
Oracle® Fusion Middleware
Configuring and Using the Diagnostics Framework for Oracle

WebLogic Server

12c (12.1.3)

E41908-04

November 2016

Documentation for developers and administrators that
describes how to configure and use the WebLogic Diagnostics
Framework (WLDF), a monitoring and diagnostic framework
that defines and implements a set of services that run within
WebLogic Server processes and that participate in the standard
server life cycle.

Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server,
12c (12.1.3)

E41908-04

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xi

Documentation Accessibility ... xi

Conventions.. xi

1 Introduction and Roadmap

1.1 What Is the WebLogic Diagnostics Framework? .. 1-1

1.2 Document Scope and Audience... 1-2

1.3 Guide to This Document... 1-2

1.4 Related Documentation .. 1-4

1.5 Samples and Tutorials... 1-4

1.5.1 Avitek Medical Records Application (MedRec) and Tutorials...................................... 1-4

1.5.2 WLDF Samples Available for Download.. 1-4

1.6 New and Changed Features in this Release... 1-5

2 Overview of the WLDF Architecture

2.1 Overview of the WebLogic Diagnostics Framework.. 2-1

2.2 Data Creation, Collection, and Instrumentation ... 2-2

2.3 Archive .. 2-3

2.4 Watch and Notification... 2-4

2.5 Data Accessor ... 2-4

2.6 Monitoring Dashboard and Request Performance Pages.. 2-5

2.6.1 Monitoring Dashboard .. 2-5

2.6.2 Diagnostics Request Performance Page .. 2-6

2.7 Diagnostic Image Capture.. 2-6

2.8 How It All Fits Together .. 2-7

3 Using the Built-in Diagnostic System Modules

3.1 Overview... 3-1

3.1.1 Types of Built-in Diagnostic System Modules ... 3-2

3.1.2 Data Collected by Built-in Diagnostic System Modules... 3-2

3.2 Configuring a Built-in Diagnostic Module .. 3-3

3.3 Accessing Data Collected by a Built-in Diagnostic System Module .. 3-4

iii

3.3.1 Using the Monitoring Dashboard .. 3-4

3.3.2 Using the Metrics Log Table in the Administration Console .. 3-5

3.4 Creating a Custom Diagnostic System Module Based on a Built-in .. 3-6

4 Using WLDF with Java Flight Recorder

4.1 About Java Flight Recorder .. 4-1

4.2 Using Java Flight Recorder with Oracle HotSpot ... 4-2

4.3 Key Features of WLDF Integration with Java Flight Recorder ... 4-3

4.4 Java Flight Recorder Use Cases ... 4-4

4.4.1 Diagnosing a Critical Failure — The "Black Box" .. 4-4

4.4.2 Profiling During Performance Testing or in Production.. 4-5

4.4.3 Real-time Application Diagnostics and Reporting (RADAR) 4-5

4.5 Obtaining the Flight Recording File.. 4-6

4.6 Analyzing Java Flight Recorder Data ... 4-6

4.6.1 Java Flight Recorder Graphical User Interface... 4-7

4.6.2 Analyzing Execution Flow — A Sample Walkthrough.. 4-8

4.6.3 Changing the Location of Temporary JFR Files... 4-14

5 Understanding WLDF Configuration

5.1 Configuration MBeans and XML .. 5-1

5.2 Tools for Configuring WLDF... 5-2

5.3 How WLDF Configuration Is Partitioned.. 5-2

5.3.1 Server-Level Configuration .. 5-2

5.3.2 Application-Level Configuration... 5-3

5.4 Configuring Diagnostic Image Capture and Diagnostic Archives... 5-3

5.5 Configuring Diagnostic Image Capture for Java Flight Recorder .. 5-4

5.6 Configuring Diagnostic System Modules .. 5-5

5.6.1 About the Resource Descriptor .. 5-5

5.6.2 WLDF Runtime Control .. 5-7

5.6.3 Creating a Diagnostic System Module Based on a Configured Resource Descriptor

... 5-7

5.6.4 Creating a Diagnostic System Module Based on an External Resource Descriptor ... 5-9

5.6.5 Targeting a Diagnostic System Module to a Server or Cluster.................................... 5-10

5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules 5-10

5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules 5-11

5.6.8 More Information About Configuring Diagnostic System Modules.......................... 5-14

5.7 Configuring Diagnostic Modules for Applications .. 5-15

5.8 WLDF Configuration MBeans and Their Mappings to XML Elements 5-15

6 Configuring and Capturing Diagnostic Images

6.1 How to Initiate Image Captures .. 6-1

6.2 Configuring Diagnostic Image Captures ... 6-1

6.2.1 Configuring WLDF Diagnostic Volume ... 6-2

iv

6.2.2 WLST Commands for Generating an Image Capture... 6-5

6.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration........................... 6-5

6.4 Content of the Captured Image File.. 6-6

6.4.1 Data Included in the Diagnostics Image Capture File .. 6-7

6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures 6-8

7 Configuring Diagnostic Archives

7.1 Configuring the Archive... 7-1

7.2 Configuring a File-Based Store .. 7-1

7.3 Configuring a JDBC-Based Store... 7-2

7.3.1 Creating WLDF Tables in the Database .. 7-2

7.3.2 Configuring JDBC Resources for WLDF... 7-8

7.4 Retiring Data from the Archives.. 7-9

7.4.1 Configuring Data Retirement at the Server Level ... 7-9

7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives................ 7-9

7.4.3 Sample Configuration.. 7-10

8 Configuring the Harvester for Metric Collection

8.1 Harvesting, Harvestable Data, and Harvested Data .. 8-1

8.2 Harvesting Data from the Different Harvestable Entities .. 8-2

8.3 Configuring the Harvester .. 8-2

8.3.1 Configuring the Harvester Sampling Period ... 8-3

8.3.2 Configuring the Types of Data to Harvest ... 8-3

8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans 8-4

8.3.4 Harvesting from the Domain Runtime MBean Server ... 8-4

8.3.5 When Configuration Settings Are Validated ... 8-5

8.3.6 Sample Configurations for Different Harvestable Types... 8-5

8.4 Harvester Performance Considerations ... 8-6

9 Configuring Watches and Notifications

9.1 Watches and Notifications.. 9-1

9.2 Overview of Watch and Notification Configuration ... 9-2

9.3 Sample Watch and Notification Configuration... 9-3

10 Configuring Watches

10.1 Types of Watches ... 10-1

10.2 Configuration Options Shared by All Types of Watches... 10-2

10.3 Configuring Harvester Watches.. 10-3

10.4 Configuring Log Watches... 10-4

10.5 Configuring Instrumentation Watches... 10-5

10.6 Defining Watch Rule Expressions ... 10-6

v

11 Configuring Notifications

11.1 Types of Notifications ... 11-1

11.2 Configuring JMX Notifications.. 11-2

11.3 Configuring JMS Notifications .. 11-2

11.4 Configuring SNMP Notifications ... 11-3

11.5 Configuring SMTP Notifications .. 11-4

11.6 Configuring Image Notifications... 11-4

12 Configuring Instrumentation

12.1 Concepts and Terminology .. 12-1

12.1.1 Instrumentation Scope... 12-2

12.1.2 Configuration and Deployment .. 12-2

12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations ... 12-2

12.1.4 Diagnostic Monitor Types... 12-2

12.1.5 Diagnostic Actions ... 12-4

12.2 Instrumentation Configuration Files ... 12-4

12.3 XML Elements Used for Instrumentation .. 12-6

12.3.1 <Instrumentation> XML Elements .. 12-6

12.3.2 <wldf-instrumentation-monitor> XML Elements ... 12-7

12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types 12-10

12.4 Configuring Server-Scoped Instrumentation .. 12-10

12.5 Configuring Application-Scoped Instrumentation... 12-12

12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation 12-12

12.5.2 Overview of the Steps Required to Instrument an Application.............................. 12-13

12.5.3 Creating a Descriptor File for a Delegating Monitor .. 12-14

12.5.4 Creating a Descriptor File for a Custom Monitor.. 12-15

12.6 Creating Request Performance Data... 12-19

13 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context 13-1

13.1.1 Context Life Cycle and the Context ID .. 13-2

13.1.2 Dyes, Dye Flags, and Dye Vectors ... 13-2

13.1.3 Where Diagnostic Context Is Configured... 13-3

13.2 Overview of the Process ... 13-3

13.3 Configuring the Dye Vector via the DyeInjection Monitor ... 13-4

13.3.1 Dyes Supported by the DyeInjection Monitor ... 13-5

13.3.2 PROTOCOL Dye Flags ... 13-7

13.3.3 THROTTLE Dye Flag... 13-7

13.3.4 When Diagnostic Contexts Are Created ... 13-7

13.4 Configuring Delegating Monitors to Use Dye Filtering .. 13-7

13.5 How Dye Masks Filter Requests to Pass to Monitors... 13-10

13.5.1 Dye Filtering Example ... 13-10

vi

13.6 Using Throttling to Control the Volume of Instrumentation Events................................. 13-11

13.6.1 Configuring the THROTTLE Dye.. 13-11

13.6.2 How Throttling is Handled by Delegating and Custom Monitors......................... 13-13

13.7 Using weblogic.diagnostics.context ... 13-13

14 Accessing Diagnostic Data With the Data Accessor

14.1 Data Stores Accessed by the Data Accessor... 14-1

14.2 Accessing Diagnostic Data Online .. 14-2

14.2.1 Accessing Data Using the Administration Console .. 14-2

14.2.2 Accessing Data Programmatically Using Runtime MBeans 14-2

14.2.3 Using WLST to Access Diagnostic Data Online... 14-3

14.2.4 Using the WLDF Query Language with the Data Accessor 14-3

14.3 Accessing Diagnostic Data Offline.. 14-3

14.4 Accessing Diagnostic Data Programmatically .. 14-3

14.5 Resetting the System Clock Can Affect How Data Is Archived and Retrieved.................. 14-8

15 Deploying WLDF Application Modules

15.1 Deploying a Diagnostic Module as an Application-Scoped Resource 15-1

15.2 Using Deployment Plans to Dynamically Control Instrumentation Configuration.......... 15-2

15.3 Using a Deployment Plan: Overview ... 15-3

15.4 Creating a Deployment Plan Using weblogic.PlanGenerator... 15-4

15.5 Sample Deployment Plan for Diagnostics ... 15-4

15.6 Enabling Java HotSwap .. 15-5

15.7 Deploying an Application with a Deployment Plan .. 15-5

15.8 Updating an Application with a Modified Plan ... 15-6

16 Using the Monitoring Dashboard

16.1 Running the Monitoring Dashboard... 16-1

16.2 Scope of the Diagnostic Information Displayed.. 16-1

16.3 About the Monitoring Dashboard Interface .. 16-2

16.3.1 View List .. 16-2

16.3.2 Metric Browser.. 16-4

16.3.3 View Display Panel .. 16-6

16.4 Understanding How Metrics Are Collected and Presented.. 16-8

16.4.1 About Metrics and Chart Types ... 16-8

16.4.2 Sequence in which Metrics Data is Displayed ... 16-9

16.4.3 Notes about Metric Data Retention ... 16-10

16.5 The Parts of a Chart ... 16-10

17 Configuring and Using WLDF Programmatically

17.1 How WLDF Generates and Retrieves Data ... 17-1

17.2 Mapping WLDF Components to Beans and Packages... 17-2

17.3 Programming Tools... 17-4

vii

17.3.1 Configuration and Runtime APIs .. 17-5

17.4 WLDF Packages ... 17-6

17.5 Programming WLDF: Examples.. 17-7

17.5.1 Example: DiagnosticContextExample.java... 17-7

17.5.2 Example: HarvesterMonitor.java ... 17-8

17.5.3 Example: JMXAccessorExample.java .. 17-13

A WLDF Query Language

A.1 Components of a Query Expression .. A-1

A.2 Supported Operators.. A-1

A.3 Operator Precedence .. A-3

A.4 Numeric Relational Operations Supported on String Column Types.................................... A-3

A.5 Supported Numeric Constants and String Literals ... A-4

A.6 About Variables in Expressions.. A-4

A.7 Creating Watch Rule Expressions .. A-5

A.7.1 Creating Log Event Watch Rule Expressions ... A-5

A.7.2 Creating Instrumentation Event Watch Rule Expressions ... A-6

A.7.3 Creating Harvester Watch Rule Expressions .. A-7

A.8 Creating Data Accessor Queries... A-8

A.8.1 Data Store Logical Names.. A-8

A.8.2 Data Store Column Names .. A-9

A.9 Creating Log Filter Expressions ... A-11

A.10 Building Complex Expressions... A-11

B WLDF Instrumentation Library

B.1 Diagnostic Monitor Library ... B-1

B.2 Diagnostic Action Library.. B-10

B.2.1 TraceAction... B-11

B.2.2 DisplayArgumentsAction... B-12

B.2.3 TraceElapsedTimeAction.. B-12

B.2.4 TraceMemoryAllocationAction ... B-13

B.2.5 StackDumpAction.. B-14

B.2.6 ThreadDumpAction .. B-14

B.2.7 MethodInvocationStatisticsAction .. B-15

B.2.8 MemoryAllocationStatisticsAction ... B-23

C Using Wildcards in Expressions

C.1 Using Wildcards in Harvester Instance Names ... C-1

C.1.1 Examples... C-1

C.2 Specifying Complex and Nested Harvester Attributes... C-2

C.2.1 Examples... C-3

C.3 Using the Accessor with Harvested Complex or Nested Attributes....................................... C-4

C.4 Using Wildcards in Watch Rule Instance Names .. C-5

viii

C.5 Specifying Complex Attributes in Harvester Watch Rules .. C-5

D WebLogic Scripting Tool Examples

D.1 WLST Commands for Diagnostics ... D-1

D.2 Example: Dynamically Creating DyeInjection Monitors .. D-2

D.3 Example: Configuring a Watch and a JMX Notification .. D-5

D.4 Example: Writing a JMXWatchNotificationListener Class .. D-7

D.5 Example: Registering MBeans and Attributes For Harvesting.. D-9

D.6 Example: Setting the WLDF Diagnostic Volume.. D-13

D.7 Example: Capturing a Diagnostic Image ... D-13

D.8 Example: Retrieving a JFR File from a Diagnostic Image Capture D-15

Glossary

ix

x

Preface

This preface describes the document accessibility features and conventions used in this
guide—Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and audience for this guide—Configuring and Using
the Diagnostics Framework for Oracle WebLogic Server. This guide describes the WebLogic
Diagnostics Framework (WLDF), a monitoring and diagnostic framework that defines
and implements a set of services that run within WebLogic Server processes and
participate in the standard server life cycle. Using WLDF, you can create, collect,
analyze, archive, and access diagnostic data generated by a running server and the
applications deployed within its containers. This data provides insight into the run-
time performance of servers and applications and enables you to isolate and diagnose
faults when they occur.

This chapter includes the following sections:

• What Is the WebLogic Diagnostics Framework?

• Document Scope and Audience

• Guide to This Document

• Related Documentation

• Samples and Tutorials

• New and Changed Features in this Release

1.1 What Is the WebLogic Diagnostics Framework?
WLDF includes several components for collecting and analyzing data:

• Integration with Oracle HotSpot—If WebLogic Server is configured with Oracle
HotSpot, WLDF can generate diagnostic information about WebLogic Server that is
captured in the Java Flight Recorder file.

• Built-in diagnostic system modules—A set of diagnostic modules available out-of-
the-box that you can enable dynamically to capture basic performance data about
the JVM, the WebLogic Server run time, and primary WebLogic Server subsystems,
including JDBC data sources, messaging, and Java EE containers, such as servlets,
EJBs, and resource adapters. The built-in diagnostic modules can also be cloned
and modified, providing a simple way to create custom diagnostic system
modules.

• Monitoring Dashboard—Graphically presents the current and historical operating
state of WebLogic Server and hosted applications, including information gathered
by the built-in diagnostic system modules. The Monitoring Dashboard, which is
accessed from the WebLogic Server Administration Console, provides a set of tools
for organizing and displaying diagnostic data into views, which surface some of
the more critical run-time WebLogic Server performance metrics and the change in
those metrics over time.

Introduction and Roadmap 1-1

• Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can
be used for post-failure analysis. The diagnostic image capture includes Java Flight
Recorder data, if it is available, that can be viewed in Java Mission Control.

• Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

• Instrumentation—Adds diagnostic code to WebLogic Server instances and the
applications running on them to execute diagnostic actions at specified locations in
the code. The Instrumentation component provides the means for associating a
diagnostic context with requests so they can be tracked as they flow through the
system. The WebLogic Server Administration Console includes a Request
Performance page, which shows real-time and historical views of method
performance information that has been captured through the WLDF
instrumentation capabilities, serving as a tool that can help identify performance
problems in applications.

• Harvester—Captures metrics from run-time MBeans, including WebLogic Server
MBeans and custom MBeans, which can be archived and later accessed for viewing
historical data.

• Watches and Notifications—Provides the means for monitoring server and
application states and sending notifications based on criteria set in the watches.

• Logging services—Manage logs for monitoring server, subsystem, and application
events. The WebLogic Server logging services are documented separately from the
rest of the WebLogic Diagnostics Framework. See Related Documentation.

WLDF provides a set of standardized application programming interfaces (APIs) that
enable dynamic access and control of diagnostic data, as well as improved monitoring
that provides visibility into the server. Independent Software Vendors (ISVs) can use
these APIs to develop custom monitoring and diagnostic tools for integration with
WLDF. These APIs can be accessed using the JMX and the WebLogic Scripting Tool
(WLST), as described in Configuring and Using WLDF Programmatically.

WLDF enables dynamic access to server data through standard interfaces, and the
volume of data accessed at any given time can be modified without shutting down
and restarting the server.

1.2 Document Scope and Audience
This document describes and tells how to configure and use the monitoring and
diagnostic services provided by WLDF.

WLDF provides features for monitoring and diagnosing problems in running
WebLogic Server instances and clusters and in applications deployed to them.
Therefore, the information in this document is directed both to system administrators
and to application developers. It also contains information for third-party tool
developers who want to build tools to support and extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating
system and platform where WebLogic Server is installed.

1.3 Guide to This Document
This document is organized as follows:

Document Scope and Audience

1-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• This chapter, "Introduction and Roadmap", provides an overview of WLDF
components and describes the audience for this guide.

• Overview of the WLDF Architecture, provides a high-level view of the WLDF
architecture.

• Using the Built-in Diagnostic System Modules, describes the built-in system
diagnostic modules, which are provided by the WebLogic Diagnostics Framework
(WLDF) as a simple and easy-to-use mechanism for performing basic health and
performance monitoring of a WebLogic Server instance

• Using WLDF with Java Flight Recorder, describes the WLDF integration features
with Java Flight Recorder, describes basic usage scenarios, and provides a sample
walkthrough of using Java Mission Control to examine WebLogic Server events
captured in a Java Flight Recorder file.

• Understanding WLDF Configuration , provides an overview of how WLDF
features are configured for servers and applications.

• Configuring and Capturing Diagnostic Images, describes how to configure and use
the WLDF Diagnostic Image Capture component to capture a snapshot of
significant server configuration settings and the server state.

• Configuring Diagnostic Archives, describes how to configure and use the WLDF
Diagnostic Archive component to persist diagnostic data to a file store or database.

• Configuring the Harvester for Metric Collection, describes how to configure and
use the WLDF Harvester component to harvest metrics from run-time MBeans,
including WebLogic Server MBeans and custom MBeans.

• Configuring Watches and Notifications, provides an overview of WLDF watches
and notifications.

• Configuring Watches, describes how to configure watches to monitor server
instances and applications for specific conditions and send notifications when those
conditions are met.

• Configuring Notifications, describes how to configure notifications that can be
triggered by watches.

• Configuring Instrumentation, describes how to add diagnostic instrumentation
code to WebLogic Server classes and to the classes of applications running on the
server.

• Configuring the DyeInjection Monitor to Manage Diagnostic Contexts, describes
how to use the DyeInjection monitor and how to use dye filtering with diagnostic
monitors.

• Accessing Diagnostic Data With the Data Accessor, tells how to use the WLDF Data
Accessor component to retrieve diagnostic data.

• Deploying WLDF Application Modules, explains how to configure and manage
instrumentation for an application as a diagnostics application module.

• Using the Monitoring Dashboard, explains how to graphically present the current
and historical operating state of WebLogic Server and hosted applications using, in
part, diagnostic data captured by WLDF.

Guide to This Document

Introduction and Roadmap 1-3

• Configuring and Using WLDF Programmatically, provides an overview of how
you can use the JMX API and the WebLogic Scripting Tool (WLST) to configure
and use WLDF components.

• WLDF Query Language, describes the WLDF query language that is used for
constructing expressions to query diagnostic data using the Data Accessor,
constructing watch rules, and constructing rules for filtering logs.

• WLDF Instrumentation Library, describes the predefined diagnostic monitors and
diagnostic actions that are included in the WLDF Instrumentation Library.

• Using Wildcards in Expressions, discusses how to use wildcards in WLDF
expressions.

• WebLogic Scripting Tool Examples, provides examples of how to perform WLDF
monitoring and diagnostic activities using the WebLogic Scripting Tool.

• Glossary is a glossary of terms used in WLDF.

1.4 Related Documentation
• Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server 12.1.3

describes how to use WLDF logging services to monitor server, subsystem, and
application events.

• Configure the WebLogic Diagnostics Framework in the Oracle WebLogic Server
Administration Console Online Help describes how to use the visual tools in the
WebLogic Server Administration Console to configure WLDF.

• The WLDF system resource descriptor conforms to the weblogic-
diagnostics.xsd schema, available at http://xmlns.oracle.com/weblogic/
weblogic-diagnostics/1.0/weblogic-diagnostics.xsd.

1.5 Samples and Tutorials
In addition to this document, we provide a variety of samples and tutorials that show
WLDF configuration and use.

1.5.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
recommended best practices. MedRec is optionally installed in the WebLogic Server
distribution and is available by selecting the Complete Installation type. By default,
Medrec is configured post-installation in the ORACLE_HOME/user_projects/
domains/medrec directory, where ORACLE_HOME represents the Oracle home
directory on your machine. For more information, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server 12.1.3.

1.5.2 WLDF Samples Available for Download
Additional WLDF samples for download can be found at http://
www.oracle.com/technetwork/indexes/samplecode/index.html. These

Related Documentation

1-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

examples are distributed as .zip files that you can unzip into an existing WebLogic
Server samples directory structure. These samples include Oracle-certified ones, as
well as samples submitted by fellow developers.

1.6 New and Changed Features in this Release
This document contains the following updates to describe the new WLDF features
introduced in this release of WebLogic Server:

• Built-in diagnostic system modules—provide a simple and easy-to-use mechanism
for performing basic health and performance monitoring of a WebLogic Server
instance. See Using the Built-in Diagnostic System Modules.

• Oracle HotSpot support—WLDF now supports Oracle HotSpot and the Java Flight
Recorder. Note that Java Flight Recorder is now disabled by default. See Using Java
Flight Recorder with Oracle HotSpot.

• WLDF Runtime Control—allows you to dynamically activate and deactivate
diagnostic system modules without restarting the servers or clusters to which they
are targeted. See Configuring Diagnostic System Modules.

• New WLST commands to activate and deactivate diagnostic system modules,
deploy and undeploy diagnostic system modules based on resource descriptors
that are not persisted in the domain configuration, and dump the diagnostic
Harvester data collected by a diagnostic system module to a file. See Using WLST
to Activate and Deactivate Diagnostic System Modules and WLST Commands for
Diagnostics.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

New and Changed Features in this Release

Introduction and Roadmap 1-5

New and Changed Features in this Release

1-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

2
Overview of the WLDF Architecture

This chapter describes the components in the WebLogic Diagnostics Framework
(WLDF) architecture that work together to collect, archive, and access diagnostic
information about a WebLogic Server instance and the applications it hosts.

Note:

Concepts are presented in this section in a way to help you understand how
WLDF works. Some of this differs from the way WLDF is surfaced in its
configuration and run-time APIs and in the WebLogic Server Console. If you
want to start configuring and using WLDF right away, you can safely skip this
discussion and start with Using the Built-in Diagnostic System Modules.

This chapter includes the following sections:

• Overview of the WebLogic Diagnostics Framework

• Data Creation, Collection, and Instrumentation

• Archive

• Watch and Notification

• Data Accessor

• Monitoring Dashboard and Request Performance Pages

• Diagnostic Image Capture

• How It All Fits Together

2.1 Overview of the WebLogic Diagnostics Framework
WLDF consists of the following:

• Data creators (data publishers and data providers that are distributed across WLDF
components)

• Data collectors (the Logger and the Harvester components)

• Archive component

• Accessor component

• Instrumentation component

• Watch and Notification component

Overview of the WLDF Architecture 2-1

• Image Capture component

• Monitoring Dashboard

Data creators generate diagnostic data that is consumed by the Logger and the
Harvester. Those components coordinate with the Archive to persist the data, and they
coordinate with the Watch and Notification subsystem to provide automated
monitoring. The Accessor interacts with the Logger and the Harvester to expose
current diagnostic data and with the Archive to present historical data. The Image
Capture facility provides the means for capturing a diagnostic snapshot of a key server
state. The relationship among these components is shown in Figure 2-1.

Figure 2-1 Major WLDF Components

All of the framework components operate at the server level and are only aware of
server scope. All the components exist entirely within the server process and
participate in the standard server lifecycle. All artifacts of the framework are
configured and stored on a per server basis.

2.2 Data Creation, Collection, and Instrumentation
Diagnostic data is collected from a number of sources. These sources can be logically
classified as either data providers, data creators that are sampled at regular intervals to
harvest current values, or data publishers, data creators that synchronously generate
events. Data providers and data publishers are distributed across components, and the
generated data can be collected by the Logger or the Harvester, as shown in Figure
2-2.

Data Creation, Collection, and Instrumentation

2-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 2-2 Relationship of Data Creation Components to Data Collection
Components

Figure 2-2 shows that invocations of the server logging infrastructure serve as inline
data publishers, and that the generated data is collected as events. (The logging
infrastructure can be invoked through the catalog infrastructure, the debugging
model, or directly through the Logger.)

The Instrumentation component creates monitors and inserts them at well-defined
points in the flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as
data providers by registering with the Harvester. Collected data is then exposed to
both the Watch and Notification system for automated monitoring and to the Archive
for persistence.

2.3 Archive
The past state is often critical in diagnosing faults in a system. This requires that the
state be captured and archived for future access, creating a historical archive. In
WLDF, the Archive meets this need with several persistence components. Both events
and harvested metrics can be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion
in the server log, is persisted through the standard logging appenders. New event data
that is intended for system consumption is persisted into an event store using an event
archiver. Metric data is persisted into a data store using a data archiver. The
relationship of the Archive to the Logger and the Harvester is shown in Figure 2-3.

The Archive provides access interfaces so that the Accessor may expose any of the
persisted historical data.

Archive

Overview of the WLDF Architecture 2-3

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

2.4 Watch and Notification
The Watch and Notification system can be used to create automated monitors that
observe specific diagnostic states and send notifications based on configured rules.

A watch rule can monitor log data, event data from the Instrumentation component,
or metric data from a data provider that is harvested by the Harvester. The Watch
Manager is capable of managing watches that are composed of a number of watch
rules. These relationships are shown in Figure 2-4.

Figure 2-4 Relationship of the Logger and the Harvester to the Watch and
Notification System

One or more notifications can be configured for use by a watch. By default, every
watch logs an event in the server log. SMTP, SNMP, JMX, and JMS notifications are
also supported.

2.5 Data Accessor
The Accessor provides access to all the data collected by WLDF, including log, event,
and metric data. The Accessor interacts with the Archive to get historical data
including logged event data and persisted metrics.

Watch and Notification

2-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

When accessing data in a running server, a JMX-based access service is used. The
Accessor provides for data lookup by type, by component, and by attribute. It permits
time-based filtering and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this
case, an offline Accessor is also provided. You can use it to export archived data to an
XML file for later access. To use the Accessor in this way, you must use the WebLogic
Scripting Tool (WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in Figure
2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Archive

2.6 Monitoring Dashboard and Request Performance Pages
WLDF provides two web pages from which diagnostic data is displayed visually:

• Monitoring Dashboard

• Diagnostics Request Performance Page

2.6.1 Monitoring Dashboard
The Monitoring Dashboard displays the current and historical operating state of
WebLogic Server and hosted applications by providing visualizations of metric
runtime MBean attributes, which surface some of the more critical runtime
performance metrics and the change in those metrics over time. Historical operating
state is represented by collected metrics that have been persisted into the Archive. To
view collected metrics from the Archive, you must configure the Harvester to capture
the data you want to monitor.

The Monitoring Dashboard displays metric information in a series of views. A view is
a collection of one or more charts that display metrics. The Monitoring Dashboard
includes a predefined set of built-in views of available runtime metrics for all running
WebLogic Server instances in the domain. Built-in views surface some of the more
critical runtime WebLogic Server performance metrics and serve as examples of the
Monitoring Dashboard's graphic capabilities.

Custom views are available only to the user who creates them. Custom views are
automatically persisted and can be accessed again when you restart the Monitoring
Dashboard sessions.

For more information, see Using the Monitoring Dashboard.

Monitoring Dashboard and Request Performance Pages

Overview of the WLDF Architecture 2-5

2.6.2 Diagnostics Request Performance Page
The Diagnostics Request Performance page of the WebLogic Server Administration
Console shows real-time and historical views of method performance information that
is captured using the Instrumentation component. To view request performance
information, you must first configure the Instrumentation component to make that
data available.

For more information, see Creating Request Performance Data.

2.7 Diagnostic Image Capture
Diagnostic Image Capture support gathers the most common sources of the key server
state used in diagnosing problems. It packages that state into a single artifact which
can be made available to support technicians, as shown in Figure 2-6. The diagnostic
image is in essence a diagnostic snapshot or dump from the server, analogous to a
UNIX "core" dump.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes all available Java Flight Recorder data
from all producers. Furthermore, if WLDF is configured to generate WebLogic Server
diagnostic information captured by Java Flight Recorder, the JFR file includes that
information as well. The JFR file can be extracted from the diagnostic image capture
and viewed in Java Mission Control. See Using WLDF with Java Flight Recorder.

Image Capture support includes:

• On-demand capture, which is the creation of a diagnostic image capture by means
of an operation or command issued from the WebLogic Server Administration
Console, WLST script, or JMX application.

• Image notification, which is automatically creating a diagnostic image capture in
response to the triggering of an associated Harvester watch, Log watch, or
Instrumentation watch rule. For example, a Harvester watch that monitors run-
time MBean attributes in a running server can trigger an image notification if the
metrics harvested from specific run-time MBean instances indicate a performance
issue. Data in the diagnostic image capture can be analyzed to determine the likely
causes of the issue.

For more information, see:

• Configuring and Capturing Diagnostic Images

• Configuring Image Notifications

Diagnostic Image Capture

2-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 2-6 Diagnostic Image Capture

2.8 How It All Fits Together
Figure 2-7 shows how all the parts of WLDF fit together.

Figure 2-7 Overall View of the WebLogic Diagnostics Framework

How It All Fits Together

Overview of the WLDF Architecture 2-7

How It All Fits Together

2-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

3
Using the Built-in Diagnostic System

Modules

This chapter describes the built-in diagnostic system modules, which are provided by
the WebLogic Diagnostics Framework (WLDF) as a simple and easy-to-use
mechanism for performing basic health and performance monitoring of a WebLogic
Server instance.

This chapter includes the following sections:

• Overview

• Configuring a Built-in Diagnostic Module

• Accessing Data Collected by a Built-in Diagnostic System Module

• Creating a Custom Diagnostic System Module Based on a Built-in

3.1 Overview
The WLDF built-in diagnostic modules collect data from key WebLogic Server run-
time MBeans that monitor the main components of a server instance, such as the
following, and store it in the Archive:

• JVM

• WebLogic Server run time

• JDBC, JMS, transaction, and logging services

• Java EE containers hosting servlets, EJBs, and Connector Architecture resource
adapters

When configured in a WebLogic Server instance, the built-in diagnostic modules are
particularly useful for providing a low-overhead, historical record of server
performance. As server workload changes over time, or the performance
characteristics change as a result of updates made to the server's configuration, you
can examine the data collected by the built-ins to obtain details about performance
changes. For example, if you notice a slowdown in the response time of one or more
deployed applications, you can use the Monitoring Dashboard or the Metrics Log table
in the WebLogic Server Administration Console to examine the data collected by the
built-ins for performance bottlenecks associated with one or more WebLogic Server
subsystems. Then using other diagnostic tools, such as custom diagnostic modules,
watches and notifications, or Java Flight Recorder, you can drill down further into
details about those bottlenecks to pinpoint specific causes and test the effectiveness of
solutions.

In WebLogic domains configured to run in production mode, a built-in diagnostic
module is enabled by default in each server instance. (In domains configured to run in

Using the Built-in Diagnostic System Modules 3-1

development mode, built-ins are disabled by default.) However, a built-in diagnostic
module can be enabled or disabled for a server instance easily and dynamically, using
either the WebLogic Server Administration Console or WLST.

Data collected by the built-in diagnostic modules can be accessed easily, using tools
such as the Metrics Log table in the WebLogic Server Administration Console or the
Monitoring Dashboard. The data can also be accessed programmatically using JMX or
WLST.

3.1.1 Types of Built-in Diagnostic System Modules
WLDF provides three built-in diagnostic system module types:

• Low — Captures the most important data from key WebLogic Server runtime
MBeans (enabled by default in production mode).

• Medium — Captures additional attributes from the WebLogic Server runtime
MBeans captured by Low, and also includes data from additional runtime MBeans.

• High — Captures the most verbose data from attributes on the WebLogic Server
runtime MBeans captured by Medium, and also includes data from a larger number
of runtime MBeans.

The built-in diagnostic system module type configured for a server instance is
specified in the
WLDFServerDiagnosticMBean.WLDFBuiltinSystemResourceType=string
MBean attribute, where string can be set to one of Low, Medium, High, or None.

3.1.2 Data Collected by Built-in Diagnostic System Modules
When you enable a built-in diagnostic module in a WebLogic Server instance, WLDF
begins collecting data from key WebLogic Server run-time MBeans to obtain
information, such as the following:

Data Category Example of Information Collected

JVM statistics Amount of available free memory and JVM processor load on host
machine.

Thread statistics Threads being held by a request and the number of pending user
requests.

JDBC subsystem
statistics

Examples of information collected may include:

• Number of connections currently in use by applications.
• Average amount of time taken to create a physical connection to

the database.
• Number of leaked connections (that is, connections reserved from

the data source but not returned to the data source).
• Number of available and idle database connections.
• Cumulative, running count of requests for a connection from a

data source.

Overview

3-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Data Category Example of Information Collected

JMS subsystem
statistics

Examples of information collected may include statistics about:

• WebLogic JMS consumers and producers, such as number of
messages pending by a consumer or producer.

• JMS destinations, such as current number of messages in the
destination, and number of pending messages in the destination.

• The current number of connections to WebLogic Server.

Logging subsystem
statistics

The number of log messages that the WebLogic Server instance has
generated.

JTA subsystem Examples of information collected may include:

• Number of active transactions on the server.
• Total number of seconds that transactions were active for all

committed transactions.

Java EE container
statistics

Examples of information collected may include statistics about:

• EJBs, such as the EJB cache, EJB pool, and EJB transaction
statistics.

• Servlets, such as the average amount of time all invocations of a
servlet have executed since the servlet was created.

Note:

The specific configuration of each built-in diagnostic module is internal to
WebLogic Server and subject to change in a future release.

3.2 Configuring a Built-in Diagnostic Module
You can configure a built-in diagnostic module for a WebLogic Server instance quickly
and easily using either the WebLogic Server Administration Console or WLST. For
example, using the WebLogic Server Administration Console, you can perform the
following steps:

1. Select Built-in Diagnostic Modules in the Diagnostics area of the WebLogic Server
Administration Console home page.

2. In the Summary of Built-in Diagnostic Modules page, select the server instance for
which you want to configure a built-in diagnostics module.

Configuring a Built-in Diagnostic Module

Using the Built-in Diagnostic System Modules 3-3

3. In the Settings for server-name page, select the built-in diagnostics module type you
want to configure: Low, Medium, or High.

By default, once you select a built-in diagnostics module for a server instance, it is
automatically activated and begins collecting the data in the Archive. From the
Summary of Built-in Diagnostic Modules page, you can later deactivate the built-in
module if desired by setting it to None.

Note:

Although WebLogic Server allows you to target multiple diagnostic system
modules to a server instance, only one built-in diagnostic module type may be
activated at any time.

For more information about configuring built-in system diagnostic modules in the
WebLogic Server Administration Console, see the following topics in Oracle WebLogic
Server Administration Console Online Help.

• Activate a built-in diagnostic system module

• Select a built-in diagnostics system module

• Disable a built-in diagnostic system module

3.3 Accessing Data Collected by a Built-in Diagnostic System Module
The following sections describe the different ways you can access the data collected by
a built-in diagnostic system module:

• Using the Monitoring Dashboard

• Using the Metrics Log Table in the Administration Console

3.3.1 Using the Monitoring Dashboard
The Monitoring Dashboard is a good choice for viewing the data collected by the built-
in diagnostic system modules. The Metric Browser simplifies selecting the specific
MBean attributes you want to graph, and the tools available for customizing views
and drilling down on data of interest are easy to use.

The Monitoring Dashboard does not provide a means to select the data collected by a
particular diagnostic system module, including any of the built-ins. However, for a
given server instance, you can easily select the runtime MBean instance and
corresponding metrics you want to display. See Using the Monitoring Dashboard, for
complete details about the Monitoring Dashboard.

To view data collected by a built-in module:

Accessing Data Collected by a Built-in Diagnostic System Module

3-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

1. Launch the Monitoring Dashboard, which you can do from the WebLogic Server
Administration Console or separately in a Web browser. For more information, see
Running the Monitoring Dashboard.

2. In the Monitoring Dashboard, create a custom view, as described in Create custom
views in the Oracle WebLogic Server Administration Console Online Help.

3. Navigate to the Metric Browser and select the following:

• The server instance for which you want to display data collected by the built-in
diagnostic system module.

• The Collected Metrics Only button.

• The MBean type and instance corresponding to the runtime MBean for which
the data was collected.

4. Create a chart.

5. Open the Chart Properties dialog box, select Custom (only applies to collected
metrics), and specify the time range during which the data you wish to view was
collected.

6. In the Metric Browser, select the metrics you want to display.

3.3.2 Using the Metrics Log Table in the Administration Console
You can access data collected by the built-in diagnostic system modules in the Metrics
Log table, which is displayed by selecting the log file name HarvestedDataArchive in
the Summary of Log Files console page.

To display the metrics collected by a built-in diagnostic module in the Metrics Log
table of the WebLogic Server Administration Console, complete the following steps:

1. Select HarvestedDataArchive in the Summary of Log Files console page, and click
View.

2. In the Metrics Log console page, click Customize this table.

3. To constrain the table to display only metrics collected by a built-in diagnostic
module, enter a string in the WLDF Query Expression field that specifies that
built-in, such as the following:

Accessing Data Collected by a Built-in Diagnostic System Module

Using the Built-in Diagnostic System Modules 3-5

• WLDFMODULE = 'wldf-server-low' — Specifies metrics collected by the
Low built-in diagnostic module.

• WLDFMODULE LIKE 'wldf-server-%' — Specifies metrics collected by any
of the built-in diagnostic modules.

4. In the Available column display box, select WLDF Module, and click the right
arrow to move it to the Chosen box.

5. Click Apply.

If the Archive contains a large amount of data, you can filter the Metrics Log table
further by adding expressions to the WLDF query string. For example:

• (WLDFMODULE LIKE 'wldf-server-%') AND (NAME LIKE
'%Name=examples-demo%') restricts the number of metrics displayed to
harvested attributes with an instance name that includes the string examples-
demo.

• (WLDFMODULE LIKE 'wldf-server-%') AND (TYPE LIKE
'%ServletRuntime%') restricts the number of metrics displayed to harvested
attributes of the ServletRuntimeMBean.

• (WLDFMODULE LIKE 'wldf-server-%') AND (TYPE LIKE
'%JMSDestination%' AND ATTRNAME = 'MessagesCurrentCount')
restricts the number of metrics displayed to harvested instances of the
JMSDestinationRuntimeMBean.MessagesCurrentCount attribute.

For more information about WLDF query expressions, see WLDF Query Language.

3.4 Creating a Custom Diagnostic System Module Based on a Built-in
To simplify the process of creating a diagnostic system module, you can use one of the
built-in diagnostic system modules as a starting point and customize it to suit your
requirements. From the Create a Diagnostics System Module page of the WebLogic
Server Administration Console, you can select Use a built-in diagnostic system
module as a template, and then select the particular built-in module upon which you
want to base your new diagnostic module.

Creating a Custom Diagnostic System Module Based on a Built-in

3-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

After you select the particular built-in module you want to use as a template, and click
OK, you can navigate to the Settings for module-name page and make the following
customizations as appropriate:

• The Collected Metrics tab displays the set of metrics configured for the particular
built-in you are using as a template. By default, all the metrics configured in the
built-in are enabled in your custom diagnostic module:

– To delete a configured metric, select it and click Delete.

– To add a metric not configured with the built-in used as a template, click New,
and use the Create a Metric assistant to specify the metric.

For more information about customizing the metrics configured for your diagnostic
system module, see Configure metric collection for a diagnostic system module in
Oracle WebLogic Server Administration Console Online Help.

• The Watches and Notifications tab displays a set of watches and notifications that
are configured but not actually enabled in the built-in module you are using for a
template. The set of watches and notifications available represent those that cover
typical server-level situations for which notifications are generally desirable when
certain state criteria thresholds are met. You can delete, or add to the set of watches
and notifications as appropriate. You may also update threshold values to suit your
situations.

Note:

If you use one or more watches and notifications that are configured in the
built-in module, you must make sure that they are enabled in your diagnostic
system module. In the Watches and Notifications tab of the WebLogic Server
Administration Console, select Enabled then click Save.

For more information about targeting and activating diagnostic system modules, see
Configuring Diagnostic System Modules.

Creating a Custom Diagnostic System Module Based on a Built-in

Using the Built-in Diagnostic System Modules 3-7

Creating a Custom Diagnostic System Module Based on a Built-in

3-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

4
Using WLDF with Java Flight Recorder

This chapter describes the integration points that the WebLogic Diagnostics
Framework (WLDF) provides with Java Flight Recorder. WebLogic Server events can
optionally be propagated to the Java Flight Recorder for inclusion in a common data
set for run-time or post-incident analysis. The Flight Recording data is also included in
WLDF diagnostic image captures, enabling you to capture flight recording snapshots
based on WLDF watch rules. This full set of functionality enables you to capture and
analyze run-time system information for both the JVM and the Fusion Middleware
components running on it, in a single view.

This chapter also explains common usage scenarios that show how this integration can
provide for a comprehensive performance analysis and diagnostic foundation for
production systems based on WebLogic Server.

This chapter includes the following sections:

• About Java Flight Recorder

• Using Java Flight Recorder with Oracle HotSpot

• Key Features of WLDF Integration with Java Flight Recorder

• Java Flight Recorder Use Cases

• Obtaining the Flight Recording File

• Analyzing Java Flight Recorder Data

4.1 About Java Flight Recorder
Java Flight Recorder is a performance monitoring and profiling tool that records
diagnostic information on a continuous basis, making it always available, even in the
wake of catastrophic failure such as a system crash. Java Flight Recorder is available in
Oracle HotSpot. When WebLogic Server is configured with HotSpot, Java Flight
Recorder is not enabled by default. See Using Java Flight Recorder with Oracle
HotSpot, for information about how to enable Java Flight Recorder with WebLogic
Server.

Note:

For the most current information about configurations supported in this
release of WebLogic Server, see Oracle Fusion Middleware Supported System
Configurations on the Oracle Technology Network.

Java Flight Recorder maintains a buffer of diagnostics and profiling data, called a
flight recording or a JFR file, that you can access whenever you need it. The flight

Using WLDF with Java Flight Recorder 4-1

recording functions in a manner similar to an aircraft "black box" in which new data is
continuously added and older data is stripped out, as shown in Figure 4-1.

Figure 4-1 Circular Flight Recording Buffer

The data contained in the JFR file includes events from the JVM and from any other
event producer, such as WebLogic Server and Oracle Dynamic Monitoring System
(DMS). The JFR file can be analyzed at any time, using Java Mission Control, to
examine the details of system execution flow that occurred leading up to an event.

The amount of additional processing overhead that results when Java Flight Recorder
is enabled, and also configure WLDF to generate WebLogic Server diagnostics to be
captured by Java Flight Recorder, is minimal. This makes it ideal to be used on a full
time basis, especially in production environments where it adds the greatest value.

Java Flight Recorder provides the following key benefits:

• Designed to run continuously — When Java Flight Recorder is configured to run
full-time, with both JVM and WLDF events captured in the flight recording,
diagnostic data is always available at the time an event occurs, including a system
crash. This ensures that a record of diagnostic data leading up to the event is
available, allowing you to diagnose the event without having to recreate it.

• Comprehensive data — Java Flight Recorder combines data generated by tools
such as the Runtime Analyzer and the Latency Analysis Tool and presents it in one
place.

• Integration with event providers — HotSpot includes a set of APIs that allow Java
Flight Recorder to monitor additional system components, including WebLogic
Server, Oracle Dynamic Monitoring System (DMS), and other Oracle products.

For more information about Java Flight Recorder, which available with HotSpot, see
the documentation that is bundled with the Java Mission Control download.

4.2 Using Java Flight Recorder with Oracle HotSpot
If WebLogic Server is configured with Oracle HotSpot, Java Flight Recorder is
disabled by default. To enable Java Flight Recorder, you must specify the following
JVM options in the WebLogic Server instance in which the JVM runs:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

Using Java Flight Recorder with Oracle HotSpot

4-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Note:

The sequence in which you specify JVM options to Hotspot is very important.
The options are processed from left to right, and option values are overwritten
if there are duplicates. Therefore, note the following:

• HotSpot does not recognize the FlightRecorder option unless it is
preceded by the UnlockCommercialFeatures option.

• If you specify only the FlightRecorder option, or you specify
FlightRecorder before specifying UnlockCommercialFeatures, the
HotSpot JVM does not start.

4.3 Key Features of WLDF Integration with Java Flight Recorder
The key features provided by WLDF to leverage integration with Java Flight Recorder
include the following:

• WLDF diagnostic data captured in a flight recording

WLDF can be configured to generate diagnostic data about WebLogic Server events
that is captured in the flight recording. Captured events include those from
components such as: web applications; EJBs; JDBC, JTA, and JMS resources;
resource adapters; and WebLogic Web Services.

• WLDF diagnostic volume control

The ability to generate WebLogic Server event data for the Flight Recording is
controlled by the WLDF diagnostic volume configuration. This control also
determines the amount of WebLogic Server event data that is captured by Java
Flight Recorder, and can be adjusted to include more, or less, data for each
WebLogic Server event that is generated. For more information, see Configuring
WLDF Diagnostic Volume.

Note:

– By default, the WLDF diagnostic volume is set to Low.

– The WLDF diagnostic volume setting does not affect explicitly configured
diagnostic modules or the built-in diagnostic modules.

• Automatic throttling of generated events under load

As processing load rises on a given WebLogic Server instance, WLDF automatically
begins throttling the number of incoming WebLogic Server requests that are
selected for event generation and recording into the JFR file. The degree of
throttling is adjusted continuously as system load rises and falls.

Throttling provides three key benefits:

– The overhead of capturing events generated by WLDF for Java Flight Recorder
remains minimized, which is especially important when systems are under
load.

– The time interval encompassed in the flight recording buffer is maximized,
giving you a better historical record of data.

Key Features of WLDF Integration with Java Flight Recorder

Using WLDF with Java Flight Recorder 4-3

– Throttling has the effect of sampling incoming WebLogic Server requests,
maintaining high performance while still providing an accurate overall view of
system activity under load.

Note:

Throttling affects only the Flight Recording data that is captured by WLDF. It
does not affect data captured by other event producers, such as the JVM.

• WLDF diagnostic image capture support for JFR files

WLDF diagnostic image capture automatically includes the JFR file, if one has been
generated by Java Flight Recorder. The JFR file includes data generated by all
active event producers, including WebLogic Server. An image captured using the
Watch and Notification component may contain the JFR file, if available.

• WLST commands for downloading the contents of diagnostic image captures

WLST includes a set of commands for downloading the contents of diagnostic
image captures, described in WLST Online Commands for Downloading
Diagnostics Image Captures. Although these commands are generally useful for
listing, copying, and downloading all entries contained in the diagnostic image
capture, they can also be used for obtaining the JFR file, if available. Once obtained
from the diagnostic image capture, the JFR file can be viewed in Java Mission
Control.

4.4 Java Flight Recorder Use Cases
This section summarizes three common business cases where using the Java Flight
Recorder can help you resolve important diagnostic issues:

• Diagnosing a Critical Failure — The "Black Box"

• Profiling During Performance Testing or in Production

• Real-time Application Diagnostics and Reporting (RADAR)

For more information about these scenarios using Java Flight Recorder, see "Using the
Java Flight Recorder" in the documentation that is bundled with the Java Mission
Control download.

4.4.1 Diagnosing a Critical Failure — The "Black Box"
When a "catastrophic" failure occurs, the content of the Java Flight Recorder buffer can
be made available for post-failure analysis in a manner analogous to the use of an
aircraft's black box. Examples of such failures include a JVM crash or an out-of-
memory error (OOME) resulting in an application terminating.

When these situations arise, the flight recording contains the following information,
which can be helpful in determining the cause of the failure:

• JVM core dump, including metadata about the Java Flight Recorder configuration
at the time of the crash. Furthermore, depending on the disk storage parameters
that are set, the Java Flight Recorder data buffer might contain a certain amount of
data.

• WebLogic Server events, captured by WLDF, that preceded the failure.

Java Flight Recorder Use Cases

4-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Java Flight Recorder uses a combination of memory and disk to store its buffer. The
most recent data is stored in memory and is flushed out to disk as it "ages". In this
way, the on-disk data can be available even after a power failure or similar
catastrophic event; only the most recent data will be unavailable (for example, the data
that had not yet been flushed to disk). The text dump file will contain metadata about
the Java Flight Recorder configuration at the time of the crash, including the path to
the data buffer file when applicable. For more information about using Java Flight
Recorder, see the Java Flight Recorder Runtime User Guide in the documentation that is
bundled with the Java Mission Control download.

4.4.2 Profiling During Performance Testing or in Production
Profiling involves capturing data beginning at a specific point in time so that, later,
you can analyze the events that were generated after that point. In contrast to RADAR,
described in the following section, profiling involves analyzing the diagnostic data
generated after a particular event occurs, as opposed to the data that precedes it.

Profiling with Java Flight Recorder optimizes the ability to perform deep analysis of
lock contention and causes of latency.

4.4.3 Real-time Application Diagnostics and Reporting (RADAR)
RADAR is the examination of diagnostic data generated during run time when a
particular event occurs for the purposes of understanding the system activity that
preceded the event; for example, system activity occurring moments before a serious
error message is generated. By using the diagnostic capabilities available in WLDF in
conjunction with Java Flight Recorder, you can capture a large amount of system-wide
diagnostic data the moment a problem occurs. You can then leverage the capabilities
of Java Mission Control to quickly correlate that event with other system activity and
process execution data within the "snapshot in time" that the JFR file provides,
enabling you to quickly isolate likely causes of the problem.

One WLDF feature whose usage with Java Flight Recorder makes for a powerful
RADAR capability is image notification, which allows you to create a diagnostic image
capture automatically in response to a particular event or error condition. A diagnostic
image capture, which created as the result of an image notification, automatically
includes the JFR file. The JFR file can then be extracted from the diagnostic image
capture and examined immediately in Java Mission Control or stored for later
analysis. Image notification, used when WLDF data is captured by Java Flight
Recorder, is particularly well suited for this sort of real-time diagnosis of intermittent
problems.

Image notification is part of the Watch and Notifications system in WLDF. To set up
image notification, you create one or more individual watch rules. A watch rule
includes a logical expression that uses the WLDF query language to specify the event
for the watch to detect. For example, the following log event watch rule expression
detects the server log message with severity level Critical and ID BEA-149618:

(SEVERITY = 'Critical') AND (MSGID = 'BEA-149618')

Watch rules can monitor any of the following:

• Harvestable run-time MBean instances in the local run-time MBean server

A Harvester watch can trigger an image notification if run-time MBean attributes
detect a performance issue, such as high memory utilization rates or problems with
open socket connections to the server.

Java Flight Recorder Use Cases

Using WLDF with Java Flight Recorder 4-5

• Messages published to the server log

A log watch can trigger an image notification if a specific message, severity level, or
string is issued.

• Event generated by the WLDF Instrumentation component

An event watch can trigger an image notification if an instrumentation service
generates a particular event.

For more information, see the following topics:

• Configuring Watches and Notifications

• Configuring Image Notifications

• WLDF Query Language

The following sections explain how to obtain the JFR file from the diagnostic image
capture and provide an example of using Java Mission Control to examine the
WebLogic Server events contained in the JFR file:

• Obtaining the Flight Recording File

• Analyzing Java Flight Recorder Data

4.5 Obtaining the Flight Recording File
The diagnostic image capture itself is a single JFR file that contains individual images
produced by the different server subsystems. If the JFR file is available, it is included
in the diagnostic image as the file FlightRecording.jfr.

A diagnostic image capture can be generated on-demand — for example, from the
WebLogic Server Administration Console, WLST, or a JMX application — or it can be
generated as the result of an image notification. For information about how to generate
a diagnostic image captures and configure the location in which they are created, see
"Configure and capture diagnostic images" in Oracle WebLogic Server Administration
Console Online Help.

To view the contents of the JFR file, you first need to extract it from the diagnostic
image capture as described in Configuring and Capturing Diagnostic Images. Once
you have extracted the JFR file, you can view its contents in Java Mission Control.

For an example WLST script that retrieves the JFR file from a diagnostic image file and
saves it to a local directory, see Example: Retrieving a JFR File from a Diagnostic
Image Capture.

4.6 Analyzing Java Flight Recorder Data
You can use Java Mission Control to examine the contents of the Java Flight Recorder
file after it has been extracted from the diagnostic image capture. The following
sections highlight some of the capabilities of Java Mission Control's graphical user
interface, which provides a lot of tooling support for drilling down into the diagnostic
data generated not only by WLDF for WebLogic Server events, but also from all other
available event producers, including HotSpot:

• Java Flight Recorder Graphical User Interface

• Analyzing Execution Flow — A Sample Walkthrough

Obtaining the Flight Recording File

4-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• Changing the Location of Temporary JFR Files

For complete details about the Java Mission Control interface, seethe documentation
that is bundled with the Java Mission Control download.

4.6.1 Java Flight Recorder Graphical User Interface
Java Mission Control includes the Java Flight Recorder graphical user interface, which
allows users who are running a Java Flight Recorder-compliant version of Oracle
HotSpot to view JVM recordings, current recording settings, and runtime parameters.
The JFR interface includes the Events Type View, which gives you direct access to
event information that has been recorded in the JFR file, such as event producers and
types, event logging and graphing, event by thread, event stack traces, and event
histograms.

The Overview tab in the Java Flight Recorder interface is useful for analyzing a
system's general health because it can reveal behavior that might indicate bottlenecks
or other sources of poor system performance. Figure 4-2 shows an example of the
Overview tab in the Events Type View.

Note the following regarding the information shown in Figure 4-2:

• The Events Type View is available by selecting the Events tab group icon.

• The name of the Java Flight Recorder file appears at the top of the Overview tab.
Note that the Java Flight Recorder is always named FlightRecording.jfr, it is
useful to rename it descriptively after downloading it from the diagnostic image
capture.

• The Event Types Browser, on the left side, is a tree that shows the available event
types in a recording. It works in conjunction with the Events tab group to provide a
means to select events or groups of events in a recording that might be of interest to
you and to obtain more granular information about them.

As you select and deselect entries in the Event Types Browser, the information
displayed in the Overview tab is filtered dynamically. For example, by selecting
only WebLogic Server, event data from all non-WebLogic event producers is
filtered out.

• The range navigator, which is the graph displayed below the Overview tab title, is
a time line that shows all events in a recording that pertain to the data displayed on
the selected tab. A set of buttons are available for adjusting the range of data that is
displayed, which can simplify the process of drilling down into the details of Java
Flight Recorder data.

• The Producers section identifies each event producer that generated the data that is
displayed. Metrics are included for each producer, indicating the volume of event
activity generated by each as a proportion of the total set of event data displayed.

• The Event Types section lists all events represented in the Overview tab, along
with key metric data about each event.

Analyzing Java Flight Recorder Data

Using WLDF with Java Flight Recorder 4-7

Figure 4-2 Example Overview Page of Java Flight Recorder File in Java Mission Control

4.6.2 Analyzing Execution Flow — A Sample Walkthrough
This section shows an example of the steps that a developer or support engineer might
use to identify the event activity associated with a particular request in a Web
application hosted on WebLogic Server. This example is not meant to recommend a
specific way to diagnose performance problems, but simply shows how the Java Flight
Recorder graphical user interface can be used to greatly simplify the process of
locating and analyzing performance issues.

The following examples are shown in this section:

• Displaying Event Data for a Product Subcomponent

• Viewing the Event Log to Display Details

• Tracking Execution Flow by Analyzing an Operative Set

• Expanding the Operative Set and Viewing Correlated Diagnostic Data

4.6.2.1 Displaying Event Data for a Product Subcomponent

When you start Java Mission Control and open a JFR file, you can use the Event Types
View to quickly select the specific events you want to analyze. As you select and
deselect items in the Event Types Browser (which is available in the Event Types
View), the information displayed in the Java Flight Recorder graphical user interface is
updated instantly to show information about only the selected event types.

Analyzing Java Flight Recorder Data

4-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 4-3 shows the Event Types Browser with only servlet event types selected.

Figure 4-3 Event Types Browser

4.6.2.2 Viewing the Event Log to Display Details

To view details about the events logged by one or more event types, select the Log tab,
which is available at the bottom of the Java Flight Recorder graphical user interface.
An example of the Log tab for servlet event types is shown in Figure 4-4.

Analyzing Java Flight Recorder Data

Using WLDF with Java Flight Recorder 4-9

Figure 4-4 Servlet Event Log

When using the Log tab, you can view details about events as follows:

• You can click on individual column heads in the Event Log table to modify the sort
order of the events. For example, by clicking the Duration column, you can quickly
identify the events that took the longest time to execute.

• When you select an event in the Event Log table, details about that event are
displayed in the Event Attributes table. For example, Figure 4-4 shows the
following attributes:

– Event start, end, and duration times

– User ID of person who issued the request on the servlet

– Method, class name, and URI of invoked servlet

– Execution context ID (ECID)

– Relationship ID (RID), which may be defined if the Dynamic Monitoring Service
(DMS) is installed in the WebLogic Server environment. For information, see
Correlating Messages Across Log Files and Components in Administering Oracle
Fusion Middleware.

Note:

The RCID attribute is reserved for future use.

Analyzing Java Flight Recorder Data

4-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Different event types have different attributes. For example, if this were a JDBC event,
you could scroll among the attributes to see the SQL statement, the JDBC connection
pool used, and the stack from which it was called. The interface makes it easy to scan
for unexpected behavior that can be analyzed in deeper detail.

Note:

The value of the ECID is a unique identifier that can be used to correlate
individual events as being part of the same request execution flow. For
example, events that are identified as being related to a particular request
typically have the same ECID value, as shown in Tracking Execution Flow by
Analyzing an Operative Set. However, the format of the ECID string itself is
determined by an internal mechanism that is subject to change; therefore, you
should not have or place any dependencies on that format.

4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set

The Java Flight Recorder graphical user interface in Java Mission Control allows you
to analyze the runtime trail of system activity that occurs as the result of a particular
event. In this example, the run-time trail is analyzed by first defining an operative set.
An operative set is any set of events that you choose to work in Java Mission Control.

In the example shown in this section, an operative set is created for the events that
have the same execution context ID (ECID) attribute as the servlet invocation event
selected in the Event Log table, shown in Figure 4-5. The operative set is then analyzed
to see the execution flow that resulted from that servlet invocation. (Note that this
operative set could be expanded to include events that match on different attributes as
well; for example, events containing a specific SQL statement but not necessarily the
same ECID.)

Figure 4-5 Operative Set Defined by Execution Context ID (ECID)

This operative set is defined by right-clicking the desired event in the Event Log, and
then selecting Operative Set > Add matching ECID > ecid. See Figure 4-6.

Analyzing Java Flight Recorder Data

Using WLDF with Java Flight Recorder 4-11

Figure 4-6 Defining an Operative Set by Matching ECID

The operative set is then displayed by selecting Show Only Operative Set above the
event log table, shown in Figure 4-7. Note how the operative set is indicated in the
range navigator.

Figure 4-7 Displaying an Operative Set

The runtime trail of execution flow that results from the request that generated the
servlet invocation event can be viewed by including additional event types. For
example, Figure 4-8 shows the operative set when all WebLogic Server event types are
added, using the Event Type Browser, and listing the events in chronological order.
(You can sort the events chronologically by selecting the Start Time column head.)

Analyzing Java Flight Recorder Data

4-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 4-8 Adding all WebLogic Server Events to Operative Set

In this example, note a portion of the execution flow shown in the Event Log:

1. The servlet URI is invoked.

2. The servlet uses an EJB, which requires access to the database.

3. A JDBC connection is obtained and a transaction is started.

4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic Data

The operative set can be further analyzed by constraining the time interval of the
execution flow and adding correlated events from additional producers. By
constraining the time interval for displayed events, you can add events to the Event
Log that occurred simultaneously with the operative set. This allows you to see
additional details about the execution context that can help diagnose performance
issues.

The time interval can be constrained by using the range selection bars in the range
navigator. You can grab these bars with your pointer and drag them inward or
outward to change the range of events displayed in the Event Log. The range selection
bars are activated when you hover your pointer over either end of the navigator, as
shown in Figure 4-9.

Figure 4-9 Range Navigator Selection Bars

Events from additional producers, such as HotSpot, can be selected in the Event Types
Browser. Note that JVM events do not have ECID attributes, so they cannot be
included among the WLDF events in the operative set. So to view the JVM events, you
need to de-select Show Only Operative Set.

At this point the events that are displayed in the Event Log are those that occurred
during the selected time interval but not correlated otherwise. Figure 4-10 shows
drilling down into JDBC activity by selecting only JDBC events and JVM events. The

Analyzing Java Flight Recorder Data

Using WLDF with Java Flight Recorder 4-13

Event Log is updated and listed in chronological order to show the JVM activity that
occurred simultaneously to the flow of the JDBC events in the selected time interval.

Figure 4-10 Adding JVM Events to JDBC Event Log

4.6.3 Changing the Location of Temporary JFR Files
The temporary JFR files created in the operating system's temp directory are managed
directly by the JVM. WLDF does not control these files. (By default, WLDF temporary
files related to Java Flight Recorder are placed in the DOMAIN_HOME/servers/
SERVER_NAME/server/logs/diagnostic_images directory.)

However, you can change the location in which the JVM places its temporary files by
using the following command-line option when starting Java Flight Recorder, where
path represents the preferred location:

-XX:FlightRecorderOptions=repository=path

For more information about Java Flight Recorder configuration settings, see the Java
Flight Recorder Runtime Guide at:

http://docs.oracle.com/javacomponents/index.html

Analyzing Java Flight Recorder Data

4-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

http://docs.oracle.com/javacomponents/index.html

5
Understanding WLDF Configuration

This chapter describes the features provided by the WebLogic Diagnostics Framework
(WLDF) for generating, gathering, analyzing, and persisting diagnostic data from
WebLogic Server instances and from applications deployed to them. For server-scoped
diagnostics, some WLDF features are configured as part of the configuration for a
server in a domain. Other features are configured as system resource descriptors that
can be targeted to servers (or clusters). For application-scoped diagnostics, diagnostic
features are configured as resource descriptors for the application.

This chapter includes the following sections:

• Configuration MBeans and XML

• Tools for Configuring WLDF

• How WLDF Configuration Is Partitioned

• Configuring Diagnostic Image Capture and Diagnostic Archives

• Configuring Diagnostic Image Capture for Java Flight Recorder

• Configuring Diagnostic System Modules

• Configuring Diagnostic Modules for Applications

• WLDF Configuration MBeans and Their Mappings to XML Elements

For general information about WebLogic Server domain configuration, see
Understanding Oracle WebLogic Server Domains in Understanding Domain
Configuration for Oracle WebLogic Server 12.1.3.

5.1 Configuration MBeans and XML
As in other WebLogic Server subsystems, WLDF is configured using configuration
MBeans (Managed Beans), and the configuration is persisted in XML configuration
files. The configuration MBeans are instantiated at startup, based on the configuration
settings in config.xml. When you modify a configuration by changing the values of
MBean attributes, those changes are saved (persisted) in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For
example, the Enable attribute of the WLDFInstrumentationBean maps directly to the
<enabled> sub-element of the <instrumentation> element in the resource descriptor
file (configuration file) for a diagnostic module. If you change the value of the MBean
attribute, the content of the XML element is changed when the configuration is saved.
Conversely, if you were to edit an XML element in the configuration file directly
(which is not recommended), the change to an MBean value would take effect after the
next session is started.

Understanding WLDF Configuration 5-1

For more information about WLDF Configuration MBeans, see WLDF Configuration
MBeans and Their Mappings to XML Elements. For general information about how
MBeans are implemented and used in WebLogic Server, see Understanding WebLogic
Server MBeans in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server 12.1.3.

5.2 Tools for Configuring WLDF
As with other WebLogic Server subsystems, there are several ways to configure
WLDF:

• Use the built-in diagnostic system modules, which provide a simple and easy-to-
use mechanism for performing basic health and performance monitoring of a
WebLogic Server instance. For more information, see Using the Built-in Diagnostic
System Modules.

• Use the WebLogic Server Administration Console to configure WLDF for server
instances and clusters. See Configure the WebLogic Diagnostics Framework in the
Oracle WebLogic Server Administration Console Online Help.

• Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific
information about using WLST with WLDF, see WebLogic Scripting Tool
Examples. Also see Understanding the WebLogic Scripting Tool for general
information about using WLST.

• Configure WLDF programmatically using JMX and the WLDF configuration
MBeans. See Configuring and Using WLDF Programmatically for specific
information about programming WLDF. See MBean Reference for Oracle WebLogic
Server and browse or search for specific MBeans for programming reference.

• Edit the XML configuration files directly. This documentation explains many
configuration tasks by showing and explaining the XML elements in the
configuration files. The XML is easy to understand, and you can edit the
configuration files directly, although it is recommended that you do not. (If you
have a good reason to edit the files directly, you should first generate the XML files
by configuring WLDF in the WebLogic Server Administration Console. Doing so
provides a blueprint for valid XML.)

Note:

If you make changes to a configuration by editing configuration files, you
must restart the server for the changes to take effect.

5.3 How WLDF Configuration Is Partitioned
You can use WLDF to perform diagnostics tasks for server instances (and clusters) and
for applications.

5.3.1 Server-Level Configuration
You configure the following WLDF components as part of a server instance in a
domain. The configuration settings are controlled using MBeans and are persisted in
the domain's config.xml file.

• Diagnostic Image Capture

Tools for Configuring WLDF

5-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• Diagnostic Archives

See Configuring Diagnostic Image Capture and Diagnostic Archives.

You configure the following WLDF components as the parts of one or more diagnostic
system modules, or resources, that can be deployed to one or more server instances (or
clusters). These configuration settings are controlled using Beans and are persisted in
one or more diagnostic resource descriptor files (configuration files) that can be
targeted to one or more server instances or clusters.

• Harvester (for collecting metrics)

• Watch and Notification

• Instrumentation

See Configuring Diagnostic System Modules.

5.3.2 Application-Level Configuration
You can use the WLDF Instrumentation component with applications, as well as at the
server level. The Instrumentation component is configured in a resource descriptor file
deployed with the application in the application's archive file. See Configuring
Diagnostic Modules for Applications.

5.4 Configuring Diagnostic Image Capture and Diagnostic Archives
In the config.xml file for a domain, you configure the Diagnostic Image Capture
component and the Diagnostic Archive component in the <server-diagnostic-config>
element, which is a child of the <server> element in a domain, as shown in Example
5-1.

Example 5-1 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs/diagnostic_images</image-dir>
 <image-timeout>3</image-timeout>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server elements to configure other servers in this domain -->
 <!-- Other domain-based configuration elements, including references to
 WLDF system resources, or diagnostic system modules. -->
</domain>

Note:

If WebLogic Server is configured with Oracle HotSpot, and Java Flight
Recorder is enabled, the diagnostic image capture can optionally include a
Java Flight Recorder file, also called a JFR file, that includes WebLogic Server
events. The JFR file can then be viewed in Java Mission Control. For more
information, see Using WLDF with Java Flight Recorder.

Configuring Diagnostic Image Capture and Diagnostic Archives

Understanding WLDF Configuration 5-3

For more information, see the following:

• Configuring and Capturing Diagnostic Images

• Configuring Diagnostic Archives

5.5 Configuring Diagnostic Image Capture for Java Flight Recorder
If WebLogic Server is configured with a supported version of Oracle HotSpot, and
Java Flight Recorder is enabled, the JFR file is automatically included in the diagnostic
image capture. The JFR file contains data from all event producers that are enabled.
However, the amount of WebLogic Server event data that is included in the JFR file is
determined by the configuration of the WLDF diagnostic volume.

Note:

Note the following:

• If WebLogic Server is configured with Oracle HotSpot, Java Flight
Recorder is disabled by default unless HotSpot is started using the JVM
parameters described in Using Java Flight Recorder with Oracle HotSpot.

• By default, the WLDF diagnostic volume is set to Low.

• For the most current information about configurations supported in this
release of WebLogic Server, including HotSpot support, see Oracle Fusion
Middleware Supported System Configurations on the Oracle Technology
Network.

To include WebLogic Server event data in the JFR file:

1. Ensure that WebLogic Server is configured with Oracle HotSpot, which installed
separately from WebLogic Server.

For information, see Planning the Oracle WebLogic Server Installation in Installing
and Configuring Oracle WebLogic Server and Coherence.

2. Ensure that Java Flight Recorder is enabled.

In a default installation of Oracle HotSpot with WebLogic Server, Java Flight
Recorder is disabled. For information about enabling Java Flight Recorder with
HotSpot and WebLogic Server, see Using Java Flight Recorder with Oracle
HotSpot.

3. Set the WLDF diagnostic volume as appropriate. For general use, Oracle
recommends the default setting of Low. However, you can increase the volume of
WebLogic Server event data that is generated, as appropriate, by setting the
volume to Medium or High.

Note that the WLDF diagnostic volume setting has no impact on data recorded for
other event producers, such as the JVM.

For information, see Configure WLDF diagnostic volume in Oracle WebLogic Server
Administration Console Online Help.

Configuring Diagnostic Image Capture for Java Flight Recorder

5-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Note:

If the WLDF diagnostic volume is set to Off, and Java Flight Recorder has not
been explicitly disabled, the JFR file continues to include JVM event data and
is always included in the diagnostic image capture.

5.6 Configuring Diagnostic System Modules
To configure and use the Instrumentation, Harvester, and Watch and Notification
components at the server level, you must first create a system resource called a
diagnostic system module, which will contain the configurations for all those
components. The configuration of diagnostic system module is defined in a resource
descriptor.

When creating a diagnostic system module, note the following:

• System modules are globally available for targeting to servers and clusters
configured in a domain.

• In a given domain, you can create multiple diagnostic system modules with
distinct configurations.

• You can target multiple diagnostic system modules to any given server or cluster.

• WLDF Runtime Control allows you to dynamically enable or disable a diagnostic
system module without changing the domain configuration.

• Runtime Control also allows you to deploy, activate, deactivate, and undeploy a
diagnostic system module on-the-fly that is not defined in the domain
configuration.

The following sections described the configuration of diagnostic system modules:

• About the Resource Descriptor

• WLDF Runtime Control

• Creating a Diagnostic System Module Based on a Configured Resource Descriptor

• Creating a Diagnostic System Module Based on an External Resource Descriptor

• Targeting a Diagnostic System Module to a Server or Cluster

• Dynamically Activating or Deactivating Diagnostic System Modules

• Using WLST to Activate and Deactivate Diagnostic System Modules

• More Information About Configuring Diagnostic System Modules

5.6.1 About the Resource Descriptor
A diagnostic system module has a corresponding resource descriptor that defines the
diagnostic module's configuration. A resource descriptor can be either configured or
external:

• A configured resource descriptor is one that is defined as part of the domain
configuration, and exists as a file in the DOMAIN_HOME\config\diagnostics

Configuring Diagnostic System Modules

Understanding WLDF Configuration 5-5

directory. A configured resource descriptor is referenced by the domain
config.xml file, and the corresponding diagnostic system module:

– Is persisted in the domain configuration.

– Is available to all servers and clusters in the domain.

– Can be targeted to a server or cluster through the domain configuration.

– Can be activated or deactivated dynamically using Runtime Control, regardless
of whether it is explicitly targeted to a server or cluster.

Any dynamic changes made to the activation state of the diagnostic system module
are not persisted across server restarts.

• An external resource descriptor is one that is not referenced by the domain
config.xml file; that is, it is defined outside the domain configuration. The
diagnostic system module that is configured by an external resource descriptor
may be deployed and activated on a server using Runtime Control. However, this
diagnostic system module:

– Is not persisted in the domain configuration (that is, it is not referenced by the
domain config.xml file.

– Can be deployed, activated, and deactivated only dynamically.

– Cannot have its deployment and activation state persisted in the domain
configuration.

– Remains in memory only until the server or cluster on which it is activated is
shut down.

– Cannot be automatically available on server restart.

An external resource descriptor may exist in a file located outside the
DOMAIN_HOME\config\diagnostics directory, or may be passed as a String
object using the WLDF Runtime Control API (see Creating a Diagnostic System
Module Based on an External Resource Descriptor).

Note:

The configuration of a diagnostic module conforms to the diagnostics.xsd
schema, available at http://xmlns.oracle.com/weblogic/weblogic-
diagnostics/1.0/weblogic-diagnostics.xsd.

Except for the name and list of targets for the diagnostic system module, all
configuration information for a diagnostic system module is contained in its resource
descriptor file. Example 5-2 shows portions of the descriptor file for a diagnostic
system module named myDiagnosticModule.

Example 5-2 Sample Structure of a Diagnostic System Module Descriptor File,
MyDiagnosticModule.xml

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>MyDiagnosticModule</name>

Configuring Diagnostic System Modules

5-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

 <instrumentation>
 <!-- Configuration elements for zero or more diagnostic monitors -->
 </instrumentation>
 <harvester>
 <!-- Configuration elements for harvesting metrics from zero or more
 MBean types, instances, and attributes -->
 </harvester>
 <watch-notification>
 <!-- Configuration elements for one or more watches and one or more
 notifications-->
 </watch-notification>
</wldf-resource>

5.6.2 WLDF Runtime Control
WLDF Runtime Control allows you to control the activation or deactivation of
diagnostics system modules dynamically at run time without making a change to the
domain configuration. This allows you to perform specific, targeted diagnostic
analysis tasks, and optionally of limited duration, without interfering with the
operation of the server instances themselves.

You can use Runtime Control to do the following:

• Dynamically activate and deactivate diagnostic system modules that are persisted
in the domain configuration without restarting the servers or clusters to which they
are targeted.

• Dynamically deploy, activate, deactivate, and undeploy diagnostic system modules
that are configured by an external resource descriptor.

Note:

Note the following:

• Changes applied to diagnostic system modules using Runtime Control,
whether defined by configured or external resource descriptors, are not
persisted. When a server instance is restarted, that server returns to its
configured state, and any changes prior to that restart that were made
using Runtime Control are lost.

• If you use the Runtime Control to activate a diagnostic system module that
is based on an external resource descriptor (see Creating a Diagnostic
System Module Based on an External Resource Descriptor), the diagnostic
resource name that you specify in the
createSystemResourceControl() command to create that diagnostic
system module is used as the WLDF Module name in Harvester records in
the archive.

5.6.3 Creating a Diagnostic System Module Based on a Configured Resource
Descriptor

You create a diagnostic system module based on a configured resource descriptor
using either the WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST). It is created as a WLDFResourceBean, and the configuration is persisted
in a resource descriptor file named DIAG_MODULE.xml, where DIAG_MODULE is the
name of the diagnostic system module. You can specify a name for the descriptor file,

Configuring Diagnostic System Modules

Understanding WLDF Configuration 5-7

but it is not required. If you do not provide a file name, a file name is generated based
on the value in the descriptor file's <name> element. The file is created by default in
the DOMAIN_HOME\config\diagnostics directory, and a reference to the module
is added to the domain's config.xml file.

Note:

Oracle recommends that you do not write XML configuration files directly.
But if you have a valid reason to do so, you should first create a diagnostic
module from the Console. That way, you can start with the valid XML that the
Console creates. For instructions, see Create diagnostic system modules in the
Oracle WebLogic Server Administration Console Online Help.

The config.xml file can contain references to multiple diagnostic system modules, in
one or more <wldf-system-resource> elements. The <wldf-system-resource> element
includes the name of the diagnostic system module file and the list of servers and
clusters to which the module is targeted.

For example, Example 5-3 shows a config.xml file with a module named
myDiagnosticModule targeted to the server myserver and another module named
newDiagnosticMod targeted to servers myserver and ManagedServer2. Note that
myDiagnosticModule and newDiagnosticMod are both targeted to myserver.

Example 5-3 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
 <!-- Other domain-level configuration elements -->
 <wldf-system-resource
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics">
 <name>myDiagnosticModule</name>
 <target>myserver</target>
 <descriptor-file-name>diagnostics/MyDiagnosticModule.xml
 </descriptor-file-name>
 <description>My diagnostic module</description>
 </wldf-system-resource>
 <wldf-system-resource>
 <name>newDiagnosticMod</name>
 <target>myserver,ManagedServer2</target>
 <descriptor-file-name>diagnostics/newDiagnosticMod.xml
 </descriptor-file-name>
 <description>A diagnostic module for my managed servers</description>
 </wldf-system-resource>
<!-- Other WLDF system resource configurations -->
</domain>

The relationship of the config.xml file and the MyDiagnosticModule.xml file is
shown in Figure 5-1.

Configuring Diagnostic System Modules

5-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 5-1 Relationship of config.xml to System Descriptor File

For instructions on creating a diagnostic system module that is persisted in the
domain, see Create diagnostic system modules in the Oracle WebLogic Server
Administration Console Online Help.

5.6.4 Creating a Diagnostic System Module Based on an External Resource Descriptor
WLDF provides the following API that you can use to pass an external resource
descriptor and create a diagnostic system module on-the-fly. You can use this API to
dynamically create and activate a diagnostic system module for a server, but neither
its deployment nor activation state is persisted when the servers or clusters on which
it was activated are rebooted. This API is provided by the following MBeans:

• weblogic.management.runtime.WLDFControlRuntimeMBean

• weblogic.management.runtime.WLDFSystemResourceControlRuntimeM
Bean

Using this API, you can pass the resource descriptor as a String object on-the-fly. For
ease-of-use, WLDF also provides the following WLST commands, which you can use
with a resource descriptor file that exists externally to the domain configuration:

• createSystemResourceControl() — Creates (deploys) a diagnostics system
module on-the-fly using a specified descriptor file.

• destroySystemResourceControl() — Destroys (undeploys) a diagnostics
system module previously created on-the-fly.

Externally configured diagnostic system modules that are deployed and activated in a
server or cluster are automatically destroyed when that server or cluster is shut down.

If you activate a diagnostic system module that is based on an external resource
descriptor, the diagnostic resource name that you specify in the
createSystemResourceControl command is used as the module name. For
example, this is the name that appears in the WLDF Module column when displaying
the contents of the Harvester archive in the WebLogic Server Administration Console.
For more information about the createSystemResourceControl command, see
Diagnostics Commands in WLST Command Reference for WebLogic Server 12.1.3.

For an example of using WLST to create, activate, and destroy a diagnostic system
module that is based on an external resource descriptor, see Using WLST to Activate
and Deactivate Diagnostic System Modules.

Configuring Diagnostic System Modules

Understanding WLDF Configuration 5-9

5.6.5 Targeting a Diagnostic System Module to a Server or Cluster
A diagnostic system module can be targeted by the domain config.xml file to zero,
one, or more servers or clusters. In addition, a given server can have multiple modules
targeted to it simultaneously. Typically you create multiple modules that monitor
different aspects of your system. You can then choose which modules to target to a
server or cluster, based on what you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write
general purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server
instances to which it is targeted or untargeted. This gives you considerable flexibility
in writing and using diagnostic monitors that address a specific diagnostic goal,
without interfering with the operation of the server instances themselves.

For information about how to use the WebLogic Server Administration Console to
target a diagnostic system module that is persisted in the domain configuration, see
Target and untarget diagnostic system modules in Oracle WebLogic Server
Administration Console Online Help.

Note:

You cannot use the WebLogic Server Administration Console to target
diagnostic system modules that are configured by an external descriptor.
However, you can use WLST as described in Using WLST to Activate and
Deactivate Diagnostic System Modules.

5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules
After you configure a diagnostic system module, you can activate or deactivate it
without making a configuration change or rebooting the server instance to which it is
targeted. This capability gives you control over the operative state of diagnostic
system modules without restarting the targeted server or cluster instance or making a
change to the domain configuration.

Because the domain configuration and all resource files are replicated to all servers in
the domain, all configured WLDF resources are available for dynamic activation and
deactivation on all servers in the domain. Note that if you dynamically activate or
deactivate a diagnostics system module, and restart the targeted server, the module's
activation state is reverted to whatever is configured in the domain.

For information about using this capability in the WebLogic Server Administration
Console for diagnostic system modules that are persisted in the domain configuration,
see Dynamically activate or deactivate a diagnostic system module in Oracle WebLogic
Server Administration Console Online Help. (Note that you cannot use the WebLogic
Server Administration Console to dynamically activate or deactivate diagnostic
system modules that are configured by an external descriptor.)

You can also use WLST to dynamically activate or deactivate diagnostic system
modules, including those configured by an external descriptor, as described in Using
WLST to Activate and Deactivate Diagnostic System Modules.

Configuring Diagnostic System Modules

5-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules
You can also use WLST to dynamically activate or deactivate a diagnostic system
module. This capability is provided by the WLST commands listed and described in
Table 5-1:

Table 5-1 WLST Commands to Dynamically Activate and Deactivate Diagnostic
Modules

Command Summary

enableSystemResource
Enables a diagnostic system module on a WebLogic
Server instance.

disableSystemResource
Disables a diagnostic system module on a WebLogic
Server instance.

createSystemResourceControl
Creates a diagnostics system module from an external
diagnostic descriptor file. Note that the diagnostics
system module remains in memory only until the
server is shut down and is not deployed the next time
the server is restarted.

destroySystemResourceControl
Destroys, or undeploys, a diagnostics system module
configured in an external diagnostic descriptor without
changing the domain configuration.

listSystemResourceControls
Lists the diagnostic system modules currently
configured on a WebLogic Server instance.

For complete details about these WLST commands, see Diagnostics Commands in
WLST Command Reference for WebLogic Server 12.1.3.

5.6.7.1 Example

This section gives an example of the steps for using WLST to dynamically activate and
deactivate the following diagnostic system modules:

• Module-0, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN_HOME/config/diagnostics
directory

• Module-1, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN_HOME/config/diagnostics
directory

• External-1, not a part of the domain configuration, but defined by the external
resource descriptor external-wldf. This external resource descriptor is
configured in the file external-wldf.xml, which is external to the domain
configuration.

These examples assume the following has been set up:

• The domain config.xml file references two diagnostic system modules that are
part of the domain configuration, as follows:

<wldf-system-resource>
 <name>Module-0</name>

Configuring Diagnostic System Modules

Understanding WLDF Configuration 5-11

 <descriptor-file-name>diagnostics/Module-0-3905.xml</descriptor-file-name>
 <description></description>
</wldf-system-resource>
<wldf-system-resource>
 <name>Module-1</name>
 <descriptor-file-name>diagnostics/Module-1-3904.xml</descriptor-file-name>
 <description></description>
</wldf-system-resource>

• The server name shown in these examples is myserver.

• The external descriptor file external-wldf.xml is located in the domain's root
directory, wl_domain. It contains the following lines for configuring the diagnostic
system module named External-1:

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>External-1</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>OverallHealthState.ReasonCodeSummary</harvested-attribute>
 <harvested-attribute>OverallHealthState.State</harvested-attribute>
 <namespace>ServerRuntime</namespace>
 </harvested-type>
 </harvester>
</wldf-resource>

Step 1: List Diagnostic System Modules

The following WLST command, shown in bold, lists the diagnostic system modules
that are currently configured:

wls:/wl_domain/Server1> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

The preceding command shows that Module-0 and Module-1 are configured in the
domain (that is, they are referenced from config.xml and are not configured by
external resource descriptors), but that they have not been activated.

Step 2: Activate Module-0

The following WLST command activates Module-0:

wls:/mydomain/serverConfig> enableSystemResource('Module-0')

You can also supply a server name to all of the WLDF system resource runtime control
functions. If you do not specify a server name, the enableSystemResource()
command defaults to the server instance to which WLST is currently connected.
(However, by default, all configured WLDF system resources are available for runtime
control operations on all servers in the domain.)

Configuring Diagnostic System Modules

5-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

wls:/mydomain/serverConfig> enableSystemResource('Module-0', Server='myserver')

Step 3: Verify that Module-0 is Activated

The following WLST command shows that Module-0 is now activated:

wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false true Module-0
false false Module-1

Step 4: Activate Module-1

The following WLST commands activate Module-1 and verify the activation state of
all diagnostic system modules:

wls:/mydomain/serverConfig> enableSystemResource('Module-1', Server='myserver')
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false true Module-0
false true Module-1

Step 5: Deactivate Configured Diagnostic Modules

The following WLST commands deactivate all diagnostic system modules that are
configured in the domain and verify their state:

wls:/mydomain/serverConfig> disableSystemResource('Module-0')
wls:/mydomain/serverConfig> disableSystemResource("Module-1")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

Step 6: Create a Diagnostic System Module from an External Resource
Descriptor File

The external resource descriptor needs to be accessible by the WLST client. The
following WLST command creates and deploys the diagnostic system module
External-1 from the external resource descriptor in the file external-wldf.xml,
and verifies its activation state. ()

wls:/mydomain/serverConfig> createSystemResourceControl('external-wldf', 'external-
wldf.xml')
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true false external-wldf
false false Module-1

Note that the External column identifies External-1 as being configured by an
external resource descriptor.

Configuring Diagnostic System Modules

Understanding WLDF Configuration 5-13

Step 7: Activate External-1

Because the createSystemResourceControl() command only deploys the
diagnostic system module, the following WLST command activates it. The subsequent
command verifies the diagnostic system module's activation state.

wls:/mydomain/serverConfig> enableSystemResource("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true true external-wldf
false false Module-1

Step 8: Deactivate External-1

The following WLST commands deactivate External-1 and verify its deactivation
status:

wls:/mydomain/serverConfig> disableSystemResource("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true false external-wldf
false false Module-1

Step 9: Destroy External-1

The following WLST command destroys the diagnostic system module that is
configured by an external resource descriptor:

wls:/mydomain/serverConfig> destroySystemResourceControl("external-wldf")

Step 10: Verify Original State of Configured Diagnostic Modules

The following WLST command verifies that the domain's configuration is reverted to
its original state, showing only the two diagnostic system modules whose
configuration is persisted in the config.xml file:

wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

5.6.8 More Information About Configuring Diagnostic System Modules
See the following sections for detailed instructions about configuring WLDF system
modules:

• Configuring the Harvester for Metric Collection

• Configuring Watches and Notifications

• Configuring Instrumentation

• Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

Configuring Diagnostic System Modules

5-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

5.7 Configuring Diagnostic Modules for Applications
You can configure only the Instrumentation component in a diagnostic descriptor for
an application.

You configure and deploy application-scoped instrumentation as a diagnostic module,
which is similar to a diagnostic system module. However, an application module is
configured in an XML descriptor (configuration) file named weblogic-
diagnostics.xml, which is packaged with the application archive in the
ARCHIVE_PATH/META-INF directory for the deployed application. For example, C:
\Oracle\Middleware\Oracle_Home\user_projects\applications\medrec
\dist\standalone\exploded\medrec\META-INF\weblogic-
diagnostics.xml.

Note:

The DyeInjection monitor, which is used to configure diagnostic context (a
way of tracking requests as they flow through the system), can be configured
only at the server level. But once a diagnostic context is created, the context
attached to incoming requests remains with the requests as they flow through
the application. For information about the diagnostic context, see Configuring
the DyeInjection Monitor to Manage Diagnostic Contexts.

For more information about configuring and deploying diagnostic modules for
applications, see:

• Configuring Application-Scoped Instrumentation

• Deploying WLDF Application Modules

5.8 WLDF Configuration MBeans and Their Mappings to XML Elements
Figure 5-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic
system module beans for WLDF objects in a WebLogic Server domain.

Configuring Diagnostic Modules for Applications

Understanding WLDF Configuration 5-15

Figure 5-2 WLDF Configuration Bean Tree

The following WLDF MBeans configure WLDF at the server level. They map to XML
elements in the config.xml configuration file for a domain:

• WLDFServerDiagnosticMBean controls configuration settings for the Data Archive
and Diagnostic Images components for a server. It also controls whether diagnostic
context for a diagnostic module is globally enabled or disabled. (Diagnostic context
is a way to uniquely identify requests and track them as they flow through the
system. See Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.)

This MBean is represented by a <server-diagnostic-config> child element of the
<server> element in the config.xml file for the server's domain.

• WLDFSystemResourceMBean contains the name of a descriptor file for a diagnostic
module in the DOMAIN_HOME/config/diagnostics directory and the names of
one or more the target servers on which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the
config.xml file for the domain.

Note:

You can create multiple diagnostic system modules in a domain. The
configurations for the modules are saved in multiple descriptor files in the
config/diagnostics directory for the domain. The domain's config.xml
file, therefore, can contain the multiple <wldf-system-resource> elements that
represent those modules.

• WLDFResourceBean contains the configuration settings for a diagnostic system
module. This bean is represented by a <wldf-resource> element in a
DIAG_MODULE.xml diagnostics descriptor file in the domain's config/

WLDF Configuration MBeans and Their Mappings to XML Elements

5-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

diagnostics directory. (See Figure 5-1 and Example 5-2.) The
WLDFResourceBean contains configuration settings for the following components:

– Harvester: The WLDFHarvesterBean is represented by the <harvester> element
in a DIAG_MODULE.xml file.

– Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DIAG_MODULE.xml file.

– Watch and Notification: The WLDFWatchNotificationBean is represented by the
<watch-notification> element in a DIAG_MODULE.xml file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the
settings for WLDF components apply to the targeted server. If a
WLDFResourceBean is contained within a weblogic-diagnostics.xml
descriptor file which is deployed as part of an application archive, you can
configure only the Instrumentation component, and the settings apply only to that
application. In the latter case, the WLDFResourceMBean is not a child of a
WLDFSystemResourceMBean.

WLDF Configuration MBeans and Their Mappings to XML Elements

Understanding WLDF Configuration 5-17

WLDF Configuration MBeans and Their Mappings to XML Elements

5-18 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

6
Configuring and Capturing Diagnostic

Images

This chapter describes the Diagnostic Image Capture component of the WebLogic
Diagnostics Framework (WLDF) that you can use to create a diagnostic snapshot, or
dump, of a server's internal run-time state at the time of the capture. This information
helps support personnel analyze the cause of a server failure.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes WebLogic Server diagnostic data that
can be viewed in Java Mission Control. For information, see Using Java Flight
Recorder with Oracle HotSpot.

This chapter includes the following sections:

• How to Initiate Image Captures

• Configuring Diagnostic Image Captures

• How Diagnostic Image Capture Is Persisted in the Server's Configuration

• Content of the Captured Image File

6.1 How to Initiate Image Captures
A diagnostic image capture can be initiated by:

• A configured watch notification. See Configuring Notifications.

• A request initiated by a user in the WebLogic Server Administration Console (and
requests initiated from third-party diagnostic tools). See Configure and capture
diagnostic images in the Oracle WebLogic Server Administration Console Online Help.

• A direct API call, using JMX. See Example 6-1.

• WLST command

6.2 Configuring Diagnostic Image Captures
Because the diagnostic image capture is meant primarily as a post-failure analysis tool,
there is little control over what information is captured. Available configuration
options are:

• The destination for the image

• For a specific capture, a destination that is different from the default destination

• A lockout, or timeout, period, to control how often an image is taken during a
sequence of server failures and recoveries

Configuring and Capturing Diagnostic Images 6-1

• WLDF diagnostics volume, which determines the volume of WebLogic Server
event information that is captured in the Java Flight Recorder file.

As with other WLDF components, you can configure Diagnostic Image Capture using
the WebLogic Server Administration Console (see Configure and capture diagnostic
images in the Oracle WebLogic Server Administration Console Online Help), the WebLogic
Scripting Tool (WLST), or programmatically.

Note:

It is often useful to generate a diagnostic image capture when a server fails. To
do so, set a watch rule to evaluate to true when the server's state changes to
FAILED; then associate an image notification with the watch.

The watch rule is as follows:

(${[weblogic.management.runtime.ServerRuntimeMBean]//
State} = 'FAILED')

For more information, see Configuring Harvester Watches, and Configuring
Image Notifications. Also see Configure Watches and Notifications in the
Oracle WebLogic Server Administration Console Online Help.

6.2.1 Configuring WLDF Diagnostic Volume
If WebLogic Server is configured with Oracle HotSpot, and the Java Flight Recorder is
enabled, the Java Flight Recorder data is automatically also captured in the diagnostic
image capture. This data can be extracted from the diagnostic image capture and
viewed in Java Mission Control. If Java Flight Recorder is not enabled, or if WebLogic
Server is configured with a different JVM, the Java Flight Recorder data is not
captured in the diagnostics image capture.

Note:

When WebLogic Server is configured with HotSpot, by default Java Flight
Recorder is disabled. For information about how to enable it, see Using Java
Flight Recorder with Oracle HotSpot.

The volume of Java Flight Recorder data that is captured can be configured from the
WebLogic Server Administration Console, which allows you to specify the following
settings:

Volume Setting Description

Off Disables the collection of data in the Java Flight Recorder diagnostic
image.

Low Enabled by default. For information about data that is collected, see
Low Volume Setting.

Medium Captures a moderate amount of data. For details, see Medium
Volume Setting.

High Captures in-depth data. For details, see High Volume Setting.

Configuring Diagnostic Image Captures

6-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Note:

The specific set of events for which diagnostic data is collected using the
diagnostic volume settings is subject to change in future releases of WebLogic
Server.

For information about how to set the diagnostic volume, see Configure WLDF
diagnostics volume in the Oracle WebLogic Server Administration Console Online Help.
For an example using WLST, see Example: Setting the WLDF Diagnostic Volume.

6.2.1.1 Low Volume Setting

The Low diagnostic volume setting is enabled by default. With this setting, basic
information is generated and captured, and log messages with the "emergency",
"alert", or "critical" levels are recorded.

In the current release of WebLogic Server, the following events are captured at the Low
setting:

ThrottleInformation
WLDF Logging Snapshot
WLDF LogRecord Snapshot
WLDF WLLogRecord Snapshot
Connector Activate Endpoint
Connector Deactivate Endpoint
Connector Inbound Transaction Rollback
Connector Outbound Connection Closed
Connector Outbound Connection Error
Connector Outbound Destroy Connection
Connector Outbound Register Resource
Connector Outbound Release Connection
Connector Outbound Reserve Connection
Connector Outbound Transaction Rollback
Connector Outbound Unregister Resource
Deployment Complete
Deployment Do Cancel
Deployment Do Prepare
Deployment Operation
EJB Business Method Invoke
EJB Business Method Post Invoke
EJB Business Method Pre Invoke
JDBC Connection Rollback
JDBC Statement Execute
JDBC Statement Execute Begin
JDBC Transaction Rollback
Servlet Invocation
Servlet Request Run
Servlet Request Run Begin
Web Application Load
Web Application Unload
Webservices JAXRPC Client Request
Webservices JAXRPC Client Response
Webservices JAXRPC Dispatch
Webservices JAXRPC Request
Webservices JAXRPC Response
Webservices JAXWS Endpoint
Webservices JAXWS Request
Webservices JAXWS Resource

Configuring Diagnostic Image Captures

Configuring and Capturing Diagnostic Images 6-3

6.2.1.2 Medium Volume Setting

With the Medium diagnostic volume setting, additional information is captured, and
messages with the "error" level and above are recorded. For example, User IDs are
captured by the Medium and High volume settings (capturing them imposes a
performance overhead not appropriate for the Low setting).

In the current release of WebLogic Server, the following events are captured at the
Medium setting, in addition to those captured at the Low setting:

Connector Inbound Transaction Commit
Connector Inbound Transaction Start
Connector Outbound Transaction Commit
Connector Outbound Transaction Start
EJB Home Create
EJB Home Remove
EJB PoolManager Create
EJB Pool Manager Post Invoke
EJB Pool Manager Pre Invoke
JDBC Connection Close
JDBC Connection Commit
JDBC Connection Create Statement
JDBC Connection Get Vendor Connection
JDBC Connection Prepare
JDBC Connection Release
JDBC Connection Reserve
JDBC Data Source Get Connection
JDBC Driver Connect
JDBC Statement Creation
Servlet Execute
Servlet Request Dispatch
Servlet Request
Servlet Filter
Servlet Async Action
Servlet Context Execute
Servlet Response Write Headers
Servlet Response Send
Servlet Stale Resource
Servlet Check Access
JMS BE Consumer Log

6.2.1.3 High Volume Setting

With the High diagnostic volume setting, in-depth information is captured, and
messages with the "error" level and above are recorded. Stack traces are also captured
with the High setting, but only for events for which a stack trace add value (for
example, stack traces where application code would normally be visible are generated,
but stack traces that only show internal code and that do not vary at all are not
generated).

In the current release of WebLogic Server, the following events are captured at the
High setting in addition to those captured at the Medium setting:

EJB Database Access
EJB Business Method Post Invoke Cleanup
EJB Pool Manager Remove
EJB Replicated Session Manager
EJB Timer Manager
JDBC Transaction Commit
JDBC Transaction End
JDBC Transaction Get XA Resource

Configuring Diagnostic Image Captures

6-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

JDBC Transaction Is Same RM
JDBC Transaction Prepare
JDBC Transaction Start
JTA Transaction Commit
JTA Transaction End
JTA Transaction Prepared
JTA Transaction Prepare
JTA Transaction Start
Servlet Request Overload
Servlet Request Cancel
Servlet Context Handle Throwable

6.2.2 WLST Commands for Generating an Image Capture
Example 6-1 shows an example of WLST commands for generating an image capture.

Example 6-1 Sample WLST Commands for Generating a Diagnostic Image

url='t3://localhost:7001'
username='system'
password='password'
server='myserver'
timeout=120
connect(username, password, url)
serverRuntime()
cd('WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image')
argTypes = jarray.array(['java.lang.Integer'],java.lang.String)
argValues = jarray.array([timeout],java.lang.Object)
invoke('captureImage', argValues, argTypes)

6.3 How Diagnostic Image Capture Is Persisted in the Server's
Configuration

The configuration for Diagnostic Image Capture is persisted in the config.xml file
for a domain, under the <server-diagnostic-config> subelement of the <server>
element for the server, as shown in Example 6-2:

Example 6-2 Sample Diagnostic Image Capture Configuration

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs\diagnostic_images</image-dir>
 <image-timeout>2</image-timeout>
 </server-diagnostic-config>
 <!-- Other configuration details for this server -->
 </server>
 <!-- Other server configurations in this domain-->
</domain>

Note:

Oracle recommends that you do not edit the config.xml file directly.

How Diagnostic Image Capture Is Persisted in the Server's Configuration

Configuring and Capturing Diagnostic Images 6-5

6.4 Content of the Captured Image File
The most common sources of a server state are captured in a diagnostic image capture,
including:

• Configuration

• Log cache state

• Java Virtual Machine (JVM)

• Work Manager state

• JNDI state

• Most recent harvested data

The Diagnostic Image Capture component captures and combines the images
produced by the different server subsystems into a single .zip file. In addition to
capturing the most common sources of the server state, this component captures
images from all the server subsystems including, for example, images produced by the
JMS, JDBC, EJB, and JNDI subsystems.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes a Java Flight Recorder image,
FlightRecording.jfr, that can be viewed in Java Mission Control. The contents of
the Java Flight Recorder image contains all available data from the Java Flight
Recorder, and the volume of data produced by WLDF depends on the diagnostics
volume setting. When Java Flight Recorder is enabled, data is always provided by the
JVM, and optionally includes data provided by WebLogic Server. Data from
additional Oracle components, such as Oracle Dynamic Monitoring System (DMS),
may be included in the Java Flight Recorder image as well.

Note:

Note the following:

• A diagnostic image is a heavyweight artifact meant to serve as a server-
level state dump for the purpose of diagnosing significant failures. It
enables you to capture a significant amount of important data in a
structured format and then to provide that data to support personnel for
analysis.

• If a non-WebLogic event producer in the WebLogic Server environment,
such as DMS, has configured Java Flight Recorder to record data, the
WLDF diagnostic image capture includes a Java Flight Recorder image file
with the recorded data even if the WLDF diagnostics volume is set to Off.

• When WebLogic Server is configured with HotSpot, Java Flight Recorder is
not enabled by default. For information about how to enable it, see Using
Java Flight Recorder with Oracle HotSpot.

Content of the Captured Image File

6-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

6.4.1 Data Included in the Diagnostics Image Capture File
Each image is captured as a single file for the entire server. The default location is
SERVER_NAME\logs\diagnostic_images. Each image instance has a unique
name, as follows:

 diagnostic_image_DOMAIN_SERVER_YYYY_MM_DD_HH_MM_SS.zip

The contents of the file include at least the following information:

• Creation date and time of the image

• Source of the capture request

• Name of each image source included in the image and the time spent processing
each of those image sources

• JVM and OS information, if available

• Command line arguments, if available

• WebLogic Server version including patch and build number information

If WLDF is configured with Oracle HotSpot, as described in Configuring Diagnostic
Image Capture for Java Flight Recorder, the image also contains the Java Flight
Recorder file, FlightRecording.jfr. The JFR file can be extracted as described in
WLST Online Commands for Downloading Diagnostics Image Captures, and viewed
in Java Mission Control. For more information, see Analyzing Java Flight Recorder
Data.

Figure 6-1 shows the contents of an image file. You can open most of the files in
this .zip file with a text editor to examine the contents.

Figure 6-1 An Image File

Content of the Captured Image File

Configuring and Capturing Diagnostic Images 6-7

6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures
WLST online provides the following commands for downloading diagnostic image
captures from the server to which WLST is connected:

Table 6-1 WLST Commands for Downloading Image Captures

Command Summary

captureAndSaveDiagnosticImage
Captures a diagnostic image and downloads it locally.

getAvailableCapturedImages
Returns a list of diagnostic images that have been created in the
image destination directory configured on the server.

saveDiagnosticImageCaptureFile
Downloads a specified diagnostic image capture file.

saveDiagnosticImageCaptureEntryFile
Downloads a specific entry within a diagnostic image capture. This
command is particularly useful for obtaining the Java Flight
Recorder diagnostics data for viewing in Java Mission Control.

For information about these commands, and examples of using them, see Diagnostics
Commands in WLST Command Reference for WebLogic Server 12.1.3. For examples of
WLST scripts that return a list of diagnostic images and retrieve JFR files in them, see
WebLogic Scripting Tool Examples.

Content of the Captured Image File

6-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

7
Configuring Diagnostic Archives

This chapter describes the Archive component of the WebLogic Diagnostics
Framework (WLDF) that captures and persists all data events, log records, and metrics
collected by WLDF from server instances and applications running on them. You can
subsequently access archived diagnostic data in online mode (that is, on a running
server). You can also access archived data in off-line mode using the WebLogic
Scripting Tool (WLST).

You can configure WLDF to archive diagnostic data to a file store or a Java Database
Connectivity (JDBC) data source, as described in this chapter.

This chapter includes the following sections:

• Configuring the Archive

• Configuring a File-Based Store

• Configuring a JDBC-Based Store

• Retiring Data from the Archives

You can also specify when and under what conditions old data will be removed from
the archive, as described in Retiring Data from the Archives.

7.1 Configuring the Archive
You configure the diagnostic archive on a per-server basis.The configuration is
persisted in the config.xml file for a domain, under the <server-diagnostic-config>
element for the server. Example configurations for file-based stores and JDBC-based
stores are shown in Example 7-1 and Example 7-7.

Note:

Resetting the system clock while diagnostic data is being written to the archive
can produce unexpected results. See Resetting the System Clock Can Affect
How Data Is Archived and Retrieved.

7.2 Configuring a File-Based Store
For a file-based store, WLDF creates a file to contain the archived information. The
only configuration option for a WLDF file-based archive is the directory where the file
will be created and maintained. The default directory is DOMAIN_HOME/servers/
SERVER_NAME/data/store/diagnostics.

When you save to a file-based store, WLDF uses the WebLogic Server persistent store.
For more information, see "Using the WebLogic Persistent Store" in Administering
Server Environments for Oracle WebLogic Server.

Configuring Diagnostic Archives 7-1

An example configuration for a file-based store is shown in Example 7-1.

Example 7-1 Sample Configuration for File-based Diagnostic Archive (in
config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

7.3 Configuring a JDBC-Based Store
To use a JDBC store, the appropriate tables must exist in a database, and JDBC must be
configured to connect to that database. For information about how to configure JDBC
using the WebLogic Server Administration Console, see Configure database
connectivity in Oracle WebLogic Server Administration Console Online Help. For
additional information about JDBC configuration, see Administering JDBC Data Sources
for Oracle WebLogic Server.

Note:

If you install multiple WLDF schemas in the same database, you need to
provide a way to distinguish among them when accessing the diagnostic
archives. You can do this when you configure the diagnostic archive for a
server instance by specifying the schema name to use for accessing JDBC-
based archive tables in that database. For more information, see Configuring
JDBC Resources for WLDF.

7.3.1 Creating WLDF Tables in the Database
If they do not already exist, you must create the database tables used by WLDF to
store data in a JDBC-based store. Two tables are required:

• The wls_events table stores data generated from WLDF Instrumentation events.

• The wls_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database.

7.3.1.1 Apache Derby

Example 7-2 shows the DDL that you can use to create the wls_events and wls_hvst
tables in Apache Derby.

Example 7-2 DDL Definition of the WLDF Tables for Apache Derby

-- WLDF Instrumentation and Harvester archive DDLs using Derby

AUTOCOMMIT OFF;

Configuring a JDBC-Based Store

7-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_events;

CREATE TABLE wls_events (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 CONTEXTID varchar(128) default NULL,
 TXID varchar(32) default NULL,
 USERID varchar(32) default NULL,
 TYPE varchar(64) default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 SCOPE varchar(64) default NULL,
 MODULE varchar(64) default NULL,
 MONITOR varchar(64) default NULL,
 FILENAME varchar(64) default NULL,
 LINENUM INTEGER default NULL,
 CLASSNAME varchar(250) default NULL,
 METHODNAME varchar(64) default NULL,
 METHODDSC varchar(4000) default NULL,
 ARGUMENTS clob(100000) default NULL,
 RETVAL varchar(4000) default NULL,
 PAYLOAD blob(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES BIGINT default NULL,
 THREADNAME varchar(250) default NULL
);

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_hvst;

CREATE TABLE wls_hvst (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 TYPE varchar(64) default NULL,
 NAME varchar(250) default NULL,
 ATTRNAME varchar(64) default NULL,
 ATTRTYPE INTEGER default NULL,
 ATTRVALUE VARCHAR(4000),
 WLDFMODULE VARCHAR(250) default NULL
);

COMMIT;

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

7.3.1.2 Oracle Database

Example 7-3 shows the DDL that you can use to create the wls_events table in Oracle
database.

Example 7-3 DDL Definition of the wls_events Table for Oracle Database

SET SERVEROUTPUT ON;

DECLARE
 vCtr Number;

Configuring a JDBC-Based Store

Configuring Diagnostic Archives 7-3

 vSQL VARCHAR2(2000);
 vcurr VARCHAR2(256);
BEGIN

 SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
 dbms_output.put_line('Current Schema: '||vcurrSchema);

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tables
 WHERE table_name = 'WLS_EVENTS';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLS_EVENTS table');
 vSQL := 'CREATE TABLE "WLS_EVENTS" (
 "RECORDID" NUMBER(20,0) DEFAULT NULL,
 "TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
 "CONTEXTID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TXID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "USERID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TYPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "DOMAIN" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SERVER" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SCOPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "MODULE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "MONITOR" VARCHAR2(250 BYTE) DEFAULT NULL,
 "FILENAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "LINENUM" NUMBER(10,0) DEFAULT NULL,
 "CLASSNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "METHODNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "METHODDSC" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "ARGUMENTS" CLOB DEFAULT NULL,
 "RETVAL" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "PAYLOAD" BLOB DEFAULT NULL,
 "CTXPAYLOAD" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "DYES" NUMBER(20,0) DEFAULT NULL,
 "THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL
)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE UNIQUE INDEX WLS_EVENTS_RECORD_IDX ON WLS_EVENTS(RECORDID)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE INDEX WLS_EVENTS_TS_IDX ON WLS_EVENTS(TIMESTAMP)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tab_columns
 WHERE table_name = 'WLS_EVENTS' AND column_name = 'THREADNAME';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating THREADNAME column in WLS_EVENTS table');
 vSQL := 'ALTER TABLE WLS_EVENTS ADD("THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_sequences
 WHERE sequence_name = 'SEQ_WLS_EVENTS_RECORDID';

 IF vCtr = 0 THEN
 vSQL := 'CREATE SEQUENCE SEQ_WLS_EVENTS_RECORDID MINVALUE 1 MAXVALUE 99999999999999999999 START

Configuring a JDBC-Based Store

7-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

WITH 1 INCREMENT BY 1 NOCACHE';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_triggers
 WHERE table_name = 'WLS_EVENTS';

 IF vCtr = 0 THEN
 vSQL := 'CREATE OR REPLACE TRIGGER TRG_WLS_EVENTS_INSERT
 BEFORE INSERT ON WLS_EVENTS
 REFERENCING NEW AS newRow
 FOR EACH ROW
 BEGIN
 IF :newRow.RECORDID IS NULL THEN
 SELECT SEQ_WLS_EVENTS_RECORDID.nextval INTO :newRow.RECORDID FROM DUAL;
 END IF;
 END;';
 EXECUTE IMMEDIATE vSQL;
 END IF;

END;
/

Example 7-4 shows the DDL that you can use to create the wls_hvst table in Oracle
database.

Example 7-4 DDL Definition of the wls_hvst Table for Oracle Database

SET SERVEROUTPUT ON;

DECLARE
 vCtr Number;
 vSQL VARCHAR2(1000);
 vcurrSchema VARCHAR2(256);
BEGIN

 SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
 dbms_output.put_line('Current Schema: '||vcurrSchema);

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tables
 WHERE table_name = 'WLS_HVST';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLS_HVST table');
 vSQL := 'CREATE TABLE "WLS_HVST"
 (
 "RECORDID" NUMBER(20,0) NOT NULL,
 "TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
 "DOMAIN" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SERVER" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TYPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "NAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "ATTRNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "ATTRTYPE" NUMBER(10,0) DEFAULT NULL,
 "ATTRVALUE" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "WLDFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL
)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE UNIQUE INDEX WLS_HVST_RECORD_IDX ON WLS_HVST(RECORDID)';
 EXECUTE IMMEDIATE vSQL;

Configuring a JDBC-Based Store

Configuring Diagnostic Archives 7-5

 vSQL := 'CREATE INDEX WLS_HVST_TS_IDX ON WLS_HVST(TIMESTAMP)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*)
 INTO vCtr FROM user_tab_columns
 WHERE table_name = 'WLS_HVST' AND column_name = 'WLDFMODULE';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLDFMODULE column in WLS_HVST table');
 vSQL := 'ALTER TABLE WLS_HVST ADD("WLDFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_sequences
 WHERE sequence_name = 'SEQ_WLS_HVST_RECORDID';

 IF vCtr = 0 THEN
 vSQL := 'CREATE SEQUENCE SEQ_WLS_HVST_RECORDID MINVALUE 1 MAXVALUE 99999999999999999999 START
WITH 1 INCREMENT BY 1 NOCACHE';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_triggers
 WHERE table_name = 'WLS_HVST';

 IF vCtr = 0 THEN
 vSQL := 'CREATE OR REPLACE TRIGGER TRG_WLS_HVST_INSERT
 BEFORE INSERT ON WLS_HVST
 REFERENCING NEW AS newRow
 FOR EACH ROW
 BEGIN
 IF :newRow.RECORDID IS NULL THEN
 SELECT SEQ_WLS_HVST_RECORDID.nextval INTO :newRow.RECORDID FROM DUAL;
 END IF;
 END;';
 EXECUTE IMMEDIATE vSQL;
 END IF;

END;
/

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

7.3.1.3 MySQL

Example 7-5 shows the DDL that you can use to create the wls_events table in MySQL
database.

Example 7-5 DDL Definition of the wls_events Table in MySql Database

DROP PROCEDURE if exists create_alter_wls_events
/

CREATE PROCEDURE create_alter_wls_events()
language sql
BEGIN
 CREATE TABLE IF NOT EXISTS WLS_EVENTS
 (
 RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
 TIMESTAMP BIGINT NOT NULL,

Configuring a JDBC-Based Store

7-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 CONTEXTID VARCHAR(250) default NULL,
 TXID VARCHAR(250) default NULL,
 USERID VARCHAR(250) default NULL,
 TYPE VARCHAR(250) default NULL,
 DOMAIN VARCHAR(250) default NULL,
 SERVER VARCHAR(250) default NULL,
 SCOPE VARCHAR(250) default NULL,
 MODULE VARCHAR(250) default NULL,
 MONITOR VARCHAR(250) default NULL,
 FILENAME VARCHAR(250) default NULL,
 LINENUM INT UNSIGNED default NULL,
 CLASSNAME VARCHAR(250) default NULL,
 METHODNAME VARCHAR(250) default NULL,
 METHODDSC VARCHAR(4000) default NULL,
 ARGUMENTS TEXT(100000) default NULL,
 RETVAL VARCHAR(4000) default NULL,
 PAYLOAD BLOB(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES BIGINT UNSIGNED default NULL,
 THREADNAME VARCHAR(250) default NULL,
 INDEX(TIMESTAMP)
);

 IF NOT EXISTS(
 SELECT * FROM `information_schema`.`COLUMNS`
 WHERE COLUMN_NAME='THREADNAME' AND TABLE_NAME='WLS_EVENTS') THEN
 ALTER TABLE `WLS_EVENTS` ADD `THREADNAME` varchar(250) default NULL;
 END IF;

END
/

CALL create_alter_wls_events()
/

DROP PROCEDURE if exists create_alter_wls_events
/

Example 7-6 shows the DDL that you can use to create the wls_hvst table in MySQL
database.

Example 7-6 DDL Definition of wls_hvst Table in MySql Database

DROP PROCEDURE if exists create_alter_wls_hvst
/

CREATE PROCEDURE create_alter_wls_hvst()
language sql
BEGIN
 CREATE TABLE IF NOT EXISTS WLS_HVST
 (
 RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
 TIMESTAMP BIGINT NOT NULL,
 DOMAIN VARCHAR(250) default NULL,
 SERVER VARCHAR(250) default NULL,
 TYPE VARCHAR(250) default NULL,
 NAME VARCHAR(250) default NULL,
 SCOPE VARCHAR(250) default NULL,
 ATTRNAME VARCHAR(250) default NULL,
 ATTRTYPE INT default NULL,
 ATTRVALUE VARCHAR(4000) default NULL,
 WLDFMODULE VARCHAR(250) default NULL,

Configuring a JDBC-Based Store

Configuring Diagnostic Archives 7-7

 INDEX(TIMESTAMP)
);

 IF NOT EXISTS(
 SELECT * FROM `information_schema`.`COLUMNS`
 WHERE COLUMN_NAME='WLDFMODULE' AND TABLE_NAME='WLS_HVST') THEN
 ALTER TABLE `WLS_HVST` ADD `WLDFMODULE` varchar(250) default NULL;
 END IF;

END
/

CALL create_alter_wls_hvst()
/

DROP PROCEDURE if exists create_alter_wls_hvst
/

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

7.3.2 Configuring JDBC Resources for WLDF
After you create the tables in your database, you must configure JDBC to access the
tables. (See Administering JDBC Data Sources for Oracle WebLogic Server.) Then, as part
of your server configuration, you specify that JDBC resource as the data store to be
used for a server's archive.

If multiple WLDF JDBC archive schemas exist in the same database, you can specify
the particular schema to use for accessing JDBC-based archive tables in that database.
There is no default value for a schema name: If you do not specify one, no schema
name is applied when WLDF validates the runtime table, and no schema name is used
for the SQL statements. You specify the schema name in the
WLDFServerDiagnosticMBean.DiagnosticJDBCSchemaName attribute, which
you can access from the Diagnostic Archives: Configuration page in the WebLogic
Server Administration Console. For more information, see Configure diagnostic
archives in Oracle WebLogic Server Administration Console Online Help.

An example configuration for a JDBC-based store is shown in Example 7-7.

Example 7-7 Sample configuration for JDBC-based Diagnostic Archive (in
config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-data-archive-type>JDBCArchive
 </diagnostic-data-archive-type>
 <diagnostic-jdbc-resource>JDBCResource</diagnostic-jdbc-resource>
 <server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables
do not exist in the database, WLDF uses the default file-based persistent store.

Configuring a JDBC-Based Store

7-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

7.4 Retiring Data from the Archives
WLDF includes a configuration-based data retirement feature for periodically deleting
old diagnostic data from the archives. You can configure size-based data retirement at
the server level and age-based retirement at the individual archive level, as described
in the following sections.

7.4.1 Configuring Data Retirement at the Server Level
You can set the following data retirement options for a server instance:

• The preferred maximum size of the server instance's data store (<preferred-store-
size-limit>) and the interval at which it is checked, on the hour, to see if it exceeds
that size (<store-size-check-period>).

When the size of the store is found to exceed the preferred maximum, an
appropriate number of the oldest records in the store are deleted to reduce the size
below the specified threshold. This is called "size-based data retirement."

Note:

Size-based data retirement can be used only for file-based stores. These
options are ignored for database-based stores.

• Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data
retirement options discussed above. For both file-based stores and database-based
stores, this also enables or disables any age-based data retirement policies defined
for individual archives in the store. See Configuring Age-Based Data Retirement
Policies for Diagnostic Archives.

7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives
The data store for a server instance can contain the following types of diagnostic data
archives whose records can be retired using the data retirement feature:

• Harvested metrics data (logical name: HarvestedDataArchive)

• Instrumentation events data (logical name: EventsDataArchive)

• Custom data (user-defined name)

Note:

WebLogic Server log files are maintained both at the server level and the
domain level. Data is retired from the current log using the log rotation
feature. See Configuring WebLogic Logging Services in Configuring Log Files
and Filtering Log Messages for Oracle WebLogic Server.

Age-based policies apply to individual archives. The data store for a server instance
can have one age-based policy for the HarvestedDataArchive, one for the
EventsDataArchive, and one each for any custom archives.

Retiring Data from the Archives

Configuring Diagnostic Archives 7-9

When records in an archive exceed the age limit specified for records in that archive,
those records are deleted.

7.4.3 Sample Configuration
Data retirement configuration settings are persisted in the config.xml configuration
file for the server's domain, as shown in Example 7-8.

Example 7-8 Data Retirement Configuration Settings in config.xml

<domain>
<!-- other domain configuration settings -->
 <server>
 <name>MedRecServer</name>
 <!-- other server configuration settings -->
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 <data-retirement-enabled>true</data-retirement-enabled>
 <preferred-store-size-limit>120</preferred-store-size-limit>
 <store-size-check-period>1</store-size-check-period>
 <wldf-data-retirement-by-age>
 <name>HarvestedDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>HarvestedDataArchive</archive-name>
 <retirement-time>1</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>45</retirement-age>
 </wldf-data-retirement-by-age>
 <wldf-data-retirement-by-age>
 <name>EventsDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>EventsDataArchive</archive-name>
 <retirement-time>10</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>72</retirement-age>
 </wldf-data-retirement-by-age>
 </server-diagnostic-config>
 </server>
</domain>

Retiring Data from the Archives

7-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

8
Configuring the Harvester for Metric

Collection

This chapter describes the Harvester component of the WebLogic Diagnostics
Framework (WLDF) that gathers metrics from attributes on qualified MBeans
instantiated in a running server. The Harvester can collect metrics from WebLogic
Server MBeans and from custom MBeans.

This chapter includes the following sections:

• Harvesting, Harvestable Data, and Harvested Data

• Harvesting Data from the Different Harvestable Entities

• Configuring the Harvester

• Harvester Performance Considerations

8.1 Harvesting, Harvestable Data, and Harvested Data
Harvesting metrics is the process of gathering data that is useful for monitoring the
system state and performance. Metrics are exposed to WLDF as attributes on qualified
MBeans. The Harvester gathers values from selected MBean attributes at a specified
sampling rate. Therefore, you can track potentially fluctuating values over time.

Data must meet certain requirements in order to be harvestable, and it must meet
further requirements in order to be harvested:

• Harvestable data is data that can potentially be harvested from harvestable entities,
including MBean types, instances, and attributes. To be harvestable, an MBean
must be registered in the local WebLogic Server Runtime MBean server. Only
simple type attributes of an MBean can be harvestable.

• Harvested data is data that is currently being harvested. To be harvested, the data
must meet all the following criteria:

– The data must be harvestable.

– The data must be configured to be harvested.

– For custom MBeans, the MBean must be currently registered with the JMX
server.

– The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and
harvested data. The information returned by this MBean is a snapshot of a potentially
changing state. For a description of the information about the data provided by this
MBean, see the description of the

Configuring the Harvester for Metric Collection 8-1

weblogic.management.runtime.WLDFHarvesterRuntimeMBean in the MBean
Reference for Oracle WebLogic Server.

You can use the WebLogic Server Administration Console, the WebLogic Scripting
Tool (WLST), or JMX to configure the Harvester to collect and archive the metrics that
the server MBeans and the custom MBeans contain.

8.2 Harvesting Data from the Different Harvestable Entities
You can configure the Harvester to harvest data from named MBean types, instances,
and attributes. In all cases, the Harvester collects the values of attributes of MBean
instances, as explained in Table 8-1.

Table 8-1 Sources of Harvested Data from Different Configurations

When this entity is configured to
be harvested as...

Data is collected from...

A type (only) All harvestable attributes in all instances of the
specified type

An attribute of a type

(type + attribute(s))

The specified attribute in all instances of the specified
type

An instance of a type

(type + instance(s))

All harvestable attributes in the specified instance of
the specified type

An attribute of an instance of a type

(type + instance(s) + attribute(s))

The specified attribute in the specified instance of the
specified type

All WebLogic Server runtime MBean types and attributes are known at startup.
Therefore, when the Harvester configuration is loaded, the set of harvestable
WebLogic Server entities is the same as the set of WebLogic Server runtime MBean
types and attributes. As types are instantiated, those instances also become known and
thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be
instantiated before its type can be known. (The type does not exist until at least one
instance is created.) Therefore, as custom MBeans are registered with and removed
from the MBean server, the set of custom harvestable types grows and shrinks. This
process of detecting a new type based on the registration of a new MBean is called type
discovery.

When you configure the Harvester through the WebLogic Server Administration
Console, the Console provides a list of harvestable entities that can be configured. The
list is always complete for WebLogic Server MBeans, but for custom MBeans, the list
contains only the currently discovered types. See Configure metrics to collect in a
diagnostic system module in the Oracle WebLogic Server Administration Console Online
Help.

8.3 Configuring the Harvester
The Harvester is configured and metrics are collected in the scope of a diagnostic
module targeted to one or more server instances.

Example 8-1 shows Harvester configuration elements in a WLDF system resource
descriptor file, myWLDF.xml. This sample configuration harvests from the

Harvesting Data from the Different Harvestable Entities

8-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

ServerRuntimeMBean, the WLDFHarvesterRuntimeMBean, and from a custom (that
is, non-WebLogic Server) MBean. The text following the listing explains each element
in the listing.

Example 8-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<name>myWLDF</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>5000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 </harvester>
<!-- ----- Other elements ----- -->
</wldf-resource>

8.3.1 Configuring the Harvester Sampling Period
The <sample-period> element sets the sample period for the Harvester, in
milliseconds. For example:

 <sample-period>5000</sample-period>

The sample period specifies the time between each cycle. For example, if the Harvester
begins execution at time T, and the sample period is I, then the next harvest cycle
begins at T+I. If a cycle takes A seconds to complete and if A exceeds I, then the next
cycle begins at T+A. If this occurs, the Harvester tries to start the next cycle sooner, to
ensure that the average interval is I.

8.3.2 Configuring the Types of Data to Harvest
One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be
collected. Optional sub-elements specify the instances and/or attributes to be collected
for that type. Set these options as follows:

• The optional <harvested-instance> element specifies that metrics are to be collected
only from the listed instances of the specified type. In general, an instance is
specified by providing its JMX ObjectName in JMX canonical form. However, you
can use pattern-matching to specify instance names in non-canonical form, as
described in Using Wildcards in Harvester Instance Names.

• If no <harvested-instance> is present, all instances that are present at the time of
each harvest cycle are collected.

Configuring the Harvester

Configuring the Harvester for Metric Collection 8-3

• The optional <harvested-attribute> element specifies that metrics are to be
collected only for the listed attributes of the specified type. An attribute is specified
by providing its name. The first character should be capitalized. For example, an
attribute defined with getter method getFoo() is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling
down" into attributes that are complex or aggregate objects, such as lists, maps,
simple POJOs (Plain Old Java Objects), and various nestings of these types. See
Specifying Complex and Nested Harvester Attributes, for details on this syntax.
However, note that the result of these expressions must be a simple intrinsic type
(int, boolean, String, and so on) in order to be harvested.

• If no <harvested-attribute> is present, all harvestable attributes defined for the type
are collected.

• Attribute and instance lists can be combined in a type.

8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans
The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic
Server MBeans are those that come packaged as part of the WebLogic Server. Custom
MBeans can be harvested as long as they are registered in the local runtime MBean
server.

There is a difference in how WebLogic Server and customer types are specified. For
WebLogic Server types, the type name is the name of the Java interface that defines the
MBean. For example, the server runtime MBean's type name is
weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

• If the MBean is not a ModelMBean, the type name is the implementing class name.
(For example, see Example 8-1.)

• If the MBean is a ModelMBean, the type name is the value of the MBean Descriptor
field DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is
no value for the MBean Descriptor field DiagnosticTypeName) then the MBean cannot
be harvested.

8.3.4 Harvesting from the Domain Runtime MBean Server
The <harvested-type> element supports a <namespace> attribute that lets you harvest
metrics from MBeans registered in the Domain Runtime MBean Server. However,
Oracle recommends that you limit the usage to harvesting only Domain Runtime-
specific MBeans, such as the ServerLifeCycleRuntimeMBean. Harvesting of remote
managed server MBeans through the Domain Runtime MBean Server is possible, but
is discouraged for performance reasons. It is a best practice to use the resident
Harvester in each managed server to capture metrics related to that managed server
instance.

The <namespace> attribute can have one of two values:

• ServerRuntime

• DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

Configuring the Harvester

8-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Note:

Harvesting from the Domain Runtime MBean server is available only on the
Administration Server. Attempts to harvest Domain Runtime MBeans on a
Managed Server are ignored. For an example, see Example 8-5.

8.3.5 When Configuration Settings Are Validated
WLDF attempts to validate configuration as soon as possible. Most configuration is
validated at system startup and whenever a dynamic change is committed. However,
due to limitations in JMX, custom MBeans cannot be validated until instances of those
MBeans have been registered in the MBean server.

8.3.6 Sample Configurations for Different Harvestable Types
In Example 8-2, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that the ServerRuntimeMBean is to be harvested. Because
no <harvested-instance> subelement is present, all instances of the type will be
collected. However, because there is always only one instance of the server runtime
MBean, there is no need to provide a specific list of instances. And because there are
no <harvested-attribute> subelements present, all available attributes of the MBean
are harvested for each of the two instances.

Example 8-2 Sample Configuration for Collecting All Instances and All Attributes of
a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>

In Example 8-3, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that the WLDFHarvesterRuntimeMBean is to be harvested.
As above, because there is only one WLDFHarvesterRuntimeMBean, there is no need
to provide a specific list of instances. The subelement <harvested-attribute> specifies
that only two of the available attributes of the WLDFHarvesterRuntimeMBean will be
harvested: TotalSamplingTime and CurrentSnapshotElapsedTime.

Example 8-3 Sample Configuration for Collecting Specified Attributes of All
Instances of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>

In Example 8-4, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that a single instance of a custom MBean type is to be
harvested. Because this is a custom MBean, the type name is the implementation class.
In this example, the two <harvested-instance> elements specify that only two
instances of this type will be harvested. Each instance is specified using the canonical
representation of its JMX ObjectName. Because no instances of <harvested-attribute>
are specified, all attributes will be harvested.

Configuring the Harvester

Configuring the Harvester for Metric Collection 8-5

Example 8-4 Sample Configuration for Collecting All Attributes of a Specified
Instance of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>

In Example 8-5, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that the ServerLifeCycleRuntimeMBean is to be harvested.
The <namespace> attribute specifies that this is a DomainRuntime MBean, so this
configuration will only be honored on the administration server (see the note in
Harvesting from the DomainRuntime MBeanServer). The subelement <harvested-
attribute> specifies that only the StateVal attribute will be harvested.

Example 8-5 Sample configuration for Collecting Specified Attributes of the
ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerLifeCycleRuntimeMBean</name>
 <namespace>DomainRuntime</namespace>
 <known-type>true</known-type>
 <harvested-attribute>StateVal</harvested-attribute>
 </harvested-type>

8.4 Harvester Performance Considerations
Because the Harvester tracks all MBeans that are registered in the local WebLogic
Server Runtime MBean server, applications that create a high volume of transient
MBeans can create performance issues in WLDF. Here, a transient MBean is an MBean
with a very short life span that can be registered and unregistered very quickly,
typically within the space of a few milliseconds. Such MBeans can create a load stress
in the Harvester and the Policies and Actions system, which tracks MBean
registrations. This performance problem is particularly a risk when high-volume JMS
applications are not coded according to recommended best practices.

When JMS connections are not cached properly, a scenario can develop in which
hundreds of connections (and consequently, the corresponding connection, producer,
and consumer runtime MBeans) are created and destroyed every second when the
system is operating under heavy load. This situation can cause load stress on both the
Harvester and the Policies and Actions system.

To avoid this problem, make sure your JMS applications conform to the best coding
practices described in Cache and Re-use Client Resources in Tuning Performance of
Oracle WebLogic Server. As a result, you will not only obtain better WLDF performance,
but you will also improve your JMS and overall server performance.

Harvester Performance Considerations

8-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

9
Configuring Watches and Notifications

This chapter describes the Watch and Notification component of the WebLogic
Diagnostics Framework (WLDF) that provides the means for monitoring server and
application states and then sending notifications based on criteria set in the
watches.Watches and notifications are configured as part of a diagnostic module
targeted to one or more server instances in a domain.

This chapter includes the following sections:

• Watches and Notifications

• Overview of Watch and Notification Configuration

• Sample Watch and Notification Configuration

9.1 Watches and Notifications
A watch identifies a situation that you want to trap for monitoring or diagnostic
purposes. You can configure watches to analyze log records, data events, and
harvested metrics. A watch is specified as a watch rule, which includes:

• A watch rule expression

• An alarm setting

• One or more notification handlers

A notification is an action that is taken when a watch rule expression evaluates to true.
WLDF supports the following types of notifications:

• Java Management Extensions (JMX)

• Java Message Service (JMS)

• Simple Mail Transfer Protocol (SMTP), for example, e-mail

• Simple Network Management Protocol (SNMP)

• Diagnostic Images

You must associate a watch with a notification for a useful diagnostic activity to occur,
for example, to notify an administrator about specified states or activities in a running
server.

Watches and notifications are configured separately from each other. A notification
can be associated with multiple watches, and a watch can be associated with multiple
notifications. This provides the flexibility to recombine and re-use watches and
notifications, according to current needs.

Configuring Watches and Notifications 9-1

9.2 Overview of Watch and Notification Configuration
A complete watch and notification configuration includes settings for one or more
watches, one or more notifications, and any underlying configurations required for the
notification media, for example, the SNMP configuration required for an SNMP-based
notification.

The main elements required for configuring watches and notifications in a WLDF
system resource descriptor file, DIAG_MODULE.xml, are shown in Example 9-1. As the
listing shows, the base element for defining watches and notifications is <watch-
notification>. Watches are defined in <watch> elements, and notifications are defined
in elements named for each of the types of notification, for example <jms-
notification>, <jmx-notification>, <smtp-notification>, and <image-notification>.

Example 9-1 A Skeleton Watch and Notification Configuration (in
DIAG_MODULE.xml)

<wldf-resource>
<!-- ----- Other system resource configuration elements ----- -->
 <watch-notification>
 <log-watch-severity>
 <!-- Threshold severity for a log watch to be evaluated further
 (This can be narrowed further at the watch level.) -->
 </log-watch-severity>
 <!-- ----- Watch configuration elements: ----- -->
 <watch>
 <!-- A watch rule -->
 </watch>
 <watch>
 <!-- A watch rule -->
 </watch>
 <!-- Any other watch configurations -->

 <!-- ----- Notification configuration elements: ----- -->
 <!-- The following notification configuration elements show one of each
 type of supported notifications. However, not all types are
 required in any one system resource configuration, and multiples
 of any type are permitted. -->
 <jms-notification>
 <!-- Configuration for a JMS-based notification; requires a
 corresponding JMS configuration via a jms-server element and a
 jms-system-resource element -->
 </jms-notification>

 <jmx-notification>
 <!-- Configuration for a JMX-based notification -->
 </jmx-notification>
 <smtp-notification>
 <!-- Configuration for an SMTP-based notification; requires a
 corresponding SMTP configuration via a mail-session element -->
 </smtp-notification>
 <snmp-notification>
 <!-- Configuration for an SNMP-based notification; requires a
 corresponding SNMP agent configuration via an snmp-agent
 element -->
 </snmp-notification>
 <image-notification>
 <!-- Configuration for an image-based notification -->
 </image-notification>
 <watch-notification>

Overview of Watch and Notification Configuration

9-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

<!-- ----- Other configuration elements ----- -->
</wldf-resource>

Note:

While the notification media must be configured so they can be used by the
notifications that depend on them, those configurations are not part of the
configuration of the diagnostic module itself. That is, they are not configured
in the <wldf-resource> element in the diagnostic module's configuration file.

Each watch and notification can be individually enabled and disabled by setting
<enabled>true</enabled> or <enabled>false</enabled> for the individual watch
and/or notification. In addition, the entire watch and notification facility can be
enabled and disabled by setting <enabled>true</enabled> or <enabled>false</
enabled> for all watches and notifications. The default value is <enabled>true</
enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which
affects how notifications are triggered by log-rule watches.

If the maximum severity level of the log messages that triggered the watch do not at
least equal the provided severity level, then the resulting notifications are not fired.
Note that this only applies to notifications fired by watches which have log rule types.
Do not confuse this element with the <severity> element defined on watches. The
<severity> element assigns a severity to the watch itself, whereas the <log-watch-
severity> element controls which notifications are triggered by log-rule watches.

For information about how to configure watches and notifications using the WebLogic
Server Administration Console, see Configure Watches and Notifications in Oracle
WebLogic Server Administration Console Online Help.

9.3 Sample Watch and Notification Configuration
A complete configuration for a set of watches and notifications in a diagnostic module
is shown in Example 9-2. The details of this example are explained in the following
topics:

• Configuring Watches

• Configuring Notifications

Example 9-2 Sample Watch and Notification Configuration (in DIAG_MODULE.xml)

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <!-- Instrumentation must be configured and enabled for instrumentation
 watches -->
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Dye Injection monitor</description>
 <dye-mask xsi:nil="true"></dye-mask> <properties>ADDR1=127.0.0.1</
properties>

Sample Watch and Notification Configuration

Configuring Watches and Notifications 9-3

 </wldf-instrumentation-monitor>
 </instrumentation>
 <!-- Harvesting does not have to be configured and enabled for harvester
 watches. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvester>
 <name>mywldf1</name>
 <sample-period>20000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 </harvested-type>
 </harvester>
 <!-- All watches and notifications are defined under the
 watch-notification element -->
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <!-- A harvester watch configuration -->
 <watch>
 <name>myWatch</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>${com.bea:Name=myserver,Type=ServerRuntime//
SocketsOpenedTotalCount} >= 1</rule-expression>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>60000</alarm-reset-period>
 <notification>myMailNotif,myJMXNotif,mySNMPNotif</notification>
 </watch>
 <!-- An instrumentation watch configuration -->
 <watch>
 <name>myWatch2</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (MONITOR LIKE 'JDBC_After_Execute') AND
 (DOMAIN = 'MedRecDomain') AND
 (SERVER = 'medrec-adminServer') AND
 ((TYPE = 'ThreadDumpAction') OR (TYPE = TraceElapsedTimeAction')) AND
 (SCOPE = 'MedRecEAR')
 </rule-expression>
 <notification>JMXNotifInstr</notification>
 </watch>
 <!-- A log watch configuration -->
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <!-- A JMX notification -->
 <jmx-notification>
 <name>myJMXNotif</name>
 </jmx-notification>
 <!-- Two SMTP notifications -->
 <smtp-notification>
 <name>myMailNotif</name>
 <enabled>true</enabled>

Sample Watch and Notification Configuration

9-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a harvester alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <!-- An SNMP notification -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 <enabled>true</enabled>
 </snmp-notification>
 </watch-notification>
</wldf-resource>

Sample Watch and Notification Configuration

Configuring Watches and Notifications 9-5

Sample Watch and Notification Configuration

9-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

10
Configuring Watches

This chapter describes the types of watches available in the WebLogic Diagnostics
Framework (WLDF) and their configuration options

This chapter includes the following sections:

• Types of Watches

• Configuration Options Shared by All Types of Watches

• Configuring Harvester Watches

• Configuring Log Watches

• Configuring Instrumentation Watches

• Defining Watch Rule Expressions

For information about how to create a watch using the WebLogic Server
Administration Console, see Create watches for a diagnostic system module in Oracle
WebLogic Server Administration Console Online Help.

10.1 Types of Watches
WLDF provides four main types of watches, based on what the watch can monitor:

• Harvester watches monitor the set of harvestable MBeans in the local run-time
MBean server.

• Log watches monitor the set of messages generated into the server or domain logs.

• Instrumentation (or Event Data) watches monitor the set of events generated by
the WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of
watch is defined in a <rule-type> element, which is a child of <watch>. For example:

 <watch>
 <rule-type>Harvester</rule-type>
 <!-- Other configuration elements -->
 </watch>

Watches with different rule types differ in two ways:

• The rule syntax for specifying the conditions being monitored are unique to the
type.

• Log and Instrumentation watches are triggered in real time, whereas Harvester
watches are triggered only after the current harvest cycle completes.

Configuring Watches 10-1

10.2 Configuration Options Shared by All Types of Watches
All watches share certain configuration options:

• Watch rule expression

In the diagnostic module configuration file, watch rule expressions are defined in
<rule-expression> elements.

A watch rule expression is a logical expression that specifies what significant
events the watch is to trap. For information about the query language you use to
define watch rules, including the syntax available for each type of watch rule, see
WLDF Query Language.

• Notifications associated with the watch

In the diagnostic module configuration file, notifications are defined in
<notification> elements.

Each watch can be associated with one or more notifications that are triggered
whenever the watch evaluates to true. The content of this element is a comma-
separated list of notifications. For information about configuring notifications, see
Configuring Notifications.

• Alarm options

In the diagnostic module configuration file, alarm options are set using <alarm-
type> and <alarm-reset-period> elements.

Watches can be specified to trigger repeatedly, or to trigger once, when a condition
is met. For watches that trigger repeatedly, you can optionally define a minimum
time between occurrences. The <alarm-type> element defines whether a watch
automatically repeats, and, if so, how often. A value of none causes the watch to
trigger whenever possible. A value of AutomaticReset also causes the watch to
trigger whenever possible, except that subsequent occurrences cannot occur any
sooner than the millisecond interval specified in the <alarm-reset-period>. A value
of ManualReset causes the watch to fire a single time. After it fires, you must
manually reset it to fire again. For example, you can use the
WatchNotificationRuntimeMBean to reset a manual watch. The default for <alarm-
type> is None.

• Severity options

Watches contain a severity value which is passed through to the recipients of
notifications. The permissible severity values are as defined in the logging
subsystem. The severity value is specified using sub-element <severity>. The
default is Notice.

• Enabled options

Each watch can be individually enabled and disabled, using the sub-element
<enabled>. When disabled, the watch does not trigger and corresponding
notifications do not fire. If the more generic watch/notification flag is disabled, it
causes all individual watches to be effectively disabled (that is, the value of this flag
on a specific watch is ignored).

Configuration Options Shared by All Types of Watches

10-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

10.3 Configuring Harvester Watches
A Harvester watch can monitor any run-time MBean in the local run-time MBean
server.

Note:

If you define a watch rule to monitor an MBean (or MBean attributes) that the
Harvester is not configured to harvest, the watch will work. The Harvester will
"implicitly" harvest values to satisfy the requirements set in the defined watch
rules. However, data harvested in this way (that is, implicitly for a watch) will
not be archived. See Configuring the Harvester for Metric Collection, for more
information about the Harvester.

Harvester watches are triggered in response to a harvest cycle. So, for Harvester
watches, the Harvester sample period defines a time interval between when a
situation is identified and when it can be reported though a notification. On average,
the delay is SamplePeriod/2.

Example 10-1, shows a configuration example of a Harvester watch that monitors
several run-time MBeans. When the watch rule (defined in the <rule-expression>
element) evaluates to true, six different notifications are sent: a JMX notification, an
SMTP notification, an SNMP notification, an image notification, and JMS notifications
for both a topic and a queue.

The watch rule is a logical expression composed of four Harvester variables. The rule
has the form:

 ((A >= 100) AND (B > 0)) OR C OR D.equals("active")

Each variable is of the form:

 {entityName}//{attributeName}

where {entityName} is the JMX ObjectName as registered in the run-time MBean
server or the type name as defined by the Harvester, and where {attributeName} is the
name of an attribute defined on that MBean type.

Note:

The comparison operators are qualified in order to be valid in XML.

Example 10-1 Sample Harvester Watch Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <harvester>
 <!-- Harvesting does not have to be configured and enabled for harvester
 watches. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>

Configuring Harvester Watches

Configuring Watches 10-3

 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 <!-- Other Harvester configuration elements -->
 </harvester>
 <watch-notification>
 <watch>
 <name>simpleWebLogicMBeanWatchRepeatingAfterWait</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>
 (${mydomain:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=
 WLDFHarvesterRuntime,WLDFRuntime=WLDFRuntime//TotalSamplingTime}
 >= 100
 AND
 ${mydomain:Name=myserver,Type=
 ServerRuntime//OpenSocketsCurrentCount} > 0)
 OR
 ${mydomain:Name=WLDFWatchNotificationRuntime,ServerRuntime=
 myserver,Type=WLDFWatchNotificationRuntime,
 WLDFRuntime=WLDFRuntime//Enabled} = true
 OR
 ${myCustomDomain:Name=myCustomMBean3//State} =
 'active')
 </rule-expression>
 <severity>Warning</severity>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>10000</alarm-reset-period>
 <notification>myJMXNotif,myImageNotif,
 myJMSTopicNotif,myJMSQueueNotif,mySNMPNotif,
 mySMTPNotif</notification>
 </watch>
 <!-- Other watch-notification configuration elements -->
 </watch-notification>
</wldf-resource>

This watch uses an alarm type of AutomaticReset, which means that it may be
triggered repeatedly, provided that the last time it was triggered was longer than the
interval set as the alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the watch, but
will be passed on through the notifications.

10.4 Configuring Log Watches
Use Log watches to monitor the occurrence of specific messages or strings in the
server or domain log. Watches of this type are triggered as a result of a log message
containing the specified data being issued.

Note:

Any Log watches that search for the RUNNING state message ID should
search for message ID BEA-000365, and not BEA-000360. The message ID
BEA-000360 is issued immediately before the state change to RUNNING,
and BEA-000365 is issued immediately afterward. Therefore, such Log
watches are able to find only message ID BEA-000365.

Configuring Log Watches

10-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

An example configuration for a server log watch is shown in Example 10-2.

Example 10-2 Sample Configuration for a Log Watch (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 </watch-notification>
</wldf-resource>

In Example 10-2, note how the <rule-type> of Log causes messages or strings entered
in the server log to be monitored. A <rule-type> of DomainLog monitors messages or
strings in the domain log.

10.5 Configuring Instrumentation Watches
You use Instrumentation watches to monitor the events from the WLDF
Instrumentation component. Watches of this type are triggered as a result of the event
being posted.

Example 10-3 shows an example configuration for an Instrumentation watch.

Example 10-3 Sample Configuration for an Instrumentation Watch (in
DIAG_MODULE.xml)

 <watch-notification>
 <watch>
 <name>myInstWatch</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')
 </rule-expression>
 <alarm-type xsi:nil="true"></alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 <name>mySMTPNotification</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject xsi:nil="true"></subject>
 <body xsi:nil="true"></body>
 <recipient>username@emailservice.com</recipient>

Configuring Instrumentation Watches

Configuring Watches 10-5

 </smtp-notification>
</watch-notification>

10.6 Defining Watch Rule Expressions
A watch rule expression encapsulates all information necessary for specifying a rule.
For documentation on the query language you use to define watch rules, see WLDF
Query Language.

Defining Watch Rule Expressions

10-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

11
Configuring Notifications

This chapter describes the types of notifications available in the WebLogic Diagnostics
Framework (WLDF) and their configuration options.

This chapter includes the following sections:

• Types of Notifications

• Configuring JMX Notifications

• Configuring JMS Notifications

• Configuring SNMP Notifications

• Configuring SMTP Notifications

• Configuring Image Notifications

For information about how to create a notification using the WebLogic Server
Administration Console, see Create notifications for watches in a diagnostic system
module in Oracle WebLogic Server Administration Console Online Help.

11.1 Types of Notifications
A notification is an action that is triggered when a watch rule evaluates to true. WLDF
supports four types of diagnostic notifications, based on the delivery mechanism: Java
Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer
Protocol (SMTP), and Simple Network Management Protocol (SNMP). You can also
create a notification that generates a diagnostic image.

In the configuration file for a diagnostic module, the different types of notifications are
identified by these elements:

• <jmx-notification>

• <jms-notification>

• <snmp-notification>

• <smtp-notification>

• <image-notification>

These notification types all have <name> and <enabled> configuration options. The
value of <name> is used as the value in a <notification> element for a watch, to map
the watch to its corresponding notification(s). The <enabled> element, when set to
true, enables that notification. In other words, the notification is fired when an
associated watch evaluates to true. Other than <name> and <enabled>, each
notification type is unique.

Configuring Notifications 11-1

Note:

To define notifications programmatically, use
weblogic.diagnostics.watch.WatchNotification.

11.2 Configuring JMX Notifications
For each defined JMX notification, WLDF issues JMX events (notifications) whenever
an associated watch is triggered. Applications can register a notification listener with
the server's WLDFWatchJMXNotificationRuntimeMBeans to receive all notifications
and filter the provided output. You can also specify a JMX "notification type" string
that a JMX client can use as a filter.

Example 11-1 shows an example of a JMX notification configuration.

Example 11-1 Example Configuration for a JMX Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <jmx-notification>
 <name>myJMXNotif</name>
 <enabled>true</enabled>
 </jmx-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

Here is an example of a JMX notification:

 Notification name: myjmx called. Count= 42.
 Watch severity: Notice
 Watch time: Jul 19, 2005 3:40:38 PM EDT
 Watch ServerName: myserver
 Watch RuleType: Harvester
 Watch Rule: ${com.bea:Name=myserver,Type=ServerRuntime//
OpenSocketsCurrentCount} > 1
 Watch Name: mywatch
 Watch DomainName: mydomain
 Watch AlarmType: None
 Watch AlarmResetPeriod: 10000

11.3 Configuring JMS Notifications
JMS notifications are used to post messages to JMS topics and/or queues in response
to the triggering of an associated watch. In the system resource configuration file, the
elements <destination-jndi-name> and <connection-factory-jndi-name> define how
the message is to be delivered.

Example 11-2 shows two JMS notifications that cause JMS messages to be sent through
the provided topics and queues using the specified connection factory. For this to
work properly, JMS must be properly configured in the config.xml configuration
file for the domain, and the JMS resource must be targeted to this server.

Configuring JMX Notifications

11-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example 11-2 Example JMS Notifications

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <jms-notification>
 <name>myJMSTopicNotif</name>
 <destination-jndi-name>MyJMSTopic</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <jms-notification>
 <name>myJMSQueueNotif</name>
 <destination-jndi-name>MyJMSQueue</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

11.4 Configuring SNMP Notifications
Simple Network Management Protocol (SNMP) notifications are used to post SNMP
traps in response to the triggering of an associated watch. To define an SNMP
notification you only have to provide a notification name, as shown in Example 11-3.
Generated traps contain the names of both the watch and notification that caused the
trap to be generated. For an SNMP trap to work properly, SNMP must be properly
configured in the config.xml configuration file for the domain.

Example 11-3 An Example Configuration for an SNMP Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 </snmp-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The trap resulting from the SNMP notification configuration shown in Example 11-3 is
of type 85. It contains the following values (configured values are shown in angle
brackets "<>"):

 .1.3.6.1.4.1.140.625.100.5 timestamp (e.g. Dec 9, 2004 6:46:37 PM EST
 .1.3.6.1.4.1.140.625.100.145 domainName (e.g. mydomain")
 .1.3.6.1.4.1.140.625.100.10 serverName (e.g. myserver)
 .1.3.6.1.4.1.140.625.100.120 <severity> (e.g. Notice)
 .1.3.6.1.4.1.140.625.100.105 <name> [of watch] (e.g.

Configuring SNMP Notifications

Configuring Notifications 11-3

 simpleWebLogicMBeanWatchRepeatingAfterWait)
 .1.3.6.1.4.1.140.625.100.110 <rule-type> (e.g. HarvesterRule)
 .1.3.6.1.4.1.140.625.100.115 <rule-expression>
 .1.3.6.1.4.1.140.625.100.125 values which caused rule to
 fire (e.g..State =
 null,weblogic.management.runtime.WLDFHarvesterRuntimeMBean.
 TotalSamplingTime = 886,.Enabled =
 null,weblogic.management.runtime.ServerRuntimeMBean.
 OpenSocketsCurrentCount = 1,)
 .1.3.6.1.4.1.140.625.100.130 <alarm-type> (e.g. None)
 .1.3.6.1.4.1.140.625.100.135 <alarm-reset-period> (e.g. 10000)
 .1.3.6.1.4.1.140.625.100.140 <name> [of notification]
 (e.g.mySNMPNotif)

11.5 Configuring SMTP Notifications
Simple Mail Transfer Protocol (SMTP) notifications are used to send messages (e-mail)
over the SMTP protocol in response to the triggering of an associated watch. To define
an SMTP notification, first configure the SMTP session. That configuration is persisted
in the config.xml configuration file for the domain. In DIAG_MODULE.xml, you
provide the configured SMTP session using sub-element <mail-session-jndi-name>,
and provide a list of at least one recipient using sub-element <recipients>. An optional
subject and/or body can be provided using sub-elements <subject> and <body>
respectively. If these are not provided, they will be defaulted.

Example 11-4 shows an SMTP notification that causes an SMTP (e-mail) message to be
distributed through the configured SMTP session, to the configured recipients. In this
notification configuration, a custom subject and body are provided. If a subject and/or
a body are not specified, defaults are provided, showing details of the watch and
notification.

Example 11-4 Sample Configuration for SMTP Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <smtp-notification>
 <name>mySMTPNotif</name>
 <mail-session-jndi-name>MyMailSession</mail-session-jndi-name>
 <subject>Critical Problem!</subject>
 <body>A system issue occurred. Call Winston ASAP.
 Reference number 81767366662AG-USA23.</body>
 <recipients>administrator@myCompany.com</recipients>
 </smtp-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

11.6 Configuring Image Notifications
An image notification causes a diagnostic image to be generated in response to the
triggering of an associated watch. You can configure two options for image
notifications: a directory and a lockout period.

Configuring SMTP Notifications

11-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

The directory name indicates where images will be generated. The lockout period
determines the number of seconds that must elapse before a new image can be
generated after the last one. This is useful for limiting the number of images that will
be generated when there is a sequence of server failures and recoveries

You can specify the directory name relative to the DOMAIN_HOME\servers
\SERVER_NAME. The default directory is DOMAIN_HOME\servers\SERVER_NAME
\logs\diagnostic-images.

Image file names are generated using the current timestamp (for example,
diagnostic_image_myserver_2005_08_09_13_40_34.zip), so a notification
can fire many times, resulting in a separate image file each time.

The configuration is persisted in the DIAG_MODULE.xml configuration file. Example
11-5 shows an image notification configuration that specifies that the lockout time will
be two minutes and that the image will be generated to the DOMAIN_HOME\servers
\SERVER_NAME\images directory.

Example 11-5 Sample Configuration for Image Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <image-notification>
 <name>myImageNotif</name>
 <enabled>true</enabled>
 <image-lockout>2</image-lockout>
 <image-directory>images</image-directory>
 </image-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

For more information about Diagnostic Images, see Configuring and Capturing
Diagnostic Images.

Configuring Image Notifications

Configuring Notifications 11-5

Configuring Image Notifications

11-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

12
Configuring Instrumentation

This chapter describes the Instrumentation component of the WebLogic Diagnostics
Framework (WLDF) that provides a mechanism for adding diagnostic code to
WebLogic Server instances and the applications running on them. The key features
provided by WLDF Instrumentation are:

• Diagnostic monitors. A diagnostic monitor is a dynamically manageable unit of
diagnostic code that is inserted into server or application code at specific locations.
You define monitors by scope (system or application) and type (standard,
delegating, or custom).

• Diagnostic actions. A diagnostic action is the action a monitor takes when it is
triggered during program execution.

• Diagnostic context. A diagnostic context is contextual information, such as unique
request identifier and flags that indicate the presence of certain request properties
such as originating IP address or user identity. The diagnostic context provides a
means for tracking program execution and for controlling when monitors trigger
their diagnostic actions. See Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts.

WLDF provides a library of predefined diagnostic monitors and actions. You can also
create application-scoped custom monitors in which you control the locations in the
application where diagnostic code is inserted.

This chapter includes the following sections:

• Concepts and Terminology

• Instrumentation Configuration Files

• XML Elements Used for Instrumentation

• Configuring Server-Scoped Instrumentation

• Configuring Application-Scoped Instrumentation

• Creating Request Performance Data

12.1 Concepts and Terminology
This section introduces instrumentation concepts and terminology. The following
topics are included:

• Instrumentation Scope

• Configuration and Deployment

• Joinpoints, Pointcuts, and Diagnostic Locations

Configuring Instrumentation 12-1

• Diagnostic Monitor Types

• Diagnostic Actions

12.1.1 Instrumentation Scope
You can provide instrumentation services at the system level (servers and clusters)
and at the application level. Many concepts, services, configuration options, and
implementation features are the same for both levels. However, there are differences,
which are discussed throughout this document. The term server-scoped
instrumentation refers to instrumentation configuration and features specific to
WebLogic Server instances and clusters. By contrast, application-scoped
instrumentation refers to configuration and features specific to applications deployed
on WebLogic Server instances. The scope is built in to each diagnostic monitor; you
cannot modify a monitor's scope.

12.1.2 Configuration and Deployment
Server-scoped instrumentation for a server or cluster is configured and deployed as
part of a diagnostic module, an XML configuration file located in the DOMAIN_HOME/
config/diagnostics directory, and linked from config.xml.

Application-scoped instrumentation is also configured and deployed as a diagnostics
module, in this case an XML configuration file named weblogic-
diagnostics.xml, which is packaged with the application archive in the
ARCHIVE_PATH/META-INF directory for the deployed application.

12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations
Instrumentation code is inserted (or woven) into server and application code at precise
locations. The following terms are used to describe these locations:

• A joinpoint is a specific location in a class; for example, the entry point, or exit
point, or both, of a method or a call site within a method.

• A pointcut is an expression that specifies a set of joinpoints, for example all
methods related to scheduling, starting, and executing work items. The XML
element that specifies a pointcut is <pointcut>. Pointcuts are described in Defining
Pointcuts for Custom Monitors.

• A diagnostic location is the position relative to a joinpoint where the diagnostic
activity will take place. Diagnostic locations are Before, After, and Around. The
XML element that identifies a diagnostic location is <location-type>.

12.1.4 Diagnostic Monitor Types
A diagnostic monitor is categorized by its scope and its type. The scope is either
server-scoped or application-scoped. The type is determined by the monitor's
pointcut, diagnostic location, and actions. For example, Servlet_Around_Service is an
application-scoped delegating monitor that can be used to trigger diagnostic actions at
the entry to and exit from specific servlet and JSP methods.

There are three types of diagnostic monitors:

• A standard monitor performs specific, predefined diagnostic actions at specific,
predefined pointcuts and locations. These actions, pointcuts, and locations are
hard-coded in the monitor. You can enable or disable the monitor, but you cannot
modify its behavior.

Concepts and Terminology

12-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

The only standard server-scoped monitor is the DyeInjection monitor, which you
can use to create diagnostic context and to configure dye injection at the server
level. For more information, see Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts.

The only standard application-scoped monitor is HttpSessionDebug, which you
can use to inspect an HTTP Session object.

• A delegating monitor has its scope, pointcuts, and locations hard-coded in the
monitor, but you select the actions that the monitor performs. That is, the monitor
delegates its actions to the ones you select. Delegating monitors are either server-
scoped or application-scoped.

A delegating monitor by itself is incomplete. To have a delegating monitor perform
useful work, you must assign at least one action to it.

Not all actions are compatible with all monitors. When you configure a delegating
monitor from the WebLogic Server Administration Console, you can choose only
those actions that are appropriate for the selected monitor. If you configure a
delegating monitor using WLST or by editing a descriptor file manually, you must
make sure that the actions are compatible with that monitor. WLDF validates a
delegating monitor when its XML configuration file is loaded at deployment time.

See WLDF Instrumentation Library, for a list of the delegating monitors and
actions provided by the WLDF Instrumentation Library.

• A custom monitor is a special case of delegating monitor that:

– Is available only for application-scoped instrumentation

– Does not have a predefined pointcut or location

To configure a custom monitor, you assign it a name, define the pointcut and the
diagnostics location that the monitor uses, and assign actions from the set of
predefined diagnostic actions. The <pointcut> and <location type> elements are
mandatory for a custom monitor.

Table 12-1 summarizes the differences among the types of monitors.

Table 12-1 Diagnostic Monitor Types

Monitor Type Scope Pointcut Location Action

Standard monitor Server Fixed Fixed Fixed

Delegating monitor Server or
Application

Fixed Fixed Configurable

Custom monitor Application Configurable Configurable Configurable

You can restrict when a diagnostic action is triggered by setting a dye mask on a
monitor. This mask determines the dye flags in the diagnostic context that trigger
actions. See <wldf-instrumentation-monitor> XML Elements, for information about
setting a dye mask for a monitor.

Note:

Diagnostic context, dye injection, and dye filtering are described in
Configuring the DyeInjection Monitor to Manage Diagnostic Contexts.

Concepts and Terminology

Configuring Instrumentation 12-3

12.1.5 Diagnostic Actions
Diagnostic actions execute diagnostic code that is appropriate for the associated
delegating or custom monitor (standard monitors have predefined actions). For a
delegating or custom monitor to perform any useful work, you must configure at least
one action for that monitor.

The WLDF diagnostics library provides the following actions, which you can attach to
a monitor by including the action's name in an <action> element of the
DIAG_MODULE.xml configuration file:

• DisplayArgumentsAction

• MethodInvocationStatisticsAction

• MemoryAllocationStatisticsAction

• StackDumpAction

• ThreadDumpAction

• TraceAction

• TraceElapsedTimeAction

• TraceMemoryAllocationAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime
action is compatible with a delegating or custom monitor whose diagnostic location
type is Around. See WLDF Instrumentation Library, for more information.

12.2 Instrumentation Configuration Files
Instrumentation is configured as part of a diagnostics descriptor, which is an XML
configuration file whose name and location depend on whether you are implementing
system-level (server-scoped) or application-level (application-scoped)
instrumentation, as follows:

• System-level instrumentation configuration is stored in one or more diagnostics
descriptors in the following directory:

DOMAIN_HOME/config/diagnostics

This directory can contain multiple system-level diagnostic descriptor files. File
names are arbitrary but must be terminated with .xml; for example, myDiag.xml.
Each file can contain configuration information for one or more of the following
deployable diagnostic components:

– Harvester

– Instrumentation

– Watch and Notification

The configuration of one or more diagnostic monitors can be defined in an
<instrumentation> section in the descriptor file. Server-scoped instrumentation can
be enabled, disabled, and reconfigured without restarting the server.

Instrumentation Configuration Files

12-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Only one WLDF system resource (and hence one system-level diagnostics
descriptor file) can be active for a server or cluster at any given time. The active
descriptor is linked to and targeted from the following configuration file:

DOMAIN_HOME/config/config.xml

For more information about configuring diagnostic system modules, see
Configuring Diagnostic System Modules. For general information about the
creation, content, and parsing of configuration files in WebLogic Server, see
Understanding Domain Configuration for Oracle WebLogic Server.

• Application-level instrumentation configuration is packaged within an
application's archive in the following location:

META-INF/weblogic-diagnostics.xml

Because instrumentation is the only diagnostics component that is deployable to
applications, this descriptor can contain only instrumentation configuration
information.

Note:

For instrumentation to be available for an application, instrumentation must
be enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of
the diagnostics descriptor for the server.

You can enable and disable diagnostic monitors without redeploying an
application. However, you may need to redeploy the application after modifying
other instrumentation features; for example, defining pointcuts or adding or
removing monitors. Whether you need to redeploy depends on how you configure
the instrumentation and how you deploy the application. There are three options:

– Define and change the instrumentation configuration for the application
directly, without using a JSR-88 deployment plan

– Configure and deploy the application using a deployment plan that has
placeholders for instrumentation settings

– Enable the HotSwap feature when starting the server, and deploy using a
deployment plan that has placeholders for instrumentation settings

For more information about these choices, see Using Deployment Plans to
Dynamically Control Instrumentation Configuration.

For more information about deploying and modifying diagnostic application
modules, see Deploying WLDF Application Modules.

The diagnostics XML schema is located at:

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd

Each diagnostics descriptor file must begin with the following lines:

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Instrumentation Configuration Files

Configuring Instrumentation 12-5

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

For an overview of WLDF resource configuration, see Understanding WLDF
Configuration .

12.3 XML Elements Used for Instrumentation
This section provides descriptor fragments and tables that summarize information
about the XML elements used to configure instrumentation and diagnostic monitors.

• <Instrumentation> XML Elements, describes the top-level elements used within an
<instrumentation> element.

• <wldf-instrumentation-monitor> XML Elements, describes the elements used
within a <wldf-instrumentation-monitor> element.

• Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types,
identifies the instrumentation elements that apply to each monitor.

12.3.1 <Instrumentation> XML Elements
Table 12-2 describes the <instrumentation> elements in the DIAG_MODULE.xml file.
The following configuration fragment illustrates the use of those elements:

<wldf-resource>
 <name>MyDiagnosticModule</name>
<instrumentation>
 <enabled>true</enabled>
 <!-- The following <include> element would apply only to an
 application-scoped Instrumentation descriptor -->
 <include>foo.bar.com.*</include>
 <!-- <wldf-instrumentation-monitor> elements to define diagnostic
 monitors for this diagnostic module -->
</instrumentation>
<!-- Other elements to configure this diagnostic module -->
</wldf-resource>

Table 12-2 <instrumentation> XML Elements in the DIAG_MODULE.xml
Configuration File

Element Description

<instrumentation> The element that begins an instrumentation configuration.

<enabled> If true, instrumentation is enabled. If false, no instrumented code is
inserted in classes in this instrumentation scope, and all diagnostic
monitors within this scope are disabled. The default value is false.

You must enable instrumentation at the server level to enable
instrumentation for the server and for any applications deployed to it.
You must further enable instrumentation at the application level to
enable instrumentation for the application (that is, in addition to
enabling the server-scoped instrumentation).

XML Elements Used for Instrumentation

12-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table 12-2 (Cont.) <instrumentation> XML Elements in the DIAG_MODULE.xml
Configuration File

Element Description

<include> An optional element specifying the list of classes where instrumented
code can be inserted. Wildcards (*) are supported. You can specify
multiple <include> elements. If specified, a class must satisfy an
<include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied to the application scope
as a whole.

Note: You can also specify <include> and <exclude> patterns for
specific diagnostic monitors. See the entries for <include> and
<exclude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in the
configuration descriptor. An application-scoped delegating monitor
from the library has its own predefined classes and pointcuts. A
custom monitor specifies its own pointcut expression. Therefore, a
class can pass the include/exclude checks and still not be
instrumented.

Note: Instrumentation is inserted in applications at class load time. A
large application that is loaded often may benefit from a judicious use
of <include> elements, <exclude> elements, or both. You can
probably ignore these elements for small applications or for medium-
to-large applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where instrumented
code cannot be inserted. Wildcards (*) are supported. You can specify
multiple <exclude> elements. If specified, classes satisfying an
<exclude> pattern are not instrumented.

Applies only to application-scoped instrumentation. See the
preceding description of the <include> element.

12.3.2 <wldf-instrumentation-monitor> XML Elements
Diagnostic monitors are defined in <wldf-instrumentation-monitor> elements, which
are children of the <instrumentation> element in the following descriptor:

• The DIAG_MODULE.xml descriptor for server-scoped instrumentation

• The META-INF/weblogic-diagnostics.xml descriptor for application-scoped
instrumentation

The following fragment shows the configuration for a delegating monitor and a
custom monitor in an application. (You could modify this fragment for server-scoped
instrumentation by replacing the application-scoped monitors with server-scoped
monitors.)

<instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>

XML Elements Used for Instrumentation

Configuring Instrumentation 12-7

 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>MyCustomMonitor</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.foo.bar.* get*(...));</pointcut>
 </wldf-instrumentation-monitor>
</instrumentation>

Note that the Servlet_Before_Service monitor sets a dye mask and enables dye
filtering. This will be useful only if instrumentation is enabled at the server level and
the DyeInjection monitor is enabled and properly configured. See Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts, for information about
configuring the DyeInjection monitor.

Table 12-3 describes the <wldf-instrumentation-monitor> elements.

Table 12-3 <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

Element Description

<wldf-instrumentation-
monitor>

The element that begins a diagnostic monitor configuration.

<enabled> If true, the monitor is enabled. If false, the monitor is disabled.
You enable or disable each monitor separately. The default value
is true.

<name> The name of the monitor. For standard and delegating monitors,
use the names of the predefined monitors in WLDF
Instrumentation Library, For custom monitors, an arbitrary
string that identifies the monitor. The name for a custom monitor
must be unique; that is, it cannot duplicate the name of any
monitor in the library.

<description> An optional element describing the monitor.

<action> An optional element, which applies to delegating and custom
monitors. If you do not specify at least one action, the monitor
will not generate any information. You can specify multiple
<action> elements. An action must be compatible with the
monitor type. For the list of predefined actions for use by
delegating and custom monitors, see WLDF Instrumentation
Library.

<dye-filtering-enabled> An optional element. If true, dye filtering is enabled for the
monitor. If false, dye-filtering is disabled. The default value is
false.

In order to use dye filtering, the DyeInjection monitor must be
configured appropriately at the server level.

<dye-mask> An optional element. If dye filtering is enabled, the dye mask,
when compared with the values in the diagnostic context,
determines whether actions are taken. See Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts, for
information about dyes and dye filtering.

XML Elements Used for Instrumentation

12-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table 12-3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

Element Description

<properties> An optional element. Sets name=value pairs for dye flags.

Currently applies only to the DyeInjection monitor.

<location-type> An optional element, whose value is one of before, after, or
around. The location type determines when an action is
triggered at a pointcut: before the pointcut, after the pointcut, or
both before and after the pointcut.

Applies only to custom monitors; standard and delegating
monitors have predefined location types. A custom monitor
must define a location type and a pointcut.

<pointcut> An optional element. A pointcut element contains an expression
that defines joinpoints where diagnostic code will be inserted.

Applies only to custom monitors; standard and delegating
monitors have predefined pointcuts. A custom monitor must
define a location type and a pointcut.

Pointcut syntax is documented in Defining Pointcuts for Custom
Monitors.

<include> An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are supported.
You can specify multiple <include> elements. If specified, a class
must satisfy an <include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any
specified <include> or <exclude> patterns are applied only to
the monitor defined in the parent <wldf-instrumentation-
monitor> element.

Note: You can also specify <include> and <exclude> patterns for
an entire instrumented application scope. See the entries for
<include> and <exclude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in
the configuration descriptor. An application-scoped delegating
monitor from the library has its own predefined classes and
pointcuts. A custom monitor specifies its own pointcut
expression. Therefore a class can pass the include/exclude
checks and still not be instrumented.

Note: Instrumentation is inserted in applications at class load
time. A large application that is loaded often may benefit from a
judicious use of <include> and/or <exclude> elements. You can
probably ignore these elements for small applications or for
medium-to-large applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are
supported. You can specify multiple <exclude> elements. If
specified, classes satisfying an <exclude> pattern are not
instrumented.

Applies only to diagnostic monitors in application-scoped
instrumentation. See the <include> description, above.

XML Elements Used for Instrumentation

Configuring Instrumentation 12-9

Note the following additional information about the <dye-filtering-enabled> and
<dye-mask> elements:

• When a DyeInjection monitor is enabled and configured for a server or a cluster,
you can use dye filtering in downstream delegating and custom monitors to inspect
the dyes injected into a request's diagnostic context by that DyeInjection monitor.

• The configuration of the DyeInjection monitor determines which bits are set in the
64-bit dye vector associated with a diagnostic context. When the <dye-filtering-
enabled> attribute is enabled for a monitor, its diagnostic activity is suppressed if
the dye vector in a request's diagnostic context does not match the monitor's
configured dye mask. If the dye vector matches the dye mask (a bitwise AND), the
application can execute its diagnostic actions:

(dye_vector & dye_mask == dye_mask)

Thus, the dye filtering mechanism allows monitors to take diagnostic actions only for
specific requests, without slowing down other requests. See Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts, for detailed information about
diagnostic contexts and dye vectors.

12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types
Table 12-4 identifies the <wldf-instrumentation-monitor> elements that apply to each
monitor type. An X indicates that an element applies to the corresponding monitor;
N/A indicates that it does not.

Table 12-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom

<wldf-instrumentation-monitor> X X X

<name> X X X

<description> X X X

<enabled> X X X

<action> N/A X X

<dye-filtering-enabled> N/A X X

<dye-mask> N/A X X

<properties> X1 N/A N/A

<location-type> N/A N/A X

<pointcut> N/A N/A X

1 Currently used only by the DyeInjection monitor to set name=value pairs for dye flags.

12.4 Configuring Server-Scoped Instrumentation
To enable instrumentation at the server level, and to configure server-scoped
monitors, perform the following steps:

1. Decide how many WLDF system resources you want to create.

Configuring Server-Scoped Instrumentation

12-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

You can have multiple DIAG_MODULE.xml diagnostic descriptor files in a domain.
In addition, for each server or cluster in a domain, you can deploy multiple
diagnostic descriptor files simultaneously. However, one reason for creating more
than one file is for flexibility. For example, you could have five diagnostic
descriptor files in the DOMAIN_HOME/config/diagnostics directory. Each file
contains a different instrumentation (and perhaps Harvester and Watch and
Notification) configuration. You then deploy the descriptor file that corresponds to
the particular monitors you want active.

2. Decide which server-scoped monitors you want to include in a configuration:

• If you plan to use dye filtering on a server, or on any applications deployed on
that server, configure the DyeInjection monitor.

• If you plan to use one or more of the server-scoped delegating monitors, decide
which monitors to use and which actions to associate with each monitor.

3. Create and configure the configuration file(s).

• If you use the WebLogic Server Administration Console to create the
DIAG_MODULE.xml file (recommended), for delegating monitors the console
displays only the actions that are compatible with the monitor. If you create a
configuration file with an editor or with the WebLogic Scripting Tool (WLST),
you must correctly match actions to monitors.

• See the Domain Configuration Files in Understanding Domain Configuration for
Oracle WebLogic Server for information about configuring config.xml.

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you can
add and remove monitors and enable or disable monitors while the server is
running.

Example 12-1 contains a sample server-scoped instrumentation configuration file that
enables instrumentation and configures the DyeInjection standard monitor and the
Connector_Before_Work delegating monitor. A single <instrumentation> element
contains all instrumentation configuration for the module. Each diagnostic monitor is
defined in a separate <wldf-instrumentation-monitor> element.

Example 12-1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Inject USER1 and ADDR1 dyes</description>
 <enabled>true</enabled>
 <properties>USER1=weblogic
 ADDR1=127.0.0.1</properties>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Connector_Before_Work</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <dye-mask>USER1</dye-mask>
 </wldf-instrumentation-monitor>

Configuring Server-Scoped Instrumentation

Configuring Instrumentation 12-11

 </instrumentation>
</wldf-resource>

12.5 Configuring Application-Scoped Instrumentation
At the application level, WLDF instrumentation is configured as a deployable module,
which is then deployed as part of the application.

The following sections provide information you need to configure application-scoped
instrumentation:

• Comparing System-Scoped to Application-Scoped Instrumentation

• Overview of the Steps Required to Instrument an Application

• Creating a Descriptor File for a Delegating Monitor

• Creating a Descriptor File for a Custom Monitor

• Defining Pointcuts for Custom Monitors

• Annotation-based Pointcuts

Note:

Application classes and libraries that are put on the system classpath are not
instrumented. Application class instrumentation works only on classes that
are loaded by application classloaders. If application classes are put on the
system classpath, either deliberately or inadvertently, they will be loaded by
the system classloader. As a result no deployment time weaving is performed
on those classes.

12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation
Instrumenting an application is similar to instrumenting at the system level, but with
the following differences:

• Applications can use standard, delegating, and custom monitors.

– The only server-scoped standard monitor is DyeInjection. The only application-
scoped standard monitor is HttpSessionDebug. For more information, see the
entry for HttpSessionDebug in Diagnostic Monitor Library.

– Delegating monitors are either server-scoped or application-scoped.
Applications must use the application-scoped delegating monitors.

– All custom monitors are application-scoped.

• The server's instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server
on which the application is deployed. If server instrumentation is enabled at the
time of deployment, instrumentation will be available for the application. If
instrumentation is not enabled on the server at the time of deployment, enabling
instrumentation in an application will have no effect.

• Application instrumentation is configured with a weblogic-diagnostics.xml
descriptor file. You create a META-INF/weblogic-diagnostics.xml file,

Configuring Application-Scoped Instrumentation

12-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

configure the instrumentation, and put the file in the application's archive. When
the archive is deployed, the instrumentation is automatically inserted when the
application is loaded.

• You can use a deployment plan to dynamically update configuration elements
without redeploying the application. See Using Deployment Plans to Dynamically
Control Instrumentation Configuration.

The XML descriptors for application-scoped instrumentation are defined in the same
way as for server-scoped instrumentation. You can configure instrumentation for an
application solely by using the delegating monitors and diagnostic actions available in
the WLDF Instrumentation Library. You can also create your own custom monitors;
however, the diagnostic actions that you attach to these monitors must be taken from
the WLDF Instrumentation Library.

Table 12-5 compares the function and scope of system and application diagnostic
modules.

Table 12-5 Comparing System and Application Modules

Module Type Add or
Remove
Objects
Dynamically

Add or
Remove
Objects with
Console

Modify with
JMX
Remotely

Modify with
JSR-88 (non-
remote)

Modify with
Console

Enable/Disable
Dye Filtering
and Dye Mask
Dynamically

System
Module

Yes Yes Yes No Yes

(via JMX)

Yes

Application
Module

Yes, when
HotSwap is
enabled

No, when
HotSwap is
not enabled:
module must
be
redeployed

Yes No Yes Yes

(via plan)

Yes

12.5.2 Overview of the Steps Required to Instrument an Application

Note:

As of WebLogic Server 10.3, you are not required to create a weblogic-
diagnostics.xml file in the application's META-INF directory, as was the
case in previous WebLogic Server releases. However, you can still use this
method to initially configure diagnostic monitors for your application.

To implement a diagnostic monitor for an application, perform the following steps:

1. Make sure that instrumentation is enabled on the server. See Configuring Server-
Scoped Instrumentation.

2. Create a well formed META-INF/weblogic-diagnostics.xml descriptor file
for the application. If you want to add any monitors that will be automatically
enabled each time the application is deployed:

Configuring Application-Scoped Instrumentation

Configuring Instrumentation 12-13

• Enable the <instrumentation> element: <enabled>true</enabled>.

• Add and enable at least one diagnostic monitor, with appropriate actions
attached to it. (A monitor will generate diagnostic events only if the monitor is
enabled and actions that generate events are attached to it.).

See Creating a Descriptor File for a Delegating Monitor, and Creating a Descriptor
File for a Custom Monitor, for samples of well-formed descriptor files.

See Defining Pointcuts for Custom Monitors, for information about creating a
pointcut expression.

3. Put the descriptor file in the application archive.

4. Deploy the application. See Deploying WLDF Application Modules.

Keep the following points in mind:

• The diagnostic monitors defined in weblogic-diagnostics.xml is listed on the
Deployments: <server_name>: Configuration: Instrumentation page of the
WebLogic Server Administration Console.

• If the META-INF/weblogic-diagnostics.xml descriptor in the application
archive defines a monitor, it cannot be removed using the WebLogic Server
Administration Console. However, it can be disabled or enabled using the
WebLogic Server Administration Console.

• You can add additional monitors from the WebLogic Server Administration
Console. Any monitors you add from the WebLogic Server Administration Console
will not be persisted to weblogic-diagnostics.xml; they will be saved in the
application's deployment plan. Any monitors that were added in this way can be
deleted using the WebLogic Server Administration Console.

• Application classes and libraries that are put on the server's classpath are not
instrumented. Application class instrumentation works only on classes that are
loaded by application classloaders.

If application classes are put on the system classpath, either deliberately or
inadvertently, they will be loaded by the system classloader. As a result no
deployment time weaving is performed on those classes.

12.5.3 Creating a Descriptor File for a Delegating Monitor
The following example shows a well-formed META-INF/weblogic-
diagnostics.xml descriptor file for an application-scoped delegating monitor. At a
minimum, this file must contain the lines shown in bold. In this example, there is only
one monitor defined (Servlet_Before_Service). However, you can define multiple
monitors in the descriptor file.

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>

Configuring Application-Scoped Instrumentation

12-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 <action>TraceAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from
the WLDF monitor library. It is hard coded with a pointcut that sets joinpoints at
method entry for several servlet or JSP methods. Because the application enables dye
filtering and sets the USER1 flag in its dye mask, the TraceAction action will be
invoked only when the dye vector in the diagnostic context passed to the application
also has its USER1 flag set.

The dye vector is set at the system level via the DyeInjection monitor as per the
DyeInjection monitor configuration when the request enters the server. For example, if
the DyeInjection monitor is configured with property USER1=weblogic and the
request was originated by user weblogic, the USER1 dye flag in the dye vector will be
set.

Therefore, the Servlet_Before_Service monitor in this application is essentially
quiescent until it inspects a dye vector and finds the USER1 flag set. This filtering
reduces the amount of diagnostic data generated, and ensures that the generated data
is of interest to the administrator.

12.5.4 Creating a Descriptor File for a Custom Monitor
The following is an example of a well-formed META-INF/weblogic-
diagnostics.xml file for a custom monitor. At a minimum, the file must contain
the lines shown in bold.

Example 12-2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>MyCustomMonitor</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.foo.bar.* get* (...));</pointcut>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

The <name> for a custom monitor is an arbitrary string chosen by the developer.
Because this monitor is custom, it has no predefined locations when actions should be
invoked; the descriptor file must define the location type and pointcut expression. In
this example, the TraceAction action will be invoked before (<location-type>before</
location-type) any methods defined by the pointcut expression is invoked. Table 12-6
shows how the pointcut expression from Example 12-2 is parsed. (Note the use of
wildcard characters.)

Configuring Application-Scoped Instrumentation

Configuring Instrumentation 12-15

Table 12-6 Description of a Sample Pointcut Expression

Pointcut Expression Description

call(* com.foo.bar.* get* (...))
call(): Trigger any defined actions when
the methods whose joinpoints are defined by
the remainder of this pointcut expression are
invoked.

call(* com.foo.bar.* get* (...))
*: Return value. The wildcard indicates that
the methods can have any type of return
value.

call(* com.foo.bar.* get* (...))
com.foo.bar.*: Methods from class
com.foo.bar and its sub-packages are eligible.

call(* com.foo.bar.* get* (...))
get*: Any methods whose name starts with
the string get is eligible.

call(* com.foo.bar.* get* (...))
(...): The ellipsis indicates that the
methods can have any number of arguments.

This pointcut expression matches all methods in all classes in package com.foo.bar and
its sub-packages. The methods can return values of any type, including void, and can
have any number of arguments of any type. Instrumentation code will be inserted
before these methods are called, and, just before those methods are called, the
TraceAction action will be invoked.

See Defining Pointcuts for Custom Monitors, for a description of the grammar used to
define pointcuts.

12.5.4.1 Defining Pointcuts for Custom Monitors

Custom monitors provide more flexibility than delegating monitors because you
create pointcut expressions to control where diagnostics actions are invoked. As with
delegating monitors, you must select actions from the action library.

A joinpoint is a specific, well-defined location in a program. A pointcut is an
expression that specifies a set of joinpoints. This section describes how you define
expressions for pointcuts using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:

• call: Take an action when a method is invoked.

• execution: Take an action when a method is executed.

The syntax for defining a pointcut expression is as follows:

pointcutExpr := orExpr ('OR' orExpr) *
orExpr := andExpr ('AND' andExpr) *
andExpr := 'NOT' ? termExpr
termExpr := exec_pointcut | call_pointcut | '(' pointcutExpr ')'
exec_pointcut := 'execution' '(' modifiers?
 returnSpec
 classSpecWithAnnotations
 methodSpec '(' parameterList ')'
 ')'

Configuring Application-Scoped Instrumentation

12-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

call_pointcut := 'call' '(' returnSpec
 classSpec
 methodSpec '(' parameterList ')'
 ')'
modifiers := modifier ('OR' modifier) * modifier := 'public' | 'protected' |
'private' | 'static'
returnSpec := '*' | typeSpec
classSpecWithAnnotations := '@' IDENTIFIER ('OR' IDENTIFIER) * | classSpec
classSpec := '+' ? classOrMethodPattern | '*'
typeSpec := '%' ? (primitiveType | classSpec) ('[]')*
methodSpec := classOrMethodPattern
parameterList := param (',' param) *
param := typeSpec | '...'
primitiveType := 'byte' | 'char' | 'boolean' | 'short' | 'int' | 'float' | 'long' |
'double' | 'void'
classOrMethodPattern := '*' ? IDENTIFIER '*'? | '*'

The following rules apply:

• The asterisk wildcard character (*) can be used in class types and method names.

• An ellipsis (...) in the argument list signifies a variable number of arguments of any
types beyond the argument.

• A percent character (%) prefix designates the value of a non-static class
instantiation, parameter, or return specification as not containing nor exposing
sensitive information. The use of this operator is particularly useful with the
DisplayArgumentsAction action, which captures method arguments or return
values. If this prefix character is not explicitly used, an asterisk string is substituted
for the value that is returned; this behavior ensures that sensitive data in your
application is not inadvertently transmitted when an instrumentation event
captures input arguments to, or return values from, a joinpoint.

Note:

The % operator cannot be applied to an ellipsis or to a wildcarded type within
a pointcut expression.

• A plus sign (+) prefix to a class type identifies all subclasses, sub-interfaces or
concrete classes implementing the specified class/interface pattern.

• A pointcut expression specifies a pattern to identify matching joinpoints. An
attempt to match a joinpoint against it will return a boolean, indicating a valid
match (or not).

• Pointcut expressions can be combined with AND, OR and NOT boolean operators
to build complex pointcut expression trees.

For example, the following pointcut matches method executions of all public initialize
methods in all classes in package com.foo.bar and its sub-packages. The initialize
methods may return values of any type, including void, and may have any number of
arguments of any types.

 execution(public * com.foo.bar.* initialize(...))

The following pointcut matches the method calls (call sites) on all classes that directly
or indirectly implement the com.foo.bar.MyInterface interface (or a subclass, if it

Configuring Application-Scoped Instrumentation

Configuring Instrumentation 12-17

happens to be a class). The method names must start with get, be public, and return an
int value. The method must accept exactly one argument of type java.lang.String:

call(int +com.foo.bar.MyInterface get*(java.lang.String))

The following example shows how to use boolean operators to build a pointcut
expression tree:

 call(void com.foo.bar.* set*(java.lang.String)) OR
 call(* com.foo.bar.* get*())

The following example illustrates how the previous expression tree would be
rendered as a <pointcut> element in a configuration file:

 <pointcut>call(void com.foo.bar.* set*(java.lang.String)) OR
 call(* com.foo.bar.* get*())</pointcut>

12.5.4.2 Annotation-based Pointcuts

You can use JDK-style annotations in class and method specifiers of execution points.
A class or method specifier starting with @ is interpreted as an annotation name.

When used as a class specifier, the annotation matches all classes that are annotated
with it. While performing the match, only annotation names are considered.
Annotation attributes are ignored.

For example, consider the following pointcut:

 execution(public void @Service @Invocation (...)

The preceding pointcut matches methods that:

• Are public method

• Return void

• Are contained in a class that is annotated with @Service

• Have a method annotated with @Invocation

• Contain any number of arguments.

Note:

Annotation-based specifiers can be used only with execution pointcuts. They
cannot be used with call pointcuts.

Annotation-based class and method specifiers can use the following wildcard
characters:

• The asterisk wildcard (*) matches everything.

• The asterisk wildcard (*) at the beginning matches class/interface or method
names that end with the given string. For example, *Bean matches with
weblogic.management.configuration.ServerMBean.

• The asterisk wildcard (*) at the end matches class/interface or method names that
end with the given string. For example, weblogic.* matches all classes and
interfaces that are in weblogic and its sub-packages.

Configuring Application-Scoped Instrumentation

12-18 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• You can specify a pointcut based on names of inner classes. For example:

 public class Foo {
 class Bar {
 public int getValue() {...}
 }
 }

You can define a pointcut that covers the getValue method of the inner class Bar
using the following specification:

 execution (public int Foo$Bar getValue(...));

You can also use wildcard characters as follows. The following pointcut matches only
the getter methods in the inner class Bar of class Foo:

 execution (* Foo$Bar get*(...));

You can also use leading and trailing wildcard characters. The following examples
also match the getter methods in class Foo$Bar:

 execution (* Foo$Ba* get*(...));
 execution (* *oo$Bar get*(...));
 execution (* *oo$Ba* get*(...));

12.6 Creating Request Performance Data
If you have configured server-scoped or application-scoped instrumentation, you can
display request performance data in the WebLogic Server Administration Console.
The Request Performance page displays information about the real-time and historical
views of method performance that has been captured by means of the WebLogic
Diagnostics Framework instrumentation capabilities.

To create request performance data, the following criteria must be met:

• A WLDF system resource must be created and targeted to the server. Create the
system resource as described in Instrumentation Configuration Files . You can do
this using the WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST).

• Instrumentation in the targeted WLDF system resource must be enabled.

• Application instrumentation must be enabled with a weblogic-
diagnostics.xml descriptor, which you create in the application's META-INF
directory, as described in Instrumentation Configuration Files .

• Application instrumentation descriptors must use TraceElapsedTimeAction
diagnostic actions attached to Around diagnostic monitor types. For example, a
descriptor could contain the following:

<instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Connector_Around_Inbound</name>
 <action>TraceElapsedTimeAction</action>
 </wldf-instrumentation-monitor>
</instrumentation>

Creating Request Performance Data

Configuring Instrumentation 12-19

Note:

WebLogic Server does not require the weblogic-diagnostics.xml
descriptor to be bundled in your application's archive in order to make
instrumentation changes to a deployed application.

– If your application uses a deployment plan, and you enable Oracle
HotSwap before deploying your application, you can make
instrumentation changes at run time without redeploying your application.

– If your deployed application does not have a deployment plan and you
modify the application's instrumentation configuration, the WebLogic
Server Administration Console automatically creates a deployment plan
for you and prompts you for the location in which to save it.

– If Oracle HotSwap is not enabled in your deployment plan, or if you do not
use a deployment plan, changes to some instrumentation settings require
redeployment.

For more information, see Deploying WLDF Application Modules.

See WLDF Instrumentation Library, for a list of "Around" type monitors.

For information about creating and analyzing request performance data in the
WebLogic Server Administration Console, see Analyze request performance in the
Oracle WebLogic Server Administration Console Online Help.

Creating Request Performance Data

12-20 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

13
Configuring the DyeInjection Monitor to

Manage Diagnostic Contexts

This chapter describes the Instrumentation component of the WebLogic Diagnostics
Framework (WLDF) that provides a way to uniquely identify requests (such as HTTP
or RMI requests) and track them as they flow through the system. You can configure
WLDF to check for certain characteristics (such as the originating user or client
address) of every request that enters the system and attach a diagnostic context to the
request. This allows you to take measurements (such as elapsed time) of specific
requests to get an idea of how all requests are being processed as they flow through
the system.

The diagnostic context consists of two pieces: a unique Context ID and a 64-bit dye
vector that represents the characteristics of the request. The Context ID associated with
a given request is recorded in the Event Archive and can be used to:

• Throttle instrumentation event generation, that is determine how often events are
generated when specified conditions are met

• Associate log records with a request

• Filter searches of log or event records using the WLDF Accessor component (see
Accessing Diagnostic Data With the Data Accessor).

This chapter includes the following sections:

• Contents, Life Cycle, and Configuration of a Diagnostic Context

• Overview of the Process

• Configuring the Dye Vector via the DyeInjection Monitor

• Configuring Delegating Monitors to Use Dye Filtering

• How Dye Masks Filter Requests to Pass to Monitors

• Using Throttling to Control the Volume of Instrumentation Events

• Using weblogic.diagnostics.context

For an example of how to use WLST to create a DyeInjection monitor dynamically, see
Example: Dynamically Creating DyeInjection Monitors.

13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context
A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye
vector contains flags which are set to identify the characteristics of the diagnostic
context associated with a request. Currently, 32 bits of the dye vector are used, one for
each available dye flag (see Table 13-1).

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 13-1

13.1.1 Context Life Cycle and the Context ID
The diagnostic context for a request is created and initialized when the request enters
the system (for example, when a client makes an HTTP request). The diagnostic
context remains attached to the request, even as the request crosses thread boundaries
and Java Virtual Machine (JVM) boundaries. The diagnostic context lives for the
duration of the life cycle of the request.

Every diagnostic context is identified by a Context ID that is unique in the domain.
Because the Context ID travels with the request, it is possible to determine the events
and log entries associated with a given request as it flows through the system.

13.1.2 Dyes, Dye Flags, and Dye Vectors
Contextual information travels with a request as a 64-bit dye vector, where each bit is
a flag to identify the presence of a dye. Each dye represents one attribute of a request;
for example, an originating user, an originating client IP address, access protocol, and
so on.

When a dye flag for a given attribute is set, it indicates that the attribute is present.
When the flag is not set, it indicates the attribute is not present.

For example, consider a configuration where:

• the flag ADDR1 is configured to indicate a request that originated from IP address
127.0.0.1.

• the flag ADDR2 is configured to indicate a request that originated from IP address
127.0.0.2.

• the flag USER1 is configured to indicate a request that originated from user
admin@avitek.com.

If a request from IP address 127.0.0.1 enters the system from a user other than
admin@avitek.com, the ADDR1 flag in the dye vector for the request is set. The
ADDR2 and USER1 dye flags remain unset.

If a request from admin@avitek.com enters the system from an IP address other than
127.0.0.1 or 127.0.0.2, the USER1 flag in the dye vector for the request is set. The
ADDR1 and ADDR2 dye flags remain unset.

If a request from admin@avitek.com from IP address 127.0.0.2 enters the system, both
the USER1 and ADDR2 flags in the dye vector for this request are set. The ADDR1 flag
remains unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can
examine the dye vector to determine if one or more attributes are present (that is, the
associated flag is set). In the example above, you could configure a diagnostic monitor
to trace every request that is dyed with ADDR1; that is, every request originating from
IP address 127.0.0.1. You could also configure a diagnostic monitor that traces every
request that is dyed with both ADDR1 and USER1; that is, every request originating
from user admin@avitek.com at IP address 127.0.0.1 (requests from other users at
127.0.0.1 would not be traced).

The dye vector also contains a THROTTLE dye, which is used to set how often
incoming requests are dyed. For more information about this special dye, see
THROTTLE Dye Flag.

Contents, Life Cycle, and Configuration of a Diagnostic Context

13-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

For a list of the available dyes and the attributes they represent, see Dyes Supported
by the DyeInjection Monitor. The process of configuring dye vectors and using them is
discussed throughout the rest of this chapter.

13.1.3 Where Diagnostic Context Is Configured
Diagnostic context is configured as part of a diagnostic module. You use the
DyeInjection monitor at the server level to configure the diagnostic context. The
DyeInjection monitor is a standard diagnostic monitor, so you cannot modify its
behavior. The joinpoints where the DyeInjection monitor is woven into the code are
those locations where a request can enter the system.

The diagnostic action is to check every request against the DyeInjection monitor's
configuration, then create and attach a diagnostic context to the request, setting the
dye flags as appropriate. If the dye flags that are set for a request match the dye flags
that are configured for a downstream diagnostic monitor, an event with the request's
associated Context ID is added to the Event Archive. So, for example, if a request has
only the USER1 and ADDR1 dye flags set, and there is a diagnostic monitor
configured to trace requests with both the USER1 and ADDR1 flags set (but no other
flags set), an event is added to the Event Archive.

For information about diagnostic monitor types, pointcuts (which define the
joinpoints), and diagnostic actions, see Configuring Instrumentation.

13.2 Overview of the Process
This overview describes the configuration and use of context in a server-scoped
diagnostic module.

1. Configure a dye vector via the DyeInjection Module. See Configuring the Dye
Vector via the DyeInjection Monitor.

2. When any request enters the system, WLDF creates and instantiates a diagnostic
context for the request. The context includes a unique Context ID and a dye
vector.

3. The DyeInjection monitor, if enabled at the server level within a WLDF diagnostic
module, examines the request to see if any of the configured dye values in the dye
vector match attributes of the request. For example, it checks to see if the request
originated from the user associated with USER1 or USER2, and it checks to see if
the request came from the IP address associated with ADDR1 or ADDR2.

4. For each dye value that matches a request attribute, the DyeInjection monitor sets
the associated dye bits within the diagnostic context. For example, if the
DyeInjection monitor is configured with USER1=weblogic,
USER2=admin@avitek.com, ADDR1=127.0.0.1, ADDR2=127.0.0.2, and
the request originated from user weblogic at IP address 127.0.0.2, it will set the
USER1 and ADDR2 dye bits within the dye vector.

5. As the request flows through the system, the diagnostic context (which includes
the dye vector) flows with it as well. This 64-bit dye vector contains only flags, not
values. So, in this example, the dye vector contains only two flags that are
explicitly set (USER1 and ADDR2). It does not contain the actual user name and
IP address associated with USER1 and ADDR2.

Overview of the Process

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 13-3

Note:

All dye vectors also contain one of the implicit PROTOCOL dyes, as explained
in Configuring the Dye Vector via the DyeInjection Monitor.

6. The administrator configures a diagnostic monitor (either application-scoped or
server-scoped) to be active within downstream code, setting the monitor's dye
mask as USER1 and ADDR2. See Configuring Delegating Monitors to Use Dye
Filtering, for more information.

7. The diagnostic monitor will perform its associated action(s) if the dye flags that
are set in the diagnostic context's dye vector match the dye mask of the diagnostic
monitor. See How Dye Masks Filter Requests to Pass to Monitors, for more
details. In this example, the monitor will perform its action(s) if the USER1 and
ADDR2 flags are set in the dye vector. In addition, an event associated with the
request will be written to the Event Archive.

13.3 Configuring the Dye Vector via the DyeInjection Monitor
To create diagnostic contexts for all requests coming into the system, you must:

1. Create and enable a diagnostic module for the server (or servers) you want to
monitor.

2. Enable Instrumentation for the diagnostic module.

3. Configure and enable the DyeInjection monitor for the module. (Only one
DyeInjection monitor can be used with a diagnostic module at any one time.)

You configure the DyeInjection monitor by assigning values to dyes. The available dye
flags are described in Table 13-1.

For example, you could set the flags as follows: USER1=weblogic,
USER2=admin@avitek.com, ADDR1=127.0.0.1, ADDR2=127.0.0.2, and so forth.
Basically, you want to set the values of one or more flags to the user(s), IP address(es)
whose requests you want to monitor.

For example, to monitor all requests initiated by a user named admin@avitek from a
client at IP address 127.0.0.1, assign the value admin@avitek to USER1 and assign
the value 127.0.0.1 to ADDR1.

In the WebLogic Server Administration Console, you assign values to dyes by typing
them into the Properties field of the Settings for DyeInjection page. For instructions,
see Configure diagnostic monitors in a diagnostic system module in the Oracle
WebLogic Server Administration Console Online Help.

Configuring the Dye Vector via the DyeInjection Monitor

13-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 13-1 Setting Dye Values in the Administration Console

These settings appear in the descriptor file for the diagnostic module, as shown in the
following code listing.

Example 13-1 Sample DyeInjection Monitor Configuration, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <dye-mask xsi:nil="true"></dye-mask>
 <properties>ADDR1=127.0.0.1
 USER1=admin@avitek</properties>
 </wldf-instrumentation-monitor>
 <!-- Other elements to configure instrumentation -->
 <instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
<wldf-resource>

13.3.1 Dyes Supported by the DyeInjection Monitor
The dyes available in the dye vector are listed and explained in the following table.

Table 13-1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

ADDR1

ADDR2

ADDR3

ADDR4

Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP
addresses of clients that originate requests. These dye flags are set in
the diagnostic context for a request if the request originated from an
IP address specified by the respective property (ADDR1, ADDR2,
ADDR3, ADDR4) of the DyeInjection monitor.

These dyes cannot be used to specify DNS names.

Configuring the Dye Vector via the DyeInjection Monitor

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 13-5

Table 13-1 (Cont.) Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

CONNECTOR1

CONNECTOR2

CONNECTOR3

CONNECTOR4

Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and
CONNECTOR4 dyes to identify characteristics of connector drivers.

These dye flags are set by the connector drivers to identify request
properties specific to their situations. You do not configure these
directly in the WebLogic Server Administration Console or in the
descriptor files. The connector drivers can assign values to these dyes
(using the Connector API), so information about the connections can
be carried in the diagnostic context.

COOKIE1

COOKIE2

COOKIE3

COOKIE4

COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the
diagnostic context for an HTTP/S request, if the request contains the
cookie named weblogic.diagnostics.dye and its value is equal to the
value of the respective property (COOKIE1, COOKIE2, COOKIE3,
COOKIE4) of the DyeInjection monitor.

DYE_0

DYE_1

DYE_2

DYE_3

DYE_4

DYE_5

DYE_6

DYE_7

DYE_0 to DYE_7 are available only for use by application developers.
See Using weblogic.diagnostics.context .

PROTOCOL_HTTP

PROTOCOL_IIOP

PROTOCOL_JRMP

PROTOCOL_RMI

PROTOCOL_SOAP

PROTOCOL_SSL

PROTOCOL_T3

The DyeInjection monitor implicitly identifies the protocol used for a
request and sets the appropriate dye(s) in the dye vector, according to
the protocol(s) used.

PROTOCOL_HTTP is set in the diagnostic context of a request if the
request uses HTTP or HTTPS protocol.

PROTOCOL_IIOP is set in the diagnostic context of a request if it uses
Internet Inter-ORB Protocol (IIOP).

PROTOCOL_JRMP is set in the diagnostic context of a request if it
uses the Java Remote Method Protocol (JRMP).

PROTOCOL_RMI is set in the diagnostic context of a request if it uses
the Java Remote Method Invocation (RMI) protocol.

PROTOCOL_SSL is set in the diagnostic context of a request if it uses
the Secure Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the
request uses T3 or T3s protocol

THROTTLE The THROTTLE dye is set in the diagnostic context of a request if it
satisfies requirements specified by THROTTLE_INTERVAL and/or
THROTTLE_RATE properties of the DyeInjection monitor.

USER1

USER2

USER3

USER4

Use the USER1, USER2, USER3 and USER4 dyes to specify the user
names of clients that originate requests. These dye flags are set in the
diagnostic context for a request if the request was originated by a user
specified by the respective property (USER1, USER2, USER3, USER4)
of the DyeInjection monitor.

Configuring the Dye Vector via the DyeInjection Monitor

13-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

13.3.2 PROTOCOL Dye Flags
You must explicitly set the values for the dye flags USERn, ADDRn, COOKIEn, and
CONNECTORn. in the DyeInjection monitor. However, the flags PROTOCOL_HTTP,
PROTOCOL_IIOP, ROTOCOL_JRMP, PROTOCOL_RMI, PROTOCOL_SOAP,
PROTOCOL_SSL, and PROTOCOL_T3 are set implicitly by WLDF. When the
DyeInjection monitor is enabled, every request is injected with the appropriate
protocol dye. For example, every request that arrives via HTTP is injected with the
PROTOCOL_HTTP dye.

13.3.3 THROTTLE Dye Flag
The THROTTLE dye flag can be used to control the volume of incoming requests that
are dyed. THROTTLE is configured differently from the other flags, and WLDF uses it
differently. See Using Throttling to Control the Volume of Instrumentation Events, for
more information.

13.3.4 When Diagnostic Contexts Are Created
When the DyeInjection monitor is enabled in a diagnostic module, a diagnostic context
is created for every incoming request. The DyeInjection monitor is enabled by default
when you enable instrumentation in a diagnostic module. This ensures that a
diagnostic Context ID is available so that events can be correlated. Even if no
properties are explicitly set in the DyeInjection monitor, the diagnostic context for
every request will contain a unique Context ID and a dye vector with one of the
implicit PROTOCOL dyes.

If the DyeInjection monitor is disabled, no diagnostic contexts will be created for any
incoming requests.

13.4 Configuring Delegating Monitors to Use Dye Filtering

Note:

For information about how to implement a diagnostic monitor for an
application (such as a web application), see Overview of the Steps Required to
Instrument an Application.

You can use the DyeInjection monitor as a mechanism to restrict when a delegating or
custom diagnostic monitor in the diagnostic module is triggered. This process is called
dye filtering.

Each monitor can have a dye mask, which specifies a selection of the dyes from the
DyeInjection monitor. When dye filtering is enabled for a diagnostic monitor, the
monitor's diagnostic action is triggered and a diagnostic event is generated only for
those requests that meet the criteria set by the mask.

Figure 13-2 shows an example of diagnostic events that were generated when a
configured diagnostic action was triggered. Notice that the Context ID is the same for
all of the events, indicating that they are related to the same request. You can use this
Context ID to query for log records that are associated with the request. Note that the
user ID associated with a request may not always be the same as the USER value you
configured in the DyeInjection monitor; as a request is processed through the system,

Configuring Delegating Monitors to Use Dye Filtering

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 13-7

the user associated with the request may change to allow the system to perform
certain functions (for example, the User ID may change to kernel).

Figure 13-2 Example of Diagnostic Events Associated with a Request

Example configuration

Consider a Servlet_Around_Service application-scoped diagnostic monitor that has a
TraceElapsedTimeAction action attached to it. Without dye filtering, any request that
is handled by Servlet_Around_Service will trigger a TraceElapsedTimeAction.
However, you could use dye filtering to trigger TraceElapsedTimeAction only for
requests that originated from user admin@avitek.com at IP address 127.0.0.1.

1. Configure the DyeInjection monitor so that USER1=admin@avitek.com and
ADDR1=127.0.0.1, and enable the DyeInjection monitor. For instructions, see
Configure diagnostic monitors in a diagnostic system module in the Oracle
WebLogic Server Administration Console Online Help.

2. Configure a dye mask and enable dye filtering for the Servlet_Before_Service
diagnostic monitor. In the WebLogic Server Administration Console:

a. Add the Servlet_Around_Service monitor from the WLDF instrumentation
library to your application as described in Configure instrumentation for
applications in the Oracle WebLogic Server Administration Console Online Help.

b. After adding the monitor, click Save on the Settings for <application_name>
page.

c. Click the Servlet_Around_Service link to display the Settings for
Servlet_Around_Service page.

d. Select the Enabled check box to enable the monitor.

e. Under Actions, move TraceElapsedTimeAction from the Available list to the
Chosen list.

Configuring Delegating Monitors to Use Dye Filtering

13-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

f. In the Dye Mask section, move USER1 and ADDR1 from the Available list to
the Chosen list.

g. Select the EnableDyeFiltering check box.

h. Click Save.

3. Redeploy the application.

Configurations added via the WebLogic Server Administration Console are not
persisted to the weblogic-diagnostics.xml file in the application's META-INF
directory or to the DIAG_MODULE.xml file; they are saved in the application's
deployment plan.

You can also manually update your DIAG_MODULE.xml file to add diagnostic
monitors, as shown in Example 13-2, but this is not recommended. It is better to
change the configuration via the WebLogic Server Administration Console on a
running server. Any changes you make to DIAG_MODULE.xml will not take effect
until you redeploy the application.

Example 13-2 Sample Configuration for Using Dye Filtering in a Delegating
Monitor, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <properties>ADDR1=127.0.0.1 USER1=admin@avitek.com</properties>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Servlet_Around_Service</name>
 <dye-mask>ADDR1 USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceElapsedTimeAction</action>
 </wldf-instrumentation-monitor>
 <!-- Other elements to configure instrumentation -->
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
<wldf-resource>

With this configuration, the TraceElapsedTimeAction action will be triggered for the
Servlet_Around_Service diagnostic monitor only for those requests that originate from
IP address 127.0.0.1 and user admin@avitek.com.

The flags that are enabled in the diagnostic monitor must exactly match the bits set in
the request's dye vector for an action to be triggered and an event to be written to the
Event Archive. For example, if the diagnostic monitor has both the USER1 and
ADDR1 flags enabled, and only the USER1 flag is set in the request's dye vector, no
action will be triggered and no event will be generated.

Note:

When configuring a diagnostic monitor, do not enable multiple flags of the
same type. For example, don't enable both the USER1 and USER2 flags, as the
dye vector for a given request will never have both the USER1 and USER2
flags set.

Configuring Delegating Monitors to Use Dye Filtering

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 13-9

13.5 How Dye Masks Filter Requests to Pass to Monitors
A dye vector attached to a request can contain multiple dyes, and a dye mask attached
to a delegating monitor can contain multiple dyes. For a delegating monitor's dye
mask to allow a monitor to take action on a request, all of the following must be true:

• Dye filtering for the delegating or custom diagnostic monitor is enabled in the
application's weblogic-diagnostics.xml descriptor, or is enabled via the
WebLogic Server Administration Console.

• The request's dye vector contains all of the dyes that are defined in the monitor's
dye mask. (The dye vector can also contain dyes that are not in the dye mask.)

13.5.1 Dye Filtering Example
Figure 13-3 illustrates how dye filtering works, using a diagnostic module with three
diagnostic monitors:

• The DyeInjection monitor is configured as follows:

 ADDR1=127.0.0.1
 USER1=weblogic

• The Servlet_Around_Service monitor is configured with a dye mask containing
only ADDR1.

• The EJB_Around_SessionEjbBusinessMethods monitor is configured with a dye
mask containing USER1 only.

Figure 13-3 Dye Filtering Example

1. A request initiated by user guest from IP address 127.0.0.1 enters the system. The
user guest does not match the value for USER1 in the DyeInjection monitor, so the
request is not dyed with the dye vector USER1. The originating IP address

How Dye Masks Filter Requests to Pass to Monitors

13-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

(127.0.0.1) matches the value for ADDR1 defined in the DyeInjection monitor, so
the request is dyed with the dye vector ADDR1.

2. The request (dyed with ADDR1) enters the Servlet component, where the
diagnostic monitor Servlet_Around_Service is woven into the code.
(Servlet_Around_Service triggers diagnostic actions at the entry of and exit of
certain servlet and JSP methods.) Dye monitoring is enabled for the monitor, and
the dye mask is defined with the single value ADDR1.

3. When the request enters or exits a method instrumented with
Servlet_Around_Service, the diagnostic monitor checks the request for dye vector
ADDR1, which it finds. Therefore, the monitor triggers a diagnostic action, which
generates a diagnostic event, for example, writing data to the Events Archive.

4. The request enters the SessionEJB component, where the diagnostic monitor
EJB_Around_SessionEjbBusinessMethods is woven into the code.
(EJB_Around_SessionEjbBusinessMethods triggers diagnostic actions at the entry
and exit of all SessionBean methods). Dye monitoring is enabled for the monitor,
and the dye mask is defined with the single value USER1.

5. When the request enters or exits a SessionBean method (instrumented with
EJB_Around_SessionEjbBusinessMethods), the diagnostic monitor checks the
request for dye vector USER1, which it does not find. Therefore, the monitor does
not trigger a diagnostic action, and therefore does not generate a diagnostic event.

13.6 Using Throttling to Control the Volume of Instrumentation Events
Throttling is used to control the number of requests that are processed by the monitors
in a diagnostic module. Throttling is configured using the THROTTLE dye, which is
defined in the DyeInjection monitor.

Note:

The USERn and ADDRn dyes allow inspection of requests from specific users
or IP addresses. However, they do not provide a means to look at arbitrary
user transactions. The THROTTLE dye provides that functionality by allowing
sampling of requests.

13.6.1 Configuring the THROTTLE Dye
Unlike other dyes in the dye vector, the THROTTLE dye is configured through two
properties.

• THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new
incoming request is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request
dyed with THROTTLE arrived at least THROTTLE_INTERVAL before the new
request. For example, if THROTTLE_INTERVAL=3000, the DyeInjection monitor
waits at least 3000 milliseconds before it will dye an incoming request with
THROTTLE.

• THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by
which new incoming requests are dyed with the THROTTLE dye.

Using Throttling to Control the Volume of Instrumentation Events

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 13-11

If THROTTLE_RATE is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request when the number of
requests since the last request dyed with THROTTLE equals THROTTLE_RATE. For
example, if THROTTLE_RATE = 6, every sixth request is dyed with THROTTLE.

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either
condition is satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both,
or neither), you are configuring the THROTTLE dye. A THROTTLE configuration
setting in the WebLogic Server Administration Console is shown in Figure 13-4.

Figure 13-4 Configuring the THROTTLE Dye

Example 13-3 shows the resulting configuration in the descriptor file for the
diagnostics module.

Example 13-3 Sample THROTTLE Configuration in the DyeInjection Monitor, in
DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <properties>
 THROTTLE_INTERVAL=3000
 THROTTLE_RATE=6
 </properties>
 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

Example 13-4 shows the configuration for a JDBC_Before_Start_Internal delegating
monitor where the THROTTLE dye is set in the dye mask for the monitor.

Example 13-4 Sample Configuration for Setting THROTTLE in a Dye Mask of a
Delegating Monitor, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>JDBC_Before_Start_Internal</name>

Using Throttling to Control the Volume of Instrumentation Events

13-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 <enabled>true</enabled>
 <dye-mask>THROTTLE</dye-mask>
 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

13.6.2 How Throttling is Handled by Delegating and Custom Monitors
Dye masks and dye filtering provide a mechanism for restricting which requests are
passed to delegating and custom monitors for handling, based on properties of the
requests. The presence of a property in a request is indicated by the presence of a dye,
as discussed in Configuring the Dye Vector via the DyeInjection Monitor. One of those
dyes can be the THROTTLE dye, so that you can filter on THROTTLE, just like any
other dye.

The items in the following list explain how throttling is handled:

• If dye filtering for a delegating or custom monitor is enabled and that monitor has
a dye mask, filtering is performed based on the dye mask. That mask may include
the THROTTLE dye, but it does not have to. If THROTTLE is included in a dye
mask, then THROTTLE must also be included in the request's dye vector for the
request to be passed to the monitor. However, if THROTTLE is not included in the
dye mask, all qualifying requests are passed to the monitor, whether their dye
vectors include THROTTLE or not.

• If dye filtering for a delegating or custom monitor is not enabled and neither
THROTTLE property is set in the DyeInjection monitor, dye filtering will not take
place and throttling will not take place.

• If dye filtering for a delegating or custom monitor is not enabled and THROTTLE is
configured in the DyeInjection monitor, delegating monitors ignore dye masks but
do check for the presence of the THROTTLE dye in all requests. Only those
requests dyed with THROTTLE are passed to the delegating monitors for handling.
Therefore, by setting a THROTTLE_RATE and/or THROTTLE_INTERVAL in the
DyeInjection monitor, you reduce the number of requests handled by all delegating
monitors. You do not have to configure dye masks for all your delegating monitors
to take advantage of throttling.

• If dye filtering for a delegating or custom monitor is enabled and the only dye set
in a dye mask is THROTTLE, only those requests that are dyed with THROTTLE
are passed to the delegating monitor. This behavior is the same as when dye
filtering is not enabled and THROTTLE is configured in the DyeInjection monitor.

13.7 Using weblogic.diagnostics.context
The weblogic.diagnostics.context package provides applications with limited access to
a diagnostic context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper
APIs to perform the following functions:

• Inspect a diagnostics context's immutable context ID.

• Inspect the settings of the dye flags in a context's dye vector.

• Retrieve an array of valid dye flag names.

Using weblogic.diagnostics.context

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 13-13

• Set, or unset, the DYE_0 through DYE_7 flags in a context's dye vector. (Note that
there is no way to set these flag bits via XML. You can configure DyeInjection
monitor <properties> to set the non-application-specific flag bits via XML, but
setDye() is the only method for setting DYE_0 through DYE_7 in a dye vector.)

• Attach a payload (a String) to a diagnostic context, or read an existing payload.

An application cannot:

• Set any flags in a dye vector other than the eight flags reserved for applications.

• Prevent another application from setting the same application flags in a dye vector.
A well-behaved application can test whether a dye flag is set before setting it.

• Prevent another application from replacing a payload. A well-behaved application
can test for the presence of a payload before adding one.

Note:

The diagnostic context payload can be viewed by other code in the same
execution context; it can flow out of the process along with the Work instance;
and it can be overwritten by other code running in the same execution context.
Therefore, you should ensure the following behavior in your applications:

• Avoid including any sensitive data in the payload that, for example, could
be returned by the getPayload() method.

• Do not create a dependency on any particular data being available in the
context payload. For example, applications should not rely on a particular
context ID being present. If an application uses the contents of the payload,
the application should first verify that the contents match what is expected.

A monitor, or another application, that is downstream from the point where an
application has set one or more of the DYE_0 through DYE_7 flags can set a dye mask
to check for those flags, and take an action when the flag(s) are present in a context's
dye vector. If a payload is attached to the diagnostics context, any action taken by that
monitor will result in the payload being archived, and thus available through the
accessor component.

Example 13-5 is a short example which (implicitly) creates a diagnostic context, prints
the context ID, checks the value of the DYE_0 flag, and then sets the DYE_0 flag.

Example 13-5 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
 public static void main(String args[]) throws Exception {
 System.out.println("\nContextId=" +
 DiagnosticContextHelper.getContextId());
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 }
}

Using weblogic.diagnostics.context

13-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

14
Accessing Diagnostic Data With the Data

Accessor

This chapter describes the Data Accessor component of the WebLogic Diagnostics
Framework (WLDF) that is used to access diagnostic data from various sources,
including log records, data events, and harvested metrics.

Using the Data Accessor, you can perform data lookups by type, component, and
attribute. You can perform time-based filtering and, when accessing events, filtering
by severity, source, and content. You can also access diagnostic data in tabular form.
This chapter also describes how to use the Data Accessor online (when a server is
running) and offline (when a server is not running).

This chapter includes the following sections:

• Data Stores Accessed by the Data Accessor

• Accessing Diagnostic Data Online

• Accessing Diagnostic Data Offline

• Accessing Diagnostic Data Programmatically

• Resetting the System Clock Can Affect How Data Is Archived and Retrieved

14.1 Data Stores Accessed by the Data Accessor
The Data Accessor retrieves diagnostic information from other WLDF components.
Captured information is segregated into logical data stores that are separated by the
types of diagnostic data. For example, server logs, HTTP logs, and harvested metrics
are captured in separate data stores.

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor
provides access to data stores for individual servers.

Data stores can be modeled as tabular data. Each record in the table represents one
item, and the columns describe characteristics of the item. Different data stores may
have different columns. However, most data stores have some of the same columns,
such as the time when the data was collected.

The Data Accessor can retrieve the following information about data stores used by
WLDF for a server:

• A list of supported data store types, including:

– HarvestedDataArchive

– EventsDataArchive

– ServerLog

Accessing Diagnostic Data With the Data Accessor 14-1

– DomainLog

– HTTPAccessLog

– DataSourceLog

– WebAppLog

– ConnectorLog

– JMSMessageLog

– JMSSAFMessageLog

– CUSTOM

• A list of available data store instances

• The layout of each data store (information that describes the columns in the data
store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine
the nature of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Understanding WebLogic
Logging Services in Configuring Log Files and Filtering Log Messages for Oracle WebLogic
Server 12.1.3.

14.2 Accessing Diagnostic Data Online
You access diagnostic data from a running server by using the WebLogic Server
Administration Console, JMX APIs, or the WebLogic Scripting Tool (WLST).

14.2.1 Accessing Data Using the Administration Console
You do not use the Data Accessor explicitly in the WebLogic Server Administration
Console, but information collected by the Accessor is displayed, for example, in the
Summary of Log Files page. See View and Configure Logs in the Oracle WebLogic
Server Administration Console Online Help.

14.2.2 Accessing Data Programmatically Using Runtime MBeans
The Data Accessor provides the following runtime MBeans for discovering data stores
and retrieving data from them:

• Use the WLDFAccessRuntimeMBean to do the following:

– Get the logical names of the available data stores on the server.

– Look up a WLDFDataAccessRuntimeMBean to access the data from a specific
data source, based on its logical name. The different data stores are uniquely
identified by their logical names.

See WLDFAccessRuntimeMBean in the MBean Reference for Oracle WebLogic Server.

• Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a search
condition, or query. You can optionally specify a time interval with the query, to
retrieve data records within a specified time duration. This MBean provides
metadata about the columns of the data set and the earliest and latest timestamp of
the records in the data store.

Accessing Diagnostic Data Online

14-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Data Accessor runtime MBeans are currently created and registered lazily. So,
when a remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

The client can retrieve the WLDFDataAccessRuntime's attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for
example:

 ObjectName objName =
 new ObjectName("com.bea:ServerRuntime=" + serverName +
 ",Name=Accessor," +
 "Type=WLDFAccessRuntime," +
 "WLDFRuntime=WLDFRuntime");
 rmbs.getAttribute(objName, "WLDFDataAccessRuntimes");

See WLDFDataAccessRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

14.2.3 Using WLST to Access Diagnostic Data Online
Use the WLST exportDiagnosticDataFromServer() command to access
diagnostic data from a running server. For the syntax and examples of this command,
see Diagnostics Commands in the WLST Command Reference for WebLogic Server.

14.2.4 Using the WLDF Query Language with the Data Accessor
To query data from data stores, use the WLDF query language. For Data Accessor
query language syntax, see WLDF Query Language.

14.3 Accessing Diagnostic Data Offline
Use the WLST exportDiagnosticData() command to access historical diagnostic
data from an offline server. For the syntax and examples of this command, see
Diagnostics Commands in the WLST Command Reference for WebLogic Server.

Note:

You can use exportDiagnosticData to access archived data only from the
machine on which the data is persisted.

You cannot discover data store instances using the offline mode of the Data
Accessor. You must already know what they are.

14.4 Accessing Diagnostic Data Programmatically
Example 14-1 shows the source Java code for a utility that uses the Accessor to query
the different archive data stores.

Example 14-1 Sample Code to Use the WLDF Accessor

/*
 * WLAccessor.java
 *
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor.
 *
 */

Accessing Diagnostic Data Offline

Accessing Diagnostic Data With the Data Accessor 14-3

 import javax.naming.Context;
 import weblogic.jndi.Environment;
 import java.util.Hashtable;
 import java.util.Iterator;
 import java.util.Properties;
 import weblogic.management.ManagementException;
 import weblogic.management.runtime.WLDFAccessRuntimeMBean;
 import weblogic.management.runtime.WLDFDataAccessRuntimeMBean;
 import weblogic.diagnostics.accessor.ColumnInfo;
 import weblogic.diagnostics.accessor.DataRecord;
 import java.io.File;
 import java.io.FileInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;

 import javax.management.MBeanServerConnection;
 import javax.management.remote.JMXConnector;
 import javax.management.remote.JMXConnectorFactory;
 import javax.management.remote.JMXServiceURL;
 import javax.management.ObjectName;
 import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
 import weblogic.management.runtime.ServerRuntimeMBean;
 import weblogic.management.jmx.MBeanServerInvocationHandler;
 import weblogic.management.configuration.ServerMBean;

 /**
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor. The class looks up the appropriate accessor and
 * executes the query given the specified query parameters.
 *
 * To see information about it's usage, compile this file and run
 *
 * java WLAccessor usage
 */
public class WLAccessor {

 /** Creates a new instance of WLAccessor */
 public WLAccessor(Properties p) {
 initialize(p);
 }

 /**
 * Retrieve the specfied WLDFDataAccessRuntimeMBean instance for querying.
 */
 public WLDFDataAccessRuntimeMBean getAccessor(String accessorType)
 throws Throwable
 {
 // Get the runtime MBeanServerConnection
 MBeanServerConnection runtimeMBS = this.getRuntimeMBeanServerConnection();

 // Lookup the runtime service for the connected server
 ObjectName rtSvcObjName = new ObjectName(RuntimeServiceMBean.OBJECT_NAME);
 RuntimeServiceMBean rtService = null;

 rtService = (RuntimeServiceMBean)
 MBeanServerInvocationHandler.newProxyInstance(
 runtimeMBS, rtSvcObjName
);

 // Walk the Runtime tree to the desired accessor instance.
 ServerRuntimeMBean srt = rtService.getServerRuntime();

Accessing Diagnostic Data Programmatically

14-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 WLDFDataAccessRuntimeMBean ddar =
 srt.getWLDFRuntime().getWLDFAccessRuntime().
 lookupWLDFDataAccessRuntime(accessorType);

 return ddar;
 }

 /**
 * Execute the query using the given parameters, and display the formatted
 * records.
 */
 public void queryEventData() throws Throwable
 {
 String logicalName = "EventsDataArchive";
 WLDFDataAccessRuntimeMBean accessor = getAccessor(accessorType);

 ColumnInfo[] colinfo = accessor.getColumns();
 inform("Query string: " + queryString);

 int recordsFound = 0;
 Iterator actualIt =
 accessor.retrieveDataRecords(beginTime, endTime, queryString);
 while (actualIt.hasNext()) {
 DataRecord rec = (DataRecord)actualIt.next();
 inform("Record[" + recordsFound + "]: {");
 Object[] values = rec.getValues();
 for (int colno=0; colno < values.length; colno++) {
 inform("[" + colno + "] "
 + colinfo[colno].getColumnName() +
 " (" + colinfo[colno].getColumnTypeName() + "): " +
 values[colno]);
 }
 inform("}");
 inform("");
 recordsFound++;
 }
 inform("Found " + recordsFound + " results");
 }

 /**
 * Main method that implements the tool.
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 try {
 WLAccessor acsr = new WLAccessor(handleArgs(args));
 acsr.queryEventData();
 } catch (UsageException uex) {
 usage();
 } catch (Throwable t) {
 inform("Caught exception, " + t.getMessage(), t);
 inform("");
 usage();
 }
 }

 public static class UsageException extends Exception {}

 /**
 * Process the command line arguments, which are provided as name/value pairs.

Accessing Diagnostic Data Programmatically

Accessing Diagnostic Data With the Data Accessor 14-5

 */
 public static Properties handleArgs(String[] args) throws Exception
 {
 Properties p = checkForDefaults();
 for (int i = 0; i < args.length; i++) {
 if (args[i].equalsIgnoreCase("usage"))
 throw new UsageException();

 String[] nvpair = new String[2];
 int token = args[i].indexOf('=');
 if (token < 0)
 throw new Exception("Invalid argument, " + args[i]);
 nvpair[0] = args[i].substring(0,token);
 nvpair[1] = args[i].substring(token+1);
 p.put(nvpair[0], nvpair[1]);
 }
 return p;
 }

 /**
 * Look for a default properties file
 */
 public static Properties checkForDefaults() throws IOException {
 Properties defaults = new Properties();
 try {
 File defaultprops = new File("accessor-defaults.properties");
 FileInputStream defaultsIS = new FileInputStream(defaultprops);
 //inform("loading options from accessor-defaults.properties");
 defaults.load(defaultsIS);
 } catch (FileNotFoundException fnfex) {
 //inform("No accessor-defaults.properties found");
 }
 return defaults;
 }
 public static void inform(String s) {
 System.out.println(s);
 }
 public static void inform(String s, Throwable t) {
 System.out.println(s);
 t.printStackTrace();
 }

 private MBeanServerConnection getRuntimeMBeanServerConnection()
 throws IOException
 {
 // construct jmx service url

 // "service:jmx:[url]/jndi/[mbeanserver-jndi-name]"
 JMXServiceURL serviceURL =
 new JMXServiceURL(
 "service:jmx:" + getServerUrl() +
 "/jndi/" + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME
);

 // specify the user and pwd. Also specify weblogic provide package
 inform("user name [" + username + "]");
 inform("password [" + password + "]");
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

Accessing Diagnostic Data Programmatically

14-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 "weblogic.management.remote");
 // get jmx connector
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);

 inform("Using JMX Connector to connect to " + serviceURL);
 return connector.getMBeanServerConnection();
 }

 private void initialize(Properties p) {
 serverUrl = p.getProperty("url","t3://localhost:7001");
 username = p.getProperty("user","weblogic");
 password = p.getProperty("pass","password");
 queryString = p.getProperty("query","SEVERITY IN
('Error','Warning','Critical','Emergency')");
 accessorType = p.getProperty("type","ServerLog");

 try {
 beginTime = Long.parseLong(p.getProperty("begin","0"));

 String end = p.getProperty("end");
 endTime = (end==null) ? Long.MAX_VALUE : Long.parseLong(end);
 } catch (NumberFormatException nfex) {
 throw new RuntimeException("Error formatting time bounds", nfex);
 }
 }

 private static void usage() {
 inform("");
 inform("");
 inform("Usage: ");
 inform("");
 inform(" java WLAccessor [options]");
 inform("");
 inform("where [options] can be any combination of the following: ");
 inform("");
 inform(" usage Prints this text and exits");
 inform(" url=<url> default: 't3://localhost:7001'");
 inform(" user=<username> default: 'weblogic'");
 inform(" pass=<password> default: 'password'");
 inform(" begin=<begin-timestamp> default: 0");
 inform(" end=<end-timestamp> default: Long.MAX_VALUE");
 inform(" query=<query-string> default: \"SEVERITY IN
('Error','Warning','Critical','Emergency')\"");
 inform(" type=<accessor-type> default: 'ServerLog'");
 inform("");
 inform("Example:");
 inform("");
 inform(" java WLAccessor user=system pass=gumby1234 url=http://myhost:8000 \
\");
 inform(" query=\"SEVERITY = 'Error'\" begin=1088011734496 type=ServerLog");
 inform("");
 inform("");
 inform("");
 inform("All properties (except \"usage\") can all be specified in a file ");
 inform("in the current working directory. The file must be named: ");
 inform("");
 inform(" \"accessor-defaults.properties\"");
 inform("");
 inform("Each property specified in the defaults file can still be ");
 inform("overridden on the command-line as shown above");
 inform("");

Accessing Diagnostic Data Programmatically

Accessing Diagnostic Data With the Data Accessor 14-7

 }

 /** Getter for property serverUrl.
 * @return Value of property serverUrl.
 *
 */
 public java.lang.String getServerUrl() {
 return serverUrl;
 }

 /** Setter for property serverUrl.
 * @param serverUrl New value of property serverUrl.
 *
 */
 public void setServerUrl(java.lang.String serverUrl) {
 this.serverUrl = serverUrl;
 }

 protected String serverName = null;
 protected String username = null;
 protected String password = null;
 protected String queryString = "";
 private String serverUrl = "t3://localhost:7001";
 private String accessorType = null;

 private long endTime = Long.MAX_VALUE;
 private long beginTime = 0;

 private WLDFAccessRuntimeMBean dar = null;

}

14.5 Resetting the System Clock Can Affect How Data Is Archived and
Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to
the WLDF Archive or logs can cause unexpected results when you query that data
based on a timestamp. For example, consider the following sequence of events:

1. At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of
2:00:00 PM.

2. At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of
2:30:00 PM.

3. At 3:00 p.m., the system clock is reset to 2:00 p.m.

4. At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as
RECORD_215, with a timestamp of 2:15:00 PM.

5. You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of
RECORD_230 ends the query.

Resetting the System Clock Can Affect How Data Is Archived and Retrieved

14-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

15
Deploying WLDF Application Modules

This chapter describes how to deploy WebLogic Diagnostics Framework (WLDF)
application modules. The only WLDF component you can use with applications is
Instrumentation (see Configuring Application-Scoped Instrumentation).

You configure and manage instrumentation for an application as a diagnostics
application module, which is an application-scoped resource. The configuration is
persisted in a descriptor file which you deploy with the application. A diagnostic
module deployed in this way is available only to the enclosing application. Using
application-scoped resources ensures that an application always has access to required
resources and simplifies the process of deploying the application to new
environments.

You can deploy an application using a deployment plan, which permits dynamic
configuration updates.

Note:

For instrumentation to be available for an application, instrumentation must
be enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of
the diagnostics descriptor for the server.)

This chapter includes the following sections:

• Deploying a Diagnostic Module as an Application-Scoped Resource

• Using Deployment Plans to Dynamically Control Instrumentation Configuration

• Using a Deployment Plan: Overview

• Creating a Deployment Plan Using weblogic.PlanGenerator

• Sample Deployment Plan for Diagnostics

• Enabling Java HotSwap

• Deploying an Application with a Deployment Plan

• Updating an Application with a Modified Plan

15.1 Deploying a Diagnostic Module as an Application-Scoped Resource
To deploy a diagnostic module as an application-scoped resource, you configure the
module in a descriptor file named weblogic-diagnostics.xml. You then package
the descriptor file with the application archive in the ARCHIVE_PATH/META-INF
directory for the deployed application. For example:

Deploying WLDF Application Modules 15-1

C:\Oracle\Middleware\Oracle_Home\user_projects\applications\medrec\dist\standalone
\exploded\medrec\META-INF\weblogic-diagnostics.xml

You can deploy the diagnostic module in both exploded and unexploded archives.

Note:

If the EAR archive contains WAR, RAR or EJB modules that have the
weblogic-diagnostics.xml descriptors in their META-INF directory,
those descriptors are ignored.

You can use any of the standard WebLogic Server tools provided for controlling
deployment, including the WebLogic Administrative Console or the WebLogic
Scripting Tool (WLST).

For information about creating modules and deploying applications, see Deploying
Applications to Oracle WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic
system modules are deployed, there are some differences in how you can reconfigure
them and when those changes take place, as shown in Table 15-1. The details of how to
work with diagnostic application modules is described throughout this section. See
Configuring Instrumentation, for information about working with diagnostic system
modules.

Table 15-1 Comparing System and Application Modules

Monitor
Type

Add/Remove
Objects
Dynamically

Add/Remove
Objects with
Console

Modify with
JMX
Remotely

Modify with
JSR-88 (non-
remote)

Modify with
Console

System
Module

Yes Yes Yes No Yes - via JMX

Application
Module

Yes, when
HotSwap1 is
enabled

No, when
HotSwap is
not enabled:
module must
be
redeployed

Yes No Yes Yes - via plan

1 See Using Deployment Plans to Dynamically Control Instrumentation Configuration, for information
about HotSwap.

15.2 Using Deployment Plans to Dynamically Control Instrumentation
Configuration

WebLogic Server supports deployment plans, as specified in the Java EE Deployment
Specification API (JSR-88). With deployment plans, you can modify an application's
configuration after the application is built, without having to modify the application
archives. For complete documentation on using deployment plans in WebLogic
Server, see Configuring Applications for Production Deployment in Deploying
Applications to Oracle WebLogic Server.

Using Deployment Plans to Dynamically Control Instrumentation Configuration

15-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

If you want to reconfigure an application that was deployed without a deployment
plan, you must undeploy, unarchive, reconfigure, re-archive, and then redeploy the
application. With a configuration plan, you can dynamically change many
configuration options simply by updating the plan, without modifying the application
archive.

If you enable a feature called Java HotSwap (see Enabling Java HotSwap) before
deploying your application with a deployment plan, you can dynamically update all
instrumentation settings without redeploying the application. If you do not enable
HotSwap, or if you do not use a deployment plan, changes to some instrumentation
settings require redeployment, as shown in Table 15-2.

Table 15-2 When Application Instrumentation Configuration Changes Take Effect

Scenario / Settings to Use => Add and remove
monitors

Attach and
detach actions

Enable and
disable
monitors

Application deployed with a
deployment plan, HotSwap enabled

Dynamic Dynamic Dynamic

Application deployed with a
deployment plan, HotSwap not
enabled

Must redeploy
application1

Dynamic Dynamic

Application deployed without a
deployment plan

Must redeploy
application

Must redeploy
application

Must redeploy
application

1 If HotSwap is not enabled, you can "remove" a monitor, but that just disables it. The instrumentation
code is still woven into the application code. You cannot re-enable it through a modified plan.

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

• <enabled>

• <dye-filtering-enabled>

• <dye-mask>

• <action>

15.3 Using a Deployment Plan: Overview
The general process for creating and using a deployment plan is as follows:

1. Create a well-formed weblogic-diagnostics.xml descriptor file for the
application.

Oracle recommends that you create an empty descriptor. This provides full
flexibility for dynamically modifying the configuration. It is possible to create
monitors in the original descriptor file and then use a deployment plan to override
the settings. However, you will be unable to completely remove monitors without
redeploying. If you add monitors using a deployment plan to an empty descriptor,
all such monitors can be removed. For information about configuring diagnostic
application modules, see Configuring Application-Scoped Instrumentation.

The schema for weblogic-diagnostics.xml is available at http://
xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-
diagnostics.xsd.

Using a Deployment Plan: Overview

Deploying WLDF Application Modules 15-3

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

2. Place the descriptor file weblogic-diagnostics.xml, in the top-level META-
INF directory of the appropriate archive.

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See
Creating a Deployment Plan Using weblogic.PlanGenerator.

4. Start the server, optionally enabling Java HotSwap. See Enabling Java HotSwap.

5. Deploy the application using the deployment plan. See Deploying an Application
with a Deployment Plan).

6. When needed, edit the plan and update the application with the plan. See
Updating an Application with a Modified Plan.

15.4 Creating a Deployment Plan Using weblogic.PlanGenerator
You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the weblogic-diagnostics.xml
descriptor.

The PlanGenerator tool inspects all Java EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant
WebLogic Server deployment properties that configure external resources for the
application.

To create the plan, use the following syntax:

 java weblogic.PlanGenerator -plan output-plan.xml [options]
 application-path

For example:

 java weblogic.PlanGenerator -plan foo.plan -dynamics /test/apps/mywar

Note:

The -dynamics options specifies that the plan should be generated to include
only those options that can be dynamically updated.

For more information about creating and using deployment plans, see Configuring
Applications for Production Deployment in Deploying Applications to Oracle WebLogic
Server.

For more information about using PlanGenerator, see weblogic.PlanGenerator
Command Line Reference and Exporting an Application for Deployment to New
Environments in Deploying Applications to Oracle WebLogic Server

15.5 Sample Deployment Plan for Diagnostics
Example 15-1 shows a simple deployment plan generated using
weblogic.PlanGenerator. (For readability, some information has been removed.) The
plan enables the Servlet_Before_Service monitor and attaches to it the actions
DisplayArgumentsAction and StackDumpAction.

Example 15-1 Sample Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"

Creating a Deployment Plan Using weblogic.PlanGenerator

15-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
global-variables="false">
 <application-name>jsp_expr_root</application-name>

 <variable-definition>
 <!-- Add two additional actions to Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <value>"DisplayArgumentsAction","StackDumpAction"</value>
 </variable>
 <-- Enable the Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
 <value>true</value>
 </variable>
 </variable-definition>

 <module-override>
 <module-name>jspExpressionWar</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/
[name="Servlet_Before_Service"]/action</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/
[name="Servlet_Before_Service"]/enabled</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
 <config-root xsi:nil="true"></config-root>
</deployment-plan>

For a list and documentation of diagnostic monitors and actions that you can specify
in the deployment plan, see WLDF Instrumentation Library.

15.6 Enabling Java HotSwap
To enable Java HotSwap, start the server with the following command line switch:

 -javaagent:$WL_HOME/server/lib/diagnostics-agent.jar

15.7 Deploying an Application with a Deployment Plan
To take advantage of the dynamic control provided by a deployment plan, you must
deploy the application with the plan.

Enabling Java HotSwap

Deploying WLDF Application Modules 15-5

You can use any of the standard WebLogic Server tools for controlling deployment,
including the WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST). For example, the following WLST command deploys an application with
a corresponding deployment plan.

 wls:/mydomain/serverConfig> deploy('myApp', './myApp.ear', 'myserver',
 'nostage', './plan.xml')

After deployment, the effective diagnostic monitor configuration is a combination of
the original descriptor, combined with the overridden attribute values from the plan.
If the original descriptor did not include a monitor with the given name and the plan
overrides an attribute of such a monitor, the monitor is added to the set of monitors to
be used with the application. This way, if your application is built with an empty
weblogic-diagnostics.xml descriptor, you can add diagnostic monitors to the
application during or after the deployment process without having to modify the
application archive.

15.8 Updating an Application with a Modified Plan
You change configuration settings by modifying the deployment plan and then
updating or redeploying the application, depending on whether or not HotSwap is
enabled. (See Enabling Java HotSwap to see when you can simply update the
application and when you must redeploy it.) You can use any of the standard
WebLogic Server tools for updating or redeploying, including the WebLogic Server
Administration Console or the WebLogic Scripting Tool (WLST).

If you enabled HotSwap, you can update the configuration for the application with the
modified plan values by updating the application with the plan. For example, the
following WLST command updates an application with a plan:

 wls:/mydomain/serverConfig> updateApplication('BigApp',
 'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE',
 testMode='false')

If you did not enable HotSwap, you must redeploy the application for certain changes
to take effect. For example, the following WLST command redeploys an application
using a plan:

 wls:/mydomain/serverConfig> redeploy('myApp' 'c:/myapps/plan.xml')

Updating an Application with a Modified Plan

15-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

16
Using the Monitoring Dashboard

This chapter describes the Monitoring Dashboard, which provides views and tools for
graphically presenting diagnostic data about servers and applications running on
them. The underlying functionality for generating, retrieving, and persisting
diagnostic data is provided by the WebLogic Diagnostics Framework (WLDF). The
Monitoring Dashboard provides additional tools for presenting that data in charts and
graphs.

This chapter includes the following sections:

• Running the Monitoring Dashboard

• Scope of the Diagnostic Information Displayed

• About the Monitoring Dashboard Interface

• Understanding How Metrics Are Collected and Presented

• The Parts of a Chart

16.1 Running the Monitoring Dashboard
You can launch the Monitoring Dashboard from the WebLogic Server Administration
Console, or you can run it separately in a Web browser. The Monitoring Dashboard is
always displayed in its own tab, or window, depending on the preferences you have
set for your browser. You do not need to be logged in to the WebLogic Server
Administration Console to use the Monitoring Dashboard; but if you are not logged
in, you are prompted for your username and password credentials.

For more information, see Launch the Monitoring Dashboard in Oracle WebLogic Server
Administration Console Online Help.

16.2 Scope of the Diagnostic Information Displayed
The diagnostic data displayed by the Monitoring Dashboard consists of runtime
MBean attributes with numeric or Boolean values that are useful to measure, either as
their current values or as their changes over time. These values, referred to in the
Monitoring Dashboard as metrics, originate from one or more runtime MBean
instances from one or more servers in the domain.

The Monitoring Dashboard obtains metrics from two sources:

• Directly from active runtime MBean instances — these metrics are sometimes
called polled metrics in this chapter.

• From the Archive that have been collected by the Harvester — these metrics are
also known as collected metrics to distinguish them from metrics whose values are

Using the Monitoring Dashboard 16-1

obtained directly from active runtime MBean instances and returned to the
Monitoring Dashboard.

16.3 About the Monitoring Dashboard Interface
The Monitoring Dashboard has two main panels: the explorer panel and the view
display panel, as shown in the following figure.

Figure 16-1 Monitoring Dashboard Panels

The explorer panel provides access to the following:

• View List — Set of existing built-in and custom views. It also contains controls for
creating, copying, renaming, and deleting views. For details, see View List.

• Metric Browser — Provides a means to navigate to and select the specific MBean
instance attributes whose metric values you want to display in a chart in a view.
For details, see Metric Browser.

16.3.1 View List
To display a view, select it from the View List, shown in Figure 16-2.

About the Monitoring Dashboard Interface

16-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 16-2 Built-in and Custom Views Displayed in the View List

Views are presented in two primary categories:

• Built-in views

The built-in views are a set of predefined views of available runtime metrics for all
running WebLogic Server instances in the domain. These views surface some of the
more critical runtime WebLogic Server performance metrics and serve as examples
of the Monitoring Dashboard's view and charting capabilities.

Note the following about built-in views:

– Built-in views are dynamic. For example, if four servers are running, the set of
available built-in views and its charts are related to those four servers. If five
servers are running, then the set of built-in views and its charts expands for
each additional server. In addition, if the number of running server instances
changes while you are using dashboard (for example, a server is started or
stopped), and you want to see the new built-in views for the current set of
running server instances, refresh the view list by selecting Refresh from the
View List menu.

– Built-in views are automatically available with every WebLogic Server
installation and can be used by every user logged into WebLogic Server
Administration Console or Monitoring Dashboard.

– You cannot modify a built-in view, but you can copy it. Once copied, the view
can be modified, renamed, saved, and deleted.

• Custom views

A custom view is any view created by a user. Custom views are available only to
the user who created them. Custom views are automatically persisted for the user
and are in effect only for that user account and only in the current domain.
(However, note that polled metric values that are displayed in custom views are
not persisted if you close the Monitoring Dashboard window, just as they are not
persisted for built-in views either.)

No custom views are available by default.

About the Monitoring Dashboard Interface

Using the Monitoring Dashboard 16-3

For more information, see the following topics in Oracle WebLogic Server Administration
Console Online Help:

• Work with views in the Monitoring Dashboard

• Start and stop views

• Create custom views

• Copy a view

• Delete a view

16.3.2 Metric Browser
Charts display metrics, which are attributes of MBean instances. Metrics can be either
of the following:

• Metrics whose values are obtained from active MBean instances in a running
WebLogic Server instance.

The running server instances are polled at regular intervals, and the charts that
display the metric values that are returned are continually updated (see Current
Time Range Charts).

• Collected metrics whose values are obtained from the Archive.

Collected metrics have been previously captured by the WLDF Harvester and
placed in the Archive, and they provide a record of past state. Charts that display
only collected metrics are not updated (see Custom Time Range Charts).

You use the Metric Browser to select the metrics that you want to add to a chart. The
Metric Browser, shown in Figure 16-3, displays:

• Currently registered WebLogic MBean types

• Currently registered instances of MBean types

• Attributes of the listed registered instances

As a convenience for selecting metrics that have been collected by the Harvester, the
Metric Browser includes the Collected Metrics Only button. When you select this
button, the Metric Browser displays only collected metrics.

To see metrics for all runtime MBean types regardless of whether instances of them are
currently active, select Include All Types. To determine whether a metric was
collected by the Harvester, select the metric, or leave the mouse positioned over it. A
note window is displayed that provides information about the metric, including
whether or not it is a collected metric (that is, collected by the Harvester).

About the Monitoring Dashboard Interface

16-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 16-3 Metric Browser

To use the Metric Browser, select the server instance containing the metric values you
want to display. The Metric Browser can optionally constrain the list of MBean types,
registered instances, and metrics that are displayed to only those for which metric data
has been collected, or display all MBean types for the server even if they have no
active instances.

In addition, you do not need to find a metric by first selecting its MBean type and then
the instance in which it exists. You can select a metric in any order; for example, you
can start by first selecting a metric, or by first selecting the MBean instance if you
prefer. In addition, you can apply filters to each list to further constrain the items that
are displayed.

You can select and filter in any order. Selecting an item in one list may make a
selection in another and may also constrain other lists. Note the following behavior:

• Initially the Types list box shows all MBean types (as determined by the settings of
the Collected Metrics Only and Include All Types checkboxes), the Instances list
box shows all MBean instances, and the Metrics list box shows all metrics.

• Selecting a specific MBean type causes the MBean instances list to be constrained to
instances of that type and the metrics list to be constrained to metrics of that type.

• Selecting (none) in the Types list specifies that no type is selected, which causes the
entries in the Instances and Metrics lists to be unconstrained.

• Selecting a specific MBean instance, either before or after making any other
selection, causes:

– The corresponding MBean type in the Types list box to become selected.

About the Monitoring Dashboard Interface

Using the Monitoring Dashboard 16-5

– The entries in the Metrics list to become constrained to only those metrics for
that MBean instance.

• Selecting a specific entry in the Metrics list box, either before or after making any
other selection, causes:

– The specific MBean type to which the metric corresponds to become selected in
the Types list.

– The Instances list to be constrained to the MBean instances to which the metric
corresponds.

• When you enter a filter string into any of the list boxes, you constrain the list
contents to include only the items that match the filter. The behaviors described in
the preceding items that are used in combination with the filter result in a behavior
similar to a "logical and."

The effect of these behaviors is to reinforce the relationships among MBean types,
MBean instances, and metrics. Each MBean instance is of a specific MBean type, and
each metric corresponds to a particular MBean type. The MBean type determines both
all the instances of that type as well as all the metrics that the type has.

For information about using the Metric Browser, see the following topics in Oracle
WebLogic Server Administration Console Online Help:

• Work with the Metric Browser

• Select the server to monitor

• Display items in the Metric Browser

• Display summary notes about MBean instances and metrics in the Metric Browser

16.3.3 View Display Panel
A view is a collection of one or more charts that display captured metric values, as
shown in Figure 16-4. Only one view is displayed at a time in the Monitoring
Dashboard; however, multiple views can be running simultaneously.

About the Monitoring Dashboard Interface

16-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 16-4 View Containing Four Charts

Each chart in the view contains a legend, labels, and controls for identifying and
displaying the data. The following chart styles can be included in a view:

• Time-series charts, such as a line plot or bar graph that show changes in each
metric's value over a period of time

• Gauges, which show the current or most recent value of a metric along with the
following statistics that have been collected for the metric's values:

– Minimum

– Maximum

– Average

– Standard deviation

Charts can show the metrics for a current time range, meaning that the chart is
updated continually as the Monitoring Dashboard obtains new values for the metric at
regular intervals. Or, for charts for which you specify a custom time range that has
already passed, charts can display collected metrics obtained from the Archive that
were captured by the Harvester.

For information about displaying and starting views, and arranging charts in them,
see the following topics in Oracle WebLogic Server Administration Console Online Help:

• Display or create views, charts, and metrics: main steps

• Work with views in the Monitoring Dashboard

• Display views

• Start and stop views

About the Monitoring Dashboard Interface

Using the Monitoring Dashboard 16-7

For general details about Monitoring Dashboard charts, see The Parts of a Chart.

16.4 Understanding How Metrics Are Collected and Presented
As mentioned in Scope of the Diagnostic Information Displayed, the Monitoring
Dashboard displays metrics from two sources:

• Realtime, polled metric values that are obtained at regular intervals from running
WebLogic Server instances and returned to the Monitoring Dashboard.

• Metrics collected by the Harvester and placed into the Archive.

To view real-time, polled metrics in the Monitoring Dashboard, it is not necessary to
configure the Harvester. When a view is started with charts that contain one or more
real-time, polled metrics, the runtime MBean instances corresponding to those metrics
are polled at each configured interval, and the requested metric values are returned to
the Monitoring Dashboard. A polled metric is stored only once in the Monitoring
Dashboard, even if that metric has been added to multiple charts or multiple views.
The runtime MBean instance corresponding to that metric is also polled only once at
each interval, regardless of the number of charts or views in which its metric values
are displayed. So when an updated value for a metric arrives in the Monitoring
Dashboard, all charts containing that metric are updated simultaneously. This enables
the Monitoring Dashboard to minimize the performance overhead on your system and
maximize its overall efficiency.

To be able to view collected metrics, you must first configure the Harvester to collect
the data you want to monitor and have it available in the Archive. In a view with one
or more custom time range charts containing collected metrics, the values for those
metrics that correspond to the specific custom time ranges are fetched once from the
Archive and displayed in those charts. Note that collected metrics data is also
available for programmatic access, and it is written to a standard log,
HarvestedDataArchive, which you can view using the standard WebLogic Server
Administration Console as well as the Monitoring Dashboard. For information about
configuring the Harvester to collect metrics, see Configuring the Harvester for Metric
Collection.

16.4.1 About Metrics and Chart Types
The way in which the Monitoring Dashboard presents metrics depends upon the chart
in which they are displayed. After you add a chart to a view, you can use the Chart
Properties dialog box to specify either of the following time ranges:

• Current

• Custom

The following sections provide key information about how metrics are presented in
each chart type.

16.4.1.1 Current Time Range Charts

This is the default time range for charts in the Monitoring Dashboard. Use this time
range for displaying real-time, polled metrics, which can be displayed only in current
time range charts. These charts are updated at regular intervals, which by default is
every 20 seconds. (The sample interval can be customized in the Dashboard
Preferences dialog box.)

Understanding How Metrics Are Collected and Presented

16-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

When you add a metric to a current time range chart, the Monitoring Dashboard
fetches a small number of historical values for that metric from the Archive, if they are
available. Note the following about metric values obtained from the Archive for
current time range charts:

• The number of values fetched is derived from the amount of time over which the
stored samples can range, in which the sample interval is multiplied by the
maximum samples for the chart. (The default sampling interval is 20 seconds and
the default sample maximum is 100, which yields a time range of 2000 seconds, or
approximately 33.3 minutes.)

• If the sampling interval used by the Harvester is different from the one configured
for the Monitoring Dashboard, some distortion may be evident in the graphing of
that metric.

16.4.1.2 Custom Time Range Charts

Charts configured with a custom time range display collected metrics only. When you
specify a custom time range for a chart and add a collected metric, the Monitoring
Dashboard fetches the metric's values from the Archive that match the specified time
range. These charts are static: once the Monitoring Dashboard displays collected
metrics in a custom time range chart, the values of those metrics are never updated.

Note the following:

• Custom time range charts never include real-time, polled metric values.

• As a convenience for creating custom time range charts, the Metric Browser
includes a button labeled Collected Metrics Only. When you select this button, the
Metric Browser displays only collected metrics.

16.4.2 Sequence in which Metrics Data is Displayed
If the Harvester is configured to collected runtime MBean metrics, collection can begin
independently of whether the Monitoring Dashboard is running. This section shows
the sequence of activity that occurs when the Monitoring Dashboard collects and
displays metrics in current time range and custom time range charts.

1. If the Harvester is configured to collect data for a metric, it starts to harvest that
data after the server is started. The data is persisted in the Archive.

2. When the Monitoring Dashboard is launched, the list of available built-in and
custom views is displayed. However, the real-time polling of metric values
directly by JMX does not begin until one or more views are started.

3. When a view containing a current time range chart is started:

• The Monitoring Dashboard begins polling the runtime MBean instances
corresponding to the metrics contained in the chart.

• If the Harvester has collected data for this metric in the Archive, that data
added to the chart immediately. The number of samples that the Monitoring
Dashboard obtains from the Archive corresponds to the time range for the
chart.

• If the Harvester was not configured to harvest data for this metric, no historical
data is retrieved from the Archive for the metric and therefore none is
displayed.

Understanding How Metrics Are Collected and Presented

Using the Monitoring Dashboard 16-9

4. When a view containing a custom time range chart is created, the Monitoring
Dashboard fetches from the Archive the set of values for the metric that match the
custom time range specified for that chart. Once the values are displayed in the
chart, the chart is never updated. The view in which a custom time range chart
has been added does not need to be started in order to have the values of its
collected metrics displayed.

5. As polled data values for a metric arrive in the Monitoring Dashboard, the new
values are added to the chart. The oldest values obtained from the Archive, if
available, are purged.

The chart always displays the most current data. The maximum samples for a
chart determines how many samples can be saved for metrics, in both current and
custom time range charts. After a chart reaches its maximum samples threshold,
the oldest metric values are removed as newest arrive.

16.4.3 Notes about Metric Data Retention
If you exit from the Monitoring Dashboard, either by closing the Monitoring
Dashboard window or by logging out, the browser prompts you to confirm your
choice because all metric values captured by the Monitoring Dashboard during the
session will be lost. Exiting from the Monitoring Dashboard has no effect on collected
metrics persisted in the Archive. However, note that the Archive may have a data
retirement policy in effect that limits how long data is retained there. For more
information, see Retiring Data from the Archives.

16.5 The Parts of a Chart
A chart consists of the following:

• Chart name

• Chart viewport, which shows the data values of one or more metrics that are
displayed according to the chart type. The type can be a time-series chart that plots
individual data points over a specified time span, or a gauge that shows the current
or most recent value of a metric along with statistics indicating maximum,
minimum, average, and standard deviation values.

• X- and Y-axes for plotting diagnostic data

– For time-series charts, data point plots against a time-based X-axis. You can
zoom in or out to see a larger or smaller time segment in the viewport.

– The Y-axis has a range and, by default, the range is automatically set to include
all the data points in the chart.You can optionally configure minimum and
maximum values for the Y-axis.

• A legend for each metric that includes the name of the metric and the colored
marker symbol that is used for that metric in the chart viewport.

The metric legend includes a button that, when selected, provides access to
operations that can be performed with the metric, such as:

– Changing the name that is displayed for the metric in the chart, as well as the
shape and color used for the metric data points displayed in the chart viewport

– Copying or moving the metric to another chart, moving the legend within the
current chart, or deleting the metric from the chart

The Parts of a Chart

16-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• Chart series overview

The chart series overview, which is available for time-series charts, indicates the
portion of metrics data currently visible in the chart in relation to the whole set of
data that has been collected for the corresponding metrics for the represented
period of time. You can "drag-select" in either the viewport or the chart series
overview to zoom in or out of the chart's data.

The display of the chart series overview can optionally be suppressed, which can
be useful for reducing the number of UI artifacts that are displayed simultaneously
in the Monitoring Dashboard and also improving performance on slower systems
or browsers.

For information about customizing the display settings for the chart series
overview, see Set dashboard preferences in Oracle WebLogic Server Administration
Console Online Help.

• Buttons for panning the and zooming the data displayed on the chart's X-axis.
These buttons are part of the chart series overview, so the display properties set for
the chart series overview also apply to these buttons.

• Optional Y-axis units label

• Chart menu, available by selecting the chart menu button

You can use the chart menu to add metrics, change the chart type, pan and zoom
data shown in the viewport, and set various chart properties.

• Edit tool

Select the edit tool to modify the chart name, Y-axis units label, and names used to
identify each metric added to the chart.

Figure 16-5 shows each of these parts as they appear in a line plot chart.

Figure 16-5 Parts of a Chart

A gauge chart, shown in Figure 16-6, contains the following additional information
about each metric that has been added to it:

• Minimum and maximum values

• Average value

• Standard deviation

The Parts of a Chart

Using the Monitoring Dashboard 16-11

Figure 16-6 Data Values Shown in Gauge Chart Types

To display the numeric values indicated by each of these artifacts associated with a
particular metric in a gauge chart, position the mouse pointer over that metric's
marker symbol, indicated in Figure 16-6 by the label Current value.

For information about how to create, modify, and work with charts in the Monitoring
Dashboard, see the following topics in Oracle WebLogic Server Administration Console
Online Help:

• Work with metrics in charts

• Add charts to a view

• Choose the chart type

• Display summary information about metrics in charts

• Pan and zoom the metrics data shown in a chart

• Reset gauge statistics

• Copy or move charts

• Set chart time range

• Control the Y-axis range

• Display thresholds in charts

The Parts of a Chart

16-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

17
Configuring and Using WLDF

Programmatically

This chapter describes how to enable, configure, and monitor the WebLogic
Diagnostics Framework (WLDF) programmatically, using the JMX API and the
WebLogic Scripting Tool (WLST), as an alternative to performing these tasks using the
WebLogic Server Administration Console

This chapter includes the following sections:

• How WLDF Generates and Retrieves Data

• Mapping WLDF Components to Beans and Packages

• Programming Tools

• WLDF Packages

• Programming WLDF: Examples

In addition to the information provided in those sections, use the information in the
following manuals to develop and deploy applications, and to use WLST:

• Developing Applications for Oracle WebLogic Server

• Developing Manageable Applications Using JMX for Oracle WebLogic Server

• Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

• Deploying Applications to Oracle WebLogic Server

• Understanding the WebLogic Scripting Tool

17.1 How WLDF Generates and Retrieves Data
In general, diagnostic data is generated and retrieved by WLDF components following
this process:

• The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image
Capture, and Watch and Notification components determine the type and amount
of diagnostic data generated while a server is running.

• The diagnostic context and instrumentation settings filter and monitor this data as
it flows through the system. Data is harvested, actions are triggered, events are
generated, and configured notifications are sent.

• The Archive component stores the data.

• The Accessor component retrieves the data.

Configuring and Using WLDF Programmatically 17-1

Configuration is primarily an administrative task, accomplished either through the
WebLogic Server Administration Console or through WLST scripts. Deployable
descriptor modules, XML configuration files, are the primary method for configuring
diagnostic resources at both the system level (servers and clusters) and at the
application level. (For information about configuring WLDF resources, see
Understanding WLDF Configuration .)

Output retrieval via the Accessor component can be either an administrative or a
programmatic task.

17.2 Mapping WLDF Components to Beans and Packages
When you create WLDF resources using the WebLogic Server Administration Console
or WLST, WebLogic Server creates MBeans (managed beans=) for each resource. You
can then access these MBeans using JMX or WLST. Because WLST is a JMX client; any
task you can perform using WLST you can also perform programmatically through
JMX.

Table 17-1 lists the beans and packages associated with WLDF and its components.
Figure 17-1 groups the beans by type.

Table 17-1 Mapping WLDF Components to Beans and Packages

Component Beans / Packages

WLDF WLDFServerDiagnosticMBean

WLDFSystemResourceMBean

WLDFBean (abstract)

WLDFResourceBean

WLDFRuntimeMBean

Diagnostic Image WLDFImageNotificationBean

WLDFImageCreationTaskRuntimeMBean

WLDFImageRuntimeMBean

Instrumentation WLDFInstrumentationBean

WLDFInstrumentationMonitorBean

WLDFInstrumentationRuntimeMBean

Diagnostic Context Package: weblogic.diagnostics.context

DiagnosticContextHelper

DiagnosticContextConstants

Harvester WLDFHarvesterBean

WLDFHarvestedTypeBean

WLDFHarvesterRuntimeMBean

Mapping WLDF Components to Beans and Packages

17-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table 17-1 (Cont.) Mapping WLDF Components to Beans and Packages

Component Beans / Packages

Watch & Notification WLDFNotificationBean

WLDFWatchNotificationBean

WLDFJMSNotificationBean

WLDFJMXNotificationBean

WLDFSMTPNotificationBean

WLDFSNMPNotificationBean

WLDFWatchNotificationRuntimeMBean

Package: weblogic.diagnostics.watch

JMXWatchNotification

WatchNotification

Archive WLDFArchiveRuntimeMBean

WLDFDbstoreArchiveRuntimeMBean

WLDFFileArchiveRuntimeMBean

WLDFWlstoreArchiveRuntimeMBean

Accessor WLDFAccessRuntimeMBean

WLDFDataAccessRuntimeMBean

Runtime Control WLDFControlRuntimeMBean

WLDFSystemResourceControlRuntimeMBean

Mapping WLDF Components to Beans and Packages

Configuring and Using WLDF Programmatically 17-3

Figure 17-1 WLDF Configuration MBeans, Run-Time MBeans, and System Module
Beans

17.3 Programming Tools
The WebLogic Diagnostics Framework enables you to perform the following tasks
programmatically:

• Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Watch and Notification components at the server level.

• Use JMX to access WLDF operations and attributes.

• Use JMX to create custom MBeans that contain harvestable data. You can then
configure the Harvester to collect that data and configure a watches and
notifications to monitor the values.

• Write Java programs that perform the following tasks:

Programming Tools

17-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

– Capture notifications using JMX listeners.

– Capture notifications using JMS.

– Retrieve archived data through the Accessor. (The Accessor, as are the other
components, is surfaced as JMX; you can use WLST or straight JMX
programming to retrieve diagnostic data.)

17.3.1 Configuration and Runtime APIs
The configuration and runtime APIs configure and monitor WLDF. Both the
configuration and runtime APIs are exposed as MBeans.

• The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their runtime behavior.

• The runtime MBeans monitor the runtime state and the operations defined for the
different components.

You can use the APIs to configure, activate, and deactivate data collection; to
configure watches, notifications, alarms, and diagnostic image captures; and to access
data.

17.3.1.1 Configuration APIs

The Configuration APIs define interfaces that are used to configure the following
WLDF components:

• Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

– For the Instrumentation component, you can enable, disable, create, and destroy
server-level instrumentation and instrumentation monitors.

Note:

The configuration APIs do not support configuration of application-level
instrumentation. However, configuration changes for application-level
instrumentation can be effected using Java Specification Request (JSR) 88
APIs.

– For the Harvester component, you can add and remove types to be harvested,
specify which attributes and instances of those types are to be harvested, and set
the sample period for the Harvester.

– For the Diagnostic Image Capture component, you can set the name and path of
the directory in which the image capture is to be stored and the events image
capture interval, that is, the time interval during which recently archived events
are captured in the diagnostic image.

• Watch and Notifications: You can use the configuration APIs to enable, disable,
create, and destroy watches and notifications. You can also use the configuration
APIs to:

– Set the rule type, watch-rule expressions, and severity for watches

– Set alarm type and alarm reset period for notifications

Programming Tools

Configuring and Using WLDF Programmatically 17-5

– Configure a watch to trigger a diagnostic image capture

– Add and remove notifications from watches

• Archive: Set the archive type and the archive directory

17.3.1.2 Runtime APIs

The runtime APIs define interfaces that are used to monitor the runtime state of the
WLDF components. Instances of these APIs are instantiated on instances of
individually managed servers. These APIs are defined as runtime MBeans, so JMX
clients can easily access them.

The runtime APIs encapsulate all other runtime interfaces for the individual WLDF
components. These APIs are included in the weblogic.management.runtime package.

You can use the runtime APIs to monitor the following WLDF components:

• Data Collectors—You can use the runtime APIs to monitor the Instrumentation,
Harvester, and the Image Capture components.

– For the Instrumentation component, you can monitor joinpoint count statistics,
the number of classes inspected for instrumentation monitors, the number of
classes modified, and the time it takes to inspect a class for instrumentation
monitors.

– For the Harvester component, you can query the set of harvestable types,
harvestable attributes, and harvestable instances (that is, the instances that are
currently harvestable for specific types). And, you can also query which types,
attributes, and instances are currently configured for harvesting. The sampling
interval and various runtime statistics pertaining to the harvesting process are
also available.

– For the Image Capture component, you can specify the destination and lockout
period for diagnostic images and initiate image captures.

• Watches and Notifications: You can use the runtime APIs to monitor the Watches
and Notifications and Archive components.

– For the Watches and Notifications component, you can reset watch alarms and
monitor statistics about watch-rule evaluations and watches triggered,
including information about the analysis of alarms, events, log records, and
harvested metrics.

• Archive: You can monitor information about the archive, such as file name and
archive statistics.

• Data Accessor—You can use the runtime APIs to retrieve the diagnostic data
persisted in the different archives. The runtime APIs also support data filtering by
allowing you to specify a query expression to search the data from the underlying
archive. You can monitor information about column type maps (a map relating
column names to the corresponding type names for the diagnostic data), statistics
about data record counts and timestamps, and cursors (cursors are used by clients
to fetch data records).

17.4 WLDF Packages
The following two packages are provided:

WLDF Packages

17-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• weblogic.diagnostics.context contains:

– DiagnosticContextConstants, which defines the indices of dye flags supported
by the WebLogic diagnostics system.

– DiagnosticContextHelper, which provides applications limited access to the
diagnostic context.

• weblogic.diagnostics.watch contains:

– JMXWatchNotification, an extended JMX notification object which includes
additional information about the notification. This information is contained in
the referenced WatchNotification object returned from method
getExtendedInfo.

– WatchNotification, which defines a notification for a watch rule.

17.5 Programming WLDF: Examples
The examples described in the following sections use WLDF beans and packages to
access and modify information about a running server:

• Example: DiagnosticContextExample.java

• Example: HarvesterMonitor.java

• Example: JMXAccessorExample.java

In addition, see the WLST and JMX examples in WebLogic Scripting Tool Examples.

17.5.1 Example: DiagnosticContextExample.java
The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_0 flag. (For
information about diagnostic contexts, see Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts.)

To compile and run the program:

1. Copy the DiagnosticContextExample.java example (Example 17-1) to a directory
and compile it with:

javac -d . DiagnosticContextExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it
with DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java weblogic.diagnostics.examples.DiagnosticContextExample

Sample output is similar to:

java weblogic.diagnostics.examples.DiagnosticContextExample
ContextId=5b7898f93bf010ce:40305614:1048582efd4:-8000-0000000000000001
isDyedWith(DYE_0)=false
isDyedWith(DYE_0)=true

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 17-7

Example 17-1 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
 public static void main(String args[]) throws Exception {
 System.out.println("ContextId=" +
 DiagnosticContextHelper.getContextId());
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 }
}

17.5.2 Example: HarvesterMonitor.java
The HarvesterMonitor program uses the Harvester JMX notification to identify when a
harvest cycle has occurred. It then retrieves the new values using the Accessor. All
access is performed through JMX. A description of notification listeners and the
HarvesterMonitor.java code are provided in the following sections:

• Notification Listeners

• HarvesterMonitor.java

For information about the Harvester component, see Configuring the Harvester for
Metric Collection.

17.5.2.1 Notification Listeners

Notification listeners provide an appropriate implementation for a particular transport
medium. For example, SMTP notification listeners provide the mechanism to establish
an SMTP connection with a mail server and send an e-mail with the notification
instance that it receives. JMX, SNMP, JMS and other types of listeners provide their
respective implementations as well.

Note:

You can develop plug-ins that propagate events generated by the WebLogic
Diagnostics Framework using transport mediums other than SMTP, JMX,
SNMP, or JMS. One approach is to use the JMX NotificationListener interface
to implement an object, and then propagate the notification according to the
requirements of the selected transport medium.

Table 17-2 describes each notification listener type that is provided with WebLogic
Server and the relevant configuration settings for each type.

Programming WLDF: Examples

17-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table 17-2 Notification Listener Types

Notification Medium Description Configuration Parameter
Requirements

JMS Propagated via JMS Message
queues or topics.

Required: Destination JNDI
name.

Optional: Connection factory
JNDI name (use the default
JMS connection factory if not
present).

JMX Propagated via standard JMX
notifications.

None required. Uses
predefined singleton for
posting the event.

SMTP Propagated via regular e-mail. Required: MailSession JNDI
name and Destination e-mail.

Optional: Subject and body (if
not specified, use default)

SNMP Propagated via SNMP traps
and the WebLogic Server
SNMP Agent.

None required, but the
SNMPTrapDestination MBean
must be defined in the
WebLogic SNMP agent.

By default, all notifications fired from watch rules are stored in the server log file in
addition to being fired through the configured medium.

17.5.2.2 HarvesterMonitor.java

To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Example 17-2) to a directory and
compile it with:

javac -d . HarvesterMonitor.java

This will create the ./weblogic/diagnostics/examples directory and populate it
with HarvesterMonitor.class and HarvesterMonitor$HarvestCycleHandler.class.

2. Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]

You will need access to a WebLogic Server instance, and will need to know the
server's name, port number, administrator's login name, and the administrator's
password.

You can provide an optional list of harvested type names. If provided, the program
will display only the values for those types. However, for each selected type, the
monitor displays the complete set of collected values; there is no way to constrain
the values that are displayed for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values
collected solely to support watch rules (implicit values) are not displayed.

The following command requires that '.' is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 17-9

command connects to the myserver server, at port 7001, as user weblogic (and also
the password, shown as password):

java weblogic.diagnostics.examples.HarvesterMonitor myserver 7001
 weblogic password

See Example 17-3 for an example of output from the HarvesterMonitor.

Example 17-2 Example: HarvesterMonitor.java

package weblogic.diagnostics.examples;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
import javax.management.*;
import javax.management.remote.*;
import javax.naming.Context;
import java.util.*;
public class HarvesterMonitor {

 private static String accessorRuntimeMBeanName;
 private static ObjectName accessorRuntimeMBeanObjectName;
 private static String harvRuntimeMBeanName;
 private static ObjectName harvRuntimeMBeanObjectName;
 private static MBeanServerConnection rmbs;
 private static ObjectName getObjectName(String objectNameStr) {
 try { return new ObjectName(getCanonicalName(objectNameStr)); }
 catch (RuntimeException x) { throw x; }
 catch (Exception x) { x.printStackTrace(); throw new
 RuntimeException(x); }
 }
 private static String getCanonicalName(String objectNameStr) {
 try { return new ObjectName(objectNameStr).getCanonicalName(); }
 catch (RuntimeException x) { throw x; }
 catch (Exception x) { x.printStackTrace(); throw new
 RuntimeException(x); }
 }
 private static String serverName;
 private static int port;
 private static String userName;
 private static String password;
 private static ArrayList typesToMonitor = null;
 public static void main(String[] args) throws Exception {
 if (args.length < 4) {
 System.out.println(
 "Usage: java weblogic.diagnostics.harvester.HarvesterMonitor " +
 "<serverName> <port> <userName> <password> [<types>]" +
 weblogic.utils.PlatformConstants.EOL +
 " where <types> (optional) is a comma-separated list " +
 "of types to monitor.");
 System.exit(1);
 }
 serverName = args[0];
 port = Integer.parseInt(args[1]);
 userName = args[2];
 password = args[3];
 accessorRuntimeMBeanName = getCanonicalName(
 "com.bea:ServerRuntime=" + serverName +
 ",Name=HarvestedDataArchive,Type=WLDFDataAccessRuntime" +
 ",WLDFAccessRuntime=Accessor,WLDFRuntime=WLDFRuntime");
 accessorRuntimeMBeanObjectName =
 getObjectName(accessorRuntimeMBeanName);
 harvRuntimeMBeanName = getCanonicalName(

Programming WLDF: Examples

17-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 "com.bea:ServerRuntime=" + serverName +
 ",Name=WLDFHarvesterRuntime,Type=WLDFHarvesterRuntime" +
 ",WLDFRuntime=WLDFRuntime");
 harvRuntimeMBeanObjectName = getObjectName(harvRuntimeMBeanName);
 if (args.length > 4) {
 String typesStr = args[4];
 typesToMonitor = new ArrayList();
 int index;
 while ((index = typesStr.indexOf(",")) > 0) {
 String typeName = typesStr.substring(0,index).trim();
 typesToMonitor.add(typeName);
 typesStr = typesStr.substring(index+1);
 }
 typesToMonitor.add(typesStr.trim());
 }
 rmbs = getRuntimeMBeanServerConnection();
 new HarvesterMonitor().new HarvestCycleHandler();
 while(true) {Thread.sleep(100000);}
 }
 static protected String JNDI = "/jndi/";
 static public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3",
 "localhost",
 port,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("ServerName=" + serverName);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, userName);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 class HarvestCycleHandler implements NotificationListener {
 // used to track harvest cycles
 private int timestampIndex;
 private int domainIndex;
 private int serverIndex;
 private int typeIndex;
 private int instNameIndex;
 private int attrNameIndex;
 private int attrTypeIndex;
 private int attrValueIndex;
 long lastSampleTime = System.currentTimeMillis();
 HarvestCycleHandler() throws Exception{
 System.out.println("Harvester monitor started...");
 try {
 setUpRecordIndices();
 rmbs.addNotificationListener(harvRuntimeMBeanObjectName,
 this, null, null);
 }
 catch (javax.management.InstanceNotFoundException x) {
 System.out.println("Cannot find JMX data. " +
 "Is the server name correct?");
 System.exit(1);
 }

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 17-11

 }
 private void setUpRecordIndices() throws Exception {
 Map columnIndexMap = (Map)rmbs.getAttribute(
 accessorRuntimeMBeanObjectName, "ColumnIndexMap");
 timestampIndex =
((Integer)columnIndexMap.get("TIMESTAMP")).intValue();
 domainIndex =
 ((Integer)columnIndexMap.get("DOMAIN")).intValue();
 serverIndex =
 ((Integer)columnIndexMap.get("SERVER")).intValue();
 typeIndex =
 ((Integer)columnIndexMap.get("TYPE")).intValue();
 instNameIndex =
 ((Integer)columnIndexMap.get("NAME")).intValue();
 attrNameIndex =
 ((Integer)columnIndexMap.get("ATTRNAME")).intValue();
 attrTypeIndex =
 ((Integer)columnIndexMap.get("ATTRTYPE")).intValue();
 attrValueIndex =
((Integer)columnIndexMap.get("ATTRVALUE")).intValue();
 }
 public synchronized void handleNotification(Notification notification,
 Object handback) {
 System.out.println("\n--");
 long thisSampleTime = System.currentTimeMillis()+1;
 try {
 String lastTypeName = null;
 String lastInstName = null;
 String cursor = (String)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "openCursor",
 new Object[]{new Long(lastSampleTime),
 new Long(thisSampleTime), null},
 new String[]{ "java.lang.Long",
 "java.lang.Long", "java.lang.String" });
 while (((Boolean)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "hasMoreData",
 new Object[]{cursor},
 new String[]{"java.lang.String"})).booleanValue()) {
 Object[] os = (Object[])rmbs.invoke(accessorRuntimeMBeanObjectName,
 "fetch",
 new Object[]{cursor},
 new String[]{"java.lang.String"});
 for (int i = 0; i < os.length; i++) {
 Object[] values = (Object[])os[i];
 String typeName = (String)values[typeIndex];
 String instName = (String)values[instNameIndex];
 String attrName = (String)values[attrNameIndex];
 if (!typeName.equals(lastTypeName)) {
 if (typesToMonitor != null &&
 !typesToMonitor.contains(typeName)) continue;
 System.out.println("\nType " + typeName);
 lastTypeName = typeName;
 }
 if (!instName.equals(lastInstName)) {
 System.out.println("\n Instance " + instName);
 lastInstName = instName;
 }
 Object attrValue = values[attrValueIndex];
 System.out.println(" - " + attrName + "=" + attrValue);
 }
 }

Programming WLDF: Examples

17-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 lastSampleTime = thisSampleTime;
 }
 catch (Exception e) {e.printStackTrace();}
 }
 }
}

Example 17-3 contains sample output from the HarvesterMonitor program:

Example 17-3 Sample Output from HarvesterMonitor

ServerName=myserver
URL=service:jmx:t3://localhost:7001/jndi/weblogic.management.mbeanservers.runtime
Harvester monitor started...
--
Type weblogic.management.runtime.WLDFHarvesterRuntimeMBean
Instance
com.bea:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=WLDFHarvesterRuntime,WL
DFRuntime=WLDFRuntime
 - TotalSamplingTime=202048863
 - CurrentSnapshotElapsedTime=1839619
Type weblogic.management.runtime.ServerRuntimeMBean
 Instance com.bea:Name=myserver,Type=ServerRuntime
 - RestartRequired=false
 - ListenPortEnabled=true
 - ActivationTime=1118319317071
 - ServerStartupTime=40671
 - ServerClasspath= [deleted long classpath listing]
 - CurrentMachine=
 - SocketsOpenedTotalCount=1
 - State=RUNNING
 - RestartsTotalCount=0
 - AdminServer=true
 - AdminServerListenPort=7001
 - ClusterMaster=false
 - StateVal=2
 - CurrentDirectory=C:\testdomain\.
 - AdminServerHost=10.40.8.123
 - OpenSocketsCurrentCount=1
 - ShuttingDown=false
 - SSLListenPortEnabled=false
 - AdministrationPortEnabled=false
 - AdminServerListenPortSecure=false
 - Registered=true

17.5.3 Example: JMXAccessorExample.java
The following example program uses JMX to print log entries to standard out. All
access is performed through JMX. (For information about the Accessor component, see
Accessing Diagnostic Data With the Data Accessor.)

To compile and run the program:

1. Copy the JMXAccessorExample.java example (Example 17-4) to a directory and
compile it with:

javac -d . JMXAccessorExample.java

This creates the ./weblogic/diagnostics/examples directory and populates
it with JMXAccessorExample.class.

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 17-13

2. Start the program. The command syntax is:

java weblogic.diagnostics.example.JMXAccessor <logicalName> <query>

You need access to a WebLogic Server instance, and have the server's name, port
number, administrator's login name, and the administrator's password.

The logicalName is the name of the log. Valid names are:
HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog,
HTTPAccessLog, ServletAccessorHelper.WEBAPP_LOG,
RAUtil.CONNECTOR_LOG, JMSMessageLog, and CUSTOM.

Construct the query using the syntax described in WLDF Query Language. For the
JMXAccessorExample program, an empty query (an empty pair of double
quotation marks, "") returns all entries in the log.

The following command requires that '.' is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The
program uses the IIOP (Internet Inter-ORB Protocol) protocol to connect to port
7001, as user weblogic, with a password shown as password, and prints all entries
in the ServerLog to standard out:

java weblogic.diagnostics.examples.JMXAccessorExample ServerLog ""

You can modify the example to use a username/password combination for your
site.

Example 17-4 JMXAccessorExample.java

package weblogic.diagnostics.examples;
import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;
import java.util.Iterator;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;
public class JMXAccessorExample {
 private static final String JNDI = "/jndi/";
 public static void main(String[] args) {
 try {
 if (args.length != 2) {
 System.err.println("Incorrect invocation. Correct usage is:\n" +
 "java weblogic.diagnostics.examples.JMXAccessorExample " +
 "<logicalName> <query>");
 System.exit(1);
 }
 String logicalName = args[0];
 String query = args[1];
 MBeanServerConnection mbeanServerConnection =
 lookupMBeanServerConnection();
 ObjectName service = new

ObjectName(weblogic.management.mbeanservers.runtime.RuntimeServiceMBean.OBJECT_NAME);
 ObjectName serverRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(service,
 "ServerRuntime");

Programming WLDF: Examples

17-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 ObjectName wldfRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(serverRuntime,
 "WLDFRuntime");
 ObjectName wldfAccessRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(wldfRuntime,
 "WLDFAccessRuntime");
 ObjectName wldfDataAccessRuntime =
 (ObjectName) mbeanServerConnection.invoke(wldfAccessRuntime,
 "lookupWLDFDataAccessRuntime", new Object[] {logicalName},
 new String[] {"java.lang.String"});
 String cursor =
 (String) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "openCursor", new Object[] {query},
 new String[] {"java.lang.String"});
 int fetchedCount = 0;
 do {
 Object[] rows =
 (Object[]) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "fetch", new Object[] {cursor},
 new String[] {"java.lang.String"});
 fetchedCount = rows.length;
 for (int i=0; i<rows.length; i++) {
 StringBuffer sb = new StringBuffer();
 Object[] cols = (Object[]) rows[i];
 for (int j=0; j<cols.length; j++) {
 sb.append("Index " + j + "=" + cols[j].toString() + " ");
 }
 System.out.println("Found row = " + sb.toString());
 }
 } while (fetchedCount > 0);
 mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "closeCursor", new Object[] {cursor},
 new String[] {"java.lang.String"});
 } catch(Throwable th) {
 th.printStackTrace();
 System.exit(1);
 }
 }
 private static MBeanServerConnection lookupMBeanServerConnection ()
 throws Exception {
 // construct JMX service URL
 JMXServiceURL serviceURL;
 serviceURL = new JMXServiceURL("iiop", "localhost", 7001,
 JNDI + "weblogic.management.mbeanservers.runtime");
 // Specify the user, password, and WebLogic provider package
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 h.put(Context.SECURITY_CREDENTIALS,"password");
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 // Get jmx connector
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 // return MBean server connection class
 return connector.getMBeanServerConnection();
 } // End - lookupMBeanServerConnection
}

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 17-15

Programming WLDF: Examples

17-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

A
WLDF Query Language

This appendix describes the WLDF query language. WLDF includes a query language
for constructing watch rule expressions, Data Accessor query expressions, and log
filter expressions. The syntax is a small and simplified subset of SQL syntax.

This appendix includes the following sections:

• Components of a Query Expression

• Supported Operators

• Operator Precedence

• Numeric Relational Operations Supported on String Column Types

• Supported Numeric Constants and String Literals

• About Variables in Expressions

• Creating Watch Rule Expressions

• Creating Data Accessor Queries

• Creating Log Filter Expressions

• Building Complex Expressions

A.1 Components of a Query Expression
A query expression may include:

• Operators. (See Supported Operators.)

• Literals. (See Supported Numeric Constants and String Literals.)

• Variables. The supported variables differ for each type of expression. (See About
Variables in Expressions.)

The query language is case-sensitive.

A.2 Supported Operators
The query language supports the operators listed in Table A-1.

WLDF Query Language A-1

Table A-1 WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

AND Logical binary Boolean Evaluates to true when both
expressions are true.

OR Logical binary Boolean Evaluates to true when either
expression is true.

NOT Logical unary Boolean Evaluates to true when the
expression is not true.

& Bitwise binary Numeric,

Dye flag

Performs the bitwise AND
function on each parallel pair
of bits in each operand. If both
operand bits are 1, the &
function sets the resulting bit
to 1. Otherwise, the resulting
bit is set to 0.

Examples of both the & and
the | operators are:

1010 & 0010 = 0010

1010 | 0001 = 1011

(1010 & (1100 | 1101)) = 1000

| Bitwise binary Numeric,

Dye flag

Performs the bitwise OR
function on each parallel pair
of bits in each operand. If either
operand bit is 1, the | function
sets the resulting bit to 1.
Otherwise, the resulting bit is
set to 0.

For examples, see the entry for
the bitwise & operator, above.

= Relational Numeric, String Equals

!= Relational Numeric Not equals

< Relational Numeric Less than

> Relational Numeric Greater than

<= Relational Numeric Less than or equals

>= Relational Numeric Greater than or equals

Supported Operators

A-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table A-1 (Cont.) WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

LIKE Match String Evaluates to true when a
character string matches a
specified pattern that can
include wildcards.

LIKE supports two wildcard
characters:

A percent sign (%) matches
any string of zero or more
characters

A period (.) matches any single
character

MATCHES Match String Evaluates to true when a target
string matches the regular
expression pattern in the
operand String.

IN Search String Evaluates to true when the
value of a variable exists in a
predefined set, for example:

SUBSYSTEM IN ('A','B')

A.3 Operator Precedence
The following list shows the levels of precedence among operators, from the highest
precedence to the lowest. Operators listed on the same line have equivalent
precedence:

1. ()

2. NOT

3. &, |

4. =, !=, <, >, <=, >=, LIKE, MATCHES,IN

5. AND

6. OR

A.4 Numeric Relational Operations Supported on String Column Types
Numeric relational operations can be performed on String column types when they
hold numeric values. For example, if STATUS is a String type, while performing
relational operations with a numeric operand, the column value is treated as a
numeric value. For instance, in the following comparisons:

STATUS = 100

STATUS != 100

STATUS < 100

Operator Precedence

WLDF Query Language A-3

STATUS <= 100

STATUS > 100

STATUS >= 100

the query evaluator attempts to convert the string value to appropriate numeric value
before comparison. When the string value cannot be converted to a numeric value, the
query fails.

A.5 Supported Numeric Constants and String Literals
Rules for numeric constants are as follows:

• Numeric literals can be integers or floating point numbers.

• Numeric literals are specified the same as in Java. Some examples of numeric
literals are 2, 2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

Rules for string literals are as follows:

• String literals must be enclosed in single quotes.

• A percent character (%) can be used as a wildcard inside string literals.

• An underscore character (_) can be used as a wildcard to stand for any single
character.

• A backslash character (\) can be used to escape special characters, such as a quote
(') or a percent character (%).

• For watch rule expressions, you can use comparison operators to specify threshold
values for String, Integer, Long, Double, Boolean literals.

• The relational operators do a lexical comparison for Strings. For more information,
see the documentation for the java.lang.String.compareTo(String str) method.

A.6 About Variables in Expressions
Variables represent the dynamic portion of a query expression that is evaluated at run
time. You must use variables that are appropriate for the type of expression you are
constructing, as documented in the following sections:

• Creating Policy Expressions

• Creating Data Accessor Queries

• Creating Log Filter Expressions

Supported Numeric Constants and String Literals

A-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Note:

When specifying a wildcard pattern in a variable for a policy expression that
matches custom MBean ObjectName instances, make sure the pattern is
sufficiently explicit. If you exclude an MBean type name and use an
ambiguous instance pattern, the following may result:

• Only WebLogic Server runtime MBean instances are matched to the
pattern.

• The desired custom MBean instances are ignored.

For example, the following ObjectName pattern does not explicitly declare a
type and uses an ambiguous ObjectName pattern that can match a WebLogic
Server runtime MBean instance:

${ServerRuntime//com.b*:Type=Server*,*}

The preceding pattern matches the WebLogic Server runtime MBean
instances, and causes any custom MBeans matching the same pattern to be
ignored.

A.7 Creating Watch Rule Expressions
You can create watches based on log events, instrumentation events, and harvested
attributes. The variables supported for creating the expressions are different for each
type of watch, as described in the following sections:

• Creating Log Event Watch Rule Expressions

• Creating Instrumentation Event Watch Rule Expressions

• Creating Harvester Watch Rule Expressions

For complete documentation about configuring and using WLDF watches, see:

• Configuring Watches and Notifications

• Configuring Watches

A.7.1 Creating Log Event Watch Rule Expressions
A log event watch rule expression is based upon the attributes of a log message from
the server log.

Variable names for log message attributes are listed and explained in Table A-2:

Table A-2 Variable Names for Log Event Watch Rule Expressions

Variable Description Data Type

CONTEXTID The request ID propagated with the request. String

DATE Date when the message was created. String

MACHINE Name of machine that generated the log
message.

String

Creating Watch Rule Expressions

WLDF Query Language A-5

Table A-2 (Cont.) Variable Names for Log Event Watch Rule Expressions

Variable Description Data Type

MESSAGE Message content of the log message. String

MSGID ID of the log message (usually starts with
"BEA=").

String

RECORDID The number of the record in the log. Long

SERVER Name of server that generated the log
message.

String

SEVERITY Severity of log message. Values are Info,
Notice, Warning, Error, Critical,
Alert, and Emergency.

String

SUBSYTEM Name of subsystem emitting the log message. String

THREAD Name of thread that generated the log
message.

String

TIMESTAMP Timestamp when the log message was
created.

Long

TXID JTA transaction ID of thread that generated
the log message.

String

USERID ID of the user that generated the log message. String

An example log event watch rule expression is:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

A.7.2 Creating Instrumentation Event Watch Rule Expressions
An instrumentation event watch rule expression is based upon attributes of a data
record created by a diagnostic monitor action.

Variable names for instrumentation data record attributes are listed and explained in
Table A-3:

Table A-3 Variable Names for Instrumentation Event Rule Expressions

Variable Description Data Type

ARGUMENTS Arguments passed to the method that was
invoked.

String

CLASSNAME Class name of joinpoint. String

CONTEXTID Diagnostic context ID of instrumentation
event.

String

CTXPAYLOAD The context payload associated with this
request.

String

DOMAIN Name of domain. String

Creating Watch Rule Expressions

A-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table A-3 (Cont.) Variable Names for Instrumentation Event Rule Expressions

Variable Description Data Type

DYES Dyes associated with this request. Long

FILENAME Source file name. String

LINENUM Line number in source file. Integer

METHODNAME Method name of joinpoint. String

METHODDSC Method arguments of joinpoint. String

MODULE Name of the diagnostic module. String

MONITOR Name of the monitor. String

PAYLOAD Payload of instrumentation event. String

RECORDID The number of the record in the log. Long

RETVAL Return value of joinpoint. String

SCOPE Name of instrumentation scope. String

SERVER Name of server that created the
instrumentation event.

String

TIMESTAMP Timestamp when the instrumentation event
was created.

Long

TXID JTA transaction ID of thread that created the
instrumentation event.

String

TYPE Type of monitor. String

USERID ID of the user that created the
instrumentation event.

String

An example instrumentation event data rule expression is:

 (USERID = 'weblogic')

A.7.3 Creating Harvester Watch Rule Expressions
A Harvester watch rule expression is based upon one or more harvestable MBean
attributes. The expression can specify an MBean type, an instance, an attribute, or an
instance and an attribute.

Instance-based and type-based expressions can contain an optional namespace
component, which is the namespace of the metric being watched. It can be set to either
Server Runtime or DomainRuntime. If omitted, it defaults to ServerRuntime.

If included and set to DomainRuntime, you should limit the usage to monitoring only
DomainRuntime-specific MBeans, such as the ServerLifeCycleRuntimeMBean.
Monitoring remote managed server MBeans through the DomainRuntime
MBeanServer is possible, but is discouraged for performance reasons. It is a best
practice to use the resident watcher in each managed server to monitor metrics related
to that managed server instance.

Creating Watch Rule Expressions

WLDF Query Language A-7

You can also use wildcards in instance names in Harvester watch rule expressions, as
well as specify complex attributes in Harvester watch rule expressions. See Using
Wildcards in Expressions.

The syntax for constructing a Harvester watch rule expression is as follows:

• To specify an attribute of all instances of a type, use the following syntax:

 ${namespace//[type_name]//attribute_name}

• To specify an attribute of an instance of a WebLogic type, use the following syntax:

 ${com.bea:namespace//instance_name//attribute_name}

• To specify an attribute of an instance of a custom MBean type, use the following
syntax:

 ${domain_name:instance_name//attribute_name}

Note:

The domain_name is not required for a WebLogic Server domain name.

The expression must include the complete MBean object name, as shown in the
following example:

${com.bea:Name=HarvesterRuntime,Location=myserver,Type=HarvesterRuntime,
 ServerRuntime=myserver//TotalSamplingCycles} > 10

A.8 Creating Data Accessor Queries
Use the WLDF query language with the Data Accessor component to retrieve data
from data stores, including server logs, HTTP logs, and harvested metrics. The
variables used to build a Data Accessor query are based on the column names in the
data store from which you want to extract data.

A Data Accessor query contains the following:

• The logical name of a data store, as described in Data Store Logical Names.

• Optionally, the name(s) of one or more columns from which to retrieve data, as
described in Data Store Column Names.

When there is a match, all columns of matching rows are returned.

A.8.1 Data Store Logical Names
The logical name for a data store must be unique. It denotes a specific data store
available on the server. The logical name consists of a log type keyword followed by
zero or more identifiers separated by the forward-slash (/) delimiter. For example, the
logical name of the server log data store is simply ServerLog. However, other log
types may require additional identifiers, as shown in Table A-4.

Creating Data Accessor Queries

A-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table A-4 Naming Conventions for Log Types

Log Type Optional
Identifiers

Example

ConnectorLog The JNDI name
of the
connection
factory

ConnectorLog/eis/
900eisaBlackBoxXATxConnectorJNDINAME

In this example, eis/
900eisaBlackBoxXATxConnectorJNDINA
ME is the JNDI name of the connection factory
specified in the weblogic-ra.xml
deployment descriptor.

DataSourceLog None DataSourceLog

DomainLog None
DomainLog

EventsDataArchive None
EventsDataArchive

HarvestedDataArchive None
HarvestedDataArchive

HTTPAccessLog Virtual host
name

HTTPAccessLog — For the default web
server's access log.

HTTPAccessLog/MyVirtualHost — For
the Virtual host named MyVirtualHost
deployed to the current server.

Note: In the case of HTTPAccessLog logs with
extended format, the number of columns are
user-defined.

JMSMessageLog The name of
the JMS Server. JMSMessageLog/MyJMSServer

JMSSAFMessageLog The name of
the SAF agent.

JMSSAFMessageLog/MySAFAgent

ServerLog None
ServerLog

WebAppLog Web server
name + Root
servlet context
name

WebAppLog/MyWebServer/
MyRootServletContext

A.8.2 Data Store Column Names
The column names included in a query are resolved for each row of data. A row is
added to the result set only if it satisfies the query conditions for all specified columns.
A query that omits column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table A-5.

Creating Data Accessor Queries

WLDF Query Language A-9

Table A-5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

DataSourceLog RECORDID, DATASOURCE, PROFILETYPE, TIMESTAMP,
USER, PROFILEINFORMATION

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID,
RECORDID, SERVER, SEVERITY, SUBSYSTEM, THREAD,
TIMESTAMP, TXID, USERID

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD,
DOMAIN, DYES, FILENAME, LINENUM, METHODNAME,
METHODDSC, MODULE, MONITOR, PAYLOAD, RECORDID,
RETVAL, SCOPE, SERVER, THREADNAME, TIMESTAMP,
TXID, TYPE, USERID

HarvestedDataArchive ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME,
RECORDID, SERVER, TIMESTAMP, TYPE, WLDFMODULE

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID,
REMOTEUSER, REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessageLog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, JMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

JMSSAFMessageLog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, JMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

An example of a Data Accessor query is:

(SUBSYSTEM = 'Deployer') AND (MESSAGE LIKE '%Failed%')

In this example, the Accessor retrieves all messages that include the string "Failed"
from the Deployer subsystem.

The following example shows an API method invocation. It includes a query for
harvested attributes of the JDBC connection pool named MyPool, within an interval
between a timeStampFrom (inclusive) and a timeStampTo (exclusive):

 WLDFDataAccessRuntimeMBean.retrieveDataRecords(timeStampFrom,
 timeStampTo, "TYPE='JDBCConnectionPoolRuntime' AND NAME='MyPool'")

For complete documentation about the WLDF Data Accessor, see Accessing
Diagnostic Data With the Data Accessor.

Creating Data Accessor Queries

A-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

A.9 Creating Log Filter Expressions
The query language can be used to filter what is written to the server log. The
variables used to construct a log filter expression represent the columns in the log are:

• CONTEXTID

• DATE

• MACHINE

• MESSAGE

• MSGID

• RECORDID

• SEVERITY

• SUBSYSTEM

• SERVER

• THREAD

• TIMESTAMP

• TXID

• USERID

Note:

These are the same variables that you use to build a Data Accessor query for
retrieving historical diagnostic data from existing server logs.

For complete documentation about the WebLogic Server logging services, see Filtering
WebLogic Server Log Messages in Configuring Log Files and Filtering Log Messages for
Oracle WebLogic Server.

A.10 Building Complex Expressions
You can build complex query expressions using subexpressions containing variables,
binary comparisons, and other complex subexpressions. There is no limit on levels of
nesting. The following rules apply:

• Nest queries by surrounding subexpressions within parentheses, for example:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

• Enclose a variable name within ${} if it includes special characters, as in an MBean
object name. For example:

${mydomain:Name=myserver,
 Type=ServerRuntime//SocketsOpenedTotalCount} >= 1

Notice that the object name and the attribute name are separated by consecutive
forward slashes (//) in the watch variable name.

Creating Log Filter Expressions

WLDF Query Language A-11

Building Complex Expressions

A-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

B
WLDF Instrumentation Library

This appendix outlines the WebLogic Diagnostics Framework Instrumentation Library
which contains diagnostic monitors and diagnostic actions.

This appendix includes the following sections:

• Diagnostic Monitor Library

• Diagnostic Action Library

For information about using items from the Instrumentation Library, see Configuring
Instrumentation.

B.1 Diagnostic Monitor Library
Diagnostic monitors are broadly classified as server-scoped and application-scoped
monitors. The former can be used to instrument WebLogic Server classes. You use the
latter to instrument application classes. Except for the DyeInjection monitor, all
monitors are delegating monitors; that is, they do not have a built-in diagnostic action.
Instead, they delegate to actions attached to them to perform diagnostic activity.

All monitors are preconfigured with their respective pointcuts. However, the actual
locations affected by them may vary depending on the classes they instrument. For
example, the Servlet_Before_Service monitor adds diagnostic code at the entry of
servlet or java server page (JSP) service methods at different locations in different
servlet implementations.

For any delegating monitor, only compatible actions may be attached. The
compatibility is determined by the nature of the monitor.

The following table lists and describes the diagnostic monitors that can be used within
server scope; that is, in WebLogic Server classes. For the diagnostic actions that are
compatible with each monitor, see the Compatible Action Type column in Table B-1.

Table B-1 Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Connector_Before_Inbound Before Stateless At entry of methods handling
inbound connections.

Connector_After_Inbound Server Stateless At exit of methods handling inbound
connections.

Connector_Around_Inbound Around Around At entry and exit of methods
handling inbound connections.

WLDF Instrumentation Library B-1

Table B-1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Connector_Before_Outbound Before Stateless At entry of methods handling
outbound connections.

Connector_After_Outbound After Stateless At exit of methods handling
outbound connections.

Connector_Around_Outbound Around Around At entry and exit of methods
handling outbound connections.

Connector_Before_Tx Before Stateless Entry of transaction register,
unregister, start, rollback and commit
methods.

Connector_After_Tx After Stateless At exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Around_Tx Around Around At entry and exit of transaction
register, unregister, start, rollback and
commit methods.

Connector_Before_Work Before Stateless At entry of methods related to
scheduling, starting and executing
connector work items.

Connector_After_Work After Stateless At exit of methods related to
scheduling, starting and executing
connector work items.

Connector_Around_Work Around Around At entry and exit of methods related
to scheduling, starting and executing
connector work items.

DyeInjection Before Built-in At points where requests enter the
server.

JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Connection_

Internal

Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

JDBC_After_Connection_ Internal Before Stateless JDBC subsystem internal code

JDBC_Before_Rollback_ Internal Before Stateless JDBC subsystem internal code

JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Start_Internal After Stateless JDBC subsystem internal code

Diagnostic Monitor Library

B-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table B-1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JDBC_Before_Statement_

Internal

Before Stateless JDBC subsystem internal code

JDBC_After_Statement_

Internal

After Stateless JDBC subsystem internal code

JDBC_After_Reserve_Connection_Internal After Stateless After a JDBC connection is reserved
from the connection pool.

JDBC_After_Release_Connection_Internal After Stateless After a JDBC connection is released
back to the connection pool.

Table B-2 lists the diagnostic monitors that can be used within application scopes; that
is, in deployed applications. The Compatible Action Type column identifies the
diagnostic action type that is compatible with each monitor.

Table B-2 Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_After_EntityEjbBusiness Methods After Stateless At exits of all EntityBean methods,
which are not standard ejb methods.

EJB_Around_EntityEjbBusinessMethods Around Around At entry and exits of all EntityBean
methods that are not standard ejb
methods.

EJB_After_EntityEjbMethods After Stateless At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Around_EntityEjbMethods Around Around At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

Diagnostic Monitor Library

WLDF Instrumentation Library B-3

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_After_EntityEjbSemantic Methods After Stateless At exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Around_EntityEjbSemanticMethods Around Around At entry and exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_After_SessionEjbMethods After Stateless At exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_Around_SessionEjbMethods Around Around At entry and exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_After_SessionEjbBusinessMethods After Stateless At exits of all SessionBean methods,
which are not standard ejb methods.

EJB_Around_SessionEjb

BusinessMethods

Around Around At entry and exits of all SessionBean
methods, which are not standard ejb
methods.

EJB_After_SessionEjbSemanticMethods After Stateless At exits of methods:

SessionBean.ejbCreateSessionBean.ejb
PostCreate

EJB_Around_SessionEjb

SemanticMethods

Around Around At entry and exits of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

EJB_Before_EntityEjbBusinessMethods Before Stateless At entry of all EntityBean methods,
which are not standard ejb methods.

Diagnostic Monitor Library

B-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Before_EntityEjbMethods Before Stateless At entry of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Before_EntityEjbSemanticMethods Before Stateless At entry of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Before_SessionEjb

BusinessMethods

Before Stateless At entry of all SessionBean methods,
which are not standard ejb methods.

EJB_Before_SessionEjbMethods Before Stateless At entry of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_Before_SessionEjb

SemanticMethods

Before Stateless At entry of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

HttpSessionDebug Around Built-in getSession - Inspects returned HTTP
session

Before and after calls to methods:

getAttribute

setAttribute

removeAttribute

At inspection points, the approximate
session size is computed and stored
as the payload of a generated event.
The size is computed by flattening the
session to a byte-array. If an error is
encountered while flattening the
session, a negative size is reported.

JDBC_Before_CloseConnection Before Stateless Before calls to methods:

Connection.close

Diagnostic Monitor Library

WLDF Instrumentation Library B-5

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JDBC_After_CloseConnection After Stateless After calls to methods:

Connection.close

JDBC_Around_CloseConnection Around Around Before and after calls to methods:

Connection.close

JDBC_Before_CommitRollback Before Stateless Before calls to methods:

Connection.commit

Connection.rollback

JDBC_After_CommitRollback After Stateless After calls to methods:

Connection.commit

Connection.rollback

JDBC_Around_CommitRollback Around Around Before and after calls to methods:

Connection.commit

Connection.rollback

JDBC_Before_Execute Before Stateless Before calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_After_Execute After Stateless After calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_Around_Execute Around Around Before and after calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_Before_GetConnection Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

JDBC_After_GetConnection After Stateless After calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Around_GetConnection Around Around Before and after calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Before_Statement Before Stateless Before calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

Diagnostic Monitor Library

B-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JDBC_After_Statement After Stateless After calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JDBC_Around_Statement Around Around Before and after calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JMS_Before_AsyncMessage

Received

Before Stateless At entry of methods:

MessageListener.onMessage

JMS_After_AsyncMessage

Received

After Stateless At exits of methods:

MessageListener.onMessage

JMS_Around_AsyncMessage

Received

Around Around At entry and exits of methods:

MessageListener.onMessage

JMS_Before_MessageSent Before Stateless Before call to methods:

QueSender send

JMS_After_MessageSent After Stateless After call to methods:

QueSender send

JMS_Around_MessageSent Around Around Before and after call to methods:

QueSender send

JMS_Before_SyncMessage

Received

Before Stateless Before calls to methods:

MessageConsumer.receive*

JMS_After_SyncMessage

Received

After Stateless After calls to methods:

MessageConsumer.receive*

JMS_Around_SyncMessage

Received

Around Around Before and after calls to methods:

MessageConsumer.receive*

JMS_Before_TopicPublished Before Stateless Before call to methods:

TopicPublisher.publish

JMS_After_TopicPublished After Stateless After call to methods:

TopicPublisher.publish

JMS_Around_TopicPublished Around Around Before and after call to methods:

TopicPublisher.publish

Diagnostic Monitor Library

WLDF Instrumentation Library B-7

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context
lookup methods

Context.lookup*

JNDI_After_Lookup After Stateless After calls to javax.naming.Context
lookup methods:

Context.lookup*

JNDI_Around_Lookup Around Around Before and after calls to
javax.naming.Context lookup
methods

Context.lookup*

JTA_Before_Commit Before Stateless At entry of methods:

UserTransaction.commit

JTA_After_Commit After Stateless
advice

At exits of methods:

UserTransaction.commit

JTA_Around_Commit Around Around At entry and exits of methods:

UserTransaction.commit

JTA_Before_Rollback Before Stateless At entry of methods:

UserTransaction.rollback

JTA_After_Rollback After Stateless
advice

At exits of methods:

UserTransaction.rollback

JTA_Around_Rollback Around Around At entry and exits of methods:

UserTransaction.rollback

JTA_Before_Start Before Stateless At entry of methods:

UserTransaction.begin

JTA_After_Start After Stateless
advice

At exits of methods:

UserTransaction.begin

JTA_Around_Start Around Around At entry and exits of methods:

UserTransaction.begin

MDB_Before_MessageReceived Before Stateless At entry of methods:

MessageDrivenBean.onMessage

MDB_After_MessageReceived After Stateless At exits of methods:

MessageDrivenBean.onMessage

MDB_Around_MessageReceived Around Around At entry and exits of methods:

MessageDrivenBean.onMessage

Diagnostic Monitor Library

B-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

MDB_Before_Remove Before Stateless At entry of methods:

MessageDrivenBean.ejbRemove

MDB_After_Remove After Stateless At exits of methods:

MessageDrivenBean.ejbRemove

MDB_Around_Remove Around Around At entry and exits of methods:

MessageDrivenBean.ejbRemove

MDB_Before_SetMessageDriven

Context

Before Stateless At entry of methods:

MessageDrivenBean.setMessage

DrivenContext

MDB_After_SetMessageDriven

Context

After Stateless At exits of methods:

MessageDrivenBean.setMessageDrive
nContext

MDB_Around_SetMessageDriven

Context

Around Around At entry and exits of methods:

MessageDrivenBean.setMessageDrive
nContext

Servlet_Before_Service Before Stateless At method entries of servlet/jsp
methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_After_Service After Stateless At method exits of servlet/jsp
methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_Around_Service Around Around At method entry and exits of
servlet/jsp methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Diagnostic Monitor Library

WLDF Instrumentation Library B-9

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Servlet_Before_Session Before Stateless Before calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_Around_Session Around Around Before and after calls to servlet
methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_After_Session After Stateless After calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_Before_Tags Before Stateless Before calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_After_Tags After Stateless After calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_Around_Tags Around Around Before and after calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

B.2 Diagnostic Action Library
The Diagnostic Action Library includes the following actions:

Diagnostic Action Library

B-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• TraceAction

• DisplayArgumentsAction

• TraceElapsedTimeAction

• TraceMemoryAllocationAction

• StackDumpAction

• ThreadDumpAction

• MethodInvocationStatisticsAction

• MemoryAllocationStatisticsAction

These diagnostic actions can be used with the delegating monitors described in the
previous tables. They can also be used with custom monitors that you can define and
use within applications. Each diagnostic action can only be used with monitors with
which they are compatible, as indicated by the Compatible Monitor Type column.
Some actions (for example, TraceElapsedTimeAction) generate an event payload.

B.2.1 TraceAction
TraceAction is a stateless action that is compatible with Before and After monitor
types.

TraceAction generates a trace event at the affected location in the program execution.
The following information is generated:

• Timestamp

• Context identifier from the diagnostic context which uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, TraceAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. The location information
includes:

– Class name

– Method name

– Method signature

– Line number

– Thread name

Diagnostic Action Library

WLDF Instrumentation Library B-11

• Payload carried by the diagnostic context, if any

B.2.2 DisplayArgumentsAction
DisplayArgumentsAction is a stateless action that is compatible with Before and After
monitor types.

DisplayArgumentsAction generates an instrumentation event at the affected location
in the program execution to capture method arguments or a return value.

When executed, this action causes an instrumentation event that is dispatched to the
events archive. When attached to Before monitors, the instrumentation event captures
input arguments to the joinpoint (for example, method arguments). When attached to
After monitors, the instrumentation event captures the return value from the
joinpoint. The event carries the following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, DisplayArgumentsAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. The location information
includes:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Input arguments, if any, when attached to Before monitors

• Return value, if any, when attached to After monitors

B.2.3 TraceElapsedTimeAction
TraceElapsedTimeAction is an Around action that is compatible with Around monitor
types.

Diagnostic Action Library

B-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

TraceElapsedTimeAction generates two events: one before and one after the location
in the program execution.

When executed, this action captures the timestamps before and after the execution of
an associated joinpoint. It then computes the elapsed time by computing the
difference. It generates an instrumentation event which is dispatched to the events
archive. The elapsed time is stored as event payload. The event carries the following
information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is TraceElapsedTimeAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information
consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Elapsed time processing the joinpoint, as event payload, in nanoseconds

B.2.4 TraceMemoryAllocationAction
TraceMemoryAllocationAction uses the HotSpot ThreadMXBean API to trace the
number of bytes allocated by a thread during a method call. This action is very similar
to TraceElapsedTimeAction, with the exception that the memory allocated within a
method call is traced.

The TraceMemoryAllocationAction action:

• Creates an instrumentation event that is persisted.

• Can be used from delegating and custom monitors.

Diagnostic Action Library

WLDF Instrumentation Library B-13

B.2.5 StackDumpAction
StackDumpAction is a stateless action that is compatible with Before and After
monitor types.

StackDumpAction generates an instrumentation event at the affected location in the
program execution to capture a stack dump.

When executed, this action generates an instrumentation event that is dispatched to
the events archive. It captures the stack trace as an event payload. The event carries
following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, StackDumpAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information
consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Stack trace as an event payload

B.2.6 ThreadDumpAction
ThreadDumpAction is a stateless action that is compatible with Before and After
monitor types.

ThreadDumpAction generates an instrumentation event at the affected location in the
program execution to capture a thread dump, if the underlying VM supports it. JDK 7
and later (Oracle HotSpot) supports this action.

This action generates an instrumentation event that is dispatched to the events
archive. This action may be used only with HotSpot. It is ignored when used with

Diagnostic Action Library

B-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

other JVMs. It captures the thread dump as event payload. The event carries the
following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, ThreadDumpAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information
consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Thread dump as an event payload

B.2.7 MethodInvocationStatisticsAction
MethodInvocationStatisticsAction is an Around action that is compatible with Around
monitor types.

MethodInvocationStatisticsAction captures performance metrics around a joinpoint in
memory without persisting an event in the Archive for each invocation. The statistics
are collected and made available through the WLDFInstrumentationRuntimeMBean.
The collected statistics are also consumable by the Harvester and the Watch-
Notifications components. This makes it possible to create watch rules that can
combine request information from the instrumentation system and metric information
from other run-time MBeans.

Some of the statistics that can be captured include the following:

• Number of invocations

• Average execution time (in nanoseconds)

• Standard deviation in observed execution time

Diagnostic Action Library

WLDF Instrumentation Library B-15

• Minimum execution time

• Maximum execution time

The WLDFInstrumentationRuntimeMBean instance for a given scope exposes the data
collected from MethodInvocationStatisticsAction instances, which are attached to
configured Diagnostic Around monitors, using the MethodInvocationStatistics
attribute. The MethodInvocationStatistics attribute contains a hierarchy of Map
objects, keyed as shown in Figure B-1.

Figure B-1 Structure of MethodInvocationStatistics Attribute

The following semantics are used in the MethodInvocationStatistics attribute:

 MethodInvocationStatistics::= Map<className, MethodMap>
 MethodMap::= Map<methodName, MethodParamsSignatureMap>
 MethodParamsSignatureMap::= Map<MethodParamsSignature, MethodDataMap>
 MethodDataMap::= <MetricName, Statistic>
 MetricName:= min | max | avg | count | sum | sum_of_squares | std_deviation

Because the MethodInvocationStatisticsAction only captures information in memory,
and does not persist that information in the Archive, this action does not incur the I/O
overhead of other instrumentation actions. This makes this action a lightweight
mechanism for capturing performance statistics and helping identify bottlenecks in
your application. You can navigate through the map structures and identify the low
performing parts of your application.

B.2.7.1 Instrumenting an Application with MethodInvocationStatisticsAction and
Querying the Results

This section shows an example of instrumenting the Avitek Medical Records (MedRec)
sample application with a custom monitor that uses
MethodInvocationStatisticsAction. This example then shows using WLST online to
query the performance statistics that have been collected, which can be done by
navigating the WLDFInstrumentationRuntimeMBean instance associated with the
instrumented application.

WLST online provides simplified access to MBeans. While JMX APIs require you to
use JMX object names to interrogate MBeans, WLST enables you to navigate a
hierarchy of MBeans in a similar fashion to navigating a hierarchy of files in a file
system. For more information, see Navigating and Interrogating MBeans in
Understanding the WebLogic Scripting Tool.

The following subsections are included in this example:

Diagnostic Action Library

B-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• Configuring the Custom Monitor to Use MethodInvocationStatisticsAction

• Using WLST to Query Method Performance Statistics

Note:

Code examples demonstrating Java EE APIs and other WebLogic Server
features are provided with your WebLogic Server installation. To work with
these examples, select the custom installation option when installing
WebLogic Server, and select to install the Server Examples. For more
information, see Code Examples and Sample Applications in Understanding
Oracle WebLogic Server.

B.2.7.1.1 Configuring the Custom Monitor to Use MethodInvocationStatisticsAction

As of WebLogic Server 10.3, it is no longer necessary to create a weblogic-
diagnostics.xml file in the application's META-INF directory to configure a
custom monitor. Instead, you can complete all the required steps from the WebLogic
Server Administration Console, as described in the following steps for instrumenting
the MedRec sample application:

1. In the Domain Structure pane of the WebLogic Server Administration Console,
select Deployments.

2. On the Summary of Deployments page, select Control, and click medrec in the
Deployments table.

The Settings for medrec page is displayed.

3. Select Configuration > Instrumentation.

4. In the Diagnostic Monitors in this Module table, click Add Custom Monitor.

5. In the Add Custom Monitors page, enter MethodStatsMonitor as the monitor
name. Optionally, you can enter a brief description.

6. In the Location Type selection box, select Around.

7. In the Pointcut text box, enter the following pointcut expression:

execution(public * com.bea.medrec.* *(...)) AND NOT
execution(public * com.bea.medrec.* get*(...)) OR
execution(public * com.bea.medrec.* set*(...)) OR
execution(public * com.bea.medrec.* __WL_*(...)));

This pointcut expression specifies joinpoints for all public methods in classes
within packages whose name starts with com.bea.medrec, but excludes the
following methods:

• All accessor methods

• Methods that begin with the string __WL_

This pointcut expression encompasses a wide variety of public methods and
classes in MedRec, but ignores all getter and setter methods, as well as code
generated by WebLogic Server.

8. Below the pointcut expression text box, click OK.

Diagnostic Action Library

WLDF Instrumentation Library B-17

9. On the Save Deployment Plan page, enter a new path for the deployment plan, or
accept the default location, and click OK.

10. Select Configuration > Instrumentation, and click the name of the new custom
monitor, MethodStatsMonitor, which is listed in the Diagnostic Monitors in
this Module table.

The Settings for MethodStatsMonitor page is displayed.

11. In the Actions table, assign MethodInvocationStatisticsAction to the custom
monitor, as shown in Figure B-2:

Figure B-2 Choosing MethodInvocationStatisticsAction for Custom Monitor

12. Click Save, at the bottom of the Settings for MethodStatsMonitor page.

13. Apply the updated deployment plan to the MedRec application:

a. In the Domain Structure pane, select Deployments.

b. On the Summary of Deployments page, select Control, and click the selection
box adjacent to medrec in the Deployments table, as shown in Figure B-3:

Figure B-3 Selecting the MedRec Deployment

c. Click Update.

d. In the Update Application Assistant page, select Redeploy this application
using the following deployment files.

e. Click Next, then click Finish.

The MedRec application is now redeployed, and the custom monitor
MethodStatsMonitor is active.

Diagnostic Action Library

B-18 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Note:

If Java HotSwap is not enabled, to add a new pointcut to the application's
configuration, you need to redeploy the application to enable a custom
monitor to be woven into the application code. (However, you can modify
most of an application's monitor configuration without requiring a redeploy.
This includes changes to the custom monitor's Actions, Properties,
EnableDyeFiltering, and Description attributes — that is, anything that does
not require bytecode weaving.

However, with HotSwap enabled, you can change any monitor attribute and
update the application without the need to redeploy it. For more information,
see Using Deployment Plans to Dynamically Control Instrumentation
Configuration.

B.2.7.1.2 Using WLST to Query Method Performance Statistics

Once MedRec is redeployed, the MethodInvocationStatisticsAction begins capturing
method performance statistics as the instrumented code is executed. This section
shows how to generate statistics quickly and simply by navigating the MedRec patient
application with the custom monitor enabled. This section then shows how to examine
those statistics using WLST online.

To capture method performance statistics using the custom monitor configured for
MedRec and query the results using WLST, complete the following steps:

1. Start the MedRec application, as described in Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

Log in as a patient, administrator, or physician, and perform a small number of
operations.

2. Invoke WLST online and navigate to the WLDFInstrumentationRuntimeMBean
instance, as shown in the following example steps:

a. Connect to the MedRec server:

wls:/offline> connect('weblogic','password','localhost:7011')
Connecting to t3://localhost:7011 with userid weblogic ...
Successfully connected to Admin Server 'MedRecServer' that belongs to domain 'medrec'.

b. Use the cd command to navigate to the
WLDFInstrumentationRuntimeMBean instance associated with the MedRec
application:

cd('serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/
medrec')
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help(serverRuntime)

3. Access specific values collected by MethodInvocationStatisticsAction by invoking
the following method on the WLDFInstrumentationRuntimeMBean:

public Object getMethodInvocationStatisticsData(String expr) throws
ManagementException;

Using WLST interactively, you can pass a lookup expression to this method. The
lookup expression specifies the particular subset of values that you are interested
in viewing. These values are obtained from the map structure created by

Diagnostic Action Library

WLDF Instrumentation Library B-19

MethodInvocationStatisticsAction. For example, the following WLST command
returns the average execution time (in nanoseconds) of all methods instrumented
by MethodInvocationStatisticsAction:

cmo.getMethodInvocationStatisticsData("(com.bea%)(*)(?)(avg)")
array(java.lang.Object,[3352.0, 3632.0, 145270.0, 4050.5, 8450.916666666666,
1798645.75,
583538.0, 3610515.0, 1.9541031E7, 1.2796319E7, 3.07897E8, 4470.0, 3073.0,
3073.0,
2.4644752E7, 3492.5, 1051530.0, 2794.0, 390552.3333333333, 3632.0, 2095.5,
189409.33333333334,
2607.6666666666665, 2793.6666666666665, 4749.333333333333, 5308.0, 65930.0,
3.3950405E7,
3353.0, 3911.5])

Note that if you display the entire set of data values that have been collected, a large
amount of information could be displayed in the WLST console, as shown in Figure
B-4:

Figure B-4 Displaying All Data Values Collected by
MethodInvocationStatisticsAction

As an alternative, you can create a WLST script to invoke MethodInvocationStatistics
and to format the collected data so that it is more easily read, as in Example B-1:

Example B-1 Using WLST to Invoke MethodInvocationStatistics and Display Results

import sys

def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

Diagnostic Action Library

B-20 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

url = getPositionalArgument(1, "t3://localhost:7001")
user = getPositionalArgument(2, "weblogic")
password = getPositionalArgument(3, "password")
appName = getPositionalArgument(4, "myapp")

connect(user,password,url)
serverRuntime()
cd('/WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/' + appName)

print "# Class Method | Count | Min | Max | Average | Std-dev |"
stats=cmo.getMethodInvocationStatistics()
for className in stats.keySet():
 classMap=stats.get(className)
 for methodName in classMap.keySet():
 methodMap=classMap.get(methodName)
 for sig in methodMap.keySet():
 str= className + " " + methodName + "(" + sig + ")"
 sigMap=methodMap.get(sig)
 count=sigMap.get('count')
 min=sigMap.get('min')
 max=sigMap.get('max')
 avg=sigMap.get('avg')
 std_deviation=sigMap.get('std_deviation')
 print str, "|", count, "|", min, "|", max, "|", avg, "|", std_deviation, "|"

The following shows the output produced by the WLST script shown in Example B-1:

Class Method | Count | Min | Max | Average | Std-dev |
jsp_servlet.__index _isStale() | 1 | 1378000 | 1378000 | 1378000.0 | 0.0 |
jsp_servlet.__index _getBytes(java.lang.String) | 3 | 1000 | 754000 | 252666.66666666666 | 354497.1399351795 |
jsp_servlet.__index _staticIsStale(weblogic.servlet.jsp.StaleChecker) | 1 | 861000 | 861000 | 861000.0 | 0.0 |
jsp_servlet.__index _jspService(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse) | 2
| 70000 | 2113000 | 1091500.0 | 1021500.0 |
jsp_servlet.__index$MyMap containsKey(java.lang.Object) | 2 | 2000 | 101000 | 51500.0 | 49500.0 |
jsp_servlet.__index$MyMap containsValue(java.lang.Object) | 2 | 1000 | 2000 | 1500.0 | 500.0 |

B.2.7.2 Configuring the Harvester to Collect MethodInvocationStatisticsAction Data

To configure the Harvester to collect data gathered by
MethodInvocationStatisticsAction instances, you must configure an instance of
WLDFHarvesterBean using the following attribute:

Name=weblogic.management.runtime.WLDFInstrumentationRuntimeMBean

The scope is selected by the instance configuration.

The attribute specification defines the data that is collected by the Harvester. You can
access the successive elements of the map by using the following notation:

MethodInvocationStatistics(className)(methodName)(methodParamSignature)
(metricName)

In the preceding notation:

• className represents the fully qualified Java class name. You can use the asterisk
(*) wildcard character in a class name.

• methodName selects a specific method from the given class. You can use the
asterisk (*) wildcard character in a method name.

Diagnostic Action Library

WLDF Instrumentation Library B-21

• methodParamSignature represents a string that is a comma-separated list of a
method's input argument types. Only the Java type names, without the argument
names, are included in the signature specification. As in the Java language, the
order of the parameters in the signature is significant.

This element also supports the asterisk (*) wildcard character, which can be used to
specify the entire list of input argument types for a given method. The asterisk (*)
wildcard character matches zero or more argument types at the position following
its occurrence in the methodParamSignature expression.

You can also use the question mark (?) wildcard character to match a single
argument type at any given position in the ordered list of parameter types.

Both of these wildcard characters can appear anywhere in the expression. See
MethodInvocationStatisticsAction Examples.

• metricName represents the statistics to be harvested. You can use the asterisk (*)
wildcard character in this key to harvest all of the supported metrics.

MethodInvocationStatistics Examples

Consider a class with the following overloaded methods:

package.com.foo;
public interface Bar {
 public void doIt();
 public void doIt(int a);
 public void doit(int a, String s)
 public void doIt(Stringa, int b);
 public void doIt(String a, String b);
 public void doIt(String[] a);
 public void doNothing();
 public void doNothing(com.foo.Baz);
}

Table B-3 provides examples that show to use MethodInvocationStatisticsAction to
harvest various statistics.

Table B-3 MethodInvocationStatisticsAction Examples

The following MethodInvocationStatisticsAction
instance configuration . . .

. . . causes the following to be harvested

MethodInvocationStatistics(com.foo.Bar)(*)(*)(*)
All statistics for all methods on com.Foo.Bar.

MethodInvocationStatistics(com.foo.Bar)(doIt)()
(*)

All statistics for the doIt() method that has no input
arguments.

MethodInvocationStatistics(com.foo.Bar)(doIt)(*)
(*)

All statistics for all doIt() methods.

MethodInvocationStatistics(com.foo.Bar)(doIt)
(int, *)(*)

All statistics for the doIt(int) and doIt(int,
String) methods.

Diagnostic Action Library

B-22 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table B-3 (Cont.) MethodInvocationStatisticsAction Examples

The following MethodInvocationStatisticsAction
instance configuration . . .

. . . causes the following to be harvested

MethodInvocationStatistics(com.foo.Bar)(doIt)
(String[])(*)

All statistics for the doIt(String[]) method.

Note that array parameters are specified by the use of a
pair of square brackets ([]) following the type name.
Space characters are insignificant for the Harvester.

MethodInvocationStatistics(com.foo.Bar)(doIt)
(String, ?)(*)

All statistics for doIt() methods that have two input
parameters and String as the first argument type. In
this example class, this instance configuration matches
the following methods:

• doIt(String, int)

• doIt(String, String)

MethodInvocationStatistics(com.foo.Bar)
(doNothing)(com.foo.Baz)(min,max)

The min and max execution time for the doNothing()
method that has the single input parameter of type
com.foo.Baz.

Note:

Using a wildcard character in the className specification can have a
negative impact on performance.

B.2.7.3 Configuring Watch Rules Based on MethodInvocationStatistics Metrics

You can use the same syntax described in the previous sections to use
MethodInvocationStatistics metrics in a watch rule. You can create meaningful watch
rules that do not use a wildcard character in the MetricName element by specifying
whether you want the min, max, avg, count, sum, sum_of_squares, or
std_deviation variable for a given method.

B.2.7.4 Using JMX to Collect Data

When using straight JMX to collect data, you can potentially impact server
performance negatively if you invoke the
getAttribute("MethodInvocationStatistics") method on the
WLDFInstrumentationRuntimeMBean. This occurs because, depending on the
instrumented classes, the nested map structure can contain a lot of data that involves
expensive serialization.

When you use JMX to collect data, Oracle recommends using the
getMethodInvocationStatisticsData(String) method.

B.2.8 MemoryAllocationStatisticsAction
The MemoryAllocationStatisticsAction uses the HotSpot ThreadMXBean API API to
track the number of bytes allocated by a thread during a method call. Statistics are
kept in-memory on the memory allocations, and no instrumentation events are created
by this action.

The MemoryAllocationStatisticsAction is very similar to the existing
MethodInvocationStatisticsAction. However, statistics tracked by

Diagnostic Action Library

WLDF Instrumentation Library B-23

MemoryAllocationStatisticsAction are related to the memory allocated within a
method call.

The MemoryAllocationStatisticsAction does not create an instrumentation event.
When HotSpot is available, the statistics are available through the
WLDFInstrumentationRuntimeMBean.

The following statistics for each method are kept:

• count

• min

• max

• avg

• sum

• sum_of_squares

• std_deviation

Diagnostic Action Library

B-24 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

C
Using Wildcards in Expressions

This appendix discusses WLDF wildcard capabilities. WLDF allows for the use of
wildcards in instance names within the <harvested-instance> element, and also
provides drill-down and wildcard capabilities in the attribute specification of the
<harvested-attribute> element.

WLDF also allows the same wildcard capabilities for instance names in Harvester
watch rules, as well as specifying complex attributes in Harvester watch rules.

This appendix includes the following sections:

• Using Wildcards in Harvester Instance Names

• Specifying Complex and Nested Harvester Attributes

• Using the Accessor with Harvested Complex or Nested Attributes

• Using Wildcards in Watch Rule Instance Names

• Specifying Complex Attributes in Harvester Watch Rules

C.1 Using Wildcards in Harvester Instance Names
When specifying instance names within the <harvested-instance> element, you can:

• Express the instance name in non-canonical form, allowing you to specify the
property list of the ObjectName out of order.

• Express the ObjectName as a JMX ObjectName query pattern without concern as to
the order of the property list.

• Use zero or more asterisk (*) wildcard characters in any of the values in the
property list of an ObjectName, such as Name=*.

• Use zero or more asterisk (*) wildcard characters to replace any character sequence
in a canonical ObjectName string. In this case, you must ensure that any properties
of the ObjectName not substituted by a wildcard character are in canonical form.

C.1.1 Examples
The instance specification in Example C-1 indicates that all instances of the
WorkManagerRuntimeMBean are to be harvested. This is equivalent to not providing
any instance-name qualification in the <harvested-type> declaration.

Example C-1 Harvesting All Instances of an MBean

<harvested-type>
 <name>weblogic.management.runtime.WorkManagerRuntimeMBean</name>
 <harvested-instance>*<harvested-instance>
 <known-type>true</known-type>

Using Wildcards in Expressions C-1

 <harvested-attribute>PendingRequests</harvested-attribute>
</harvested-type>

Example C-2 shows a JMX ObjectName pattern as the <harvested-instance> value:

Example C-2 Using a JMX ObjectName Pattern

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=MyType,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

In Example C-3, some of the values in the ObjectName property list contain wildcard
characters:

Example C-3 Using Wildcards in the Property List

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=My*,Name=*,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

In Example C-4, all harvestable attributes of all instances of com.acme.CustomMBean
are to be harvested, but only those in which the instance name contains the string
Name=mybean.

Example C-4 Harvesting All Attributes of Multiple Instances

<harvested-type>
 <name>coma.acme.CustomMBean</name>
 <harvested-instance>*Name=mybean*</harvested-instance>
 <known-type>true</known-type>
</harvested-type>

C.2 Specifying Complex and Nested Harvester Attributes
The Harvester provides the ability to access metric values nested within complex
attributes of an MBean. A complex attribute can be a map or list object, a simple POJO,
or different nestings of these types of objects. For example:

• anObject.anAttribute

• arrayAttribute[1]

• mapAttribute(akey)

• aList[1](aKey)

In addition, wildcard characters can be used for list indexes and map keys to specify
multiple elements within a collection of those types. The following wildcard characters
are available:

• You can use the asterisk (*) wildcard character to specify all key values for Map
attributes.

• You can use the percent (%) wildcard character to replace parts of a Map key string
and identify a group of keys that match a particular pattern.

You can also specify a discrete set of key values by using a comma-separated list.

Specifying Complex and Nested Harvester Attributes

C-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

For example:

• aList[1](partial%Key%)

• aList[*](key1,key3,keyN)

• aList*

In the last example, where the asterisk (*) wildcard character is used for the index to a
list and as the key value to a nested map object, nested arrays of values are returned.

Embedding the asterisk (*) wildcard character in a comma-separated list of map keys
is equivalent to specifying all map keys. For example, the following two specifications
are equivalent:

• aList[*](key1,*,keyN)

• aList*

Note:

Leading or trailing spaces will be stripped from a map key unless the map key
is enclosed within quotation marks.

Using a map key pattern can result in a large number of elements being
scanned, returned, or both. The larger the number of elements in a map, the
bigger the impact is on performance.

The more complex the matching pattern is, the more processing time is
required.

C.2.1 Examples
To use drill-down syntax to harvest the nested State property of the HealthState
attribute on the ServerRuntime MBean, use the diagnostic descriptor shown in
Example C-5.

Example C-5 Using Drill-Down Syntax

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>HealthState.State</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of an array or list, the Harvester supports a subscript notation
in which a value is referred to by its index position in the array or list. For example, to
refer to the first element in the array attribute URLPatterns in the
ServletRuntimeMBean, specify URLPatterns[0]. Example C-6 shows referencing all
elements of URLPatterns using a wildcard character.

Example C-6 Using a Wildcard Character to Reference All Elements of an Array

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServletRuntimeMBean</name>
 <harvested-attribute>URLPatterns[*]</harvested-attribute>

Specifying Complex and Nested Harvester Attributes

Using Wildcards in Expressions C-3

 </harvested-type>
</harvester>

To harvest the elements of a map, each individual value is referenced by the key
enclosed in parentheses. Multiple keys can be specified as a comma-delimited list, in
which case the values corresponding to specified keys in the map are harvested, as
shown in the following examples.

The following example shows the following

<harvested-attribute>MyMap(Foo)</harvested-attribute>
Harvesting the value from the map with
key Foo.

<harvested-attribute>MyMap(Foo,Bar)</harvested-attribute>
Harvesting the value from the map with
keys Foo and Bar.

<harvested-attribute>MyMap(Foo%Bar)</harvested-attribute>
Using the percent (%) wildcard character
with a key specification to harvest all values
from the map if their keys start with Foo
and end with Bar.

<harvested-attribute>MyMap(*)</harvested-attribute>
Harvesting all values from a map by using
the asterisk (*) wildcard character.

<harvested-attribute>MyBeanMyMap(Foo)</harvested-attribute>
The MBean has a JavaBean attribute
MyBean, which has a nested map type
attribute MyMap. This example harvests this
value from the map that has the key Foo.

C.3 Using the Accessor with Harvested Complex or Nested Attributes
While a large number of complex or nested attributes can be specified as a single
expression in terms of the Harvester and Watch and Notifications configuration, the
actual metrics are persisted in terms of each individually gathered metric.

For example, the attribute specification mymap(*).(a,b,c) maps to the following
actual nested attributes:

 mymap(key1).a
 mymap(key1).b
 mymap(key1).c
 mymap(key2).a
 mymap(key2).b
 mymap(key2).c

Each of the preceding six metrics are stored in a separate record in the
HarvestedDataArchive, with the shown attribute names stored in the ATTRNAME
column in each corresponding record. The values in the ATTRNAME column are the
values you must use in Accessor queries when retrieving them from the archive.

The following are examples of query strings:

 NAME="foo:Name=MyMBean" ATTRNAME="mymap(key1).a"
 NAME="foo"Name=MyBean" ATTRNAME LIKE "mymap(%).a"
 NAME="fooName=MyMBean" ATTRNAME MATCHES "mymap\((.*?)\).a"

Using the Accessor with Harvested Complex or Nested Attributes

C-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

C.4 Using Wildcards in Watch Rule Instance Names
Within Harvester watch rules, you can use the asterisk (*) wildcard character to
specify portions of an ObjectName. This gives you the ability to watch for multiple
instances of a type.

For example, to specify the OpenSocketsCurrentCount attribute for all instances of the
ServerRuntimeMBean that begin with the name managed:

• The instance-name pattern can be a valid JMX ObjectName pattern, in which case
the property list order is not important. For example:

${com.bea:Name=managed*,Type=ServerRuntime,*//OpenSocketCurrentCount}

This example is a valid JMX ObjectName pattern that can match:

– Any ObjectName that contains a Name key with a value that starts with
managed

– A Type key that exactly matches the value ServerRuntime

– Any other property pairs

For more examples of valid JMX ObjectName patterns, see the ObjectName API
documentation at http://docs.oracle.com/javase/7/docs/api/javax/
management/ObjectName.html.

• If the name is a pattern but is not a JMX ObjectName pattern, WebLogic Server
does pattern-matching using the pattern as-is. For example:

${com.bea:*Name=managed*,Type=ServerRuntime,*//OpenSocketCurrentCount}

This example is not a valid JMX ObjectName pattern. This pattern is matched using
straight string substitution, where the pattern is matched as-is against the canonical
form of the ObjectName for any target MBean instance.

Note:

The ObjectName query pattern syntax supported by the Harvester is
determined by whatever is supported by the underlying JMX implementation.
The preceding example demonstrates the syntax supported by JDK 5 and
later. For information about the full syntax that is supported, see the
description of the javax.management.ObjectName class corresponding to
the version of the JDK with which your installation of WebLogic Server is
configured.

C.5 Specifying Complex Attributes in Harvester Watch Rules
You can specify complex attributes (a collection, an array type or an Object with
nested intrinsic attribute types) within Harvester watch rule expressions. There are
several ways to do this.

The following example shows a drill-down into a nested attribute in a complex type,
which is then checked to see if it is greater than 0:

${somedomain:name=MyMbean//complexAttribute.nestedAttribute} > 0

Using Wildcards in Watch Rule Instance Names

Using Wildcards in Expressions C-5

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

You can also use wildcard characters to specify multiple Map keys. The following
wildcard characters are available for specifying complex attributes:

• You can use an asterisk character (*) to specify all key values for Map attributes.

• You can use a percent character (%) to replace parts of a Map key string and to
identify a group of keys that match a particular pattern.

In addition, you can use a comma-separated list to specify a discrete set of key values.

For example:

${[com.bea.foo.BarClass]//aList[*].(some%partialKey%).(aValue,bValue)} > 0

The rule in the preceding example examines all elements of the aList attribute on all
instances of com.bea.foo.BarClass, drilling down into a nested map for all keys
starting with the text some and containing the text partialKey afterwards. The
returned values are assumed to be Map instances, from which values for the keys
aValue and bValue are compared to determine if they are greater than 0.

When using the MethodInvocationStatistics attribute on the
WLDFInstrumentationRuntime type, the system needs to determine the type from the
variable. If the system cannot determine the type when validating the attribute
expression, the expression is not valid. For example, the following expression is not
valid:

${ com.bea:Name=myScope, * //MethodInvocationStatistics.(...).(...)

You must explicitly declare the type in this situation, as shown in the following
example that shows drilling down into the nested map structure:

$(com.bea:Name=hello,Type=WLDFInstrumentationRuntime,*//MethodInvocationStatistics(*)
(*)(*)(count)) >= 1

Specifying Complex Attributes in Harvester Watch Rules

C-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

D
WebLogic Scripting Tool Examples

This appendix describes and provides examples of using WLST and JMX to interact
with WLDF components.

Note:

The following examples are also included with the WebLogic Server code
examples:

• Example: Configuring a Watch and a JMX Notification

• Example: Writing a JMXWatchNotificationListener Class

• Example: Registering MBeans and Attributes For Harvesting

These examples are bundled under the title "Configuring the Watch and
Notification System and Harvesting Data Using WLST". For information about
installing and configuring the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

This appendix includes the following sections:

• WLST Commands for Diagnostics

• Example: Dynamically Creating DyeInjection Monitors

• Example: Configuring a Watch and a JMX Notification

• Example: Writing a JMXWatchNotificationListener Class

• Example: Registering MBeans and Attributes For Harvesting

• Example: Setting the WLDF Diagnostic Volume

• Example: Capturing a Diagnostic Image

• Example: Retrieving a JFR File from a Diagnostic Image Capture

For information about running WebLogic Scripting Tool (WLST) scripts, see Running
WLST from Ant in Understanding the WebLogic Scripting Tool. For information about
developing JMX applications, see Developing Manageable Applications Using JMX for
Oracle WebLogic Server.

D.1 WLST Commands for Diagnostics
WLST includes the following commands for retrieving diagnostic data and managing
diagnostic system resources:

WebLogic Scripting Tool Examples D-1

Table D-1 WLST Commands Used with WLDF

Command Summary

captureAndSaveDiagnosticImage
Captures a diagnostics image and downloads it locally.

createSystemResourceControl
Creates a diagnostics system resource control using specified
descriptor file that is not persisted in the domain configuration. For
an example, see Using WLST to Activate and Deactivate Diagnostic
System Modules.

destroySystemResourceControl
Destroys an external diagnostics system resource control; that is,
one that is created in a server or cluster instance but that is not
persisted in the domain configuration. For an example, see Using
WLST to Activate and Deactivate Diagnostic System Modules.

disableSystemResource
Deactivates a diagnostic system resource control that is persisted in
the domain configuration. For an example, see Using WLST to
Activate and Deactivate Diagnostic System Modules.

dumpDiagnosticData
Dumps the diagnostics data from a Harvester to a local file.

enableSystemResource
Activates a diagnostic resource control. For an example, see Using
WLST to Activate and Deactivate Diagnostic System Modules.

exportDiagnosticData
Execute a query against the specified log file.

exportDiagnosticDataFromServer
Executes a query on the server side and retrieves the exported
WLDF data.

getAvailableCapturedImages
Returns a list of the previously captured diagnostic images.

listSystemResourceControls
Lists the diagnostic system modules that are currently configured
in the domain. For an example, see Using WLST to Activate and
Deactivate Diagnostic System Modules.

mergeDiagnosticData
Merges a set of data files that were previously generated by the
dumpDiagnosticData() command.

saveDiagnosticImageCaptureFile
Downloads the specified diagnostic image capture.

saveDiagnosticImageCaptureEntryFile
Downloads a specific entry from the diagnostic image capture.

For complete details about each of these commands, including additional examples,
see Diagnostics Commands in WLST Command Reference for WebLogic Server.

D.2 Example: Dynamically Creating DyeInjection Monitors
This demonstration script (see Example D-1) shows how to use WLST to create a
DyeInjection monitor dynamically. This script:

Example: Dynamically Creating DyeInjection Monitors

D-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

• Connects to a server (boots the server first if necessary).

• Looks up or creates a WLDF System Resource.

• Creates the DyeInjection monitor.

• Sets the dye criteria.

• Enables the monitor.

• Saves and activates the configuration.

• Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

The demonstration script in Example D-1 only configures the dye monitor, which
injects dye values into the diagnostic context. To fire events, you must implement
downstream diagnostic monitors that use dye filtering to fire on the specified dye
criteria. An example downstream monitor artifact is shown in Example D-2. This must
be placed in a file named weblogic-diagnostics.xml and placed into the META-
INF directory of a application archive. It is also possible to create a monitor using a
JSR-88 deployment plan. For more information about deploying applications, see
Deploying Applications to Oracle WebLogic Server.

Example D-1 Example: Using WLST to Dynamically Create DyeInjection Monitors
(demoDyeMonitorCreate.py)

Script name: demoDyeMonitorCreate.py
###
Demo script showing how to create a DyeInjectionMonitor dynamically
via WLST. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create the DyeInjection Monitor (DIM)
- Set the dye criteria
- Enable the monitor
- Save and activate
- Enable the Diagnostic Context functionality via the
ServerDiagnosticConfig MBean
Note: This will only configure the dye monitor, which will inject dye
values into the Diagnostic Context. To fire events requires the
existence of "downstream" monitors set to fire on the specified
dye criteria.
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
password="password"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\
 +myDomainDirectory
try:
 connect(user,password,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,password,url)
Start an edit session
edit()
startEdit()
cd ("/")

Example: Dynamically Creating DyeInjection Monitors

WebLogic Scripting Tool Examples D-3

Look up or create the WLDF System resource.
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource,\
 creating WLDF System Resource: " + wldfResourceName
 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server.
wldfServer=cmo.lookupServer(serverName)
myWldfVar.addTarget(wldfServer)
create and set properties of the DyeInjection Monitor (DIM).
mywldfResource=myWldfVar.getWLDFResource()
mywldfInst=mywldfResource.getInstrumentation()
mywldfInst.setEnabled(1)
monitor=mywldfInst.createWLDFInstrumentationMonitor("DyeInjection")
monitor.setEnabled(1)
Need to include newlines when setting properties
on the DyeInjection monitor.
monitor.setProperties("\nUSER1=larry@celtics.com\
 \nUSER2=brady@patriots.com\n")
monitor.setDyeFilteringEnabled(1)
Enable the diagnostic context functionality via the
ServerDiagnosticConfig.
cd("/Servers/"+serverName+"/ServerDiagnosticConfig/"+serverName)
cmo.setDiagnosticContextEnabled(1)
save and disconnect
save()
activate()
disconnect()
exit()

Example D-2 Example: Downstream Monitor Artifact

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <instrumentation>
 <enabled>true</enabled>
 <!-- Servlet Session Monitors -->
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Servlet_After_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER2</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

Example: Dynamically Creating DyeInjection Monitors

D-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

D.3 Example: Configuring a Watch and a JMX Notification
This demonstration script (see Example D-3) shows how to use WLST to configure a
watch and a JMX notification using the WLDF Watch and Notification component.
This script:

• Connects to a server and boots the server first if necessary.

• Looks up/creates a WLDF system resource.

• Creates a watch and watch rule on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

• Configures the watch to use a JMXNotification medium.

Note:

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see "Sample
Applications and Code Examples" in Understanding Oracle WebLogic Server.

This script can be used in conjunction with the following files and scripts:

• The JMXWatchNotificationListener.java class (see Example: Writing a
JMXWatchNotificationListener Class).

• The demoHarvester.py script, which registers the OpenSocketsCurrentCount
attribute with the Harvester for collection (see Example: Registering MBeans and
Attributes For Harvesting).

To see these files work together, perform the following steps:

1. To run the watch configuration script (demoWatch.py), type:

 java weblogic.WLST demoWatch.py

2. To compile the JMXWatchNotificationListener.java source, type:

javac JMXWatchNotificationListener.java

3. To run the JMXWatchNotificationListener.class file, type:

java JMXWatchNotificationListener

Note:

Be sure the current directory is in your class path, so it will find the class file
you just created.

4. To run the demoHarvester.py script, type:

 java weblogic.WLST demoHarvester.py

When the demoHarvester.py script runs, it triggers the JMXNotification for the watch
configured in step 1.

Example: Configuring a Watch and a JMX Notification

WebLogic Scripting Tool Examples D-5

Example D-3 Example: Watch and JMXNotification (demoWatch.py)

Script name: demoWatch.py
##
Demo script showing how to configure a Watch and a JMXNotification
using the WLDF Watches and Notification framework.
The script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create a watch and watch rule on the ServerRuntimeMBean for the
"OpenSocketsCurrentCount" attribute
- Configure the watch to use a JMXNotification medium
#
This script can be used in conjunction with
- the JMXWatchNotificationListener.java class
- the demoHarvester.py script, which registers the
"OpenSocketsCurrentCount" attribute with the harvester for collection.
To see these work together:
1. Run the watch configuration script
java weblogic.WLST demoWatch.py
2. Compile and run the JMXWatchNotificationListener.java source code
javac JMXWatchNotificationListener.java
java JMXWatchNotificationListener
3. Run the demoHarvester.py script
java weblogic.WLST demoHarvester.py
When the demoHarvester.py script runs, it triggers the
JMXNotification for the watch configured in step 1.
###
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true\
 weblogic.RootDirectory="+myDomainDirectory
try:
 connect(user,user,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
edit()
startEdit()
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource"
 print "creating WLDF System Resource: " + wldfResourceName
 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
myWldfVar.addTarget(wldfServer)
cd("/WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")
watch=cmo.createWatch("mywatch")
watch.setEnabled(1)
jmxnot=cmo.createJMXNotification("myjmx")
watch.addNotification(jmxnot)
serverRuntime()
cd("/")

Example: Configuring a Watch and a JMX Notification

D-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

on=cmo.getObjectName().getCanonicalName()
watch.setRuleExpression("${"+on+"} > 1")
watch.getRuleExpression()
watch.setRuleExpression("${"+on+"//OpenSocketsCurrentCount} > 1")
watch.setAlarmResetPeriod(10000)
edit()
save()
activate()
disconnect()
exit()

D.4 Example: Writing a JMXWatchNotificationListener Class
Example D-4 shows how to write a JMXWatchNotificationListener.

Note:

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Example D-4 Example: JMXWatchNotificationListener Class
(JMXWatchNotificationListener.java)

import javax.management.*;
import weblogic.diagnostics.watch.*;
import weblogic.diagnostics.watch.JMXWatchNotification;
import javax.management.Notification;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXConnector;
import javax.naming.Context;
import java.util.Hashtable;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
public class JMXWatchNotificationListener implements NotificationListener, Runnable {
 private MBeanServerConnection rmbs = null;
 private String notifName = "myjmx";
 private int notifCount = 0;
 private String serverName = "myserver";
 public JMXWatchNotificationListener(String serverName) {
 }
 public void register() throws Exception {
 rmbs = getRuntimeMBeanServerConnection();
 addNotificationHandler();
 }
 public void handleNotification(Notification notif, Object handback) {
 synchronized (this) {
 try {
 if (notif instanceof JMXWatchNotification) {
 WatchNotification wNotif =
 ((JMXWatchNotification)notif).getExtendedInfo();
 notifCount++;
 System.out.println("===");
 System.out.println("Notification name: " +
 notifName + " called. Count= " + notifCount + ".");
 System.out.println("Watch severity: " +
 wNotif.getWatchSeverityLevel());
 System.out.println("Watch time: " +
 wNotif.getWatchTime());

Example: Writing a JMXWatchNotificationListener Class

WebLogic Scripting Tool Examples D-7

 System.out.println("Watch ServerName: " +
 wNotif.getWatchServerName());
 System.out.println("Watch RuleType: " +
 wNotif.getWatchRuleType());
 System.out.println("Watch Rule: " +
 wNotif.getWatchRule());
 System.out.println("Watch Name: " +
 wNotif.getWatchName());
 System.out.println("Watch DomainName: " +
 wNotif.getWatchDomainName());
 System.out.println("Watch AlarmType: " +
 wNotif.getWatchAlarmType());
 System.out.println("Watch AlarmResetPeriod: " +
 wNotif.getWatchAlarmResetPeriod());
 System.out.println("===");
 }
 } catch (Throwable x) {
 System.out.println("Exception occurred processing JMX watch
 notification: " + notifName +"\n" + x);
 x.printStackTrace();
 }
 }
 }
 private void addNotificationHandler() throws Exception {
 /*
 * The JMX Watch notification listener registers with a Runtime MBean
 * that matches the name of the corresponding watch bean.
 * Each watch has its own Runtime MBean instance.
 */
 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +
 "WLDFRuntime=WLDFRuntime"
);
 System.out.println("Adding notification handler for: " +
 oname.getCanonicalName());
 rmbs.addNotificationListener(oname, this, null, null);
 }
 private void removeNotificationHandler(String name,
 NotificationListener list) throws Exception {
 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +
 "WLDFRuntime=WLDFRuntime"
);
 System.out.println("Removing notification handler for: " +
 oname.getCanonicalName());
 rmbs.removeNotificationListener(oname, list);
 }
 public void run() {
 try {
 System.out.println("VM shutdown, unregistering notification
 listener");
 removeNotificationHandler(notifName, this);
 } catch (Throwable t) {

Example: Writing a JMXWatchNotificationListener Class

D-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 System.out.println("Caught exception in shutdown hook");
 t.printStackTrace();
 }
 }
 private String user = "weblogic";
 private String password = "password";
 public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 String JNDI = "/jndi/";
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3", "localhost", 7001,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,user);
 h.put(Context.SECURITY_CREDENTIALS,password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 public static void main(String[] args) {
 try {
 String serverName = "myserver";
 if (args.length > 0)
 serverName = args[0];
 JMXWatchNotificationListener listener =
 new JMXWatchNotificationListener(serverName);
 System.out.println("Adding shutdown hook");
 Runtime.getRuntime().addShutdownHook(new Thread(listener));
 listener.register();
 // Sleep waiting for notifications
 Thread.sleep(Long.MAX_VALUE);
 } catch (Throwable e) {
 e.printStackTrace();
 } // end of try-catch
 } // end of main()
}

D.5 Example: Registering MBeans and Attributes For Harvesting
This demonstration script shows how to use WLST to register MBeans and attributes
for collection by the WLDF Harvester. This script:

• Connects to a server and boots the server first if necessary.

• Looks up or creates a WLDF system resource.

• Sets the sampling frequency.

• Adds a type for collection.

• Adds an attribute of a specific instance for collection.

• Saves and activates the configuration.

• Displays a few cycles of the harvested data.

Example: Registering MBeans and Attributes For Harvesting

WebLogic Scripting Tool Examples D-9

Note:

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Example D-5 Example: MBean Registration and Data Collection
(demoHarvester.py)

Script name: demoHarvester.py
##
Demo script showing how register MBeans and attributes for collection
by the WLDF Harvester Service. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Set the sampling frequency
- Add a type for collection
- Add an attribute of a specific instance for collection
- Save and activate
###
from java.util import Date
from java.text import SimpleDateFormat
from java.lang import Long
import jarray
###
Helper functions for adding types/attributes to the harvester
configuration
###
def findHarvestedType(harvester, typeName):
 htypes=harvester.getHarvestedTypes()
 for ht in (htypes):
 if ht.getName() == typeName:
 return ht
 return None
def addType(harvester, mbeanInstance):
 typeName = "weblogic.management.runtime."\
 + mbeanInstance.getType() + "MBean"
 ht=findHarvestedType(harvester, typeName)
 if ht == None:
 print "Adding " + typeName + " to harvestables collection for "\
 + harvester.getName()
 ht=harvester.createHarvestedType(typeName)
 return ht;
def addAttributeToHarvestedType(harvestedType, targetAttribute):
 currentAttributes = PyList()
 currentAttributes.extend(harvestedType.getHarvestedAttributes());
 print "Current attributes: " + str(currentAttributes)
 try:
 currentAttributes.index(targetAttribute)
 print "Attribute is already in set"
 return
 except ValueError:
 print targetAttribute + " not in list, adding"
 currentAttributes.append(targetAttribute)
 newSet = jarray.array(currentAttributes, java.lang.String)
 print "New attributes for type "\
 + harvestedType.getName() + ": " + str(newSet)
 harvestedType.setHarvestedAttributes(newSet)
 return

Example: Registering MBeans and Attributes For Harvesting

D-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

def addTypeForInstance(harvester, mbeanInstance):
 typeName = "weblogic.management.runtime."\
 + mbeanInstance.getType() + "MBean"
 return addTypeByName(harvester, typeName, 1)
def addInstanceToHarvestedType(harvester, mbeanInstance):
 harvestedType = addTypeForInstance(harvester, mbeanInstance)
 currentInstances = PyList()
 currentInstances.extend(harvestedType.getHarvestedAttributes());
 on = mbeanInstance.getObjectName().getCanonicalName()
 print "Adding " + str(on) + " to set of harvested instances for type "\
 + harvestedType.getName()
 print "Current instances : " + str(currentInstances)
 for inst in currentInstances:
 if inst == on:
 print "Found " + on + " in existing set"
 return harvestedType
 # only get here if the target attribute is not in the set
 currentInstances.append(on)
 # convert the new list back to a Java String array
 newSet = jarray.array(currentInstances, java.lang.String)
 print "New instance set for type " + harvestedType.getName()\
 + ": " + str(newSet)
 harvestedType.setHarvestedInstances(newSet)
 return harvestedType
def addTypeByName(harvester, _typeName, knownType=0):
 ht=findHarvestedType(harvester, _typeName)
 if ht == None:
 print "Adding " + _typeName + " to harvestables collection for "\
 + harvester.getName()
 ht=harvester.createHarvestedType(_typeName)
 if knownType == 1:
 print "Setting known type attribute to true for " + _typeName
 ht.setKnownType(knownType)
 return ht;
def addAttributeForInstance(harvester, mbeanInstance, attributeName):
 typeName = mbeanInstance.getType() + "MBean"
 ht = addInstanceToHarvestedType(harvester, mbeanInstance)
 return addAttributeToHarvestedType(ht,attributeName)
###
Display the currently registered types for the specified harvester
###
def displayHarvestedTypes(harvester):
 harvestedTypes = harvester.getHarvestedTypes()
 print ""
 print "Harvested types:"
 print ""
 for ht in (harvestedTypes):
 print "Type: " + ht.getName()
 attributes = ht.getHarvestedAttributes()
 if attributes != None:
 print " Attributes: " + str(attributes)
 instances = ht.getHarvestedInstances()
 print " Instances: " + str(instances)
 print ""
 return
##
Main script flow -- create a WLDF System resource and add harvestables
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"

Example: Registering MBeans and Attributes For Harvesting

WebLogic Scripting Tool Examples D-11

myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\
 +myDomainDirectory
try:
 connect(user,user,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
start an edit session
edit()
startEdit()
cd("/")
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
systemResource = cmo.lookupSystemResource(wldfResourceName)
if systemResource==None:
 print "Unable to find named resource,\
 creating WLDF System Resource: " + wldfResourceName
 systemResource=cmo.createWLDFSystemResource(wldfResourceName)
Obtain the harvester bean instance for configuration
print "Getting WLDF Resource Bean from " + str(wldfResourceName)
wldfResource = systemResource.getWLDFResource()
print "Getting Harvester Configuration Bean from " + wldfResourceName
harvester = wldfResource.getHarvester()
print "Harvester: " + harvester.getName()
Target the WLDF System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
systemResource.addTarget(wldfServer)
The harvester Jython wrapper maintains refs to
the SystemResource objects
harvester.setSamplePeriod(5000)
harvester.setEnabled(1)
add an instance-based RT MBean attribute for collection
serverRuntime()
cd("/")
addAttributeForInstance(harvester, cmo, "OpenSocketsCurrentCount")
have to return to the edit tree to activate
edit()
add a RT MBean type, all instances and attributes,
with KnownType = "true"
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFInstrumentationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFWatchNotificationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFHarvesterRuntimeMBean", 1)
try:
 save()
 activate(block="true")
except:
 print "Error while trying to save and/or activate."
 dumpStack()
display the data
displayHarvestedTypes(harvester)
disconnect()
exit()

Example: Registering MBeans and Attributes For Harvesting

D-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

D.6 Example: Setting the WLDF Diagnostic Volume
By default, WLDF gathers data and record most events in a WebLogic Server instance,
unless specifically configured otherwise. Note that even when WLDF diagnostic
volume is set to Off, WLDF, and potentially the JVM if flight recording is enabled,
generate global events that have information about the recording settings; for
example, JVM metadata events that list active recordings, and WLDF
GlobalInformationEvents that list the volume level for the domain, server, and
machine.

Example D-6 shows changing the WLDF Diagnostic Volume to Medium:

Example D-6 Setting WLDF Diagnostic Volume

connect()
edit()
startEdit()
cd("Servers/myserver")
cd("ServerDiagnosticConfig")
cd("myserver")
cmo.setWLDFDiagnosticVolume("Medium")
save()
activate()

D.7 Example: Capturing a Diagnostic Image
The diagnostic image capture can be created for a WebLogic Server instance in any of
the following ways:

• WebLogic Server Administration Console

• WLST script

• Image notification by means of the Watch and Notification component

Note:

If WebLogic Server is running in production mode, the server's SSL port must
be used when executing the commands included in this script.

Example D-7 show a sample WLST script that captures a diagnostic image. This
example does the following:

• Captures an diagnostic image after connecting, and then waits for the image task to
complete.

• Uses the getAvailableCapturedImages() command to obtain a list of
available diagnostic image files in the server's image directory.

• Loops through the list of available images in the diagnostic image capture and
saves each image file locally using the saveDiagnosticImageCaptureFile()
command.

Example D-7 Creating a Diagnostic Image Capture

#
WLST script to capture a WLDF Diagnostic Image and

Example: Setting the WLDF Diagnostic Volume

WebLogic Scripting Tool Examples D-13

retrieve the image files to a local dir.
#
Usage:
#
java weblogic.WLST captureImage.py [username] [passwd] [url] [output-dir]
#
where

username Username to use to connect
passwd Password for connecting to server
url URL to connect to the server
output-dir Path to place saved entries
#
from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.
#
Params:
pos The integer location in sys.argv of the parameter
default The default value to return if the parameter does not exist
#
returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

Credential arguments
uname=getPositionalArgument(1, "weblogic")
passwd=getPositionalArgument(2, "password")
url=getPositionalArgument(3, "t3://localhost:7001")
outputDir=getPositionalArgument(4, ".")

connect(uname, passwd, url)
serverRuntime()
currentDrive=currentTree()

Capture a new diagnostic image
try:
 cd("serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
 task=cmo.captureImage()
 Thread.sleep(1000)
 while task.isRunning():
 Thread.sleep(5000)
 cmo.resetImageLockout();
finally:
 currentDrive()

List the available diagnostic image files in the server's image capture dir
images=getAvailableCapturedImages()
if len(images) > 0:
 # For each diagnostic image found, retrieve image file, renaming it as
 # the user sees fit
 for image in images:
 saveName=outputDir+File.separator+serverName+'-'+image
 saveDiagnosticImageCaptureFile(image,saveName)

Example: Capturing a Diagnostic Image

D-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

D.8 Example: Retrieving a JFR File from a Diagnostic Image Capture
The following example shows retrieving the Java Flight Recorder (JFR) file from each
diagnostic image capture located in the image destination directory on the server and
copying it to a local directory. This example script does the following:

• Connects to WebLogic Server, passing the required credentials.

• Creates a diagnostic image capture.

• Obtains a list of the available diagnostic image files in the server's configured
image directory.

• For each diagnostic image file, attempts to retrieve the JFR file and save it to a local
directory, ensuring that each file is renamed as necessary to avoid any from being
overwritten.

Note:

If WebLogic Server is running in production mode, the server's SSL port must
be used when executing the commands included in this script.

Example D-8 Retrieving a Diagnostic Image Capture File

#
WLST script to capture a WLDF Diagnostic Image and
save the FlightRecording.jfr entry locally
#
Usage:
#
java weblogic.WLST captureImageEntry.py [username] [passwd] [url] [output-dir]
[image-suffix]
#
where

username Username to use to connect
passwd Password for connecting to server
url URL to connect to the server
output-dir Path to place saved entries
image-suffix Suffix to use to rename JFR image entries locally
#
import os.path
from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.
#
Params:
pos The integer location in sys.argv of the parameter
default The default value to return if the parameter does not exist
#
returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:

Example: Retrieving a JFR File from a Diagnostic Image Capture

WebLogic Scripting Tool Examples D-15

 value=default
 return value

Credential arguments
uname=getPositionalArgument(1, "weblogic")
passwd=getPositionalArgument(2, "password")
url=getPositionalArgument(3, "t3://localhost:7001")
outputDir=getPositionalArgument(4, ".")
imageSuffix=getPositionalArgument(5, "_WLS")

connect(uname, passwd, url)
serverRuntime()
currentDrive=currentTree()

Capture a new diagnostic image capture file
try:
 cd("serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
 task=cmo.captureImage()
 Thread.sleep(1000)
 while task.isRunning():
 Thread.sleep(5000)
 cmo.resetImageLockout();
finally:
 currentDrive()

List the available diagnostic image captures in the server's image capture dir
images=getAvailableCapturedImages()
if len(images) > 0:
 # For each image capture found, retrieve the JFR entry and save it to a local
 # file, renaming it to avoid collisions in the event there are multiple
 # diagnostic image capture files with JFR entries.
 i=0
 for image in images:
 saveName=outputDir+File.separator+"FlightRecording_"+imageSuffix+"-"+str(i)
+".jfr"
 while os.path.exists(saveName):
 i+=1
 saveName=outputDir+File.separator+"FlightRecording_"+imageSuffix+"-"+str(i)
+".jfr"
 saveDiagnosticImageCaptureEntryFile(image,'FlightRecording.jfr',saveName)
 i+=1

Example: Retrieving a JFR File from a Diagnostic Image Capture

D-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Glossary

Key terms that you will encounter throughout the diagnostic and monitoring
documentation include the following:

artifact
Any resulting physical entity, or data, generated and persisted to disk by the
WebLogic Diagnostics Framework that can be used later for diagnostic analysis. For
example, the diagnostic image file that is created when the server fails is an artifact.
The diagnostic image artifact is provided to support personnel for analysis to
determine why the server failed. The WebLogic Diagnostics Framework produces a
number of different artifacts.

context creation
If diagnostic monitoring is enabled, a diagnostic context is created, initialized, and
populated by WebLogic Server when a request enters the system. Upon request entry,
WebLogic Server determines whether a diagnostic context is included in the request. If
so, the request is propagated with the provided context. If not, WebLogic Server
creates a new context with a specific name (weblogic.management.DiagnosticContext).
The contextual data for the diagnostic context is stored in the diagnostic context
payload. Thus, within the scope of a request execution, existence of the diagnostic
context is guaranteed.

context payload
The actual contextual data for the diagnostic context is stored in the Context Payload.
See also context creation, diagnostic context, request dyeing.

data stores
Data stores are a collection of data, or records, represented in a tabular format. Each
record in the table represents a datum. Columns in the table describe various
characteristics of the datum. Different data stores may have different columns;
however, most data stores have some shared columns, such as the time when the data
item was collected.

In WebLogic Server, information captured by WebLogic Diagnostics Framework is
segregated into logical data stores, separated by the types of diagnostic data. For
example, Server logs, HTTP logs, and harvested metrics are captured in separate data
stores.

Glossary-1

diagnostic action
Business logic or diagnostic code that is executed when a joinpoint defined by a
pointcut is reached. Diagnostic actions, which are associated with specific pointcuts,
specify the code to execute at a joinpoint. Put another way, a pointcut declares the
location and a diagnostic action declares what is to be done at the locations identified
by the pointcut.

Diagnostic actions provide visibility into a running server and applications. Diagnostic
actions specify the diagnostic activity that is to take place at locations, or pointcuts,
defined by the monitor in which it is implemented. Without a defined action, a
diagnostic monitor is useless.

Depending on the functionality of a diagnostic action, it may need a certain
environment to do its job. Such an environment must be provided by the monitor to
which the diagnostic action is attached; therefore, diagnostic actions can be used only
with compatible monitors. Hence, diagnostic actions are classified by type so that their
compatibility with monitors can be determined.

To facilitate the implementation of useful diagnostic monitors, a library of suitable
diagnostic actions is provided with the WebLogic Server product.

diagnostic context
The WebLogic Diagnostics Framework adds contextual information to all requests
when they enter the system. You can use this contextual information, referred to as the
diagnostic context, to reconstruct transactional events, as well correlate events based
on the timing of the occurrence or logical relationships. Using diagnostic context you
can reconstruct or piece together a thread of execution from request to response.

Various diagnostic components, for example, the logging services and diagnostic
monitors, use the diagnostic context to tag generated data events. Using the tags, the
diagnostic data can be collated, filtered and correlated by the WebLogic Diagnostics
Framework and third-party tools.

The diagnostic context also makes it possible to generate diagnostic information only
when contextual information in the diagnostic context satisfies certain criteria. This
capability enables you to keep the volume of generated information to manageable
levels and keep the overhead of generating such information relatively low. See also
context creation, context payload, request dyeing.

diagnostic image
An artifact containing key state from an instance of a server that is meant to serve as a
server-level state dump for the purposes of diagnosing significant failures. This
artifact can be used to diagnose and analyze problems even after the server has cycled.

diagnostic module
A diagnostic module is the definition the configuration settings that are to be applied
to the WebLogic Diagnostics Framework. The configuration settings determine the
data that is to be collected and processed; how the data is to be analyzed and archived;
the policies that are to be evaluated; the actions, notifications, and alarms that are to be
executed; and the operating parameters of the Diagnostic Image Capture component.
After a diagnostic module has been defined, or configured, it can be distributed to a
running server where the data is collected.

diagnostic action

Glossary-2

diagnostic monitor
A diagnostic monitor is a unit of diagnostic code that defines the following:

1. The locations in a program where the diagnostic code is added

2. The diagnostic actions that are executed at those locations

WebLogic Server provides a library of useful diagnostic monitors. You can integrate
these monitors into server and application classes. Once integrated, the monitors take
effect at server startup for server classes, and at application deployment and
redeployment for application classes.

diagnostic notification
The action that occurs as a result of the successful evaluation of a watch rule. The
WebLogic Diagnostics Framework supports these types of diagnostic notifications:
Java Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer
Protocol (SMTP), Simple Network Management Protocol (SNMP), and WLDF Image
Capture. See also diagnostic image .

dye filtering
The process of looking at the dye mask and making the decision as to whether or not a
diagnostic monitor should execute an action so as to generate a data event. Dye
filtering is dependent upon dye masks. You must define dye masks in order for dye
filtering to take place. See also dye mask, request dyeing.

dye mask
The entity that contains a predefined set of conditions that are used by dye filtering in
diagnostic monitors to determine whether or not a data event should be generated. See
also dye filtering, request dyeing.

harvestable entities
A harvestable entity is any entity that is available for data consumption via the
Harvester. Once an entity is identified as a harvestable resource, the Harvester can
engage the entity in the data collection process.

Harvestable entities provide access to the following information: harvestable
attributes, values of harvestable attributes, metadata for harvestable attributes, and the
name of the harvestable entity. See also harvestable data, harvested data, Harvester's
configuration data set, MBean type discovery.

harvestable data
Harvestable data (types, instances, attributes) is the set of data that potentially could
be harvested when and if a harvestable entity is configured for harvesting. Therefore,
the set of harvestable data exists independent of what data is configured for
harvesting and of what data samples are taken.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data for users. For
a description of the information about harvestable data provided by this MBean, see
the description of the

harvestable data

Glossary-3

weblogic.management.runtime.WLDFHarvesterRuntimeMBean in the MBean
Reference for Oracle WebLogic Server.

The WebLogic Diagnostics Framework makes runtime MBeans available as
harvestable only. In order for an MBean to be harvestable, it must be registered in the
local WebLogic Server runtime MBean server. See also harvestable entities, harvested
data, Harvester's configuration data set, MBean type discovery.

harvested data
A type, instance, or attribute is called harvested data if that data is currently being
harvested. To meet these criteria the data must: 1) be configured to be harvested, 2) if
applicable, it must have been discovered, and 3) it must not throw exceptions while
being harvested.

See also harvestable entities, harvestable data, Harvester's configuration data set.

Harvester's configuration data set
The set of data to be harvested as defined by the Harvester's configuration. The
configured data set can contain items that are not harvestable and items that are not
currently being harvested.

See also harvestable entities, harvestable data, Harvester's configuration data set.

joinpoint
A well defined point in the program flow where diagnostic code can be added. The
Instrumentation component allows identification of such diagnostic joinpoints with an
expression in a generic manner.

pointcut
A well defined set of joinpoints, typically identified by some generic expression.
Pointcuts identify joinpoints, which are well-defined points in the flow of execution,
such as a method call or method execution site. The Instrumentation component
provides a mechanism to allow execution of specific diagnostic code at such pointcuts.
The Instrumentation component adds such diagnostic code to the server and
application code.

MBean (Managed Bean)
A Java object that provides a management interface for an underlying resource. An
MBean is part of Java Management Extensions (JMX).

In the WebLogic Diagnostics Framework, MBean classes are used to configure the
service and to monitor its runtime state. MBeans are registered with the MBean server
that runs inside WebLogic Server. MBeans are implemented as standard MBeans
which means that each class implements its own MBean interface.

MBean type discovery
For WebLogic Server entities, the set of harvestable types is known at system startup,
but not the complete set of harvestable instances. However, for user-defined MBeans,
the set of types can grow dynamically as more MBeans appear at run time. The

harvested data

Glossary-4

process of detecting a new type based on the registration of a new MBean is called
type discovery. MBean type discovery is only applicable to user-defined MBeans.

MBean type metadata
The set of harvestable attributes for a type (and its instances) is defined by the
metadata for the type. Since the WebLogic Server model is MBeans, the metadata is
provided through MBeanInfos. Since WebLogic type information is always available,
the set of harvestable attributes for WebLogic Server types (and existing and potential
instances) is always available as well. However, for customer types, knowledge of the
set of harvestable attributes is dependent on the existence of the type. And, the type
does not exist until at least one instance is created. So the list of harvestable attributes
on a user defined type is not known until at least one instance of the type is registered.

It is important to be aware of latencies in the availability of information for custom
MBeans. Due to latencies, the WebLogic Server Administration Console cannot
provide complete lists of all harvestable data in its user selection lists for configuring
the Harvester. The set of harvestable data for WebLogic Server entities is always
complete, but the set of harvestable data for customer entities (and even the set of
entities itself) may not be complete.

metadata
Metadata is information that describes the information the WebLogic Diagnostics
Framework collects. Because the service collects diagnostic information from different
sources, the consumers of this information need to know what diagnostic information
is collected and available. To satisfy this need, the Data Accessor provides
functionality to programmatically obtain this metadata. The metadata made available
by means of the Data Accessor includes:

1. A list of supported data store types. For example, SERVER_LOG, HTTP_LOG,
and HARVESTED_DATA.

2. A list of available data stores.

3. The layout of each data store; that is, information about columns in the data store.

metrics
Monitoring system operation and diagnosing problems depends on having data from
running systems. Metrics are measurements of system performance. From these
measurements, support personnel can determine whether the system is in good
working order or a problem is developing.

In general, metrics are exposed to the WebLogic Diagnostics Framework as attributes
on qualified MBeans. In WebLogic Server, metrics include performance measurements
for the operating system, the virtual machine, the system runtime, and applications
running on the server.

request dyeing
Requests can be dyed, or specially marked, to indicate that they are of special interest.
For example, in a running system, it may be desirable to send a specially marked test
request, which can be conditionally traced by the tracing monitors. This allows
creation of highly focused diagnostic information without slowing down other
requests.

request dyeing

Glossary-5

Requests are typically marked when they enter the system by setting flags in the
diagnostic context. The diagnostic context provides a number of flags, 64 in all, that
can be independently set or reset.

See also context creation, context payload, diagnostic context.

system image capture
Whenever a system fails, there is need to know its state when it failed. Therefore, a
means of capturing system state upon failure is critical to failure diagnosis. A system
image capture does just that. It creates, in essence, a diagnostic snapshot, or dump,
from the system for the express purpose of diagnosing significant failures.

In WebLogic Server, you can configure the WebLogic Diagnostics Framework
provides the First-Failure Notification feature to trigger system image captures
automatically when the server experiences an abnormal shutdown. You can also
implement watches to automatically trigger diagnostic image captures when
significant failures occur and you can manually initiate diagnostic image captures on
demand.

watch
A watch encapsulates all of the information for a watch rule. This includes the watch
rule expression, the alarm settings for the watch, and the various notification handlers
that will be fired once a watch rule expression evaluates to true.

weaving time
The time it takes to inspect server and application classes and insert the diagnostic
byte code at well-defined locations, if necessary at class load time. The diagnostic byte
code enables the WebLogic Diagnostics Framework to take diagnostic actions.
Weaving time affects both the load time for server-level instrumented classes and
application deployment time for application-level classes.

system image capture

Glossary-6

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 What Is the WebLogic Diagnostics Framework?
	1.2 Document Scope and Audience
	1.3 Guide to This Document
	1.4 Related Documentation
	1.5 Samples and Tutorials
	1.5.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.5.2 WLDF Samples Available for Download

	1.6 New and Changed Features in this Release

	2 Overview of the WLDF Architecture
	2.1 Overview of the WebLogic Diagnostics Framework
	2.2 Data Creation, Collection, and Instrumentation
	2.3 Archive
	2.4 Watch and Notification
	2.5 Data Accessor
	2.6 Monitoring Dashboard and Request Performance Pages
	2.6.1 Monitoring Dashboard
	2.6.2 Diagnostics Request Performance Page

	2.7 Diagnostic Image Capture
	2.8 How It All Fits Together

	3 Using the Built-in Diagnostic System Modules
	3.1 Overview
	3.1.1 Types of Built-in Diagnostic System Modules
	3.1.2 Data Collected by Built-in Diagnostic System Modules

	3.2 Configuring a Built-in Diagnostic Module
	3.3 Accessing Data Collected by a Built-in Diagnostic System Module
	3.3.1 Using the Monitoring Dashboard
	3.3.2 Using the Metrics Log Table in the Administration Console

	3.4 Creating a Custom Diagnostic System Module Based on a Built-in

	4 Using WLDF with Java Flight Recorder
	4.1 About Java Flight Recorder
	4.2 Using Java Flight Recorder with Oracle HotSpot
	4.3 Key Features of WLDF Integration with Java Flight Recorder
	4.4 Java Flight Recorder Use Cases
	4.4.1 Diagnosing a Critical Failure — The "Black Box"
	4.4.2 Profiling During Performance Testing or in Production
	4.4.3 Real-time Application Diagnostics and Reporting (RADAR)

	4.5 Obtaining the Flight Recording File
	4.6 Analyzing Java Flight Recorder Data
	4.6.1 Java Flight Recorder Graphical User Interface
	4.6.2 Analyzing Execution Flow — A Sample Walkthrough
	4.6.2.1 Displaying Event Data for a Product Subcomponent
	4.6.2.2 Viewing the Event Log to Display Details
	4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set
	4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic Data

	4.6.3 Changing the Location of Temporary JFR Files

	5 Understanding WLDF Configuration
	5.1 Configuration MBeans and XML
	5.2 Tools for Configuring WLDF
	5.3 How WLDF Configuration Is Partitioned
	5.3.1 Server-Level Configuration
	5.3.2 Application-Level Configuration

	5.4 Configuring Diagnostic Image Capture and Diagnostic Archives
	5.5 Configuring Diagnostic Image Capture for Java Flight Recorder
	5.6 Configuring Diagnostic System Modules
	5.6.1 About the Resource Descriptor
	5.6.2 WLDF Runtime Control
	5.6.3 Creating a Diagnostic System Module Based on a Configured Resource Descriptor
	5.6.4 Creating a Diagnostic System Module Based on an External Resource Descriptor
	5.6.5 Targeting a Diagnostic System Module to a Server or Cluster
	5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules
	5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules
	5.6.7.1 Example

	5.6.8 More Information About Configuring Diagnostic System Modules

	5.7 Configuring Diagnostic Modules for Applications
	5.8 WLDF Configuration MBeans and Their Mappings to XML Elements

	6 Configuring and Capturing Diagnostic Images
	6.1 How to Initiate Image Captures
	6.2 Configuring Diagnostic Image Captures
	6.2.1 Configuring WLDF Diagnostic Volume
	6.2.1.1 Low Volume Setting
	6.2.1.2 Medium Volume Setting
	6.2.1.3 High Volume Setting

	6.2.2 WLST Commands for Generating an Image Capture

	6.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration
	6.4 Content of the Captured Image File
	6.4.1 Data Included in the Diagnostics Image Capture File
	6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures

	7 Configuring Diagnostic Archives
	7.1 Configuring the Archive
	7.2 Configuring a File-Based Store
	7.3 Configuring a JDBC-Based Store
	7.3.1 Creating WLDF Tables in the Database
	7.3.1.1 Apache Derby
	7.3.1.2 Oracle Database
	7.3.1.3 MySQL

	7.3.2 Configuring JDBC Resources for WLDF

	7.4 Retiring Data from the Archives
	7.4.1 Configuring Data Retirement at the Server Level
	7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	7.4.3 Sample Configuration

	8 Configuring the Harvester for Metric Collection
	8.1 Harvesting, Harvestable Data, and Harvested Data
	8.2 Harvesting Data from the Different Harvestable Entities
	8.3 Configuring the Harvester
	8.3.1 Configuring the Harvester Sampling Period
	8.3.2 Configuring the Types of Data to Harvest
	8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	8.3.4 Harvesting from the Domain Runtime MBean Server
	8.3.5 When Configuration Settings Are Validated
	8.3.6 Sample Configurations for Different Harvestable Types

	8.4 Harvester Performance Considerations

	9 Configuring Watches and Notifications
	9.1 Watches and Notifications
	9.2 Overview of Watch and Notification Configuration
	9.3 Sample Watch and Notification Configuration

	10 Configuring Watches
	10.1 Types of Watches
	10.2 Configuration Options Shared by All Types of Watches
	10.3 Configuring Harvester Watches
	10.4 Configuring Log Watches
	10.5 Configuring Instrumentation Watches
	10.6 Defining Watch Rule Expressions

	11 Configuring Notifications
	11.1 Types of Notifications
	11.2 Configuring JMX Notifications
	11.3 Configuring JMS Notifications
	11.4 Configuring SNMP Notifications
	11.5 Configuring SMTP Notifications
	11.6 Configuring Image Notifications

	12 Configuring Instrumentation
	12.1 Concepts and Terminology
	12.1.1 Instrumentation Scope
	12.1.2 Configuration and Deployment
	12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations
	12.1.4 Diagnostic Monitor Types
	12.1.5 Diagnostic Actions

	12.2 Instrumentation Configuration Files
	12.3 XML Elements Used for Instrumentation
	12.3.1 <Instrumentation> XML Elements
	12.3.2 <wldf-instrumentation-monitor> XML Elements
	12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	12.4 Configuring Server-Scoped Instrumentation
	12.5 Configuring Application-Scoped Instrumentation
	12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation
	12.5.2 Overview of the Steps Required to Instrument an Application
	12.5.3 Creating a Descriptor File for a Delegating Monitor
	12.5.4 Creating a Descriptor File for a Custom Monitor
	12.5.4.1 Defining Pointcuts for Custom Monitors
	12.5.4.2 Annotation-based Pointcuts

	12.6 Creating Request Performance Data

	13 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts
	13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context
	13.1.1 Context Life Cycle and the Context ID
	13.1.2 Dyes, Dye Flags, and Dye Vectors
	13.1.3 Where Diagnostic Context Is Configured

	13.2 Overview of the Process
	13.3 Configuring the Dye Vector via the DyeInjection Monitor
	13.3.1 Dyes Supported by the DyeInjection Monitor
	13.3.2 PROTOCOL Dye Flags
	13.3.3 THROTTLE Dye Flag
	13.3.4 When Diagnostic Contexts Are Created

	13.4 Configuring Delegating Monitors to Use Dye Filtering
	13.5 How Dye Masks Filter Requests to Pass to Monitors
	13.5.1 Dye Filtering Example

	13.6 Using Throttling to Control the Volume of Instrumentation Events
	13.6.1 Configuring the THROTTLE Dye
	13.6.2 How Throttling is Handled by Delegating and Custom Monitors

	13.7 Using weblogic.diagnostics.context

	14 Accessing Diagnostic Data With the Data Accessor
	14.1 Data Stores Accessed by the Data Accessor
	14.2 Accessing Diagnostic Data Online
	14.2.1 Accessing Data Using the Administration Console
	14.2.2 Accessing Data Programmatically Using Runtime MBeans
	14.2.3 Using WLST to Access Diagnostic Data Online
	14.2.4 Using the WLDF Query Language with the Data Accessor

	14.3 Accessing Diagnostic Data Offline
	14.4 Accessing Diagnostic Data Programmatically
	14.5 Resetting the System Clock Can Affect How Data Is Archived and Retrieved

	15 Deploying WLDF Application Modules
	15.1 Deploying a Diagnostic Module as an Application-Scoped Resource
	15.2 Using Deployment Plans to Dynamically Control Instrumentation Configuration
	15.3 Using a Deployment Plan: Overview
	15.4 Creating a Deployment Plan Using weblogic.PlanGenerator
	15.5 Sample Deployment Plan for Diagnostics
	15.6 Enabling Java HotSwap
	15.7 Deploying an Application with a Deployment Plan
	15.8 Updating an Application with a Modified Plan

	16 Using the Monitoring Dashboard
	16.1 Running the Monitoring Dashboard
	16.2 Scope of the Diagnostic Information Displayed
	16.3 About the Monitoring Dashboard Interface
	16.3.1 View List
	16.3.2 Metric Browser
	16.3.3 View Display Panel

	16.4 Understanding How Metrics Are Collected and Presented
	16.4.1 About Metrics and Chart Types
	16.4.1.1 Current Time Range Charts
	16.4.1.2 Custom Time Range Charts

	16.4.2 Sequence in which Metrics Data is Displayed
	16.4.3 Notes about Metric Data Retention

	16.5 The Parts of a Chart

	17 Configuring and Using WLDF Programmatically
	17.1 How WLDF Generates and Retrieves Data
	17.2 Mapping WLDF Components to Beans and Packages
	17.3 Programming Tools
	17.3.1 Configuration and Runtime APIs
	17.3.1.1 Configuration APIs
	17.3.1.2 Runtime APIs

	17.4 WLDF Packages
	17.5 Programming WLDF: Examples
	17.5.1 Example: DiagnosticContextExample.java
	17.5.2 Example: HarvesterMonitor.java
	17.5.2.1 Notification Listeners
	17.5.2.2 HarvesterMonitor.java

	17.5.3 Example: JMXAccessorExample.java

	A WLDF Query Language
	A.1 Components of a Query Expression
	A.2 Supported Operators
	A.3 Operator Precedence
	A.4 Numeric Relational Operations Supported on String Column Types
	A.5 Supported Numeric Constants and String Literals
	A.6 About Variables in Expressions
	A.7 Creating Watch Rule Expressions
	A.7.1 Creating Log Event Watch Rule Expressions
	A.7.2 Creating Instrumentation Event Watch Rule Expressions
	A.7.3 Creating Harvester Watch Rule Expressions

	A.8 Creating Data Accessor Queries
	A.8.1 Data Store Logical Names
	A.8.2 Data Store Column Names

	A.9 Creating Log Filter Expressions
	A.10 Building Complex Expressions

	B WLDF Instrumentation Library
	B.1 Diagnostic Monitor Library
	B.2 Diagnostic Action Library
	B.2.1 TraceAction
	B.2.2 DisplayArgumentsAction
	B.2.3 TraceElapsedTimeAction
	B.2.4 TraceMemoryAllocationAction
	B.2.5 StackDumpAction
	B.2.6 ThreadDumpAction
	B.2.7 MethodInvocationStatisticsAction
	B.2.7.1 Instrumenting an Application with MethodInvocationStatisticsAction and Querying the Results
	B.2.7.1.1 Configuring the Custom Monitor to Use MethodInvocationStatisticsAction
	B.2.7.1.2 Using WLST to Query Method Performance Statistics

	B.2.7.2 Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
	B.2.7.3 Configuring Watch Rules Based on MethodInvocationStatistics Metrics
	B.2.7.4 Using JMX to Collect Data

	B.2.8 MemoryAllocationStatisticsAction

	C Using Wildcards in Expressions
	C.1 Using Wildcards in Harvester Instance Names
	C.1.1 Examples

	C.2 Specifying Complex and Nested Harvester Attributes
	C.2.1 Examples

	C.3 Using the Accessor with Harvested Complex or Nested Attributes
	C.4 Using Wildcards in Watch Rule Instance Names
	C.5 Specifying Complex Attributes in Harvester Watch Rules

	D WebLogic Scripting Tool Examples
	D.1 WLST Commands for Diagnostics
	D.2 Example: Dynamically Creating DyeInjection Monitors
	D.3 Example: Configuring a Watch and a JMX Notification
	D.4 Example: Writing a JMXWatchNotificationListener Class
	D.5 Example: Registering MBeans and Attributes For Harvesting
	D.6 Example: Setting the WLDF Diagnostic Volume
	D.7 Example: Capturing a Diagnostic Image
	D.8 Example: Retrieving a JFR File from a Diagnostic Image Capture

	Glossary
	artifact
	context creation
	context payload
	data stores
	diagnostic action
	diagnostic context
	diagnostic image
	diagnostic module
	diagnostic monitor
	diagnostic notification
	dye filtering
	dye mask
	harvestable entities
	harvestable data
	harvested data
	Harvester's configuration data set
	joinpoint
	pointcut
	MBean (Managed Bean)
	MBean type discovery
	MBean type metadata
	metadata
	metrics
	request dyeing
	system image capture
	watch
	weaving time

