
[image: Oracle Corporation]

Oracle® Fusion Middleware

RESTful Management Interface Reference for Oracle WebLogic Server 12.1.3

12c (12.1.3)

E49342-02

August 2015

This reference describes a RESTful management API for managing a WebLogic Server 12.1.3 domain.

Oracle Fusion Middleware RESTful Management Interface Reference for Oracle WebLogic Server 12.1.3, 12c (12.1.3)

E49342-02

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

List of Tables

Preface

	Documentation Accessibility
	Conventions

1 Resources

	Getting Started
	REST URL Format to Manage WebLogic Server
	The {version} Specifier in Resource URLs
	Supported Content Types in REST Resources

	Using REST Resource Methods to Manage WebLogic Server
	Navigating the REST Resource Tree Dynamically
	Parsing the links List

	Standard HTTP Status Codes
	/management/wls
	GET Method

	/management/wls/{version}
	GET Method

	/management/wls/{version}/changeManager
	GET Method

	/management/wls/{version}/changeManager/activate
	POST Method

	/management/wls/{version}/changeManager/cancelEdit
	POST Method

	/management/wls/{version}/changeManager/startEdit
	POST Method

	/management/wls/{version}/datasources
	GET Method
	OPTIONS Method
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}
	DELETE Method
	GET Method
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/clearStatementCache
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/reset
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/resume
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/shrink
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/shutdown
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/start
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/suspend
	POST Method

	/management/wls/{version}/datasources/id/{data-source-name}/test
	POST Method

	/management/wls/{version}/datasources/test
	OPTIONS Method
	POST Method

	/management/wls/{version}/datasources/vendors
	GET Method

	/management/wls/{version}/datasources/vendors/id/{vendor}
	GET Method

	/management/wls/{version}/datasources/vendors/id/{vendor}/drivers/id/{driver-class-name}
	OPTIONS Method
	POST Method

	/management/wls/{version}/deployments
	GET Method

	/management/wls/{version}/deployments/application
	GET Method
	OPTIONS Method
	POST Method
	POST Accepting "application/json"
	POST Accepting "multipart/form-data"

	/management/wls/{version}/deployments/application/id/{application-name}
	DELETE Method
	GET Method

	/management/wls/{version}/deployments/application/id/{application-name}/bindables
	GET Method
	POST Method

	/management/wls/{version}/deployments/application/id/{application-name}/redeploy
	POST Method
	POST Accepting "application/json"
	POST Accepting "multipart/form-data"

	/management/wls/{version}/deployments/application/id/{application-name}/start
	POST Method

	/management/wls/{version}/deployments/application/id/{application-name}/stop
	POST Method

	/management/wls/{version}/deployments/application/id/{application-name}/update
	POST Method

	/management/wls/{version}/deployments/inspect
	OPTIONS Method
	POST Method

	/management/wls/{version}/deployments/library
	GET Method
	OPTIONS Method
	POST Method
	POST Accepting "application/json"
	POST Accepting "multipart/form-data"

	/management/wls/{version}/deployments/library/id/{library-name}
	DELETE Method
	GET Method

	/management/wls/{version}/deployments/library/id/{library-name}/redeploy
	POST Method
	POST Accepting "application/json"
	POST Accepting "multipart/form-data"

	/management/wls/{version}/jobs
	GET Method

	/management/wls/{version}/jobs/deployment
	GET Method

	/management/wls/{version}/jobs/deployment/id/{job-id}
	GET Method

	/management/wls/{version}/jobs/server
	GET Method

	/management/wls/{version}/jobs/server/id/{job-id}
	GET Method

	/management/wls/{version}/servers
	GET Method

	/management/wls/{version}/servers/id/{server-name}
	GET Method

	/management/wls/{version}/servers/id/{server-name}/logs
	GET Method

	/management/wls/{version}/servers/id/{server-name}/logs/id/{log-name}
	GET Method

	/management/wls/{version}/servers/id/{server-name}/restart
	POST Method

	/management/wls/{version}/servers/id/{server-name}/resume
	POST Method

	/management/wls/{version}/servers/id/{server-name}/shutdown
	POST Method

	/management/wls/{version}/servers/id/{server-name}/start
	POST Method

	/management/wls/{version}/servers/id/{server-name}/suspend
	POST Method

	/management/wls/{version}/targets
	GET Method

2 Entities

	Application
	ApplicationBindable
	ApplicationBindables
	ApplicationDescriptorScope
	ChangeManager
	DatabaseConnection
	DatabaseConnectionStatus
	DatabaseDriver
	DatabaseDriverAttribute
	DatabaseDriverAttributes
	DatabaseVendor
	DataSource
	DataSourceMetrics
	Deployment
	DeploymentDescription
	DeploymentJob
	DeploymentJobTarget
	DeploymentReference
	Ejb
	EjbCacheMetrics
	EjbLockingMetrics
	EjbMetrics
	EjbPoolMetrics
	EjbTimerMetrics
	EjbTransactionMetrics
	Health
	JdbcConnectionPoolParams
	JdbcDataSourceParams
	JdbcDriverParams
	Job
	Library
	LogEntry
	LogReference
	Server
	ServerJob
	Servlet
	ServletMetrics
	Target
	Version
	Wls

List of Tables

	1-1 REST Resource Methods for Administering Configuration Data

Preface

This preface describes the document accessibility features and conventions used in this guide, RESTful Management Interface Reference for Oracle WebLogic Server 12.1.3.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

[bookmark: sthref6]
1 Resources

[bookmark: WLRMR174]
This section describes the Oracle WebLogic Server 12.1.3 RESTful management resources.

The RESTful management resources provide a comprehensive public interface for configuring, monitoring, and administering the Oracle WebLogic Server platform in all supported environments.

	
Note:

The URL format for REST management APIs has changed in 12.1.3. The URL format introduced in 12.1.2 will continue to work, but is deprecated in this release of WebLogic Server.

[bookmark: sthref7]
Getting Started

To use RESTful management services in a WebLogic Server domain, your WebLogic Administrator must enable them using the WebLogic Server Administration Console. For more information, see "Enable RESTful Management Services" in the Administration Console Online Help. Alternatively, using WebLogic Scripting Tool (WLST), set the RestfulManagementService Enabled property on the DomainMBean.

[bookmark: sthref8]
REST URL Format to Manage WebLogic Server

The format of the WebLogic Server resource URL is:

http(s)://host:port/management/wls/{version}/path

where:

hostthe host where WebLogic Server is running

portthe HTTP or HTTPS port

{version}the version of a REST resource. See "The {version} Specifier in Resource URLs".

paththe relative path that identifies a resource. For example, the path to a server instance would be: servers/id/myserver.

[bookmark: version_indicator]

The {version} Specifier in Resource URLs

The {version} specifier in resource URLs implicitly (/latest) or explicitly (/12.1.3.0) denotes the version of a REST resource. In future WLS releases, you can specify /latest to use the current version of a REST resource or a version number to specify a previous version.

As a best practice, if you are using a browser or a reflexive client that follows links in the resources for navigation and can react to evolving resources, then use /latest. If you are writing code that would break as a resource evolves, then specify an explicit version.

[bookmark: sthref9]
Supported Content Types in REST Resources

The WebLogic Server RESTful Management Services support the following representation formats:

	
The data format that can you get back from a resource (for example, through the Accept header) only JSON.

	
The data format that can you send in to a resource (for example, through the Content-Type header) most support only JSON, however, some also support multi-part forms (for example, the file upload versions of deploying applications and libraries).

[bookmark: sthref10]
Using REST Resource Methods to Manage WebLogic Server

The WebLogic Server REST interfaces support methods for accessing objects in the configuration and monitoring object trees.

Table 1-1 shows the REST methods for administering monitoring and configuration data and the tasks that you can perform with each method.

[bookmark: sthref11][bookmark: CJACAJGF]
Table 1-1 REST Resource Methods for Administering Configuration Data

	Task
	REST Method

	
Determine the methods and method parameters that an object in the tree supports.

	
OPTIONS

	
Retrieve data for an object in the tree.

	
GET

	
Add an object to the tree.

	
POST

	
Update an object in the tree.

	
POST

	
Delete an object from the tree.

	
DELETE

Use the following procedures with WebLogic Server REST resources.

	Creating

	
To create a new entity:

	
Invoke OPTIONS to get a template object containing default values for the new entity.

	
Change the values of any properties you want to customize on the returned object.

	
POST the modified object to create the new entity.

	Editing

	
To change some properties of an entity:

	
Invoke GET on the entity's URL to get back an object containing the entity's current values.

	
Change the values of the properties you want to modify on the returned object.

	
POST the modified object back to the entity's URL.

	Asynchronous Operations

	
For long running operations, specify the __detached=true query parameter (asynchronous invocation). The method runs in detached (background) mode and returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

	Filtering Results

	
Specify _includeFields and _excludeFields query parameters to constrain the fields included in a response. Filtering collection results to only the information that you require may yield faster response times when interacting with large data sets. Include and exclude are mutually exclusive, and if neither is specified, all available information is included.

	Uploading Files

	
Use multi-part form data to pass a stream of bytes from the client to the WLS resource. For example, when the files you want to deploy (or redeploy) are not on the Administration Server file system. Use the POST accepting "multipart/form-data" method to upload the files from the client's file system to the Administration Server and then deploy (or redeploy) them.

[bookmark: navigating_using_links]

Navigating the REST Resource Tree Dynamically

The WebLogic Server REST interfaces support navigating the resource tree dynamically. To provide this support, the GET method on each REST resource returns a links element containing a list of URIs to the resources above and below it in the resource tree. Thus, you can navigate the resource tree using this technique:

	
Make an HTTP GET request on a known REST resource, specifying a literal, hard-coded value as the URI.

	
Parse the links list in the response to identify the appropriate parent or child resource. See "Parsing the links List" for more information.

	
If you are done navigating and the REST resource you identified in Step2 is the one on which you want to perform operations, use the appropriate HTTP requests to perform the operations, using the URI value you retrieved from the links list.

If you need to continue navigating the resource tree, make an HTTP GET request on the REST resource you identified in Step2, using the URI value you retrieved from the links list. Then, return to Step2.

Using dynamic navigation of the resource tree can provide a variety of benefits, including:

	
More maintainable source code, because it does not include a literal, hard-coded URI value for each HTTP request.

	
The ability to perform actions across collections of objects, such as servers and applications, whose names are not known during code development.

[bookmark: CHDCGBHE]

Parsing the links List

The links element returned as part of the response to an HTTP GET request is a list of subordinate elements, each describing a single resource that is directly related to the current resource. Each of these subordinate elements contains the following properties:

	rel

	
A string value indicating how the linked resource is related to the current resource. The string values are as follows:

	parent

	
The linked resource is the parent of the current resource.

	action

	
The linked resource performs an action on the object represented by the current resource. The value of the title property indicates the type of action the linked resource performs.

	simple-name

	
A string without dots (.). The linked resource has a relationship to the current resource that is specific to the current resource. For example, the GET method on the /management/wls/{version} resource returns link list elements with simple-name values corresponding to the types of objects in a domain:

	
changemanger

	
datasources

	
deployments

	
jobs

	
servers

	
targets

	dotted-name

	
A string containing one dot(.). The linked resource is a member of a collection of resources subordinate to the current resource, and another element in the GET response provides more information about the linked resource. An example of such a collection is the individual servers under the /management/wls/{version}/servers resource.

The first part of the dotted-name value is the name of a list element in the GET response that contains more information, and the second part is the name of the property in that list element's subelement that identifies each subelement:

list-element-name.subelement-property-name

To discover more information about the linked resource, use its dotted-name value in conjunction with its title value:

	
Parse the dotted-name value into its two parts: list-element-name and subelement-property-name.

	
In the GET response, look for a list element named list-element-name. In this list, look for a subelement whose subelement-property-name property value matches the linked resource's title property value.

For example, given the dotted-name value items.name and the title value myserver, you would look in the GET response for the subelement of the items list whose name property value is the string myserver.

	uri

	
A string value containing the URI to use in an HTTP request to access the linked resource.

	title

	
(Optional) A string value providing additional information when the rel property value is action or dotted-name:

	
When rel property value is action, the title property value describes the kind of action the linked resource performs.

	
When the rel property value is dotted-name, the title property value is the value to match in the subelement property of the list element specified by the dotted-name value.

[bookmark: standard_status_codes]

Standard HTTP Status Codes

The HTTP methods used to manipulate the resources described in this section all return one of the following HTTP status codes:

	[bookmark: code_200]

	200 OK

	
The request was successfully completed. A 200 is returned for successful GET or OPTIONS methods, or a POST method to modify a resource (versus create).

	[bookmark: code_201]

	201 Created

	
The request has been fulfilled and resulted in a new resource being created. A Location header containing the canonical URI for the newly created resource will be returned.

A 201 is returned from a synchronous resource creation or an asynchronous resource creation that completed before the response was returned.

	[bookmark: code_202]

	202 Accepted

	
The request has been accepted for processing, but the processing has not been completed. The request might or might not eventually be acted upon, as it might be disallowed when processing actually takes place.

When specifying an asynchronous (__detached=true) resource creation, (such as when deploying an application) or update (such as when redeploying an application), a 202 is returned if the operation is still in progress. If __detached=false, a 202 might still be returned if the underlying operation does not finish in a reasonable amount of time.

The response contains a Location header of a job resource that the client should poll to find out when the job has finished. Also, it returns an entity that contains the current state of the job.

	[bookmark: code_400]

	400 Bad Request

	
The request could not be processed because it contains missing or invalid information (such as a validation error on an input field, a missing required value, or such).

	[bookmark: code_401]

	401 Unauthorized

	
The request is not authorized. The authentication credentials included with this request are missing or invalid.

	403 Forbidden

	
Cannot authenticate the user. The user does not possess authorization to perform this request.

	[bookmark: code_404]

	404 Not Found

	
The request specified a URI of a resource that does not exist.

	405 Method Not Allowed

	
The HTTP verb specified in the request (DELETE, GET, HEAD, POST, PUT) is not supported for this request URI.

	406 Not Acceptable

	
The resource identified by this request is not capable of generating a representation corresponding to one of the media types in the Accept header of the request. For example, the client's Accept header asks for XML but the resource can only return JSON.

	415 Not Acceptable

	
The client's ContentType header is wrong (for example. the client tries to send in XML but the resource can only accept JSON).

	[bookmark: code_500]

	500 Internal Server Error

	
The server encountered an unexpected condition which prevented it from fulfilling the request.

	503 Service Unavailable

	
The server is currently unable to handle the request due to temporary overloading or maintenance of the server. The WLS REST web application is not currently running.

/management/wls

/management/wls

The wls resource contains information about the versions of the REST interface supported by the WLS domain.

For information about versions supported by the REST interface, see The {version} Specifier in Resource URLs.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns information about each supported version of this REST interface.

For information about versions supported by the REST interface, see The {version} Specifier in Resource URLs.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a list Version entities for the supported versions of this REST interface.

This method can return the following links:

	
uri=/management/wls/{versions} rel=versions

	
uri=/management/wls/12.1.3.0 rel=items.version title=12.1.3.0

	
uri=/management/wls/latest rel=items.version title=latest

	
uri=/management/wls/12.1.3.0 rel=current

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Determining Supported Versions
	
This example demonstrates how to obtain information about each supported version of the REST resources.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "items.version",
 "uri": "http:\/\/localhost:7001\/management\/wls\/12.1.3.0",
 "title": "12.1.3.0"
 },
 {
 "rel": "items.version",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest",
 "title": "latest"
 },
 {
 "rel": "current",
 "uri": "http:\/\/localhost:7001\/management\/wls\/12.1.3.0"
 }
],
 "items": [
 {
 "version": "12.1.3.0",
 "lifecycle": "active",
 "isLatest": true
 },
 {
 "version": "latest",
 "lifecycle": "active",
 "isLatest": true
 }
]
}

/management/wls/{version}

/management/wls/{version}

This resource contains overall information about the WLS domain.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns overall information about this domain, for example, aggregated server runtime statistics.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a Wls entity.

This method can return the following links:

	
uri=/management/wls/{version}/jobs rel=jobs

	
uri=/management/wls/{version}/servers rel=servers

	
uri=/management/wls/{version}/deployments rel=deployments

	
uri=/management/wls/{version}/datasources rel=datasources

	
uri=/management/wls/{version}/changeManager rel=changeManager

	
uri=/management/wls/{version}/targets rel=targets

	
uri=/management/wls rel=parent

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting Information About a Domain
	
This example obtains the root WLS resource links and summary information for a domain.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest

Example Response

HTTP/1.1 200 OK
HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls"
 },
 {
 "rel": "jobs",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs"
 },
 {
 "rel": "servers",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers"
 },
 {
 "rel": "deployments",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments"
 },
 {
 "rel": "datasources",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources"
 },
 {
 "rel": "changeManager",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/changeManager"
 },
 {
 "rel": "targets",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/targets"
 }
],
 "item": {
 "name": "mydomain",
 "productionMode": false,
 "activeHttpSessionCount": 0,
 "activeThreadCount": 5,
 "configuredServerCount": 3,
 "activeServerCount": 1,
 "overallServiceHealth": {"state": "ok"}
 }
}

/management/wls/{version}/changeManager

/management/wls/{version}/changeManager

The changeManager resource returns information about edit sessions. Use this resource to explicitly manage an edit session:

	
Use the changeManager to start an edit session.

	
Use other resources to make any number of configuration changes, such as configuring data sources and deploying applications.

	
Use the changeManager to either cancel all the changes in the edit session or activate them.

This strategy batches all the changes together which is typically most useful in a production environment when a number of configuration changes need to be made together before they are ready to be exposed to clients.

With implicit edit sessions, instead of using the changeManager, just use other resources to change the configuration (for example, create a data source). Each REST call to change the configuration will start its own edit session, make the change, and then activate the change. This is useful for small tweaks to the configuration as typically performed in development environments.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns information about the current status of the edit session.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a ChangeManager entity.

This method can return the following links:

	
uri=/management/wls/{version} rel=parent

	
uri=/management/wls/{version}/changeManager/startEdit rel=action title=startEdit

	
uri=/management/wls/{version}/changeManager/cancelEdit rel=action title=cancelEdit

	
uri=/management/wls/{version}/changeManager/activate rel=action title=activate

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing Change Management Information
	
This example uses the GET method to return change manager information.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/changeManager

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/changeManager\/startEdit",
 "title": "startEdit"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/changeManager\/cancelEdit",
 "title": "cancelEdit"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/changeManager\/activate",
 "title": "activate"
 }
],
 "item": {"locked": false}
}

/management/wls/{version}/changeManager/activate

/management/wls/{version}/changeManager/activate

This resource activates the changes.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource activates changes saved during the current editing session but not yet deployed.

Roles

Administrator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Activating Configuration Changes
	
This example uses the POST method to activate any outstanding changes in the current session.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/changeManager/activate

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "The changes are activated successfully.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/changeManager/cancelEdit

/management/wls/{version}/changeManager/cancelEdit

This resource cancels the current edit session.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource cancels the current edit session, releases the edit lock, and discards saved or unsaved changes.

Roles

Administrator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Stopping an Edit Session
	
This example uses the POST method to cancel the current edit session.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/changeManager/cancelEdit

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Edit session has been cancelled successfully.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/changeManager/startEdit

/management/wls/{version}/changeManager/startEdit

This resource starts a configuration edit session.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource starts the edit session.

Roles

Administrator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Starting an Edit Session
	
This example uses the POST method to begin a new edit session.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/changeManager/startEdit

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Started edit session, please be sure to save and activate your changes once you are done.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources

/management/wls/{version}/datasources

This resource manages the data sources that run in this WLS domain.

The resource supports the following methods:

	
GET Method

	
OPTIONS Method

	
POST Method

GET Method

The GET method on this resource returns a listing of all the data sources in this WLS domain.

Roles

Administrator, Deployer, Operator, Monitor

Request Query Parameters

This method supports optional query parameters which can be used to constrain the fields included in the response. Constraining the fields to only the information that you require may yield faster response times when interacting with large data sets.

	?_excludeFields=field1[,field2, ...]
	
(Optional) Specifies that these values are not required and may be omitted in a response.

	?_includeFields=field1[,field2, ...]
	
(Optional) Specifies that these values are required and must be included in the response.

Include and exclude are mutually exclusive, and if neither is specified all available information is included.

Response Body

The response body returned includes a collection of DataSource entities. It also contains links to their corresponding resources.

This method can return the following links:

	
uri=/management/wls/{version}/datasources/drivers rel=drivers

	
uri=/management/wls/{version}/datasources/test rel=test

	
uri=/management/wls/{version} rel=parent

	
uri=/management/wls/{version}/datasources/id/{data-source-name} rel=items.name title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing Data Sources
	
This example uses the GET method to display information about all configured data sources.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/datasources

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest"
 },
 {
 "rel": "vendors",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors"
 },
 {
 "rel": "test",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/test"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource",
 "title": "TestDataSource"
 }
],
 "items": [{
 "name": "TestDataSource",
 "targets": [
 "myserver",
 "Cluster-0"
],
 "jdbcDataSourceParams": {
 "scope": "global",
 "dataSourceList": null,
 "globalTransactionsProtocol": "one phase commit",
 "rowPrefetchSize": 48,
 "streamChunkSize": 256,
 "algorithmType": "failover",
 "connectionPoolFailoverCallbackHandler": null,
 "failoverRequestIfBusy": false,
 "rowPrefetch": false,
 "jndiNames": [
 "jndiName1",
 "jndiName2"
],
 "keepConnAfterLocalTx": true,
 "keepConnAfterGlobalTx": false
 },
 "jdbcConnectionPoolParams": {
 "driverInterceptor": "",
 "connectionHarvestMaxCount": 1,
 "connectionHarvestTriggerCount": -1,
 "minCapacity": 1,
 "profileType": 0,
 "connectionLabelingCallback": "",
 "maxCapacity": 15,
 "highestNumWaiters": 2147483647,
 "loginDelaySeconds": 0,
 "secondsToTrustAnIdlePoolConnection": 10,
 "initialCapacity": 1,
 "shrinkFrequencySeconds": 900,
 "testFrequencySeconds": 120,
 "testTableName": "SQL SELECT 1 FROM SYS.SYSTABLES",
 "testConnectionsOnReserve": false,
 "connectionReserveTimeoutSeconds": 10,
 "connectionCreationRetryFrequencySeconds": 0,
 "inactiveConnectionTimeoutSeconds": 0,
 "statementCacheSize": 10,
 "statementCacheType": "least recently used",
 "statementTimeout": -1,
 "countOfTestFailuresTillFlush": 2,
 "countOfRefreshFailuresTillDisable": 2,
 "profileHarvestFrequencySeconds": 300,
 "initSql": "",
 "fatalErrorCodes": "",
 "removeInfectedConnections": true,
 "jdbcXaDebugLevel": 10,
 "ignoreInUseConnectionsEnabled": true,
 "credentialMappingEnabled": false,
 "pinnedToThread": false,
 "identityBasedConnectionPoolingEnabled": false,
 "wrapTypes": true,
 "wrapJdbc": true
 },
 "jdbcDriverParams": {
 "properties": [
 {
 "name": "portNumber",
 "value": "1527"
 },
 {
 "name": "databaseName",
 "value": "demo;create=true"
 },
 {
 "name": "serverName",
 "value": "localhost"
 }
],
 "driverName": "org.apache.derby.jdbc.ClientXADataSource",
 "systemProperties": [],
 "url": "jdbc:derby:\/\/localhost:1527\/demo",
 "useXaDataSourceInterface": true,
 "usePasswordIndirection": false
 },
 "aggregateMetrics": {
 "reserveRequestCount": 0,
 "failedReserveRequestCount": 0,
 "waitingForConnectionTotal": 0,
 "waitingForConnectionSuccessTotal": 0,
 "waitingForConnectionFailureTotal": 0,
 "currCapacityHighCount": 3,
 "state": "Running",
 "prepStmtCacheAccessCount": 0,
 "prepStmtCacheAddCount": 0,
 "prepStmtCacheDeleteCount": 0,
 "prepStmtCacheCurrentSize": 0,
 "prepStmtCacheHitCount": 0,
 "prepStmtCacheMissCount": 0,
 "currCapacity": 3,
 "numAvailable": 3,
 "highestNumAvailable": 3,
 "numUnavailable": 0,
 "highestNumUnavailable": 0,
 "leakedConnectionCount": 0,
 "failuresToReconnectCount": 0,
 "connectionDelayTime": 238,
 "activeConnectionsCurrentCount": 0,
 "waitingForConnectionCurrentCount": 0,
 "activeConnectionsHighCount": 0,
 "waitingForConnectionHighCount": 0,
 "waitSecondsHighCount": 0,
 "connectionsTotalCount": 3,
 "activeConnectionsAverageCount": 0
 },
 "dataSourceMetrics": [
 {
 "reserveRequestCount": 0,
 "failedReserveRequestCount": 0,
 "waitingForConnectionTotal": 0,
 "waitingForConnectionSuccessTotal": 0,
 "waitingForConnectionFailureTotal": 0,
 "currCapacityHighCount": 1,
 "state": "Running",
 "prepStmtCacheAccessCount": 0,
 "prepStmtCacheAddCount": 0,
 "prepStmtCacheDeleteCount": 0,
 "prepStmtCacheCurrentSize": 0,
 "prepStmtCacheHitCount": 0,
 "prepStmtCacheMissCount": 0,
 "currCapacity": 1,
 "numAvailable": 1,
 "highestNumAvailable": 1,
 "numUnavailable": 0,
 "highestNumUnavailable": 0,
 "leakedConnectionCount": 0,
 "failuresToReconnectCount": 0,
 "connectionDelayTime": 238,
 "activeConnectionsCurrentCount": 0,
 "waitingForConnectionCurrentCount": 0,
 "activeConnectionsHighCount": 0,
 "waitingForConnectionHighCount": 0,
 "waitSecondsHighCount": 0,
 "connectionsTotalCount": 1,
 "activeConnectionsAverageCount": 0,
 "serverName": "Cluster-0-Server-2"
 },
 {
 "reserveRequestCount": 0,
 "failedReserveRequestCount": 0,
 "waitingForConnectionTotal": 0,
 "waitingForConnectionSuccessTotal": 0,
 "waitingForConnectionFailureTotal": 0,
 "currCapacityHighCount": 1,
 "state": "Running",
 "prepStmtCacheAccessCount": 0,
 "prepStmtCacheAddCount": 0,
 "prepStmtCacheDeleteCount": 0,
 "prepStmtCacheCurrentSize": 0,
 "prepStmtCacheHitCount": 0,
 "prepStmtCacheMissCount": 0,
 "currCapacity": 1,
 "numAvailable": 1,
 "highestNumAvailable": 1,
 "numUnavailable": 0,
 "highestNumUnavailable": 0,
 "leakedConnectionCount": 0,
 "failuresToReconnectCount": 0,
 "connectionDelayTime": 238,
 "activeConnectionsCurrentCount": 0,
 "waitingForConnectionCurrentCount": 0,
 "activeConnectionsHighCount": 0,
 "waitingForConnectionHighCount": 0,
 "waitSecondsHighCount": 0,
 "connectionsTotalCount": 1,
 "activeConnectionsAverageCount": 0,
 "serverName": "Cluster-0-Server-1"
 },
 {
 "reserveRequestCount": 0,
 "failedReserveRequestCount": 0,
 "waitingForConnectionTotal": 0,
 "waitingForConnectionSuccessTotal": 0,
 "waitingForConnectionFailureTotal": 0,
 "currCapacityHighCount": 1,
 "state": "Running",
 "prepStmtCacheAccessCount": 0,
 "prepStmtCacheAddCount": 0,
 "prepStmtCacheDeleteCount": 0,
 "prepStmtCacheCurrentSize": 0,
 "prepStmtCacheHitCount": 0,
 "prepStmtCacheMissCount": 0,
 "currCapacity": 1,
 "numAvailable": 1,
 "highestNumAvailable": 1,
 "numUnavailable": 0,
 "highestNumUnavailable": 0,
 "leakedConnectionCount": 0,
 "failuresToReconnectCount": 0,
 "connectionDelayTime": 4,
 "activeConnectionsCurrentCount": 0,
 "waitingForConnectionCurrentCount": 0,
 "activeConnectionsHighCount": 0,
 "waitingForConnectionHighCount": 0,
 "waitSecondsHighCount": 0,
 "connectionsTotalCount": 1,
 "activeConnectionsAverageCount": 0,
 "serverName": "myserver"
 }
]
 }]
}

OPTIONS Method

The OPTIONS method on this resource returns a template entity that has been pre-populated with default values.

If you want to create a data source, call this method to get the template, fill in values, such as the driver class name and database URL, then use it in the POST method to create the data source.

Roles

Administrator

Response Body

The response body returned includes a DataSource template entity that can be customized and then used to create a new data source.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting a Template Data Source Entity
	
This example uses the OPTIONS method to obtain a template for a data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X OPTIONS http://localhost:7001/management/wls/latest/datasources

Example Response

HTTP/1.1 200 OK

Response Body:
{"item": {
 "name": "DataSource-0",
 "targets": [],
 "jdbcDataSourceParams": {
 "scope": "global",
 "dataSourceList": null,
 "globalTransactionsProtocol": "one phase commit",
 "rowPrefetchSize": 48,
 "streamChunkSize": 256,
 "algorithmType": "failover",
 "connectionPoolFailoverCallbackHandler": null,
 "failoverRequestIfBusy": false,
 "rowPrefetch": false,
 "jndiNames": [],
 "keepConnAfterLocalTx": true,
 "keepConnAfterGlobalTx": false
 },
 "jdbcConnectionPoolParams": {
 "driverInterceptor": "",
 "connectionHarvestMaxCount": 1,
 "connectionHarvestTriggerCount": -1,
 "minCapacity": 1,
 "profileType": 0,
 "connectionLabelingCallback": "",
 "maxCapacity": 15,
 "highestNumWaiters": 2147483647,
 "loginDelaySeconds": 0,
 "secondsToTrustAnIdlePoolConnection": 10,
 "initialCapacity": 1,
 "shrinkFrequencySeconds": 900,
 "testFrequencySeconds": 120,
 "testTableName": null,
 "testConnectionsOnReserve": false,
 "connectionReserveTimeoutSeconds": 10,
 "connectionCreationRetryFrequencySeconds": 0,
 "inactiveConnectionTimeoutSeconds": 0,
 "statementCacheSize": 10,
 "statementCacheType": "least recently used",
 "statementTimeout": -1,
 "countOfTestFailuresTillFlush": 2,
 "countOfRefreshFailuresTillDisable": 2,
 "profileHarvestFrequencySeconds": 300,
 "initSql": "",
 "fatalErrorCodes": "",
 "removeInfectedConnections": true,
 "jdbcXaDebugLevel": 10,
 "ignoreInUseConnectionsEnabled": true,
 "credentialMappingEnabled": false,
 "pinnedToThread": false,
 "identityBasedConnectionPoolingEnabled": false,
 "wrapTypes": true,
 "wrapJdbc": true
 },
 "jdbcDriverParams": {
 "properties": [],
 "password": null,
 "driverName": null,
 "systemProperties": [],
 "url": null,
 "useXaDataSourceInterface": true,
 "usePasswordIndirection": false
 },
 "aggregateMetrics": {
 "reserveRequestCount": 0,
 "failedReserveRequestCount": 0,
 "waitingForConnectionTotal": 0,
 "waitingForConnectionSuccessTotal": 0,
 "waitingForConnectionFailureTotal": 0,
 "currCapacityHighCount": 0,
 "state": null,
 "prepStmtCacheAccessCount": 0,
 "prepStmtCacheAddCount": 0,
 "prepStmtCacheDeleteCount": 0,
 "prepStmtCacheCurrentSize": 0,
 "prepStmtCacheHitCount": 0,
 "prepStmtCacheMissCount": 0,
 "currCapacity": 0,
 "numAvailable": 0,
 "highestNumAvailable": 0,
 "numUnavailable": 0,
 "highestNumUnavailable": 0,
 "leakedConnectionCount": 0,
 "failuresToReconnectCount": 0,
 "connectionDelayTime": 0,
 "activeConnectionsCurrentCount": 0,
 "waitingForConnectionCurrentCount": 0,
 "activeConnectionsHighCount": 0,
 "waitingForConnectionHighCount": 0,
 "waitSecondsHighCount": 0,
 "connectionsTotalCount": 0,
 "activeConnectionsAverageCount": 0,
 "serverName": null
 },
 "dataSourceMetrics": []
}}

POST Method

The POST method on this resource creates a new data source.

Roles

Administrator

Request Body

The request body must include a fully populated DataSource entity that describes the new data source. Read only parameter values are ignored.

Response Body

The response body contains a message that states that the data source was created.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Creating a Data Source
	
This example uses the POST method to create a new data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 'name': 'TestDataSource',
 'targets': ['myserver', 'Cluster-0'],
 'jdbcDriverParams': {
 'properties': [
 { name: 'portNumber', value: '1527' },
 { name: 'databaseName', value: 'demo;create=true' },
 { name: 'serverName', value: 'localhost' }
],
 'password': 'password1',
 'driverName': 'org.apache.derby.jdbc.ClientXADataSource',
 'url': 'jdbc:derby://localhost:1527/demo',
 'systemProperties': [],
 'usePasswordIndirection': false,
 'useXaDataSourceInterface': true
 },
 'jdbcDataSourceParams': {
 'scope': 'global',
 'algorithmType': 'failover',
 'connectionPoolFailoverCallbackHandler': null,
 'failoverRequestIfBusy': false,
 'dataSourceList': null,
 'globalTransactionsProtocol': 'one phase commit',
 'rowPrefetchSize': 48,
 'streamChunkSize': 256,
 'rowPrefetch': false,
 'keepConnAfterLocalTx': true,
 'keepConnAfterGlobalTx': false,
 'jndiNames': ['jndiName1', 'jndiName2']
 },
 'jdbcConnectionPoolParams': {
 'profileHarvestFrequencySeconds': 300,
 'driverInterceptor': '',
 'connectionHarvestMaxCount': 1,
 'connectionHarvestTriggerCount': -1,
 'minCapacity': 1,
 'profileType': 0,
 'connectionLabelingCallback': '',
 'maxCapacity': 15,
 'highestNumWaiters': 2147483647,
 'loginDelaySeconds': 0,
 'secondsToTrustAnIdlePoolConnection': 10,
 'initialCapacity': 1,
 'shrinkFrequencySeconds': 900,
 'testFrequencySeconds': 120,
 'testTableName': 'SQL SELECT 1 FROM SYS.SYSTABLES',
 'testConnectionsOnReserve': false,
 'connectionReserveTimeoutSeconds': 10,
 'connectionCreationRetryFrequencySeconds': 0,
 'inactiveConnectionTimeoutSeconds': 0,
 'statementCacheSize': 10,
 'statementCacheType': 'least recently used',
 'statementTimeout': -1,
 'countOfTestFailuresTillFlush': 2,
 'countOfRefreshFailuresTillDisable': 2,
 'fatalErrorCodes': '',
 'initSql': '',
 'ignoreInUseConnectionsEnabled': true,
 'removeInfectedConnections': true,
 'credentialMappingEnabled': false,
 'pinnedToThread': false,
 'identityBasedConnectionPoolingEnabled': false,
 'wrapTypes': true,
 'wrapJdbc': true,
 'jdbcXaDebugLevel': 10
 }
}" \
-X POST http://localhost:7001/management/wls/latest/datasources

Example Response

HTTP/1.1 201 Created

Location: http://localhost:7001/management/wls/latest/datasources/id/TestDataSource

Response Body:
{"messages": [{
 "message": "Successfully created 'TestDataSource'.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}

/management/wls/{version}/datasources/id/{data-source-name}

This resource manages the data source identified by the resource URL.

The resource supports the following methods:

	
DELETE Method

	
GET Method

	
POST Method

DELETE Method

The DELETE method deletes the data source identified by the resource URL.

Roles

Administrator

Response Body

The response body returned contains a message stating that the data source's configuration was deleted.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Deleting a Data Source
	
This example uses the DELETE method to remove a data source configuration.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X DELETE http://localhost:7001/management/wls/latest/datasources/id/TestDataSource

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Successfully deleted 'TestDataSource'.",
 "severity": "SUCCESS"
}]}

GET Method

The GET method on this resource returns information about the data source identified by the resource URL.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a DataSource entity that contains information about the specified data source.

This method can return the following links:

	
uri=/management/wls/{version}/datasources rel=parent

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/start rel=action title=start

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/shutdown rel=action title=shutdown

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/test rel=action title=test

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/clearStatementCache rel=action title=clearStatementCache

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/reset rel=action title=reset

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/shrink rel=action title=shrink

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/suspend rel=action title=suspend

	
uri=/management/wls/{version}/datasources/id/{data-source-name}/resume rel=action title=resume

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing a Data Source
	
This example uses the GET method to find information about a specific data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/datasources/id/TestDataSource

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/start",
 "title": "start"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/shutdown",
 "title": "shutdown"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/test",
 "title": "test"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/clearStatementCache",
 "title": "clearStatementCache"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/reset",
 "title": "reset"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/shrink",
 "title": "shrink"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/suspend",
 "title": "suspend"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/id\/TestDataSource\/resume",
 "title": "resume"
 }
],
 "item": {
 "name": "TestDataSource",
 "targets": [
 "myserver",
 "Cluster-0"
],
 "jdbcDataSourceParams": {
 "scope": "global",
 "dataSourceList": null,
 "globalTransactionsProtocol": "one phase commit",
 "rowPrefetchSize": 96,
 "streamChunkSize": 256,
 "algorithmType": "failover",
 "connectionPoolFailoverCallbackHandler": null,
 "failoverRequestIfBusy": false,
 "rowPrefetch": true,
 "jndiNames": [
 "jndiName1",
 "jndiName2",
 "jndiName3"
],
 "keepConnAfterLocalTx": true,
 "keepConnAfterGlobalTx": false
 },
 "jdbcConnectionPoolParams": {
 "driverInterceptor": "",
 "connectionHarvestMaxCount": 1,
 "connectionHarvestTriggerCount": -1,
 "minCapacity": 1,
 "profileType": 0,
 "connectionLabelingCallback": "",
 "maxCapacity": 30,
 "highestNumWaiters": 2147483647,
 "loginDelaySeconds": 0,
 "secondsToTrustAnIdlePoolConnection": 10,
 "initialCapacity": 2,
 "shrinkFrequencySeconds": 900,
 "testFrequencySeconds": 120,
 "testTableName": "SQL SELECT 1 FROM SYS.SYSTABLES",
 "testConnectionsOnReserve": false,
 "connectionReserveTimeoutSeconds": 10,
 "connectionCreationRetryFrequencySeconds": 0,
 "inactiveConnectionTimeoutSeconds": 0,
 "statementCacheSize": 10,
 "statementCacheType": "least recently used",
 "statementTimeout": -1,
 "countOfTestFailuresTillFlush": 2,
 "countOfRefreshFailuresTillDisable": 2,
 "profileHarvestFrequencySeconds": 300,
 "initSql": "",
 "fatalErrorCodes": "",
 "removeInfectedConnections": true,
 "jdbcXaDebugLevel": 10,
 "ignoreInUseConnectionsEnabled": true,
 "credentialMappingEnabled": false,
 "pinnedToThread": false,
 "identityBasedConnectionPoolingEnabled": false,
 "wrapTypes": true,
 "wrapJdbc": true
 },
 "jdbcDriverParams": {
 "properties": [
 {
 "name": "portNumber",
 "value": "1527"
 },
 {
 "name": "databaseName",
 "value": "demo;create=true"
 },
 {
 "name": "serverName",
 "value": "localhost"
 }
],
 "driverName": "org.apache.derby.jdbc.ClientXADataSource",
 "systemProperties": [],
 "url": "jdbc:derby:\/\/localhost:1527\/demo",
 "useXaDataSourceInterface": true,
 "usePasswordIndirection": false
 },
 "aggregateMetrics": {
 "reserveRequestCount": 3,
 "failedReserveRequestCount": 0,
 "waitingForConnectionTotal": 0,
 "waitingForConnectionSuccessTotal": 0,
 "waitingForConnectionFailureTotal": 0,
 "currCapacityHighCount": 3,
 "state": "Shutdown",
 "prepStmtCacheAccessCount": 0,
 "prepStmtCacheAddCount": 0,
 "prepStmtCacheDeleteCount": 0,
 "prepStmtCacheCurrentSize": 0,
 "prepStmtCacheHitCount": 0,
 "prepStmtCacheMissCount": 0,
 "currCapacity": 0,
 "numAvailable": 0,
 "highestNumAvailable": 3,
 "numUnavailable": 0,
 "highestNumUnavailable": 3,
 "leakedConnectionCount": 0,
 "failuresToReconnectCount": 0,
 "connectionDelayTime": 238,
 "activeConnectionsCurrentCount": 0,
 "waitingForConnectionCurrentCount": 0,
 "activeConnectionsHighCount": 3,
 "waitingForConnectionHighCount": 0,
 "waitSecondsHighCount": 0,
 "connectionsTotalCount": 3,
 "activeConnectionsAverageCount": 0
 },
 "dataSourceMetrics": [
 {
 "reserveRequestCount": 1,
 "failedReserveRequestCount": 0,
 "waitingForConnectionTotal": 0,
 "waitingForConnectionSuccessTotal": 0,
 "waitingForConnectionFailureTotal": 0,
 "currCapacityHighCount": 1,
 "state": "Shutdown",
 "prepStmtCacheAccessCount": 0,
 "prepStmtCacheAddCount": 0,
 "prepStmtCacheDeleteCount": 0,
 "prepStmtCacheCurrentSize": 0,
 "prepStmtCacheHitCount": 0,
 "prepStmtCacheMissCount": 0,
 "currCapacity": 0,
 "numAvailable": 0,
 "highestNumAvailable": 1,
 "numUnavailable": 0,
 "highestNumUnavailable": 1,
 "leakedConnectionCount": 0,
 "failuresToReconnectCount": 0,
 "connectionDelayTime": 4,
 "activeConnectionsCurrentCount": 0,
 "waitingForConnectionCurrentCount": 0,
 "activeConnectionsHighCount": 1,
 "waitingForConnectionHighCount": 0,
 "waitSecondsHighCount": 0,
 "connectionsTotalCount": 1,
 "activeConnectionsAverageCount": 0,
 "serverName": "myserver"
 }
]
 }
}

POST Method

The POST method on this resource reconfigures the data source identified by the resource URL.

Roles

Administrator

Request Body

The POST request body must include a fully populated DataSource entity that contains the desired data source configuration. Read only parameter values are ignored.

Response Body

The response body returned contains a message stating that the data source's configuration was updated.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Editing a Data Source
	
This example uses the POST method to update a data source configuration.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 'name': 'TestDataSource',
 'targets': ['myserver', 'Cluster-0'],
 'jdbcDriverParams': {
 'properties': [
 { name: 'portNumber', value: '1527' },
 { name: 'databaseName', value: 'demo;create=true' },
 { name: 'serverName', value: 'localhost' }
],
 'password': 'password1',
 'driverName': 'org.apache.derby.jdbc.ClientXADataSource',
 'url': 'jdbc:derby://localhost:1527/demo',
 'systemProperties': [],
 'usePasswordIndirection': false,
 'useXaDataSourceInterface': true
 },
 'jdbcDataSourceParams': {
 'scope': 'global',
 'algorithmType': 'failover',
 'connectionPoolFailoverCallbackHandler': null,
 'failoverRequestIfBusy': false,
 'dataSourceList': null,
 'globalTransactionsProtocol': 'one phase commit',
 'rowPrefetchSize': 96,
 'streamChunkSize': 256,
 'rowPrefetch': true,
 'keepConnAfterLocalTx': true,
 'keepConnAfterGlobalTx': false,
 'jndiNames': ['jndiName1', 'jndiName2', 'jndiName3']
 },
 'jdbcConnectionPoolParams': {
 'profileHarvestFrequencySeconds': 300,
 'driverInterceptor': '',
 'connectionHarvestMaxCount': 1,
 'connectionHarvestTriggerCount': -1,
 'minCapacity': 1,
 'profileType': 0,
 'connectionLabelingCallback': '',
 'maxCapacity': 30,
 'highestNumWaiters': 2147483647,
 'loginDelaySeconds': 0,
 'secondsToTrustAnIdlePoolConnection': 10,
 'initialCapacity': 2,
 'shrinkFrequencySeconds': 900,
 'testFrequencySeconds': 120,
 'testTableName': 'SQL SELECT 1 FROM SYS.SYSTABLES',
 'testConnectionsOnReserve': false,
 'connectionReserveTimeoutSeconds': 10,
 'connectionCreationRetryFrequencySeconds': 0,
 'inactiveConnectionTimeoutSeconds': 0,
 'statementCacheSize': 10,
 'statementCacheType': 'least recently used',
 'statementTimeout': -1,
 'countOfTestFailuresTillFlush': 2,
 'countOfRefreshFailuresTillDisable': 2,
 'fatalErrorCodes': '',
 'initSql': '',
 'ignoreInUseConnectionsEnabled': true,
 'removeInfectedConnections': true,
 'credentialMappingEnabled': false,
 'pinnedToThread': false,
 'identityBasedConnectionPoolingEnabled': false,
 'wrapTypes': true,
 'wrapJdbc': true,
 'jdbcXaDebugLevel': 10
 }
}" \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Successfully updated 'TestDataSource'.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/clearStatementCache

/management/wls/{version}/datasources/id/{data-source-name}/clearStatementCache

This resource clears the statement cache for each connection in the data source. If statement caching is enabled for a data source, WebLogic Server caches prepared and callable statements that are used in each connection in the data source. Each connection has its own cache, but the caches for each connection are configured and managed as a group. When you clear the statement cache for a data source, you clear the statement cache for all connections in the instance of the data source you select.

When you clear a statement that is currently in use by an application, WebLogic Server removes the statement from the cache, but does not close it. When you clear a statement that is not currently in use, WebLogic Server removes the statement from the cache and closes it.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource clears the statement cache for each connection in the data source.

Roles

Administrator, Deployer, Operator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Clearing a Data Source's Statement Caches
	
This example uses the POST method to clear the statement caches for a specific data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/clearStatementCache

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' was successfully cleared.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/reset

/management/wls/{version}/datasources/id/{data-source-name}/reset

This resource resets a data source. When you reset the database connections in a JDBC data source, WebLogic Server closes and recreates all available database connections in the pool of connections in the data source.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource resets the database connections for a data source.

Roles

Administrator, Deployer, Operator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Resetting a Data Source
	
This example uses the POST method to reset the database connections for a data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/reset

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' was successfully reset.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/resume

/management/wls/{version}/datasources/id/{data-source-name}/resume

This resource resumes a suspended data source. When you resume a data source, WebLogic Server marks the data source as enabled and allows applications to reserve connections from the data source. If you suspended the data source (not forcibly suspended), all connections are preserved exactly as they were before the data source was suspended. Clients that had reserved a connection before the data source was suspended can continue exactly where they left off.

NOTE: You cannot resume a data source that did not start correctly, for example, if the database server is unavailable.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource resumes individual data sources that are in the Suspended state.

Roles

Administrator, Deployer, Operator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Resuming a Suspended Data Source
	
This example uses the POST method to resume a suspended data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/resume

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' was successfully resumed.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/shrink

/management/wls/{version}/datasources/id/{data-source-name}/shrink

This resource shrinks the pool of database connections in individual instances of a data source.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource shrinks the connection pool in a data source.

Roles

Administrator, Deployer, Operator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Shrinking The Connection Pool in a Data Source
	
This example uses the POST method to shrink the connection pool for a specific data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/shrink

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' was successfully shrunken.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/shutdown

/management/wls/{version}/datasources/id/{data-source-name}/shutdown

This resource shuts down a running data source. When you shut down a data source (not forcibly shut down), WebLogic Server closes database connections in the data source and shuts down the data source. If any connections from the data source are currently in use, the operation will fail.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource shuts down a data source.

Roles

Administrator, Deployer, Operator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Shutting Down a Data Source
	
This example uses the POST method to shut down a data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/shutdown

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' was successfully stopped.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/start

/management/wls/{version}/datasources/id/{data-source-name}/start

This resource starts a stopped data source. Starting a data source re-initializes the data source, creates connections, and transitions the data source to a health state of Running.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource starts a data source.

Roles

Administrator, Deployer, Operator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Starting a Data Source
	
This example uses the POST method to start a data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/start

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' was successfully started.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/suspend

/management/wls/{version}/datasources/id/{data-source-name}/suspend

This resource suspends a data source. When you suspend a data source (not forcibly suspend), the data source is marked as disabled and applications cannot reserve connections from the pool. Applications that already have a reserved connection from the data source when it is suspended will get an exception when trying to reserve the connection. WebLogic Server preserves all connections in the data source exactly as they were before the data source was suspended.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource suspends individual instances of a data source. When you suspend a data source, applications can no longer get a database connection from the data source.

Roles

Administrator, Deployer, Operator

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Suspending a Data Source
	
This example uses the POST method to suspend a data source.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/suspend

Example Response

HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' was successfully suspended.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/id/{data-source-name}/test

/management/wls/{version}/datasources/id/{data-source-name}/test

This resource tests a data source's database connection.

The resource supports the following methods:

	
POST Method

POST Method

The POST method on this resource tests the data source's database connection.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

A success response body includes status messages returned by this operation.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Testing a Data Source
	
This example uses the POST method to test a data source's connectivity with a database.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/datasources/id/TestDataSource/test

Example Response

HHTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Data Source 'TestDataSource' is working correctly.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/datasources/test

/management/wls/{version}/datasources/test

This resource tests a database connection. It is typically used to verify the parameters that will be used to create a new data source.

The resource supports the following methods:

	
OPTIONS Method

	
POST Method

OPTIONS Method

The OPTIONS method on this resource returns a template entity that has been pre-populated with default values.

If you want to test a database connection, call this method to get the template, fill in values, such as the driver class name and connection URL, then use it in the POST method to test the connection.

Roles

Administrator, Deployer

Response Body

The response body returned includes a DatabaseDriverAttributes entity.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting a Template For Making a Database Connection For a Specific Driver
	
This example uses the OPTIONS method to obtain a template for a database connection.

Example Request

Example Response

POST Method

The POST method on this resource converts a set of driver-specific attributes into a generic database connection entity, properly formatting the connection URL and list of properties.

NOTE: Since REST resources are not allowed to return cleartext passwords, the returned driver does not have its password filled in, even though one of the driver attributes holds the password. To compensate for this, the client should hold on to the database driver attributes entity, use its passwordAttributeName property to find the attribute that holds the password, then set the password property on the returned database connection entity to that password.

Roles

Administrator, Deployer

Request Body

The request body must include a fully populated DatabaseDriverAttributes entity. Read only parameter values are ignored.

Response Body

The response body returned includes a DatabaseConnection entity.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Testing a Database Connection For a Specific Database
	
This example uses the POST method to test a database connection configuration.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 url: 'jdbc:derby://localhost:1527/demo',
 driverName: 'org.apache.derby.jdbc.ClientXADataSource',
 password: null,
 properties: [
 { name: 'portNumber', value: '1527' },
 { name: 'databaseName', value: 'demo;create=true' },
 { name: 'serverName', value: 'localhost' }
]
}" \
-X POST http://localhost:7001/management/wls/latest/datasources/test

Example Response

HTTP/1.1 200 OK

Response Body:
{"item": {
 "cause": [],
 "ok": true
}}

/management/wls/{version}/datasources/vendors

/management/wls/{version}/datasources/vendors

This resource lists the available database driver vendors in this WLS domain.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns a listing of this domain's available database driver vendors.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a collection of DatabaseVendor entities. Note that their drivers property is not populated.

This method can return the following links:

	
uri=/management/wls/{version}/datasources rel=parent

	
uri=/management/wls/{version}/datasources/vendors/id/{vendorName} rel=items.name title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing Available Database Driver Vendors
	
This example uses the GET method to discover all available database driver vendors known to a domain.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/datasources/vendors

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Adabas%20for%20z%2FOS",
 "title": "Adabas for z\/OS"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/CICS%2FTS%20for%20z%2FOS",
 "title": "CICS\/TS for z\/OS"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Cache",
 "title": "Cache"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Cloudscape",
 "title": "Cloudscape"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/DB2",
 "title": "DB2"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/DB2%20for%20i5%2FOS",
 "title": "DB2 for i5\/OS"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/DB2%20for%20z%2FOS",
 "title": "DB2 for z\/OS"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Derby",
 "title": "Derby"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/EnterpriseDB",
 "title": "EnterpriseDB"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/FirstSQL",
 "title": "FirstSQL"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/IMS%2FDB%20for%20z%2FOS",
 "title": "IMS\/DB for z\/OS"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/IMS%2FTM%20for%20z%2FOS",
 "title": "IMS\/TM for z\/OS"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Informix",
 "title": "Informix"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Ingres",
 "title": "Ingres"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/MS%20SQL%20Server",
 "title": "MS SQL Server"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/MaxDB",
 "title": "MaxDB"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/MySQL",
 "title": "MySQL"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Oracle",
 "title": "Oracle"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Oracle%20BI%20Server",
 "title": "Oracle BI Server"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Oracle%20TimesTen%20Client%20Connection",
 "title": "Oracle TimesTen Client Connection"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Oracle%20TimesTen%20Direct%20Connection",
 "title": "Oracle TimesTen Direct Connection"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/PointBase",
 "title": "PointBase"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/PostgreSQL",
 "title": "PostgreSQL"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Progress",
 "title": "Progress"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Sybase",
 "title": "Sybase"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/VSAM%20for%20z%2FOS",
 "title": "VSAM for z\/OS"
 }
],
 "items": [
 {"name": "Adabas for z\/OS"},
 {"name": "CICS\/TS for z\/OS"},
 {"name": "Cache"},
 {"name": "Cloudscape"},
 {"name": "DB2"},
 {"name": "DB2 for i5\/OS"},
 {"name": "DB2 for z\/OS"},
 {"name": "Derby"},
 {"name": "EnterpriseDB"},
 {"name": "FirstSQL"},
 {"name": "IMS\/DB for z\/OS"},
 {"name": "IMS\/TM for z\/OS"},
 {"name": "Informix"},
 {"name": "Ingres"},
 {"name": "MS SQL Server"},
 {"name": "MaxDB"},
 {"name": "MySQL"},
 {"name": "Oracle"},
 {"name": "Oracle BI Server"},
 {"name": "Oracle TimesTen Client Connection"},
 {"name": "Oracle TimesTen Direct Connection"},
 {"name": "PointBase"},
 {"name": "PostgreSQL"},
 {"name": "Progress"},
 {"name": "Sybase"},
 {"name": "VSAM for z\/OS"}
]
}

/management/wls/{version}/datasources/vendors/id/{vendor}

/management/wls/{version}/datasources/vendors/id/{vendor}

This resource describes a database driver vendor.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns a listing of this vendor's database drivers.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a DatabaseVendor entity.

This method can return the following links:

	
uri=/management/wls/{version}/datasources/vendors rel=parent

	
uri=/management/wls/{version}/datasources/vendors/id/{vendor}/id/{driverName} rel=item.drivers.name title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing a Vendor's Database Drivers
	
This example uses the GET method to discover all of the supported drivers for a database vendor.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/datasources/vendors/id/Derby

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors"
 },
 {
 "rel": "item.drivers.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Derby\/drivers\/id\/Derby's%20Driver%20(Type%204%20XA)%20Versions:Any",
 "title": "Derby's Driver (Type 4 XA) Versions:Any"
 },
 {
 "rel": "item.drivers.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Derby\/drivers\/id\/Derby's%20Driver%20(Type%204%20embedded)%20Versions:Any",
 "title": "Derby's Driver (Type 4 embedded) Versions:Any"
 },
 {
 "rel": "item.drivers.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/datasources\/vendors\/id\/Derby\/drivers\/id\/Derby's%20Driver%20(Type%204)%20Versions:Any",
 "title": "Derby's Driver (Type 4) Versions:Any"
 }
],
 "item": {
 "name": "Derby",
 "drivers": [
 {
 "name": "Derby's Driver (Type 4 XA) Versions:Any",
 "type": "Type 4",
 "description": null,
 "driverClassName": "org.apache.derby.jdbc.ClientXADataSource",
 "forXa": true,
 "testSql": "SELECT 1 FROM SYS.SYSTABLES"
 },
 {
 "name": "Derby's Driver (Type 4 embedded) Versions:Any",
 "type": "Type 4 embedded",
 "description": null,
 "driverClassName": "org.apache.derby.jdbc.EmbeddedDriver",
 "forXa": false,
 "testSql": "SELECT 1 FROM SYS.SYSTABLES"
 },
 {
 "name": "Derby's Driver (Type 4) Versions:Any",
 "type": "Type 4",
 "description": null,
 "driverClassName": "org.apache.derby.jdbc.ClientDriver",
 "forXa": false,
 "testSql": "SELECT 1 FROM SYS.SYSTABLES"
 }
]
 }
}

/management/wls/{version}/datasources/vendors/id/{vendor}/drivers/id/{driver-class-name}

/management/wls/{version}/datasources/vendors/id/{vendor}/drivers/id/{driver-class-name}

This resource helps construct a database connection that is appropriate to a specific database driver.

The resource supports the following methods:

	
OPTIONS Method

	
POST Method

OPTIONS Method

The OPTIONS method on this resource returns a template entity that has been pre-populated with default values.

If you want to construct an appropriate database connection for a specific kind of database driver, find the driver class name, then call this method to get a template that lists the attributes that must be filled in for this driver. After filling in the values, use it in the POST method which converts the completed template into a database connection.

Roles

Administrator, Deployer

Response Body

The response body returned includes a DatabaseDriverAttributes entity.

This method can return the following links:

	
uri=/management/wls/{version}/datasources/vendors/id/{vendor}/drivers/id/{driver-class-name}/connection rel=connection

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting a Template For Making a Database Connection For a Specific Driver
	
This example uses the OPTIONS method to obtain a template for a database driver configuration.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X OPTIONS http://localhost:7001/management/wls/latest/datasources/vendors/id/Derby/drivers/id/Derby's%20Driver%20(Type%204)%20Versions:Any

Example Response

HTTP/1.1 200 OK

Response Body:
{"item": {
 "attributes": [
 {
 "name": "DbmsHost",
 "value": null,
 "defaultValue": null,
 "description": null,
 "inUrl": true,
 "required": true
 },
 {
 "name": "DbmsPort",
 "value": "1527",
 "defaultValue": "1527",
 "description": null,
 "inUrl": true,
 "required": true
 },
 {
 "name": "DbmsName",
 "value": null,
 "defaultValue": null,
 "description": null,
 "inUrl": true,
 "required": true
 },
 {
 "name": "DbmsUsername",
 "value": null,
 "defaultValue": null,
 "description": null,
 "inUrl": false,
 "required": true
 },
 {
 "name": "DbmsPassword",
 "value": null,
 "defaultValue": null,
 "description": null,
 "inUrl": false,
 "required": true
 }
],
 "passwordAttributeName": "DbmsPassword"
}}

POST Method

The POST method on this resource converts a set of driver-specific attributes into a generic database connection entity, properly formatting the connection URL and list of properties.

NOTE: Since REST resources are not allowed to return cleartext passwords, the returned driver does not have its password filled in, even though one of the driver attributes holds the password. To compensate for this, the client should hold on to the database driver attributes entity, use its passwordAttributeName property to find the attribute that holds the password, then set the password property on the returned database connection entity to that password.

Roles

Administrator, Deployer

Request Body

The request body must include a fully populated DatabaseDriverAttributes entity. Read only parameter values are ignored.

Response Body

The response body returned includes a DatabaseConnection entity.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Creating a Database Connection For a Specific Database
	
This example uses the POST method to construct a database connection configuration.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 attributes: [
 { name: 'DbmsHost', value: 'localhost' },
 { name: 'DbmsPort', value: '1527' },
 { name: 'DbmsName', value: 'db1' },
 { name: 'DbmsUsername', value: 'u1' },
 { name: 'DbmsPassword', value: 'p1' }
]
}" \
-X POST http://localhost:7001/management/wls/latest/datasources/vendors/id/Derby/drivers/id/Derby's%20Driver%20(Type%204)%20Versions:Any

Example Response

HTTP/1.1 200 OK

Response Body:
{"item": {
 "properties": [
 {
 "name": "user",
 "value": "u1"
 },
 {
 "name": "portNumber",
 "value": "1527"
 },
 {
 "name": "databaseName",
 "value": "db1;create=true"
 },
 {
 "name": "serverName",
 "value": "localhost"
 }
],
 "driverName": "org.apache.derby.jdbc.ClientDriver",
 "url": "jdbc:derby:\/\/localhost:1527\/db1;ServerName=localhost;databaseName=db1"
}}

/management/wls/{version}/deployments

/management/wls/{version}/deployments

This resource lists the deployments that run in this WLS domain.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns a listing of all the deployments in this WLS domain.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a collection of Deployment entities. It also contains links to their corresponding resources.

This method can return the following links:

	
uri=/management/wls/{version}/deployments/inspect rel=inspect

	
uri=/management/wls/{version}/deployments/application rel=application

	
uri=/management/wls/{version}/deployments/library rel=library

	
uri=/management/wls/{version} rel=parent

	
uri=/management/wls/{version}/deployments/application/id/{application-name} rel=application title=name

	
uri=/management/wls/{version}/deployments/library/id/{library-name} rel=library title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing Deployments
	
This example uses the GET method to display all deployments in a domain.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/deployments

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest"
 },
 {
 "rel": "inspect",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/inspect"
 },
 {
 "rel": "application",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application"
 },
 {
 "rel": "library",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/library"
 },
 {
 "rel": "application",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/BasicApp",
 "title": "BasicApp"
 },
 {
 "rel": "library",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/library\/id\/airline",
 "title": "airline"
 }
],
 "items": [
 {
 "name": "BasicApp",
 "state": "active",
 "type": "application",
 "targets": ["myserver"],
 "displayName": "BasicApp",
 "deploymentPath": "\/deployments\/BasicApp\/app\/BasicApp.ear"
 },
 {
 "name": "airline",
 "state": "active",
 "type": "library",
 "targets": [
 "myserver",
 "Cluster-0"
],
 "displayName": "airline",
 "deploymentPath": "\/deployments\/airline.war"
 }
]
}

/management/wls/{version}/deployments/application

/management/wls/{version}/deployments/application

This resource manages the applications that are deployed in this WLS domain.

The resource supports the following methods:

	
GET Method

	
OPTIONS Method

	
POST Method

GET Method

The GET method on this resource returns a listing of all the applications in this WLS domain.

Roles

Administrator, Deployer, Operator, Monitor

Request Query Parameters

This method supports optional query parameters which can be used to constrain the fields included in the response. Constraining the fields to only the information that you require may yield faster response times when interacting with large data sets.

	?_excludeFields=field1[,field2, ...]
	
(optional) Specifies that these values are not required and may be omitted in a response.

	?_includeFields=field1[,field2, ...]
	
(optional) Specifies that these values are required and must be included in the response.

Include and exclude are mutually exclusive, and if neither is specified all available information is included.

Response Body

The response body returned includes a collection of Application entities. It also contains links to their corresponding resources.

This method can return the following links:

	
uri=/management/wls/{version}/deployments rel=parent

	
uri=/management/wls/{version}/deployments/application/id/{application-name} rel=items.name title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing Applications
	
This example uses the GET method to list all the applications in this WLS domain.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/deployments/application

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/fairShare",
 "title": "fairShare"
 }
],
 "items": [{
 "name": "fairShare",
 "state": "active",
 "type": "application",
 "targets": [
 "myserver",
 "Cluster-0"
],
 "servlets": [
 {
 "servletName": "SimpleSlowServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 },
 {
 "servletName": "SimpleFastServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 },
 {
 "servletName": "JspServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 },
 {
 "servletName": "FileServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 }
],
 "displayName": "fairShare",
 "urls": [
 "http:\/\/localhost:7001\/fairShare"
],
 "planPath": null,
 "applicationType": "war",
 "openSessionsCurrentCount": 0,
 "sessionsOpenedTotalCount": 0,
 "health": {"state": "ok"},
 "deploymentPath": "\/deployments\/fairShare.war",
 "ejbs": []
 }]
}

OPTIONS Method

The OPTIONS method on this resource returns a template entity that has been pre-populated with default values.

If you want to deploy an application, call this method to get the template, fill in values, such as the path to the application, then use it in the POST method to deploy the application.

Roles

Administrator

Response Body

The response body returned includes an Application template entity that can be customized and then used to deploy the application.

Response Codes

This method returns one of the Standard HTTP Status Codes.

POST Method

The resource supports the following methods:

	
POST Accepting "application/json"

	
POST Accepting "multipart/form-data"

POST Accepting "application/json"

This POST method deploys a new application when the files you want to deploy are already on the Administration Server file system.

Roles

Administrator

Request Query Parameters

This resource launches a job to deploy the application.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Request Body

The request body must include a fully populated Application entity that describes the new application. Read only parameter values are ignored.

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 201 Created status code and a Location header with a link to the new application resource. If the job timed out, the method returns a 202 Accepted status code and a Location header with a link to the expected new application resource.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code, a link to the job resource, and a Location header with a link to the expected new application resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Deploying an Application
	
This example uses the POST method to deploy a new application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 name: 'BasicApp',
 deploymentPath: '/deployments/BasicApp/app/BasicApp.ear',
 targets: ['myserver']
}" \
-X POST http://localhost:7001/management/wls/latest/deployments/application

Example Response

HTTP/1.1 201 Created

Location: http://localhost:7001/management/wls/latest/deployments/application/id/BasicApp

Response Body:
{
 "messages": [{
 "message": "Deployed the application 'BasicApp'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/0"
 }],
 "item": {
 "operation": "deploy",
 "status": "completed",
 "beginTime": 1390587114114,
 "endTime": 1390587115796,
 "name": "ADTR-0",
 "id": "0",
 "type": "deployment",
 "targets": [{
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "BasicApp",
 "description": "[Deployer:149026]deploy application BasicApp on myserver."
 }
}

	
	Example 2 Deploying an Application Asynchronously
	
This example uses the POST method to deploy a new application asynchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 name: 'fairShare',
 deploymentPath: '/deployments/fairShare.war'
}" \
-X POST http://localhost:7001/management/wls/latest/deployments/application?__detached=true

Example Response

 HTTP/1.1 202 Accepted

Location: http://localhost:7001/management/wls/latest/deployments/application/id/fairShare

Response Body:
{
 "messages": [{
 "message": "Deploying the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/31"
 }]
}

POST Accepting "multipart/form-data"

This POST method deploys a new application when the files you want to deploy are not on the Administration Server file system. It uploads the files to deploy from the client's file system to the Administration Server file system and then deploys them.

Note: When using a multi-part form to create, you need to:

	
Specify the file to deploy via the deployment form element.

	
Specify the plan to deploy via the plan form element.

	
Send in the rest of the template via the model form element.

Roles

Administrator

Request Query Parameters

This resource launches a job to upload and deploy the application.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Request Body

The request body includes form data with a Content-Type header of multipart/form-data and the following form fields:

	model
	
(Required) Specifies all the necessary information about the application to deploy except for the deployment archive and its corresponding deployment plan. The Content-Disposition header must have its name parameter set to model. The Content-Type header must be application/json and the content must be a JSON object containing an Application entity, excluding the deployment and plan fields.

	deployment
	
(Required) Specifies the deployment archive to be uploaded. The Content-Disposition header must have its name parameter set to deployment and must have a filename parameter set to the file name you want the uploaded deployment archive to have on the server. The Content-Type header must be application/octet-stream and the content must be the deployment archive data.

	plan
	
(Optional) Specifies the deployment plan to be uploaded. The Content-Disposition header must have its name parameter set to plan and must have a filename parameter set to the file name you want the uploaded deployment plan to have on the server. The Content-Type header must be application/octet-stream and the content must be the deployment plan data.

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 201 Created status code and a Location header with a link to the new library resource. If the job timed out, the method returns a 202 Accepted status code and a Location header with a link to the expected new library resource.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code, a link to the job resource, and a Location header with a link to the expected new library resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Uploading and Deploying an Application
	
This example uses the POST method to upload a deployment archive and deploy it as a new application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:multipart/form-data \
-F "model={
 name: 'myapp',
 targets: ['myserver', 'Cluster-0']
}" \
-F "deployment=@/deployments/MyApp/app/MyApp.ear" \
-X POST http://localhost:7001/management/wls/latest/deployments/application

Example Response

HTTP/1.1 100 Continue
 HTTP/1.1 201 Created

Location: http://localhost:7001/management/wls/latest/deployments/application/id/myapp

Response Body:
{
 "messages": [{
 "message": "Deployed the application 'myapp'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/27"
 }],
 "item": {
 "operation": "deploy",
 "status": "completed",
 "beginTime": 1390587191114,
 "endTime": 1390587192047,
 "name": "ADTR-27",
 "id": "27",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "myapp",
 "description": "[Deployer:149026]deploy application myapp on Cluster-0,myserver."
 }
}

/management/wls/{version}/deployments/application/id/{application-name}

/management/wls/{version}/deployments/application/id/{application-name}

This resource manages an application.

The resource supports the following methods:

	
DELETE Method

	
GET Method

DELETE Method

The DELETE method undeploys the application identified by the resource URL.

Roles

Administrator

Request Query Parameters

This resource launches a job to undeploy the application.

	_detached
	
(optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Undeploying an Application
	
This example uses the DELETE method to undeploy an application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X DELETE http://localhost:7001/management/wls/latest/deployments/application/id/BasicApp

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Undeployed the application 'BasicApp'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/2"
 }],
 "item": {
 "operation": "remove",
 "status": "completed",
 "beginTime": 1390587119309,
 "endTime": 1390587119588,
 "name": "ADTR-2",
 "id": "2",
 "type": "deployment",
 "targets": [{
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "BasicApp",
 "description": "[Deployer:149026]remove application BasicApp on myserver."
 }
}

	
	Example 2 Undeploying an Application Asynchronously
	
This example uses the DELETE method to undeploy an application asynchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X DELETE http://localhost:7001/management/wls/latest/deployments/application/id/fairShare?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Undeploying the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/35"
 }]
}

GET Method

The GET method on this resource returns information about the application identified by the resource URL.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes an Application entity that contains information about the specified application.

This method can return the following links:

	
uri=/management/wls/{version}/deployments/application/id/{application-name}/bindables rel=bindables

	
uri=/management/wls/{version}/deployments/application rel=parent

	
uri=/management/wls/{version}/deployments/application/id/{application-name}/redeploy rel=action title=redeploy

	
uri=/management/wls/{version}/deployments/application/id/{application-name}/update rel=action title=update

	
uri=/management/wls/{version}/deployments/application/id/{application-name}/start rel=action title=start

	
uri=/management/wls/{version}/deployments/application/id/{application-name}/stop rel=action title=stop

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing an Application
	
This example uses the GET method to display information about a specific application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/deployments/application/id/fairShare

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/fairShare\/redeploy",
 "title": "redeploy"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/fairShare\/update",
 "title": "update"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/fairShare\/start",
 "title": "start"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/fairShare\/stop",
 "title": "stop"
 },
 {
 "rel": "bindables",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/fairShare\/bindables"
 }
],
 "item": {
 "name": "fairShare",
 "state": "active",
 "type": "application",
 "targets": [
 "myserver",
 "Cluster-0"
],
 "servlets": [
 {
 "servletName": "SimpleSlowServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 },
 {
 "servletName": "SimpleFastServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 },
 {
 "servletName": "JspServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 },
 {
 "servletName": "FileServlet",
 "contextPath": "\/fairShare",
 "aggregateMetrics": {
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 },
 "servletMetrics": [
 {
 "serverName": "myserver",
 "executionTimeTotal": 0,
 "invocationTotalCount": 0,
 "reloadTotalCount": 0,
 "executionTimeHigh": 0,
 "executionTimeLow": 0
 }
]
 }
],
 "displayName": "fairShare",
 "urls": [
 "http:\/\/localhost:7001\/fairShare"
],
 "planPath": null,
 "applicationType": "war",
 "openSessionsCurrentCount": 0,
 "sessionsOpenedTotalCount": 0,
 "health": {"state": "ok"},
 "deploymentPath": "\/deployments\/fairShare.war",
 "ejbs": []
 }
}

/management/wls/{version}/deployments/application/id/{application-name}/bindables

/management/wls/{version}/deployments/application/id/{application-name}/bindables

This resource manages the external resource references for an application.

The resource supports the following methods:

	
GET Method

	
POST Method

GET Method

The GET method on this resource returns a listing of the external resource references for this application.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes an ApplicationBindables entity that contains information about external resource references for the specified application.

This method can return the following links:

	
uri=/management/wls/{version}/deployments/application/id/{application-name} rel=parent

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing the Application Bindables
	
This example uses the GET request to display the bindables for an application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/deployments/application/id/MyApp/bindables

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [{
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/application\/id\/MyApp"
 }],
 "item": {
 "writeable": true,
 "bindables": [
 {
 "name": "JNDIName",
 "jndiName": "gddsBean1",
 "path": [
 {
 "name": "ApplicationDescriptor",
 "type": "DescriptorMBean"
 },
 {
 "name": "gddsBean2",
 "type": "ResourceDescriptionBean"
 }
]
 },
 {
 "name": "JNDIName",
 "jndiName": "gddsBean1",
 "path": [
 {
 "name": "ApplicationDescriptor",
 "type": "DescriptorMBean"
 },
 {
 "name": "gddsBean3",
 "type": "ResourceEnvDescriptionBean"
 }
]
 },
 {
 "name": "JNDIName",
 "type": "ejb",
 "jndiName": "gddsBean1",
 "path": [
 {
 "name": "ApplicationDescriptor",
 "type": "DescriptorMBean"
 },
 {
 "name": "gddsBean1",
 "type": "EjbReferenceDescriptionBean"
 }
]
 },
 {
 "name": "JNDIName",
 "jndiName": "gddsBean",
 "path": [
 {
 "name": "mywar.war",
 "type": "AppDeploymentConfigurationModuleMBean"
 },
 {
 "name": "WebAppDescriptor",
 "type": "DescriptorMBean"
 },
 {
 "name": "gddsBean2",
 "type": "ResourceDescriptionBean"
 }
]
 },
 {
 "name": "JNDIName",
 "jndiName": "gddsBean",
 "path": [
 {
 "name": "mywar.war",
 "type": "AppDeploymentConfigurationModuleMBean"
 },
 {
 "name": "WebAppDescriptor",
 "type": "DescriptorMBean"
 },
 {
 "name": "gddsBean3",
 "type": "ResourceEnvDescriptionBean"
 }
]
 },
 {
 "name": "JNDIName",
 "type": "ejb",
 "jndiName": "gddsBean",
 "path": [
 {
 "name": "mywar.war",
 "type": "AppDeploymentConfigurationModuleMBean"
 },
 {
 "name": "WebAppDescriptor",
 "type": "DescriptorMBean"
 },
 {
 "name": "gddsBean1",
 "type": "EjbReferenceDescriptionBean"
 }
]
 }
]
 }
}

POST Method

The POST method updates external resource references for the application. The application must already have a deployment plan before you can call this method.

Roles

Administrator, Deployer

Request Body

The request body must include a fully populated ApplicationBindables entity that describes the bindables for the application.

Response Body

The response body returned contains a message stating that the application bindables were updated.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Updating the Application Bindables
	
This example uses the POST method to update the bindables for an application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 'bindables': [
 {
 'jndiName': 'JNDINAME1',
 'name': 'JNDIName',
 'type': 'Ejb',
 'path': [
 {
 'name': 'ApplicationDescriptor',
 'type': 'DescriptorMBean'
 },
 {
 'name': 'gddsBean1',
 'type': 'EjbReferenceDescriptionBean'
 }
]
 },
 {
 'jndiName': 'JNDINAME2',
 'name': 'JNDIName',
 'type': 'JmsConnectionFactory',
 'path': [
 {
 'name': 'ApplicationDescriptor',
 'type': 'DescriptorMBean'
 },
 {
 'name': 'gddsBean2',
 'type': 'ResourceDescriptionBean'
 }
]
 },
 {
 'jndiName': 'JNDINAME3',
 'name': 'JNDIName',
 'type': 'Resource Adapter',
 'path': [
 {
 'name': 'ApplicationDescriptor',
 'type': 'DescriptorMBean'
 },
 {
 'name': 'gddsBean3',
 'type': 'ResourceEnvDescriptionBean'
 }
]
 },
 {
 'jndiName': 'JNDINAME4',
 'name': 'JNDIName',
 'type': 'JmsConnectionFactory',
 'path': [
 {
 'name': 'mywar.war',
 'type': 'AppDeploymentConfigurationModuleMBean'
 },
 {
 'name': 'WebAppDescriptor',
 'type': 'DescriptorMBean'
 },
 {
 'type': 'WeblogicWebAppBean'
 },
 {
 'name': 'gddsBean2',
 'type': 'ResourceDescriptionBean'
 }
]
 },
 {
 'jndiName': 'JNDINAME5',
 'name': 'JNDIName',
 'type': 'Resource Adapter',
 'path': [
 {
 'name': 'mywar.war',
 'type': 'AppDeploymentConfigurationModuleMBean'
 },
 {
 'name': 'WebAppDescriptor',
 'type': 'DescriptorMBean'
 },
 {
 'type': 'WeblogicWebAppBean'
 },
 {
 'name': 'gddsBean3',
 'type': 'ResourceEnvDescriptionBean'
 }
]
 },
 {
 'jndiName': 'JNDINAME6',
 'name': 'JNDIName',
 'type': 'Ejb',
 'path': [
 {
 'name': 'mywar.war',
 'type': 'AppDeploymentConfigurationModuleMBean'
 },
 {
 'name': 'WebAppDescriptor',
 'type': 'DescriptorMBean'
 },
 {
 'type': 'WeblogicWebAppBean'
 },
 {
 'name': 'gddsBean1',
 'type': 'EjbReferenceDescriptionBean'
 }
]
 }
]
}" \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/MyApp/bindables

Example Response

HTTP/1.1 100 Continue
 HTTP/1.1 200 OK

Response Body:
{"messages": [{
 "message": "Successfully updated 'MyApp'.",
 "severity": "SUCCESS"
}]}

/management/wls/{version}/deployments/application/id/{application-name}/redeploy

/management/wls/{version}/deployments/application/id/{application-name}/redeploy

This resource redeploys an application.

The resource supports the following methods:

	
POST Method

POST Method

The resource supports the following methods:

	
POST Accepting "application/json"

	
POST Accepting "multipart/form-data"

POST Accepting "application/json"

This POST method redeploys the application identified by the resource URL. Use this method when the file to redeploy is already on the Administration Server file system. For example, you've physically replaced the file that the deployment refers to, and you want the deployment to start using the new file.

You should invoke this method after you have updated the underlying deployment archive or exploded directory.

Roles

Administrator, Deployer

Request Query Parameters

This resource launches a job to redeploy the application.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Redeploying an Application
	
This example uses the POST method to redeploy the specified application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/fairShare/redeploy

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Redeployed the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/25"
 }],
 "item": {
 "operation": "redeploy",
 "status": "completed",
 "beginTime": 1390587186018,
 "endTime": 1390587186120,
 "name": "ADTR-25",
 "id": "25",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "fairShare",
 "description": "[Deployer:149026]redeploy application fairShare on Cluster-0,myserver."
 }
}

	
	Example 2 Redeploying an Application Asynchronously
	
This example uses the POST method to redeploy the specified application asynchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/fairShare/redeploy?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Redeploying the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/34"
 }]
}

POST Accepting "multipart/form-data"

This POST method uploads and redeploys the application. Use this method when the file to redeploy exists on the client's file system. It uploads the file to the Administration Server and then signals the deployment to start using it.

Roles

Administrator

Request Query Parameters

This resource launches a job to upload and redeploy the application.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Request Body

The request body includes form data with a Content-Type header of multipart/form-data and the following form fields:

	deployment
	
(Required) Specifies the application to redeploy. The Content-Disposition header must have its name parameter set to deployment and must have a filename parameter set to the file name you want the deployment archive to have on the server. The Content-Type header must be application/octet-stream and the content must be the deployment archive data.

	plan
	
(Optional) Specifies the new deployment plan for the application. The Content-Disposition header must have its name parameter set to plan and must have a filename parameter set to the file name you want the deployment plan to have on the server. The Content-Type header must be application/octet-stream and the content must be the deployment plan data.

	archiveVersion
	
(Optional) Specifies the archive version, as a String. The Content-Disposition header must have its name parameter set to archiveVersion. The Content-Type header must be text/plain.

	planVersion
	
(Optional) Specifies the plan version, as a String. The Content-Disposition header must have its name parameter set to planVersion. The Content-Type header must be text/plain.

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Uploading and Redeploying an Application
	
This example uses the POST method to upload an archive and redeploy it as an application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:multipart/form-data \
-F "deployment=@/deployments/fairShare.war" \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/myapp/redeploy

Example Response

 HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Redeployed the application 'myapp'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/29"
 }],
 "item": {
 "operation": "deploy",
 "status": "completed",
 "beginTime": 1390587195811,
 "endTime": 1390587196066,
 "name": "ADTR-29",
 "id": "29",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "myapp",
 "description": "[Deployer:149026]deploy application myapp on Cluster-0,myserver."
 }
}

	
	Example 2 Uploading and Redeploying an Application Asynchronously
	
This example uses the POST method to upload an archive and redeploy it as an application asynchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:multipart/form-data \
-F "deployment=@/deployments/fairShare.war" \
-X POST http://localhost:7001/management/wls/latest/deployments/library/id/airline/redeploy?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Redeploying the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/13"
 }]
}

/management/wls/{version}/deployments/application/id/{application-name}/start

/management/wls/{version}/deployments/application/id/{application-name}/start

This resource starts an application.

The resource supports the following methods:

	
POST Method

POST Method

The POST method starts the application identified by the resource URL.

Roles

Administrator, Deployer

Request Query Parameters

This resource launches a job to start the application.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Starting an Application Synchronously
	
This example uses the POST method to start an application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/fairShare/start

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Started the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/24"
 }],
 "item": {
 "operation": "start",
 "status": "completed",
 "beginTime": 1390587183386,
 "endTime": 1390587183443,
 "name": "ADTR-24",
 "id": "24",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "fairShare",
 "description": "[Deployer:149026]start application fairShare on Cluster-0,myserver."
 }
}

	
	Example 2 Starting an Application Asynchronously
	
This example uses the POST method to start an application asynchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/fairShare/start?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Starting the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/33"
 }]
}

/management/wls/{version}/deployments/application/id/{application-name}/stop

/management/wls/{version}/deployments/application/id/{application-name}/stop

This resource stops an application.

The resource supports the following methods:

	
POST Method

POST Method

The POST method stops the application identified by the resource URL.

Roles

Administrator, Deployer

Request Query Parameters

This resource launches a job to stop the application.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Stopping an Application
	
This example uses the POST method to stop an application.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/fairShare/stop

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Stopped the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/23"
 }],
 "item": {
 "operation": "stop",
 "status": "completed",
 "beginTime": 1390587180998,
 "endTime": 1390587181033,
 "name": "ADTR-23",
 "id": "23",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "fairShare",
 "description": "[Deployer:149026]stop application fairShare on Cluster-0,myserver."
 }
}

	
	Example 2 Stopping an Application Asynchronously
	
This example uses the POST method to stop an application asynchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/fairShare/stop?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Stopping the application 'fairShare'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/32"
 }]
}

/management/wls/{version}/deployments/application/id/{application-name}/update

/management/wls/{version}/deployments/application/id/{application-name}/update

This resource updates an application. Use this resource when you want to update the dynamic elements in a deployment plan without redeploying the application; no sessions will be lost. Use the redeploy resource to update the actual deployment. It will also update all changes in a deployment plan, but sessions will be lost.

The resource supports the following methods:

	
POST Method

POST Method

The POST method updates the application identified by the resource URL. You should invoke this method after you have updated the underlying deployment plan.

Roles

Administrator, Deployer

Request Query Parameters

This resource launches a job to update the application.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Updating an Application
	
This example uses the POST method to update an application with deployment plan changes.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/application/id/BasicApp/update

Example Response

HTTP/1.1 400 Bad Request

Response Body:
{
 "messages": [{
 "message": "Failed to update the application 'BasicApp'.",
 "severity": "FAILURE"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/37"
 }],
 "item": {
 "operation": "update",
 "error": "\n The application BasicApp cannot have the resource \/deployments\/BasicApp\/plan\/Plan.xml updated dynamically. Either:\n1.) The resource does not exist. \n or \n2) The resource cannot be changed dynamically. \nPlease ensure the resource uri is correct, and redeploy the entire application for this change to take effect.",
 "status": "failed",
 "beginTime": 1390587229032,
 "endTime": 1390587229322,
 "name": "ADTR-37",
 "id": "37",
 "type": "deployment",
 "targets": [{
 "errors": ["\n The application BasicApp cannot have the resource \/deployments\/BasicApp\/plan\/Plan.xml updated dynamically. Either:\n1.) The resource does not exist. \n or \n2) The resource cannot be changed dynamically. \nPlease ensure the resource uri is correct, and redeploy the entire application for this change to take effect."],
 "status": "failed",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "BasicApp",
 "description": "[Deployer:149026]update application BasicApp on myserver."
 }
}

/management/wls/{version}/deployments/inspect

/management/wls/{version}/deployments/inspect

This resource inspects a deployment (archive or exploded directory) and returns information about it. This is useful for finding out information about the deployment before it has been deployed, for example, whether it's a library or an application.

The resource supports the following methods:

	
OPTIONS Method

	
POST Method

OPTIONS Method

The OPTIONS method on this resource returns a template entity that has been pre-populated with default values.

If you want to inspect a deployment, call this method to get the template, fill in the values, such as the deploymentPath, then use it in the POST method to inspect the deployment.

Roles

Administrator, Deployer

Response Body

The response body returned includes a DeploymentReference template entity that can be customized and then used to inspect the deployment.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting a Template Deployment Reference Entity
	
This example uses the OPTIONS method to obtain a template for deployment inspection.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X OPTIONS http://localhost:7001/management/wls/latest/deployments/inspect

Example Response

HTTP/1.1 200 OK

Response Body:
{"item": {
 "planPath": null,
 "deploymentPath": null
}}

POST Method

The POST method on this resource examines a deployment and returns information about it.

Roles

Administrator

Request Body

The request body must include a fully populated DeploymentReference entity. Read only parameter values are ignored.

Response Body

The response body returned includes a DeploymentDescription entity.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Inspecting a Versioned Library
	
This example uses the POST method to inspect a library prior to deployment.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 deploymentPath: '/deployments/aquarium_sv2_ivfab.ear'
}" \
-X POST http://localhost:7001/management/wls/latest/deployments/inspect

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [{
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments"
 }],
 "item": {
 "deploymentType": "library",
 "name": "aquarium_sv2_ivfab",
 "specVersion": "2.0",
 "implVersion": "fabulous",
 "deploymentPath": "\/deployments\/aquarium_sv2_ivfab.ear"
 }
}

/management/wls/{version}/deployments/library

/management/wls/{version}/deployments/library

This resource manages the libraries that are deployed in this WLS domain.

The resource supports the following methods:

	
GET Method

	
OPTIONS Method

	
POST Method

GET Method

The GET method on this resource returns a listing of all the libraries in this WLS domain.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a collection of Library entities. It also contains links to their corresponding resources.

This method can return the following links:

	
uri=/management/wls/{version}/deployments rel=parent

	
uri=/management/wls/{version}/deployments/library/id/{library-name} rel=items.name title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing Libraries
	
This example uses the GET method to return a summary of all libraries.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/deployments/library

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/library\/id\/airline",
 "title": "airline"
 }
],
 "items": [{
 "name": "airline",
 "state": "active",
 "type": "library",
 "targets": ["myserver"],
 "displayName": "airline",
 "deploymentPath": "\/deployments\/airline.war"
 }]
}

OPTIONS Method

The OPTIONS method on this resource returns a template entity that has been pre-populated with default values.

If you want to deploy a library, call this method to get the template, fill in values, such as the path to the library, then use it in the POST method to deploy the library.

Roles

Administrator

Response Body

The response body returned includes a Library template entity that can be customized and then used to deploy the library.

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting a Template Library Entity
	
This example uses the OPTIONS method to obtain a template for a library deployment.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X OPTIONS http://localhost:7001/management/wls/latest/deployments/library

Example Response

HTTP/1.1 200 OK

Response Body:
{"item": {
 "name": null,
 "state": null,
 "type": "library",
 "targets": null,
 "displayName": null,
 "specVersion": null,
 "implVersion": null,
 "deploymentPath": null,
 "referencingApplications": null,
 "referencingLibraries": null
}}

POST Method

The resource supports the following methods:

	
POST Accepting "application/json"

	
POST Accepting "multipart/form-data"

POST Accepting "application/json"

This POST method deploys a new library.

Roles

Administrator

Request Query Parameters

This resource launches a job to deploy the library.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Request Body

The request body must include a fully populated Library entity that describes the new library. Read only parameter values are ignored.

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=name

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 201 Created status code and a Location header with a link to the new library resource. If the job timed out, the method returns a 202 Accepted status code and a Location header with a link to the expected new library resource.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code, a link to the job resource, and a Location header with a link to the expected new library resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Deploying a Library
	
This example uses the POST method to deploy a new library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 name: 'airline',
 deploymentPath: '/deployments/airline.war',
 targets: ['myserver', 'Cluster-0']
}" \
-X POST http://localhost:7001/management/wls/latest/deployments/library

Example Response

HTTP/1.1 201 Created

Location: http://localhost:7001/management/wls/latest/deployments/library/id/airline

Response Body:
{
 "messages": [{
 "message": "Deployed the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/1"
 }],
 "item": {
 "operation": "deploy",
 "status": "completed",
 "beginTime": 1390587116296,
 "endTime": 1390587116676,
 "name": "ADTR-1",
 "id": "1",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "airline",
 "description": "[Deployer:149117]deploy library airline on Cluster-0,myserver."
 }
}

	
	Example 2 Deploying an Library Asynchronously
	
This example uses the POST method to deploy a new library asynchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:application/json \
-d "{
 name: 'airline',
 deploymentPath: '/deployments/airline.war',
 targets: ['myserver', 'Cluster-0']
}" \
-X POST http://localhost:7001/management/wls/latest/deployments/library

Example Response

HTTP/1.1 201 Created

Location: http://localhost:7001/management/wls/latest/deployments/library/id/airline

Response Body:
{
 "messages": [{
 "message": "Deployed the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/1"
 }],
 "item": {
 "operation": "deploy",
 "status": "completed",
 "beginTime": 1390587116296,
 "endTime": 1390587116676,
 "name": "ADTR-1",
 "id": "1",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "airline",
 "description": "[Deployer:149117]deploy library airline on Cluster-0,myserver."
 }
}

POST Accepting "multipart/form-data"

This POST method uploads and deploys a new library.

Note: When using a multi-part form to create, you need to:

	
Specify the file to deploy via the deployment form element.

	
Send in the rest of the template via the model form element.

Roles

Administrator

Request Query Parameters

This resource launches a job to upload and deploy the library.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Request Body

The request body includes form data with a Content-Type header of multipart/form-data and the following form fields:

	model
	
(Required) Specifies all the necessary information about the library to deploy. The Content-Disposition header must have its name parameter set to model. The Content-Type header must be application/json and the content must be a JSON object containing a Library entity excluding the deployment field.

	deployment
	
(Required) Specifies the library to be deployed. The Content-Disposition header must have its name parameter set to deployment and must have a filename parameter set to the file name you want the library to have on the server. The Content-Type header must be application/octet-stream and the content must be the library data.

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 201 Created status code and a Location header with a link to the new library resource. If the job timed out, the method returns a 202 Accepted status code and a Location header with a link to the expected new library resource.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code, a link to the job resource, and a Location header with a link to the expected new library resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Uploading and Deploying a Library
	
This example uses the POST method to upload a deployment archive and deploy it as a new library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:multipart/form-data \
-F "model={
 name: 'airline',
 targets: ['myserver']
}" \
-F "deployment=@/deployments/airline.war" \
-X POST http://localhost:7001/management/wls/latest/deployments/library

Example Response

 HTTP/1.1 201 Created

Location: http://localhost:7001/management/wls/latest/deployments/library/id/airline

Response Body:
{
 "messages": [{
 "message": "Deployed the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/7"
 }],
 "item": {
 "operation": "deploy",
 "status": "completed",
 "beginTime": 1390587130807,
 "endTime": 1390587131056,
 "name": "ADTR-7",
 "id": "7",
 "type": "deployment",
 "targets": [{
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "airline",
 "description": "[Deployer:149117]deploy library airline on myserver."
 }
}

	
	Example 2 Uploading and Deploying a Library Asynchronously
	
This example uses the POST method to upload a deployment archive and deploy it as a new library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:multipart/form-data \
-F "model={
 name: 'airline',
 targets: ['myserver']
}" \
-F "deployment=@/deployments/airline.war" \
-X POST http://localhost:7001/management/wls/latest/deployments/library?__detached=true

Example Response

HTTP/1.1 202 Accepted

Location: http://localhost:7001/management/wls/latest/deployments/library/id/airline

Response Body:
{
 "messages": [{
 "message": "Deploying the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/11"
 }]
}

/management/wls/{version}/deployments/library/id/{library-name}

/management/wls/{version}/deployments/library/id/{library-name}

This resource manages a library.

The resource supports the following methods:

	
DELETE Method

	
GET Method

DELETE Method

The DELETE method undeploys the library identified by the resource URL.

Roles

Administrator

Request Query Parameters

This resource launches a job to undeploy the library.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Undeploying a Library
	
This example uses the DELETE method to undeploy a library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X DELETE http://localhost:7001/management/wls/latest/deployments/library/id/airline

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Undeployed the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/3"
 }],
 "item": {
 "operation": "remove",
 "status": "completed",
 "beginTime": 1390587121460,
 "endTime": 1390587121632,
 "name": "ADTR-3",
 "id": "3",
 "type": "deployment",
 "targets": [
 {
 "errors": [],
 "status": "completed",
 "name": "Cluster-0",
 "type": "cluster"
 },
 {
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }
],
 "deploymentName": "airline",
 "description": "[Deployer:149117]remove library airline on Cluster-0,myserver."
 }
}

GET Method

The GET method on this resource returns information about the library identified by the resource URL.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a Library entity that contains information about the specified library.

This method can return the following links:

	
uri=/management/wls/{version}/deployments/library/id/{library-name}/undeploy rel=undeploy

	
uri=/management/wls/{version}/deployments/library rel=parent

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing a Library
	
This example uses the GET method to find information about a specific library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/deployments/library/id/airline

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/library"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/deployments\/library\/id\/airline\/redeploy",
 "title": "redeploy"
 }
],
 "item": {
 "name": "airline",
 "state": "active",
 "type": "library",
 "targets": ["myserver"],
 "displayName": "airline",
 "deploymentPath": "\/deployments\/airline.war"
 }
}

/management/wls/{version}/deployments/library/id/{library-name}/redeploy

/management/wls/{version}/deployments/library/id/{library-name}/redeploy

This resource redeploys a library.

The resource supports the following methods:

	
POST Method

POST Method

The resource supports the following methods:

	
POST Accepting "application/json"

	
POST Accepting "multipart/form-data"

POST Accepting "application/json"

This POST method redeploys the library identified by the resource URL. You should invoke this method after you have updated the underlying deployment archive or exploded directory.

Roles

Administrator, Deployer

Request Query Parameters

This resource launches a job to redeploy the library.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Redeploying a Library
	
This example uses the POST method to redeploy the specified library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/deployments/library/id/airline/redeploy

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Redeployed the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/5"
 }],
 "item": {
 "operation": "redeploy",
 "status": "completed",
 "beginTime": 1390587126314,
 "endTime": 1390587126328,
 "name": "ADTR-5",
 "id": "5",
 "type": "deployment",
 "targets": [{
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "airline",
 "description": "[Deployer:149117]redeploy library airline on myserver."
 }
}

POST Accepting "multipart/form-data"

This POST method uploads and redeploys the library identified by the resource URL. You should invoke this method after you have updated the underlying deployment archive or exploded directory.

Roles

Administrator, Deployer

Request Query Parameters

This resource launches a job to upload and redeploy the library.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Request Body

The request body includes form data with a Content-Type header of multipart/form-data and the following form field:

	deployment
	
(Required) Specifies the library to be redeployed. The Content-Disposition header must have its name parameter set to deployment and must have a filename parameter set to the file name you want the library to have on the server. The Content-Type header must be application/octet-stream and the content must be the library data.

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a DeploymentJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/deployment/{job-id} rel=job title=id

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a DeploymentJob entity.

Example

	
	Example 1 Uploading and Redeploying a Library
	
This example uses the POST method to upload an archive and redeploy it as a library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:multipart/form-data \
-F "deployment=@/deployments/fairShare.war" \
-X POST http://localhost:7001/management/wls/latest/deployments/library/id/airline/redeploy

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Redeployed the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/9"
 }],
 "item": {
 "operation": "deploy",
 "status": "completed",
 "beginTime": 1390587135085,
 "endTime": 1390587135333,
 "name": "ADTR-9",
 "id": "9",
 "type": "deployment",
 "targets": [{
 "errors": [],
 "status": "completed",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "airline",
 "description": "[Deployer:149117]deploy library airline on myserver."
 }
}

	
	Example 2 Uploading and Redeploying a Library Asynchronously
	
This example uses the POST method to upload an archive and redeploy it as a library.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-H Content-Type:multipart/form-data \
-F "deployment=@/deployments/fairShare.war" \
-X POST http://localhost:7001/management/wls/latest/deployments/library/id/airline/redeploy?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Redeploying the library 'airline'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment\/id\/13"
 }]
}

/management/wls/{version}/jobs

/management/wls/{version}/jobs

This resource lists the jobs running in this WLS domain.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns a listing of all the jobs in this WLS domain.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a collection of Job entities. It also contains links to their corresponding resources.

This method can return the following links:

	
uri=/management/wls/{version}/jobs/server rel=server

	
uri=/management/wls/{version}/jobs/deployment rel=deployment

	
uri=/management/wls/{version} rel=parent

	
uri=/management/wls/{version}/jobs/{job-type}/id/{job-id} rel=items.id title=id

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing All Jobs
	
This example uses the GET method to obtain information about all jobs.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/jobs

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest"
 },
 {
 "rel": "server",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server"
 },
 {
 "rel": "deployment",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment"
 },
 {
 "rel": "items.id",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_0_start",
 "title": "Cluster-0-Server-1:_0_start"
 }
],
 "items": [{
 "status": "completed",
 "beginTime": 1390586983126,
 "endTime": 1390586998781,
 "name": "_0_start",
 "id": "Cluster-0-Server-1:_0_start",
 "type": "server",
 "description": "Starting Cluster-0-Server-1 server ..."
 }]
}

/management/wls/{version}/jobs/deployment

/management/wls/{version}/jobs/deployment

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns information about each job that is related to a deployment operation.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a DeploymentJob entity.

This method can return the following links:

	
uri=/management/wls/{version}/jobs rel=parent

	
uri=/management/wls/{version}/jobs/deployment/id/{job-id} rel=deployment title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing All Deployment Jobs
	
This example uses the GET method to obtain information about all deployment jobs.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/jobs/deployment

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [{
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment"
 }],
 "items": [{
 "operation": "deploy",
 "status": "in progress",
 "beginTime": 1390587139546,
 "name": "ADTR-11",
 "id": "11",
 "type": "deployment",
 "targets": [{
 "errors": [],
 "status": "in progress",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "airline",
 "description": "[Deployer:149117]deploy library airline on myserver."
 }]
}

/management/wls/{version}/jobs/deployment/id/{job-id}

/management/wls/{version}/jobs/deployment/id/{job-id}

This resource returns information about a deployment-related job.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns information about the deployment-related job identified by the resource URL.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a DeploymentJob entity that contains information about the specified deployment-related job.

This method can return the following links:

	
uri=/management/wls/{version}/jobs/deployment rel=parent

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing a Deployment-Related Job
	
This example uses the GET method to obtain information about a deployment job.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/jobs/deployment/id/11

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [{
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/deployment"
 }],
 "item": {
 "operation": "deploy",
 "status": "in progress",
 "beginTime": 1390587139546,
 "name": "ADTR-11",
 "id": "11",
 "type": "deployment",
 "targets": [{
 "errors": [],
 "status": "in progress",
 "name": "myserver",
 "type": "server"
 }],
 "deploymentName": "airline",
 "description": "[Deployer:149117]deploy library airline on myserver."
 }
}

/management/wls/{version}/jobs/server

/management/wls/{version}/jobs/server

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns information about each job that is related to a server lifecycle operation.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a ServerJob entity.

This method can return the following links:

	
uri=/management/wls/{version}/jobs rel=parent

	
uri=/management/wls/{version}/jobs/server/id/{job-id} rel=server title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting All Server Jobs
	
This example uses the GET method to obtain information about all server lifecycle jobs.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/jobs/server

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs"
 },
 {
 "rel": "server",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_0_start",
 "title": "Cluster-0-Server-1:_0_start"
 }
],
 "items": [{
 "operation": "start",
 "status": "completed",
 "beginTime": 1390586983126,
 "endTime": 1390586998781,
 "name": "_0_start",
 "id": "Cluster-0-Server-1:_0_start",
 "type": "server",
 "description": "Starting Cluster-0-Server-1 server ...",
 "serverName": "Cluster-0-Server-1"
 }]
}

/management/wls/{version}/jobs/server/id/{job-id}

/management/wls/{version}/jobs/server/id/{job-id}

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns information about a specific server lifecycle job.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a ServerJob entity.

This method can return the following links:

	
uri=/management/wls/{version}/jobs/server rel=parent

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Getting Server Job Information
	
This example uses the GET method to obtain information about a server lifecycle job.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/jobs/server/id/Cluster-0-Server-1:_8_start

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [{
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server"
 }],
 "item": {
 "operation": "start",
 "status": "in progress",
 "beginTime": 1390587038967,
 "name": "_8_start",
 "id": "Cluster-0-Server-1:_8_start",
 "type": "server",
 "description": "Starting Cluster-0-Server-1 server ...",
 "serverName": "Cluster-0-Server-1"
 }
}

/management/wls/{version}/servers

/management/wls/{version}/servers

This resource enumerates the servers in a WLS domain and provides summary metrics and state for each server.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns a listing of this domain's servers.

Roles

Administrator, Deployer, Operator, Monitor

Request Query Parameters

This method supports optional query parameters which can be used to constrain the fields included in the response. Constraining the fields to only the information that you require may yield faster response times when interacting with large data sets.

	?_excludeFields=field1[,field2, ...]
	
(Optional) Specifies that these values are not required and may be omitted in a response.

	?_includeFields=field1[,field2, ...]
	
(Optional) Specifies that these values are required and must be included in the response.

Include and exclude are mutually exclusive, and if neither is specified all available information is included.

Response Body

The response body returned includes a collection of Server entities. It also contains links to their corresponding resources.

This method can return the following links:

	
uri=/management/wls/{version} rel=parent

	
uri=/management/wls/{version}/servers/id/{server-name} rel=items.name title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing Servers
	
This example uses the GET method to return a list of all servers in this domain.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/servers

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/myserver",
 "title": "myserver"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1",
 "title": "Cluster-0-Server-1"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-2",
 "title": "Cluster-0-Server-2"
 }
],
 "items": [
 {
 "name": "myserver",
 "state": "running",
 "heapFreeCurrent": 136785464,
 "heapSizeCurrent": 423231488,
 "activeHttpSessionCount": 0,
 "activeThreadCount": 5,
 "health": {"state": "ok"},
 "usedPhysicalMemory": 3502743552,
 "jvmProcessorLoad": 0
 },
 {
 "name": "Cluster-0-Server-1",
 "state": "shutdown"
 },
 {
 "name": "Cluster-0-Server-2",
 "state": "shutdown"
 }
]
}

/management/wls/{version}/servers/id/{server-name}

/management/wls/{version}/servers/id/{server-name}

This resource gets information about a specific server.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns information about the server identified by the resource URL.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a Server entity that contains information about the specified server.

This method can return the following links:

	
uri=/management/wls/{version}/servers/id/{server-name}/logs rel=logs

	
uri=/management/wls/{version}/servers rel=parent

	
uri=/management/wls/{version}/servers/id/{server-name}/start rel=action title=start

	
uri=/management/wls/{version}/servers/id/{server-name}/restart rel=action title=restart

	
uri=/management/wls/{version}/servers/id/{server-name}/suspend rel=action title=suspend

	
uri=/management/wls/{version}/servers/id/{server-name}/resume rel=action title=resume

	
uri=/management/wls/{version}/servers/id/{server-name}/shutdown rel=action title=shutdown

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing a Specific Server
	
This example uses the GET method to obtain information about a specific server.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers"
 },
 {
 "rel": "logs",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/logs"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/start",
 "title": "start"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/restart",
 "title": "restart"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/suspend",
 "title": "suspend"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/resume",
 "title": "resume"
 },
 {
 "rel": "action",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/shutdown",
 "title": "shutdown"
 }
],
 "item": {
 "name": "Cluster-0-Server-1",
 "state": "running",
 "heapFreeCurrent": 231060176,
 "heapSizeCurrent": 320798720,
 "activeHttpSessionCount": 0,
 "activeThreadCount": 6,
 "health": {"state": "ok"},
 "usedPhysicalMemory": 3925577728,
 "jvmProcessorLoad": 0
 }
}

/management/wls/{version}/servers/id/{server-name}/logs

/management/wls/{version}/servers/id/{server-name}/logs

This resource returns a list of logs which are maintained for this server.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns the server's log file list.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body returned includes a collection of LogReference entities. It also contains links to their corresponding resources.

This method can return the following links:

	
uri=/management/wls/{version}/servers/id/{server-name} rel=parent

	
uri=/management/wls/{version}/servers/id/{server-name}/logs/id/{log-name} rel=items.name title=name

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Displaying a Server's Logs
	
This example uses the GET method to find all of the available logs for a server.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/logs

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [
 {
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/logs\/id\/HTTPAccessLog",
 "title": "HTTPAccessLog"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/logs\/id\/DataSourceLog",
 "title": "DataSourceLog"
 },
 {
 "rel": "items.name",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/logs\/id\/ServerLog",
 "title": "ServerLog"
 }
],
 "items": [
 {"name": "HTTPAccessLog"},
 {"name": "DataSourceLog"},
 {"name": "ServerLog"}
]
}

/management/wls/{version}/servers/id/{server-name}/logs/id/{log-name}

/management/wls/{version}/servers/id/{server-name}/logs/id/{log-name}

This resource displays the entries in a server's log.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns the server's log.

Roles

Administrator, Deployer, Operator, Monitor

Request Query Parameters

This method supports the following query parameters which can be used to filter and qualify the results included in the response.

	maxResults=long
	
(Optional) Specifies the maximum number of entries to return. If maxResults is not specified, or is less than one, then all of the entries in the log are returned. Otherwise, only maxResults entries are returned. If there are more than maxResults matching entries, the last maxResults entries (based on the order of the entries in the underlying log) are returned.

	startTime=mm/dd/yy hh:mm:ss ms
	
(Optional) Specifies the earliest log entry to return. Note that you need to encode the query parameter to turn it into a valid URL; a space becomes %20, a '/' (forward slash) becomes %2F, and a ':' (colon) becomes %3A. For example, management/wls/latest/servers/id/myserver/logs/id/mylog?startTime=11/21/14 12:06:53 would become management/wls/latest/servers/id/myserver/logs/id/mylog?startTime=11%2F21%2F14%2012%3A06%3A53.

	endTime=mm/dd/yy hh:mm:ss ms
	
(Optional) Specifies the latest log entry to return. Note that you need to encode the query parameter to turn it into a valid URL; a space becomes %20, a '/' (forward slash) becomes %2F, and a ':' (colon) becomes %3A. For example, management/wls/latest/servers/id/myserver/logs/id/mylog?endTime=11/21/14 02:23:15 would become management/wls/latest/servers/id/myserver/logs/id/mylog?endTime=11%2F21%2F14%2002%3A23%3A15.

	query=wldf expression
	
(Optional) Specifies a WebLogic Diagnostics Framework (WLDF) query expression which can be used to further filter and qualify the log entries returned.

Response Body

The response body returned includes a collection of LogEntry entities. The entities are in the same order as the corresponding entries in the underlying log.

This method can return the following links:

	
uri=/management/wls/{version}/servers/id/{server-name}/logs rel=parent

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Displaying a Server's Log
	
This example uses the GET method to return the last five entries in the server log.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/logs/id/ServerLog?maxResults=5

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [{
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/servers\/id\/Cluster-0-Server-1\/logs"
 }],
 "items": [
 {
 "timeStamp": "01\/24\/14 13:09:58 604",
 "message": "The server \"myserver\" connected to this server.",
 "severity": "Info",
 "subSystem": "Server",
 "userId": "WLS Kernel",
 "contextId": "",
 "recordId": "90",
 "msgId": "BEA-002635"
 },
 {
 "timeStamp": "01\/24\/14 13:09:58 613",
 "message": "Starting \"async\" replication service with remote cluster address \"null\"",
 "severity": "Notice",
 "subSystem": "Cluster",
 "userId": "WLS Kernel",
 "contextId": "",
 "recordId": "91",
 "msgId": "BEA-000162"
 },
 {
 "timeStamp": "01\/24\/14 13:09:58 670",
 "message": "The server started in RUNNING mode.",
 "severity": "Notice",
 "subSystem": "WebLogicServer",
 "userId": "WLS Kernel",
 "contextId": "",
 "recordId": "92",
 "msgId": "BEA-000360"
 },
 {
 "timeStamp": "01\/24\/14 13:09:59 507",
 "message": "Server state changed to RUNNING.",
 "severity": "Notice",
 "subSystem": "WebLogicServer",
 "userId": "WLS Kernel",
 "contextId": "",
 "recordId": "93",
 "msgId": "BEA-000365"
 },
 {
 "timeStamp": "01\/24\/14 13:09:59 512",
 "message": "Instantiated an instance of org.hibernate.validator.engine.resolver.JPATraversableResolver.",
 "severity": "Info",
 "subSystem": "org.hibernate.validator.engine.resolver.DefaultTraversableResolver",
 "userId": "WLS Kernel",
 "contextId": "",
 "recordId": "94",
 "msgId": "BEA-000000"
 }
]
}

/management/wls/{version}/servers/id/{server-name}/restart

/management/wls/{version}/servers/id/{server-name}/restart

This resource restarts a specific server.

The resource supports the following methods:

	
POST Method

POST Method

The POST method restarts the server identified by the resource URL.

Roles

Administrator

Request Query Parameters

This resource launches a job to restart the server.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a ServerJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/server/{job-id} rel=job title=name

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a ServerJob entity.

Example

	
	Example 1 Restarting a Server
	
This example uses the POST method to restart a server synchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/restart

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Restarted the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_4_start"
 }],
 "item": {
 "operation": "start",
 "status": "completed",
 "beginTime": 1390587009914,
 "endTime": 1390587022047,
 "name": "_4_start",
 "id": "Cluster-0-Server-1:_4_start",
 "type": "server",
 "description": "Starting Cluster-0-Server-1 server ...",
 "serverName": "Cluster-0-Server-1"
 }
}

	
	Example 2 Restarting a Server Asynchronously
	
This example uses the POST method to restart a server in detached mode.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/restart?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Restarting the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_12_start"
 }]
}

/management/wls/{version}/servers/id/{server-name}/resume

/management/wls/{version}/servers/id/{server-name}/resume

This resource resumes a server.

The resource supports the following methods:

	
POST Method

POST Method

The POST method resumes the server instance that is suspended or in the ADMIN state.

Roles

Administrator

Request Query Parameters

This resource launches a job to restart the server.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a ServerJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/server/{job-id} rel=job title=name

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a ServerJob entity.

Example

	
	Example 1 Resuming a Server
	
This example uses the POST method to resume a server synchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/resume

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Resumed the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_2_resume"
 }],
 "item": {
 "operation": "resume",
 "status": "completed",
 "beginTime": 1390587004735,
 "endTime": 1390587004747,
 "name": "_2_resume",
 "id": "Cluster-0-Server-1:_2_resume",
 "type": "server",
 "description": "Resuming Cluster-0-Server-1 server ...",
 "serverName": "Cluster-0-Server-1"
 }
}

	
	Example 2 Resuming a Server Asynchronously
	
This example uses the POST method to resume a server in detached mode.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/resume?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Resuming the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_10_resume"
 }]
}

/management/wls/{version}/servers/id/{server-name}/shutdown

/management/wls/{version}/servers/id/{server-name}/shutdown

This resource performs a graceful shut down on a specific server.

The resource supports the following methods:

	
POST Method

POST Method

The POST method shuts down the server identified by the resource URL.

Roles

Administrator, Deployer, Operator

Request Query Parameters

This resource launches a job to shut down the server.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously. If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

	force
	
(Optional) Specifies whether to gracefully shut down the server (false, the default) or force shut down of the server (true).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a ServerJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/server/{job-id} rel=job title=name

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a ServerJob entity.

Example

	
	Example 1 Shutting Down a Server
	
This example uses the POST method to shut down a server synchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/shutdown

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Shutdown the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_7_shutdown"
 }],
 "item": {
 "operation": "shutdown",
 "status": "completed",
 "beginTime": 1390587036811,
 "endTime": 1390587036940,
 "name": "_7_shutdown",
 "id": "Cluster-0-Server-1:_7_shutdown",
 "type": "server",
 "description": "Shutting down Cluster-0-Server-1 server ...",
 "serverName": "Cluster-0-Server-1"
 }
}

	
	Example 2 Shutting Down a Server Asynchronously
	
This example uses the POST method to shut down a server in detached mode.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/shutdown?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Shutting down the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_11_shutdown"
 }]
}

/management/wls/{version}/servers/id/{server-name}/start

/management/wls/{version}/servers/id/{server-name}/start

This resource starts a specific server.

The resource supports the following methods:

	
POST Method

POST Method

The POST method starts the server identified by the resource URL.

Roles

Administrator

Request Query Parameters

This resource launches a job to start the server.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a ServerJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/server/{job-id} rel=job title=name

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a ServerJob entity.

Example

	
	Example 1 Starting a Server
	
This example uses the POST method to start a server synchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/start

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Started the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_0_start"
 }],
 "item": {
 "operation": "start",
 "status": "completed",
 "beginTime": 1390586983126,
 "endTime": 1390586998781,
 "name": "_0_start",
 "id": "Cluster-0-Server-1:_0_start",
 "type": "server",
 "description": "Starting Cluster-0-Server-1 server ...",
 "serverName": "Cluster-0-Server-1"
 }
}

	
	Example 2 Starting a Server Asynchronously
	
This example uses the POST method to start a server in detached mode.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/start?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Starting the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_8_start"
 }]
}

/management/wls/{version}/servers/id/{server-name}/suspend

/management/wls/{version}/servers/id/{server-name}/suspend

This resource suspends a server.

The resource supports the following methods:

	
POST Method

POST Method

The POST method moves the server identified by the resource URL from the RUNNING state to the ADMIN state.

Roles

Administrator

Request Query Parameters

This resource launches a job to suspend the server.

	_detached
	
(Optional) Specifies whether this method runs in detached (background) mode or synchronously.

If the __detached=true query parameter is specified (detached invocation), then this method returns immediately after launching the job. Otherwise, it waits for the job to complete, fail, or timeout (synchronous invocation).

Response Body

If the method was invoked synchronously and successfully launched the job, the response body includes a ServerJob entity containing the state of the job (completed, failed, or still running in the case of a timeout) as well as a link to the job resource.

This method can return the following links:

	
uri=/wls/jobs/server/{job-id} rel=job title=name

Response Codes

If the method was invoked synchronously and the job successfully completed, the method returns a 200 OK status code. If the job timed out, the method returns a 202 Accepted status code.

If the method was invoked detached and successfully launched the job, the method returns a 202 Accepted status code and a link to the job resource. In this case, the response does not include a ServerJob entity.

Example

	
	Example 1 Suspending a Server
	
This example uses the POST method to suspend a server synchronously.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/suspend

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "messages": [{
 "message": "Suspended the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_1_suspendWithTimeout"
 }],
 "item": {
 "operation": "suspending",
 "status": "completed",
 "beginTime": 1390587002462,
 "endTime": 1390587002489,
 "name": "_1_suspendWithTimeout",
 "id": "Cluster-0-Server-1:_1_suspendWithTimeout",
 "type": "server",
 "description": "suspending Cluster-0-Server-1 server ...",
 "serverName": "Cluster-0-Server-1"
 }
}

	
	Example 2 Suspending a Server Asynchronously
	
This example uses the POST method to suspend a server in detached mode.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X POST http://localhost:7001/management/wls/latest/servers/id/Cluster-0-Server-1/suspend?__detached=true

Example Response

HTTP/1.1 202 Accepted

Response Body:
{
 "messages": [{
 "message": "Suspending the server 'Cluster-0-Server-1'.",
 "severity": "SUCCESS"
 }],
 "links": [{
 "rel": "job",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest\/jobs\/server\/id\/Cluster-0-Server-1:_9_suspendWithTimeout"
 }]
}

/management/wls/{version}/targets

/management/wls/{version}/targets

This resource lists all servers and clusters in this WLS domain.

The resource supports the following methods:

	
GET Method

GET Method

The GET method on this resource returns all servers and clusters in this WLS domain.

Roles

Administrator, Deployer, Operator, Monitor

Response Body

The response body contains a collection of Target entities.

This method can return the following links:

	
uri=/management/wls/{version} rel=parent

Response Codes

This method returns one of the Standard HTTP Status Codes.

Example

	
	Example 1 Viewing WLS Targets
	
This example uses the GET method to return a list of all targets in this domain.

Example Request

curl -v \
--user username:password \
-H X-Requested-By:MyClient \
-H Accept:application/json \
-X GET http://localhost:7001/management/wls/latest/targets

Example Response

HTTP/1.1 200 OK

Response Body:
{
 "links": [{
 "rel": "parent",
 "uri": "http:\/\/localhost:7001\/management\/wls\/latest"
 }],
 "items": [
 {
 "name": "myserver",
 "type": "server"
 },
 {
 "name": "Cluster-0",
 "type": "cluster"
 }
]
}

Entities

2 Entities

The following sections describe the data models on which the REST resources operate for WebLogic Server 12.1.3. These data models describe the information exchanged in REST resources.

The descriptions of these data models in this section include a description of the constraints that apply to each data field.

Constraints on Data Fields

	Confidential
	
Specifies that this value is encrypted and will not be returned by a GET method. It may be specified in a POST for update.

	Immutable
	
Specifies that the contents of this field can be written once, during creation, and may not be modified thereafter.

	Not Null
	
Specifies that a value must be specified for this field.

	Read Only
	
Specifies that this value may be read by a GET, but is ignored during a POST.

Application

The Application entity includes configuration and monitoring information for an application deployment.

Note that an Application entity includes all the Deployment properties in addition to the following properties.

The properties of the Application entity are as follows:

	planPath
	
(Optional) The pathname (relative to the Administration Server) of a file containing a deployment plan.

Type: String

Constraints: Immutable

	archiveVersion
	
The archive version (from the deployment manifest file).

Type: String

Constraints: Read Only

	planVersion
	
The deployment plan version (specified during deployment).

Type: String

Constraints: Immutable

	applicationType
	
The application type: ear, war, ejb, or gar.

Type: String

Constraints: Read Only

	health
	
The health of this application, if running. This health status is aggregated across all of the servers running this application and will denote the most severe health condition encountered.

Type: Health

Constraints: Read Only

	urls
	
A list of the URLs for each context root. Can be used to ping the application.

Type: List<String>

Constraints: Read Only

	openSessionsCurrentCount
	
The maximum total number of open sessions in this server. The count starts at zero each time the server is activated. Note that this is an optimization method for a highly useful statistic that could be implemented less efficiently using change notification.

Type: int

Constraints: Read Only

	sessionsOpenedTotalCount
	
A count of the total number of sessions opened.

Type: int

Constraints: Read Only

	servlets
	
The runtime information for all servlets in this application.

Type: List<Servlet>

Constraints: Read Only

	ejbs
	
The runtime information for all EJBs in this application.

Type: List<Ejb>

Constraints: Read Only

ApplicationBindable

The ApplicationBindable entity describes information about a descriptor element that can be bound to a resource and overridden through a deployment plan.

The properties of the ApplicationBindable entity are as follows:

	name
	
The name of this bindable descriptor value.

Type: String

Constraints: Read Only

	path
	
The path in the deployment used to locate and identify this descriptor value.

Type: List<ApplicationDescriptorScope>

Constraints: Read Only

	type
	
The type of resource that is expected to be bound to this descriptor value, if constrained: jms destination, jms connection factory, resource adapter, or ejb.

Type: String

Constraints: Read Only

	jndiName
	
The JNDI name of the resource that should be bound to this application.

Type: String

ApplicationBindables

The ApplicationBindables entity is a collection of ApplicationBindable descriptor values in an application. Each entry represents a reference to a resource that can be specified and overridden in a deployment plan for an application.

The properties of the ApplicationBindables entity are as follows:

	writeable
	
Writeable indicates that this application configuration supports overwriting deployment plan descriptor values. If a deployment is not supported by a deployment plan, then values may not be overwritten.

Type: boolean

Constraints: Read Only

	bindables
	
Bindables is the collection of ApplicationBindable descriptor values.

Type: List<ApplicationBindable>

Constraints: Read Only

ApplicationDescriptorScope

The ApplicationDescriptorScope entity identifies a path or scope within a deployment descriptor tree.

The properties of the ApplicationDescriptorScope entity are as follows:

	name
	
The name for this scope, intended to be human readable.

Type: String

Constraints: Read Only

	path
	
The path of this scope, which identifies the deployment descriptor path.

Type: String

Constraints: Read Only

	type
	
The type of this descriptor scope.

Type: String

Constraints: Read Only

ChangeManager

The ChangeManager entity includes properties that are required for change management.

The properties of the ChangeManager entity are as follows:

	locked
	
True if a configuration session is currently active.

Type: boolean

Constraints: Read Only

	lockOwner
	
The user name of the owner of the current configuration lock.

Type: String

Constraints: Read Only

	hasChanges
	
True if there are any changes that have been saved but not activated in the current and previous edit sessions.

Type: boolean

Constraints: Read Only

DatabaseConnection

A DatabaseConnection entity describes the key properties necessary to establish a connection to a database. This is the basis for a DataSource entity, and may be used to validate that a database connection can be established successfully.

The properties of the DatabaseConnection entity are as follows:

	url
	
The URL used to connect to the database.

Type: String

	driverName
	
The driver name for this connection.

Type: String

	properties
	
The properties for this connection.

Type: List<Property>

	password
	
The password for this connection.

Type: String

Constraints: Confidential

DatabaseConnectionStatus

A DatabaseConnectionStatus entity describes the results that occur when a database connection is attempted.

The properties of the DatabaseConnectionStatus entity are as follows:

	ok
	
The connection status. True if this connection was successful.

Type: boolean

Constraints: Read Only

	cause
	
If issues were uncovered during this attempt, then cause can be used to retrieve human readable strings which describe these issues.

Type: List<String>

Constraints: Read Only

DatabaseDriver

The DatabaseDriver entity includes properties that are required to interact with a specific database driver.

The properties of the DatabaseDriver entity are as follows:

	name
	
The name of this driver.

Type: String

Constraints: Read Only

	driverClassName
	
The driver class name.

Type: String

Constraints: Read Only

	type
	
The type of this driver, unconstrained, but typically Thin, OCI, Type 2, or Type 4.

Type: String

Constraints: Read Only

	testSql
	
A test SQL statement that should be used when interacting with this driver.

Type: String

Constraints: Read Only

	description
	
A human readable description for this driver.

Type: String

Constraints: Read Only

	forXa
	
Whether this driver supports XA connections.

Type: boolean

Constraints: Read Only

DatabaseDriverAttribute

The DatabaseDriverAttribute entity represents a driver-specific attribute that is required to support connections with this driver.

The properties of the DatabaseDriverAttribute entity are as follows:

	name
	
The name of this attribute.

Type: String

Constraints: Read Only

	description
	
A human readable description string for this attribute.

Type: String

Constraints: Read Only

	defaultValue
	
The default value for this attribute, if any.

Type: String

Constraints: Read Only

	inUrl
	
If true, this attribute will be formatted and included in the URL string used to interact with the driver.

Type: boolean

Constraints: Read Only

	required
	
If true, this attribute is required. Otherwise, attributes are optional and may be omitted.

Type: boolean

Constraints: Read Only

	value
	
The user specified value for this attribute.

Type: String

DatabaseDriverAttributes

The DatabaseDriverAttributes entity represents a list of attributes that are associated with a database driver. These attributes represent driver-specific properties that are required to support connections with this driver.

The properties of the DatabaseDriverAttributes entity are as follows:

	passwordAttributeName
	
The name of the password attribute, which requires special handling in clients to avoid surfacing confidential information.

Type: String

Constraints: Read Only

	attributes
	
The list of attributes for this driver.

Type: List<DatabaseDriverAttribute>

DatabaseVendor

The DatabaseVendor entity describes a vendor of database drivers. Each vendor will have one or more drivers that can be selected and applied.

The properties of the DatabaseVendor entity are as follows:

	name
	
The name of this database driver vendor.

Type: String

Constraints: Read Only

	drivers
	
A list of drivers available from this vendor.

Type: List<DatabaseDriver>

Constraints: Read Only

DataSource

The DataSource entity represents the configuration and runtime metrics for a data source resource, used by applications to interact with a database.

The properties of the DataSource entity are as follows:

	name
	
The name of this data source.

Type: String

Constraints: Immutable, Not Null

	jdbcDataSourceParams
	
The general parameters of this data source. Basic configuration parameters for this data source are specified using these parameters.

Type: JdbcDataSourceParams

Constraints: Read Only

	jdbcConnectionPoolParams
	
The connection pool parameters of this data source. Configuration parameters for this data source's connection pool are specified using these parameters.

Type: JdbcConnectionPoolParams

Constraints: Read Only

	jdbcDriverParams
	
The driver parameters for this data source. Configuration parameters for the JDBC driver used by this data source are specified using these parameters.

Type: JdbcDriverParams

Constraints: Read Only

	aggregateMetrics
	
Aggregate metrics calculated across all running instances of this data source.

Type: DataSourceMetrics

Constraints: Read Only

	dataSourceMetrics
	
The list of per server runtime metrics for this data source.

Type: List<DataSourceMetrics>

Constraints: Read Only

	targets
	
The list of the targets for this data source.

Type: List<String>

Constraints: Read Only

DataSourceMetrics

The DataSourceMetrics entity includes attributes that can be used to monitor a data source.

The properties of the DataSourceMetrics entity are as follows:

	serverName
	
The name of the server where this data source instance runs.

Type: String

Constraints: Read Only

	state
	
The state of this data source: running, suspended, shutdown, overloaded, or unknown.

Type: String

Constraints: Read Only

	leakedConnectionCount
	
The number of leaked connections. A leaked connection is a connection that was reserved from the data source but was not returned to the data source by calling close().

Type: int

Constraints: Read Only

	failuresToReconnectCount
	
The number of times that the data source attempted to refresh a database connection and failed. Failures may occur when the database is unavailable or when the network connection to the database is interrupted.

Type: int

Constraints: Read Only

	connectionDelayTime
	
The average amount of time, in milliseconds, that it takes to create a physical connection to the database. The value is calculated as summary of all times to connect divided by the total number of connections.

Type: int

Constraints: Read Only

	prepStmtCacheAccessCount
	
The cumulative, running count of the number of times that the statement cache was accessed.

Type: long

Constraints: Read Only

	prepStmtCacheAddCount
	
The cumulative, running count of the number of statements added to the statement cache. Each connection in the connection pool has its own cache of statements. This number is the sum of the number of statements added to the caches for all connections in the connection pool.

Type: long

Constraints: Read Only

	prepStmtCacheDeleteCount
	
The cumulative, running count of statements discarded from the cache. Each connection in the connection pool has its own cache of statements. This number is the sum of the number of statements that were discarded from the caches for all connections in the connection pool.

Type: long

Constraints: Read Only

	prepStmtCacheCurrentSize
	
The number of prepared and callable statements currently cached in the statement cache. Each connection in the connection pool has its own cache of statements. This number is the sum of the number of statements in the caches for all connections in the connection pool.

Type: int

Constraints: Read Only

	prepStmtCacheHitCount
	
The cumulative, running count of the number of times that statements from the cache were used.

Type: int

Constraints: Read Only

	prepStmtCacheMissCount
	
The number of times that a statement request could not be satisfied with a statement from the cache.

Type: int

Constraints: Read Only

	activeConnectionsCurrentCount
	
The number of connections currently in use by applications.

Type: int

Constraints: Read Only

	waitingForConnectionCurrentCount
	
The number of connection requests waiting for a database connection.

Type: int

Constraints: Read Only

	activeConnectionsHighCount
	
The highest number of active database connections in this instance of the data source since the data source was instantiated. Active connections are connections in use by an application.

Type: int

Constraints: Read Only

	activeConnectionsAverageCount
	
The average number of active connections in this instance of the data source. Active connections are connections in use by an application. This value is only valid if the resource is configured to allow shrinking.

Type: int

Constraints: Read Only

	reserveRequestCount
	
The cumulative, running count of requests for a connection from this data source.

Type: long

Constraints: Read Only

	failedReserveRequestCount
	
The cumulative, running count of requests for a connection from this data source that could not be fulfilled.

Type: long

Constraints: Read Only

	waitingForConnectionHighCount
	
Highest number of application requests concurrently waiting for a connection from this instance of the data source.

Type: int

Constraints: Read Only

	waitingForConnectionTotal
	
The cumulative, running count of requests for a connection from this data source that had to wait before getting a connection, including those that eventually got a connection and those that did not get a connection.

Type: long

Constraints: Read Only

	waitingForConnectionSuccessTotal
	
The cumulative, running count of requests for a connection from this data source that had to wait before getting a connection and eventually succeeded in getting a connection.

Type: long

Constraints: Read Only

	waitingForConnectionFailureTotal
	
The cumulative, running count of requests for a connection from this data source that had to wait before getting a connection and eventually failed to get a connection. Waiting connection requests can fail for a variety of reasons, including waiting for longer than the ConnectionReserveTimeoutSeconds.

Type: long

Constraints: Read Only

	waitSecondsHighCount
	
The highest number of seconds that an application waited for a connection (the longest connection reserve wait time) from this instance of the connection pool since the connection pool was instantiated. This value is updated when a completed getConnection request takes longer to return a connection than any previous request.

Type: int

Constraints: Read Only

	connectionsTotalCount
	
The cumulative total number of database connections created in this data source since the data source was deployed.

Type: int

Constraints: Read Only

	currCapacity
	
The current count of JDBC connections in the connection pool in the data source.

Type: int

Constraints: Read Only

	currCapacityHighCount
	
The highest number of database connections available or in use (current capacity) in this instance of the data source since the data source was deployed.

Type: int

Constraints: Read Only

	numAvailable
	
The number of database connections that are currently idle and available to be used by applications in this instance of the data source.

Type: int

Constraints: Read Only

	highestNumAvailable
	
The highest number of database connections that were idle and available to be used by an application at any time in this instance of the data source since the data source was deployed.

Type: int

Constraints: Read Only

	numUnavailable
	
The number of connections currently in use by applications or being tested in this instance of the data source.

Type: int

Constraints: Read Only

	highestNumUnavailable
	
The highest number of database connections that were in use by applications or being tested by the system in this instance of the data source since the data source was deployed.

Type: int

Constraints: Read Only

Deployment

The Deployment entity includes essential information that is common to all deployment types.

The properties of the Deployment entity are as follows:

	name
	
The name of this deployment.

Type: String

Constraints: Immutable

	displayName
	
A human readable name for this deployment, with formatted version information.

Type: String

Constraints: Read Only

	deploymentPath
	
The pathname (relative to the Administration Server) of a file containing the deployment archive or a directory containing an exploded deployment.

Type: String

Constraints: Immutable

	type
	
The type of this deployment: application or library.

Type: String

Constraints: Read Only

	state
	
The state of this deployment: active, admin, update pending, prepared, failed, retired, or new.

Type: String

Constraints: Read Only

	targets
	
The list of the targets for this deployment.

Type: List<String>

Constraints: Read Only

DeploymentDescription

The DeploymentDescription entity provides access to the configuration of a deployment.

The properties of the DeploymentDescription entity are as follows:

	deploymentPath
	
The pathname (relative to the Administration Server) of a file containing the deployment archive or a directory containing an exploded deployment.

Type: String

Constraints: Read Only

	planPath
	
(Optional) The pathname (relative to the Administration Server) of a file containing a deployment plan.

Type: String

Constraints: Read Only

	deploymentType
	
The type of deployment: library, application, or unknown.

Type: String

Constraints: Read Only

	name
	
The name of this deployment, if available. (This is the suggested name for a new deployment.)

Type: String

Constraints: Read Only

	archiveVersion
	
The archive version if the deployment is an application and specifies its archive version.

Type: String

Constraints: Read Only

	planVersion
	
The plan version if the deployment is an application and specifies its plan version.

Type: String

Constraints: Read Only

	specVersion
	
The specification version if the deployment is a library and specifies its specification version.

Type: String

Constraints: Read Only

	implVersion
	
The implementation version if the deployment is a library and specifies its implementation version.

Type: String

Constraints: Read Only

DeploymentJob

The DeploymentJob entity includes the attributes of a Job entity, and adds the following attributes that are unique to a deployment operation.

The properties of the DeploymentJob entity are as follows:

	status
	
The status of this deployment job: initialized, in progress completed, failed, or deferred.

Type: String

Constraints: Read Only

	operation
	
The deployment operation that this job is tracking: activate, prepare, deactivate, remove, unprepare, distribute, start, stop, redeploy, update, deploy, or undeploy.

Type: String

Constraints: Read Only

	deploymentName
	
The name of the deployment affected by this job.

Type: String

Constraints: Read Only

	targets
	
The target specific status information associated with this job.

Type: List<DeploymentJobTarget>

Constraints: Read Only

DeploymentJobTarget

The DeploymentJobTarget entity provides access to target-specific status information for a deployment job.

The properties of the DeploymentJobTarget entity are as follows:

	name
	
The name of this target.

Type: String

Constraints: Read Only

	type
	
The type of this target: unknown, server, cluster JMS server, virtual host, or SAF agent.

Type: String

Constraints: Read Only

	status
	
The status of the deployment operation on this target: initialized, in progress completed, failed, or unavailable.

Type: String

Constraints: Read Only

	errors
	
A list of error messages that describe issues that occurred during this deployment job, if any.

Type: List<String>

Constraints: Read Only

DeploymentReference

A DeploymentReference entity is used to identify a deployment for inspection or deployment.

The properties of the DeploymentReference entity are as follows:

	deploymentPath
	
The pathname (relative to the Administration Server) of a file containing the deployment archive or a directory containing an exploded deployment.

Type: String

Constraints: Not Null

	planPath
	
(Optional) The pathname (relative to the Administration Server) of a file containing a deployment plan.

Type: String

Ejb

The Ejb entity includes information for each EJB.

The properties of the Ejb entity are as follows:

	ejbName
	
The name for this EJB as defined in the javax.ejb.EJB annotation, or the ejb-name when using the ejb-jar.xml deployment descriptor.

Type: String

Constraints: Read Only

	type
	
The type of this EJB: entity, stateless, stateful, singleton, or message driven.

Type: String

Constraints: Read Only

	moduleName
	
The name of this EJB module.

Type: String

Constraints: Read Only

	aggregateMetrics
	
Aggregate metrics calculated across all running instances of this EJB.

Type: EjbMetrics

Constraints: Read Only

	ejbMetrics
	
The list of per server runtime metrics for this EJB.

Type: List<EjbMetrics>

Constraints: Read Only

EjbCacheMetrics

The EjbCacheMetrics entity includes runtime cache monitoring information for each EJB.

The properties of the EjbCacheMetrics entity are as follows:

	cachedBeansCurrentCount
	
A count of the total number of beans from this EJB Home currently in the EJB cache.

Type: int

Constraints: Read Only

	cacheAccessCount
	
A count of the total number of attempts to access a bean from the cache.

Type: long

Constraints: Read Only

	cacheMissCount
	
A count of the total number of times an attempt to access a bean from the cache failed.

Type: long

Constraints: Read Only

	activationCount
	
A count of the total number of beans from this EJB Home that have been activated.

Type: long

Constraints: Read Only

	passivationCount
	
A count of the total number of beans from this EJB Home that have been passivated.

Type: long

Constraints: Read Only

EjbLockingMetrics

The EjbLockingMetrics entity includes runtime locking monitoring information for each EJB.

The properties of the EjbLockingMetrics entity are as follows:

	lockEntriesCurrentCount
	
A count of the number of beans currently locked.

Type: int

Constraints: Read Only

	lockManagerAccessCount
	
The total number of attempts to obtain a lock on a bean. This includes attempts to obtain a lock on a bean that is already locked on behalf of the client.

Type: long

Constraints: Read Only

	waiterTotalCount
	
The total number of threads that have waited for a lock on a bean.

Type: long

Constraints: Read Only

	waiterCurrentCount
	
The current number of threads that have waited for a lock on a bean.

Type: int

Constraints: Read Only

	timeoutTotalCount
	
The current number of threads that have timed out waiting for a lock on a bean.

Type: long

Constraints: Read Only

EjbMetrics

The EjbMetrics entity includes runtime monitoring information for an EJB instance.

The properties of the EjbMetrics entity are as follows:

	serverName
	
The name of the server where this EJB instance runs.

Type: String

Constraints: Read Only

	transactionMetrics
	
The EJB transaction metrics, if applicable.

Type: EjbTransactionMetrics

Constraints: Read Only

	timerMetrics
	
The EJB timer metrics, if applicable.

Type: EjbTimerMetrics

Constraints: Read Only

	poolMetrics
	
The EJB pool metrics, if applicable.

Type: EjbPoolMetrics

Constraints: Read Only

	cacheMetrics
	
The EJB caching metrics, if applicable.

Type: EjbCacheMetrics

Constraints: Read Only

	lockingMetrics
	
The EJB locking metrics, if applicable.

Type: EjbLockingMetrics

Constraints: Read Only

EjbPoolMetrics

The EjbPoolMetrics entity includes runtime pool monitoring information for each EJB.

The properties of the EjbPoolMetrics entity are as follows:

	accessTotalCount
	
A count of the total number of times an attempt was made to get an instance from the free pool.

Type: long

Constraints: Read Only

	missTotalCount
	
A count of the total number of times a failed attempt was made to get an instance from the free pool. An attempt to get a bean from the pool will fail if there are no available instances in the pool.

Type: long

Constraints: Read Only

	destroyedTotalCount
	
A count of the total number of times a bean instance from this pool was destroyed due to a non-application exception being thrown from it.

Type: long

Constraints: Read Only

	pooledBeansCurrentCount
	
A count of the current number of available bean instances in the free pool.

Type: int

Constraints: Read Only

	beansInUseCurrentCount
	
A count of the number of bean instances currently being used from the free pool.

Type: int

Constraints: Read Only

	waiterCurrentCount
	
A count of the total number of threads currently waiting for an available bean instance from the free pool.

Type: int

Constraints: Read Only

	timeoutTotalCount
	
A count of the total number of threads that have timed out waiting for an available bean instance from the free pool.

Type: long

Constraints: Read Only

EjbTimerMetrics

The EjbTimerMetrics entity includes runtime timer monitoring information for each EJB.

The properties of the EjbTimerMetrics entity are as follows:

	timeoutCount
	
The total number of successful timeout notifications that have been made for this EJB.

Type: long

Constraints: Read Only

	cancelledTimerCount
	
The total number of timers that have been explicitly cancelled for this EJB.

Type: long

Constraints: Read Only

	activeTimerCount
	
The current number of active timers for this EJB.

Type: int

Constraints: Read Only

	disabledTimerCount
	
The current number of timers temporarily disabled for this EJB.

Type: int

Constraints: Read Only

EjbTransactionMetrics

The EjbTransactionMetrics entity includes runtime transaction monitoring information for each EJB.

The properties of the EjbTransactionMetrics entity are as follows:

	transactionsCommittedTotalCount
	
A count of the total number of transactions that have been committed for this EJB.

Type: long

Constraints: Read Only

	transactionsRolledBackTotalCount
	
A count of the total number of transactions that have been rolled back for this EJB.

Type: long

Constraints: Read Only

	transactionsTimedOutTotalCount
	
A count of the total number of transactions that have timed out for this EJB.

Type: long

Constraints: Read Only

Health

The Health entity represents the health of a WebLogic domain.

The properties of the Health entity are as follows:

	state
	
The domain health state: ok, warn, critical, failed, overloaded, or unknown.

Type: String

Constraints: Read Only

	reasons
	
The reasons for the health state of this domain.

Type: String

Constraints: Read Only

JdbcConnectionPoolParams

The JdbcConnectionPoolParams entity includes parameters for a data source's connection pool.

The properties of the JdbcConnectionPoolParams entity are as follows:

	initialCapacity
	
The number of physical connections to create when creating the connection pool in the data source. If unable to create this number of connections, creation of the data source will fail.

Type: int

	maxCapacity
	
The maximum number of physical connections that this connection pool can contain.

Type: int

	minCapacity
	
The minimum number of physical connections that this connection pool can contain after it is initialized.

Type: int

	shrinkFrequencySeconds
	
The number of seconds to wait before shrinking a connection pool that has incrementally increased to meet demand. When set to zero (0), shrinking is disabled.

Type: int

	highestNumWaiters
	
The maximum number of connection requests that can concurrently block threads while waiting to reserve a connection from the data source's connection pool.

Type: int

	connectionCreationRetryFrequencySeconds
	
If you do not set this value, data source creation fails if the database is unavailable. If set and if the database is unavailable when the data source is created, WebLogic Server will attempt to create connections in the pool again after the number of seconds you specify, and will continue to attempt to create the connections until it succeeds. When set to zero (0), connection retry is disabled.

Type: int

	connectionReserveTimeoutSeconds
	
The number of seconds after which a call to reserve a connection from the connection pool will timeout. When set to zero (0), a call will never timeout. When set to -1, a call will timeout immediately.

Type: int

	testFrequencySeconds
	
The number of seconds a WebLogic Server instance waits between attempts when testing unused connections. (Requires that you specify a Test Table Name.) Connections that fail the test are closed and reopened to re-establish a valid physical connection. If the test fails again, the connection is closed.

In the context of multi data sources, this attribute controls the frequency at which WebLogic Server checks the health of data sources it had previously marked as unhealthy.

When set to zero (0), the feature is disabled.

Type: int

	testConnectionsOnReserve
	
Enables WebLogic Server to test a connection before giving it to a client. (Requires that you specify a Test Table Name.)

The test adds a small delay in serving the client's request for a connection from the pool, but ensures that the client receives a viable connection.

Type: boolean

	profileHarvestFrequencySeconds
	
The number of seconds between when WebLogic Server harvests profile data. When set to zero (0), harvesting of data is disabled.

Type: int

	ignoreInUseConnectionsEnabled
	
Enables the data source to be shutdown even if connections obtained from the pool are still in use.

Type: boolean

	inactiveConnectionTimeoutSeconds
	
The number of inactive seconds on a reserved connection before WebLogic Server reclaims the connection and releases it back into the connection pool.

You can use the Inactive Connection Timeout feature to reclaim leaked connections - connections that were not explicitly closed by the application. Note that this feature is not intended to be used in place of properly closing connections.

When set to zero (0), the feature is disabled.

Type: int

	testTableName
	
The name of the database table to use when testing physical database connections. This name is required when you specify a Test Frequency and enable Test Reserved Connections.

The default SQL code used to test a connection is select count(*) from TestTableName. Most database servers optimize this SQL to avoid a table scan, but it is still a good idea to set the Test Table Name to the name of a table that is known to have few rows, or even no rows.

If the Test Table Name begins with SQL, then the rest of the string following that leading token will be taken as a literal SQL statement that will be used to test connections instead of the standard query. For example: SQL BEGIN; Null; END;

For an Oracle database, you can reduce the overhead of connection testing by setting Test Table Name to SQL PINGDATABASE which uses the pingDatabase() method to test the Oracle connection.

Type: String

	loginDelaySeconds
	
The number of seconds to delay before creating each physical database connection. This delay supports database servers that cannot handle multiple connection requests in rapid succession.

The delay takes place both during initial data source creation and during the lifetime of the data source whenever a physical database connection is created.

Type: int

	initSql
	
SQL statement to execute that will initialize newly created physical database connections. Start the statement with SQL followed by a space.

If the Init SQL value begins with SQL, then the rest of the string following that leading token will be taken as a literal SQL statement that will be used to initialize database connections. If the Init SQL value does not begin with SQL, the value will be treated as the name of a table and the following SQL statement will be used to initialize connections: select count(*) from InitSQL.

The table InitSQL must exist and be accessible to the database user for the connection. Most database servers optimize this SQL to avoid a table scan, but it is still a good idea to set InitSQL to the name of a table that is known to have few rows, or even no rows.

Type: String

Constraints: Not Null

	statementCacheSize
	
The number of prepared and callable statements stored in the cache. (This may increase server performance.)

WebLogic Server can reuse statements in the cache without reloading the statements, which can increase server performance. Each connection in the connection pool has its own cache of statements.

Setting the size of the statement cache to zero (0) turns off statement caching.

Type: int

	statementCacheType
	
The algorithm used for maintaining the prepared statements stored in the statement cache:

	
least recently used - when a new prepared or callable statement is used, the least recently used statement is replaced in the cache.

	
fixed - the first fixed number of prepared and callable statements are cached.

Type: String

	removeInfectedConnections
	
Specifies whether a connection will be removed from the connection pool after the application uses the underlying vendor connection object.

If you disable removing infected connections, you must make sure that the database connection is suitable for reuse by other applications.

When set to true (the default), the physical connection is not returned to the connection pool after the application closes the logical connection. Instead, the physical connection is closed and recreated.

When set to false, when the application closes the logical connection, the physical connection is returned to the connection pool and can be reused by the application or by another application.

Type: boolean

	secondsToTrustAnIdlePoolConnection
	
The number of seconds within a connection that WebLogic Server trusts that the connection is still viable and will skip the connection test, either before delivering it to an application or during the periodic connection testing process.

This option is an optimization that minimizes the performance impact of connection testing, especially during heavy traffic.

Type: int

	statementTimeout
	
The time after which a statement currently being executed will time out.

Statement timeout relies on underlying JDBC driver support. WebLogic Server passes the time specified to the JDBC driver using the java.sql.Statement.setQueryTimeout() method. If your JDBC driver does not support this method, it may throw an exception and the timeout value is ignored.

A value of -1 disables this feature. A value of zero (0) means that statements will not time out.

Type: int

	profileType
	
The type of profile data to be collected for the JDBC subsystem.

Type: int

	jdbcXaDebugLevel
	
The level of JDBC debugging for XA drivers, where larger values in the range provide more debugging information.

Type: int

	credentialMappingEnabled
	
Enables Set Client ID on connection for the data source. When an application requests a database connection, WebLogic Server sets a light-weight client ID on the database connection.

By default, it uses the credential mapping to map WebLogic Server user IDs to database user IDs. However, if use-database-credentials is set to true, then the credential mapping is not done and the ID is used directly as a database user ID.

It is currently supported for IBM DB2 driver and Oracle thin driver. Support for this feature will be dropped in a future Oracle thin driver release. Oracle recommends using proxy authentication instead of this feature.

Type: boolean

	driverInterceptor
	
The absolute name of the application class used to intercept method calls to the JDBC driver. The application specified must implement the weblogic.jdbc.extensions.DriverInterceptor interface.

WebLogic Server will invoke the preInvokeCallback(), postInvokeExceptionCallback(), and postInvokeCallback() methods of the registered application before and after invoking any method inside the JDBC driver. You can use this feature to profile JDBC driver usage and monitor:

	
Methods being executed

	
Any exceptions thrown

	
Time spent inside the driver executing methods

Type: String

Constraints: Not Null

	pinnedToThread
	
Enables an option to improve performance by enabling execute threads to keep a pooled database connection even after the application closes the logical connection. When enabled:

	
WebLogic Server pins a database connection from the connection pool to an execution thread the first time an application uses the thread to reserve a connection. When the application finishes using the connection and calls connection.close(), WebLogic Server keeps the connection with the execute thread and does not return it to the connection pool. When an application subsequently requests a connection using the same execute thread, WebLogic Server provides the connection already reserved by the thread.

	
There is no locking contention on the connection pool that occurs when multiple threads attempt to reserve a connection at the same time. There is no contention for threads that attempt to reserve the same connection from a limited number of database connections.

	
If an application concurrently reserves more than one connection from the connection pool using the same execute thread, WebLogic Server creates additional database connections and pins them to the thread.

Type: boolean

	identityBasedConnectionPoolingEnabled
	
Enables identity-based-connection-pooling for the data source. When an application requests a database connection, WebLogic Server picks or creates a physical connection with the requested DBMS identity based on a map of WebLogic user IDs and database IDs. You must also specify the map of WebLogic Server user IDs to database user IDs (credential mapping).

Type: boolean

	wrapTypes
	
By default, data type objects for Array, Blob, Clob, NClob, Ref, SQLXML, and Struct, plus ParameterMetaData and ResultSetMetaData objects are wrapped with a WebLogic wrapper. This allows features like debugging and connection usage to be done by the server. The wrapping can be turned off by setting this value to false. This improves performance, in some cases significantly, and allows the application to use the native driver objects directly.

Type: boolean

	fatalErrorCodes
	
A comma-separated list of error codes that are treated as fatal errors. These errors include deployment errors that cause a server to fail to boot and connection errors that prevent a connection from being put back in the connection pool.

This optional property is used to define fatal error codes, that when specified as the exception code within a SQLException (retrieved by sqlException.getErrorCode()), indicate that a fatal error has occurred and the connection is no longer usable. For Oracle databases the following fatal error codes are predefined within WLS and do not need to be placed in the configuration file:

	
3113: end-of-file on communication channel

	
3114: not connected to ORACLE

	
1033: ORACLE initialization or shutdown in progress

	
1034: ORACLE not available

	
1089: immediate shutdown in progress - no operations are permitted

	
1090: shutdown in progress - connection is not permitted

	
17002: I/O exception

Type: String

Constraints: Not Null

	connectionLabelingCallback
	
The class name of the connection labeling callback. This is automatically passed to registerConnectionLabelingCallback when the data source is created. The class must implement oracle.ucp.ConnectionLabelingCallback.

Type: String

Constraints: Not Null

	connectionHarvestMaxCount
	
The maximum number of connections that may be harvested when the connection harvesting occurs. The range of valid values is 1 to MaxCapacity.

Type: int

	connectionHarvestTriggerCount
	
The number of available connections (trigger value) used to determine when connection harvesting occurs.

	
Harvesting occurs when the number of available connections is below the trigger value for a connection pool.

	
The range of valid values is -1 to MaxCapacity.

	
The default value is -1.

	
Setting the value to -1 disables connection harvesting.

Type: int

	countOfTestFailuresTillFlush
	
The number of test failures allowed before WebLogic Server closes all connections in a connection pool to minimize the delay caused by further database testing.

Type: int

	countOfRefreshFailuresTillDisable
	
The number of refresh failures allowed before WebLogic Server closes all connections in a connection pool to minimize the delay caused by further database testing.

Type: int

	wrapJdbc
	
By default, SQL objects for CallableStatement, PreparedStatement, ResultSet, Statement, and DatabaseMetaData are wrapped with a WebLogic wrapper. Wrapping allows features like debugging and connection usage to be performed by the server.

When false, wrapping is disabled. This improves performance, in some cases significantly, and allows for the application to use the native driver objects directly. A value of false also disables data type wrapping.

Type: boolean

JdbcDataSourceParams

The JdbcDataSourceParams entity includes the basic configuration settings for a data source.

The properties of the JdbcDataSourceParams entity are as follows:

	jndiNames
	
The JNDI path to where this data source is bound. By default, the JNDI name is the name of the data source. Applications that look up the JNDI path will get a javax.sql.DataSource instance that corresponds to this data source.

Type: List<String>

	scope
	
The scoping of the data source: global or application

Type: String

	rowPrefetch
	
Enables multiple rows to be "prefetched" (that is, sent from the server to the client) in one server access.

Type: boolean

	rowPrefetchSize
	
If row prefetching is enabled, specifies the number of result set rows to prefetch for a client.

Type: int

	streamChunkSize
	
The data chunk size for streaming data types.

Type: int

	algorithmType
	
The algorithm that determines the connection request processing for the multi data source: failover or load balancing

Type: String

	dataSourceList
	
The list of data sources to which the multi data source will route connection requests. The order of data sources in the list determines the failover order.

Type: String

	connectionPoolFailoverCallbackHandler
	
The name of the application class to handle the callback sent when a multi data source is ready to failover or fail back connection requests to another data source within the multi data source. The name must be the absolute name of an application class that implements the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface.

Type: String

	failoverRequestIfBusy
	
For multi data sources with the failover algorithm, enables the multi data source to failover connection requests to the next data source if all connections in the current data source are in use.

Type: boolean

	globalTransactionsProtocol
	
The transaction protocol (global transaction processing behavior) for the data source: two phase commit, logging last resource, emulate two phase commit, one phase commit, or none

Type: String

	keepConnAfterLocalTx
	
Enables WebLogic Server to keep the physical database connection associated with the logical connection when committing a local transaction instead of releasing it and getting another physical connection when needed. Setting this property to true may require additional connections to be configured on the database.

Type: boolean

	keepConnAfterGlobalTx
	
Enables WebLogic Server to keep the physical database connection associated with the logical connection when committing a global transaction instead releasing it and getting another physical connection when needed. Setting this property to true may require additional connections to be configured on the database.

Type: boolean

JdbcDriverParams

A JdbcDriverParams entity includes the driver parameters for the JDBC driver used by a data source.

The properties of the JdbcDriverParams entity are as follows:

	useXaDataSourceInterface
	
Specifies that WebLogic Server should use the XA interface of the JDBC driver. If the JDBC driver class used to create database connections implements both XA and non-XA versions of a JDBC driver, you can set this attribute to indicate that WebLogic Server should treat the JDBC driver as an XA driver or as a non-XA driver.

Type: boolean

	usePasswordIndirection
	
Specifies whether the database credentials are to be obtained from the credential mapper using the "user" property as the key. When true, the credentials are obtained from the credential mapper. When false, the database user name and password are obtained from the "user" property and Password element, respectively.

Type: boolean

	systemProperties
	
The list of properties passed to the JDBC driver when creating physical database connections.

To enable driver-level features, add the driver property and its value to the Properties list. WebLogic Server sets driver-level properties in the Properties list on the driver's ConnectionPoolDataSource object.

NOTE: For Security reasons, when WebLogic Server is running in production mode, you cannot specify database passwords in this properties list. Data source deployment will fail if a password is specified in the properties list. To override this security check, use the command line argument weblogic.management.allowClearTextPasswords when starting the server.

Type: List<Property>

Job

The Job entity includes information about an asynchronous task.

The properties of the Job entity are as follows:

	id
	
A unique identity for the job within its specific job type. Not meant to be displayed. Useful for constructing URLs and for querying for additional job information.

Type: String

Constraints: Read Only

	name
	
The name associated with this job.

Type: String

Constraints: Read Only

	type
	
The type of job: server or deployment

Type: String

Constraints: Read Only

	status
	
The status of this job.

Type: String

Constraints: Read Only

	description
	
A description associated with this job.

Type: String

Constraints: Read Only

	beginTime
	
The time at which this job was started.

Type: long

Constraints: Read Only

	endTime
	
The time at which this job was completed. Zero (0) if running.

Type: long

Constraints: Read Only

	error
	
An error message for this job, if any.

Type: String

Constraints: Read Only

Library

A Library entity includes information about a library deployment, including the libraries and applications which are dependent on this library.

Note that a Library entity includes all the Deployment properties in addition to the following properties.

The properties of the Library entity are as follows:

	specVersion
	
The library specification version (from the deployment manifest file).

Type: String

Constraints: Read Only

	implVersion
	
The library implementation version (from the deployment manifest file).

Type: String

Constraints: Read Only

	referencingApplications
	
The list of application names that reference this library.

Type: List<String>

Constraints: Read Only

	referencingLibraries
	
The list of other library names that reference this library.

Type: List<String>

Constraints: Read Only

LogEntry

The LogEntry entity describes a specific log entry in a log file.

The fields recorded in a log file in WebLogic Server vary considerably according to the log type: data source, HTTP access, or server log. As such, the information returned in a LogEntry entity will also vary depending on the log file being viewed.

The properties of the LogEntry entity are as follows:

	recordId
	
The unique identifier for this log entry in this log.

Type: String

Constraints: Read Only

	timeStamp
	
The date and time of this log entry. Not available for resource adapter logs.

Type: String

Constraints: Read Only

	severity
	
The severity of this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	subSystem
	
The subsystem associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	msgId
	
The message ID of this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	message
	
The message associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	host
	
The host of this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	remoteUser
	
The remote user associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	authUser
	
The authorized user associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	request
	
The request associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	status
	
The status of this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	userId
	
The user ID associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	contextId
	
The context ID associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	datasource
	
The data source associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	profileType
	
The profile type associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	user
	
The user associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

	profileInformation
	
The profile information associated with this condition, if applicable to this log type.

Type: String

Constraints: Read Only

LogReference

The LogReference entity describes a specific, named log.

The properties of the LogReference entity are as follows:

	name
	
The name of the log.

Type: String

Constraints: Read Only

Server

The Server entity describes the configuration, state, and metrics associated with a WebLogic Server instance.

The properties of the Server entity are as follows:

	name
	
The name of this server instance.

Type: String

Constraints: Read Only

	state
	
The current state of this server instance:

	
shutdown

	
starting

	
running

	
standby

	
admin

	
suspending

	
force suspending

	
resuming

	
shutting down

	
force shutting down

	
failed

	
unknown

	
discovered

	
failed restarting

	
activate later

	
failed not restartable

	
failed migratable

Type: String

Constraints: Read Only

	health
	
The health of this server instance, if running. This health status is aggregated across all of the components of a server and will denote the most severe health condition encountered.

Type: Health

Constraints: Read Only

	jvmProcessorLoad
	
The average load that the VM is placing on all processors, in percent: 0% to 100%.

Type: int

Constraints: Read Only

	usedPhysicalMemory
	
The amount (in bytes) of physical memory that is currently being used by this server.

Type: long

Constraints: Read Only

	heapSizeCurrent
	
The current size (in bytes) of the JVM heap used by this server.

Type: long

Constraints: Read Only

	heapFreeCurrent
	
The current amount of memory (in bytes) that is available in the JVM heap.

Type: long

Constraints: Read Only

	activeHttpSessionCount
	
The number of current active HTTP sessions for all servlets hosted by this server.

Type: int

Constraints: Read Only

	activeThreadCount
	
The number of active threads being used by all applications and resources on this server.

Type: int

Constraints: Read Only

ServerJob

The ServerJob entity includes the attributes of a Job entity, and adds additional attributes that are unique to a server life cycle operation.

The properties of the ServerJob entity are as follows:

	status
	
The server job status: in progress, completed, or failed.

Type: String

Constraints: Read Only

	serverName
	
The name of the server affected by this job.

Type: String

Constraints: Read Only

	operation
	
The server life cycle state transitions tracked by this job:

	
start

	
shutdown

	
start in standby

	
resume

	
force shutdown

	
suspending

	
force suspend

Type: String

Constraints: Read Only

Servlet

The Servlet entity includes information for each servlet.

The properties of the Servlet entity are as follows:

	servletName
	
The name of this instance of a servlet.

Type: String

Constraints: Read Only

	moduleName
	
The module associated with this servlet.

Type: String

Constraints: Read Only

	contextPath
	
The context path for this servlet.

Type: String

Constraints: Read Only

	aggregateMetrics
	
Aggregate metrics calculated across all running instances of this servlet.

Type: ServletMetrics

Constraints: Read Only

	servletMetrics
	
The list of per server runtime metrics for this servlet.

Type: List<ServletMetrics>

Constraints: Read Only

ServletMetrics

The ServletMetrics entity includes runtime monitoring information for a servlet instance.

The properties of the ServletMetrics entity are as follows:

	serverName
	
The name of the server where this servlet instance runs.

Type: String

Constraints: Read Only

	reloadTotalCount
	
A total count of the number of times this servlet has been reloaded.

Type: int

Constraints: Read Only

	invocationTotalCount
	
A total count of the number of times this servlet has been invoked.

Type: int

Constraints: Read Only

	executionTimeTotal
	
The total amount of time all invocations of the servlet have executed since created.

Type: long

Constraints: Read Only

	executionTimeHigh
	
The amount of time the single longest invocation of the servlet has executed since created.

Type: int

Constraints: Read Only

	executionTimeLow
	
The amount of time the single shortest invocation of the servlet has executed since created. Note that for the CounterMonitor, the difference option must be used.

Type: int

Constraints: Read Only

Target

The Target entity represents a WLS target.

The properties of the Target entity are as follows:

	name
	
The name of this target.

Type: String

Constraints: Read Only

	type
	
The type of this target: server or cluster.

Type: String

Constraints: Read Only

Version

A Version entity describes a version of the WLS resources.

The properties of the Version entity are as follows:

	version
	
The name of this version.

Type: String

Constraints: Read Only

	isLatest
	
True if this is the default version.

Type: boolean

Constraints: Read Only

	state
	
The life cycle of this version: active or deprecated

Type: String

Constraints: Read Only

	lifecycle
	
Type: String

Wls

The Wls entity provides access