they might hold.

If the particular | NamedCache is used for the duration of the application, then the
resources is cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Rel ease()
method when finished using it.

Alternatively, you can leverage the fact that | NamedCache extends | Di sposabl e
and that all cache implementations delegate a call to | Di sposabl e. Di spose() to

I NaredCache. Rel ease() . If you want to obtain and release a cache instance within
a single method, you can do so by using a using block:

using (I NanedCache cache = CacheFactory. Get Cache("ny-cache"))
{

}

/1 use cache as usual

After the using block terminates, | Di sposabl e. Di spose() is called on the
| NamedCache instance, and all resources associated with it are released.

20.5 Caching Only Keys Versus Keys and Values

When constructing a Continuous Query Cache, it is possible to specify that the cache
should only keep track of the keys that result from the query, and obtain the values
from the underlying cache only when they are asked for. This feature may be useful
for creating a Continuous Query Cache that represents a very large query result set, or
if the values are never or rarely requested. To specify that only the keys should be
cached, use the constructor that allows the | sCacheVal ues property to be
configured; for example:

Cont i nuousQueryCache cacheOpenTrades = new Conti nuousQueryCache(cache, filter,
fal se);

Performing Continuous Queries (.NET) 20-3

Listening to a Continuous Query Cache

If necessary, the | sCacheVal ues property can also be modified after the cache has
been instantiated; for example:

cacheQpenTrades. | sCacheVal ues = true;

IsCacheValues Property and Event Listeners

If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the | sCacheVal ues property is automatically set
to t r ue, because the Continuous Query Cache uses the locally cached values to filter
events and to supply the old and new values for the events that it raises.

20.6 Listening to a Continuous Query Cache

Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Cont i nuousQueryCache cacheQpenTrades = new Conti nuousQueryCache(cache, filter);
cacheQpenTrades. AddCachelLi st ener (I stener);

Assuming some processing has to occur against every item that is in the cache and
every item added to the cache, there are two approaches. First, the processing could
occur then a listener could be added to handle any later additions:

Cont i nuousQuer yCache cacheOpenTrades = new Conti nuousQueryCache(cache, filter);
foreach (ICacheEntry entry in cacheCpenTrades. Entries)

{

Il .. process the cache entry
cacheQpenTrades. AddCachelLi st ener (I stener);

However, that code is incorrect because it allows events that occur in the split second
after the iteration and before the listener is added to be missed! The alternative is to
add a listener first, so no events are missed, and then do the processing:

Cont i nuousQueryCache cacheQpenTrades = new Conti nuousQueryCache(cache, filter);
cacheQpenTrades. AddCachelLi stener (1istener);
foreach (ICacheEntry entry in cacheOpenTrades. Entries)

{

[l .. process the cache entry

}

However, the same entry may appear in both an event an in the | Enuner at or , and
the events can be asynchronous, so the sequence of operations cannot be guaranteed.

The solution is to provide the listener during construction, and it receives one event
for each item that is in the Continuous Query Cache, whether it was there to begin
with (because it was in the query) or if it was added during or after the construction of
the cache:

Cont i nuousQueryCache cacheQpenTrades = new Conti nuousQueryCache(cache, filter,
l'istener);

20.6.1 Achieving a Stable Materialized View

The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence for .NET supports an option for synchronous events, which provides a set
of ordering guarantees. Secondly, the Continuous Query Cache has a two-phase

20-4 Developing Remote Clients for Oracle Coherence

Making a Continuous Query Cache Read-Only

implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first
phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the Continuous Query Cache allows a developer to
pass a listener during construction, thus avoiding exposing these same complexities to
the application developer.

20.6.2 Support for Synchronous and Asynchronous Listeners

By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the Continuous Query Cache does respect the option for
synchronous events as provided by the

Cacheli st ener Support. | SynchronousLi st ener interface.

20.7 Making a Continuous Query Cache Read-Only

The Continuous Query Cache can be made into a read-only cache; for example:

cacheQpenTrades. | sReadOnly = true;

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back
to read /write.

Performing Continuous Queries (.NET) 20-5

Making a Continuous Query Cache Read-Only

20-6 Developing Remote Clients for Oracle Coherence

21

Performing Remote Invocations (.NET)

This chapter provides instructions for performing remote invocations on Coherence
caches from .NET clients.

The following section is included in this chapter:
¢ Overview of Performing Remote Invocations

* Configuring and Using the Remote Invocation Service

21.1 Overview of Performing Remote Invocations

Coherence for .NET provides a Remote Invocation Service which allows execution of
single-pass agents (called | | nvocabl e objects) within the cluster-side JVM to which
the client is connected. Agents are simply runnable application classes that implement
the | I nvocabl e interface. Agents can execute any arbitrary action and can use any
cluster-side services (cache services, grid services, and so on) necessary to perform
their work. The agent operations can also be stateful, which means that their state is
serialized and transmitted to the grid nodes on which the agent is run.

21.2 Configuring and Using the Remote Invocation Service

A Remote Invocation Service is configured using the <r enot e- i nvocat i on-
schenme> element in the cache configuration descriptor. For example:

<renot e-i nvocati on- schene>
<schene- nane>exanpl e-i nvocat i on</ schene- name>
<servi ce- name>Ext endTcpl nvocat i onSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<r enot e- addr esses>
<socket - addr ess>
<addr ess>l ocal host </ addr ess>
<port>7077</ port>
</ socket - addr ess>
</remot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request - ti neout >30s</request - t i meout >
</ out goi ng- message- handl er >
</initiator-config>
</ renot e-i nvocat i on- schene>

A reference to a configured Remote Invocation Service can then be obtained by name
by using the CacheFact ory class:

Performing Remote Invocations ((NET) 21-1

Configuring and Using the Remote Invocation Service

I I nvocationService service = (IlnvocationService)
CacheFact ory. Get Servi ce("Ext endTcpl nvocati onServi ce");

To execute an agent on the grid node to which the client is connected requires only
one line of code:

IDictionary result = service. Query(new MTask(), null);

The single result of the execution are keyed by the local Merrber , which can be

retrieved by calling
CacheFact ory. Confi gur abl eCacheFact ory. Local Menber.

Note:

Like cached value objects, all | | nvocabl e implementation classes must be
correctly registered in the POF context of the NET application and cluster-
side node to which the client is connected. As such, a Java implementation of
the | I nvocabl e task (a com t angosol . net . | nvocabl e implementation)
must be created, compiled, and deployed on the cluster-side node. Note that
the actual execution of the task is performed by the Java | nvocabl e
implementation and not the NET | | nvocabl e implementation.

See Introduction to Coherence .NET Clients for additional details.

21-2 Developing Remote Clients for Oracle Coherence

22

Performing Transactions (.NET)

This chapter provides instructions for using the Transaction Framework API to ensure
cache operations are performed within a transaction when using a .NET client. The
instructions do not provide detailed transaction API usage. See"Using the Transaction
Framework API" in Developing Applications with Oracle Coherence for detailed
transaction API usage.

The following sections are included in this chapter and are required to perform
transactions:

e Using the Transaction API within an Entry Processor

¢ Creating a Stub Class for a Transactional Entry Processor
® Registering a Transactional Entry Processor User Type

* Configuring the Cluster-Side Transactional Caches

¢ Configuring the Client-Side Remote Cache

* Using a Transactional Entry Processor from a .NET Client

22.1 Using the Transaction APl within an Entry Processor

NET clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction API is not supported natively on .NET
and must be used within an entry processor. The entry processor is implemented in
Java on the cluster and an entry processor stub class is implemented in C# on the
client. Both classes use POF to serialize between Java and C#.

Example 22-1 demonstrates an entry processor that performs a simple updat e
operation within a transaction using the transaction API. At run time, the class must
be located on the classpath of the Coherence proxy server.

Example 22-1 Entry Processor for Extend Client Transaction

package coherence.tests;

i mport com tangosol . coherence. transaction. Connecti on;

i mport com tangosol . coherence. transaction. Connecti onFactory;

i mport com tangosol . coherence. transaction. Def aul t Connecti onFact ory;

i mport com tangosol . coherence. transaction. Opti ni sti cNamedCache;

i mport

com tangosol . coherence. transacti on. exception. Predi cat eFai | edExcepti on;
i mport com tangosol . coherence. transaction. exception. Rol | backExcepti on;
i mport

com tangosol . coherence. transacti on. exception. Unabl eToAcqui r eLockExcepti on;
import comtangosol.util.Filter;

i mport com tangosol . util.lnvocabl eMap;

import comtangosol.util.extractor.ldentityExtractor;

Performing Transactions (.NET) 22-1

Using the Transaction API within an Entry Processor

import comtangosol.util.filter.Equal sFilter;
inport com tangosol . util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor inplenents Portabl eQbject

public Object process(lnvocabl eMap. Entry entry)

{
/1 obtain a connection and transaction cache
ConnectionFactory connFactory = new Def aul t Connecti onFactory();
Connection conn = connFactory. creat eConnection("Transacti onal Cache");
Optini sticNanedCache cache = conn. get NamedCache(" MyTxCache");
conn. set Aut oConmi t (f al se);
Il get a value for an existing entry
String sValue = (String) cache.get("existingEntry");
Il create predicate filter
Filter predicate = new Equal sFilter(ldentityExtractor.|NSTANCE, sVal ue);
try
{
/] update the previously obtained val ue
cache. updat e("exi stingEntry", "newval ue", predicate);
}
catch (PredicateFail edException e)
{
/1 value was updated after it was read
conn. rol | back();
return fal se;
}
catch (Unabl eToAcqui reLockException e)
{
/1 rowis being updated by another tranaction
conn. rol | back();
return fal se;
}
try
{
conn. commi t();
}
catch (Rol | backException e)
{
/1 transaction was rolled back
return fal se;
}
return true;
}

public void readExternal (Pof Reader in)
throws | OException

{
}

public void witeExternal (Pof Witer out)
throws | CException

22-2 Developing Remote Clients for Oracle Coherence

Creating a Stub Class for a Transactional Entry Processor

22.2 Creating a Stub Class for a Transactional Entry Processor

An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C# and uses POF for serialization. POF
allows an entry processor to be serialized between C# and Java. The entry processor
stub class does not required any transaction logic and is a skeleton of the transactional
entry processor. See Building Integration Objects (.NET) , for detailed information on
using POF with .NET.

Example 22-2 demonstrate an entry processor stub class for the transactional entry
processor created in Example 22-1.

Example 22-2 Transaction Entry Processor .NET Stub Class

usi ng Tangosol . | O Pof;
usi ng Tangosol . Net. Cache;
usi ng Tangosol . Wil . Processor;

namespace Coherence. Test s{
public class MyTxProcessor : AbstractProcessor, |Portabl etject

{
public MyTxProcessor ()

{
}

public override object Process(l!lnvocabl eCacheEntry entry)

{

return nul l;

}

public void ReadExternal (| Pof Reader reader)

{
}

public void WiteExternal (I Pof Witer witer)

{
}
}
}

22.3 Registering a Transactional Entry Processor User Type

Custom user types must be registered for the Java transactional entry processor in the
cluster-side POF configuration file and for the client stub in the client-side POF
configuration file. Both registrations must use the same type ID. The following
example demonstrates registering both the My TxPr ocessor class that was created in
Example 22-1 and the client stub class that was created in Example 22-2, respectively.

Cluster-side POF configuration:

<?xnm version="1.0"?>

<pof-config xm ns: xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- pof - confi g"
xsi : schemalLocation="http://xn ns. oracl e. con coher ence/ coher ence- pof - confi g
coher ence- pof - confi g. xsd">
<user-type-list>
<i ncl ude>coher ence- pof - confi g. xm </ i ncl ude>
<i ncl ude>t xn- pof - confi g. xm </ i ncl ude>
<user-type>

Performing Transactions (.NET) 22-3

Configuring the Cluster-Side Transactional Caches

<type-id>1599</type-i d>
<cl ass- nane>coherence. t est s. MyTxProcessor </ cl ass- name>
</ user-type>
<luser-type-list>
</ pof - confi g>

Client-side POF configuration:

<?xn version="1.0"?>

<pof-config xm ns="http://schenas. tangosol . conl pof "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalLocation="http://schemas. t angosol . conl pof
assenbl y: // Coher ence/ Tangosol . Confi g/ pof - confi g. xsd" >
<user-type-list>
<i ncl ude>coher ence- pof - confi g. xn </ i ncl ude>
<user-type>
<type-i d>1599</type-id>
<cl ass- nane>Coher ence. Test s. MyTxProcessor </ cl ass- name>
</ user-type>
</user-type-list>
</ pof - confi g>

22.4 Configuring the Cluster-Side Transactional Caches

Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See "Defining Transactional Caches" in Developing
Applications with Oracle Coherence for details on transactional caches.

The following example creates a transactional cache that is named My TxCache, which
is the cache name that was used by the entry processor in Example 22-1. The
configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on | ocal host at port 7077. See Configuring
Extend Proxies , for detailed information on configuring cluster-side caches when
using Coherence*Extend.

<?xm version="1.0"?>

<cache-config xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence- cache-config
coher ence- cache- confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>MyTxCache</ cache- nane>
<schene- nane>exanpl e-t ransact i onal </ schene- nanme>
</ cache- mappi ng>
<cache- mappi ng>
<cache- nane>di st - exanpl e</ cache- name>
<schene- nane>exanpl e- di st ri but ed</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<transactional - scheme>
<schene- nane>exanpl e-t ransact i onal </ schene- nane>
<servi ce-name>Transact i onal Cache</ servi ce- name>
<t hread- count - mi n>2</ t hr ead- count - m n>
<t hr ead- count - max>10</t hr ead- count - max>

22-4 Developing Remote Clients for Oracle Coherence

Configuring the Client-Side Remote Cache

<hi gh- uni t s>15M/ hi gh- uni t s>

<t ask-timeout >0</t ask-ti meout >

<autostart>true</autostart>
</transactional - schene>

<di stri but ed- schene>
<schene- nane>exanpl e- di st ri but ed</ scheme- nane>
<servi ce-nane>Di stri but edCache</ servi ce- nane>
<backi ng- map- scheme>

<l ocal - schene/ >

</ backi ng- map- scheme>
<autostart>true</autostart>

</ di stribut ed- schene>

<pr oxy- scheme>
<servi ce- nane>Ext endTcpPr oxySer vi ce</ servi ce- nane>
<autostart>true</autostart>
</ proxy- scheme>
</ cachi ng- schenes>
</ cache-confi g>

22.5 Configuring the Client-Side Remote Cache

Remote clients require a remote cache to connect to the cluster's proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Configuring Extend Proxies , for detailed information on
configuring client-side caches.

The following example configures a remote cache to connect to a proxy that is located
onl ocal host at port 7077. In addition, the name of the remote cache (di st -
exanpl e) must match the name of a cluster-side cache that is used when initiating the
transactional entry processor.

<?xnm version='1.0"?>

<cache-config xm ns="http://schemas. t angosol . con cache"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalLocation="http://schenas. t angosol . conl cache
assenbl y: // Coher ence/ Tangosol . Confi g/ cache- confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>di st - exanpl e</ cache- name>
<schene- nane>ext end</ scheme- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<renot e- cache- schene>
<schene- nane>ext end</ schene- name>
<servi ce- nane>Ext endTcpCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>l ocal host </ addr ess>
<port>7077</ port >
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request - ti meout >30s</request - t i meout >

Performing Transactions (.NET) 22-5

Using a Transactional Entry Processor from a .NET Client

</ out goi ng- nessage- handl er >
</initiator-config>
</ renot e- cache- scheme>
</ cachi ng- schenes>
</ cache-confi g>

22.6 Using a Transactional Entry Processor from a .NET Client

A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked on the
cluster. The client is unaware that the invocation has been delegated to the Java class.
The following example demonstrates a client that uses the entry processor stub class
and results in an invocation of the transactional entry processor that was created in
Example 22-1:

| NamedCache cache
obj ect result

CacheFact ory. Get Cache("di st - exanpl e");
cache. I nvoke("AnyKey", new MyTxProcessor());

Consol e. Qut. WiteLine("Result of extend transaction execution: " + result);

22-6 Developing Remote Clients for Oracle Coherence

23

Managing ASP.NET Session State

This chapter provides instructions for managing ASP.NET session state in a Coherence
cluster. The instructions include how to enable and configure the Coherence session
provider.

This chapter includes the following sections:

* Overview

* Setting Up Coherence Session Management
® Selecting a Session Model

® Specifying a Serializer

® Sharing Session State Across Applications

23.1 Overview

Coherence for .NET allows ASP.NET session state to be managed in a Coherence
cluster, which has some benefits compared to out-of-the-box options offered by
Microsoft:

® Session state is stored in a highly available Coherence cluster, making sessions
resilient to Web server failures

® Sessions are stored in memory which allows for much faster access than when they
are serialized to disk using SQL Server session provider

* Unlike relational databases, Coherence cluster is easy to scale out to support
additional load

¢ In some cases, session data can be accessed at in-process speed by leveraging
Coherence near caching features

ASP.NET applications are configured to use Coherence for session state management
by modifying the web. confi g file and configuring the custom session state provider.
In addition, the Coherence session provider includes configuration options that can
significantly improve performance and scalability of applications.

23.2 Setting Up Coherence Session Management

The following steps are required to use Coherence for ASP.NET session management:

¢ Configure Coherence for .NET client library by specifying an operational
configuration, cache configuration, and POF configuration file (if using POF for
session serialization). For details, see “Setting Up the Coherence .NET Client
Library”.

Managing ASP.NET Session State 23-1

Setting Up Coherence Session Management

* Enable the Coherence Session Provider
¢ Configure the Cluster-Side ASP Session Caches
* Configure a Client-Side ASP Session Remote Cache

¢ Overriding the Default Session Cache Name

After the ASP.NET application and cluster are configured properly, start the cluster
and proxy servers to be used by the application and then start the ASP.NET Web
application. The sessions are automatically stored within the Coherence cluster.

23.2.1 Enable the Coherence Session Provider

ASP.NET uses a provider model to allow custom session state management
implementations. Coherence for .NET implements a custom provider that fulfils the
contract defined by Microsoft. To use the Coherence provider, add the following
provider configuration to an application's web. conf i g file:

<syst em web>
<sessionState mode="Cust ont'
cust onPr ovi der =" Coher enceSessi onProvi der "
cooki el ess="f al se"
timeout="20">
<provi der s>
<add name="Coher enceSessi onProvi der"
t ype="Tangosol . Wb. Coher enceSessi onSt ore, Coherence"/>
</ provi ders>
</ sessi onSt at e>

</ syst em web>

The above example configures an ASP.NET application to use the

Coher enceSessi onSt or e provider with the default settings. The Coherence session
provider can be customized, as described in this chapter, to take full advantage of its
included features.

23.2.2 Configure the Cluster-Side ASP Session Caches

The Coherence session provider requires two cache scheme definitions within the
cluster's cache configuration file: A storage cache and an overflow cache. The storage
cache is used for storing session data and the overflow cache is used if the session size
exceeds the limit specified in the ext er nal At t ri but eSi ze attribute of the

Coher enceSessi onPr ovi der defined in the Web. confi g file.

When defining the session storage cache and the session overflow cache, the service
name must be AspNet Sessi onCache and the cache names must be aspnet -

sessi on- st or age and aspnet - sessi on- over f | ow, respectively. In addition, the
storage cache must be configured to use the Conf i gur abl ePof Cont ext class as the
serializer. The scheme name and backing map configuration can be configured as
required.

The following cache scheme definition creates two distributed caches that are used by
the session provider: one for session storage and one for session overflow .

<?xm version='1.0"?>
<cache-config xm ns="http://schemas. t angosol . conl cache"

xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schema- i nst ance"
xsi : schemalLocation="http://schemas. t angosol . con cache

23-2 Developing Remote Clients for Oracle Coherence

Setting Up Coherence Session Management

assenbl y: // Coher ence/ Tangosol . Confi g/ cache- confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>aspnet - sessi on- st or age</ cache- nane>
<schene- nane>aspnet - sessi on- schene</ schene- nanme>
</ cache- mappi ng>
<cache- mappi ng>
<cache- nane>aspnet - sessi on- over f | ow</ cache- name>
<schene- nane>aspnet - sessi on- over f | ow schene</ schene- nane>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<di stri but ed- scheme>
<schene- nane>aspnet - sessi on- schene</ schene- nanme>
<servi ce- nane>AspNet Sessi onCache</ servi ce- nane>
<serializer>
<cl ass- nane>com t angosol . i 0. pof . Confi gur abl ePof Cont ext </ ¢l ass- nane>
<init-parans>
<init-paran
<param type>string</paramtype>
<par am val ue>coher ence- pof - confi g. xm </ par am val ue>
</init-paranp
</init-parans>
</serializer>
<backi ng- map- scheme>
<l ocal - schene/ >
</ backi ng- map- scheme>
<autostart>true</autostart>
</ di stribut ed- scheme>

<di stri but ed- scheme>
<schene- nane>aspnet - sessi on- over f | ow schene</ schene- nane>
<schene- ref >di st - def aul t </ schene-ref >
<servi ce- nane>AspNet Sessi onCache</ servi ce- nane>
<autostart>true</autostart>

</ distributed-scheme>

</ cachi ng- schenes>
</ cache-confi g>

23.2.3 Configure a Client-Side ASP Session Remote Cache

The Coherence session provider requires an extend client's cache configuration file to
include remote cache schemes for the session storage and session overflow caches. As
with any remote cache, the cache on the cluster and the cache on the client must use
the same name. See “Defining a Remote Cache” for additional details.

The following example configures a client-side ASP session remote cache scheme that
is used by the Coherence session provider to store session data on the cluster.

<?xm version="1.0"?>

<cache-config xm ns="http://schemas. t angosol . conl cache"
xmns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schema- i nst ance”
xsi : schemalLocation="http://schemas. t angosol . conl cache
assenbl y: // Coher ence/ Tangosol . Confi g/ cache- confi g. xsd">
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>aspnet - sessi on- st or age</ cache- name>
<schene- nane>ext end- di r ect </ schene- nane>
</ cache- mappi ng>

Managing ASP.NET Session State 23-3

Selecting a Session Model

<cache- mappi ng>
<cache- nane>aspnet - sessi on- over f | ow</ cache- nanme>
<schene- nane>ext end- di r ect </ schene- nanme>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<renot e- cache- schene>
<schene- nane>ext end- di r ect </ schene- nanme>
<servi ce- nane>Ext endTcpCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>l ocal host </ addr ess>
<port>7077</ port >
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<request - ti meout >30s</request - t i neout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ remot e- cache- schene>
</ cachi ng- schenes>
</ cache-confi g>

23.2.4 Overriding the Default Session Cache Name

The Coherence session provider's default behavior is to use a remote session cache
named aspnet - sessi on- st or age. The remote cache example in “Configure a
Client-Side ASP Session Remote Cache” demonstrates creating a remote cache with
the default name. However, a session provider can be configured to use a remote
cache with a name other than the default.

To override the default session cache name, add a cacheNan® attribute within the
provider configuration. The following example specifies a cache named ry-
sessi on- cache.

<syst em web>
<sessi onSt at e node="Cust onf
cust onPr ovi der =" Coher enceSessi onProvi der"
cooki el ess="fal se"
ti meout ="20">
<provi der s>
<add name="Coher enceSessi onProvi der"
t ype="Tangosol . Web. Coher enceSessi onSt ore, Coherence"/>
cacheName="ny- sessi on- cache"
</ provi ders>
</ sessi onSt at e>

</ syst em web>

23.3 Selecting a Session Model

A session model describes how the Coherence session provider physically represents
and stores session state in the cluster. The provider includes three different session
model implementations out of the box:

23-4 Developing Remote Clients for Oracle Coherence

Selecting a Session Model

¢ Traditional Model - Stores all session state as a single entity but serializes and
deserializes attributes individually

¢ Monolithic Model - Stores all session state as a single entity, serializing and
deserializing all attributes as a single operation

¢ Split Model — Extends the Traditional Model but separates the larger session
attributes into independent physical entities

The traditional model is the default. It is similar to the

Sessi onSt at el t enCol | ect i on provided by ASP.NET - it deserializes session
items lazily to avoid deserialization penalty for items that are not accessed. However,
there are certain scenarios where monolithic or split model are better choices.

Refer to "Session Model" in Administering HTTP Session Management with Oracle
Coherence*Web for details about each model and their pros and cons. The discussion
can help determine which model is the best fit for a particular application. The
discussion is centered around Coherence*Web; however, the general concepts are the
same for ASP.NET Sessions.

23.3.1 Specify the Session Model

The split model is the recommended session model for most applications. However,
the traditional model may be more optimal for applications that are known to have
small HTTP session objects.

The monolithic model is designed to solve a specific class of problems related to
multiple session attributes that have references to the same shared object, and that
must maintain that object as a shared object. When migrating to the Coherence session
provider from the ASP.NET InProc provider, the monolithic model ensures that all
shared objects are serialized and deserialized properly.

To specify the Coherence session provider's session model, add a nodel attribute
within the provider configuration. The following example specifies a spl i t model.

<syst em web>
<sessi onSt at e node="Cust onf
cust onPr ovi der =" Coher enceSessi onProvi der"
cooki el ess="fal se"
ti meout ="20">
<provi der s>
<add name="Coher enceSessi onProvi der"
t ype="Tangosol . \\eb. Coher enceSessi onSt ore, Coherence"
model ="split"
external AttributeSize="512"/>
</ provi ders>
</ sessi onSt at e>

</ syst em web>

The valid values for the nodel attribute aretradi ti onal ,nonolithic,split,or
a fully qualified name of the class that implements

Tangosol . Web. | Sessi onMbdel Manager interface and provides a constructor that
accepts a single Tangosol . | O. | Seri al i zer argument. The interface allows custom
model implementations to be created if necessary.

In the example above, the session provider is configured to use the spl i t model. The
split model supports ext er nal At t ri but eSi ze attribute, which specifies the
minimum size (in bytes) of the attributes that should be stored separately. If the

Managing ASP.NET Session State 23-5

Selecting a Session Model

ext ernal Attri but eSi ze attribute is omitted, the default value of 1024 bytes is
used.

23.3.1.1 Registering the Backing Map Listener

Session attributes are partitioned into two regions when utilizing the split session
model. Core HTTP session attributes, such as session ID, creation time, last access, and
so on, are managed within one partition and large attributes are split out into another
partition. This allows support for very large HTTP session objects without incurring
overhead for frequently accessed small attributes.

With the .NET session provider implementation, core attributes and large attributes
are stored in separate caches. Therefore; the backing map listener

(AspNet Sessi onSt or ePr ovi der $Sessi onCl eanuplLi st ener class) is
recommended to keep both caches synchronized. This ensures that if a session is
terminated explicitly by the user and removed by eviction or expiry, that both the
removal of the core and large segments of the session are coherently removed from the
two caches.

The following example demonstrates registering the
AspNet Sessi onSt or ePr ovi der $Sessi onCl eanuplLi st ener backing map
listener on the cluster-side ASP .NET session cache:

<cachi ng- schemes>
<di stri but ed- scheme>
<schene- nane>aspnet - sessi on- schene</ schene- nane>
<servi ce- nane>AspNet Sessi onCache</ servi ce- nane>
<serializer>
<cl ass- name>com t angosol . i 0. pof . Confi gur abl ePof Cont ext </ cl ass- name>
<init-parans>
<init-paranp
<par amtype>string</ paramtype>
<par am val ue>coher ence- pof - confi g. xm </ par am val ue>
<linit-paranp
</init-parans>
</serializer>
<backi ng- map- scheme>
<l ocal - schene>
<cl ass- nane>com t angosol . net. cache. Local Cache</ cl ass- name>
<listener>
<cl ass- scheme>
<cl ass- name>
comtangosol . net.internal . AspNet Sessi onSt or eProvi der $Sessi onCl eanupLi st ener
</ cl ass- nane>
<init-parans>
<init-paran
<paramtype>
com tangosol . net. Backi ngMapManager Cont ext
</ paramtype>
<par am val ue>{ manager - cont ext } </ par am val ue>
<linit-paran
</init-parans>
</ cl ass- schene>
</listener>
</l ocal - schene>
</ backi ng- map- schene>
<autostart>true</autostart>
</ distributed-scheme>

23-6 Developing Remote Clients for Oracle Coherence

Specifying a Serializer

23.4 Specifying a Serializer

The Coherence session provider can be configured to use a specific serializer for
serializing session items. To specify a serializer, add a seri al i zer attribute within
provider definition. The following example specifies the bi nary serializer.

<syst em web>
<sessionStat e mode="Cust ont'
cust onPr ovi der =" Coher enceSessi onProvi der "
cooki el ess="f al se"
timeout="20">
<provi der s>
<add name="Coher enceSessi onProvi der"
t ype="Tangosol . \eh. Coher enceSessi onStore, Coherence"
model ="split"
external AttributeSize="512"
serializer="binary"/>
</ provi der s>
</ sessi onSt at e>

</ syst em web>

The valid values for the seri al i zer attribute are bi nary (default), pof, or a fully
qualified name of the class that implements the Tangosol . | O. | Seri al i zer
interface. The interface is used to create a custom serializer if necessary. However, the
existing serializers are sufficient more often than not.

23.4.1 Using POF for Session Serialization

Portable Object Format (POF) is the recommended serialization format when using
Coherence to manage ASP.NET sessions and provides many benefits over

standard .NET binary serialization. In particular, POF serialization is faster and has a
significantly more compact format. The compact format typically results in a binary
form that is 3 to 5 times smaller than the standard binary serializer. This translates
directly into a lower memory footprint within the cluster and can result in significant
cost savings.

To use POF, ensure that all custom classes that are stored either directly or indirectly
within the session are registered within the POF context and either implement the

| Port abl ebj ect interface or have an external | Pof Seri al i zer configured. For
detailed instructions on using POF, see Building Integration Objects (.NET) .

The following discussion summarizes some implementation details that should be
considered when using POF. For a detailed description of the POF format, see "The
PIF-POF Binary Format" in the appendix of the Developing Applications with Oracle
Coherence.

When session items are deserialized by the POF serializer, there is no guarantee that
the type of the resulting object equals the type of the original value. For example,
integer values between -1 and 22 (inclusive) are returned as | nt 32 values, regardless
of the original type, so they may require a cast to the appropriate type.

Collections may also be deserialized to a different type. For example, an Ar r ayLi st
might be stored within the session, but an immutable object array may be received
after the object is read back. This is expected behavior and the reason why the

| Pof Reader interface provides a template to read values as an argument to all
methods that read collections from the POF stream.

Managing ASP.NET Session State 23-7

Sharing Session State Across Applications

Session items are not typed and there is no way to specify how they should be
deserialized. Therefore, a default collection type is always received. This is typically
acceptable when reading from the collection. However, if the collection must be
modified, either of the following two options can be used:

¢ Create an instance of a mutable collection of a desired type and add elements from
the deserialized collection to it. When using this option, do not forget to update
corresponding session items with the new collection, or the changes are not saved.

¢ Instead of storing "bare" collections directly, create a wrapper class that implements
necessary serialization logic and register it within the POF context. This allows full
control over collection serialization and can avoid the issues described above.

These steps do require extra work; however, the performance gains and reduced
memory footprint are likely worth the trouble.

23.5 Sharing Session State Across Applications

In some cases, it is beneficial to be able to share sessions across ASP.NET applications.
By default, a session key is determined by combining the application identifier (as
returned by the Host i ngEnvi r onnment . Appl i cat i onl D property) with the session
identifier. This effectively prevents session sharing.

The Coherence session provider can be configured to use a specific application
identifier. To specify an application identifier, add an appl i cat i onl d attribute
within a provider definition. The following examples specifies MyAppl i cat i on as the
application ID.

<system web>
<sessionSt at e mode="Cust ont'
cust onPr ovi der =" Coher enceSessi onProvi der "
cooki el ess="f al se"
timeout="20">
<provi der s>
<add name="Coher enceSessi onProvi der"
t ype="Tangosol . Web. Coher enceSessi onSt ore, Coherence"
appl i cati onl d="M/Appl i cation"
nodel ="split"
external AttributeSi ze="512"
serializer="pof"/>
</ provi der s>
</ sessi onSt at e>

</ syst em web>

To enable session sharing across the applications, configure multiple applications with
the same appl i cat i onl d and ensure that they share the cookie containing the
session identifier.

23-8 Developing Remote Clients for Oracle Coherence

Part V

Using Coherence REST

Part V contains the following chapters:

Introduction to Coherence REST

Building Your First Coherence REST Application
Performing Grid Operations with REST
Deploying Coherence REST

Modifying the Default REST Implementation

24

Introduction to Coherence REST

This chapter provides an introduction to Coherence REST support. Users should be
familiar with Web services and JAX-RS to use Coherence REST.

This chapter includes the following sections:

* Overview of Coherence REST

* Dependencies for Coherence REST

¢ Overview of Configuration for Coherence REST
¢ Understanding Data Format Support

¢ Authenticating and Authorizing Coherence REST Clients

24.1 Overview of Coherence REST

Coherence REST provides easy access to Coherence caches and cache entries over the
HTTP protocol. It is similar to Coherence*Extend, as it allows remote clients to access
data stored in Coherence without being members of the cluster themselves. However,
unlike Coherence*Extend, which is a proprietary protocol, Coherence REST uses
HTTP as the underlying protocol and can marshal data in both JSON and XML
representation formats.The benefit of Coherence REST is that it allows applications
written in others languages, such as Ruby and Python (that are not natively supported
by Coherence), to interact with cached data.

Coherence REST Example

The Coherence distribution includes an end-to-end example of a REST application. For
detailed instructions on running the Coherence REST Example, see Installing Oracle
Coherence.

24.2 Dependencies for Coherence REST

The Coherence REST implementation is packaged in the COHERENCE_HOME/ | i b/
coherence-rest. jar library and depends on the coher ence. j ar library. In
addition, the Coherence REST implementation has many library dependencies and
also supports various HTTP server implementations (Grizzly HTTP Server, Simple
HTTP Server, and Jetty HTTP Server). To manage these dependencies, it is strongly
recommended that applications use Maven. If you are new to Maven, see: ht t ps: //
maven. apache. org/ .

To use Coherence REST with the Grizzly HTTP Server, add the following
dependencies in the in the Maven pom xm file:

<dependenci es>
<dependency>
<groupl d>com or acl e. coher ence</ gr oupl d>

Introduction to Coherence REST 24-1

https://maven.apache.org/
https://maven.apache.org/

Overview of Configuration for Coherence REST

<artifactld>coherence</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>com or acl e. coher ence</ gr oupl d>
<artifactld>coherence-rest</artifact!d>
<version>12. 2. 1- 0- 0</ ver si on>

</ dependency>

<dependency>
<groupl d>org. gl assfi sh. gri zzl y</ groupl d>
<artifactld>grizzly-http-server</artifactld>
<versi on>2. 3. 19</ ver si on>

</ dependency>

</ dependenci es>

All the required libraries are automatically downloaded. To see the complete list of
libraries, run the following Maven command:

m/n dependency: | i st

Refer to the Coherence REST examples for a complete pom xmi file.

24.3 Overview of Configuration for Coherence REST

Coherence REST is configured using two configuration files. The files include:

Note:

When deploying Coherence REST to a JavaEE server, configuration of the
web. xm file is also required. See “Deploying to a Java EE Server (Generic)”
for additional details.

* Cache Configuration Deployment Descriptor — This file is used to define client-side
cache services and the HTTP acceptor which accepts connections from remote
REST clients over HTTP. The acceptor includes the address and port of the cluster-
side HTTP server to which clients connects. The schema for this file is the
coher ence- cache- confi g. xsd file. See Developing Applications with Oracle
Coherence for a complete reference of the <ht t p- accept or > element.

At run time, the first cache configuration file that is found on the classpath is used.
The coher ence. cacheconf i g system property can also be used to explicitly
specify a cache configuration file. The file can also be set programmatically. See
Developing Applications with Oracle Coherence for general information about the
cache configuration deployment descriptor.

¢ REST Configuration Deployment Descriptor — This file is used to configure the
Jersey resource configuration class as well as custom aggregators and custom entry
processors. The default name of the descriptor is coher ence-r est - confi g. xmi
and the schema is defined in the coher ence-r est - confi g. xsd file. The file
must be found on the classpath and the name can be overridden using the
coherence. rest. confi g system property. See REST Configuration Elements,
for a detailed reference of REST configuration deployment descriptor.

24-2 Developing Remote Clients for Oracle Coherence

Understanding Data Format Support

24.4 Understanding Data Format Support

Coherence REST supports both XML and JSON formats as input and output. To use
these formats, the correct bindings are required when creating a user type. Both
formats are demonstrated in this section.

The following topics are included in this section:
¢ Using XML as the Data Format

* Using JSON as the Data Format

24.4.1 Using XML as the Data Format

Objects that are represented in XML must have the appropriate JAXB bindings defined
in order to be stored in a cache. The following example creates an object that uses
annotations to add JAXB bindings:

@ Root El enent (name="Addr ess")
@ Accessor Type(Xm AccessType. PROPERTY)
public class Address {

private String street;

private String city;

private String country;

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

public String getCity() {
return city;

}

public void setGity(String city) {
this.city = city;
}

public String getCountry() {
return country;

}

public void setCountry(String country) {
this.country = country;
}
}

@ Root El enent (name="Per son")
@ Accessor Type(Xm AccessType. PROPERTY)
public class Person {

private Long id;

private String name;

private Address address;

public Long getld() {

return id;

}

Introduction to Coherence REST 24-3

Understanding Data Format Support

public void setld(Long id) {
this.id =id;
}

public String getName() {
return nane;
}

public void setName(String name) {
this.nane = nane;
}

@m El enent (name = "address")

public AddressXm getAddr() {
return address;

}

public void set Addr (AddressXm addr) {
this.addr = addr;

}
}

24.4.2 Using JSON as the Data Format

Objects that are represented in JSON must have the appropriate Jackson bindings or
JAXB bindings defined in order to be stored in a cache. The default Coherence REST
JSON marshaller gives priority to Jackson bindings. If Jackson bindings are not found,
JAXB bindings are used instead. Using Jackson annotations gives user more power on
controlling the output JSON format. However, in case when both XML and JSON
formats are needed, JAXB annotations can be enough for both formats.

The following example creates an object that uses annotations to add Jackson bindings:

@sonTypel nf o(use=JsonTypel nfo. | d. CLASS, include= JsonTypel nfo. As. PROPERTY,
property="@ype")
public class Address {
private String street;
private String city;
private String country;

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

public String getCity() {
return city;

}

public void setGity(String city) {
this.city = city;
}

public String getCountry() {
return country;

}

public void setCountry(String country) {

24-4 Developing Remote Clients for Oracle Coherence

Authenticating and Authorizing Coherence REST Clients

this.country = country;

}
}

@sonTypel nf o(use=JsonTypel nfo. | d. CLASS, include= JsonTypel nfo. As. PROPERTY,
property="@ype")
public class Person {
private Long id;
private String nane;
private Address address;

public Long getld() {
return id;
}

public void setld(Long id) {
this.id =id;
1

public String getName() {
return nane;
}

public void setName(String name) {
this.name = nang;
1

@sonProperty("address")
public AddressJson get Addr() {
return address;

}

public void setAddr(AddressJson addr) {
this.addr = addr;

}
}

24.5 Authenticating and Authorizing Coherence REST Clients

Coherence REST provides both authentication and authorization to restrict access to
cluster resources. Authentication support includes both HTTP basic authentication
and SSL authentication. Authorization is implemented using Coherence*Extend-styled
authorization, which relies on interceptor classes that provide fine-grained access for
named cache and invocation service operations. For detailed instructions on
Coherence REST security, see Securing Oracle Coherence.

Introduction to Coherence REST 24-5

Authenticating and Authorizing Coherence REST Clients

24-6 Developing Remote Clients for Oracle Coherence

25

Building Your First Coherence REST
Application

This chapter demonstrates basic tasks that are required to build and run Coherence
REST applications. Many of the concepts demonstrated in this chapter are detailed in
subsequent chapters.

The Coherence examples that ship with distribution also include and end-to-end
example of a REST application. For detailed instructions on running the Coherence
Examples, see Installing Oracle Coherence.

This chapter includes the following sections:

¢ Overview of the Basic Coherence REST Example
¢ Step 1: Configure the Cluster Side

e Step 2: Create a User Type

¢ Step 3: Configure REST Services

® Step 4: Start the Cache Server Process

e Step 5: Access REST Services From a Client

25.1 Overview of the Basic Coherence REST Example

This chapter is organized into a set of steps that are used to configure and run a basic
Coherence REST application. The steps demonstrate fundamental concepts, such as:
configuring a proxy server responsible for handling HTTP request, configuring a
remote cache, and using the Coherence REST APL

The example in this chapter uses an embedded HTTP server in order to deploy a
standalone application that does not require an application server. For details about
deployment options with application servers, such as WebLogic, see Deploying
Coherence REST .

Coherence for Java must be installed to complete the steps in this chapter. In addition,
the following user-defined variables are used in this example:

e DEV_ROOT - The path to root folder where user is performing all of the listed steps,
or in other words all of the following folders are relative to DEV_RCOOT.

¢ COHERENCE_HOME - The path to folder containing Coherence JARs
(coherence. j ar and coherence-rest.jar)

Building Your First Coherence REST Application 25-1

Step 1: Configure the Cluster Side

25.2 Step 1: Configure the Cluster Side

Coherence REST requires both a cache and a proxy scheme. The proxy scheme must
define an HTTP acceptor to handle an incoming HTTP request. The cache and proxy
are configured in the cluster-side cache configuration deployment descriptor. For this
example, the proxy is configured to accept client HTTP requests on | ocal host and
port 8080. A distributed cache named di st - ht t p- exanpl e is defined and is used
to store client data in the cluster.

To configure the cluster side:

1. Create an XML file named exanpl e- server-confi g. xm in the DEV_ROOT
\ confi g folder.

2. Copy the following XML to the file:

<?xm version="1.0"?>
<cache-config xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence- cache-config
coher ence- cache-confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>di st - ht t p- exanpl e</ cache- nane>
<schene- nane>di st - ht t p</ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>

<di stri but ed- scheme>
<schene- nane>di st - ht t p</ schene- nanme>
<backi ng- map- scheme>

<l ocal - schene/ >

</ backi ng- map- scheme>
<autostart>true</autostart>

</ distributed-schene>

<pr oxy- scheme>
<servi ce- nanme>Ext endHt t pPr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<http-acceptor>
<l ocal - addr ess>
<addr ess>| ocal host </ addr ess>
<por t >8080</ port >
</l ocal - address>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>
</ cachi ng- schenes>
</ cache-config>

3. Save and close the file.

25.3 Step 2: Create a User Type

Create the Per son user type, which is stored in the cache and used to demonstrate
basic REST operations.

To create the Person object:

25-2 Developing Remote Clients for Oracle Coherence

Step 3: Configure REST Services

1. Create a text file in a DEV_ROOT\ exanpl e folder.
2. Copy the following Java code to the file:

package exanpl e;

import java.io.Serializable;

i mport javax.xnl.bind. annotation. Xm AccessType;

i mport javax.xnl.bind. annotation. Xm Accessor Type;
i mport javax.xnl.bind.annotation. Xm Root El enent ;

@ Root El enent (name="per son")
@m Accessor Type(Xm AccessType. PROPERTY)
public class Person inplenments Serializable {

public Person() {}

public Person(String nane, int age)

{

m name = nane;
mage = age;
1

public String getNane() { return mnane; }

public void setName(String nane) { mnanme = nane; }
public int getAge() { return mage; }

public void setAge(int age) { mage = age; }

protected String m name;
protected int m age;

}

3. Save the file as Per son. j ava and close the file.
4. Compile Person. j ava:

javac exanpl e\ Person. java

25.4 Step 3: Configure REST Services

The Coherence REST services require metadata about the cache that it exposes. The
metadata includes the cache entry's key and value types as well as key converters and
value marshallers. The key and value types are required in order for Coherence to be
able to use built-in converters and marshallers (XML and JSON supported).

To configure the REST services:

1. Create an XML file named coher ence-rest-confi g. xm in DEV_ROOT
\ confi g folder.

2. Copy the following XML to the file:

<?xm version="1.0"?>
<rest xm ns:xsi="http://ww. w3. org/ 2001/ XM.Schena-i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence-rest - confi g"
Xsi : schemaLocat i on=
"http://xm ns. oracl e. com coher ence/ coher ence-rest-config
coherence-rest-config. xsd">
<resour ces>

Building Your First Coherence REST Application 25-3

Step 4: Start the Cache Server Process

<resource>
<cache- nane>di st - ht t p- exanpl e</ cache- name>
<key- cl ass>j ava. | ang. Stri ng</ key-cl ass>
<val ue- cl ass>exanpl e. Per son</ val ue-cl ass>
</resource>
</resources>
</rest>

Note:

The <key- cl ass> and <val ue- cl ass> element can either be defined
within the <r esour ce> element or within the <cache- mappi ng> element in
the cache configuration file.

3. Save and close the file

25.5 Step 4: Start the Cache Server Process

REST services are exposed as part of a cache server process (Def aul t CacheSer ver).
The cache server's classpath must be configured to find all the configuration files that
were created in the previous steps as well as the Per son. cl ass. The classpath must
also contain the required dependency libraries (see “Dependencies for Coherence
REST”). For the sake of brevity, all of the dependencies are placed in DEV_ROOT\ | i bs
folder and are not individually listed.

The DEV_ROOT folder should appear as follows:

\

\config

\ confi g\ exanpl e- server-config. xn
\ confi g\ coherence-rest-config.xn
\ exanpl e

\ exanpl e\ Person. cl ass

\libs

\libs*

The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the coher ence. cacheconfi g
system property. In addition it sets all the needed libraries and configuration files
(replace dependenci es with all the required library dependencies):

java -cp DEV_ROOMN confi g; DEV_ROOT; DEV_ROOM\ | i bs\ dependenci es;
COHERENCE_HOME\ coher ence-rest . jar -Dcoherence. cl usterport=8090

- Dcoherence. tt1=0

- Dcoher ence. cacheconf i g=DEV_ROOT conf i g\ exanpl e- server-confi g. xm
com tangosol . net. Def aul t CacheSer ver

An example script for UNIX-based system follows:
#!/ bi n/ bash

export CLASSPATH=${ DEV_ROOT}/ confi g: ${ DEV_ROOT} :
${DEVROOT}/ | i b/ dependenci es: ${ COHERENCE_HOVE}/ | i b/ coherence. j ar:
${ COHERENCE_HOME}/ | i b/ coherence-rest. jar

java -cp ${CLASSPATH} -Dcoherence. cl usterport=8090

-Dcoherence. ttl =0 - Dcoherence. cacheconfig=
${DEV_ROOT}/ confi g/ exanpl e- server-config.xm com tangosol . net. Def aul t CacheSer ver

25-4 Developing Remote Clients for Oracle Coherence

Step 5: Access REST Services From a Client

Check the console output to verify that the proxy service has started. The output
message should include the following;:

(thread=Proxy: Ext endHt t pProxyServi ce: H t pAccept or, nenmber=1): Started:
Ht t pAccept or { Nane=Pr oxy: Ext endHt t pPr oxySer vi ce: Ht t pAccept or,

St at e=(SERVI CE_STARTED)

Ht t pServer =com t angosol . coher ence. rest . server. Def aul t H t pSer ver,

Local Address=l ocal host, Local Port=8080,

Resour ceConfi g=com t angosol . coher ence. rest . server. Def aul t Resour ceConfi g,
Root Resour ce=com t angosol . coher ence. rest . Def aul t Root Resour ce}

25.6 Step 5: Access REST Services From a Client

Client applications use Coherence REST services to perform cache operations. There
are many application platforms that provide client libraries to build HTTP-based
clients. For example, the Jersey project provides Java support for client-side
communication with HTTP-based REST Web services. The following sections
demonstrate the semantics for PUT, GET, and Post operations that a client would use
to access the di st - ht t p- exanpl e cache. An example Java client built using Jersey
follows and requires the Jer sey-cl i ent-2. 12.j ar library. See Performing Grid
Operations with REST , for complete details on the Coherence REST APIL

Put Operations

PUT http://1ocal host: 8080/ dist-http-exanpl e/l

Cont ent - Type=appl i cation/json

Request Body: {"name":"chris","age": 30}

PUT http://1ocal host: 8080/ dist-http-exanpl e/ 2

Cont ent - Type=appl i cation/json

Request Body: {"name":"adan!,"age": 26}

GET Operations

GET http://1ocal host: 8080/ di st-http-exanple/l.json

GET http://local host: 8080/ dist-http-exanmpl e/ 1. xn

GET http://local host: 8080/ di st-http-exanpl e?q=name is 'adani
GET http://1ocal host: 8080/ di st - htt p- exanpl e; p=nane

GET http://local host: 8080/ di st-http-exanpl e/ count ()

GET http://1ocal host: 8080/ di st-http-exanpl e/ doubl e- aver age(age)

Post Operation

POST http://1ocal host: 8080/ di st-http-exanpl e/increnent(age, 1)

Sample Jersey REST Client

package exanpl e;

inport java.io.|CException;

import java.net. Ml formedURLException;
import java.net.URl Synt axExcepti on;

import javax.ws.rs.client.Cient;

Building Your First Coherence REST Application 25-5

Step 5: Access REST Services From a Client

inmport javax.ws.rs.client.CientBuilder;
import javax.ws.rs.client.Entity;
i mport javax.ws.rs.client.\WbTarget;

&

i mport javax.ws.rs.core. Medi aType;
i nport javax.ws.rs.core. Response;

public class RestExanple {
public static void PUT(String url, MediaType nedi aType, String data) {
process(url, "put", nediaType, data);
}

public static void GET(String url, MediaType mediaType) {
process(url, "get", mediaType, null);
}

public static void POST(String url, MediaType nediaType, String data) {
process(url, "post", mediaType, data);
}

public static void DELETE(String url, MediaType nediaType) {
process(url, "delete", nediaType, null);
}

public static void process(String sUrl, String action,
Medi aType medi aType,
String data) {
Cient client = GientBuilder.newCient();
Response response = nul | ;

V\ebTarget webTarget = client.target(sUrl);

String responseType = Medi aType. APPLI CATI ON_XM.;

if (mediaType == Medi aType. APPLI CATI ON_JSON TYPE) {
responseType = Medi aType. APPLI CATI ON_JSON;

}

if (action.equalslgnoreCase("get")) {
response = webTarget.request(responseType).get();

} else if (action.equalslgnoreCase("post")) {

Entity<String> person = Entity.entity(data, responseType);
response = webTarget.request (responseType). post (person);

} else if (action.equalslgnoreCase("put")) {

Entity<String> person = Entity.entity(data, responseType);
response = webTarget.request (responseType). put (person);

} else if (action.equalslgnoreCase("delete")) {
Entity<String> person = Entity.entity(data, responseType);
response = webTar get.request (responseType). del ete();

}

System out. println(response.readEntity(String.class));

}

public static void main(String[] args) throws URl SyntaxException,
Mal f or medURLException, | OException {
PUT("http://1ocal host: 8080/ dist-http-exanple/1",
Medi aType. APPLI CATI ON_JSON_TYPE,
"{\"nanme\":\"chris\",\"age\":32}");
PUT("http://1ocal host: 8080/ dist-http-exanpl el 2",
Medi aType. APPLI CATI ON_JSON_TYPE,
“{\"nanme\ ":\ "\ uf ef f\ u30b8\ u30e7\ u30f 3A\ ", \ "age\ ": 66}");
PUT("http://1ocal host: 8080/ di st-http-exanpl e/ 3",
Medi aType. APPLI CATI ON_JSON_TYPE,

25-6 Developing Remote Clients for Oracle Coherence

Step 5: Access REST Services From a Client

“{\"name\":\"adm",\"age\":88}");
POST("http://1ocal host: 8080/ di st - http-exanpl e/increnent (age, 1)",
Medi aType. APPLI CATI ON_XM__TYPE, null);
GET("http://1ocal host: 8080/ di st-http-exanpl e/ 1",
Medi aType. APPLI CATI ON_JSON_TYPE) ;
GET("http://1ocal host: 8080/ di st-http-exanpl e/ 1",
Medi aType. APPLI CATI ON_XM._TYPE);
GET("http://local host: 8080/ di st-http-exanpl e/ count()",
Medi aType. APPLI CATI ON_XM._TYPE);

Building Your First Coherence REST Application 25-7

Step 5: Access REST Services From a Client

25-8 Developing Remote Clients for Oracle Coherence

26

Performing Grid Operations with REST

This chapter provides instructions for performing grid operations using the Coherence
REST API. The Coherence REST API pre-defines many operations that can be used to
interact with a cache. In addition, custom operations such aggregators and entry
processors can be created as required.

This chapter includes the following sections:

e Specifying Key and Value Types

¢ Performing Single-Object REST Operations
¢ Performing Multi-Object REST Operations
® Performing Partial-Object REST Operations
¢ Performing Queries with REST

* Performing Aggregations with REST

¢ Performing Entry Processing with REST

¢ Understanding Concurrency Control

e Specifying Cache Aliases

¢ Using Server-Sent Events

26.1 Specifying Key and Value Types

The Coherence REST services require metadata about the cache that they expose. The
metadata includes the cache entry's key and value types as well as key converters and
value marshallers. The key and value types are required in order for Coherence to be
able to use built-in converters and marshallers (both XML and JSON are supported).

To define the key and value types for a cache entry, edit the coher ence-r est -
confi g. xm file and include the <key- cl ass> and the <val ue- cl ass> elements
within the <r esour ce> element whose values are set to key and value types,
respectively. See “resource” for a detailed reference of the <r esour ce> element.

Note:

The <key- cl ass> and <val ue- cl ass> element can either be defined
within the <r esour ce> element or within the <cache- mappi ng> element in
the cache configuration file.

Performing Grid Operations with REST 26-1

Performing Single-Object REST Operations

The following example defines a St r i ng key class and a value class for a Per son
user type:

<resour ces>
<resource>
<cache- nane>per son</ cache- nanme>
<key- cl ass>j ava. | ang. Stri ng</ key- cl ass>
<val ue- cl ass>exanpl e. Per son</ val ue-cl ass>
</resource>
</resources>

26.2 Performing Single-Object REST Operations

The REST API includes support for performing GET, PUT, and DELETE operations on
a single object in a cache.

GET Operation
GET http://host: port/cacheNane/ key

Returns a single object from the cache based on a key. A 404 (Not Found) status
code returns if the object with the specified key does not exist. The get operation
supports partial results (see “Performing Partial-Object REST Operations” for details).
Conditional gets are supported if an object implements the

com tangosol . util. Versi onsabl e interface. The version is added to the
response and used to determine if a client has the latest version of an object. If a client
already has the latest version of an object, a 304 (Not Mbdi fi ed) status code
returns.

The following sample output demonstrates the response of a GET operation:

* Cient out-bound request
> CET http://127.0.0. 1: 8080/ di st-http-exanpl e/ 1
> Accept: application/xn

*

Client in-bound response

200

Content-Length: 212

Cont ent - Type: application/xn

N NN AN

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?><Per son><i d>1</i d><nanme>
Mar k</ nane><addr ess><street >500 Oracl e Parkway</ street ><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Cient out-bound request
> CET http://127.0.0. 1: 8080/ di st-http-exanpl e/ 1
> Accept: application/json

* Cient in-bound response

< 200

< Content-Type: application/json

<

{"@ype":"rest.Person", "address": {"@ype": "rest.Address", "city": "Redwood Shores",
"country":"United States","street":"500 Oracle Parkway"},"id":1, "nane":"Mark"}

PUT Operations
PUT http://host: port/cacheNane/ key

Creates or updates a single object in the cache. A 200 (OK) status code returns if the
object was updated. If optimistic concurrency check fails, a 409 (Confli ct) status

26-2 Developing Remote Clients for Oracle Coherence

Performing Multi-Object REST Operations

code returns with the current object as an entity. See “Understanding Concurrency
Control” for details.

The following sample output demonstrates the response of a PUT operation:

* Cient out-bound request

> PUT http://127.0.0. 1: 8080/ di st-test-sepx/1

> Content-Type: application/xm

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?><Per son><i d>1</i d><nanme>
Mar k</ nane><addr ess><street >500 Oracl e Parkway</street ><city>Redwood Shores</city>
<country>United States</country></address></Person>

*

Client in-bound response
200
Content-Length: 0

N NN

*

Client out-bound request

PUT http://127.0.0.1:8080/dist-test-sepj/1

Content - Type: application/json

"@ype": "rest.Person”,"id": 1, "name": "Mark", "address": {" @ype": "rest. Address", "str
et":"500 Oracle Parkway","city":"Redwood Shores","country":"United States"}}

@D~V VvV

*

Client in-bound response
200
Content-Length: 0

N NN

Delete Operation
DELETE http://host: port/cacheName/ key
Deletes a single object from the cache based on a key. A 200 (OK) status code returns

if the object is successfully deleted, or a 404 (Not Found) status code returns if the
object with the specified key does not exist.

26.3 Performing Multi-Object REST Operations

Multi-object operations allow users to retrieve or delete multiple objects in a single
network request and can significantly reduce the network usage and improve network
performance.

Note:

PUT operations are not supported as it may produce tainted data. Specifically,
it would require that individual objects (in serialized form) within the entity
body to be in the same order as the corresponding keys in the URL. In
addition, since updates result in a replacement, an entire object serialized form
must be provided which can lead to overhead.

GET Operations

GET http://host:port/cacheNane/ (keyl, key2, ...)
Returns a set of objects from the cache based on the specified keys. The ordering of
returned objects is undefined and does not need to match the key order in the URL.

Missing objects are silently omitted from the results. A 200 (OK) status code always
returns. An empty result set is returned if there are no objects in the result set. The get

Performing Grid Operations with REST 26-3

Performing Partial-Object REST Operations

operation supports partial results (see “Performing Partial-Object REST Operations”
for details).

DELETE Operations
DELETE http://host: port/cacheNanme/ (keyl, key2, ...)

Deletes multiple objects from the cache based on the specified keys. A 200 (OK)
status code always returns even if no objects for the specified keys were present in the
cache.

26.4 Performing Partial-Object REST Operations

An application may not want (or need) to retrieve a whole object. For example, in
order to populate a drop down with a list of options, the application may only need
two properties of a potentially large object with many other properties. In order to
support this use case, each read operation should accept a list of object properties that
the user is interested in as a matrix parameter p.

The following example performs a get operation that retrieves just the i d and nanme
attributes for a person:

GET http://local host: 8080/ peopl e/ 123; p=i d, nane

To include a count r y attribute of the address as well, the request URL is as follows:

GET http://local host: 8080/ peopl e/ 123; p=i d, nane, addr ess: (count ry)

This approach allows an application to selectively retrieve only the properties that are
required using a simple, URL-friendly notation.

The following sample output demonstrates the response of a GET operation:

* Cient out-bound request

> GET http://127.0.0.1:8080/di st-test-sepj/1;p=nanme
> Accept: application/json

* Cient in-bound response

< 200

< Transfer-Encodi ng: chunked

< Content-Type: application/json
<

{"nane":"Mark"}

26.5 Performing Queries with REST

Coherence REST allows users to query a cache. CohQL is the default query syntax;
however, additional query syntaxes can be created and used as required.

The section includes the following sections:
¢ Using Direct Queries

* Using Named Queries

® Specifying a Query Sort Order

¢ Limiting Query Result Size

® Retrieving Only Keys

26-4 Developing Remote Clients for Oracle Coherence

Performing Queries with REST

¢ Using Custom Query Engines

26.5.1 Using Direct Queries

Direct queries are query expression that are submitted as the value of the parameter q
in a REST URL. By default, the query expression must be specified as a URL-encoded
CohQL expression (the predicate part of CohQL). See Developing Applications with
Oracle Coherence for details on the CohQL syntax. The syntax of a direct query is as
follows:

GET http://host: port/cacheNane?q=query

For example, to query the per son cache for person objects where age is less than 18:

GET http://host: port/person?q=age¥3Cl8

Direct queries are disabled by default. To enabled direct queries, edit the coher ence-
rest-config.xm fileand add a <di r ect - quer y> element for each resource to be
queried and set the enabl ed attribute to t r ue. For example:

<resource>
<cache- name>per sons</ cache- name>
<key-cl ass>j ava. | ang. | nt eger </ key- cl ass>
<val ue- cl ass>exanpl e. Per son</ val ue-cl ass>
<direct-query enabl ed="true"/>
</resource>

A 403 (Forbi dden) response code is returned if a query is performed on a resource
that does not have direct queries enabled.

26.5.2 Using Named Queries

Named queries are query expression that are configured for a resource in the
coherence-rest-config. xm file. By default, the query expression must be
specified as a CohQL expression (the predicate part of CohQL). Since this expression is
configured in an XML file, any special characters (such as < and >) must be escaped
using the corresponding entity. See Developing Applications with Oracle Coherence for
details on the CohQL syntax. In addition, named queries can include context values as
required. The syntax of a named query is as follows:

GET http://host: port/cacheNane/ nanmedQuer y?par aml=val uel, par an2=val ue2. ..

To specify named queries, add any number of <quer y> elements, within a
<r esour ce> element, that each contain a query expression and name binding. For
more information on the <quer y> element, see “query”. For example:

<resource>
<cache- nane>per sons</ cache- name>
<key-cl ass>j ava. | ang. | nt eger </ key- cl ass>
<val ue- cl ass>exanpl e. Per son</ val ue-cl ass>
<query>
<name>ni nor s</ nane>
<expression>age & t; 18</expression>
</ query>
<query>
<name>fir st - nane</ name>
<expression>nane i s :nanme</expression>
</ query>
</resource>

Performing Grid Operations with REST 26-5

Performing Queries with REST

To use a named query, enter the name of the query within the REST URL. The
following example uses the m nor s named query that is defined in the above
example.

GET http://host: port/persons/mnors

Parameters provide flexibility by allowing context values to be replaced in the query
expression. The following example uses the : nane parameter that is defined in the
first-name query expression above to only query entries whose namne property is
Mar K.

http://host: port/persons/first-name?name=Mark

Parameter names must be prefixed by a colon character (: par amNane). Parameter
bindings do not have access to type information, so it's possible to get a false where a
true is expected on the comparison operators. To avoid such behavior, specify type
hints as part of a query parameter (. par aniNane; i nt). Table 26-1 lists the supported
type hints.

Table 26-1 Parameter Type Hints
- ___|

Hint Type

i, int java. |l ang. I nt eger

s, short java.l ang. Short

1, long java. |l ang. Long

f, float j ava. | ang. Fl oat

d, double java. |l ang. Doubl e

I j ava. mat h. Bi gl nt eger
D j ava. mat h. Bi gDeci mal
date java.util . Date

uuid com tagosol .util.UU D
uid comtangosol .util.U D

package.MyClas package. MyCl ass
s

Named queries can also be used in conjunction with aggregation and entry processing.
For more information on aggregation and entry processing, see “Performing
Aggregations with REST” and “Performing Entry Processing with REST”,
respectively. For example:

http://host: port/persons/first-name?nane=Mar k/ | ong- max(age)

http://host: port/persons/first-nane?name=Mar k/i ncrenent (age, 1)

26.5.3 Specifying a Query Sort Order

The sort matrix parameter is an optional parameter used within a REST URL that
provides the ability to order the returned results of a query. The sort parameter is
available for both direct queries and named queries. The value of the sor t parameters

26-6 Developing Remote Clients for Oracle Coherence

Performing Queries with REST

is a comma-separated list of properties to sort on, each of which can have an
optional : asc (default) or : desc qualifier that determines the order of the sort. For
example, to sort a list of people by last name with family members sorted from the
oldest to the youngest, the sort parameter is defined as follows:

GET http://host:port/persons/mnors;sort=l ast Name, age: desc

The following example uses the sort parameter as part of a direct query.

GET http://host: port/persons;sort=lastNane, age: desc?q=age%38C18

26.5.4 Limiting Query Result Size

Queries against large caches can potentially return large result sets that may cause out-
of-memory errors. You should always use keys when querying large caches even
though the use of keys in queries is optional. If keys are omitted, then the query may
return all cache entries.

There are two ways to limit the number of results that are returned to a client: the
start and count matrix parameters and the max-r esul t s attribute. Both ways are
supported for direct and named queries.

The st art and count parameters are optional integer arguments that determine the
subset of the results to return. The following example uses the parameters as part of a
named query and returns the first 10 entries sorted by name.

http://host: port/persons/mnors;start=0; count =10; or der =name: asc

The following example uses the parameters as part of a direct query.

GET http://host: port/persons;start=0; count =10?q=age%3C18

The max- r esul t s attribute is used within the coher ence-rest-confi g. xm file
and explicitly limits how many results are returned to the client. Note that this
attribute does not limit the number of entries that are returned from a cache. The
following example sets the max- r esul t s attribute:

<resource max-results="50">
<cache- name>per sons</ cache- name>
<key-cl ass>j ava. | ang. | nt eger </ key- cl ass>
<val ue- cl ass>exanpl e. Per son</ val ue-cl ass>
<direct-query enabl ed="true" max-results="25">
<query max-resul ts="25">
<name>ni nor s</ nane>
<expression>age & t; 18</expression>
</ query>
</resource>

The max- r esul t s value for a direct or named query overrides the resource's max-
r esul t s value if both are specified. If a query includes a count parameter and a
max- r esul t s element is also specified, the lesser value is used.

26.5.5 Retrieving Only Keys

It is possible to retrieve just keys of entries stored in cache. Key operations do not
support paging and sorting, therefore those query parameters, if submitted, are
ignored. The following key retrieval operations are supported:

GET http://host:port/cacheNane/ keys

Returns the keys of all entries in the cache.

Performing Grid Operations with REST 26-7

Performing Queries with REST

GET http://host:port/cacheNanme/ keys?q=query

Returns the keys of all entries satisfying the direct query criteria.

GET http://host: port/cacheNane/ nanedQuery/ keys

Returns the keys of all entries that satisfy the named query criteria.

26.5.6 Using Custom Query Engines

A query engine executes queries for both direct and named queries. The default query
engine executes queries that are expressed using a CohQL syntax (the predicate part of
CohQL). Implementing a custom query engine allows the use of different query
expression syntaxes or the ability to execute queries against data sources other than
Coherence (for example, to query a database for entries that are not present in a
cache).

This section includes the following topics:
¢ Implementing Custom Query Engines

¢ Enabling Custom Query Engines

26.5.6.1 Implementing Custom Query Engines

Custom query engines must implement the

com t angosol . coherence. rest. query. Quer yEngi ne and

com t angosol . coherence. rest. query. Query interfaces. Custom
implementations can also extend the

com t angosol . coherence. rest. query. Abstract Quer yEngi ne base class
which provides convenience methods for parsing query expression and handling
parameter bindings. The base class also supports parameter replacement at execution
time and type hints that are submitted as part of the query parameter value. Both
parameter names and type hints follow the CohQL specification and can be used for
other query engine implementations. For details on specifying parameters and type
hints, see “Using Named Queries”.

For details on the API, see Java API Reference for Oracle Coherence for the
Abst ract Quer yEngi ne. Par sedQuer y class and the

Abst ract Quer yEngi ne. parseQueryString(String) and

Abst ract Quer yEngi ne. cr eat eBi ndi ngs(Map, Map).

The following example is a simple query engine implementation that executes SQL
queries directly against a database and forces cache read-through. In reality, a query
engine implementation would probably support runtime parameter binding, which is
not shown in the example.

public class Sql QueryEngine
extends Abstract QueryEngi ne
{
protected Connection mcon;
private static final String DB_DRI VER = "oracle.jdbc. Oracl eDriver";
private static final String DB_URL = "jdbc:oracl e:thin: @ocal host: 1521: orcl";
private static final String DB_USERNAME = "usernange";
private static final String DB_PASSWORD = "password";

public Sql QueryEngine()
{

confi gureConnection();

}

26-8 Developing Remote Clients for Oracle Coherence

Performing Queries with REST

@verride

public Query prepareQuery(String sQuery, Mp<String, bject> mapParans)
{
ParsedQuery parsedQuery = parseQueryString(sQuery);
String sSQ = createSel ect PKQuery(parsedQuery. get Query());
return new Sql Query(sSQ.);
1

protected void configureConnection()
{
try
{
C ass. forNane(DB_DRI VER) ;

m con = DriverManager. get Connection(DB_URL, DB_USERNAME, DB _PASSWORD);
m con. set Aut oConmit (true);

}
catch (Exception e)
{
throw new Runti meException(e);
}
}
protected String createSel ect PKQuery(String sSQ.)
{

return "SELECT id, nane, age FROM " +
sSQL. subst ring(sSQL. t oUpper Case(). i ndexCf ("FROM') + 4);
}

private class Sql Query
i mpl ements Query

{
protected String msql;

public Sql Query(String sql)
{

msql = sql;

}

@verride
public Collection val ues(NamedCache cache, String sOrder, int nStart,
int cResults)
{
/1 force read through
Set setKeys = keySet (cache);
return cache. get Al'l (set Keys). val ues();

}
@wverride
public Set keySet(NanedCache cache)
{
Set setKeys = new HashSet ();
try
{
PreparedStatement stnt = mcon. prepareStatenent (msql);
Resul t Set result = stnt.executeQuery();
while (result.next())
{

Obj ect oKey = result.getLong(1);
set Keys. add(oKey) ;
Person person = new Person(result.getString("name"),

Performing Grid Operations with REST 26-9

Performing Aggregations with REST

result.getlnt("age"));
cache. put (oKey, person);

}

stnt.close();

catch (SQ.Exception e)
{

t hrow new Runti meException(e);

}

return setKeys;

}
26.5.6.2 Enabling Custom Query Engines

Custom query engines are enabled in the coher ence-r est - confi g. xm file. To
enable a custom query engine, first register the implementation by adding an

<engi ne> element, within the <quer y- engi nes> element, that includes a name for
the query engine and the fully qualified name of the implementation class. For more
information on the <engi ne> element, see “engine”. For example:

<query- engi nes>
<engi ne>
<name>SQL- ENG NE</ nane>
<cl ass- name>package. Sql Quer yEngi ne</ cl ass- name>
</ engi ne>
</ query-engi nes>

To explicitly specify a custom query engine for a named query or a direct query, add
the engi ne attribute, within a <di r ect - quer y> element or a <quer y> element, that
refers to the custom query engine's registered name. For example:

<resource>
<cache- name>per sons</ cache- name>
<key-cl ass>j ava. | ang. | nt eger </ key- cl ass>
<val ue- cl ass>exanpl e. Per son</ val ue-cl ass>
<query engi ne="SQL- ENG NE">
<nane>| ess-t han- 1000</ nane>
<expression>sel ect * from PERSONS where id & t; 1000</expression>
</ query>
<direct-query enabl ed="true" engi ne="SQ.- ENG NE"/>
</resource>

To make a custom query engine the default query engine, use DEFAULT (uppercase
mandatory) as the registered name. The following definition overrides the default
CohQL-based query engine and is automatically used whenever an engi ne attribute
is not specified.

<query- engi nes>
<engi ne>
<name>DEFAULT</ name>
<cl ass- name>package. Sql Quer yEngi ne</ cl ass- name>
</ engi ne>
</ query-engi nes>

26.6 Performing Aggregations with REST

Aggregations can be performed on data in a cache. Coherence REST includes a set of
pre-defined aggergators and custom aggregators can be created as required.

26-10 Developing Remote Clients for Oracle Coherence

Performing Aggregations with REST

The following topics are included in this section:
¢ Aggregation Syntax for REST
e Listing of Pre-Defined Aggregators

¢ Creating Custom Aggregators

26.6.1 Aggregation Syntax for REST

The following examples demonstrate how to perform aggregations using REST. If the
aggregation succeeds, a 200 (OK) status code returns with the aggregation result as
an entity.

¢ Aggregates all entries in the cache.

GET http://host:port/cacheNane/ aggregator(args, ...)

e Aggregates query results. The query must be specified as a URL-encoded CohQL
expression (the predicate part of CohQL).

GET http://host:port/cacheName/ aggregator(args, ...)?q=query
GET http://host:port/cacheName/ nanedQuery/ aggregat or (args, ...)?paranl=val uel

¢ Aggregates specified entries.
GET http://host:port/cacheName/ (keyl, key2, ...)/aggregator(args, ...)

Coherence REST provides a simple strategy for aggregator creation (out of aggregator
related URL segments). Out-of-box, Coherence REST can resolve any registered (either
built-in or user registered) aggregator with a constructor that accepts a single
parameter of type com t angosol . uti | . Val ueExtract or (such as Longhax,
Doubl eMax, and so on). If an aggregator call within a URL doesn't contain any
parameters, the aggregator is created using

com tangosol .util.extractor.ldentityExtractor.

If an aggregator segment within the URL doesn't contain any parameters nor a
constructor accepting a single Val ueExt r act or exists, Coherence REST tries to
instantiate the aggregator using a default constructor which is the desired behavior for
some built-in aggregators (such as count).

The following example retrieves the oldest person in a cache:

GET http://host: port/peopl e/l ong- max(age)

The following example calculates the max number in a cache containing only
numbers:

GET http://host: port/nunbers/ conparabl e- max()

The following example calculates the size of the people cache:

GET http://host: port/peopl e/ count()

26.6.2 Listing of Pre-Defined Aggregators

The following pre-defined aggregators are supported:

Performing Grid Operations with REST 26-11

Performing Aggregations with REST

Aggregator Name Aggregator

bi g- deci mal - aver age Bi gDeci nal Aver age. cl ass
bi g- deci mal - max Bi gDeci mal Max. cl ass
bi g-deci mal -mn Bi gDeci mal M n. cl ass
bi g- deci mal - sum Bi gDeci nal Sum cl ass
doubl e- aver age Doubl eAver age. cl ass
doubl e- max Doubl eMax. cl ass
doubl e-min Doubl eM n. cl ass
doubl e- sum Doubl eSum cl ass

| ong- max LongMax. cl ass

I ong-min LongM n. cl ass

| ong- sum LongSum cl ass

conpar abl e- max Conpar abl eMax. cl ass
conpar abl e-min Conpar abl eM n. cl ass
di stinct-val ues Di stinct Val ues. cl ass
count Count . cl ass

26.6.3 Creating Custom Aggregators

Custom aggregator types can be defined by specifying a name to be used in the REST
URL and a class implementing either the

com tangosol . util.Invocabl eMap. Ent r yAggr egat or interface or the
com t angosol . coherence.rest. util.aggregator. Aggregator Factory
interface.

An Ent r yAggr egat or implementation is used for simple scenarios when
aggregation is either performed on single property or on cache value itself (as most of
the pre-defined aggregators do).

The Aggr egat or Fact or y interface is used when a more complex creation strategy is
required. The implementation must be able to resolve the URL segment containing
aggregator parameters and use the parameters to create the appropriate aggregator.

Custom aggregators are configured in the coher ence-rest - confi g. xm file
within the <aggr egat or s> elements. See “aggregator” for a detailed reference. The
following example configures both a custom Ent r yAggr egat or implementation and
a custom Aggr egat or Fact or y implementation:

<aggr egat or s>
<aggregat or >
<name>ny- si npl e- aggr </ nanme>
<cl ass- name>com f oo. MySi npl eAggr egat or </ cl ass- nane>
</ aggr egat or >
<aggregat or >
<name>ny- conpl ex- aggr </ name>

26-12 Developing Remote Clients for Oracle Coherence

Performing Entry Processing with REST

<cl ass- nane>com f 00. MyAggr eagat or Fact or y</ cl ass- name>
</ aggr egat or >
</ aggr egat or s>

26.7 Performing Entry Processing with REST

Entry Processors can be invoked on one or more objects in a cache. Coherence REST
includes a set of pre-defined entry processors and custom entry processors can be
created as required.

The following topics are included in this section:
¢ Entry Processor Syntax for REST
¢ Listing of Pre-defined Entry Processors

¢ Creating Custom Entry Processors

26.7.1 Entry Processor Syntax for REST

The following examples demonstrate how to perform entry processing using REST. If
the processing succeeds, a 200 (OK) status code returns with the processing result as
an entity.

e DProcess all entries in the cache.

POST http://host:port/cacheName/ processor(args, ...)

* Process query results.

POST http://host:port/cacheName/ processor(args, ...)?q=query

POST http://host: port/cacheName/ nanedQuer y?par anil=val uel/ processor (args, ...)

® Process specified entries.
POST http://host:port/cacheName/ (keyl, key2, ...)/processor (args, ...)

Unlike aggregators, processors (even the pre-defined processors) have more diverse
creation patterns, so Coherence REST does not assume anything about processor
creation. Instead, for each entry processor implementation, there needs to be an
implementation of the

com t angosol . coherence.rest. util.processor. Processor Factory
interface that can handle an input string from a URL section and instantiate the
processor instance. Out-of-box, Coherence REST provides two such factories for
Nunber | ncr ement or and Nunber Mul ti pli er.

The following example increments each person's age in a cache by 5:

POST http://1ocal host: 8080/ peopl e/ i ncrenent (age, 5)

The following example multiplies each number in a cache containing only numbers by
the factor 10:

POST http://1ocal host: 8080/ numbers/ mul tiply(10)

26.7.2 Listing of Pre-defined Entry Processors

The following pre-defined processors are supported:

Performing Grid Operations with REST 26-13

Understanding Concurrency Control

Processor Processor
Name
i ncrenent A Nurber | ncr ement or instance that always returns the new

(incremented) value

post - A Nunber | ncr ement or instance that always returns the old (not

i ncrenent incremented) value

mul tiply A Nunber Mul ti pli er instance that always returns the new (multiplied)
value

post - A Nurber Mul ti pli er instance that always returns the old (not

mul tiply multiplied) value

26.7.3 Creating Custom Entry Processors

Custom entry processors can be defined by specifying a name to be used in a REST
URL and a class that implements the

com t angosol . coherence.rest. util.processor. Processor Factory
interface.

Custom entry processors are configured in the coher ence-rest -confi g. xm file
within the <pr ocessor s> elements. See “processors” for a detailed reference. The
following example configures a custom Pr ocesor Fact or y implementation:

<processor s>
<processor >
<nane>ny- processor </ nane>
<cl ass- nane>com f 00. MyPr ocessor Fact or y</ cl ass- nane>
</ processor>
</ processor s>

26.8 Understanding Concurrency Control

Coherence REST supports optimistic concurrency only as it maps cleanly to the HTTP
protocol. When an application submits a GET request for an object that implements the
com t angosol . util. Versi onabl e interface, the current version identifier is
returned in an HTTP ETag (as well as in the representation of the object, assuming the
version identifier is included in the JSON /XML serialized form). If the application
then submits the same GET request for the resource, but this time with an | f - None-
Mat ch header with the same ETag value, Coherence REST returns a status of 304,
indicating that the application has the latest version of the resource.

Likewise, when an application submits a PUT request to update an object that
implements the com t angosol . uti | . Ver si onabl e interface, Coherence REST
performs an update only if the existing and new object versions match; otherwise a
409 Confli ct status is returned along with the current object so that the client can
reapply the changes and retry.

The following example illustrates these concepts:

inmport comsun.jersey.api.client.dient;

inport comsun.jersey.api.client.CientResponse;
inport comsun.jersey.api.client.\WhResource;
inport javax.ws.rs.core. Medi aType;

import org. codehaus. jettison.json. JSONQbj ect;

26-14 Developing Remote Clients for Oracle Coherence

Specifying Cache Aliases

public class ConcurrencyTests

{
public static void main(String[] asArg)
throws Exception

{
Cient client = Cient.create();
String url = "http://local host:" + getPort() + "/dist-testl/2";

V\ebResour ce webResource = client.resource(url);
I/ performa CGET of a server-side resource that inplenments Versionable
CientResponse response = webResource

. accept (Medi aType. APPLI CATI ON_JSON) . get (C i ent Response. cl ass);
assert 200 == response.getStatus(); /* OK */

Il verify that the current version of the resource is 1

JSONObj ect j son = new JSONObj ect (response. get Entity(String.class));
String version = json.getString("versionlndicator");

assert "1".equal s(version);

assert new EntityTag("1").equal s(response.getEntityTag());

I/ performa conditional CGET of the sane resource and verify that we
Il get a response status of 304: Not Modified
response = webResource
. accept (Medi aType. APPLI CATI ON_JSON)
.header ("If-None-Match", '"" + version + '"').get(dientResponse.class);
assert 304 == response.getStatus(); /* Not Mdified */

Il sinmulate a version change on the server-side by rolling back the
/1 version indicator on our representation of the resource
json.put("versionlndicator", String.valueO(0));

I/ performa conditional PUT of the sane resource and verify that we
I/ get a response status of 409: Conflict
response = webResource
. accept (Medi aType. APPLI CATI ON_JSON)
.put (CientResponse. cl ass, json);
assert 409 == response.getStatus(); /* Conflict */

Il retry again with the returned value and verify that we now get a
Il response status of 200: K
json = new JSONObj ect (response. getEntity(String.class));
response = webResource
.accept (Medi aType. APPLI CATI ON_JSON)
.put (i entResponse. cl ass, json);
assert 200 == response.getStatus(); /* OK */
1
}

26.9 Specifying Cache Aliases

Cache aliases are used to specify simplified cache names that are used when a cache
name is not ideal for the REST URL path segment. The simplified names are mapped
to the real cache names.

To define a cache alias, edit the coher ence-rest - confi g. xnl file and include the
<name> attribute within the <r esour ce> element whose value is set to a simplified
cache name.

The following example creates a cache alias named peopl e for a cache with the name
di st - ext end- not -i deal - name- f or - a- cache*:

Performing Grid Operations with REST 26-15

Using Server-Sent Events

<resour ces>
<resource nane="peopl ">
<cache- nane>di st - ext end- not - i deal - name- f or - a- cache* </ cache- name>

</resource>
</resources>

26.10 Using Server-Sent Events

Server-sent events allow Coherence REST applications to automatically receive cache
events from the Coherence cluster. For example, events can be received when cache
entries are inserted or deleted. For a complete example of using server-sent events, see
the Coherence REST examples in Installing Oracle Coherence.

Server-sent events require the use of either the Grizzly HTTP server or the Jetty HTTP
server. For details on configuring the Grizzly HTTP server with Coherence REST, see
“Using Grizzly HTTP Server.” For details about configuring the Jetty HTTP server
with Coherence REST, see “Using Jetty HTTP Server.” In addition, server-sent events
must be supported by your web browser. Refer to your browser documentation for
support details.

26.10.1 Receiving Server-Sent Events

Web pages use the Event Sour ce object to receive server-sent events. The

Event Sour ce object connects to a specified URI where events are generated and
custom Event Li st ener s are added to listen and process the incoming server-sent
events. The following code from the Coherence REST example uses JavaScript to
create a new Event Sour ce object that listens to the / cache/ cont act s URI and
adds event listeners for i nsert,updat e, del et e, and err or events.

$scope. startListeningContacts = function() {

$scope. contacts.|istening = true;
$scope. contacts.started = true;
if ($scope.contacts.filter == "all") {
query ="'";
else if ($scope.contacts.filter ==">=45") {
query = '?g=agei20>=92045';
$scope. contacts.filter = 'age >= 45';
}
el se {
query = '?q=age%20<%2045";
$scope. contacts.filter = 'age < 45';
}

$scope. contacts. stat us
var event Sour ceCont acts

"Listening: ' + $scope.contacts.filter;
new Event Source('/cache/ contacts' + query);

event Sour ceCont act s. addEvent Li stener ("insert', function(event) {
$scope. contacts. i nsert Count ++;
$scope. contacts. al | Count ++;
$scope. updat eCont act Event (JSON. parse(event.data), 'insert');
$scope. $appl y();

D

event Sour ceCont act s. addEvent Li st ener (' update', function(event) {
$scope. cont act s. updat eCount ++;
$scope. contacts. al | Count ++;
$scope. updat eCont act Event (JSON. parse(event.data), 'update');

26-16 Developing Remote Clients for Oracle Coherence

Using Server-Sent Events

b

$scope. $appl y();
1

event Sour ceCont act s. addEvent Li stener (' del ete', function(event) {
$scope. cont act s. del et eCount ++;
$scope. contacts. al | Count ++;
$scope. updat eCont act Event (JSON. par se(event. data), 'delete');
$scope. $appl y();

1

event Sour ceCont act s. addEvent Li stener (' error', function(event) {
var eventData = JSON. parse(event.data);
alert('error');

D

When an event is received, an application can choose take some meaningful action
based on the event. For example:

$scope. updat eCont act Event = function(eventData, event Type) {

b

$scope. cont acts. event Type = event Type;
$scope. contacts. eventKey = eventData.key.firstName + ' ' +
event Dat a. key. | ast Nane;

$scope. contacts. event Newval ue = 'NA';
$scope. contacts. eventA dValue = 'NA';
if (eventType == "insert' || eventType == 'update') {

$scope. cont acts. event Newval ue = $scope. get Cont act Stri ng(event Dat a. newval ue);

}
if (eventType == "delete' || eventType == 'update') {

$scope. contact s. event O dVal ue = $scope. get Cont act St ri ng(event Dat a. ol dVal ue) ;
}

Performing Grid Operations with REST 26-17

Using Server-Sent Events

26-18 Developing Remote Clients for Oracle Coherence

21

Deploying Coherence REST

This chapter provides instructions for deploying Coherence REST to an embedded
HTTP server and WebLogic Server. Generic servlet container instructions are also
provided. For details on securing Coherence REST, seeSecuring Oracle Coherence .

This chapter includes the following sections:

* Deploying with the Embedded HTTP Server
¢ Deploying to WebLogic Server

* Deploying to a Java EE Server (Generic)

* Configuring REST Server Access to POF-Enabled Services

27.1 Deploying with the Embedded HTTP Server

Coherence provides multiple embedded HTTP server implementations that can be
used to host REST Web services:

e Defaul t H t pServer (backed by Oracle's lightweight HTTP server)

e GizzlyH tpServer (backed by Grizzly HTTP server and recommended for
production environments)

e SinpleHtpServer (backed by Simple HTTP server)

e JettyHtt pServer (backed by Jetty HTTP server)

See “Changing the Embedded HTTP Server” for details on changing the default HTTP
server.

The HTTP server must be enabled on a Coherence proxy server. To enable the HTTP
server, edit the proxy's cache configuration file and add an <ht t p- accept or >
element, within the <pr oxy- schemne> element, and include the host and port for the
HTTP server.

The following example configures the HTTP server to accept requests on localhost
127.0. 0. 1 and port 8080. The example explicitly defines the HTTP server class and
Jersey resource configuration class and uses / as the context path for the Coherence
REST application. However; these are default values and need not be included. The
context path can be changed as required and additional Coherence REST applications
can be defined with different context paths. See Developing Applications with Oracle
Coherence for a detailed reference of all <ht t p- accept or > subelements.

<pr oxy- schenme>
<servi ce- nane>Ext endHt t pPr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<http-acceptor>
<cl ass- name>

Deploying Coherence REST 27-1

Deploying to WebLogic Server

com tangosol . coherence. rest. server. Defaul t H t pServer </ cl ass- nanme>
<l ocal - addr ess>
<addr ess>127. 0. 0. 1</ addr ess>
<port >8080</ port >
</l ocal - address>
<resour ce-confi g>
<cont ext - pat h>/ </ cont ext - pat h>
<i nstance>
<cl ass- name>
com tangosol . coherence. rest. server. Def aul t Resour ceConfig
</ cl ass- name>
</instance>
</resource-config>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

If you are using POF, make sure that the pof - conf i g. xm file includes the location
of the REST POF types. For details, see “Configuring REST Server Access to POF-
Enabled Services.”

27.2 Deploying to WebLogic Server

WebLogic Server includes a Coherence integration that standardizes the way
Coherence applications are packaged, deployed, and managed within a WebLogic
Server domain. Coherence REST must follow the integration standards. For details on
configuring a Coherence cluster in a WebLogic Server domain, see Administering
Clusters for Oracle WebLogic Server. In addition, Coherence applications must be
packaged as a Grid ARchive (GAR). For details on creating a GAR, see, Developing
Oracle Coherence Applications for Oracle WebLogic Server.

This section contains the following tasks:

¢ Task 1: Configure a WebLogic Server Domain for Coherence REST

Task 2: Package the Coherence REST Web Application

Task 3: Package the Coherence Application

Task 4: Package the Enterprise Application

¢ Task 5: Deploy the Enterprise Application

27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST

Create a managed Coherence server in your WebLogic Server domain that will host
Coherence REST. The server should be configured as a storage disabled member of a
Coherence cluster. If more than one managed Coherence server is required for a
Coherence REST solution, the servers should be managed as a tier in a WebLogic
Server cluster. For details on configuring managed Coherence servers, see
Administering Clusters for Oracle WebLogic Server.

27.2.2 Task 2: Package the Coherence REST Web Application
To package the Coherence REST Web application:

1. Create a Web application directory structure as follows:

27-2 Developing Remote Clients for Oracle Coherence

Deploying to WebLogic Server

/

/ VEEB- | NF/
/ WEB- | NF/ ¢l asses/
[WEB- | NF/ |'i b/

2. Create a Web application deployment descriptor (web. xm) and include a servlet
definition for the REST application as follows:

Note:

A default servlet context listener is included in the coher ence-rest.j ar
that shuts down the cluster member during the REST application shutdown.
The listener is registered as shown below. If the cluster member is not shut
down, a variety of exceptions are thrown post shutdown.

<web- app>

<l'istener>
<listener-class>
com t angosol . coherence. rest . servl et. Def aul t Servl et Cont ext Li st ener
</listener-class>
</listener>
<servl et>
<servl et - name>Coher ence REST</servl et - nane>
<servl et-class>org. gl assfish.ersey.servlet. Servl et Cont ai ner
</servlet-class>
<init-paran
<par am nane>j avax. Ws. rs. Appl i cat i on</ par am name>
<par am val ue>
com t angosol . coherence. rest . server. Cont ai ner Resour ceConfi g
</ param val ue>
<linit-paranp
<l oad- on- st art up>1</ | oad- on- st ar t up>
</servlet>
<servl et - mappi ng>
<servl et - name>Coher ence REST</servl et - nane>
<url-pattern>/rest/*</url-pattern>
</ servl et - mappi ng>

</ web- app>
3. Save the web. xm file to the / WEB- | NF/ directory.

4. Create a WAR file using the j ar utility. For example, issue the following command
from a command prompt at the root of the Web application directory:

jar -cvf coherence_rest.war *

27.2.3 Task 3: Package the Coherence Application
To package the Coherence application:

1. Copy the coher ence-rest-confi g. xm file to the root of your Coherence
application. The structure should be as follows:

/

[com myco/ Myd ass. cl ass
I1ibl

| META- | NF/

Deploying Coherence REST 27-3

Deploying to WebLogic Server

| META- | NF/ coher ence-appl i cati on. xn
| META- I NF/ coher ence- cache- confi g. xni
| META- | NF/ pof - confi g. xm

coher ence-rest-config. xn

Edit the pof - confi g. xm file to include the coher ence-r est - pof -
confi g. xm POF configuration file that contains the Coherence REST default user
types. For details, see “Configuring REST Server Access to POF-Enabled Services.”

Create a GAR file using the j ar utility. For example, issue the following command
from a command prompt at the root of the GAR directory:

jar -cvf MyCohApp.gar *

27.2.4 Task 4: Package the Enterprise Application

To package the enterprise application:

1.

Create an enterprise application directory structure and copy the Coherence REST
WAR file and the Coherence application GAR file to the root of the EAR. For
example:

/

| META- | NF/

| META- 1 NF/ appl i cation. xm

| META- | NF/ webl ogi c- appl i cation. xm
/ coherence_rest. war

| MyCohApp. gar

Edit the appl i cat i on. xml file and add a module definition for the Coherence
REST Web application. For example:

<appl i cati on>
<nodul e>
<web>
<web- uri >coherence_rest . war </ web-uri>
<cont ext - root >/ </ cont ext - r oot >
</ web>
</ modul e>
</ application>

. Edit the webl ogi c- appl i cati on. xm file and add a library reference for the

coherence-rest.jar shared library and a module reference for the Coherence
application GAR file. For example:

<webl ogi c-appl i cati on>
<nmodul e>
<nane>per son</ nane>
<t ype>GAR</ t ype>
<pat h>MyCohApp. gar </ pat h>
</ modul e>
<library-ref>
<l'i brary-nanme>coherence-rest</|ibrary-nane>
</library-ref>
</ webl ogi c-appl i cati on>

Create the EAR file using the j ar utility. For example, issue the following
command from a command prompt at the root of the EAR directory:

jar -cvf MyCohRest App. ear *

27-4 Developing Remote Clients for Oracle Coherence

Deploying to a Java EE Server (Generic)

27.2.5 Task 5: Deploy the Enterprise Application

To deploy the Enterprise application:

1.

Use the WebLogic Server Administration Console or WLST tool to deploy the EAR
to the managed Coherence server created in Task 1.

From a browser, verify the deployment by navigating to the managed Coherence
server's listening port and include the cache name as part of the URL. For example:
http://host: port/rest/{cacheNane}.

27.3 Deploying to a Java EE Server (Generic)

This section provides instructions for deploying Coherence Rest to a Java EE
environment:

The following topics are included in this section:

¢ Packaging Coherence REST for Deployment

¢ Deploying to a Servlet Container

27.3.1 Packaging Coherence REST for Deployment

To package a Coherence REST application:

1.

Create a basic Web application directory structure as follows:

/

/ WEB- | NF
/| VEB- | NF/ ¢l asses
/WEB-INF/lib

Copy the coher ence. j ar and coher ence-rest. j ar libraries from the
COHERENCE_HOMVE/ | i b directory to the / WEB- | NF/ | i b directory.

Copy the Coherence REST dependencies from the ORACLE_HOVE/
or acl e_conmon/ nodul es/ directory to the / WEB- | NF/ | i b directory. For the
list of dependencies, see “Dependencies for Coherence REST”).

Create a Web application deployment descriptor (web. xm) and include a servlet
definition for the REST application as follows:

Note:

A default servlet context listener is included in the coher ence-rest . j ar
that shuts down the cluster member during the REST application shutdown.
The listener is registered as shown below. If the cluster member is not shut
down, a variety of exceptions are thrown post shutdown.

<web- app>

<listener>
<listener-class>
comtangosol . coherence. rest. servl et. Def aul t Servl et Cont ext Li st ener
</listener-class>
</listener>

Deploying Coherence REST 27-5

Deploying to a Java EE Server (Generic)

<servlet>
<servl et - nane>Coher ence REST</servl et - nane>
<servl et-cl ass>org. gl assfish.jersey.servlet. Servl et Contai ner
</servlet-class>
<init-paranp
<par am name>j avax. ws. rs. Appl i cat i on</ par am name>
<param val ue>
com tangosol . coherence. rest. server. Cont ai ner Resour ceConfi g
</ param val ue>
</init-paranp
<l oad- on- st artup>1</| oad- on-start up>
</servlet>
<servl et - mappi ng>
<servl et - nane>Coher ence REST</servl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>

</meb-ébb>
5. Save the web. xm file to the / WEB- | NF/ directory.

6. Copy the coher ence-rest-config. xml file to the WEB- | NF/ cl asses
directory.

7. Copy your coher ence- cache-confi g. xm fileand t angosol - coher ence-
override. xni file to the VEB- | NF/ cl asses directory.

8. If you are using POF, copy the pof - confi g. xnl file to the WEB- | NF/ cl asses
directory. Make sure that the pof - conf i g. xm file includes the location of the
REST POF types. For details, see “Configuring REST Server Access to POF-Enabled
Services.”

9. Create a Web ARchive file (WAR) using the j ar utility. For example, issue the
following command from a command prompt at the root of the Web application
directory:

jar -cvf coherence_rest.war *

The archive should contain the following files:

/ VEEB- | NF/ web. xm

[\\EB- | NF/ cl asses/ coher ence-rest-config. xm

[\EB- | NF/ cl asses/ t angosol - coher ence- overri de. xn
[\\EB- | NF/ cl asses/ coher ence- cache- confi g. xm

[\\EB- | NF/ | i b/ coherence. j ar

[\\EB- | NF/ | i b/ coherence-rest.jar

[\\EB- | NF/ | i b/ coher ence_dependenci es

27.3.2 Deploying to a Servlet Container

Coherence REST can be deployed to any servlet container by packaging Coherence
REST as a WAR file. See “Packaging Coherence REST for Deployment” for details.
Refer to your vendors documentation for details on deploying WAR files. In addition,
See the Jersey user guide for additional servlet container deployment options:

http://jersey.java. net/ nonav/ docunentati on/| at est/ user -
gui de. ht m #d4e194

27-6 Developing Remote Clients for Oracle Coherence

http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e194
http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e194

Configuring REST Server Access to POF-Enabled Services

27.4 Configuring REST Server Access to POF-Enabled Services

POF-enabled services must include the defined Coherence REST POF user types. The
user types are defined in the coher ence-r est - pof - confi g. xmi file that is located
in the coher ence-rest . j ar library and is automatically loaded at runtime.

To configure the REST default user types, edit the pof - confi g. xni file to include
the coher ence-rest - pof - confi g. xm POF configuration file. For example:

<pof - confi g>
<user-type-list>
<i ncl ude>coher ence- pof - confi g. xn </ i ncl ude>
<i ncl ude>coherence-rest - pof - confi g. xm </i ncl ude>

</user-type-list>
</ pof - confi g>

Deploying Coherence REST 27-7

Configuring REST Server Access to POF-Enabled Services

27-8 Developing Remote Clients for Oracle Coherence

28

Modifying the Default REST Implementation

This chapter provides instructions for changing the default behavior of the Coherence
REST implementation.

This chapter includes the following sections:

e Using Custom Providers and Resources

* Changing the Embedded HTTP Server

28.1 Using Custom Providers and Resources

Custom providers and resources can be created as required. This section demonstrates
how to register custom providers, and how to override Coherence's default root
resource.

The com t angosol . coherence. rest. server. Def aul t Resour ceConfi g class
supports package scanning, which can be used to register custom providers or
resources. The following example demonstrates registering a custom provider and
resource using package scanning:

public class MyResourceConfig extends Defaul t ResourceConfig

{
public MyResourceConfig()
{

super ("com ny. provi ders; com ny. resources");
1
}

As an alternative, the following example demonstrates how to override one or more of
the r egi st er methods defined in the Def aul t Resour ceConf i g class in order to
use custom providers, a custom root resource, or to add filters and filter factories.

Note:

Never override (unregister) Coherence default Providers without overriding
the root resource class as well (the Def aul t Root Resour ce class depends on
the default providers to provide the necessary dependencies and
configuration).

public class MyResourceConfig extends Defaul t ResourceConfig
{

protected void regi sterRoot Resource()

{

/1 remove if you don't want Coherence defaults to be registered
super . regi st er Root Resour ce();
get G asses() . add(M/Root Resour ce. cl ass);

Modifying the Default REST Implementation 28-1

Changing the Embedded HTTP Server

}

protected void registerProviders()
{
/'l remove if you don't want Coherence defaults to be registered
super. regi sterProviders();
get Si ngl et ons() . add(new MyProvider());
}

protected void registerContainerRequest Fil ters()
{
/1 remove if you don't want Coherencedefaults to be registered
super. regi st er Cont ai ner Request Fi l ters();
get Cont ai ner Request Fi | ters().add(new MyRequestFilter());
}

protected void registerContainer ResponseFil ters()
{
Il remove if you don't want Coherence defaults to be registered
super. regi st er Cont ai ner ResponseFil ters();
get Cont ai ner ResponseFi | ters().add(new M/ResponseFilter());
}

protected void registerResourceFilterFactories()

{

/'l remove if you don't want Coherence defaults to be registered
super. regi ster ResourceFil terFactories();
get Resour ceFi | terFactories().add(new MyResourceFilterFactory());
}

}

Custom resource configuration class are enabled in the cache configuration file by
adding the fully qualified name of the class using the <r esour ce- conf i g> element
within an HTTP acceptor configuration. The class is mapped to a specific context path.
For example:

<pr oxy- schene>
<servi ce- nane>Ext endHt t pPr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<http-acceptor>

<resour ce-confi g>
<cont ext - pat h>/ MyAppl i cat i onCont ext </ cont ext - pat h>
<i nstance>
<cl ass- nane>package. MyResour ceConf i g</ cl ass- name>
</instance>
</ resource-config>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

The default context path (/) is used if no context path is provided. Multiple resource
configuration class definitions can be added and mapped to different context paths.

28.2 Changing the Embedded HTTP Server

Coherence REST uses Oracle's lightweight HTTP server by default to handle requests.
However, the implementation is not recommended for production environments and
is typically used during development and testing. For production environments,

28-2 Developing Remote Clients for Oracle Coherence

Changing the Embedded HTTP Server

Coherence includes implementations for the Grizzly HTTP server, the Simple HTTP

server, and the Jetty HTTP server. These servers are supported in Jersey. Refer to the
Jersey documentation for instructions on integrating additional HTTP servers, which
are beyond the scope of this documentation.

http://jersey.java. net/

The following topics are included in this section:
¢ Using Grizzly HTTP Server
* Using Simple HTTP Server

¢ Using Jetty HTTP Server

28.2.1 Using Grizzly HTTP Server

Coherence REST provides a Grizzly 2 HTTP server implementation

(com t angosol . coherence. rest.server. Gi zzl yHt t pSer ver) that can be
used instead of the default HTTP server. For more information on the Grizzly HTTP
server see:

http://grizzly.java. net/

The Grizzly server is enabled in the cache configuration file by adding the fully
qualified name of the implementation as a value of the <cl ass- nane> element
within an HTTP acceptor configuration. For example:

<pr oxy- schenme>
<servi ce- nane>Ext endHt t pPr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<http-acceptor>
<cl ass- nane>com t angosol . coherence. rest. server. Gi zzl yHt t pServer
</ cl ass- nane>

</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- scheme>

28.2.2 Using Simple HTTP Server

Coherence REST provides a Simple HTTP server implementation

(com t angosol . coherence. rest. server. Si npl eHt t pSer ver) that can be
used instead of the default HTTP server. For more information on the Simple
framework see:

http://ww. si npl ef ramewor k. or g/

The Simple HTTP server is enabled in the cache configuration file by adding the fully
qualified name of the implementation as a value of the <cl ass- nane> element
within an HTTP acceptor configuration. For example:

<proxy- scheme>
<servi ce- name>Ext endHt t pPr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<htt p-accept or >
<cl ass- name>com t angosol . coherence. rest. server. Si npl eHt t pServer
</ cl ass- name>

</ http-acceptor>
</ acceptor-confi g>

Modifying the Default REST Implementation 28-3

http://jersey.java.net/
http://grizzly.java.net/
http://www.simpleframework.org/

Changing the Embedded HTTP Server

<autostart>true</autostart>
</ proxy- scheme>

28.2.3 Using Jetty HTTP Server

Coherence REST provides a Jetty HTTP server implementation

(com t angosol . coherence. rest. server. JettyHtt pServer) that can be used
instead of the default HTTP server. For more information on the Jetty HTTP server,
see:

http://ww. eclipse.org/jetty/

The Jetty server is enabled in the cache configuration file by adding the fully qualified
name of the implementation as a value of the <c| ass- nane> element within an
HTTP acceptor configuration. For example:

<pr oxy- scheme>
<servi ce- name>Ext endHt t pPr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<htt p-accept or >
<cl ass- name>com t angosol . coherence. rest. server. JettyH t pSer ver
</ cl ass- name>

</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

28-4 Developing Remote Clients for Oracle Coherence

http://www.eclipse.org/jetty/

A

REST Configuration Elements

This appendix provides a detailed reference of the REST configuration deployment
descriptor and includes a brief overview of the descriptor.

This appendix includes the following sections:
e REST Configuration File

e Element Reference

A.1 REST Configuration File

The REST configuration deployment descriptor specifies the configuration for the
REST implementation. The default name of the descriptor is coher ence-r est -
confi g. xm and must be found on the classpath. The name can be overridden using
the coher ence. rest. confi g system property. For example:

- Dcoherence. rest. confi g=MyConfi g. xm

The REST configuration deployment descriptor schema is defined in the coher ence-
rest-config. xsd file. The XSD file is located in the root of the coher ence. j ar
library and at the following Web URL:

http://xm ns. oracl e. com coherence/ coherence-rest-config/1.1/
coherence-rest-config. xsd

The <r est > element is the root element of the configuration file and typically
includes an XSD and Coherence namespace reference and the location of the
coher ence-rest - confi g. xsd file. For example:

<?xm version='1.0""?>
<rest xmns:xsi="http://ww. w3.org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence-rest - config"

xsi: schemaLocation="http://xn ns. oracl e. conf coher ence/ coherence-rest-config
coherence-rest-config. xsd">

REST Configuration Elements A-1

http://xmlns.oracle.com/coherence/coherence-rest-config/1.1/coherence-rest-config.xsd
http://xmlns.oracle.com/coherence/coherence-rest-config/1.1/coherence-rest-config.xsd

Element Reference

A.2 Element Reference

Table A-1 lists all non-terminal REST configuration elements.

Note:

¢ The schema located in the coher ence. j ar library is always used at run
time even if the xsi : schemalLocat i on attribute references the Web URL.

e The xsi : schennLocat i on attribute can be omitted to disable schema

validation.

¢ When deploying Coherence into environments where the default character
set is EBCDIC rather than ASCII, ensure that the deployment descriptor
file is in ASCII format and is deployed into its run-time environment in the

binary format.

Table A-1 REST Configuration Elements

Element Used In
aggregator aggregators
aggregators rest

engine query-engines
marshaller resource
processor processors
processors rest

query resource
query-engines rest
resource resources
resources rest

rest root element

A.2.1 aggregator

Used in: aggregators

Description

The aggr egat or element is used to define custom aggregators that are used to
aggregate data in a cache. Each aggr egat or element must contain a single binding
between a name and an aggregator class or aggregator factory class.

Elements

Table A-2 describes the subelements of the aggr egat or element.

A-2 Developing Remote Clients for Oracle Coherence

Element Reference

Table A-2 aggregator Subelements
|

Element Required/ Optional Description

<narme> Required Specifies a name to be used in a REST URL that is bound to an
aggregator class or aggregator factory class.

<cl ass> Required Specifies the fully qualified name of a custom aggregator class or
custom aggregator factory class that is bound to a name. The class
must implement the com t angosol . uti | . EntryAggr egat or
or
com t angosol . coherence. rest. util.aggregator. Aggre
gat or Fact or y interfaces, respectively.

A.2.2 aggregators

Used in: rest

Description

The aggr egat or s element contains any number of custom aggregator definitions.

Elements

Table A-3 describes the subelements of the aggr egat or s element.

Table A-3 aggregators Subelements
. __|

Element Required/ Optional Description
<aggregator> Required Specifies a single binding between a name and an aggregator class
or aggregator factory class.
A.2.3 engine

Used in: query-engines

Description

The engi nes element contains a single binding between a name and a query engine
implementation class. Custom query engines must implement the

com t angosol . coherence. rest. query. Quer yEngi ne and

com t angosol . coherence. rest. query. Query interfaces. Custom
implementations can also extend the

com t angosol . coherence. rest. query. Abstract Quer yEngi ne base class
which provides useful methods for parsing query expressions and handling parameter
bindings.

Elements

Table A-4 describes the subelements of the engi ne element.

Table A-4 engine Subelements
- |

REST Configuration Elements A-3

Element Reference

Table A-4 (Cont.) engine Subelements
-

Element Required/ Optional Description
<nane> Required Specifies a name for the query engine.
<cl ass- nane> Required Specifies the fully qualified name of the query engine

implementation class.

A.2.4 marshaller

Used in: resource

Description

The marshaller element contains bindings between cache entry key/value classes and
a marshaller class that is used to marshall and unmarshall instances of those classes.

Elements

Table A-5 describes the subelements of the mar shal | er element.

Table A-5 marshaller Subelements
]

Element

Required/ Optional Description

<medi a-type>

<cl ass- name>

Required Specifies the name of the medium that is used to for marshalling.
Coherence provides default implementations for XML and JSON
data output.

Required Specifies the fully qualified name of a custom class that
implements the
com t angosol . coherence. rest.i o. Marshal | er interface.
The implementation is used to marshall/unmarshall cache entry
values that are stored in the cache. Marshallers are configured for
each object type and media type.

A.2.5 processor

Used in: processors

Description

The pr ocessor element is used to define custom entry processors that are used to
process data in a cache. Each pr ocessor element must contain a single binding
between a name and the processor factory class.

Elements

Table A-6 describes the subelements of the pr ocessor element.

Table A-6 processor Subelements
|

A-4 Developing Remote Clients for Oracle Coherence

Element Reference

Table A-6 (Cont.) processor Subelements
|

Element

Required/ Optional Description

<nane>

<cl ass- nanme>

Required Specifies a name to be used in a REST URL that is bound to a
processor factory class.

Required Specifies the fully qualified name of a custom processor factory
class that is bound to a name. The class must implement the
com t angosol . coherence.rest. util.processor. Proces
sor Fact or y interface.

A.2.6 processors

Used in: rest

Description

The pr ocessor s element contains any number of custom processor definitions.

Elements

Table A-7 describes the subelements of the pr ocessor s element.

Table A-7 processors Subelements
. ___|

Element Required/ Optional Description
<processor> Required Specifies a single binding between a name and a processor factory
class.
A.2.7 query

Used in: resources

Description

The quer y element defines a named query for a resource. Named queries allow
configured query expressions to be executed by name in the REST URL.

GET http://host:port/cacheName/ nanedQuer y?par anl=val uel, par anP=val ue2. ..

A named query definition consists of a binding between a query name and the query
expression to execute. Multiple named queries can be configured for a resource. The
query element supports the following attributes:

* max-resul t s —Specifies how many results are returned to the client. Note that
this attribute does not limit the number of entries that are returned from a cache.
This value overrides the <resource> element's max- r esul t s attribute.

* engi ne — Specifies a query engine implementation that is responsible for executing
query expressions against a cache. The default value if the attribute is not specified
is DEFAULT, which indicates a query expression must be specified as a URL-
encoded CohQL expression (the predicate part of CohQL). For details on
configuring a custom query engine implementation, see the <query-engines>
element.

REST Configuration Elements A-5

Element Reference

Elements

Table A-8 describes the subelements of the quer y element.

Table A-8 query Subelements
|

Element Required/ Optional Description

<name> Required Specifies a name for the query.

<expr essi on> Required Specifies a query expression that is bound to the query name.
A.2.8 query-engines

Used in: rest

Description

The quer y- engi nes element contains any number of custom query engine
definitions. A query engine executes query expressions against a cache. Direct queries
and named queries rely on an underlying query engine to perform their queries. A
default query engine is provided for executing query expression that are specified as a
URL-encoded CohQL expression (the predicate part of CohQL). However, custom
query engines can be defined as required.

Elements

Table A-9 describes the subelements of the quer y- engi nes element.

Table A-9 query-engines Subelements
. ___|

Element Required/ Optional Description

<engine> Required Specifies a single binding between a name and a query engine
implementation class.

A.2.9 resource

Used in: resources

Description

The r esour ce element provides the metadata that is used to marshall and
unmarshall cache entries. The metadata includes a single binding between a cache
name and cache entry key and value classes.

The following attributes are available:

* nane - Specifies an alias for the <cache- nane> element when the name is not
ideal for the REST URL path segment. The value defaults to the value of the
<cache- nanme> element if a value is not specified.

e max-resul ts —Specifies how many results are returned to the client. Note that
this attribute does not limit the number of entries that are returned from a cache.
This value is overridden if a max- r esul t s attribute is also defined within the
<quer y> or <di r ect - quer y> element.

A-6 Developing Remote Clients for Oracle Coherence

Element Reference

Elements

Table A-10 describes the subelements of the r esour ce element.

Table A-10 resource Subelements

Element

Required/ Optional

Description

<cache- name>

<key-cl ass>
<val ue-cl ass>

<key-converter>

<marshaller>

<query>

Required

Optional
Optional

Optional

Optional

Optional

Specifies the name of the cache exposed by this resource. The cache
must be defined in the cache configuration file.

Specifies the type of the entry keys stored in this cache.
Specifies the type of the entry values stored in this cache.

Specifies the fully qualified name of a class that implements the
com t angosol . coher ence. rest. KeyConvert er interface.
The class is used to convert cache entry keys to string and string
representations of the keys that are used in the REST URL into an
appropriate object instance that can be used to access cache entries.
The

com t angosol . coher ence. rest . Def aul t KeyConverter
class is used by default if no value is provided. The default class
offers reasonable to string and from string conversions for Java
primitives, dates, and UUIDs. See Java API Reference for Oracle
Coherence for details.

Specifies the fully qualified name of a class that implements the
com t angosol . coherence. rest.i o. Marshal | er interface.
The class is used to marshall/unmarshall cache entry values that
are stored in a cache. Coherence provides default implementations
for XML and JSON data output.

Specifies the configuration information for named queries, which

allow configured query expressions to be executed by name in the
REST URL.

REST Configuration Elements A-7

Element Reference

Table A-10 (Cont.) resource Subelements
|

Element Required/ Optional Description

<direct-query> Optional Specifies the configuration information for direct queries, which
allow query expressions to be included in the REST URL as the
value of the parameter ¢.

CGET http://host:port/cacheName?q=query

The following attributes are available:

¢ enabl ed — Specifies whether a resource supports direct
queries. Valid values are t r ue and f al se. The default value is
fal se.

* max-resul t s - Specifies how many results are returned to the
client. Note that this attribute does not limit the number of
entries that are returned from a cache. This value overrides the
<r esour ce> element's max- r esul t s attribute.

* engi ne — Specifies a query engine implementation that is
responsible for executing query expressions against a cache.
The default value if the attribute is not specified is DEFAULT,
which indicates a query expression must be specified as a URL-
encoded CohQL expression (the predicate part of CohQL). For
details on configuring a custom query engine implementation,
see the <query-engines> element.

A.2.10 resources

Used in: rest

Description

The resources element contains any number of resource definitions. A resource
definition provides the metadata that is used to marshall and unmarshall cache
entries.

Elements

Table A-11 describes the subelements of the r esour ces element.

Table A-11 resources Subelements
-]

Element Required/ Optional Description

<resource> Required Specifies a single binding between a cache name and cache entry
key and value classes.

A.2.11 rest

root element

Description

The rest element is the root element of the coher ence-r est - confi g. xm file which
is used to configure the Coherence REST implementation. The implementation uses

A-8 Developing Remote Clients for Oracle Coherence

Element Reference

REST Web services to allow remote clients to access data in the cluster over HTTP and
does not require the use of POF serialization.

Elements

Table A-12 describes the subelements of each r est element.

Table A-12 rest Subelements
]

Element Required/ Optional Description

<resources> Optional Specifies any number of resource definitions that provide the
metadata that is used to marshall and unmarshall cache entries.

<processors> Optional Specifies any number of custom processor definitions that are used
to process data in a cache.

<aggregators> Optional Specifies any number of custom aggregator definitions that are

<query-engines>

used to aggregate data in a cache.

Optional Specifies any number of custom query engine definitions. A query
engine is responsible for executing queries.

REST Configuration Elements A-9

Element Reference

A-10 Developing Remote Clients for Oracle Coherence

B

Integrating with F5 BIG-IP LTM

This appendix provides instructions for using the F5 BIG-IP Local Traffic Manager
(LTM) hardware load balancer to balance Coherence*Extend client connections.
Instructions are also included to use the BIG-IP system to off load SSL processing.

The instructions are specific to using the BIG-IP Configuration Utility as it pertains to
Coherence*Extend setup. Refer to the Help included with the utility for complete
usage instructions. In addition, the instructions were created based on BIG-IP LTM
10.2.1 and may not be accurate for future releases of BIG-IP LTM.

This appendix includes the following sections:

® Basic Concepts

* Creating Nodes

e Configuring a Load Balancing Pool

¢ Configuring a Virtual Server

¢ Configuring Coherence*Extend to Use BIG-IP LTM
* Using Advanced Health Monitoring

¢ Enabling SSL Offloading

B.1 Basic Concepts

The F5 BIG-IP LTM is a hardware device that sits between one or more computers
running Coherence*Extend clients (client tier) and one or more computers running
Coherence*Extend proxy servers (proxy tier). The LTM spreads client connections
across multiple clustered proxy servers using a broad range of techniques to secure,
optimize, and load balance application traffic.

Figure B-1 shows a conceptual view of the BIG-IP system that is setup between
external network clients and internal network servers.

Integrating with F5 BIG-IP LTM B-1

Creating Nodes

Figure B-1 Conceptual View of F5 BIG-IP LTM

EHEE

(

Eximal Nabhaori e '

e — — | — 1

B.2 Creating Nodes

A node is a logical object on the BIG-IP system that identifies the IP address of a
physical resource on the network. For Coherence*Extend, configure a node for each
computer on the internal network that hosts one or more proxy servers.

To create a node:
1. Log into the BIG-IP Configuration Utility.
2. From the Main tab of the navigation pane, expand Local Traffic and click Nodes.

3. In the upper-right corner of the screen, click Create. The New Node screen
displays.

4. For the Address setting, type the IP address of the node.
5. Specify, retain, or change each of the other settings.

6. Click Finished.

Figure B-2 shows an example node configuration.

B-2 Developing Remote Clients for Oracle Coherence

Configuring a Load Balancing Pool

Figure B-2 Example Node Configuration

[alals!

g e

= begipd B00.coher: ¥

£ = O [obeps 00,149,599 xui 7
[eshenmcr Cowe CJoa st e Cgor Cser Cweh Csemork Cdac e Csslain O windoan w [Othar Sookmarky

=

A=

&
&9

=

Locsl Teaffie o Hoded | Hode List
vl o - Peogetel
whelzn—a
Traflic Susmiry Coteanral Propesties
Prrimancs Aaadrens 19206812
LA M4 |
Cashboard Partsion ‘Commen
Avmlabdiy i Avallabls (Enabled) - Hode sddness i avalabie
Templates and Wizuids
Craate ComaTon Sppic aton Tl Hadits Loniters L L]
e Gustest Gonfciont]
Local Tradhe) Erabled (A2 raflc aliowed)
Sl) Deaatled [Cnly rEabal oF BB CONMILSCRS Miowed)
Haatwork Map L Fomed Ofine (Only acive connechons alowsd)
Virlial SEnvss
o atisn
Prabid
il gty | ot Speciic o8]
(LT 2]
Pud ALt Adiabs
* iomp p paNway o
hesdians, Sapbect Moriiers (== hifpes_443 D
. |lomp L]
idgyralory [> ol _sasrees H "
sump_dca
Traflc Class
— Availabany Requinemen! | 8] Mot Monions)
550 Canfoay Rato 1
Cotnapclon Limt a
Mtk

Coriigar e ~etworh plerments o
s and peRcReng .

"wd-m:;_'btlut'_;

B.3 Configuring a Load Balancing Pool

A load balancing pool is a group of logical devices, such as proxy servers, that receive
and process traffic. Instead of sending client traffic to the destination IP address
specified in the client request, the BIG-IP system sends the request to any of the
servers that are members of that pool. This helps efficiently distribute the load on your
server resources.

When you create a pool, you assign pool members to the pool. A pool member is a
logical object that represents a server endpoint on the network. For Coherence*Extend,
create a pool member for each proxy server JVM running on your proxy tier
computers.

The specific pool member to which the BIG-IP system chooses to send the request is
determined by the load balancing method that you have assigned to that pool. A load
balancing method is an algorithm that the BIG-IP system uses to select a pool member
for processing a request. For example, the default load balancing method is Round
Robin, which causes the BIG-IP system to send each incoming request to the next
available member of the pool, thereby distributing requests evenly across the servers
in the pool.

The following topics are included in this section:

¢ Creating a Load Balancing Pool

Integrating with F5 BIG-IP LTM B-3

Configuring a Load Balancing Pool

* Adding a Load Balancing Pool Member

B.3.1 Creating a Load Balancing Pool
To create a load balancing pool:
1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. In the upper-right corner of the screen, click Create. The New Pool screen displays.
4. From the Configuration list, select Advanced.

5. For the Name setting, type a name for the pool.

6. Specify, retain, or change each of the other settings.

7. Click Finished.

Figure B-3 demonstrates an example pool configuration.

Figure B-3 Example Pool Configuration

Calalla" g)
| J LG - g B00.cohere 3) |

= = O B baps 00, 149,59, 90wl e
Clcohermer [dow Cdoa Cime Cimr Clere COwer Ciwes Clebwot [

f | unit- Axsive
S

Lol Traffie = Poodi - Pl Lis

.] v
-~ Welan=w

Trali; Susrarny Germral Properties
Peslommances

L

Ma=a

LT PariSon Gammen

Duaihboandg Apilabiity @ Avalabis [Erabsed) « The pood s aadlabie
Configuratian:

Termplates drd Witards
¥ Creais comimon appic aton rafc ALt Avaiatig
P R T] En 11 “prena El

Local Trastic ., [awway_jemp
it S
Haatansrk g s

Virlial Servrs . .

u
S e

Trafc Class
SHATS
55L Canloaiy

Mitaork

Crdipr e metameh. plorrarniy b
roasng and vwiching -

B-4 Developing Remote Clients for Oracle Coherence

Configuring a Load Balancing Pool

B.3.2 Adding a Load Balancing Pool Member

To add pool members to load balancing pool:

1. From the Members tab, click the number shown. This lists the existing members of
the pool.

2. In the right side of the screen, click Add. The New Pool Member screen displays.
3. In the Address box, select Node List and select an IP address.

4. In the Service Port box, type the port number on which the corresponding proxy
server is listening.

5. Retain or change each of the other settings.

6. Click Finished.

Figure B-4 shows an example pool configuration. It shows two proxy server pool
members running on the previously created node and listening on ports 7100 and
7077, respectively. Additionally, the pool is configured to use a Least Connections load

balancing policy.

Figure B-4 Example Pool Members

LTl N
| i G- E - begipd B0.coher: ¥ Yool
£ O G s 00, 140,50,90 i £ | A

Ll ohermer Cloee Cdaa Cime Cime Chere et Clweb ClMetwork [Mac Cllnex ClSclarin []Windoan ® L] Other Bookmarks

Local Tralfie = Posli © Poal List

Lo

Prriormancs Losd Batancing Methad | Lottt Corsinen. imeesbern -
SLatise
. Py G ACEaton bl o
Cuanboan
Cupdate)
Iﬂ Templates and Wisards Curent Membsrs :"M‘;; |
b Crasts coumamon Spolc ston rafc — : s 5 & |
i s o v | Stk 5 b Hide Hume = Rabo Friastity Geeusp Confacion Lisa
B @ 192,988 1 27100 1 0 [Rakive) =] |
@ Local Trafic 0 @ 192, 1681 27007 1 0 [Masrvm) e |
Htbwork Map { Tnabie) Deatie) '
[nable Dinable Mgmove |
Virlial Senvers |
Priiiea :
gled
Pools
Heeting
oniiens !
Trafc Class
SHATS
551 Cambeatid
Metwork
_@ Carligure setwork, plerment ot
s g s pacheng *

Integrating with F5 BIG-IP LTM B-5

Configuring a Virtual Server

B.4 Configuring a Virtual Server

A virtual server is a trafficcmanagement object on the BIG-IP system that is
represented by an IP address and port. Clients on an external network can send
application traffic to a virtual server, which then directs the traffic according to your
configuration instructions. The main purpose of a virtual server is often to balance
traffic load across a pool of servers on an internal network. Virtual servers increase the
availability of resources for processing client requests. For Coherence*Extend, you
should configure a virtual server that directs traffic to the pool of proxy servers that
you configured earlier.

To create a virtual server:

8.

9.

Log into the BIG-IP Configuration Utility.

From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

From the upper right portion of the screen, click Create. The New Virtual Server
screen displays.

In the Name box, type a name for the virtual server.

In the Destination box, assign an external IP address on the BIG-IP device and in
the Service Port box, specify a listen port. This is the IP address and port to which
Coherence*Extend clients connect.

From the SNAT Pool list, select Automap.
Select the pool created earlier in the Default Pool drop-down box.
Retain or change each of the other settings.

Click Finished.

Figure B-5 shows an example virtual configuration that listens for TCP/IP connections
on 10. 196. 21. 3: 7077.

B-6 Developing Remote Clients for Oracle Coherence

Configuring a Virtual Server

Figure B-5 Example Virtual Server

W 1 m-1me - w30 comer - N —

| £ | s 101495990/ 5

oA

ClCoheremce [oev Joa COmr COmx CJor mrm web lMeosork lmac Clumes [Solwis] Windows -ﬁmm-l

Local Tra®tic w» Virtudl Servers

Virtual Server Link

' Tipt: S Hoar O Metwork

Db R P
Addriss. 1018213
e pade orvraon. gy alon ke |
anid wyslem condguraion. Avatataty @
o masey Rolags (Waakc E
Virkeal Sarvany [1
Trpe | $tandard =]
Profiss |
- | Protecat (N
Poois ‘DeaCoanesol Prolle | Hora E
Hodes HTLM Conn Pool
Wi |
o TP Protie [Hon
TewSs Claws
i
- | FIP Pt (oo 4
051 Carleates S5L Protie |Chenty | bt
S5L Prodie {Sanar) | bira
Mabwork
Corfgure ratwon, pemanty b (Cuaraier Profle | bt
AT B A P J
SiP Prodile | Howe 5

vl

Additionally, this virtual server directs traffic to the configured pool as shown in

Figure B-6.

Integrating with F5 BIG-IP LTM B-7

Configuring Coherence*Extend to Use BIG-IP LTM

Figure B-6 Example Virtual Server Using a Configured Pool

[alals)

B G- - 00 %

£ B O b 10,199, 5890 50 T A
Gl Coherence oev Joa COme COmx CJowr CmeT web lMecwort [mac ClUmas [Solwis [Windows = [Other Baokmarky

f; I uni: Aciren
L
Man i

.-il_ Lol 2

- Welcoma

Local Traftic « Virtual Servers

Tinile Summmany Load Balancing
Pedormancs [onfarott Food axtend_ pasl b
SSHE
Deetadl Peruistence Protle hineat -
e TSET R
Faiisack Pumiswncs Peodie Hora -
i Tempinies ard 'Woards [updage |
e pade common appicaton Fafic . =
e T — Riubss \ Mutdge..)
(Hame
Local Trathc
Etﬁ Hiz ecoes o displary
LSy TP
i
Wikl Barvans HTTP Cluss Profies .
Pradiag Hare
[UsS0] o o ctaplary
Padis |
Moses
Mgty A
-
Tenfic Class
SHATS
951 Carpleami
M twnt
@ Crarligate ratatis samaedy b &

Pt B A P

B.5 Configuring Coherence*Extend to Use BIG-IP LTM

Coherence*Extend must be configured to use a BIG-IP LTM virtual server. The
configuration must be completed both on the cluster side and the client side cache

configuration files.

To configure Coherence*Extend to use BIG-IP LTM:

1.

2.

Open the proxy server's cache configuration file.

Edit the proxy scheme definition and specify a client load balancing strategy by
entering cl i ent within the <I oad- bal ancer > element. For example:

<pr oxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi ce</ servi ce- nane>
<| oad- bal ancer>cl i ent </ | oad- bal ancer >
<autostart>true</autostart>

</ proxy- schene>

Save and close the proxy server's cache configuration file. Repeat step 2 for
additional proxy servers.

Open the client's cache configuration file.

B-8 Developing Remote Clients for Oracle Coherence

Using Advanced Health Monitoring

5. In the <r enpt e- cache- schenme> element, list the IP address and port of the BIG-
IP virtual server. See “Configuring a Virtual Server”. In addition, specify a
<heart beat - i nt er val > element within the <out goi ng- mnessage- handl| er >
element. This causes the client to periodically send a heartbeat message over its
TCP/IP connection at the configured time interval. This is required to prevent the
BIG-IP device from disconnecting idle clients. For example:

<r enot e- cache- schene>
<scheme- nane>ext end- di r ect </ schene- nane>
<servi ce- nanme>Ext endTcpCacheSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<address>10. 196. 21. 3</ addr ess>
<port>7077</ port>
</ socket - addr ess>
</renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >
<heartbeat -i nt erval >5s</ heartbeat-interval >
</ out goi ng- message- handl er >
</initiator-config>
</ renot e- cache- schenme>

6. Save and close the client's cache configuration file.

B.6 Using Advanced Health Monitoring

A health monitor helps ensure that a server is in an operational state and able to
receive traffic. The BIG-IP system contains many different preconfigured health
monitors that you can associate with pools, depending on the type of traffic you want
to monitor.

For Coherence*Extend, you can use a TCP health monitor to monitor a pool of proxy
servers. This type of monitor marks a proxy server up if the BIG-IP device can
establish a TCP/IP connection with the proxy server. While this is a fairly decent
indication that a proxy server is functional, it does not guarantee that the proxy server
can actually process client traffic. For more detailed monitoring, BIG-IP enables you to
create custom health monitors that send a Coherence*Extend ping request to a proxy
server and validate that an appropriate response is returned. This ensures that the
proxy server is up and able to process client traffic.

Note:

BIG-IP LTM monitors do not support SSL over TCP. Health monitoring
checks, such as ping, are sent as clear text. To ensure all communication with a

proxy server is secure, use SSL offloading. For details, see Enabling SSL
Offloading

The following topics are included in this section:
¢ Creating a Custom Health Monitor to Ping Coherence
¢ Manually Creating a Custom Health Monitor to Ping Coherence

* Associating a Custom Health Monitor With a Load Balancing Pool

Integrating with F5 BIG-IP LTM B-9

Using Advanced Health Monitoring

B.6.1 Creating a Custom Health Monitor to Ping Coherence

To create a custom Coherence*Extend health monitor that sends a Coherence*Extend
ping request to a proxy server to ensure that it is operational:

1.

2.

8.

Log into the BIG-IP Configuration Utility.

From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

Enter a name for the monitor in the Name box.
Select TCP in the Type drop-down box.

Enter the following in the Send String box:

1 x07\ x00\ x03\ x00\ x00\ x42\ x00\ x40

Enter the following in the Receive String box:

\ x09\ x00\ x04\ x03\ x00\ x42\ x00\ x03\ x64\ x40

Click Finished.

Figure B-7 shows an example custom Coherence*Extend health monitor configuration.

B-10 Developing Remote Clients for Oracle Coherence

Using Advanced Health Monitoring

Figure B-7 Example Coherence*Extend Ping Health Monitor

[e ¥ e s !
| (|5 BC-IPE - bhppIF00.0ahere %)

= = O 5 g 1014959000 0

ol Coherency Cloew Cloa Cape Comr Clorr DOmer Dlwed Clmetwork CMac Cltmen [Solwis [windows =] Other

Local Trashc w Moniom

Cwaribew i =
Arcenn vlaintes perforarea

rmpha i bk b hasipdial nosis

Froperies

: Ganaval Properiies
Tempisles s Warards
- Hame whesred_péng
a T B T e Wele 1 B . -
ety bee conligue stons Parwan e
@ Loenl Tradfie Tree e
— PO |
Wikl Sarvan Inieral 5 seconds
i Thmeeonn 18 " seconds
iRy
PR T LT R L h T T L AT AT L]
Paol
Send SFng
Mo
Wiy
i nild R Wi] 4 £
Tenle: Clidd
Recatve Sring
SMATE
SEL Carvlioanss
M e Reoetee Disable Sring
ﬁ Caniguih Febfarirl dlmreisti bl
reaing o il hare)
Ravaria Oivea El N
Sysam 0o
Ives Bl ho
Configurs BY1UNT SCCHLE, hagh .Tm]
e iy fefealEe B S
[upsane | Dbt)

B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence

Solutions that use BIG-IP versions prior 10.2.1 must manually configure an external
health monitor. To do so, create an executable shell script called ext end_pi ng in
the / usr/ bi n/ noni t or s directory of the BIG-IP device with the following contents:

#!' /'bin/bash

HHHRH R R R R R R
EXTERNAL MONI TOR FOR COHERENCE* EXTEND

##H INPUTS:

#itt $1 The 1PV6 formatted | P address of the pool menber to test

#itt $2 The port nunber of the pool nenber to test

#itt $3+ Wite space delinited parns as listed in the nonitor "args"

Integrating with F5 BIG-IP LTM B-11

Using Advanced Health Monitoring

QUTPUTS:
#i# If null is returned, the menber is "down"
i If any string of one or nore characters is returned, the menber is "up"

HHHHH R R R R

| P=${1:-"127.0.0.1"}

| P=${I P##*:} # This removes the leading ::ffff:
PORT=${2: -"80"}

TI MEQUT=${ 3: - 1}

SLEEP=${4: - 1}

PI D_FI LE="/var/run/ext end_pi ng. $I P. $PORT. pi d"
HEX_REQUEST="0700030000420040"
HEX_RESPONSE="09000403004200036440"

Hit#

Term nate existing process, if any
Hit#

if [-f $PIDFILE]

t hen

kill -9 “cat $PID FILE > /dev/null 2>&1
fi
echo "$$" > $PID_FILE

Hit#

##H Ping the server and return a user friendly result

Hit#

RESULT="/bi n/ echo "$HEX REQUEST" | /usr/bin/xxd -r -p | fusr/bin/nc -i \
$SLEEP -w $TI MEQUT $I P $PORT | /usr/bin/xxd -p | /bin/grep \
"$HEX_RESPONSE" 2> /dev/nul|®

if ["$RESULT" !="" 1 ; then

/'bin/echo "$I P: $PORT is \"UP\""
fi

rm-f $PID FILE

To configure BIG-IP to use the ext end_pi ng script:

1. From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

2. In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

3. Enter a name for the monitor in the Name box.

4. Select External in the Type drop-down box.

5. Enter the following in the External Program box:
[usr/bin/ noni tor s/ ext end_pi ng

6. Click Finished.

Figure B-8 shows an example external Coherence*Extend health monitor
configuration.

B-12 Developing Remote Clients for Oracle Coherence

Using Advanced Health Monitoring

Figure B-8 Example Coherence*Extend Health Monitor Implemented in a Shell Script

[alals)
S

| |57 MG IPE - g 1300 Cobe 1 .
£ O S e 101495990 00 7| A&

el

caheremce Joee Jow Dee COex o Qs Dwe Dseosset uae une 5ot [wWindows = (L] Geher Beobmarks

Logal Traffic » Monfions
i_,l_ hrri 0 - Properies
-l 4] Acomus viataScl performances
R B i 1 P v
el Propes ribes
Tamipduie s and Wirards
H — Hame e
e et i e | B
ard wpnbe corlgurston, Parison Coman
ﬁ_ﬁ Local Tratfic T Exema
Katwori Mg Conliguration: E
Virksl Stk Mo 5 SHOORE
Pro&
e Tirmsout 5 SB00NEE
iRbirs
Exieral Program Asrbivmosiiorsiaxiend_ping
Paols
Hodes v
Moy Mara Witk
Tt Cladd —
[waa
ENATE
Varabley
SEL Carvloans
Muhwoek o
-
@ Corfip e rabamn, gemeety o i.[""‘.t: J"""“..;
roating and alching
7 % \ |
| Unsdane || Dalere L

g e

Chprlpare By AW B, Tah
iranlabilly, Foportiny, B more

B.6.3 Associating a Custom Health Monitor With a Load Balancing Pool

Custom health monitors must be associated with a load balancing pool. After creating
a custom Coherence*Extend monitor, associate it with the Coherence*Extend load
balancing pool.

To associate a custom health monitor with a load balancing pool:
1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. Click the name of your Coherence*Extend pool. The Pool screen displays.

4. Select the name of your custom Coherence*Extend health monitor in the Health
Monitors box.

5. Click Update.

Figure B-9 shows a Coherence*Extend pool that uses a custom health monitor.

Integrating with F5 BIG-IP LTM B-13

Enabling SSL Offloading

Figure B-9 Associating a Coherence*Extend Pool With a Custom Health Monitor

Y10

| 5 EG-IPE - g0t cabere % |

— i

£ O S e 101495990 00 7| A&
caheremce Joee DJow Dee Cex o s Dwe Dseoseet Cuae Cune [ieterin [JwWindows = (L] Geher Beobmarkr

3506 coPurprcs orack com

Mhed
Local Traffie # Pools: - Pool List
=, Db £ - Propeie
Tl o] Accwss sisascs pariormance
FRph. el Ik b Pplall Ronis.
Ganeval Properies
= Tarmipiuies ared Wzards
z Croale common appde aten b afle - ol
g wpviem conlgarston. Pantan Comman
Traffic Aypiateloy P Avalabis {Enalied) - The pool is awalable
ﬁ Kty Mig Conhguration: | ik]
Virksal Sarvens Aston Aol BB
Prosies wend gl || [owewayeme 2
palth Mk e i |hEp
iRbit \ |
[==) |hips_ 443
Poaols it
Hodes e oy -
[updane | Delire
Mgty
Teafc Class :
SMATS |
551 Camleawi |
Hetwark a
Canfigure rataors ity bor

AR B WA

i System

Cariiguig § i Bk, el &
avalabify reporiing. and more £

B.7 Enabling SSL Offloading

Coherence*Extend can be configured to use SSL to secure communication between
client and proxy server processes. However, this confidentially comes at a price.
Specifically, enabling SSL dramatically increases CPU utilization in the proxy tier and
increases the latency of each request. BIG-IP SSL Acceleration frees up proxy servers
from the difficult task of encrypting and decrypting data secured for privacy reasons.
CPU-intensive decryption is migrated onto a high-performance device designed to
handle SSL transactions more efficiently. This approach is known as SSL offloading.

The following steps are required to enable SSL offloading and should be completed in
the order presented:

1. Enable SSL in the Coherence*Extend client cache configuration file. See Securing
Oracle Coherence for details on configuring an extend client to use SSL.

2. Import the Server's SSL Certificate and Key
3. Create the Client SSL Profile

4. Associate the Client SSL Profile

B-14 Developing Remote Clients for Oracle Coherence

Enabling SSL Offloading

B.7.1 Import the Server's SSL Certificate and Key
To import the server's SSL certificate and key to the BIG-IP system:
1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and hover over
SSL Certificates then select Import. The SSL Certificate screen displays.

3. From the Import Type drop-down box, select PKCS12.

4. Enter a name for the certificate in the Certificate Name box.
5. Click Choose File and browse to the server's PKCS12 file.
6. Enter the password for the PKCS12 file.

7. Click Import.

Figure B-10 shows an example server SSL certificate configuration:

Figure B-10 Example SSL Certificate Configuration in BIG-IP System

oy — Y
| | BG-1PE - bigip3300.0ahere X o) |

£ O S e 101495990 00 7| A&
(oshensce oo Joa O GOm0 Qor Dwr Swe Cvewort Gus Dume Do [Owindoss = (] Oher Bookmarks |

f5 | Unit: Aciies

|
wain | Hels | sApea | Lotal Trashe » S50 Cart |
|
Drveribew |
Acceun wlEat petkrranca |
R, 3 ks 15 Pl ol |
. General Properties I
= Tempiates and Waards —— |
T T
s api e corigue siern Carbonth Sutjiond) e ¥l |
]
@ Loeal Traffie Cartficats Propries |
Metatei Mag Expires Fasb 5, 2021 |
1]
iRkl S Plre Vi 3 |
Erofies Sasrial Mumbss F {
Recters e I
Qrgarcraton: {vache
Paols Diwision: |
Sutject Liotality: Bulinegien |
Hodet Stale Or Prrince: WA, |
Wionitoes iy =
|
Tende Cladd : = |
M“Lﬂw D et |
SMATE Diwinion:
b Localty: I
SEL Cervdcanes Stale Or Peoinca: WA I
1]
Counary; us |
Mubwork |
@ p . - [imper) Raraw...) Txgort_) Dalete |
ot and vadching |
|
=

i
(CorigLe §YLWT SCCELE, high
i ety FRporing.) S

Integrating with F5 BIG-IP LTM B-15

Enabling SSL Offloading

B.7.2 Create the Client SSL Profile

To create the client SSL profile:

1. From the Main tab of the navigation pane, expand Local Traffic and hover over
Profiles then SSL and select Client. The Client SSL Profiles screen displays

2. In the upper-right corner of the screen, click Create. The New Client SSL profile

screen displays.

3. Enter a name for the client SSL profile in the Name box.

4. Click the Custom check box on the right.

5. Select the name of the server certificate that you imported earlier in both the
Certificate and Key drop-down boxes.

6. Click Finished.

Figure B-11 shows an example client SSL profile configuration:

Figure B-11 Example SSL Profile Configuration

P \
| | BG-1PE - igip3300.0ahere X o)

£ 2 O & e 10149, 5090 00

Gl coherence Cloev Clow Came Camx Corr CImer Clweb Clmeowork Camac G Umen [Solwis

fs | Unit: Aciies

Local Trafhic

[— B - Properies

Arcaun dataSes, performancs
Fapha gl Ik i hiphal ool

Ganaral Properies
Tempiate s and Wizards
A T, T B B
i iy leem ol siorn. Pntient Proliia
Local Tewifie
fﬁ Congurasion: | Basie 5]
Wt Mg
(=1
Virisal Sarvers
Frafies b
iRy
Pooly
Nodes
Monilnes
Tente Cladd Opsions List
SMATE
SEL Caridoaias
Mubwork
D lypue g vabapa, glmeaety b
g and wadchang
Gt At i b
Syatem
Canernt Conieam
Cornlgue §yLWT BCOE, hgh
rw iy, PACOTIN. A Comboam Ravwocaron Lot
(GRL)
[Upstane) Dudere)

g, §

w Profilad : 35L Chant

Erubisd Opon
[BeaT insen gty Fagrant

[Disabie)

Awnldade Opiona

NOTCapEE NeUS CipRaT ChIngs Duy u-m.lmunm
Mool Bey SE0vD baslflar

Microsoh® IE 55Lv2 RSA pagsing

S50 wiry 080 client OH Bug woeioeoand

TLS D5 bug woamend

|, Enable

[windaw = (L] Gaher Bogkmarkr |

B-16 Developing Remote Clients for Oracle Coherence

Enabling SSL Offloading

B.7.3 Associate the Client SSL Profile

To modify the Coherence*Extend virtual server configuration to use the client SSL

profile:

1. From the Main tab of the navigation screen, expand Local Traffic and click Virtual

Servers. The Virtual Servers screen displays.

2. Click the name of the virtual server.

3. Select the name of the client SSL profile in the SSL Profile (Client) drop-down box.

4. Click Update.

Figure B-12 shows an example virtual server configuration that uses a client SSL

profile:

Figure B-12 Example Virtual Server Configuration That Includes a Client SSL Profile

(a0t N 3
| J NG - g a00ahere

L N R TR N R R TR
caherrmce Joee Jow Dee COex o Qs Dwe Dseowset uae Cune 5ot [wWindows = (L] Geher Bemarks

ﬁ; | Unit: Aciies

Drveribew

Arcaun dataSes, performancs
Fapha. aral i i el waos

g, §

== - - - - - - o=

- Ganaral Properies
3 T I Mame exiend_ss!
e T e Y B
e i bee. ol el Panpan Comman
Type: Ehwioas O pwtwork
Laeal Traifie
@ e Address:| 10.1599.214
ittt Mag
Vifkaal Sarark Serdcy Port T oweer]
[— Awhiatulty @
by Siaw Eraded E
Configuration: | B E
Nodes
T Sandard
WS
Tenfle: Cladd Protocal (e
SMATE OeaConnec Prolie M
SEL Cervicanes HTLM Conn Poal [rione T2
— HTTP Protie | Homs
a e tigurn ratapa, gty o
raing and uadching FTF Probia ﬁ
.ﬂ ® ?HWM‘ BYLWNT BCOHE. hagn :mm:l::m :HJHJ“ ;
e ket FRpOrng. B Sr e
e (toone _8) .
v
SIF Prodile Wore 9‘

Integrating with F5 BIG-IP LTM B-17

Enabling SSL Offloading

B-18 Developing Remote Clients for Oracle Coherence

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1)
	Other Significant Changes in This Document for 12c (12.2.1)

	Part I Getting Started
	1 Introduction to Coherence*Extend
	1.1 Overview of Coherence*Extend
	1.2 Extend Clients
	1.3 Extend Client APIs
	1.4 POF Serialization
	1.5 Understanding Extend Client Configuration Files
	1.6 Non-Native Client Support
	1.6.1 REST Client Support
	1.6.2 Memcached Client Support

	2 Building Your First Extend Application
	2.1 Overview of the Extend Example
	2.2 Step 1: Configure the Cluster Side
	2.3 Step 2: Configure the Client Side
	2.4 Step 3: Create the Sample Client
	2.5 Step 4: Start the Cache Server Process
	2.6 Step 5: Run the Application

	3 Configuring Extend Proxies
	3.1 Overview of Configuring Extend Proxies
	3.2 Defining Extend Proxy Services
	3.2.1 Defining a Single Proxy Service Instance
	3.2.2 Defining Multiple Proxy Service Instances
	3.2.3 Defining Multiple Proxy Services
	3.2.4 Explicitly Configuring Proxy Addresses
	3.2.5 Disabling Cluster Service Proxies
	3.2.6 Specifying Read-Only NamedCache Access

	3.3 Defining Caches for Use By Extend Clients
	3.4 Disabling Storage on a Proxy Server
	3.5 Starting a Proxy Server

	4 Configuring Extend Clients
	4.1 Overview of Configuring Extend Clients
	4.2 Defining a Remote Cache
	4.3 Using a Remote Cache as a Back Cache
	4.4 Defining Remote Invocation Schemes
	4.5 Connecting to Specific Proxy Addresses
	4.6 Detecting Connection Errors
	4.7 Disabling TCMP Communication

	5 Advanced Extend Configuration
	5.1 Using Address Provider References for TCP Addresses
	5.2 Using a Custom Address Provider for TCP Addresses
	5.3 Load Balancing Connections
	5.3.1 Using Proxy-Based Load Balancing
	5.3.1.1 Understanding the Proxy-Based Load Balancing Default Algorithm
	5.3.1.2 Implementing a Custom Proxy-Based Load Balancing Strategy

	5.3.2 Using Client-Based Load Balancing

	5.4 Using Network Filters with Extend Clients

	6 Best Practices for Coherence*Extend
	6.1 Do Not Run a Near Cache on a Proxy Server
	6.2 Configure Heap NIO Space to be Equal to the Max Heap Size
	6.3 Configure Proxy Service Thread Pooling
	6.3.1 Understanding Proxy Service Threading
	6.3.2 Setting Proxy Service Thread Pooling Thresholds
	6.3.3 Setting an Exact Number of Threads

	6.4 Be Careful When Making InvocationService Calls
	6.5 Be Careful When Placing Collection Classes in the Cache
	6.6 Configure POF Serializers for Cache Servers
	6.7 Configuring Firewalls for Extend Clients

	Part II Creating Java Extend Clients
	Part III Creating C++ Extend Clients
	7 Introduction to Coherence C++ Clients
	7.1 Overview of Coherence for C++
	7.2 Setting Up C++ Application Builds
	7.2.1 Setting up the Compiler for Coherence-Based Applications
	7.2.2 Including Coherence Header Files
	7.2.3 Linking the Coherence Library
	7.2.4 Setting the run-time Library and Search Path
	7.2.5 Deploying Coherence for C++

	8 Configuration and Usage for C++ Clients
	8.1 General Instructions
	8.2 Implement the C++ Application
	8.3 Compile and Link the Application
	8.4 Configure Paths
	8.5 Obtaining a Cache Reference with C++
	8.6 Cleaning up Resources Associated with a Cache
	8.7 Configuring and Using the Coherence for C++ Client Library
	8.7.1 Setting the Configuration File Location with an Environment Variable
	8.7.2 Setting the Configuration File Location Programmatically

	8.8 Operational Configuration File (tangosol-coherence-override.xml)
	8.9 Configuring a Logger

	9 Using the Coherence C++ Object Model
	9.1 Using the Object Model
	9.1.1 Coherence Namespaces
	9.1.2 Understanding the Base Object
	9.1.3 Automatically Managed Memory
	9.1.3.1 Referencing Managed Objects
	9.1.3.2 Using handles
	9.1.3.2.1 Assignment of handles
	9.1.3.2.2 Dereferencing handles

	9.1.3.3 Managed Object Instantiation

	9.1.4 Managed Strings
	9.1.4.1 String Instantiation
	9.1.4.2 Auto-Boxed Strings

	9.1.5 Type Safe Casting
	9.1.5.1 Down Casting

	9.1.6 Managed Arrays
	9.1.7 Collection Classes
	9.1.8 Managed Exceptions
	9.1.9 Object Immutability
	9.1.10 Integrating Existing Classes into the Object Model

	9.2 Writing New Managed Classes
	9.2.1 Specification-Based Managed Class Definition
	9.2.2 Equality, Hashing, Cloning, Immutability, and Serialization
	9.2.3 Threading
	9.2.4 Weak References
	9.2.5 Virtual Constructors
	9.2.6 Advanced Handle Types
	9.2.7 Thread Safety
	9.2.7.1 Synchronization and Notification
	9.2.7.2 Thread Safe Handles
	9.2.7.3 Escape Analysis
	9.2.7.3.1 Shared handles
	9.2.7.3.2 Const Correctness

	9.2.7.4 Thread-Local Allocator

	9.3 Diagnostics and Troubleshooting
	9.3.1 Thread-Local Allocator Logs
	9.3.2 Thread Dumps
	9.3.3 Memory Leak Detection
	9.3.4 Memory Corruption Detection

	9.4 Application Launcher - Sanka
	9.4.1 Command line syntax
	9.4.2 Built-in Executables
	9.4.3 Sample Custom Executable Class

	10 Using the Coherence for C++ Client API
	10.1 CacheFactory
	10.2 NamedCache
	10.3 QueryMap
	10.4 ObservableMap
	10.5 InvocableMap
	10.6 Filter
	10.7 Value Extractors
	10.8 Entry Processors
	10.9 Entry Aggregators

	11 Building Integration Objects (C++)
	11.1 Overview of Building Integration Objects (C++)
	11.2 POF Intrinsics
	11.3 Serialization Options
	11.3.1 Managed<T> (Free-Function Serialization)
	11.3.2 PortableObject (Self-Serialization)
	11.3.3 PofSerializer (External Serialization)

	11.4 Using POF Object References
	11.4.1 Enabling POF Object References
	11.4.2 Registering POF Object Identities for Circular and Nested Objects

	11.5 Registering Custom C++ Types
	11.6 Implementing a Java Version of a C++ Object
	11.7 Understanding Serialization Performance
	11.8 Using POF Annotations to Serialize Objects
	11.8.1 Annotating Objects for POF Serialization
	11.8.2 Registering POF Annotated Objects
	11.8.3 Enabling Automatic Indexing
	11.8.4 Providing a Custom Codec

	12 Querying a Cache (C++)
	12.1 Overview of Query Functionality
	12.2 Performing Simple Queries
	12.2.1 Querying Partitioned Caches
	12.2.2 Querying Near Caches

	12.3 Understanding Query Concepts
	12.4 Performing Queries Involving Multi-Value Attributes
	12.5 Using a Chained Extractor in a Query
	12.6 Using a Query Recorder

	13 Performing Continuous Queries (C++)
	13.1 Overview of Performing Continuous Queries (C++)
	13.1.1 Understanding the Use Cases for Continuous Query Caching

	13.2 Understanding Continuous Query Caching Implementation
	13.3 Defining a Continuous Query Cache
	13.4 Cleaning up Continuous Query Cache Resources
	13.5 Caching Only Keys Versus Keys and Values
	13.5.1 CacheValues Property and Event Listeners
	13.5.2 Using ReflectionExtractor with Continuous Query Caches

	13.6 Listening to a Continuous Query Cache
	13.6.1 Avoiding Unexpected Results
	13.6.2 Achieving a Stable Materialized View

	13.7 Making a Continuous Query Cache Read-Only

	14 Performing Remote Invocations (C++)
	14.1 Overview of Performing Remote Invocations (C++)
	14.2 Configuring and Using the Remote Invocation Service
	14.3 Registering Invocable Implementation Classes

	15 Using Cache Events (C++)
	15.1 Overview of Map Events (C++)
	15.1.1 Caches and Classes that Support Events

	15.2 Signing Up for all Events
	15.3 Using a Multiplexing Map Listener
	15.4 Configuring a MapListener for a Cache
	15.5 Signing Up for Events on Specific Identities
	15.6 Filtering Events
	15.7 Using Lite Events
	15.8 Listening to Queries
	15.9 Using Synthetic Events
	15.10 Using Backing Map Events
	15.11 Using Synchronous Event Listeners

	16 Performing Transactions (C++)
	16.1 Using the Transaction API within an Entry Processor
	16.2 Creating a Stub Class for a Transactional Entry Processor
	16.3 Registering a Transactional Entry Processor User Type
	16.4 Configuring the Cluster-Side Transactional Caches
	16.5 Configuring the Client-Side Remote Cache
	16.6 Using a Transactional Entry Processor from a C++ Client

	Part IV Creating .NET Extend Clients
	17 Introduction to Coherence .NET Clients
	17.1 Overview of Coherence for .NET
	17.2 Configuration and Usage for .NET Clients
	17.2.1 General Instructions
	17.2.2 Configuring Coherence*Extend for .NET
	17.2.3 Obtaining a Cache Reference with .NET
	17.2.4 Cleaning Up Resources Associated with a Cache
	17.2.5 Using Network Filters
	17.2.5.1 Custom Filters
	17.2.5.2 Configuring Filters

	18 Building Integration Objects (.NET)
	18.1 Overview of Building Integration Objects (.NET)
	18.2 Creating an IPortableObject Implementation
	18.3 Implementing a Java Version of a .NET Object
	18.3.1 Creating a PortableObject Implementation (Java)

	18.4 Registering Custom Types on the .NET Client
	18.5 Registering Custom Types in the Cluster
	18.6 Evolvable Portable User Types
	18.7 Making Types Portable Without Modification
	18.8 Using POF Object References
	18.8.1 Enabling POF Object References
	18.8.2 Registering POF Object Identities for Circular and Nested Objects

	18.9 Using POF Annotations to Serialize Objects
	18.9.1 Annotating Objects for POF Serialization
	18.9.2 Registering POF Annotated Objects
	18.9.3 Enabling Automatic Indexing
	18.9.4 Providing a Custom Codec

	19 Using the Coherence .NET Client Library
	19.1 Setting Up the Coherence .NET Client Library
	19.2 Using the Coherence .NET APIs
	19.2.1 CacheFactory
	19.2.2 IConfigurableCacheFactory
	19.2.3 DefaultConfigurableCacheFactory
	19.2.4 Logger
	19.2.5 Using the Common.Logging Library
	19.2.6 INamedCache
	19.2.7 IQueryCache
	19.2.8 QueryRecorder
	19.2.9 IObservableCache
	19.2.9.1 Responding to Cache Events

	19.2.10 IInvocableCache
	19.2.11 Filters
	19.2.12 Value Extractors
	19.2.13 Entry Processors
	19.2.14 Entry Aggregators

	19.3 Configuring .NET Clients Programmatically

	20 Performing Continuous Queries (.NET)
	20.1 Overview of Performing Continuous Queries (.NET)
	20.1.1 Understanding Use Cases for Continuous Query Caching

	20.2 Understanding the Continuous Query Caching Implementation
	20.3 Constructing a Continuous Query Cache
	20.4 Cleaning Up Continuous Query Cache Resources
	20.5 Caching Only Keys Versus Keys and Values
	20.6 Listening to a Continuous Query Cache
	20.6.1 Achieving a Stable Materialized View
	20.6.2 Support for Synchronous and Asynchronous Listeners

	20.7 Making a Continuous Query Cache Read-Only

	21 Performing Remote Invocations (.NET)
	21.1 Overview of Performing Remote Invocations
	21.2 Configuring and Using the Remote Invocation Service

	22 Performing Transactions (.NET)
	22.1 Using the Transaction API within an Entry Processor
	22.2 Creating a Stub Class for a Transactional Entry Processor
	22.3 Registering a Transactional Entry Processor User Type
	22.4 Configuring the Cluster-Side Transactional Caches
	22.5 Configuring the Client-Side Remote Cache
	22.6 Using a Transactional Entry Processor from a .NET Client

	23 Managing ASP.NET Session State
	23.1 Overview
	23.2 Setting Up Coherence Session Management
	23.2.1 Enable the Coherence Session Provider
	23.2.2 Configure the Cluster-Side ASP Session Caches
	23.2.3 Configure a Client-Side ASP Session Remote Cache
	23.2.4 Overriding the Default Session Cache Name

	23.3 Selecting a Session Model
	23.3.1 Specify the Session Model
	23.3.1.1 Registering the Backing Map Listener

	23.4 Specifying a Serializer
	23.4.1 Using POF for Session Serialization

	23.5 Sharing Session State Across Applications

	Part V Using Coherence REST
	24 Introduction to Coherence REST
	24.1 Overview of Coherence REST
	24.2 Dependencies for Coherence REST
	24.3 Overview of Configuration for Coherence REST
	24.4 Understanding Data Format Support
	24.4.1 Using XML as the Data Format
	24.4.2 Using JSON as the Data Format

	24.5 Authenticating and Authorizing Coherence REST Clients

	25 Building Your First Coherence REST Application
	25.1 Overview of the Basic Coherence REST Example
	25.2 Step 1: Configure the Cluster Side
	25.3 Step 2: Create a User Type
	25.4 Step 3: Configure REST Services
	25.5 Step 4: Start the Cache Server Process
	25.6 Step 5: Access REST Services From a Client

	26 Performing Grid Operations with REST
	26.1 Specifying Key and Value Types
	26.2 Performing Single-Object REST Operations
	26.3 Performing Multi-Object REST Operations
	26.4 Performing Partial-Object REST Operations
	26.5 Performing Queries with REST
	26.5.1 Using Direct Queries
	26.5.2 Using Named Queries
	26.5.3 Specifying a Query Sort Order
	26.5.4 Limiting Query Result Size
	26.5.5 Retrieving Only Keys
	26.5.6 Using Custom Query Engines
	26.5.6.1 Implementing Custom Query Engines
	26.5.6.2 Enabling Custom Query Engines

	26.6 Performing Aggregations with REST
	26.6.1 Aggregation Syntax for REST
	26.6.2 Listing of Pre-Defined Aggregators
	26.6.3 Creating Custom Aggregators

	26.7 Performing Entry Processing with REST
	26.7.1 Entry Processor Syntax for REST
	26.7.2 Listing of Pre-defined Entry Processors
	26.7.3 Creating Custom Entry Processors

	26.8 Understanding Concurrency Control
	26.9 Specifying Cache Aliases
	26.10 Using Server-Sent Events
	26.10.1 Receiving Server-Sent Events

	27 Deploying Coherence REST
	27.1 Deploying with the Embedded HTTP Server
	27.2 Deploying to WebLogic Server
	27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST
	27.2.2 Task 2: Package the Coherence REST Web Application
	27.2.3 Task 3: Package the Coherence Application
	27.2.4 Task 4: Package the Enterprise Application
	27.2.5 Task 5: Deploy the Enterprise Application

	27.3 Deploying to a Java EE Server (Generic)
	27.3.1 Packaging Coherence REST for Deployment
	27.3.2 Deploying to a Servlet Container

	27.4 Configuring REST Server Access to POF-Enabled Services

	28 Modifying the Default REST Implementation
	28.1 Using Custom Providers and Resources
	28.2 Changing the Embedded HTTP Server
	28.2.1 Using Grizzly HTTP Server
	28.2.2 Using Simple HTTP Server
	28.2.3 Using Jetty HTTP Server

	A REST Configuration Elements
	A.1 REST Configuration File
	A.2 Element Reference
	A.2.1 aggregator
	A.2.2 aggregators
	A.2.3 engine
	A.2.4 marshaller
	A.2.5 processor
	A.2.6 processors
	A.2.7 query
	A.2.8 query-engines
	A.2.9 resource
	A.2.10 resources
	A.2.11 rest

	B Integrating with F5 BIG-IP LTM
	B.1 Basic Concepts
	B.2 Creating Nodes
	B.3 Configuring a Load Balancing Pool
	B.3.1 Creating a Load Balancing Pool
	B.3.2 Adding a Load Balancing Pool Member

	B.4 Configuring a Virtual Server
	B.5 Configuring Coherence*Extend to Use BIG-IP LTM
	B.6 Using Advanced Health Monitoring
	B.6.1 Creating a Custom Health Monitor to Ping Coherence
	B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence
	B.6.3 Associating a Custom Health Monitor With a Load Balancing Pool

	B.7 Enabling SSL Offloading
	B.7.1 Import the Server's SSL Certificate and Key
	B.7.2 Create the Client SSL Profile
	B.7.3 Associate the Client SSL Profile

