Oracle® Fusion Middleware

Data Modeling Guide for Oracle Business Intelligence Publisher
12c(12.2.1)

E57395-01

October 2015

Explains how to retrieve and structure data from a variety of
sources to use as input to Oracle Business Intelligence
Publisher reports.

ORACLE

Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence Publisher, 12¢ (12.2.1)
E57395-01

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

Contributor: ~ Oracle Business Intelligence Publisher development, quality assurance, and product
management teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUrOIACE ... e e e ettt aen iX
| gk gl (<o NN E s KL< a Lol <P ix
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiiici e iX
Related Documentation and Other RESOULICESc.oovuviviiiiiiieeieeeceeeeeeetee ettt ens X
(@03 4 T£<3 015 (o) 0 - I RR R ORPRRORPRRN X

New Features for Data Model DeSIigners ... Xi
New Features and Changes for Oracle BI Publisher 12¢ (12.2.1)....ccccccevviviiiinnniniiiiiniine, Xi

1 Using the Data Model Editor

1.1 What Is @ Data MOAEL?cueoiiiiiiiceeceieee ettt ettt et s te e s be s e b e enaesreens 1-1
1.2 Components of a Data Modelccccceiiiiiiiiiiiiiii e 1-1
1.3 Features of the Data Model EAItOrcocueiiiiiriiieieieieeeeeeeeee ettt eseesessasseenens 1-2
1.4 About the Data Source Options ..o 1-2
1.5 Process Overview for Creating a Data Modelcccooeiie 1-4
1.6 Launching the Data Model EditOr........ccccociiiiiiiiiiiiicccccccceeeeeeeeeeeeeeeeeeenes 1-4
1.6.1 About the Data Model Editor INterfacecccceveeeveeieeiiiieieeeeeeeeeee e 1-5
1.7 Setting Data Model Properties ..o 1-5
1.7.1 XML Output OPtionsc.cocveviiiiiiiiiiiiiiiiic s 1-7
1.7.2 Attachments to the Data Model..........ccooiiiiiieiiiieececeeeeeere et 1-7
1.7.2.1 Attaching Sample Datacccoiiiiiiiiiiiiiies 1-7
1.7.2.2 Attaching SChema.........ccoeiiiiiiiiii 1-7
1.7.23 Data FILES ...viviviiiieieeeeeeetee ettt ettt ettt ettt et ettt et te et et e s e bt ernernere e 1-8
1.8 Managing Private Data SOUICES..........cccoceviviiiiiiiiiiiiii s 1-8

2 Creating Data Sets

2.1 Overview of Creating Data Sets..........cccccociuiiiiiiiiiiiiiiiiiccs 2-1
2.2 Editing an Existing Data Set........cccooiiii 2-2
2.3 Creating Data Sets Using SOL QueTies.........cccccooueiiiiiiiiiiiiiii 2-3
2.3.1 Entering SQL QUETIESccoiiiiiiiiiiiiiciicc e 2-3
2.3.2 Creating Non-Standard SQL Data Setsc.ccoooiiieiiiiiiiiiicc 2-5
2.3.3 Using the SQL Query Buildercccccoviiiiiiiiiiiiiiiins 2-7
2.3.3.1 Overview of the Query Builderccccovviiinniiiiiiiinnnccc, 2-8
2.3.3.2 Understanding the Query Builder Process.........ccccouoieieieiiiiniiiiicicciciee, 2-8
2.3.3.3 Using the Object Selection Pane ..o 2-8

2.3.34 Selecting @ SCheM..........cooueiiiiii 2-8

2.3.3.5 Searching and Filtering Objects.........ccoeiiiiiiiiiic 2-9
2.3.3.6 Selecting ODJECEScuvuviiiiiciicicicicicieeice et 2-9
2.3.3.7 Supported ColuMN TYPESccvviviviviiiiiiiiiicciccc s 2-9
2.3.3.8 Adding Objects to the Design Paneccooociiiiiiiiiii 2-9
2.3.3.9 Resizing the Design and Results Pane...........ccccccoeiiivniinnnninnnnncrene 2-10
2.3.3.10 Removing or Hiding Objects in the Design Panecccccoovovieieiiicicnnicnnen, 2-10
2.3.3.11 Specifying Query Conditions............cccocueieiiiicieiiiiciee e 2-10
2.3.3.12 Creating Relationships Between Objects...........ccccccciiiiiiiiieciccccceeee 2-11
2.3.3.12.1 About Join CONAItIONScoueruiriiriiienieieieteteeese ettt e 2-11
2.3.3.12.2 Joining Objects Manuallycccooioiiiiiiiie e 2-12
2.3.3.13 SavINg @ QUETY ...t 2-12
2.3.3.14 Editing a Saved QUETYcovoviiieieiiicie 2-13
2.3.4 Adding a Bind Variable to @ QUETYc.ccoooiiiiiiiiiiic 2-13
2.3.5 Adding Lexical References to SQL QUETIeS.........ccceiiuimimiemiiiiiccieeceeeieeeeenenens 2-15
2.3.6 Defining SQL Queries Against the Oracle BI Serverccccoooovveivieiiicinicicicnnnn, 2-16
2.4 Creating a Data Set Using a MDX Query Against an OLAP Data Source 2-18
2.41 Creating a Data Set Using a MDX QUETYcccccoeviriiiiiniiiniiiiiiiiccns 2-18
2.5 Using MDX Query BUildercoouiiiiiiiiiii s 2-19
2.5.1 Understanding the MDX Query Builder Process..........cccocoeueiiciieiniinicieicicceiee 2-19
252 Using the Select Cube Dialog..........coviiiiririiiiiiiiicccceeceeee e 2-19
2.5.3 Selecting Dimensions and Measures...........ccceueuiicieiniiniciece e 2-19
2.5.3.1 Adding Dimension Members to the Slicer/POV AXis........cccoevuiiiiiniiinnnnn 2-20
254 Performing MDX QUETY ACHONS.......ccceueuruiiiiiieieiiieieieieieieicieeeeeeeeeee s 2-20
2.5.5 Applying MDX Query Filterscooiiueiiiiiiiiiii s 2-21
2.5.6 Selecting MDX Query Options and Saving MDX Queries ..o 2-21
2.6 Creating a Data Set Using an Oracle Bl Analysis........c.cccocevueivniiiiinnnniicrccieene 2-22
2.6.1 Additional Notes on Oracle BI Analysis Data Sets..........c.cccooerieiiiiiiiiiniiice 2-24
2.7 Creating a Data Set Using a View Objectc.ccooooiiiiiiiii, 2-24
2.71 Additional Notes on View Object Data Sets..........ccccovuvurirrrrriiincniicrccceenes 2-25
2.8 Creating a Data Set Using a Web Service.........cooiiieiiiiiiiiii 2-25
2.8.1 Creating a Data Set Using a Web Service..........cccoovviiiiiiininiiiiccece 2-25
2.8.1.1 Creating a Data Set Using a Simple Web Servicec.cccccccceuieecccnccccennn. 2-26
2.8.1.2 Creating a Data Set Using a Complex Web Service........cccooovirrieiiicicieinnnen, 2-28
2.8.2 Additional Information on Web Service Data Sets...........cccccccoeuiuiiiiiiiicinniinne 2-29
2.9 Creating a Data Set Using an LDAP QUETYccocoviininiiiiiniiiiiccccccnes 2-29
2.10 Creating a Data Set Using a XML File........cccccooiiiiiiii 2-30
2.10.1 About Supported XML Filesccccccciuiiiiiiiiiiiiiiicicccces 2-31
2.10.2 Using a XML File Stored in a File Directory Data Source..........cccccocoecceeeuccucnnnnnnes 2-31
2.10.3 Uploading a XML File Stored Locallycccooeiiiiieiiiiiiiccce 2-32
2.10.3.1 Refreshing and Deleting an Uploaded XML File.........ccccccccciiiniiiiiiinnniniinnnnne. 2-32
2.11 Creating a Data Set Using a Microsoft Excel File.........cccccccoooiiiiiiiiniiiiicceccnen 2-33
2111 About Supported Excel Files........oooiiiiiiiiiiiiiccccs 2-33
211.2 Guidelines for Accessing Multiple Tables per Sheet..........c.cccccccciiiviiiiiiininicnnnne 2-34
2.11.3 Using a Microsoft Excel File Stored in a File Directory Data Source......................... 2-35
2114 Uploading a Microsoft Excel File Stored Locallycccoooeeiiiiiinieiiiiiiie 2-36
2.11.41 Refreshing and Deleting an Uploaded Excel Fileccccccccooiiiiiinnnnnnnn 2-37

212 Creating a Data Set Using a CSV File........ccccoooiiiiiiiii 2-37

2.12.1 About Supported CSV Files ... 2-37
2122 Using a CSV File Stored in a File Directory Data Source.........c.ccccceuvueuervvunvennenenes 2-38
2.12.3 Uploading a CSV File Stored Locallycccoooeueioiiiiiiiiiiieic 2-39
2.12.31 Editing the Data TYPecccocvuviiiiiiiiiicciriicc e 2-39
2.123.2 Refreshing and Deleting an Uploaded CSV File.........cccccccccciiiiiiiiinnccnnne. 2-39
2.13 Creating a Data Set from an HTTP XML Feedccccoooiiiiiiiiiiiic 2-40
2.131 Creating a Data Set from an HTTP XML Data Set........ccccooeevoiiiiiiiiiieicicee 2-41
2.14 Using Data Stored as a Character Large Object (CLOB) in a Data Model....................... 2-41
2.141 How the Data Is Returned ..o 2-43
21411 Additional Notes on Data Sets Using CLOB Column Data.............cccooeeueenncen. 2-43
2142 Handling XHTML Data Stored in a CLOB Column.........cccccccucueueueueieieicciecnicicneneee 2-44
2.14.21 Retrieving XHTML Data Wrapped in CDATA.........ccoooviiiiiiiieeeen 2-44
2.14.2.2 Wrapping the XHTML Data in CDATA in the Query ..o, 2-44
2.15 Testing Data Models and Generating Sample Data...........ccccccevuvirirnnncnnnnnnrenccnes 2-45
2.16 Including User Information Stored in System Variables in Your Report Data 2-46
2.16.1 Adding the User System Variables as Elementsc.cccccooooriiiiiiiiiciiiccne 2-46
2.16.2 Sample Use Case: Limit the Returned Data Set by User IDcccccccovvvvnrnncnne. 2-47
2.16.2.1 Creating Bind Variables from LDAP User Attribute Valuescccccceuvvnnennn. 2-47
2.16.2.1.1 PrerequiSite. ... 2-47
2.16.2.1.2 How BI Publisher Constructs the Bind Variablecccccccoovviniinnnnnnns 2-47

3 Structuring Data

3.1 Working with Data MOdels ..o 3-1
3.1.1 About Multipart Unrelated Data Sets..........cccccoeviiieiniiiiiiiiiiiicns 3-1
3.1.2 About Multipart Related Data Setscccoueioiiiiiiiii 3-3
3.1.3 Guidelines for Working with Data Sets..........cccccceviiiiniiiniirincrcreeeeeee 3-4
3.2 Features of the Data Model Editorcccccovviiiiiiiiiiiii, 3-4
3.3 About the INterfaceccciiiiiiiiiii s 3-5
3.4 Creating Links Between Data Sets..........cccccociiiiiiiiiiiiiiceccccccececeeeenee e 3-8
3.4.1 About Element-Level LinKs.........cccccoviiiiiiiiice, 3-8
3.4.2 About Group-Level LINKS........cccccovuviiiiiiniiiiiiiiiiiiiiiccsn s 3-9
3.5 Creating Element-Level LINKS.........ccccccociiiiiiiiiiiieeececccceeceeeeeeeeeeeeeeeeeenes 3-9
3.5.1 Deleting Element-Level Links...........cccoooiiiiiiiiii 3-10
3.6 Creating Group-Level Links.........cccccccciiiiiiiiicceeees 3-11
3.6.1 Deleting Group-Level Links.........cccccoiiiiiiiiiiiiiceecececeeeeeeeeeeeeeeees 3-12
3.7 Creating SUDZIOUPSc.ovieiieieiiii s 3-12
3.8 Moving an Element Between a Parent Group and a Child Group..........ccccceevevvirinnnnes 3-13
3.9 Creating Group-Level Aggregate Elements..........c.ccccccccuiiiiiiiiiiiieccccceceeeeees 3-14
3.10 Creating Group Filtersoccooiiiiiiiiii s 3-18
3.11 Performing Element-Level FUNCHONScccoooiiiiiiiiiiiiiiiccce 3-19
3.12 Setting Element PrOpertiesccccccciiiiiiiiiicccceecceeeeeee e 3-20
313 SOrting Data ..o e 3-20
3.14 Performing Group-Level FUNCHONScccoooiiiiiiiiiiiiiiiiccccccne 3-21
3.14.1 The Group Acton MENU.......c.ccouviriiiiiiiririiiiceeceee s 3-21
3.14.2 Editing the Data Set ... 3-22
3.14.3 Removing Elements from the GIoupccccccecciiiiiiiiiiiiciiccccccceeees 3-22

3.14.4 Editing the Group Properties..........ccoviiiiiiiiiiicces 3-23

3.15 Performing Global-Level FUNCHONSc.oooiuiiiiiiiicic s 3-23
3.15.1 Adding a Global-Level Aggregate FUNCtion..........cccccceceiiiiiiniiiincccceccceene 3-24
3.15.2 Adding a Group-Level or Global-Level Element by Expression.............ccccoeueveuee. 3-25
3.15.3 Adding a Global-Level Element by PL/SQL.........ccccoooiiiiice 3-26
3.16 Using the Structure View to Edit Your Data Structureccoccceeueeevvvciccncncenn 3-27
3.16.1 Renaming Elements...........cccouoiiiiiiiiiiiicicci e 3-28
3.16.2 Adding Value for Null Elements...........cccooooiiiiiiiiiiiiiiec e 3-28
3.17 Function Reference ... s 3-29

4 Adding Parameters and Lists of Values

4.1 ADbOUt Parameterscoeveiiieiiieieieeeee s 4-1
4.2 Adding a New Parameterccoooiiiiiirieiiicic e 4-2
4.21 Creating a Text Parameter ... 4-3
422 Creating a Menu Parameter ... 4-4
4.2.21 Customizing the Display of Menu Parameters............cccooouoviieieiniiicieiincs 4-6
4.2.3 Defining a Date Parameterccooeuoioiiicioiiiciceec s 4-7
4.3 About Lists Of VAIUESccovviviiiiiiiiiii s 4-8
4.4 Adding Lists of VAlU@S.......cceuviiiiiiiiic e 4-8
4.41 Creating a List from a SQL QUEeTY.......cccouiiiiiiiiiiiiiec e 4-9
4.4.2 Creating a List from a Fixed Data Set ... 4-10
4.5 Adding Flexfield Parameterscoooiuiiiiieiiicic 4-11
4.5.1 Prerequisites for Using Flexfields.........cccoooiiiiiiiiiii 4-12
452 Adding a Flexfield Parameter and List of Values..........cccccocevuviivvniiinvninne 4-12
4.5.2.1 Adding the Flexfield List of Valuesc.cccccoveiiiiiiiiiiiicce 4-12
4.5.22 Adding the Menu Parameter for the Flexfield List of Values...........c.ccccc........ 4-13
4523 Using the Flexfield Parameter to Pass Values to a Flexfield Defined in the Data
Model 4-14

4524 Referencing the Flexfield in the SQL QUeryccooevoiiriiiiiiiiiiiiccec 4-15
4.5.2.5 Passing a Range of Values..........cccooiiiiiii 4-15

5 Adding Event Triggers

5.1 ADOUL TIIZGETS ...t 5-1
5.2 Adding Before Data and After Data Triggers........cccovvvrrererrnirirrerrrreeeres e 5-1
5.2.1 Order Of EXECULION ...c.vocvieiieiieiieieie ettt sttt et sae e e saeeaesreesaessaessesseessesseensesseenss 5-2
5.3 Creating Schedule Triggerscccccoiiiiiiiiiiiiiiiiiiic e 5-3

6 Adding Flexfields

vi

6.1 ADOUL FIEXFIEIAS ...ttt ettt ettt et et et te b e b e eaa e beebaensaeseenns 6-1
6.1.1 Using Flexfields in Your Data Model ... 6-2
6.2 Adding Key Flexfields........cccooiiiiiiiiiiiei e 6-2
6.2.1 Entering Flexfield Detailscccccceiiiiiiiiniiiiiiiiccnccae 6-3
6.3 Adding Descriptive FIeXfields ... 6-6
6.3.1 Including Descriptive Flexfield Reference in SQL Queries...........cccccevvviiinininiiininenne. 6-7

7 Adding Bursting Definitions

7.1 ADOUL BUISHNG ..ot 7-1
7.2 What is the Bursting Definition?...........ccoooiiiiniiiniiiiicceccccecceeeeeceseeenenes 7-2
7.3 Adding a Bursting Definition to Your Data Model ..o 7-2
7.4 Defining the Query for the Delivery XMLcccooiiiiiiiiiiiccce e 7-4
7.5 Passing a Parameter to the Bursting QUETYccccccuiiiiiiiiiiiiiiicccccccceececeeenes 7-7
7.6 Defining the Split By and Deliver By Elements for a CLOB/XML Data Set...................... 7-9
7.7 Configuring a Report to Use a Bursting Definitionccooeiiiiii 7-10
7.8 Sample BUIsting QUETYc.ccoeuiiiiiiiiiiiiiiieeeecie e 7-11
7.9 Creating a Table to Use as a Delivery Data Source...........cccooomeieiiiciiiiiccccce, 7-11

8 Adding Custom Metadata for Oracle WebCenter Content Server

8.1 About Custom Metadata Mapping ... 8-1
8.1.1 PIrerequiSitesot 8-1
8.2 Mapping Data Fields to Custom Metadata Fieldscccocovvnnnnnninnnnineene. 8-1
8.3 Deleting Unused Metadata Fields ... 8-3

9 Performance Best Practices

9.1 Know Oracle WebLogic Server Default Time Out Settingcccooooeiiiiiiiciiin 9-1
9.2 Best Practices for SQL Data SetScocceieeviiiiieieiieeiectieieete et se v sreeae e esesseesesreesne e 9-1
9.2.1 Only Return the Data You Needccccccoviiiiiiiiniiiccereecreere e 9-2
9.2.2 Use Column Aliases to Shorten XML File Lengthcccooooiii 9-2
9.2.3 Avoid Using Group Filters by Enhancing Your Query ..o, 9-2
9.24 Avoid PL/SQL Calls in WHERE ClaUsSeScc.coiveeeireerieiriereeereereeereeeeereeeesveeesesreesneneas 9-2
9.2.5 Avoid Use of the System Dual Table ..o 9-3
9.2.6 Avoid PL/SQL Calls at the Element Levelccoooviiiioiiiiieeeeceeecteeeeeeveeeee e 9-3
927 Avoid Including Multiple Data Setscccccccveeiiiiiiiiieeeeceeeeeeeeeeeeeeenes 9-3
9.2.8 Avoid Nested Data Sets ... 9-3
9.2.9 Avoid In-Line Queries (as summary cOlUMNS)cccoevviviiininiiiniiiiiiniiincns 9-4
9.2.10 Avoid Excessive Parameter Bind Values ... 9-5
9.2.11 Tips for Multi-value Parameters............cccovuiiiiiiiiiiiiiiiiiceecceeeee e 9-5
9.2.12 Group Break and Sorting Data ... 9-6
9.3 LiSts Of VAIUES.oviiiciiiccec e 9-7
9.4 Working with Lexicals/Flexfields ... 9-7
9.5 Working with Date Parameters ... 9-8
9.6 Run Report Online/Offline (Schedule)cccoiiiiiiiiicceceeeeeeeecereeeenes 9-9
9.7 Setting Data Model Properties to Prevent Memory EIrors ..., 9-9
9.7.1 Query Time OUL ... 9-10
9.7.2 DB FEtCh SIZEviiiiiiciiciciccccce s 9-10
9.7.3 Scalable MOde.........coiiiiiiiiiiici s 9-10
9.7.4 SQL PIUNINE ..ottt 9-11
9.8 SQL QUETY TUNING......cooiiiiiiiiiii s 9-12
9.8.1 Generate EXplain Plan..........coiii s 9-12
9.8.1.1 Explain Plan for a Single QUETY ... 9-12
9.8.1.2 Explain Plan for REPOItS......c.ccccuiuiiiiiiiiiiiiiiicccccceeeeeeeeeee s 9-12
9.8.1.3 Guidelines for Tuning QUETIESccccovvviimiiiiniiiii s 9-14

vii

viii

9.8.1.4

Tips for Database Tuning

Preface

Welcome to Release 12¢ (12.2.1) of the Oracle Fusion Middleware Data Modeling Guide for
Oracle Business Intelligence Publisher. Oracle Bl Publisher is an enterprise reporting
solution for authoring, managing, and delivering all your highly formatted
documents, such as operational reports, electronic funds transfer documents,
government PDF forms, shipping labels, checks, sales and marketing letters, and much
more.

Intended Audience

This guide describes how report authors use BI Publisher's data model editor to fetch
and structure the data for use in the many different types of report layouts that BI
Publisher supports. The following table provides more information about using BI
Publisher for other business roles.

Role Sample Tasks Guide

Oracle Fusion Middleware Administrator’s
Guide for Oracle Business Intelligence
Publisher

Administrator Configuring Security
Configuring System Settings

Diagnosing and Monitoring System
Processes

Application developer or
integrator

Report consumer

Report designer

Integrating BI Publisher into existing
applications using the application
programming interfaces

Viewing reports
Scheduling report jobs
Managing report jobs
Creating report definitions

Designing layouts

Oracle Fusion Middleware Developer’s Guide
for Oracle Business Intelligence Publisher

Oracle Fusion Middleware User’s Guide for
Oracle Business Intelligence Publisher

Oracle Fusion Middleware Report Designer’s
Guide for Oracle Business Intelligence
Publisher

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documentation and Other Resources

See the Oracle Business Intelligence documentation library for a list of related Oracle
Business Intelligence documents.

In addition:

s Go to the Oracle Learning Library for Oracle Business Intelligence-related online
training resources.

= Go to the Product Information Center Support note (Article ID 1338762.1) on My
Oracle Support at https: //support.oracle.com.

System Requirements and Certification
Refer to the system requirements and certification documentation for information
about hardware and software requirements, platforms, databases, and other

information. Both of these documents are available on Oracle Technology Network
(OTN).

The system requirements document covers information such as hardware and
software requirements, minimum disk space and memory requirements, and required
system libraries, packages, or patches:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusio
n-requirements-100147.html

The certification document covers supported installation types, platforms, operating
systems, databases, JDKs, and third-party products:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusio
n-certification-100350.html

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technology/software/products/ias/files/fusion_requirements.htm
http://www.oracle.com/technology/software/products/ias/files/fusion_requirements.htm
http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html
http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html

New Features for Data Model Designers

This preface describes changes to the Oracle BI Publisher data model designer.
= New Features and Changes for Oracle BI Publisher 12¢ (12.2.1)

New Features and Changes for Oracle Bl Publisher 12¢ (12.2.1)
New features and changes for Oracle BI Publisher 12c Release 1 (12.2.1) include:
= Generate Explain Plan from SQL Data Set

m Best Practices Information

Generate Explain Plan from SQL Data Set

For data sets generated by SQL queries issued against the Oracle Database, you can
now generate an Explain Plan to provide valuable information about the efficiency of
your query. For more information, see Section 9.8.1, "Generate Explain Plan."

Best Practices Information

Poorly constructed data models can result in out-of-memory exceptions. Use these best
practices guidelines to help you tune your data models for more efficient memory
usage. See Chapter 9, "Performance Best Practices."

xi

Xii

1

Using the Data Model Editor

This chapter describes the components and features supported by BI Publisher's data
model editor.

This chapter includes the following sections:

Section 1.1, "What Is a Data Model?"

Section 1.2, "Components of a Data Model"

Section 1.3, "Features of the Data Model Editor"

Section 1.4, "About the Data Source Options"

Section 1.5, "Process Overview for Creating a Data Model"
Section 1.6, "Launching the Data Model Editor"

Section 1.7, "Setting Data Model Properties"

Section 1.8, "Managing Private Data Sources"

1.1 What Is a Data Model?

A data model is an object that contains a set of instructions for BI Publisher to retrieve
and structure data for a report. Data models reside as separate objects in the catalog.

At the very simplest, a data model can be one data set retrieved from a single data
source (for example, the data returned from the columns in the employees table). A
data model can also be complex, including parameters, triggers, and bursting
definitions as well as multiple data sets.

To build a data model, you use the data model editor.

1.2 Components of a Data Model

A data model supports the following components:

Data set

A data set contains the logic to retrieve data from a single data source. A data set
can retrieve data from a variety of data sources (for example, a database, an
existing data file, a Web service call to another application, or a URL/URI to an
external data provider). A data model can have multiple data sets from multiple
sources.

Event triggers

Using the Data Model Editor 1-1

Features of the Data Model Editor

A trigger checks for an event. When the event occurs the trigger runs the PL/SQL
code associated with it. The data model editor supports before data and after data
triggers as well as schedule triggers. Before data and after data triggers consist of a
call to execute a set of functions defined in a PL/SQL package stored in an Oracle
database. A schedule trigger is executed for scheduled reports and tests for a
condition that determines whether or not to run a scheduled report job.

s Flexfields

A flexfield is a structure specific to Oracle Applications. The data model editor
supports retrieving data from flexfield structures defined in your Oracle
Application database tables.

s Lists of values

A list of values is a menu of values from which report consumers can select
parameter values to pass to the report.

s Parameters

A parameter is a variable whose value can be set at runtime. The data model
editor supports several parameter types.

= Bursting Definitions

Bursting is a process of splitting data into blocks, generating documents for each
data block, and delivering the documents to one or more destinations. A single
bursting definition provides the instructions for splitting the report data,
generating the document, and delivering the output to its specified destinations.

s Custom Metadata (for Web Content Servers)

If you have configured a Web content server as a delivery destination and enabled
custom metadata, the Custom Metadata component displays in the data model
editor. Use this component to map data fields from your data model to the custom
metadata fields set up for a set of Rules defined in a Content Profile.

1.3 Features of the Data Model Editor

Use the data model editor to combine data from multiple data sets from different data
sources, such as SQL, Excel files, Web services, HTTP feeds, and other applications
into a single XML data structure. Data sets can either be unrelated or a relationship can
be established between them using a data link.

The data model editor enables you to perform the following tasks:

s Link data — Define master-detail links between data sets to build a hierarchical
data model.

= Aggregate data — Create group level totals and subtotals.

s Transform data — Modify source data to conform to business terms and reporting
requirements.

» Create calculations — Compute data values that are required for your report that
are not available in the underlying data sources.

1.4 About the Data Source Options

BI Publisher supports a variety of data source types for creating data sets. These can be
categorized into three general types:

1-2 User's Guide for Oracle Business Intelligence Mobile App Designer

About the Data Source Options

The first type are data sets for which BI Publisher can retrieve metadata information
from the source. For these data set types, the full range of data model editor functions
is supported. These data set types are:

s SQL queries submitted against Oracle BI Server, an Oracle database, or other
supported databases

See Section 2.3, "Creating Data Sets Using SQL Queries."

For information on supported databases, see System Requirements and
Certification.

s Multidimensional (MDX) queries against an OLAP data source

See Section 2.4, "Creating a Data Set Using a MDX Query Against an OLAP Data
Source."

= Queries against your LDAP repository to retrieve user data

You can report on this data directly, or join this to data retrieved from other
sources. See Section 2.9, "Creating a Data Set Using an LDAP Query."

= Microsoft Excel spreadsheet data sources

The Excel spreadsheet can be either stored in a file directory set up as a data
source by your administrator; or you can upload it directly from a local source to
the data model. See Section 2.11, "Creating a Data Set Using a Microsoft Excel File."

s XML data file data sources

The XML file can be either stored in a file directory set up as a data source by your
administrator; or you can upload it directly from a local source to the data model.
See Section 2.10, "Creating a Data Set Using a XML File."

s CSV (comma separated value) file data sources

The CSV file can be either stored in a file directory set up as a data source by your
administrator; or you can upload it directly from a local source to the data model.
See Section 2.12, "Creating a Data Set Using a CSV File."

For the second type, BI Publisher can retrieve column names and data type
information from the data source but it cannot process or structure the data. For these
data set types, only a subset of the full range of data model editor functions is
supported. These data set types are:

s Oracle BI Analyses
See Section 2.6, "Creating a Data Set Using an Oracle BI Analysis."

= View objects created using Oracle Application Development Framework (ADF)
See Section 2.7, "Creating a Data Set Using a View Object."

For the third type, BI Publisher retrieves data that has been generated and structured
at the source and no additional modifications can be applied by the data model editor.
These data set types are:

s HTTP XML feeds off the Web

See Section 2.13, "Creating a Data Set from an HTTP XML Feed."
» Web services

See Section 2.8, "Creating a Data Set Using a Web Service."

Supply the Web service WSDL to BI Publisher and then define the parameters in
BI Publisher to use a Web service to return data for the report.

Using the Data Model Editor 1-3

Process Overview for Creating a Data Model

1.5 Process Overview for Creating a Data Model

Table 1-1 lists the process overview for creating a data model.

Table 1-1 Process of Creating a Data Model

Step Reference

Launch the data model editor. Section 1.6, "Launching the Data Model Editor"
Set properties for the data model. Section 1.7, "Setting Data Model Properties"
(Optional)

Create the data sets for the data model. Chapter 2, "Creating Data Sets"

Define the data output structure. Chapter 3, "Structuring Data"

(Optional)

Define the parameters to pass to the Section 4, "Adding Parameters and Lists of

query, and define lists of values for users | Values"
to select parameter values. (Optional)

Define Event Triggers. (Optional) Section 5.1, "About Triggers"

(Oracle Applications Only) Define Chapter 6, "Adding Flexfields"

Flexfields. (Optional)

Test your data model and add sample Section 2.15, "Testing Data Models and

data. Generating Sample Data"

Add a bursting definition. (Optional) Chapter 7, "Adding Bursting Definitions"

Map Custom Metadata for documents to | Chapter 8, "Adding Custom Metadata for Oracle
be delivered to Web Content Servers WebCenter Content Server"

(Optional)

1.6 Launching the Data Model Editor

Launch the data model editor from the BI Publisher global header or Home page in
one of the following ways:

To launch the Data Model Editor from the global header:

1. Click New and then click Data Model to open the data model editor.
To launch the Data Model Editor from the Home page:

1. Under the Create region, click Data Model.

The Data Sets page is the default page displayed as shown in Figure 1-2.

Figure 1-1 Data Sets Page

ORACL & BIPublisher Enterprise Search Al - ©_ Administration Help = Sign Out
Untitled Home Catalog New W Open v Signed In As S e

Manage Private Data Sources | ViewData Create Report || % | @

Data Model Diagram = Stucture Data Code
Properties +~
4 Data Sets
4 EventTriggers
4 Flexfields

4 Listofvalues
4 Parameters

4 Bursting

1-4 User's Guide for Oracle Business Intelligence Mobile App Designer

Setting Data Model Properties

1.6.1 About the Data Model Editor Interface

The data model editor is designed with a component pane on the left and work pane
on the right. Selecting a component on the left pane launches the appropriate fields for
the component in the work area.

The data model editor toolbar, shown in Figure 1-2, provides the following functions:
Figure 1-2 Data Model Editor Toolbar

Manage Private Data Sources | View Data Create Report | H fr‘/ | (7]

= Manage Private Data Sources — Connect to private data sources for your
personal use that do not require setup by an administrator.

= View Data — Displays the Data tab where you view and generate sample data.
» Create Report — Create a new report with this data model.

= Save/Save As — Select Save to save your work in progress to the existing data
model object or select Save As to save the data model as a new object in the
catalog.

» Help —View online help.

1.7 Setting Data Model Properties

To access the Data Model Properties page as shown in Figure 1-3, click the Data
Model node in the components pane.

Figure 1-3 Data Model Properties

Manage Private Data Sources View Data Create Report & kx| @

Data Model Properties
Descri ption
Propekties
4 Data Sets
4 Event Triggers
Default Data Source BIEE E =
Flexfields
4 Listof Values Oracle DB Default Package
4 Parameters Database Fetch Size
4 Bursting !
Query Time Out
4 Custom Metadata
Scalable Mode |nstance Level Iz‘
Enable SQL Pruning Instance Level Iz‘
Enable SQL session trace Instance Level IZ‘ SQL Trace Name

Backup Data Source [] Enable Backup Connection

Switch to Backup
Use Backup Data Source only

XML Output Options Include Parameter Tags
[] Incluge Empty Tags for Null Elements
[Include Group List Tag
XML Tag Display Upper Case =
Attachment
sample Data T
T

schema 5

Data Files

Enter the following properties for the data model:

Description — The description that you enter here displays in the catalog. This
description is translatable.

Default Data Source — Select the data source from the list. Data models can include
multiple data sets from one or more data sources. The default data source you select

Using the Data Model Editor 1-5

Setting Data Model Properties

here is presented as the default for each new SQL data set you define. Select Refresh
Data Source List to see any new data sources added since your session was initiated.

Oracle DB Default Package — If you define a query against an Oracle database, then
you can include before or after data triggers (event triggers) in your data model. Event
triggers make use of PL/SQL packages to execute RDBMS level functions. For data
models that include event triggers or a PL/SQL group filter, you must enter a default
PL/SQL package here. The package must exist on the default data source.

Database Fetch Size — Sets the number of rows fetched at a time through the JDBC
connection. This value overrides the value set in the system properties. If neither this
value nor the server setting is defined, then the server default value of 20 is used. If the
server property Enable Auto DB fetch size mode is set to True, this value is ignored.

For more information, see "Setting Data Engine Properties" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Business Intelligence Publisher.

Query Time Out - applies to SQL query-based data models. If the SQL query is still
processing when the time out value is met, the error "Failed to retrieve data xml." is
returned. Enter a value in seconds. If you do not enter a value for this data model, the
server property value is used. For information about the server setting, see "Setting
Data Engine Properties” in Oracle Fusion Middleware Administrator’s Guide for Oracle
Business Intelligence Publisher.

Scalable Mode — Processing large data sets requires the use of large amounts of
RAM. To prevent running out of memory, activate scalable mode for the data engine.
In scalable mode, the data engine takes advantage of disk space when it processes the
data. Setting this to On will impact performance, but guard against out of memory
errors.

Note that Enable Data Model Scalable Mode is also a server-level property therefore
by default the data model-level property is set to Instance Level to inherit the server or
instance level setting. To turn scalable mode on or off for this particular data model,
select On or Off from the list.

For information about the server level setting, see "Setting Data Engine Properties" in
Oracle Fusion Middleware Administrator’s Guide for Oracle Business Intelligence Publisher.

Enable SQL Pruning - applies to Oracle Database queries only that use Standard SQL.
If your query returns many columns but only a subset are used by your report
template, SQL pruning returns only those columns required by the template. Setting
this property enhances processing time and reduces memory usage.

Note that Enable SQL Pruning is also a server-level property therefore by default the
data model-level property is set to Instance Level to inherit the server or instance level
setting. To turn SQL pruning on or off for this particular data model, select On or Off
from the list.

For information about the server level setting, see "Setting Data Engine Properties” in
Oracle Fusion Middleware Administrator’s Guide for Oracle Business Intelligence Publisher.

Backup Data Source — If you have set up a backup database for this data source,
select Enable Backup Connection to enable the option; then select it when you want
BI Publisher to use the backup.

s To use the backup data source only when the primary is down, select Switch to
Backup Data Source when Primary Data Source is unavailable. Note that when
the primary data source is down, the data engine must wait for a response before
switching to the backup.

= To always use the backup data source when executing this data model, select Use
Backup Data Source Only. Using the backup database may enhance performance.

1-6 User's Guide for Oracle Business Intelligence Mobile App Designer

Setting Data Model Properties

Note: This feature requires that a backup data source has been
enabled for the selected data source. For more information, see "About
Backup Databases" in Oracle Fusion Middleware Administrator’s Guide
for Oracle Business Intelligence Publisher.

1.7.1 XML Output Options

These options define characteristics of the XML data structure. Note that any changes
to these options can impact layouts that are built on the data model.

s Include Parameter Tags — If you define parameters for your data model, select
this box to include the parameter values in the XML output file. See Section 4,
"Adding Parameters and Lists of Values" for information on adding parameters to
your data model. Enable this option when you want to use the parameter value in
the report.

s Include Empty Tags for Null Elements — Select this box to include elements with
null values in your output XML data. When you include a null element, then a
requested element that contains no data in your data source is included in your
XML output as an empty XML tag as follows: <ELEMENT_ID\>. For example, if
the element MANAGER_ID contained no data and you chose to include null
elements, it would appear in your data as follows: <MANAGER_ID />. If you do
not select this option, no entry appears for MANAGER_ID.

s Include Group List Tag — (This property is for 10g backward compatibility and
Oracle Report migration.) Select this box to include the rowset tags in your output
XML data. If you include the group list tags, then the group list appears as another
hierarchy within your data.

» XML Tag Display — Select whether to generate the XML data tags in upper case,
in lower case, or to preserve the definition you supplied in the data structure.

1.7.2 Attachments to the Data Model

The Attachment region of the page displays data files that you have uploaded or
attached to the data model.

1.7.2.1 Attaching Sample Data

After you build your data model, you must attach a small, but representative set of
sample data generated from your data model. The sample data is used by BI
Publisher's layout editing tools. Using a small sample file helps improve performance
during the layout design phase.

The data model editor provides an option to generate and attach the sample data. For
more information, see Section 2.15, "Testing Data Models and Generating Sample
Data."

The administrator can set a limit to the size of the sample data file. For more
information, see "Setting Data Engine Properties" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Business Intelligence Publisher.

1.7.2.2 Attaching Schema

The data model editor enables you to attach sample schema to the data model
definition. The schema file is not used by BI Publisher, but can be attached for
developer reference. The data model editor does not support schema generation.

Using the Data Model Editor 1-7

Managing Private Data Sources

1.7.2.3 Data Files

If you have uploaded a local Microsoft Excel, CSV, or XML file as a data source for this
report, the file displays here. Use the refresh button to refresh this file from the local
source. For information on uploading files to use as data sources, see Chapter 2,
"Creating Data Sets".

Figure 1-4 shows the Attachments region with sample data and data files attached:

Figure 1-4 Attachments Region with Attached Sample Data and Files

Attachment
Sample Data samplexml Delete
schema T
Data Files ausxsx » X

1.8 Managing Private Data Sources

Data model developers can create and manage private JDBC, OLAP, Web service, and
HTTP data source connections without having to depend on an Administrator user.
However, Administrator users can still view, modify, and delete private data source
connections, if needed.

To create a private data source connection:
1. From the data model editor toolbar, click Manage Private Data Sources.

2. Select the connection type tab, and click Add Data Source as shown in Figure 1-5.

Figure 1-5 Creating Private Data Source Connections

Manage Private Data Sources
2]
Data Sources
JDBC | OLAP Web Services HTTP
Add Data Source
Data Source Name Connection String Delete
Close

1-8 User's Guide for Oracle Business Intelligence Mobile App Designer

Managing Private Data Sources

Note: If you are logged in as an Administrator, all data source
connections will display for you in this dialog; however, you can only
create or modify JDBC, OLAP, HTTP, and web service data sources
from this dialog.

3. Enter the private connection name, and the connection information.
4. Click Test Connection. A confirmation is displayed.

5. Click Apply. The private data source connection is now available for use in your
data sets.

Private data source connections are identified by the word (Private) appended to the
end of the data source name. For example, if you create a private JDBC connection
called My JDBC Connection, it is displayed as My JDBC Connection (Private) in the
data source drop-down lists.

If your user has the Administrator role, you can only create public data sources, even if
you create the data source from the Manage Private Data Sources page. For more
information about private data source connections, see "About Private Data Source
Connections" in Oracle Fusion Middleware Administrator’'s Guide for Oracle Business
Intelligence Publisher.

For more information on setting up the data source types, see "Setting Up Data
Sources" in Oracle Fusion Middleware Administrator’'s Guide for Oracle Business
Intelligence Publisher.

Using the Data Model Editor 1-9

Managing Private Data Sources

1-10 User's Guide for Oracle Business Intelligence Mobile App Designer

2

Creating Data Sets

This chapter describes creating data sets, testing data models, and saving sample data
in BI Publisher.

This chapter includes the following sections:

Section 2.1, "Overview of Creating Data Sets"
Section 2.2, "Editing an Existing Data Set"
Section 2.3, "Creating Data Sets Using SQL Queries"

Section 2.4, "Creating a Data Set Using a MDX Query Against an OLAP Data
Source"

Section 2.5, "Using MDX Query Builder"

Section 2.6, "Creating a Data Set Using an Oracle BI Analysis"
Section 2.7, "Creating a Data Set Using a View Object"

Section 2.8, "Creating a Data Set Using a Web Service"

Section 2.9, "Creating a Data Set Using an LDAP Query"
Section 2.10, "Creating a Data Set Using a XML File"

Section 2.11, "Creating a Data Set Using a Microsoft Excel File"
Section 2.12, "Creating a Data Set Using a CSV File"

Section 2.13, "Creating a Data Set from an HTTP XML Feed"

Section 2.14, "Using Data Stored as a Character Large Object (CLOB) in a Data
Model"

Section 2.15, "Testing Data Models and Generating Sample Data"

Section 2.16, "Including User Information Stored in System Variables in Your
Report Data"

2.1 Overview of Creating Data Sets

Oracle BI Publisher can retrieve data from multiple types of data sources.

To create a data set:

1.

On the component pane of the data model editor, click New Data Set and select
your source data set type.

Creating Data Sets 2-1

Editing an Existing Data Set

Figure 2-1 Creating a Data Set

Data Medel Diagram | Structure Data Code
Properties +{i’?
4 Data Sets QL Query
4 EventTriggers LDAP Query
4 Flexfields
&% MDX Query
4 Listofvalues
e [EZ] Oracle BI Analysis
4 Bursting @ HTTP (XML Feed)

2] view Object

@, web Service

[37 csvFile

[E£] Microsoft Excel File

[B] XML File

2. Complete the required fields. See the corresponding section:

Section 2.3, "Creating Data Sets Using SQL Queries"

Section 2.4, "Creating a Data Set Using a MDX Query Against an OLAP Data
Source"

Section 2.6, "Creating a Data Set Using an Oracle BI Analysis"
Section 2.7, "Creating a Data Set Using a View Object"

Section 2.8, "Creating a Data Set Using a Web Service"

Section 2.9, "Creating a Data Set Using an LDAP Query"
Section 2.10, "Creating a Data Set Using a XML File"

Section 2.11, "Creating a Data Set Using a Microsoft Excel File"
Section 2.12, "Creating a Data Set Using a CSV File"

Section 2.13, "Creating a Data Set from an HTTP XML Feed"

Section 2.14, "Using Data Stored as a Character Large Object (CLOB) in a Data
Model"

2.2 Editing an Existing Data Set

To edit an existing data set:

1. On the component pane of the data model editor click Data Sets. All data sets for
this data model display in the working pane.

2. Click the data set that you want to edit.

3. Click Edit Selected Data Set. The dialog for the data set opens. For information
about each type of data set, see the corresponding section in this chapter.

2-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

Data Model Diagram | Structure Data Code
FProperties +' L\\, x
4 Data Sets | Edit Selected Data Set
Employees / G1 {E}
4 EventTriggers
 Floxislgs FIRST_NAME A &
4 ListofValues LAST_NAME A &
4 Parameters HIRE_DATE {E}
“ Bursting SALARY tev T
MANAGER n &
DEFARTMENT_NAME [} 4%
| Drop here for aggregate function |

Make changes to the data set and click OK.
Save the data model.

Test your edited data model and add new sample data. See Section 2.15, "Testing
Data Models and Generating Sample Data" for more information about testing and
generating sample data.

2.3 Creating Data Sets Using SQL Queries

This section includes the following topics:

Section 2.3.1, "Entering SQL Queries"

Section 2.3.2, "Creating Non-Standard SQL Data Sets"

Section 2.3.3, "Using the SQL Query Builder"

Section 2.3.4, "Adding a Bind Variable to a Query"

Section 2.3.5, "Adding Lexical References to SQL Queries"

Section 2.3.6, "Defining SQL Queries Against the Oracle BI Server"

2.3.1 Entering SQL Queries
To enter a SQL query:

For information about optimizing your SQL Queries and the Generate Explain Plan
option, see Section 9.2, "Best Practices for SQL Data Sets."

1.

Click New Data Set and then click SQL Query. The Create Data Set - SQL dialog
opens, as shown in Figure 2-2.

Creating Data Sets 2-3

Creating Data Sets Using SQL Queries

Figure 2-2 New Data Set - SQL Query Dialog

New Data Set - SQL Query O x

*Name Employees

* Data Source |demo (Default) |Z| {’.
* Type of SQL | Standard SQL |Z|

* SQL Query Query Builder

select "EMPLOYEES™FIRST_MAME™ as "FIRST_MAME",
"EMPLOYEES" "LAST_MAME" as "LAST_MAME",
"EMPLOYEES" "HIRE_DATE" as "HIRE__DATE",
"EMPLOYEES" "SALARY" as "SALARY",
"EMPLOYEES_1""LAST_NAME" as "MANAGER”,
"DEPARTMENTS" "DEPARTMENT _NAME™ as "DEPARTMENT_NAME"
from "OE""EMPLOYEES" "EMPLOYEES 1",
"OE" "DEPARTMENTS" "DEPARTMENTS",
"OE""EMPLOYEES™ "EMPLOYEES™
where "EMPLOYEES™"MANAGER_ID"="EMPLOYEES_1""MANAGER_ID"
and "EMPLOYEES" "DEPARTMENT_ID"="DEPARTMENTS" "DEPARTMENT_ID"

Generate Explain Plan OK Cancel

2. Enter a name for the data set.

3. The data source defaults to the default data source that you selected on the
Properties page. If you are not using the default data source for this data set, select
the Data Source from the list.

You can also use your private data source connections as data sources for SQL
query data sets. See Section 1.8, "Managing Private Data Sources" for information
about private data source connections.

4. The SQL type defaults to Standard SQL used for normal SELECT statements
interpreted to understand database schema. See Section 2.3.2, "Creating
Non-Standard SQL Data Sets" for information on using other types of SQL.

5. Enter the SQL query or click Query Builder to launch the Query Builder page. See
Section 2.3.3, "Using the SQL Query Builder" for more information about the
Query Builder utility.

6. If you are using Flexfields, bind variables, or other special processing in your
query, edit the SQL returned by the Query Builder to include the required
statements.

Note: If you include lexical references for text that you embed in a
SELECT statement, then you must substitute values to get a valid SQL
statement.

7. After entering the query, click OK to save. For Standard SQL queries the data
model editor validates the query.

If your query includes a bind variable, you are prompted to create the bind
parameter. Click OK to have the data model editor create the bind parameter.

See Chapter 4, "Adding Parameters and Lists of Values" for more information on
editing parameters.

2-4 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

2.3.2 Creating Non-Standard SQL Data Sets

In addition to creating data sets using basic SQL commands, you can create data sets
using more complex commands as follows:

Procedure Call

Use this query type to call a database procedure. For example, for PL/SQL for Oracle,
statements start with BEGIN. Note that when you use this SQL data type, no metadata
is displayed on the data model structure tab, therefore you cannot modify the data
structure or data fields. To construct your SQL with a procedure call either enter the
code directly in the text box or copy and paste from another SQL editor; the Query
Builder cannot be used to modify or build these types of queries.

Non-standard SQL
Use this query type to issue SQL statements that can include the following:

s Cursor statements that return nested results sets
For example:

Ex:SELECT TO_CHAR (sysdate, 'MM-DD-YYYY') CURRENT_DATE |,
CURSOR
(SELECT d.order_id department_id,
d.order_mode department_name ,
CURSOR
(SELECT e.cust_first name first_name,
e.cust_last_name last_name,
e.customer_id employee_id,
e.date_of_birth hire_date
FROM customers e
WHERE e.customer_id IN (101,102)
) emp_cur
FROM orders d
WHERE d.customer_id IN (101,102)
) DEPT_CUR FROM dual

s Functions returning REF cursors
For example:

create or replace PACKAGE REF_CURSOR_TEST AS

TYPE refcursor IS REF CURSOR;

pCountry VARCHAR2 (10);

pState VARCHAR2 (20) ;

FUNCTION GET(pCountry IN VARCHAR2, pState IN VARCHAR2) RETURN REF_CURSOR_
TEST.refcursor;

END;

create or replace PACKAGE BODY REF_CURSOR_TEST AS
FUNCTION GET(
pCountry IN VARCHARZ,
pState IN VARCHAR2)
RETURN REF_CURSOR_TEST.refcursor
IS
1_cursor REF_CURSOR_TEST.refcursor;
BEGIN
IF (pCountry = 'US') THEN
OPEN 1_cursor FOR
SELECT TO_CHAR (sysdate, 'MM-DD-YYYY') CURRENT_DATE |,
d.order_id department_id,

Creating Data Sets 2-5

Creating Data Sets Using SQL Queries

d.order_mode department_name
FROM orders d
WHERE d.customer_id IN (101,102);
ELSE
OPEN 1_cursor FOR
SELECT * FROM EMPLOYEES;
END IF;
RETURN 1_cursor;
END GET;
END REF_CURSOR_TEST;

To use REF cursor in BI Publisher:

create SQL dataset with query as SELECT REF_CURSOR_TEST.GET (:PCNTRY, : PSTATE)
AS CURDATA FROM DUAL

= Anonymous blocks/Stored procedures

BI Publisher supports executing PL/SQL anonymous blocks. You can perform
calculations in the PL/SQL block and return the result set. BI Publisher uses
callable statements to execute anonymous blocks.

Note the following requirements:
- The PL/SQL block must return a result set of type REF cursor

— You must declare the out variable with name "xdo_cursor"; if not, the first bind
variable is treated as an out variable type and binds with REF cursor

- Declare the data model parameter with name "xdo_cursor". This name is
reserved for out variable type for procedure/anonymous blocks.

Example:

DECLARE
type refcursor is REF CURSOR;
xdo_cursor refcursor;
empno number;
BEGIN
OPEN :xdo_cursor FOR
SELECT *
FROM EMPLOYEES E
WHERE E.EMPLOYEE ID = :P2;
COMMIT;
END;
= Conditional queries can be executed if you use an if-else expression. You can
define multiple SQL queries in a single data set, but only one query will execute at
run time depending on the expression value. The expression validates and returns
a boolean value, which if true, executes that section of the SQL query.

Note the following limitations:

- The following syntax is supported to evaluate expressions: $if{, Selseif{,
Selse{

— The expression must return true, false
— Only the following operators are supported:
== <= >=< >

Example:
create sql dataset with following query
$if{ (:P_MODE == PRODUCT) }$

2-6 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

SELECT PRODUCT_ID
, PRODUCT_NAME
,CATEGORY_ID
, SUPPLIER_ID
, PRODUCT_STATUS
,LIST PRICE
FROM PRODUCT_INFORMATION
WHERE ROWNUM < 5

$elsif{(:P_MODE == ORDER)}$
SELECT ORDER_ID
,ORDER_DATE
, ORDER_MODE
, CUSTOMER_ID
,ORDER_TOTAL
,SALES_REP_ID
FROM ORDERS
WHERE ROWNUM < 5

Selse{
SELECT PRODUCT_ID
, WAREHOUSE_ID
,QUANTITY_ ON_HAND
FROM INVENTORIES
WHERE ROWNUM < 5
}$

Sendifs$

When your data set is created using non-standard SQL statements, no metadata is
displayed on the data model structure tab, therefore you cannot modify the data
structure or data fields. The Query Builder cannot be used to modify or build these
types of queries.

2.3.3 Using the SQL Query Builder

Use the Query Builder to build SQL queries without coding. The Query Builder
enables you to search and filter database objects, select objects and columns, create
relationships between objects, and view formatted query results with minimal SQL
knowledge.

This section describes how to use the Query Builder and includes the following topics:

Section 2.3.3.1, "Overview of the Query Builder"

Section 2.3.3.2, "Understanding the Query Builder Process"
Section 2.3.3.3, "Using the Object Selection Pane"

Section 2.3.3.4, "Selecting a Schema"

Section 2.3.3.5, "Searching and Filtering Objects"

Section 2.3.3.6, "Selecting Objects"

Section 2.3.3.7, "Supported Column Types"

Section 2.3.3.8, "Adding Objects to the Design Pane"
Section 2.3.3.9, "Resizing the Design and Results Pane"
Section 2.3.3.10, "Removing or Hiding Objects in the Design Pane"
Section 2.3.3.11, "Specifying Query Conditions"

Section 2.3.3.12, "Creating Relationships Between Objects"

Creating Data Sets

Creating Data Sets Using SQL Queries

= Section 2.3.3.13, "Saving a Query"
= Section 2.3.3.14, "Editing a Saved Query"

2.3.3.1 Overview of the Query Builder

The Query Builder page is divided into two sections:

» Object Selection pane contains a list of objects from which you can build queries.
Only objects in the current schema display.

= Design and output pane consists of four tabs:
s Model — Displays selected objects from the Object Selection pane.
= Conditions — Enables you to apply conditions to your selected columns.
= SQL — Displays the query.
= Results — Displays the results of the query.

Figure 2-3 Design and Output Pane

onditic 10 IZI Save Cancel
Schema OF Model | Conditions SQL Results
Search | O,
AK_DATETIME_TEST
BIG_NUMBER_TEST “ EMPLOYEES £ X
BIND_PARAM_TAB 7 EMPLOYEE_ID

BIP_AUDIT_INFO

BIP_HACOMM_LOCATION_VIEW | FIRST_NAME DEPARTMENTS % x

BOMBAY_INVENTORY

BUG_TRACKING DEPARTMENT_ID m

3]
[A]
V] LAST_NAME [A]
[A]
A

CATEGORIES_TAB EMAIL ¥ DEPARTMENT NamE [
CHARTNULLVALUETEST

- PHONE_NUMBER T a
CLOB_TEST R
CLOB_TEST2 LOGATION_ID 3]

COUNTRIES
CUSTOMERS

2.3.3.2 Understanding the Query Builder Process
To build a query, perform the following steps:

1. Select objects from the Object Selection pane.

Add objects to the Design pane and select columns.
(Optional) Establish relationships between objects.
Add a unique alias name for any duplicate column.

(Optional) Create query conditions.

o o ~ w N

Execute the query and view results.

2.3.3.3 Using the Object Selection Pane

In the Object Selection pane you can select a schema and search and filter objects.

To hide the Object Selection pane, select the control bar located between it and the
Design pane. Select it again to unhide it.

2.3.3.4 Selecting a Schema

The Schema list contains all the available schemas in the data source. Note that you
may not have access to all that are listed.

2-8 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

2.3.3.5 Searching and Filtering Objects

Use the Search field to enter a search string. Note that if more than 100 tables are
present in the data source, you must use the Search feature to locate and select the
desired objects.

2.3.3.6 Selecting Objects

The Object Selection pane lists the tables, views, and materialized views from the
selected schema (for Oracle databases, synonyms are also listed). Select the object from
the list and it displays on the Design pane. Use the Design pane to identify how the
selected objects are used in the query.

2.3.3.7 Supported Column Types

Columns of all types display as objects in the Design pane. Note the following column
restrictions:

= You can select no more than 60 columns for each query.
s Only the following column types are selectable:

= VARCHAR2, CHAR

= NUMBER

» DATE, TIMESTAMP

Note: The data type TIMESTAMP WITH LOCAL TIMEZONE is not
supported.

= Binary Large Object (BLOB)

Note: The BLOB must be an image. When you execute the query in
the Query Builder, the BLOB does not display in the Results pane;
however, the query is constructed correctly when saved to the data
model editor.

» Character Large Object (CLOB)

See Section 2.14, "Using Data Stored as a Character Large Object (CLOB) in a
Data Model" for more information about working with CLOB data in the data
model.

2.3.3.8 Adding Objects to the Design Pane
To add objects to the design pane:

1. Select an object.

The selected object displays in the Design pane. An icon representing the data type
displays next to each column name.

2. Select the check box for each column to include in your query.

When you select a column, it appears on the Conditions tab. Note that the Show
check box on the Conditions tab controls whether a column is included in query
results. Be default, this check box is selected.

Creating Data Sets 2-9

Creating Data Sets Using SQL Queries

To select the first twenty columns, click the small icon in the upper left corner of
the object and then select Check All

3. To execute the query and view results, select Results.

Tip: You can also execute a query using the key strokes CTRL +
ENTER.

2.3.3.9 Resizing the Design and Results Pane

As you select objects, you can resize the Design and Results panes by selecting and
dragging the gray horizontal rule dividing the page.

2.3.3.10 Removing or Hiding Objects in the Design Pane

To remove an object:
1. Click Remove in the upper right corner of the object.
To temporarily hide the columns within an object:

1. Click Show/Hide Columns.

2.3.3.11 Specifying Query Conditions

Conditions enable you to filter and identify the data you want to work with. As you
select columns within an object, you can specify conditions on the Conditions tab. You
can use these attributes to modify the column alias, apply column conditions, sort
columns, or apply functions. Figure 2—4 shows the Conditions tab.

Figure 2—-4 Conditions Tab

= -) Save Cancel
Model | Conditions S0L Results

Column Anas Oegact Condtion Sort Type Sort Order Show Function Group By Delete
4 = DEPARTMENT_MAME DEPARTMENT_NAME DEPSRTUENTS ASC z 7 - X
a v FIRST_NAME FIRST_NAME EMPLOYEES ASC - ¥ z x
o = LAST_NAME LAST_MNAME EMPLOYEES ASC z 7 - X
a ¥ EUPLOYEEID EMPLOYEE_ID EMPLOYEES ASC - ¥ z x
a v EMAL EMAIL EMPLOYEES ASC = v - »
& ¥ PHONE_NUMBER PHONE_MUMBER EMPLOYEES ASC - ¥ z x
A v SALARY SALARY EMPLOYEES ASC . V| = x
& W MANAGER_ID MANAGER ID EMPLOYEES ASC - ¥ - »
4 ¥ JOBID JOB_ID EMPLOYEES ASC = o = x
& ¥ HIRE_DATE HIRE_DATE EMPLOYEES ASC - ¥ - »

Table 2-1 describes the attributes available on the Conditions tab.

Table 2-1 Attributes Available on the Conditions Tab

Condition Attribute | Description

Up and Down Controls the display order of the columns in the resulting query.
Arrows

Column Displays the column name.

Alias Specify an optional column alias. An alias is an alternative column

name. Aliases are used to make a column name more descriptive, to
shorten the column name, or prevent possible ambiguous references.
Note that multibyte characters are not supported in the alias name.

Object Displays the object name.

2-10 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

Table 2-1 (Cont.) Attributes Available on the Conditions Tab

Condition Attribute | Description

Condition The condition modifies the query's WHERE clause. When specifying a
column condition, you must include the appropriate operator and
operand. All standard SQL conditions are supported. For example:

>=10

='VA'

IN (SELECT dept_no FROM dept)
BETWEEN SYSDATE AND SYSDATE + 15

Sort Type Select ASC (Ascending) or DESC (Descending).

Sort Order Enter a number (1, 2, 3, and so on) to specify the order in which
selected columns should display.

Show Select this check box to include the column in your query results. You
do not need to select Show to add a column to the query for filtering
only. For example, to create following query:

SELECT ename FROM emp WHERE deptno = 10

To create this query in Query Builder:
1. From the Object list, select EMP.
2. In the Design Pane, select ename and deptno.

3. For the deptno column, in Condition enter =10 and clear the
Show check box.

Function Available argument functions include:

s Number columns — COUNT, COUNT DISTINCT, AVG,
MAXIMUM,. MINIMUM, SUM

= VARCHAR?2, CHAR columns — COUNT, COUNT DISTINCT,
INITCAP, LENGTH, LOWER, LTRIM, RTRIM, TRIM, UPPER

s DATE, TIMESTAMP columns- COUNT, COUNT DISTINCT

Group By Specify columns to be used for grouping when an aggregate function
is used. Only applicable for columns included in output.

Delete Deselect the column, excluding it from the query.

As you select columns and define conditions, Query Builder writes the SQL for you.
To view the underlying SQL:
1. Select the SQL tab.

2.3.3.12 Creating Relationships Between Objects

You can create relationships between objects by creating a join. A join identifies a
relationship between two or more tables, views, or materialized views.

2.3.3.12.1 About Join Conditions When you write a join query, you specify a condition
that conveys a relationship between two objects. This condition is called a join
condition. A join condition determines how the rows from one object combine with the
rows from another object.

Query Builder supports inner, outer, left, and right joins. An inner join (also called a
simple join) returns the rows that satisfy the join condition. An outer join extends the
result of a simple join. An outer join returns all rows that satisfy the join condition and

Creating Data Sets 2-11

Creating Data Sets Using SQL Queries

returns some or all of those rows from one table for which no rows from the other
satisfy the join condition.

2.3.3.12.2 Joining Objects Manually Create a join manually by selecting the Join column
in the Design pane.

To join objects manually:

1. From the Object Selection pane, select the objects you want to join.

2. Identify the columns you want to join.

You create a join by selecting the Join column adjacent to the column name. The
Join column displays to the right of the data type. When your cursor is in the
appropriate position, the following help tip displays:

Click here to select column for join
3. Select the appropriate Join column for the first object.

When selected, the Join column is darkened. To deselect a Join column, simply
select it again or press ESC.

4. Select the appropriate Join column for the second object.

When joined, line connects the two columns. An example is shown in Figure 2-5.

Figure 2-5 Joined Columns

g EMPLOYEES I x
JOB_ID [A]
SALARY B - DEPARTMENTS & x
O] commssion_PcT [[C] DEPARTMENT_ID (4]
MANAGER_ID 8 = DEPARTMENT_NAME [N ‘ Click here to select column for join
[[] DEPARTMENT_ID [I [C] MANAGER_ID 4]
] LOCATION_ID 4]

5. Select the columns to be included in your query. You can view the SQL statement
resulting from the join by positioning the cursor over the join line.

6. Click Results to execute the query.
2.3.3.13 Saving a Query

Once you have built the query, click Save to return to the data model editor. The query
appears in the SQL Query box. Click OK to save the data set.

2-12 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

Figure 2-6 Query Displayed in SQL Query Box

New Data Set - SQL Query O x

*Name Employees

* Data Source |demo (Default) |Z| {’.
* Type of SQL | Standard SQL |Z|

* SQL Query Query Builder

select "EMPLOYEES™FIRST_MAME™ as "FIRST_MAME",
"EMPLOYEES""LAST_MAME™ as "LAST_MAME",
"EMPLOYEES" "HIRE_DATE" as "HIRE_DATE",
"EMPLOYEES™"SALARY™ as "SALARY",
"EMPLOYEES_1""LAST_MNAME" as "MANAGER",
"DEPARTMENTS" "DEPARTMENT_MNAME™ as "DEPARTMEMT_MAME™
from "OE""EMPLOYEES™ "EMPLOYEES_17,
"OE""DEPARTMENTS™ "DEPARTMENTS",
"OE""EMPLOYEES™ "EMPLOYEES™
where "EMPLOYEES™"MANAGER_ID"="EMFLOYEES_1""MANAGER_ID"
and "EMPLOYEES™ "DEPARTMENT_ID"="DEPARTMENTS"."DEFARTMEMNT_ID"

Generate Explain Plan OK Cancel

2.3.3.14 Editing a Saved Query

When you have saved the query from the Query Builder to the data model editor, you
can also use the Query Builder to edit the query.

To use the Query Builder to edit the query:

1. Select the SQL data set.

2. On the toolbar, click Edit Selected Data Set to launch the Edit Data Set dialog.
3. Click Query Builder to load the query to the Query Builder.

Note: If you have made modifications to the query, or did not use the
Query Builder to construct it, you may receive an error when
launching the Query Builder to edit it. If the Query Builder cannot
parse the query, you can edit the statements directly in the text box.

4. Edit the query and click Save.

2.3.4 Adding a Bind Variable to a Query

Now you have a basic query, but in the report you want users to be able to pass a
parameter to the query to limit the results. For example, in the employee listing, you
want users to be able to choose a specific department.

You can add the variable using either of the following methods:

= Add the bind variable using the Query Builder Conditions tab
To add the bind variable in the Query Builder Conditions tab:
1. Add the following Condition for the column:

in (:PARAMETER_NAME)

Creating Data Sets 2-13

Creating Data Sets Using SQL Queries

where PARAMTER_NAME is the name you choose for the parameter. This is
shown in Figure 2-7.

Figure 2-7 Adding the Bind Variable Using the Query Builder Conditions Tab

Model | Conditions SOL Resuts "0 |T Stve | | Concl

Calumn Anas Object Conditicn Son Type SonOdder Show Fusction Growp By Delete
a v CEPARTMENTNAME DEPARTMENT_NAME OEPARTMENTS in (PDEPT_NAME) ASC |« ¥ [+ x
a v FRST_NAUE FIRST_MAME EMPLOYVEES ASC [v [«] x
& LAST_HAME LAST_NAME EMPLOYEES ASC =] i [l %
= w EMPLOYEE D EMPLOYEE_ID EMPLOYVEES ASC =) v [=] x
& v EMAL EMAIL EMPLOYEES ASC !-:) !-: >
~ = PHOMEMUMEER PHONE_NUMBER EMPLOYVEES ASC =) v .| x
& w SALARY SALARY EMPLOYEES ASC !-:) -] >
a W MANAGER_ID MANAGER_ID EMPLOYVEES ASC [v [<] x
& w 08D JOB_ID EMPLOYEES ASC [] 7 [<] >
+ v HREDATE HIRE_DATE supLovEES asc [f] @ B X

= Update the SQL query directly in the text box.

Important: After manually editing the query, the Query Builder can
no longer parse it. Any further edits must also be made manually.

To update the SQL query directly in the text box:
1. Add the following after the where clause in your query:

and "COLUMN_NAME" in (:PARAMETER_NAME)

for example:

and "DEPARTMENT NAME" in (:P_DEPTNAME)

where P_DEPTNAME is the name you choose for the parameter. This is
shown in Figure 2-8.

Figure 2-8 Editing the Generated SQL Query

Edit Data Set - Employees 9 x

*Name Employees

* Data Source | demo (Default) B{,
*Type of SQL | Standard SQL EI

* SQL Query Query Builder

select "EMPLOYEES"."FIRST_MAME" as "FIRST_NAME",
"EMPLOYEES" "LAST_NAME" as "LAST_NAME"
"EMPLOYEES""HIRE_DATE" as "HIRE_DATE",
"EMPLOYEES" "SALARY" as "SALARY",
"EMPLOYEES_1""LAST_NAME" as "MANAGER",

. DEF'J\ERTI'\-'IENTS DEF'J\RTI'\-'IENT TEAME as "DEPARTMENT_NAME"

Tom

"OE""E : :
where "EMPLOYEES™"MANAGER_ID"="EMPLOYEES_1""MANAGER_ID"

and __ "EMPLOYEES"'DEPARTMENT_ID"="DEPARTMENTS" "'DEPARTMENT_ID"
and "DEPARTMENTS" "DEPARTMENT_NAME" in (:P_DEPTNAME)

OK Cancel

2-14 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

2. When you click Save, the data model editor prompts you to create the
parameter that you entered with the bind variable syntax, as shown in
Figure 2-9.

Figure 2-9 Add Parameter Dialog

Add Parameter - Employees X

Please select one or more bind variables to create corresponding
parameters

¥] P_DEPTNAME

OK Cancel

3. Select the parameter, and click OK to enable the data model editor create the
parameter entry for you. See Chapter 4, "Adding Parameters and Lists of
Values" for more information on defining parameter properties.

2.3.5 Adding Lexical References to SQL Queries

You can use lexical references to replace the clauses appearing after SELECT, FROM,
WHERE, GROUP BY, ORDER BY, or HAVING. Use a lexical reference when you want
the parameter to replace multiple values at runtime. Lexical references are supported
in queries against Oracle applications only.

Create a lexical reference in the SQL query using the following syntax:

¶metername

Note: You also use lexical references to include flexfields in your

query. For more information about using flexfields, see Chapter 6,
"Adding Flexfields."

To define a lexical parameter:

1. Before creating your query, define a parameter in the PL/SQL default package for
each lexical reference in the query. The data engine uses these values to replace the
lexical parameters.

2. In the data model editor, on the Properties page, specify the Oracle DB Default
Package.

3. In the data model editor, create a Before Data event trigger to call the PL/SQL
package. See Section 5.2, "Adding Before Data and After Data Triggers" for more
information about procedures.

4. Create your SQL query containing lexical references.

5. When you click OK to close your SQL query, you are prompted to enter the
parameter.

For example, create a package called employee. In the employee package, define a
parameter called where_clause:

Package employee
AS
where_clause varchar2(1000) ;

Creating Data Sets 2-15

Creating Data Sets Using SQL Queries

Package body employee
AS

where_clause := 'where DEPARTMENT ID=10';

Reference the lexical parameter in the SQL query where you want the parameter to be
replaced by the code defined in the package. For example:

select "EMPLOYEES"."EMPLOYEE_ID" as "EMPLOYEE_ID",
"EMPLOYEES"."FIRST NAME" as "FIRST NAME",
"EMPLOYEES" . "LAST_NAME" as "LAST_NAME",
"EMPLOYEES" . "SALARY" as "SALARY",
from"OE"."EMPLOYEES" "EMPLOYEES"
&where_clause

When you click OK on the Create SQL Data Set dialog box, the lexical reference dialog
box prompts you to enter a value for lexical references you entered in the SQL query,
as shown in Figure 2-10. Enter the value of the lexical reference as it is defined in the
PL/SQL package.

Figure 2-10 Lexical Reference Dialog

Please enter values for lexical references in SQL-Employees O x

*&where_clause [flex field

OK Cancel

At runtime, the data engine replaces &where_clause with the contents of where_
clause defined in the package.

2.3.6 Defining SQL Queries Against the Oracle Bl Server

When you launch the Query Builder against the Oracle Bl server, the Query Builder
displays the subject areas from the catalog. You can drag the subject areas to the Query
Builder workspace to display the columns. Select the columns to include in your data
model.

Keep the following points in mind when creating a data set against the Oracle BI
server:

= When you create a SQL query against the Oracle Bl server using the SQL Data
Editor or the Query Builder, logical SQL is generated, not physical SQL like other
database sources.

= Hierarchical columns are not supported. The highest level is always returned.

= Within a subject area, the join conditions between tables are already created; it is
therefore not necessary to create joins in the Query Builder. The Query Builder
does not expose the primary key.

2-16 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Data Sets Using SQL Queries

It is possible to link data sets using the data model editor's Create Link function.
See Section 3.5, "Creating Element-Level Links." For data sets created from the BI
Server, there is a limit of two element-level links for a single data model.

In the Query Builder, the functions Sort Order and Group By shown on the
Conditions tab are not supported for queries against the Oracle BI server. If you
enter a Sort Order or select the Group By check box, the Query Builder will
construct the SQL, and write it to the BI Publisher SQL Query text box, but when
you attempt to close the Data Set dialog, the query will fail validation.

To apply grouping to the data retrieved by the SQL query, you can use the data
model editor's Group by function instead. See Section 3.7, "Creating Subgroups.'

1

If you pass parameters to the Oracle Bl server and you choose Null Value Passed
for Can Select All, you must ensure that you handle the null value in your query.

To create a SQL query against the Oracle BI server:

1. In the data model editor, click New Data Set and then click SQL Query.

2. Enter a name for the data set.

3. From the Data Source drop-down list, select the Oracle BI server connection
(usually shown as Oracle BI EE).

4. Click Query Builder to launch the Query Builder page. See Section 2.3.3, "Using
the SQL Query Builder" for more information about the Query Builder utility.
You can also enter the SQL syntax manually in the SQL Query text box, however
you must use the logical SQL syntax used by the Oracle Bl server.

5. From the Catalog drop-down list, select a subject area as shown in Figure 2-11.

The list displays the subject areas defined in the Oracle BI server.

Figure 2-11 Selecting a Subject Area in the Query Builder

Save Cancel

Catalog A- Sample Sakes
A- Sample Szles
Schema |- e

Search

o
E-
=
Actiong f 8 - Semple

H- Sample
Advance| |- Samele s

K - Sample
Allocatio| L - Geo Loc

0 - OAA Integration
Alternate R - ORE Sample

T-EID Source
Apex Col U -

x-
Base Fa| 3.

X - Arines Trs
Calculalt 1 - Db Swuowre
Calculali @ Scheduied Jobs

I

Counts

Cust Geo Codes
Customers
Customer 5CDs

n

E BB

=]

OO 3

Products

P1 Product

P2 Product Type

P3LOB

P4 Brand

PO Product Number

P5 Aftribute 1

PE Attribute 2

EI Model | Conditions SOL Resutts 19 D

BE B B E

]

I

Base Facts

1-Revenue

2- Billed Quantity

3-Discount Amount

4-Paid Amount

7-Shipped Amount

6. Select tables and columns for the query.

7. Click Save.

8. Click OK to return to the data model editor. The SQL that is generated is logical
SQL that follows a star schema. It is not physical SQL.

9. Save your changes to the data model.

Creating Data Sets 2-17

Creating a Data Set Using a MDX Query Against an OLAP Data Source

2.4 Creating a Data Set Using a MDX Query Against an OLAP Data
Source

BI Publisher supports Multidimensional Expressions (MDX) queries against OLAP
data sources. MDX enables you to query multidimensional objects, such as Essbase
cubes, and return multidimensional cell sets that contain the cube's data. You create
MDX queries by manually entering the MDX query or by using MDX Query Builder to
build the query.

2.4.1 Creating a Data Set Using a MDX Query
To create a data set using a MDX query:

1. On the toolbar, click New Data Set and then select MDX Query. The New Data
Set - MDX Query dialog launches as shown in Figure 2-12.

Figure 2-12 New Data Set - MDX Query Dialog

New Data Set - MDX Query (=]

* Marme I

*DataSource | Esshase G@
* DK Query Esshasz0l Query Builder

Essbase02

Help [a4 Cancel

2. Enter a name for the data set.

3. Select the data source for the data set. Only the data sources defined as OLAP
connections are displayed in the list.

Any private OLAP data source connections that you created will also be available
in the Data Source drop-down list. For more information on creating private data
source connections, see Section 1.8, "Managing Private Data Sources".

4. Enter the MDX query or click Query Builder. For more information on using MDX
Query Builder, see Section 2.5, "Using MDX Query Builder".

5. Click OK to save. The data model editor validates the query.

Note: Ensure that in your OLAP data source that you do not use
Unicode characters from the range U+F900 to U+FFFE to define any
metadata attributes such as column names or table names. This
Unicode range includes half-width Japanese Katakana and full-width
ASCII variants. Using these characters results in errors when
generating the XML data for a BI Publisher report.

For more information on writing MDX queries, see "Writing MDX Queries" in Oracle
Essbase Database Administrators Guide.

2-18 User's Guide for Oracle Business Intelligence Mobile App Designer

Using MDX Query Builder

2.5 Using MDX Query Builder

Use MDX Query Builder to build MDX basic queries without having to code them.
MDX Query Builder enables you to add dimensions to columns, rows, pages, and
point of view axes and preview the query results.

Note: MDX Query Builder only enables you to build data sets
against Essbase data sources. For all other OLAP data sources, you
must manually create the query.

2.5.1 Understanding the MDX Query Builder Process
To use MDX Query Builder to build a MDX query:

1.

o g 0D

N

On the toolbar, click New Data Set and then select MDX Query to launch the New
Data Set - MDX Query dialog.

Enter a name for the data set.

Select a data source.

Launch MDX Query Builder.

Select an Essbase cube for the query.

Select dimensions and measures by dragging and dropping them to the Columns,
Rows, Slicer /POV, and the Pages axes.

(Optional) Use actions to modify the query.
(Optional) Apply filters.
Set the query options and save the query.

2.5.2 Using the Select Cube Dialog

In the Select Cube dialog, select the Essbase cube that you want to use to build the
MDX query.

The MDX data source connection that you selected previously drives which Essbase
cubes are available for selection.

2.5.3 Selecting Dimensions and Measures

You build MDX queries by selecting dimensions for the Columns, Rows, Slicer/POV,
and Pages axes.

Account dimension members are listed individually by member name. All other
dimension members are represented by generation name as shown in Figure 2-13.

You can drag dimension generations and individual measures from the Account
dimension to the Columns, Rows, Slicer/POV, and Pages axes.

Creating Data Sets 2-19

Using MDX Query Builder

Figure 2-13 Dimensions as Displayed in MDX Query Builder

HPR=s@

=/ Dimensions Filters

Columns |(2/Gen2 Market v |

= & Market ~ = — — -
Genz, Market Rows (Gen3,Product v | Margin) (Sales | (Total_Expenses |
Gen3,Market ——

B 2 Productv slicer/POV | Scenario (Budget) ~ |

Gen2,Product ~
Gen3,Product ~
Stenario~

Genz, Scenario

pages |(Gend,Yearv)

SELECT
NON EMPTY Hisrarchize([Market]. Gener ations(2), Members) SN Axis{0),

B & vearw NON EMPTY CROSSIOIN(Hierarchize{[Product]. Generations(3). Members), {[Accounts] [Margin],[Accounts]. [Sales], [accaunts].
Genz,Year v [Total_Expenses]k) OM fAxis(1),MOM EMPTY [Vear].Generations(3).Members ON foxis(2)
Geng,Vear v FROM Demo. Basic
& # Accounts WHERE ((Budget])
(=1 # Profit v
[# Marginv
Sales s

Cost_of_Goods_|

= # Totsl_Expenses~| | Jan 'I

Marketing ~

payrall~ East West South

Miscellaneous ~ | | steren Margin 1,239.00 | 1,680,00
#P’Dﬁt—”‘;" Sales 2,950.00 | 4,000.00
Margin_% v Tokal_Expenses | 1,145.00 | 1,550.00
Compact_Disc | Margin 2,139.00 | 2,514.00
Sales 3,450.00 | 4,700.00
Tokal_Expenses | 1,040.00 | 1,250.00

Talevisin Margin 2,850.00 | 3,060.00 | 2,040.00

Sales 4,800.00 | 5,100.00 | 3,400.00

Total_Expenses | 1,640.00 | 1,900.00 | 1,220.00

veR Margin 2,646.00 | 2,551.00 | 2,142.00

Sales 4,200.00 | 4,650.00 | 3,400.00

Total Expenses | 1,180.00 [1,415.00 | 895.00

Camera Margin 2,023.00 | 2,574.50 | 1,707.00

Sales 2,350.00 | 4,050.00 | 2,400.00

Tokal_Expenses | 1,495.00 | 1,856.00 | 1,301.00

4l [l

Build the query by dragging dimension members or measures from the Dimensions
panel to one of the following axes areas:

s Columns— Axis (0) of the query
= Rows — Axis (1) of the query

» Slicet/POV— The slicer axis enables you to limit a query to only a specific slice of
the Essbase cube. This represents the optional WHERE clause of a query.

= Axis — Axis (2) of the query

You can nest dimension members in the Columns and Rows axes, but you can only
add a single dimension to the Slider /POV axis.

2.5.3.1 Adding Dimension Members to the Slicer/POV Axis

When you add a dimension to the Slicer/POV axis, the Member Selection dialog
launches. You can only select one dimension member for this axis. Simply select the
dimension in the Member Selection dialog, and then click OK.

The Member Selection dialog does not display if you add a measure to the Slicer/POV
axis.

2.5.4 Performing MDX Query Actions

The MDX Query Builder toolbar contains the following buttons for modifying the
MDX query:

» Click Swap Rows and Columns to flip dimensions between columns and rows.
» Click Actions to display the following menu items for selection:
- Select Cube — Selects a different Essbase cube for the query.

— Set Alias Table — Selects the alias table used for dimension display names.
Alias names are used for display only and are not used in the query.

2-20 User's Guide for Oracle Business Intelligence Mobile App Designer

Using MDX Query Builder

Auto Refresh — Displays the results as dimension members are placed in the

Columns, Rows, Slicer/POV, and Pages axes and automatically refreshes the

MDX query syntax.

Clear Results — Clears the results and removes member selections from all of

the axes and any filters added to the query.

Show Empty Columns — Displays columns that do not contain data.

— Show Empty Rows — Displays rows that do not contain data.

Show Query — Displays the MDX query syntax resulting from how the

dimensions are placed in the Columns, Rows, Slicer /POV, and Pages axes.

2.5.5 Applying MDX Query Filters

You can create filters for dimensions on the Columns, Rows, and Pages axes in MDX
Query Builder to further streamline your MDX query.

To create a filter, click the down-arrow button to the right of a dimension in the
Columns, Rows, or Pages axes to display it in the Filters area. You create the filter by
selecting the desired dimension member as shown in Figure 2-14.

Figure 2-14 MDX Query Builder Filters

Columns I: + Gen2,Market A

East

Actual | 4,301.00
Budget | 4,427.00
‘ariance | -126.00

Filters

p— £l) market
Rows | Gen2,Scenatio~| Filker arke E‘
————— Rem Only =™ Market =
Slicer/PO¥ || Product (Audia)| Keep Cnly
\ bt _ 4 ¥ East ~
= Mowve Left e
Pages (ElGenz, earv | o2 Right I west
South v
IJan vl

You can create multiple filters for a query, but you can only create one filter for each

Columns, Rows, or Pages axis.

2.5.6 Selecting MDX Query Options and Saving MDX Queries

Once you have built the query, click Save to display the Options dialog as shown in

Figure 2-15.

Figure 2-15 Options Dialog

Options

Dimension Properties

Columns Rows Pages
I™ Member Alias ™ Member alias ™ Member Alias
r Ancestor Mames I Ancestor Mames I Ancestar Mames
I Level number ™ Level Mumber I™ Level Mumber
I Gen Mumber I™ Gen Mumber I Gen Mumber

Ok

Cancel

Creating Data Sets 2-21

Creating a Data Set Using an Oracle Bl Analysis

Use the Options dialog to select the dimension properties to include in the query for
each of the dimensions in the Columns, Rows, and Pages axes. By default, none of the
properties are selected.

The dimension properties are as follows:

s Member Alias — Dimension member alias names as listed in the Essbase outline.
s Ancestor Names — Ancestor dimension names as listed in the Essbase outline.

s Level Number — Dimension level numbers as listed in the Essbase outline.

s Gen Number — Generation number of the dimensions as listed in the Essbase
outline.

For example, if you select the Member Alias and Level Number properties for
Columns, the MDX query results are as follows:

SELECT

NON EMPTY Hierarchize([Market].Generations (2) .Members)

PROPERTIES MEMBER_ALIAS,LEVEL_NUMBER ON Axis(0),

NON EMPTY CROSSJOIN (Hierarchize ([Product].Generations (3) .Members),

{[Accounts]. [Margin], [Accounts]. [Sales], [Accounts]. [Total_Expenses]})ON Axis (1),
NON EMPTY [Year].Generations(3).Members ON Axis(2) FROM Demo.Basic

For more information on Essbase dimension properties, see "Querying for Properties"
in Oracle Essbase Database Administrator’s Guide.

After you select options for the MDX query, click OK to return to the New Data Set -
MDX Query dialog and review the MDX query output as shown in Figure 2-16.

Figure 2-16 MDX Query Output

Edit Data Set - MDX Query (=]

*Mame MDY Query
* Data Jource | Esshase ;I GEI
* D Query
SELECT

NCON EMPTY Hierarchize([Market] .Generations(2) .Hembers)
PROFERTIES MEMBER ALIAS, LEVEL NUMEER CN Axis(0),

CQuery Builder

NCM EMPTY
CROZSJOIN (Hierarchize ([Froduct] .Generations (3) . Mewbhers) ,
{[Liccounts] . [Margin] , [Accounts] . [3ales] , [Accounts] .

[Total Expenses]}) ON Axis(1) ,NCHN EMPTY
[Year] .Generations (3) . Menbers ON Axis(2)
FROM Demo.Basic

Help a4 Cancel

Click OK to return to the data model editor, and save your changes.

Important: If you modify a MDX query after you save it in Bl
Publisher, Oracle recommends that you manually change the syntax
and not use MDX Query Builder to do so.

2.6 Creating a Data Set Using an Oracle Bl Analysis

If you have enabled integration with Oracle Business Intelligence, then you can access
the Oracle Business Intelligence Presentation catalog to select an Oracle Bl analysis as a

2-22 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using an Oracle Bl Analysis

data source. An analysis is a query against an organization's data that provides
answers to business questions. A query contains the underlying SQL statements that
are issued to the Oracle BI Server.

For more information about creating analyses, see Oracle Fusion Middleware User's
Guide for Oracle Business Intelligence Publisher.

Important: Hierarchical columns are not supported in BI Publisher
data models.

To create a data set using an Oracle BI analysis:

1. Click the New Data Set toolbar button and select Oracle BI Analysis. The New
Data Set - Oracle BI Analysis dialog launches.

2. Enter a name for this data set.

3. Click the browse icon to connect to the Oracle BI Presentation catalog, as shown in
Figure 2-17.

Figure 2-17 Connecting to the Oracle Bl Presentation Catalog

Oracle Bl Analysis - (7 I

Oracle Bl Analysis
Bl Catalog Home

I jSharedﬁolders
| SgUsers

Cancel

4. When the catalog connection dialog launches, navigate through the folders to
select the Oracle BI analysis to use as the data set for the report.

5. Enter a Time Out value in seconds, as shown in Figure 2-18. If BI Publisher has
not received the analysis data after the time specified in the time out value has
elapsed, then BI Publisher stops attempting to retrieve the analysis data.

Figure 2-18 Creating a Bl Analysis Data Set

New Data Set - Oracle Bl Analysis 0 x
*Name 3Sales
* Oracle Bl Analysis Shared/Customer_Orders/Sales_Analysis o,
Time OQut 60 (in seconds)
OK Cancel
6. Click OK.

Creating Data Sets 2-23

Creating a Data Set Using a View Object

2.6.1 Additional Notes on Oracle Bl Analysis Data Sets

Parameters and list of values are inherited from the Bl analysis and they display at run
time.

The BI Analysis must have default values defined for filter variables. If the analysis
contains presentation variables with no default values, it is not supported as a data
source by BI Publisher.

If you want to structure the data based on Oracle BI Analysis Data Sets, the group
breaks, group filters, data links and group-level functions are not supported.

The following are supported:
= Global level functions
» Setting the value for elements if null

For more information about the above supported features, see Chapter 3, "Structuring
Data."

2.7 Creating a Data Set Using a View Object

BI Publisher enables you to connect to your custom applications built with Oracle
Application Development Framework and use view objects in your applications as
data sources for reports.

Prerequisite: Before you can create a BI Publisher data model using a view object, you
must first create the view object in your application following the guidelines in the
chapter "Making a View Object Available to BI Publisher as a Data Source" in the
Oracle Fusion Middleware Developer’s Guide for Oracle Business Intelligence Publisher.

To create a data set using a view object:

1. Click the New Data Set toolbar button and select View Object. The New Data Set
- View Object dialog launches.

2. Enter a name for this data set.

3. Select the Data Source from the list. The data sources that you defined in the
providers.xml file display.

4. Select Yes for Execute as SQL to extract the SQL query form the View Object and
execute it on the Business Intelligence domain. Performance of the query execution
is better as the SQL is executed directly against the database. Yes is the default.

Select No to execute the view object on the Oracle Applications domain through
the ADF layer. The XML data is then streamed to the Business Intelligence domain
in chunks. This method results in poorer performance, but enables execution on
the Applications domain. Some service interface layers can be invoked to allow
custom data manipulation.

5. Enter the fully qualified name of the application module (for example:
example.apps.pa.entity.applicationModule. AppModuleAM).

6. Click Load View Objects.
BI Publisher calls the application module to load the view object list.
7. Select the View Object.

8. Any bind variables defined are retrieved. Create a parameter to map to this bind
variable See Chapter 4, "Adding Parameters and Lists of Values."

9. Click OK to save your data set.

2-24 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using a Web Service

2.7.1 Additional Notes on View Object Data Sets

To structure data based on view object data sets, the group breaks, data links and
group-level functions are not supported.

The following is supported: Setting the value for elements if null.

For more information about this supported feature, see Chapter 3, "Structuring Data."

2.8 Creating a Data Set Using a Web Service

BI Publisher supports data sets that use simple and complex Web service data sources
to return valid XML data.

To include parameters for Web service methods, it is recommended that you define the
parameters first, so that the methods are available for selection when setting up the
data source. See Chapter 4, "Adding Parameters and Lists of Values."

Multiple parameters are supported. Ensure the method name is correct and the order
of the parameters matches the order in the method. To call a method in the Web service
that accepts two parameters, you must map two parameters defined in the report to
the two parameters in the method. Note that only parameters of simple type are
supported, for example, string and integer.

Important: Only document/literal Web services are supported.

To specify a parameter, click Add Parameter and select the parameter from the
drop-down list.

Note: The parameters must be set up in the Parameters section of the
report definition. For more information, see Chapter 4, "Adding
Parameters and Lists of Values."

2.8.1 Creating a Data Set Using a Web Service

Web service data sources can be set up in the following ways:
= On the Administration page

Connections to Web service data sources can be set up on the Administration page
and then used in multiple data models. For more information, see "Setting Up a
Connection to a Web Service" in Oracle Fusion Middleware Administrator’s Guide for
Oracle Business Intelligence Publisher.

= Asa private data source

You can also set up a private connection accessible only to you. See Section 1.8,
"Managing Private Data Sources" for information about private data source
connections.

You must set up the connection before you create the data model.

BI Publisher supports data sets that use simple and complex Web service data sources
to return valid XML data:

= Section 2.8.1.1, "Creating a Data Set Using a Simple Web Service"
= Section 2.8.1.2, "Creating a Data Set Using a Complex Web Service"

Creating Data Sets 2-25

Creating a Data Set Using a Web Service

2.8.1.1 Creating a Data Set Using a Simple Web Service

If you are not familiar with the available methods and parameters in the Web service
to call, you can open the URL in a browser to view them.

To create a data set using a simple Web service:

1. Click the New Data Set toolbar button, and then select Web Service. The New
Data Set - Web Service dialog launches, as shown in Figure 2-19.

Figure 2-19 Creating a Data Set Using a Simple Web Service Connection
New Data Set - Web Service 0 x

*Name Stock Quote

*Data Source |StockQuote |E| 3

I =1 ™

*WSDL URL hitpeifhitp:iwww webservicex net:80/stockquote.as
*Method GetQuotel
Parameters Add Parameter

Name Value (Parameter)

OK Cancel

2. Enter the data set name.
3. Select the Data Source.

The WSDL URL, Web Service, and Method fields are automatically populated
from the Web service data source.

4. Enter the Method.
5. Click OK.

6. Define the parameters to make them available to the Web service data set as
follows:

= Select Parameters on the Data Model pane, click Create New Parameter, and
then enter the following attributes:

- Name — Enter an internal identifier for the parameter (for example,
Symbol).

- Data Type — Select String.

— Default Value — If desired, enter a default for the parameter (for
example, ORCL).

— Parameter Type — Select Text.
- Row Placement — Select a row placement value. The default is 1.
s In the New_Parameter_1:Type: Text region, enter the following attributes:

- Display Label — Enter the label you want displayed for your parameter
(for example: Stock Symbol).

- Text Field Size — Enter the size for the text entry field in characters.

2-26 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using a Web Service

Figure 2-20 Creating the Parameter

Data Model

Parameters
Properties + x
4 Data Sets *Name Data Type Default Value P Type Row Pl Reorder
@, Stock Quote
N R I symbal String E| ORCL Text B = av
4 Flexfields
4 Listofvalues
4 Parameters
[=[1 Symbol - -

4 Bursting

Symbol: Type: Text
Display Label = Stock Symbol
TextField Size 10

Options [] Textfield contains comma-separated values

= (Optional) Select the following parameter options:

— Text field contains comma-separated values — Select this option to
enable the user to enter multiple comma-delimited values for this
parameter.

— Refresh other parameters on change — Performs a partial page refresh to
refresh any other parameters whose values are dependent on the value of
this one.

7. Return to the Web service data set and add the parameter as follows:
» Click the data set name.
= On the toolbar, click Edit Selected Data Set to launch the Edit Data Set dialog.

= In the Edit Data Set dialog, click Add Parameter. Your parameter displays, as
shown in Figure 2-21.

= Name the parameter, and then click OK to close the Edit Data Set dialog.

Figure 2-21 Adding the Parameter to Web Service Data Set

Edit Data Set - Stock Quote Q x

*Name Stock Quote
* Data Source | StockQuote |Z| 3
=\WsDL URL hitp:ihitp:fwww webs ervicex net: 80/stockquote.as
“Method GetQuote
Parameters Add Parameter
Name Value (Parameter)

Stock Sym Symbol B xX

0K Cancel

8. Click Save.

Creating Data Sets 2-27

Creating a Data Set Using a Web Service

2.8.1.2 Creating a Data Set Using a Complex Web Service

BI Publisher supports data sets that use complex Web service data sources to return
valid XML data. A complex Web service type internally uses soapRequest /
soapEnvelope to pass the parameter values to the destination host.

When a data set uses a complex Web service as a data source, the data model editor
displays the WSDL URL, available Web service, and operations associated with the
complex Web service. For each selected operation, the data model editor displays the
structure of the required input parameters. If you choose Show optional parameters,
all optional parameters as displayed as well.

If you are not familiar with the available methods and parameters in the Web service,
open the WSDL URL in a browser to view them.

To add a complex Web service as a data source:
1. Enter the data set information as follows:

» Enter the data set name.

= Select the data source. The WSDL URL and Web service fields are
automatically populated from the complex Web service data source.

m Select the Method.

The Methods available for selection are based on the complex Web service
data source. When you select a method, the Parameters are displayed. To view
optional parameters, select Show optional parameters.

= Response Data XPath — If the start of the XML data for the report is deeply
embedded in the response XML generated by the Web service request, use this
field to specify the path to the data to use in the BI Publisher report.

2. Define the parameter to make it available to the Web service data set as follows:

= Select Parameters on the Report definition pane, and then click New to create
a parameter.

= Define the following parameter attributes:
- Name — Enter an internal identifier for the parameter.
- Data Type — Select the appropriate data type for the parameter.
- Default Value — If desired, enter a default value for the parameter.
— Parameter Type — Select the appropriate parameter type.
- Display label — Enter the label you want displayed for your parameter.
- Text Field Size — Enter the size for the text entry field in characters.
3. Return to the Web Service data set and add the parameter.

= Select the Web service data set, and then click Edit Selected Data Set to launch
the Edit Data Set dialog.

» Select the parameters as shown in Figure 2-22.

2-28 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using an LDAP Query

Figure 2-22 Entering Parameters for Complex Web Service

New Data Set - Web Service

“Hame | Complex ‘Wb Service
FDaka S0Urce | peshwsz ;l @fﬁ
*FWSDL URL

Ihttp:,-",-"example.us.Dracle.com:QSQkamlpser\xer,-"servic:e

Web Service | PublicReportServiceService ;I

Method | getFolderContents =] ™ show optional parameters
Responselrata ¥Path I
Parameters
Name ¥alue {Parameter)
[hame=nsTuserID], [type=string] password _~ |
[natne=ns 1 folderAbsolutePath], [type=string] userid |
[hame=ns1:password], [type=string] password _~ |
i o

4. To test the Web service, see Section 2.15, "Testing Data Models and Generating

Sample Data."

2.8.2 Additional Information on Web Service Data Sets

There is no metadata available from Web service data sets, therefore grouping and

linking are not supported.

2.9 Creating a Data Set Using an LDAP Query

BI Publisher supports queries against Lightweight Directory Access protocol (LDAP)
data sources. You can query user information stored in LDAP directories and then use
the data model editor to link the user information with data retrieved from other data

sources.

For example, to generate a report that lists employee salary information that is stored
in the database application and include on the report employee e-mail addresses that
are stored in the LDAP directory. You can create a query against each and then link the
two in the data model editor to display the information in a single report. Figure 2-23

shows a sample LDAP query.

Figure 2-23 Sample LDAP Query

New Data Set - LDAP Query

*Mame | AP Data Set
* Data Source Idap11 ;IEE

Search Base I

* dktributes
mail, cn, givenMName

* Filter
[chjectolass=person)

Help (o] 4 Cancel

Creating Data Sets 2-29

Creating a Data Set Using a XML File

To create a data set using an LDAP query:

1.

Click the New Data Set toolbar button and select LDAP Query. The New Data Set
- LDAP Query dialog launches.

Enter a name for this data set.

Select the Data Source for this data set. Only data sources defined as LDAP
connections display in the list.

In the Search Base field, enter the starting point for the search in the directory tree.

Note: Search Base is required when the LDAP provider is Microsoft
Active Directory. The Search Base defines the starting point of the
search in the directory tree. For example, if you want to query the
entire directory, specify the root.

To specify the starting point, enter each hierarchical object separated
by a comma, starting with the lowest level in the hierarchy. For
example, to search the Sales container in the mycompany.com domain,
enter:

ou=Sales,dc=mycompany,dc=com

In the Attributes entry box, enter the attributes whose values you want to fetch
from the LDAP data source.

For example:

mail, cn, givenName

To filter the query, enter the appropriate syntax in the Filter entry box. The syntax
is as follows:

(Operator (Filter)through(Filter))

For example:

(objectclass=person)

LDAP search filters are defined in the Internet Engineering Task Force (IETF)
Request for Comments document 2254, "The String Representation of LDAP
Search Filters," (RFC 2254). This document is available from the IETF Web site at
http://www.ietf.org/rfc/rfc2254.txt

Link the data from this query to the data from other queries or modify the output
structure. For instructions on completing this step, see Chapter 3, "Structuring
Data."

2.10 Creating a Data Set Using a XML File

To use an XML file as a data source, perform one of the following actions:

2-30

Place the XML file in a directory that your administrator has set up as a data
source. For more information, see "Setting Up a Connection to a File Data Source'
in Oracle Fusion Middleware Administrator’s Guide for Oracle Business Intelligence
Publisher.

Upload the XML file to the data model from a local directory.

1

User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using a XML File

Important: To use Bl Publisher's layout editor and interactive
viewer, sample data from the XML file source must be saved to the
data model.

2.10.1 About Supported XML Files
The following are guidelines for the support of XML files as a data set type in BI

Publisher:
» The XML files that you use as input to the BI Publisher data engine must be UTF-8
encoded.

= Do not use the following characters in XML tag names: ~, |, #,$, %, ", &, %, +,°, |, ;,
\",\\, <,>,7?,,, /. If your data source file contains any of these characters, use the
data model editor Structure tab to change the tag names to an acceptable one.

» The XML file must be valid. Oracle provides many utilities and methods for
validating XML files.

» There is no metadata available from XML file data sets, therefore grouping and
linking are not supported.

2.10.2 Using a XML File Stored in a File Directory Data Source

To create a data set using a XML file from a file directory data source:

1. On the toolbar, click New Data Set and select XML File. The New Data Set - XML
File dialog launches, as shown in Figure 2-24.

Figure 2-24 New Data Set - XML File Dialog

New Data Set - XML File (=]

FHame [Saleg Data

Mame @ Shared

*DataSource | dema Files [+ | 6

*File Name |5 a)ag Q,
 Local
File Mame
Help (o4 Cancel

2. Enter a name for the data set.
3. Click Shared to enable the Data Source list. This is the default selected option.

4. Select the Data Source where the XML file resides. The list is populated from the
configured File Data Source connections.

5. To the right of File Name, click Browse to connect to the data source and browse
the available directories. Select the file.

6. Click OK.

7. (Required) Save sample data to the data model. See Section 2.15, "Testing Data
Models and Generating Sample Data."

Creating Data Sets 2-31

Creating a Data Set Using a XML File

2.10.3 Uploading a XML File Stored Locally

To create a data set using a XML file stored locally:

1. On the toolbar, click New Data Set and select XML File. The New Data Set - XML
File dialog launches, as shown in Figure 2-25.

Figure 2-25 New Data Set - XML File Dialog

New Data Set - XML File (=]

*
Mame |Ralance

#ML File Shared

* Data Source | bugFiles ;I

File Marme C%

@ Local

.
File Mame | galance, wml = |2

Help 0K Cancel

2. Enter a name for this data set.
3. Select Local to enable the Upload button.

4. Click Upload to browse for and upload the XML file from a local directory. If the
file has been uploaded to the data model, then it is available for selection in the

File Name List.
5. Click Upload.
6. Click OK.

7. (Required) Save sample data to the data model. See Section 2.15, "Testing Data
Models and Generating Sample Data."

2.10.3.1 Refreshing and Deleting an Uploaded XML File

After uploading the file, it displays on the Properties pane of the data model under the
Attachments region, as shown in Figure 2-26.

Figure 2-26 Attachments Region of the Properties Pane

Attachment
Sample Data sample.xml Delete
Schema Ij'
Data Files Balance.:xml EE ®

Delete the file
Click the file name to fﬂ:"o’:e':‘e =

open or download it Refresh the

file from the

local directory

See Section 1.7, "Setting Data Model Properties" for more information about the
Properties pane.

To refresh the local file in the data model:
1. In the component pane, click Data Model to view the Properties page.

2. In the Attachment region of the page, locate the file in the Data Files list.

2-32 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using a Microsoft Excel File

5.

Click Refresh.

In the Upload dialog, browse for and upload the latest version of the file. The file
must have the same name or it will not replace the older version.

Save the data model.

To delete the local file:

o ©Dbd

In the component pane, click Data Model to view the Properties page.
In the Attachment region of the page, locate the file in the Data Files list.
Click Delete.

Click OK to confirm.

Save the data model.

2.11 Creating a Data Set Using a Microsoft Excel File

To use a Microsoft Excel file as a data source, you have the following options for
providing the file to BI Publisher:

Place the file in a directory that your administrator has set up as a data source. See
the section "Setting Up a Connection to a File Data Source" in Oracle Fusion
Middleware Administrator’s Guide for Oracle Business Intelligence Publisher).

Upload the file to the data model from a local directory.

2.11.1 About Supported Excel Files

Following are guidelines for the support of Microsoft Excel files as a data set type in BI
Publisher:

The Microsoft Excel files must be saved in the Excel 97-2003 Workbook (*.xls)
format by Microsoft Excel. Files created by a third party application or library are
not supported.

The source Excel file can contain a single sheet or multiple sheets.

Each worksheet can contain one or multiple tables. A table is a block of data that is
located in the continuous rows and columns of a sheet.

In each table, BI Publisher always considers the first row to be the heading row for
the table.

The first row under the heading row must not be empty and is used to determine
the column type of the table.The data type of the data in the table may be number,
text, or date/time.

If multiple tables exist in a single worksheet, the tables must be identified with a
name for BI Publisher to recognize each one. See Section 2.11.2, "Guidelines for
Accessing Multiple Tables per Sheet."

If all tables in the Excel file are not named, only the data in the first table (the table
located in the upper most left corner) is recognized and fetched.

When the data set is created, BI Publisher truncates all trailing zeros after the
decimal point for numbers in all cases. To preserve the trailing zeros in your final
report, you must apply a format mask in your template to display the zeroes. For
more information about format masks, see the section "Formatting Numbers,
Dates, and Currencies" in Oracle Fusion Middleware Report Designer’s Guide for
Oracle Business Intelligence Publisher.

Creating Data Sets 2-33

Creating a Data Set Using a Microsoft Excel File

supported.

2.11.2 Guidelines for Accessing Multiple Tables per Sheet

Single value parameters are supported, but multiple value parameters are not

If the Excel worksheet contains multiple tables that you want to include as data
sources, then you must define a name for each table in Excel.

Important:

"BIP_", for example, "BIP_SALARIES".

The name that you define must begin with the prefix:

To define a name for the table
1. Insert the table in Excel.

2.

in Excel:

Define a name for the table as follows:

Using Excel 2003: Select the table. On the Insert menu, click Name and then
Define. Enter a name that is prefixed with "BIP_".

Using Excel 2007: Select the table. On the Formulas tab, in the Defined Names
group, click Define Name, then enter the name in the Name field. The name you
enter appears on the Formula bar.

Tip: You can learn more about defined names and their usage in the
Microsoft Excel 2007 document "Define and use names in formulas."

at the following URL:

http://office.microsoft.com/en-us/excel/HA1014712010

33.aspx

Figure 2-27 shows how to use the Define Name command in Microsoft Excel 2007 to

name a table "BIP_Salaries".

Figure 2-27 Using the Define Name Command in Microsoft Excel

Use the Define Name command
to enter a name for each table
when multiple tables reside in a

eet.

worksh

The name will
display in the
_formula bar

ﬁin ‘H -
G

Home Inse Page Layout Formplas ita Review View Add-Ins Acrobat @ - 2 X
)(.;: X AutoS [Logical 9 g) Define Name ~ 3= Trace Precedents] E a
- erently Used A Text [S Use in Formula - “CfTrace Dependents ~1 -
Insert L ame . . = Watch | Calculation
Functior Financial [F Date & Time Manager ES Create from Selection <fs Remove Arrows ~ £ Window -
Function Library Defined Names Formula Auditing
I BIP_Salaries L Nam |E|
A B c : . I J K L i
Name: BIP_Salaries
Scope:
2 204000 |Kochhar |Steven Kin [Sheett 5 17000 |neena
3 204000 |De Haan |Steven Kin] Comment: ra17000 [Lex
4 108000 |Hunold Lex De Ha m{9000 Alexander
5 |72000 Ernst Alexander m|{6000 Bruce 3
6 |57600 Austin Alexander m|{4800 David
7 T 0
Refersto: | _gheetiigasi: 3
8 57600 Pataballa |Alexander =SheetutfAdl:§2523 m|4800 Valli
9 |50400 |Lorentz |Alexander Lo] [Cancel] m{4200 Diana
10 |144000 Greenberg|Neena Koc| Finance IQM-UQ-IINanq Ereiﬂﬂﬂ!ﬂ Finance MJ12000 Nancy I
11 l1nonnn Iraiee (RN P [iana na 1lromict Fedannan | PR P L——

2-34 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using a Microsoft Excel File

2.11.3 Using a Microsoft Excel File Stored in a File Directory Data Source

Note that to include parameters for your data set, you must define the parameters
first, so that they are available for selection when defining the data set. See Chapter 4,
"Adding Parameters and Lists of Values."

Important: The Excel data set type supports one value per
parameter. It does not support multiple selection for parameters.

To create a data set using a Microsoft Excel file from a file directory data source:

1.

a0 DN

Click the New Data Set toolbar button and select Microsoft Excel File. The New
Data Set - Microsoft Excel File dialog launches.

Enter a name for this data set.
Click Shared to enable the Data Source list.
Select the data source where the Microsoft Excel File resides.

To the right of the File Name field, click the browse icon to browse for the
Microsoft Excel file in the data source directories. Select the file.

If the Excel file contains multiple sheets or tables, select the appropriate Sheet
Name and Table Name for this data set, as shown in Figure 2-28.

Figure 2-28 Selecting the Sheet Name

Mew Data Set - Microsoft Excel File (]
thame e
waorkbook g ghared
*Data Source | dema files =l 5]
*File Name [OFFICES_D xls Q
& Local

Sheet Mame
Table Mame

Parameters

Help

File: Marme h

Offices ;I
Add Parameter

Name ¥Yalue {Parameter)

K Cancel

If you added parameters for this data set, click Add Parameter. Enter the Name
and select the Value. The Value list is populated by the parameter Name defined
in the Parameters section. Only single value parameters are supported. See
Chapter 4, "Adding Parameters and Lists of Values."

Click OK.

Link the data from this query to the data from other queries or modify the output
structure. For more information on linking queries, see Chapter 3, "Structuring
Data."

Creating Data Sets 2-35

Creating a Data Set Using a Microsoft Excel File

2.11.4 Uploading a Microsoft Excel File Stored Locally

Note that to include parameters for the data set, you must define the parameters first,
so that they are available for selection when defining the data set. See Chapter 4,
"Adding Parameters and Lists of Values."

2-36

Important: The Excel data set type supports one value per
parameter. It does not support multiple selection for parameters.

To create a data set using a Microsoft Excel file stored locally:

1.

Click the New Data Set toolbar button and select Microsoft Excel File. The Create
Data Set - Excel dialog launches.

Enter a name for this data set.
Select Local to enable the upload button.

Click the Upload icon to browse for and upload the Microsoft Excel file from a
local directory. If the file has been uploaded to the data model, then it is available
for selection in the File Name list.

If the Excel file contains multiple sheets or tables, select the appropriate Sheet
Name and Table Name for this data set, as shown in Figure 2-29.

Figure 2-29 Creating a Data Set from an Excel Spreadsheet

Create Data Set - Excel (=
*Mame | Offices
Workbook () Shared
Data Source | demo files
File Name -%
® Locl
*File Name [oer e e FIlE: 3
SheetMame | Offices b
Table Name v
Parameters Add Parameter
Name Value (Parameter)
Help _OK | Cancel

If you added parameters for this data set, click Add Parameter. Enter the Name
and select the Value. The Value list is populated by the parameter Name defined
in the Parameters section. Only single value parameters are supported. See
Chapter 4, "Adding Parameters and Lists of Values."

Click OK.

Link the data from this query to the data from other queries or modify the output
structure. For more information on linking queries, see Chapter 3, "Structuring
Data."

User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using a CSV File

2.11.4.1 Refreshing and Deleting an Uploaded Excel File

After uploading the file, it displays on the Properties pane of the data model under the
Attachments region, as shown in Figure 2-30.

Figure 2-30 Attachments Region of the Properties Pane

Attachment
Sample Data sample.xml Delete
Schema I__ﬁ?
Data Files offices.us M %
s Delete the file
Click the file name to orineast
_ model
open or download it Refresh the
Excel File
from the local
directory

See Section 1.7, "Setting Data Model Properties" for information about the Properties
pane.

To refresh the local file in the data model:

1. Click Data Model in the component pane to view the Properties page.

2. Inthe Attachment region of the page, locate the file in the Data Files list.
3. Click Refresh.
4

In the Upload dialog, browse for and upload the latest version of the file. The file
must have the same name or it will not replace the older version.

5. Save the data model.

To delete the local file:

1. Click Data Model in the component pane to view the Properties page.
In the Attachment region of the page, locate the file in the Data Files list.
Click Delete.

Click OK to confirm.

a k& ® N

Save the data model.

2.12 Creating a Data Set Using a CSV File

To use a CSV file as a data source, perform one of the following actions:

» Place the CSV file in a directory that your administrator has set up as a data
source. For more information, see "Setting Up a Connection to a File Data Source”
in Oracle Fusion Middleware Administrator’s Guide for Oracle Business Intelligence
Publisher.

= Upload the CSV file to the data model from a local directory.

2.12.1 About Supported CSV Files

The following are guidelines for the support of CSV files as a data set type in BI
Publisher:

» The following CSV file delimiters are supported: Comma, Pipe, Semicolon, and
Tab.

Creating Data Sets 2-37

Creating a Data Set Using a CSV File

s If your CSV file contains headers, the header names are used as the XML tag
names. The following characters are not supported in XML tag names: ~, !, #, $, %,
N&*+, 0, 1,0\ \N\, <, >,?,,, /. If your data source file contains any of these
characters in a header name, use the data model editor Structure tab to edit the tag
names.

s (CSV data sets support editing the data type assigned by the data model editor. See
Section 2.12.3.1, "Editing the Data Type" for more information. If you update the
data type for an element in the data set, you must ensure that the data in the file is
compliant with the data type that you selected.

s The CSV files that you use as input to the BI Publisher data engine must be UTF-8
encoded and cannot contain empty column headers.

s Group breaks, data links, expression and group-level functions are not supported.

s Data fields in CSV files must be in the canonical ISO date format for mapped date
elements (for example, 2012-01-01T10:30:00-07:00), and ##HH#H##H# ## for mapped
number elements.

= No data validation is provided for CSV files.

2.12.2 Using a CSV File Stored in a File Directory Data Source

To create a data set using a CSV file from a file directory data source:

1. On the data model editor toolbar, click New Data Set and select CSV File. The
New Data Set - CSV File dialog launches, as shown in Figure 2-31.

Figure 2-31 New Data Set - CSV File Dialog

New Data Set - C5V File (]

*hame (Employees

CFle @ Shared
* Data Source | dema files ;I EE!

* File tame |Epmps_ithHelrPow. csv Q,

¢ Local

File Mamme 43

I™ The first row is a column header
*CSY delimiter | Camma,) ;l

Help K Cancel

2. Enter a name for this data set.
3. Click Shared to enable the Data Source list.

4. Select the Data Source where the CSV file resides. The list is populated from the
configured File Data Source connections.

5. Click Browse to connect to the data source and browse the available directories.
Select the file.

6. (Optional) Select The first row a column header to specify if the first row in the
file contains column names. If you do not select this option, the columns are
assigned a generic name, for example, Columnl, Column2. The XML tag names
and display names assigned can be edited in the data model editor Structure tab.

2-38 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Data Set Using a CSV File

7. Select the CSV delimiter used in the file. The default selection is Comma (,).
8. C(lick OK.

2.12.3 Uploading a CSV File Stored Locally

To create a data set using a CSV file stored locally:

1. On the toolbar, click New Data Set and select CSV File. The New Data Set - CSV
File dialog launches, as shown in Figure 2-32.

Figure 2-32 New Data Set - CSV File Dialog

New Data Set - CSV File [x]

*
Hame e ample

CSWFile ~ chared

* Data Source | bugFiles ;I

File Mame %

i Local
*File Mame sample.csv = | 2

I The first row is a column header
*CSY Delimiter | Commat,) = |

Help oK Cancel

2. Enter a name for this data set.
3. Select Local to enable the Upload button.

4. Click Upload to browse for and upload the CSV file from a local directory. If the
file has been uploaded to the data model, then it is available for selection in the
File Name List.

5. (Optional) Select The first row a column header to specify if the first row in the
file contains column names. If you do not select this option, the columns are
assigned a generic name, for example, Column1, Column2. The XML tag names
and display names assigned can be edited in the data model editor Structure tab.

6. Select the CSV Delimiter used in the file. The default selection is Comma (,).
7. Click OK.

2.12.3.1 Editing the Data Type

To edit the data type for a CSV file element, click the data type icon or update it from
the element Properties dialog.

The data for an element must be compliant with the data type that you assign. The
user interface does not validate the data when you update the data type. If the data
does not match, for example, a string value is present for an element you defined as
Integer, errors may occur in the layout editing tools and or at runtime.

You can only update the data types for CSV file data sources.

2.12.3.2 Refreshing and Deleting an Uploaded CSV File

After uploading the file, it is displayed on the Properties pane of the data model under
the Attachments region, as shown in Figure 2-33.

Creating Data Sets 2-39

Creating a Data Set from an HTTP XML Feed

Figure 2-33 Attachments Region of the Properties Pane

Attachment
Sample Data sample.xml Delete
Schema @
Data Files sample.csy EE! ®
Delete the file
Click the file name to from the data
- model
open or download it Refresh the
file from the

local directory

See Section 1.7, "Setting Data Model Properties" for more information about the
Properties pane.

To refresh the local file in the data model:

1. In the component pane, click Data Model to view the Properties page.

2. In the Attachment region of the page, locate the file in the Data Files list.
3. Click Refresh.
4

In the Upload dialog, browse for and upload the latest version of the file. The file
must have the same name or it will not replace the older version.

5. Save the data model.
To delete the local file:

-

In the component pane, click Data Model to view the Properties page.
In the Attachment region of the page, locate the file in the Data Files list.
Click Delete.

Click OK to confirm.

a & 0N

Save the data model.

2.13 Creating a Data Set from an HTTP XML Feed

Using the HTTP (XML Feed) data set type, you can create data models from RSS and
XML feeds over the Web by retrieving data through the HTTP GET method.

Important: Additional configuration might be required to access
external data source feeds depending on your system's security. If the
RSS feed is protected by Secure Sockets Layer (SSL) then see the
section "Configuring BI Publisher for Secure Socket Layer (SSL)
Communication" in Oracle Fusion Middleware Administrator’s Guide for
Oracle Business Intelligence Publisher.

To include parameters for the data set, it is recommended that you define the
parameters first, so that they are available for selection when defining the data set. See
Chapter 4, "Adding Parameters and Lists of Values."

Note that there is no metadata available from HTTP XML feed data sets, therefore
grouping and linking are not supported.

2-40 User's Guide for Oracle Business Intelligence Mobile App Designer

Using Data Stored as a Character Large Object (CLOB) in a Data Model

2.13.1 Creating a Data Set from an HTTP XML Data Set

HTTP (XML Feed) data sources can be set up by two different methods:
= On the Administration page

Connections to HTTP data sources can be set up on the Administration page and
then used in multiple data models. For more information, see "Setting Up a
Connection to a HTTP XML Feed" in Oracle Fusion Middleware Administrator’s
Guide for Oracle Business Intelligence Publisher.

= Asa private data source

You can also set up a private connection accessible only to you. See Section 1.8,
"Managing Private Data Sources" for information about private data source
connections.

To create a data set from an HTTP XML feed:

1. On the toolbar, click New Data Set and select HTTP (XML Feed). The New Data
Set - HTTP (XML Feed) dialog launches, as shown in Figure 2-34.

Figure 2-34 New Data Set - HTTP (XML Feed) Dialog

New Data Set - HTTP (XML Feed) @ % |

FHAME Mews
*DataSource | EmTest |« H

* URL Suffix http: ffrss.news.vahoo,com|rss/topstaries
Methad | GET

Parameters Add Parameter

Name Yalue {Parameter)

Ok Cancel

Enter a name for this data set.

Select a data source.

Enter the URL Suffix for the source of the RSS or XML feed.
Select the Method: GET.

To add a parameter, click Add Parameter. Enter the Name and select the Value.
The Value list is populated by the parameter Name defined in the Parameters
section. See Chapter 4, "Adding Parameters and Lists of Values."

o g k& 0D

7. Click OK to close the data set dialog.

2.14 Using Data Stored as a Character Large Object (CLOB) in a Data

Model

BI Publisher supports using data stored as a character large object (CLOB) data type in
your data models. This feature enables you to use XML data generated by a separate
process and stored in your database as input to a BI Publisher data model.

Use the Query Builder to retrieve the column in your SQL query, then use the data
model editor to specify how you want the data structured. When the data model is
executed, the data engine can structure the data either as:

Creating Data Sets 2-41

Using Data Stored as a Character Large Object (CLOB) in a Data Model

= A plain character set within an XML tag name that can be displayed in a report
(for example, an Item Description)

s Structured XML

Note: Ensure that your data does not include line feeds or carriage
returns. Line feeds and carriage returns in your data may not render
as expected in BI Publisher report layouts.

To create a data set from data stored as a CLOB:

1. On the toolbar, click New Data Set and then select SQL Query. The New Data Set
- SQL Query dialog launches.

2. Enter a name for the data set.

3. If you are not using the default data source for this data set, select the Data Source
from the list.

4. Enter the SQL query or use the Query Builder to construct your query to retrieve
the CLOB data column. See Section 2.3.3, "Using the SQL Query Builder" for
information on the Query Builder utility. Figure 2-35 shows an example query in
which the CLOB data is stored in a column named "DESCRIPTION".

Figure 2-35 Sample Query

New Data Set - SOL Query (%]
*Hame |Employess
*Diata Source | damo =6
*Typeof SOL | Gtandard Sl -]
* 501 Query Query Builder
select "EMPLOYEES™. "EMPLOYEE_ID"™ as "EMPLOYEE_ ID",
"EMPLOYEES™. "DEPARTHENT ID" &= "DEPARTHMENT ID"
from "OE"."EMPLOYEES" "EMPLOYEES™
Help (o] 4 Cancel

5. After entering the query, click OK to save. BI Publisher validates the query.

6. DBy default, the data model editor assigns the CLOB column the "CLOB" data type.
To change the data type to XML, click the data type icon and select XML, as shown
in Figure 2-36.

Figure 2-36 Changing the Data Type to XML

EMPLOYEE_ID »
DESCRIPTION -

[Drop here for agaregate fur CLOB
L XL

2-42 User's Guide for Oracle Business Intelligence Mobile App Designer

Using Data Stored as a Character Large Object (CLOB) in a Data Model

2.14.1 How the Data Is Returned

When you execute the query, if the CLOB column contains well-formed XML, and you
select the XML data type, the data engine returns the XML data, structured within the
CLOB column tag name.

Example output when data type is XML:

Note the <DESCRIPTION> element contains the XML data stored in the CLOB
column, as shown in Figure 2-37.

Figure 2-37 Example Data Structure When the Data Type is XML

—<DATA_DS>
—<G_1>
<EMPLOYEE_ID>102</EMPLOYEE_ID>
—<DESCRIPTION:-
—<DATA_DS>
—<G_Ql>
<DEPTNO=>10</DEPTNO=
<DNAME>PURCHASE</DNAME>
<LOC>HQ</LOC>
—<G_Q2>
<DEPTNO_1>10</DEPTNO_1=>
<EMPNO=>10001</EMPNO=>
<ENAME=SCOTT</ENAME=
<SAL>5000</SAL>
<G_Q2>
+<G_Q2></G_Q2>
</G_Ql>
—<G_Q1=
<DEPTNO=>20</DEPTNO=>
<DNAME>FINANCE</DNAME>
<LOC>HQ</LOC>

Example output when data type is CLOB

If you select to return the data as the CLOB data type, the returned data is structured
as shown in Figure 2-38.

Figure 2-38 Example Data Structure When Data Type Is CLOB

—<DATA_DS>
—<G_1>
<EMPLOYEE_ID>102</EMPLOYEE_ID>
—<DESCRIPTION:-
<DATA_DS> <G_Ql> <DEPTNO=10<DEPTNO:
<DNAME>PURCHASE<DNAME> <LOC>HQ</LOC> <G_Q2> <DEPTNO_1>10</DEPTNO_1>
<EMPNO=10001</EMPNO> <ENAME>SCOTT</ENAME=> <SAL>5000</SAL> </G_Q2> <G_Q2>
<DEPTNO_1>10<DEPTNO_1> <EMPNO=>10002</EMPNO> <ENAME=>SMITH<ENAME=>
<SAL>3000</SAL> </G_Q2> </G_Ql> <G_Q1> <DEPTNO=20</DEPTNO=
<DNAME=>FINANCE<DNAME> <LOC>HQ<LOC> <G_Q2> <DEPTNO_1>20<DEPTNO_1=
<EMPNO=10003</EMPNO> <ENAME=AMY</ENAME> <SAL=5500</SAL> </G_Q2><G_Q2>
<DEPTNQ_1>20</DEPTNO_1> <EMPNO=10004</EMPNO> <ENAME>MART IN</ENAME=
<SAL>4000</SAL> </G_Q2> </G_Q1> <G_Q1> <DEPTNO=>30</DEPTNO>
<DNAME>CORPORATE</DNAME> <LOC>HQ<LOC> </G_Q1> <DATA_DS>
</DESCRIPTION>
</G_1=
</DATA DS>

2.14.1.1 Additional Notes on Data Sets Using CLOB Column Data

For specific notes on using CLOB column data in a bursting query, see Section 7.3,
"Adding a Bursting Definition to Your Data Model."

Creating Data Sets 2-43

Using Data Stored as a Character Large Object (CLOB) in a Data Model

2.14.2 Handling XHTML Data Stored in a CLOB Column

BI Publisher can retrieve data stored in the form of XHTML documents stored in a
database CLOB column and render the markup in the generated report. To enable the
BI Publisher report rendering engine to handle the markup tags, you must wrap the
XHTML data in a CDATA section within the XML report data that is passed by the
data engine.

It is recommended that you store the data in the database wrapped with the CDATA
section. You can then use a simple select statement to extract the data. If the data is not
wrapped in the CDATA section, then you must include in your SQL statement
instructions to wrap it.

The following sections describe how to extract XHTML data in each case:
s Retrieving XHTML Data Wrapped in CDATA
= Wrapping the XHTML Data in CDATA in the Query

To display the markup in a report, you must use the syntax described in "Rendering
HTML Formatted Data in a Report” in Oracle Fusion Middleware Report Designer’s Guide
for Oracle Business Intelligence Publisher. This section also describes the supported
HTML formats. Rendering the HTML markup in a report is supported for RTF
templates only.

2.14.2.1 Retrieving XHTML Data Wrapped in CDATA

Assume you have the following data stored in a database column called "CLOB_
DATA"™:

<! [CDATA[

<p>

oracle </p>

<p>0racle Documentation
</p>

11>

Retrieve the column data using a simple SQL statement, for example:

select CLOB_DATA as "RTECODE"

from MYTABLE
In the data model editor, set the data type of the RTECODE column to XML, as shown
in Figure 2-39.

Figure 2-39 Set Data Type to XML

RTECODE -

[Drop here for aggregate fur CLOB
il XML

2.14.2.2 Wrapping the XHTML Data in CDATA in the Query

Assume you have the following data stored in a database column called "CLOB_
DATA":

<p>

oracle </p>

<p>0Oracle Documentation
</p>

2-44 User's Guide for Oracle Business Intelligence Mobile App Designer

Testing Data Models and Generating Sample Data

Use the following syntax in your SQL query to retrieve it and wrap it in the CDATA
section:

select '<![CDATA' || '['|| CLOB_DATA || ']' || ']>' as "RTECODE"

from MYTABLE

In the data model editor, set the data type of the RTECODE column to XML, as shown
in Figure 2-39.

2.15 Testing Data Models and Generating Sample Data

The data model editor enables you to test your data model and view the output to
ensure your results are as expected. After running a successful test, you can choose to
save the test output as sample data for your data model. You can also use the Export
feature to export sample data to a file. If your data model fails to run, you can view the
data engine log.

To test your data model:

1. In the data model editor, select the Data tab, as shown in Figure 2—40.

Figure 2-40 Select the Data Model Editor Data Tab

Diagram = Structure E@a Code

+v

2. For SQL Query, Oracle BI Analysis, and View Object data sets: On the Data tab,
select the number of rows to return. If you included parameters, enter the desired
values for the test.

3. Click View to display the XML that is returned by the data model.
4. Select one of the following options to display the sample data:

» Use Tree View to view the sample data in a data hierarchy. This is the default
display option.

= Use Table View to view the sample data in a formatted table like you see in Bl
Publisher reports.

To save the test data set as sample data for the data model:

1. After the data model has successfully run, click Save as Sample Data. The sample
data is saved to the data model. See Section 1.7.2, "Attachments to the Data Model"
for more information.

To export the test data:

1. For SQL Query, Oracle BI Analysis, and View Object data sets: On the Data tab,
select the number of rows to return.

2. After the data model has successfully run, click Export. You are prompted to open
or save the file to a local directory.

To view the data engine log:

1. Click View Data Engine Log. You are prompted to open or save the file to a local
directory. The data engine log file is an XML file.

Creating Data Sets 2-45

Including User Information Stored in System Variables in Your Report Data

2.16 Including User Information Stored in System Variables in Your
Report Data

BI Publisher stores information about the current user that can be accessed by your
report data model. The user information is stored in system variables as described in
Table 2-2.

Table 2-2 User Information Stored in Variables

System Variable Description

xdo_user_name User ID of the user submitting the report. For example:
Administrator

xdo_user_roles Roles assigned to the user submitting the report. For

example: XMLP_ADMIN, XMLP_SCHEDULER

xdo_user_report_oracle_lang Report language from the user's account preferences. For
example: ZHS

xdo_user_report_locale Report locale from the user's account preferences. For
example: en-US

xdo_user_ui_oracle_lang User interface language from the user's account
preferences. For example: US

xdo_user_ui_locale User interface locale from the user's account preferences.
For example: en-US

2.16.1 Adding the User System Variables as Elements

To add the user information to the data model, you can define the variables as
parameters and then define the parameter value as an element in your data model. Or,
you can simply add the variables as parameters then reference the parameter values in
your report.

The following query:

select

:xdo_user_name as USER_ID,

:xdo_user_roles as USER_ROLES,
:xdo_user_report_oracle_lang as REPORT_LANGUAGE,
:xdo_user_report_locale as REPORT_LOCALE,
:xdo_user_ui_oracle_lang as UI_LANGUAGE,
:xdo_user_ui_locale as UI_LOCALE

from dual

returns the following results:

<?xml version="1.0" encoding="UTF-8"?>

<! - Generated by Oracle BI Publisher - >

<DATA_DS>

<G_1>

<USER_ROLES>XMLP_TEMPLATE_DESIGNER, XMLP_DEVELOPER, XMLP_ANALYZER EXCEL, XMLP_
ADMIN, XMLP_ANALYZER_ONLINE, XMLP_SCHEDULER </USER_ROLES>
<REPORT_LANGUAGE>US</REPORT_LANGUAGE>
<REPORT_LOCALE>en_US</REPORT_LOCALE>
<UI_LANGUAGE>US</UI_LANGUAGE>
<UI_LOCALE>en_US</UI_LOCALE>
<USER_ID>administrator</USER_ID>

</G_1>

</DATA_DS>

2-46 User's Guide for Oracle Business Intelligence Mobile App Designer

Including User Information Stored in System Variables in Your Report Data

2.16.2 Sample Use Case: Limit the Returned Data Set by User ID

The following example limits the data returned by the user ID:

select EMPLOYEES.LAST NAME as LAST NAME,
EMPLOYEES . PHONE_NUMBER as PHONE_NUMBER,
EMPLOYEES.HIRE_DATE as HIRE_DATE,
:xdo_user_name as USERID

from HR.EMPLOYEES EMPLOYEES

where lower (EMPLOYEES.LAST_NAME) = :xdo_user_name

Notice the use of the lower() function, the xdo_user_name is always be in lowercase
format. BI Publisher does not have a USERID so you must use the user name and
either use it directly in the query; or alternatively you could query against a lookup
table to find a user id.

2.16.2.1 Creating Bind Variables from LDAP User Attribute Values

To bind user attribute values stored in your LDAP directory to a data query you can
define the attribute names to BI Publisher to create the bind variables required.

2.16.2.1.1 Prerequisite The attributes that can be used to create bind variables must be
defined in the Security Configuration page by an administrator. The attributes are
defined in the Attribute Names for Data Query Bind Variables field of the LDAP
Security Model definition. See the section "Configuring BI Publisher to Recognize the
LDAP Server" in Oracle Fusion Middleware Administrator’s Guide for Oracle Business
Intelligence Publisher for information about this field. Any attribute defined for users
can be used (for example: memberOf, sAMAccountName, primaryGrouplD, mail).

2.16.2.1.2 How BI Publisher Constructs the Bind Variable

You can reference the attribute names that you enter in the Attribute Names for Data
Query Bind Variables field of the LDAP Security Model definition in the query as
follows:

xdo_<attribute name>

Assume that you have entered the sample attributes: memberOf, sAMAccountName,
primaryGrouplID, mail. These can then be used in a query as the following bind
variables:

xdo_memberof
xdo_SAMACCOUNTNAME
xdo_primaryGroupID
xdo_mail

Note that the case of the attribute is ignored; however, the "xdo_" prefix must be
lowercase.

Use these in a data model as follows:

SELECT

:xdo_user_name AS USER_NAME,

:xdo_user_roles AS USER_ROLES,
:xdo_user_ui_oracle_lang AS USER_UI_LANG,
:xdo_user_report_oracle_lang AS USER_REPORT_LANG,
:xdo_user_ui_locale AS USER_UI_LOCALE,
:xdo_user_report_locale AS USER_REPORT_LOCALE,
:xdo_SAMACCOUNTNAME AS SAMACCOUNTNAME,
:xdo_memberof as MEMBER_OF,

:xdo_primaryGroupID as PRIMARY_GROUP_ID,

Creating Data Sets 2-47

Including User Information Stored in System Variables in Your Report Data

:xdo_mail as MAIL
FROM DUAL

The LDAP bind variables return the values stored in the LDAP directory for the user
that is logged in.

2-48 User's Guide for Oracle Business Intelligence Mobile App Designer

3

Structuring Data

This chapter describes techniques for structuring the data that is returned by BI
Publisher's data engine, including grouping, linking, group filters, and group-level
and global-level functions.

This chapter includes the following sections:

= Section 3.1, "Working with Data Models"

s Section 3.2, "Features of the Data Model Editor"

s Section 3.3, "About the Interface"

» Section 3.4, "Creating Links Between Data Sets"

= Section 3.5, "Creating Element-Level Links"

= Section 3.6, "Creating Group-Level Links"

» Section 3.7, "Creating Subgroups"

= Section 3.8, "Moving an Element Between a Parent Group and a Child Group"
= Section 3.9, "Creating Group-Level Aggregate Elements"

= Section 3.10, "Creating Group Filters"

= Section 3.11, "Performing Element-Level Functions"

= Section 3.12, "Setting Element Properties”

= Section 3.13, "Sorting Data"

= Section 3.14, "Performing Group-Level Functions"

= Section 3.15, "Performing Global-Level Functions"

= Section 3.16, "Using the Structure View to Edit Your Data Structure"

s Section 3.17, "Function Reference"

3.1 Working with Data Models

The Data Model diagram helps you to quickly and easily define data sets, break
groups, and totals for a report based on multiple data sets.

3.1.1 About Multipart Unrelated Data Sets

If you do not link the data sets (or queries) the data engine produces a multipart
unrelated query data set.

Structuring Data 3-1

Working with Data Models

For example, in the data model shown in Figure 3-1, one query selects products and
another selects customers. Notice that there is no relationship between the products
and customers.

Figure 3—1 Multipart Unrelated Data Set

Data Model Diagram Structure Data Code
Properties +' -’ x
4 Data Sets
= Customers
4= G 1 =
= Products il o e o
4 EventTriggers PRODUCT_ID B & CUSTOMER_ID [l o
4 Flexfields PRODUCT_NAME [% CUST_FIRST_NAME [&#
4 Listofvalues
CATEGORY_ID [1: [o cusT_LasT_Name [£
4 Parameters
SUPPLIER_ID CUST_ADDRESS
4 Bursting a & - AT
PRODUCT STATUS [4% PHONE_NUMBERS [£
LIST_PRICE H#ev CUST_EMAIL Ao
Drop here for ag e-;atefun-:ticn] ACCOUNT_MGR_ID E] {;}
i [Dr-:[: here for aggregate fun-:ti-:n]

This results in the data structure shown in Figure 3-2.

Figure 3—2 Data Structure of Multipart Unrelated Data Set

Diagram Structure Data Code
Table View
HML output Descriptive XML output
4 DATA_DS 4 DATA_DS
4 G_1 4 G_1
PRODUCT_ID PRODUCT_ID

PRODUCT_MAME
CATEGORY_ID
SUPPLIER_ID
PRODUCT_STATUS
LIST_PRICE

G2

CUSTOMER_ID
CUST_FIRST_NAME
CUST_LAST_NAME
CUST_ADDRESS
PHONE_NUMBERS
CUST_EMAIL

ACCOUNT_MGR_ID

PRODUCT_NAME
CATEGORY_ID
SUPPLIER_ID
PRODUCT_STATUS
LIST_PRICE

G2

CUSTOMER_ID
CUST_FIRST_NAME
CUST_LAST_NAME
CUST_ADDRESS
PHONE_NUMBERS
CUST_EMAIL

ACCOUNT_MGR_ID

3-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Working with Data Models

3.1.2 About Multipart Related Data Sets

In many cases, the data fetched for one part of the data set (or query) is determined by
the data fetched for another part. This is often called a "master/detail," or
"parent/child," relationship, and is defined with a data link between two data sets (or
queries). When you run a master/detail data model, each row of the master (or parent)
query causes the detail (or child) query to be executed, retrieving only matching rows.

In the example shown in Figure 3-3, two data sets are linked by the element Customer
ID. The Orders data set a child of the Customers data set.

Figure 3-3 Multipart Related Data Sets

Data Model Diagram = Structure Data Code
Properties +v | £ X
4 Data Sets
ord G
rers iS5 G2 Folle OF. =61 Fo
Customers
CUSTOMER_ID .2 | ORDER_ID #..
4 EventTriggers i 4 a = - v
4 Flexfields CUST_FIRST_NAME [Y 4% ORDER_DATE fol
4 Listofvalues CUST_LAST_NAME Y 4% | CUSTOMER D2 [E] &#
4 Parameters cusT_sDDRESS [& ORDER_sTaTUS [&
4 Bursting
PHONE_NUMBERS [} i ORDER_TOTAL #ev £
CUST_EMAIL [AEo] SALES_REFID E] 1
ACCOUNT_MGR_ID [£ Drop here for aggregate function

4 Drop here for aggregate function

This produces the data structure shown in Figure 3—4.

Structuring Data 3-3

Features of the Data Model Editor

Figure 3-4 Data Structure of Multipart Related Data Set

Diagram Structure | Data Code

Table View

HML output Descriptive XML output
4 DATA_DS 4 DATA_DS
4 G_2 4 G_2

CUSTOMER_ID CUSTOMER_ID

CUST_FIRST_NAME CUST_FIRST_NAME

CUST_LAST_MNAME CUST_LAST_NAME

CUST_ADDRESS CUST_ADDRESS

PHOME_NUMBERS PHOME_MNUMBERS

CUST_EMAIL CUST_EMAIL

ACCOUNT_MGR_ID ACCOUNT_MGR_ID

0 4 G_1 4 G_1

ORDER_ID ORDER_ID
ORDER_DATE ORDER_DATE
CUSTOMER_ID CUSTOMER_ID
ORDER_STATUS ORDER_STATUS
ORDER_TOTAL ORDER_TOTAL
SALES_REF_ID SALES_REP_ID

3.1.3 Guidelines for Working with Data Sets

Following are recommended guidelines for building data models:

= Reduce the number of data sets or queries in your data model as much as possible.
In general, the fewer data sets and queries you have, the faster your data model
will run. While multiquery data models are often easier to understand,
single-query data models tend to execute more quickly. It is important to
understand that in parent-child queries, for every parent, the child query is
executed.

= You should only use multiquery data models in the following scenarios:

» To perform functions that the query type, such as a SQL query, does not
support directly.

= To support complex views (for example, distributed queries or GROUP BY
queries).

= To simulate a view when you do not have or want to use a view.

3.2 Features of the Data Model Editor

The data model editor enables you to combine data from multiple data sets into a
single XML data structure. Data sets from multiple data sources can be merged either
as sequential XML or at line-level to create a single combined hierarchical XML. Using
the data model editor you can easily combine data from the following data set types:
SQL query, OLAP (MDX query), LDAP, and Microsoft Excel.

The data model editor supports the following

3-4 User's Guide for Oracle Business Intelligence Mobile App Designer

About the Interface

= Group data — Groups are created to organize the columns in your report. Groups
can do two things: separate a query's data into sets, and filter a query's data.

When you create a query, the data engine creates a group that contains the
columns selected by the query; you can create groups to modify the hierarchy of
the data appearing in a data model. Groups are used primarily when you want to
treat some columns differently than others. For example, you create groups to
produce subtotals or create breaks.

s Link data — Define master-detail links between data sets to group data at
multiple levels.

= Aggregate data — Create group level totals and subtotals.

s Transform data — Modify source data to conform to business terms and reporting
requirements.

s Create calculations — Compute data values that are required for your report that
are not available in the underlying data sources.

The data model editor provides functions at the element level, the group level, and the
global level. Note that not all data set types support all functions. See the Important
Notes section that accompanies your data set type for limitations. Figure 3-5
highlights some of the features and actions available in the data model editor.

Figure 3-5 Features of Data Model Editor

Element Level Action
Diagram = Structure Data Code Menu

+v | /X% |

4B G2 *’
DEPARTMENT_NAVE [} g%

DEPARTMENT_ID .2 [E3

Group by

Y Create Link .
MANAGERID a Group Level Action
Menu
4 B
®lig e
Global Level Action Properties ST o {Dcreate Group Filter
Menu @ Help -
LAST_NAME [A]
‘ ' MANAGER_ID [4]
4 = Global Level Functions {}
SALARY H#ev

. _3 Add Element by Expression

HIRE_DATE

DEPARTMENT_ID.2 E3
Remove Selected Elements Add Element by Expression
JOB_TITLE

Properties Edit Data Set

@ Help
Properties

@ Help

3.3 About the Interface

By default, the data sets that you created are shown in the Diagram View as separate
objects, as seen in Figure 3-6.

Structuring Data 3-5

About the Interface

Figure 3—-6 Diagram View

Diagram | Structure Data Code

+- |7 X
4 [Global Level Functions {% 4z G2 o] 4z 61 £o)
Drop here for aggregate function | DEPARTMENT_NAME [Y ¢ FRSLURTE (A 0]
DEPARTMEMT_ID E {E} LAST_MNAME ﬂ {E}
MAMAGER_ID B & MANAGER_ID B o
Dirop here for aggregate function SALARY HEv {E}
HIRE_DATE {3}
DEPARTMENT_ID E! {a}
JOB_TITLE m {a}
Drop here for aggregate function

The data set structure builder has three views:

= Diagram View — (Shown in Figure 3-6) This view displays your data sets and
enables you to graphically create links and filters, add elements based on
expressions, add aggregate functions and global-level functions, edit element
properties, and delete elements. The Diagram View is typically the view you use
to build your data structure.

s Structure View — This view has two modes:
Table View and Output

The table view displays element properties in a table and enables you to update
XML element alias names, presentation names of the elements, sorting, null
values, and reset options. Figure 37 shows the structure Table View.

3-6 User's Guide for Oracle Business Intelligence Mobile App Designer

About the Interface

Figure 3-7 Structure

Diagram Structure | Data Code

Table View | Output

Data Source

4 Report Data

4 Data Structure
4 Departments
BDEF’ARTMENT_NM‘!E
E!DEF'ARTMENT_\D
m MANAGER_ID
4 Emplayees
BF\RST_NAME
BL‘\ST_NAME
m MANAGER_ID
HESALARY

HIRE_DATE

E!DEF'ARTMENT_\D

[JoB_TITLE

Table View

XML Tag Name

DATA_DS
6.2
DEPARTMENT_NAWE
DEPARTMENT_ID
MANAGER_ID

6.1

FIRST_NAME
LAST_NAME
MANAGER_ID
SALARY

HIRE_DATE
DEPARTMENT_ID

JOB_TITLE

XML View

Sorting Value If Null

Business View

Display Name

DEPARTMENT_NAME
DEPARTMENT_ID

MANAGER_ID

FIRST_MNAME
LAST_NAME
MANAGER_ID
SALARY
HIRE_DATE
DEPARTMENT_ID

JOB_TITLE

Gi

Data Type

The Output view provides a clear view of the XML structure that is generated. The
Output view cannot be updated. Figure 3-8 shows the Output view.

Figure 3-8 Output View

Diagram Structure | Data

Table View

XML output
4 DATA_DS

4 G_2
DEPARTMENT_NAME
DEPARTMENT_ID
MAMAGER_ID

4 G_1
FIRST_NAME
LAST_NAME
MAMAGER_ID
SALARY
HIRE_DATE
DEPARTMENT_ID
JOB_TITLE

Code

Descriptive XML output

4 DATA_DS

4 G_2

DEPARTMENT_NAME

DEPARTMENT_ID

MANAGER_ID

4 G_1

FIRST_MNAME

LAST_NAME

MANAGER_ID

SALARY

HIRE_DATE

DEPARTMENT_ID

JOB_TITLE

s Code View — This view displays the data structure code created by the data
structure builder that is read by the data engine. The code view cannot be
updated. Figure 3-9 shows the code view.

Structuring Data 3-7

Creating Links Between Data Sets

Figure 3-9 Code View

Diagram Structure Data @ Code

<gutput rootWame="DATA D5" unigqueRowName="false">
<nodelist name="data-structure">
<dataStructure tagName="DATA D5">

<group name="G_ 2" label="G 2" source="Departments">
<element name="DEPARTMENT NAME" wvalue="DEPARTMENT NAME" label="DEPARTMENT NAME"

dataType="xsd:string” breakOrder="" fieldOrder="1"/>

<element name="DEPARTMENT ID" walue="DEPARTMENT ID" label="DEPARTMENT ID"
dataType="xsd:integer" breakOrder="" fieldOrder="2"/>

<element name="MANAGER ID" value="MANAGER ID" label="MANAGER ID" dataType="xsd:integer"
breakOrder="" fieldOrder="3"/>

</group>

<group name="G_1" label="G_ 1" source="Employees">
<element name="FIRST NAME" wvalue="FIRST NAME" label="FIRST NAME" dataType="xzsd:string"

breakOrder="" fieldOrder="1"/>

<element name="LAST NAME" wvalue="LAST NAME" label="LAST NAME" dataType="xsd:string"”
breakOrder="" fieldOrder="2"/>

<element name="MRNAGER ID" wvalue="MRNAGER ID" label="MAMAGER ID" dataType="xsd:integer"
breakOrder="" fieldOrder="3"/>

<element name="SALARY" wvalue="SALARY" label="SALARY" dataType="xsd:double"™ breakOrder=""
fieldOrder="4"/>
<element name="HIRE DATE" wvalue="HIRE DATE" label="HIRE DATE" dataType="xsd:date"

breakOrder="" fieldOrder="5" formatMask=""/>

<element name="DEPARTMENT ID" wvalue="DEPARTMENT ID" label="DEPARTHMENT ID"
dataType="xsd:integer" breakOrder="" fieldOrder="&"/>

<element name="JOBE TITLE" value="JCOB TITLE" label="JCB TITLE" dataType="xsd:string"
breakOrder="" fieldOrder="7"/>

</group>

</dataStructure>

</nodelist>

</output>

3.4 Creating Links Between Data Sets

Joining and structuring data at the source into one combined data set is sometimes not
possible. For example, you cannot join data at the source when data resides in
disparate sources such as Microsoft SQL Server and an Oracle database. You can use
the BI Publisher data engine to combine and structure data after you extract it from the
data source. Even if your data is coming from the same source, if you are creating large
reports or documents with potentially hundreds of thousands of rows or pages,
structuring your data so that it matches the intended layout optimizes document
generation.

Create a link to define a master-detail (or parent-child) relationship between two data
sets. You can create links as element-level links or group-level links. The resulting,
hierarchical XML data is the same. Creating links as element-level links is the
preferred method. Group-level links are provided for backward compatibility with
data templates from earlier versions of BI Publisher.

A data link (or parent-child relationship) relates the results of multiple queries. A data
link can establish these relationships:

= Between one query's column and another query's column

= Between one query's group and another query's group (this is useful when you
want the child query to know about its parent's data)

3.4.1 About Element-Level Links

Element-level links create a bind (join) between two data sets and define a
master-detail (parent-child) relationship between them. This is the preferred method of
defining master detail relationships between data sets. The simplest way to link data
sets is by creating element-level links because they do not require you to code a join
between the two data sets through a bind variable.

3-8 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Element-Level Links

3.4.2 About Group-Level Links

Group-level links also determine the way data sets are structured as hierarchical XML,
but lack the join information that the data engine needs to execute the master and
detail queries. When you define a group-level link, you must also update your query
with a link between the two data sets through a unique bind variable.

3.5 Creating Element-Level Links

Link data sets to define a master-detail (or parent-child) relationship between two data
sets. Defining an element-level link enables you to establish the binding between the
elements of the master and detail data sets.

To define an element-level link, do one of the following;:

= Open the element action menu and click Create Link.

Figure 3—-10 Creating a Link Using the Element Action Menu

A G_2 {E} A G_1 {e}
DEPARTMENT NAME [BY 4% FIRST_NAME [A o)
G b

DEPARTMENT_ID 4] roup oy _NAME A o
MANAGER_ 1D 4] Create Link ER_ID 4 o)
Drop here for aggregate func Y HEv {E‘.{-
_DATE o)

[2
RTMENT_ID [o)

Properties
TITLE (A o)

@ Help

_ here for aggregate function

The Create Link dialog launches and displays the elements from the other data
sets. Choose the element and click OK to create the link. The Create Link dialog is

shown in Figure 3-11.

Figure 3—11 Create Link Dialog

Create Link

Link From G_2 DEPARTMENT_ID
G_1
1 EAFIRST_NAME
[EALAST_NAME
[EAMANAGER_ID
[C] #ESALARY
[[] & HIRE_DATE

@E DEPARTMENT_ID

[NJoB_TITLE

Link To

OK Cancel

Structuring Data 3-9

Creating Element-Level Links

= Alternatively, from the parent group, click and drag the element you want to bind
to the matching element in the child group, as shown in Figure 3-12.

Figure 3—-12 Creating a Link by Dragging and Dropping the Bind Element

“E62 & 4E G &
DEPARTMENT_NaME [N £ FIRST NANE n o
DEPARTMENT_ID B & LAST NANE n &
HANAGERID \@ & MANAGER_ID B %
Drop here for aggregate fu |ﬁq1 l SALARY Hev ‘m
\ HIRE_DATE ol

DEPARTMENTQD a {}DEF'ARTMENT_ID B &

JOB_TITLE n o

[Dr-:lp here for aggregate fun-:ti-:nn]

= After dropping the element from the parent data set to the matching element on
the child data set, a connector displays between the data sets. Pause your cursor
over the connector to display the link (as shown in Figure 3-13).

Figure 3—-13 Displaying the Link

A= G2 o2
DEPARTMENT_NAME [BY 43
DEPARTMENT_ID 2 [3 4# %‘I i=0G 1 E o]
2(G_2.DEPARTMENT_ID=G_1.DEPARTMENT_ID
MANAGER_ID B 4 FIRST_MAME [A K]
Drop here for aggregate function l LAST_MAME ﬂ {E}
MANAGER_ID B o
SALARY #ev $F
HIRE_DATE Lol
DEPARTMENT_ID .2 [EJ &
JOB_TITLE (Ao
Drop here for aggregate function l

3.5.1 Deleting Element-Level Links

To delete an element link:

1. Pause your cursor over the element connector to display the linked element names
and the delete button.

2. Click the delete button.
Or, alternatively:

1. Open the element action menu for either element and click Delete Link.

3-10 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Group-Level Links

3.6 Creating Group-Level Links

A group-level link defines a master-detail relationship between two data sets. The
following figure shows two data sets with a group-level link defined. Next to the data
sets the resulting XML data structure is shown, as in Figure 3-14.

Figure 3-14 Resulting XML Data Structure

iE G2 ol

DEPARTMENT_MNAME [} 4%

DEPARTMENT_ID B & | 4 G 1

MANAGER_ID B FIRST_NAME (A

Drop here for aggregate function LAST_MNAME ﬂ
MANAGER_ID B
SALARY H#E
HIRE_DATE

DEPARTMENT_ID E’

JOB_TITLE

HML output

4 DATA_DS

b

o0 O O O O 0 8

Drop here for aggregate

function

To define a group-level link:
1.
2.

Figure 3—15 Creating a Group Link

sl
Y Create Group Filter

4 G 2

DEPARTMENT_NAME ﬂ

Click Create Group Link as shown in Figure 3-15.

DEPARTMENT_ID [Bdit Group Filter Fo3
MANAGER_ID B8 Delete Group Filter IE a &
Drop here for agagregate fun-:t‘; Create Group Link E (A 3
De —\?‘II’._ b E’ {5}
He

Add Element by Expression M {E}
£

Edit Data Set
NT_D B i3
S a
Properties oraggregate function

@ Help

3.
Link dialog is shown in Figure 3-16.

4G 2
DEPARTMEMNT_MNAME
DEPARTMEMT_ID
MAMAGER_ID
4G 1

FIRST_NAME
LAST_MAME
MAMAGER_ID
SALARY
HIRE_DATE
DEPARTMENT_ID

JOB_TITLE

In the parent group, click Menu (in the upper right corner of the object).

In the Create Group Link dialog, select the child group and click OK. The Create

Structuring Data 3-11

Creating Subgroups

Figure 3-16 Create Link Dialog

Create Link 9 x

Link From G_2
Link To [E G_1
OK Cancel

4. Click Menu and then click Edit Data Set to add the bind variables to your query.

An example is shown in Table 3-1.

Table 3—-1 Example: Edit Data Set

Data Set: DEPT Data Set: EMP

Select DEPT.DEPTNO as DEPTID, Select EMP.EMPNO as EMPNO,
DEPT.DNAME as DNAME, EMP.ENAME as ENAME,
DEPT.LOC as LOC EMP.JOB as JOB,

from OE.DEPT DEPT EMP.MGR as MGR,

EMP.HIREDATE as HIREDATE,
EMP.SAL as SAL,
EMP.COMM as COMM,
EMP.DEPTNO as DEPTNO
from OE.EMP EMP
where DEPTNO=:DEPTID

Important: A unique bind variable must be defined in the child
query.

3.6.1 Deleting Group-Level Links
To delete a group link:

1. In the parent group, click Menu (in the upper right corner of the object).
2. Click Delete Group Link.

3. Inthe Delete Group Link dialog, select the Child Group from the list and click
OK.

3.7 Creating Subgroups

In addition to creating parent-child structures by linking two data sets, you can also
group elements in the same data set by other elements. This might be helpful if your
query returns data that has header data repeated for each detail row. By creating a
subgroup you can shape the XML data for better, more efficient document generation.

To create a subgroup:
1. Select the element by which you want to group the other elements in the data set.

2. Click the element action menu icon to open the menu and select Group by as
shown in Figure 3-17.

3-12 User's Guide for Oracle Business Intelligence Mobile App Designer

Moving an Element Between a Parent Group and a Child Group

Figure 3—17 Creating a Subgroup

A= G 2 Fo3
OFFICE E! {E}
OFFICE_DESCRIPTION m {3_{-
COMPANY ﬂ | £o)
ORGANIZATION p cewe N
DEPARTMENT m Create Link
LAMNGUAGE_ID ﬂ Delete L

Drop here for aggregate funct e b

Properties
© Help

This creates a new group within the displayed data set. The following figure
shows the G_2 data set grouped by the element COMPANY. This creates a new
group called G_3 that contains the other five elements in the data set. Figure 3-18
shows how the grouped data set is displayed in the Diagram View along with the
structure.

Figure 3—-18 Subgroup Data Structure

“ e {;" XML output

SLI (A o] 4 DATA_DS

Drop here for aggregate function | 4G 2

JEG3 o COMPANY

4 G_3

OFFICE B & orrice
OFFICE_DESCRIPTION LY & OFFICE_DESCRIPTION
ORGANIZATION (A oS ORGANIZATION
DEPARTMENT B & DEPARTMENT
LANGUAGE_ID (Ao LAMGUAGE_ID

| Drop here for aggregate function |

You can perform any of the group actions on the new group you have created.
To remove a subgroup:

1. On the group's title bar, click Menu and then click Ungroup.

3.8 Moving an Element Between a Parent Group and a Child Group

Once you have created a group within your data set, two new options display on the
element action menu that enable you to move elements between the parent and child
groups.

Structuring Data 3-13

Creating Group-Level Aggregate Elements

For the element that you want to move, click the element action icon to open the
menu. If the element is in the parent group and you want to move it to the child group,
and then Move this element to Child Group.

If the element is in the child group and you want to move it to the parent group, select
and then Move this element to Parent Group. In Figure 3-19, the element action menu
for OFFICE_DSC displays the option to move the element to the parent group.

Figure 3-19 Moving Element from Child Group to Parent Group

A= G 2 ol
COMPANY (A fo]
Drop here for aggregate function |
4= G 3 o
OFFICE B &
OFFICE_DESCRIPTION ﬂ s
ORGANIZATION ﬂ Group by
DEPARTMEMT (A
LANGUAGE_ID A
Drop here for aggregate funct
Move b Move selected elements to Parent Group
Properties %
© Help

Important: Before moving an element be aware of any dependencies
on other elements.

3.9 Creating Group-Level Aggregate Elements

You can use the data model editor to aggregate data at the group or report level. For
example, if you group sales data by Customer Name, you can aggregate sales to get a
subtotal for each customer's sales. Note that you can only aggregate data for at the
parent level for a child element.

The aggregate functions are:

= Average — Calculates the average of all the occurrences of an element.

= Count — Counts the number of occurrences of an element.

= First — Displays the value of the first occurrence of an element in the group.
= Last — Displays the value of the last occurrence of an element in the group.

= Maximum — Displays the highest value of all occurrences of an element in the
group.

= Minimum — Displays the lowest value of all occurrences of an element in a
group.

= Summary — Sums the value of all occurrences of an element in the group.

To create group-level aggregate elements:

3-14 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Group-Level Aggregate Elements

1. Drag the element to the Drop here for aggregate function field in the parent
group.
Figure 3-20 shows creating a group-level aggregate function in the G_DEPT based
on the SALARY element.

Figure 3-20 Creating a Group-Level Aggregate Function

COMMISSION_PCT #HEew

iz G_1 Fo] A= G2 o
DEPARTMENT_ID B & EMPLOYEE_ID o o
Drop here for aggregate function] FIRST_MNAME E ﬂ,

4= G 3 Fo? LAST_NAME [A] o
MANAGER_ID -2 B & EMAIL AJE:}

DEPARTMENT_NAME [4 PHONE_NUMBER [&

MM\‘ He &)5]} HIRE_DATE fo)
JOB_ID B o

SALARY #ev {F

o

o

MAMAGER_ID Oﬁ E

DEPARTMENT_ID [J

[Drop here for aggregate fundi-:lnl

Once you drop the element, a new element is created in the parent group. By
default, the Count function is applied. The icon next to the name of the new
aggregate element indicates the function. Pause your cursor over the icon to
display the function.

Figure 3-21 shows the new aggregate element, CS_1. with the default Count
function defined.

Figure 3-21 New Element Created by Group-Level Aggregate Function

SALARY HEv

COMMISSION_PCT #Hew

4= GA1 fo3 A4S 62 oy
DEPARTMENT_ID m ﬁ EMPLOYEE_ID m G
Drop here for aggregate function | FIRST_NAME o o
4= G_3 Fo? LAST_NAME (A o3
M."\N."\GERJD(;\? m ﬂ EMAIL B &
DEPARTMENT NAME [4% PHONE_NUMBER [EY {F
v CS_1 - & HIRE_DATE oy
ﬂ‘gmpe for aggregate function | JOB_ID n o
I o]

o]

o]

MANAGER_ID 2 (3

DEPARTMENT_ID EJ 4%

Drop here for aggregate fLIHC‘tiDHI

Structuring Data 3-15

Creating Group-Level Aggregate Elements

2. To change the function: Click the function icon to view a list of available functions
and choose from the list, as shown in Figure 3-22.

Figure 3-22 Choosing a Function

iE 61 o3 4= G2 Fo
DEPARTMENT_ID B % EMPLOYEE_ID B 4
Drop here for aggregate function l FIRST_NAME n o
AE G4 o LAST_NAME n o
MANAGER D2 [EMR o =
DEPARTMENT_NAME [} &3 mons mases | B |
e 0S 1 O & HIRE_DATE o)
0H Count gate function | JOB_ID (A <
L (5] Average — SALARY #iv 13
B First COMMISSION_PCT #tev &
B Last WANAGER_ID.2 [4%
Maximum DEPARTMENT_ID [&%
Minimum Drop here for aggregate function]

|[Z] Summary

3. Torename the element or update other properties, click the element's Action menu

icon.
A= G1 ol
DEPARTMENT_ID B #

Drop here for aggregate function l

i= G 4 ol
MANAGER_ID £ B &
DEPARTMENT_NAME [} fol
v CS_1 By #

Remove Element
[Drop here for aggregate functi

Properties

© Help L‘\’ N

On the menu, click Properties. The Properties dialog is shown in Figure 3-23.

3-16 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Group-Level Aggregate Elements

Figure 3-23 Properties Dialog

*Column Name

*Alias

Display Name

Edit Properties - CS_1 0 x

Function Count |Z|
Data Type Integer |Z|
Value If Null
Round 2 T
Do Not Reset [T s

cs_1

Total Salany

m

OK Cancel

Important: Be careful when renaming an element as it can have
dependency on other elements.

Set the properties described in Table 3-2 as needed.

Table 3-2 Element Properties

Property

Description

Column Name

The internal name assigned to the element by the BI Publisher data
model editor. This name cannot be updated.

Alias (XML Tag BI Publisher assigns a default tag name for the element in the XML

Name) data file. You can update this tag name to assign a more user-friendly
name within the data file.

Display Name The Display Name appears in the report design tools. Update this
name to be meaningful to your business users.

Function If you have not already selected the desired function, then you can
select it from the list here.

Data Type BI Publisher assigns a default data type of Integer or Double
depending on the function. Some functions also provide the option of
Float.

Value if Null If the value returned from the function is null, you can supply a
default value here to prevent having a null in your data.

Round By default, the value is rounded to the nearest third decimal. You can
change the round value, if needed.

Do Not Reset By default, the function resets at the group level. For example, if your

data set is grouped by DEPARTMENT_ID, and you have defined a
sum function for SALARY, then the sum is reset for each group of
DEPARTMENT_ID data, giving you the sum of SALARY for that
department only. If instead you want the function to reset only at the
global level, and not at the group level, select Do Not Reset. This
creates a running total of SALARY for all departments. Note that this
property is for group level functions only.

Structuring Data 3-17

Creating Group Filters

3.10 Creating Group Filters

Filters enable you to conditionally remove records selected by your queries. Groups
can have two types of filters:

= Expression — Create an expression using predefined functions and operators
s PL/SQL Function — Create a custom filter
To create a group filter:

1. Click Menu, and then select Create Group Filter.

A= G GI

Create Group Filter
EMPLOYEE_ID B8 v ’

FIRST_MAME

EMAIL

(Al

LAST_MNAME (A Delete Group Filter
(A
(A]

PHOME_MUMBER

HIRE_DATE

Add Element by Expression
JOB_ID (A

Edit Data Set
SALARY Hev

COMMISSION_PCT #Eew
MAMAGER_ID E] Properties

DEPARTMENT_ID [@ Help
r m

The Edit Group Filter dialog is displayed as shown in Figure 3-24.

Figure 3-24 Edit Group Filter Dialog

Edit Group Filter - G_1 9 x

»

Group Filter Type Expression |Z| Validate Expression

Available *Group Filter
e _umi e T G_LSALARY < 5000
[A.oB_D
e SALARY 3
e COMMISSION_PCT
m MANAGER_ID LHEN

[F DEPARTMENT_ID

m

[Parameters

PDEPTNAME TH
fl.)w + || - s | F ==]| = | =|=

B H_DATE [__ - - — -

1

2. Select the Group Filter Type: Expression or PL/SQL.

Note: For PL/SQL filters, you must first specify the PL/SQL
Package as the Oracle DB Default Package in the data model
properties. See Section 1.7, "Setting Data Model Properties."

3-18 User's Guide for Oracle Business Intelligence Mobile App Designer

Performing Element-Level Functions

3. Enter the Filter:

» To enter an expression, select the elements and click the shuttle button to
move the element to the Group Filter definition box. Click the predefined
functions and operators to insert them in the Group Filter box.

Refer to Section 3.17, "Function Reference" for a description of the available
functions.

Click Validate Expression to ensure that the entry is valid.

s Toenter a PL/SQL function, select the PL/SQL package from the Available
box and click the shuttle button to move the function to the Group Filter box.

Your PL/SQL function in the default package must return a Boolean type.

After you have added the group filter, the data set object displays the filter indicator,
as shown in Figure 3-25.

Figure 3-25 Filter Indicator

/

42617 Fo
EMPLOYEE_ID B &
FIRST_NAME (A c
LAST_NAME (A c
SALARY Hiv 3
COMMISSION_PCT #ev £
WMANAGER_ID B 4
DEPARTMENT_ID [£
| Drop here for aggregate function |

To edit or delete a group filter:
1. Click Menu for the data set.
2. Choose the appropriate action:

s To edit the group filter, choose Edit Group Filter to launch the Group Filter
dialog for editing.

= To delete the group filter, choose Delete Group Filter.

3.11 Performing Element-Level Functions
You can perform the following functions at the element level:

= Group by an element to create a subgroup, as described in Section 3.7, "Creating
Subgroups"

» Create element-level links between data sets, as described in Section 3.5, "Creating
Element-Level Links"

= Set element properties, as described in Section 3.12, "Setting Element Properties"

Structuring Data 3-19

Setting Element Properties

3.12 Setting Element Properties

You can set properties for individual elements. Note that these properties are also
editable from the Structure View. If you need to update multiple element properties, it
may be more efficient to use the Structure View. See Section 3.16, "Using the Structure
View to Edit Your Data Structure."

To set element-level properties using the element dialog:

1. Click the element's action menu icon. From the menu, select Properties. The
Properties dialog is shown in Figure 3-26.

Figure 3-26 Properties Dialog

*Column Name

*Alias

Display Name

Data Type

Sort Order

Value If Null

Edit Properties - SALARY

SALARY

SALARY

Double

OK Cancel

2. Set the properties as needed, as described in Table 3-3.

Table 3-3 Element Properties

Property

Description

Alias

BI Publisher assigns a default tag name to the element in the XML
data file. You can update this tag name to assign a more user-friendly
name within the data file.

Display Name

The Display Name appears in the report design tools and the column
name in reports. Update this name to be meaningful to your business
users.

Data Type

BI Publisher assigns a default data type. Valid values are String, Date,
Integer, Double, Float.

Sort Order

You can sort XML data in a group by one or more elements. For
example, if in a data set employees are grouped by department and
manager, you can sort the XML data by department. Within each
department you can group and sort data by manager, and within each
manager subgroup, employees can be sorted by salary. If the element
is not in a parent group, the Sort Order property is not available.

Value if Null

If the value of an occurrence of the element is null, you can supply a
default value here to prevent having a null in your data.

3.13 Sorting Data

Sorting is supported for parent group break columns only. For example, if a data set of
employees is grouped by department and manager, you can sort the XML data by

3-20 User's Guide for Oracle Business Intelligence Mobile App Designer

Performing Group-Level Functions

department. Within each department you can group and sort data by manager. If you
know how the data should be sorted in the final report, you specify sorting at data
generation time to optimize document generation.

To apply a sort order to a group:

1.

Click the action menu icon of the element you want to sort by. From the menu,
select Properties.

Select the Sort Order.

Figure 3-27 shows the Properties dialog for the DEPARTMENT_ID element with
the Sort Order list displayed.

Figure 3-27 Properties Dialog Showing Sort Order List

Edit Properties - DEPARTMENT_ID

*Column Hame DEPARTMENT_ID
*Alias DEPARTMENT_ID
Display Name

Data Type Integer |Z|

Sort Order Ascending |Z|
Ascending k

Value If Null | Descending
Mo Ordering

3.14 Performing Group-Level Functions

This section describes how to perform group-functions. It includes the following
topics:

Section 3.14.1, "The Group Action Menu"
Section 3.14.2, "Editing the Data Set"
Section 3.14.3, "Removing Elements from the Group"

Section 3.14.4, "Editing the Group Properties"

3.14.1 The Group Action Menu

The Menu button is available at the group level and enables you to perform the
following:

Create and delete group links, as described in Section 3.6, "Creating Group-Level
Links"

Create, edit, and delete group filters, as described in Section 3.10, "Creating Group
Filters"

Add an element to the group based on an expression, as described in
Section 3.15.2, "Adding a Group-Level or Global-Level Element by Expression”

Structuring Data 3-21

Performing Group-Level Functions

= Edit the data set, as described in Section 3.14.2, "Editing the Data Set"

= Remove elements from the group, as described in Section 3.14.3, "Removing
Elements from the Group"

= Edit group properties, as described in Section 3.14.4, "Editing the Group
Properties"

The group-level Menu button is shown in Figure 3-28.

Figure 3-28 Group-Level Actions Menu

4= G 4 to) I
Create Group Filter
DEPARTMENT_ID E] T P

DEPARTMENT_MNAME ﬂ

MANAGER_ID B
Drop here for aggregate funch) 2 Create Group Link
Add Element by Expression
Edit Data Set
Properties
@ Help

3.14.2 Editing the Data Set
To edit the underlying data set:

1. Click Edit Data Set to launch the data set editor.

See the appropriate section for the data set type in Chapter 2, "Creating Data Sets" for
more information.

3.14.3 Removing Elements from the Group

To remove an element from the group:

1. On the element row, click the menu and then click Remove Element. An example
is shown in Figure 3-29.

Note: You can only remove elements added as a group function
(sum, count, and so on) or added as an expression.

3-22 User's Guide for Oracle Business Intelligence Mobile App Designer

Performing Global-Level Functions

Figure 3-29 Removing an Element

a2617T o]
DEPARTMENT_ID [fo}
O v Cs5_1 B~ | Lol
| Drop here for agaregate functi Removitlvf)lement
4 G5 Properties
MANAGER_ID O 9ner
EMPLOYEE_ID B &
EIPaT MAME m Yo

3.14.4 Editing the Group Properties
To edit the group properties:
1. Click Menu and select Properties.

2. Edit the Group Name or Display Name and click OK, as shown in Figure 3-30.

Figure 3-30 Edit the Group Name

Edit Properties - G_1 X

*Group Name Emps_by_depl
Display Name Department Employees|

Data Set

OK Cancel

3.15 Performing Global-Level Functions

The Global Level Functions object enables you to add elements to your report data set
at the top report level. You can add the following types of elements as top-level data:

= Elements based on aggregate functions
= Elements based on expressions

s Elements based on PL/SQL statements (for Oracle Database data sources)

Important: If you select a data type of Integer for any calculated
element and the expression returns a fraction, the data is not
truncated.

The Global Level Functions object is shown in Figure 3-31. To add elements based on
aggregate functions, drag the element to the "Drop here for aggregate function" space
of the object. To add an element based on an expression or PL/SQL, click Menu, and
choose the appropriate action.

Structuring Data 3-23

Performing Global-Level Functions

Figure 3-31 Global Level Functions Object

4 Global Level Functions £

Drop here for aggregate function | Add Element by Expression

dd Element by PLISQL I

Remove Selected Elements

Properties

@ Help r

3.15.1 Adding a Global-Level Aggregate Function
To add a global aggregate function:

1. Drag and drop the data element from the data set to the "Drop here for aggregate
function" area of the Global Level Functions object.

For example, Figure 3-32 shows creating a global level aggregate function based
on the Salary element.

Figure 3-32 Creating Global-Level Aggregate Function

4= Emps_by_dept 4 [Global Level Functions £

DEPARTMENT_ID E3 SALJ\F%Y HErop hik for aggregate function |

o]
0]
MANAGER_ID B fol
EMPLOYEE_LID [o

FIRST_NAME (A}

LAST_MAME

HIRE_DATE o
SALAR’ #ev O
| Drop here for aggregate function |

2. When you release the mouse, the data model editor assigns a default name to the
aggregate element and assigns Count as the default function. Available functions
are:

s Count

= Average

n First

s Last

s Maximum
s Minimum
= Summary

To change the function, click the function icon to the left of the new element name
and choose the function from the list.

3-24 User's Guide for Oracle Business Intelligence Mobile App Designer

Performing Global-Level Functions

Figure 3-33 shows the function for the new global level element CS_1 being
modified from Count to Average.

Figure 3-33 Applying a Function

4 = Global Level Functions it

N+ C5_1 B~ o)
|n§1 Count

|[E] Average

B First

B Last
Maximum

Minimum

Summary

3. To change the default name, click the actions icon to the right of the element name
and click Properties to launch the Edit Properties dialog, See Section 3.12, "Setting
Element Properties." for more about the properties available on this dialog.

3.15.2 Adding a Group-Level or Global-Level Element by Expression

To add a group-level or global-level element by expression:

1. To add a group-level element: On the Group object, click Menu and select Add
Element by Expression.

To add a global level element: On the Global Level Functions object, click Menu
and select Add Element by Expression, as shown in Figure 3-34.

Figure 3-34 Add Element: by Expression

4 = Global Level Functions =G 2 Ko I

o T Create Group Filter

Drop here for agaregate function FEIIE EET B/ S RIEEEET

COMPANY

OFFICE 8

Remove Selected Elements OFFICE_DESCRIPTION B

Properties ORGANIZATION m
@ Help DEPARTMENT (A
LANGUAGE_ID
| ' Add Element by Expressjon
Drop here for aggregate functio jb
Edit Data Set
Properties
@ Help

2. Inthe Add Element by Expression dialog, enter the fields and operators. An
example is shown in Figure 3-35.

Structuring Data 3-25

Performing Global-Level Functions

Figure 3-35 Add Element by Expression Dialog

Edit Properties - Salary_projection

Available

*Name Salary_projection

Display Name Salary_projection

Data Type Integer |Z| Validate Expression

*Expression
G_1 G_1.SALARY = (1.08)
EYFRST_NAME
Y LAST_NAME
HIRE_DATE
HESALARY
[N DEPARTMENT_NAME

[, Parameters

fl.)w =+ - . I ||=| = =

OK Cancel

Table 3—-4 Add Element by Expression Dialog Fields

Field Description
Name Enter a name for this element.
Display Name The Display Name appears in the report design tools. Enter a name that is
meaningful to your business users.
Data Type Select from the list of data types: String, Integer, Double, Float, or Date.
3. Enter the expression.

4,

Use the shuttle arrow to move the data elements required for the expression from
the Available box to the Expression box.

Click an operator to insert it in the Expression box, or choose from the function
list.

Refer to Section 3.17, "Function Reference" for a description of the available
functions.

Click Validate Expression to validate.

3.15.3 Adding a Global-Level Element by PL/SQL
The PL/SQL function must return a VARCHAR data type.

To add a global-level element by PL/SQL:

1.

On the Properties page, specify the PL/SQL Package as the Oracle DB Default
Package in the data model properties. See Section 1.7, "Setting Data Model
Properties."

On the Global Level Functions object, click Menu, and then click Add Element
by PL/SQL.

3-26 User's Guide for Oracle Business Intelligence Mobile App Designer

Using the Structure View to Edit Your Data Structure

3. Inthe Add Element by PL/SQL dialog, enter the fields, as shown in Figure 3-36

and as described in Table 3-5.

Figure 3-36 Add Element by PL/SQL Dialog

Add Element by PL/SQL - DATA_DS

“Hame | gppsip

Display Marme APPSID

B
Available
E [g§Packages
= ﬁ% xdol20_scott
= [{§EMPLOYEE
ADDTOTAL
GETAFRSID
E [Parameters S
(=PL

*Eypression

Help

EMPLOYEE . GETAPPSID(: P1)

OK || Cancel

Table 3-5 Add Element by PL/SQL Dialog Fields

Field Description

Name Enter a name for this element.

Display Name The Display Name appears in the report design tools. Enter a name that is
meaningful to your business users.

Data Type Must select String.

4. Select the PL/SQL package from the Available box and click the shuttle button to
move the function to the Group Filter box.

3.16 Using the Structure View to Edit Your Data Structure

The Structure view enables you to preview the structure of your data model. The Data
Source column displays the date elements in a hierarchical tree that you can collapse
and expand. Use this view to verify the accuracy of the data model structure. The
Structure view is shown in Figure 3-37.

Structuring Data 3-27

Using the Structure View to Edit Your Data Structure

Figure 3-37 Structure View

Diagram Structure | Data Code

Table View | Qutput

XML View Business View =
Data Source XML Tag Name Sorting Value If Null Display Name Data Type
4 Report Data
4 Data Structure DATA_DS

4 Employees G_1

EDEPARTF\"\EI‘JT_T‘JAME DEPARTMENT_NAME DEPARTMENT_NAME E
Salary_projection Salary_projection Salary_projection

4 Departments G 2
EDEPARTF\"\EI‘JT_T‘JAME DEPARTMENT_NAME DEPARTMENT_NAME E
EJMANAGER_ID MANAGER_ID MANAGER_ID 1]
EF\RST_NAME FIRST_NAME FIRST_MAME E
FALAST_NAKE LAST_NAME LAST_NAME [A]
EPHONE_NUHBER PHONE_NUMBER PHONE_NUMBER E

3.16.1 Renaming Elements

Use the Structure page to define user-friendly names for elements in the data model.
You can rename both the XML element tag name (XML View) and the name that
displays in the report layout tools (Business View). Figure 3-38 shows renaming the
Data Source elements to friendlier Business View names.

Figure 3-38 Editing the Display Name of an Element

Diagram Structure Data Code

Table View | Qutput

XML View Business View =)
Data Source XML Tag Name Sorting Value If Null Display Name Data Type
4 ReportData
4 Data Structure DATA_DS

4 Employees G_1 (_H-)

ﬂ DEPARTMENT_NAME DEPARTMENT_MAME Department E
Salary_projection Salary_projection Salary Pfojection

4 Departments G_2
ﬂ DEPARTMENT_NAME DEPARTMENT_MAME Department E
[IMANAGER_ID MANAGER_ID Wanager 4]
AFIRST_NAME FIRST_MAME First [A]
Y LAST_NAME LAST_NAME Last [A]
[PHONE_NUWBER PHONE_NUMBER Phone [A]

3.16.2 Adding Value for Null Elements

The Structure also enables you to enter a value to use for an element if the data model
returns a null value for the element.

Enter the value to use in the Value if Null field for the element.

3-28 User's Guide for Oracle Business Intelligence Mobile App Designer

Function Reference

3.17 Function Reference

Table 3-6 describes the usage of supported functions available from the Add Element
by Expression dialog and the Edit Group Filter dialog.

Table 3—-6 Supported Functions from the Add Element by Expression Dialog
Function Description Syntax Example
IF Logical IF operator IF (boolean_expr, true_ | IF (G_1.DEPARTMENT_
E return, false_return) ID == 10, 'PASSED),
valuates boolean_expr, 'FAIL))
and returns true_return if
boolean_expr is true, and returns 'PASSED' if
false_return if boolean_ DEPARTMENT_ID =10,
expr is false. otherwise returns 'FAIL'
NOT Logical NOT operator STRING(NOT(boolean | STRING(NOT(G_1.JOB_
Evaluates boolean_expr, —expr)) ID =="MANAGER')
and returns true if returns 'TRUE' if JOB_ID
boolean_expr is false. = MANAGER, otherwise
returns 'FALSE'
AND Logical AND operator STRING(AND(boolean | STRING(AND (G_1.JOB_
Evaluates boolean_exprl _exprl, boolean_expr2, | ID =="'MANAGER', G_
=) 1.DEPARTMENT_ID ==
and boolean_expr2, and 10))
returns true if both
boolean expressions are returns 'TRUE' if both
true, otherwise returns JOB_ID = MANAGER
false. and DEPARTMENT_ID =
10, otherwise returns
'FALSE'
&& Logical AND operator STRING(boolean_ STRING(G_1.JOB_ID ==
Evaluates boolean_exprl exprl && boolean_ MANAGER' && G_
= expr2) 1.DEPARTMENT _ID ==
and boolean_expr2, and 10)
returns true if both
boolean expressions are returns 'TRUE' if both
true, otherwise returns JOB_ID = MANAGER
false. and DEPARTMENT_ID =
10, otherwise returns
'FALSE'
I Logical OR operator STRING(OR(boolean_ | STRING(OR (G_1.JOB_
Evaluates boolean exprl exprl, boolean_expr2) | ID == MANAGER', G_
—EXp 1.DEPARTMENT _ID ==
and boolean_expr2 and 10))
returns true if both
boolean expressions are returns 'TRUE' if either
true, otherwise returns JOB_ID = MANAGER or
false. DEPARTMENT_ID = 10,
otherwise returns
'FALSE'
MAX Returns the maximum MAX(exprl, expr2, MAX(G1_Salary, 10000)
value of the element in expr3, ...)
the set. returns max of salary or
10000
MIN Returns the minimum MIN(exprl, expr2, MIN(G1_Salary,5000)
value of the element in expr3, ...) .
the set. returns min of salary or
5000

Structuring Data 3-29

Function Reference

Table 3-6 (Cont.) Supported Functions from the Add Element by Expression Dialog

Function Description Syntax Example
ROUND Returns a number ROUND(number[,inte | ROUND(2.777)
rounded to the integer ger])
- returns 3
places right of the If integer is omitted
decimal point. . 4 ROUND(2.777, 2)
number is rounded to
0 places. returns 2.78
Integer can be negative
to round off digits left
of the decimal point.
Integer must be an
integer.
FLOOR Returns the smallest FLOOR(n) FLOOR(2.777)
integer equal to or less
than . returns 2
CEILING Returns the largest CEILING(n) CEILING(2.777)
integer greater than or
returns 3
equal ton.
ABS Returns the absolute ABS(n) ABS(-3)
value of n.
returns 3
AVG Returns the average value | AVG(exprl, expr2, AVG(G_1.SALARY,G_
of the expression. expr3, ...) 1.COMMISSION _
PCT*G_1.SALARY)
returns the average of
SALARY and
COMMISSION
For example, if SALARY
= 14000 and
COMMISSION_PCT = 4,
the expression evaluates
to 9800.0
LENGTH Returns the length of an | LENGTH(expr) Example to return the
array. length of an array:
The LENGTH function iﬁiﬁgf}{{l’ 2,4,4)
calculates the length
using characters as Example to return the
defined by the input length of a string:
character set. LENGTH('countries')
If char is null, the returns 9
function returns null.
If char is an array, it
returns the length of the
array.
SUM Returns the sum of the SUM(exprl, expr2, ...) | SUM (G_1.SALARY, G_
value of the expression. 1.COMMISSION_
PCT*G_1.SALARY)
returns sum of salary and
commission
For example, if SALARY
= 14000 and
COMMISSION_PCT =.4,
the expression evaluates
to 19,600.0

3-30 User's Guide for Oracle Business Intelligence Mobile App Designer

Function Reference

Table 3—-6 (Cont.) Supported Functions from the Add Element by Expression Dialog

Function Description Syntax Example
NVL Replaces null (returned as | NVL(exprl, expr2) NVL(G_
a blank) with a string in If exprl is null. then 1.COMMISSION_PCT,
the results of a query. NVLpreturns e;< 0 .3) returns .3 when G_
pre. 1.COMMISSION_PCT is
If exprl is not null, null
then NVL returns
exprl.
CONCAT Returns charl CONCAT(charl, char2) | CONCAT(CONCAT (First
concatenated with char2. _Name, ' '), Last_Name)
where First_Name = Joe
and Last_Name = Smith
returns Joe Smith
STRING Returns char as a string STRING(expr) STRING(G1_SALARY)
data type. where salary = 4400
returns 4400 as a string
SUBSTRING | Extracts a substring from | SUBSTRING(string, SUBSTRING('this is a
a string. start_pos, end_pos) test', 5, 7) returns "is"
strine is the source (that is, characters 6
s tring through 7)
g.
start pos is the SUBSTRING('this is a
p test', 5) returns "is a test"
position to start the
extraction.
end_pos is the end
position of the string to
extract (optional).
INSTR Returns the INSTR(string1, string?) | INSTR('this is a test', 'is
position/location of the . . . a')
first character of a string1 is the string to
Lo . search. returns 5
substring in a string.
string? is the substring
to search for in string1.
DATE Converts a valid Java DATE(char, format_ DATE(01-Jan-2013,'dd-M
date string to a date data | string) MM-yyyy')

type in canonical format.

where (1) char is any
valid Java date string
(for example,
13-JAN-2013)

(2) format_string is the
Java date format of the
input string (for
example,
dd-MMM-yyyy)

The input and format
strings must be a valid
Java date format string.

returns
2013-01-01T08:00:00.000+
00:00

Structuring Data 3-31

Function Reference

Table 3-6 (Cont.) Supported Functions from the Add Element by Expression Dialog

Function

Description

Syntax

Example

FORMAT_
DATE

Converts a date argument
in the Java date format to
a formatted string.

FORMAT_
DATE(date, format_
string)

FORMAT _
DATE(SYSDATE, dd-MM
M-yyyy’)

where the value of
SYSDATE =
2013-01-24T16:32:45.000-0
8:00

returns 24-Jan-2013

FORMAT_
NUMBER

Converts a number or
numeric string to a string
in the specified number
format.

FORMAT _
NUMBER(number,for
mat_string)

FORMAT_
NUMBER(SOME_
NUMBER, '$9,999.00")

where the value of
SOME_NUMBER =
12345.678

returns $12,345.68

DECODE

Replaces the value of an
expression with another
value based on the
specified search and
replace criteria.

DECODE(expr, search,
result [, search,
result]...[, default])

DECODE(PROD_
FAMILY _
CODE,100,'Colas',200, Ro
ot Beer',300, Cream
Sodas',400, Fruit
Sodas','Other")

returns

(1) 'Colas' if PROD_
FAMILY_CODE =100

(2) 'Root Beer' if PROD_
FAMILY_CODE =200

(3) 'Cream Sodas' if
PROD_FAMILY_CODE =
300

(4) 'Fruit Sodas' if PROD_
FAMILY_CODE = 400

(5) 'Other" if PROD_
FAMILY_CODE is any
other value

REPLACE

Replaces a sequence of
characters in a string with
another set of characters.

REPLACE(expr,stringl
,string?)

where stringl1 is the
string to search for and
string? is the string to
replace.

REPLACE(G_1.FIRST_
NAME,'B','L")

where G_1.FIRST_
NAME = Barry

returns Larry

3-32 User's Guide for Oracle Business Intelligence Mobile App Designer

4

Adding Parameters and Lists of Values

This chapter describes how to add parameters and lists of values to a BI Publisher data
model.

This chapter includes the following sections:

s Section 4.1, "About Parameters"

» Section 4.2, "Adding a New Parameter"

s Section 4.3, "About Lists of Values"

» Section 4.4, "Adding Lists of Values"

= Section 4.5, "Adding Flexfield Parameters"

4.1 About Parameters

Adding parameters to a data model enables users to interact with data when they
view reports.

BI Publisher supports the following parameter types:
» Text — the user enters a text string to pass as the parameter.

= Menu — the user makes selections from a list of values. A list of values can
contain fixed data that you specify or the list can be created using a SQL query
that is executed against any of the defined data sources. This option supports
multiple selections, a "Select All" option, and partial page refresh for cascading
parameters.

To create a menu type parameter, define the list of values first; then define the
parameter and associate it to the list of values. See Section 4.4, "Adding Lists of
Values."

= Date — the user selects a date as a parameter. Note that the data type must also be
"Date" and the format must be Java date format.

Once you have defined the parameters in the data model, you can further configure
how the parameters are displayed in the report as a report-level setting. For more
information about the report-level settings, see the section "Configuring Parameter
Settings for the Report" in Oracle Fusion Middleware Report Designer’s Guide for Oracle
Business Intelligence Publisher.

Support for parameters varies based on the data set type. SQOL Query data sets support
the full set of available parameter features. Other types of data sets may support all,
none, or a subset of these features. Table 4-1 summarizes what is supported for each
data set type.

Adding Parameters and Lists of Values 4-1

Adding a New Parameter

Table 4-1 Parameter Support by Data Set Type

Refresh Other

Parameter Multiple Parameters on

Data Set Type Support Selection Can Select All Change

SQL Query Yes Yes Yes Yes

MDX Query No No No No

Oracle BI Analysis Inherited from Yes (via Oracle Yes (via Oracle Yes (via Oracle BI
Oracle BI BI Dashboards) BI Dashboards) Dashboards)
Analysis

View Object Yes, provided No No Yes (view object
that the view parameters only)
object supports
and is
designed for it

Web Service Yes No No No

LDAP Query Yes No No No

XML File No No No No

Microsoft Excel File ~ Yes No No No

CSV File No No No No

HTTP (XML Feed) Yes No No No

4.2 Adding a New Parameter
To add a new parameter:

1. On the Data Model components pane, click Parameters and then click Create new
Parameter, as shown in Figure 4-1.

Figure 4-1 Create New Parameter

Data Model
Parameters

Properties

4 Data Sets | Create new Parameter ‘ Data Type Default Value Parameter Type Row Placement Reorder
Employees
[This area is currently empty]
Event Triggers

[N

Flexfields

[N

List of Values

[N

'(31 List of Depis

Parameters

[N

Bursting

[N

2. Enter a Name for the parameter. The name must match any references to this
parameter in the data set.

Note: The parameter name you choose must not exceed the
maximum length allowed for an identifier by your database. Refer to
your database documentation for identifier length limitations.

4-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding a New Parameter

3. Select the Data Type from the list. A Date data type only support a Date
Parameter Type. The other data types support a Parameter Type of either Text or

Menu:
s String
s Integer

Note: The Integer data type for parameters is a 64-bit sign integer. It
has a value range of -9,223,372,036,854,775,808 to a maximum value of
9,223,372,036,854,775,807 (inclusive).

s Boolean
s Date
s Float

4. Enter a Default Value for the parameter. This is recommended to prevent long
running queries. Default parameter values are also used to preview the report
output when you design report layouts using BI Publisher Layout Editor.

5. Select the Parameter Type. Supported types are:

» Text — Allows the user to enter a text entry to pass as the parameter. See
Section 4.2.1, "Creating a Text Parameter."

= Menu — Presents a list of values to the user. See Section 4.2.2, "Creating a
Menu Parameter."

= Date — Passes a date parameter. The Data Type must also be Date. See
Section 4.2.3, "Defining a Date Parameter."

Note: BI Publisher supports parameters that are of type text entry or
menu (list of values) but not both. That is, you cannot define a
"combination" parameter that enables a user to either enter a text
value or choose from a menu list of values.

6. Row Placement - this setting configures the number of rows for displaying the
parameters and in which row to place each parameter. For example, if your report
has six parameters, you can assign each parameter to a separate row, 1 - 6, with
one being the top row; or, you can assign two parameters each to rows 1, 2, 3. By
default, all parameters are assigned to row 1.

Row placement can also be configured at the report level. The report definition
supports additional display options for parameters. For more information, see
"Configuring Parameter Settings for the Report" in Oracle Fusion Middleware Report
Designer’s Guide for Oracle Business Intelligence Publisher.

4.2.1 Creating a Text Parameter

The Text type parameter provides a text box to prompt the user to enter a text entry to
pass as the parameter to the data source. Figure 4-2 shows a text parameter definition.

Adding Parameters and Lists of Values 4-3

Adding a New Parameter

Figure 4-2 Text Parameter Definition

Data Model

Parameters
Properties + X

4 Data Sets “Name Data Type Default Value Parameter Type Row Placement Reorder
Employees

4 EventTriggers OESTHAME S B SHES et B - v

4 Flexfields

4 ListofValues

4 Parameters "

[=]1 PDEPTNAME PDEPTNAME: Type: Text

4 Bursting Display Label Department

TextField Size 25
Options [¥] Text field contains comma-separated values

[] Refresh other parameters on change

To create a Text type parameter:

1. Select Text from the Parameter Type list. The lower pane displays the appropriate
fields for the selection.

2. Enter the Display Label. The display label is the label that displays to users when
they view the report. For example: Department.

3. Enter the Text Field Size as an integer. This field determines the number of
characters that the user can enter into the text box. For example: 25.

4. Enable the following Options if required:

» Text field contains comma-separated values — Select this option to enable the
user to enter multiple comma-delimited values for this parameter. The
parameter in your data source must be defined to support multiple values.

= Refresh other parameters on change — Performs a partial page refresh to
refresh any other parameters whose values are dependent on the value of this
one.

Figure 4-3 shows how the Department parameter displays to the report consumer.

Figure 4-3 Text Type Parameter as Displayed in the Report

ORACLE" Bl Publisher Enterprise Search All
Sample Report Ho

Department Sales Apply

Sample Report

Sample Report

21K

18K

15K I

= - [| I I

4.2.2 Creating a Menu Parameter

A Menu type parameter presents a list of values to the user. You must define the list of
values first. See Section 4.4, "Adding Lists of Values." The Menu type parameter
supports the data types of String and Integer only.

The Menu parameter definition includes the options:

4-4 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding a New Parameter

Figure 4-4 shows the menu parameter definition.

Figure 4-4 Menu Type Parameter Definition

Data Model

Parameters
Properties + x
bt “Name Data Type Default Value Parameter Type Row Placement Reorder
Employees il
4 EventTriggers PDEPTNAME String H Sales Menu - 1 i AV

Flexfields

N

List of Values

n

4 List of Depts -

Parameters

n

PDEPTNAME: Type: Menu

Display Label Department

= PDEPTNAME

n

Bursting

Listof values List of Depts
Number of Values to Display in List 100
Options [¥] Multiple Selection

] Can selectall

NULL Value Passed @ AllValues Passed

] Refresh other parameters on change

To define a Menu type parameter:

1. Select Menu from the Parameter Type list. The lower pane displays the
appropriate fields. Choose the Data Type (must be String or Integer).

2. Enter the Display Label. The display label is the label that displays to users when
they view the report. For example: Department.

3. Enter the Number of Values to Display in List. If the number of values in the list
exceeds the entry in this field, the user must click Search to find a value not
displayed, as shown in Figure 4-5. This field defaults to 100.

Figure 4-5 Search Feature Enabled When Number of Values Exceeds Setting

Department Sales ¥ Apply
S [E A1
ot [Administration
[Marketing
Search ... F12

21K,

4. Select the List of Values that you defined for this parameter.
5. Enable the following Options if required:

= Multiple Selection — Allows the user to select multiple entries from the list.
Your data source must be able to support multiple values for the parameter.
The display of a menu parameter that supports multiple selection differs. See
Figure 4-6 and Figure 4-7.

= Can select all — Inserts an "All" option in the list. When the user selects "All"
from the list of values, you have the option of passing a null value for the
parameter or all list values. Choose NULL Value Passed or All Values Passed.

Adding Parameters and Lists of Values 4-5

Adding a New Parameter

Note:

Using * passes a null, so you must handle the null in your data

source. A method to handle the null would be the standard Oracle
NVL command, for example:

where customer_id = nvl(:cstid, customer_id)

where cstid is a value passed from the LOV and when the user selects
All it passes a null value.

= Refresh other parameters on change — Performs a partial page refresh to

refresh any other parameters whose values are dependent on the value of this

one.

Figure 4-6 shows how the Department menu type parameter displays to the report
consumer when multiple selection is not enabled.

Figure 4-6 Department Menu Type Parameter with Multiple Selection Disabled

Sample Report

Department Marketing v Apply

Sample Report

| Al =
Administration

Marketing L
Purchasing % b
Human Resources

Shipping

IT

Public Relations -
Search ... F12

15K .

Figure 4-7 shows how the Department menu type parameter displays to the report
consumer when multiple selection is enabled.

Figure 4-7 Department Menu Type Parameter with Multiple Selection Enabled

Sample Report

Department Marketing;Purchasing;Sales + | Appily

Sample Report

-

|

Administration

m

V| Marketing
| Purchasing
Human Resources

Shipping

Search ... F12 I
=l

4.2.2.1 Customizing the Display of Menu Parameters
The display of menu parameters in the report can be further customized in the report

definition. Menu type parameters support the additional display option as a static list

of checkboxes or radio buttons. For more information, see "Configuring Parameter
Settings for the Report" in the Oracle Fusion Middleware Report Designer’s Guide for
Oracle Business Intelligence Publisher.

4-6 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding a New Parameter

4.2.3 Defining a Date Parameter

The Date type parameter provides a date picker to prompt the user to enter a date to
pass as the parameter to the data source. Figure 4-8 shows the date parameter
definition.

Figure 4-8 Date Parameter Definition

Data Model

Parameters
Properties + X
4 DatasSets *Name Data Type Default Value Parameter Type Row Placement Reorder
Employees
4 EventTriggers H_DATE o B 220 B L Ii’ “T

Flexfields

[N

List of Values

[N

i3 Listof Depts -
Parameters
g2 H DATE

PDEPTNAME

[N

H_DATE: Type: Date
Display Label Hire Date

Text Field Size 15

[N

Bursting

Date Format String MM-dd-yyyy (must be Java date format, e.g., MM-dd-yyyy)
Date From

Date To

To define a Date type parameter:

1.

Select Date from the Parameter Type list. The lower pane displays the appropriate
fields for your selection.

Enter the Display Label. The display label is the label that displays to users when
they view the report. For example: Hire Date.

Enter the Text Field Size as an integer. This field determines the number of
characters that the user can enter into the text box for the date entry. For example:
10.

Enter the Date Format String. The format must be a Java date format (for example,
MM-dd-yyyy).

Optionally, enter a Date From and Date To. The dates entered here define the date
range that are presented to the user by the date picker. For example if you enter
the Date From as 01-01-1990, the date picker does not allow the user to select a
date before 01-01-1990. Leave the Date To blank to enable all future dates.

Figure 4-9 shows how the Hire Date parameter displays to the report consumer.

Adding Parameters and Lists of Values 4-7

About Lists of Values

Figure 4-9 Hire Date Parameter

Sample Report

Hire Date 06-11-2015 [‘5
Sample Report Select Date and Time x
4 June [=] 2015 Ej»

SUN MON TUE WED THU FRI SAT
1 2 2 4 3 &

7 8 9 0 1 12 13
14 13 16 17 17 N
H n B M 17 %

i B TR 1 2 3 4
5 6 7 8 9 10 1

0K Cancel

4.3 About Lists of Values

A list of values is a defined set of values that a report consumer can select from to pass
a parameter value to your data source. If you define a menu type parameter, the list of
values that you define here provides the menu of choices. You must define the list of
values before you define the menu parameter.

Populate the list using one of the following methods:
» Fixed Data — Manually enter the list of values.
= SQL Query — Retrieve the values from a database using a SQL query.

= Flexfield— Retrieve the values from a key flexfield defined in Oracle E-Business
Suite. This option is only available when BI Publisher is using the Oracle
E-Business Suite security model. For more information, see Section 4.5, "Adding
Flexfield Parameters."

4.4 Adding Lists of Values
To add a List of Values:

1. On the Data Model components pane, click List of Values and then click Create
new List of Values, as shown in Figure 4-10.

Figure 4-10 Create New List of Values

Data Model B
List of Values
Properties l},
- s

4 Datasets | Create new List of Values | Type Data Source Reorder

Employees

[This area is currently empty]
4 EventTriggers
4 Flexfields
4 Listof Values
4 Parameters
EI] PDEPTNAME

4 Bursting

2. Enter a Name for the list and select a Type: SQL Query or Fixed Data.

4-8 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Lists of Values

4.41 Creating a List from a SQL Query

The data engine expects a (display) name-value pair from the list of values query. In
the list of values select statement, the column listed first is used as the display name
(what is shown to the user) and the second is used for the value that is passed to the
parameter in the data set query by the data engine.

If the query returns only one column, then the same column value is used both as the
list of values display name shown to the user and as the value that is passed to the
parameter.

To create a list from a SQL query:
1. Select a Data Source from the list.

2. In the lower pane, select Cache Result (recommended) if you want the results of
the query cached for the report session.

3. Enter the SQL query or use the Query Builder. See Section 2.3.3, "Using the SQL
Query Builder" for information on the Query Builder utility. Figure 4-11 shows a
SQL query type list of values.

Figure 4-11 SQL Query Type List of Values

e List of Values

Properties + X
4 Data Sets *Name Type Data Source Reorder
Employees
4 EventTriggers LislafDeps LRI B demo E| -
4 Flexfields
4 Listofvalues
5 List of Depts -

4 Parameters

List of Depts: Type: SQL Query

EI]F‘DEPTNAME
Options [] Cache Result

4 Bursting

SQL Query Query Builder

select "DEPARTMENTS""DEPARTMEMT_NAME™ as "DEPARTMENT_MAME™
from "OE""DEPARTMENTS™ "DEPARTMENTS™

The SQL query shown in Figure 4-11 selects only the DEPARTMENT_NAME column
from the DEPARTMENTS table. In this case the list of values both displays the results
of the query in the list and passes the same value to the parameter in the data set.
Figure 4-12 shows the list of values display entries and the values passed to the data

set. Note that the menu items and the values shown for P_DEPT are the
DEPARTMENT NAME values.

Adding Parameters and Lists of Values 4-9

Adding Lists of Values

Figure 4-12 Sample Data Showing the Same LOV Display Names and Values

Samp!e Report Home Catalog New w Open w
Hire Date i Department Administration;Marketing;Pur + | Apply
1 A E
Sample Report Administration
Marketing
- i
Generated by Orscle BI Publisher 12.2.1.0.0 -Datasngim: Purchasing ¢ Ssmple Data Model
== Human Resources
-<DATA_DS> o
y ipping
<H_DATE/> 4
-<PDEPTNAME> Search F12

[Administration,Marketing,Purchasing,Human Resources,Shipping,|T,Public
Relations,Sales,Executive]
</PDEPTNAME>
-<G_1>
If instead you wanted to pass the DEPARTMENT_ID to the parameter in the data set
yet still display the DEPARTMENT_NAME in the list, construct your SQL query as
follows:

Select "DEPARTMENTS"."DEPARTMENT NAME" as "DEPARTMENT NAME",
"DEPARTMENTS" . "DEPARTMENT_ID" as "DEPARTMENT_ID"
from "DEMO"."DEPARTMENTS" "DEPARTMENTS

Figure 4-13 shows the list of values display entries and the values passed to the data
set. Note that the menu lists the DEPARTMENT_NAME while the values shown for P_
DEPT are the DEPARTMENT_ID values.

Figure 4-13 LOV Display Names and Values

Sample Report Home Catalog

Hire Date e Department All v Apply

All F
Sample Report Administration

Marketing

IM¢

Purchasing
-

Generated by Oracle BI Publisher 12.2.1.0.0 -Dataendint[g] Hyman Resources IS_SEI"-ZJlf_DE‘:E_A”-'DdEL
- <DATA_DS> Snipping B
<H_DATE/> Search .. F12
- <PDEPTNAME>
[10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230
</PDEPTNAME>
-<G_1>

<FIRST_NAME>Sundita</FIRST_NAME>

4.4.2 Creating a List from a Fixed Data Set

To create a list from a fixed data set:

1. In the lower pane, click the Create new List of Values icon to add a Label and
Value pair. The label is displayed to the user in the list. The value is passed to the
data engine.

4-10 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Flexfield Parameters

2. Repeat for each label-value pair required.

Figure 4-14 shows fixed data type list of values.

Figure 4-14 Fixed Data Type List of Values

Data Model

Properties
4 Data Sets
Employees
4 EventTriggers
4 Flexields
4 Listofvalues
5 List of Depts
4 Parameters
E=4H_DATE
PDEFTMAME

4 Bursting

List of Values

+ X
*Name Type Data Source Reorder
List of Depts Fixed Data B AW

List of Depts: Type: Fixed Data

+ X
*Label “Value
Administration 10
Marketing 20
IT 30
Sales 40
Purchasing 50

4.5 Adding Flexfield Parameters

Oracle E-Business Suite customers who have configured BI Publisher to use E-Business
Suite security can create reports that leverage key flexfields as parameters. When you
define a data model to pass a key flexfield as a parameter, BI Publisher presents a
dialog to the report consumer to make selections for the flexfield segments to pass as
parameters to the report, similar to the way flexfields are presented when running
reports through the concurrent manager in the E-Business Suite.

The flexfield list of values displays in the report viewer as shown in Figure 4-15.

Figure 4-15 Flexfield List of Values Display

AccountTo T-UJAS-1218-5100-T2 L\fﬁ‘

The flexfield list of values displays as a dialog from which you select the segment
values as shown in Figure 4-16.

Adding Parameters and Lists of Values 4-11

Adding Flexfield Parameters

Figure 4-16 Flexfield Segment Selection Dialog

Vision Operations Accounting Flexfield [%]
Company: |T - Total Company Parent o |
Department: [11AS - UA Sales OPEX ~|
Account: [1218 - Late Charge Receivable v
Sub-Account: [5100 - Product 100 v]
Product: [T2-Total 200 ¥
Ok Cancel

4.5.1 Prerequisites for Using Flexfields

When defining a list of values, E-Business Suite customers see a list Type called
"Flexfield". To enable the flexfield type list of values, BI Publisher must be configured
to use E-Business Suite Security. The flexfield must already be defined in the
E-Business Suite.

For information about flexfields in the E-Business Suite, see Oracle E-Business Suite
Flexfields Guide. For information about setting up E-Business Suite security for Bl
Publisher, see "Integrating with Oracle E-Business Suite" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Business Intelligence Publisher.

4.5.2 Adding a Flexfield Parameter and List of Values

To add a flexfield parameter complete the following tasks. Each task is described in
detail in the subsequent sections:

1. Add the flexfield list of values (LOV). The flexfield type list of values retrieves the
flexfield metadata definition to present the appropriate values for each segment in
the flexfield list of values selection dialog.

2, Add a parameter and associate it with the flexfield LOV by selecting your flexfield
list of values as the source menu for the parameter.

3. Add the Flexfield component to the data model. Use the flexfield parameter to
pass values to the Flexfield defined in the Data Model.

4. Reference the Flexfield in your SQL query using the &flexfield_name syntax. At
runtime the &flexfield _name reference is replaced with the lexical code
constructed based on the values in the Flexfield component definition.

4.5.2.1 Adding the Flexfield List of Values

To add a list of values retrieved from a flexfield definition:

1. On the Data Model components pane, click List of Values and then click Create
new List of Values.

2. Enter a Name for the list and choose Flexfields as the Type. When you choose
Flexfields as the Type, the Data Source option is no longer editable. All flexfields
type lists of values use the Oracle E-Business Suite as the data source.

3. In the lower pane, enter the following:

= Application Short Name - the E-Business Suite application short name, for
example: SQLGL.

4-12 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Flexfield Parameters

= ID Flex Code - the flexfield code defined for this flexfield in the Register Key
Flexfield form, for example: GL#.

s ID Flex Number - the name of the source column or parameter that contains
the flexfield structure information, for example: 101 or :STRUCT_NUM. If you
use a parameter, ensure that you define the parameter in the data model.

Figure 4-17 shows a sample flexfield type LOV.

Figure 4-17 Defining the Flexfield List of Values

Account Analysis
35 Manage Pri
= Data Model .
List of Values
[l Data Model
[Data Sets + X
+MName Type Data Source Reorder
CEHAN ; EFIex_Acct_List Flexfields hd

Q_BALANCES SQL Query [
- Fixed Data
= Event Triggers
@befcreRepcﬂ_rigger
@aﬂerRepcﬂ_rigger
Bl Flexfields
B List of Values
EfFiex_Acct_List
= Parameters
El Bursting Flex_Acct_List: Type: Flexfields
Application Short Name 501 GL

ID Flex Code |gL#

ID Flex Mumber |1091

4.5.2.2 Adding the Menu Parameter for the Flexfield List of Values

Define the parameter to display the flexfield list of values and capture the values
selected by the user. The Flexfield type parameter definition includes an additional
field called Range to support range flexfields. A range flexfield supports low and high
values for each key segment rather than just single values.

To define the parameter for the flexfield list of value:

1. On the Data Model components pane, click Parameters and then click Create new
Parameter.

2. Select Menu from the Parameter Type list. Choose the Data Type (must be String
or Integer).

3. Enter a Default Value for the flexfield parameter. The default value can also be
customized in the report definition.

4. Enter the Row Placement. The row placement determines where this parameter
appears in the report viewer. Row placement can also be customized in the report
definition

5. Enter the Display Label. The display label is the label that displays to users when
they view the report. For example: Account From. The display label can also be
customized in the report definition.

6. Select the List of Values that you defined for this parameter. When you select a list
of values that is the Flexfield type, an additional field labeled Range displays. To
pass a range of flexfield segment values see Section 4.5.2.5, "Passing a Range of

Adding Parameters and Lists of Values 4-13

Adding Flexfield Parameters

Values."

7. The following options are disabled for flexfield parameters: Number of Values to
Display in List, Multiple Selection, Can select all, and Refresh other parameters
on change.

Figure 4-18 shows a parameter definition for the flexfield list of values.

Figure 4-18 Defining the Parameter for the Flexfield List of Values

Account Analysis Home | Catalog | B Mew~ | B Opy

'35 Manage Private Data Sources | (25 View Data

£l Data Model
El Data Mode!

Parameters

+ ®

+Name Data Type Default Value Parameter Type Row Placement Reorder
@ wan |P_Acct_list String v éTﬂASPTPL—T:I'Z Menu v 1 B
0Q_BALANCES ‘

El Data Sets

[Event Triggers
@hsfcrsRspcn‘riggsr -

7 anerReportTriage
B ariereportingoer P_Acct_list: Type: Menu

Bl Flexfields Display Label |[Account

B List of Values o
_ Listof Values | Flex_acct_List A
(=l Flex_Acct_List

Mumber of Values to Display in List |100
=l Parameters
Range ~

EPiAceist h o€ [None

El Bursting Options. || Multiple Selection
Can select all

NULL Value Passed All Values Passed

Refresh other parameters on change

4.5.2.3 Using the Flexfield Parameter to Pass Values to a Flexfield Defined in the
Data Model
Now you can pass the parameter values to a flexfield component in the data model.

Chapter 6, "Adding Flexfields" covers adding a flexfield component in detail. The
simplified procedure is provided here to complete the example.

To define the Flexfield in the data model:

1. On the Data Model components pane, click Flexfields and then click Create new
Flexfield.

2. Enter the following:
= Name — Enter a name for the flexfield component.

» Type — Select the flexfield type from the list. The type you select here
determines the additional fields required. See Section 6.2.1, "Entering Flexfield
Details."

= Application Short Name — Enter the short name of the Oracle Application
that owns this flexfield (for example, GL).

s ID Flex Code — Enter the flexfield code defined for this flexfield in the
Register Key Flexfield form (for example, GL#).

s ID Flex Number — Enter the name of the source column or parameter that
contains the flexfield structure information. For example: 101. To use a
parameter, prefix the parameter name with a colon, for example, :PARAM_
STRUCT_NUM.

3. In the lower region of the page, enter the details for the type of flexfield you
selected. For the field that is to take the parameter value, enter the parameter
name prefixed with a colon, for example, :P_Acct_List.

4-14 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Flexfield Parameters

In Figure 4-19 the Flexfield component is defined as a "Where" Type. The
parameter :P_Acct_List is entered in the Operand]1 field. At runtime, values
selected by the user for the parameter P_Acct_List will be used to create the where
clause.

Figure 4-19 Example Flexfield Component Using Flexfield Parameters

[Account Anaiv=i=
35 Man|

£l Data Model
El Data Model

Flexfields
+ ®

+Name Type Application Short Name ID Flex Code ID Flex Number Reorder
GERAN Acct_Flex | Where + | SQLGL Gl P_STRUCT_NUM |
Q_BALANCES

El Data Sets

& Event Triggers
@ beforeReporiTrigger
@aﬂarﬂepnrﬁriggar =1

=)
Flexfiewis Acct_Flex: Type: Where

& Acet Flex Code Combination Table Alias
Bl List of Values

Segments |ALL
[EH Flex_aAcct_List
Operator | = -
El Parameters i
Operandl |;
B p_Acct_List 1 P P_Acct List
E Bursting Operand?
Mztadata Type | Above Prompt of Segments -

4.5.2.4 Referencing the Flexfield in the SQL Query

Finally, create the SQL query against the E-Business Suite database. Use the lexical
syntax in the query as described in Section 6.2, "Adding Key Flexfields." In Figure 4-20
&Acct_Flex is the Flexfield lexical called in the where condition of the SQL query.

Figure 4-20 Flexfield Lexical in SQL Query

Account Analysis - (132 Char) -mod Home | Catalog
E Data Model
= Data Model (|
El Data Sets @ ‘ 7R
@UﬁBAL‘ANCES /—m
Bl Event Triggers Festruct 1 Edit Data Set - Q_MAIN E]
@ beforeRe f(DATA—ACC
poriTrigger
- FesaiecT ol Fhame [MAIN !
¥ afterReporiTrigger
JF(WHEP'E’F *Data Source | Orade E-Business Suite (Default) E‘?ﬁ o
B Flexfields F-ORDERBY
q . 1
o e o e —
= f(DRDERBVﬁ FROM gl code_:nmbl;&iaclnnﬁ :c,, ~ 1
Bl List of Values gk 35 lines 32l
— JF(STMT—EF gl je headers jeh, g
B Fex_acet List FeEnD_FFFE ql_is batches jeh,
EiEaae f(budfenc?t gl jg categories cat, A
= Fedisp_sctud gl iz sources szg
P_Acct_List foHERE_u
B Burstin f WHERE © I WHERE &Acct Flex
2 = —| END cc.CHART OF ACCOUNTS ID = :STRUCT NUM L3 i
FesELECT R - - = i
E FeseiEcT | v
foELECT,B.
L8 | #ORDER 37
£orse T, Help [w . OK | Cancel
Fenise To e

4.5.2.5 Passing a Range of Values

To define the parameters for the flexfield lists of values when you want to pass a range
of values you create two menu parameters that both reference the same flexfield LOV.
At runtime users choose a high value from the list of values and a low value from the

Adding Parameters and Lists of Values 4-15

Adding Flexfield Parameters

same list of values. These two values are then passed as operands to the flexfield
component of the data model.

1.

Create one flexfield LOV as described in Section 4.5.2.1, "Adding the Flexfield List
of Values."

Create the high range parameter following the steps in Section 4.5.2.2, "Adding the
Menu Parameter for the Flexfield List of Values." For the Range field, select High
to designate this parameter as the high value.

Create the low range parameter following the steps in Section 4.5.2.2, "Adding the
Menu Parameter for the Flexfield List of Values." For the Range field, select Low to
designate this parameter as the low value. Both parameters reference the flexfield
list of values that you created in Step 1. Figure 4-21 shows creating the parameters
to define the range.

Figure 4-21 Defining the Range Parameters

Account Analysis
@3 Manage Private Dg
= Data Model
Parameters
= Data Model
El Data Sets + X
+Name Data Type Default Value Parameter Type Row Placement Reorder
B a_man P_Acct List Low String « | TUASPTPLTT2 Menu & A= (v)
B a_saLances P_Acct_List_High String v || T-UASPTPLTT2 Menu vl B @@
B Event Triggers

'FF beforeReporiTrigger

@ afterReporiTrigger

El Flexfields
B acer 1 P_Acct_List_Low: Type: Menu
Acct_Flex
Display Label |Account From:
El List of Values
— List of Values | Flex_Acct_List b
FIE.(J;CCLLlat = =
B Parameters Number of Values to Display in List [100
EFP_Acct_List_Low Range |Low o

EfP_acot_List_High Options [| Multiple Selection
E Bursting Can select al
" NULL Value Passed All Values Passed

Refresh other parameters on change

4,

Create the Flexfield in the data model, as described in Section 4.5.2.3, "Using the
Flexfield Parameter to Pass Values to a Flexfield Defined in the Data Model."

In the lower region of the page, enter the details for the type of flexfield you
selected. Enter the parameter prefixed with a colon for example, :P_Acct_List.

In Figure 4-19 the Flexfield component is defined as a "Where" Type. The
parameters :P_FLEX_LOW and :P_FLEX_HIGH are entered in the Operandl and
Operand? fields. At runtime, values selected by the user for the parameters P_
FLEX_LOW and P_FLEX_HIGH will be used to create the where clause.

4-16 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Flexfield Parameters

Figure 4-22 Example Flexfield Component Using Flexfield Parameters

Flexfields
+ R |

*+Name Type Application Short Name ID Flex Code ID Flex Number Reorder
IFLEXiWHER.EiALL . Where b ISQLGL .GL# I:Pisl'RUCILNUM

FLEX_WHERE_ALL: Type: Where
Code Combination Table Alias

Segments |aLL
Operator | BETWEEN v
Operandl [:p_FLEX_LOW

Operand2 |:P_FLEX_HIGH

When the report associated with this data model is displayed in the report viewer, the
report consumer sees the two flexfield parameters as shown in Figure 4-23.

Figure 4-23 Flexfield Range Parameters Displayed in the Report Viewer

1 T-UASPTPLTTZ

When the report consumer clicks either the high or low flexfield indicator (...), a dialog
launches enabling input of both the high and low values as shown in Figure 4-24.

Figure 4-24 Flexfield Range Parameter Dialog

Vision Operations Accounting Flexfield (]

OR. orf
Visiqg Low High

Company: | 02 - Distribution w | | T - Total Company Parent e |

Department: | 120 - Machine Resources v| [UAs - UA sales OPEX v|

Account: | PT - Parent Total w |] | FTPL - Parent P&L h |

Sub-Account: | T - Total Sub-Account v| [T -Total Sub-Account v|

Product: [400 - Mobile v| [T2-Total 200 ~|

- =

The display characteristics in the report viewer of the range flexfield parameter
resemble closely the presentation of range flexfields in the E-Business Suite.

Adding Parameters and Lists of Values 4-17

Adding Flexfield Parameters

4-18 User's Guide for Oracle Business Intelligence Mobile App Designer

O

Adding Event Triggers

BI Publisher data models support before data and after data event triggers and
schedule triggers. This chapter describes how to define triggers in your data model.

This chapter includes the following sections:

= Section 5.1, "About Triggers"

= Section 5.2, "Adding Before Data and After Data Triggers"
» Section 5.3, "Creating Schedule Triggers"

5.1 About Triggers

An event trigger checks for an event and when the event occurs, it runs the code
associated with the trigger. BI publisher supports the following events: before data set
is executed, after data set is executed and before a scheduled job is about to execute.
Correspondingly, there are three types of event triggers:

= Before Data — fires right before the data set is executed.

» After Data — fires right after the data engine executes all data sets and generates
the XML.

= Schedule Trigger - fires when a scheduled job is triggered and before it runs.

Before data and after data triggers execute a PL/SQL function stored in a PL/SQL
package in your Oracle Database. The return data type for a PL/SQL function inside
the package must be a Boolean type and the function must explicitly return TRUE or
FALSE.

A schedule trigger is associated with a scheduled job. It is a SQL query that executes
at the time a report job is scheduled to run. If the SQL returns any data, the report job
runs. If the SQL query returns no data, the job instance is skipped.

Note that event triggers are not used to populate data used by the bursting definition.
See Adding Bursting Definitions.

5.2 Adding Before Data and After Data Triggers
To add before data or after data event triggers:

1. On the data model Properties pane, enter the Oracle DB Default Package that
contains the PL/SQL function signature to execute when the trigger fires. See
Section 1.7, "Setting Data Model Properties."

2. From the task pane, click Event Triggers.

Adding Event Triggers 5-1

Adding Before Data and After Data Triggers

3. From the Event Triggers pane, click Create New Event Trigger.
4. Enter the following for the trigger:

= Name

s Type — Select Before Data or After Data.

s Language — Select PL/SQL.

The lower pane displays the available functions in the Oracle DB Default
Package that you entered in the data model Properties in Step 1.

Figure 5-1 shows an event trigger.

Figure 5-1 Event Trigger

Event Triggers
+ ¥
FName Type Language Reorder
afterReportTrigger After Data ~ |l PLfSQL v (v)
beforeReportTrigger Before Data ~ ||| PLsqQL ~ (&)
afterParameterFormTrigger Before Data ~ ||| PLfSQL v @
setOragContext Before Data ||| PLfSQL v
afterReportTrigger
Orade DB Default Package Update Default Package
Available Functions Ewent Trigger
- WSH_EILL_OF_LADING_RPT.afterreport()
= f‘é Packages
= Egmilydsso
= {§WSH_BILL_OF_LADING_RPT
AFTERPFORM
AFTERREPORT
BEFOREREFORT
CF_1FORMULA ?
CF_CARRIER_NAMEFORMULA
CF_COMMODITY_CLASSFORMU

5. Select the package from the Available Functions box and click the arrow to move
a function to the Event Trigger box. The name appears as PL/SQL <package
name>.<function name>.

Important: If you define a default package then you must define all
parameters as a global PL/SQL variable in the PL/SQL package. You
can then explicitly pass parameters to your PL/SQL function trigger

or all parameters are available as a global PL/SQL variable.

5.2.1 Order of Execution

If you define multiple triggers of the same type, they fire in the order that they appear
in the table (from top to bottom).

To change the order of execution:

1. Use the Reorder arrows to place the triggers in the correct order.

5-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating Schedule Triggers

5.3 Creating Schedule Triggers

A schedule trigger fires when a report job is scheduled to run. Schedule triggers are of
type SQL Query. When a report job is scheduled to run, the schedule trigger executes
the SQL statement defined for the trigger. If data is returned, then the report job is
submitted. If data is not returned from the trigger SQL query, the report job is skipped.

The schedule trigger that you associate with a report job can reside in any data model
in the catalog. You do not need to create the schedule trigger in the data model of the
report for which you which to execute it. You can therefore reuse schedule triggers
across multiple report jobs.

To add a Schedule Trigger:

1.
2.
3.

In the data model editor task pane, click Event Triggers.

From the Event Triggers pane, click the Create New icon.

Enter the following for the trigger:

= Name - enter a name for the trigger.

s Type — select Schedule.

» Language — defaults to SQL Query.

In the lower pane, enter the following:

= Options - select this box to cache the results of the trigger query.
= Data Source - select the data source for the trigger query.

= SOL Query - enter the query in the text area, or click Query Builder to use the
utility to construct the SQL query. For information, see Section 2.3.3, "Using
the SQL Query Builder."

You can include parameters in the trigger query. Define the parameter in the
same data model as the trigger. Enter parameter values when you schedule the
report job.

It the SQL query returns any results, the scheduled report job executes. Figure 5-2
shows a schedule trigger to test for inventory levels based on a parameter value
that can be entered at runtime.

Adding Event Triggers 5-3

Creating Schedule Triggers

Figure 5-2 Schedule Trigger

Data Model

Event Triggers
Properties + X
4 Data Sets “Name Type Language Reorder
Employees
Quantity Schedule B SQL Query |z| AV
4 EventTriggers
@, Quantity
4 Flexfields
4 ListofValues
% List of Depts Quantity: Language: SQL Query
4 Parameters Options [7] Cache Result
Ee# H_DATE
Data Source demo |z|
PQuantity
4 Bursting SQL Query
i select true’

from "0E""0C_INVENTORIES™ "OC_INVENTORIES™
where "OC_INVENTORIES™="QUANTITY_ON_HAND" = :pQuantity

For information on implementing the schedule trigger in the report job, see
"Defining the Schedule for a Job" in the Oracle Fusion Middleware User’s Guide for
Oracle Business Intelligence Publisher.

5-4 User's Guide for Oracle Business Intelligence Mobile App Designer

6

Adding Flexfields

This chapter describes support for flexfields in the BI Publisher data model.
This chapter includes the following sections:

m Section 6.1, "About Flexfields"

= Section 6.2, "Adding Key Flexfields"

= Section 6.3, "Adding Descriptive Flexfields"

6.1 About Flexfields

A flexfield is a flexible data field that your organization can customize to your
business needs without programming. Oracle applications (Oracle E-Business Suite
and Oracle Fusion Applications) use two types of flexfields: key flexfields and
descriptive flexfields. A key flexfield is a field you can customize to enter
multi-segment values such as part numbers, account numbers, and so on. A
descriptive flexfield is a field you customize to enter additional information for which
your Oracle applications product has not already provided a field.

If you are reporting on data from Oracle applications, use the Flexfield component of
the data model to retrieve flexfield data. When BI Publisher is integrated with Oracle
Fusion Applications, both key flexfields and descriptive flexfields are supported.
When BI Publisher is integrated with Oracle E-Business Suite only key flexfields are
supported.

Figure 6—1 The Flexfield Component of the Data Model

Data Model

Flexfields
Properties + X
4 Data Sets “Lexical Name Flexfield Type Lexical Type Application Short Name Flexfield Code Reorder
4 EventTriggers GL_Flexfield Key Flexfield v Where v GL GL# AV

4 Flexfields

4 GL_Flexfield
4 ListofValues
4 Parameters

4 Bursting

Before including flexfields in your reports you should understand flexfields in your
applications. See your Oracle E-Business Suite or Oracle Fusion Applications
documentation.

Adding Flexfields 6-1

Adding Key Flexfields

6.1.1 Using Flexfields in Your Data Model
To use flexfields in your SQL-based data model:

Add the Flexfield component to the data model as described in this chapter.
Define the SQL SELECT statement against the applications data tables.

Within the SELECT statement, define each flexfield as a lexical. Use the
&LEXICAL_TAG to embed flexfield related lexicals into the SELECT statement.

6.2 Adding Key Flexfields

You can use key flexfield references to replace the clauses appearing after SELECT,
FROM, WHERE, ORDER BY, or HAVING. Use a flexfield reference when you want the
parameter to replace multiple values at runtime. The data model editor supports the
following flexfield types:

Where — This type of lexical is used in the WHERE section of the statement. It is
used to modify the WHERE clause such that the SELECT statement can filter
based on key flexfield segment data.

Order by — This type of lexical is used in the ORDER BY section of the statement.
It returns a list of column expressions so that the resulting output can be sorted by
the flex segment values.

Select — This type of lexical is used in the SELECT section of the statement. It is
used to retrieve and process key flexfield (kff) code combination related data
based on the lexical definition.

Filter — This type of lexical is used in the WHERE section of the statement. It is
used to modify the WHERE clause such that the SELECT statement can filter
based on Filter ID passed from Oracle Enterprise Scheduling Service.

Segment Metadata — Use this type of lexical to retrieve flexfield-related
metadata. Using this lexical, you are not required to write PL/SQL code to retrieve
this metadata. Instead, define a dummy SELECT statement, then use this lexical to
get the metadata. This lexical should return a constant string.

After you set up the flexfield components of your data model, create a flexfield lexical
reference in the SQL query using the following syntax:

&LEXICAL_TAG ALIAS_NAME

for example:

&FLEX_GL_BALANCING alias_gl_balancing

After entering the SQL query, when you click OK
To add a key flexfield:

1.

Enter the following;:
= Lexical Name — Enter a name for the flexfield component.
» Flexfield Type — Select Key Flexfield.

» Lexical Type — Select the type from the list. Your selection here determines
the additional fields required. See Section 6.2.1, "Entering Flexfield Details."

= Application Short Name — Enter the short name of the Oracle Application
that owns this flexfield (for example, GL).

6-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Key Flexfields

n Flexfield Code — Enter the flexfield code defined for this flexfield. In Oracle
E-Business Suite this code is defined in the Register Key Flexfield form (for
example, GL#).

s ID Flex Number — Enter the name of the source column or parameter that
contains the flexfield structure information. For example: 101. To use a
parameter, prefix the parameter name with a colon, for example, :PARAM_
STRUCT_NUM.

Figure 6-2 Key Flexfield

Data Model

Flexfields
Properties + b 4
4 DataSets “Lexical Name Flexfield Type Lexical Type Application Short Name Flexfield Code Reorder
4 EventTriggers
GL_Flexfield Key Flexfield w Where v GL oL AV
4 Flexields
B4 GL_Flexfield

4 ListofValues
4 Parameters

4 Bursting

6.2.1 Entering Flexfield Details

The Details region displays appropriate fields depending on the Lexical Type you
chose.

Fields for Key Flexfield Type: Segment Metadata

KFF_Segment: Type: Segment Metadata
Structure Instance Number | 354

Segments

! Show Parent Segments D
Metadata Type | Above Prompt of Segments E|

Table 6-1 Detail Fields for Segment Metadata

Field Description
Structure Instance Enter the name of the source column or parameter that contains
Number the flexfield structure information. For example: 101. To use a

parameter, prefix the parameter name with a colon, for example,
:PARAM_STRUCT_NUM.

Segments (Optional) Identifies for which segments this data is requested.
Default value is "ALL". See Oracle E-Business Suite Developer’s
Guide for syntax.

Show Parent Segments Select this box to automatically display the parent segments of
dependent segments even if it is specified as not displayed in
the segments attribute.

Metadata Type Select the type of metadata to return:
Above Prompt of Segments — Above prompt of segment(s).

Left Prompt of Segments — Left prompt of segment(s)

Adding Flexfields 6-3

Adding Key Flexfields

Fields for Key Flexfield Type: Select

KFF_SELECT: Type: Select
Enable Multiple Structure Instances
Code Combination Table Alias ace
Structure Instance Number | 354
Segments | a1

Show Parent Segments
Output Type | value

[~]

Table 6-2 shows the detail fields for the Select flexfield type.

Table 6-2 Detail Fields for Select

Field

Description

Enable Multiple Structure
Instances

Indicates whether this lexical supports multiple structures.
Checking this box indicates all structures are potentially used for
data reporting. The data engine uses <code_combination_table_
alias>.<set_defining_column_name> to retrieve the structure
number.

Code Combination Table
Alias

Specify the table alias to prefix to the column names. Use
TABLEALIAS if your SELECT joins to other flexfield tables or
uses a self-join.

Structure Instance

Enter the name of the source column or parameter that contains

Number the flexfield structure information. For example: 101. To use a
parameter, prefix the parameter name with a colon, for example,
:PARAM_STRUCT_NUM.

Segments (Optional) Identifies for which segments this data is requested.

Default value is "ALL". See Oracle E-Business Suite Developer’s
Guide for syntax.

Show Parent Segments

Select this box to automatically display the parent segments of
dependent segments even if it is specified as not displayed in the
segments attribute.

Output Type

Select from the following:
= Value — Segment value as it is displayed to user.

= Padded Value — Padded segment value as it is displayed to
user. Number type values are padded from the left. String
type values are padded on the right.

= Description — Segment value's description up to the
description size defined in the segment definition.

= Full Description — Segment value's description (full size).

= Security — Returns Y if the current combination is secured
against the current user, N otherwise.

6-4 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Key Flexfields

Fields for Key Flexfield Type: Where

KFF_Where Type: Where
Code Combination Table Alias

Structure Instance Number | 354

Segments
Operator | = E|

Operandl

Operand2
Metadata Type | Above Prompt of Segments iv|

Table 6-3 shows the detail fields for the Where key flexfield type.

Table 6-3 Detail Fields for Where

Field Description

Code Combination | Specify the table alias to prefix to the column names. You use

Table Alias TABLEALIAS if your SELECT joins to other flexfield tables or uses a
self-join.

Structure Instance | Enter the name of the source column or parameter that contains the

Number flexfield structure information. For example: 101. To use a parameter,
prefix the parameter name with a colon, for example, :PARAM_
STRUCT_NUM.

Segments (Optional) Identifies for which segments this data is requested. Default
value is "ALL". See Oracle E-Business Suite Developer’s Guide for syntax.

Operator Select the appropriate operator.

Operand1 Enter the value to use on the right side of the conditional operator.

Operand? (Optional) High value for the BETWEEN operator.

Fields for Key Flexfield Type: Order By

KFF_ORDER_BY: Type: Order By
Enable Multiple Structure Instances 0o
Code Combination Table Alias

I Structure Instance Number | 354
Segments

Show Parent Segments D

Table 64 shows the detail fields for the Order by flexfield type.

Table 6-4 Detail Fields for Order By

Field Description

Enable Multiple Structure | Indicates whether this lexical supports multiple structures.
Instances Selecting this box indicates all structures are potentially used for
data reporting. The data engine uses <code_combination_table_
alias>.<set_defining_column_name> to retrieve the structure
number.

Adding Flexfields 6-5

Adding Descriptive Flexfields

Table 6—4 (Cont.) Detail Fields for Order By

Field Description
Structure Instance Enter the name of the source column or parameter that contains
Number the flexfield structure information. For example: 101. To use a

parameter, prefix the parameter name with a colon, for example,
:PARAM_STRUCT_NUM.

Code Combination Table | Specify the table alias to prefix to the column names. You use
Alias TABLEALIAS if your SELECT joins to other flexfield tables or
uses a self-join.

Segments (Optional) Identifies for which segments this data is requested.
Default value is "ALL". See Oracle E-Business Suite Developer’s
Guide for syntax.

Show Parent Segments Select this box to automatically display the parent segments of

dependent segments even if it is specified as not displayed in the
segments attribute.

Fields for Key Flexfield Type: Filter

KFF_FILTER: Type: Filter

Code Combination Table Alias

Structure Instance Number | 354

Table 6-5 shows the detail fields for the Filter flexfield type.

Table 6-5 Detail Fields for Filter

Field Description

Code Combination Table | Specify the table alias to prefix to the column names. You use
Alias TABLEALIAS if your SELECT joins to other flexfield tables or
uses a self-join.

Structure Instance Enter the name of the source column or parameter that contains
Number the flexfield structure information. For example: 101. To use a
parameter, prefix the parameter name with a colon, for example,
:PARAM_STRUCT_NUM.

6.3 Adding Descriptive Flexfields
Reporting on descriptive flexfields is supported only for Oracle Fusion Applications.
To add a descriptive flexfield:
1. Enter the basic flexfield information:
= Name — Enter a name for the flexfield component.
» Flexfield Type — Select Descriptive Flexfield.
» Lexical Type - only Select is supported.

= Application Short Name — Enter the short name of the Oracle Application
that owns this flexfield (for example, FND).

s Flexfield Code — Enter the flexfield code defined for this flexfield in the
Register Descriptive Flexfield form (for example, FND_DFF1).

6-6 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding Descriptive Flexfields

Figure 6-3 Descriptive Flexfield Entry

Flexfields

+ X
*Lexical Name Flexfield Type Lexical Type Application Short Name Flexfield Code Reorder
DFF_SELECT Descriptive Flexfiel w Select v FND FLEX_DFF1| AV

2. Enter the flexfield details:

= Table Alias - Specify the table alias to prefix to the column names. Use
TABLEALIAS if your SELECT joins to other flexfield tables or uses a self-join.

» Flexfield Usage Code - (Optional) Identifies for which segments this data is
requested. Default value is "ALL".

3. If your descriptive flexfield definition includes parameters, you can enter the
parameters in the Parameters region.

To enter parameters, click + to add each parameter. Enter a Label and a Value for
each parameter. The Label must match exactly the label in the descriptive flexfield
definition.

Figure 6-4 Descriptive Flexfield Details

GL_Flexfield: Type: Select

Table Alias FND_DF_DFF1_T1

Flexfield Usage Code FLEX_DFF1

4

Parameters

+ X
*Label “Value
ALL SEGMENTS 3

6.3.1 Including Descriptive Flexfield Reference in SQL Queries

When you create the SQL data set, include the descriptive flexfield using the
ampersand symbol, for example:

&DFF_SELECT

an example is shown in Figure 6-5.

Adding Flexfields 6-7

Adding Descriptive Flexfields

Figure 6-5 Referencing the Descriptive Flexfield in a SQL Query

New Data Set - SQL Query 9 x

*Name Q1

* Data Source | demo (Default) « -‘_‘,
* Type of SQL | Standard SQL v

* SQL Query Query Builder

SELECT department_id,
&DFF_SELECT
FRUM departments

Generate Explain Plan OK Cancel

When you click OK, the diagram of your data set shows the columns that are returned
from your descriptive flexfield as shown in Figure 6-6.

Figure 6-6 Columns Returned by &DFF_SELECT

A@let =
DEPARTMENT_ID m -

[Drop here for aggregate function |

1 [@\6_%Do_DFF_121 =
¥DO_DFF_DFF_SELECT_CC_VS_IND_SEC_SC_STATE o)

XDO_DFF_DFF_SELECT_CC_GLOBAL_DATA_ELEMENTS_SC_GLOBALSEGMENT1 o]
XDO_DFF_DFF_SELECT_CC_GLOBAL_DATA_ELEMENTS_SC_GLOBALSEGMENT2 (o]

[Drop here for aggregate function |

The columns that are returned from the key flexfield have the following limitations:

Element properties are disabled

In the data model Structure tab, you cannot edit the following fields: XML Tag
Name, Value if Null, Display Name, Data Type

Subgrouping of descriptive flexfield elements is not supported

Element linking is not supported

6-8 User's Guide for Oracle Business Intelligence Mobile App Designer

7

Adding Bursting Definitions

This chapter describes BI Publisher's support for bursting reports and how to define a
bursting definition in the data model to split and deliver your report to multiple
recipients.

This chapter includes the following sections:

= Section 7.1, "About Bursting"

» Section 7.2, "What is the Bursting Definition?"

= Section 7.3, "Adding a Bursting Definition to Your Data Model"
» Section 7.4, "Defining the Query for the Delivery XML"

» Section 7.5, "Passing a Parameter to the Bursting Query"

= Section 7.6, "Defining the Split By and Deliver By Elements for a CLOB/XML Data
Set"

= Section 7.7, "Configuring a Report to Use a Bursting Definition"
= Section 7.8, "Sample Bursting Query"

= Section 7.9, "Creating a Table to Use as a Delivery Data Source"

7.1 About Bursting

Bursting is a process of splitting data into blocks, generating documents for each
block, and delivering the documents to one or more destinations. The data for the
report is generated by executing a query once and then splitting the data based on a
"Key" value. For each block of the data, a separate document is generated and
delivered.

Using BI Publisher's bursting feature you can split a single report based on an element
in the data model and deliver the report based on a second element in the data model.
Driven by the delivery element, you can apply a different template, output format,
delivery method, and locale to each split segment of the report. Example
implementations include:

= Invoice generation and delivery based on customer-specific layouts and delivery
preference

» Financial reporting to generate a master report of all cost centers, splitting out
individual cost center reports to the appropriate manager

= Generation of pay slips to all employees based on one extract and delivered
through e-mail

Adding Bursting Definitions 7-1

What is the Bursting Definition?

7.2 What is the Bursting Definition?

A bursting definition is a component of the data model. After you have defined the
data sets for the data model, you can set up one or more bursting definitions. When
you set up a bursting definition, you define the following;:

= The Split By element is an element from the data that governs how the data is
split. For example, to split a batch of invoices by each invoice, you may use an
element called CUSTOMER_ID. The data set must be sorted or grouped by this
element.

s The Deliver By element is the element from the data that governs how formatting
and delivery options are applied. In the invoice example, it is likely that each
invoice has delivery criteria determined by customer; therefore, the Deliver By
element would also be CUSTOMER_ID.

s The Delivery Query is a SQL query that you define for BI Publisher to construct
the delivery XML data file. The query must return the formatting and delivery
details.

7.3 Adding a Bursting Definition to Your Data Model
Prerequisites:
= You have defined the data set for this data model

= The data set is sorted or grouped by the element by which you want to split the
data in your bursting definition

s The delivery and formatting information is available to BI Publisher. The
information can be provided at runtime to BI Publisher in one of the following
ways:

= The information is stored in a database table available to BI Publisher (for a
dynamic delivery definition)

= The information is hard coded in the delivery SQL (for a static delivery
definition)

s The report definition for this data model has been created and includes the layouts
to be applied to the report data.

To add a bursting definition:
1. On the component pane of the data model editor, click Bursting.
2. On the Bursting definition table, click the Create new Bursting button.
3. Enter the following for this bursting definition:
Name — For example, "Burst to File"
Type — SQL Query is currently the only supported type
Data Source — Select the data source that contains the delivery information

Figure 7-1 shows a Bursting definition.

7-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Adding a Bursting Definition to Your Data Model

Figure 7-1 Bursting Definition

Data Model Bursting
Properties + X
4 Data Sets Name Tz
Employees
4 EventTriggers Burstto File SQL Query
4 Flexfields

List of Values

[8

55 List of Depts
4 Parameters
£ H_DATE
PQuantity
4 Bursting

1=, Burst to File

Actions

[] &~

Data Source

|ZI demo

In the lower region, enter the following for this bursting definition:

Split By — Select the element from the data set by which to split the data.

Deliver By — Select the element from the data set by which to format and deliver

the data.

Note:

If the Split By and Deliver By elements reside in an XML

document stored as a CLOB in your database, you must enter the full
XPATH in the Split By and Delivery By fields. For more information,
see Section 7.6, "Defining the Split By and Deliver By Elements for a

CLOB/XML Data Set."

SQL Query — Enter the query to construct the delivery XML. For information on
how to construct the bursting query, see Section 7.4, "Defining the Query for the
Delivery XML." Figure 7-2 shows a sample bursting query.

Figure 7-2 Sample Bursting Query

Data Model Bursting
Properties + X
4 Data Sets T i
Employees
4 EventTriggers Burstto File SQL Query
4 Flexields

List of Values

[%

%= List of Depts .
& Burst to File
4 Parameters

Split By

Actions

[] a~

Data Source

|ZI demo

IDATA_DSIG_1/IDEPARTMEN B

Query Builder

£ H_DATE
PDEPTNAME Deliver By /DATA_DSIG_1/DEPARTMEN B
4 Bursting
0L Query
=, Burst to File !
4 select

d.department_ name as KEY",

‘Standard” as TEMP!

as TEM
g}US as LOCALE,

IPLATE. FORMAT

'PDF as QUTPUT | FORMAT
CH.

FILE" as DEL !

‘C.Temp’ as F“\RAMETER‘I
d department_name || ggf PARAMETER2
fro

depanments d

Adding Bursting Definitions

Defining the Query for the Delivery XML

7.4 Defining the Query for the Delivery XML

The bursting query is a SQL query that you define to provide BI Publisher with the
required information to format and deliver the report. BI Publisher uses the results
from the bursting query to create the delivery XML.

The BI Publisher bursting engine uses the delivery XML as a mapping table for each
Deliver By element. The structure of the delivery XML required by BI Publisher is as
follows:

<ROWSET>
<ROW>
<KEY></KEY>
<TEMPLATE></TEMPLATE>
<LOCALE></LOCALE>
<OUTPUT_FORMAT></QUTPUT_FORMAT>
<DEL_CHANNEL></DEL_CHANNEL>
<TIMEZONE></TIMEZONE>
<CALENDAR></CALENDAR>
<OUTPUT_NAME></OUTPUT_NAME>
<SAVE_OUTPUT></SAVE_OUTPUT>
<PARAMETER1></PARAMETER1 >
<PARAMETER2></PARAMETER2 >
<PARAMETER3></PARAMETER3>
<PARAMETER4 ></PARAMETER4 >
<PARAMETER5></PARAMETER5>
<PARAMETER6></ PARAMETER6 >
<PARAMETER7></PARAMETER7>
<PARAMETERS></PARAMETERS>
<PARAMETER9></PARAMETERO >
<PARAMETER10></PARAMETER1 0>
</ROW>
</ROWSET>
s KEY — The Delivery key and must match the Deliver By element. The bursting
engine uses the key to link delivery criteria to a specific section of the burst data.
Ensure that you use double quotes around "KEY" in the select statement, for
example:

select d.department_name as "KEY",

s TEMPLATE — The name of the Layout to apply. Note that the value is the Layout
name (for example, 'Customer Invoice'), not the template file name (for example,
invoice.rtf).

s LOCALE — The template locale, for example, 'en-US'.

= OUTPUT_FORMAT — The output format. For a description of each type, see the
section "Selecting Output Formats" in Oracle Fusion Middleware Report Designer’s
Guide for Oracle Business Intelligence Publisher. Table 7-1 shows the valid values to
enter for the bursting query.

Table 7-1 Values to Enter for OUTPUT_FORMAT

Value to Enter in

Output Format Bursting Query Template Types That Can Generate This Output Format
Interactive N/A Not supported for bursting

HTML html BI Publisher, RTE XSL Stylesheet (FO)

PDF pdf BI Publisher, RTF, PDF, Flash, XSL Stylesheet (FO)

RTF rtf BI Publisher, RTF, XSL Stylesheet (FO)

7-4 User's Guide for Oracle Business Intelligence Mobile App Designer

Defining the Query for the Delivery XML

Table 7-1 (Cont.) Values to Enter for OUTPUT_FORMAT

Value to Enter in

Output Format Bursting Query Template Types That Can Generate This Output Format

Excel (mhtml) excel BI Publisher, RTF, Excel, XSL Stylesheet (FO)

Excel (html) excel2000 BI Publisher, RTF, Excel, XSL Stylesheet (FO)

Excel (*.xlsx) xIsx BI Publisher, RTF, XSL Stylesheet (FO)

PowerPoint (mhtml) ppt BI Publisher, RTF, XSL Stylesheet (FO)

PowerPoint (.*pptx) pptx BI Publisher, RTF, XSL Stylesheet (FO)

MHTML mhtml BI Publisher, RTF, Flash, XSL Stylesheet (FO)

PDF/A pdfa BI Publisher, RTF, XSL Stylesheet (FO)

PDE/X pdfx BI Publisher, RTF, XSL Stylesheet (FO)

Zipped PDFs pdfz BI Publisher, RTF, PDF, XSL Stylesheet (FO)

FO Formatted XML xslfo BI Publisher, RTE, XSL Stylesheet (FO)

Data (XML) xml BI Publisher, RTE, PDF, Excel, Flash, XSL Stylesheet (FO),
Etext, XSL Stylesheet (HTML XML/ Text)

Data (CSV) csv BI Publisher, RTF, PDF, Excel, Flash, XSL Stylesheet (FO),
XSL Stylesheet (HTML XML/ Text), Etext

XML txml XSL Stylesheet (HTML XML/ Text)

Text text XSL Stylesheet (HTML XML/ Text), Etext

Flash flash Flash

s SAVE_OUTPUT — Indicates whether to save the output documents to BI
Publisher history tables that the output can be viewed and downloaded from the

Report Job History page.
Valid values are 'true' (default) and 'false'. If this property is not set, the output is
saved.
= DEL_CHANNEL — The delivery method. Valid values are:
= EMAIL
= FAX
= FILE
= FTP
= PRINT
= WEBDAV
= CONTENT

s TIMEZONE — The time zone to use for the report. Values must be in the Java
format, for example: 'America/Los_Angeles'. If time zone is not provided, then the
system default time zone is used to generate the report.

s CALENDAR — The calendar to use for the report. Valid values are:
= GREGORIAN
= ARABIC_HIJRAH
= ENGLISH_HIJRAH

Adding Bursting Definitions 7-5

Defining the Query for the Delivery XML

= JAPANESE_IMPERIAL
= THAI BUDDHA
s ROC_OFFICIAL (Taiwan)
If not provided, the value 'GREGORIAN' is used.
s OUTPUT_NAME — The name to assign to the output file in the report job history.

s Delivery parameters by channel — The values required for the parameters
depend on the delivery method chosen. The parameter values mappings for each
method are shown in Table 7-2. Not all delivery channels use all the parameters.

Table 7-2 Parameter Values Mapping by Method
Delivery Channel PARAMETER Values

Email PARAMETERI1: Email address
PARAMETER2: cc
PARAMETERS3: From
PARAMETER4: Subject
PARAMETERS: Message body

PARAMETERS®: Attachment value ('true’ or 'false’). If your output
format is PDF, you must set this parameter to "true" to attach the PDF
to the e-mail.

PARAMETER?: Reply-To
PARAMETERS: Bcc (PARAMETER 9-10 are not used)

Printer PARAMETERI: Printer group

PARAMETER?2: Printer name or for a printer on CUPS, the printer
URI, for example: ipp://myserver.com:631/printers/printerl

PARAMETER3: Number of Copies
PARAMETER4: Sides. Valid values are:
= "d_single_sided" for single-sided

= "d_double_sided_l" for duplex/long edge

= "d_double_sided_s" for tumble/short edge

If the parameter is not specified, single-sided is used.
PARAMETERS: Tray. Valid values are:

= "tl" for "Tray 1"

= "t2" for "Tray 2"

= "t3" for "Tray 3"

If not specified, the printer default is used.

PARAMETERS®: Print range. For example "3" prints page 3 only, "2-5"
prints pages 2-5, "1,3-5" prints pages 1 and 3-5

(PARAMETER 7-10 are not used)
Fax PARAMETERI1: Fax server name
PARAMETER?2: Fax number

(PARAMETER 3-10 are not used)

7-6 User's Guide for Oracle Business Intelligence Mobile App Designer

Passing a Parameter to the Bursting Query

Table 7-2 (Cont.) Parameter Values Mapping by Method
Delivery Channel PARAMETER Values

WebDAV PARAMETERI1: Server Name P

ARAMETER2: Username

PARAMETERS: Password

PARAMETER4: Remote Directory

PARAMETERS5: Remote File Name

PARAMETER®6: Authorization type, values are 'basic' or 'digest’
(PARAMETER 7-10 are not used)

File PARAMETERT1: Directory

PARAMETER?: File Name

(PARAMETER 3-10 are not used)

FTP and SFTP PARAMETERT1: Server name

PARAMETER?2: Username

PARAMETERS: Password

PARAMETER4: Remote Directory

PARAMETERS5: Remote File Name

PARAMETERG: Secure (set this value to 'true' to enable Secure FTP)
(PARAMETER 7-10 are not used)

CONTENT PARAMETERI1: Server name
PARAMETER?2: Security Group
PARAMETER3: Author

PARAMETER4: Account (Optional)
PARAMETERS: Title

PARAMETERS®: Primary File (or File Name)
PARAMETER?: Content ID

PARAMETERS: Comments (Optional)
PARAMETERY: Include MetaData

7.5 Passing a Parameter to the Bursting Query

You can pass the value for an element of your bursting XML using a parameter
defined in the data model. For example, if you want to be able to select the template at
the time of submission, you can define a parameter in the data model and use the
:parameter_name syntax in your query. The following example demonstrates this use
case of a parameter in a bursting query.

Assume your report definition includes three layouts: layoutl, layout2, and layout3.
At submission time you want to select the layout (or TEMPLATE, as defined in the
bursting query) to use. In your data model, define a list of values with the layout
names. The following figure shows a data model with the layout list of values:

Adding Bursting Definitions 7-7

Passing a Parameter to the Bursting Query

Figure 7-3 Defining the List of Values
Data Model

List of Values

Properties + x

4 Data Sets

*Name Type Data Source Reorder
Employees
4 EventTriggers List of Layouts Fixed Data B A
(G Quantity
4 Flexfields
4 Listofvalues -

List of Layouts: Type: Fixed Data

4 Parameters

P + X
4 Bursting *Label “Value
= Bursto File Layout 1 layout1
Layout 2 layout2
.
Layout 3 layout3

Next create a menu type parameter, here named P1:

Figure 7-4 Defining a Parameter

Data Model
Parameters
Properties + X

ik “Name Data Type Default Value Parameter Type Row Placement Reorder
Employees

4 EventTriggers P1 String B Menu E| 1 B e

4 Flexfields

4 ListofValues

5 List of Layouts -

4 Parameters Template: Type: Menu
P1 Display Label ~Layout

4 Bursting

ListofValues List of Layouts EI
=, Burstto File
Number of Values to Display in List 3

Options [] Multiple Selection

[[] Can select all

[”] Refresh other parameters on change

In the bursting query, pass the parameter value to the TEMPLATE field using :P1 as
shown in the following figure:

7-8 User's Guide for Oracle Business Intelligence Mobile App Designer

Defining the Split By and Deliver By Elements for a CLOB/XML Data Set

Figure 7-5 Updating the Bursting Query to Accept the P1 Parameter

Data Model

Bursting
Properties + X
4 Data Ssts e
Employees
4 EventTriggers Burstto File
4 Flexfields
4 Listofvalues
3 List of Layouts)
4 Parameters Burst to File
P1 Split By
4 Bursting Deliver By
(=, Burst to File
SQL Query

Type Data Source Actions

SOL Query E| demo B —

IDATA_DSIG_1/DEPARTMEN B

IDATA_DSIG_1/DEPARTMEN B

Query Builder

select
d.department_name as "KEY"

P1 as TEMPLATE,

‘RTF as TEMPLATE_FORMAT,

"en-us’as LOCALE,

‘PDF as QUTPUT_FORMAT,

FILE" as DEL_CHANMNEL,

‘C/Temp’ as PARAMETER1,
d.depariment_name || " pdf” PARAMETER2

rom
departments d

7.6 Defining the Split By and Deliver By Elements for a CLOB/XML Data

Set

If the split-by and deliver-by elements required for your bursting definition reside in a
data set retrieved from a CLOB column in a database, BI Publisher cannot parse the
XML to present the elements in the Split By and Deliver By lists. You therefore must
manually enter the XPath to locate each element in the retrieved XML data set. To
ensure that you enter the path correctly, use the data model editor's Get XML Output
feature to view the XML that is generated by the data engine.

For example, the sample XML code, shown in Figure 7-6, was stored in a CLOB
column in the database called "XMLTEXT", and extracted as an XML data set:

Adding Bursting Definitions 7-9

Configuring a Report to Use a Bursting Definition

Figure 7-6 Sample Data Extract of Data Stored as CLOB

<!--Generated by Oracle BI Publisher -->
- <DATA_DS>
—<G_1>
—<XMLTEXT>
- <DATA_DS>
—<G_1>

<DEPARTMENT_ID=>10</DEPARTMENT_ID=

<DEPARTMENT_ NAME=>Administration</DEPARTMENT_NANME=>

<MANAGER_ID=>200</MANAGER_ID>

<LOCATION_ID=>1700</LOCATION_ID=

—-<G_2>

<EMPLOYEE_ID=200</EMPLOYEE_ID>
<FIRST_NAME:=Jennifer</FIRST _NAME=>
<LAST NAME>Whalen</LAST NAME=>
<EMATL>JWHALEN</EMAIL>
<PHONE_NUMBER>515.123 4444</PHONE_NUMBER>
<HIRE_DATE>1987-09-17T00:00:00.000-07:00</HIRE_DATE>
<JOB_ID>AD _ASST</JOB_ID>
<SALARY>4400</SALARY>
<MANAGER_ID 1>101</MANAGER_ID 1>
<DEPARTMENT ID 1>10<'DEPARTMENT ID 1>

For this example, you want to add a bursting definition with split by and deliver by
element based on the DEPARTMENT_ID, which is an element within the CLOB/XML
data set.

When you add the bursting definition, the Split By and Deliver By lists cannot parse
the structure beneath the XMLTEXT element. Therefore, the list does not display the
elements available beneath the XMLTEXT node, as shown in Figure 7-7.

Figure 7-7 Split By List Presents Only Top-Level Nodes

Bursting

Deliver By | fDATA_DS/G_1
/DATA_DS/G_1/XMLTEXT
SOL Query

To use the DEPARTMENT_ID element as the Split By element, manually type the
XPath into the field as shown in Figure 7-8.

Figure 7-8 Manually Entering the XPath into the Split By Field

Bursting

A
Deliver By | [DATA_DS/G_1
[DATA_DS(G_1/XMLTEXT
SOL Query

7.7 Configuring a Report to Use a Bursting Definition

Although you can define multiple bursting definitions for a single data model, you can
enable only one for a report.

Enable a report to use a bursting definition on the Report Properties dialog of the
report editor. For more information see the section "Configuring Report Properties" in
Oracle Fusion Middleware Report Designer’s Guide for Oracle Business Intelligence
Publisher.

7-10 User's Guide for Oracle Business Intelligence Mobile App Designer

Creating a Table to Use as a Delivery Data Source

After you configure the report to use the bursting definition, when you schedule a job
for this report you can choose to use the bursting definition to format and deliver the

report. For more information see the section "Creating a Bursting Job" in Oracle Fusion
Middleware User’s Guide for Oracle Business Intelligence Publisher.

You can also opt not to use the bursting definition and choose your own output and
destination as a regular scheduled report.

7.8 Sample Bursting Query

The following example is based on an invoice report. This report is to be delivered by
CUSTOMER_ID to each customer's individual e-mail address.

This example assumes that the delivery and formatting preferences for each customer
are contained in a database table named "CUSTOMERS". The CUSTOMERS table
includes the following columns that will be retrieved to create the delivery XML
dynamically at runtime:

» CST_TEMPLATE

» CST_LOCALE

» CST_FORMAT

» CST_EMAIL_ADDRESS

The CUSTOMER_ID will be used as the KEY and also to define the output file name.
The SQL code to generate the delivery data set for this example is as follows:

select distinct

CUSTOMER_ID as "KEY",

CST_TEMPLATE TEMPLATE,

CST_LOCALE LOCALE,

CST_FORMAT OUTPUT_FORMAT,

CUSTOMER_ID OUTPUT_NAME,

'EMAIL' DEL_CHANNEL,

CST_EMAIL_ADDRESS PARAMETERI,
'accounts.receivable@example.com' PARAMETER2,
'bip-collections@example.com' PARAMETER3,
'Your Invoices' PARAMETER4,

'"Hi'||CUST_FIRST NAME||chr(13)|| 'Please find attached your
invoices.' PARAMETERS5,

'true' PARAMETERG,

'donotreply@mycompany.com' PARAMETER7

from CUSTOMERS

7.9 Creating a Table to Use as a Delivery Data Source

If the delivery information is not easily available in the existing data sources, then you
can consider creating a table to use for the query to create the delivery XML. Following
is a sample:

Important: If the JDBC driver that you use does not support column
alias, when you define the bursting control table, the columns must
match exactly the control XML tag name. For example, the KEY
column must be named "KEY", upper case is required. PARAMETER1
must be named "PARAMETER1", not "parameterl” nor "param1", and
SO on.

Adding Bursting Definitions 7-11

Creating a Table to Use as a Delivery Data Source

CREATE TABLE "XXX"."DELIVERY_CONTROL"
("KEY" NUMBER,

"TEMPLATE" VARCHAR2 (20 BYTE),
"LOCALE" VARCHAR2 (20 BYTE),
"OUTPUT_FORMAT" VARCHAR2 (20 BYTE),
"DEL_CHANNEL" VARCHAR2 (20 BYTE),
"PARAMETER1" VARCHAR2 (100 BYTE
"PARAMETER2" VARCHAR2 (100 BYTE
"PARAMETER3" VARCHAR2 (100 BYTE
"PARAMETER4" VARCHAR2 (100 BYTE
"PARAMETERS5" VARCHAR2 (100 BYTE

(

(

(

’
]
’
’

’

)
)
)
)
)
"PARAMETER6" VARCHARZ2 (100 BYTE)
"PARAMETER7" VARCHARZ2 (100 BYTE)
"PARAMETER8" VARCHAR2 (100 BYTE),
)
E
E

’

’

"PARAMETER9" VARCHAR2 (100 BYTE
"PARAMETER10" VARCHAR2 (100 BYT
"OUTPUT_NAME" VARCHAR2 (100 BYT
"SAVE_OUTPUT" VARCHAR2 (4 BYTE),
"TIMEZONE" VARCHAR2 (300 BYTE),
"CALENDAR" VARCHAR2 (300 BYTE)

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE (INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "EXAMPLES";

)
)

1

Tips for creating a creating bursting delivery table:

» If the split data set does not contain a DELIVERY_KEY value, then the document
is neither delivered nor generated. For example, using the preceding example, if
customer with ID 123 is not defined in the bursting delivery table, this customer's
document is not generated.

= To enable a split data set to generate more than one document or deliver to more
than one destination, duplicate the DELIVERY_KEY value and provide different
sets of OUTPUT_FORMAT, DEL_CHANNEL, or other parameters. For example,
customer with ID 456 wants his document delivered to two e-mail addresses. To
achieve this, insert two rows in the table, both with 456 as the DELIVERY_KEY
and each with its own e-mail address.

7-12 User's Guide for Oracle Business Intelligence Mobile App Designer

8

Adding Custom Metadata for Oracle
WebCenter Content Server

When delivering reports to an Oracle WebCenter Content Server, Bl Publisher can
populate custom metadata fields defined in your document profiles. Use the data
model editor to map fields from your data source to the custom metadata fields.

This chapter includes the following sections:

Section 8.1, "About Custom Metadata Mapping"
Section 8.2, "Mapping Data Fields to Custom Metadata Fields"
Section 8.3, "Deleting Unused Metadata Fields"

8.1 About Custom Metadata Mapping

The Custom Metadata component of the data model enables you to map data fields
from your data model to the metadata fields defined in document profile rules
configured on your Oracle WebCenter Content Server (for example, invoice number or
customer name).

When you run the report and select an Oracle WebCenter Content server as the
delivery destination, BI Publisher generates and stores the document on the content
server with the metadata.

8.1.1 Prerequisites

To use this feature of the data model editor, the following are required:

The content server must be configured as a delivery destination with custom
metadata enabled.

See "Adding a Content Server" in the Oracle Fusion Middleware Administrator’s
Guide for Oracle Business Intelligence Publisher.

To map the custom metadata fields to data fields from your data model data set,
the data set must be of a type that the data model editor can retrieve the data
structure, for example, SQL data sets and Excel data sets are supported; however,
Web service data sets are not.

8.2 Mapping Data Fields to Custom Metadata Fields

To map custom metadata:

1.

In the data model editor task pane, click Custom Metadata.

Adding Custom Metadata for Oracle WebCenter Content Server 8-1

Mapping Data Fields to Custom Metadata Fields

4,

Batalliodel Server WCC_Server B
Properties Content Profile | customerInvoice =l
4 Data3ets
RUles | tomernvoiceRule E|
Customer
4 EventTriggers e LI
4 Flexfields
4 Listofvalues
4 Parameters
4 Bursting
4 Custom Metadata
Metadata
\
Metadata Field Name Required Data Mapping

4

[This area is currently empty]

Oracle WebCenter Content Server stores metadata under a document profile. A
document profile is further nested into rules. To retrieve the metadata fields for
mapping, you first select the WebCenter server, then the Content Profile, then the
Rules set.
On the Custom Metadata header region, select the Rules as follows:
= Server - select the Web content server where the content profile is defined.
= Content Profile — select the content profile that includes the rules that define
custom metadata fields.
= Rules — select the Rules set that specifies the metadata fields.
If you do not select a Rules set, then BI Publisher loads the metadata for all
Rules under the Content Profile.
Click Load Metadata. The lower pane displays the metadata fields defined in the
Rules you selected.
Data Model Server |WCC_Server B
Properties Content Profile | customerInvoice E|
N Dm(ajf:tTJSmEr Rules CustomerInvaiceRule E|
4 EventTriggers Load Metadata
4 Fledields
4 ListofValues
4 Parameters
4 Bursting
4 Custom Methdata .
M|H-‘D\CE||:
xxEustcmErI-JamE Metadata
)rxcustomeﬂl!
Metadata Field Mame Required Data Mapping
sxInvoicelD N I'DATA_El
socCustomeriame [N ﬂ'DATA_DE'
xCustomerD N /DATA D= |
For each metadata field, map a data field from your data sets by selecting it from

the Data Mapping list. The Data Mapping list displays all the data fields from
your data sets.

8-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Deleting Unused Metadata Fields

If a metadata field is required a Y is displayed in the Required column.

Data Model
Server WCC_Server B

Properties Content Profile | customerInvoice

4 Data Sets Rules
CustomerInvoiceRule B
= Customer

Event Triggers Load Metadata
Flexfields

List of Values

Parameters

Metadata
Bursting

A b b k bk kh

Custom Methdata
Metadata Field Mame Required Data Mapping
xxlnec\celli

MCug]cmErNEmE wInvoicelD N ;’DATA_DB
ﬂcustnmenll suCustomeriame | N ;’DATA_DB
‘ xxCustomerID N jDATA_d -
/DATA_DS
[DATA_DS/G_2

J/DATA_DS/G_2/ORDER_ID
/DATA_DS/G_2/ORDER_DATE
/DATA_DS/G_2/ORDER._MODE

JDATA_DS/G_2/CUSTOMER_ID
JDATA_DS/G_2[(3DER_STATUS
/DATA_DS/G_2/ORDER_TOTAL

JDATA_DS/G_2/CUST_LAST_MAME

5. When finished mapping the metadata fields, click Save.

8.3 Deleting Unused Metadata Fields

BI Publisher loads all the metadata fields defined for the Rules set that you select. You
can delete unneeded custom metadata fields as follows:

1. Select the metadata field, either by clicking the field name on the left pane or by
clicking the selection column in the table.

2. Click the Delete button.

Adding Custom Metadata for Oracle WebCenter Content Server 8-3

Deleting Unused Metadata Fields

8-4 User's Guide for Oracle Business Intelligence Mobile App Designer

9

Performance Best Practices

Unnecessarily complex data sets can result in poor performance of data model
execution. This chapter provides tips for creating more efficient data models.

Know Oracle WebLogic Server Default Time Out Setting
Best Practices for SQL Data Sets

Lists of Values

Working with Lexicals/Flexfields

Working with Date Parameters

Run Report Online/Offline (Schedule)

Setting Data Model Properties to Prevent Memory Errors
SQL Query Tuning

9.1 Know Oracle WebLogic Server Default Time Out Setting

WebLogic Server has a default time out of 600 seconds for each thread that spans for a
request. When the time exceeds 600 seconds, WebLogic Server marks the thread as
"Stuck". When the number of Stuck threads reaches 25, the server shuts down.

To avoid this problem, ensure that your SQL execution time does not exceed the
WebLogic Server setting.

9.2 Best Practices for SQL Data Sets

Consider the following tips to help you create more efficient SQL data sets:

Only Return the Data You Need

Use Column Aliases to Shorten XML File Length
Avoid Using Group Filters by Enhancing Your Query
Avoid PL/SQL Calls in WHERE Clauses

Avoid Use of the System Dual Table

Avoid PL/SQL Calls at the Element Level

Avoid Including Multiple Data Sets

Avoid Nested Data Sets

Avoid In-Line Queries (as summary columns)

Performance Best Practices 9-1

Best Practices for SQL Data Sets

s Avoid Excessive Parameter Bind Values
» Tips for Multi-value Parameters

s Group Break and Sorting Data

9.2.1 Only Return the Data You Need

Ensure that your query returns only the data you need for your reports. Returning
excessive data risks OutOfMemory exceptions.

For example, never simply return all columns as in:

SELECT * FROM EMPLOYEES;

Always avoid the use of *.
Two best practices for restricting the data returned are:
= Always select only the columns you need
For example:
SELECT DEPARTMENT ID, DEPARTMENT_NAME FROM EMPLOYEES;

s Use a WHERE clause and bind parameters whenever possible to restrict the
returned data more precisely.

This example selects only the columns needed and only those that match the value
of the parameter:

SELECT DEPARTMENT_ID, DEPARTMENT_ NAME
FROM EMPLOYEES
WHERE DEPARTMENT_ ID IN (:P_DEPT_ID)

9.2.2 Use Column Aliases to Shorten XML File Length

The shorter the column name, the smaller the resulting XML file; the smaller the XML
file the faster the system parses it. Shorten your column names using aliases to shorten
1/0 processing time and enhance report efficiency.

In this example, DEPARTMENT_ID is shortened to "id" and DEPARTMENT_ NAME is
shortened to "name":

SELECT DEPARTMENT ID id, DEPARTMENT NAME name
FROM EMPLOYEES
WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

9.2.3 Avoid Using Group Filters by Enhancing Your Query

Although the Data Model Group Filter feature enables you to remove records
retrieved by your query, this process takes place in the middle tier, which is much less
efficient than the database tier.

It is a better practice to remove unneeded records through your query using WHERE
clause conditions instead.

9.2.4 Avoid PL/SQL Calls in WHERE Clauses

PL/SQL function calls in the WHERE clause of the query can result in multiple
executions. These function calls execute for each row found in the database that
matches. Moreover, this construction requires PL/SQL to SQL context switching,
which is inefficient.

9-2 User's Guide for Oracle Business Intelligence Mobile App Designer

Best Practices for SQL Data Sets

As a best practice, avoid PL/SQL calls in the WHERE clause; instead, join the base
tables and add filters.

9.2.5 Avoid Use of the System Dual Table

Use of the system DUAL table for returning the sysdate or other constants is inefficient
and should be avoided when not required.

For example, instead of:

SELECT DEPARTMENT_ID ID, (SELECT SYSDATE FROM DUAL) TODAYS_DATE FROM DEPARTMENTS
WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

Consider:

SELECT DEPARTMENT ID ID, SYSDATE TODAYS_DATE FROM DEPARTMENTS WHERE DEPARTMENT_ID

IN (:P_DEPT _ID)

Note that in the first example, DUAL is not required. You can access SYSDATE
directly.

9.2.6 Avoid PL/SQL Calls at the Element Level

Package function calls at the element (within the group) or row level are not allowed;
however you can include package function calls at the global element level because
these functions are executed only once per data model execution request.

Example:

<dataStructure>
<group name="G_order_short_text" dataType="xsd:string" source="Q_ORDER_ATTACH">
<element name="order_attach_desc" dataType="xsd:string" value="ORDER_ATTACH_

DESC" />
<element name="order_attach_pk" dataType="xsd:string" value="ORDER_ATTACH_
PK" />
<element name="ORDER_TOTAL _FORMAT" dataType="xsd:string" value=" WSH_
WSHRDPIK_XMLP_ PKG.ORDER_TOTAL _FORMAT "/> <!-- This is wrong should not be
called within group.-->
</group>

<element name="S_BATCH_COUNT" function="sum" dataType="xsd:double" value="G_
mo_number .pick_slip_number"/>
</dataStructure>

9.2.7 Avoid Including Multiple Data Sets

It can seem desirable to create one data model with multiple data sets to serve
multiple reports, but this practice results in very poor performance. When a report
runs, the data processor executes all data sets irrespective of whether the data is used
in the final output.

For better report performance and memory efficiency, consider carefully before using a
single data model to support multiple reports.

9.2.8 Avoid Nested Data Sets

The data model provides a mechanism to create parent-child hierarchy by linking
elements from one data set to another. At run time, the data processor executes the
parent query and for each row in the parent executes the child query. When a data
model has many nested parent-child relationships slow processing can result.

Performance Best Practices 9-3

Best Practices for SQL Data Sets

A better approach to avoid nested data sets is to combine multiple data set queries into
a single query using the WITH clause.

Following are some general tips about when to combine multiple data sets into one
data set:

= When the parent and child have a 1-to-1 relationship; that is, each parent row has
exactly one child row, then merge the parent and child data sets into a single
query.

= When the parent query has many more rows compared to the child query. For
example, an invoice distribution table linked to an invoice table where the
distribution table has millions of rows compared to the invoice table. Although the
execution of each child query takes less than a second, for each distribution hitting
the child query can result in STUCK threads.

Example of when to use a WITH clause:

Query Q1:

SELECT DEPARTMENT_ID EDID,EMPLOYEE_ID EID,FIRST NAME FNAME,LAST NAME LNAME, SALARY
SAL, COMMISSION_PCT COMM

FROM EMPLOYEES

Query Q2:
SELECT DEPARTMENT_ID DID,DEPARTMENT_NAME DNAME, LOCATION_ID LOC
FROM DEPARTMENTS

Combine the these queries into one using WITH clause as follows:

WITH
Q1 as (SELECT DEPARTMENT_ID DID, DEPARTMENT_ NAME DNAME, LOCATION_ID LOC
FROM DEPARTMENTS) ,
02 as (SELECT DEPARTMENT ID EDID,EMPLOYEE_ID EID,FIRST NAME FNAME, LAST NAME
LNAME, SALARY SAL,COMMISSION_PCT COMM
FROM EMPLOYEES)
SELECT Q1.*, Q2.*
FROM Q1 LEFT JOIN Q2
ON Q1.DID=Q2.EDID

9.2.9 Avoid In-Line Queries (as summary columns)

In-line queries execute for each column for each row. For example, if a main query has
100 columns, and brings 1000 rows, then each column query executes 1000 times.
Altogether, it is 100 multiplied by 1000 times.This is not scalable and cannot perform
well. Avoid using in-line sub queries whenever possible.

Avoid the following use of in-line queries. If this query returns only a few rows this
approach may work satisfactorily; however, if the query returns 10000 rows, then each
sub or inline query executes 10000 times and the query would likely result in Stuck
threads.

SELECT

NATIONAL_IDENTIFIERS,

NATIONAL_IDENTIFIER,

PERSON_NUMBER,

PERSON_1ID,

STATE_CODE

FROM

(select pprd.person_id, (select REPLACE (national_identifier_number,'-') from per_
national_identifiers pni where pni.person_id = pprd.person_id and rownum<2)
national_identifiers, (select national_identifier_ number from per_national
identifiers pni where pni.person_id = pprd.person_id and rownum<2) national_

9-4 User's Guide for Oracle Business Intelligence Mobile App Designer

Best Practices for SQL Data Sets

identifier, (select person_number from per_all_people_f ppf

where ppf.person_id = pprd.person_id

and :p_effective_start_date between ppf.effective_start_date and ppf.effective_
end_date) PERSON_NUMBER

(Select hg.geography code from hz_geographies hg

where hg.GEOGRAPHY NAME = paddr.region_2

and hg.geography type = 'STATE') state_code

9.2.10 Avoid Excessive Parameter Bind Values

Oracle database allows bind maximum of 1000 values per parameter. Binding a large
number of parameter values is inefficient. Avoid binding more than 100 values to a
parameter.

When you create a Menu type parameter, if your list of values may contain many
values, ensure that if you enable both the "Multiple Selection" and "Can Select All"
options, then also select NULL value passed to ensure too many values are not passed.

New_Parameter_1: Type: Menu

Display Label My Menu Parameter
Listof values L ong List of Values B

Number of Values to Display in Lis 100
Options Muttiple Selection

Can select all

@ MULL Value Passed All'Values Passed

|:| Refresh other parameters on change

9.2.11 Tips for Multi-value Parameters

Often report consumers must run reports that support the following conditions:
s If no parameter is selected (null), then return all.

= Allow selection of multiple parameter values

In these cases the use of NVL() does not work, you should therefore use

s COALESCE() for queries against Oracle Database

s CASE / WHEN for Oracle BI EE (logical) queries

Example:

SELECT EMPLOYEE_ID ID, FIRST NAME FNAME, LAST_NAME LNAME FROM EMPLOYEES
WHERE DEPARTMENT_ID = NVL(:P_DEPT_ID, DEPARTMENT_ ID

The preceding query syntax is correct only when the value of P_DEPT_ID is a single
value or null. This syntax does not work when you pass more than a single value.
To support multiple values, use the following syntax:

For Oracle Database:

SELECT EMPLOYEE_ID ID, FIRST NAME FNAME, LAST_NAME LNAME FROM EMPLOYEES
WHERE (DEPARTMENT_ID IN (:P_DEPT_ID) OR COALESCE (:P_DEPT_ID, null) is NULL)

For Oracle BI EE data source:

(CASE WHEN ('null') in (:P_YEAR) THEN 1 END =1 OR "Time"."Per Name Year" in (:P
YEAR))

Performance Best Practices 9-5

Best Practices for SQL Data Sets

For Oracle BI EE the parameter data type must be string. Number and date data types
are not supported.

9.2.12 Group Break and Sorting Data

The data model provides a feature to group breaks and sort data. Sorting is supported
for parent group break columns only. For example, if a data set of employees is
grouped by department and manager, you can sort the XML data by department. If
you know how the data should be sorted in the final report or template, you specify
sorting at data generation time to optimize document generation.

The column order specified in the SELECT clause must exactly match the element
orders in the data structure. Otherwise group break and sort may not work. Due to
complexity, multiple grouping with multiple sorts at different group levels is not
allowed.

Example: In the example shown below, sort and group break are applied to the parent
group only, that is, G_1. Notice the column order in the query, data set dialog, and data
structure. The SQL column order must exactly match the data structure element field
order; otherwise, it may result in data corruption.

Example:

SELECT d.DEPARTMENT_ID DEPT ID, d.DEPARTMENT_NAME DNAME,
E.FIRST_NAME FNAME, E.LAST_NAME LNAME,E.JOB_ID JOB, E.MANAGER_ID
FROM EMPLOYEES E,DEPARTMENTS D
WHERE D.DEPARTMENT_ID = E.DEPARTMENT_ID
ORDER BY d.DEPARTMENT_ID, d.DEPARTMENT NAME

Once you define the query, you can use the data model designer to select data
elements and create group breaks as shown:

4= G 1 fo]
DEPT_ID B8 fo]
DNAME (A fo)
Drop here for aggregate function |
i=E G2 o)
FNAME n &
LNAME n &
JoB (A]
MANAGER_ID B ©
|IZ::'-:.|? here for gate functio n|

The Data Structure with breaks is:

<output rootName="DATA_DS" uniqueRowName="false">
<nodeList name="data-structure"> <dataStructure tagName="DATA_DS">
<group name="G_1" label="G_1" source="gl">
<element name="DEPT ID" value="DEPT_ID" label="DEPT ID" fieldOrder="1"/>
<element name="DNAME" value="DNAME" label="DNAME" fieldOrder="2"/>
<group name="G_2" label="G_2" source="qgl">
<element name="FNAME" value="FNAME" label="FNAME" fieldOrder="3"/>
<element name="LNAME" value="LNAME" label="LNAME" fieldOrder="4"/>
<element name="JOB" value="JOB" label="JOB" fieldOrder="5"/>
<element name="MANAGER_ID" value="MANAGER_ID" label="MANAGER_ID"

9-6 User's Guide for Oracle Business Intelligence Mobile App Designer

Working with Lexicals/Flexfields

fieldOrder="6"/>
</group>
</group>
</dataStructure>
</nodeList>
</output>

9.3 Lists of Values

Lists of values based on SQL queries must be limited to 1000 rows. Adding blind
runaway queries in a list of values can cause OutOfMemory exceptions. Consider that
the number of rows returned by an LOV is stored in memory, therefore the higher the
number of rows the more memory usage.

9.4 Working with Lexicals/Flexfields

Oracle BI Publisher supports lexical parameters for Oracle Fusion Applications and
Oracle E-Business Suite. Lexical parameters enable you to create dynamic queries.

In BI Publisher, lexical parameters are defined as:
Lexical - a PL/SQL packaged variable defined as a data model parameter.

Key Flexfield (KFF) — a lexical token in a data set query. KFF creates a "code"” made up
of meaningful segment values and stores a single value as a code combination id. Key
Flexfields always return as a single column when used in SELECT / SEGMENT
METADATA type or condition when used in WHERE clause. Key Flexfields execute at
run time to extract the lexical definition and then are substituted in the SQL query.

Descriptive Flexfields (DFF) - provide a customizable expansion space to track
additional information that is important and unique to the business. DFFs can be
context sensitive, where the information stored in the application depends on the other
values of the user input. Unlike Key Flexfields, Descriptive Flexfields can have
multiple context-sensitive segments.

Usage: When you define any lexical, name the lexical to match the usage so that when
the editor dialog pops up it will be easier to enter the default values for the SQL query.
For example, if you are using a lexical in a SELECT clause, use "_select" as a suffix. The
default values must be valid to get metadata.

The following example demonstrates the usage of a lexical:

Performance Best Practices 9-7

Working with Date Parameters

Flexfields

+ %
*Lexical Name Flexfield Type Lexical Type Application Short Name Flexfield Code Reorder
KFF_SELECT Key Flexfield IZI Select IZI GL GL¥ av

KFF_SELECT: Type: Select

Enable Multiple Structure Instance¥/|
Code Combination Table Alias gcc
Structure Instance Humber 101
Segments ALL

Show Parent Segments

Output Type Value E

When you create the data set query for the select columns, specify column alias,

SELECT gcc.CODE_COMBINATION_ID,
GCC.ATTRIBUTE_CATEGORY,
gcc.segmentl segl,

gcc.segment2 seg2,

gcc.segment3 seg3,

gcc.segmentd seg4,

gcc.segmentb segh,

&KFF_SELECT account

FROM GL_CODE_COMBINATIONS GCC
WHERE gcc.CHART_OF_ACCOUNTS_ID = 101
AND &KFF_WHERE

When you save the query, a pop-up dialog prompts you for the default values. To get
SQL metadata at design time you must specify the default values that can form a valid
SQL query. For example,

s if the lexical usage is a SELECT clause then you could enter null
s if the lexical usage is a WHERE clause then you could enter 1 =1 or 1 =2
= if the lexical usage is ORDER BY clause then you could enter 1

Please enter values for lexical references in SQL-Q1 9 x
*&KFF_SELECT null [¥] flex field
*BKFF_WHERE 1=1 [flex field

OK Cancel

9.5 Working with Date Parameters

Oracle BI Publisher always binds date column or date parameter as a timestamp
object. To avoid timestamp conversion, define the parameter as a string and pass the
value with formatting as 'DD-MON-YYYY' to match the RDBMS date format.

9-8 User's Guide for Oracle Business Intelligence Mobile App Designer

Setting Data Model Properties to Prevent Memory Errors

9.6 Run Report Online/Offline (Schedule)

Running reports in interactive/online mode uses in-memory processing. Use the
following guidelines for deciding when a report is appropriate for running online.

For Online / Interactive mode:
= When report output size is less than 50MB

Browsers do not scale when loading large volumes of data. Loading more than
50MB in the browser will slow down or possibly crash your session.

» Data model SQL Query time out is less than 600 seconds

Any SQL query execution that takes more than 600 seconds results in Stuck
WebLogic Server threads. To avoid this condition schedule long-running queries.
The Scheduler process uses its own JVM threads instead of Weblogic server
threads. It is more efficient to schedule reports than run reports online.

s Total number of elements in the data structure is less than 500

When the data model data structure contains many data elements, the data
processor must maintain the element values in memory; which may result in
OutOfMemory exceptions. To avoid this condition, schedule these reports. For
scheduled reports, the data processor uses temporary file system to store and
process data.

s No CLOB or BLOB columns

Online processing holds the entire CLOB or BLOB columns in memory. You
should schedule reports that include CLOB or BLOB columns.

9.7 Setting Data Model Properties to Prevent Memory Errors
You can use the following properties to help prevent memory errors in your system:
s Query Time Out
= DB Fetch Size
= Scalable Mode

Performance Best Practices 9-9

Setting Data Model Properties to Prevent Memory Errors

Manage Private Data Sources | ViewData Create Report | || || @
Data Model Properties
Description
Fropefties
4 Data Sets
Event Triggers _
Default Data Source BIEE E| o
Flexfields
4 Listof Values Oracle DB Default Package
4 Paramsters Database Fetch Size
4 Bursting .
Query Time Out
4 Custom Metadata
Scalable Mode |nstance Level E|
Enable SQL Pruning Instance Level E|
Enable SQL session trace [Nstance Level E SOL Trace Name

Backup Data Source [] Enable Backup Connection

Switch to Backup Data Source when Primary Data Source is unavailable
Use Backup Data Source only

XML Output Options [7] Include Parameter Tags

[] Incluge Empty Tags for Nul Elements
[] ncluge Group List Tag
XML Tag Display Upper Case E

Attachment

Sample Data T

schema L

Data Files

9.7.1 Query Time Out

The Query Time out property specifies the time limit in seconds within which the
database must execute SQL statements. BI Publisher provides a mechanism to set user
preferred query time out at the data model level. The default value is 600 seconds.

Queries that cannot execute under 600 seconds are not well-optimized. Your DBA or a
performance expert should analyze the query for further tuning.

Increasing the time out value risks Stuck WebLogic Server threads. Do not raise the
value unless all other optimizations and alternatives have been utilized.

9.7.2 DB Fetch Size

This property specifies the number of rows that are fetched from the database at a
time. This setting can be overridden at the data model level by setting the Database
Fetch Size in the general properties of the data model.

Setting the value higher reduces the number of round trips to the database but
consumes more memory. Consider the number of elements in the data model before
changing this property.

BI Publisher recommends setting the property Auto DB fetch size to "true" so that the
system calculates the fetch size at run time.

9.7.3 Scalable Mode

When the Scalable mode property is on, BI Publisher uses the temp file system to
generate data. Data processor uses the least amount of memory. This scalable mode
property can be set at the data model level and the instance level. Data model setting
overrides the instance value.

Set the Instance value from Administrator > Runtime Properties > Data Model:

9-10 User's Guide for Oracle Business Intelligence Mobile App Designer

Setting Data Model Properties to Prevent Memory Errors

=] Data Model

Maximum data size limit for data generation 5GE 500ME
Maximum sample data size limit 10MB 1MB
—
I Enable Data Model scalable mode True |T| True I
Enable Auto DB fetch size mode True |L| True
DB fetch size 20 20|
SQL Query Timeout 600 (seconds)
Enable Data Model diagnostic True IZI Falze
Enable SQL session trace Falze IZI Falze
Enable SQL Pruning False IZI False

The instance value can be overridden by Data model setting shown here:

Properties

Description

Default Data Source BIEE IZI

N

Oracle DB Default Package
Database Fetch Size

Query Time Qut

scalable Mode |nstance Level E

Instance Level
Enable SQL Pruning On Lo

Hhable SOL session trace —SEmmce CEVET 7| SOL Tlace Name
E—

The following table details the expected results for the possible on/off settings at each

level:

Scalable Mode Scalable Mode Data

Instance Value Model Value Expected Result
On Instance On

Off Instance Off

On On On

On Off Off

Off On On

Off Off Off

9.7.4 SQL Pruning

SQL pruning enhances performance by fetching only the columns that are used in the
report layout/template. Columns that are defined in the query but are not used in the
report are not fetched. This improves query fetch size and reduces JDBC rowset
memory.

Note that this feature does not alter the where clause but instead wraps the entire SQL
with the columns specified in the layout.

To enable SQL pruning — On the Data Model Properties page, select On for the Enable
SQL Pruning property.

Performance Best Practices 9-11

SQL Query Tuning

Properties

Description

(W]

Default Data Source demo |Z|

Oracle DB Default Package
Database Fetch Size
Query Time Out

Scalable Mode |nstance Level |Z|

Enable SQL Pruning |nstance Level |L|

Instance Level
Enaple SQL session trace S0l Trace Name

Off

Source -1 Epanle Backyn Copnection

Switch to Backup Data Source when Primary Data Source is unavailable
Use Backup Data Source only

9.8 SQL Query Tuning

Query tuning is the most important step to improve performance of any report.
Explain plan, SQL Monitoring, SQL Trace facility with TKPROF are the most basic
performance diagnostic tools that can help to tune SQL statements in applications
running against the Oracle Database.

Oracle BI Publisher provides a mechanism to generate the explain plan and SQL
monitoring reports and to enable SQL session trace. This functionality is applicable to
SQL statements executing against Oracle Database only. Logical queries against BI
Server or any other type of database are not supported.

9.8.1 Generate Explain Plan

You can generate an Explain plan at the data set level for a single query or at the report
level for all queries in a report. For more information about interpreting the explain
plan, see the Oracle Database SQL Tuning Guide.

9.8.1.1 Explain Plan for a Single Query

From the SQL data set Edit dialog you can generate an explain plan before actually
executing the query. This will provide a best guess estimation of plan. The query will
be executed binding with null values.

Click Generate Explain Plan on the Edit SQL Query dialog. Open the gnerated
document in a text editor like Notepad or WordPad.

9.8.1.2 Explain Plan for Reports

To generate an explain for a report, run the report through the Scheduler:
1. On the New menu, select Report Job.
2. Select the report to schedule then click the Diagnostics tab.

Note: You must have BI Administator or BI Data Model Developer privileges to
access the Diagnostics tab.

3. Select Enable SQL Explain Plan and Enable Data Engine Diagnostic.

9-12 User's Guide for Oracle Business Intelligence Mobile App Designer

SQL Query Tuning

Home

Schedule Report Job

4 Overview
General Created by

Catalog

New v

Open v

SignedIn As c v

Report Name /Sample Lite/Published Reporting/Reports/Employees by Department Reportxdo

Schedule Startimmediately

General Qutput Schedule Notification

Enable SQL Explain Plan
Enable Data Engine Diagnostic

Submit the report.

Diagnostic

Return

submit @

When the report finishes, go to the Report History page.

(From the Home page, under Browse/Manage, select Report Job History.)

Log to download the explain plan output.

Report Job History

Last Refreshed Mon Aug 03, 2015 09:28:13 AM Western European Summer Time 0

4 General Information
General Information

1004
Orders Job

Report Job ID
Report Job Name
Owner

Report Name
Report Scope
Report Job Schedule
Active Start Date
Active End Date
Trigger Data Model
Trigger Name
Trigger Retry Limit
Trigger Pause Time
Trigger Parameters

New Orders
Public

No parameters available

4 Output & Delivery

XML Data .+

staus Al

B

Qutput Name
Qutput1

Sample Explain plan:

81215 4:39:42 PM WEST

Diagnostic Log _ Republish @a

Template

Orders

Format

HTHML

Home

Catalog New w Open

Report Job Execution Information

Report Job Status
Start Processing Time
End Processing Time

Locale

English (United States)

SQLQuery;EXPLATN PLAN SET STATEMENT ID = 'dm plan Q2 150622 0249' FOR

Time Elapsed

select /* QUERY S5RC('datamodel: Users riyengar XPLAN Testl xdm,dataset:Q2') */ *

from departments
:DEPARTMENT ID=DEPARTMENT ID

SQL Query Timeout: 600
Number of SQL Executionst: 108

PLAN TABLE OUTPUT

o Success

8/2115 4:39:44 PMWEST
8/215 4:39:54 PM WEST
10.655 seconds

Time Zone Ce

[GMT+00:00] Casablanca Gr

Plan hash value: 4024094692

Id

Operation

Name

Rows

Bytes

Cost

(3CPU)

SELECT STATEMENT

TABLE ACCESS BY INDEX ROWID

1]
1
* o2 INDEX UNIQUE SCAN

DEPARTMENTS
DEPT_ID PK

(0)1 00:

(0)1 00:

(0)] 00:

00:01
00:01
00:01

Predicate Information (identified by operation id):

2 - agecess ("DEPARRTMENT _ID"=:DEPARTMENT_ID)

Performance Best Practices

Select your report to view the details. Under Output & Delivery click Diagnostic

9-13

SQL Query Tuning

9.8.1.3 Guidelines for Tuning Queries

Analyze the explain plan and identify high impact SQL statements.
Add required filter conditions and remove unwanted joins.

Avoid and remove FTS (full table scans) on large tables. Note that in some cases,
full table scans on small tables are faster and improve query fetch. Ensure that you
use caching for small tables.

Use SQL hints to force use of proper indexes.
Avoid complex sub-queries and use Global Temporary Tables where necessary.
Use Oracle SQL Analytical functions for multiple aggregation.

Avoid too many sub-queries in where clauses if possible. Instead rewrite queries
with outer joins.

Avoid group functions like HAVING and IN / NOT IN where clause conditions.
Use CASE statements and DECODE functions for complex aggregate functions.

9.8.1.4 Tips for Database Tuning

Work with your Database Administrator to gather statistics on the tables.

If the server is very slow, analyze network / IO / Disk issues and optimize the
server parameters.

In some scenarios when you cannot avoid a large data fetch you may encounter
PGA Heap size errors in the database. To resolve these issues, increase PGA heap
size as a last resort. Use the following statement to increase heap size:

alter session set events '10261 trace name context forever, level
2097152

9-14 User's Guide for Oracle Business Intelligence Mobile App Designer

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documentation and Other Resources
	Conventions

	New Features for Data Model Designers
	New Features and Changes for Oracle BI Publisher 12c (12.2.1)

	1 Using the Data Model Editor
	1.1 What Is a Data Model?
	1.2 Components of a Data Model
	1.3 Features of the Data Model Editor
	1.4 About the Data Source Options
	1.5 Process Overview for Creating a Data Model
	1.6 Launching the Data Model Editor
	1.6.1 About the Data Model Editor Interface

	1.7 Setting Data Model Properties
	1.7.1 XML Output Options
	1.7.2 Attachments to the Data Model
	1.7.2.1 Attaching Sample Data
	1.7.2.2 Attaching Schema
	1.7.2.3 Data Files

	1.8 Managing Private Data Sources

	2 Creating Data Sets
	2.1 Overview of Creating Data Sets
	2.2 Editing an Existing Data Set
	2.3 Creating Data Sets Using SQL Queries
	2.3.1 Entering SQL Queries
	2.3.2 Creating Non-Standard SQL Data Sets
	2.3.3 Using the SQL Query Builder
	2.3.3.1 Overview of the Query Builder
	2.3.3.2 Understanding the Query Builder Process
	2.3.3.3 Using the Object Selection Pane
	2.3.3.4 Selecting a Schema
	2.3.3.5 Searching and Filtering Objects
	2.3.3.6 Selecting Objects
	2.3.3.7 Supported Column Types
	2.3.3.8 Adding Objects to the Design Pane
	2.3.3.9 Resizing the Design and Results Pane
	2.3.3.10 Removing or Hiding Objects in the Design Pane
	2.3.3.11 Specifying Query Conditions
	2.3.3.12 Creating Relationships Between Objects
	2.3.3.12.1 About Join Conditions
	2.3.3.12.2 Joining Objects Manually

	2.3.3.13 Saving a Query
	2.3.3.14 Editing a Saved Query

	2.3.4 Adding a Bind Variable to a Query
	2.3.5 Adding Lexical References to SQL Queries
	2.3.6 Defining SQL Queries Against the Oracle BI Server

	2.4 Creating a Data Set Using a MDX Query Against an OLAP Data Source
	2.4.1 Creating a Data Set Using a MDX Query

	2.5 Using MDX Query Builder
	2.5.1 Understanding the MDX Query Builder Process
	2.5.2 Using the Select Cube Dialog
	2.5.3 Selecting Dimensions and Measures
	2.5.3.1 Adding Dimension Members to the Slicer/POV Axis

	2.5.4 Performing MDX Query Actions
	2.5.5 Applying MDX Query Filters
	2.5.6 Selecting MDX Query Options and Saving MDX Queries

	2.6 Creating a Data Set Using an Oracle BI Analysis
	2.6.1 Additional Notes on Oracle BI Analysis Data Sets

	2.7 Creating a Data Set Using a View Object
	2.7.1 Additional Notes on View Object Data Sets

	2.8 Creating a Data Set Using a Web Service
	2.8.1 Creating a Data Set Using a Web Service
	2.8.1.1 Creating a Data Set Using a Simple Web Service
	2.8.1.2 Creating a Data Set Using a Complex Web Service

	2.8.2 Additional Information on Web Service Data Sets

	2.9 Creating a Data Set Using an LDAP Query
	2.10 Creating a Data Set Using a XML File
	2.10.1 About Supported XML Files
	2.10.2 Using a XML File Stored in a File Directory Data Source
	2.10.3 Uploading a XML File Stored Locally
	2.10.3.1 Refreshing and Deleting an Uploaded XML File

	2.11 Creating a Data Set Using a Microsoft Excel File
	2.11.1 About Supported Excel Files
	2.11.2 Guidelines for Accessing Multiple Tables per Sheet
	2.11.3 Using a Microsoft Excel File Stored in a File Directory Data Source
	2.11.4 Uploading a Microsoft Excel File Stored Locally
	2.11.4.1 Refreshing and Deleting an Uploaded Excel File

	2.12 Creating a Data Set Using a CSV File
	2.12.1 About Supported CSV Files
	2.12.2 Using a CSV File Stored in a File Directory Data Source
	2.12.3 Uploading a CSV File Stored Locally
	2.12.3.1 Editing the Data Type
	2.12.3.2 Refreshing and Deleting an Uploaded CSV File

	2.13 Creating a Data Set from an HTTP XML Feed
	2.13.1 Creating a Data Set from an HTTP XML Data Set

	2.14 Using Data Stored as a Character Large Object (CLOB) in a Data Model
	2.14.1 How the Data Is Returned
	2.14.1.1 Additional Notes on Data Sets Using CLOB Column Data

	2.14.2 Handling XHTML Data Stored in a CLOB Column
	2.14.2.1 Retrieving XHTML Data Wrapped in CDATA
	2.14.2.2 Wrapping the XHTML Data in CDATA in the Query

	2.15 Testing Data Models and Generating Sample Data
	2.16 Including User Information Stored in System Variables in Your Report Data
	2.16.1 Adding the User System Variables as Elements
	2.16.2 Sample Use Case: Limit the Returned Data Set by User ID
	2.16.2.1 Creating Bind Variables from LDAP User Attribute Values
	2.16.2.1.1 Prerequisite
	2.16.2.1.2 How BI Publisher Constructs the Bind Variable

	3 Structuring Data
	3.1 Working with Data Models
	3.1.1 About Multipart Unrelated Data Sets
	3.1.2 About Multipart Related Data Sets
	3.1.3 Guidelines for Working with Data Sets

	3.2 Features of the Data Model Editor
	3.3 About the Interface
	3.4 Creating Links Between Data Sets
	3.4.1 About Element-Level Links
	3.4.2 About Group-Level Links

	3.5 Creating Element-Level Links
	3.5.1 Deleting Element-Level Links

	3.6 Creating Group-Level Links
	3.6.1 Deleting Group-Level Links

	3.7 Creating Subgroups
	3.8 Moving an Element Between a Parent Group and a Child Group
	3.9 Creating Group-Level Aggregate Elements
	3.10 Creating Group Filters
	3.11 Performing Element-Level Functions
	3.12 Setting Element Properties
	3.13 Sorting Data
	3.14 Performing Group-Level Functions
	3.14.1 The Group Action Menu
	3.14.2 Editing the Data Set
	3.14.3 Removing Elements from the Group
	3.14.4 Editing the Group Properties

	3.15 Performing Global-Level Functions
	3.15.1 Adding a Global-Level Aggregate Function
	3.15.2 Adding a Group-Level or Global-Level Element by Expression
	3.15.3 Adding a Global-Level Element by PL/SQL

	3.16 Using the Structure View to Edit Your Data Structure
	3.16.1 Renaming Elements
	3.16.2 Adding Value for Null Elements

	3.17 Function Reference

	4 Adding Parameters and Lists of Values
	4.1 About Parameters
	4.2 Adding a New Parameter
	4.2.1 Creating a Text Parameter
	4.2.2 Creating a Menu Parameter
	4.2.2.1 Customizing the Display of Menu Parameters

	4.2.3 Defining a Date Parameter

	4.3 About Lists of Values
	4.4 Adding Lists of Values
	4.4.1 Creating a List from a SQL Query
	4.4.2 Creating a List from a Fixed Data Set

	4.5 Adding Flexfield Parameters
	4.5.1 Prerequisites for Using Flexfields
	4.5.2 Adding a Flexfield Parameter and List of Values
	4.5.2.1 Adding the Flexfield List of Values
	4.5.2.2 Adding the Menu Parameter for the Flexfield List of Values
	4.5.2.3 Using the Flexfield Parameter to Pass Values to a Flexfield Defined in the Data Model
	4.5.2.4 Referencing the Flexfield in the SQL Query
	4.5.2.5 Passing a Range of Values

	5 Adding Event Triggers
	5.1 About Triggers
	5.2 Adding Before Data and After Data Triggers
	5.2.1 Order of Execution

	5.3 Creating Schedule Triggers

	6 Adding Flexfields
	6.1 About Flexfields
	6.1.1 Using Flexfields in Your Data Model

	6.2 Adding Key Flexfields
	6.2.1 Entering Flexfield Details

	6.3 Adding Descriptive Flexfields
	6.3.1 Including Descriptive Flexfield Reference in SQL Queries

	7 Adding Bursting Definitions
	7.1 About Bursting
	7.2 What is the Bursting Definition?
	7.3 Adding a Bursting Definition to Your Data Model
	7.4 Defining the Query for the Delivery XML
	7.5 Passing a Parameter to the Bursting Query
	7.6 Defining the Split By and Deliver By Elements for a CLOB/XML Data Set
	7.7 Configuring a Report to Use a Bursting Definition
	7.8 Sample Bursting Query
	7.9 Creating a Table to Use as a Delivery Data Source

	8 Adding Custom Metadata for Oracle WebCenter Content Server
	8.1 About Custom Metadata Mapping
	8.1.1 Prerequisites

	8.2 Mapping Data Fields to Custom Metadata Fields
	8.3 Deleting Unused Metadata Fields

	9 Performance Best Practices
	9.1 Know Oracle WebLogic Server Default Time Out Setting
	9.2 Best Practices for SQL Data Sets
	9.2.1 Only Return the Data You Need
	9.2.2 Use Column Aliases to Shorten XML File Length
	9.2.3 Avoid Using Group Filters by Enhancing Your Query
	9.2.4 Avoid PL/SQL Calls in WHERE Clauses
	9.2.5 Avoid Use of the System Dual Table
	9.2.6 Avoid PL/SQL Calls at the Element Level
	9.2.7 Avoid Including Multiple Data Sets
	9.2.8 Avoid Nested Data Sets
	9.2.9 Avoid In-Line Queries (as summary columns)
	9.2.10 Avoid Excessive Parameter Bind Values
	9.2.11 Tips for Multi-value Parameters
	9.2.12 Group Break and Sorting Data

	9.3 Lists of Values
	9.4 Working with Lexicals/Flexfields
	9.5 Working with Date Parameters
	9.6 Run Report Online/Offline (Schedule)
	9.7 Setting Data Model Properties to Prevent Memory Errors
	9.7.1 Query Time Out
	9.7.2 DB Fetch Size
	9.7.3 Scalable Mode
	9.7.4 SQL Pruning

	9.8 SQL Query Tuning
	9.8.1 Generate Explain Plan
	9.8.1.1 Explain Plan for a Single Query
	9.8.1.2 Explain Plan for Reports
	9.8.1.3 Guidelines for Tuning Queries
	9.8.1.4 Tips for Database Tuning

