ORACLE

Oracle® Fusion Middleware

Developing ADF Skins with Oracle ADF Skin Editor
12¢(12.1.3)

E41275-01

May 2014

Documentation for Oracle Application Development
Framework (Oracle ADF) developers and user interface
designers that describes how to create and apply skins to an
application using the ADF Skin Editor.

Oracle Fusion Middleware Developing ADF Skins with Oracle ADF Skin Editor 12¢ (12.1.3)
E41275-01

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Walter Egan

Contributing Author: Laura Akel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ...t s st vii
NS Lo = VT TSR RSO RRRTRTTN Vii
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiii s Vii
ReElated DOCUITIEIESveiveieeiieceieeeeeetee ettt ettt e et e et e e teeeaeeeteeesesenseeeseeenseessessnseenseeensesnseesneeanes Vii
(@03 4 NT£=3 015 (o) 0 - I RTR USRS Vii

What's NeW IN ThiS GUIAE ... ix
New and Changed Features for 12¢ (12.1.3)cc.couiriiiiiiii e iX

1 About Skinning a Web Application

1.1 Introduction to Skinning a Web Applicationcccooiiiiiiiiii 1-1
1.2 Overview of Developing an ADF SKiNcccccociiiiiiiiiiiiiii e 1-2
1.3 Taking a Look at an ADF SKINccccouiiiiiiiiiie e 1-4
1.4 Inheritance Relationship of the ADF Skins Provided by Oracle ADF 1-5

2 Working with ADF Skin Selectors

2.1 ADbOUt ADF SKIin SELECLOTSceiiiiiiiiiiiiiiiiiiiiiiiieee e e e e e e e e e e e e e e e e e eeeeeeee e eeees s et eeeaaeeeeaas 2-1
2.1.1 ADF Skin Selectors and Pseudo-Elementscccccceeeeeeiiieieieiiieiieiieeeeeeeeeeevevviesvenees 2-3
2.1.2 ADF Skin Selectors and Icon Imagesccccoeiiiiiiiiiiiicc e, 2-4
2.1.3 Grouped ADF SKin Selectorsccooiioiiiiiiiieiiciic e 2-6
2.1.4 Descendant ADF SKin SElECtOTSccooiiiiiiiiiiiiiiiiiiiieieaeeeieeeeeeeeeeeeeeeeeeeeeeeeessaesanranaa. 2-7
2.2 Pseudo-Classes in the ADF Skinning Frameworkc...cccooiiiiiiiii, 2-8
2.3 Properties in the ADF Skinning Frameworkccccoccoiii, 2-11
24 Accessing Selector Information from Within the ADF Skin Editorcc.cccoeoiiiene. 2-13

3 Working with the ADF Skin Editor

3.1 About the ADF SKin EdItOrccovviiiiiiiiiiiiiiicieecee et e 3-1
3.2 Working with the ADF Skin Design Editorccccoooiiiiiiii 3-2
3.2.1 How to Change the Browser that Renders the Design Editor's Sample Pages 3-3
3.3 Working with the ADF Skin Selectors Editor ..o, 3-3
3.3.1 About the Selector TTEE ...ccoiiii i i i e e e e e e e e e e e e e ae e 3-6
3.3.2 Interactive Preview in the Selectors EAitorccccccceeeiiiiiiiiiiiiiiiiiiiieeeeeeene, 3-7
3.4 Working with the Properties WINdowc.cooiiiiiiiiiiiiii e 3-8
3.5 Navigating ADF SKINSccccciiiiiiiiiiciicic s 3-10

3.6 Customizing the ADF Skin EditOrccooiiiiiiiiii 3-12

3.6.1 How to Change the Look and Feel of the ADF Skin Editorccccccoviiiiiiiniins 3-12
3.6.2 How to Customize the General Environment for the ADF Skin Editor 3-13
3.7 Searching the Source Files of ADF SKiNSc.cccooiiiiiiiiiiiiiiic 3-13
3.7.1 How to Search the Source Files of ADF SKinscccccocviiiiiiiiiinii s 3-13
3.8 Working with EXtENSIONSoocueiiiiiiiiiiiicie e 3-14
3.8.1 How to Install Extensions with Check for Updatesccccociiiiiiiiiiiniiiiiinins 3-14
3.9 Adding External Tools to the ADF Skin Editorccoooiiiiiiiiiiiic 3-14
3.9.1 How to Add External Tools to the ADF Skin Editorccoooviviviiiiiiiiiiiicice 3-14
3.10 Navigating the ADF SKkin Editorcccooooiiiiiiiii e, 3-15
3.10.1 How to Work With Shortcut Keys In the ADF Skin Editorcccocoviiiiiniiniins 3-15
3.10.2 Keyboard Navigation In the ADF Skin Editorccccoooiiiiiiiiiiii e 3-16
3.10.2.1 Common Navigation Keyscccocoiiiiiiii 3-17
3.10.2.2 Navigation In Standard Componentsccocoiiiiiiiiiiiiiicc e, 3-17
3.10.2.3 Navigating Complex CONtrolscccooiiiiiiiiiiiiiie e 3-22
3.10.2.4 Navigation in Specific COMPONENESc..cceriiiiiiiriiiiiin i 3-27
3.11 Working with the Resources Windowccccoiiriiiiiiiii 3-30
3.11.1 Working with IDE CONNECHIONSooiuiiiiiiiieiii e 3-30
3.11.2 How to Search the Resources Windowcccccceviiiiiiiniiiiiiniiccses e 3-31
3.11.3 Filtering Resources Window Contentscccooiriiiiiiiiiiiii 3-33
3.11.4 Importing and Exporting Catalogs and Connectionsccccvverceerieeiiecriesieans 3-33
3.11.5 Working with Resources Window Catalogsccccooieiiiiiiiiiiiiicicce 3-33
3.11.5.1 Creating Catalogsooueeuieiiiiieie e 3-34
3.11.5.2 Renaming CataloZscooeieiiiiiiiieiie e e 3-34
3.11.6 Working with Catalog Folders ... 3-34
3.11.6.1 How to Create Foldersccccociiiiiiiiiiiiiiiiii 3-34
3.11.6.2 How to Create Dynamic FOIAerscoccoiiiiiiiiiiiiiciie e 3-34
3.11.6.3 How to Add Resources to a Catalogcccccoveiiiiiiiiiiiiiii 3-34
3.12 Working with the Issues Windowccccoiiiiiiiiiii 3-35

4 Creating the Source Files for an ADF Skin

4.1 About Creating an ADF SKinccccoioiiiiiiiii e 4-1
4.2 Creating ADF Skin Applications and ADF Skin Projectsccccooceviiiiiiiiiciice i 4-1
4.21 How to Create an ADF Skin Applicationcccocveviiiiiiniiiiiiniicceces e 4-1
4.2.2 How to Create a New ADEF Skin Projectccccoooeiiiiiiieniiiiceee 4-2
4.3 Creating an ADF SKin Fileccociiiiiii e s 4-2
4.31 How to Create an ADF Skin in the ADF Skin Editorccccoccviviiiiiiiiniiie, 4-3
4.3.2 How to Create an ADF Skin in JDeveloperccccoooiiiiiiiiiiin i 4-4
4.3.3 What Happens When You Create an ADF SKinc.ccoooiiiiiiiiicic e 4-5
4.4 Importing One or More ADF Skins Into the Current ADF Skinc.cooii, 4-8
4.5 Importing ADF Skins from an ADF Library JARcccocoiiiiiiiic 4-8
451 How to Import an ADF Skin from an ADF Library JARccccooiiiiiniiiiicieeee 4-9
452 What Happens When You Import an ADF Skin from an ADF Library JAR 4-9
4.6 Opening an Application Created Outside of the ADF Skin Editorccccooieinninn 4-10

5 Working with Component-Specific Selectors
5.1 About Working with Component-Specific Selectorsccooveiiiiiiiniiiiciicce, 5-1

5.2 Changing ADF Faces Components' Selectorscccvviiiiriiiiiiiniiiiiin e 5-3

5.3 Changing ADF Data Visualization Components' Selectorscccooeiiiiiiicnininncne 5-4
5.4 Changing a Component-Specific SElectOrcooiiiiiiiiiiiiii e 5-7
5.4.1 How to Change a Component-Specific Selectorcccoovvviiiiiiiiniiiiiiciiinis 5-8
54.2 What Happens When You Change a Component-Specific Selector 5-8
5.5 Configuring ADF Skin Properties to Apply to Messagescccooviiieeiiiiiiiciiccieeneens 5-9
5.5.1 How to Configure an ADF Skin Property to Apply to a Messagecccccoceeunnnee. 5-11
55.2 What Happens When You Configure ADF Skin Properties to Apply to Messages 5-12
5.6 Applying Themes to ADF Faces Pagescccccooiiiiiiiiii i 5-12
5.6.1 How to Style a Component with a Theme ..., 5-14
5.7 Configuring an ADF Skin for Accessibility ..., 5-15
5.7.1 How to Configure an ADF Skin for Accessibilitycccccvoiiiiiiiiiniiiiiciceee 5-16

6 Working with Images and Color in Your ADF Skin

6.1 About Working with Images and Color in Your ADF SKincccccviiiiiiiiiiiicceene 6-1
6.2 Changing Images and Colors in the ADF Skin Design Editorccoooiii 6-3
6.3 Working with Color in a Skyros-Extended ADF SKincccoccooiiiiiii 6-4
6.4 Changing an Image for a Component Selectorc.ccoiiiiiiiiiiiiiiie e 6-8
6.4.1 How to Copy an Image into the Project ..., 6-9
6.4.2 What Happens When You Copy an Image into the Projectccccooeiil. 6-10
6.5 Working with the Images Editorcccocoiiiiiiiii e 6-11
6.5.1 How to Generate Images Using the Images Editorccccoociiiiiiii. 6-14
6.5.2 What Happens When You Generate Images Using the Images Editor 6-15
6.6 Providing a Simple Border Style for ADF SKINScccccoeiiiiiiiiiiiiiie e 6-16

7 Working With Text in an ADF Skin

71 About Working with Text in an ADF SKincccccoiiiiiiiiiii e 7-1
7.2 Using Text From Your Own Resource Bundle ... 7-2
7.21 How to Specify an Additional Resource Bundle for an ADF SKinccccoccveiinninns 7-3
7.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin 7-3

8 Working With Global Selector Aliases

8.1 About Global Selector ALIasescccueeiiiiiiiiiiiiic i 8-1
8.2 Creating a Global Selector ALasccciiiiiiiiiiii 8-5
8.2.1 How to Create a Global Selector ALiascccooiiiiiiiiiiiiiii e 8-5
8.2.2 What Happens When You Create a Global Selector Aliasccoccoeeviiiiiiiiinenen. 8-5
8.3 Modifying a Global Selector Aliascccooueiiiiiiiiiicc 8-6
8.3.1 How to Modify a Global Selector ALiascccecuviiieiiiiciiciieiee e 8-6
8.4 Applying a Global Selector ALASccoiiiiiiiiiiiiiie e 8-7
8.4.1 How to Apply a Global Selector Aliascccooeiiiiiiiiniiiiiiciic e 8-7
8.4.2 What Happens When You Apply a Global Selector Aliascccoevvieiiiiiniiniinennns 8-8
8.4.3 What You May Need to Know About Applying a Global Selector Alias 8-9
8.5 Referencing a Property Value from Another Selectorcccooooiiiiii, 8-10
8.5.1 How to Reference a Property Value from Another Selectorcc.cccoocieiiiinenne. 8-11
8.5.2 What Happens When You Reference a Property Value from Another Selector 8-11

9 Working with Style Classes

10

11

12

vi

9.1 About Style Classescccociiiiiiiiiiii i 9-1
9.2 Creating a Style Classccooiieiiiiiie e s 9-2
9.2.1 How to Create a Style Classcccooiiiiiiiiiiiciice e 9-2
9.22 What Happens When You Create a Style Classccocoecriieiiiiniiicc 9-3
9.3 Modifying @ Style Classcccoueioiiiiiiiieiie e s 9-3
9.3.1 How to Modify a Style Classcccoooeoiiiiiiiiiici e 9-3
9.4 Configuring a Style Class for a Specific Instance of a Componentcocceei 9-4
9.4.1 How to Configure a Style Class for a Specific Instance of a Component 9-4
94.2 What Happens When You Configure a Style Class for a Specific Instance of a
COMPONENT .iiiiitiiiiic i 9-5

Working with At-Rules

10.1 About At-Rules in the ADF Skinning Frameworkccccooiiiiiiiii, 10-1
10.2 Working with Server-Side At-Rulesccccocciiiiiiiiiiiiiiic 10-2
10.3 Working with Client-Side At-RUIEScooiiiiiiiii e 10-5
10.4 Creating At-Rules in an ADF SKinccccooiiiiiiiiiiiice e 10-7
10.4.1 How to Create an At-Ruleccccoiiiiiiiiiiiii 10-7
10.4.2 What Happens When You Create an At-Ruleccooooiiiiiiiii e 10-8

10.4.3 What Happens at Runtime: How the ADF Skinning Framework Applies At-Rules 10-9

Applying the Finished ADF Skin to Your Web Application

11.1 About Applying a Finalized ADF Skin to an Applicationcccccvvviiiiiniiiininiiniines 11-1
11.2 Testing Changes in Your ADF SKincccocooiiiiiiiiiiie e, 11-1
11.2.1 How to Set Parameters for Testing Your ADF SKincccccocviiiiiiiiniciiicnieeee 11-4
11.2.2 What Happens When You Set Parameter for Testing Your ADF Skincc........ 11-4
11.3 Packaging an ADF Skin into an ADF Library JARccociiiiiiii, 11-4
11.3.1 How to Package an ADF Skin into an ADF Library JARcccccoiiiiiiiiiiiiiee 11-5
11.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR 11-5
11.4 Applying an ADF Skin to Your Web Applicationccccoiiiiiiiiiiiiiiiiiciciecce 11-6
11.4.1 How to Apply an ADF Skin to an Applicationcccceeiiiiiiiic i 11-7
11.4.2 What Happens When You Apply an ADF Skin to an Applicationcccoeuvenene 11-7
11.5 Applying an ADF Skin to a Running Web Applicationccccooiiiiiiiiiiiiiiiinins 11-7
11.5.1 How to Configure your Fusion Web Application to Accept an Updated ADF Skin 11-7
11.5.2 How to Deploy an ADF Library JAR to an MBean Servercccoocooiiinn 11-8
11.5.3 What Happens When You Apply an ADF Skin to a Running Application 11-9

Advanced Topics

12.1 Referring to URLs in an ADF Skin's CSS Filecccccooiiiiiiiiiiiii e 12-1
12.2 Configuration Files for an ADF SKIncccccocoiiiiiiiiiiiii e 12-2
12.3 ADF Skins Provided by Oracle ADF ... 12-3
124 Versioning ADF SKINSccoiiiiiiiiiii e 12-6
12.4.1 How to Version an ADF SKINcccoiiiiiiiiiicii e 12-7
12.4.2 What Happens When You Version ADF SKinscccceceviiiiiiiniiciiiciin e 12-7

Audience

Preface

Welcome to Developing ADF Skins with Oracle ADF Skin Editor.

This document is intended for application developers and user interface designers
who want to change the look and feel of their application by skinning ADF Faces Rich
Client components.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following documents for the release that pertains to the
application that you are skinning;:

» Installing Oracle ADF Skin Editor

» Developing Web User Interfaces with Oracle ADF Faces

» Tag Reference for Oracle ADF Faces

» Tag Reference for Oracle ADF Faces Skin Selectors

» Tag Reference for Oracle ADF Faces Data Visualization Tools

» Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors

Conventions

The following text conventions are used in this document:

vii

viii

Convention

Meaning

boldface

italic

monospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New in This Guide

The following topics introduce the new and changed features of the ADF Skin Editor
and other significant changes that are described in this guide, and provides pointers to
additional information. This document is the new edition of the document formerly
titled Creating ADF Skins with Oracle ADF Skin Editor.

New and Changed Features for 12¢ (12.1.3)
The ADF Skin Editor 12¢ (12.1.3) includes the following new and changed features:

= You can now use the Issues window in the ADF Skin Editor to view information
about the tasks the ADF Skin Editor has been or is currently performing. For more
information, see Section 3.12, "Working with the Issues Window."

= You can now specify a number of at-rules (including @media) that the ADF
skinning framework passes directly to the user agent. For more information, see
Section 10.1, "About At-Rules in the ADF Skinning Framework."

For other changes made to the Oracle Application Development Framework (Oracle
ADF) for this release, see the What's New page on the Oracle Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

1

About Skinning a Web Application

This chapter introduces you to creating an ADF skin with the ADF Skin Editor. It
provides an overview of the process of creating an ADF skin, takes a look at some of
the changes that an ADF skin can implement, and describes the inheritance
relationship of the ADF skins that Oracle ADF provides for you to extend.

This chapter includes the following sections:

» Section 1.1, "Introduction to Skinning a Web Application”

= Section 1.2, "Overview of Developing an ADF Skin"

» Section 1.3, "Taking a Look at an ADF Skin"

= Section 1.4, "Inheritance Relationship of the ADF Skins Provided by Oracle ADEF"

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 Introduction to Skinning a Web Application

Skinning refers to the task of developing an ADF skin to apply to a web application
that uses ADF Faces and ADF Data Visualization components in the user interface.
An ADF skin uses the format, properties, and selectors of cascading style sheets (CSS)
to allow you to customize the appearance of these components. Instead of providing a
CSS file for each component, or inserting a style sheet on each page of the application,
you create one ADF skin for the web application. Every component that renders in the
user interface automatically uses the styles defined by the ADF skin. This means you
do not have to make design-time changes to individual pages to change their
appearance when you use an ADF skin.

Using an ADF skin also makes it easy for you to maintain a consistent appearance for
all the pages that the application renders. Changes to the appearance of your
application can easily be made should you decide to do so. You might decide, for
example, to change colors to make your application adhere to your company's
corporate brand. Additionally, you may want to define a style property for a
component to make your application more usable. For example, Figure 1-1 shows an
ADF Faces inputText component.

Figure 1-1 Writable inputText Component

Enter a value:

Figure 1-2 shows another ADF Faces inputText component where the background
color is grayed out by the ADF skin to indicate to the end user that the inputText
component is read only.

About Skinning a Web Application 1-1

Overview of Developing an ADF Skin

Figure 1-2 Read-Only inputText Component with Grayed-Out Background Color

Disabled: | hello

Other benefits of skinning include the ability to easily change the default text labels
that ADF Faces components render at runtime. For example, the default text for the
dialog component's labels are OK and Cancel if you set the component's type
property to okCancel. You cannot modify the values of these labels by specifying
properties for the dialog component. Instead, if you want to change OK to Submit,
for example, you make changes in the ADF skin that references a resource bundle
with the alternative string value. For more information, see Chapter 7, "Working With
Text in an ADF Skin."

The previous examples illustrate some of the use cases for ADF skins plus the benefits
of creating an ADF skin. Note that you do not have to define all the changes that you
want for your application in one ADF skin. You can create different ADF skins to serve
different purposes. For example, you might create ADF skins with different color
schemes to adhere to the corporate brand of different companies. In addition, you can
configure an application so that end users can dynamically change the ADF skin at
runtime.

Note that this guide makes the following assumptions:

= You are familiar with the ADF Faces and ADF Data Visualization components that
you can skin. The usage and functionality of these components is beyond the
scope of this guide. For more information about these components, see Developing
Web User Interfaces with Oracle ADF Faces (for the release that pertains to the
application you are skinning).

= You are familiar with CSS. It is beyond the scope of this guide to explain CSS. For
extensive information about CSS, including the official specification, visit the
World Wide Web Consortium (W3C) web site at:

http://www.w3.0org/

1.2 Overview of Developing an ADF Skin

Developing an ADF skin is an iterative process. Before you proceed, familiarize
yourself with the concepts of CSS plus the ADF Faces and ADF Data Visualization
components. The high level steps to develop an ADF skin are:

1. Create a source file for the ADF skin.

You create a source file where you write the declarations for the selectors that the
ADF skinning framework exposes. When creating a source file using the editor in
JDeveloper or the ADF Skin Editor, you must choose an existing ADF skin to
extend from. If this ADF skin is the first ADF skin that you create, you choose
from one of the ADF skins that Oracle ADF provides. For more information, see
Section 12.3, "ADF Skins Provided by Oracle ADE." For information about the
inheritance relationship between these ADF skins, see Section 1.4, "Inheritance
Relationship of the ADF Skins Provided by Oracle ADE." If you create subsequent
ADF skins, you can choose to extend from an ADF skin that you created
previously.

For more information about creating an ADF skin, see Section 4.3, "Creating an
ADF Skin File."

2. Write declarations for the selectors, rules, and pseudo-elements in the ADF skin
that you created.

1-2 Developing ADF Skins with Oracle ADF Skin Editor

Overview of Developing an ADF Skin

The ADF Skin Editor provides a number of tabs that facilitate this task. Choose the
appropriate tab. For example, the Design tab (if available) provides you with
controls in a design editor where you can quickly change the most commonly
styled parts of applications that use ADF Faces components. A number of sample
pages in the lower part of the tab refresh to display the changes you make using
the provided controls. In contrast, use the Selectors tab for more advanced changes
as this latter tab displays a selectors editor for all the selectors exposed by the ADF
skinning framework in a Selector Tree and provides a Properties window and a
number of other controls where you can modify these selectors.

The design editor appears if you extend your ADF skin from the Skyros and
Fusion Simple families of ADF skin. The selectors editor appears irrespective of
the skin family that you extend from. For more information, see Section 3.2,
"Working with the ADF Skin Design Editor" and Section 3.3, "Working with the
ADF Skin Selectors Editor."

For a description of the different categories of selectors, rules, and
pseudo-elements, see Chapter 2, "Working with ADF Skin Selectors."

If applicable, import images that you want your ADF skin to reference at runtime
in the Fusion web application. For more information, see Chapter 6, "Working
with Images and Color in Your ADF Skin."

Tip: The design editor described in Step 2 provides controls that
enable you to export and import all images that the ADF skin
references. Once exported, you can edit the images using your
preferred software program before you import them back into your
ADF skin project. The same tab also provides controls to replace
individual images. Finally, an Images tab appears if your ADF skin
extends from the Fusion Simple family. This tab provides controls to
edit images in your ADF skin. For more information about the images
editor, see Section 6.5, "Working with the Images Editor."

If applicable, override the default text labels defined for the ADF Faces and ADF
Data Visualization components by entering new values in a resource bundle. For
more information, see Chapter 7, "Working With Text in an ADF Skin."

If applicable, edit or create a theme in your ADF skin. A theme are a way of
implementing a look and feel at a component level. For more information, see
Section 5.6, "Applying Themes to ADF Faces Pages."

Preview and test the changes that you made to the ADF skin to verify that the
results are what you want. Modify the ADF skin as necessary. The design editor
described in Step 2 provides a number of sample pages where you can view your
changes within the ADF Skin Editor or within a browser by clicking the Preview
in Browser icon, as described in Section 3.2, "Working with the ADF Skin Design
Editor." For information about previewing and testing an ADF skin in a running
Fusion web application, see Section 11.2, "Testing Changes in Your ADF Skin."

Once you complete development of the ADF skin, you may want to package it for
distribution. For more information, see Section 11.3, "Packaging an ADF Skin into
an ADF Library JAR."

Having completed the ADF skin and distributed it, you configure your Fusion
web application so that it uses it. For more information, see Section 11.4,
"Applying an ADF Skin to Your Web Application."

About Skinning a Web Application 1-3

Taking a Look at an ADF Skin

1.3 Taking a Look at an ADF Skin

An ADF skin is a type of cascading style sheet. It differs from a cascading style sheet in
a number of ways. One way it differs is that you can specify properties for the
selectors that the ADF skinning framework exposes in the source file for the ADF skin.
A selector exposed by the ADF skinning framework is similar to a CSS selector in that
it identifies the ADF Faces and ADF Data Visualization components for which you
want to change the appearance and allows you to specify one or more style properties
for the component.

A selector exposed by the ADF skinning framework differs from a CSS selector in that
it allows you to set values both for CSS properties and ADF skin properties exposed by
the ADF skinning framework. CSS properties are interpreted directly by the end user's
browser. ADF skin properties are prefaced by the characters -tr-. Some of these ADF
skin properties are read and interpreted by the Fusion web application. These
properties are also known as server-side properties. A component that renders in the
user interface may read these properties before it decides what to render. Other types
of ADF skin properties, for example -tr-rule-ref or -tr-property-ref, enhance the
capabilities of the ADF skinning framework, as described in Section 2.3, "Properties in
the ADF Skinning Framework."

Example 1-1 shows the selector for the gauge component that sets values for the ADF
skin properties -tr-graphic-antialiasing and -tr-animation-indicators, plus the
CSS properties background-color and font-family.

Example 1-1 Gauge Component's Selector with ADF Skin and CSS Properties

af |dvt-gauge

{
/** ADF skin properties */
-tr-graphic-antialiasing: false;
-tr-animation-indicators: none;
/** CSS properties */
font-family: Geneva, Arial, Helvetica, sans-serif;
background-color: rgb(243,255,185);

}

As Example 1-1 demonstrates, you can set values for CSS properties and ADF skin
properties within the declaration of a selector exposed by the ADF skinning
framework. The ADF skinning framework exposes the ADF skin properties that you
can define. In addition to ADF skin properties, the ADF skinning framework defines a
number of pseudo classes and at-rules that you can specify in an ADF skin. Examples
of supported at-rules and pseudo classes include @platform, @agent,
@accessibility-profile, :rtl, and @locale. For more information, see Chapter 2,
"Working with ADF Skin Selectors."

At runtime, the Fusion web application creates a browser-specific CSS file from the
ADF skin. The application then references this browser-specific CSS file as it would
any CSS file.

Figure 1-3 demonstrates the impact that an ADF skin can have on the appearance of
an application's page. The page on the left renders using the skyros ADF skin. The
page on the right renders using the simple ADF skin. Each ADF skin defines values
for colors and fonts. The skyros ADF skin uses many more colors, in addition to
referencing an image for the Oracle logo. The simple ADF skin uses fewer colors and
does not reference an image for a logo.

1-4 Developing ADF Skins with Oracle ADF Skin Editor

Inheritance Relationship of the ADF Skins Provided by Oracle ADF

Figure 1-3 File Explorer Application Using the Skyros ADF Skin and the Simple ADF Skin

File » Edit »

Current Location:

‘Eg Folders

[My Files
[Foldero
[Folder1
[Folderz
[Foldera
[Folders
[Folders
[Folders
[Folder?
[Folders
[Folders
[Folder1o
[Folder11

File Explorer Logo Here File Explorer
v Help» Filew Edit~ View~ Help~
n | 2|5 | Select Skin | simple | Refreshl
My Files{Folderd Current Location: My Files/FalderD
[Table ;E Folders [il] Table
=1 My Files)
View ~ [1/Folder0 View
. Marme
NETE [Faoldert .
[#] Filen.do - [w| File0.do
) [Folder2 :
[@) File0.hitr 3 Foldera [@ FileD htr
[¥] File0.pd - [+ Filen pd
Fioo o [Folder4 Filehx
[2] File0.xls B3 Folders 3] File0xds
[Folderf
[Folder?
[Folderd
[Folderd
= [Folder10

Note: An ADF skin can affect the time it takes a client to render the
user interface. The more styles that an ADF skin uses, the more the
client has to load. This can affect performance in low bandwidth or
high latency environments.

1.4 Inheritance Relationship of the ADF Skins Provided by Oracle ADF

Oracle ADF provides a number of ADF skin families that you can use in your
application or extend when you create an ADF skin. The ADF skins provided by
Oracle ADF offer increasing levels of customization for the appearance rendered by
ADF Faces and ADF Data Visualization components at runtime.

Figure 1-4 shows the inheritance relationship between the different ADF skin families.
The fusion-base ADF skin inherits the style properties defined in the simple ADF
skin. The fusion and fusion-simple ADF skins extend from the fusion-base ADF
skin. The fusion-11.1.1.3.0 ADF skin extends from the fusion skin while a number
of versions of the fusionFx ADF skin extend from the fusion-11.1.1.3.0 ADF skin.
A number of versions of the fusionFx-simple ADF skin extend from the
fusion-simple ADF skin. The skyros-vl ADF skin extends from the simple ADF
skin.

All ADF Faces components use, at a minimum, styles defined in the simple ADF skin
as this is the skin from which all the other ADF skins extend. The simple ADF skin
defines the minimum style properties that ADF Faces components require to render in
a Fusion web application. If you want to create an ADF skin with a minimal amount of
customization, you create an ADF skin that extends from the simple ADF skin.

If you want an ADF skin with more customization than the simple ADF skin but one
that is easier to modify relative to other ADF skin families, consider extending from
the Skyros or Fusion Simple families. A design editor is available to you when you
extend from these ADF skin families. This editor provides controls (for example, color
pickers) to change your ADF skin and sample pages where you can view immediately
view the effect of the changes you make.

About Skinning a Web Application 1-5

Inheritance Relationship of the ADF Skins Provided by Oracle ADF

Figure 1-4 Inheritance Relationship of ADF Skin Families Provided by Oracle ADF

L simple

!
| fusion-base
|
| }
|'\ fusion L fusion-simple
|
| fusion-11.1.3.0
L l
skyros-v1 ‘ fusionFx-vN.N ‘mman-mmua-w.N

You can apply any of the ADF skins in Figure 1-4 (except for the fusion and
fusion-simple skins) or an ADF skin that you create yourself to an application. For
more information about applying an ADF skin to an application, see Section 11.4,
"Applying an ADF Skin to Your Web Application." The fusion and fusion-simple
skins are deprecated.

For a more detailed description of the ADF skins that Oracle ADF provides, see
Section 12.3, "ADF Skins Provided by Oracle ADE."

1-6 Developing ADF Skins with Oracle ADF Skin Editor

2

Working with ADF Skin Selectors

This chapter describes the ADF skin selectors. These selectors along with
pseudo-elements, pseudo-classes, ADF skin properties and ADF skinning framework
rules allow you to customize the appearance of ADF Faces and ADF Data
Visualization components.

This chapter includes the following sections:

m Section 2.1, "About ADF Skin Selectors"

» Section 2.2, "Pseudo-Classes in the ADF Skinning Framework"

= Section 2.3, "Properties in the ADF Skinning Framework"

» Section 2.4, "Accessing Selector Information from Within the ADF Skin Editor"

2.1 About ADF Skin Selectors

CSS uses selectors to determine the elements in a HTML page you that you define
rules for. For example, in CSS the following selector defines a rule that determines the
appearance of the content that renders in a <p> tag:

p { color: red }

Likewise, the ADF skinning framework defines selectors that allow you to specify
rules with the style properties to render at runtime when the rule encounters the
specified tag. The ADF skinning framework provides two types of selector: global
selectors and component-specific selectors. A global selector defines style properties
that you apply to one or more selectors. A component-specific selector defines style
properties that apply to one component.

The ADF skins provided by Oracle ADF define many global selectors (Global Selector
Aliases in the user interface of the selectors editor) that many ADF Faces components
inherit. For example, many ADF Faces components use the
.AFDefaultFontFamily:alias global selector to specify the font family. If you create
an ADF skin that overrides this selector by specifying a different font family, that
change affects all the components that have included the
.AFDefaultFontFamily:alias selector in their selector definition.

Figure 2-1 shows two instances of the same page. The instance of the page in the lower
part of Figure 2-1 renders using the default values specified for the
.AFDefaultFontFamily:alias global selector in the skyros skin. The instance of the
page in the upper part of Figure 2-1 renders using an ADF skin that modifies the
.AFDefaultFontFamily:alias and .AFDefaultFont global selectors as follows:

.AFDefaultFontFamily:alias {font-family: Georgia;}
.AFDefaultFont:alias {font-size: 12pt;}

Working with ADF Skin Selectors 2-1

About ADF Skin Selectors

The components on the page that render text (for example, af: showDetailItem
renders Welcome and an af: 1ink component renders Login) do so using the font

family specified by the .AFDefaultFontFamily:alias global selector in the ADF skin
that the application uses.

Figure 2—-1 Global Selector

Login Register as Emploves Register as Custorner
Welcome

Login Register s Employee Register as Custorner

Welcome

An ADF skin that you create inherits the global selector aliases defined in the ADF
skin that it extends from. You can also create new global selector aliases in your ADF

skin files. For more information, see Chapter 8, "Working With Global Selector
Aliases."

Component-specific selectors are selectors that the ADF skinning framework exposes
that allow you to identify the corresponding ADF Faces and ADF Data Visualization
components for which you can define style properties. For example, Figure 2-2 shows
the selector for the ADF Faces button component in the source editor and selectors
editor. The value of the property that determines the color of the font to appear in the
button has been changed to Red in the Properties window.

2-2 Developing ADF Skins with Oracle ADF Skin Editor

About ADF Skin Selectors

Figure 2-2 Button Component's Skin Selector

[ﬁ ol ces

aflbutton - Properties

e
=
i (53 Extended Skins ~ (2 Q, Fird
|
Q T - .* - x Default (Moj Theme Dark Theme 3 = Common
-3 Style Classes @[ﬂ “F T é X Background Color: Eransparent
g ilto_azlls:lector Aliases af|buttan 4 Background Image: [inear-gradient(top, #CCE2FG
&3 Faces Comporent Selectors Regular Button Cantenk:
[t} BreadCrumbs . o Calar: Eed
=+ Buttan & pisabled Button _
D === S
-3 Pseudo-Elements — - - wiidth: auto
-1 Descendant Selectar: & Popup Button | ~ -
EBorder: nione mediurn currentColor
O Carousel &f|button:bottom Border Color! currentCalor currentColar cun
L
L Carousel Them Begular Button Margin: O Opex Ope Opx
i Fal Al £E ek B ¥ nisahled Ruitton 4 Padding: Opi
Design | Selectors| Source Histary Il -tr-rule-ref -tr-inhibit - -tr-enable-themes -tr-child
2eeeors |
L]

Q- Find

fcharset "UTF-&";

= af |button {
color: Red;
'

f**aDFFaces Skin File / DO NOT REMOVE®*/
fnamespace af "http: /Swmlns.oracle, com/adf ffaces/ric
fnamespace dvt "http://imlns.oracle.con/dss/adf/face

Yalue

B A 0O &R

= Font;/Text

o Color:

TR—

nirmnal narmal normal o

Frnrt:

For more information about the component-specific selectors, see Chapter 5, "Working
with Component-Specific Selectors." For more information about global selector
aliases, see Chapter 8, "Working With Global Selector Aliases."

2.1.1 ADF Skin Selectors and Pseudo-Elements

Many ADF skin selectors expose pseudo-elements. A pseudo-element denotes a
specific area of a component for which you can define style properties.
Pseudo-elements are denoted by a double colon followed by the portion of the
component the selector represents. For example, Figure 2-3 shows how the
week-header-row pseudo-element exposed by the af | chooseDate selector allows you
to configure style properties for the appearance of the calendar grid. In Figure 2-3, the
background-color property of the week-header-row pseudo-element has been set to

Gray.

Working with ADF Skin Selectors 2-3

About ADF Skin Selectors

Figure 2-3 Pseudo-Elements for the Choose Date Component

,|]_] [£3 Extended Skins ~
Q v - @ o x Defaul (to) Theme Dark Theme Mediur
== Faces Component Selectors @[ﬂ EF T é %
-] choose Date
B[Pseudo-Elements

...... week-header-row

af |chooseDate: iweek-header-row

4 December ¥ 012 5 b

25 26 27 28 29 30 1

9 10 11 12 13 14 15
16 17 18 19 0 21 22
23 24 5 26 27 28 19
30 k3 1 2 3 4 5

Design | Selectors| Source Hiskary
L=

Q- (Find
fcharset "UTF-8";
f*FADFFaces Skin File / DO NOT REMOVE®®/

fnamespace af "http://umlna.oracle. com/adf/facea/rich™:
fnamespace dvt "http://xnlns.oracle. con/dss/sadffaces";

:ek-header-row |

—color: Gray:

2.1.2 ADF Skin Selectors and Icon Images

ADF Faces components that render icons do so using a set of base icon images. No CSS
code entries appear in the source file of the ADF skin for these icon images in contrast
to, for example, the CSS code entries that appear in a source file when you specify an
image as a value for the CSS background-image property. Instead, the ADF skinning
framework registers the icon image for use with the renderer.

ADF skin selectors use two naming conventions for pseudo-elements that identify icon
images that render in a component. The names of these pseudo-elements end in -icon
or in -icon-style. Figure 24 shows the example of the Panel Accordion selector's
pseudo-elements. Pseudo-elements that end in -icon-style specify a background
image, as shown in Figure 2—4. In contrast, pseudo-elements that end in -icon do not
specify a background image, but can reference IMG elements or text, as in the
following examples:

af|panelAccordion::undisclosed—icon {content "X"}
af|panelAccordion::undisclosed—icon {content: url("http:server:port/img/img.png")}

2-4 Developing ADF Skins with Oracle ADF Skin Editor

About ADF Skin Selectors

Figure 2—4 Panel Accordion Pseudo-Elements for Icon Images

al.css

et aflpaneldccordion: undisclozed-icon-style - Properties

(53 Extended skins = @ = Q, Find
? . .+ - x Default (Ma) Theme — Dark Theme = Med... L4 = Common
- Faces Component Selectors @ﬂ 4 M é % - Background Color: Fransparent
".E--gisﬂeﬁtﬂoorilo:ments af|panelccordion: sundisclased-icon-style 4 Background Image: |ur|('.l'aFr.l'skyros—v1,l'discIosecollapsed_FF_ena.png')
[undisclesed-ican C) First Pane Toolbar 1 Content: |

e oo sow o
> Second Pane 4 Height: |20
> Third Pane 4 Width: 12
> Fourth Pane Border: |none medium currentColar
> Fifth Pane Border Colar: |currentCOI0r currentColor currentColor currentCol

Marnine |ﬂmc Arve Nirve N

In Figure 24, the undisclosed-icon-style pseudo-element styles the icon used for
the undisclosed icon in the panelAccordion component. This pseudo-element specifies
the icon as a background image. Use the :hover and :active pseudo-classes to
customize the appearance. For example, write the following syntax to make the
background red if the end user hovers the mouse over the icon:

af |panelAccordion: :undisclosed-icon-style:hover {
background-color: Red;

Tip: Many browsers do not render background images when in
accessibility mode. The following example demonstrates how you can
work around this behavior if you want your application to display an
image when in accessibility mode.

If you want to use your own image rather than the icon specified as a background
image, you need to first prevent the background image from rendering. Do this by
specifying the -tr-inhibit ADF skin property for the component's selector
pseudo-element as follows:

af|panelAccordion: :undisclosed-icon-style
{

-tr-inhibit: background-image;

Next you specify the text or image that you want to render as a value for the content
property of the undisclosed-icon selector. For example, write syntax similar to the
following to specify an alternative image:

af|panelAccordion: :undisclosed-icon

{
content:url ("images/undisclosed.png") ;
width: 10px;
height: 10px;

The ADF skinning framework also defines a number of global selector aliases that
specific icon images to use in different scenarios. These global selector aliases appear
under the Icons node in the Selector Tree of the selectors editor, as shown in

Figure 2-5. The .AFChangedIcon:alias shown in Figure 2-5 enables you to globally
set the changed icon for all components using that icon.

Working with ADF Skin Selectors 2-5

About ADF Skin Selectors

Figure 2-5 Global Selector Aliases for Icons

@ skin3.css . AFChangedicon:alias - Properties
—
0] | [Extended skins = @ Q
Q F- 4 o % Default (Mo} Theme 4 = Common
-3 Style Classes @é} 4 4’ % Wiew as: Checkbox (.. Background Color: kransparent
== Global Selector Aliases)
23 Color af|selectManyCheckbox: :changed-icon Background Image: |"'°"'e
£3 Component Group: Button @ Checkbox label: | coffee 4 Content: |ur|(.|'aFr.|'skyros-v1,fupdatedvalue_status.png)
Component Group: Form Contrals | tea Calar: |
3 Component Group: Link | milk h
3 Component Group: Menu Height: |auto |‘
Component Group: PanelBox and Region width: |aut0 |‘
Component Group: PanelHeader =
Border: |n0ne medium currentColor
Fonk
[Icons Border Color: |currentCoIor currentColor currentCalor currentCole
Ml ~FChang as Margin: |Dpx Fr——
[.AFConfirmationlcon: dlias
[.aFErroricon:alias Padding: |UI3'>c Opx Opix Opx
[.AFFatallcon:alias tr-rila-raf | obreinhibit | bresnable-themes | -beechildran-Hhame

These icons can also be viewed and changed using the Replace Icons dialog that you
invoke from the design editor, as described in Section 6.2, "Changing Images and
Colors in the ADF Skin Design Editor," if your ADF skin extends from the Skyros or
Fusion Simple families of ADF skin. Figure 2-6 shows the dialog that appears for an
ADF skin that extends from the Skyros family of ADF skins. Using the dialog, you can
export or import multiple icons or replace an individual icons by double-clicking in
the New Icon Source field.

Figure 2-6 Design Editor's Replace Icons Dialog for Status Icons

Defaulk Text Colors Diefaulk Fonk Accent Color

Images
Mair: #333333 E |TahumaJ erdana, Helvetica, sans-serif |V| Primary: #F1CDTE ’__J @ Status Icons. ..

Replace Icons

Select Export ka expart all the icons vou can change in one archive. You can import a batch of changed icans, or selectively replace individual icans below.,
& Export &| Import | Reset to Defaulk

Component Icons — Status Icons Animations

Deescription Width Height Current New Mews Icon Source -
Indexed ? 7
Required ? 7

Infa 16 16 @
Confirmation 16 16 B
Error 16 16 []
Warning 16 16 A
Help Cancel

For more information, see Chapter 6, "Working with Images and Color in Your ADF
Skin."

2.1.3 Grouped ADF Skin Selectors

You can group ADF skin selectors and global selector aliases to minimize the number
of entries in the source file of the ADF skin. The selectors that you group render under
the Grouped Selectors node in the Selector Tree of the selectors editor, as shown in
Figure 2-7. The View as list in the Preview Pane displays all the selectors that you
grouped.

As the selectors editor does not provide a way to specify grouped selectors, you use
the source editor to specify the selectors and/or global selector aliases that you want

2-6 Developing ADF Skins with Oracle ADF Skin Editor

About ADF Skin Selectors

to put in a grouped selector. Separate each selector by a comma (,) to include in the
grouped selector.

Figure 2-7 Grouped Selectors in the Selector Tree

0] | [Extended skins ~ 3

Q ? o .* < x Default (o) Theme 3

-3 Skyle Classes @é} 4 é’ x View as: | Panel Accordion
+-(1 Global Selector Aliases o
=h- (= Grouped Selectors

ESWf |paneliox, af|paneltccardion) First Pane Toolbar 1
-0 At-Rules Body 1
[Eh-(& Faces Component Seleckors

> Second Pane

-a3ae BreadCrumbs
-2 Button > Third Pane
[calendar > Fourth Pane
-1 Carousel

af |panelaccordion

=

-0 Cargusel Ttem » Fifth Pane

t

t

t

£

5[] Checkbox

JlZ‘ Checkbox (Select Many)
8- Choice

J--- Choice (Select Many)
o Choose Colar

k-

N

-[E] Choose Date
B Y

T O WO O o O oy OO O g O e O e O O OO =

Design | Selectors| Source Hisktory [
Q- Find

fcharset "UTF-3";

A**ADFFaces_Skin File / DO NOT REMOVE®*/

fnamespace af "http://xmlns.oracle.con/adf/faces/rich™;

fnamespace dvt "http://xnlns.oracle.confdss/adf/faces™;

[BlAf [panelBox, af |panelfccordion |

2.1.4 Descendant ADF Skin Selectors

A descendant selector defines style properties for one ADF skin selector (the
descendant selector) to render when the selector's component is a descendant of
another component in the page that renders the components. For example, assume
that you want the content area of an inputText component to render using a
background color of Green when the component renders inside a table component. In
this scenario, you specify the descendant selector shown in Example 2-1.

Example 2-1 Descendant Selector in an ADF Skin

af |table af|inputText::content {
background-color: Green;

af |inputText::content {
background-color: Red;

At runtime, when the inputText component renders in a table component, the
background color of the content area is Green. The appearance of other inputText
components that render outside of table components is determined by the style
properties defined elsewhere in the ADF skin (for example, Red).

A descendant selector is made up of two or more selectors separated by white space.
When you configure a descendant selector, the selectors editor displays a Descendant
Selectors node under the selector included in the descendant selector, as shown in
Figure 2-8.

Working with ADF Skin Selectors 2-7

Pseudo-Classes in the ADF Skinning Framework

Figure 2-8 Descendant Selectors in the Selector Tree

@ skin css . affable afinpuiText:content - Properties
0 | [Extended Skins ~ @ B Q Find
Q T # - x Default (Noj Theme Dark Theme Medium Th... P = Common
[5}-[2 Faces Compaonent Selectors @E} ‘% é % ~ o Background Color: D
B".E--gu[t);ttndant - &f|table af |inputText: :conkent Background Image: none
ES N |table of inputTest:ico wame: | Cantent: I:

Color: I:
Height: D
Widkh: at
Border: I@
Border Color: currentColar currentCol
Design | Selectors| Source History |] Margin: IM
Qs Frd s Padding: IM

fcharset "UTF-8"; -tr-infibit -tr-rule-ref | -tr-children-theme -tr
/**ADFFaces_jkin File / DO NOT REMOVE®*®/

fnamespace af "htrp://xwlns, oracle,consadf/faces/rich”;
fnamespace dvt "http://xnlng.oracle,cow/dss/adf /faces™; Yalue

Elaf|table af|inputText::content
background-color: Green;

As the selectors editor does not provide a way to specify descendant selectors, you use
the source editor to specify the selectors and/or global selector aliases that you want
to specify in a descendant selector. Separate each selector by a white space.

2.2 Pseudo-Classes in the ADF Skinning Framework

The CSS specification defines pseudo-classes, such as :hover and :active, which are
used to define style properties for when a selector is in a particular state. You can
apply these pseudo-classes to almost every ADF Faces component. In addition, the
ADF skinning framework provides additional pseudo-classes for specialized
functions. Examples include pseudo-classes to apply when a browser's locale is a
right-left language (:rt1) or for drag and drop operations (:drag-target and
:drag-source). The syntax that appears in the source file of an ADF skin to denote a
pseudo-class uses the following format(s):

adfskinselector:pseudo-class
adfskinselector: :pseudo-element :pseudo-class

Figure 2-9 shows the syntax that you write (af |panelList::link:hover {color:
Orange; }) in the source file of an ADF skin for the :hover pseudo-class so that a
panelList component's link renders orange when the end user hovers a cursor over
the link in Figure 2-9.

2-8 Developing ADF Skins with Oracle ADF Skin Editor

Pseudo-Classes in the ADF Skinning Framework

Figure 2-9 Pseudo-Class Syntax and Runtime Behavior for a Panel List Link

07 | [Extended Skins - myCompanylL.ogo
Q V- -3 | De B Login
ag) UOpOE TR (FOfmateay o | .
E}" Output Text (Label) — 4 Choose askin test w
&[] Panel Accordion af|
SE‘I’ EZ:Z: Ez;der Layout Welcome to Our Site
348 Panel Collection * Home
E}" Panel Dashboard @ Follow this link to find yourself back home,
E}--th Panel Drawer -
[Panel Form Layout o tI{t'}uments the skin selectars that are
[Panel Grid Layout ‘ available to be styled,
EJ---E Panel Group Layout & & Skin Demanskration
-*] Panel Header o Demonstrates how to skin ADF
- 03 Panel Label And Message Fompanents.
3= Panel List
<[] flpanelList
~[=F Pseudo-Elements
0
i-[]] Panel splitter

Design | Selectors| Source Hiskary

Q- Find

fcharset "UTF-57;
S¥FADFFaces Zkin File / DO NOT RE

fnamespace af "http://xnlns.oracl|
fnamespace dvt "http://xnlns. orac)

fagent (touchicreen:inone) |

af |[panellist: :link:hover |
color: Orange;

Some components make more use of pseudo-classes than other components. The
panelBox component's selector, for example, makes extensive use of pseudo-classes to
define its appearance when it is in various states (for example, active, disabled, or
busy). Figure 2-10 shows the list of available pseudo-classes that renders when you
select the panelBox component's selector in the Selector Tree of the selectors editor and
click the Add Pseudo-Class icon to display the list of available pseudo-classes in an
ADEF skin that extends from the Skyros family of ADF skins.

Working with ADF Skin Selectors 2-9

Pseudo-Classes in the ADF Skinning Framework

Figure 2-10 Pseudo-classes for the panelBox Component's Selector

00} | [Extended skins ~

Q. T~ lap- %K

U Messages

@ Mavigakion Item

(4 Mavigakion Pane

Mote Window

A Output Texk

A Qutput Texk (Active)
ﬁ% Qutput Text (Formatted)
Output Texk (Label)

[Panel Accordion

Panel Border Layout

anelBox
3 Pseudo-Elements

(1 Descendant Selectors

EI Panel Collection

Panel Dashbioard

Panel Form Layout

‘anel Grid Layout

W ko X

Default (Mo Theme Dark Theme

Medi

af|pa active

Pane busy

Pan drag-ready

drag-source
Pan drop-target
focus

howver

Pand hivver-target

inline-editable

no-update

af|pa

disabled Q

inline-selectable
inline-selected

no-update-badge

active-inline-editable-container

Design | Selectors| Source Hisktory

==

Pseudo-classes can also be applied to pseudo-elements that selectors expose. The
panelBox component selector's pseudo elements are a good example. Figure 2-11, of
the Selector Tree in the selectors editor, shows the list of pseudo-classes that the center
pseudo-element exposed by the panelBox component selector accepts. Many of these
pseudo-classes allow you to define the appearance for the panelBox component
depending on the value that the application developer sets for its attributes. For
example, the core and highlight pseudo-classes define the corresponding appearance
when the application developer sets the panelBox component's ramp attribute to core

or highlight.

Figure 2-11 Pseudo-classes for the center Pseudo-element

0] | [Extended Skins =

-4 Panel Drawer
71 [28] Panel Form Layout

frn B e Bl

no-update-badge

Q ? . + - x Default (Mo) Theme Dark Theme Medium The
-y Dutput Text (Farmatted) (o)) Ei g XK -
Oubput Text (Label) ; active
Panel Accordion flpa active-inline-editable-container
: Panel Border Layout Pang busy
= D Panel Box
e o W
E}E} Pseudo-Elements Pan dark
..... D dfafault
..... [content Pan disabled
----- [disclosed-icon drag-ghast
----- D disclosed-icon-style drag-ready
----- [disclosure-link. Pang drag-source
----- [dynamic-help-icon drop-target
----- [dynamic-help-icon-style focus
----- [header-glement highlighk
..... D header-text hovver
..... D icon-style hower-target
----- D instruckion-text #flpa inline-editable
----- [undisclosed-icon Pane inline-selectable
----- D undisclosed-icon-style inline-selected
(1 Descendant Selectors light
Panel Collection medium
Panel Dashboard no-update

The following are common pseudo-classes used by ADF Faces selectors.

s Drag and drop: The two pseudo-classes available are :drag-source applied to the
component initiating the drag and removed once the drag is over, and

2-10 Developing ADF Skins with Oracle ADF Skin Editor

Properties in the ADF Skinning Framework

:drop-target applied to a component willing to accept the drop of the current
drag.

Standard: In CSS, pseudo-classes like :hover, :active, and :focus are considered
states of the component. This same concept is used in applying skins to
components. Components can have states like read-only or disabled. When
states are combined in the same selector, the selector applies only when all states
are satisfied.

Right-to-left: Use this pseudo-class to set a style or icon definition when the
browser is in a right-to-left language. Another typical use case is asymmetrical
images. You will want the image to be flipped when setting skin selectors that use
the image in a right-to-left reading direction. Be sure to append the : rtl
pseudo-class to the very end of the selector and point it to a flipped image file. The
skin editor's preview pane does not render changes that you make to a flipped
image file. The following example from the Skyros skin shows the image that the
calendar component's toolbar-day-hover-icon pseudo-element references when
it renders in a browser that uses a right-to-left language:

af|calendar: :toolbar-day-hover-icon:rtl {
content: url(/afr/cal_day_ovr_rtl.png);
width: 16px;
height: 16px;

}

You can also use :rtl to apply to skin icons. For more information, see Chapter 6,
"Working with Images and Color in Your ADF Skin."

Inline editing: This pseudo-class is applied when the application activates a
component subtree for editing in the browser. For example, :inline-selectedisa
pseudo-class applied to currently selected components in the active inline-editable
subtree.

Message: This pseudo-class is used to set component-level message styles using
CSS pseudo-classes of : fatal, :error, :warning, :confirmation, and :info. For
more information, see Section 5.5, "Configuring ADF Skin Properties to Apply to
Messages."

Note: The global selector aliases that appear in the Selector Tree are a
special type of pseudo-class (:alias). For more information, see
Chapter 8, "Working With Global Selector Aliases."

2.3 Properties in the ADF Skinning Framework

The ADF skinning framework defines a number of ADF skin properties. The Fusion
web application, rather than the user's browser, interprets ADF skin properties. When
configured, ADF skin properties enable you to do the following:

Reference styles from other selectors with the -tr-rule-ref property.

Create your own global selector alias and combine it with other selectors using the
-tr-rule-ref property. For more information, see Section 8.2, "Creating a Global
Selector Alias," Section 8.3, "Modifying a Global Selector Alias," and Section 8.4,
"Applying a Global Selector Alias."

Suppress styles defined in an ADF skin with the -tr-inhibit skin property.

Suppress or reset CSS properties inherited from a base skin with the -tr-inhibit
skin property. For example, the -tr-inhibit:padding property removes any

Working with ADF Skin Selectors 2-11

Properties in the ADF Skinning Framework

inherited padding. Remove (clear) all inherited properties with the
-tr-inhibit:all property. The suppressed property name must be matched
exactly with the property name in the base skin.

= Reference the value of a property defined in another selector using the
-tr-property-ref property.

For more information, see Section 8.5, "Referencing a Property Value from Another
Selector.”

s Configure a theme for child components with the -tr-children-theme property.
For more information, see Section 5.6, "Applying Themes to ADF Faces Pages."
= ADF skin selectors with style properties.

Skin style properties allow you to customize the rendering of a component
throughout the application. A CSS property is stored with a value in the Skin
object and is available when the component is being rendered. For example, in
af |breadCrumbs{-tr-show-last-item: false}, the skin property
-tr-show-last-itemis set to hide the last item in the breadCrumbs component's
navigation path.

The ADF skinning framework also provides the + and - operators that allow you to set
a selector's color or font properties relative to the value that you specify for the color or
font properties of another selector. This is useful if you want to apply a range of colors
to selectors or maintain a relative size between fonts.

Example 2-2 demonstrates the syntax that you write to make use of this feature for a
color property. A global selector alias defines the background color that another global
selector alias (. fooBackgroundColorTest) applies using the - operator. Example 2-2
also demonstrates the syntax that you write to make use of this feature for a font
property. A global selector alias (.FontSizeTest:alias) defines the font size and
.fooFontTestIncrease increases this font size by using the + operator.

Example 2-2 Using Operators to Apply Color and Change Font Size

.FontSizeTest:alias ({
font-size: 30px;

}

.BaseBackgroundColor:alias {
background-color: #0099ff;
}

.fooFontTestIncrease {
-tr-rule-ref: selector(".FontSizeTest:alias");
font-size: +20px;

}

.fooBackgroundColorTest {
-tr-rule-ref: selector(".BaseBackgroundColor:alias");
background-color: -#333333;

}

af |outputLabel {
-tr-rule-ref: selector(".BaseBackgroundColor:alias");
-tr-rule-ref: selector(".FontSizeTest:alias");
color: Red;

2-12 Developing ADF Skins with Oracle ADF Skin Editor

Accessing Selector Information from Within the ADF Skin Editor

Figure 2-12 shows how the style classes defined in Example 2-2 effect the runtime
appearance of instances of the af: outputLabel components to which you apply the
fooFontTestIncrease and fooBackgroundColorTest style classes by specifying these
style classes as values for the component's styleClass attribute, as illustrated in the
following example.

<af:outputLabel value="Increase font-size" id="o0l2"
styleClass="fooFontTestIncrease"/>

Figure 2-12 Using Operators to Apply Color and Change Font Size

For more information about style classes, see Chapter 9, "Working with Style Classes."

2.4 Accessing Selector Information from Within the ADF Skin Editor

You can access reference information for the ADF skin selectors and CSS properties
that you configure in your ADF skin in a number of ways within the ADF Skin Editor.
The reference information that you can access includes the following reference
documents for ADF skin selectors:

» Tag Reference for Oracle ADF Faces Skin Selectors

» Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin
Selectors

(for the release that pertains to the application you are skinning)

You can access these reference documents in the Oracle ADF Skin Editor
Documentation Library or in a Help Center window if you click the link in the
information text that appears when you hover over a selector in the Selector Tree of the
selectors editor, as shown in Figure 2-13.

Working with ADF Skin Selectors 2-13

Accessing Selector Information from Within the ADF Skin Editor

Figure 2-13 Reference Documentation for ADF Skin Selectors

o Q NANE 1
F-C3 Style Classes
EI Global Selector Aliases
-3 At-Rules
E}IE Faces Component Selectors
. [3-e»= BreadCrumbs
: af|breadCrumbs

Skyles the root dom element of the component.,

Skinning Kew Reference For af tbreadCrumbs

[0 =Aronsel
-0 Carousel Item
- ##] Checkbox

[l harlhow fSalark Manut

In addition to referencing information for the ADF skin selectors, you can access
information for CSS selectors. You do this from the Source tab of the editor by selecting
the CSS property and pressing Control + D or choosing Show Quick Reference from
the context menu that appears when you right-click the selector, as illustrated in
Figure 2-14.

Figure 2-14 Quick Reference Documentation for CSS Properties

= af |button: : dropdown-icon

i
contbnt: open-gquote

Property content reference:

WG specification for content is available here: hitp it w3 orgiwikiic 3 SIPropertiesicontent

For camplete information on all 55 properties see W3C specification here:
hittpefweane . orgfStyle/C SSicurre nt-wark.en. himl

2-14 Developing ADF Skins with Oracle ADF Skin Editor

3

Working with the ADF Skin Editor

This chapter describes the editors that the ADF Skin Editor provides to create ADF
skins. Key features of these editors, such as the Selector Tree that you use to browse
the selectors that you can configure in an ADF skin, the Properties window that you

use to set properties, and how you navigate to an ADF skin that you extend, are also
described.

This chapter includes the following sections:

m Section 3.1, "About the ADF Skin Editor"

= Section 3.2, "Working with the ADF Skin Design Editor"

= Section 3.3, "Working with the ADF Skin Selectors Editor"
= Section 3.4, "Working with the Properties Window"

= Section 3.5, "Navigating ADF Skins"

= Section 3.6, "Customizing the ADF Skin Editor"

» Section 3.7, "Searching the Source Files of ADF Skins"

= Section 3.8, "Working with Extensions"

= Section 3.9, "Adding External Tools to the ADF Skin Editor"
= Section 3.10, "Navigating the ADF Skin Editor"

» Section 3.11, "Working with the Resources Window"

= Section 3.12, "Working with the Issues Window"

3.1 About the ADF Skin Editor

The ADF Skin Editor is a tool that creates ADF skins for applications built using
various releases of Oracle ADF. It provides a number of visual and source editors
where you edit the selectors exposed by the ADF Faces framework, preview your
changes, and package the final ADF skin into an ADF Library JAR.

Key features of the ADF Skin Editor include the:

= ADF Skin Design Editor (design editor) where you can declaratively modify an
ADF skin that extends from the Skyros or Fusion Simple families of ADF skin
using the provided controls.

= ADF Skin Selector Editor (selectors editor) where you can view all of the selectors
exposed by the ADF Faces framework in the Selector Tree.

= Properties window where you can modify the properties of the selectors that you
choose in the Selector Tree.

Working with the ADF Skin Editor 3-1

Working with the ADF Skin Design Editor

3.2 Working with the ADF Skin Design Editor

By default, the design editor opens when you create an ADF skin that extends from
the Skyros or Fusion Simple families of ADF skin, as described in Section 4.3,
"Creating an ADF Skin File." This editor provides a variety of controls to change the
most commonly styled parts of applications.

The lower part of the design editor displays a number of sample pages that render a
wide variety of the commonly used ADF Faces components, such as buttons, links,
and panel accordions. These sample pages refresh to reflect the changes that you make
using the various controls in the upper part of the editor. A Preview in Browser icon
renders the sample page in a browser when clicked. In Figure 3-1, for example,
clicking this icon renders the sample page in Internet Explorer. You can choose to
render the sample page in another browser, as described in Section 3.2.1, "How to
Change the Browser that Renders the Design Editor's Sample Pages."

The upper part of the design editor displays a variety of tabs that group together
controls to modify the selectors for various areas of an application page, such as the
branding area, the global area, buttons, links, and menus. Within each tab, user
interface controls such as color pickers, input text components and links to invoke
dialogs appear. Figure 3-1 shows the General tab in the design editor that appears
when you extend an ADF skin from the Skyros ADF skin. This tab renders color
pickers that you can invoke when you click the dropdown arrows beside the fields
that display the current color values, dropdown lists where you can select different
fonts and font size and links to invoke dialogs where you can replace the images that
the ADF skin references for status icons, animations and components.

Figure 3—1 ADF Skin Design Editor

General Branding Area Global Area Buttons Links Tabs Headers Menus Boxes Accordions

Content Area Theme Default Text Colars Default Font Accent Colar Images

Background 1: [Main: [|Tahﬂma, Verdana, Helvetica, sans-serf || B iER] @ stotus 1cons...
. Background 2: [Primary: [b [‘E‘ Secondary: #FFEERs | [A”'matm”s-‘-
Secondary: = What is this? af Companents...

Header: []

Sample Pages: n z @

Branding Area Link Branding Area Text G2

Text

Branding Area Title

Branding Area Menu

Global Area Link Global Area Menu

Accordion Header

Selected Tab Unselected Tab

Default

Active Disabled Haver

Default Link
Active Link

Visited Link
Hover Link
> Accordion Header

Header Level 0 (Top)

* Text
Text
Text

Text

Text Read-only value
Text | Value
Text

Accordion Header

Header Level 1

Actions = View ﬁ ﬂ Detach
Column Column Column
[} 07/12/2004
0B 07/12/2004
0B 07/12/2004
[1]:] 07/12/2004

Any changes that you make using the controls in the design editor result in the
generation of CSS syntax that appears in the source file of the ADF skin. The design
editor is useful for changing the commonly styled parts of an application. For
example, one click in the Branding Area tab invokes a dialog where you can select a
new image to render as the logo in the branding area of your application's page.
Consider using the selectors editor, described in Section 3.3, "Working with the ADF

3-2 Developing ADF Skins with Oracle ADF Skin Editor

Working with the ADF Skin Selectors Editor

Skin Selectors Editor," when you need to go beyond changing the most commonly
styled parts.

For more information about how you can use the design editor to change colors and
images, see Section 6.2, "Changing Images and Colors in the ADF Skin Design Editor."

3.2.1 How to Change the Browser that Renders the Design Editor's Sample Pages

You can change the browser that renders the design editor's sample pages when you
click the Preview in Browser icon.

To change the browser that renders the design editor's sample pages:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Web Browser and Proxy page.
3. Choose the browser that you want to use in the Web Browsers list.

4. C(lick OK.

3.3 Working with the ADF Skin Selectors Editor

Figure 3-2 shows the selectors editor. Each label number corresponds to a description
in the list that follows Figure 3-2. The selectors editor opens by default if the ADF skin
that you create extends from a skin family that is not Skyros or Fusion Simple. If your
ADF skin extends one of these two skin families, you can access the selectors editor by
clicking the Selectors tab.

Working with the ADF Skin Editor 3-3

Working with the ADF Skin Selectors Editor

Figure 3-2 ADF Skin Selectors Editor

sations = skl'llc i o afipanelBox:header-test - F
‘estApp v 1w | IO 1/ estended skns @ -| Qe

jacts &= Q header % P - 3¢ | fefeutlio)Tileme | Dark Theme | [Medium 'rheme £ Common

?El::;?c:ﬁunSDurcm -3 Style Classes Eﬁ F-& XK ~ 2 Background Color: Iﬂ
S resources g g itzc:::selectur Alases af |panelBox: :header-text Background Image: E

e weh%lms:::mdfe.pmpertiﬁ (- [Faces Component Selectors PanelBox with icon Content: L_

— 3 Calendar Color:
s 38 i s pesriat (1) C
{23 skint Panel Box Content Height: auto

[+ Choose Date

=[] images &- B Column [
- .) width: auto
=[] .AFDynamicHelplconStyleActive @ @ Command Link Panel Box No-Header Content —
[E] helptopics_sm_dwn.png o Dislog Border: inoné
. skinl.css ® & Golink & - Border Color: leurre
=0 wee-InF @@ Link Q Panel Box Stretched Content (width:500px;height: 100px) . —
- [e3] trinidad-config.xml B Menu Margin: Opx|
(9] trinidad-skins. sl H- & Menu Bar #Padding: Opix
-4kl Mavigation Pane -tr-rule-ref -tr-inhibit = -tr-
lication Resources =3 D Panel Accordion
ent Files = D Panel Box

2 [=-[= Pseudo-Elements Value

C3S - Structure =

3. Design | Selectors | Source History 0 I
= =
° Qr(Find -

3 Selectors
L Af | panelBox: header-text fcharset "UTF-37;
@ *.AFDynamicHejplconStyleActive: slias /**ADFFaces_Skin File / DO NOT REMOVE**/
énamespace af "http://xulns.oracle.com/adf/faces/rich™;
Sramespace dvt "http://snlns.oracle.con/dss/adf/faces”: m a 1 E %
[Slaf |panelBox: :header-text { (=] Font,/Text
kground-color: Lime;
Color:
H
Fonk:
& .AFDynamicHelpIconStyleRctive:alias | Font Family:
background-image: url("images/.AFDynanicHelpIconStylehctive/]
) Fonk Feature Settings:

1. The Projects node in the Applications window displays the source files for the
ADF skins that you create. It also displays associated configuration and image
files. By default, the ADF Skin Editor saves an ADF skin to a directory named
skins. You can specify an alternative directory name to store the source files. For
more information about creating ADF skins, see Chapter 4, "Creating the Source
Files for an ADF Skin."

2. The Structure window lists the selectors, global selector aliases, style classes, and
at-rules that you added to the ADF skin file.

3. Click the Hide/Show Divider icon to hide or show the Selector Tree.
4. Filter the selectors that appear in the Selector Tree.

You can enter text in the input text field to filter the list of selectors that appear in
the Selector Tree or you can use the filter icon to display:

= Available Selectors: all selectors in the Selector Tree.
= Updated Selectors: only those selectors that you modified in the ADF skin.
= Selectors with At-Rules: only those selectors that have an associated at-rule.

5. The Extended Skins list displays the list of ADF skins from which the current ADF
skin extends. It also identifies imported ADF skins.

For more information, see Section 3.5, "Navigating ADF Skins."

3-4 Developing ADF Skins with Oracle ADF Skin Editor

Working with the ADF Skin Selectors Editor

10.

11.

12,

Use the Add icon to create a new style class, alias selector, or at-rule.

For information about creating a new style class, see Chapter 9, "Working with
Style Classes." For information about creating an alias selector, see Chapter 8§,
"Working With Global Selector Aliases.” For information about creating an at-rule,
see Chapter 10, "Working with At-Rules."

Use the Delete icon to remove a selector that you added to the ADF skin.

Click the Refresh icon to update the Preview Pane after you make changes to the
properties of a selector in the Properties window.

Click the Add Pseudo-Class icon to apply a pseudo-class to the item that you
selected in the Selector Tree.

For more information about pseudo-classes, see Section 2.2, "Pseudo-Classes in the
ADF Skinning Framework."

Click the Clear Property Settings icon to undo any change that you made to the
item selected in the Selector Tree.

Click the Delete Pseudo-Class from Skin File icon to delete any pseudo-classes
that you specified in the ADF Skin.

The View as list allows you to preview how changes you make to a global selector
alias in the Selector Tree affect the components that reference the global selector
alias. The View as list displays all components that reference the global selector
alias. The View as list also allows you to preview how changes you make to the
properties of one component-specific selector impact all sub-types of that
component. For example, Figure 3-3 shows the ADF Data Visualization
component selector for the graph component (af | dvt-graph) that exposes a single
set of component-specific selectors that apply changes to all graph types. Use the
View as list to preview a change that you make to a selector in one of the other
types of graph (for example, Bar, Funnel, Pareto, and so on).

Figure 3-3 View as List for a Component

]

[Extended skins =

= |
Q ? = @ < X Default {Mo) Theme Dark Theme Medium Theme Light The
. -~ At-Hules @[ﬂ + - é’ % Wiew as: dvk:barGraph -
EI Faces Component Selectors dvt: areaGraph [
(=& Data Visualizations Component Selectors af[dvt-graph dvt:bariaraph
=] Gankt :

- Title Sublille dvt:bubbleGraph

[2 Gauge 0 dvt:comboGraph

)&y Graph

vt horizontalBar Grapl
vt lineGraph
dvt:paretoGraph
vt pieGraph
dwtiradarGraph
dvt:scatterGraph
dwtistockaraph

..... D af |dwt-graph

[#-3 Pseudo-Elements {af|dvt-graph)
----- [af|dvt-annotation

..... [afldvt-graphFootriote

----- [afldvt-graphPlotarea

----- [afldvt-graphPieFrame

50

40

yiTile

30

----- D af |dwt-graphSubtitle 20

----- [afldvt-graphTitle

----- [afldvt-legendarea 10

[#-(3 Pseudo-Elements (af|dvt-legend

----- [afldvt-legendText 0

----- [afldvt-legendTitle Group A Group B

----- [afldvt-markerText o1 Title
----- [afldvt-o1auis
----- D af |dwt-o1Major Tick.

M cFldb A Ticlt]

Footnote

For more information about global selector aliases, Chapter 8, "Working With
Global Selector Aliases."

Working with the ADF Skin Editor 3-5

Working with the ADF Skin Selectors Editor

13

14.

15.

16.

17.

18.

The Selector Tree displays the list of selectors, global selector aliases, style classes,
and at-rules that you can configure values for in an ADF skin.

For more information, see Section 3.3, "Working with the ADF Skin Selectors
Editor."

The Preview Pane renders a preview of the changes that you make to a selector in
an ADF skin after you click the Refresh icon (8).

You can also view the source of an ADF skin file.

Tip: Select Split Document from a context menu that you can invoke
from the Preview Pane to render the source and design views of an
ADF skin side by side.

The Properties window identifies properties that you can configure for the ADF
skin.
For more information, see Section 3.4, "Working with the Properties Window."

The tabs for themes allow you to preview changes that you make for supported
themes.

For more information, see Section 5.6, "Applying Themes to ADF Faces Pages."

The images editor helps you manage the images that you want to use with an ADF
skin. This tab appears if the ADF skin you create extends from the Fusion Simple
family of ADF skin.

For more information, see Section 6.5, "Working with the Images Editor."

3.3.1 About the Selector Tree

The Selector Tree displays a list of the style classes, global selector aliases, and selectors
for which you can configure properties to change the appearance of ADF Faces and
ADF Data Visualization components.

Figure 3-4 shows the nodes that the Selector Tree in the selectors editor exposes:

Style Classes

A style class defines one or more style properties that you can apply to specific
instances of a component. The selectors editor categorizes the inherited style
classes into style classes defined for general usage, note windows, and popups.
For more information, see Chapter 9, "Working with Style Classes."

Global Selector Aliases

A global selector alias defines style properties that you apply to one or more
selectors. The selectors editor categorizes the inherited global selector aliases into
selector aliases defined for general usage, icons, and messages. For more
information, see Chapter 8, "Working With Global Selector Aliases."

Grouped Selectors

Identifies style properties grouped into one declaration to apply to more than one
selector. For example, Figure 3—4 shows a grouped selector for the button and
link component's selectors.

At-Rules

At-rules are a way to define style properties for when an application's page
renders in a particular environment such as, for example, when using a specific
browser. For more information, see Chapter 10, "Working with At-Rules."

3-6 Developing ADF Skins with Oracle ADF Skin Editor

Working with the ADF Skin Selectors Editor

» Faces Component Selector

Selectors identify the ADF Faces components for which you can configure
properties. The selectors editor displays subcategories for pseudo-elements,
component selector aliases, and descendant selectors. For brevity, the ADF Faces
components node is not expanded. For more information, see Chapter 5, "Working
with Component-Specific Selectors."

s Data Visualizations Component Selectors

Selectors identify the ADF Data Visualization components for which you can
configure properties. The selectors editor displays subcategories for
pseudo-elements, component selector aliases, and descendant selectors. For more
information, see Chapter 5, "Working with Component-Specific Selectors."

Figure 3—-4 Selector Tree

0 (53 Extended skins =

Q T-id- X
SRty ses
[-C3 Miscellaneous
[:l Mote Window
---D Popup
-1 Text
(=== Global Selector Aliases
-3 Color
[#-3 Component Group: Buktan
[#-(3 Component Group: Form Contrals
[#-C3 Component Group: Link
-3 Component Group: Menu
[#-(3 Component Group: PanelBox and Regid
[
[E
E
[
[

£ 3 Component Group: PanelHeader
#-C3 Font
g1 Ieans
t-[1 Message
t-C1 Miscellaneous
(= Grouped Selectors
L[afflink, af |button
-0 Ab-Rules
(3 Faces Component Selectors
[Data Yisualizations Component Selectors
-5 Gantt
@ Gauge
-y Graph
% Hierarchy Viewer

3.3.2 Interactive Preview in the Selectors Editor

The preview pane in the selectors editor displays an interactive preview of the
component that is currently selected in the Selector Tree. Hover your mouse over this
preview to view text that identifies the specific pseudo-element that you need to
customize to change the appearance of the component. Clicking on parts of this
preview navigates you to the location where you can configure properties to change
the appearance of what you have just clicked on. You can also right-click a
pseudo-element to invoke a context menu that displays a hierarchical list of the
selector pseudo-elements that the current pseudo-element contains, as shown in
Figure 3-5.

Working with the ADF Skin Editor 3-7

Working with the Properties Window

Figure 3-5 Interactive Preview for the Calendar Component

] [55 Extended Skins =

- - Default (Ma) Theme Dark Theme Medium Theme Light Theme
Q ’? Faul b ke Th o b ht Th
D Style Classes @é} EF - é/ x Wiew as: Calendar -
(-3 Global Selector Aliases
EI At-Rules 10 1 12 13
BB Faces Component Selectors 12:00 AM time 36 ends at 25/03/13 00:00 BST spans full week
H time 35en 12: time 35e 10: time
Eare Eﬁadcrumbs 6:00 PM time 35en 12:00 AM time 35 & 10:00 AM time 120
----- af|breadCrumbs
[#-3 Pseudo-Elements 17 18 19 20
G-(3 Descendant Selectors 4 time 36 ends at 25/03/13 00:00 BST spans full week
(-3 Button +1 more +13 more +13 more +14 more
- calendar
----- [B dar 2 27
-3 Pseudo-Elements [P T eIl ©:00 AM time 85 8:00 AM time 8
(-3 Component Selector Aliases +3 more +2 more 3:00 PM time 46 rec 3:00 PM time 47 rex
[#-C1 Descendant Selectars
50 Carousel 31 1 2 3
O Carousel Item 4:30 PM time 50 rec B:00 AM time 10 9:00 AM time 87
-] Checkbox 10:00 AM time 124
E}--Iz‘ Checkbox (Select Many)
-1 Choice
-5 Choice (Select Many) af|calendar:drop-target
-l Choose Color = —
[Choose Date @ "ER 2P| 1o af |button: stext
" = Mon ed
E}'"@E» Code Editor un > = af |button: :link =
B8 Column af |button
iti 37
[+ Command Button . oF [taokbar item ime 37 &
@ Command Il.'nage Link of |toolbar s bady
E}--(ﬁ Command Link of [toalbar
(-3 Command Toolbar Button 3 4 &
af |toolbox;: :last-cell
E}--I@ Context Info
. af [kaolbos: :last-row
G- Decorative Box Fltaalbsc: bod
E}--- Dislog af |toolbox: body
E}--- Cocument 10 11 af [toolbox
-3 Go Butkon i af |calendar
~ T T T

Clicking an entry in the context menu that appears or clicking a part of the calendar
component that uses properties defined in the pseudo-element of another component
selector navigates you to that pseudo-element in the Selector Tree. For example, if you
click af | button::link in the context menu in Figure 3-5, the component preview
navigates you to the location for the button component selector's pseudo-element in
the Selector Tree of the selectors editor, as shown in Figure 3-6.

Figure 3-6 Button Component's link Pseudo-Element

? - .+ - x Default {Mo) Theme Dark Then

U TR IS TE S TSEoaT .
a3 BreadCrumbs W +oX
=3 Button af |button: link
! [&f|button
(2= Pseudo-Elements EcpiorBution
[access-key ¥ Disabled Button
[dropdawn-cell ———
D dropdown-icon = = =
[dropdown-icon-style 8 Popup Button | =
0
[text af|buttar:battann: tlink

3.4 Working with the Properties Window

The Properties window serves a number of functions apart from its primary role of
allowing you to set values for CSS properties and ADF skin properties for the selectors
that the ADF skinning framework exposes. These functions are the ability to:

= Copy an image into the project where you develop the ADF skin.

3-8 Developing ADF Skins with Oracle ADF Skin Editor

Working with the Properties Window

For more information, see Chapter 6, "Working with Images and Color in Your
ADF Skin."

= Identify the properties that inherit their values from an extended ADF (blue icon)
skin and identify the properties that you configured (green icon) in the ADF skin,
as shown in Figure 3-7.

= Identify the properties that are associated with at-rules, as shown in Figure 3-7.
For more information about at-rules, see Chapter 10, "Working with At-Rules."
s Present ADF skin properties that you can configure for a selector.

For more information, see Section 2.3, "Properties in the ADF Skinning
Framework."

= Navigate to the selector in an extended ADF skin that defines an inherited
property in your ADF skin (Go to Declaration).

For more information, see Section 3.5, "Navigating ADF Skins."

s Invoke a dialog where you can define the colors for properties that support color
value.

Figure 3-7 presents an overview of the various controls that the Properties window
exposes when you edit an ADF skin.

Figure 3—7 Controls in the Properties Window for ADF Skins

Click this
dropdown
list to view a
list of
predefined
values.

Blue icon -
indicates this affoutton - Properties
property Q Find @

inherits its
value. =| Common
4 Background Color: [#bacsde

4 Background Image: [inear-gradient{top, #CCE2F6 0%, #B1D2F2 100%)

Icon indicates This icon appears when you
this property is L move your mouse over the
associated with 4 Color: #333333 - areas beside the property

Content:

an at-rule. , P - fields. Click the icon to
N @Height: [uto [~ display menus that allow
width: [auto | vou to edit properties or go
: - . to a location where a
Green icon Border: [one medium currentColor | property value is defined
indicates the = o Border Color: [red] (Go to Declaration).
property has) b o
been modified. Margin: |0p Dpx Opx Opx | &
4 Padding: 'Dpx
Properties -tr-rule-ref -tr-inhibit -tr-enable-themes -tr-children-theme
prc‘fa:cd by 4 X
—tr—
are ADF skin alue
properties, not
CSS
properties.

Hover your mouse over the icons that indicate a property associated with an at-rule or
a property that inherits its value in order to display an information tip, as shown in
Figure 3-8. Clicking the link in this information tip navigates you to the source file of
the ADF skin where the at-rule or inherited property value is defined.

Working with the ADF Skin Editor 3-9

Navigating ADF Skins

Figure 3-8 Information Tip Showing Link to Navigate to Source Declaration

skinl.css F‘.{] skinZ.css . afbreadCrumbs - Properties
] [£3 Extended Skins = @ = Q Find

Q ¥~ 4 o % Default {Na) Theme Dark Theme | Medium Theme Light Theme = Common

(3 Style Classes W - K ~ Background Color:

-0 At-Rules

| El-ere BreadCrumbs

(@ Button
- calendar

I R O S |

[:l Global Selector Aliases

(= Faces Component Selectors

------ af |breadCrumbs
3 Pseudo-Elements
(3 Descendant Selectors

af |breadCrumbs Background Image:

...>item 2 =item 3 > fem4 > ifem 5 > item 6 =) item 7 Content:

ﬁolor:

Inherited from: af | breadCrumbs in skinl.css

Click on any selector link to go to its declaration,

[T T T

3.5 Navigating ADF Skins

When you create an ADF skin, as described in Section 4.3, "Creating an ADF Skin File,"
you choose an ADF skin from which to extend. The ADF skin that you choose to
extend from defines properties that your newly created ADF skin inherits. When you
create your first ADF skin, you must choose one of the ADF skins that Oracle ADF
provides.

Subsequent ADF skins that you create can extend an ADF skin that you created or one
of the ADF skins provided by Oracle ADEF. For example, you create your first ADF skin
named skinA that extends the simple ADF skin provided by Oracle ADFE. You then
create a second ADF skin named skinB. When creating skinB, you have the choice of
extending from skinA or from any of the ADF skins provided by Oracle ADE. If you
choose to extend skinB from skina, the inheritance relationship between the ADF
skins is illustrated in Figure 3-9.

For more information about the ADF skins that Oracle ADF provides, see Section 1.4,
"Inheritance Relationship of the ADF Skins Provided by Oracle ADF," and Section 12.3,
"ADF Skins Provided by Oracle ADE."

Figure 3-9 Example Inheritance Relationship Between ADF Skins

simple —-| skinA —-| skinB

The Extended Skins list in the selectors editor displays the list of ADF skins that the
current ADF skin extends. The list also identifies if any of the ADF skins that your skin
extends include imported skins. Figure 3-10 shows the list of ADF skins that appears if
you implement the inheritance relationship described in Figure 3-9. You open an
extended ADF skin that you want to view by clicking it in the Extended Skins list.

Figure 3-10 Extended Skins List

E skinB.css
0 [Extended Skins =
skinf. desktop

[| Default (o) Theme

Dark

D Global Selecr Aliases
-3 At-Rules
- [25 Fares Component Selectd

simple-desktop, css

richcomponents-simple-desktop.css
dvt-simple.css

[#-222 BreadCrumbs

Imported Skins
T

3-10 Developing ADF Skins with Oracle ADF Skin Editor

Navigating ADF Skins

Note: You cannot edit the properties of the selectors in the ADF skins
provided by Oracle ADF. You can only edit the properties of selectors
in extended ADF skins that you created.

Using the Go to Declaration menu that the Properties window exposes, you can
navigate to the location in an extended ADF skin where the extended ADF skin
declares style properties inherited by other ADF skins. For example, assume that the
skinA ADF skin defines a background color of Red for the af |button selector's
access-key pseudo-element, as shown in Figure 3.5.

Figure 3—-11 Declaration of a Property Value

@ skinA.css . aflutton:access-key - Propetties
=]
00} | [Extended skins ~ @ Q, Find
Q F- - X Default (No) Theme Dark Theme Med... » = Commion
£ (- Fares Component Selectars Wid-oX - @ Background Color: Eed
...o>o BreadCrumbs af |butkon: access-key Background Image: |none
=3 Button
[af|button Begular Button Content: I:
- Pseudo-Elements 3 Disabled B Color:

O
= Height: auto
~[] dropdown-cel - I:

[dropdown-icon & Popup Button |+ widkh: auto

% dropdoynricon:-sty Border: nione mediurr
=] link
e[text Border Color: currentColor

- Calendar Marqgin: Opz Op Opx

The skinB ADF skin that extends from skinA ADF skin inherits the property values
that are defined in the skinA ADF skin. Figure 3.5 shows the skinB ADF skin in the
selectors editor with a value of Red for the background-color property.

Figure 3—12 Inheriting a Property Value from an Extended Skin

skind, css @ skinB.css . aflbutton::access-key - Properties

0] | [Extended Skins ~ @ = Q, Find

Q T - .+ o X Default (Ma) Theme Dark Theme 4 = Common

I':I Style Classes E‘ﬂ '* v é” X ﬁackground Color: E
3 Global Selector Aliases | e T

3 At-Rules af |button: :access-ke

E—}B Faces Companent Selectars Eegular Button Inherited from: af | button:access-key in skind.css
"'°>° BreadCrumbs 9 Disabled Buf Click on any selector link to go to its declaration.
(= Buttan : —
b [aflbutton == = Height: E
=+ Pseudo-Elements S Popup Button |~ width: auto
D& Border: nione mediurn cu
[dropdown-cell

[dropdown-icon Border Color: currentColor cut
[dropdown-icon-skyle

Margin: Ope Ope Opx Op:
[link
D text Padding: Op: Opsx Op: Op:

{5 Calendar —troinkibit

-tr-enable-themes | -tr-chil

To go to the declaration of a property:

1. Identify a property in your ADF skin that inherits its values from an extended
ADF skin. A blue upward-pointing arrow, as shown in Figure 3-12, identifies
these properties.

2. Click the icon that appears when you hover over the property field to invoke a
context menu where you select Go to Declaration, as shown in Figure 3-13.

Working with the ADF Skin Editor 3-11

Customizing the ADF Skin Editor

Figure 3-13 Go to Declaration Context Menu

| aflbutton:access-key - Propeties
T

Q Find @

=1 Comnmon

4 Background Colar: F\ed |v|

Background T Background Colar
Edit...

Go to Declaration

Content:

Calor: Reset to Default
Height: =l Property Help
. This properky sets the
wid: | ety setsthe]

The extended ADF skin opens in the source view, as shown in Figure 3-14. If the
extended ADF skin is one that you created, you can modify the property values
defined in it. The ADF skins provided by Oracle ADEF, described in Section 12.3, "ADF
Skins Provided by Oracle ADE," are read-only.

Figure 3—14 Property Value Defined in Extended ADF Skin

skinB.css [FD;] sking,.css
Q- Find
SFFADFFaces_3kin_File / DO NOT REMOVE®®/

fnamespace af "http://xmlns.oracle.com/a
fnamespace dvt "http://xnlns.oracle. com/

= af |button: :access-key

i
hackground-color: Red;

'

3.6 Customizing the ADF Skin Editor

You can alter the appearance and functionality of a variety of ADF Skin Editor
features.

3.6.1 How to Change the Look and Feel of the ADF Skin Editor

You can alter the appearance of the ADF Skin Editor using pre-defined settings.

To change the look and feel of the ADF Skin Editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Environment node if it is not already selected.

3. On the Environment page, select a different look and feel from the Look and Feel
list.

4. Click OK.
5. Restart the ADF Skin Editor.

Note: The key bindings in Motif are different from key bindings in
Windows. Under Motif, the arrow keys do not change the selection.
Instead they change the lead focus cell. You must press Ctrl + Space to
select an item. This is expected behavior.

3-12 Developing ADF Skins with Oracle ADF Skin Editor

Searching the Source Files of ADF Skins

3.6.2 How to Customize the General Environment for the ADF Skin Editor

You can customize the default display options (for example, always display dockable
windows on top), as well as other general behavior, such as whether the ADF Skin
Editor will automatically reload externally modified files and whether output to the
Log window is automatically saved to a file.

To change the general environment settings for the ADF Skin Editor:

1.

a & 0N

From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

In the Preferences dialog, select the Environment node if it is not already selected.
On the Environment page, select the options and set the fields as appropriate.
Click OK.

Restart the ADF Skin Editor.

For information about how to start the ADF Skin Editor, see Installing Oracle ADF
Skin Editor (for the release that pertains to the application you are skinning).

3.7 Searching the Source Files of ADF Skins

The ADF Skin Editor provides a source editor where you can view, edit, and search the
syntax that the design and selectors editors generate for an ADF skin.

3.7.1 How to Search the Source Files of ADF Skins

You can search the source files of an ADF skin in a number of ways.

To search a source file currently open in the source editor, with the option to
replace text:

1.
2.

With the file open in the source editor, make sure that the editor has focus.

Optionally, if an instance of the text you want to search for is easily found, you can
highlight it now.

From the main menu, choose Search > Find. Alternatively, press Ctrl+F.
In the Find Text Dialog, enter or select the text to locate.

Text previously searched for in this session of the ADF Skin Editor appears in the
Text to Search For list.

Select other search parameters accordingly.

For more information, press F1 or click Help from within the dialog.
Click OK.

To do a simple search in the open source file for a single text string:

1.
2
3.

With the file open in the editor, ensure that the editor has focus.
Place the cursor in the file at the point you wish to search from.

From the main menu, choose Search > Incremental Find Forward or Search >
Incremental Find Backwards.

In the dialog, enter the search text.

Working with the ADF Skin Editor 3-13

Working with Extensions

As you type, the cursor jumps to the next instance of the group of letters
displayed.

Alternatively, enter the text string in the search box. As you type, the cursor jumps to
the next instance of the group of letters displayed. Use the Previous or Next buttons to
search up and down the file. Click in the search box to set Match Case, Whole Word,
or Highlight Occurrences.

3.8 Working with Extensions

Extensions are components that are loaded and integrated with the ADF Skin Editor
after it starts. Extensions can access the editor and perform many useful tasks. You can
add existing extensions into the ADF Skin Editor.

This section contains information on finding and installing extensions. The simplest
way to find and download extensions is through the Check for Updates wizard.

If you need additional capabilities, such as integration with a version control system or
a special editor, you can add external tools to the ADF Skin Editor. For more
information, see Section 3.9, "Adding External Tools to the ADF Skin Editor."

If you want to create a new extension, you can do so in JDeveloper using the Extension
JDK from the Oracle Technology Network web page. You can download the completed
extension to the ADF Skin Editor.

Note: Any time an extension is added or upgraded, the migration
dialog appears at startup in case you need to migrate any previous
settings related to that extension.

3.8.1 How to Install Extensions with Check for Updates

The easiest way to find and install extensions is to use the Check for Updates wizard.

To install extensions using the Check for Updates wizard:
1. From the Help menu, select Check for Updates.

2. Follow the steps in the wizard to browse, download, and install patches and
extensions.

3.9 Adding External Tools to the ADF Skin Editor

External tools are custom ADF Skin Editor menu items and toolbar buttons that launch

applications installed on your system, applications that are not packaged as part of the
ADF Skin Editor.

3.9.1 How to Add External Tools to the ADF Skin Editor

You find and add available external tools to the ADF Skin Editor using the External
Tools menu.

To find all external programs that the ADF Skin Editor is preconfigured to
support:

1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click Find Tools.

3-14 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

To add access to an external program from the ADF Skin Editor:
1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click New. Follow the instructions in the wizard.

To change how an external program appears, or remove access to an external
program from the ADF Skin Editor:

1. From the main menu, choose Tools > External Tools.
2. In the External Tools dialog, click Edit or Delete. If you are editing the options,
display, integration or availability of an external tool from the ADF Skin Editor,

select the corresponding tab and change the values. Click Help for help choosing
valid values.

3. Click OK. Your changes are reflected immediately.

3.10 Navigating the ADF Skin Editor

You can accomplish any task in the ADF Skin Editor using the keyboard as you use the
mouse.

3.10.1 How to Work With Shortcut Keys In the ADF Skin Editor

The ADF Skin Editor comes with several predefined keyboard schemes. You can
choose to use one of these, or customize an existing set to suit your own coding style
by changing which keyboard shortcuts map to which actions.

To load preset keyboard schemes:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node. For more information at
any time, press F1 or click Help from within the Preferences dialog.

3. On the shortcut keys page, click More Actions and then select Load Keyboard
Scheme. The Load Keyboard Scheme dialog appears, with the currently loaded
keyboard scheme highlighted.

4. In the Load Keyboard Scheme dialog, select the scheme you wish to load and click
OK.

5. On the Shortcut Keys page, if you have finished, click OK.

To view the ADF Skin Editor commands and their associated keyboard shortcuts
(if assigned):
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node.

3. On the Shortcut Keys page, under Available Commands, you can view the
complete set of the ADF Skin Editor commands, and what keyboards shortcuts (if
any) are assigned to each. If you are looking for a particular command or shortcut,
or want to look at shortcuts for a particular category of commands only, enter a
filtering expression in the Search field.

4. You can also define new shortcuts, or change existing ones.

Working with the ADF Skin Editor 3-15

Navigating the ADF Skin Editor

To define a new keyboard shortcut for a command within a given keyboard
scheme:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node. For more information at
any time, press F1 or click Help from within the preferences dialog.

3. On the Shortcut Keys page, under Available Commands, select the command that
you wish to define a new shortcut for.

4. To define a new shortcut for this action, place focus on the New Shortcut field,
and then press the key combination on the keyboard.

If this proposed shortcut already has a command associated with it, that command
will now appear in the Conflicts field. Any conflicting shortcuts are overwritten
when a new shortcut is assigned.

5. To assign this shortcut to the action selected, click Assign. If you want to delete an
already-assigned shortcut, click the Delete button in the toolbar.

If you want to assign more than one shortcut to a command, select the command
and click the Duplicate button. Then, type the shortcut key in the New Shortcut
field and click Assign.

6. When you are finished, click OK.

To import or export keyboard schemes:
1. From the main menu, select Tools > Preferences to open the Preferences dialog.

2. Click More Actions > Export or Import. Keyboard schemes are stored as XML
files.

3.10.2 Keyboard Navigation In the ADF Skin Editor

For any action that can be accomplished with a mouse, including selection, there is a
way to accomplish the action solely from the keyboard. You can accomplish any task
in the ADF Skin Editor using the keyboard as you can using the mouse.

The shortcut keys defined in the Java Look and Feel guidelines provide the base set for
the ADF Skin Editor. The various predefined keyboard schemes available in the ADF
Skin Editor are then overlaid upon this base set. If the same shortcut key exists in both
the look and feel guidelines and the ADF Skin Editor keyboard scheme, the ADF Skin
Editor scheme prevails. If a shortcut key defined by the look and feel guidelines does
not appear in the ADF Skin Editor scheme, then it is the original look and feel
definition that remains in effect when the scheme in question is enabled.

At any given time, then, the shortcut keys enabled in the ADF Skin Editor depend
upon the interaction of the currently enabled scheme with the Java look and feel
guidelines. When you first open the ADF Skin Editor, the default scheme is enabled.
You can change this scheme whenever you wish, and within each scheme, you can
customize any of the shortcut key assignments that you would like. Note that any
customized shortcuts you create in a scheme are not retained when another predefined
keyboard scheme is activated (or even if the same scheme is reloaded).

To load predefined keyboard schemes, view current shortcut assignments within a
scheme, and customize those assignments, you will need to open the preferences
dialog. To open the dialog, choose Tools > Preferences (or on the keyboard, press
Alt+T+P) from the main menu and then, using the arrow keys in the left-hand pane,
navigate to the Shortcut Keys node. For details on working with the dialog, with the
page displayed, click Help (or on the keyboard press H).

3-16 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

3.10.2.1 Common Navigation Keys
The following table describes the common methods of moving the cursor in the ADF

Skin Editor:

Table 3-1 Common Methods of Moving the Cursor

Key Cursor Movement Ctrl+cursor Movement

Left Arrow Left one unit (e.g., a single character) Left one proportionally larger unit
(e.g., a whole word)

Right Arrow Right one unit Right one proportionally larger
unit

Up Arrow Up one unit or line Up one proportionally larger unit

Down Down one unit or line Down one proportionally larger

Arrow unit

Home Beginning of the line To the beginning of the data
(top-most position)

End End of the line To the end of the data
(bottom-most position)

Tab Next field or control, except when in a text area or To the next pane which may be a
field. In this case, press Ctrl+Tab to navigate out of the navigator, an editor, or a window,
control. except when in a text area or field.
Where there are fields and controls ordered In thls case, press Ctrl+Tab to

.) . navigate out of the control
horizontally as well as vertically, pressing Tab moves
the cursor first horizontally to the right, then at the
end of the line, down to the left of the next line.

Shift+Tab Previous field To previous tab position. In
property sheets, this moves the
cursor to the next page

Enter Selects and highlights the default button, except when n/a

in a combo box, shuttle button, or similar control.

Note: The default button changes as you navigate
through controls.

3.10.2.2 Navigation In Standard Components
This section describes keyboard navigation in the standard ADF Skin Editor

components.

Buttons

The following table describes the keyboard actions to perform navigation tasks
involving buttons.

Table 3-2 Keyboard Navigation for Buttons

Navigation Keys
Navigate forward to or Tab

from button

Navigate backward to or Shift+Tab
from button

Activate the default button | Enter
(when the focus is not on a

button)

Working with the ADF Skin Editor

3-17

Navigating the ADF Skin Editor

Table 3-2 (Cont.) Keyboard Navigation for Buttons

Navigation Keys

Activate any button while it | Enter, Spacebar, or keyboard shortcut (if one has been defined)
has focus

Activate Cancel or Close Esc

buttons on a dialog

Checkboxes

The following table describes the keyboard actions to perform navigation tasks
involving checkboxes.

Table 3-3 Keyboard Navigation for Checkboxes

Navigation Keys

Navigate forward to or from Tab
checkbox

Navigate backward to or Shift+Tab
from checkbox

Select or deselect (wWhen the = Spacebar or keyboard shortcut (if one has been defined)
focus is on the checkbox)

Navigate to checkboxand = Keyboard shortcut (if one has been defined)
select or deselect (when the

focus is not on the

checkbox)

Dropdown Lists And Combo Boxes

The following table describes the keyboard actions to perform navigation tasks
involving dropdown lists and combo boxes.

Table 3-4 Keyboard Navigation for Dropdown Lists and Combo Boxes

Navigation Keys

Navigate forward to or from Tab or keyboard shortcut (if one has been defined)
a combo box or dropdown
list

Navigate backward to or Shift+Tab
from a combo box or
dropdown list

Toggle list open and closed ~ Spacebar (the current selection receives the focus)

Open a list Down Arrow to open (first item on list receives focus)

Move up or down within Up and Down Arrow keys (highlighted value has focus)
list

Move right and left within =~ Right and Left Arrow keys
the initial entry on a combo

box
Select list item Enter
The first time you press Enter, the item in the list is selected. The
second time you press Enter, the default button is activated.
Close list (with the Esc

highlighted value selected)

3-18 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

List Boxes

The following table describes the keyboard actions to perform navigation tasks

involving list boxes.

Table 3-5 Keyboard Navigation for List Boxes

Navigation Keys
Navigate forward into or Tab

out of a list

Navigate backward into or ~ Shift+Tab

out of list

Make a selection

Up Arrow, Down Arrow, Spacebar, or Enter

The first time you press Enter, the highlighted item in the list is
selected. The second time you press Enter, the default button is
activated.

Move within list

Up Arrow or Down Arrow

Move to beginning of list

Home or Ctrl+Home

Move to end of list

End or Ctrl+End

Select all entries

Ctrl+A

Toggle (select or deselect) an
item

Spacebar or Ctrl+Spacebar

Select next item up in list
without deselecting item
with current focus

Shift+Up Arrow Key

Select next item down in list
without deselecting item
with current focus

Shift+Down Arrow Key

Select current item and all
items up to the top of the
list

Shift+Home

Select current item and all
items up to the bottom of
the list

Shift+End

Select current item and all
items visible above that item

Shift+Page Up

Select current item and all
items visible below that
item

Shift+Page Down

Select item with current
focus without deselecting
other items (to select items
that are not adjacent)

Ctrl+Spacebar

Navigate through list
without deselecting item
with current focus.

Ctrl+Up Arrow or Ctrl+Down Arrow

Working with the ADF Skin Editor 3-19

Navigating the ADF Skin Editor

Radio Buttons

Table 3-6 Keyboard Navigation for Radio Buttons

Navigation Keys

Navigate forward to or from Tab
radio button

Navigate backward to or Shift+Tab
from radio button

Navigate forward from Arrow Keys
radio button

Navigate backward from Shift+Arrow Keys

radio button

Select radio button Arrow key (navigating to a radio button via arrows selects it) or
keyboard shortcut (if one has been defined)

Deselect radio button Select a different radio button in the group using one of the
commands above

Shuttles

The following table describes the keyboard actions to perform navigation tasks
involving shuttles.

Table 3-7 Keyboard Navigation for Shuttles

Navigation Keys

Navigate forward into or Tab
out of a list

Navigate backward into or ~ Shift+Tab

out of list

Make a selection Up Arrow or Down Arrow

Move within list Up Arrow or Down Arrow

Move to beginning of list Home or Ctrl+Home

Move to end of list End or Ctrl+End

Select all entries Ctrl+A

Toggle (select or deselect) an Spacebar or Ctrl+Spacebar

item

Select next item up in list Select next item up in list without deselecting item with current
without deselecting item focus

with current focus

Select next item down in list Shift+Down Arrow Key
without deselecting item
with focus

Select current item and all Shift+Home
items up to the top of the
list

Select current item and all Shift+End
items up to the bottom of
the list

Select current item and all ~ Shift+Page Up
items visible above that item

3-20 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

Table 3-7 (Cont.) Keyboard Navigation for Shuttles

Navigation Keys

Select current item and all ~ Shift+Page Down
items visible below that
item

Select item with current Ctrl+Spacebar
focus without deselecting

other items (to select items

that are not adjacent)

Navigate through list Ctrl+Up Arrow or Ctrl+Down Arrow
without deselecting item
with current focus.

Sliders

The following table describes the keyboard actions to perform navigation tasks
involving sliders.

Table 3-8 Keyboard Navigation for Sliders

Navigation Keys

Navigate forward to or from Tab
slider

Navigate backward to or Shift+Tab
from slider

Increase value Up Arrow or Right Arrow
Decrease value Left Arrow or Down Arrow
Minimum value Home

Maximum value End

Spin Controls

The following table describes the keyboard actions to perform navigation tasks
involving spin controls.

Table 3-9 Keyboard Navigation for Spin Controls

Navigation Keys

Navigate forward to or from Tab
spin control

Navigate backward to or Shift+Tab
from spin control

Increase value Up Arrow or Right Arrow, or type the value you want
Decrease value Left Arrow or Down Arrow, or type the value you want
Minimum value Home

Maximum value End

Text Fields

The following table describes the keyboard actions to perform navigation tasks
involving text fields.

Working with the ADF Skin Editor 3-21

Navigating the ADF Skin Editor

Table 3-10 Keyboard Navigation for Text Fields

Navigation

Keys

Navigate forward into or
out of text box

Tab or keyboard shortcut (if one has been defined)

Navigate backward into or ~ Shift+Tab

out of text box

Move to previous/next Left Arrow /Right Arrow
character within text box

Move to start/end of box Home/End

Select all text Ctrl+A

Deselect all text

Left Arrow or Right Arrow

Select current item and all
items up to the Left/Right

Shift+Left Arrow, Shift+Right Arrow

Select current item and all
items up to the Start/End

Shift+Home, Shift+End

Select current item and all
items up to the
previous/next word

Ctrl+Shift+Left Arrow, Ctrl+Shift+Right Arrow

Copy selection Ctrl+C
Cut selection Ctrl+X
Paste from clipboard Ctrl+V
Delete next character Delete
Delete previous character Backspace

3.10.2.3 Navigating Complex Controls

This section contains information about keyboard shortcuts for complex Ul

components.

Dockable Windows

The following table describes the keyboard actions to perform navigation tasks

involving dockable windows.

Table 3—-11 Keyboard Navigation for Dockable Windows
Navigation Keys

Navigate forward in or out ~ Ctrl+Tab

of dockable window

Navigate backward in or Ctrl+Shift+Tab

out of dockable window

Display context menu Shift+F10

Navigate between tabs
within a dockable window

Alt+Page Down, Alt+Page Up

Move between elements
including dropdown lists,
search fields, panels, tree
structure (but not individual
elements in a tree),
individual component
buttons

Tab

3-22 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

Table 3-11 (Cont.) Keyboard Navigation for Dockable Windows

Navigation Keys

Move up/down through Up Arrow, Down ArrowThis scrolls the window contents if the
dockable window contents focus moves beyond visible area of canvas.

(scrollbar)

Move left/right (scrollbar) Up Arrow, Down ArrowThis scrolls the pane contents if focus
moves beyond visible area of canvas.

Move to start/end of data Ctrl+Home, Ctrl+End
(component buttons)

Select an element Enter or Spacebar

Scroll left/right within the Ctrl+Left/Ctrl+Right
canvas area (without

moving through the

window contents)

Scroll Up/Down within the Ctrl+Up/Ctrl+Down
canvas area (without

moving through the

window contents)

Menus

Context menus are accessed using Shift+F10. Menus from the main menu bar are
accessed using the keyboard shortcut for the menu.

The following table describes the keyboard actions to perform navigation tasks
involving the menu bar.

Table 3-12 Keyboard Navigation for Menus

Navigation Keys

Navigate to menu bar F10

Navigate out of menubar Esc

Navigate between menus in Right Arrow, Left Arrow
menu bar

Navigate to menu item Up Arrow, Down Arrow

Navigate from menu item Up Arrow, Down Arrow

Activate item Enter, Spacebar, or keyboard shortcut (if one has been defined)
Open submenu Right Arrow

Retract submenu Left Arrow or Esc

Panels

The following table describes the keyboard actions to perform navigation tasks
involving panels.

Table 3-13 Keyboard Navigation for Panels

Navigation Keys

Navigate in/out forward Tab

Navigate in/out backward ~ Shift+Tab

Expand panel (when focus Right Arrow
on header)

Working with the ADF Skin Editor 3-23

Navigating the ADF Skin Editor

Table 3-13 (Cont.) Keyboard Navigation for Panels

Navigation

Keys

Collapse panel (when focus
on header)

Left Arrow

Navigate within panel

Up Arrow, Down Arrow

Navigate to panel header
from contents (when focus
is on top item in list)

Up Arrow

Navigate to panel contents
from header (when focus is
on header)

Down Arrow

Tables

Arrow keys move focus in the direction of the arrow, except when a web widget has
focus; in that case, the down arrow or enter key initiates the widget control action,
such as opening a choice list. tab moves the focus right, shift+tab moves the focus left.

The following table describes the keyboard actions to perform navigation tasks

involving tables.

Table 3-14 Keyboard Navigation for Tables

Navigation Keys

Navigate forward in or out Ctrl+Tab

of table

Navigate backward in or Shift+Ctrl+Tab

out of table

Move to next cell (wrap to ~ Tab Arrow or Right Arrow
next row if in last cell)

Move to previous cell (wrap Shift+Tab or Left Arrow

to previous row if in first

cell)

Controls in cells open Down Arrow or Enter
Block move left Ctrl+Page Up

Block move right Ctrl+Page Down
Block move up Page Up

Block move down Page Down

Move to first cell in row Home

Move to last cell in row End

Move to first cell in table Ctrl+Home

Move to last cell in table Ctrl+End

Select all cells Ctrl+A

Deselect current selection Any navigation key
(and select alternative)

Extend selection on row Shift+Up Arrow
Extend selection one Shift+Down Arrow

column

3-24 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

Table 3-14 (Cont.) Keyboard Navigation for Tables

Navigation Keys

Extend selection to Shift+Home
beginning of row

Extend selection to end of Shift+End
row

Extend selection to Ctrl+Shift+Home
beginning of column

Extend selection to end of Ctrl+Shift+End
column

Edit cell without overriding F2
current contents, or show
dropdown list in combo box

Reset cell content prior to Esc
editing

Tabs

This section refers to the tabs that appear within a dockable window, view or dialog.
The following table describes the keyboard actions to perform navigation tasks
involving tabs in dockable windows, views and dialogs.

Table 3-15 Keyboard Navigation for Tabs

Navigation Keys

Navigate forward into or Tab
out of tab control

Navigate backward into or ~ Ctrl+Tab
out of tab control

Move to tab (within control) Left Arrow/Right Arrow

left/right

Move to tab (within control) Up Arrow/Down Arrow
above/below

Move from tab to page Ctrl+Down

Move from page to tab Ctrl+Up

Move from page to previous Ctrl+Page Up
page (while focus is within

page)

Move from page to next Ctrl+Page Down
page (while focus is within

page)

Trees

The following table describes the keyboard actions to perform navigation tasks
involving trees.

Table 3—-16 Table Navigation for Trees

Navigation Keys

Navigate forward into or Tab
out of tree control

Working with the ADF Skin Editor 3-25

Navigating the ADF Skin Editor

Table 3-16 (Cont.) Table Navigation for Trees

Navigation Keys

Navigate backward into or ~ Shift+Tab

out of tree control

Expand (if item contains Right Arrow
children)

Collapse (if item contains Left Arrow
children)

Move to parent from child ~ Left Arrow

(if expanded)

Move to child from parent ~ Right Arrow

(if already expanded)

Move up/down one item Up Arrow, Down Arrow
Move to first item Home

Move to last entry End

Select all children of Ctrl+A

selected parent

Select next item down in list Shift+Down Arrow
without deselecting that

item that currently has focus

Select next item up in list Shift+Up Arrow
without deselecting that

item that currently has focus

Select current item and all ~ Shift+Home
items up to the top of the

list

Select current item and all ~ Shift+End

items up to the bottom of

the list

Select the item with current Ctrl+Spacebar
focus without deselecting

other items (to select items

that are not adjacent)

Navigate through list Ctrl+Up/Down Arrow

without deselecting item
with current focus

Wizards

The following table describes the keyboard actions to perform navigation tasks

involving wizards.

Table 3-17 Keyboard Navigation for Wizards

Navigation

Keys

Navigate between stops on
the roadmap or between

pages

Up Arrow, Down Arrow (these do not wrap)

Navigate forward between
components on wizard
panel, wizard navigation
bar buttons, and navigation
panel

Tab

3-26 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

Table 3-17 (Cont.) Keyboard Navigation for Wizards

Navigation Keys

Navigate backward between Shift+Tab
components on wizard

panel, wizard navigation

bar buttons, and navigation

panel

Navigate between buttons ~ Right and Left Arrow Key (does not wrap)
on Navigation Bar

Navigate between stops on Ctrl Page Up and Ctrl Page Down
Roadmap /between wizard

pages

3.10.2.4 Navigation in Specific Components

This section contains information about keyboard shortcuts for the ADF Skin
Editor-specific Ul components.

Dialogs
The following table describes the keyboard actions to perform navigation tasks
involving dialogs.

Table 3-18 Keyboard Navigation for Dialogs

Navigation Keys
Close dialog without Esc
making any selections or

changes

Activate the default button Enter
(if one is defined)

Properties Window

The following table describes the keyboard actions to perform navigation tasks
involving the Properties window.

Table 3—-19 Keyboard Navigation for the Properties Window

Navigation Keys

Navigate forward into or Ctrl+Tab
out of Properties window

Navigate backward into or ~ Ctrl+Shift+Tab
out of Properties window

Navigate from side tab Tab
group to page
Navigate backward and Tab, Shift+Tab

forwards between elements
on page

Move to tab above/below Up Arrow, Down Arrow
(when focus is on the side
tab)

Move to tab right or left, Up Arrow, Down Arrow, Right Arrow, Left Arrow
above or below (when focus
is on the internal tab group)

Working with the ADF Skin Editor 3-27

Navigating the ADF Skin Editor

Table 3-19 (Cont.) Keyboard Navigation for the Properties Window

Navigation Keys

Move from side tab group to Ctrl+Down Arrow
page

Move from page to side tab ~ Ctrl+Up Arrow
group

Move to side tab above Ctrl+Page Up
(previous) when focus on

page

Move to side tab below Move to side tab below (next) when focus on page
(next) when focus on page

Open and Close sections Enter

(when focus is on a section

header)

Text Editors

The following table describes the keyboard actions to perform navigation tasks
involving the pane elements of text editors.

Table 3-20 Keyboard Navigation for Text Editors

Navigation Keys

Navigate forward in or out ~ Ctrl+Tab
of editor

Navigate backward in or Ctrl+Shift+Tab
out of editor

Move from page to previous Alt+Page Up
page

Move from page to next Alt+Page Down
page

The following table describes the keyboard actions to perform navigation tasks
involving the text or canvas areas of text editors.

Table 3-21 Keyboard Navigation for Canvas Areas of Text Editors

Navigation Keys

Move up/down one line Up Arrow, Down Arrow

Move left/right one Left Arrow, Right Arrow

character

Move to start/end of line Home, End

Mov(f to previous/next Ctrl+Left Arrow, Ctrl+Right Arrow
wor

Move to start/end of text Ctrl+Home/Ctrl+End
area

Move to beginning/end of ~ Ctrl+Home/Ctrl+End

data

Move up/down one vertical Page Up/Page Down
block

Block move left Ctrl+Page Up

3-28 Developing ADF Skins with Oracle ADF Skin Editor

Navigating the ADF Skin Editor

Table 3-21 (Cont) Keyboard Navigation for Canvas Areas of Text Editors

Navigation Keys

Block move right Ctrl+Page Down
Block extend up Shift+Page Up

Block extend down Shift+Page Down
Block extend left Ctrl+Shift+Page Up
Block extend right Ctrl+Shift+Page Down
Select all Ctrl+A

Deselect all

Up Arrow, Down Arrow, Left Arrow, Right Arrow

Extend selection up/down
one line

Shift+Up Arrow /Shift+Down Arrow

Extend selection left/right
one component or char

Shift+Left Arrow /Shift+Right Arrow

Extend selection to
start/end of line

Shift+Home/Shift+End

Extend selection to
start/end of data

Ctrl+Shift+Home/Ctrl+Shift+End

Extend selection up/down
one vertical block

Shift+Page Up/Shift+Page Down

Extend selection to
previous/next word

Ctrl+Shift+Left Arrow /Ctrl+Shift+Right Arrow

Extend selection left/right
one block

Ctrl+Shift+Page Up/Ctrl+Shift+Page Down

Copy selection Ctrl-C
Cut selection Ctrl-X
Paste selected text Ctrl-V

Graphical Editors

The following table describes the keyboard actions to perform navigation tasks
involving graphical editors.

Table 3-22 Keyboard Navigation for Graphical Editors
Navigation Keys

Navigate forward in or out ~ Ctrl-Tab

of editor

Navigate backward in or Ctrl+Shift+Tab

out of editor

Move from page to previous Alt+Page Up

page

Move from page to next Alt+Page Down

page

The following table describes the keyboard actions to perform navigation tasks
involving the canvas areas of graphical editors.

Working with the ADF Skin Editor

3-29

Working with the Resources Window

Table 3-23 Keyboard Navigation for Canvas Areas of Graphical Editors

Navigation Keys

Move to the next focusable ~ Up Arrow, Down Arrow, Left Arrow, Right Arrow
element within editor area

Select element Spacebar

Activate context menu Shift+F10

3.11 Working with the Resources Window

The Resources window allows you to create connections to a number of different
resources, such as application servers and file systems, from where you can use them
in different applications and share them with other users.

When designing and building applications, you may need to find and use many
software assets. You may know what you want to find, but you may not be certain
where to find it or even what the artifact of interest is called. Even if you think you
know where to find the artifact, and what it is called, you might not know how to
establish a connection to it.

The Resources window lets you:

= Locate resources stored in a wide variety of underlying repositories through IDE
connections

= Locate resources by browsing a hierarchical structure in catalogs
= Search for resources and save searches

= Filter resources to reduce the visible set when browsing

= Use aresource you have found in an application you are building

= Facilitate resource discovery and reuse by sharing catalog definitions

To open the Resources window:
In the main menu, choose Window > Reset Windows to Factory Settings.

By default, the Resources window is displayed to the right of the ADF Skin Editor
window.

To refresh the Resources window:
s In the Resources window, click New and choose Refresh.

Alternatively, in the Resources Window choose Refresh from the context menu of
an object in the My Catalogs panel or the IDE Connections panel.

3.11.1 Working with IDE Connections

When you create a connection in the ADF Skin Editor, you can create it as an IDE
connection that can be reused in different applications, or shared between users, or as
application connections.

IDE connections are globally defined connections available for reuse, and they are
listed in the IDE Connections panel of the Resources window. You can copy IDE
connections to the Applications window to use them within an application.

IDE connections are listed in the IDE Connections panel of the Resources window. In
addition, some types of connections may appear in special connection-type windows.

3-30 Developing ADF Skins with Oracle ADF Skin Editor

Working with the Resources Window

The different types of connections that can be made depends on the technologies and
extensions available to you. To see what you can create a connection to, choose IDE
Connection from the New button in the Resources window. The specific types of
connection you can make depend on the technologies and extensions available to you.

The file system location for Resources connection descriptor definition information is

system-dir/jdeveloper/systeml2.1.2.n.nn.nn.nn/o.jdeveloper.rescat2.model/connectio
ns/connections.xml

To create an IDE connection:
1. In the IDE Connections panel of the Resources window, choose IDE Connection
from the New button.

2. Choose the type of connection you want to create, and enter the appropriate
information in the Create Connection dialog. For more information at any time,
press F1 or click Help from within the dialog.

Once you have created a connection in the Resources window, you can edit details of
the connection, but you cannot change the connection name.

To edit an IDE connection:

1. In the IDE Connections panel of the Resources window, choose Properties from
the context menu of a connection.

2. The Edit Connection dialog opens where you can change the connection details.
For more information at any time, press F1 or click Help from within the Edit
Connection dialog.

You can use connections in the Resources window in an application.

The connection can be added to the application currently open in the ADF Skin Editor,
and it is listed in the Application Resources pane of the Applications window, under
the Connections node.

To add a connection to an application:

In the IDE Connections panel of the Resources window, choose Add to Application
from the context menu of a connection.

Alternatively, drag the resource from the Resources window and drop it onto an
application page.

Alternatively, drag the connection from IDE Connections in the Resources window
and drop it onto the Application Resources pane in the Applications window.

3.11.2 How to Search the Resources Window

There are two ways of searching in the Resources window:
= Performing a simple search
s Performing an advanced search, where you enter parameters in a dialog

In addition, you can define a dynamic folder in a catalog where the content of the
folder is defined by a query expression that is executed when the folder is opened.

The time the search takes depends on how many resources there are in the Resources
window, and how long it takes to connect to them, and the results are displayed in the
Search Results panel.

Working with the ADF Skin Editor 3-31

Working with the Resources Window

When you perform a simple search, the search is performed across all the contents of
the Resources window, and it may take some time because the ADF Skin Editor
connects to remote resources during the search.

To perform a simple search:

1. In the Resources window, click the Search Options button to choose whether the
search is performed against the Name, Type or Description of the resource. For
more information at any time, press F1 or click Help from within the Resources
window.

2. Enter a search string in the field. For example, if you want to find every resource
that contains dep in the name, choose Name in Step 1, and enter dep. Every
resource that contains the string dep will be listed in the search results.

3. Click the Start Search button to start the search.

Alternatively, you can perform an advanced search where you specify a series of
search criteria, and choose where to start the search from.

To perform an advanced search:

1. In the Resources window, choose Advanced Search from the context menu of an
object in the My Catalogs panel or the IDE Connections panel. For more
information at any time, press F1 or click Help from within the Advanced Search
dialog.

2. Define where the search starts. Either select from Search in, or click Show
Hierarchy which allows you choose within a hierarchical list of the Resources
window contents.

3. Enter search criteria to return the resources you want, and click Search.
You can stop a search before it has completed by clicking the Stop Search button.

You can save a search and reuse it. There are two ways of saving a search in order to
reuse it:

= Asa dynamic folder, where the contents of the folder are created dynamically
based on the search criteria when the folder is opened.

= As a static folder containing the results of the search.

Dynamic folders can also be created directly in a catalog.

To save a search:

1. In the Search Results panel of the Resources window, choose Save Search from the
context menu.

2. In the Save Search dialog, choose:
= Save Search Criteria, to create a dynamic folder.
m Save Search Results, to create a static folder of results.

For more information at any time, press F1 or click Help from within the
Resources window.

3. Enter a name for the folder.

4. Choose the catalog to contain the folder, either from the dropdown list, or from the
hierarchical list displayed when you click Show Hierarchy.

3-32 Developing ADF Skins with Oracle ADF Skin Editor

Working with the Resources Window

3.11.3 Filtering Resources Window Contents

Filters allow you fine-tune the contents of catalog folders.

To filter the contents of My Catalogs:

1. In the Resources window, choose Filter from the context menu of an object in the
My Catalogs panel or the IDE Connections panel. For more information at any
time, press F1 or click Help from within the Filter dialog.

2. Enter a string to define the filtering. Only entries in the folder that contain the
string will be shown.

3.11.4 Importing and Exporting Catalogs and Connections

Catalogs and connections are shared by importing Resource catalog archive (.rcx) files
that have been exported by another user.

To export a catalog:

Note: When you select a catalog to export, any connections in the
catalog are also selected. If you deselect the catalog before exporting,
you must be sure to also deselect the connections that are not wanted
in the archive file.

1. In the Resources window, choose Export from the context menu of an object in the
My Catalogs panel or the IDE Connections panel.

2. In the Export Catalog and Connections dialog, select the catalogs and connections
to be exported, and decide how errors will be handled. For more information at
any time, press F1 or click Help from within the Export Catalog and Connections
dialog.

To import a catalog:
1. In the Resources window, choose Import from (New).

2. In the Import Catalog and Connections dialog, specify or browse to the path and
name of the Resource catalog archive file (.rcx). For more information at any time,
press F1 or click Help from within the Import Catalog and Connections dialog.

3. Choose the catalogs and connections you want to import, and determine how to
handle errors.

3.11.5 Working with Resources Window Catalogs

A catalog is a user-defined construct for organizing resources from multiple
underlying repositories. The contents of a catalog and its associated folder structure
can be designed to be used by an individual developer, or they can be targeted
towards specific groups of users such as the Ul designers for a development project.

Catalog folders organize resources in a catalog. You use catalog folders in the same
way you would to organize files in a file system or bookmarks in a Web browser. Each
catalog folder can contain any combination of:

= Folders.
= Dynamic folders, which are populated using a query.

» Filters, which are used to fine-tune the content of a folder or subtree.

Working with the ADF Skin Editor 3-33

Working with the Resources Window

3.11.5.1 Creating Catalogs

You can organize the information in the Resources window in catalogs.

To create a catalog:
1. In the Resources window, choose New Catalog from the New button.

2. In the Create Catalog dialog, specify a name for the catalog. For more information
at any time, press F1 or click Help from within the Create Catalog dialog.

3. (Optional) Provide a description for the catalog, and the email of the catalog
administrator.

3.11.5.2 Renaming Catalogs

You can rename catalogs.

To rename a catalog:

1. In the Resources window, right-click the catalog, and choose Rename from the
context menu.

2. Inthe Rename dialog, specify a new name for the catalog. For more information at
any time, press F1 or click Help from within the Rename dialog.

3.11.6 Working with Catalog Folders

You can create folders to organize the contents of catalogs.

3.11.6.1 How to Create Folders

You can organize the information within catalogs in folders.

To create a catalog folder:

1. In the Resources window, choose New Folder from the context menu of a catalog
in the My Catalogs panel or the IDE Connections panel. For more information at
any time, press F1 or click Help from within the Create Folder dialog.

2. Enter a name for the folder.

3.11.6.2 How to Create Dynamic Folders
Dynamic Folders provide a powerful way to dynamically populate a catalog folder
with resources. The content of the folder is defined by a query expression that is

executed when the folder is opened. The results of the query appear as the contents of
the folder.

To create a dynamic folder:

1. In the Resources window, choose New Dynamic Folder from the context menu of
a catalog in the My Catalogs panel or the IDE Connections panel. For more
information at any time, press F1 or click Help from within the Create Dynamic
Folder dialog.

2. Define the search criteria that will be used to populate this folder when it is
opened.

3.11.6.3 How to Add Resources to a Catalog

You can add a connection from the IDE Connections panel or a resource from the
Search panel in the Resources window to a catalog in My Catalogs.

3-34 Developing ADF Skins with Oracle ADF Skin Editor

Working with the Issues Window

To add a resource to a catalog:

1.

In the Resources window, right click a connection in the IDE Connections panel, or
the result of a search in the Search panel and choose Add to Catalog from the
context menu.

The Add to Catalog dialog opens for you to specify the name for the resource in
the catalog, and the catalog to add it to. For more information at any time, press F1
or click Help from within the Create Connection dialog.

Alternatively, you can drag an item from under IDE Connections and drop it on a
catalog or catalog folder.

You can reorganize a catalog by selecting an item or folder in the catalog and dragging
it to another folder in the same catalog, or to another catalog.

3.12 Working with the Issues Window

The Issues window enables you to view and manage application issues. It has the
following features:

Displays audit violations in file, project, working set, or application and provides
information to help you resolve the issues. The Code Assist audit profile
determines the audit violations that are reported.

Displays a list of all warnings and errors encountered by the compiler after Make
or Rebuild is executed.

You can pin the information tab for a compiler operation and view the results of
multiple Make or Rebuild operations by switching between tabs.

Double-clicking on any item in the Issues window takes you to the corresponding
source code.

The following table describes the Issues window toolbar.

Element Description

@ Toggle to show just errors in the selected scope.
Error

& Warning Toggle to just show warning issues in the selected scope.

Toggle to show just i lete i in the selected .

Incomplete oggle to show just incomplete issues in the selected scope

@ Toggle to show just the number of advisory issues in the selected file,
Info or to list the advisory issues in the file.

Toggle to show just tasks.
Tasks

"sﬁ’ Configure View

Toggle to configure the following view options:

s Table View: Select to view items in a flat tabular structure.

Options

s Tree View: Select to view items in a nodal tree structure. In this
view, items are sorted first by project, and then by file.

» Current Issues Scope: Select to determine the scope of issues to be
displayed.

= Preferences: Select to open the Issues page of the Preferences
dialog, where you can configure Issues window behavior.

Working with the ADF Skin Editor 3-35

Working with the Issues Window

3-36 Developing ADF Skins with Oracle ADF Skin Editor

4

Creating the Source Files for an ADF Skin

This chapter describes how to create the source files for an ADF skin in the ADF Skin
Editor and in JDeveloper. Information on how to open an application or project in the
ADF Skin Editor that was created in a prior release of JDeveloper and how to import

an ADF skin from an ADF Library JAR file is also provided.

This chapter includes the following sections:

= Section 4.1, "About Creating an ADF Skin"

» Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects"

» Section 4.3, "Creating an ADF Skin File"

= Section 4.4, "Importing One or More ADF Skins Into the Current ADF Skin"

» Section 4.5, "Importing ADF Skins from an ADF Library JAR"

= Section 4.6, "Opening an Application Created Outside of the ADF Skin Editor"

4.1 About Creating an ADF Skin

An ADF skin defines the properties for the selectors that ADF Faces and ADF Data
Visualization components expose. Using the editor in JDeveloper or the ADF Skin
Editor, you can create a source file for an ADF skin. As a source file for an ADF skin is
a type of CSS file, you could create it without using an editor. However, when you use
the editor, associated configuration files get created (the first time that you create an
ADF skin) or modified (when you create subsequent ADF skins). For more
information about these configuration files, see Section 12.2, "Configuration Files for
an ADF Skin."

4.2 Creating ADF Skin Applications and ADF Skin Projects

New ADF skin applications and ADF skin projects can be created in the ADF Skin
Editor.

4.2.1 How to Create an ADF Skin Application

This section describes how to create an ADF skin application and a project within the
application in the ADF Skin Edjitor.

To create a new ADF skin application:
1. From the main menu, choose File > New > ADF Skin Application.

2. In the Create ADF Skin Application dialog, enter application details like the name
and directory. For help with the wizard, press F1.

Creating the Source Files for an ADF Skin 4-1

Creating an ADF Skin File

3. Click Next to open the ADF Skin Project page where you specify the name of your
ADF skin project and the directory to store it.

4. In the Target Application Release list, select the release of Oracle ADF that the
application you want to skin uses.

The ADF Skin Editor configures your ADF skin project appropriately for the
release you specify. For example, the ADF Skin Editor filters the list of ADF skins
that you can extend from, as described in Section 4.3.1, "How to Create an ADF
Skin in the ADF Skin Editor." The ADF Skin Editor also filters the list of skin
selectors to display only those that the release you target supports. It will not
display a skin selector introduced in a later release if you target your ADF skin
project at an earlier release.

5. When you are done, click Finish.

4.2.2 How to Create a New ADF Skin Project

You use the Applications window to keep track of the ADF skin projects (collections of
source files for ADF skins, images, and related files) you use while developing your
ADF skin application.

You can create a new empty ADF skin project in an ADF skin application.

All ADF skin projects inherit the settings specified in the Default Project Properties
dialog. As soon as you create the ADF skin project, it is added to the active ADF skin
application.

To create a new ADF skin project:

1. In the Applications window, select the ADF skin application within which the
project will appear.

2. Open the Create ADF Skin Project dialog by choosing File > New > ADF Skin
Project.

3. In the Create ADF Skin Project dialog, enter project details like the name and
directory.

4. In the Target Application Release list, select the release of Oracle ADF that the
application you want to skin uses.

The ADF Skin Editor configures your ADF skin project appropriately for the
release you specify. For example, the ADF Skin Editor filters the list of ADF skins
that you can extend from, as described in Section 4.3.1, "How to Create an ADF
Skin in the ADF Skin Editor." The ADF Skin Editor also filters the list of skin
selectors to display only those that the release you target supports. It will not
display a skin selector introduced in a later release if you target your ADF skin
project at an earlier release.

5. When you are done, click Finish.

The new ADF skin project appears in the Applications window. It inherits whatever
default properties you have already set. To alter project properties for this project,
either double-click the project node or right-click and choose Project Properties.

4.3 Creating an ADF Skin File

You can create an ADF skin file in the ADF Skin Editor or in JDeveloper that defines
how ADF Faces and ADF Data Visualization components render at runtime. The ADF
skin that you create must extend either one of the ADF skins that Oracle ADF provides

4-2 Developing ADF Skins with Oracle ADF Skin Editor

Creating an ADF Skin File

or from an existing ADF skin that you created. The ADF skins that Oracle ADF
provides vary in the level of customization that they define for ADF Faces and ADF
Data Visualization components. For information about the inheritance relationship
between the ADF skins that Oracle ADF provides, see Section 1.4, "Inheritance
Relationship of the ADF Skins Provided by Oracle ADE." For information about the
levels of customization in the ADF skins provided by Oracle ADF and for a
recommendation about the ADF skin to extend, see Section 12.3, "ADF Skins Provided
by Oracle ADE"

By default, the design and selectors editors in the ADF Skin Editor and in JDeveloper
create ADF skins for the org.apache.myfaces.trinidad.desktop render kit. A render
kit defines how ADF Faces components map to component tags that are appropriate
for a particular client.

After you create an ADF skin, you can use the design editor and the other provided
editors to modify the values for the selectors that the ADF Faces and ADF Data
Visualization components expose. Otherwise, the ADF skin that you create defines the
same appearance as the ADF skin from which it extends. For more information, see
Chapter 5, "Working with Component-Specific Selectors."

If you create an ADF skin that extends from the Skyros or Fusion Simple families of
ADF skins, you enable the design editor. This tab provides an overview pane where
you can use controls to set properties for many frequently-used selectors. If the ADF
skin that you create extends from the Fusion Simple family of ADF skins, you enable
the images editor in addition to the design editor. The images editor provides extra
functionality to manage the images associated with the Fusion Simple family of ADF
skins. The images editor does not appear if your ADF skin extends from the Skyros
family of ADF skins. For more information about using the images editor, see
Section 6.5, "Working with the Images Editor." For more information about using the
design editor, see Section 3.2, "Working with the ADF Skin Design Editor."

4.3.1 How to Create an ADF Skin in the ADF Skin Editor
You can create an ADF skin in the ADF Skin Editor.

To create an ADF skin in the ADF Skin Editor:

1. In the Applications window, right-click the project where you want to create the
new ADF skin and choose New > ADF Skin File.

2. In the Skin File page of the Create ADF Skin dialog, enter the following:
» File Name: Enter a file name for the new ADF skin.

s Directory: Enter the path to the directory where you store the CSS source file
for the ADF skin or accept the default directory proposed by the editor.

= Family: Enter a value for the family name of your skin.

You can enter a new name or specify an existing family name. If you specify
an existing value, you may need to version ADF skins, as described in
Section 12.4, "Versioning ADF Skins," to distinguish between ADF skins that
have the same value for family.

The value you enter is set as the value for the <family> element in the
trinidad-skins.xml where you register the ADF skin that you create. At
runtime, the <skin-family> element in an application's trinidad-config.xml
file uses this value to identify the ADF skin that an application uses. For more
information, see Section 11.4, "Applying an ADF Skin to Your Web
Application."

Creating the Source Files for an ADF Skin 4-3

Creating an ADF Skin File

= Use as the default skin family for this project: Clear this checkbox if you do
not want to make the ADF skin the default for your project immediately.

3. In the Base Skin page of the Create ADF Skin dialog, specify the following:

= Show Latest Versions Only: Clear this checkbox to show all available versions
of ADF skins.

= Available Skins: Select the ADF skin that you want to extend. ADF Faces
provides a number of ADF skins that you can extend. The list also includes
any ADF skins that you created previously in this project. For more
information and a recommendation on the ADF skin to extend, see
Section 12.3, "ADF Skins Provided by Oracle ADE."

Note: The value you select for Target Application Release, as
described in Section 4.2, "Creating ADF Skin Applications and ADF
Skin Projects," determines the list of ADF skins from which you can
extend.

= Skin Id: A read-only field that displays a concatenation of the value you enter
in File Name and the ID of the render kit (desktop) for which you create your
ADF skin. You select this value from the Extends list if you want to create
another ADF skin that extends from this one.

The ADF Skin Editor writes the value to the <id> element in the
trinidad-skins.xml file.

4. Click Finish.

4.3.2 How to Create an ADF Skin in JDeveloper

You can create an ADF skin in JDeveloper.

To create an ADF skin in JDeveloper:

1. In the Applications window, right-click the project that contains the code for the
user interface and choose New.

2. In the New Gallery, expand Web Tier, select JSF/Facelets and then ADF Skin, and
click OK.

3. In the Skin File page of the Create ADF Skin dialog, enter the following:
» File Name: Enter a file name for the new ADF skin.

= Directory: Enter the path to the directory where you store the CSS source file
for the ADF skin or accept the default directory proposed by the editor.

= Family: Enter a value for the family name of your skin.

You can enter a new name or specify an existing family name. If you specify
an existing value, you may need to version ADF skins, as described in
Section 12.4, "Versioning ADF Skins," to distinguish between ADF skins that
have the same value for family.

The value you enter is set as the value for the <family> element in the
trinidad-skins.xml where you register the ADF skin that you create. At
runtime, the <skin-family> element in an application's trinidad-config.xml
file uses this value to identify the ADF skin that an application uses. For more
information, see Section 11.4, "Applying an ADF Skin to Your Web
Application."

4-4 Developing ADF Skins with Oracle ADF Skin Editor

Creating an ADF Skin File

= Use as the default skin family for this project: Deselect this checkbox if you
do not want to make the ADF skin the default for your project immediately. If
you select the checkbox, the trinidad-config.xml file is updated, as
described in Section 4.3.3, "What Happens When You Create an ADF Skin."

4. In the Base Skin page of the Create ADF Skin dialog, specify the following:

= Show Latest Versions Only: Clear this checkbox to show all available versions
of ADF skins.

= Available Skins: Select the ADF skin that you want to extend. ADF Faces
provides a number of ADF skins that you can extend. The list also includes
any ADF skins that you created previously in this project. For more
information and a recommendation on the ADF skin to extend, see
Section 12.3, "ADF Skins Provided by Oracle ADE."

= Skin Id: A read-only field that displays a concatenation of the value you enter
in File Name and the ID of the render kit (desktop) for which you create your
ADF skin. You select this value from the Extends list if you want to create
another ADF skin that extends from this one.

JDeveloper writes the value to the <id> element in the trinidad-skins.xml
file.

5. Click Finish.

4.3.3 What Happens When You Create an ADF Skin

If you accepted the default value proposed for the Directory field, a file with the
extension .css is generated in a subdirectory of the skins directory in your project. An
ADF skin that extends the Fusion Simple or Skyros family of ADF skins opens in the
design editor, as illustrated in Figure 4-1.

Creating the Source Files for an ADF Skin 4-5

Creating an ADF Skin File

Figure 4-1 Newly-Created ADF Skin in the Design Tab

[ﬁ skinZ.css

General Branding Area | Global Area Buttons Links Tabs Headers = Menus — Boxes Accordions

Content Area Theme Default Text Colars Default F

Background 1: il Main: [] [Tahoma
. Background 2: il Primary: [] [t
Secondary: m
Header: []

Sarnple Pages: 2 fe

Branding Area Title

Global Area Link Global Area Menu

Accordion Header

Selected Tab ~ Disabled Tab | Unselected Tab

Defautt Link Header Level 0 (Top)

Active Link

Dissbied L * Text Text Read-

iy Tex: [Opfon v | Toxt [va
Text Text

» Accordion Header
Text

Accordion Header

Header Level 1

Actions = View = B & Detach

‘Column Column Column
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004
0B 07/12/2004

An ADF skin that extends an ADF skin not from the Skyros or Fusion Simple families
of ADF skin opens in the selectors editor, as illustrated in Figure 4-2. This selectors
editor is also available if you create an ADF skin that extends from the Skyros or
Fusion Simple family of ADF skin.

4-6 Developing ADF Skins with Oracle ADF Skin Editor

Creating an ADF Skin File

Figure 4-2 Newly-Created ADF Skin in the Selectors Editor

Applications @ skinl.css
Applicationl « = I (53 Extended Skins =
=l Projects & - - Q ¥ - 4 - X Default {Mo) Theme — Dark Theme Mec
B'" énl’ro;fctl. i Style Classes 0@ K
E‘ . Application Sources i1 Global Selector Aliases
. B resources H-C7 At-Rules

skinBundle. properties

=[5 Faces Component Selectars
=[] weh Content

(ﬁ Command Link.
(@ Command Toolbar Button

T [#-=#2 BreadCrumbs
BD skins - Button
EH:‘ ilffl . -[E Calendar
[skinl.css -1 Carousel
BD WEE-INF ¥ Carousel Trem
: E tr?n?dad-config.xml E Checkbax
E trinidad-skins.ml [Checkbox (Select Mary)
[Choice
| Application Resources [Chiice (Select Mary)
=+ Recent Files -l Choose Calar
-[E Choose Date
skinl css - Structure -4} Code Edar
— - B Column
=@ (@ Command Button
[Selectors [(f Comnand Image Link
e
e

The trinidad-skins.xmnl file is modified to include metadata for the ADF skin that
you create, as illustrated in Example 4-1, which shows entries for an ADF skin that
extends from the Skyros family of ADF skins. Example 4-1 also contains values that
specify the render kit and the resource bundle associated with this ADF skin. For
more information about resource bundles, see Chapter 7, "Working With Text in an
ADF Skin."

Example 4-1 trinidad-skins.xml File

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
<skin>
<id>skin2.desktop</id>
<family>skin2</family>
<extends>skyros-vl.desktop</extends>
<render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
<style-sheet-name>skins/skin2/skin2.css</style-sheet-name>
<bundle-name>resources.skinBundle</bundle-name>
</skin>
</skins>

If you select the Use as the default skin family for this project check box in the Create
ADF Skin dialog, the trinidad-config.xml file is modified to make the new ADF skin
the default skin for your application. This means that if you run the application from
JDeveloper, the application uses the newly-created ADF skin. For more information,
see Section 11.4, "Applying an ADF Skin to Your Web Application." Example 4-2
shows a trinidad-config.xml file that makes the ADF skin in Example 4-1 the
default for an application.

Example 4-2 trinidad-config.xml File

<?xml version="1.0" encoding="windows-1252"?>

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
<skin-family>skin2</skin-family>

</trinidad-config>

Creating the Source Files for an ADF Skin 4-7

Importing One or More ADF Skins Into the Current ADF Skin

The source file for the ADF skin contains a comment and namespace references, as
illustrated in Example 4-3. These entries in the source file for the ADF skin distinguish
the file from non-ADF skin files with the . css file extension. A source file for an ADF
skin requires these entries in order to open in the design or selectors editors for the
ADF skin.

Example 4-3 Default Entries for a Newly-Created ADF Skin File

/**ADFFaces_Skin_File / DO NOT REMOVE**/
@namespace af "http://xmlns.oracle.com/adf/faces/rich";
@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";

The first time that you create an ADF skin in your project, a resource bundle file
(skinBundle.properties) is generated, as illustrated in Figure 4-2. For more
information about using resource bundles, see Chapter 7, "Working With Text in an
ADF Skin."

4.4 Importing One or More ADF Skins Into the Current ADF Skin

You can import another ADF skin that is in your ADF skin project into your ADF skin
using the @import rule. This makes the style properties defined in the latter ADF skin
available to your ADF skin. The following examples demonstrate the valid syntax to
import an ADF skin (skina) into the current ADF skin:

/** Use the following syntax if skinA.css is in the same directory **/
@import "skinA.css";
@import url("skinA.css");

/** Use the following syntax if skinA.css is in another directory **/
@import "../skinA/skinA.css";
@import url("../skinA/skinA.css");

The @import rule(s) must follow all @charset rules and precede all other at-rules and
rule sets in an ADF skin, as shown in the following example that imports two ADF
skins into the current ADF skin:

@charset "UTF-8";

@import url("../skinA/skinA.css");
@import url("../skinB/skinB.css");

/**ADFFaces_Skin_File / DO NOT REMOVE**/
@namespace af "http://xmlns.oracle.com/adf/faces/rich";
@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";

af | inputText{
background-color: Green;

}

4.5 Importing ADF Skins from an ADF Library JAR

You can import ADF skins that have been packaged in a JAR file into your ADF skin
project. When you import an ADF skin from a JAR file into your project, the imported
ADF skin is available to extend from when you create a new ADF skin, as described in
Section 4.3, "Creating an ADF Skin File."

4-8 Developing ADF Skins with Oracle ADF Skin Editor

Importing ADF Skins from an ADF Library JAR

The recommended type of JAR file to use to package an ADF skin is an ADF Library
JAR file. For information about how to package an ADF skin into this type of JAR file,
see Section 11.3, "Packaging an ADF Skin into an ADF Library JAR."

4.5.1 How to Import an ADF Skin from an ADF Library JAR

You can import ADF skins into your project that have been packaged in a JAR file.

To import an ADF skin from an ADF Library JAR:
1. From the main menu, choose Application > Project Properties.

2. In the Project Properties dialog, select the Libraries and Classpath page and click
Add JAR/Directory.

3. Inthe Add Archive or Directory dialog, navigate to the JAR file that contains the
ADF skin you want to import and click Select.

The JAR file appears in the Classpath Entries list.
4. When finished, click OK.

4.5.2 What Happens When You Import an ADF Skin from an ADF Library JAR

The ADF skin(s) that you import from the JAR file appear in the Extends list when you
create a new ADF skin, as described in Section 4.3, "Creating an ADF Skin File." After
you create a new ADF skin by extending an ADF skin that you imported from a JAR
file, the Extended Skins list in the selectors editor's Preview Pane displays the name of
the ADF skin that you imported. For example, in Figure 4-3 the skin2.css ADF skin
has been created by extending the ADF skin, jarredskin.css, that was imported into
the project from a JAR file.

Figure 4-3 Imported ADF Skin in the Extended Skins List

@ skinZ.css
0 [Extended Skins ~

] i - | Defaul (Mo) Theme Dark The
skyros-v1-deskkop.css

skyros-v1-theme-addition.css
skyros-v1-touchScreen-desktop.css

dvt-skyros-v1-deskbop.css
T

E}@ Faces Component Selectors
¢ Eesre BreadCrumbs

Properties that have been defined in the ADF skin that you imported appear with a
blue upward pointing arrow in the Properties window. An information tip about the
inheritance relationship displays when you hover the mouse over the property, as
illustrated in Figure 4-4.

Figure 4-4 Property Inherited from an Imported ADF Skin

‘ ‘ °%Color: E333344

-
ickk s ik

Inherited from: af |button in jarredskin.css 4
Click. on any selector link to go toits declaration. & medium currer

0 evdaw mole e S —

Creating the Source Files for an ADF Skin 4-9

Opening an Application Created Outside of the ADF Skin Editor

4.6 Opening an Application Created Outside of the ADF Skin Editor

When you open an application or project that was created in a prior release of
JDeveloper, the ADF Skin Editor prompts you to migrate the project to JDeveloper 12c
format. Depending on the content of the project, the ADF Skin Editor may display
additional prompts to migrate some specific source files as well. Oracle recommends
that you make a backup copy of your projects before you open them in the ADF Skin
Editor or migrate them using the ADF Skin Editor.

4-10 Developing ADF Skins with Oracle ADF Skin Editor

O

Working with Component-Specific Selectors

This chapter describes how to change the appearance of ADF Faces and ADF Data
Visualization components by specifying properties for the selectors that the ADF
skinning framework exposes for these components. Features such as the ability to
configure ADF skin properties to apply to messages, themes that you can apply to
ADF Faces components, and how to configure an ADF skin for accessibility are also
described.

This chapter includes the following sections:

= Section 5.1, "About Working with Component-Specific Selectors"

= Section 5.2, "Changing ADF Faces Components' Selectors"

» Section 5.3, "Changing ADF Data Visualization Components' Selectors"
= Section 5.4, "Changing a Component-Specific Selector"

= Section 5.5, "Configuring ADF Skin Properties to Apply to Messages"

= Section 5.6, "Applying Themes to ADF Faces Pages"

= Section 5.7, "Configuring an ADF Skin for Accessibility"

5.1 About Working with Component-Specific Selectors

You customize the appearance of ADF Faces or ADF Data Visualization components
by defining style properties for the selectors that the components expose. To achieve
the appearance you want, you need to become familiar with the component-specific
selectors that the ADF Faces and ADF Data Visualization components expose, plus the
global selector aliases and descendant selectors that a component-specific selector may
reference. The ADF skins that you extend from when you create an ADF skin define
many global selector aliases and descendant selectors. You also need to become
familiar with the component itself and how it relates to other components. For
example, customizing the appearance of the ADF Faces table component shown in
Figure 5-1 requires you to define style properties for the row-header-cell and
column-filter-cell selectors exposed by the af:column component in addition to
selectors exposed by the ADF Faces table component. You may also need to modify
the style properties for one or more of the icon or message global selector aliases that
the ADF skin you extend defines.

Working with Component-Specific Selectors 5-1

About Working with Component-Specific Selectors

Note: Consider using the design editor, as described in Section 3.2,
"Working with the ADF Skin Design Editor," if you want to change the
properties of some of the most frequently used selectors in an ADF
skin. This editor appears by default if your ADF skin extends from the
Skyros or Fusion Simple families of ADF skin. The design editor
provides a variety of controls to quickly change your ADF skin.

Figure 5-1 Selectors for an ADF Faces table Component

af|columan: :row-header-cell af|colunn: : colmmn-filter-cell

Defaulk (Mo) Theme Dark Theme Medium Theme Light Theme

W@ X -

af|table
“ﬁ;‘ Name Size Mo. Date Modified ColS
[o T 0B 0 07/12/2004
o kD ﬁb 0B 0 07/12/2004
a =P afln:u:ulumn::banded-data-cellE . a 07/12/2004
[i T 0B 0 07/12/2004
[o T 0B 0 07/12/2004
o kD . 0B 0 07/12/2004
0o D . 0B 0 07/12/2004
[i T 0B 0 07/12/2004
[o T 0B 0 07/12/2004
o kD . 0B 0 07/12/2004
0o D . 0B 0 07/12/2004
[i T 0B 0 07/12/2004
[o T 0B 0 07/12/2004
n FIcTh . nR n 07212004

af |table: drop-target

Use the tools that the selectors editor for ADF skins provides to customize the
appearance of the ADF Faces components and ADF Data Visualization components.
For more information, see Chapter 3, "Working with the ADF Skin Editor."

Other sources of information that may help you as you change the selectors of ADF
Faces and ADF Data Visualization components include the following:

= Images: An ADF skin can reference images that render icons and logos, for
example, in a page. For more information about how to work with images in an
ADF skin, see Chapter 6, "Working with Images and Color in Your ADF Skin."

s Text: An ADF skin does not include text strings that render in your page.
However, you can specify a resource bundle that defines the text strings you want
to appear in the page. For more information, see Chapter 7, "Working With Text in

5-2 Developing ADF Skins with Oracle ADF Skin Editor

Changing ADF Faces Components' Selectors

an ADF Skin."

= Global selector aliases: A global selector alias specifies style properties that you
can apply to multiple ADF Faces components simultaneously. For more
information about global selector aliases, see Chapter 8, "Working With Global
Selector Aliases."

= Style Classes: A style class in an ADF skin specifies a number of style properties
that an ADF Faces component can reference as a value if it exposes a style-related
attribute (styleClass and inlineStyle). For more information about style classes,
see Chapter 9, "Working with Style Classes."

= ADF Faces Rich Client Components Hosted Demo: The Oracle Technology
Network (OTN) web site provides a link to an application that demonstrates how
ADF skins change the appearance of ADF Faces and ADF Data Visualization
components. For more information, navigate to
http://www.oracle.com/technetwork/developer-tools/adf/overvie
w/index.html

5.2 Changing ADF Faces Components' Selectors

ADF Faces components render user interface controls, such as buttons, links and check
boxes in your Fusion web application. ADF Faces components also include
components that render calendars, panels to arrange other user interface controls and
tables in your web application. For more information about ADF Faces components
and the functionality that they provide, see Developing Web User Interfaces with Oracle
ADF Faces (for the release that pertains to the application you are skinning).

You can change the runtime appearance of ADF Faces components by editing the
properties that each ADF Faces skin selector exposes. The number of selectors that an
ADF Faces component exposes varies by component. For example, the ADF Faces
components, af : image and af : popup, expose one selector each. In contrast, the ADF
Faces component, af :panelHeader, exposes a variety of selectors that enable you to
change the appearance of different parts of the user interface of that component. There
are, for example, selectors that allow you to change the af:panelHeader component's
instruction text, help icons, and titles.

The process to follow to change the runtime appearance of an ADF Faces component is
the same for each component; the only difference is the number of selectors that each
ADF Faces component exposes. Figure 5-2 and Figure 5-3 take the button component
as an example and illustrate how you can customize the appearance of this component
using pseudo-elements and the component's selector. Figure 5-2 shows the application
of the skyros skin on the button component and the component icon.

Figure 5-2 Button Component Default Appearance with Skyros ADF Skin

4 Button |«

Figure 5-3 shows the appearance of the component in the selectors editor after you set
values for the following pseudo-elements on the component's selector:

= access-key: The Color property is set to red

= dropdown-icon-style: The Border property is set to 2px solid black

Working with Component-Specific Selectors 5-3

Changing ADF Data Visualization Components' Selectors

Figure 5-3 Button Component with Modified Selectors

Q ? o .* < x Default (Mo) Theme Dark Theme Medium ”
EI Style Classes E{ﬂ ‘+ 2 # x A
-7 Global selectar Aliases
w3 At-Rules af |button: :dropdown-icon-style
E—JB Faces Component Seleckors Eequilar Button

[-e2e BreadCrumbs

BD Button x Disabled Button

<[] af|button

(== Pseudo-Elements
[access-key & Popup Button E

dropdown-cell

dropdown-icon af |button:depressed: : dropdown-icon-style
dropdown-icon-style Regular Butt
lirk.

- 3¢ Disabled Button

Design | Selectors| Source History

[2Eeerors |

Q- Find

fcharset "UTF-3";

AFFADFFaces_Skin File / DO NOT REMOVE®*/

fnamespace af "http://xnlns.oracle.con/adf/faces /rich™;
fnamespace dwt "http://xnlns.oracle. con/dss/adf/faces™;

= af [button: :access-key |
color: Red:

[Bfaf |button: : dropdovm-icon-style |
border: Zpx solid black:

Reference information about the selectors that ADF Faces components expose can be
found in the Tag Reference for Oracle ADF Faces Skin Selectors (for the release that
pertains to the application you are skinning).

5.3 Changing ADF Data Visualization Components' Selectors

The ADF Data Visualization components are a set of components that provide
functionality to represent data in graphical and tabular formats. Examples of the ADF
Data Visualization components include the following: graph, gantt, pivot table, and
hierarchy viewer. For more information about ADF Data Visualization components
and the functionality that they provide, see Developing Web User Interfaces with Oracle
ADF Faces (for the release that pertains to the application you are skinning).

You can change the runtime appearance of ADF Data Visualization components by
editing the properties that each ADF Data Visualization component selector exposes.

The number of selectors exposed by an ADF Data Visualization component varies by
component.

Figure 5-4 shows an ADF skin in the selectors editor with the nodes expanded to show
the selectors that you can customize for the ADF Data Visualization gauge component.

5-4 Developing ADF Skins with Oracle ADF Skin Editor

Changing ADF Data Visualization Components' Selectors

Figure 5-4 ADF Data Visualization Component Selectors

Q ? - .+ o x Default (Mo} Theme Dark Theme Medium Theme Lighk 1

@3 Style Classes W g & 3| viewas: Gauge =
#-C7 Global Selector Aliases

-3 At-Rules af|dvE-gaugeBackaround
[:l Faces Component Selectors Column 1
== Data Visualizations Component Selectors

-5 Gantt

-6 Gaugs I 40 ?
e[af|dvt-gauge 20 80

3 Pseudo-Elernents {af| dvt-gauge

[af|dwt-bottomLabel

. D af |dvt-gaugeBackground

[af|dvt-gaugeFrame Row 1 63

D af |dvt-gaugeSetBackground Legend Tile

[afldvt-indicator

w7 af|dvt-indicatorBar

FE G TP A O S,

0 100

W =30% 30% - G0% > G0%

You customize the appearance of ADF Data Visualization components by defining
style properties for the selectors that each ADF Data Visualization component exposes.
Using the tools provided by JDeveloper's selectors editor for ADF skins or the ADF
Skin Editor, you customize the appearance of the ADF Data Visualization components.
For more information, see Chapter 3, "Working with the ADF Skin Editor."

To achieve the appearance you want, you need to become familiar with the selectors
that the ADF Data Visualization component exposes, the global selector aliases that the
component may reference and which are defined in the ADF skin that you extend
when you create an ADF skin. You also need to become familiar with the component
itself and how it relates to other components. For example, customizing the
appearance of the ADF Data Visualization pivotTable component shown in

Figure 5-5 requires you to define style properties for this selector's pseudo-elements.
You may also need to modify the style properties for one or more of the global selector
aliases that the ADF skin you extend defines.

Figure 5-5 ADF Data Visualization pivotTable Component

Sales Lnits
Al Channels &l Channels
Wiorld Boston Warld Boston
2007 Tents 20,000 S00 200 S0

Canoes 15,000 1,500 7o a
2006 Tents 10,000 230 100 23
Canoes 7,500 a0 40 4
2005 Tents 5,000 125 S0 15
Canoes 3,750 375 20 2

Many ADF Data Visualization component selectors, such as the selectors for the graph
and hierarchyViewer components, expose pseudo-elements for which you configure
ADF skin properties. These ADF skin properties modify the appearance of the area
specified by the pseudo-element. The characters -tr- preface the names of ADF skin
properties. For example, Figure 5-6 shows the properties of the hierarchy viewer's
lateral-navigation-button selector, all of which are prefaced by -tr-.

Working with Component-Specific Selectors 5-5

Changing ADF Data Visualization Components' Selectors

Figure 5-6 Properties for the hierarchyViewer Component lateral-navigation-button Pseudo-Element

[% skyrosll.css
0] | [Extended Skins ~

|5}
=

aflcvt-hierarchyiewer: lateral-navigation-button - Properties

Q, Find

Q T-ap- &

-3 Style Classes

703 Global Selector Aliases

-3 Ak-Rules

-3 Faces Component Selectors

[=h-[2= Data Visualizations Component Selectors

&y Graph
&5 Higrarchy Viewer
D af | dvt-hierarchyWiewer

on-buktan

b D |5t
L[lateral-navigation-line
----- [af|dvt-controlPanel
----- [af|dvtlink.
----- [af|dvt-node
-3 Pseudo-Elements (af|dvt-node)
----- [&f|dvt-panelCard
-3 Pseudo-Elements (af|dvt-panelCa
[#-(3 Component Style Classes
E
[

b0 Component Seleckor Aliases
t-(1 Descendant Selectors

@ map

B Map Toolbar

{55 Pivok Filker Bar

TR

}@ Sunburst

[=h-[z=F Pseudo-Elements (af|dvt-higrarch

- W Thematic Map

Default (Mo} Theme

W - X

Dark. Theme Medium Theme

13

af | dvt-hierarchuwviewer !

lateral-navigation-buktan

Sample

Head
Panal Card {

[=[<—

H

H

Hm

=FlAuk_hize svchoblismer

Sample text

Header
Panel Card Content

Sample

Head
Panel Card {

He

dlataralmavinaticncbobban ackive

@ -kr-border-color:

@ -kr-color:

o -kr-Fill-type:

Fuchsia
Fuchsia

4 -kr-background-color: |#CCE2F6

olid

In contrast, the gantt component's summary-task-left selector, shown in Figure 5-7,
exposes only four ADF skin properties (-tr-rule-ref, -tr-inhibit-,
-tr-enable-themes, and -tr-children-theme) as the majority of the properties that
you configure for this selector are CSS properties.

For more information about ADF skin properties, see Section 2.3, "Properties in the
ADF Skinning Framework."

Figure 5-7 Properties for the gantt Component summary-task-left Pseudo-Element

@ skinl.css

afldvt-gantt:: summary-task-left - Properies

e
0] | [Extended Skins = @ Q, Find
Q F - |+ o x Default {Mo) Theme Dark Theme Mediu... 4 = Common
=[5 Data Yisualizations Component Selectars) I dp- @ 3 | viewas: dvbiprojectGantte Background Calar: kransparent
=[5 Gantt

-5 Pseuda-Elements

af |dvt-gankt: :summary-task-left

- Edit

#{task.taskMame
#{task.taskMame
#{task.taskMame

#{task.taskMame

[ET6

- R &
#{task.resource} E

#{task.resource}
#{task.resource}

#{task.resource}

=i Baseline
i Task Progress

I | Actual Critical Task

4 symmary Progress | |

|<—>1n:r'rtica| Task 5

Baseline Milestone

4 Background Image: |url('.l’bi.l'images,l’gantt,l’summarystart.png')

Content:
Color:

o Height:

4 width:
Border:
Border Color:
Margin:
Padding:

2

E

|n0ne medium currentColor

|currentCOI0r currentColor currentColor currentCo

|Dpx Ope Opx Opx

|Dpx Ope Opx Opx

-tr-rule-ref -tr-inhibit | -tr-enable-themes -tr-children-theme

Walue

Reference information about the selectors, pseudo-elements, and pseudo-classes that
ADF Data Visualization components expose can be found in the Oracle Fusion

5-6 Developing ADF Skins with Oracle ADF Skin Editor

Changing a Component-Specific Selector

Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin Selectors (for the
release that pertains to the application you are skinning).

5.4 Changing a Component-Specific Selector

The process to change a component-specific selector is the same for both the ADF
Faces and ADF Data Visualization components. In the Selector Tree of the selectors
editor, you expand the Faces Components Selectors or Data Visualization Selectors
node to select the selector of the component you want to modify. You then set values
for this selector using the Properties window. You can also set properties for any
pseudo-elements, component style classes, component selector aliases, or descendant
selectors that the selector you select references. In addition, you can add
pseudo-classes that the component-specific supports. For more information about
pseudo-classes, see Section 2.2, "Pseudo-Classes in the ADF Skinning Framework."
Figure 5-8 shows a view of the skin selector for the ADF Faces table component in the
Selector Tree of the selectors editor with the different pseudo-elements that you can
configure for this skin selector.

Figure 5-8 Selector for the table Component

@
I

skin2.css

(53 Extended Skins ~

Q

V- ide- X

B4 Region

Q Reset Button
- Rich Text Editor
=' Separator

[Show Detail

-] Show Detail Header

-] Show Detail Ttem
¢ shuttle

[l,"ﬁ Shuttle (Ordered)
Slider {Mumber)
I slider (Range)
[#-ED Stakus Indicator

- Table

----- [navbar-current-page

----- [navbar-first-page-icon

----- D navbar-first-page-icon-style
----- [navbar-gap-page

----- D navbar-last-page-icon

----- D navbar-last-page-icon-style
----- [navbar-nesxt-page-icon

----- D navbar-next-page-icon-styl
----- D navbar-page-container

..... D navbar-page-link

----- D navbar-previous-page-icon
----- D navbar-previous-page-icon-
----- D navbar-row-range-text

----- [navbar-separator

----- [record-range-footer

----- [status-message

----- D undisclosed-icon

----- D undisclosed-icon-style

B T TR AN R (R,

Default (Mo) Theme Dark Theme Medium Theme Light Ther

WP X S

af |table
&
ROW ' ame Size
No
0 = 0B
0 o . 0B
0) 0B
0 o . 0B
0 [0B
0 o . 0B
0 [0B
0 o . 0B
0 [0B
0 o . 0B
0 o - 0B
0 = . 0B
0 o - 0B
1} ™= . nR

af |table:drop-target
&
ROW pame Size
No
0 o - 0B
0 . 0B
0 C - 0B
0 - i 0B
0 o - 0B
0 - i 0B
0 o - 0B
0 - i 0B
0 o - 0B
0 - i 0B
0 o - 0B
0 - i 0B
0 o - 0B

Figure 5-9 shows a runtime view of an ADF Faces table component that renders data
using the style properties provided by the ADF Faces simple skin.

Working with Component-Specific Selectors 5-7

Changing a Component-Specific Selector

Figure 5-9 ADF Faces table Component Rendered By the simple Skin

Personld <% |Principalilame |Title FirstMame Lasthame
108 HNEREEMNEBE Marcy Greenbery
1049 DFAWIET] Daniel Faviet
110 JCHERM Jahn Chen

111 IS CIARRA) Isrmael Sciarra
112 IR RARN Jose Manuel rman
113 LFOFF Luis Fopp

114 DRAFPHEAL Den Raphaely
115 ARKHOO Alexander Khao

116 SEAIDA Shelli Baida

117 STOBIAS Sigal Tabias

5.4.1 How to Change a Component-Specific Selector

You change a component-specific selector by selecting the selector in the Selector Tree
and setting values for the selector, its pseudo-elements, or descendant selectors in the
Properties window. In addition, you can add a pseudo-class if the component-specific
selector supports one.

To change a component-specific selector:
1. In the Selector Tree of the selectors editor, choose the appropriate option:

= Expand the Faces Component Selectors node if you want change a selector
for an ADF Faces component.

= Expand the Data Visualization Selectors node if you want to change a
selector for an ADF Data Visualization component.

For example, expand the Faces Component Selectors node, the Column node, the
Pseudo-Elements node, and select the column-header-cell selector.

2. In the Properties window, specify values for the properties that the selector you
selected in Step 1 supports.

For example, in the Common section of the Properties window, specify values for
the following attributes:

= Background Color: Specify the background color that you want to appear in
the header row of the table.

= Color: Specify the color that you want to apply to text that appears in the
header row of the table's column.

3. In the Preview Pane, click the Add Pseudo-Class icon to choose a supported
pseudo-class from the displayed list of supported pseudo-classes that appears.

5.4.2 What Happens When You Change a Component-Specific Selector

The selectors editor displays the changes that you make to the selector after you click
the Refresh icon in the Preview Pane. If you add a pseudo-class to the selector, the
Preview Pane also displays an entry for the selector with the added pseudo-class. For
example, Figure 5-10 shows an entry for a selector with the :hover pseudo-class
added.

Note: The Preview Pane for the af | document selector only displays
one entry even if you add a pseudo-class to this selector.

5-8 Developing ADF Skins with Oracle ADF Skin Editor

Configuring ADF Skin Properties to Apply to Messages

Figure 5-10 Preview Pane with a Component Specific Selector and a Pseudo-Class

Default (o) Theme Dark Theme Medium Theme Light Theme

W@ XK Viewas:

af [calumn: :column-header-cell

0 |=|CD 0B a 07)12/2004 07/122004 06
B = 0E o ovjiizizond | 07/12{2004 0B
B =N nE o ovizizond | 0712{2004 0B
B =T 0E o oiziEod | 07)12}2004 06
0 |>|ED . 0B a 07)12/2004 . 07/122004 06
B = 0E o ovjizizond | 0712{2004 0B
B =N 0E o ovizieond | 0712{2004 0B
B =T 0E o oviziEod | 07 12}2004 06
0 |>|ED . 0B a 07)12/2004 . 07/122004 06
B = nE o ovjizizond | 07/ 12{2004 0B
Tokal:

af [calumn: :column-header-cell:howver

0 |=|ED - 0B 1} 07/12f2004 . 0711212004 0E

[0 [rle. loe [o orizizoos | |07j12)2004 e

The selectors editor also writes the values that you specify for the selectors in the
Properties window to the source file for the ADF skin. Example 5-1 shows the changes
that appear in the source file after making some of the changes described in

Section 5.4.1, "How to Change a Component-Specific Selector."

Example 5-1 Selector Values to Skin the Header Row in a Column

af |column: :column-header-cell
{
color: Black;
background-color: Olive;
font-weight: bold;

When a web application uses an ADF skin that contains the values shown in
Example 5-1, header rows in the columns of a table rendered by the ADF Faces table
component appear as illustrated by Figure 5-11 where the table uses a skin that
extends the simple skin.

Figure 5-11 ADF Faces table with a Header Row Skinned

108 NGREEMNEE Mancy Greenberg
109 DFAYIET| Daniel Faviet
110 JCHEN| John Chen

111 ISCIARRA Isrnael Siciarral
112 UMURRAAN Jose Manuel |[Urman|
113 LPOPF| Luig Fo

114 DRAPHEAL Den Raphaely|
115 AKHOO| Alexandan Khoo

116 SBAIDA Shelli Baidal
17 STOBIAS| Sigal Tobias|

5.5 Configuring ADF Skin Properties to Apply to Messages

You can apply styles to ADF Faces input components based on whether or not the
input components have certain types of message associated with them. When a

Working with Component-Specific Selectors 5-9

Configuring ADF Skin Properties to Apply to Messages

message of a particular type is added to a component, the styles of that component are
automatically modified to reflect the new status. If you do not define styles for the
type of message in question, the component uses the default styles defined in the ADF
skin.

The types of message property are:

u :fatal

m :error

s :warning

s :confirmation
s :info

Figure 5-12 shows an inputText component rendered using the simple ADF skin. In
Figure 5-12, the simple ADF skin defines style values for the :warning message
property to apply to the inputText component when an end user enters values that
generate a warning,.

Figure 5-12 inputText Component Displaying Style for :warning Message Property

101
A Warning: Warning message SUMMARY text
= (Detail text null).
Warning message SUMMARY text (Detail text
null}

firmation | infe [Input displays warning

Figure 5-13 shows the same inputText component as in Figure 5-12. In Figure 5-13,
the end user entered a value that generated an error. As a result, the inputText
component renders using the style properties configured for the : error message

property.

Figure 5-13 inputText Component Displaying Style for :error Message Property

& Error: Error message SUMMARY text.
Error message DETAIL text

errar | |err0r I

The ADF skinning framework defines a number of global selector aliases that define
style properties to apply to messages. Figure 5-14 shows a list of global selector aliases
under the Message node in the Selector Tree of the selectors editor. The Preview Pane,
on the right of Figure 5-14, shows how the style properties defined for the global
selector alias currently selected in the Selector Tree render the component selected
from the View as list.

5-10 Developing ADF Skins with Oracle ADF Skin Editor

Configuring ADF Skin Properties to Apply to Messages

Figure 5-14 Global Selector Aliases for Messages

Q ? - .* o X Default (o) Theme
#-3 Style Classes) G- @ 3¢ viewas: [InputText -
(= Global Selector Aliases Chieckbox: B
w53 color aflinputText:Fatal:: content Choice
(3 Component Group: Button Mame: Dchoice (Select Many)
-3 Component Group: Form Controls (Choose Date
-3 Component Group; Link Code Editor
#-C3 Component Graoup: Menu Input Color
(-3 Component Group: PanelBox and Region nput D.ate
-3 Component Group: PanelHeader frput F.|Ie
&3 Fort Input Lst O Values _
Input List af ¥. (
-G tcons Input Munber Spinbos
E—}--@ Message Input Text
: D AFErrorBackground: alias Listbos:
AFFatalBackground: alias Listhiox (Select Marmy)
AFFormComponentOutlineError : alias Radic Group
JAFFormComponentOutineFatal: alias Rich Text Editar
AFFormComponentOutline'darning: alias Shuttle
w7 APWarningBackground: alias Shuttle (Ordered)

-3 Miscellaneous

You can customize the global selector aliases that the ADF skinning framework
provides for messages by defining style properties in your ADF skin. The style
properties that you define for the global selector alias affect all ADF Faces components
that reference the global selector alias. For example, if you change the border color for
the global selector alias shown in Figure 5-14 to green, all the ADF Faces components
shown in the View as list render with a border that is green. For more information
about global selector aliases, see Chapter 8, "Working With Global Selector Aliases."

The af |message and af |messages selectors also expose pseudo-elements that enable
you to change the icons that appear in the message dialogs at runtime. In addition,
these selectors define resource strings that determine the text to appear in tool tips
when an end user hovers over a message dialog. You can override these resource
strings by specifying alternative values in a resource bundle, as described in Chapter 7,
"Working With Text in an ADF Skin." For more information about configuring
messages for ADF Faces components, see the "Displaying Tips, Messages, and Help"
chapter in Developing Web User Interfaces with Oracle ADF Faces (for the release that
pertains to the application you are skinning).

5.5.1 How to Configure an ADF Skin Property to Apply to a Message

You add a pseudo-class to the component's selector for the message type that you
want to configure. You then define style properties for the pseudo-class using the
Properties window.

To configure an ADF skin property to apply to a message:

1. In the Selector Tree of the selectors editor, expand the Faces Component Selectors
section and select the selector for the ADF Faces component for which you want to
configure the style properties to apply to a message.

For example, select the af | inputText selector to configure the style properties to
apply to the ADF Faces inputText component.

2. Click the Add Pseudo- Class icon to display a list of the available pseudo-classes
for the selector that you selected in Step 1.

3. Select the pseudo-class that corresponds to the message for which you want to
configure style properties. The following pseudo-classes are available for the ADF
Faces components:

n fatal

Working with Component-Specific Selectors 5-11

Applying Themes to ADF Faces Pages

m error
s warning

s confirmation
s info

4. Configure the style properties that you want to apply to the component at runtime
when the application displays a message with the component.

5.5.2 What Happens When You Configure ADF Skin Properties to Apply to Messages

The selectors editor writes the values that you specify for the selector's pseudo-class in
the Properties window to the source file for the ADF skin. For example, assume that
you set the value of the Border property to orange for the content pseudo-element of
the af | inputText selector's error pseudo-class. Figure 5-15 shows the syntax entries
that appear in the source file of the ADF skin and the change in the Preview Pane of
the selectors editor.

Figure 5-15 Style Properties for an inputText Component's Error Message

] [£3 Extended Skins ~

Q T - .* - x Cefault (Mo) Theme Dark Theme | Medium Theme |
[T_4 Decoratrve Box @ﬂ EF - ? x -
Dialog
Dacument Name: | hello
[Go Butkon
(ﬁ Go Image Link af [input Text: disabled. AFField Textiarker: :conkent
& Ga Link Name: | hello
@ Image

-__{ Irline Frame af [input Text: disabled. AFPhoneFieldTextMarker : :content
-l Input Color
El Input Date
@ Input File aflinputText: disabled. AFPostalCodeFieldTextMarker: :conte
B Inpuk List OF Values
Input List of Yalues {Combobox)
IE# Input Murmber Spinbosx
E}I:I:I Input Text
D afinputText Name: | hello

E}B Pseuda-Elements

Mame: | hello

Mame: | hello

af [input Text: disabled: :conkent

_____ [access-key af [inputText:error:: content
= ----- [changed-icon
..... D Name: hello
Design | Selectors| Source Histary
ISkaihanabidl

Qr(Find
fAcharset "UTF-5";
f**ADFFaces_skin_File / DO NOT REMOVE**/
fnamespace af "http://xmlns.oracle.con/adf/faces/rich”;
fnamespace dvt "http://xmlns.oracle.con/dss/adf/faces";

Elaf |inputText:error: :content {
horder: 1Zpx =0lid Orange;
}

5.6 Applying Themes to ADF Faces Pages

A theme is a way of visually distinguishing certain areas of a page by applying depth
and layers to your application. A theme's purpose is to provides a consistent look and
feel across multiple components for a portion of a page. Common uses for themes are
in JSF page templates to define a distinct look for certain areas or to create a layered
layout in an application. For example, a page may have a branding area at the top,

5-12 Developing ADF Skins with Oracle ADF Skin Editor

Applying Themes to ADF Faces Pages

then a global area with a dark background and light text, a navigation component with
a lighter background, and a main content area with a light background.

Themes can be set (started or changed) by the af:document and af:decorativeBox
components.

The Fusion and Skyros families of ADF skin support the following themes:
s dark

s medium

s light

s None (default)

= contentBody is a theme that only the af:decorativeBox component uses. It is
similar in appearance to the dark theme. One difference is that it has non-rounded
bottom corners.

Figure 5-16 shows two instances of the same page. The page on the right of

Figure 5-16 renders using the Oracle Three Column Layout ADF Page template. The
page on the left renders using a page template that modifies the following three
instances of the af :decorativeBox component from the Oracle Three Column Layout
ADF Page template, as shown in Example 5-2.

Example 5-2 Theme Attributes for Decorative Box Components

<af:decorativeBox id="contentBody" theme="dark" dimensionsFrom="auto">
<af:decorativeBox id="light" theme="light" dimensionsFrom="auto">

<af:decorativeBox id="default" theme="dark" dimensionsFrom="auto">

Figure 5-16 ADF Faces Page Rendering Using Different Themes

Summit Management I Inwentary Contral _ Summit Management Inventory Conkral

se O Search wse Q Search]

Summit Customer Management Summit Customer Managemen

INErs -

Customer ABC Company Order 1002 | . i Customer ABC Company = Crder |
i 2l
in Diate Ordered 29-06-2013 an General Information
El Date Shipped ia 1

* 55l d Q ’
SalesRep1d 13 * ame ABC Compary

3keng Sales Rep Mame Dumas 14 Kong
e i P nice: N Phone
tia =ria
nany mary Address
inican Republic Mew 3§ Delete Export o nlnlc.an Republic fildress 514 W Superior 5t
i Product Id Product Mame ki
-h Republic T Ck p— :ch Republic ity Kokamo
* E\EB = P State I
sian Federation 1on1z o2 Sk Boot isian Federation
ada 1ada > Comments

You can also create your own theme by entering syntax similar to the following in the
source file of an ADF skin:

af |document [theme=UserCreated] {}

Figure 5-17 shows how the selectors editor renders tabs where you can configure style
properties for each theme provided by the Fusion and Skyros families of ADF skin in
addition to a user-created theme.

Working with Component-Specific Selectors 5-13

Applying Themes to ADF Faces Pages

Figure 5-17 Tabs in the Selectors Editor for Themes

0 (53 Extended Skins =

[} ? - 4 = x Defaul: {Mo) Theme Dark Theme Medium Theme Light Theme UserCreated Theme
[=h-(£ Faces Component Seleckors @(ﬂ Ei M é’ X h
E} Document
PR Y- | document f [dacument
Empty Document

Figure 5-18 shows how the different themes contrast to each other.

Figure 5-18 Default Appearance of Themes

Dark theme (top faceth Medium theme (top facet)
Dark therme contents Medium theme contents

Light theme (top facet) Default theme {top facet)
Light theme contents ,| Default theme conkents

In your application, you start a theme by specifying it as an attribute of the
af:document component or, more typically, an af : decorativeBox component in the
JSF page, as shown in the following example:

<af:decorativeBox id="dbl" theme="dark">

</af:decorativeBox>

5.6.1 How to Style a Component with a Theme

You set theme properties for a component using the tab in the selectors editor that
corresponds to the theme you want to configure.

To set theme properties for a component in an ADF skin:

1. In the Selector Tree of the selectors editor, expand the appropriate node for which
you want to set theme properties.

You can configure items under the Style Classes, Faces Component Selectors, and
Data Visualization Component Selectors nodes.

2, Click the tab that corresponds to the theme for which you want to set properties.

For example, if you want to set a property for the light theme, click Light Theme,
as shown in Figure 5-19.

5-14 Developing ADF Skins with Oracle ADF Skin Editor

Configuring an ADF Skin for Accessibility

Figure 5-19 Light Theme in Selectors Editor

@ skin css . aflinkftheme="Tight"] - Propertiss
=
1 | [53 Extended Skins = @ Q, Fird
Q ? o + o x Default (Mo} Theme Dark Theme | Medium Theme Light Theme =/ Common
[=(= Faces Campanent Selectors @ﬂ # M é X w o Background Color; EeHow
B Lk ‘
L0 f [fink{theme="light"] Background Image: IE

"Link with context facet Contenk:
& Regular Image Link color

X Height: ato
Width: auto

3. In the Properties window, set values for the properties that you want to configure
for the selected theme.

Example 5-3 shows the entries that appears in the source file of an ADF skin if you
set properties for the af : 1ink component after clicking the Light Theme tab.

Example 5-3 Defining a Theme for a Component in an ADF Skin
af|link[theme="1ight"] {

background-color: Yellow;

color: Blue;

5.7 Configuring an ADF Skin for Accessibility

Oracle ADF provides application accessibility support to make applications
developed using ADF Faces components usable for persons with disabilities. You can
define style properties in your ADF skin specifically for persons with disabilities as
part of efforts to make your application accessible. You preface these style properties
with the @accessibility-profile rule.

The @accessibility-profile rule allows you to define style properties for the
high-contrast and large-fonts accessibility profile settings that you can specify in
the trinidad-config.xml file. For more information about the trinidad-config.xml
file, see Section 12.2, "Configuration Files for an ADF Skin."

Define style properties for the high-contrast accessibility profile where you want
background and foreground colors to contrast highly with each other. Define style
properties for the large-fonts accessibility profile for cases where the user must be
allowed to increase or decrease the text scaling setting in the web browser. Defining
large-fonts does not mean that the fonts are large, but rather that they are scalable
fonts or dimensions instead of fixed pixel sizes.

Example 5-4 shows style properties that get applied to the
af |column: : sort-ascending-icon pseudo-element when an application renders
using the high-contrast accessibility profile.

Example 5-4 Style Properties Defined Using the @accessibility-profile

@Qaccessibility-profile high-contrast {
af |column: :sort-ascending-icon {
content: url("/afr/fusion/sort_asc_ena.png");
}
af|column::sort—ascending—icon:hover {
content: url("/afr/fusion/sort_asc_ovr.png");

Working with Component-Specific Selectors 5-15

Configuring an ADF Skin for Accessibility

}

af|column:
content:

}

af |column:
content:

}

af|column::
content:

)

af |column:
content:

}

af|column:
content:

}

af |column:
content:

}

:sort-ascending-icon:active {

url("/afr/fusion/sort_asc_selected.png");

:sort-descending-icon {

url("/afr/fusion/sort_des_ena.png");

sort-descending-icon:hover {
url ("/afr/fusion/sort_des_ovr.png");

:sort-descending-icon:active {

url("/afr/fusion/sort_des_selected.png");

:sorted-ascending-icon {

url ("/afr/fusion/sort_asc_selected.png");

:sorted-descending-icon {

url("/afr/fusion/sort_des_selected.png");

For more information about developing accessible ADF Faces pages and accessibility
profiles, see the "Developing Accessible ADF Faces Pages" chapter in Developing Web
User Interfaces with Oracle ADF Faces (for the release that pertains to the application you

are skinning).

5.7.1 How to Configure an ADF Skin for Accessibility

You define style properties for the selector or selector’s pseudo-elements that you
want to configure and preface these style properties with the @accessibility-profile
rule.

To configure an ADF skin for accessibility:

Define style properties for the selectors and selectors' pseudo-elements that you
want to configure, as described in Section 5.4, "Changing a Component-Specific

1.

Selector."

In the source file for the ADF skin, preface the skinning keys that you configured
with the @accessibility-profile rule, as illustrated in Example 5-4.

5-16 Developing ADF Skins with Oracle ADF Skin Editor

6

Working with Images and Color in Your ADF
Skin

This chapter describes how to work with images and color in an ADF skin. Features,
such as how you change images using the provided editors, are described in addition
to how to work with the color categories in a Skyros-extended skin to quickly change
the color palette that your ADF skin defines.

This chapter includes the following sections:

= Section 6.1, "About Working with Images and Color in Your ADF Skin"

= Section 6.2, "Changing Images and Colors in the ADF Skin Design Editor"
= Section 6.3, "Working with Color in a Skyros-Extended ADF Skin"

= Section 6.4, "Changing an Image for a Component Selector"

= Section 6.5, "Working with the Images Editor"

= Section 6.6, "Providing a Simple Border Style for ADF Skins"

6.1 About Working with Images and Color in Your ADF Skin

Apart from the simple skin which contains only minimal formatting, the ADF skins
provided by Oracle ADF define color schemes and reference images to provide a
colorful look and feel for applications. Changing these colors and the images that your
ADF skin references is a task that will make a significant difference to the appearance
of the application that uses your ADF skin. Figure 6-1 illustrates this point by showing
the same page from an application that renders using two different ADF skins (skyros
and simple). The skyros skin defines the look and feel of the application page in the
upper part of Figure 6-1. It uses more color and images than the application page in
the lower part that uses the simple skin.

Working with Images and Color in Your ADF Skin 6-1

About Working with Images and Color in Your ADF Skin

Figure 6—1 ADF Skin Using Images and Color

Branding Bar

- in w
Layout Basics | Simple Demos | Branding Bar | Form Layout

This can also be seen dermonstrated in the branding bar skinr

Sample Title

Logo Here Branding Bar

View Source~ Skinv Javascript Optimization » Settingg
Feature Dermos = Layout Basics = Branding Bar

Layout Basics Simple Demos Branding Bar Form Layoy

This can also be seen demonstrated in the branding har s
Logo Here Sample Title

Among the selectors in the ADF skins provided by Oracle ADF that reference images
are those in the following list. A short description of the role that the referenced
images performs in skinning the Fusion web application also appears.

» af|document::splash-screen-icon

This component-specific selector specifies the icon that appears within a splash
screen when a Fusion web applications loads in a browser.

» af|column::sorted-descending-icon-style

This component-specific selector specifies the icon that renders for the sorted
descending indicator in a column.

. .AFFatalIcon:alias

This global selector alias specifies the icon to appear if a fatal error occurs on a

page
Examples of colors that the ADF skins provided by Oracle ADF define include the
.AFBrightBackground:alias (used only by Fusion Simple skins) and
.AFHoverPrimaryColor:alias (used only by Skyros skins) global selector aliases.
These global selector aliases define the background color when, for example, a user
hovers a cursor over a button component. Another example is the
.AFBackgroundColor:alias global selector alias used by Skyros skins to define the
background color used for the main content area of your page.

The ADF Skin Editor provides features to help change the colors and images that your
ADF skin uses. The availability of some or all of these features depends on the family
of ADF skin that you extend, as described in the following list:

= If your ADF skin extends the Skyros or Fusion Simple families of skin

The ADF Skin Editor enables the design editor where you can use various color
pickers and other controls to change some of the more frequently used colors and
images in an ADF skin. For more information, see Section 6.2, "Changing Images
and Colors in the ADF Skin Design Editor."

s If your ADF skin extends from the Fusion Simple family of skin

6-2 Developing ADF Skins with Oracle ADF Skin Editor

Changing Images and Colors in the ADF Skin Design Editor

The ADF Skin Editor enables the images editor that provides additional tools to
manage colors and images. For more information, see Section 6.5, "Working with
the Images Editor."

If your ADF Skin extends from the Fusion or Simple families of skin

Use the selectors editor to change images, as described in Section 6.4, "Changing
an Image for a Component Selector.”

6.2 Changing Images and Colors in the ADF Skin Design Editor

The design editor appears when you create an ADF skin that extends from the Skyros
or Fusion Simple families of ADF skins. You access it by clicking the Design tab of the
open ADF skin. For an overview of the design editor, see Section 3.3, "Working with
the ADF Skin Selectors Editor."

Examples of tasks that you can carry out using this editor include the following:

Change the default text color in ADF skins that extend from Skyros

Change the background color that appears to highlight when you hover over
components such as the button component

Replace icons

You can change all or individual icons for components, status, and animation icons
using the Replace Icons dialog that you invoke when you click one of the Status
Icon, Animations, or Component buttons in the Images area of the General tab.
For more information, click Help on the Replace Icons dialog.

Note: The Component button and the associated dialog to replace
component icons does not appear if your ADF skin extends from the
Fusion Simple family.

Figure 6-2 shows an ADF skin that extends from the Skyros family of ADF skin where
the following changes have been made:

In the General tab

Note: Red rectangles in Figure 6-2 identify the controls used to make
the changes in the General tab. Red arrows point to a corresponding
result in the sample page.

- Change the main default text color to Fuchsia

This changes the color value of the AFTextColor global selector alias which is
an anchor color. This change also affects the global selector aliases (for
example, AFTextPrimaryColor and AFTextSecondaryColor) that set color
properties which derive their hue value from the AFTextColor global selector
alias. For more information about this relationship, see Section 6.3, "Working
with Color in a Skyros-Extended ADF Skin."

- Change the primary accent color to Black

This changes the color that renders when a cursor hovers over a component
such as a button component. The global selector aliases that sets this color
property are AFHoverPrimaryColor and AFButtonGradientStartHoverColor.
Other global selector aliases use the AFButtonGradientStartHoverColor

Working with Images and Color in Your ADF Skin 6-3

Working with Color in a Skyros-Extended ADF Skin

global selector alias to derive the hue value of the color properties that they
set. Examples of global selector aliases that derive their color property from
the AFButtonGradientStartHoverColor global selector alias include
AFButtonBorderBottomHoverColor and AFButtonBorderHoverColor. For more
information about this relationship, see Section 6.3, "Working with Color in a
Skyros-Extended ADF Skin."

— Change one of the animated icons that indicate connection status

In this example, the animation icon referenced by the
af|statusIndicator::idle-icon was changed.

s Inthe Branding Area tab

- Change the color property that determines the background color for the
branding area (AFBrandingBackgroundColor global selector alias) to
transparent.

— Change the image file that is used to render the logo in the branding area.

Figure 6—-2 Changing Colors and Icons in ADF Skin Design Editor

General Erznding Area Gohal frea Burtans Links Tahe Headers Manus Boes Arcnrdions

Images

Primary: Elack F] @s:ath [Cors...

a8 Components.,

Content srza Theme Defaulk Text Colors D=fault Font Accent Color
=

Beckoground L: [#FFFFEF [Main: Fuchsia
Background 2: [#EDFZFT [Prirnary: #000000

r‘rahoma, verdana, Helvetica, sans-cerif

~
11 =] [mx = Secondary: [#FFEEAZ | [J

daa

Secandary: |#FF3gFF Whiek i this?
3 3 }

Sample Pages: 2 & 4
CRACLE
=oF — =

Global Avea Link Global Area Menu Text EREEREE— 1 |+

e e Selected Tab | Disabled Tab || Uiselected Tab %

Defaut Link Header Level 0 (Top) Defzut Dicabled -

Active Link

Di L = Tay xt Read-onby value

Visited Link Tt [Dton ext [Value

Hover Link e

> Accordion Header

Accordion Header

Header Level 1

6.3 Working with Color in a Skyros-Extended ADF Skin

An ADF skin that extends from the Skyros family of ADF skin defines global selector
aliases that group colors into one of three categories, as illustrated in Figure 6-3.
Changing the value of color properties for global selector aliases categorized as
anchor colors can help you to quickly change the color palette that your ADF skin
defines.

6-4 Developing ADF Skins with Oracle ADF Skin Editor

Working with Color in a Skyros-Extended ADF Skin

Figure 6-3 Color Categories Skyros's Global Selector Aliases

@ skyros_extend.css
0 (53 Extended Skins ~

Q VAR AP
-0 Skyle Classes
(3 Global Selector Aliases
- S
#--£3 Anchor Color
(3 Derivative Color
(-3 Spedialty Color
3 Component Group: Bukkon
: (23 Component Group: Form Controls

= Anchor Color: These global selector aliases define the base colors for your ADF
skin. For example, the AFButtonGradientStartActiveColor global selector alias
defines the start gradient background color for buttons that have an active state.

s Derivative Color: These global selector aliases derive the hue value for their color
properties from anchor colors. The global selector aliases in Example 6-1 all derive
their hue value from the AFButtonGradientStartActiveColor global selector alias.
The ADF Skin Editor propagates any change that you make to the anchor color to
the derivative color. The derivative colors inherit any change that you make to an
anchor color using the ADF Skin Editor.

= Speciality Color: These global selector aliases define color properties that do not
derive their hue value from anchor colors and are not anchor colors for other
colors. For example, the AFCarouselFocusBorderColor global selector alias that
defines the border color when the carousel component has focus.

Figure 64 shows the result of changing the default value of the
AFButtonGradientStartActiveColor global selector alias. The ADF Skin Editor also
updates the values of the derivative colors that derive their hue value from the anchor
color.

Working with Images and Color in Your ADF Skin 6-5

Working with Color in a Skyros-Extended ADF Skin

Figure 6—4 Modified Anchor Color and Effect on Derivative Colors

skyros_skin33.css . -AFButtonGracdientStartActiveColor:aliaz -
=
IE (53 Extended Skins ~ @ Q. Find
Q, AFButkonGradientstartact x - dp- 3@ | Defadk (o) Theme * | ECommon
== Global Selector Aliases Eﬂ 4 é x Wiews as: Button - Background Color: Eransparent
it JE
&= anchor Color af |toclbar af|button:selected Background Image: |none
‘ AFButtonGradient StartActives _ Content:
o Color: d
38 Disabled Button e Red
Border: none mediam curre
af |toolbar af|button:selected: active Barder Color: currentColor curre
_ Margin: Op Opix Opx Opix
x Disabled Button Padding: Opex Opx Opx Opx
_ -tr-rule-ref -tr-inhibit | -tr-gnable-therme
Yalue
af |toolbar af |button:text-only:selected
3 pisabled Button
Design | Selectors| Source Hisktory |:|
Q~(Find m
5
fcharset "UTF-3"; % 2 D ﬁ m
J#TADFFaces_Skin File / DO NOT REMOVE®®/ = Font/Text
fnamespace af "hitp: //xnlns.oracle. comfadf/faces/rich™;
fnamespace dvt "http://xwlns.oracle.con/dss/adf/faces"; o Colar: Eed
[=. "FBut tonGradientStartictiveColor:alias | Font: normal nor
Font: Farmily:
}
Faont Feature Settings: niormal

= .AFButtonBorderfctiveColor:alias | Font Kerning: uto

color: #ES1515:
y Font Language Owerride: normal

Fonit: Size: mmediurm

Hi

= . AiFButtonGradientEndAictiveColor:alias {

}

color: #FDS353: Font: Size Adjust: one
} Font: Stretch: Eormal
E . AFButtonBorderTopActiveColor:alias { Font Style: Eormal
color: #BO1313; Font: Synthesis: wieight: styl
ra

Fark Wariamb: sl

If you change the color property of a derivative color and later make a change to the
associated anchor color, the ADF Skin Editor displays a Confirm Derivative Color
Modification dialog to warn you that the change you make to the anchor color will
override the change that you made to the derivative color, as illustrated in Figure 6-5.
Click OK to make the change to the anchor color and to override the already-defined
value for the derivative color.

6-6 Developing ADF Skins with Oracle ADF Skin Editor

Working with Color in a Skyros-Extended ADF Skin

Figure 6-5 Overriding a Derivative Color

[ﬁ skyros_skin33.css . AFButtonGracientStartActiveColor alias - Properti
00 | [Extended Skins ~ @ = Q Find

Q v - .# o x Defaulk (Mo} Theme 4 = Common

== Global Selector Aliases @[ﬂ “i‘ é % Wiew as; Button - Background Color: Eransparent

B Color .
-G anchor Calar af |toolbar af|button:selected Background Image: |nene

- Derivative Color - o Colar: lue
e[AFButtonBorderdctiveColor : alias & Disabled Button b

[.aFButtonBorderTopactiveColor:alias _ Height: IC
[.AFButtonGradientEndactiveColor:alias _ Width: auta
Border: nione mediurn currentColor
af |toolbar af |button:selected: active Border Colar: currentCalor currentColar ¢
_ Margin: Op:: Opx Opx Opx

x Disabled Button Padding: Op:x Opx Opx Opx

Confirm Derivative Color Modification _ “tr-tule-ref -tr-inkibit -tr-enable-themes -tr-ck

AFButtanGradi

The color property of the Following Derivative Color Aliasies)

will be: modified: Yalue

\AFButtonGradientEndActiveColor: alias

0]
Design | Seleckors| Source Hiskary |]
Q- Find B
Scharset "UTF-3"; B 0O/ R
A*%ADFFaces_Skin File / DO NOT REMOVE®*/ = Font;/Text
framespace af "http: //xwlns.oracle, cow/adf/faces/rich™;
fnamespace drt "http://unlna.oracle, con/dss/adffaces"; o Colar: Eed
[=l. AFBut tonGradientStartActiveColor: alias | Font: EEEE%EEEE@EEEE
color: Red: Font: Farnily:
1
. Font Feature Settings: E

Example 6-1 shows entries from the Skyros ADF skin (skyros-vl-desktop.css) that
define the default values for the AFButtonGradientStartActiveColor global selector
alias and its associated derivative colors. These global selector aliases share the same
hue value (209) but specify different values for the saturation and lightness values.

Example 6-1 Global Selector Aliases with Anchor and Derivative Colors in Skyros

/* Anchor, hsl(209, 56%, 63%), #6AAID5 */
.AFButtonGradientStartActiveColor:alias ({
color: #6AA1D5;

}

/* Derivative of AFButtonGradientStartActiveColor, hsl (209, 32%, 54%),
#648BAF */

.AFButtonBorderTopActiveColor:alias {

color: #648BAF;

}

/* Derivative of AFButtonGradientStartActiveColor, hsl (209, 39%, 62%),
#789FC4 */

.AFButtonBorderActiveColor:alias {

color: #789FC4;

}

/* Derivative of AFButtonGradientStartActiveColor, hsl (209, 54%, 79%),

#ACCAE6 */
.AFButtonGradientEndActiveColor:alias {

Working with Images and Color in Your ADF Skin 6-7

Changing an Image for a Component Selector

color: #ACCAE6;
}

Example 6-2 shows the same global selector aliases referenced in Example 6-1. In
Example 6-2, an ADF skin extends from Skyros and changes the value of the color
property of the AFButtonGradientStartActiveColor global selector alias to #6CD5AL.
The ADF Skin Editor modifies the color properties of the global selector aliases that
derive their color value from the anchor color.

Example 6-2 Modified Anchor and Derivative Colors

.AFButtonGradientStartActiveColor:alias {
color: #6CD5AL;
}

.AFButtonBorderTopActiveColor:alias {
color: #64AF8A;
}

.AFButtonGradientEndActiveColor:alias {
color: #ADE6CA;
}

.AFButtonBorderActiveColor:alias {
color: #79C39E;
}

6.4 Changing an Image for a Component Selector

Many ADF Faces and ADF Data Visualization components reference images using
selectors. These images display in the background of the component or render as icons
or controls on the component. When you create an ADF skin, the ADF skin that you
extend from provides the values for these selectors, such as the relative path to an
image and the sizes for height and width.

Figure 6-6 shows a runtime view of the table component rendering a control that
sorts the data in a table column in ascending order. The image that renders this control
is referenced by the ADF Faces column component's sort-ascending-icon-style
selector.

Figure 6—6 Image Referenced by the sort-ascending-icon-style Selector

Basic table
Export &l Rows to Excel Export Selected Rows to Excel Print Splitter Content

Murnber Narne 7 Size of the file in Kilo MNurmber Date Modified
ol . li [N=] u] 07f12{2004
1 . OB 1 07/12/2004
2 [admin,jar 1KB 2 05/11/2004
2 0 applb 0e 3 07/12/2004

Figure 6-7 shows a design-time view where an ADF skin inherits values for the column
component's sort-descending-icon-style selector from the extended ADF skin. The
values inherited include the file name for the image used as an icon (colSort_asc_
ena.png), the height, and the width for the image.

6-8 Developing ADF Skins with Oracle ADF Skin Editor

Changing an Image for a Component Selector

Figure 6—7 Inherited Values for the sort-descending-icon-style Selector

@ Start Page @ skinl.css | afleolumn: sort-descending-icon-zstyle - Propetties
I (23 Extended skins = @ = Q, Find
Q, sort-des = F- gs- ¥ Defaul {Moj Theme Dark Theme Medium Theme . 4 = Common
[:l At-Rules @@ 4 M é’ % - Background Color: Eransparent
I‘?}---gﬂFéce;Dio:nponent Selectars 4 Background Image: [url{"fafr/skyros-v1fcolSort_
[EF+[Z Pseudo-Elements

D sort-descending-ican Inhetited from: af | column::sort-descending-icon-style in skyros-v1-deskiop.css —

Click on amy selector link to go to its declaration, —

4 width: 14

Other examples of ADF Faces and ADF Data Visualization components that expose
selectors which reference images associated with the component include the following:

#-£3 Data

s ADF Faces progressIndicator component exposes the
determinate-empty-icon-style selector.

= ADF Faces panelAccordion component exposes the disclosed-icon-style
selector.

= ADF Data Visualization mapToolbar component exposes the zoomin-enable-icon
selector.

If you decide that you want to modify the image that is associated with a component
selector, you need to modify the selector in your ADF skin and copy the image into the
project for your ADF skin. You can copy images individually using the procedure in
Section 6.4.1, "How to Copy an Image into the Project.”

After you import an image into your project, the selector that references the image
uses a URL in the source file of the ADF skin to refer to this image. Note that this URL
is updated when you deploy your ADF skin (and associated files) in an ADF Library
JAR, as described in Section 11.3, "Packaging an ADF Skin into an ADF Library JAR."

Tip: Associate an image with a global selector alias. If multiple
component selectors reference the global selector alias, you only need
to make one change if you want to use a different image at a later time
(change the image associated with the global selector alias). For more
information about global selector aliases, see Section 8.2, "Creating a
Global Selector Alias."

If your ADF skin extends the Skyros or Fusion Simple families of ADF skin, you can
change some of the more frequently used images in the design editor, as described in
Section 6.2, "Changing Images and Colors in the ADF Skin Design Editor." If your ADF
skin extends the Fusion Simple family of ADF skins, you can change multiple images
using the images editor, as described in Section 6.5, "Working with the Images Editor."

6.4.1 How to Copy an Image into the Project

You use a context menu to copy an image that an extended ADF skin references into a
directory of the project for your ADF skin. You then make the changes that you want
to the image.

To copy an ADF skin image into your project:

1. In the Selector Tree of the selectors editor, select the selector that references the
image you want to change.

Working with Images and Color in Your ADF Skin 6-9

Changing an Image for a Component Selector

For example, select the ADF Faces column component's sort-descending-icon-style
selector to change the sort ascending icon, as shown in Figure 6-8.

Figure 6—8 Column Component's sort-descending-icon-style Selector

Qa T- - ¥
[=h-(£= Faces Component Selectors
== E Colurmn
= B Pseudo-Elements

sort-descending-icon-style

2. In the Properties window, expand the Common section and select Copy Image
from the Background Image list, as shown in Figure 6-9.

Figure 6-9 Copy Image Menu to Import an Image into ADF Skin Project

aflcolumn:: sont-descending-icon-style: hover - Properties
Q, Find @

=l Common

Background Color: P:ransparent |V|

4 Background Image: |:r,|’skyros-\.-'IICDISDrt_des_ovr.png") |

Background Image
Go ko Declaration

Content:

Colar:

Height: Reset to Default

Width: [Property Help

This property sets the
background imageis) of an

Border:

Border Colar: element, Images are drawn with
the First specified one on top
Iargin: (closest to the user) and each
ks bobimd b,
Padding:

-tr-enable-themes -tr-children-theme

-br-rule-ref =Fr-imhihit

This copies the image into the project for your ADF skin.

6.4.2 What Happens When You Copy an Image into the Project

The image is copied into a subdirectory that is generated in the project of your ADF
skin. For example, if you decided to copy the image that the ADF Faces column
component's sort-ascending-icon-style selector references, the colSort_asc_
ena.png file is copied to the following directory:

/public_html/skins/skinl/images/af_column
where af_column refers to the ADF Faces column component.

The relative URL value of the property in the Properties window is modified to
reference the new location of the image. Figure 6-10 shows an example.

In addition, the Properties window indicates that the selector no longer inherits the
image from the extended ADF skin by displaying a green icon to the left of the
property label. Figure 6-10 shows the Properties window after importing the colSort_
asc_ena.pnyg file into the project for the ADF skin. Note that the ADF skin still inherits
the values for the Height and Width properties from the extended ADF skin.

6-10 Developing ADF Skins with Oracle ADF Skin Editor

Working with the Images Editor

Figure 6-10 Properties Window After Importing an Image into an ADF Skin

aflcolumn:: sort-descending-icon-style - Properties
Q

=1 Common

()]

Background Color: kransparent |V|

@ Background Image: |DIumn,l’coISort_des_ena.png")|

Content: | |

Calor: | A
4 Height: [14 [e -|
@ Width: [14 [-
Border: |none medium currentColor |

Finally, CSS syntax appears in the source file of your ADF skin. Example 6-3 shows the
CSS syntax that corresponds to the values shown in Figure 6-10.

Example 6-3 CSS Syntax in Source File of ADF Skin After Importing an Image

af |column: : sorted-ascending-icon-style
{
background-image: url("images/af_column/colSort_des_ena.png");

}

6.5 Working with the Images Editor

The images editor helps you manage the images that you want to use with an ADF
skin that extends from the Fusion Simple family of ADF skins. You access it by clicking
the Images tab of an open ADF skin.

Note: Your ADF skin must extend the Fusion Simple family of ADF
skins if you want to use the functionality in the images editor. You
cannot use the images editor if you extend your ADF skin from other
skin families such as, for example, the Skyros family of ADF skins.

Figure 6-11 shows the images editor that appears when you first click the Images tab
in your ADF skin. The Generate Images Using dropdown menu displays the
following options:

» Current Skin Aliases: Select to start with a colorized version using the global
selector aliases that appear in the Color category of the current ADF skin.
Choosing this option displays the Alias Color list where you can modify the
values of these global selector aliases.

s Desaturated Fusion Simple Colors: Select to start with a desaturated version of the
set of images for the Fusion Simple skin.

= Fusion Simple Colors: Select to start with a set of images for the Fusion Simple
skin.

Tip: Selecting Desaturated Fusion Simple Colors from the Generate
Images Using dropdown menu and clicking Apply to Skin is a useful
method to retrieve all the current images if you want to modify them
manually in another tool.

The Generated Images list displays the available images that you can apply to your
ADF skin by clicking the Apply to Skin button. When you click the Apply to Skin

Working with Images and Color in Your ADF Skin 6-11

Working with the Images Editor

button, the selected images in the Generated Images list are imported into an images
directory that is a subdirectory of the directory in your project where you store your
ADF skin.

Figure 6—11 Images Editor for an ADF Skin

3
Generate Images Using: Select the images you want to use and click Apply ko Skin, IF you change alias colors,
when you click Apply b Skin, the colar aliases are also updated in vour skin,
Current Skin Aliases '|
Include Image Types: Layout Slices Generated Images: Apply To Skin
Icans [Mame Width Height = Skini Fusion Simple Type
s ol ti_above_s... 15 25 [| [| Slices
ias Colors:
ti_above_s... 18 25 [| [| Slices
@ [t2_above_s... 18 25 Slices
tz_above_s... 18 25 slices
AFveryLightBackground: #E7F7Ee [ki_above_e.. 37 75 | % [slices
ti_above_e.. 37 25 A A0 Slices
\AFveryDarkBackground: #133352 | @ te_chove.s... 37 2 clces
AFLightestMeutralBackground: | #FFFFFF L—J t2_sbove e.. 7 % Slices
ti_above_.. 1 25 Slices
.AFDarkBackground: #03403e F' t2_abowve_... 1 25 Slices
bl below st 18] B B Slices
.AFLightBrightBackground: #bfddeb l__J bl below st 1S 25 [B slices
t2_below_st... 18 25 Slices
JAFBrightBackground: #60b1fa
J kg D t2_below_st... 16 25 Slices
.AFLightAccentBackground: #bacsdec l__J t1_below_e... 37 25 » » Slices
«| ti_below_e... 37 25 Slices
- .-
AFMediumBackground: #cfelfz D tz_below_e... 37 25 Slices
t2_helow_e... 37 25 Slices
AFMediumaccentBackground: [#adbecd L_J b1 below m... 1 25 Slices
tz_below_m... 1 25 Slices
JAFLightBackaround: #eafafd - B
. kg L_|' ti_above_s... 18 25 Slices
AFVisitedLinkForeground: #72007c | M tl_sbove 5. 18 23 Slices
tZ_above_s... 18 25 Slices
.AFLightMeutralBackground: #afaba? L_J t2_sbove_s... 18 25 slices
ti_above_e... 37 25 Slices
AFLightvisitedLinkForeground: |[#cdS3dc l__J H_shove_e... 37 5 Slires
t2_above_e... 37 25 slices
AFYeryLightAccentBackground: [#eSefes - -
L_J tz_above_ge... 37 25 slices
Sefust Hue/SaturstionBrichiness bi_above_.. 1 25 Slices

The Alias Colors list that appears when you select Current Skin Aliases in the
Generate Images Using dropdown menu displays the color aliases that impact the
color of layout and icon images. These color aliases are a subset of the available color
aliases. Changing the color aliases in this subset can have a significant impact on the
appearance of your application. Figure 6-12 shows a page from an application where
the parts of a page that use these color aliases are labeled. For example, Bookmarkable
Link uses the .AFLightVisitedLinkForeground color alias after a user clicks the link.

6-12 Developing ADF Skins with Oracle ADF Skin Editor

Working with the Images Editor

Figure 6—-12 Application Page Using Color Aliases

DRACLE ADF Faces Rich Client AFDark Foreground: Fv Accessibility About

[J .AFLightestheutral: |#FFFFFF B FoarkBackground: [#03406e |

— alphabetica AT A e D AFLight¥isitedLinkForegraund:
03 Companents » Home E AFveryDarkForeground:
&> 3 active o Learn more about ADF Faces Rich Clisnt,
t= [C) Data Visualization Tools « Tag Guide
= [Input o Demonstrations of components, validators, canverters, and miscellaneous tags along with a property editor ta see how attribute walues affect th
b= D Layout component.
& [0 List of walues + skinning

o Examples tao learn more about custam skinning of components with the "demaComponents" skin,
Feature Demos

i o o Demonstrations of framework-level Features such as a File Explorer browser linked to a live server model, a collection of Sample Page Templates,
-3 Mavigation mare.

&= [Menu and Toolhar
& [Miscellaneous

&= [output & VYisual Designs

&> 3 Popup o Demonstrations grouped by visual theme.,

=3 Query * Styles

&> 3 Table o Demonstrations of the effect of inlineStyle and contentStyle on the components.

3 ather Tags Commonly Confused Components

o Comparisons of components that are often confused,

L&
.

[J .ARLichtBackground: [#eaf3fd [.AFLightestievtral: [#FFFEFE
’__J AFMediumBackground: [#cfedfz
e —
Skinning Fv .AFveryDarkForeground: |#13335a

*| Feature Douwa
> ¥isual Designs
>| Gtyles

> Commonly Confused

Figure 6-13 shows another example where the usage of color aliases is labeled.

Figure 6—-13 ADF Faces Table Component Using Color Aliases

Basic table
Export All Rows to Excel | Export Selected Rows to Excel | Print Splitter Conte ’—_|v AFLight AccentBackground: #bacsde
Murnber |Mame Size: of the File in Kila | Murmber Date Modified CalS
= 0B 0 07/1242004) L—J AFveryLightBackground: #f7f7fE
= 0B 1| o7zpeooe | e
2| [admin.jar 1KE 2 05/1172004 adrin. jar
06 3 07/1zf2004 applib
AFErightE:. d: |#60bi1F
4|2 applications 0B 4 07/12/2004 | applications [2 arenghssckaround: [etbifa |
5|5 config 0B 5 07/122004 config
£) conneckors 0B =] 07j12/2004 conneckors
7| database 0B 7 07{12j2004 [] AFMediumAccentBackground: #adhece
25 default-web-apd OB g 07j1242004 LIk U -y L=
al [iiop.jar 1,290 KB 9| 05112004 iiop.jar
10| [iiop_gen_bin.jar 37KEB 10 05/1172004 iiop_gan_kin.ja
1 11| [iiap_rmic.jar 144 KB 11 05/1172004 iop_trnic. jar
12|53 iaen 0E 120 0712/2004 ljsan
) 13| 05/112004 |jazn.
l__| AFYerylightBackground: _F?F?FS
v Ly e m e 14 05/11)2004 jazne E AFTextForeground: [#333333
15|] j=enplugin.jar 1Z KB 15 05/1172004 jaznplugin,jar
1653 isp 0E 16| 07(12/2004 |isp =
i | = £ _'I_I
grouped 1
grouped 2 E AFLabelTextForeground: [#755600
grouped 3

For more information about the Color category of global selector aliases, see
Section 8.1, "About Global Selector Aliases."

The Oracle Technology Network (OTN) web site provides an online demonstration
that shows you how to change the color aliases in the Color Alias list as part of the

Working with Images and Color in Your ADF Skin 6-13

Working with the Images Editor

process of developing an ADF skin. For more information, navigate to
http://www.oracle.com/technetwork/developer-tools/adf/overview/1
ndex.html.

6.5.1 How to Generate Images Using the Images Editor

You generate images using the images editor by choosing one of the supported
methods and using it to apply changes to your ADF skin.

To generate images using the images editor:

1.

Create an ADF skin that extends the Fusion Simple family of ADF skins.

For more information about creating an ADF skin, see Section 4.3, "Creating an
ADF Skin File." For more information about the Fusion Simple family of ADF
skins, see Section 12.3, "ADF Skins Provided by Oracle ADE."

Click the Images tab for the newly-created ADF skin.

Choose the method that you want to use to generate the images from the Generate
Images Using list.

Choose the appropriate option for the image types that you want to include:

= Layout Slices: select this checkbox to include this type of image in your ADF
skin.

= Icons: select this checkbox to include this type of image in your ADF skin.

(Optional) If you selected Current Skin Aliases from the Generate Images Using
dropdown menu, modify the values for the entries in the Alias Color list.

You can do this in a number of ways:

= Enter a Hex code directly in the input field for the global selector alias that
you want to modify

= Invoke the Adjust Hue/Saturation/Brightness dialog by clicking Adjust
Hue/Saturation/Brightness. This dialog enables you to adjust the hue,
saturation and brightness levels of all the colors that your ADF skin uses.

Tip: The changes you make using this dialog apply to all the colors
that your ADF skin uses so using this dialog is a quick way to apply a
new color hue to your application.

= Invoke a color picker by clicking the dropdown menu beside the input field.
You can also invoke the Select Custom Color dialog by clicking the Custom
button in the color picker or reset the value of the global selector alias using
the Default button. Figure 6-14 shows these buttons and the dropdown menu
that initially displays the buttons.

6-14 Developing ADF Skins with Oracle ADF Skin Editor

Working with the Images Editor

Figure 6-14 Editing Options for Color Aliases

t1_helow_start_n_rtl.png
[o] +? helouw chaet nonnn

.AFLightBrightBackground: #ffz121 Fv

AFBrightBackgraund: #e0b1fFa D BefEns
AFLightAccentBackground: #bacSde]

AFMediumBackground:
AFMediumAccentBackground: W
.AFLightBackground:
AFYisitedLinkForeground:
.AFLightMeutralBackground:
.AFLightYisitedLinkForeground:
AFYerylightAccentBackground: El =

Adjust HuerSaturationBrightnes s

Custom, ..

t1_above_mid_a.png
t2_above_mid_a.png

3 F brdesn cbok = mme

6. (Optional) If you selected Current Skin Aliases from the Generate Images Using
dropdown menu, you can click the Exclude Color icon to inhibit the usage of a
color alias when you generate images. The Exclude Color icon appears when you
move your mouse over a color alias, as shown in Figure 6-15.

Figure 6—15 Exclude Color Icon for Color Aliases

Alias Colors

@
AFYeryLightBackground: L_|'
ath;rount:l:]
JAFLightestieutralBackground: |__|v

a

7. In the Generated Images list, select the images that you want to apply to the ADF
skin. Use the checkboxes on the Generated Images list to select or deselect all the
images or to select one or more images. By default, the selected images are those
that have been modified as a result of changes to the color aliases.

Note: Scroll to the bottom of the Generated Images list to verify that
all the images that you want to apply to the skin are selected.

8. Click Apply to Skin.

6.5.2 What Happens When You Generate Images Using the Images Editor

The image files that you selected in the Generated Images list are imported into the
project. Entries appear for each image that you generate in the source file of the ADF
skin. Entries also appear for each global selector alias that you modify in the Alias
Colors list if you chose to generate the images using the Current Skin Aliases option.
Example 64 shows some entries that appear in the source file of an ADF skin where
images were generated using the Current Skin Aliases option with values modified for
the AFDarkestNeutralBackground and AFVeryLightBackground global selector aliases.

Example 6-4 Entries in the Source File of an ADF Skin after Generating Images

af|column: :sort-descending-icon-style {

Working with Images and Color in Your ADF Skin 6-15

Providing a Simple Border Style for ADF Skins

background-image: url ("images/generated/META-INF/adf/images/fusion/sort_des_ena.png");

}

af|dvt—map::overview—window—maximize—active—icon {
content: url("images/generated/bi/images/geoMap/panel_close_dwn.png");

}

.AFDarkestNeutralBackground:alias
{ background-color: #00££00;
?AFVeryLightBackground:alias

{ background-color: #00£f£f00;

}

6.6 Providing a Simple Border Style for ADF Skins

You can specify a simple border style for ADF skins that extend the simple skin. This
reduces the number of selectors that components, such as the decorativeBox
component and panel components (for example, panelBox and panelAccordion),
render at runtime and, as a result, simplifies the DOM structure.

This capability is available in Release 11.1.1.7.0 or later and 12.1.2 or later of Oracle
ADF. By default, the Skyros skin and ADF skins that extend from Skyros specify a
simple border style. If your ADF skin extends from one of the other ADF skins
provided by Oracle ADF, as described in Section 12.3, "ADF Skins Provided by Oracle
ADE," you need to configure the trinidad-skins.xml file.

You configure the <feature> element of the trinidad-skins.xml file where you
register your ADF skin. Example 6-5 demonstrates how to enable a simple border
style for the mySkin ADF skin in the trinidad-skins.xml file.

Example 6-5 Enabling a Simple Border Style in the trinidad-skins.xml File

<?xml version="1.0" encoding="IS0-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
<skin>

<id>

mySkin.desktop
</id>
<family>

mySkin
</family>
<extends>simple.desktop</extends>
<render-kit-id>

org.apache.myfaces.trinidad.desktop
</render-kit-id>
<style-sheet-name>

skins/mySkin/mySkin.css
</style-sheet-name>
<bundle-name>

myBundle
</bundle-name>
<translation-source></translation-source>
<features>

<feature name="BORDER_STYLE">simple</feature>
</features>

</skin>

6-16 Developing ADF Skins with Oracle ADF Skin Editor

Providing a Simple Border Style for ADF Skins

</sking>

Working with Images and Color in Your ADF Skin 6-17

Providing a Simple Border Style for ADF Skins

6-18 Developing ADF Skins with Oracle ADF Skin Editor

7

Working With Text in an ADF Skin

This chapter describes how to work with text in an ADF skin. Key concepts, such as
how the resource strings that ADF Faces components render at runtime are stored in
resource bundles, are described in addition to how you can specify additional resource
bundles with different resource strings.

This chapter includes the following sections:
» Section 7.1, "About Working with Text in an ADF Skin"

» Section 7.2, "Using Text From Your Own Resource Bundle"

7.1 About Working with Text in an ADF Skin

The source file for an ADF skin does not store any text that ADF Faces components
render in the user interface of your application. Applications that render ADF Faces
components abstract the text that these components render as resource strings and
store the resource strings in a resource bundle. For example, Figure 7-1 shows an ADF
Faces dialog component that renders buttons with OK and Cancel labels.

Figure 7-1 ADF Faces dialog Component

Test Dialog X

NL’}I‘DH\{JVBI’ Marne Nurnber Calg o
u] 3 - u] i

R 1 . C

2 7 adminjar 2 adrnin.jar 0

3 1 applib 3 applib 0

4) applications 4 applications i

5) config 5 config L

[) connectors 5] connectars c

7) database 7 database L

3) default-web-.. 8 default-web-app 0

g _ iiop.jar q jiap.jar r

10 _ iiop_gen_bin. .. 10 iiop_gen_kin,jar 0

11 1 iiop_rric.jar 11 fiop_rmic. jar c
12 I jamn 12 jazn (m

< >

oK Cancel

The text that appears as the labels for these buttons (OK and Cancel) is defined in a
resource bundle and referenced by a resource string. If you want to change the text
that appears in the button labels, you create a resource bundle where you define the
values that you want to appear by specifying alternative text for the following
resource strings:

Working With Text in an ADF Skin 7-1

Using Text From Your Own Resource Bundle

s af_dialog.LABEL_OK

s af_dialog.LABEL_CANCEL

Note: By default, a resource bundle (skinBundle.properties) is
created in your project when you create a new ADF skin, as described
in Section 4.3, "Creating an ADF Skin File."

In addition to the resource strings that define the text to appear in the user interface for
specific components, there are a range of resource strings that define text to appear
that is not specific to any particular component. These resource strings are referred to
as global resource strings. For more information about the resource strings for ADF
Faces components and global resource strings, see the Tag Reference for Oracle ADF
Faces Skin Selectors (for the release that pertains to the application you are skinning).

ADF Faces components provide automatic translation. The resource bundle used for
the ADF Faces components' skin is translated into 28 languages. If, for example, an
end user sets the browser to use the German (Germany) language, any text contained
within the components automatically displays in German. For this reason, if you create
a resource bundle for a new ADF skin, you must also create localized versions of that
resource bundle for any other languages your web application supports.

For more information about creating resource bundles, resource strings, and localizing
ADF Faces components, see the "Internationalizing and Localizing Pages" chapter in
Developing Web User Interfaces with Oracle ADF Faces (for the release that pertains to the
application you are skinning).

7.2 Using Text From Your Own Resource Bundle

If you enter alternative text in a resource bundle to override the default text values that
render in the user interface of the ADF Faces components in your application, you
need to specify this resource bundle for your application. At runtime, the application
renders the alternative text in your resource bundle for the resource strings that you
override. For resource strings that you do not override, the application renders the text
defined in the base resource bundle. For example, Figure 7—4 shows an ADF Faces
dialog component where the application developer overrides the default value for the
af_dialog.LABEL_OK resource string from OK to Yay while the default value for the af_
dialog.LABEL_CANCEL resource string remains unchanged. That is, the application
developer did not define a value for the af_dialog.LABEL_CANCEL resource string in a
resource bundle; the application references the base resource bundle for this resource
string's value.

Figure 7-2 Overridden and Default Values Resource Strings

"

ﬂl Cancell

For more information about how to create a resource bundle and how to define string
key values, see the "Internationalizing and Localizing Pages" chapter in Developing Web
User Interfaces with Oracle ADF Faces (for the release that pertains to the application you
are skinning).

Enter your
name:

7-2 Developing ADF Skins with Oracle ADF Skin Editor

Using Text From Your Own Resource Bundle

7.21

How to Specify an Additional Resource Bundle for an ADF Skin

You specify a resource bundle for your ADF skin by adding its name and location as a
value to the bundle-name property in the trinidad-skins.xml file.

To specify an additional resource bundle for an ADF skin:

1. In the Applications window, double-click the trinidad-skins.xml file for your
application. By default, this is under the Web Content/ WEB-INF node.

2. In the Structure window, right-click the skin node for which you want to add an
additional resource bundle and choose Insert inside skin > bundle-name.

3. In the Properties window, specify the name and location for your resource bundle
as a value for the bundle-name property.

For example, the resource bundle that is created by default after you create the
first ADF skin in your project, as illustrated in Figure 7-3, specifies the following
value for the <bundle-name> element:

<bundle-name>resources.skinBundle</bundle-name>

Figure 7-3 Default Resource Bundle for an ADF Skin

Applications = skinbundie properties
Test > |= || Q- Find
| Projects E S~ &~ # Thiz file may be used to define alter

strings that appear in the user inter
Example: To change the text that appe
af:dialog component from 0k and Cance
add the following to this file:
af_dialog. LABEL_OK = Continue
af_dialog. LABEL_CANCEL = Go Back

E|--- SkinProjectz
BD Application Sources
=1l resources
L] |§| skinBundle. properties
BB Wweb Content
BD skins
-7 skint
[skinl.css
-7 WEs-INF
trinidad-config. xml
trinidad-skins . xml

e E M W

7.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin

The trinidad-skins.xml file references the resource bundle that you specified as a
value for the bundle-name property, as shown in Example 7-1.

Example 7-1 Specifying an Additional Resource Bundle in trinidad-skins.xml

<skin>
<id>skinl.desktop</id>
<family>skinl</family>
<extends>skyros-vl.desktop</extends>
<render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
<style-sheet-name>skins/skinl/skinl.css</style-sheet-name>
<bundle-name>resources.skinBundle</bundle-name>

</skin>

At runtime, the application renders text values that you specified in your resource
bundle to override the default text values. For example, assume that you defined a
resource bundle where you specified Yeah as the value for the af_dialog.LABEL_OK
resource sting and Oops as the value for the af_dialog.LABEL_CANCEL. Example 7—4
shows a dialog component that renders labels using these values.

Working With Text in an ADF Skin 7-3

Using Text From Your Own Resource Bundle

Figure 7-4 Dialog Rendering Labels Defined in a Custom Resource Bundle

Test Dialog x

* Required

Yeah | Oops

7-4 Developing ADF Skins with Oracle ADF Skin Editor

8

Working With Global Selector Aliases

This chapter describes how to work with global selector aliases. Information on how to
create, modify, and apply a global selector alias is provided in addition to describing
how to reference a property value from another selector.

This chapter includes the following sections:

s Section 8.1, "About Global Selector Aliases"

» Section 8.2, "Creating a Global Selector Alias"

= Section 8.3, "Modifying a Global Selector Alias"
= Section 8.4, "Applying a Global Selector Alias"

= Section 8.5, "Referencing a Property Value from Another Selector"

8.1 About Global Selector Aliases

A global selector alias defines style properties in one location in the ADF skin that you
can apply to multiple ADF Faces and ADF Data Visualization components. A global
selector alias may also be referred to as a selector alias, or simply a selector. The ADF
skins provided by Oracle ADF, described in Section 1.4, "Inheritance Relationship of
the ADF Skins Provided by Oracle ADF" and Section 12.3, "ADF Skins Provided by
Oracle ADF" make extensive use of global selector aliases to define common style
properties for text, messages, icons, colors and different groups of components. Many
component-specific selectors inherit the styles defined for these global selector aliases.
For example, the. AFDefaultFontFamily:alias global selector alias defines a default
font family for all ADF Faces components in your application that display text. Any
ADF skin that you create by extending from one of the ADF skins provided by Oracle
ADF inherits the properties defined in the .AFDefaultFontFamily:alias global
selector alias. Figure 8-1 shows how the selectors editor displays that the af |button
selector inherits the value for font family from the.AFDefaultFontFamily:alias global
selector alias.

Working With Global Selector Aliases 8-1

About Global Selector Aliases

Figure 8—-1 Component Selector Inheriting Value from Global Selector Alias

ﬁ skinf,css

aflbutton - Properties

el
=
0] | [Extended Skins = @ Q Find
Q '? = |+ < % Default (Mo} Theme Dark Theme = Common
-3 Style Classes Elﬂ '+ T é/ X g Background Color: E
5[Global Selector Aliases f batton #Background Image: E
3 Component Group: Button Regular Button Conkent: |:
23 Companent Group: Farm Contrals % D 4 Calor: E
(23 Component Group: Link, - h
3 Component Group: Menu Height: E
: PanelBox and Re ‘width: E
a Popup Button
Border: E
AFDef aultBoldFont :alias af|button:bottom Border Calar: E
AFDef aultFont: alias Margin; @
AFDef aultFontFamily: alias ;
\A&FLargeHeaderFont: alias AL 2 4 Padding: @
AFMediumHeaderFont: alias = = -tr-rule-ref -tr-inhibit -
. AFamalHeaderFont: alias P
1+ Icons & Popup Button
-0 Message Selectors Value
w23 Miscellanenus af |button:Focus
-3 At-Rules Regular Button
[=h-(z= Faces Component Selectars
[-=2a BreadCrumbs bled Button
= Buttan
0
- Sl O aPopupButbon
@23 Descendant Selectors B & 0 5
- [5 Calendar af|buttor:hover {@agent (bouchScreen:none))
-3 Carousel Begular Button = Font,/Text
e O Carousel Ikem 4 Color:
i} [#] Checkbox R Disabled Button '
JE‘ Checkbox (Select Many) = = L) Fopk:
51 Choice = = ank Farrily:
}-- Choice {Select Marry) a Popup Button 1:\%
b Bk Sabin]

o[l Choose Color

#-[E Choose Date

i 4% Code Editor

& B Colurn

() Command Button
Jy Cornmand Image Link
i@ Command Link

& Command Toolbar Butkon o
JrEI Context Info
Jlj Decorative Box
}-- Dialog

}-- Document
() Go Button
i@ Go Image Link

af |button:selected Inherited from: .AFDefaultFontFamily:alias

Declaration Details

g]_] af |commandToolbarButkon,
af|button in richcomponents-simple-desktop. css, delegates to

g]_] AFBUttonForeground; alias,
.AFButtonForegroundHover: alias,
AFButtonForegroundDepressed: alias in richcomponents-simple-

_ Y,

Figure 8-1 also shows the different categories of global selector aliases. Each category
groups global selector aliases according to their purpose:

= Color: Defines colors used by the ADF skins provided by Oracle ADF. Many
global selector aliases that you may want to override appear in this category
because they determine most of the colors that appear in a Fusion web
application. Changes that you make to these global selector aliases have the most
effect if you extend the Fusion Simple or Skyros family of ADF skins described in
Section 12.3, "ADF Skins Provided by Oracle ADE." In particular, an ADF skin that
extends from the Skyros family of ADF skin can have the color palette that it
defines changed relatively quickly by changing the global selector aliases that are
categorized as anchor colors. For more information, see Section 6.3, "Working with
Color in a Skyros-Extended ADF Skin."

AFDefaultFont:alias in base-deskiop,css, delegates ko

AFDefaultFontFamily:alias in skyros-v1-deskkop.css

Click.on any selector link to go to its declaration,

e O e OO e IO OO O o O o OO OO O SO OO oy O e OO B WO N ot O e O = O e OO

8-2 Developing ADF Skins with Oracle ADF Skin Editor

About Global Selector Aliases

Tip: As with other global selector aliases, you can view which
component-specific selectors inherit the values defined in a specific
global selector using the View as list.

Component Group: Button: Defines style properties inherited by selectors for
many of the ADF Faces components that render buttons. For example, the
.AFButtonAccessKeyStyle:alias global selector alias defines style properties for
the access key rendered by the ADF Faces button and dialog components among
others.

Component Group: Form Controls: Defines style properties for form controls.

Component Group: Link: Defines style properties for many of the components
that render links.

Component Group: PanelBox and Region: Defines style properties for the
panelBox and region components.

Component Group: Tabs: Defines style properties for many of the ADF Faces
components that render tabs. For example, the . AFFormAccessKeyStyle:alias
global selector alias defines the style properties for access keys that render in the
ADF Faces panelTabbed and navigationPane components.

Font: Defines style properties for fonts. For example, the
.AFDefaultFontFamily:alias global selector alias defines the style properties
inherited by many of the ADF Faces component selectors.

Icons: Defines the style properties that apply to icons that render in multiple
components.

Message Selectors: Defines style properties for messages that ADF Faces input
components display when they render different types of messages. For more
information, see Section 5.5, "Configuring ADF Skin Properties to Apply to
Messages."

Miscellaneous: Defines global selector aliases that do not fit in the other
categories. For example, the . AFDynamicHelpIconStyle:alias global selector alias
defines the style to use for the dynamic help icon.

Text: Defines style properties to use for text.

For detailed descriptions of the global selector aliases, see the Tag Reference for Oracle
ADF Faces Skin Selectors (for the release that pertains to the application you are
skinning). Global selector aliases that you define appear under the Global Selector
Aliases node, as shown by the entry for the .UserDefined:alias in Figure 8-1.

The View as list displays the list of components that reference a global selector alias
when you select a global selector alias in the Selector Tree. In Figure 8-2, the user
selected Panel Window from the list because the panelwindow component references
the global selector alias.

Note: Sometimes components appear in the View as list for which
the style properties defined in the global selector alias do not render in
the component. This may be because the component initially
referenced the global selector alias in an extended ADF skin and your
ADF skin overrides the global selector alias for that component.
Alternatively, it may be because the component itself overrides the
global selector alias using one of its style-related attributes
(styleClass or inlineStyle).

Working With Global Selector Aliases 8-3

About Global Selector Aliases

In Figure 8-2, the user has changed the inherited value for the
.AFDefaultFontFamily:alias global selector alias and viewed the resulting change as
it applies to the panelWindow component. All selectors that inherit the value of the
.AFDefaultFontFamily:alias global selector alias will render at runtime using the
font family defined in the ADF skin. For example, both the dialog and panelWindow
components render using this font family.

Figure 8-2 ADF Skin Changing a Global Selector Alias

@ skin, css . AFDefautFortFamilyaliaz - Properties
01 | [5 Extended Skins ~ @ = Q, Find
Q ? - EF - x Default (Ma) Theme 3

(3 Style Classes E’ﬂ 4 4” X Wiew as: Panel Window - poke

[z Global Selector Aliases
-3 Color & |panelwindow: tide

3 Compenent Group: Buttan

3 Cormponent Group: Form Controls
Component Group: Link label 1
3 Component Group: Menu

£3 Component Group: PanelBox and Re grouped 1 E S o = EI
Comnponent Group: PanelHeader grouped 2 = =

|3 panelWindeow With panel FormLayout

Fant grouped 3 [=IFont/Text
[.AFDefaultBoldFant: alias
D AFDefaultFont: slias Show Another Window Colar: |
WY AFDefaultFontFa 5 Fanik: |normal normal normal medium/not
[.AFLargeHeaderFont: alias ’ o hefoeti i
D AFMediumHeaderFont: alias %Font Family: |P.r|a, Helvetica, sans-seri
[.AFsmalHeaderFont:alias “mmkEoskues Soktings |normal

(-3 Ieons o Property has been modified |r:1ut0

@3 Message Selectors

-3 Miscellaneous ‘ ‘ Fonk Language Cverride: hormal

-0 At-Rules Font Size: [medium

In addition to the global selector aliases already described, a number of component
selectors define selector aliases that are specific to these components only. These
selector aliases appear under the nodes for the component selectors in the Selector
Tree. Figure 8-3 shows examples from a number of the component selectors that
expose these types of selector aliases.

Figure 8-3 Component Selector Aliases

Q V-4 X
(=[5 Faces Component Selectars
=& Calendar
D AFC ActiveDayHeaderBackground: alias
D AFCalendarLightBackground:alias
D AFCalendar TodayBackground: alias
Lo D AFCalendar TodavHeaderBackground: alias
(10 Carousel
B Component Selector Aliases

L[AFCarouselltemBorder:alias
= @8 Query
523 Component Seleckor Aliases

[D .AFBetweenSeparatoricon: lias
[Table
B Component Selectar Aliases

L[] AFTableCelBandedBackground: alias
[=--aa Train

B[22 Component Selector Aliases

8-4 Developing ADF Skins with Oracle ADF Skin Editor

Creating a Global Selector Alias

8.2 Creating a Global Selector Alias

You can create a global selector alias to define in one location the style properties that
you want a number of selectors to reference. You enter the name of the new global
selector alias in the Create Alias Selector dialog. The ADF Skin Editor appends the
keyword :alias and prepends . to the name that you enter in the dialog. For example,
if you enter myGlobalSelector as the name in the dialog, the resulting name that
appears in the user interface and in the source file of the ADF skin is:

.myGlobalSelector:alias

The keyword :alias identifies your global selector alias as a CSS pseudo-class and
serves as a syntax aid to organize the CSS code in the source file of your ADF skin.

After you create a global selector alias, you modify it to define the style properties that
you want it to contain. For more information, see Section 8.3, "Modifying a Global
Selector Alias."

8.2.1 How to Create a Global Selector Alias

You can create a global selector alias that defines the style properties that you want a
number of user interface components to use.

To create a global selector alias:

1. In the Selector Tree of the selectors editor, select New Alias Selector from the
dropdown list, as illustrated in Figure 8—4.

Figure 8-4 New Alias Selector Option in the Selector Tree

? = # = x | Default (Ma) Theme

Mew Style Class,..

Mew Alias Selector,..
Mew Selectar with At-Rule.. .
Ty

The Create Alias Selector dialog opens.

2. Enter a name for the global selector alias in the Alias Selector Name field.
Tip: Enter a name for the global selector alias that indicates the
purpose it serves. For example, MyLinkHoverColor for a global selector

alias that is to change the color of a link when an end user hovers over
the link.

3. C(Click OK.

4. In the Properties window, set values for the properties that you want to configure
in the global selector alias.

8.2.2 What Happens When You Create a Global Selector Alias

The global selector alias appears under the Global Selector Aliases node in the Selector
Tree and a visual representation as it applies to a component appears in the Preview
Pane, as illustrated in Figure 8-5.

Working With Global Selector Aliases 8-5

Modifying a Global Selector Alias

Figure 8-5 Newly-Created Global Selector Alias

Q ? - .* = x Default (Mo Theme
-3 Style Classes @[ﬂ Gﬁ é’ % =

- Global Selectar Al

MyLinkHowerColor: alias

[SampleJext
(-3 Component Group: Button

-3 Component Group: Form Controls
(23 Component Group: Link

(23 Companent Group: Menu

[0 Component Group: PanelBox and Region
(23 Companent Group: PanelHeader

-0 Fant

-3 Icons

(03 Message Selectors

-0 Miscellaneous

-3 At-Rules

-3 Faces Component Selectors

-3 Data Visualizations Component Selectors

CSS syntax for the global selector alias that you create appears in the source file of the
ADF skin. Example 8-1 shows the entries that appear in the source file of the ADF skin
in Figure 8-5.

Example 8-1 CSS Syntax for a Newly-Created Global Selector Alias

.MyLinkHoverColor:alias{

}

8.3 Modifying a Global Selector Alias

You can modify any of the categories of global selector alias described in Section 8.1,
"About Global Selector Aliases." Modifying a global selector alias that appears under
the Global Selector Aliases node in the Selector Tree when you first create the ADF
skin means that you override the inherited style properties defined in the parent ADF
skin of your ADF skin. The parent ADF skin is the ADF skin from which your ADF
skin extends. You chose the ADF skin from which to extend when you created an ADF
skin, as described in Section 4.3, "Creating an ADF Skin File." After you modify a
global selector alias, the component-specific selectors that inherit the style properties
defined in the global selector alias use the modified values.

Modifying a global selector alias that you create in your ADF skin does not override
any style properties inherited from the parent ADF skin.

8.3.1 How to Modify a Global Selector Alias

You modify a global selector alias by setting values for it in the Properties window.
You then verify that the changes you make apply to the component-specific selectors
as you intend.

To modify a global selector alias:

1. In the Selector Tree of the selectors editor, select the global selector alias that you
want to modify.

For example, if you want to modify the global selector alias that defines the
default font family, select it as illustrated in Figure 8-6.

8-6 Developing ADF Skins with Oracle ADF Skin Editor

Applying a Global Selector Alias

Figure 8-6 Modifying a Global Selector Alias

Q ? = @ - X Default (Mo} Theme
(3 Style Classes W k- @ 3 | viewas: BreadCrumbs -
([Global Selector Aliases

#-C3 Colar af |breadCrumbs

¢-(21 Component Group: Buktan item 1> item2 > ifem 3 > tem4 = ifem 5 > item 6 >) item 7

£
E
£
A
£
E
£

£
A

[+ Fant

i3 Component Group: Form Controls
k(1 Component Group; Link

¢[00 Component Group: Menu

i1 Component Group: PanelBox and Regid
b1 Component Group: PanelHeader

AFDefaultBoldFont: alias
\AFDefaultFont: alias
, AFDefaultFontFamily:alias

AFLargeHeaderFant: alias
\AFMediurmHeaderFont :alias

i .AFsmalHeaderFont : alias
i3 Icons
t--(1 Message Selectors

£

03 At-Rules

i1 Miscellaneous

In the Properties window, set values for the properties that you want to modify.

In the selectors editor, click the View as list to select a component-specific selector
that inherits the property values defined in the global selector alias that you have
just modified.

In the selectors editor, verify that the changes render for the component-specific
selector as you intend. Repeat Steps 1 to 3 until you achieve the changes you want
for the component-specific selectors that inherit from the global selector alias.

8.4 Applying a Global Selector Alias

After you create a global selector alias in your ADF skin, you need to specify the ADF
Faces and ADF Data Visualization components that you want to render at runtime
using the style properties that you defined in the global selector alias.

Applying a global selector alias to an ADF Faces or ADF Data Visualization
component requires you to:

Select the selector, pseudo-element, or pseudo-class for each component that you
want to apply the style properties defined in the global selector alias. If you want
to apply the style properties defined in your global selector alias to another global
selector alias, select the target global selector alias.

Set the global selector alias as a value for the -tr-rule-ref- ADF skin property.

8.4.1 How to Apply a Global Selector Alias

You apply a global selector alias by specifying it as a value for the -tr-rule-ref- ADF
skin property.

To apply a global selector alias:
1.

In the Selector Tree of the selectors editor, select the item to which you want to
apply the global selector alias.

For example, select the inputText component's content pseudo-element if you
want to apply the style properties defined in your global selector alias to the label
for that component, as shown in Figure 8-7.

Working With Global Selector Aliases 8-7

Applying a Global Selector Alias

2, In the Properties window, expand the Common section and then click the Add
icon next to the -tr-rule-ref- field.

3. Enter the name of the global selector alias. Enter the name between quotes that
you preface with the selector keyword in the Value field.

For example, if the name of the global selector alias is .MyBackgroundColor:alias,
enter selector (".MyBackgroundColor:alias"), as illustrated in Figure 8-7.

Figure 8-7 inputText Component's content Pseudo-Element

@ sking.css aflinputText: content - Properties

[S)
=
1N (23 Extended skins = @ Q Find
Q F- g XK Default (Na) Theme Dark Theme Med... » R [P ETEEE T
4 Border Color: #DEE4ET
[Global Selector Aliases - ¢ K -
L[] MyBackgroundColor:alias) 4 Margin: 1px
E}B Faces Component Selectors af|input Test: :conbent Padding: Lo 2p 1 3
&0 nput Tt pore:
5= Pseudo-Elements -tr-rule-ref -tr-inhibit -tr-enable-themes
w0 af [inputText: :content:-moz-placeholder
_— vaie
aFlinputText: :contentbusy ckgroundCalor: alias")
o

4. Click the Refresh icon in the Preview Pane to view the changes.

8.4.2 What Happens When You Apply a Global Selector Alias

The selector to which you applied the global selector alias inherits the style properties
defined in the global selector alias. Figure 8-8 shows the content pseudo-element for
the inputText component's selector that inherits the style properties defined in the
.MyBackgroundColor:alias global selector alias. The properties that inherit their
values from a global selector alias when you specify the global selector alias as a value
for the -tr-rule-ref ADF skin property update to use the inheritance icon, as shown for
the Background Color and Color fields in Figure 8-8.

At runtime, the inputText component's content area renders using the style properties
defined in the global selector alias.

8-8 Developing ADF Skins with Oracle ADF Skin Editor

Applying a Global Selector Alias

Figure 8-8 Global Selector Alias Applied to inputText Component

@ skingd.css
07 | [Extended Skins ~

=) aflinputText: content - Properties

=
() Q. Find

—

Q ? - # o x Default {Mo) Theme Dark Jeme Med... 4

[zl Common \

B[Global Selector Aliases

=3 Inpuk Text

"D

I [MyBackgroundColor:alias
[=h-[z= Faces Component Selectors

-5 Pseudo-Elements

WP X s

af |imputTesxt:: contant

kBackground Color: Ereen |

Inherited from: .MyBackgroundColor:alias
Idame:
Declaration Details

]
af linputText: : conkent:-moz-glad
. af |inputText: :content in skind.css, delegates to
Name:
MyBackgroundColorialias in skind.css
FlinputTesxt:: conkent:b F———F%
aflinputText::content:busy Click. on ary selector link to go ko its declaration, olid #DEE4E7,

Mame:

Bardsr Calor:

af |input Text: click-to-edit: :content 4 Margin: 1px

Mame: | hello 4 Padding: 1px 2px 1px 3px

aF|inputText:click-to-edik: Focus-target: :content -tr-rule-ref ~tr-nhibit | -tr-enable-themes

MName: | hello

Yalue

af |input Tesxt: click-to-edit:focus-target:hover-tajge selector(" MyBackgroundCalor:alias”)

Mame: | hello —

8.4.3 What You May Need to Know About Applying a Global Selector Alias

If you override a global selector alias in an extended ADF skin, component selectors
that used the -tr-rule-ref ADF skin property to determine the value of a style
property in the parent ADF skin use the overridden value of the global selector alias.
Example 8-2 shows ADF skin B that extends ADF skin A. At runtime, the top of a
decorativeBox component renders red for the background-color CSS property
because the global selector alias in ADF skin B overrides ADF skin A.

Example 8-2 Overriding an Inherited Global Selector Alias
/** Skin A **/

/** __________________________________ **/

.MyBackColor:alias

{
background-color: blue
}
af|decorativeBox: :top
{
-tr-rule-ref: selector(".MyBackColor:alias");
}

/** Skin B **/

/** __________________________________ **/

.MyBackColor:alias
{

background-color: Red

}

If you specify a style property value in an extended ADF skin where the parent ADF
skin also specifies a value for the style property, the ADF skinning framework applies
the value in the extended ADF skin. Example 8-3 shows ADF skin C where the
.myClass style class specifies Red as the value for the background-color CSS property.

Working With Global Selector Aliases 8-9

Referencing a Property Value from Another Selector

If an application uses ADF skin D (that extends ADF skin C), components that apply
the .myClass style class apply Lime for the background-color CSS property. This is
because the ADF skinning framework calculates the values of statements that include
values in an ADF skin (like -tr-rule-ref) first. The ADF skinning framework then
calculates specific properties (for example, background-color) next. As a result, the
value for the background-color CSS property in ADF skin D (Lime) overrides the
value for the -tr-rule-ref ADF skin property (Blue) or inherited values from ADF
skin C (Red).

Note: If you subsequently override the .myClass style class as
follows in ADF skin D, the value that the ADF skinning framework
applies for the background-color CSS property is Blue:

.myClass {-tr-rule-ref: selector(".MyBlueColor:alias")}

Example 8-3 Overriding a Local Global Selector Alias
/** ADF skin C **/
/ KK e e e e * % /
.myClass {
background-color: Red

}

/** ADF skin D **/
/** __________________________________ **/

.MyBackColor:alias ({
background-color: Blue;

}

.myClass {
background-color: Lime;
-tr-rule-ref: selector(".MyBackColor:alias")

}

Consider using tools, such as Firebug for the Mozilla Firefox browser (or similar for
your browser), when you run your application to determine what style property value
the ADF skinning framework applies to a component selector at runtime. For more
information, see Section 11.2, "Testing Changes in Your ADF Skin."

8.5 Referencing a Property Value from Another Selector

Rather than set a specific style property for each selector to which you want to apply
the style property, you can reference the value of a property using the
-tr-property-ref ADF skin property. You can configure this ADF skin property for
global selector aliases and component-specific selectors. For example, you could define
a value for the background-color property in a global selector alias and reference this
value from multiple other selectors. If you decide at a later time to change the value of
the background-color property, you change the value in the global selector alias. All
selectors that reference the background-color property using the -tr-property-ref
ADF skin property update to use the change you make. The -tr-property-ref ADF
skin property can also be used with compact CSS properties like, for example, border.

8-10 Developing ADF Skins with Oracle ADF Skin Editor

Referencing a Property Value from Another Selector

8.5.1 How to Reference a Property Value from Another Selector

You reference the property value that you want to use for a selector using the
-tr-property-ref ADF skin property.

To reference a property value from another selector:

1.

In the Selector Tree of the selectors editor, select the selector that you want to
reference a property value from another selector.

For example, if you want the content area of the panelWindow component to
reference a style property defined in another selector, select content under the
Pseudo-Elements node of the panelWindow component, as illustrated in Figure 8-9.

Figure 8-9 Panel Window Component's content Pseudo-Element

? - 4 - % Default (Mo) Theme Dark Theme Medium Theme Light Theme
T gy T T JeroTer T Ly o o -
m Panel Tabbe: @+ oX
=-{Z] Panel Window af | panelwindow: : conkent
> ----- D af |panelwindow
[=h-(Z= Pseudao-Elements |Z) panelWindow With panelFormLayout
----- [close-icon =
..... [close-icon-region label 1 label 3 | Submit
----- [close-icon-style label 4 gption 1
)) grouped 1 §
----- D close-icon-style-region option 2
..... D grouped 2 option 3
----- [} content-center grouped 3 option 4
----- [content-end
..... D content-skart Show Another Wind ow
----- D dynamic-help-icon
----- D dvnamic-help-icon-style
Maoe

In the Properties window, specify the property value that you want to reference as
a value for the selector's property using the -tr-property-ref ADF skin property.

For example, assume that you created the following global selector alias:

.MyColor:alias {
color: rgb(255,181,99);
font-weight: bold;

}

and that you want to reference the color property from this global selector alias
for the background-color property of the content pseudo-element that you
selected in Step 1. In this scenario, enter the following value for the
background-color property of the content pseudo-element,

-tr-property-ref (".MyColor:alias", "color");
If you want to use the -tr-property-ref in compact values, enter syntax similar
to the following;:

border: 10px solid -tr-property-ref (".AFDefaultColor:alias", "color");

8.5.2 What Happens When You Reference a Property Value from Another Selector

The Properties window shows that the property for which you set a value using the
-tr-property-ref ADF skin property to reference a value from another selector
inherits its value, as illustrated in Figure 8-10.

Working With Global Selector Aliases 8-11

Referencing a Property Value from Another Selector

Figure 8-10 Selector Property Referencing a Property Value from Another Selector

@ Skark Page @ skinl.css ol af|panelincow:: content - Properties
=

00 | [Extended Skins ~ @ Q Find

Q ? - # = x Defaulk (o) Theme Dark Theme Medium Theme » =] Common

L[] AFDeFaultColor: alias :

E}Bv Global Selector Aliases @E} “F - é x ~ Tﬁ;ackground Color: [gb(255,181,99)

i : af |panelWindow: iconkent
""" [MyColor:alias Ie Inherited from: MyColor:alias

E}B' Faces Component Selectars
EI--- Panel Window
(&= Pseudo-Elements

. D

elWind With el FormlL:
SR paw "™ peclaration Details

label 1 af|panelwindow: icontent in skinl.css, delegates ko

el My Color:alias and 'color’ property in skinl.css

grouped 2

grouped 3 optiol " Barder color: currentColor currentColor
Margin: Op: Ope Opx Ope
Show Another Wind ow
Padding: Op:x Opx Opi Opi

-tr-rule-ref -tr-inhibit | -tr-enable-themes -tr-c

Click on any selector link o go to its declaration. solid Red

af |paneltindow: :content:Focus

Yalue
|5) panelWindow With panelFormLayout
label 1 label 3 | Sul
Iahal 4 .

Design | Selectors| Source History |:|
Q- (Find u

fcharset "UTF-5"; % Q g E‘ E; Eh

/**ADFFaces_Skin File / DO NOT REMOVE®®/ [Font, Text

#namespace af "http: //xmlns.oracle.com/adf/faces/rich™;

fnamespace dyt "http://xunlnas.oracle.con/dss/adf/faces”; Color:

color: rogb(255, 181, 9997 e Fant Farnily:
font-weight: hold;

i Font Feature Settings: [normal

Fonk Kerning: uta
= . AFDefaultColor:alias |

color: Red: Font Language Override: Eormal
} Fant Size: medium

= af |panelWindow: :content | Fonk Size Adjust: one
background-color: -tr-property-ref(”.MyColor:alias™, "color™); Fant Strekch: Eormal

bhorder: 1l0px zolid -tr-property-ref (" AFDefaultColor:alias™, "color™

y Fonk Skyle: Eormal

Syntax similar to Example 8—4 appears in the source file of the ADF skin.

Example 8-4 -tr-property-ref ADF Skin Property

@charset "UTF-8";

/**ADFFaces_Skin_File / DO NOT REMOVE**/

@namespace af "http://xmlns.oracle.com/adf/faces/rich";
@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";

.MyColor:alias {
color: rgb(255, 181, 99);
font-weight: bold;

.AFDefaultColor:alias {
color: Red;

af|panelwindow::content {
background-color: -tr-property-ref(".MyColor:alias", "color");
border: 10px solid -tr-property-ref (".AFDefaultColor:alias", "color");}

8-12 Developing ADF Skins with Oracle ADF Skin Editor

9

Working with Style Classes

This chapter describes how to work with style classes. Information on how to create,
modify, and apply a style class is provided in addition to describing how to configure
a style class for a specific instance of a component.

This chapter includes the following sections:
= Section 9.1, "About Style Classes"

» Section 9.2, "Creating a Style Class"

= Section 9.3, "Modifying a Style Class"

» Section 9.4, "Configuring a Style Class for a Specific Instance of a Component"

9.1 About Style Classes

A style class allows you to specify a number of style properties in one location in an
ADF skin that you want to apply to specific instances of ADF Faces or ADF Data
Visualization components. The style properties that you define for a style class take
precedence over the style properties that you define for the component's selectors.
Application developers can specify a style class as a value for the styleClass and
inlineStyle attributes that many ADF Faces components expose. At runtime, the
style properties that you defined in the style class get applied to the ADF Faces
component rather than other style properties defined in the ADF skin. Style classes
differ from the global selector aliases, described in Chapter 8, "Working With Global
Selector Aliases," which enable you to define style properties that you want to apply to
multiple ADF Faces components.

Figure 9-1 shows an ADF skin with the nodes expanded for the different categories of
style classes.

Figure 9—1 Categories of Style Class

0 (53 Extended Skins =

Q ? - + o x Defaul (Mo) Theme Dark Theme
=-[2= Style Classes G@ 4 é’ %

[:l Miscellaneous MserDefined

B3 Moke Window Selectors SampleText

-3 Popup Selectars

-3 Text

(23 Global Selector Aliases

-3 At-Rules

(3 Faces Component Selectors

-0 Data Wisualizations Component Selectors

Working with Style Classes 9-1

Creating a Style Class

Each category of style class serves a purpose:

= Miscellaneous: Miscellaneous style classes inherited from the extended ADF
skins. For example, this category includes the .AFBrandingBar style class that can
be used for a branding bar containers.

= Note Window Selectors: Style classes inherited from the extended ADF skins that
affect the noteWindow component.

= Popup: Style classes inherited from the extended ADF skins that affect the popup
component.

s Text: Style classes inherited from the extended ADF skins that determine the
appearance of various types of text (for example, address fields and instruction
text).

Style classes that you or other users define appear under the Style Classes node as
shown by the entry for the .UserDefined style class in Figure 9-1. For detailed
descriptions of the style classes in the ADF skins that Oracle ADF provides, see the Tug
Reference for Oracle ADF Faces Skin Selectors (for the release that pertains to the
application you are skinning).

9.2 Creating a Style Class

You can create a new style class in your ADF skin or override a style class that your
ADEF skin inherits from the ADF skin that it extends.

After you create a style class, you modify it to define the style properties that you want
it to contain. For more information, see Section 9.3, "Modifying a Style Class."

9.2.1 How to Create a Style Class

You can create a style class that defines the style properties you want an application
developer to apply to an ADF Faces or ADF Data Visualization component using the
component's styleClass or inlineStyle attribute.

To create a style class:

1. In the Selector Tree of the selectors editor, select New Style Class from the
dropdown list, as shown in Figure 9-2.

Figure 9-2 New Style Class Option in the Selector Tree

] [23 Extended skins =

Q ? - 4 = % Default (Mo) Theme — Dar
- Style Classes Mew 1855, i
l:l Global Selector Aliases Mew Alias Selector. ..

B3 At-Rules Mew Selector with at-Rule...

L7 Earac Carancnant Salackoee

The Create Style Class dialog opens.
2. Choose the appropriate option:

= Enter a new name if you want to create a new style class that does not inherit
style properties from an ADF skin that your ADF skin extends.

Tip: Enter a name for the style class that indicates the purpose it
serves.

9-2 Developing ADF Skins with Oracle ADF Skin Editor

Modifying a Style Class

= Enter the name of a style class that inherits style properties from an ADF skin
that your ADF skin extends and for which you want to override style
properties in your ADF skin.

3. Click OK.

9.2.2 What Happens When You Create a Style Class

The style class appears under the Style Classes node in the Selector Tree and a visual
representation as it applies to a component appears in the Preview Pane, as shown in
Figure 9-3.

Figure 9-3 Newly-Created Style Class

Q ? - GF - x Default {Mo) Theme Dark1

== Style Classas ¢ X
WY Orderove

3 Miscellaneous
£3 Mote Windaw Selectors SampleText
3 Popup Selectors
03 Text

[:l Global Selector Aliases
- At-Rules

verdue
\CrderCrverdue

CSS syntax for the style class that you create appears in the source file of the ADF skin.
Example 9-1 shows the entries that appear in the source file for the ADF skin in
Figure 9-3.

Example 9-1 CSS Syntax for a Newly-Created Style Class

.OrderOverdue
{
}

9.3 Modifying a Style Class

The process to modify a style class is the same for the different categories of style class
that appear in the selectors editor. You select the style class in the Selector Tree and use
the menus in the Preview Pane to add or remove pseudo-classes to the style class or
use the Properties window to set or override style properties for the style class.

9.3.1 How to Modify a Style Class

You select the style class under the Style Classes node in the Selector Tree and modify
its properties using the Properties window.

To modify a style class:
1. In the Selector Tree, navigate to the style class that you want to modify.

2, In the Properties window, make changes to the properties that you want to
configure for the style class.

3. Click the Refresh icon to update the Preview Pane after you make changes to the
style class.

Working with Style Classes 9-3

Configuring a Style Class for a Specific Instance of a Component

9.4 Configuring a Style Class for a Specific Instance of a Component

You can define a style class where you define style properties to apply to a specific
instance of a component. Consider, for example, a panelBox component that
application developers use to show or hide content on a page. One page can render
multiple instances of a panelBox component. You decide to make fuchsia the default
background color for the header text that panelBox components render, as shown in
Figure 9—-4.

Figure 9-4 Setting Background Color for a panelBox Component

@ skind.css

aflpanelBox:header-text - Properties

|55
=
0 (3 Extended Skins = @ Q, Fird
Q| T - .;F - x Default (Mo) Theme Dark Theme Medium Theme Li... ’ =] Commion
B[Panel Border Layout - XK b o Backgraund Caolor: Euchsia
-] Panel Box ,
D af |panelBo:: theader-text Barkgraund Image: none
o[af|panelBox
[Pseudo-Elements PanelBox with icon Cortent:
""" H o & [esdenisE cobr I
----- D conkent)
" . Panel Box Content Height: auto
----- [disclosed-icon
----- [disclosed-icon-style Width: ko
..... D disclosure-link. Panel Box No-Header Content "
----- [dynamic-help-icon
----- [dynamic-help-icon-style 2 - Border Color: currentCalor o
Panel Box Stretched Content (width: 500pe;height: 100px) Margin: Op Opx 0px 0]
4 Padding: Op 2px Opx 2|

However, you decide that you want to render one or more instances of the panelBox
component without the disclosure link control that allows end users to show and hide
the content in the component. Additionally, you decide that you want the header text
of these instances of the panelBox component to render with the background color set
to red. To achieve this, you define style properties for a style class in the ADF skin. You
then specify the style class as the value for the styleClass attribute for each instance
of the panelBox component that you want to render using these style properties.
Example 9-2 shows the syntax that appears in the source file of the ADF skin to
achieve the outcome just described.

Example 9-2 Syntax for a Style Class in an ADF Skin

.panelBoxInstanceClass af|panelBox::disclosure-link{display:none;}
.panelBoxInstanceClass af|pane1Box: :header-text {background-color: Red;}

9.4.1 How to Configure a Style Class for a Specific Instance of a Component

You specify the style class as the value for the styleClass attribute for each instance of
a component that you want to render using the style class.

To configure a style class for a specific instance of a component:
1. Create a style class, as described in Section 9.2, "Creating a Style Class."

2. In]Developer, set the component's styleClass attribute to the name of the style
class you created in step 1.

For more information about setting the component's styleClass attribute, see
Developing Web User Interfaces with Oracle ADF Faces (for the release that pertains to
the application you are skinning).

9-4 Developing ADF Skins with Oracle ADF Skin Editor

Configuring a Style Class for a Specific Instance of a Component

9.4.2 What Happens When You Configure a Style Class for a Specific Instance of a
Component

At runtime, instances of the component for which you do not specify instance-specific
style properties using a style class render using the style properties defined in the
component-specific selectors and global selector aliases. In Figure 9-5, this is the
panelBox component labeled First Panel Box. Instances of the component for which
you specify a style class as a value for the styleClass attribute render using the style
properties defined in this style class. In Figure 9-5, this is the panelBox component
labeled Second Panel Box.

Figure 9-5 Component Rendering with Style Properties Defined in Style Class

Working with Style Classes 9-5

Configuring a Style Class for a Specific Instance of a Component

9-6 Developing ADF Skins with Oracle ADF Skin Editor

10

Working with At-Rules

This chapter describes how to work with at-rules. Information on how to create,
modify, and apply an at-rule is provided in addition to describing the various types of
at-rule that the ADF skinning framework supports.

This chapter includes the following sections:

= Section 10.1, "About At-Rules in the ADF Skinning Framework"
= Section 10.2, "Working with Server-Side At-Rules"

= Section 10.3, "Working with Client-Side At-Rules"

= Section 10.4, "Creating At-Rules in an ADF Skin"

10.1 About At-Rules in the ADF Skinning Framework

CSS at-rules (at-rules) are a way to define style properties for when an application's
page renders in a particular environment such as, for example, a browser, platform,
locale or device. The ADF skinning framework supports a number of at-rules that
allow you to define properties for selectors that you want to apply to a particular
environment. For example, you may need to add some padding in Internet Explorer
that you do not need on any other browser or perhaps you want to increase the size of
icons if a page renders on a touch device. To style a selector for these scenarios, put the
style properties inside an at-rule.

The ADF skinning framework divides the at-rules that it supports into two categories.
It categorizes any at-rules that it passes directly to the user agent to interpret as a
client-side at-rule and any at-rules that the ADF skinning framework itself interprets
as a server-side at-rule. For more information about these categories, see Section 10.2,
"Working with Server-Side At-Rules" and Section 10.3, "Working with Client-Side
At-Rules."

You can use the selectors editor in the ADF Skin Editor and in JDeveloper to create
at-rules in your ADF skin, as described in Section 10.4, "Creating At-Rules in an ADF
Skin." At-rules that your ADF skin inherits or at-rules that you define in your ADF
skin appear in the Selector Tree under the At-Rules node, as illustrated in Figure 10-5.

Working with At-Rules 10-1

Working with Server-Side At-Rules

Figure 10-1 At-Rules in the Selector Tree

F‘é skinS.css
I [5 Extended Skins -

Q NANE A ¢
E-C3 Style Classes

[:l Global Selector Aliases

=[5 Ab-Rules

[:I i@accessibility-profile high-contrast
I:I @accessibility-profile large-fonks

[:l @agent (touchScreen)

I:I i@agent (touchScreen:none)

I:I @agent (bouchScreen:single)

-3 @agent email

-1 @agent geckn

-3 @agent gecko and {max-version: 1,9.0)
[:l @agent gecko and (max-version: 1,9,2)
[:l @agent gecko and (kouchScreen:none)

Apart from the at-rules described in this chapter, you can also use the @import at-rule
to import another ADF skin into your ADF skin. For more information, see Section 4.4,
"Importing One or More ADF Skins Into the Current ADF Skin."

10.2 Working with Server-Side At-Rules

Table 10-1 lists a number of the server-side at-rules that the ADF skinning framework
supports. The ADF skinning framework interprets these rules and determines the style
properties to render, as described in Section 10.4.3, "What Happens at Runtime: How
the ADF Skinning Framework Applies At-Rules."

Table 10-1 Server-Side At-Rules Supported by the ADF Skinning Framework

Name Description

@accessibility-profile Defines styles for high-contrast and large-fonts accessibility profile settings
when enabled in the trinidad-config.xml file.

For more information about the @accessibility-profile rule, see Section 5.7,
"Configuring an ADF Skin for Accessibility."

10-2 Developing ADF Skins with Oracle ADF Skin Editor

Working with Server-Side At-Rules

Table 10-1 (Cont.) Server-Side At-Rules Supported by the ADF Skinning Framework

Name Description

@locale Specify a locale to define styles only for a particular language and country. You can
specify either only the language or both the language and the country.

Note that the ADF skinning framework does not support the : lang pseudo class.

@mode Defines styles for when a page renders in a particular mode. This at-rule supports
the following values:

s quirks

] standards
@platform Define platform styles. Supported values are:

s android

u blackberry

s genericpda

n iphone

s linux

= macos

n nokia_s60

= ppc (Pocket PC)

m solaris

u unix

. windows

Apart from the rules listed in Table 10-1, one of the most frequently used server-side
at-rules is @agent. The @agent at-rule enables you to define styles to apply to one or
more user agents. Table 10-2 describes the supported values to set an agent-specific
style using the @agent at-rule.

Table 10-2 Supported Values for the @agent At-Rule

blackberry googlebot nokia_s60

email ie opera

gecko konqueror oracle_ses

genericDesktop mozilla unknown

genericpda msnbot webkit (maps to Safari and Google
Chrome)

Using the @agent at-rule, you can:
= Specify styles for any version of Internet Explorer:
@agent ie

= Optionally, specify a specific version of the agent using the and keyword. For
example, to specify version 9 of Internet Explorer:

@agent ie and (version: 9)

= Use comma-separated rules to specify styles for a number of agents. For example,
use the following rule to specify styles for Versions 15 and 17 of Mozilla Firefox
and for Internet Explorer 8.x:

Working with At-Rules 10-3

Working with Server-Side At-Rules

@agent mozilla and (version: 15.%), mozilla and (version: 17.*), ie and
(version: 8.%)

= Note that the following two syntax examples specify the same rule:
@agent ie and (version: 8.%*)
@agent ie and (version: 8)

To specify a rule for styles to apply only to Internet Explorer 8.0.x, write the
following:

@agent ie and (version: 8.0.%)

s Use the max-version and min-version keywords to specify a range of versions.
For example, you can rewrite the following rule:

@agent ie and (version: 8), ie and (version: 9)

as:

@agent ie and (min-version: 8) and (max-version: 9)

to apply styles that you define to all versions of Internet Explorer 8 and 9.

You can also use the @agent rule to determine styles to apply to agents that are touch
devices. The following examples show the syntax that you write in an ADF skin file to
configure this capability.

@agent (touchScreen) {

/* Touchscreen specific styles for all touch devices: both single and multiple
touch. */
}

@agent (touchScreen:single) {
/* Styles specific for a touch device with single touch. */

}

@Qagent (touchScreen:multiple) {
/* Styles specific for a touch device with multiple touch. */

}

Use the @agent (touchScreen:none) at-rule to specify styles that you do not want to
render on a touch device. For example, the Fusion Simple family of ADF skin
(fusionFx-simple-vl.2 and later) applies this at-rule to selectors configured to use the
:hover pseudo class. This is because the :hover pseudo-class is not appropriate for use
on a touch device. The @agent (touchScreen:none) at-rule wraps selectors that use
the :hover pseudo-class, as in the following example:

@agent (touchScreen:none) {
af |breadCrumbs:step:hover{
text-decoration:underline;
}

}

Figure 10-2 shows how the Selector Tree displays selectors to which the @agent
(touchScreen:none) at-rule is applied.

10-4 Developing ADF Skins with Oracle ADF Skin Editor

Working with Client-Side At-Rules

Figure 10-2 @agent (touchScreen:none) at-rule in the Selector Tree

skinl.css
i (23 Extended Skins ~
Q l? - 4 — x Defaulk (Mo) Theme Dark Theme
#-(C3 Style Classes EE'Q Gﬁ' & X
@[3 Global Selector Aliases
=& At-Rules af |butkon:hawer
-1 @accessibility-profile high-contrast Regular Button
@3 @accessibilty-profils large-fonts ——
-3 @agent {touchScreen) & Disabled Butt
= (& @agent (touch3creen:none) = = =
- sactive-inline-editable-container :hover-target
[af|breadCrumbs::overflow-indicator:hover & Popup Button ~
= j af |breadCrumbs: :step: hover
Q- |button:hover
skinl.css
I | [Extended Skins =
Q T~ 4 = x Default (Mo) Theme — Dark Theme Medium Theme
#-3 Style Classes @ Pe-oR bt
&1 Global Selector Aliases
-3 At-Rules af|button:hover (@agent (touchScreen:none))
[=-L=F Faces Component Selectors Regular Button
i @2e BreadCrumbs -
=-- @ Button x Disabled Button
: IRl |button = = =
+-(] Pseudo-Elements
| @[3 Descendant Selectors & Popup Button ~
1. B Falendar

For more information about creating applications to render in touch devices, see the
"Creating Web Applications for Touch Devices Using ADF Faces" appendix in
Developing Web User Interfaces with Oracle ADF Faces (for the release that pertains to the
application you are skinning).

For information about how to create an at-rule in an ADF skin, see Section 10.4,
"Creating At-Rules in an ADF Skin."

10.3 Working with Client-Side At-Rules

The ADF skinning framework does not evaluate the following list of at-rules:
m Gcharset

m @document

m @font-face

s @import

m Gkeyframes

m @media

= @page

m @supports

Instead, it passes the at-rule, and the style properties within the at-rule, directly to the
user agent. The user agent evaluates the at-rule and applies the style properties within
the at-rule if the condition that the at-rule specifies is satisfied.

Because the style properties inside client-side at-rules get passed directly to the user
agent, you cannot use ADF skin properties or global selector aliases inside client-side

Working with At-Rules 10-5

Working with Client-Side At-Rules

at-rules. The ADF skinning framework needs to evaluate these items to determine
their runtime values. Example 10-1 demonstrates a number of valid usages of
client-side at-rules in an ADF skin. In Example 10-1, the @media at-rule specifies the
style properties to render for an af :button component when a screen has a maximum
width of 1680px. The example also specifies style properties to apply for the

af :button component when this condition is not met.

Note: Do not insert ADF skin properties or global selector aliases
inside a client-side at-rule. Unexpected behavior may result when you
render a page using the ADF skin. The name of an ADF skin property
is prefaced by -tr- and a global selector alias appends :alias. For
more information, see Section 2.3, "Properties in the ADF Skinning
Framework" and Section 8.1, "About Global Selector Aliases."

Example 10-1 Client-Side At-Rules in an ADF Skin

.myStyleClass {
background-color: Yellow;

}

af |button {
-tr-inhibit: background-image;
color: Red;

}

af|button: :access-key {
background-color: Blue;
color: Yellow;

}

@media screen and (max-width:1680px) {

.myStyleClass {
background-color: Red;

}

af |button {
color: Lime;

}

af |button: :access-key {
background-color: White;
color: Purple;

Figure 10-3 shows instances of the af :button component that render using the
appropriate style properties defined in Example 10-1 based on the maximum width of
the screen where the components display.

Figure 10-3 Client-Side At-Rule Applied to a Button Component

Sereen width = 1920px Screen width = 1680px
EXkton that renders using default properties in ADF skin uf
Ftkon that references a style class defined in ADF skin tkon thak references a style class defined in ADF skin

10-6 Developing ADF Skins with Oracle ADF Skin Editor

Creating At-Rules in an ADF Skin

Client-side at-rules can nest within server-side at-rules. Server-side at-rules can nest
within client-side at-rules. Example 10-2 demonstrates instances where client-side and
server-side at-rules nest within each other.

The @page and @font-face client-side at-rules are exceptions. These client-side at-rules
cannot contain a server-side at-rule because they contain CSS properties whereas other
client-side at-rules contain complete styles.

Example 10-2 Nested Client-Side and Server-Side At-Rules

@agent gecko {
@page :first {
margin: 2in ;

}

@keyframes mymove {
@agent gecko {
0% { top: 0; left: 0; }
30% { top: 50px; }
68%, 72% { left: 50px; }
100% { top: 100px; left: 100%; }
}

@agent ie {

0% { top: 1; left: 1; }

30% { top: 100px; }

100% { top: 200px; left: 100%; }
}

10.4 Creating At-Rules in an ADF Skin

You can create a new at-rule in your ADF skin or override an at-rule that your ADF
skin inherits from the ADF skin that it extends. After you create an at-rule, you modify
it to define the style properties that you want it to contain.

10.4.1 How to Create an At-Rule

You can create an at-rule to specify that style properties for one or more selectors
render in a particular way when a condition specified by the at-rule is met.

To create an at-rule:

1. In the Selector Tree of the selectors editor, select New Selector with At-Rule from
the dropdown list, as illustrated in Figure 10-4.

Tip: If you know the name of the selector for which you want to
configure an at-rule, right-click it in the Selector Tree and, from the
context menu, choose New Selector with At-Rule. This populates the
Selector field in the Create At-Rule Declaration dialog with the name
of the selector that you right-clicked.

Working with At-Rules 10-7

Creating At-Rules in an ADF Skin

Figure 10-4 New Selector with At-Rule Menu in the Selector Tree

+*- X

Mew Style Class, .,

Mew Alias Selector,..

o+ with Ab-Rule. .

2. In the Create At-Rule Declaration dialog, select the at-rule that you want to
configure from the Rule dropdown list.

For more information about the at-rules that the ADF skinning framework
supports, see Section 10.2, "Working with Server-Side At-Rules" and Section 10.3,
"Working with Client-Side At-Rules."

3. Click OK.

4. In the Selector Tree, select the newly-created at-rule and, in the Properties window,
configure the properties that you want this at-rule to apply.

10.4.2 What Happens When You Create an At-Rule

The at-rule appears under the At-Rules node in the Selector Tree and a visual
representation as it applies to a component appears in the Preview Pane, as shown in
Figure 10-5. CSS syntax for the at-rule that you create and any properties that you
modified also appear in the source file of the ADF skin, as shown in Figure 10-5.

Figure 10-5 At-Rule in the Selector Tree and Source Editor

@ Start Page [@ skin3.css
0] | [Extended Skins ~

Q ? = .* - x Default (Mo) Theme Dark Theme
=12 at-Rules @é} 4 é/ %

22 @accessibility-profile large-fonts

af |button: kext

Eegular Button

3¢ Disabled Button

a Popup Button | «

Design | Seleckors| Source Hiskary

Q- Find

fcharset "UTF-57;

S*FADFFaces_3kin File / DO NOT REMOVES®/

fnamespace af "htrp: //xmlns.oracle.con/adf/faces/rich™;
framespace dyt "http://xnlns.oracle, con/dss/adf/faces™;

faccessibility-profile large-fonts {

af [button: :text |

color: Blue;

In the Properties window for the selector property on which you set an at-rule, an icon
appears to indicate that an at-rule is set, as illustrated in Figure 10-6.

10-8 Developing ADF Skins with Oracle ADF Skin Editor

Creating At-Rules in an ADF Skin

Figure 10-6 Properties Window with an At-Rule set on a Property

@ skinl.css
0 [£3 Extended Skins ~

aflbutton: text - Properies
Q, Find

i

®|:|

Default (Mo} Theme

@ - X

Q T~ - ¥

-3 Style Classes

Dark Theme Medium. .. s

[zl Common

Background Color; Eransparent

23 Global Selector Aliases

(3 At-Rules af |bukkon: ket

=[5 Fares Component Selectors Begular Button
---°>° BreadCrumbs
5@ Button 3 Disabled Butten
[af|button = = =
(2 Pseudo-Elements — = =
o b access-key @& Popup Button

[dropdown-cel
[dropdown-icon
D dropdown-icon-style

af |button:boktom: bext

(3 Descendant Selectors
[l = P

-

Background Image: E
Content:
Color: inherit
ﬁ%’.:nkh ke
This selector property is also set in the following At-Rules: :
@accessibility-profile large-fonts

color: Blue

Click on any at-rule link to go ko its declaration,

Padding:

Opx Opx Opx 0

-tr-rule-ref -tr-inhibit | -tr-enable-the

10.4.3 What Happens at Runtime: How the ADF Skinning Framework Applies At-Rules

At runtime, the ADF skinning framework picks the styles with at-rules based on the
HTTP request information, such as agent and platform, and merges them with the
styles without rules. Those style properties that match the rules get merged with those
outside of any rules. The most specific rules that match a user's environment take

precedence.

Example 10-3 shows several selectors in the source file of an ADF skin that will be

merged together to provide the final style.

Example 10-3 Merging of Style Selectors in an ADF Skin

/** For IE and Gecko on Windows, Linux and Solaris, make the color pink. **/

@platform windows, linux, solaris{
@agent ie, gecko
{
af\inputText::content {background-color:pink}

}

/** Define default properties for the af|panelFormLayout selector. **/

af |panelFormLayout {
color: red;
width: 10px;
padding: 4px

}

/** Define at-rule for af|pane1FormLayout on Internet Explorer (IE).

to increase the width, so we override the width.

and padding; this gets merged in. We want to add height in IE.

Qagent ie{
af|panelFormLayout {width: 25px; height: 10px}
}

/** For IE 8 and 9, we also need some margins.*/
@agent ie(version:8)and(version:9) {
af|panelFormLayout {margin: 5px;}

}

/** For Firefox 3
@agent gecko(version:1.9){

We need
We still want the color
*/

(Gecko 1.9) use a smaller margin.*/

Working with At-Rules 10-9

Creating At-Rules in an ADF Skin

af |panelFormLayout {margin: 4px;}

}

10-10 Developing ADF Skins with Oracle ADF Skin Editor

11

Applying the Finished ADF Skin to Your Web
Application

This chapter describes how to complete tasks that you need to do once you finish your
ADF skin. Information is provided on how to test your ADF skin, package the
completed ADF skin in an ADF Library JAR, and configure a Fusion web application
so that it uses the completed ADF skin.

This chapter includes the following sections:

= Section 11.1, "About Applying a Finalized ADF Skin to an Application”
m Section 11.2, "Testing Changes in Your ADF Skin"

= Section 11.3, "Packaging an ADF Skin into an ADF Library JAR"

= Section 11.4, "Applying an ADF Skin to Your Web Application"

= Section 11.5, "Applying an ADF Skin to a Running Web Application”

11.1 About Applying a Finalized ADF Skin to an Application

After you create an ADF skin where you define style properties for one or more ADF
skin selectors, you may want to test the changes that you make in the ADF skin. Once
you complete testing the changes in your ADF skin and are satisfied with the final
ADF skin, you can package the ADF skin and associated files (resource bundle,
images, and configuration files) into an ADF Library JAR to distribute for inclusion to
the application projects that use the final ADF skin. Once you have distributed the
final ADF skin, you configure the application to apply the ADF skin to it.

11.2 Testing Changes in Your ADF Skin

Once you have created an ADF skin and defined style properties that you want for one
or more selectors, you may want to test how these style properties render at runtime in
a browser. To do this, you apply the ADF skin to your application and run a page that
renders the ADF Faces component which exposed the selector.

Consider using tools, such as Firebug for the Mozilla Firefox browser (or similar for
your particular browser), when you run your application. These tools provide useful
information that can help you as you iteratively develop your ADF skin. For example,
in addition to inspecting changes that you have already made, these tools can help you
identify the ADF skin selectors that correspond to a particular DOM element.

You can also configure context initialization parameters in the web.xml file of your
application that allow you to:

= View changes in an ADF skin without having to restart the application

Applying the Finished ADF Skin to Your Web Application 11-1

Testing Changes in Your ADF Skin

Set the value of the following context initialization parameter to true:
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION

= Display the full uncompressed CSS style class name at runtime
Set the value of the following context initialization parameter to true:
org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION

Note that not all changes that you make to an ADF skin in your Fusion web
application appear immediately if you set the CHECK_FILE_MODIFICATION to true. You
must restart the Fusion web application to view changes that you make to icon and
ADF skin properties.

For more information about context initialization parameters, see the "ADF Faces
Configuration" appendix in Developing Web User Interfaces with Oracle ADF Faces (for
the release that pertains to the application you are skinning).

Figure 11-1 demonstrates how the name of a component selector (for the ADF Faces
button component) is suppressed. In Figure 11-1, the style class
(fndGlobalSearchCategory) that is defined in an ADF skin is applied to the button
component using the component's styleClass attribute.

Figure 11-1 Compressed CSS from an ADF Skin

* Personld 100
* PrincipalMame | SKING
Title
Firsthame | Steven
Lastharne | King

First Previous Mext Last

Subrmit

Create a new record

div#bE.p_AFHowerTarget.fndGlobalSearchCategory. xg3. p_AFTextOnly 119px~21px|

. - 1 p e 1
| <% Elements | ®_| Resources @Ne{work E!'Scripts @Timeline C Profies g.&udﬂs » |Ck |

e cellpadding="@" cellspacing="@" border="@" summary | » Computed Style [shows inherited
="width: auto"> [v Styles + O 2
j:i;jtr‘) element.style {
(=3
<td class="zdw" colspan="1"> +
¥<table cellpadding="@" cellspacing="@" border="@" width= hiatched C55 Rules
"lee%" summary: LREZ, WXED skin2-desktop-2fussp-1tr-safari-535.
¥ <tbody> displav: inline-block;
b <treadftre F padding: @px;
vaotrs cursor: default;
<tdzaftds white-space: nowrap;
¥otd class="x51"> min-height: 19px;
wodiv id="pgll" class="xla"> border-color: transparent;
pocdivoacrdive border-top-color: #ESESEE;

border-left -color: #ESESEE;
border-style: solid;
border-width: lpx;
border-right -color: [l#555;
border-bottom-colar: .#555;
background-color: [#BACSDC;

pocdivoacsdive
¥ <dive)

vy

<feivs P
<,-'d’:'_vj;u F background-position: top center;
Ta F background-repeat: repeat -x;
“itds background-image: -webkit-linear-gradient(top, #FFFF..
<itre font-family: Tahoma,verdana,frial,Helvetica,Freesans.
</thody> font-weight: normal;
<ftablex = font-size: 1lpx;
<rtds . color: EM#133358;
< IEIE]
B > Q .. thody tr td table | thody | tr td | #poll | div ' y ﬁ

Figure 11-2 shows how the browser renders the full uncompressed name of the ADF
Faces component when you set the DISABLE_CONTENT_COMPRESSION parameter to true.
In Figure 11-2, the uncompressed style class af_button corresponds to the af |button
selector documented in the Tag Reference for Oracle ADF Faces Skin Selectors (for the
release that pertains to the application you are skinning).

11-2 Developing ADF Skins with Oracle ADF Skin Editor

Testing Changes in Your ADF Skin

The uncompressed style classes that correspond to the pseudo-elements that an ADF
skin selector exposes can also be identified. For example, the tab-end pseudo-element
exposed by the af | panelTabbed selector (af | panelTabbed: : tab-end) translates to the
uncompressed af_panelTabbed_tab-end style class at runtime.

Similarly, changes that you make to the appearance of a component when itis in a
specific state can also be identified or inspected using browser tools. For example, the
following entry in the source file of an ADF skin allows you to define the style for the
ADF Faces panelTabbed component when a user selects the right-hand side of the
component:

af |panelTabbed: :tab:selected af|panelTabbed::tab-end
At runtime, the uncompressed style class name translates to the following:
.af_panelTabbed_tab.p_AFSelected .af_panelTabbed_tab-end

Note that : selected translates to p_AFSelected although sometimes the generated
CSS does not have a p_AFSelected equivalent because some browsers have built-in
support for that particular state, as is the case for other pseudo-classes like :hover.

It is recommended that you only customize the ADF skin selectors, pseudo-elements,
and pseudo-classes documented in the Tag Reference for Oracle ADF Faces Skin Selectors
and the Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors (for the
release that pertains to the application you are skinning). Customizing other ADF skin
selectors may result in unexpected or inconsistent behavior for your application.

Figure 11-2 Uncompressed CSS from an ADF Skin

€« C | @ 127.0.0.1:7101/Application2-viswControler-context-root/faces/page 1.jsf?_adf.cirl-state=yarvgeww2_3 w5 2

* Personld]
* PrincipalMlame | SKING
Tikle:

FirstMame | Steven

LastMame | King

First Previous Mext Last

Submit

div#b6. p_AFHowverTarget.fndSlobalSearchlategory. af_button. p_AFTextOnly 119px~21px|

— L £=
} E@Elemen{si lgj Rezources @Na{wnrk &Scripts @T\me\ine C Profiles gAUdits £ ‘Q |

votrs 4| » Computed Style [show inharited

Tatd class="af_panelFormlayout_column" colspan="1"> ¥ Styles + iR B

¥<table cellpadding="@" cellspacing="@" border="@"
"1@@%" summary:

element.style {

¥ othodys
»Str, it T
¥<trs histched CS5 Rules
ctdze/tdy skin2-desktop-2fwszp-ltr-safari-535.
¥<td class="af_panelFormLayout_content-cell"s .af_commandToolbarButton: hover, .af_button:hover,
vodiv 1d="pgll" class="af_panelGrouplayout"s -af_commandButton: hover, .af_resetButton:hover,
pocdivmaeidive .af_goButton:hover, .af_dialog_footer-button:hover,

.af_query_button:hover, .&FNoteWindowAllButton:hover,
.af_commandButton: focus:hover,
.af_resetButton:focus:hover, .af_goButton:focus:hover,
.af_dialog_footer-button:focus:hover,
.af_query_button:focusihover,
_AFNoteWindowfllButtaon:focus thover,
.af_trainButtonBar_back-button:hover,
.af_trainButtonBar_next-button:hover {

Fort-fanily: Tahoma,Verdana,frial,Helvetica,Freesans.

Font-weight: normal;

b cdivz. g fdive
¥ odiuz

</thody> font-size: 1lpx;
</tablex color: Eblack;
<ftdx border-color: transparent;
<ftre border-top-color: D#SBBlFH;
<fthody: border-right -calor: D&SGBlF&;
Zitables 3 border-bottom-color: [El#6@E1FA;
[EERE — border-left-color: D#EBBlFA;
| | > » horder-width: 1px;

I8 = Q.. fr td teble | thody tr td | #pg | div

Applying the Finished ADF Skin to Your Web Application 11-3

Packaging an ADF Skin into an ADF Library JAR

11.2.1 How to Set Parameters for Testing Your ADF Skin

You set the CHECK_FILE MODIFICATION and DISABLE_CONTENT_COMPRESSION context
initialization parameters to true in the web.xml file of your application.

To set parameters for testing your ADF skin:
1. In the Applications window, double-click the web.xml file.

2. In the source editor, add the following context initialization parameter entries and
set to true:

m org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
m org.apache.myfaces.trinidad.DISABLE_CONTENT_ COMPRESSION

3. Save and close the web.xml file.

11.2.2 What Happens When You Set Parameter for Testing Your ADF Skin

Entries appear in the web.xml file for your application, as illustrated in Example 11-1.

Example 11-1 web.xml Entry

<context-param>
<param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
<param-value>true</param-value>

</context-param>

<context-param>
<param-name>org.apache.myfaces.trinidad.DISABLE_CONTENT COMPRESSION</param-name>
<param-value>true</param-value>

</context-param>

Changes that you make to a selector for an ADF Faces component (other than changes
to icon and skin properties) render immediately when you refresh a Fusion web
application's page that renders the ADF Faces component. Using Firebug if your
browser is Mozilla Firefox or Google Chrome's developer tools, you can see the
uncompressed style class names that render at runtime and establish what ADF skin
selector it corresponds to. Remember that setting
org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION to true incurs a
performance cost for your Fusion web application so set it to false when you finish
testing your changes.

11.3 Packaging an ADF Skin into an ADF Library JAR

You can deploy an ADF skin and associated files (for example, image files,
configuration files, and resource bundles) in an ADF Library JAR. This enables you to
package files required to apply an ADF skin to an application. The benefits of
packaging ADF skins into an ADF Library JAR as compared to bundling them into the
application are the following;:

= An ADF skin can be deployed and developed separately from the application. This
also helps to reduce the number of files to be checked in case some changes must
be applied to the ADF skin.

s The source files for an ADF skin and images can be separated into their own ADF
Library JARs. Therefore, you can partition the image base into separate ADF
Library JARs, so that not all files have to be deployed with all applications.

= An ADF skin in an ADF Library JAR can be applied to an application that is
running without requiring a restart, as described in Section 11.5, "Applying an

11-4 Developing ADF Skins with Oracle ADF Skin Editor

Packaging an ADF Skin into an ADF Library JAR

ADF Skin to a Running Web Application.”

11.3.1 How to Package an ADF Skin into an ADF Library JAR

Create an ADF Library JAR file deployment profile to package the ADF skin into an
ADF Library JAR.

To create an ADF Library JAR file deployment profile:

1. In the Applications window, right-click the project that contains the ADF skins
and choose Deploy > New Deployment Profile.

2. In the Create Deployment Profile dialog, choose ADF Library JAR File in the
Profile Type dropdown list.

3. Enter a name for the deployment profile in the Deployment Profile Name input
field and click OK.

4. Review the options in the Edit ADF Library JAR Deployment Profile Properties
dialog that appears. For more information at any time, click Help.

5. Click OK.

To package an ADF skin into an ADF Library JAR:

1. In the Applications window, right-click the project that contains the ADF skin and
choose Deploy > deployment, where deployment is the name of the ADF Library
JAR file deployment profile.

2. In the Deploy dialog Deployment Action page, click Deploy to ADF Library JAR
file, click Next and then click Finish.

11.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

An ADF Library JAR file is written to the directory specified by the deployment
profile. This ADF Library JAR contains the source file for the ADF skin, the
trinidad-skins.xml file, image files, and any resource bundles that you created to
define resource strings or to override the default strings defined for ADF Faces
components. The ADF Library JAR file also contains other files from the ADF skin's
project not related to skinning.

Example 11-2 shows the directory structure for a project that contains the following
items for an ADF skin:

s The trinidad-skins.xml file
= Animage file (sort_des_ena.png) copied into the ADF skin project
» The source file for an ADF skin (skinl.css)

s An .sva file (oracle.adf.common. services.ResourceService. sva) that is used to
inspect the content of the ADF Library JAR when you import it into a project, as
described in Section 4.5, "Importing ADF Skins from an ADF Library JAR."

= Aresource bundle (skinBundle.properties) that contains string values to
override strings from the default resource bundle

For information about how to specify resource bundles that contain string values
you define, see Section 7.2.1, "How to Specify an Additional Resource Bundle for
an ADF Skin."

Applying the Finished ADF Skin to Your Web Application 11-5

Applying an ADF Skin to Your Web Application

Example 11-2 Directory Structure for an ADF Library JAR Containing an ADF Skin

ADFLibraryJARRootDirectory

+---META-INF

| | MANIFEST.MF

| oracle.adf.common.services.ResourceService.sva
| trinidad-skins.xml

|

|

|

| +---adf

| | \---skins

| \---skinl

| | \---images

| | \---af_column
| | colSort_des_ena.png
|

| \---skins

| \---skinl

| skinl.css

|

\---resources

skinBundle.properties

The directory paths for images in the ADF skin that appear in the ADF Library JAR are
modified to include the directory path from the ADF skin project. Example 11-3
demonstrates an example of the changes that occur:

Example 11-3 Modified Directory Path for Images in a Deployed ADF Skin

// Reference to an image in an ADF skin prior to deployment to an ADF Library JAR
af |column: :sorted-descending-icon-style
{

background-image: url ("images/af_column/colSort_des_ena.png");

}

// Reference to an image in an ADF skin after deployment to an ADF Library JAR
af |column: : sorted-descending-icon-style
{

background-image: url ("/adf/skins/skinl/images/af_column/colSort_des_ena.png");

}

11.4 Applying an ADF Skin to Your Web Application

You configure an application to use an ADF skin by specifying values in the
application's trinidad-config.xml file. You specify a value for the <skin-family>
element that identifies the ADF skin family the application uses at runtime. If you
created more than one ADF skin in the ADF skin family, you can version these ADF
skins. If you versioned multiple ADF skins in the same ADF skin family, use the
<skin-version> element in the trinidad-config.xml file to identify the specific
version that you want the application to use.

If you do not identify a specific ADF skin from an ADF skin family by entering a value
for the <skin-version> element in the trinidad-config.xml file or using the
<default>true</default> element in the trinidad-skins.xml file, the application
uses the last skin defined in the trinidad-skins.xml file. For more information about
versioning ADF skins and how this can determine the ADF skin that your application
chooses, see Section 12.4, "Versioning ADF Skins."

Note that you can configure an application page for your end users to dynamically
select the ADF skin that they want the application to use. For more information, see

11-6 Developing ADF Skins with Oracle ADF Skin Editor

Applying an ADF Skin to a Running Web Application

Developing Web User Interfaces with Oracle ADF Faces (for the release that pertains to the
application you are skinning).

11.4.1 How to Apply an ADF Skin to an Application

You apply an ADF skin to an application by modifying the application's
trinidad-config.xml file. You do this by editing the application's
trinidad-config.xml file to specify the ADF skin family to use. Alternatively, you can
select the ADF skin family from a list in the ADF View options of JDeveloper's Project
Properties dialog.

To apply an ADF skin to an application:

1. In the Applications window, double-click the trinidad-config.xml file. By default,
this file is in the Web Content/WEB-INF node.

2. In the source editor, write entries to specify the value of the <skin-family>
element and, optionally, the <skin-version> element as shown in Example 11-4.

11.4.2 What Happens When You Apply an ADF Skin to an Application

The values that you specify for the <skin-family> element and, optionally, the
<skin-version> element in the trinidad-config.xml file determine the ADF skin that
the Fusion web application uses at runtime, as shown in Example 11-4.

Example 11-4 trinidad-config.xml File

<?xml version="1.0" encoding="windows-1252"7?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
<skin-family>skyros</skin-family>
<skin-version>vl</skin-version>
</trinidad-config>

11.5 Applying an ADF Skin to a Running Web Application

Using Java Management Extensions (JMX), you can apply an ADF skin that is
packaged in an ADF Library JAR to a Fusion web application without having to restart
the application. To do this, you must configure the Fusion web application's source
files, as described in Section 11.5.1, "How to Configure your Fusion Web Application to
Accept an Updated ADF Skin." You then use the ADF Skin Editor to connect to the
MBean server and deploy the ADF Library JAR containing the ADF skin(s). For more
information, see Section 11.5.2, "How to Deploy an ADF Library JAR to an MBean
Server." This makes all ADF skins contained in the ADF Library JAR available to the
Fusion web application.

11.5.1 How to Configure your Fusion Web Application to Accept an Updated ADF Skin

You make the following changes to the Fusion web application's ViewController
project in JDeveloper so that the application can apply a new ADF skin deployed by a
MBean server without requiring a restart of the Fusion web application:

= Select the Enable Runtime Skin Updates checkbox in the ADF View page of the
application's ViewController project

= Add ADF Faces JMX Runtime 11 to the application's classpath

= (Optional) Add a context initialization parameter to the application's web.xml file

Applying the Finished ADF Skin to Your Web Application 11-7

Applying an ADF Skin to a Running Web Application

The context initialization parameter enables you to specify a user friendly name to
identify the Fusion web application rather than use the application's context root.

Note: The Fusion web application must be deployed in an exploded
format, as is the case when you run the application in the Integrated
WebLogic Server.

To configure your Fusion web application to accept an updated ADF skin:

1.
2
3.

In JDeveloper's Applications window, select the ViewController project.
From the main menu, choose Application > Project Properties.

In the Project Properties dialog, select the ADF View page and then select the
Enable Runtime Skin Updates checkbox.

Select the Libraries and Classpath page and verify that ADF Faces JMX Runtime 11
appears in the Classpath Entries list. If it is not, click Add Library.

In the Add Library dialog, select ADF Faces JMX Runtime 11 and click OK.
Click OK.

Optionally, in the Applications window, double-click the web.xml file located in
the WEB-INF directory and add a context initialization parameter where you can
specify an easy to remember name for your application. Otherwise, the default
behavior is to use the context root of the application.

In the overview editor, click the Application navigation tab and then click the Add
icon next to the Context Initialization Parameters table to add an entry for the
oracle.adf.view.rich.SKINNING_MBEAN_NAME parameter and set its value to a
name that you will use to identify the Fusion web application to the MBean server.

11.5.2 How to Deploy an ADF Library JAR to an MBean Server

You deploy the ADF Library JAR that packages the ADF skin(s) to the MBean server.
For information about how to create an ADF Library JAR file deployment profile to
package the ADF skin(s), see Section 11.3.1, "How to Package an ADF Skin into an
ADF Library JAR."

To deploy an ADF Library JAR to an MBean Server:

1.

In the Applications window, right-click the project that contains the ADF skin(s)
and choose Deploy > deployment, where deployment is the name of the ADF
Library JAR file deployment profile.

In the Deployment Action page, select Deploy to ADF Skin Managed Bean and
then click Next.

In the Skin Connection page, choose the appropriate option:
s Click Add to create a new connection to the MBean server and go to Step 4.

= Choose an existing connection from the Connection dropdown list and go to
Step 5.

In the Create JMX Connection dialog, complete the fields to connect to the MBean
server:

= Connection Name: Enter a name for the connection. The connection name
must be a valid Java identifier, and as the name and connection are global
across your installation, choose an appropriate and unique name.

11-8 Developing ADF Skins with Oracle ADF Skin Editor

Applying an ADF Skin to a Running Web Application

= Server Type: The default of Weblogic Server is preselected for connections
from the ADF Skin Editor.

s Username: Enter the user name to be authorized for access to the MBean
server.

= Password: Enter the password to be associated with the specified user name.
An asterisk (*) appears for each character you type in this field.

= Protocol: The ADF Skin Editor uses the t3 protocol to communicate with the
MBean server.

= Hostname: Enter a value to identify the machine running the MBean server.
Use an IP address or a host name that can be resolved by TCP/IP, for example
if the MBean server is on the local machine, use localhost, or 127.0.0.1.

s Port: Enter the listen port for the MBean server. The default is whatever the
default port number of the Integrated Weblogic Server is (often 7101).

s URL Provider Path: Enter the absolute JNDI name of the MBean server. It
must start with /jndi/ and be followed by one of:

— weblogic.management .mbeanservers.domainruntime
— weblogic.management .mbeanservers.runtime
— weblogic.management.mbeanservers.edit
= Server Install Location: Displays the server install location.
s Test Connection: Click to test the connection.

= Status: A Success! message indicates that the ADF Skin Editor has been able
to connect to the MBean server. Any other message indicates that the
connection has failed. Amongst the things you should check before trying Test
Connection again are:

— Whether the network is working correctly when the MBean server is not
local.

— The values entered in this dialog.

5. In the Application Name field, select the name of the Fusion web application that
you want to deploy the ADF Library JAR containing the ADF skin(s) to. Click
Find Running Applications to retrieve the list of available applications and to
make sure that the application is running.

The name of the application's root context appears unless you specified the name
of the application to be the value that you entered for the
oracle.adf.view.rich.SKINNING_MBEAN_NAME parameter, as described in
Section 11.5.1, "How to Configure your Fusion Web Application to Accept an
Updated ADF Skin."

6. Click Next and then click Finish.

11.5.3 What Happens When You Apply an ADF Skin to a Running Application

The ADF Skin Editor deploys the ADF Library JAR containing the ADF skin(s) to the
Fusion web application. This ADF Library JAR contains the ADF skin and other
associated files (for example, any images that the ADF skin requires). For more
information about the contents of the ADF Library JAR, see Section 11.3.2, "What
Happens When You Package an ADF Skin into an ADF Library JAR." The ADF skins
are installed in the root directory of the Fusion web application. The

Applying the Finished ADF Skin to Your Web Application 11-9

Applying an ADF Skin to a Running Web Application

trinidad-skins.xml file of the Fusion web application is updated to reference the
newly-added ADF skins.

To make the Fusion web application use the newly-available ADF skin, you need to
update the value that the trinidad-config.xml file's <skin-family> element
references. You can do this manually, as described in Section 11.4.1, "How to Apply an
ADF Skin to an Application,” or you can specify an EL expression for the element that
updates the value programmatically. For more information about this latter option, see
the "Customizing the Appearance Using Styles and Skins" chapter in Developing Web
User Interfaces with Oracle ADF Faces (for the release that pertains to the application you
are skinning).

11-10 Developing ADF Skins with Oracle ADF Skin Editor

12

Advanced Topics

This chapter provides information to help you if you make changes in the source file of
an ADF skin or in the configuration files that control the usage of ADF skins. The
chapter also lists and describes the ADF skins provided by Oracle ADE.

This chapter includes the following sections:

Section 12.1, "Referring to URLs in an ADF Skin's CSS File"
Section 12.2, "Configuration Files for an ADF Skin"

Section 12.3, "ADF Skins Provided by Oracle ADF"

Section 12.4, "Versioning ADF Skins"

12.1 Referring to URLs in an ADF Skin's CSS File

An ADF skin's CSS file typically uses a URL to refer to a resource that is external to the
file. For example, an image that an application uses to render with an error message.
You can refer to a URL from an ADF skin's CSS file in a number of different formats.
The supported formats are:

Absolute

You specify the complete URL to the resource. For example, a URL in the
following format:

http://www.mycompany .com/WebApp/Skin/skinl/img/errorIcon.gif
Relative

You can specify a relative URL if the URL does not start with / and no protocol is
present. A relative URL is based on the location of the ADF skin's CSS file. For
example, if the ADF skin's CSS file directory is WebApp/Skin/skinl/ and the
specified URL is img/errorIcon.gif, the final URL is
/WebApp/Skin/mySkin/img/errorIcon.gif

Context relative

This format of URL is resolved relative to the context root of your web application.
You start a context relative root with /. For example, if the context relative root of a
web application is:

/WebApp
and the specified URL is:
/img/errorIcon.gif

the resulting URL is:

Advanced Topics 12-1

Configuration Files for an ADF Skin

/WebApp/img/errorIcon.gif
s Server relative

A server relative URL is resolved relative to the web server. This differs to the
context relative URL in that it allows you reference a resource located in another
application on the same web server. You specify the start of the URL using //. For
example, write a URL in the following format:

/ /WebApp/Skin/mySkin/img/errorIcon.gif

The format of URL that you use may be important if you create a Java Archive (JAR)
file to package and distribute your ADF skin and its associated files. For more
information, see Section 11.3, "Packaging an ADF Skin into an ADF Library JAR."

12.2 Configuration Files for an ADF Skin

The following list describes the configuration files associated with the project for an
ADF skin. You modify values in these files while you develop your ADF skin or when
you finish development and want to apply the finished ADF skin to an application.

s trinidad-skins.xml

This file registers the ADF skins that you create, as described in Section 4.3,
"Creating an ADF Skin File." Example 12-1 demonstrates how to register a number
of ADF skins that extends from a sample of the ADF skins described in Table 12-1.

Example 12-1 Registering an ADF Skin in the trinidad-skins.xml File

<!-- Use the following values in the trinidad-skins.xml file if you want to extend
the fusionFx-v1.2 skin. -->
<skin>

<id>yourSkin.desktop</id>
<family>yourSkinFamily</family>
<extends>fusionFx-vl.2.desktop</extends>

</skin>

<!-- Use the following values in the trinidad-skins.xml file if you want to extend
the skyros-vl skin. -->
<skin>

<id>yourSkin.desktop</id>
<family>yourSkinFamily</family>
<extends>skyros-vl.desktop</extends>

</skin>

For more information about this file, see the "Configuration in trinidad-skins.xml"
section in Developing Web User Interfaces with Oracle ADF Faces (for the release that
pertains to the application you are skinning).

s trinidad-config.xml

You configure the <skin-family> element in this configuration file to tell the
application what ADF skin to use, as described in Section 11.4, "Applying an ADF
Skin to Your Web Application." Example 12-2 demonstrates a number of examples
that show how to configure your web application to use some of the ADF skins
listed in Table 12-1.

12-2 Developing ADF Skins with Oracle ADF Skin Editor

ADF Skins Provided by Oracle ADF

Example 12-2 Configuring an Application's trinidad-config.xml File to Use an ADF Skin

<!-- Use the following value in the trinidad-config.xml file if you want your
application to use the fusionFx-simple-v2 skin -->
<skin-family>fusionFx-simple</skin-family>

<skin-version>v2</skin-version>

<!-- Use the following value in the trinidad-config.xml file if you want your
application to use the fusionFx-v2.1 skin. -->
<skin-family>fusionFx</skin-family>

<gkin-version>v2.l<skin-version>

<!-- Use the following value in the trinidad-config.xml file if you want your
application to use the skyros skin. -->
<skin-family>skyros</skin-family>

<skin-version>vl<skin-version>

For more information about this file, see the "Configuration in
trinidad-config.xml" section in Developing Web User Interfaces with Oracle ADF Faces
(for the release that pertains to the application you are skinning).

s web.xml

You can configure context initialization parameters in this file to facilitate the
development and testing of your ADF skin, as described in Section 11.2, "Testing
Changes in Your ADF Skin." You can also configure a context initialization
parameter (org.apache.myfaces.trinidad.skin.MAX_SKINS_CACHED) to specify
the maximum number of unique ADF skins (for example, fusion or
fusionFx-simple) for which you store information in memory about the
generated CSS files. Using this context initialization parameter can help maintain
the performance of your application if you use many different skins.

For more information about the web.xml file and context initialization parameters,
see the "Configuration in web.xml" section in Developing Web User Interfaces with
Oracle ADF Faces (for the release that pertains to the application you are skinning).

12.3 ADF Skins Provided by Oracle ADF

Oracle ADF provides a variety of ADF skins from which you can extend when you
create a new ADF skin. Table 12-1 describes the differences between each of these ADF
skins. The value you choose for the Target Application Release property, as described
in Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects," determines
the ADF skins available to you to extend from. Not all ADF skin listed in Table 12-1
will be available to you. For example, if you choose 11.1.1.4.x as the value for the
Target Application Release property the skyros skin is not available to extend.

The Base Skin page of the Create ADF Skin dialog that appears when you create an
ADF skin, as described in Section 4.3, "Creating an ADF Skin File," recommends the
appropriate ADF skin to extend from based on the release of Oracle ADF for which
you want to create an ADF skin. For example, if you choose 12.1.2.0.x as the value
for the Target Application Release property, the recommended ADF skin to extend
from is skyros-v1.desktop.

You can apply any of the ADF skins listed in Table 12-1 to your web application. For
more information, see Section 12.2, "Configuration Files for an ADF Skin." For a
diagram that illustrates the inheritance relationship between the ADF skins, see
Section 1.4, "Inheritance Relationship of the ADF Skins Provided by Oracle ADE."

Advanced Topics 12-3

ADF Skins Provided by Oracle ADF

Table 12-1 ADF Skins Provided by Oracle ADF

ADF Skin Description
simple Contains only minimal formatting.
skyros-vl Extends the simple skin. It provides a colorful look and feel to applications that use

fusion-base

fusion

fusion-11.1.1.3.0

it. The skyros skin also provides a simpler DOM structure alternative for image
borders in comparison to, for example, the fusion skins.

You can provide a simpler DOM structure alternative for image borders in
non-skyros skins by setting values for a <feature> element in the
trinidad-skins.xml file, as described in Section 6.6, "Providing a Simple Border
Style for ADF Skins."

Extends the simple skin. The Fusion and Fusion Simple families of ADF skin extend
this skin (for example, the fusion and fusionFx-simple skins). Oracle recommends
that you do not extend from the fusion-base skin.

Extends the fusion-base skin. This skin provides a significant amount of styling.
This skin is deprecated.

Extends the fusion skin. This skin makes the hierarchy structure in certain
components that render tabs clearer. These components are panelTabbed,
navigationPane (attribute hint="tabs"), and decorativeBox. This skin also defines a
more subtle background image for disclosed panelAccordion component panes to
make text that appears in these panes easier to read.

12-4 Developing ADF Skins with Oracle ADF Skin Editor

ADF Skins Provided by Oracle ADF

Table 12-1 (Cont.) ADF Skins Provided by Oracle ADF

ADF Skin

Description

fusionFx-vl

fusionFx-vl1.1

fusionFx-v1.2

fusionFx-v1.3

fusionFx-v2

Extends the fusion-11.1.1.3.0 skin. This skin contains design improvements and
changes to address a number of issues. Specifically, it adds:

= Abackground color to the . AFMaskingFrame global style selector to prevent the
display of content from an underlying frame when an inline popup displays in
certain browsers.

= Aboolean ADF skin property, -tr-stretch-dropdown-table, for the
inputComboboxListOfValues component. This property determines whether the
table in the list stretches to show the content of the table columns or limits the
width of the table to the width of the input field in the
inputComboboxListOfValues component.

s The inlineFrame component displays an image that serves as a loading
indicator until the browser determines that the frame's contents have been
loaded.

You can implement this functionality in an ADF skin that you create. The
af|inlineFrame selector has "busy" and "flow" pseudo-classes that enable you to
do this. The inlineFrame component only generates an IFrame element when
the parent component does not stretch the inlineFrame component (the
inlineFrame component is flowing). Use af | inlineFrame:busy: flow to define a
background-image style that references a loading indicator. When the parent
component stretches the inlineFrame component, the generated content is more
complex. This complexity allows you define a content image URL using the
af|inlineFrame: :status-icon and an optional additional background-image
using the af | inlineFrame: :status-icon-style. It also allows you to reuse
images that other component selectors use. For example, the carousel
component's af | carousel: : status-icon and
af |carousel: :status-icon-style selectors. Use skinning aliases to reuse these
images.
The following global selectors have also been introduced that you can use if you
implement this functionality in your ADF skin:
n .AFBackgroundImageStatus:alias: use to
reference the background image used in
af|inlineFrame: :busy:flow.

m .AFStatusIcon:alias use to reference the
af|carousel::status-icon and
af|inlineFrame: :status-icon.

m .AFStatusIconStyle:alias use to reference the
af|carousel::status-icon-style and
af|inlineFrame::status-icon-style.

A resource key (af_inlineFrame.LABEL_FETCHING) defines the string to display
for the inlineFrame component's loading icon.

Extends the fusionFx-v1 skin. It adds support for the ability to clear
Query-By-Example (QBE) filters in an af : table component.

Extends the fusionFx-v1.1 skin. It contains a number of user interface
enhancements, including optimizations for when your application renders in a touch
screen device.

Extends the fusionFx-v1.2 skin. Changes include a new skin property
(-tr-pop-out-animation-duration) and a number of modified pseudo-elements for
the af | carousel selector.

Extends from the fusionFx-v1 skin. It makes the hierarchy structure in certain
components that render tabs clearer. These components are panelTabbed,
navigationPane (attribute hint="tabs"), and decorativeBox. This skin also defines a
more subtle background image for disclosed panelAccordion component panes to
make text that appears in these panes easier to read.

Advanced Topics 12-5

Versioning ADF Skins

Table 12-1 (Cont.) ADF Skins Provided by Oracle ADF

ADF Skin

Description

fusionFx-v2.1

fusionFx-v3

fusionFx-simple-vN.N

Projector skins

Extends from the fusionFx-v2 skin. It contains a number of user interface
enhancements, including optimizations for when your application renders in a touch
screen device.

Extends from the fusionFx-v2 skin. It contains a number of enhancements, including
changes to make the appearance lighter and brighter across container-type
components such as the panelBox and decorativeBox components.

The fusionFx-simple-vN.N skins are the same as the Fusion family of ADF skins, but
with a simplified color palette. This makes changing the color scheme for ADF skins
that extend the fusionFx-simple-vN.Nskins easier than changing the color scheme
for skins that extend the Fusion family of ADF skins. You can change a small number
of color aliases in an ADF skin that extends the fusionFx-simple-vN.N skins to make
significant changes to the color scheme. In addition, you can use the images editor to
change the color scheme of your ADF skin when you extend one of the
fusionFx-simple-vN.Nskins. For more information about the images editor, see
Section 6.5, "Working with the Images Editor."

In 12¢ (12.1.3) of Oracle ADF, the Fusion Simple family of ADF skin is available in the
following versions:

= fusionFx-simple (This skin is deprecated).
. fusionFx-simple-vl

] fusionFx-simple-v1l.1

. fusionFx-simple-vl.2

n fusionFx-simple-vl.3

. fusionFx-simple-v2

] fusionFx-simple-v2.1

. fusionFx-simple-v3

ADF Faces provides projector skins that you can download from the Oracle
Technology Network (OTN) web site. These skins define styles for an application
that you want to demonstrate to an audience using a projector. Each projector skin
modifies a number of elements in a parent skin so that an application renders
appropriately when displayed using table-top projectors (particularly older models
of projector). These skins are useful if the audience is present at the same location as
the projector. They may not be appropriate for an audience that views an application
online through a web conference. ADF Faces provides the following projector skins:

s fusion-projector: This skin modifies a number of elements in the fusion skin
so that an application renders appropriately on a projector.

s fusionFx-v2-projector: This skin modifies a number of elements in the
fusionFx-v2 skin so that an application renders appropriately on a projector.

s fusion-11.1.1.3.0-projector: This skin modifies a number of elements in the
fusion-11.1.1.3.0 skin so that an application renders appropriately on a
projector.

12.4 Versioning ADF Skins

You can specify version numbers for your ADF skins in the trinidad-skins.xml file
using the <version> element. Use this optional capability if you want to distinguish
between ADF skins that have the same value for the <family> element in the
trinidad-skins.xml file. Note that when you configure an application to use a
particular ADF skin, you do so by specifying values in the trinidad-config.xml file,
as described in section Section 11.4, "Applying an ADF Skin to Your Web Application."

12-6 Developing ADF Skins with Oracle ADF Skin Editor

Versioning ADF Skins

12.4.1 How to Version an ADF Skin

You specify a version for your ADF skin by entering a value for the <version> element
in the trinidad-skins.xml file.

To version an ADF skin:

1. In the Applications window, double-click the trinidad-skins.xmnl file. By default,
this is in the Web Content/WEB-INF node.

2. In the Structure window, right-click the skin node for the ADF skin that you want
to version and choose Insert inside skin > version.

3. In the Insert version dialog, select true from the default list if you want your
application to use this version of the ADF skin when no value is specified in the
<skin-version> element of the trinidad-config.xml file, as described in
Section 11.4, "Applying an ADF Skin to Your Web Application."

4. Enter a value in the name field. For example, enter v1 if this is the first version of
the ADF skin.

5. Click OK.

12.4.2 What Happens When You Version ADF Skins

Example 12-3 shows an example trinidad-skins.xml that references three ADF skins
(skinl.desktop, skin2.desktop, and skin3.desktop). Each of these ADF skins have
the same value for the <family> element (test). The values for the child elements of
the <version> elements distinguish between each of these ADF skins. At runtime, an
application that specifies test as the value for the <skin-family> element in the
application's trinidad-config.xml file uses skinl.desktop because this ADF skin is
configured as the default skin in the trinidad-skins.xml file
(<default>true</default>). You can override this behavior by specifying a value for
the <skin-version> element in the trinidad-config.xml file, as described in

Section 11.4, "Applying an ADF Skin to Your Web Application." For example, if you
specify v2 as a value for the <skin-version> element in the trinidad-config.xml file,
the application uses skin2.desktop instead of skinl.desktop that is defined as the
default in the trinidad-skins.xml file.

If you do not specify the skin version to pick (using the <skin-version> element in the
trinidad-config.xml file), then the application uses the skin that is defined as the
default using the <default>true</default> element in the trinidad-skins.xml file.
If you do not specify a default skin, the application uses the last ADF skin defined in
the trinidad-skins.xml file. In Example 12-3, the last ADF skin to be defined is
skin3.desktop.

Example 12-3 trinidad-skins.xml File with Versioned ADF Skin Files

<?xml version="1.0" encoding="windows-1252"7?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
<skin>
<id>skinl.desktop</id>
<family>test</family>
<extends>skyros-vl.desktop</extends>
<render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
<style-sheet-name>skins/skinl/skinl.css</style-sheet-name>
<version>
<default>true</default>
<name>vl</name>
</version>

Advanced Topics 12-7

Versioning ADF Skins

</skin>

<skin>
<id>skin2.desktop</id>
<family>test</family>
<extends>skinl.desktop</extends>
<render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
<style-sheet-name>skins/skin2/skin2.css</style-sheet-name>
<version>

<name>v2</name>

</version>

</skin>

<skin>
<id>skin3.desktop</id>
<family>test</family>
<extends>skin2.desktop</extends>
<render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
<style-sheet-name>skins/skin3/skin3.css</style-sheet-name>
<version>

<name>v3</name>

</version>

</skin>

</skins>

12-8 Developing ADF Skins with Oracle ADF Skin Editor

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.1.3)

	1 About Skinning a Web Application
	1.1 Introduction to Skinning a Web Application
	1.2 Overview of Developing an ADF Skin
	1.3 Taking a Look at an ADF Skin
	1.4 Inheritance Relationship of the ADF Skins Provided by Oracle ADF

	2 Working with ADF Skin Selectors
	2.1 About ADF Skin Selectors
	2.1.1 ADF Skin Selectors and Pseudo-Elements
	2.1.2 ADF Skin Selectors and Icon Images
	2.1.3 Grouped ADF Skin Selectors
	2.1.4 Descendant ADF Skin Selectors

	2.2 Pseudo-Classes in the ADF Skinning Framework
	2.3 Properties in the ADF Skinning Framework
	2.4 Accessing Selector Information from Within the ADF Skin Editor

	3 Working with the ADF Skin Editor
	3.1 About the ADF Skin Editor
	3.2 Working with the ADF Skin Design Editor
	3.2.1 How to Change the Browser that Renders the Design Editor's Sample Pages

	3.3 Working with the ADF Skin Selectors Editor
	3.3.1 About the Selector Tree
	3.3.2 Interactive Preview in the Selectors Editor

	3.4 Working with the Properties Window
	3.5 Navigating ADF Skins
	3.6 Customizing the ADF Skin Editor
	3.6.1 How to Change the Look and Feel of the ADF Skin Editor
	3.6.2 How to Customize the General Environment for the ADF Skin Editor

	3.7 Searching the Source Files of ADF Skins
	3.7.1 How to Search the Source Files of ADF Skins

	3.8 Working with Extensions
	3.8.1 How to Install Extensions with Check for Updates

	3.9 Adding External Tools to the ADF Skin Editor
	3.9.1 How to Add External Tools to the ADF Skin Editor

	3.10 Navigating the ADF Skin Editor
	3.10.1 How to Work With Shortcut Keys In the ADF Skin Editor
	3.10.2 Keyboard Navigation In the ADF Skin Editor
	3.10.2.1 Common Navigation Keys
	3.10.2.2 Navigation In Standard Components
	3.10.2.3 Navigating Complex Controls
	3.10.2.4 Navigation in Specific Components

	3.11 Working with the Resources Window
	3.11.1 Working with IDE Connections
	3.11.2 How to Search the Resources Window
	3.11.3 Filtering Resources Window Contents
	3.11.4 Importing and Exporting Catalogs and Connections
	3.11.5 Working with Resources Window Catalogs
	3.11.5.1 Creating Catalogs
	3.11.5.2 Renaming Catalogs

	3.11.6 Working with Catalog Folders
	3.11.6.1 How to Create Folders
	3.11.6.2 How to Create Dynamic Folders
	3.11.6.3 How to Add Resources to a Catalog

	3.12 Working with the Issues Window

	4 Creating the Source Files for an ADF Skin
	4.1 About Creating an ADF Skin
	4.2 Creating ADF Skin Applications and ADF Skin Projects
	4.2.1 How to Create an ADF Skin Application
	4.2.2 How to Create a New ADF Skin Project

	4.3 Creating an ADF Skin File
	4.3.1 How to Create an ADF Skin in the ADF Skin Editor
	4.3.2 How to Create an ADF Skin in JDeveloper
	4.3.3 What Happens When You Create an ADF Skin

	4.4 Importing One or More ADF Skins Into the Current ADF Skin
	4.5 Importing ADF Skins from an ADF Library JAR
	4.5.1 How to Import an ADF Skin from an ADF Library JAR
	4.5.2 What Happens When You Import an ADF Skin from an ADF Library JAR

	4.6 Opening an Application Created Outside of the ADF Skin Editor

	5 Working with Component-Specific Selectors
	5.1 About Working with Component-Specific Selectors
	5.2 Changing ADF Faces Components' Selectors
	5.3 Changing ADF Data Visualization Components' Selectors
	5.4 Changing a Component-Specific Selector
	5.4.1 How to Change a Component-Specific Selector
	5.4.2 What Happens When You Change a Component-Specific Selector

	5.5 Configuring ADF Skin Properties to Apply to Messages
	5.5.1 How to Configure an ADF Skin Property to Apply to a Message
	5.5.2 What Happens When You Configure ADF Skin Properties to Apply to Messages

	5.6 Applying Themes to ADF Faces Pages
	5.6.1 How to Style a Component with a Theme

	5.7 Configuring an ADF Skin for Accessibility
	5.7.1 How to Configure an ADF Skin for Accessibility

	6 Working with Images and Color in Your ADF Skin
	6.1 About Working with Images and Color in Your ADF Skin
	6.2 Changing Images and Colors in the ADF Skin Design Editor
	6.3 Working with Color in a Skyros-Extended ADF Skin
	6.4 Changing an Image for a Component Selector
	6.4.1 How to Copy an Image into the Project
	6.4.2 What Happens When You Copy an Image into the Project

	6.5 Working with the Images Editor
	6.5.1 How to Generate Images Using the Images Editor
	6.5.2 What Happens When You Generate Images Using the Images Editor

	6.6 Providing a Simple Border Style for ADF Skins

	7 Working With Text in an ADF Skin
	7.1 About Working with Text in an ADF Skin
	7.2 Using Text From Your Own Resource Bundle
	7.2.1 How to Specify an Additional Resource Bundle for an ADF Skin
	7.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin

	8 Working With Global Selector Aliases
	8.1 About Global Selector Aliases
	8.2 Creating a Global Selector Alias
	8.2.1 How to Create a Global Selector Alias
	8.2.2 What Happens When You Create a Global Selector Alias

	8.3 Modifying a Global Selector Alias
	8.3.1 How to Modify a Global Selector Alias

	8.4 Applying a Global Selector Alias
	8.4.1 How to Apply a Global Selector Alias
	8.4.2 What Happens When You Apply a Global Selector Alias
	8.4.3 What You May Need to Know About Applying a Global Selector Alias

	8.5 Referencing a Property Value from Another Selector
	8.5.1 How to Reference a Property Value from Another Selector
	8.5.2 What Happens When You Reference a Property Value from Another Selector

	9 Working with Style Classes
	9.1 About Style Classes
	9.2 Creating a Style Class
	9.2.1 How to Create a Style Class
	9.2.2 What Happens When You Create a Style Class

	9.3 Modifying a Style Class
	9.3.1 How to Modify a Style Class

	9.4 Configuring a Style Class for a Specific Instance of a Component
	9.4.1 How to Configure a Style Class for a Specific Instance of a Component
	9.4.2 What Happens When You Configure a Style Class for a Specific Instance of a Component

	10 Working with At-Rules
	10.1 About At-Rules in the ADF Skinning Framework
	10.2 Working with Server-Side At-Rules
	10.3 Working with Client-Side At-Rules
	10.4 Creating At-Rules in an ADF Skin
	10.4.1 How to Create an At-Rule
	10.4.2 What Happens When You Create an At-Rule
	10.4.3 What Happens at Runtime: How the ADF Skinning Framework Applies At-Rules

	11 Applying the Finished ADF Skin to Your Web Application
	11.1 About Applying a Finalized ADF Skin to an Application
	11.2 Testing Changes in Your ADF Skin
	11.2.1 How to Set Parameters for Testing Your ADF Skin
	11.2.2 What Happens When You Set Parameter for Testing Your ADF Skin

	11.3 Packaging an ADF Skin into an ADF Library JAR
	11.3.1 How to Package an ADF Skin into an ADF Library JAR
	11.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

	11.4 Applying an ADF Skin to Your Web Application
	11.4.1 How to Apply an ADF Skin to an Application
	11.4.2 What Happens When You Apply an ADF Skin to an Application

	11.5 Applying an ADF Skin to a Running Web Application
	11.5.1 How to Configure your Fusion Web Application to Accept an Updated ADF Skin
	11.5.2 How to Deploy an ADF Library JAR to an MBean Server
	11.5.3 What Happens When You Apply an ADF Skin to a Running Application

	12 Advanced Topics
	12.1 Referring to URLs in an ADF Skin's CSS File
	12.2 Configuration Files for an ADF Skin
	12.3 ADF Skins Provided by Oracle ADF
	12.4 Versioning ADF Skins
	12.4.1 How to Version an ADF Skin
	12.4.2 What Happens When You Version ADF Skins

