
Oracle® Fusion Middleware
Developing Applications with Data Service Integrator

12c (12.1.3)

E47942-01

May 2014

Oracle Fusion Middleware Developing Applications with Data Service Integrator, 12c (12.1.3).

E47942-01

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

1 Introduction to Data Services

1.1 Concepts ... 1-1
1.1.1 Data in the 21st Century ... 1-1
1.1.2 Data Access Integration Architecture ... 1-2
1.1.3 Oracle Data Service Integrator: Roles and Responsibilities... 1-3
1.2 How-to.. 1-3
1.2.1 How to Configure the Retail Dataspace Sample Application for Oracle Data Service

Integrator 1-4
1.2.1.1 Prerequisites .. 1-4
1.2.1.2 About WorkSpace Studio, Data Services Studio, and Eclipse 1-4
1.2.1.3 Start WorkSpace Studio ... 1-4
1.2.1.4 Start the Server.. 1-6
1.2.1.5 Deploy Your Projects ... 1-7
1.2.1.6 Create the Retail Dataspace Sample Web Application ... 1-7
1.2.1.7 See Also .. 1-9
1.2.2 How to Configure the Retail Dataspace Sample Application for OSDI Studio 1-9
1.2.2.1 Prerequisites ... 1-10
1.2.2.2 About WorkSpace Studio, Data Services Studio, and Eclipse 1-10
1.2.2.3 Start Studio ... 1-10
1.2.2.4 Start the Server... 1-12
1.2.2.5 Deploy Your Projects .. 1-12
1.2.2.6 See Also ... 1-12
1.3 Example: How to Create Your First Data Services ... 1-13
1.3.1 Goal of the Tutorial... 1-13
1.3.1.1 Requirements ... 1-13
1.3.1.2 Before You Begin ... 1-13
1.3.2 Creating a Dataspace Project... 1-15
1.3.2.1 Set Up a Folder for Physical Data Services .. 1-15
1.3.3 Creating Physical Data Services ... 1-16
1.3.3.1 Select a Data Source... 1-17
1.3.3.2 Schemas Directory... 1-19
1.3.3.3 Publish Your Projects .. 1-20
1.3.4 Creating a Logical Data Service.. 1-21
1.3.4.1 Attempt To Publish Your Dataspace Project ... 1-22
1.3.4.2 Bottom Up or Top Down.. 1-23
1.3.4.3 Add an Operation to CUST_ORDERS_ITEMS ... 1-23
iii

1.3.4.4 Building Your Query... 1-26
1.3.4.5 Building Your FLWR Statement Graphically .. 1-27
1.3.4.6 Add a Parameter.. 1-28
1.3.4.7 Map Elements to the Return Type .. 1-30
1.3.4.8 Populating the Return Clause.. 1-30
1.3.4.9 Set Statement Scoping... 1-33
1.3.4.10 Creating Joins - the Where Clauses... 1-36
1.3.4.11 Associate a Parameter with a For Node ... 1-37
1.3.5 Creating, Saving, and Associating the XML Type... 1-39
1.3.5.1 Modifying the XML Type... 1-40
1.3.6 Testing Your Data Service Function... 1-42
1.3.6.1 View Test Run Results .. 1-43
1.3.7 Adding Create-Update-Delete Functions to Your Data Service 1-45
1.3.8 Updating Your Results... 1-47
1.3.9 Reviewing the Query Plan... 1-48
1.3.10 Reviewing the Update Map .. 1-49
1.3.11 Archiving Your Project .. 1-50
1.3.11.1 Saving Project to a ZIP File .. 1-50
1.3.12 Summary.. 1-51
1.4 Reference ... 1-52
1.4.1 Oracle Data Service Integrator Start Menu ... 1-52
1.4.1.1 Oracle Data Service Integrator Start Menu.. 1-52
1.4.2 Data Service Types and Functions ... 1-52
1.4.3 Data Service Characteristics .. 1-53
1.4.4 Operational Characteristics ... 1-53
1.5 Related Topics .. 1-55
1.5.1 Getting the Most from the WebLogic Eclipse Plugin Framework............................. 1-55
1.5.1.1 Data Services Eclipse for WebLogic ... 1-56
1.5.2 Create a Data Service with a Flat Return Type... 1-56
1.5.2.1 Overview .. 1-57
1.5.2.2 Create a Dataspace Project .. 1-57
1.5.2.3 Create the Return Type .. 1-58
1.5.2.4 Create Physical Data Services .. 1-59
1.5.2.5 Create a Logical Data Service .. 1-59
1.5.2.6 Create the Query Map... 1-60
1.5.2.7 See Also .. 1-62

2 Developing and Managing Dataspace Projects

2.1 Data Service File Validation During Deployment ... 2-1
2.2 How-to.. 2-1
2.2.1 How To Create, Build, Clean, and Delete Dataspace Projects 2-2
2.2.1.1 Creating a Dataspace Project .. 2-2
2.2.1.2 Building a Dataspace Project ... 2-2
2.2.1.3 Cleaning a Dataspace Project.. 2-2
2.2.1.4 Deleting a Dataspace Project... 2-3
2.2.2 How to Publish, Configure, and Remove Dataspace Projects 2-3
2.2.2.1 Publishing Server Projects... 2-3
iv

2.2.2.2 Configuring Server Projects ... 2-4
2.2.2.3 Managing Configured Projects Through the Servers Window 2-5
2.2.2.4 Removing Dataspace Projects from a Server.. 2-6
2.2.3 Exporting Dataspace Projects or Project Folders .. 2-6
2.2.4 Exporting Dataspace Project Artifacts Using Oracle Data Service Integrator Export

Wizards 2-7
2.2.4.1 Exporting Dataspace Artifacts ... 2-7
2.2.4.2 Generating a Data Service Definitions and Artifacts JAR 2-8
2.2.4.3 Generating a Mediator Client JAR File... 2-10
2.2.4.4 Generating a JAR File Containing Data Service-to-Web Service Maps............. 2-11
2.2.5 Importing a Dataspace Project .. 2-13
2.2.5.1 Importing a File-based Project... 2-13
2.2.6 How To Handle Error Conditions in a Dataspace Project.. 2-13
2.2.7 How To Validate, Build, Export, and Package Dataspace Projects from the Command

Line 2-15
2.2.7.1 Data Service File Validation During Deployment .. 2-15
2.2.7.2 Dataspace Packaging from the Command-line .. 2-15
2.2.7.3 Syntax Summary.. 2-15
2.2.7.4 Command-Line Ant Build Targets ... 2-16
2.2.7.5 Command-line Examples using Ant and Java .. 2-19
2.3 Reference ... 2-20
2.3.1 Dataspace Projects Cheatsheet.. 2-20
2.3.2 Setting Eclipse for WebLogic Initialization Parameters (.ini) 2-21
2.4 Related Topics .. 2-22

3 Creating and Updating Physical Data Services

3.1 Concepts ... 3-1
3.1.1 Creating Physical Data Services by Importing Source Metadata 3-1
3.1.1.1 Source View... 3-2
3.1.2 Physical Data Services from Java Functions Overview ... 3-2
3.1.2.1 Simple Java Types and Their XQuery Counterparts... 3-3
3.1.2.2 Physical Data Service from a Java Function - Example Code 3-4
3.2 How to Create Physical Data Services ... 3-6
3.2.1 How To Create Physical Data Services from Relational Tables and Views................ 3-6
3.2.1.1 Setting Up the Physical Data Service Creation Wizard .. 3-6
3.2.1.2 Setting Up the Import Wizard for Relational Objects ... 3-8
3.2.1.3 Selecting SQL Table and View Objects for Import .. 3-9
3.2.1.4 Setting Properties for New Data Service Operations ... 3-11
3.2.1.5 Verifying Data Service Composition .. 3-12
3.2.1.6 Database-specific Catalog and Schema Considerations 3-12
3.2.1.7 XML Name Conversion Considerations .. 3-13
3.2.2 How To Create Physical Data Services from Stored Procedures............................... 3-13
3.2.2.1 Importing Stored Procedure Metadata Using the Physical Data Service Creation

Wizard 3-14
3.2.2.2 Setting Up the Physical Data Service Creation Wizard 3-14
3.2.2.3 Setting Up the Import Wizard for Relational Objects .. 3-15
3.2.2.4 Selecting Stored Procedure Objects for Import ... 3-16
v

3.2.2.5 Configuring Selected Stored Procedures ... 3-17
3.2.2.6 Stored Procedure Configuration Reference ... 3-20
3.2.2.7 Setting Properties for New Data Service Operations ... 3-21
3.2.2.8 Verifying Data Service Composition .. 3-23
3.2.2.9 Adding Operations to an Existing Data Service ... 3-23
3.2.2.10 Support for Stored Procedures in Popular Databases.. 3-24
3.2.3 How To Create Physical Data Services Based on SQL Statements............................ 3-27
3.2.3.1 Setting Up the Physical Data Service Creation Wizard 3-27
3.2.3.2 Setting Up the Import Wizard for Relational Objects .. 3-29
3.2.3.3 Entering a SQL Statement .. 3-30
3.2.3.4 Setting Properties for New Library Functions .. 3-31
3.2.3.5 Verifying Data Service Composition .. 3-32
3.2.4 How To Create Physical Data Services Based on Database Functions 3-32
3.2.4.1 Setting Up the Physical Data Service Creation Wizard 3-33
3.2.4.2 Setting Up the Import Wizard for Relational Objects .. 3-34
3.2.4.3 Providing Database Function Details ... 3-35
3.2.4.4 Verifying Data Service Composition .. 3-36
3.2.5 How To Create a Physical Data Service from a Web Service..................................... 3-37
3.2.5.1 Setting Up the Physical Data Service Creation Wizard 3-37
3.2.5.2 Accessing a Web Service... 3-39
3.2.5.3 Selecting Web Service Operations to Import... 3-44
3.2.5.4 Setting Characteristics of Imported Web Service Operations............................. 3-45
3.2.5.5 Setting the Data Service Name .. 3-46
3.2.6 Preparing to Create Physical Data Services From Java Functions............................. 3-48
3.2.7 How To Create a Physical Data Service from a Java Function 3-48
3.2.7.1 Setting Up the Physical Data Service Creation Wizard 3-48
3.2.7.2 Accessing Java Functions ... 3-50
3.2.7.3 Selecting Java Functions to Import ... 3-52
3.2.7.4 Setting Characteristics of Imported Java Functions ... 3-52
3.2.7.5 Setting the Physical Data Service Name... 3-53
3.2.7.6 See Also ... 3-54
3.2.8 How To Create a Physical Data Service from XML Data ... 3-54
3.2.8.1 Setting Up the Physical Data Service Creation Wizard 3-54
3.2.8.2 Specifying XML Data Schema and File .. 3-56
3.2.8.3 Setting Properties for New Library Functions .. 3-57
3.2.8.4 Verifying Data Service Composition .. 3-58
3.2.8.5 XML File Import Sample .. 3-58
3.2.9 How To Create a Physical Data Service from a Delimited File.................................. 3-59
3.2.9.1 Setting Up the Physical Data Service Creation Wizard 3-60
3.2.9.2 Specifying Delimited File Information ... 3-61
3.2.9.3 Setting Properties for New Library Functions .. 3-63
3.2.9.4 Verifying Data Service Composition .. 3-64
3.3 How to ... 3-64
3.3.1 How To Enable Optimistic Locking... 3-64
3.3.1.1 Set the Locking Policy ... 3-65
3.3.1.2 Select the Locking Fields .. 3-65
3.3.1.3 See Also ... 3-66
vi

3.3.2 How To Update Physical Data Service Metadata .. 3-66
3.3.2.1 Topics .. 3-67
3.3.2.2 Scope of Metadata Update ... 3-68
3.3.2.3 Important Considerations When Updating Source Metadata 3-69
3.3.2.4 Using the Update Source Metadata Wizard.. 3-69
3.3.2.5 Inspecting and Reverting Changes Using Local History..................................... 3-72
3.3.3 Creating SOAP Handlers for Imported WSDLs... 3-72
3.3.3.1 Create a Java Class Implementing the Generic Handler Interface..................... 3-72
3.3.3.2 Compile your intercept handler into a JAR file. ... 3-73
3.3.4 Creating XMLBean Support for Java Functions... 3-74
3.3.4.1 Supported XMLBean Standards.. 3-74
3.3.4.2 Creating XMLBean Classes for Java Functions ... 3-75
3.3.4.3 See Also ... 3-79
3.3.5 How To Browse and Select a Schema Type .. 3-79
3.3.5.1 Browsing and Selecting Schema Types .. 3-80
3.3.5.2 Browsing Schema Types... 3-80
3.3.5.3 Selecting a Schema Type... 3-81
3.3.6 Physical Data Service from a Java Function - Example Code 3-84
3.3.6.1 Using a Function Returning an Array of Java Primitives.................................... 3-84
3.3.6.2 Processing complex types represented via XMLBeans.. 3-84
3.4 Example: XMLBeans Example Using a Metadata-rich Java Class.................................... 3-85
3.4.1 Java Source... 3-85
3.4.2 Schema Definition... 3-86
3.4.3 Data Service Function ... 3-87
3.5 Reference ... 3-88
3.5.1 Stored Procedure Configuration Reference .. 3-88
3.5.1.1 In Mode, Out Mode, Inout Mode.. 3-88
3.5.1.2 Procedure Profile ... 3-88
3.5.1.3 Supporting Stored Procedures with Nullable Input Parameter(s)..................... 3-89
3.5.2 Simple Java Types and Their XQuery Counterparts ... 3-90
3.6 Related Topics .. 3-91
3.6.1 How To Add an External Function to an Existing Physical Data Service................ 3-91
3.6.1.1 Additional Constraints ... 3-92

4 Designing Logical Data Services

4.1 Concepts ... 4-1
4.1.1 Building Logical Entity Data Services .. 4-1
4.1.1.1 The Benefits of Logical Services ... 4-1
4.1.1.2 Design View .. 4-2
4.1.1.3 Query Map View .. 4-6
4.1.1.4 Update Map View .. 4-7
4.1.1.5 Test View ... 4-9
4.1.1.6 See Also ... 4-10
4.1.2 Data Service Keys ... 4-10
4.1.2.1 Overview .. 4-10

Key for the CUSTOMER Table 11
vii

4.1.2.2 Parts of a Key.. 4-11
4.1.2.3 Composite Keys ... 4-14
4.1.2.4 See Also ... 4-15
4.1.3 XML Types and Return Types .. 4-15
4.1.3.1 Where XML Types are Used .. 4-15
4.1.3.2 Where Return Types are Used... 4-15
4.2 How-to... 4-16
4.2.1 How To Add a Read Function .. 4-16
4.2.1.1 Overview .. 4-16
4.2.1.2 Create the Function in Eclipse for WebLogic .. 4-17
4.2.1.3 See Also ... 4-18
4.2.2 How To Add a Library Function or Procedure.. 4-18
4.2.2.1 Overview .. 4-18
4.2.2.2 Add the Function or Procedure... 4-18
4.2.2.3 Test in Eclipse for WebLogic.. 4-20
4.2.3 How To Create Logical Data Service Keys ... 4-20
4.2.3.1 Generate a Key ... 4-21
4.2.3.2 Select Elements for a Key ... 4-22
4.2.3.3 Select a Key Schema File... 4-24
4.2.3.4 View and Map a Key... 4-25
4.2.3.5 See Also ... 4-27
4.2.4 How To Declare a Security Resource in Eclipse for WebLogic.................................. 4-27
4.2.4.1 Choose a Technique .. 4-27
4.2.4.2 Create the Security Resource ... 4-27
4.2.4.3 Use the Security Resource in XQuery... 4-28
4.2.4.4 Assign Security Resources.. 4-31
4.2.4.5 Test Security ... 4-31
4.2.4.6 See Also ... 4-32
4.3 Examples ... 4-32
4.3.1 How to Create a Logical Data Service with a Group By Clause................................ 4-32
4.3.1.1 Overview .. 4-33
4.3.1.2 Design the Return Type Schema ... 4-33
4.3.1.3 Create the Logical Data Service... 4-34
4.3.1.4 Create the Group By Node... 4-34
4.3.1.5 Create the For Node .. 4-36
4.3.1.6 Add an Aggregate Function... 4-37
4.3.1.7 Test the Service .. 4-37
4.3.1.8 See Also ... 4-38
4.3.2 How To Create a Data Service with a Flat Return Type ... 4-38
4.3.2.1 Overview .. 4-39
4.3.2.2 Create a Dataspace Project ... 4-39
4.3.2.3 Create the Return Type... 4-40
4.3.2.4 Create Physical Data Services .. 4-41
4.3.2.5 Create a Logical Data Service .. 4-42
4.3.2.6 Create the Query Map... 4-44
4.3.2.7 See Also ... 4-45
4.4 Reference ... 4-45
viii

4.4.1 XQuery Source of a Logical Entity Service ... 4-45
4.4.1.1 Source Code.. 4-45
4.4.1.2 See Also ... 4-48
4.5 Related Topics .. 4-48

5 Modeling Data Services Relationships

5.1 Relationship Between Data Services and Models ... 5-1
5.2 How to... ... 5-2
5.2.1 Create Your First Data Services Model... 5-2
5.2.1.1 Introduction .. 5-2
5.2.1.2 Building a Simple Data Service Relationship Model... 5-4
5.2.1.3 Setting Relationship Properties .. 5-5
5.2.1.4 Configuring Navigation Functions.. 5-7
5.2.2 Work with Large Models.. 5-8
5.2.2.1 Search ... 5-9
5.2.2.2 Outline Mode .. 5-9
5.2.3 Generate a Relationship Modeler Report ... 5-9
5.2.3.1 Model Report Format.. 5-10
5.3 Reference ... 5-10
5.3.1 Relationship Modeler Options.. 5-11
5.3.1.1 Model Right-click Menu Options.. 5-11
5.3.2 Model Diagram Rules .. 5-12
5.3.3 Notable Relationship Modeler Properties... 5-12
5.3.4 Relationship Models in Source View... 5-13

6 Building XQueries

6.1 How To ... 6-1
6.1.1 Create a Return Type... 6-1
6.1.1.1 Choose a Technique ... 6-1
6.1.1.2 Write a Return Type Schema .. 6-3
6.1.1.3 Generate a Schema File .. 6-5
6.1.1.4 See Also .. 6-6
6.1.2 Add a Complex Child Element to a Return Type... 6-6
6.1.2.1 Add the Child Element Visually .. 6-6
6.1.2.2 Edit the XML Source .. 6-9
6.1.2.3 See Also ... 6-10
6.1.3 Check Namespaces in Return Types.. 6-11
6.1.3.1 Check Prefix Bindings... 6-11
6.1.3.2 Edit the Namespace... 6-12
6.1.3.3 See Also ... 6-13
6.1.4 Create Conditional Elements in Return Types... 6-13
6.1.4.1 Add the Condition... 6-13
6.1.4.2 Create the Expression ... 6-14
6.1.4.3 See Also ... 6-16
6.1.5 Add a Where Clause to a Query... 6-16
6.1.5.1 Define the Condition... 6-16
ix

6.1.5.2 Join Tables with a Where Clause... 6-17
6.1.5.3 Use an XQuery Function in a Where Clause ... 6-18
6.1.5.4 See Also ... 6-19
6.1.6 Use the XQuery Expression Editor .. 6-19
6.1.6.1 Overview .. 6-19
6.1.6.2 The fn-bea:value Function.. 6-20
6.1.6.3 See Also ... 6-21
6.1.7 Use the Source Editor... 6-21
6.1.7.1 What is the Source Editor? ... 6-21
6.1.7.2 Searching Source.. 6-22
6.1.7.3 Navigating to Specific Functions... 6-22
6.1.7.4 Color Coding.. 6-23
6.1.7.5 Code Completion... 6-23
6.2 Reference ... 6-25
6.2.1 XQuery Language Version Support... 6-25
6.2.2 Built-in XQuery Functions... 6-25
6.3 Related Topics .. 6-26

7 Testing Update Procedures Using SDO Data Graphs

7.1 Key Points .. 7-1
7.2 Updates in Test View ... 7-1

A Data Graph with Old and New Data 2
7.3 Optimistic Locking .. 7-2

8 Understanding Query Plans

8.1 Using Query Plan View ... 8-1
8.1.1 Query Plan Information and Warnings.. 8-3
8.1.2 Printing or Saving Your Query Plan... 8-3
8.1.3 Loading a Previously Saved Query Plan.. 8-4
8.2 Analyzing a Sample Query.. 8-4
8.3 Working with a Query Plan .. 8-4
8.3.1 Identifying Problematic Conditions Through the Query Plan 8-4

9 Managing Update Maps

9.1 Understanding Update Maps.. 9-1
9.1.1 The Target Box ... 9-3
9.1.1.1 The Input Type.. 9-3
9.1.1.2 Procedure Icons... 9-3
9.1.1.3 For Each Blocks ... 9-4
9.1.1.4 Update Blocks ... 9-4
9.1.1.5 The Return Key Block .. 9-7
9.1.1.6 Customization ... 9-8
9.2 Changing a Mapping.. 9-9
9.2.1 Example.. 9-10
9.3 Removing a Mapping.. 9-12
9.4 Reverting Customizations .. 9-13
x

9.5 Adding a Condition to an Update Block .. 9-13
9.5.1 Example.. 9-14
9.6 Editing XQuery Expressions .. 9-15
9.6.1 Overview.. 9-15
9.6.2 The fn-bea:value Function ... 9-16
9.7 Adding an Update Map Procedure... 9-16
9.7.1 Overview.. 9-17
9.7.2 Generating Default Procedures .. 9-17
9.7.3 Designing Custom Procedures ... 9-19
9.8 Determining the Scope of a Variable... 9-20
9.8.1 Variable Types and Scoping Rules... 9-20
9.8.1.1 Example: an update map for a customer-orders data service............................. 9-21
9.8.1.2 Example: an outside mapping to a key value ... 9-22
9.8.2 Updating Foreign Key Values... 9-23
9.8.2.1 Example: coalesce-equal ... 9-24
9.9 Reference ... 9-25
9.9.1 Update Map Functions .. 9-25
9.10 How To .. 9-26
9.10.1 How To Recognize When Something is Wrong... 9-26
9.10.1.1 Understand the Symptoms .. 9-26
9.10.1.2 Check the Problems Tab ... 9-27
9.10.1.3 Resolve Errors and Warnings .. 9-28
9.10.2 How To Understand Mappings with Different Data Types 9-29
9.10.2.1 Overview .. 9-30
9.10.2.2 Built-In Cast Functions ... 9-30
9.10.2.3 Custom Cast Functions... 9-31
9.10.3 How to Cast Using a Built-in XQuery Function... 9-31
9.10.3.1 Example... 9-31
9.10.4 How To Cast Using a Custom XQuery Function... 9-32
9.10.4.1 Example... 9-32
9.10.5 How To Test an Update Map Cast... 9-33
9.10.5.1 Example... 9-33
9.10.6 How To Handle Disabled Procedures in Underlying Data Sources 9-35
9.10.6.1 Check the Data Sources .. 9-35
9.10.6.2 Resolve the Disabled Procedures .. 9-36
9.10.6.3 Add or Enable Procedures in the Underlying Data Source 9-37
9.10.6.4 Change the XML Return Type... 9-37
9.10.7 How To Handle Non-Unique Joins.. 9-38
9.10.7.1 Understand the Join .. 9-38
9.10.7.2 Correct the Block Scope .. 9-41
9.10.7.3 Correct the Table Join.. 9-41
9.10.7.4 Enable Update Blocks and Procedures... 9-42
9.10.7.5 Test a Non-Unique Join .. 9-43
9.10.8 How To Handle Non-Unique Values .. 9-43
9.10.8.1 Example... 9-43
9.10.9 How To Handle Unmapped Required Values ... 9-44
9.10.9.1 Overview .. 9-45
xi

9.10.9.2 Draw the Mapping .. 9-46
9.10.9.3 Cast a Constant .. 9-46
9.11 Testing Update Maps .. 9-47
9.11.1 Configure Audit Properties... 9-47
9.11.2 Capture the Data Graph... 9-47
9.11.3 Submit the Update.. 9-48
9.12 How To Test an Update Procedure... 9-49
9.12.1 Configure Audit Properties... 9-50
9.12.2 Capture the Data Graph... 9-50
9.12.3 Submit the Update.. 9-50

10 Preparing Services for Clients

10.1 Generating a Mediator Client JAR File ... 10-1
10.1.1 Using the IDE .. 10-1
10.1.2 Using the Command-Line Tool .. 10-2
10.2 Generating a Web Services Mediator Client JAR File .. 10-3
10.2.1 Overview.. 10-3
10.2.2 Using Eclipse for WebLogic .. 10-3
10.2.3 Using the Command-Line Tool .. 10-4
10.3 Generating a Web Service Map and WSDL from a Data Service 10-5
10.3.1 Creating a Map File .. 10-5
10.3.2 Generating a WSDL File from a Map File ... 10-7
10.3.3 Examining the Generated WSDL ... 10-7
10.3.4 Testing the Generated WSDL.. 10-7
10.3.5 Modifying the Map File ... 10-7
10.3.5.1 Adding Data Services and Operations ... 10-8
10.3.5.2 Deleting Data Services and Operations from a Map File 10-8
10.3.5.3 Renaming Mapped Operations ... 10-8
10.4 Configuring Security for Web Services Applications... 10-8
10.4.1 Configuring Basic Authentication.. 10-8
10.4.2 Configuring Transport Level Security (HTTPS) .. 10-8
10.4.3 Configuring Web Services Security (WSS).. 10-9
10.4.4 Specifying Policies .. 10-9
10.4.4.1 Specifying Global Policies .. 10-9

Sample Map File 10
10.4.4.2 Specifying Policies for a Function ... 10-10
10.5 Web Services Map File Reference .. 10-11
10.5.1 Map File-Level Properties ... 10-11
10.5.2 Operation Level Properties ... 10-12
10.5.3 Map File XML Schema Definition .. 10-13

Web Services Map File Schema Definition 13
10.5.4 Mapping of Data Service Type to WSDL Message Type ... 10-15
10.5.4.1 Two Schema Elements Per Function... 10-15

Operation Element and Return Element 16
10.5.4.2 Mapping of Update Functions with DataGraphs ... 10-16

 16
xii

10.5.4.3 Overloading Data Service Functions .. 10-17

Overloaded Functions 17
10.5.5 Examining the Generated WSDL ... 10-17
10.5.6 Testing the Generated WSDL.. 10-18
10.5.7 Copying and Saving a WSDL Generated from a Map .. 10-18
10.6 Understanding SQL Maps .. 10-19
10.6.1 Overview.. 10-19
10.6.2 Publishable Operations.. 10-20
10.6.3 General Conditions... 10-21
10.7 Map Functions and Procedures to SQL Objects .. 10-21
10.7.1 Creating an SQL Map... 10-21
10.7.2 Removing an SQL Map.. 10-22
10.8 SQL Object Mapping Rules .. 10-22
10.9 Constraints on Publishing Data Service Objects to SQL .. 10-23
10.9.1 Non-Tabular Element Types Affect Ability to Publish Functions as SQL Objects 10-24

11 Data Service Annotations

11.1 Overview... 11-1
11.2 XDS Annotations.. 11-1
11.2.1 General Properties .. 11-3
11.2.1.1 Standard Document Properties ... 11-3
11.2.1.2 User-Defined Properties ... 11-3
11.2.2 Data Access Properties... 11-3
11.2.2.1 Relational Data Service Annotations .. 11-4
11.2.2.2 Source Binding Provider .. 11-4
11.2.2.3 Web Service Data Service Annotations .. 11-5
11.2.2.4 Java Function Data Service Annotations.. 11-5
11.2.2.5 Delimited Content Data Service Annotations ... 11-6
11.2.2.6 XML Content Data Service Annotations.. 11-6
11.2.2.7 User Defined View XDS Annotations .. 11-6
11.2.3 Target Type Properties... 11-7
11.2.3.1 Native Type Properties ... 11-7
11.2.3.2 Update-related Type Properties .. 11-8
11.2.4 Key Properties ... 11-8
11.2.5 Relationship Properties.. 11-9
11.2.6 Update Properties ... 11-9
11.2.6.1 Optimistic Locking Fields .. 11-10
11.2.6.2 Security Properties .. 11-10
11.3 Function Annotations.. 11-10
11.3.1 General Properties .. 11-13
11.3.2 UI Properties.. 11-13
11.3.3 Cache Properties ... 11-14
11.3.4 Transaction Properties ... 11-14
11.3.5 Behavioral Properties ... 11-14
11.3.5.1 Inverse Functions... 11-14
11.3.5.2 Equivalent Transforms ... 11-15
xiii

11.3.6 Polymorphic Functions.. 11-15
11.3.7 Signature Properties ... 11-16
11.3.8 Native Properties .. 11-16
11.3.8.1 SQL Query Properties ... 11-16
11.3.8.2 SOAP Handler Properties .. 11-17
11.3.9 Implementation Properties.. 11-17
11.4 XFL Annotations .. 11-17
11.4.1 General Properties .. 11-18
11.4.2 Data Access Properties... 11-18
11.4.3 Security Properties.. 11-19
11.5 Data Service Annotations Schema... 11-19

12 Best Practices When Building Data Services

12.1 Overview... 12-1
12.1.1 Understanding the Oracle Data Service Integrator Server ... 12-1
12.1.2 Understanding the Oracle Data Service Integrator Client.. 12-2
12.2 Oracle Data Service Integrator Development Best Practices ... 12-2
12.2.1 Organizing Data Services Using Projects .. 12-2
12.2.2 Building Data Services in Layers.. 12-3
12.2.2.1 Physical Layer .. 12-3
12.2.2.2 Logical Layer .. 12-4
12.2.2.3 Integration Layer ... 12-5
12.2.2.4 Application Layer.. 12-6
12.3 Performance and Optimization Best Practices .. 12-7
12.3.1 Database Access .. 12-7
12.3.1.1 Retrieving Only the Necessary Data... 12-7
12.3.1.2 Designing Functions Which can be Pushed to the Database 12-8
12.3.1.3 Verifying that Joins are Implemented as Left-Outer or Inner/Natural Joins... 12-8
12.3.1.4 Pushing Left Outer Joins to the Database .. 12-8
12.3.1.5 Using a ppci-impl Join .. 12-9
12.3.1.6 Avoiding Casting... 12-10
12.3.1.7 Optimizing Ad Hoc Queries .. 12-10
12.3.1.8 Writing Your Own SQL for Oracle Data Service Integrator to Use 12-11
12.3.2 Exercising Care when Using Fail-over, Fail-over-retry, and Timeout.................... 12-11
12.3.3 Using Inverse Functions .. 12-12
12.3.4 Using Caching and Auditing .. 12-13
12.3.5 Query Plans .. 12-13
12.3.5.1 Evaluating Performance Before Running the Query.. 12-13
12.3.5.2 Precompiling Query Plans ... 12-13
12.3.5.3 Evaluating the Performance by Running the Query .. 12-14
12.3.6 Monitoring Operational Performance and Service Level Agreements................... 12-14
12.4 How To Get More Help ... 12-14
12.5 Related Topics .. 12-14
xiv

Preface

This document describes how to develop applications for the Oracle Data Service
Integrator.

Audience
This document is intended for application developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Data Service
Integrator documentation set:

■ Oracle Fusion Middleware Using Data Service Integrator XQuery Engine

■ Oracle Fusion Middleware Administering Data Service Integrator

■ Oracle Fusion Middleware Installing Data Service Integrator

■ Oracle Fusion Middleware Developing Applications with Data Service Integrator

■ Oracle Fusion Middleware Data Services Java API for Oracle Data Integrator

Conventions
The following text conventions are used in this document:
xv

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
xvi

1

1Introduction to Data Services

This chapter provides information, examples, and tutorials on data services basics.

This chapter includes the following sections:

■ Section 1.1, "Concepts"

■ Section 1.2, "How-to"

■ Section 1.3, "Example: How to Create Your First Data Services"

■ Section 1.4, "Reference"

■ Section 1.5, "Related Topics"

1.1 Concepts
This section presents the following topics:

■ Section 1.1.1, "Data in the 21st Century"

■ Section 1.1.2, "Data Access Integration Architecture"

■ Section 1.1.3, "Oracle Data Service Integrator: Roles and Responsibilities"

1.1.1 Data in the 21st Century
In modern enterprises data is generally readily available. While this has reduced the
need to move physical data into data warehouses, data marts, data mines, or other
costly replications of existing data structures, the problems of dynamic data
integration, immediate secured access and update, data transformation, and data
synchronization remain some of the most vexing challenges facing the IT world.

Oracle Data Service Integrator provides a comprehensive approach to this challenge
by:

■ Providing a unified means of importing metadata representing the structure of
any data source using its Metadata Import wizard.

■ Allowing for the creation of hierarchical data structures from traditional
column-row data.

■ Providing a query-driven interface to extend the physical model so data specialists
can create powerful transformations of existing data and queries.

■ Automatically creating data models that introspect physical data structures (and
their contents) in situ, normalizes representation of diverse data, and allow the
representation of the relationship of physical and logical data.
Introduction to Data Services 1-1

Concepts
■ Maintaining the accuracy of metadata through automated updates from the data
source.

Oracle Data Service Integrator can be used to create, refine, and validate logical data
structures through a process of importing data sources, creating physical and logical
models, and designing queries for use by applications in an infrastructure that
provides for easy maintenance, while enhancing security and performance.

Through standardized Service Data Objects (SDO) technology, web-based applications
can automatically read and update relational data. Through simple Java programs
Oracle Data Service Integrator update capabilities can be extended to support any
logical data source.

1.1.2 Data Access Integration Architecture
In contemporary enterprise computing, data typically passes through multiple
processing and storage layers. While enterprise data can easily be accessed, turning
that data into useful information economically and efficiently, particularly updateable
information, remains a difficult and high-maintenance task.

Figure 1–1 Component Architecture

Data users access data through the client API and data sources gain access through the
data source API.

1-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
Oracle Data Service Integrator approaches the problem of creating integration
architectures by building logical data services around physical data sources and then
allowing business logic to be added as part of easily maintained, graphically designed
XML query functions (also called XQueries).

Any Eclipse for WebLogic application can include Oracle Data Service
Integrator-based projects. And any application can access Oracle Data Service
Integrator queries — including update functions — through a mediator API or an
Oracle Data Service Integrator Control. In the case of relational data, updates can be
performed automatically through Service Data Objects (SDO) (For details see
"Programming with Service Data Objects" in the Oracle Data Service Integrator Client
Application Developer's Guide.)

Oracle Data Service Integrator provides for the development of integrated queries
within any Eclipse for WebLogic application. Each application can contain multiple
Oracle Data Service Integrator-based projects, as well as any other types of projects
offered by Eclipse for WebLogic.

1.1.3 Oracle Data Service Integrator: Roles and Responsibilities
The following summarizes typical roles and responsibilities related to creating and
maintaining data services.

■ Physical Data Service Development. Any team member can quickly create a set of
physical data services from enterprise data sources.

■ Entity Data Service Development. A data architect with knowledge of the
relationships between enterprise data sources can then create data services based
on physical and previously developed logical data services.

■ Query Development. Once data services are created, an IT team member can
create reusable query functions using the graphical XQuery Editor. The editor is
directly tied to a Source View that facilitates code-based modifications to
automatically-generated designs.

■ Deployment. Once data services are developed, they can be deployed from the
IDE or by an administrator through the Oracle Data Service Integrator
Administration Console.

■ Application Development. Application designers can use data service query
functions in their Oracle WebLogic applications. Through Service Data Objects
(SDO) and the Mediator API or an Oracle Data Service Integrator Eclipse Control,
applications can retrieve and update data, yet remaining insulated from the
complexities of managing the underlying data interaction.

■ Metadata Management.Administrators, architects, and designers can use the
Service Explorer for real-time introspection of disparate data source metadata that
has been developed through Oracle Data Service Integrator.

1.2 How-to
This section presents the following sections:

■ Section 1.2.1, "How to Configure the Retail Dataspace Sample Application for
Oracle Data Service Integrator"

■ Section 1.2.2, "How to Configure the Retail Dataspace Sample Application for
OSDI Studio"
Introduction to Data Services 1-3

How-to
1.2.1 How to Configure the Retail Dataspace Sample Application for Oracle Data
Service Integrator

This section describes how to set up the Retail Dataspace Sample Application after
completing the installation of Oracle Data Service Integrator.

■ Section 1.2.1.1, "Prerequisites"

■ Section 1.2.1.2, "About WorkSpace Studio, Data Services Studio, and Eclipse"

■ Section 1.2.1.3, "Start WorkSpace Studio"

■ Section 1.2.1.4, "Start the Server"

■ Section 1.2.1.5, "Deploy Your Projects"

■ Section 1.2.1.6, "Create the Retail Dataspace Sample Web Application"

■ Section 1.2.1.7, "See Also"

1.2.1.1 Prerequisites
A prerequisite to configuring the retail dataspace sample application is to have the
Oracle Data Service Integrator installed on a supported platform.

Choose the guide for the version you are running:

■ Installation Guide for OSDI

1.2.1.2 About WorkSpace Studio, Data Services Studio, and Eclipse

This tutorial uses the version of Eclipse that is installed with Oracle Data Service
Integrator.

The Eclipse framework often provides multiple ways of achieving same result. In
many cases there is no "correct" or "better" way. In other words, there are often many
paths to the same results.

1.2.1.3 Start WorkSpace Studio
Open ODSI from Eclipse by selecting:

Window > Open Perspective > Oracle Data Service Integrator

1.2.1.3.1 Select a Workspace OSDI Studio projects are called dataspace projects. These
Projects in turn are located in a workspace folder.

The first step in creating a dataspace is to select a workspace.

1. Use the default location:

Install Retail Dataspace

2. Click OK.

Note: WorkSpace Studio was formerly named Data Services Studio.
1-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
Figure 1–2 Oracle Data Service IntegratorSelecting a Workspace

If this is the first time you have opened Studio, the WorkSpace Studio screen displays.
Browse to choose a workspace folder to use for the current session.

In the Samples section click on:

Install Retail Dataspace Sample

Figure 1–3 Retail Dataspace Server Configuration Dialog

The Server Configuration dialog displays. You can choose the default location or
browse for an application location.

1. Click Finish. This imports the RetailDataspace project and finds or creates a server
for the Oracle Data Service Integrator sample domain and associates it with the
project.

2. Answer Yes to the question about associating your project with the Oracle Data
Service Integrator perspective.
Introduction to Data Services 1-5

How-to
Figure 1–4 Initial Oracle Data Service Integrator Perspective

The initial Data Services Studio screen displays. There are Project Explorer, Design
Palette, Properties, and Outline tabs.

1.2.1.3.2 Start the Server An Oracle Data Service Integrator-enabled server is a version
of WebLogic Server with additional functionality to support Oracle Data Service
Integrator deployment and runtime. The Oracle Data Service Integrator server must be
running in order to access sample data and to deploy your project.

To start your server from Studio:

1. Locate the Servers window. If it isn't visible, use the following option command:

Window > Show View > Servers

1.2.1.4 Start the Server
An Oracle Data Service Integrator-enabled server is a version of WebLogic Server with
additional functionality to support Oracle Data Service Integrator deployment and
runtime. The Oracle Data Service Integrator server must be running in order to access
sample data and to deploy your project.

To start your server from Studio:

1. Locate the Servers window. If it isn't visible, use the following option command:

Window > Show View > Servers

2. In the Servers window locate the Oracle Data Service Integrator Samples Server
(this may be the only server listed). Notice that its status is Stopped.
1-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
3. Right-click on the server name and select Start. (The start-up operation can take
several minutes.) Notice the running log of server startup actions in the Console
window.

You can also start the server by selecting the server and clicking the Start icon.

Figure 1–5 Server Window

The Server window shows the Oracle Data Service Integrator Samples Server with the
status Started and the State Synchronized.

1.2.1.5 Deploy Your Projects
Each project should be deployed to validate the installation.

1. Right-click on the server.

2. Choose Publish from the menu. A message should appear indicating successful
deployment.

3. Click OK.

Also deploy the RetailDataspace project.

1.2.1.6 Create the Retail Dataspace Sample Web Application
If Eclipse for WebLogic Platform 10.2 is installed into the same BEA_HOME which
contains ALDSP_HOME, you can create the a web-based sample application.

Follow these steps to access the web-based sample application:

1. To make sure the necessary dataspaces are deployed, redeploy (right-click >
Deploy Project):

■ ElectronicsWS and

RetailDataspace projects

2. From the WorkSpace 1.1 menu select:

Window > Show View > Servers

3. Locate the option:

Caution: Platform 10.0 MP1 contains version 10.0 of Eclipse.
However, the sample application required features available in Eclipse
10.2. The workaround is to install the 10.2 version of Eclipse for
WebLogic Platform. This version is available from the download site.
Current that link is:

http://commerce.bea.com/showproduct.jsp?family=WLW&m
ajor=10.2&minor=0
Introduction to Data Services 1-7

http://commerce.bea.com/showproduct.jsp?family=WLW&major=10.2&minor=0

How-to
Retail Dataspace Sample Web Application (WebLogic Eclipse only)

4. Click Next, then Finish.

5. If asked if you want to open the OSDI Studio Perspective, click Yes.

6. In the Project Explorer view, right-click on the RTLSelfService project, and choose:

Run As > Run on Server

This will initially deploy your projects and then open the sample Avitek login
page.

Figure 1–6 Avitek Login Page

The Avitek login page shows the Project Explorer and a place to enter your username
and password.

7. Mouse over one of the names and log in. After a few moments information about
the fictitious customer will appear.
1-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
Figure 1–7 Avitek Welcome Page

The Avitek Welcome Page has six tabs: Profile, Open Orders, Order History, Support,
Search, and Logout. The Profile page displays Personal Info, Addresses, and Credit
Cards. You can edit this data.

1.2.1.7 See Also
■ Example: How to Create Your First Data Services

■ Retail Database Sample Application Guide

1.2.2 How to Configure the Retail Dataspace Sample Application for OSDI Studio
This section describes how to set up the Retail Dataspace Sample Application after
completing the installation of OSDI Studio.

■ Section 1.2.2.1, "Prerequisites"

■ Section 1.2.2.2, "About WorkSpace Studio, Data Services Studio, and Eclipse"

■ Section 1.2.2.3, "Start Studio"

■ Section 1.2.2.4, "Start the Server"

■ Section 1.2.2.5, "Deploy Your Projects"
Introduction to Data Services 1-9

How-to
■ Section 1.2.2.6, "See Also"

1.2.2.1 Prerequisites
A prerequisite to configuring the retail dataspace sample application is to have the
ODSI Data Services Studio installed on a supported platform.

1.2.2.2 About WorkSpace Studio, Data Services Studio, and Eclipse

This tutorial uses the version of Eclipse that is installed with ODSI.

The Eclipse framework often provides multiple ways of achieving same result. In
many cases there is no "correct" or "better" way. In other words, there are often many
paths to the same results.

1.2.2.3 Start Studio
Open Studio using the following Windows Start menu command:

Start > All Programs > BEA Products > BEA AquaLogic Data Services Platform 3.0 >
Data Services Studio

1.2.2.3.1 Select a Workspace

Figure 1–8 Selecting a Workspace

If this is the first time you have opened Studio, the WorkSpace Studio screen displays.
Browse to choose a workspace folder to use in the current session.

In the Install Sample Applications section click on:

Retail Dataspace Sample

Note: Data Services Studio became part of WorkSpace Studio with
Eclipse. Where possible, the generic term Studio is used.
1-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
Figure 1–9 Retail Dataspace Server Configuration Dialog

The Server Configuration dialog displays. You can choose the default location or
browse for another application location.

1. Click Finish. This will import the RetailDataspace project and find or create a
server for the OSDI Studio sample domain and associate it with the project.

2. Click Yes if you are asked about associating your project with the OSDI Studio
perspective.

Figure 1–10 Initial OSDI Studio Perspective
Introduction to Data Services 1-11

How-to
The initial Services Studio screen displays. There are Project Explorer, Design Palette,
Properties, and Outline tabs.

1.2.2.4 Start the Server
An OSDI Studio-enabled server is a version of WebLogic Server with additional
functionality to support OSDI Studio deployment and runtime. The OSDI Studio
server must be running in order to access sample data and to deploy your project.

1. Locate the Servers window. If it isn't visible, use the following option command:

Window > Show View > Servers

2. In the Servers window locate the OSDI Studio Samples Server (this may be the
only server listed). Notice that its status is Stopped.

3. Right-click on the server name and select Start. (The start-up operation can take
several minutes.) Notice the running log of server startup actions in the Console
window.

Figure 1–11 Server Window

The Server window shows the OSDI Studio Samples Server with the status Started and
the State Synchronized.

1.2.2.5 Deploy Your Projects
Each project should be deployed to validate the installation.

1. Right-click on the server.

2. Choose Publish from the menu. A message should appear indicating successful
deployment.

3. Click OK.

Also deploy the RetailDataspace project.

1.2.2.6 See Also
■ Install the OSDI Studio Sample Retail Application

■ Example: How to Create Your First Data Services

■ Retail Dataspace Sample Application Guide
1-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
1.3 Example: How to Create Your First Data Services
Creating a data service from scratch — as you will if you follow this tutorial — is a
good way to get the feel of working with Eclipse for WebLogic, as well as other aspects
of data services. In the process of creating a logical data service you also automatically
create several physical data services. Physical data services represent physical data
sources.

This tutorial contains the following sections:

■ Section 1.3.1, "Goal of the Tutorial"

■ Section 1.3.2, "Creating a Dataspace Project"

■ Section 1.3.3, "Creating Physical Data Services"

■ Section 1.3.4, "Creating a Logical Data Service"

■ Section 1.3.5, "Creating, Saving, and Associating the XML Type"

■ Section 1.3.6, "Testing Your Data Service Function"

■ Section 1.3.7, "Adding Create-Update-Delete Functions to Your Data Service"

■ Section 1.3.8, "Updating Your Results"

■ Section 1.3.9, "Reviewing the Query Plan"

■ Section 1.3.10, "Reviewing the Update Map"

■ Section 1.3.11, "Archiving Your Project"

■ Section 1.3.12, "Summary"

1.3.1 Goal of the Tutorial
The goal of this tutorial is to illustrate an approach to creating a logical data service,
including creating an XML Type (schema), using Eclipse for WebLogic. Along the way
you will use many of the facilities:

■ Drag-and-drop Query Map

■ Source Editor

■ Test Editor

■ Query Plan

■ Update Map

This example uses data provided with the Retail Dataspace Sample Application
(RTLApp).

1.3.1.1 Requirements
The requirement for the demonstration project are to develop a logical data service
from several physical data services. When run by a client, the data service will return a
consolidated view of a particular customer's orders, as well as all the items in each
order.

1.3.1.2 Before You Begin
Before you can begin the tutorial make sure you:

■ Properly install Oracle Data Service Integrator.

Reference:
Introduction to Data Services 1-13

Example: How to Create Your First Data Services
Oracle Data Service Integrator Installation Guide

■ Configure the Retail Dataspace Sample Application.

– Configure the Retail Dataspace Sample Application

– Configure the Retail Dataspace Sample Application for ODSI

■ Have the application open in Eclipse for WebLogic and the Oracle Data Service
Integrator-enabled Oracle WebLogic 10.3 server running.

Also describe in "Configure the Retail Dataspace Sample Application."

Figure 1–12 Oracle Data Service Integrator Default Perspective After Adding myDataspace

In the WorkSpace Studio, the Project Explorer tab shows project directories and the
Design Palette tab shows XQuery operators and functions.

Note: Click on image to view it enlarged in a separate window.
1-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
1.3.2 Creating a Dataspace Project
Data services are created within Eclipse for WebLogic as Eclipse projects, called
dataspace projects. With the Oracle Data Service Integrator-enabled server running,
the first step is to create a new dataspace project.

1. From the menu select:

File > New > Dataspace Project

2. Give your project a name such as:

myDataspace

3. Click the Finish button.

Figure 1–13 Creating a New Dataspace Project

The New Dataspace Project screen provides a space for entering your project name,
choosing a directory for project contents (or selecting the default location), choosing a
runtime target, and selecting a deployment target server.

1.3.2.1 Set Up a Folder for Physical Data Services
Data services are typically created inside project folders. The recommended first step
in creating one or several data services is to create containers (folders).

In this tutorial two folders will be created:

■ One for physical data services.

■ One for logical data services.

1. In the Project Explorer window right-click on myDataspace, choose:

New > Folder
Introduction to Data Services 1-15

Example: How to Create Your First Data Services
2. Name your folder:

logical

3. Click the Finish button.

4. Create another folder under myDataspace named:

physical

5. Click the Finish button.

Physical data services represent physical data such as tables in relational databases
or web services. Logical data services are build upon existing physical or logical
data services.

■ Chapter 3, "Creating and Updating Physical Data Services"

■ Chapter 4, "Designing Logical Data Services"

Figure 1–14 Creating a New Folder

The Folder dialog lets you enter the parent folder for your folder, or select the parent
folder from a list. There is field for specifying the folder name. An Advanced button
offers additional choices.

6. Right-click on your new physical folder and choose:

New > Physical Data Service

1.3.3 Creating Physical Data Services
Physical data services are based on existing data sources.
1-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Whenever you create physical data services, you must first identify the data source.
Available options include:

■ Relational

■ Web Service

■ Java Function

■ Delimited Data

■ XML Data

To take advantage of data provided with the sample application, a relational data
source is used.

The sample databases RTLAPPLOMS and RTLCUSTOMER provided with the Retail
Sample Application contain five tables. In this section you will create physical data
services corresponding to those tables.

1.3.3.1 Select a Data Source
The select a data source dialog initially allows you to select a data source type (such as
relational or web service). Once that selection is made, additional options appear. The
following table lists the actions required to select the relational data sources that will
be used throughout this tutorial.

Format similar to that shown in the table below is used to describes the steps needed
to work through multi-page wizards.

Table 1–1 Data Sources and Data Services

Data Source Name Table Data Service

RTL Appliance Order
Management System

RTLAPPOMS ■ CUSTOMER_ORDER

■ CUSTOMER_ORDER_LINE_ITEM

■ CUSTOMER_ORDER.DS

■ CUSTOMER_ORDER_
LINE_ITEM.DS

RTL Customer Data RTLCUSTOMER ■ ADDRESS

■ CUSTOMER

■ ADDRESS.DS

■ CUSTOMER.DS

Table 1–2 Setting Up Sources for Data Services

Step Dialog Field/Column Action Comment

Select Data Source Save in: Use default
(/myDataspace/physical)

1. Data source
type:

Select Relational From dropdown list.

2. Data source: Select
dspSamplesDataSource

3. Click the Next button.

4. Select SQL Sources Select SQL
objects:

■ Checkbox next to
RTLAPPLOMS.

■ Checkbox next to
RTLCUSTOMER.

Expand (+ symbol to left of
data source name) to see
tables in the data sources.
Introduction to Data Services 1-17

Example: How to Create Your First Data Services
Your new data services appear in your physical folder in the Project Explorer.

5. Click the Next button. The information retrieved
through introspection of
relational data sources is
represented as the potential
creation of the five primary
Read operations, as well as
their containing data services.

6. Review New/Updated Data
Service Operation(s)

Public Mark all five operations
Public by clicking the
checkbox in the Public
column.

Public operations are
available to any authorized
calling application.

Note: The Primary option
only applies to create, update,
and delete functions.

7. Select
Common XML
Type
Namespace...
button

Click the button. Because you are building up
an XML Type for your logical
data service from several
physical data services that
each have an underlying
XML type, it is necessary for
each type to share a
namespace.

8. XML Type Namespace Select XML
Type
Namespace:

Enter custOrdersItems.

9. Click the OK
button.

Notice that the target
namespace column now
shows the new namespace for
your operations.

10. Review New/Updated Data
Service Operation(s)

Click the Next button.

11. Review New Data
Service(s)

Click the Finish button. It is necessary to modify
names when:

■ A data service of the
same name already exists
in the specified folder.

■ You are attempting to
import two data sources
with the same name.In
this example, however,
there are no name
conflicts and no changes
are needed.

12. Open Data Service Files Option to open
each new
physical data
service in
Eclipse for
WebLogic

 Select No.

Table 1–2 (Cont.) Setting Up Sources for Data Services

Step Dialog Field/Column Action Comment
1-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–15 Newly Created Data Services

The Project Explorer shows the data services you have just created.

If you expand your new data services you will see that each physical data service has
been created with functions corresponding to standard relational operations. For
example the CUSTOMER.ds data service contains the following operations:

■ createCUSTOMER(CUSTOMER)

■ CUSTOMER()

■ deleteCUSTOMER(CUSTOMER)

■ getADDRESS(CUSTOMER)

■ updateCUSTOMER(CUSTOMER)

Some relationship operations (such as getADDRESS(CUSTOMER)) have been created
automatically. This operation returns an ADDRESS type when it is passed a CUSTOMER
type as a parameter. The operation can be inferred during the data service creation
process because ADDRESS contains a foreign key that is a unique custID in the CUSTOMER
data service (and underlying source). Relationship functions are described in detail in
the Modeling Data Services Relationships section.

1.3.3.2 Schemas Directory
You should find a schemas folder adjacent to the newly created data services. This
folders contains schema files created during the metadata import process. For
relational sources, schemas are created for both the data source (table or view) and the
primary keys found during the introspection of the relational source. For example:

■ CUSTOMER.xsd

■ CUSTOMER_KEY.xsd

If you look in the schemas directory you will see that for each physical data service
created, two schemas were created. One representing the physical data service and the
other to describe the primary keys in the data source.
Introduction to Data Services 1-19

Example: How to Create Your First Data Services
Figure 1–16 Expanded View of Project Explorer

In the expanded view of the schemas directory, the data source/primary key pairs are
shown: ADDRESS.xsd and ADDRESS_KEY.xsd; CUSTOMER.xsd and CUSTOMER_
KEY.xsd; CUSTOMER_ORDER.xsd and CUSTOMER_ORDER_KEY.xsd; CUSTOMER_
ORDER_LINE_ITEM.xsd and CUSTOMER_ORDER_LINE_ITEM_KEY.xsd; and
PRODUCT.xsd and PRODUCT_KEY.xsd.

When a logical entity data service is created, it is either:

■ Associated with an existing schema or

■ A return type associated with a function becomes the basis of a generated XML
type that is then associated with the data service.

1.3.3.3 Publish Your Projects
Using Eclipse for WebLogic, you can publish your dataspace projects to a server when
it is ready for testing and debugging. Publishing is also useful during the project
development phase because in its default configuration, when you publish a project in
Eclipse for WebLogic, it is automatically built and validated. The validation process
identifies error conditions, if any.

A dialog displays the progress and, upon successful completion, the status of the
server changes to Synchronized.

Note: When publishing a project to a server, the project is validated
and only valid projects are successfully published.
1-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
1.3.4 Creating a Logical Data Service
This section describes the following topics:

■ Section 1.3.4.1, "Attempt To Publish Your Dataspace Project"

■ Section 1.3.4.2, "Bottom Up or Top Down"

■ Section 1.3.4.3, "Add an Operation to CUST_ORDERS_ITEMS"

■ Section 1.3.4.4, "Building Your Query"

■ Section 1.3.4.5, "Building Your FLWR Statement Graphically"

■ Section 1.3.4.6, "Add a Parameter"

■ Section 1.3.4.7, "Map Elements to the Return Type"

■ Section 1.3.4.8, "Populating the Return Clause"

■ Section 1.3.4.9, "Set Statement Scoping"

■ Section 1.3.4.10, "Creating Joins - the Where Clauses"

■ Section 1.3.4.11, "Associate a Parameter with a For Node"

A logical data service can be thought of as a "virtual" data source. Logical data services
are built upon existing physical or logical data services.

To create a logical data service:

1. Right-click on the folder named logical that you previously created.

New > Logical Data Service

2. Set the data service name to:

CUST_ORDERS_ITEMS

3. Click Finish.

After making these selections, your new entity data service appears in Overview
mode.

Since no functions have yet been added to your data service, the work area of the data
service is empty.

Options available for creating and testing your new data service appear at the bottom
of the workspace. In addition to Overview, you will see the following tabs:

■ Query Map

■ Update Map

■ Plan

■ Test

■ Source

Note: The Oracle Data Service Integrator Retail Sample Application
is a good source for best practices associated with creating layered
data services.
Introduction to Data Services 1-21

Example: How to Create Your First Data Services
1.3.4.1 Attempt To Publish Your Dataspace Project
There are times when attempts to publish your data service under development will
not be successful. This is expected since as you create your query in the Query Map,
source is created simultaneously. (When a data service is in such a state, you will
notice a red x on its associated icon in Project Explorer.)

Figure 1–17 Project After Unsuccessful Publish Effort

A red x on the icon beside CUST_ORDERS_ITEMS.ds indicates that it in invalid.

Unlike the previously successful publish operation, you will now get a message
indicating that your project contains build errors and cannot be published.

In this case your newly created CUST_ORDERS_ITEMS data service is invalid. You
can verify this several ways after clicking OK.

■ Inspect your code by clicking on the Source tab.

■ Double-click on the error reported in the Problems window.

■ Inspect the contents of the Error log window.
1-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–18 Incomplete Logical Data Service Validation Error

The Problems tab shows an error message. It shows the description (including Id),
resource, path, and location of the error in the code.

Although an error condition exists, you can continue creating on your data service.

1.3.4.2 Bottom Up or Top Down
Data services can be designed from the top-down or bottom-up. The following table
compares these two approaches.

This tutorial uses a bottom-up design.

1.3.4.3 Add an Operation to CUST_ORDERS_ITEMS
The next step is to add a read function to your new data service that will return a
document containing all the orders placed by a particular customer, and all the items
in each order.

Table 1–3 Data Service Design Models

Data Service Design
Model Description

Top-down The new data service is based on an existing XML Type (schema)
that is either drawn from an existing data service or developed
externally.

Bottom-up The new data service is created by:

■ Identifying one or more data sources.

■ Building up a Return type in the Query Map.

■ Saving your data service and associating it with the schema
created from the newly designed Return type.
Introduction to Data Services 1-23

Example: How to Create Your First Data Services
To add your new function:

1. Select the Overview tab.

2. Right-click in the CUST_ORDERS_ITEMS data service's work area.

3. Choose Add Operation... from available options.

Figure 1–19 Creating a New Operation

In the myLogical DS data service workspace, Add Function is selected from the
context menu.

This figure has nothing to do with the previous text.

The next steps will create a publicly available Read function for your new data service.

Table 1–4 Add Operation Dialog Options

Step Option Action Comment/Reference

Visibility Options are private (internal to data service),
protected (from public), and public. Default setting
is public.

Kind All operations are functions other than library
procedures. The Read function simply retrieves
information from your data source. Default
operation is read.

1. Name custOrdersItemsByLastName Any valid XML name can be entered; spaces are not
allowed.
1-24 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–20 Add Operation Dialog

The Add Operation dialog adds a new data service operation. Here, Visibility is set to
public, Kind to read, Name to custOrdersItemsByLastName. No parameters are set.
The Options are set to Primary and Empty function body is deselected.

Every artifact and artifact element in Overview has properties. In some cases these
properties — such as name and type — are either directly editable or adjustable
through dropdown list boxes. The Properties window is, by default, visible in the
Eclipse for WebLogic perspective. If the Properties window is not visible you can
retrieve it using the command:

Window > Reset Perspective

Return Type: Bottom-up designs of a data service create the
Return type in the Query Map.

Parameters: Can be added here or in the Query Map. Leave
unselected.

Options: Primary Defines function as the Primary Read function in
the entity data service. Default is selected.

Options: Empty
Function Body

Default is not selected.

2. Click OK.

Table 1–4 (Cont.) Add Operation Dialog Options

Step Option Action Comment/Reference
Introduction to Data Services 1-25

Example: How to Create Your First Data Services
Figure 1–21 New Data Service Operation and Properties

The Project Explorer, Design Palette, Properties, and CUST_ORDERS_ITEMS.ds panels
are shown. In the Project Explorer, CUST_ORDERS_ITEMS.ds is selected. The
properties set at the previous step are shown. In the CUST_ORDERS_ITEMS.ds Data
Service work area, the custOrdersByLastName function is shown.

1.3.4.4 Building Your Query
Click on the custOrdersItemsByLastName function name in the work area to enter
Query Map mode
1-26 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–22 Initial Query View

In the CUST_ORDERS_ITEMS.ds workspace, the Return panel in Query Map mode
shows an empty empty placeholder element.

Changes made in the Query Map editor are immediately reflected in source and
vice-versa. When there is an error is source, the Query map may not be available. You
can typically correct such a condition using the Undo menu option or Ctrl-Z.
Alternatively, click the Source tab and edit as needed.

1.3.4.5 Building Your FLWR Statement Graphically
XQueries are often described as being build upon "FLWR" statements:

■ For/Let

■ Where

■ Return

Changes made in source are immediately rendered graphically in the query map.

1.3.4.5.1 Adding Data Sources to Query View - the For/Let Statements It is through the Query
Map that you can bring together representations of existing data sources and associate
their elements with the Return type of a new data service.

In the current example your new data service is to provide a consolidated view drawn
from the CUSTOMER, CUSTOMER_ORDER, and CUSTOMER_ORDER_LINE_ITEM data services.
The Read functions from these physical data services therefore need to be represented
in the work area of the new data service.

Follow these steps to add these representations to your Query map:

1. In the physical folder expand the following data services:

■ CUSTOMER.ds

■ CUSTOMER_ORDER.ds

■ CUSTOMER_ORDER_LINE_ITEM.ds

2. Drag and drop the Read operations of the following data services CUSTOMER,
CUSTOMER_ORDER, and CUSTOMER_ORDER_LINE_ITEM into the query
Introduction to Data Services 1-27

Example: How to Create Your First Data Services
work area. Read operations are identified by the a white-arrow-with-green-ball
icon as shown below.

Figure 1–23 Read Function Icon

Read function icon, white arrow with green ball, next to CUSTOMER_ORDER().

Each of these operational building blocks will become for statements in the XQuery
description of your new data service.

Figure 1–24 Data Source Representations in Work Area

The Data Source Representations in Work Area graphic shows the artifacts useful in
tailoring your query:

■ Data sources are represented in three XQuery For: statements.

■ The 'empty empty' element in the Return type is a placeholder for the elements
and their type that will eventually be projected.

■ The lines from the three statements to the empty global element in the Return type
represents current scopings. By adjusting these lines when a Return type is
populated you can alter the arrangement of information returned by your query.
(Described below.)

1.3.4.6 Add a Parameter
Parameters can be added when your operation is created or in the Query Map.
Parameters can be of simple (primitive) type or complex, such as the XMLtype from
another data service.

In this case you create a single xs:string parameter that will allow retrieval of one or
more records by a customer's last name.
1-28 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
To add a parameter:

1. In the Query Map work area right-click in a blank area and select:

Edit Signature...

2. If asked to save modified resources click OK.

3. If asked to save modified resources click

4. Complete the Edit Function Signature... dialog.

Figure 1–25 Add New Parameter Dialog

In the Add New Parameter dialog, the Parameter name is last_name, the Built-in type
is xs.string, and the Occurrence is One.

The last_name parameter appears in the work area.

Example 1–1 Partial Source of CUST_ORDERS_ITEMS After Addition of Read Functions and last_name
Parameter

xquery version "1.0" encoding "UTF-8";

(:: pragma ... ::)

Table 1–5 Edit Function Signature Dialog Options

Step Field Action Comment/Reference

1. Parameter name last_name

Parameter type xs:string is the default primitive type.

Occurrence Default is One.

2. Click OK

3. Click OK In the Edit Function Signatures dialog.
Introduction to Data Services 1-29

Example: How to Create Your First Data Services
declare namespace cus2= "ld:physical/CUSTOMER";
declare namespace cus1= "ld:physical/CUSTOMER_ORDER";
declare namespace ust= "custOrdersItems";
declare namespace cus= "ld:physical/CUSTOMER_ORDER_LINE_ITEM";
declare namespace tns="ld:logical/CUST_ORDERS_ITEMS";

(:: pragma ... ::)

declare function tns:custOrdersItemsByLastName(){
for $CUSTOMER in cus:CUSTOMER()
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
for $CUSTOMER_ORDER_LINE_ITEM in cus2:CUSTOMER_ORDER_LINE_ITEM()
return
 ()
};

1.3.4.7 Map Elements to the Return Type
Three icons associated with projecting elements to the Return type appear above the
Query Map work area. (You may need to widen your window to see all three icons.)

You will use these options to map representations of source data to the Return type of
your new data service.

1.3.4.8 Populating the Return Clause
From the three mapping icons in the Select operation line at the top of the query map,
select the second of the three icons, Overwrite mapping:

Drag the CUSTOMER complex element

CUSTOMER*

over the global element placeholder labeled "empty" in the Return type.

Table 1–6 Mapping Mode Icons

Icon
Mapping
Mode

Keyboard
Equivalent Description

Value None Maps simple or complex elements to identical
values in the Return type. For example, a simple
element can be projected to a comparable simple
element in the Return type.

Overwrite Ctrl-Drag object Overwrites simple or complex element in the Return
type with the selected simple or complex element.

Append Ctrl-Shift-Drag
object

Maps simple or complex object as a child to the
Return type element it is associated with.
1-30 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–26 Mapping Complex Element to Return Type

This figure shows mapping complex element types to Return types by dragging.

Right-click on the new CUSTOMER element in the Return type and select:

Expand Complex Mapping

Figure 1–27 Expanding Complex Mapping

Expanding the complex mapping reveals contents of the CUSTOMER element in the
Return type. The contents include FIRST_NAME, LAST_NAME, CUSTOMER_SINCE,
EMAIL_ADDRESS, TELEPHONE_NUMBER, SSN, BIRTH_DAY, DEFAULT_SHIP_
Introduction to Data Services 1-31

Example: How to Create Your First Data Services
METHOD, EMAIL_NOTIFICATION, NEWS_LETTER, ONLINE_STATEMENT,
LOGIN_ID.

This gesture is a shortcut for drawing lines from each element for the statement into
the Return type. This gesture is also necessary if you want to add a complex child
element to the type. Notice that individual mapping lines now connect each element in
the For: node with an element in the Return type. Individual mappings can be added
or deleted using drag-and-drop or the Delete key, respectively. The next steps will add
elements from the CUSTOMER_ORDER data service to your Return type.

1. Select Append Mapping mode.

2. Drag the CUSTOMER_ORDER complex element CUSTOMER_ORDER* over
the CUSTOMER element in the Return type. Notice that the CUSTOMER_
ORDER global element and the names of its children now appear after the
CUSTOMER elements.

3. Expand complex mapping for the CUSTOMER_ORDER global element.

4. From the work area drag the CUSTOMER_ORDER_LINE_ITEM complex
element over the CUSTOMER_ORDER element in the Return type.

5. Expand complex mapping for these elements.

Figure 1–28 Adding Child Elements to Return Type

An arrow between the expanded CUSTOMER_ORDER_LINE_ITEM complex element
and the expanded CUSTOMER_ORDER element in the Return type show mapping for
1-32 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
these elements. Similar mappings are shown for CUSTOMER() and CUSTOMER_
ORDER().

1.3.4.9 Set Statement Scoping
Click the Source tab to inspect your generated code. Notice that the Return type
contains all three For: statements.

Example 1–2 Function cust_orders_items_byLastName(string) in Source View

declare function tns:custOrdersItemsByLastName($last_name as xs:string) {
for $CUSTOMER in cus:CUSTOMER()
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
for $CUSTOMER_ORDER_LINE_ITEM in cus2:CUSTOMER_ORDER_LINE_ITEM()
return
 <ust:CUSTOMER>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <CUSTOMER_SINCE>{fn:data($CUSTOMER/CUSTOMER_SINCE)}</CUSTOMER_SINCE>
 <EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
 <TELEPHONE_NUMBER>{fn:data($CUSTOMER/TELEPHONE_NUMBER)}</TELEPHONE_NUMBER>
 <SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
 <BIRTH_DAY?>{fn:data($CUSTOMER/BIRTH_DAY)}</BIRTH_DAY>
 <DEFAULT_SHIP_METHOD?>{fn:data($CUSTOMER/DEFAULT_SHIP_METHOD)}</DEFAULT_SHIP_METHOD>
 <EMAIL_NOTIFICATION?>{fn:data($CUSTOMER/EMAIL_NOTIFICATION)}</EMAIL_NOTIFICATION>
 <NEWS_LETTTER?>{fn:data($CUSTOMER/NEWS_LETTTER)}</NEWS_LETTTER>
 <ONLINE_STATEMENT?>{fn:data($CUSTOMER/ONLINE_STATEMENT)}</ONLINE_STATEMENT>
 <LOGIN_ID?>{fn:data($CUSTOMER/LOGIN_ID)}</LOGIN_ID>
 {
 <ust:CUSTOMER_ORDER>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
 <C_ID>{fn:data($CUSTOMER_ORDER/C_ID)}</C_ID>
 <ORDER_DT>{fn:data($CUSTOMER_ORDER/ORDER_DT)}</ORDER_DT>
 <SHIP_METHOD_DSC>{fn:data($CUSTOMER_ORDER/SHIP_METHOD_DSC)}</SHIP_METHOD_DSC>
 <HANDLING_CHRG_AMT>{fn:data($CUSTOMER_ORDER/HANDLING_CHRG_AMT)}
 </HANDLING_CHRG_AMT>
 <SUBTOTAL_AMT>{fn:data($CUSTOMER_ORDER/SUBTOTAL_AMT)}</SUBTOTAL_AMT>
 <TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDER_AMT>
 <SALE_TAX_AMT>{fn:data($CUSTOMER_ORDER/SALE_TAX_AMT)}</SALE_TAX_AMT>
 <SHIP_TO_ID>{fn:data($CUSTOMER_ORDER/SHIP_TO_ID)}</SHIP_TO_ID>
 <SHIP_TO_NM>{fn:data($CUSTOMER_ORDER/SHIP_TO_NM)}</SHIP_TO_NM>
 <BILL_TO_ID>{fn:data($CUSTOMER_ORDER/BILL_TO_ID)}</BILL_TO_ID>
 <ESTIMATED_SHIP_DT>{fn:data($CUSTOMER_ORDER/ESTIMATED_SHIP_DT)}
 </ESTIMATED_SHIP_DT>
 <STATUS>{fn:data($CUSTOMER_ORDER/STATUS)}</STATUS>
 <TRACKING_NO?>{fn:data($CUSTOMER_ORDER/TRACKING_NO)}</TRACKING_NO>
 <DATE_INT?>{fn:data($CUSTOMER_ORDER/DATE_INT)}</DATE_INT>
 {
 <ust:CUSTOMER_ORDER_LINE_ITEM>
 <LINE_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/LINE_ID)}</LINE_ID>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/ORDER_ID)}</ORDER_ID>
 <PROD_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_ID)}</PROD_ID>
 <PROD_DSC>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_DSC)}</PROD_DSC>
 <QUANTITY>{fn:data($CUSTOMER_ORDER_LINE_ITEM/QUANTITY)}</QUANTITY>
 <PRICE>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PRICE)}</PRICE>
 <STATUS>{fn:data($CUSTOMER_ORDER_LINE_ITEM/STATUS)}</STATUS>
 </ust:CUSTOMER_ORDER_LINE_ITEM>
 }
Introduction to Data Services 1-33

Example: How to Create Your First Data Services
 </ust:CUSTOMER_ORDER>
 }
 </ust:CUSTOMER>
};

Using the Query Map you can adjust this quite easily by changing the scoping of the
subordinate data services in the Return type, as shown in the following steps.

Figure 1–29 Adjusting Scoping Rules in the Return Type

In the Query Map mode, there is a zone icon on the For: $CUSTOMER_ORDER() node.
There is an arrow between the $CUSTOMER_ORDER() node and the CUSTOMER_
ORDER element in the Return type. After the icon is dragged to the corresponding
Return element, the icon appears next to the element name. Similarly, a zone icon
appears on the For:CUSTOMER() and For:CUSTOMER_ORDER_LINE_ITEM() nodes.

1. Return to Query Map mode.

2. With your mouse select the zone icon in the node:

For: $CUSTOMER_ORDER()

3. Drag the zone icon over the corresponding CUSTOMER_ORDER element in the
Return type.

Note: The current query is — in relational terminology — a
cross-product or a Cartesian join. Such queries when run are very CPU
intensive. In the case of this example, scoping and joining should
occur before the query is run.
1-34 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Notice that the zone line from the CUSTOMER_ORDER node moves to the
subordinate complex type (CUSTOMER_ORDER).

4. Drag the zone icon of CUSTOMER_ORDER_LINE_ITEM to its corresponding
element in the Return type.

Figure 1–30 Nested Zoning in the Return Type

The zone icon appears on the For:$CUSTOMER_ORDER_LINE_ITEM node. Drag the
icon to its corresponding Return element, which is not shown here.

Switch to Source view to verify that the for statements are nested in the Return clause.
Now, when a parameter is passed with the operation, all the customers with a
particular last name will be returned which contains orders and order line items
associated with that customer.

Example 1–3 Source View of Return Type with Nested Return Types

declare function tns:custOrdersItemsByLastName($last_name as xs:string) {
for $CUSTOMER in cus:CUSTOMER()

return
 <ust:CUSTOMER>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <CUSTOMER_SINCE>{fn:data($CUSTOMER/CUSTOMER_SINCE)}</CUSTOMER_SINCE>
 <EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
 <TELEPHONE_NUMBER>{fn:data($CUSTOMER/TELEPHONE_NUMBER)}</TELEPHONE_NUMBER>
 <SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
 <BIRTH_DAY?>{fn:data($CUSTOMER/BIRTH_DAY)}</BIRTH_DAY>
 <DEFAULT_SHIP_METHOD?>{fn:data($CUSTOMER/DEFAULT_SHIP_METHOD)}</DEFAULT_SHIP_METHOD>
Introduction to Data Services 1-35

Example: How to Create Your First Data Services
 <EMAIL_NOTIFICATION?>{fn:data($CUSTOMER/EMAIL_NOTIFICATION)}</EMAIL_NOTIFICATION>
 <NEWS_LETTTER?>{fn:data($CUSTOMER/NEWS_LETTTER)}</NEWS_LETTTER>
 <ONLINE_STATEMENT?>{fn:data($CUSTOMER/ONLINE_STATEMENT)}</ONLINE_STATEMENT>
 <LOGIN_ID?>{fn:data($CUSTOMER/LOGIN_ID)}</LOGIN_ID>
 {
 for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
 return
 <ust:CUSTOMER_ORDER>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
 <C_ID>{fn:data($CUSTOMER_ORDER/C_ID)}</C_ID>
 <ORDER_DT>{fn:data($CUSTOMER_ORDER/ORDER_DT)}</ORDER_DT>
 <SHIP_METHOD_DSC>{fn:data($CUSTOMER_ORDER/SHIP_METHOD_DSC)}</SHIP_METHOD_DSC>
 <HANDLING_CHRG_AMT>{fn:data($CUSTOMER_ORDER/HANDLING_CHRG_AMT)}
 </HANDLING_CHRG_AMT>
 <SUBTOTAL_AMT>{fn:data($CUSTOMER_ORDER/SUBTOTAL_AMT)}</SUBTOTAL_AMT>
 <TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDER_AMT>
 <SALE_TAX_AMT>{fn:data($CUSTOMER_ORDER/SALE_TAX_AMT)}</SALE_TAX_AMT>
 <SHIP_TO_ID>{fn:data($CUSTOMER_ORDER/SHIP_TO_ID)}</SHIP_TO_ID>
 <SHIP_TO_NM>{fn:data($CUSTOMER_ORDER/SHIP_TO_NM)}</SHIP_TO_NM>
 <BILL_TO_ID>{fn:data($CUSTOMER_ORDER/BILL_TO_ID)}</BILL_TO_ID>
 <ESTIMATED_SHIP_DT>{fn:data($CUSTOMER_ORDER/ESTIMATED_SHIP_DT)}
 </ESTIMATED_SHIP_DT>
 <STATUS>{fn:data($CUSTOMER_ORDER/STATUS)}</STATUS>
 <TRACKING_NO?>{fn:data($CUSTOMER_ORDER/TRACKING_NO)}</TRACKING_NO>
 <DATE_INT?>{fn:data($CUSTOMER_ORDER/DATE_INT)}</DATE_INT>
 {
 for $CUSTOMER_ORDER_LINE_ITEM in cus2:CUSTOMER_ORDER_LINE_ITEM()
 return
 <ust:CUSTOMER_ORDER_LINE_ITEM>
 <LINE_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/LINE_ID)}</LINE_ID>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/ORDER_ID)}</ORDER_ID>
 <PROD_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_ID)}</PROD_ID>
 <PROD_DSC>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_DSC)}</PROD_DSC>
 <QUANTITY>{fn:data($CUSTOMER_ORDER_LINE_ITEM/QUANTITY)}</QUANTITY>
 <PRICE>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PRICE)}</PRICE>
 <STATUS>{fn:data($CUSTOMER_ORDER_LINE_ITEM/STATUS)}</STATUS>
 </ust:CUSTOMER_ORDER_LINE_ITEM>
 }
 </ust:CUSTOMER_ORDER>
 }
 </ust:CUSTOMER>

};

1.3.4.10 Creating Joins - the Where Clauses
Where clauses satisfy either specific conditions (such as where $i=5) or join conditions
such as:

where $CUSTOMER_ORDER/ORDER_ID eq $CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

1. Return to Query Map mode.

2. To establish join conditions among your data sources, drag the specified element
in one For: statement to the specified element in the target For statement:

Source and element Target and element

$CUSTOMER/CUSTOMER_ID $CUSTOMER_ORDER/C_ID
1-36 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–31 Setting Up a Join Condition

In Map Query mode, there is an arrow pointing from source CUSTOMER_
ORDER/ORDER_ID to target CUSTOMER_ORDER_LINE_ITEM/ORDER_ID,
showing that they are joined.

You can verify your first join clause by clicking on target (CUSTOMER_ORDER) object.
Alternatively, you can look in Source view to verify that the new where clause is
modifying the CUSTOMER_ORDER_LINE_ITEM type.

1.3.4.11 Associate a Parameter with a For Node
An additional necessity where the condition that directs the query results to a
particular customer can be created by adding a parameter to an element in a node.
Parameters can be simple or complex.

This project requires use of a single parameter: last_name.

In the Query Map drag the element:

string string

$CUSTOMER_ORDER/ORDER_ID $CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

Note: You may need to move the For: nodes around in the work
area to expose the elements.

Source and element Target and element
Introduction to Data Services 1-37

Example: How to Create Your First Data Services
in the $last_name parameter over the LAST_NAME element in the CUSTOMER node.

Figure 1–32 Mapped Parameter and Where Clause

In Query Map mode, a line connecting the parameter to the node appears. This will
also be reflected in the Query Map Expression editor when you click on the
CUSTOMER For: node.

The results of this operation can also be viewed in the Source tab.

declare function tns:custOrdersItemsByLastName($last_name as xs:string) /
as element(ust1:CUST_ORDERS_ITEMS)* {
for $CUSTOMER in cus:CUSTOMER() where $last_name eq $CUSTOMER/LAST_NAME
return...

In Source you will also notice that the for statements now contain where clauses based
on your graphical gestures.

for $CUSTOMER in cus:CUSTOMER()
where $last_name eq $CUSTOMER/LAST_NAME
1-38 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
return
...
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID
return
...
for $CUSTOMER_ORDER_LINE_ITEM in cus2:CUSTOMER_ORDER_LINE_ITEM()
where $CUSTOMER_ORDER/ORDER_ID eq $CUSTOMER_ORDER_LINE_ITEM/ORDER_ID
return
...

1.3.5 Creating, Saving, and Associating the XML Type
Since this entity data service is being created "bottom up", it is not yet associated with
an XML Type (schema).

Now that you have a Return type, however, you create a valid XML Type by saving
your Return type and associating it with a namespace that is unique to the project.

1. Go to Query Map.

2. Right-click on the Return type's title bar.

3. Select Save and Associate XML type.

Save and Associate XML Type

4. When asked if you want to save modified resources, choose OK.

5. In the Save and Associate XML Type dialog you will notice that the current name
and namespace setting of the Return type conflicts with that of an existing type in
the CUSTOMER.xsd file. Change the Name of the Return type global element from:

CUSTOMER

to:

CUST_ORDERS_ITEMS

6. Leave the Update references option selected. (This option — which is by default
selected — means that XML Type references in source will be updated to reflect
the changes you are making.)
Introduction to Data Services 1-39

Example: How to Create Your First Data Services
Figure 1–33 Save and Associate XML Type

The Save and Associate XML Type dialog contains Location, Namespace, and Name
fields. The Update references box is checked.

7. Click Preview. This mode shows what changes will be performed by the name
change (refactoring) operation. In this case a new schema file will be created and
the target type will be renamed to CUST_ORDERS_ITEMS.

8. Click OK.

9. Notice that the target type (root element) in your Return type has been renamed.

10. Click Overview; you will see that your entity data service is now associated with
an XML type.

Figure 1–34 Newly Associated XML Type

The root element in the Return type has been renamed CUST_ORDERS_ITEMS. The
entity service is now associated with an XML type.

11. Publish your project. This operation should be successful.

1.3.5.1 Modifying the XML Type
When an XML Type is generated, complex elements by default return a single instance
of their type (for example, one CUSTOMER_ORDER will be returned even if there are
many).
1-40 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
In order to return all customer orders and all of each orders' line items minor changes
to the data service's XML type are needed. The XML markup for this is:

maxOccurs="unbounded"

In other words, the element returns n, any number of document fragments that meet
the criteria.

To modify your new CUST_ORDERS_ITEMS XML Type:

1. Click on the Overview tab, if it is not already selected.

2. Right-click on the topmost element in the XML type: CUST_ORDER_ITEMS.

3. Select Edit Schema. The Eclipse schema editor opens.

4. Click the schema editor's Source tab (below the editor's work area).

5. Locate the first qualified element: CUSTOMER_ORDER.

6. Place your cursor where you want to add the statement (just between the
double-quote and the closing angle bracket (>) at the end of the line)

7. Enter a space.

8. Activate the code assistant with the combination:

Ctrl + spacebar

You will get a code completion dialog.

9. Perform the Ctrl+space operation twice, once for the max_occurs, and again to
add the unbounded statement. The line now appears as:

<xs:element form="qualified" name="CUSTOMER_ORDER" maxOccurs="unbounded">

10. Follow Steps 5-9 for the second qualified element, CUSTOMER_ORDER_LINE_ITEM.

11. Save the CUST_ORDERS_ITEMS.xsd file.

File > Close

Example 1–4 CUST_ORDERS_ITEMS Schema (XSD File)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="custOrdersItems" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUST_ORDERS_ITEMS">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="FIRST_NAME" type="xs:string"/>
 <xs:element name="LAST_NAME" type="xs:string"/>
 <xs:element name="CUSTOMER_SINCE" type="xs:date"/>
 <xs:element name="EMAIL_ADDRESS" type="xs:string"/>
 <xs:element name="TELEPHONE_NUMBER" type="xs:string"/>
 <xs:element name="SSN" maxOccurs="1" minOccurs="0" type="xs:string"/>
 <xs:element name="BIRTH_DAY" maxOccurs="1" minOccurs="0" type="xs:date"/>
 <xs:element name="DEFAULT_SHIP_METHOD" maxOccurs="1" minOccurs="0" type="xs:string"/>
 <xs:element name="EMAIL_NOTIFICATION" maxOccurs="1" minOccurs="0" type="xs:short"/>
 <xs:element name="NEWS_LETTTER" maxOccurs="1" minOccurs="0" type="xs:short"/>
 <xs:element name="ONLINE_STATEMENT" maxOccurs="1" minOccurs="0" type="xs:short"/>
 <xs:element name="LOGIN_ID" maxOccurs="1" minOccurs="0" type="xs:string"/>
 <xs:element form="qualified" name="CUSTOMER_ORDER" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ORDER_ID" type="xs:string"/>
 <xs:element name="C_ID" type="xs:string"/>
 <xs:element name="ORDER_DT" type="xs:date"/>
Introduction to Data Services 1-41

Example: How to Create Your First Data Services
 <xs:element name="SHIP_METHOD_DSC" type="xs:string"/>
 <xs:element name="HANDLING_CHRG_AMT" type="xs:decimal"/>
 <xs:element name="SUBTOTAL_AMT" type="xs:decimal"/>
 <xs:element name="TOTAL_ORDER_AMT" type="xs:decimal"/>
 <xs:element name="SALE_TAX_AMT" type="xs:decimal"/>
 <xs:element name="SHIP_TO_ID" type="xs:string"/>
 <xs:element name="SHIP_TO_NM" type="xs:string"/>
 <xs:element name="BILL_TO_ID" type="xs:string"/>
 <xs:element name="ESTIMATED_SHIP_DT" type="xs:date"/>
 <xs:element name="STATUS" type="xs:string"/>
 <xs:element name="TRACKING_NO" maxOccurs="1" minOccurs="0" type="xs:string"/>
 <xs:element name="DATE_INT" maxOccurs="1" minOccurs="0" type="xs:long"/>
 <xs:element form="qualified" name="CUSTOMER_ORDER_LINE_ITEM" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LINE_ID" type="xs:string"/>
 <xs:element name="ORDER_ID" type="xs:string"/>
 <xs:element name="PROD_ID" type="xs:string"/>
 <xs:element name="PROD_DSC" type="xs:string"/>
 <xs:element name="QUANTITY" type="xs:integer"/>
 <xs:element name="PRICE" type="xs:decimal"/>
 <xs:element name="STATUS" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

1.3.6 Testing Your Data Service Function
Having created a parameterized read function for your logical data service, you can
now test it.

1. Having created a parameterized read function for your logical data service, you
can now test it.

2. Using the dropdown in the Select operation field, choose the function:

custOrdersItemsByLastName(string)

3. Enter:

Black

as the last name parameter.

4. Click Run. Your project should republished successfully and your data then
appear.

5. Click the + to the left of CUST_ORDERS_ITEMS to view your data in Tree
format. Notice that all the customer's orders are listed under customer
information. If you open CUSTOMER_ORDER you will see that items for each
order are also listed.

Note: Entries are case-sensitive.
1-42 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–35 Testing a Parameterized Query

The dialog shows the selected operation as custOrderItemsByLastName. In the
Parameters section, the last name is set to Black. In the Settings section, the Validate
Results box is checked. Click on the Run button to test.

1.3.6.1 View Test Run Results
Test results from this function can be viewed in two ways:

■ Tree

■ Text

Note: The Tabular option is only available for flat (non-nested)
results.
Introduction to Data Services 1-43

Example: How to Create Your First Data Services
Figure 1–36 Test Run Results in Tree Style Format

Results are shown organized into a tree style format.

1.3.6.1.1 Query Statistics in the Console Window The Console window will always contain
information on a successfully executed query. Access the Console with:

Window > Show View > Other... > General > Console

Click OK.

Sample console output is shown below.
1-44 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–37 Query Details in the Console Window

Query details are displayed in the console window. Statistics include query
compilation time, query evaluation time, and operation duration. Audit event statistics
are shown.

1.3.7 Adding Create-Update-Delete Functions to Your Data Service
You can also edit results in the Test area. In other words, you can update your data.

To do this an update procedure based on your data service must exist. Until then, the
Edit, Submit and Cancel buttons at the bottom of the Test mode work area

will be grayed out.
Introduction to Data Services 1-45

Example: How to Create Your First Data Services
The easiest way to create an update procedure for your logical data service is to
generate a default update map procedure. When you do this you will also be given the
option of creating delete and insert procedures.

To add the new procedures:

1. In the Overview tab, right-click in the work area choose Add Update Map
Procedures...

Figure 1–38 Add Update Map Procedures Dialog

The Add Update Map Procedures dialog enables you to add the selected update map
procedures. Check boxes let you select whether you want to add the procedures. There
are three procedure kinds shown: create, update, and delete. In this example, for the
create kind, the name is createCUST_ORDERS_ITEMS; for the update kind, the name is
updateCUST_ORDERS_ITEMS; and for the delete kind, the name is deleteCUST_ORDERS_
ITEMS. Check boxes let you indicate whether the selected procedure is primary.

2. Leave the default Add and Primary checkbox options selected for each function
and click OK.

Notice that the procedures are added to your data service.

Figure 1–39 Update Map Procedures

On the CUST_ORDERS_ITEMS overview panel, createCUST_ORDERS_ITEMS,
updateCUST_ORDERS_ITEMS, and deleteCUST_ORDERS_ITEMS have been added to the
data service.

1-46 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
1.3.8 Updating Your Results
Now that you have an updateCUST_ORDERS_ITEMS procedure, you can update data --
either through the Test tab or through authorized client applications. Here are the
steps:

1. Click on the Test tab and scroll to the top of the window.

2. From the Select operation dropdown select the createCUST_ORDERS_ITEMS(CUST_
ORDERS_ITEMS() operation to review the generated type.

3. From the Select operation dropdown select the read function
custOrdersItemsByLastName().

4. Run the function using Black as the last_name value.

5. Your project may need to be saved.

6. Click Edit.

7. Expand the top element in the CUST_ORDERS_ITEMS tree.

8. Change the customer's first name from Jack to Sachin using the built-in line
editor. Optionally change the email address as well.

9. Click the Submit button at the bottom of the work area. A message indicating that
your data has been successfully submitted appears.

Figure 1–40 Changing an Element in Test View
Introduction to Data Services 1-47

Example: How to Create Your First Data Services
The Test tab shows how you can edit values such as first name and email address. The
FIRST_NAME has been changed to Sachin and the email address has been changed to
sachin@hotmail.com.

10. Re-run your function to see that the first name field reflects the changes you made.

1.3.9 Reviewing the Query Plan
After a data service has been successfully published, the query plan for the service's
read functions can be examined through the Plan tab. The plan can be display in tree
or text mode.

1. Click the Plan tab.

2. Choose the custOrdersItemsByLastName(string) function from the Select
operation dropdown.

3. Click Show Query Plan.

Figure 1–41 Tree View of Query Plan

On the Plan tab, the tree version of the query plan for the service’s read functions is
shown. The join impl="index-cpp" kind="left-outer" function is expanded.

1-48 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
1.3.10 Reviewing the Update Map
After an entity data service is successfully published and contains an update function,
its update map can be inspected and, as necessary, edited.

■ Click the Update Map tab.

Figure 1–42 CUST_ORDERS_ITEMS Update Map
Introduction to Data Services 1-49

Example: How to Create Your First Data Services
The CUST_ORDERS_ITEMS Update Map shows the mapping between CUST_
ORDERS_ITEMS, Update CUSTOMER, and Update CUSTOMER_ORDER.

For more information, see "Understanding Update Maps" on page 9-1.

1.3.11 Archiving Your Project
You can save your entire project to a ZIP file. Then, when you need to load it again,
you can do so with a simple Import operation.

Other examples in the Oracle Data Service Integrator documentation use this or
similar examples, so having this project available will be make it easier to experiment
with other Oracle Data Service Integrator faculties.

1. In Project Explorer, right-click on the myDataspace Project.

2. Choose Export.

3. In the Export dialog choose:

General > Archive File

4. Click Next.

1.3.11.1 Saving Project to a ZIP File
1. In the Archive file dialog the myDataspace project is pre-selected. Browse to the

location where you want to put your archive file.

2. Name your file:

myDataspace

Leave all other options unchanged.

3. Click Save.
1-50 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: How to Create Your First Data Services
Figure 1–43 Creating the Archive File

The Archive file dialog exports resources to an archive file on the local file system. The
myDataspace project is selected. In the To archive file: field, myDataspace.zip on the
local drive has been selected. Options Save in zip format, Compress the contents of the
file, and Create directory structure for files are selected. The Back, Finish, and Cancel
buttons are active.

4. Click Finish.

A file myDataspace.zip will be created in the directory you specified.

1.3.12 Summary
Congratulations! In just a few minutes you have:

■ Started Oracle Data Service Integrator.

■ Created several physical data services based on existing data.

■ Created a logical data service based on elements from three physical sources.

■ Build a function to retrieve based on information on a particular customer, the
customer's orders, and each item in each order.

■ Created an XML Type based on the Return type of your function.

■ Modified the XML Type to better support a master-detail arrangement of
information.

■ Tested your results.

■ Edited your results.

■ Viewed the query plan and the updated map.
Introduction to Data Services 1-51

Reference
■ Create an archive file of your dataspace.

About 150 lines of XQuery have been generated.

1.4 Reference
This section describes the following sections:

■ Section 1.4.1, "Oracle Data Service Integrator Start Menu"

■ Section 1.4.2, "Data Service Types and Functions"

■ Section 1.4.3, "Data Service Characteristics"

■ Section 1.4.4, "Operational Characteristics"

1.4.1 Oracle Data Service Integrator Start Menu
The Oracle Data Service Integrator Start menu provides easy access to components
used to develop Oracle Data Service Integrator data services. Access is from the
Windows Start menu:

Start > All Programs > Oracle WebLogic

1.4.1.1 Oracle Data Service Integrator Start Menu
The following table describes the menu options available from the main Oracle
WebLogic menu.

1.4.2 Data Service Types and Functions
Oracle Data Service Integrator functions can have a number of attributes. This section
describes those attributes and the conditions under which they are applicable.

Figure 1–44 Oracle Data Service Integrator Data Service Types and Attributes

The Oracle Data Service Integrator Data Service Types and Attributes figure shows
information about functions and data services. For access, the types are public,

Table 1–7 Start Menu Options

Option Usage

Oracle Data Service
Integrator

Provides access to the Oracle Data Service Integrator online
documentation.

Online Documentation The Oracle WebLogic documentation home page.

QuickStart Provides links to help get started with installed Oracle products

SmartUpdate Used in conjunction with your Oracle Support ID to download
any applicable patches and maintenance packs.

Uninstall Oracle Data
Service Integrator

Uninstalls Oracle Data Service Integrator.

Eclipse for WebLogic Oracle Data Service Integrator Eclipse-based IDE

User Projects User-created domains.
1-52 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
protected, and private. For primacy, the types are primary and non-primary. For kind,
the types are create, update, delete, read, navigate, and library. For operation, the types
are function and procedure. For implementation, the implementation types are
XQuery, XQSE, template-based, and external. For data services, there are two types:
logical and physical. For DS shape, the types are library and entity.

1.4.3 Data Service Characteristics
The following table describes the characteristics of Oracle Data Service Integrator data
services. Data service characteristics are defined in the XQuery source pragma.

For more information, see Chapter 6, "Building XQueries."

1.4.4 Operational Characteristics
The following table describes the characteristics that can be used to describe functional
routines in Oracle Data Service Integrator. These characteristic descriptions are also
part of the function's signature, visible in data service Source editor.

Table 1–8 Data Service Characteristics

Characteristic Description

Type There are two types of data services:

■ Physical. The data service is directly based on metadata
imported from underlying data sources. Physical data
services are created during the metadata import process.

■ Logical. The data service is based wholly or partially on
data derived from other data services. Logical data services
are created either through the Query Map Editor or in
source.

Shape The shape of a data service is determined by its XML type, or
underlying schema, if any. Shapes are:

■ Entity. An entity data service is associated with an XML
type. For example, physical data services based on
relational tables are entity data services. For any given
entity data service, all read functions return information in
the shape of the primary XML type.

■ Library. A library data service is not associated with an
XML type. Library data services contain routines that can be
used by other library or entity data services.
Introduction to Data Services 1-53

Reference
Table 1–9 Oracle Data Service Integrator Operations Characteristics

Characteristic Description

Access Access or visibility to a functional routine can be set as:

■ Public. A public operation can be called from any operation
in the same data space and from an Oracle Data Service
Integrator client API. Public operations are the only ones
that can be called from client APIs such as Web services or
the Java Mediator API.

■ Protected. An operation with protected visibility can be
called from any operation in the same data space. Protected
operations cannot be accessed from Oracle Data Service
Integrator client APIs. An operation in the data space can
access the function. Functions in physical data services are,
by default, protected.

■ Private. The function can only be accessed by other
functions in its data service. Operations with private
visibility are also off-limits to client APIs.

Primacy Every logical entity data service identifies a single primary
function for each kind of function. For example, if there are
several read functions, one will be set as primary.

In the case of read functions, the data service relies on the
primary read function in the data service to determine the shape
of the Return type.

For create, update, and delete functions, the primacy setting is
used by update templates of component data services.

In an entity data service, a function can be set as primary. Other
functions of a similar type are automatically considered
non-primary.

Note that library functions have no Return type and are not
categorized as primary or non-primary.

Kind Oracle Data Service Integrator has several kinds of functions.
For physical data services, the kind of function is inferred during
the data service creation process, when metadata is imported.

Four of the functions are actually CRUD
(create-read-update-delete) procedures, which operate on the
underlying data.

■ Read. Returns data from an underlying data source.

■ Create. Creates one or several records.

■ Update. Updates one or several records.

■ Delete. Deletes one or several records.

Other kinds of functions include:

■ Navigate. Navigate function have the current data service
Return type as one of the input parameters; it typically
returns a sequence of the return schema element from the
related data Service. Example: Return type Order instead of
Return type Customer.

■ Library. Functions, which are independent of the data
service XML type. Library functions can appear in either
data services and library data services
1-54 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Related Topics
1.5 Related Topics
This section describes the following topics:

■ Section 1.5.1, "Getting the Most from the WebLogic Eclipse Plugin Framework"

■ Section 1.5.2, "Create a Data Service with a Flat Return Type"

1.5.1 Getting the Most from the WebLogic Eclipse Plugin Framework
Oracle Data Service Integrator dataspaces are initially created as projects in the
WebLogic Eclipse plugin framework. The Eclipse IDE is a rich, open development
environment.

Operation There are two types of operations:

■ Functional. General-purpose data service functions are
designed to retrieve data for clients. Functions cannot have
side-effects. Functions can be defined through XQuery or
XQSE. If XQSE is used, the fact that the routine is identified
as a function means that it does not have side effects.

■ Procedural. The purpose of a procedural function (also
called a procedure or side-effecting procedure) is to affect
external processes. A classic example of a side-effecting
procedure is an RDBMS stored procedure that modifies
underlying data. When a stored procedure is invoked, it
operates on the data in the RDBMS without necessarily
returning anything to the caller. Similarly, in Oracle Data
Service Integrator, a procedural function will primarily
invoke an external process. Create-update-delete operations
are, by definition, procedural.

Note: There is an important distinction between functions
and procedures from the perspective of the data service
optimizing engine. Procedures are always considered to
have side-effects and are therefore never optimized by the
XQuery engine in such a way that they do not
independently execute. While a delete() function might not
be executed (i.e., "optimized away"), a delete() procedure
will always be called.

Implementation Functions can be implemented in the following ways:

■ XQuery. The most common means of implementing an
Oracle Data Service Integrator function is through XQuery.
Of course the data service itself is implemented in XQuery.

■ XQSE. The XQuery Scripting Extension provides a
procedural language to extend XQuery to support certain
kinds of operations.

■ Template-based. An update template defines the data flow
and order for update operations for a logical data service.
The update engine in the Oracle Data Service Integrator
server executes a procedure based on a template; is typically
a Java routine used to manage updates of non-relational
data. The same template is used by create, update, and
delete routines.

■ External. External functions are based on physical sources
such as Java, web services, XML, flat files, or relational
sources. External functions can be created in entity or
library data services.

Table 1–9 (Cont.) Oracle Data Service Integrator Operations Characteristics

Characteristic Description
Introduction to Data Services 1-55

Related Topics
While some aspects of Eclipse are described in this section, no attempt is made to
replicate the large body of documentation available for Eclipse developers.

References

■ Eclipse home site

■ Eclipse Help documentation

■ Eclipse user guides

1.5.1.1 Data Services Eclipse for WebLogic
Eclipse for WebLogic run inside the Eclipse framework.

The Windows > Show View menu option can be used to add additional windows to
the perspective.

In addition, several Oracle Data Service Integrator Perspective menu options are
provided under:

File > New

These allow you to, first, create an Oracle Data Service Integrator dataspace project
and then to add various types of data services, models and web service mapper.

1.5.2 Create a Data Service with a Flat Return Type
This topic shows you how to create an update map from a logical data service with a
flat, non-nested return type, using the sample database that ships with Oracle Data
Service Integrator.

■ Section 1.5.2.1, "Overview"

■ Section 1.5.2.3, "Create the Return Type"

■ Section 1.5.2.3, "Create the Return Type"

■ Section 1.5.2.5, "Create a Logical Data Service"

■ Section 1.5.2.5, "Create a Logical Data Service"

Table 1–10 Workshop for WebLogic Artifacts in the Oracle Data Service Integrator
Perspective

Artifact Purpose

Project Explorer Contains project artifacts including data services and their
functions.

Properties editor Contains read/write and read only properties associated with
the selected artifact. For example a function may be set to public,
protected, or private through its Properties editor.

Outline manager Provides a scrollable view of your model, query, or update
mapper. This is particularly useful in large projects since the
work area may not be large enough to show all the artifacts.

Console The console appears whenever the server is accessed.

Servers tab Display the status of the Oracle Data Service Integrator server
which in turn provides clients with access to data services and
their underlying data sources.

Problems tab Displays problems encountered by the project.

Error Log tab Displays errors associated with the project.
1-56 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Related Topics
■ Section 1.5.2.6, "Create the Query Map"

■ Section 1.5.2.7, "See Also"

1.5.2.1 Overview
A return type can be non-nested, or flat, even if it joins two relational tables, where one
table has a one-to-many relationship with the other table. An example is one customer
in a CUSTOMER table with many Orders in an ORDERS table. One approach to the return
type is to nest an Orders element of multiple cardinality beneath the Customer
element.

Figure 1–45 A Nested Customer-and-Orders Schema

A nested schema is shown. CustomerOrder is expanded to CUSTOMER and
CUSTOMER_ORDER. CUSTOMER is expanded to CUSTOMER_ID, FIRST_NAME,
LAST_NAME, and SSN. CUSTOMER_ORDER is expanded to ORDER_ID, C_ID,
TOTAL_ORDER_AMT, and STATUS.

Because you can design a logical data service with any structure, regardless of the
underlying data sources, it is just as valid to define a flat return type to model the
relationship between Customers and Orders.

Figure 1–46 A Flat Customer-and-Orders Schema

A flat schema is shown. Under CUSTOMERS_AND_ORDERS, the following appear:
CUSTOMER_ID, FIRST_NAME, LAST_NAME, EMAIL_ADDRESS, ORDER_ID,
ORDER_DT, TOTAL_ORDER_AMT.

1.5.2.2 Create a Dataspace Project
First, create a new dataspace project to contain your physical and logical data services:

1. In Eclipse for WebLogic, choose File > New > Dataspace Project.

2. Enter a project name such as FlatReturnType, then click Finish.

3. Right-click the new dataspace project name, and choose New > Folder.
Introduction to Data Services 1-57

Related Topics
4. Create folders named physical and logical. Within logical, create a folder named
schemas.

Using separate folders for physical and logical services helps separate the physical
and logical integration layers.

Figure 1–47 Adding a New Dataspace Project

The New Dataspace Project dialog contains fields for Project Name, Project Contents,
Runtime Target, and Select Deployment Target Server.

1.5.2.3 Create the Return Type
The return type the logical data service uses combines data from the CUSTOMER table
and the ORDERS table. It has a non-nested XML structure, even though the data shows
that customers and orders have a one-to-many relationship.

You can define the return type by creating an XML schema (XSD) file. In an XML
editor, create a schema file like this one:

Example 1–5 XML schema (XSD) File

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/FlatReturnType" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMERS_AND_ORDERS">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="FIRST_NAME" type="xs:string"/>
 <xs:element name="LAST_NAME" type="xs:string"/>
 <xs:element name="EMAIL_ADDRESS" type="xs:string"/>
 <xs:element name="ORDER_ID" type="xs:string"/>
 <xs:element name="ORDER_DT" type="xs:date"/>
 <xs:element name="TOTAL_ORDER_AMT" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Be sure to:

■ Define targetNamespace to make sense for your dataspace project.

Make sure you have only one top-level element of the name you choose (here,
CUSTOMERORDER) in your target namespace. You can give the targetNamespace the
same name as the dataspace project, but you are not required to.

■ Save the schema file in the logical/schemas folder within your dataspace project.

Note that the cardinality of all elements uses the default values, minOccurs="1" and
maxOccurs="1". Each customer has many orders, but there is only one combination of
1-58 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Related Topics
customer and order, so the cardinality of the order elements (ORDER_ID, ORDER_DT, and
TOTAL_ORDER_AMT) is still 1.

1.5.2.4 Create Physical Data Services
Now, create physical data services based on the sample database or your own physical
data sources.

1. In Project Explorer, right-click the physical folder in your dataspace project.

2. Choose New > Physical Data Service.

3. Choose Relational for Data source type and dspSamplesDataSource for Data source,
then click Next.

4. Expand RTLCUSTOMER and select CUSTOMER.

5. Select Public for both CUSTOMER and CUSTOMER_ORDER, then click Next.

6. Click Finish.

7. When asked if you want to open the new data services, click No.

Figure 1–48 Adding Physical Data Services

The Create Physical Data Service dialog lets you choose the data source, database type,
and relational object for the new data service. There are field for Container, Data
source type, Data source, and Database type. Under Relational database object, choose
Tables and views, Stored procedures, SQL statement, or Database function.

This graphic does not match the previous text.

1.5.2.5 Create a Logical Data Service
Now that you have physical data services and a schema for the return type, you can
create the logical data service.

1. Right-click the logical folder, then choose New > Logical Data Service.

2. Enter a name for the service, such as FlatCustomersAndOrders.

3. Make sure Entity Data Service is selected, then click Finish.

Now associate a return type with the service:
Introduction to Data Services 1-59

Related Topics
1. Right-click in the Overview tab and choose Associate XML Type.

2. Select the schema and click OK.

Figure 1–49 A New Logical Data Service with a Return Type

A flat Customers and Orders data services shows a CUSTOMERS_AND_ORDERS
return type.

You also need to define a primary Read function, in order to create both the query map
and update map.

1. Right-click in the service name bar at the top, and choose Add Operation.

2. Make sure Kind is set to read, then enter a function name, such as read.

3. Make sure Primary is selected, then click OK.

Figure 1–50 Creating a Primary Read Function

On the Add Operation dialog, Visibility is set to public, Kind is set to read, and name
is set to read. The Return Type is fla:CUSTOMERS_AND_ORDERS. The Primary
option is selected.

1.5.2.6 Create the Query Map
Now you need to create the query map visually in Eclipse for WebLogic, which in turn
generates an update map.
1-60 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Related Topics
1. Click the Query Map tab.

2. In Project Explorer, expand the physical data services CUSTOMER.ds and
CUSTOMER_ORDER.ds.

3. Drag the Read function from each physical service to the mapping area.

Notice that you cannot scope the CUSTOMER_ORDER block to a subtype in the return
type, because the return type has no subtypes.

4. Drag mappings from the CUSTOMER block on the left to the return type for
CUSTOMER_ID, FIRST_NAME, LAST_NAME, and EMAIL_ADDRESS.

5. Drag mappings from the CUSTOMER_ORDER block on the left to the return type for
ORDER_ID, ORDER_DT, and TOTAL_ORDER_AMT.

6. In the For blocks, drag from CUSTOMER/CUSTOMER_ID to CUSTOMER_
ORDER/CUSTOMER_ID.

This creates a join between the two data sources.

At this point, the query map looks like this.

Figure 1–51 A Query Map with Mappings and a Join

Mappings to the return type are shown, as well as the join (the dotted line) between
CUSTOMER and CUSTOMER_ORDER.

If you click the Source tab and expand the Read function, you see XQuery code like
this:

Example 1–6 XQuery Code for read function

declare function tns:read() as element(fla:CUSTOMERS_AND_ORDERS)*{
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
for $CUSTOMER in cus:CUSTOMER()
where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID
return
 <fla:CUSTOMERS_AND_ORDERS>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
 <ORDER_DT>{fn:data($CUSTOMER_ORDER/ORDER_DT)}</ORDER_DT>
 <TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDER_AMT>
 </fla:CUSTOMERS_AND_ORDERS>
};
Introduction to Data Services 1-61

Related Topics
Notice that the XQuery code has a for statement nested directly within another for
statement. This creates an inner join between the two tables in SQL. To confirm the
SQL that is created:

1. Click the Test tab.

2. At Select operation, make sure the primary Read function is selected.

3. Click Run (saving your data service as necessary).

You should see an XQuery FLWOR statement node. If you expand it, you should see a
SQL query like this, showing an inner join:

SELECT t1."ORDER_DT" AS c1, t1."ORDER_ID" AS c2, t1."TOTAL_ORDER_AMT" AS c3,
 t2."CUSTOMER_ID" AS c4, t2."EMAIL_ADDRESS" AS c5, t2."FIRST_NAME" AS c6, t2."LAST_NAME" AS c7
FROM "RTLAPPLOMS"."CUSTOMER_ORDER" t1
JOIN "RTLCUSTOMER"."CUSTOMER" t2
ON (t2."CUSTOMER_ID" = t1."C_ID"

The inner join is created because the logical data service has a flat return type. When
you mouse over the SQL query, you see this message:

Generated SQL query does not have a WHERE clause. This may cause the query to take longer to finish
and use excessive memory resources.

1.5.2.7 See Also
Example: How to Create Your First Data Services
1-62 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

2

2Developing and Managing Dataspace

Projects

This chapter describes the concepts of data service validation during deployment, and
how to create, build, clean, configure, remove, export, import, and build dataspace
projects.

This chapter contains the following topics:

■ Section 2.1, "Data Service File Validation During Deployment"

■ Section 2.2, "How-to"

■ Section 2.3, "Reference"

■ Section 2.4, "Related Topics"

2.1 Data Service File Validation During Deployment
In the Eclipse IDE a dataspace project's data service (.ds) files are validated
automatically according to the following deployment model:

■ The publish to server action validates the dataspace projects.

■ All the project's artifacts are collected.

■ The collected artifacts are deployed to the server.

2.2 How-to
This section describes the following topics:

■ Section 2.2.1, "How To Create, Build, Clean, and Delete Dataspace Projects"

■ Section 2.2.2, "How to Publish, Configure, and Remove Dataspace Projects"

■ Section 2.2.3, "Exporting Dataspace Projects or Project Folders"

■ Section 2.2.4, "Exporting Dataspace Project Artifacts Using Oracle Data Service
Integrator Export Wizards"

■ Section 2.2.5, "Importing a Dataspace Project"

■ Section 2.2.6, "How To Handle Error Conditions in a Dataspace Project"

■ Section 2.2.7, "How To Validate, Build, Export, and Package Dataspace Projects
from the Command Line"
Developing and Managing Dataspace Projects 2-1

How-to
2.2.1 How To Create, Build, Clean, and Delete Dataspace Projects
This section describes the following topics:

■ Section 2.2.1.1, "Creating a Dataspace Project"

■ Section 2.2.1.2, "Building a Dataspace Project"

■ Section 2.2.1.3, "Cleaning a Dataspace Project"

■ Section 2.2.1.4, "Deleting a Dataspace Project"

A dataspace project is developed in Eclipse for WebLogic and deployed to a local
server. While the development process typically is an iterative cycle of modification
and deployment, it is important to keep in mind that the existence of a project in
Eclipse for WebLogic is only loosely coupled with its deployed status. This loose
coupling has implications for several types of operations:

■ Development and deployment to the server

■ Publishing to the server

■ Configuring projects on the server

■ Removal of the project

■ Removal of the project from the server

2.2.1.1 Creating a Dataspace Project
You can create a new dataspace projects using the Eclipse for WebLogic File menu.

File > New > Dataspace Project

For more information, see "Creating a Dataspace Project" on page 1-15.

2.2.1.2 Building a Dataspace Project
In Eclipse for WebLogic it is often a good practice to set your project to be built
automatically every time you modify a file in your project. You can establish this
setting through the Eclipse for WebLogic Project menu:

Project > Build Automatically

A checkbox appears when this option is selected.

2.2.1.3 Cleaning a Dataspace Project
Applying a "clean" to a project clears out any existing build problems and build states.
If your build runs into error conditions or other problems, cleaning and redeploying
your project is a recommended first step.

Project > Clean...

WARNING: A dataspace project can only be deployed when no other
process has an editing lock on the Oracle Data Service Integrator
configuration that contains your dataspace. The Oracle Data Service
Integrator configuration can be locked through the Oracle Data
Service Integrator Administration Console (Lock and Edit), by a client
process (MBean API or WLST script), or during deployment from
Eclipse/WebLogic for Eclipse.
2-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
2.2.1.4 Deleting a Dataspace Project
Dataspace projects are both created and deleted through the Project Explorer.

To delete a project:

1. Right-click on the project's name in the Project Explorer.

2. Select Delete.

You will be given two options:

■ Delete content from the file system? If you choose:

Do not delete content

you will be able to import the project at a later time.

■ Delete the dataspace on the server? The deployed dataspace will be removed
from the server. If this option is not selected, the dataspace will remain in one of
two states, depending on selected options:

– Available to be configured on the server

– Configured on the server

2.2.2 How to Publish, Configure, and Remove Dataspace Projects
Dataspace projects are created in the Eclipse for WebLogic Eclipse plugin framework.
A project that builds successfully is ready to be made available from a local supported
version of Oracle WebLogic server.

Several terms can be used to describe the process of managing a server's dataspace
projects.

■ Publish. All projects associated with a server can be deployed at once.

■ Available. These are projects that have been published and are available to be
configured on the server. A project must both present on the server and configured
before it can be access by client applications. A project with an Available status can
be thought of as staged.

■ Configured. A configured project is available to authorized calling applications. A
project with Configured status on the server can be thought of as released.

This section describes the following topics:

■ Section 2.2.2.1, "Publishing Server Projects"

■ Section 2.2.2.2, "Configuring Server Projects"

■ Section 2.2.2.3, "Managing Configured Projects Through the Servers Window"

■ Section 2.2.2.4, "Removing Dataspace Projects from a Server"

2.2.2.1 Publishing Server Projects
You can publish all the dataspace projects associated with a workspace.

Note: Data services can also be removed from their server through
the Oracle Data Service Integrator Administration Console.

Tip: Use the Add and Remove Projects dialog to move projects
between Available and Configured state.
Developing and Managing Dataspace Projects 2-3

How-to
Right-click on the name of your server in the Servers window and choose Publish.

Figure 2–1 Publishing Server Projects

Publishing Server Projects

The state in the Servers window will be changed to Republish.

Publishing or republishing a set of projects does not affect the configuration status of
each project on the server. You can modify the configuration status through the Add
and Remove Projects... dialog.

2.2.2.2 Configuring Server Projects
Projects on a server are considered either configured on the server or available to be
configured on the server. Configuration status is managed either through the Add and
Remove Projects... dialog or directly from the Servers window.

2.2.2.2.1 Managing Configured Projects Through Dialog To access the dialog:

1. Right-click on the name of the server in the Servers window.

2. Select Add and Remove Projects...

Note: Only configured projects are available to client applications.
2-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
Figure 2–2 Add and Remove Projects Dialog

The Add and Remove Projects dialog modifies projects that are configured on the
servers. There are two lists: Available projects and Configured projects. Select a
project on the Available projects list and click the Add button to move it to the
Configured projects list. To remove a project, click on the project in the Configured
projects list, click Remove, and the project moves to the Available projects list. Similarly,
there are Add all and Remove all buttons.

2.2.2.3 Managing Configured Projects Through the Servers Window
You can also change a project's configuration status through the Servers window.

Figure 2–3 Server and Projects Dialog

Server and Projects Dialog

1. Click on the + symbol next to the server name.

2. Right-click on the project you wish to unconfigure.

3. Select Remove.

Alternatively, just select your project and click the Delete key.
Developing and Managing Dataspace Projects 2-5

How-to
You can use the Add and Remove Projects Dialog to change the configuration
status of your project.

2.2.2.4 Removing Dataspace Projects from a Server
You can permanently remove a project from the server through the right-click menu
Delete option in the Project Explorer.

For more information, see "Deleting a Dataspace Project" on page 2-3.

2.2.3 Exporting Dataspace Projects or Project Folders
Oracle Data Service Integrator dataspace projects or their component folders can be
exported in EAR (archive) format using standard Eclipse mechanisms. The export
target is the local file system.

If an entire project is exported as an EAR, it constitutes a back-up of the project which
can then be re-imported into an Eclipse-compatible IDE.

To create an archive file of a dataspace project:

1. In Project Explorer right-click on your project (or folder).

2. Navigate to:

Export > General > Archive File

3. In the Archive File wizard select the entire project or one or several folders.

4. Select from available export options.

5. Click Finish.

Figure 2–4 Creating an EAR File for a Dataspace Project

The Export dialog lets you export resources to an archive file on the local file system.
There are two panels: on the left, the mySpace folder is open and selected, and the
subfolders are selected. On the right, the project and xquery-types.xsd file are selected.
2-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
There are three buttons: Select Types, Select All, and Deselect All. Browse to specify
the To archive file location. The Save in zip format and Create directory structure for
files options are selected, as well as the Compress the contents of the file checkbox. The
Save in tar format and Create only selected directories options a unselected.

See Eclipse Documentation (http://www.eclipse.org/documentation/) for
general information about the Export operation.

2.2.4 Exporting Dataspace Project Artifacts Using Oracle Data Service Integrator
Export Wizards

This section describes the various types of export operations available for Oracle Data
Service Integrator dataspace projects.

■ Section 2.2.4.1, "Exporting Dataspace Artifacts"

■ Section 2.2.4.2, "Generating a Data Service Definitions and Artifacts JAR"

■ Section 2.2.4.3, "Generating a Mediator Client JAR File"

■ Section 2.2.4.4, "Generating a JAR File Containing Data Service-to-Web Service
Maps"

2.2.4.1 Exporting Dataspace Artifacts
The Oracle Data Service Integrator export wizards can be accessed using the File >
Export menu, then expand on the Oracle Data Service Integrator export wizard
category.

File > Export... > Oracle Data Service Integrator

Note: Artifacts can only be exported from deployable dataspace
projects; if your project is not deployable, the export operation will not
succeed.
Developing and Managing Dataspace Projects 2-7

How-to
Figure 2–5 Exporting a Dataspace Project

The Export dialog lets you choose an export destination. There is a field to typing filter
text. A directory tree is shown and the AquaLogic Data Services Platform folder is
selected. There are Back, Next, Finish, and Cancel buttons.

In the Oracle Data Service Integrator category there are three wizards. Each generates
a specific type of JAR file.

Any dataspace projects pre-selected in the Project Explorer will automatically be
selected in the export wizard.

2.2.4.2 Generating a Data Service Definitions and Artifacts JAR
An exported JAR file containing a single project's server-deployable definitions and
artifacts. Such a file can be imported into another Oracle Data Service
Integrator-enabled version of Eclipse. In addition, the definitions and artifacts JAR can
be useful:

■ As a means of transporting a dataspace from one application to another.

■ In conjunction with certain refactoring operations.

Table 2–1 Types of Oracle Data Service Integrator JAR File Export Operations

Export Type Effect

Data service definitions and
artifacts

All Oracle Data Service Integrator deployable artifacts are
bundled into a JAR file.

Mediator client A Java interface for accessing data services is created.

Web services mediator client A web services interface for accessing data services is created.
2-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
■ For deployment on multiple servers (clusters) at a later time.

■ For debugging purposes.

Figure 2–6 Export Data Service Definitions and Artifacts

The Export OSDI Studio Data Service Definitions and Artifacts dialog shows two
panels containing files in a flat structure. All folders are selected. There is a Deselect
All button. Browse to specify the directory. You can specify the filename or select Use
default filename. The Overwrite existing output file without warning option is
deselected. There are Back, Next, Finish, and Cancel buttons.

In the wizard, the contents you identify using their adjacent checkbox will be
exported. For example if you check the box next to the project name, all of that projects
server-deployable components will be selected.

You can fine-tune your selection by clicking on a folder. The folder's contents will
appear in the right-hand column where you can use a checkbox to control which
artifact will be exported.

Table 2–2 Actions Associated with Generating a Data Service Definitions and Artifacts JAR

Item
Recommended Setting or
Action Details – Comments

1 Export Data Service Definitions and
Artifacts Page

2 Check folders or their contents that
you want to export

3 Deselect All Convenience if more than one
project is selected.

4 To Directory: /user_projects/helloworld JAR file can be exported
anywhere on the system.

5 Filename: -artifacts.jar Example:

mySpace-dsp-client.jar
Developing and Managing Dataspace Projects 2-9

How-to
2.2.4.3 Generating a Mediator Client JAR File
This wizard presents a list of open Oracle Data Service Integrator projects to select
from, and it generates an Oracle Data Service Integrator mediator client JAR file from
the currently selected project. Projects are exported one at a time.

Java programs access data services through the Oracle Data Service Integrator
Mediator API. This API is generated from the Oracle Data Service Integrator Eclipse
platform and is based on a project that can be successfully built and deployed.

For more information, see Accessing Data Services from Java Clients.

Figure 2–7 Export Mediator Client JAR Wizard

The Export OSDI Studio Mediator Client Jar dialog lets you select the OSDI Studio
project from which you want to generate a mediator client jar file, and specify the
name and output directory for the jar file. There is a pane for selecting the DSP project
for generating a mediator client jar file. The mySpace folder is selected. There is a
Deselect All button. You can browse to the directory you want. There is a space to
specify the filename. The Use default filename option is checked. The Overwrite
existing output file without warning option is unchecked. There are Back, Next, Finish,
and Cancel buttons.

6 Use default filename option Selected When selected editing of the
generated filename is not allowed.

7 Overwrite existing file without
warning option

Unselected If unselected you will be asked if
you want to overwrite any
existing file of the same name.

8 Success message Finish Identifies project and target name.

Table 2–2 (Cont.) Actions Associated with Generating a Data Service Definitions and Artifacts JAR

Item
Recommended Setting or
Action Details – Comments
2-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
2.2.4.4 Generating a JAR File Containing Data Service-to-Web Service Maps
After you have created a web service map of one or more data services you can create
an exported JAR file containing these maps.

Then the created JAR file can be used as your applications web service interface to
available data services.

Table 2–3 Steps Associated with Generating a Mediator Client API JAR File

Item Recommended Setting or Action Details – Comments

1 Select the Mediator Client JAR
File export wizard

2 Type: Mediator Client JAR File

3 Select a Dataspace Project Page Next

4 Pick a dataspace project mySpace Only one project at a time can
be exported.

5 Deselect All Convenience if more than one
project is selected.

6 To Directory: /user_projects/helloworld JAR file can be exported
anywhere on the system.

7 Filename: -dsp-client.jar Example:

mySpace-dsp-client.jar

8 Use default filename option Selected When selected editing of the
generated filename is not
allowed.

9 Overwrite existing file without
warning option

Unselected If unselected you will be asked
if you want to overwrite any
existing file of the same name.

10 Success message Finish Identifies project and target
name.

Note: Only publicly available operations can be turned into web
service operations. You can adjust access level to a data service
function through the Properties window.
Developing and Managing Dataspace Projects 2-11

How-to
Figure 2–8 Exporting a Web Services Mediator Client JAR File

In the Web Services Mediator Client JAR File dialog, there are two panels: one for
exportable dataspace projects and folders, and another for Web services maps of the
currently selected folder. All items on both panels are selected. There is a Deselect All
button. Browse to specify a destination directory. Specify a filename. The Use default
filename option is selected. The overwrite existing output file without warning option
is deselected.

Table 2–4 Actions Associated with Generating a Web Services Mediator Client JAR File

Item Recommended Setting or Action Details – Comments

1 Export Web Services
Mediator Client JAR File

2 Check folders or their
contents that contain web
service maps

Select folder Click on the exportable dataspace
folder to located selected WS file.

3 Deselect All Convenience if more than one
project is selected.

4 To Directory: /user_projects/helloworld JAR file can be exported anywhere
on the system.

5 Filename: -ws-client.jar Example:

mySpace-ws-client.jar
2-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
2.2.5 Importing a Dataspace Project
A JAR file containing an Oracle Data Service Integrator project can be imported into
your workspace.

1. Create a dataspace project, naming it appropriately. (Alternatively you may be
able to use an existing project if there are no naming conflicts.)

File > New > Dataspace Project

2. Click on your new project.

3. Choose:

File > Import > General > Archive File

4. Next.

5. Browse to the directory location of your JAR file.

6. Open.

7. Answer Yes to All to the question regarding overwriting xquery-types.xsd.

8. Finish.

9. Deploy your project to verify a successful build and deployment.

2.2.5.1 Importing a File-based Project
A project in an accessible file system can be imported into Eclipse for WebLogic. You
can import one or several projects at the same time.

1. Choose:

File > Import... > General > Existing Projects into Workspace

2. Browse to your dataspace project directory.

3. Select the project or projects you wish to import.

2.2.6 How To Handle Error Conditions in a Dataspace Project
During the course of creating your project there are times when the project will be in
an error condition. There are many reasons for this. Generally speaking the way to
handle such conditions is to either:

■ Go forward because you understand why the condition has occurred.

■ Revert using Undo.

There may be some cases, however, when the error condition comes as a surprise
and/or there is no easy way to revert. Information about such conditions can be found
in two places.

6 Use default filename option Selected When selected editing of the
generated filename is not allowed.

7 Overwrite existing file
without warning option

Unselected If unselected you will be asked if
you want to overwrite any existing
file of the same name.

8 Success message Finish Identifies project and target name.

Table 2–4 (Cont.) Actions Associated with Generating a Web Services Mediator Client JAR File

Item Recommended Setting or Action Details – Comments
Developing and Managing Dataspace Projects 2-13

How-to
Figure 2–9 Problem and Error Log Tabs in a Dataspace

The Problems tab displays a description, resource, path, and location for each error. In
this case, two errors are listed under the Problems tab. A detailed error report appears
in the source code in the upper half of the dialog.

The error log contains several types of messages; icons are used to differentiate their
type.

Double-clicking on each line in the Error Log window will open a separate dialog that
will allow you to see more information. Examples:

■ Double-clicking or an error might open a dialog that will contain the related stack
trace.

■ Double-clicking on each line in the Problems view will, if possible, open the file
having errors and highlight the error.

Table 2–5 Problem Reporting in Dataspace Projects

Tabular window Purpose

Problems (Window > Show View > Problems) Collects and displays errors in the data service source file.

Error Log (Window > Show View > Error Log) Collects and displays project-related error conditions.

Table 2–6 Error Log Icons and Their Meaning

Icon Meaning

Error.

Error with log or stack trace.

Warning.

Informational.

Process icon.
2-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
2.2.7 How To Validate, Build, Export, and Package Dataspace Projects from the
Command Line

This section describes how to validate, build, export and package Oracle Data Service
Integrator dataspace projects from the command line.

■ Section 2.2.7.1, "Data Service File Validation During Deployment"

■ Section 2.2.7.2, "Dataspace Packaging from the Command-line"

■ Section 2.2.7.3, "Syntax Summary"

■ Section 2.2.7.4, "Command-Line Ant Build Targets"

■ Section 2.2.7.5, "Command-line Examples using Ant and Java"

2.2.7.1 Data Service File Validation During Deployment
In the Eclipse IDE a dataspace project's data service (.ds) files are validated
automatically according to the following deployment model:

■ The publish to server action validates the dataspace projects.

■ All the project's artifacts are collected.

■ The collected artifacts are deployed to the server.

The Oracle Data Service Integrator Export mechanism allows for a dataspace project's
artifacts to be packaged in a JAR the contents of which are identical to what would be
generated from the IDE for deployment to an Oracle WebLogic server.

2.2.7.2 Dataspace Packaging from the Command-line
There is also an occasional need for operations such as validate, build, export, and
package to be available in a scripting environment. This section describes an Ant script
file, cmdline_build.xml, provided in the "bin" directory under the Oracle Data Service
Integrator installation that can be invoked by a user to:

■ Validate a dataspace project

■ Generate a deployment JAR file of a dataspace project

2.2.7.3 Syntax Summary
This section describes commands and syntax.

Note: For those not wishing or able to use Ant, Java equivalent
command-line options are also described.

Command Syntax

help help [{cmd} | all]

validate-project validate-project {project}

validate-dataspace validate-dataspace {dataspace-path}

export-mediator-client export-mediator-client {project} {jardir} [jarname[.jar]]

export-ws-client export-ws-client {project} {jardir} [jarname[.jar]] [ws_locator,...]

export-artifacts export-artifacts {project} {jardir} [jarname[.jar]]
Developing and Managing Dataspace Projects 2-15

How-to
2.2.7.4 Command-Line Ant Build Targets
This section describes available Oracle Data Service Integrator ant build targets. It
describes the following topics:

■ Section 2.2.7.4.1, "Build XML File"

■ Section 2.2.7.4.2, ""help""

■ Section 2.2.7.4.3, "Build Invocation Syntax via Java"

■ Section 2.2.7.4.4, "Build Invocation Syntax via Ant"

■ Section 2.2.7.4.5, ""validate-project""

■ Section 2.2.7.4.6, ""validate-dataspace""

■ Section 2.2.7.4.7, ""export-mediator-client""

■ Section 2.2.7.4.8, ""export-ws-client""

■ Section 2.2.7.4.9, ""export-artifacts""

2.2.7.4.1 Build XML File The build XML file:

cmdline_build.xml

will be provided in the directory:

<odsi_home>/bin

To see a list of build targets with short descriptions in the Ant build XML file, invoke
the command below at the prompt window:

ant -f <bea_home>/odsi_10.3/bin/cmdline_build.xml -projecthelp

Note:

■ It is assumed that Ant is available on your computer and is on your path. Some
targets require:

– ECLIPSE_HOME environment variable points to the Eclipse installation directory.

– javac be available on the PATH variable.

■ Commands other than "help" involving an Eclipse project requires specification of
the Eclipse workspace directory that contains the project.

– For Java commands the directory is specified via the "-data" option.

– For Ant command, it is specified as the "-Dworkspace" property.

2.2.7.4.2 "help"

The "help" target is the default build target. It shows a list of available Oracle Data
Service Integrator commands and the syntax needed to invoke the command in Java.

2.2.7.4.3 Build Invocation Syntax via Java

Note that the syntax shows the portion starting with "odsi_command" below. However,
the full syntax to be entered for Java at the prompt window is:

java -cp <eclipse_home_dir>/startup.jar org.eclipse.core.launcher.Main -data <workspace_dir>
-application com.bea.dsp.ide.app.runCmdline <odsi_command> <cmd_param> ...

Command Syntax

help help [{cmd} | "all"]
2-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
2.2.7.4.4 Build Invocation Syntax via Ant

If invoked via Ant, Oracle Data Service Integrator command parameters should be
specified as Ant properties. For example, to get help about the "export-artifacts"
command, enter:

ant -f <odsi_install_dir>/bin/cmdline_build.xml help -Dcmd=export-artifacts

To get help on all Oracle Data Service Integrator commands, specify the following
property:

-Dcmd=all

or omit the optional -Dcmd property completely:

ant -f <odsi_install_dir>/bin/cmdline_build.xml help

2.2.7.4.5 "validate-project"

The "validate-project" target validates the data service (.ds) files in the specified
dataspace project. Data service error messages that would appear in the Eclipse IDE's
Problems view are sent to stdout when this target is invoked. A "fail" status is
returned by this target if any error exists in a .ds data service file in the project.

ant -f <odsi_install_dir>/bin/cmdline_build.xml -Dworkspace=/bea/projects/myworkspace
 -Dproject=MyODSIProject validate-project

2.2.7.4.6 "validate-dataspace"

The validate-dataspace target validates the dataspace project at the specified path.

ant -f <odsi_install_dir>/bin/cmdline_build.xml -Ddataspace-path=dataspace-path validate-dataspace

2.2.7.4.7 "export-mediator-client"

The export-mediator-client target is for generating an Oracle Data Service
Integrator mediator client JAR file of a dataspace project.

ant -f <odsi_install_dir>/bin/cmdline_build.xml -Dworkspace=/bea/projects/myworkspace
-Dproject=MyODSIProject -Djardir=/temp -Djarname=myoutput.jar export-mediator-client

The default value for the output JAR file name is:

<project>-dsp-client.jar

Command Syntax

validate-project validate-project {project}

Command Syntax

validate-dataspace validate-dataspace {dataspace-path}

Command Syntax

export-mediator-client export-mediator-client {project} {jardir} [jarname.[jar]]
Developing and Managing Dataspace Projects 2-17

How-to
2.2.7.4.8 "export-ws-client"

The export-ws-client target generates a web services mediator client JAR file from
the specified comma-separated list of wsmap file locators in a dataspace project.

ant -f <odsi_install_dir>/bin/cmdline_build.xml -Dworkspace=/bea/projects/myworkspace
-Dproject=MyODSIProject -Djardir=/temp -Djarname=myoutput.jar
-Dws_locators=ld:customer.ws,ld:order.ws export-ws-client

The default value of the ws_locators is all wsmap file locators in the project.

<project>-ws-client.jar

An example of a wsmap file locator is:

ld:logical/wsmaps/CUSTOMER.ws

2.2.7.4.9 "export-artifacts"

The "export-artifacts" target creates a JAR file containing the definitions and
artifacts of the dataspace project.

ant -f <odsi_install_dir>/bin/cmdline_build.xml -Dworkspace=/bea/projects/myworkspace
-Dproject=MyODSIProject -Djardir=/temp -Djarname=myoutput.jar export-artifacts

The content would be identical to the artifact JAR file created in the IDE. By default,
the name of the artifact JAR file is:

<project>-artifacts.jar

Notes:

Referenced Java Projects

Since a dataspace project may reference other Java projects in the same Eclipse
workspace, you should make certain that:

■ Referenced projects in your build script are also built.

■ The resulting JAR files and dependent JAR files are copied to the dataspace
project's DSP-INF/lib directory.

This needs to be done prior to exporting a deployable JAR file using the
export-artifacts command in order for all referenced/required JAR files to be included
in the artifact JAR file.

Invoking Build Commands Without Ant

The Ant targets described in the previous sections are actually implemented in Java. So
the actual implementation can be invoked at the prompt window using Java directly --
or any script process -- instead of Ant.

Command Syntax

export-ws-client export-ws-client {project} {jardir} [jarname[.jar]] [ws_locator,...]

Command Syntax

export-artifacts export-artifacts {project} {jardir} [jarname[.jar]]
2-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
2.2.7.5 Command-line Examples using Ant and Java
This section contains several examples of invoking the Oracle Data Service Integrator
command using Ant and Java. It describes the following topics:

■ Section 2.2.7.5.1, "Getting the help text of all the commands using Ant and Java at
the prompt window"

■ Section 2.2.7.5.2, "Getting the help text of a specific command using Ant and Java
at the prompt window"

■ Section 2.2.7.5.3, "Exporting the artifacts of a dataspace project"

2.2.7.5.1 Getting the help text of all the commands using Ant and Java at the prompt window

Ant:

ant -f <bea_home>\odsi_10.3\bin\cmdline_build.xml help -Dcmd=all

Java:

java -cp <eclipse_home>/eclipse/startup.jar org.eclipse.core.launcher.Main
-application com.bea.dsp.ide.app.runCmdline help all

2.2.7.5.2 Getting the help text of a specific command using Ant and Java at the prompt window

Ant:

ant -f <bea_home>\odsi_10.3\bin\cmdline_build.xml help -Dcmd=export-artifacts

Java:

java -cp <eclipse_home>/startup.jar org.eclipse.core.launcher.Main
-application com.bea.dsp.ide.app.runCmdline help export-artifacts

2.2.7.5.3 Exporting the artifacts of a dataspace project

This example exports the project:

DspProj

in workspace:

/MyWorkspace

to:

/temp
directory using the default JAR file name:

<project>-artifacts.jar

Ant:

ant -f <bea_home>\odsi_10.3\bin\cmdline_build.xml -Dworkspace=/MyWorkspace
-Dproject=DspProj -Djardir=/temp export-artifacts

Java:

java -cp <eclipse_home>/startup.jar org.eclipse.core.launcher.Main -data /MyWorkspace
 /MyWorkspace -application com.bea.dsp.ide.app.runCmdline
-application com.bea.dsp.ide.app.runCmdline export-artifacts DspProj /temp
Developing and Managing Dataspace Projects 2-19

Reference
2.3 Reference
This section describes the following topics:

■ Section 2.3.1, "Dataspace Projects Cheatsheet"

■ Section 2.3.2, "Setting Eclipse for WebLogic Initialization Parameters (.ini)"

2.3.1 Dataspace Projects Cheatsheet
The following table presents the tasks involved with managing dataspace projects.

Table 2–7 Dataspace Projects Cheatsheet

Task Location Action Comments

Build a project with every save Project
menu

Build Automatically

Clean selected project Project
menu

Clean

Close a project Project
Explorer

Right-click > Close Project

Close a project Project
menu

Project > Close Project

Close unrelated projects Project
Explorer

Right-click > Close Unrelated Projects

Copy-Paste a project Project
Explorer

Right-click on project name > Copy-Paste

Create a new project File menu File > New > Dataspace Project

Delete selected project from a
workspace

Project
Explorer

Right-click > Delete

Export selected project File menu Export

Import selected project into a
workspace

File menu Import

Open selected project Project
Explorer

Open

Project properties Project
menu

Right-click > Properties

Project properties File menu Properties

Publish all the projects in a
workspace

Server
window

Right-click > Publish

Refactor Rename-Remove Project
Explorer

Right-click > Refactor > Rename-Remove Refactor provides for
"safe" renaming or
deleting of projects
or project
components.

Refresh display Project
Explorer

Right-click > Refresh

File > Refresh

Remove a previously deployed
(configured) project from the
server

Server
window

Right-click > Delete > Yes > Yes to 'Delete
the dataspace on the server?'

Rename a project File menu Rename See Safely rename...
2-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
2.3.2 Setting Eclipse for WebLogic Initialization Parameters (.ini)
Eclipse for WebLogic is an Eclipse plugin. As such, it uses an initialization file that is
similar to the eclipse.ini file available in basic installations of Eclipse. This file in turn
provides directives to the Java Virtual Machine (JVM) in which the application runs.

The default parameters provides with Oracle Data Service Integrator are located in the
following file:

{BEA_HOME}/workshop_10.3/workshop.ini

By default the workshop.ini memory settings are:

-vmargs
-Xms384m
-Xmx768m

If you encounter out-of-memory errors associated with running an Oracle Data Service
Integrator project, try increasing the maximum memory setting. For example:

-Xmx1024m

Rename a project safely Project
Explorer

Right-click > Refactor > Rename...

Safely delete selected project
from a workspace

Project
Explorer

Right-click > Refactor > Delete... See Safely delete...

Search for a project in a
workspace

Search
menu

■ Search...

■ Ctrl-h

See dataspaces currently
deployed on the server

Server
window

Click the + next to the name of the running
server.

Show project explorer Window
menu

Show View > Project Explorer

Show project in Service
Assembly Modeler

Project
Explorer

Right-click > Show in Service Assembly
Modeler

Submit a project to the Oracle
Enterprise Repository

Project
Explorer

Right-click > Show in Service Assembly
Modeler

Undeploy a project Server
window

Right-click > Delete > Yes > Yes to 'Delete
the dataspace on the server?'

Update a project's metadata Project
Explorer

Right-click > Update metadata

Validate project artifacts Project
Explorer

Right-click > Validate...

Note: When running workshop.exe the settings in this file supersede
any configuration settings in the eclipse.ini file.

Table 2–7 (Cont.) Dataspace Projects Cheatsheet

Task Location Action Comments
Developing and Managing Dataspace Projects 2-21

Related Topics
2.4 Related Topics
For more information, see "Example: How to Create Your First Data Services" on
page 1-13.
2-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

3

3Creating and Updating Physical Data

Services

This chapter includes how-to information about a wide range of tasks pertaining to
sources such as relation tables and views, stored procedures, SQL statements, and Java
functions.

This chapter has the following sections:

■ Section 3.1, "Concepts"

■ Section 3.2, "How to Create Physical Data Services"

■ Section 3.3, "How to"

■ Section 3.4, "Example: XMLBeans Example Using a Metadata-rich Java Class"

■ Section 3.5, "Reference"

■ Section 3.6, "Related Topics"

3.1 Concepts
This section describes the following topics:

■ Section 3.1.1, "Creating Physical Data Services by Importing Source Metadata"

■ Section 3.1.2, "Physical Data Services from Java Functions Overview"

3.1.1 Creating Physical Data Services by Importing Source Metadata
In Oracle Data Service Integrator metadata around a particular data source is
developed during the process of creating a physical data service. For example, a list of
the tables and columns in a relational database is metadata. A list of operations in a
Web service is metadata.

In Oracle Data Service Integrator, a physical data service is typically primarily based
on metadata describing the structure of those physical data sources.

Physical data services are the building blocks for the creation of logical data services.

Table 3–1 Data Source Support for Creating Physical Data Services

Source Type Venue

Relational (including tables, views, stored
procedures, and SQL)

JDBC

Web services (WSDL files) URI, UDDI, WSDL
Creating and Updating Physical Data Services 3-1

Concepts
When information about physical data is developed during the creation of physical
data services, two things happen:

■ A physical data service (extension .ds) is created in your Oracle Data Service
Integrator-based project.

■ A companion schema of the same name (extension.xsd), is created. This schema
describes quite exactly the XML type of the data service. Such schemas are placed
in a directory named schemas which is a sub-directory of your newly created data
service.

3.1.1.1 Source View
The introspection process is done through the Physical Data Service Creation wizard.
This wizard introspects available data sources and identifies data objects that can be
rendered as operations for either entity or library data services. Once created, physical
data services become the building-blocks for queries and logical data services through
a series of programs created in the query source.

For example, the following source resulted from importing a Web service operation:

(::pragma function <f:function xmlns:f="urn:annotations.ld.oracle.com" kind="read"
nativeName="getCustomerOrderByOrderID"nativeLevel1Container="ElecDBTest"
nativeLevel2Container="ElecDBTestSoap" style="document"/>:

declare function f1:getCustomerOrderByOrderID($x1 as element(t1:getCustomerOrderByOrderID))
as schema-element(t1:getCustomerOrderByOrderIDResponse) external;

Notice that the imported Web service is described as a "read" function in the pragma.
"External" refers to the fact that the schema is in a separate file.

For some data sources such as web services imported metadata represents functions
which typically return void (in other words, these functions do something other than
return data). Such routines are sometimes called side-effecting functions or
procedures.

The following source resulted from importing Web service metadata that includes an
operation that has been identified as a side-effecting procedure:

(::pragma function <f:function xmlns:f="urn:annotations.ld.oracle.com"
kind="hasSideEffects" nativeName="setCustomerOrder" style="document"/>:

declare function f1:setCustomerOrder($x1 as element(t3:setCustomerOrder))
as schema-element(t3:setCustomerOrderResponse) external;

In the above pragma the function is identified as "hasSideEffects".

3.1.2 Physical Data Services from Java Functions Overview
In Oracle Data Service Integrator, you can create physical data services based on
user-defined functions implemented as Java classes. Oracle Data Service Integrator
supports Java functions returning the following types:

Delimited (CSV files) File-based data, such as spreadsheets.

Java functions (.java) Programmatic

XML (XML files) File- or data stream-based XML

Table 3–1 (Cont.) Data Source Support for Creating Physical Data Services

Source Type Venue
3-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
■ Java primitive types and single-dimension arrays

■ Global elements and global element arrays through XMLBean classes

■ Global elements and global element arrays through SDO DataObjects

Oracle Data Service Integrator packages operations marked as create, update, or delete
functions in an Entity data service. Otherwise, the resulting data service is of type
Library. Functions determined to return void are automatically marked as library
procedures. When creating a new physical data service, you can change the nominated
function type.

The Java method name, when used in an XQuery, becomes the XQuery function name
qualified with a namespace.

3.1.2.1 Simple Java Types and Their XQuery Counterparts
The following outlines the mapping between simple Java types and the corresponding
XQuery or schema types:

Note: The following restrictions apply to Java functions:

■ Java functions intended for import into a data service must be
declared as static

■ Function overloading is based on the number of arguments, not
the parameter types

■ Array support is restricted to single-dimension arrays only

■ In functions returning complex types, the return element needs to
be extracted from a valid XML document

Table 3–2 Java Types and Corresponding XQuery or Schema Types

Java Simple or Defined Type XQuery/Schema Type

boolean xs:boolean

byte xs:byte

char xs:char

double xs:double

float xs:float

int xs:int

long xs:long

short xs:short

string xd:string

java.lang.Date xs:datetime

java.lang.Boolean xs:boolean

java.math.BigInteger xs:integer

java.math.BigDecimal xs:decimal

java.lang.Byte xs.byte

java.lang.Char xs:char

java.lang.Double xs:double
Creating and Updating Physical Data Services 3-3

Concepts
Java functions can consume parameters and return values of the following types:

■ Java primitives and types listed in the previous table

■ Apache XMLBeans

■ Oracle XMLBeans

■ SDO DataObject (typed or untyped)

3.1.2.2 Physical Data Service from a Java Function - Example Code
This topic provides examples showing the use of imported Java functions in an
XQuery and the processing of complex types.

3.1.2.2.1 Using a Function Returning an Array of Java Primitives As an example, the Java
function getRunningTotal can be defined as follows:

public static float[] getRunningTotal(float[] list) {
 if (null == list || 1 >= list.length)
 return list;
 for (int i = 1; i < list.length; i++) {
 list[i] = list[i-1] + list[i];
 }
 return list;
}

The corresponding XQuery for executing the above function is as follows:

Declare namespace f1="ld:javaFunc/float"
Let $y := (2.0, 4.0, 6.0, 8.0, 10.0)
Let $x := f1:getRunningTotal($y)
Return $x

The results of the query is as follows:

2.0, 6.0, 12.0, 20.0, 30.0

3.1.2.2.2 Processing complex types represented via XMLBeans Consider a schema called
Customer (customer.xsd), as shown in the following:

java.lang.Float xs:float

java.lang.Integer xs:integer

java.lang.Long xs:long

java.lang.Short xs:short

java.sql.Date xs:date

java.sql.Time xs:time

java.sql.Timestamp xs:datetime

java.util.Calendar xs:datetime

Note: The elements or types referred to in the schema should be
global elements.

Table 3–2 (Cont.) Java Types and Corresponding XQuery or Schema Types

Java Simple or Defined Type XQuery/Schema Type
3-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
<?xml version="1.0" encoding="UTF-8" ?>
 <xs:schema targetNamespace="ld:xml/cust:/BEA_BB10000"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FIRST_NAME" type="xs:string" minOccurs="1"/>
 <xs:element name="LAST_NAME" type="xs:string" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

You could compile the schema using XMLBeans to generate a Java class corresponding
to the types in the schema.

xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER

For more information, see http://xmlbeans.apache.org.

Following this, you can use the CUSTOMER element as shown in the following:

public static xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER[]
 getCustomerListGivenCustomerList(xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER[]
 ipListOfCust)
 throws XmlException {
 xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER [] mylocalver = pListOfCust;
 return mylocalver;
}

The resulting metadata information produced by the New Physical Data Service
wizard will be:

(::pragma function <f:function xmlns:f="urn:annotations.ld.oracle.com" kind="datasource"
 access="public">
<params>
<param nativeType="[Lxml.cust.beaBB10000.CUSTOMERDocument$CUSTOMER;"/>
</params>
</f:function>::)

declare function f1:getCustomerListGivenCustomerList($x1 as element(t1:CUSTOMER)*) as
element(t1:CUSTOMER)* external;

The corresponding XQuery for executing the above function is:

declare namespace f1 = "ld:javaFunc/CUSTOMER";
let $z := (
validate(<n:CUSTOMER xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2</FIRST_NAME>
<LAST_NAME>Smith2</LAST_NAME>
</n:CUSTOMER>),

validate(<n:CUSTOMER xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2</FIRST_NAME>
<LAST_NAME>Smith2</LAST_NAME>
</n:CUSTOMER>),

validate(<n:CUSTOMER xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2</FIRST_NAME>
<LAST_NAME>Smith2</LAST_NAME>
</n:CUSTOMER>),

for $zz in $z
return
Creating and Updating Physical Data Services 3-5

How to Create Physical Data Services
3.2 How to Create Physical Data Services
This section describes the following topics:

■ Section 3.2.1, "How To Create Physical Data Services from Relational Tables and
Views"

■ Section 3.2.2, "How To Create Physical Data Services from Stored Procedures"

■ Section 3.2.3, "How To Create Physical Data Services Based on SQL Statements"

■ Section 3.2.4, "How To Create Physical Data Services Based on Database
Functions"

■ Section 3.2.5, "How To Create a Physical Data Service from a Web Service"

■ Section 3.2.6, "Preparing to Create Physical Data Services From Java Functions"

■ Section 3.2.7, "How To Create a Physical Data Service from a Java Function"

■ Section 3.2.8, "How To Create a Physical Data Service from XML Data"

■ Section 3.2.9, "How To Create a Physical Data Service from a Delimited File"

3.2.1 How To Create Physical Data Services from Relational Tables and Views
The following topics describe how to create physical data services from relational
tables and views:

■ Section 3.2.1.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.1.2, "Setting Up the Import Wizard for Relational Objects"

■ Section 3.2.1.3, "Selecting SQL Table and View Objects for Import"

■ Section 3.2.1.4, "Setting Properties for New Data Service Operations"

■ Section 3.2.1.5, "Verifying Data Service Composition"

■ Section 3.2.1.6, "Database-specific Catalog and Schema Considerations"

■ Section 3.2.1.7, "XML Name Conversion Considerations"

3.2.1.1 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.
3-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–1 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data.

3.2.1.1.1 Starting the Wizard To start the physical data service creation wizard:

■ Right-click on your dataspace project or any folder in your project.

■ Choose New > Physical Data Service
Creating and Updating Physical Data Services 3-7

How to Create Physical Data Services
Figure 3–2 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.1.2 Setting Up the Import Wizard for Relational Objects
When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.

2. Select a data source from the dropdown listbox.

3. Select the database type for the selected source (PointBase for the sample RDBMS)
from the dropdown listbox.

4. Select among the relational source types listed in the following table.

Table 3–3 Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected data source.

Stored Procedures Displays all public stored procedures in the selected data source.

SQL Statement Allows creation of a SQL statement for extracting relational data
from the data source.

Database Function Allows creation of an XQuery function in a library data service
based on build-in or custom database functions.
3-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
3.2.1.3 Selecting SQL Table and View Objects for Import
To create a physical data service based on a relational table or view:

1. Select the Tables and Views option

2. Click Next.

A list of available database table and view SQL objects appears.

Objects are grouped based on the relational data sources catalog and/or schema.

In the example of an RTLCUSTOMER catalog, the ADDRESS and CUSTOMER
tables both become physical data services.

For more information, see "Database-specific Catalog and Schema Considerations" on
page 3-12.

Simply check the desired objects or their container, which will select all enclosed tables
or views.

Figure 3–3 Table and View Objects Selected for Import

In the Select Objects to Import dialog, the RTLCUSTOMER, ADDRESS, and
CUSTOMER objects are selected.

If you click on an individual object such as ADDRESS or CUSTOMER, information
describing the database's primary key(s), column name, type and nullability appears.
For example the CUSTOMER table contains a CUSTOMER_ID field of type VARCHAR.
That column is not nullable, meaning that it must be supplied with any updates.
Creating and Updating Physical Data Services 3-9

How to Create Physical Data Services
Figure 3–4 Physical Data Service Properties

The Select SQL Sources dialog shows an object tree on the left, with CUSTOMER
selected, and a panel with four columns on the right for CUSTOMER properties: key,
name, type, and nullable.

3.2.1.3.1 Filtering SQL Objects Using Search The Search option available when creating a
physical data service can be especially useful when:

■ You know specific names of the data source objects you want to turn into data
services.

■ Your data source may be so large that a filter is needed.

■ You may be looking for objects with specific naming characteristics such as:

%audit2003%

The above search command retrieves all objects that contain the enclosed string.

3.2.1.3.2 Using JDBC Syntax to Search SQL Objects You can search through available SQL
objects using standard JDBC wildcard syntax.

■ An underscore (_) creates a wildcard for an individual character.

■ A percentage sign (%) indicates a wildcard for a string. Entries are case-sensitive.

Another example:

CUST%, PAY%
3-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
entered in the Tables/Views field the above search string returns all tables and views
starting with either CUST or PAY.

3.2.1.3.3 Special Considerations When Searching Stored Procedures If no items are entered
for a particular field, all matching items are retrieved. For example, if no filtering entry
is made for the Procedure field, all stored procedures in the data object will be
retrieved.

3.2.1.4 Setting Properties for New Data Service Operations
Each new entity data service is created with a Read function that contains all the
metadata elements identified during data service creation. It can be thought of as
comparable to the following construct in the relational world:

select * from <table>

Use the Properties dialog to:

■ Optionally modify the operation name.

■ Set the Public option (check if you want your function to be available to client
applications).

■ Set the kind of operation (in some cases only Read will be available).

■ Set the Primary option (check if you want your function to be the primary of its
type).

■ Select a common XML namespace for the entire data service or individual target
namespaces for specific operations.

■ Set the target namespace.

The root element, which is read-only, is also displayed.

Figure 3–5 Setting Properties for New Data Service Functions

Note: In some cases this option may not be available.

Note: Initially the root element name matches the name of the data
service.
Creating and Updating Physical Data Services 3-11

How to Create Physical Data Services
There are six columns on the Review New/Updated Data Service(s) dialog: Function,
Public, Kind, is Primary, Root Element, and Target Namespace. For the ADDRESS
function, the Public checkbox is selected, the read Kind is displayed, the is Primary
checkbox is selected, the Root Element is ADDRESS, and the Target Namespace
column is blank.

3.2.1.4.1 Default Naming Conventions There are several default naming conventions
associated with new data services:

■ When a table, view, or other data source object is the source for a data service, the
nominated name is wherever possible the same as the source object name. In some
cases, however, names are adjusted to conform with XML naming conventions.

■ Initially the root element name matches the name of the data service.

For more information, see XML Name Conversion Considerations.

3.2.1.5 Verifying Data Service Composition
On the Review New Data Service(s) page you can set, confirm or, optionally, change
suggested data service names depending on the type of physical data service you are
creating.

3.2.1.5.1 Default Physical Data Service Names The nominated name for a new data
service is, wherever possible, the same as the source object name. In some cases,
however, names are adjusted to conform with XML naming conventions.

3.2.1.5.2 About Automatic Data Service Name Changes Name conflicts occur when there is
a data service of the same name present in the target directory. Name conflicts are
highlighted in red.

There are several situations where you will need to change the name of your data
service:

■ There already is a data service of the same name in your application.

■ You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

3.2.1.6 Database-specific Catalog and Schema Considerations
Database vendors variously support database catalogs and schemas.

Table 3–4 Vendor Support for Catalog and Schema Objects

Vendor Catalog Schema

Oracle Does not support catalogs. When specifying
database objects, the catalog field should be
left blank.

Typically the name of an Oracle user ID.

DB2 If specifying database objects, the catalog field
should be left blank.

Schema name corresponds to the catalog owner
of the database, such as db2admin.

Sybase Catalog name is the database name. Schema name corresponds to the database
owner.
3-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
3.2.1.7 XML Name Conversion Considerations
When a source name is encountered that does not fit within XML naming conventions,
default generated names are converted according to rules described by the SQLX
standard. Generally speaking, an invalid XML name character is replaced by its
hexadecimal escape sequence (having the form xUUUU).

For additional details see section 9.1 of the W3C draft version of this standard:

http://www.sqlx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

3.2.2 How To Create Physical Data Services from Stored Procedures
Stored procedures are database objects that group an executable set of SQL and native
database programming language statements together to perform a specific task locally.
Advanced DBMS systems utilize stored procedures to improve query performance,
manage and schedule data operations, enhance security, and so forth.

In Oracle Data Service Integrator you can, for specifically supported databases, create
physical data services based on stored procedures.

It is often convenient to leverage independent routines as part of managing enterprise
information through a data service. An obvious example would be to leverage
standalone update or security functions through data services. Such functions have no
XML type; in fact, they typically return nothing (or void).

Stored procedures are very often side-effecting from the perspective of the data
service, since they perform internal operations on data. In such cases all you need to
do is identify the stored procedures as a data service procedure when your physical
data service is created.

After you have identified the stored procedures that you want to add to your data
service, you also have an opportunity to identify which of these should be identified
as data service procedures.

Each stored procedure that is imported becomes a separate data service. In other
words, if you have five stored procedures, you will create five data services.

The following topics describe how to create a physical data service from a stored
procedure:

■ Section 3.2.2.1, "Importing Stored Procedure Metadata Using the Physical Data
Service Creation Wizard"

■ Section 3.2.2.2, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.2.3, "Setting Up the Import Wizard for Relational Objects"

Microsoft
SQL Server

Catalog name is the database name. Schema name corresponds to the catalog owner,
such as dbo. The schema name must match the
catalog or database owner for the database to
which you are connected.

Informix Does not support catalogs. If specifying
database objects, the catalog field should be
left blank.

Not needed.

PointBase PointBase database systems do not support
catalogs. If specifying database objects, the
catalog field should be left blank.

Schema name corresponds to a database name.

Table 3–4 (Cont.) Vendor Support for Catalog and Schema Objects

Vendor Catalog Schema
Creating and Updating Physical Data Services 3-13

How to Create Physical Data Services
■ Section 3.2.2.4, "Selecting Stored Procedure Objects for Import"

■ Section 3.2.2.5, "Configuring Selected Stored Procedures"

■ Section 3.2.2.6, "Stored Procedure Configuration Reference"

■ Section 3.2.2.7, "Setting Properties for New Data Service Operations"

■ Section 3.2.2.8, "Verifying Data Service Composition"

■ Section 3.2.2.9, "Adding Operations to an Existing Data Service"

■ Section 3.2.2.10, "Support for Stored Procedures in Popular Databases"

3.2.2.1 Importing Stored Procedure Metadata Using the Physical Data Service
Creation Wizard
The following topics cover the actions necessary to create physical data services from
relational stored procedures.

3.2.2.2 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.

Figure 3–6 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the date service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data.

3.2.2.2.1 Starting the Wizard To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.

2. Choose New > Physical Data Service
3-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–7 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.2.3 Setting Up the Import Wizard for Relational Objects
When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.

2. Select a data source from the dropdown listbox.

3. Select the database type for the selected source (PointBase for the sample RDBMS)
from the dropdown listbox.

4. Select among the relational source types listed in the following table.

Table 3–5 Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected data source.

Stored Procedures Displays all public stored procedures in the selected data source.

SQL Statement Allows creation of a SQL statement for extracting relational data
from the data source.

Database Function Allows creation of an XQuery function in a library data service
based on build-in or custom database functions.
Creating and Updating Physical Data Services 3-15

How to Create Physical Data Services
3.2.2.4 Selecting Stored Procedure Objects for Import
To create physical data services based on stored procedures:

1. Select the Stored Procedures option.

2. Click Next.

A list of available stored procedures appears.

Objects are grouped based on the relational data sources catalog and/or schema.

You can use wildcards to support importing metadata on internal stored procedures.
For example, entering the following string as a stored procedure filter:

%TRIM%

retrieves metadata on the system stored procedure:

STANDARD.TRIM

In such a situation you may want to make a "nonsense" entry in the Table/View field
in order to avoid retrieving all tables and views in the database.

For more information, see "Database-specific Catalog and Schema Considerations" on
page 3-12.

Simply check the desired objects or their container, which will select all enclosed
stored procedures.

Figure 3–8 Stored Procedure Objects Selected for Import

On the Select SQL Objects to Import dialog, there are two columns. On the left there is
a list of SQL objects. On the right is a list of properties. There are checkboxes next to
several SQL objects. The SP_US_RECORD_INOUT object is checked and selected, and
its properties appear in the right column.

3.2.2.4.1 Filtering SQL Objects Using Search The Search option available when creating a
physical data service can be especially useful when:
3-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
■ You know specific names of the data source objects you want to turn into data
services.

■ Your data source may be so large that a filter is needed.

■ You may be looking for objects with specific naming characteristics such as:

%audit2003%

3.2.2.4.2 Using JDBC Syntax to Search SQL Objects You can search through available SQL
objects using standard JDBC wildcard syntax.

■ An underscore (_) creates a wildcard for an individual character.

■ A percentage sign (%) indicates a wildcard for a string. Entries are case-sensitive.

Another example:

CUST%, PAY%

entered in the Tables/Views field the above search string returns all tables and views
starting with either CUST or PAY.

3.2.2.4.3 Special Considerations When Searching Stored Procedures If no items are entered
for a particular field, all matching items are retrieved. For example, if no filtering entry
is made for the Procedure field, all stored procedures in the data object will be
retrieved.

3.2.2.5 Configuring Selected Stored Procedures
When Oracle Data Service Integrator introspects a stored procedure, the process may
not be complete. For example, a required item of information such as a schema file or
type cannot be determined. When such introspection problems occur, the stored
procedure in question is highlighted in red. This setting means that additional
information about the procedure must be provided by the user before the data service
can be created.

Your goal in correcting an "<unknown>" condition associated with a stored procedure is
to bring the metadata obtained by the import wizard into conformance with the actual
metadata of the stored procedure. In some cases this will be by correcting the location
of the return type. In others you will need to adjust the type associated with an
element of the procedure or add elements that were not found during the initial
introspection of the stored procedure.
Creating and Updating Physical Data Services 3-17

How to Create Physical Data Services
Figure 3–9 Configure Stored Procedure Dialog

On the Configure Stored Procedure dialog, error messages are displayed for selected
procedures. The problem procedures are highlighted in red in the column on the left.
A table containing the name, mode, type, and schema location is on the right. An error
message for a selected procedure is displayed at the top of the dialog. Use the Edit
button to correct configuration settings.

When several stored procedures are selected at the same time for physical data service
creation, all the selected procedures must be adequately configured before any data
services based on the procedures can be created.

Here are the steps involved in editing a set of stored procedures that will be imported
as data services:

1. Scroll through the list of selected procedures.

2. For each procedure in red type, use the Edit button to correct the configuration
settings.

3. Make any other changes. (In some cases the data architect may know of
requirements that are not identified during the introspection process.)

4. Click Next when all the procedures in the selected set are valid.

Note: An alternative to configuring a incomplete stored procedure
before proceeding is to use the wizard Back button to de-select the
procedure in question.
3-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
3.2.2.5.1 Editing Stored Procedure Configurations Stored procedure configuration can be
complicated. An understanding of the characteristics of the stored procedure in your
database is an essential prerequisite. This section describes stored procedure options in
detail.

Figure 3–10 Stored Procedure Metadata Editing Options

The Configure Procedure dialog lets you edit parameters for selected procedures. For a
selected procedure and parameter, return type and schema location fields are
displayed. Browse to specify the schema location. You can set a row by specifying the
type and schema location of the row. Buttons let you accept changes or cancel changes.

Once in stored procedure configuration edit mode, options are available in three
general areas:

■ Parameters. Stored procedures requiring complex parameters can only be turned
into data services once a schema has been identified. In addition, retrieved
information on parameters required by a stored procedure may be incorrect. For
example, additional parameters may be needed.

■ Return type. Stored procedures returning complex data require a local schema to
handle data returned from the call. In addition, retrieved information on stored
procedure return types may be incorrect or it may be the case that no returned
data is wanted.

■ Row set. A row set identifies a schema and its associated library data service to
hold information returned by a stored procedure. In some cases multiple row sets
may need to be specified.
Creating and Updating Physical Data Services 3-19

How to Create Physical Data Services
3.2.2.6 Stored Procedure Configuration Reference
The following topics provide detailed information regarding various configuration
options associated with creating data services based on stored procedures.

3.2.2.6.1 In Mode, Out Mode, Inout Mode In, Out, and Inout mode settings determine how
a parameter passed to a stored procedure is handled.

3.2.2.6.2 Procedure Profile Each element in a stored procedure is associated with a type.
If the item is a simple type, you can simply choose from the pop-up list of types. If the
type is complex, you may need to supply an appropriate schema. Click on the schema
location button and either enter a schema pathname or browse to a schema. The
schema must reside in your application.

After selecting a schema, both the path to the schema file and the URI appear.

3.2.2.6.3 Complex Parameter Types Complex parameter types are supported under only
three conditions:

■ As the output parameter

■ As the Return type

■ As a rowset

3.2.2.6.4 About Rowsets A rowset type is a complex type.

Table 3–6 Stored Procedure Editing Options

Category Options Settings Discussion

Parameters Name Parameter name Editable

Mode on/out/inout

Type XQuery type May be derived from the stored procedure.
Primitive XQuery type settings are also
available.

Schema
location

XSD file Schema file must be in the project.

Return type Type XQuery type or global type
from selected schema

Schema
location

XSD file Schema file must be in the project.

Row set Type Data service Derived from selected schema.

Schema
location

XSD file Schema file must be in the project.

Parameter Mode Effect

In Parameter is passed by reference or value.

Inout Parameter is passed by reference.

Out Parameter is passed by reference. However the parameter being
passed is first initialized to a default value. If your stored procedure
has an OUT parameter requiring a complex element, you may need to
provide a schema.
3-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
In some cases the wizard can automatically detect the structure of a rowset and create
an element structure. However, if the structure is unknown, you will need to provide
it.

The name of the rowset type can be:

■ The parameter name (in case of a input/output or output only parameter).

■ An assigned name.

■ The referenced element name (result rowsets) in a user-specified schema.

Not all databases support rowsets. In addition, JDBC does not report information
related to defined rowsets.

3.2.2.6.5 Using Rowset Information In order to create data services from stored
procedures that use rowset information, you need to supply the correct ordinal
(matching number) and a schema. If the schema has multiple global elements, select
the one you want from the Type column. Otherwise the type used match the first
global element in your schema file.

The order of rowset information is significant; it must match the order in your data
source. Use the Move Up / Move Down commands to adjust the ordinal number
assigned to the rowset.

3.2.2.6.6 Stored Procedure Version Support Only the most recent version of a particular
stored procedure can be imported into Oracle Data Service Integrator. For this reason
you cannot identify a stored procedure version number when creating a physical data
service based on a stored procedure. Similarly, adding a version number for your
stored procedure in the Source editor will result in a query exception.

3.2.2.6.7 Supporting Stored Procedures with Nullable Input Parameter(s) If you know that an
input parameter of a stored procedure is nullable (can accept null values), you can
change the signature of the function in Source View to make such parameters optional
by adding a question mark at end of the parameter.

For example (question-mark (?) shown in bold):

function myProc($arg1 as xs:string) ...

would become:

function myProc($arg1 as xs:string?) ...

3.2.2.7 Setting Properties for New Data Service Operations
Each new entity data service is created with a Read function that contains all the
metadata elements identified during data service creation. It can be thought of as
comparable to the following construct in the relational world:

select * from <table>

Note: All rowset-type definitions must conform to this structure.

Note: XML types in data services generated from stored procedures
do not display native types. However, you can view the native type in
the Source editor; it is located in the pragma section.
Creating and Updating Physical Data Services 3-21

How to Create Physical Data Services
Use the Properties dialog to:

■ Optionally modify the operation name.

■ Set the Public option (check if you want your function to be available to client
applications).

■ Set the kind of operation (in some cases only Read will be available).

■ Set the Primary option (check if you want your function to be the primary of its
type).

■ Select a common XML namespace for the entire data service or individual target
namespaces for specific operations.

■ Set the target namespace.

The root element, which is read-only, is also displayed.

Figure 3–11 Setting Properties for New Data Service Functions

On the Review New/Updated Service(s) dialog, selected data services will be updated
with new functions. In the table, function ADDRESS is selected. Public is checked,
Kind is read, is Primary is checked, and Root Element is ADDRESS. There is a Selected
Common XML Type Namespace button. There are Back, Next, Finish, and Cancel
buttons.

3.2.2.7.1 Default Naming Conventions There are several default naming conventions
associated with new data services:

■ When a table, view, or other data source object is the source for a data service, the
nominated name is wherever possible the same as the source object name. In some
cases, however, names are adjusted to conform with XML naming conventions.

Note: In some cased this option may not be available.

Note: Initially the root element name matches the name of the data
service.
3-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
■ Initially the root element name matches the name of the data service.

For more information, see XML Name Conversion Considerations.

3.2.2.8 Verifying Data Service Composition
On the Review New Data Service(s) page you can set, confirm or, optionally, change
suggested data service names depending on the type of physical data service you are
creating.

3.2.2.8.1 Default Physical Data Service Names The nominated name for a new data
service is, wherever possible, the same as the source object name. In some cases,
however, names are adjusted to conform with XML naming conventions.

For more information, see XML Name Conversion Considerations.

3.2.2.8.2 About Automatic Data Service Name Changes Name conflicts occur when there is
a data service of the same name present in the target directory. Name conflicts are
highlighted in red.

There are several situations where you will need to change the name of your data
service:

■ There already is a data service of the same name in your application.

■ You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

3.2.2.9 Adding Operations to an Existing Data Service
You can add SQL statement or stored procedure operations based on the same data
source to an existing physical data service based a stored procedure.

For more information, see "How To Add an External Function to an Existing Physical
Data Service" on page 3-91.
Creating and Updating Physical Data Services 3-23

How to Create Physical Data Services
Figure 3–12 Adding a Stored Procedure or SQL Statement to a Data Service

In the Select Data Source dialog, you can choose the data source, datasource type, and
relational object for a new data service. In the Relational database object section of the
dialog, the Stored Procedures option is selected. All other options are disabled except
for the SQL statement option.

3.2.2.10 Support for Stored Procedures in Popular Databases
Each database vendor approaches stored procedures differently. Oracle Data Service
Integrator support limitations generally reflect JDBC driver limitations.

3.2.2.10.1 General Restrictions There are several restrictions that apply to stored
procedures generally:

■ Oracle Data Service Integrator does not support rowset as an input parameter.

■ Only data types supported by Oracle Data Service Integrator can be imported as
part of stored procedures.

3.2.2.10.2 Oracle Stored Procedure Support The following table describes data service
creation support for Oracle stored procedures.

Note: For a list of database types supported by Oracle Data Service
Integrator XQuery-SQL Mapping Reference.

Term Usage

Procedure types ■ Procedures

■ Functions

■ Packages
3-24 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
3.2.2.10.3 Sybase Stored Procedure Support The following table describes data service
creation support for Sybase stored procedures.

Parameter modes ■ Input only

■ Output only

■ Input/Output

■ None

Parameter data types Any Oracle PL/SQL data type except:

■ ROWID

■ UROWID

Note: When defining function signatures, note that the Oracle %TYPE and
%ROWTYPE types must be translated to XQuery types that match the true
types underlying the stored procedure's %TYPE and %ROWTYPE
declarations. %TYPE declarations map to simple types; %ROWTYPE
declarations map to rowset types.

Data returned from a function Oracle supports returning PL/SQL data types such as NUMBER, VARCHAR,
%TYPE, and %ROWTYPE as parameters.

Comments The following identifies limitations associated with importing Oracle database
procedure metadata.

■ The data service creation process can only detect the data structure for
cursors that have a binding PL/SQL record. For a dynamic cursor you
need to manually specify the cursor schema.

■ Data from a PL/SQL record structure cannot be retrieved due to an Oracle
JDBC driver limitations.

■ The Oracle JDBC driver supports rowset output parameters only if they
are defined as reference cursors in a package.

■ The Oracle JDBC driver does not support NATURALN and POSITIVEN
as output only parameters.

Term Usage

Procedure types ■ Procedures

■ Grouped procedures

■ Functions are categorized as a scalar or inline table-valued and
multi-statement table-valued function. Inline table-valued and
multi-statement table-valued functions return rowsets.

Parameter modes ■ Input only

■ Output only

Parameter data types For a list of database types supported by Oracle Data Service Integrator, see
the XQuery-SQL Mapping Reference.

Data returned from a function Sybase functions supports returning a single value or a table. Procedures
return data in the following ways:

■ As output parameters, which can return either data (such as an integer or
character value).

■ As return codes, which are always an integer value.

■ As a rowset for each SELECT statement contained in the stored procedure
or any other stored procedures called by that stored procedure.

■ As a global cursor that can be referenced outside the stored procedure
supports, returning single value or multiple values.

Term Usage
Creating and Updating Physical Data Services 3-25

How to Create Physical Data Services
3.2.2.10.4 IBM DB2 Stored Procedure Support The following table describes data service
creation support for IBM DB2 stored procedures.

3.2.2.10.5 Microsoft SQL Server Stored Procedure Support The following table describes
data service creation support for Microsoft stored procedures.

Comments The following identifies limitations associated with importing Sybase database
procedure metadata:

■ The Sybase JDBC driver does not support input/output or output only
parameters that are rowsets (including cursor variables).

■ The Jconnect driver and some versions of the Oracle Sybase driver cannot
detect the parameter mode of the procedure. In such a case, the return
mode will be UNKNOWN, preventing importation of the metadata. To
proceed, you need to set the correct mode.

Term Usage

Procedure types ■ Procedures

■ Functions

■ Packages where each function is also categorized as a scalar, column, row,
or table function.

■ A scalar function returns a single-valued answer each time it is called.

■ A column function is one which conceptually is passed a set of like values
(a column) and returns a single-valued answer (AVG()).

■ A row function is a function that returns one row of values.

■ A table function is a function that returns a table to the SQL statement that
referenced it.

Parameter modes ■ Input only

■ Output only

■ Input/output

Parameter data types For a list of database types supported by Oracle Data Service Integrator see the
XQuery-SQL Mapping Reference. For a list of database types supported by
Oracle Data Service Integrator, see the XQuery-SQL Mapping Reference.

Data returned from a function DB2 supports returning a single value, a row of values, or a table.

Comments The following identifies limitations associated with creating physical data
services based on DB2 stored procedures:

■ Column type functions are not supported.

■ Rowsets as output parameters are not supported.

■ The DB2 JDBC driver supports float, double, and decimal input only and
output only parameters. Float, double, and decimal data types are not
supported as input/output parameters.

Term Usage

Procedure types SQL Server supports procedures, grouped procedures, and functions. Each
function is also categorized as a scalar or inline table-valued and
multi-statement table-valued function. Inline table-valued and multi-statement
table-valued functions return rowsets.

Parameter modes SQL Server supports input only and output only parameters.

Term Usage
3-26 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
3.2.3 How To Create Physical Data Services Based on SQL Statements
The following topics cover the actions necessary to create physical data services from
SQL statements:

■ Section 3.2.3.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.3.2, "Setting Up the Import Wizard for Relational Objects"

■ Section 3.2.3.3, "Entering a SQL Statement"

■ Section 3.2.3.4, "Setting Properties for New Library Functions"

■ Section 3.2.3.5, "Verifying Data Service Composition"

3.2.3.1 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.

Parameter data types SQL Server procedures/functions support any SQL Server data type as a
parameter. For a list of database types supported by Oracle Data Service
Integrator, see the XQuery-SQL Mapping Reference.

Data returned from a function SQL Server functions supports returning a single value or a table. Data can be
returned in the following ways:

■ As output parameters, which can return either data (such as an integer or
character value) or a cursor variable (cursors are rowsets that can be
retrieved one row at a time).

■ As return codes, which are always an integer value.

■ As a rowset for each SELECT statement contained in the stored procedure
or any other stored procedures called by that stored procedure.

Comments The following identifies limitations associated with importing SQL Server
procedure metadata.

■ Result sets returned from SQL server (as well as those returned from
Sybase) are not detected automatically. Instead you will need to manually
add parameters as a result.

■ The Microsoft SQL Server JDBC driver does not support rowset
input/output or output only parameters (including cursor variables).

Term Usage
Creating and Updating Physical Data Services 3-27

How to Create Physical Data Services
Figure 3–13 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data.

3.2.3.1.1 Starting the Wizard To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.

2. Choose New > Physical Data Service.
3-28 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–14 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.3.2 Setting Up the Import Wizard for Relational Objects
When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.

2. Select a data source from the dropdown listbox.

3. Select the database type for the selected source (PointBase for the sample RDBMS)
from the dropdown listbox.

4. Select among the relational source types listed in the following table.

Table 3–7 Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected data source.

Stored Procedures Displays all public stored procedures in the selected data source.

SQL Statement Allows creation of a SQL statement for extracting relational data from the data
source.

Database Function Allows creation of an XQuery function in a library data service based on build-in or
custom database functions.
Creating and Updating Physical Data Services 3-29

How to Create Physical Data Services
3.2.3.3 Entering a SQL Statement
You can build library data service functions based on SQL statements. The XQuery
engine uses the statement to retrieve metadata which is, in turn, formulated into a
function that can be used by other data services or made public.

After selecting the SQL Statement option the next page of the wizard allows you to
enter a SELECT statement and any necessary parameters.

Figure 3–15 SQL Statement Entry Dialog

On the SQL Statement dialog, there is a space for entering SELECT statements. You
can use a question mark for parameters. There is also a space for entering parameter
types. A table shows a position and type.

You can type or paste your SELECT statement into the SELECT statement box, indicating
parameters with a question-mark symbol.

?

Using one of the Oracle Data Service Integrator samples, the following SELECT
statement can be used:

SELECT * FROM RTLCUSTOMER.CUSTOMER WHERE CUSTOMER_ID = ?

For the parameter field, you would need to select a data type. In this case, CHAR or
VARCHAR.

1. Click Add to insert a new row into the parameter table, which indicates a
parameter for the SQL statement.

2. Select Parameter Type from the drop-down combo box.

Notes:

■ When you run your query under Test View, you will need to supply the
parameter in order for the query to run successfully.
3-30 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
■ Oracle Data Service Integrator needs to be able to refer to the columns of the
result of your SQL statement by name. To ensure that this is possible, you
should use aliases as needed to ensure that computed columns indeed have
usable names.

■ The position of the parameter is significant.

3. In Test view run your query, supplying a parameter such as CUSTOMER3.

3.2.3.3.1 Adding Operations to an Existing Data Service You can add SQL statement or
stored procedure operations based on the same data source to an existing physical
data service based a SQL statement.

For more information, see "How To Add an External Function to an Existing Physical
Data Service" on page 3-91.

Figure 3–16 Adding a Stored Procedure or SQL Statement to a Data Service

In the Select Data Source dialog, you can choose the data source, datasource type, and
relational object for a new data service. In the Relational database object section of the
dialog, the Stored Procedures option is selected. All other options are disabled except
for the SQL statement option.

3.2.3.4 Setting Properties for New Library Functions
This general topic applies to setting properties for all types of library data service
functions.

Use the Review New Data Service Operations page to:

■ Change the function name.

■ Set the Public option (check if you want your function to be available to client
applications).

■ Set the kind of function (in some cases only one option will be available).
Creating and Updating Physical Data Services 3-31

How to Create Physical Data Services
■ Set the Primary option (check if you want your function to be the primary of its
type).

■ Select a common XML namespace for the entire data service.

■ Set the target namespace.

3.2.3.5 Verifying Data Service Composition
On the Review New Data Service(s) page you can set, confirm or, optionally, change
suggested data service names depending on the type of physical data service you are
creating.

3.2.3.5.1 Default Physical Data Service Names The nominated name for a new data
service is, wherever possible, the same as the source object name. In some cases,
however, names are adjusted to conform with XML naming conventions.

For more information, see "XML Name Conversion Considerations" on page 3-13.

3.2.3.5.2 About Automatic Data Service Name Changes Name conflicts occur when there is
a data service of the same name present in the target directory. Name conflicts are
highlighted in red.

There are several situations where you will need to change the name of your data
service:

■ There already is a data service of the same name in your application.

■ You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

3.2.4 How To Create Physical Data Services Based on Database Functions
You can create library physical data services based on two types of database functions:

■ Functions that are provided with your database.

■ Custom functions that you have created and stored in your database.

A library data service created based on database functions is restricted to that type of
function. For example, a library function based on a stored procedure cannot be added
to a library data service that contains database functions.

■ Section 3.2.4.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.4.2, "Setting Up the Import Wizard for Relational Objects"

■ Section 3.2.4.3, "Providing Database Function Details"

■ Section 3.2.4.4, "Verifying Data Service Composition"

Note: In some cases this option may not be available.

Note: A library data service created based on database functions is
restricted to that type of function. For example, a library function
based on a stored procedure cannot be added to a library data service
that contains database functions.
3-32 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
You can use the physical data service creation wizard to:

■ Select relational as the Data Source type.

■ Select a data source from available relational sources.

■ Choose a database type. Database types listed would be drawn from the list of
available database providers for your data source. By default Generic, the base
platform provider, and Pointbase are provided.

■ Select the Database function option.

3.2.4.1 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.

Figure 3–17 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data.

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.

2. Choose New > Physical Data Service
Creating and Updating Physical Data Services 3-33

How to Create Physical Data Services
Figure 3–18 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.4.2 Setting Up the Import Wizard for Relational Objects
When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.

2. Select a data source from the dropdown listbox.

3. Select the database type for the selected source (PointBase for the sample RDBMS)
from the dropdown listbox.

4. Select among the relational source types listed in the following table.

Table 3–8 Types of available relational data sources

Relational Type Relational Type

Tables and Views Displays all public tables and views in the selected data source.

Stored Procedures Displays all public stored procedures in the selected data source.

SQL Statement Allows creation of a SQL statement for extracting relational data from the data
source.

Database Function Allows creation of an XQuery function in a library data service based on build-in or
custom database functions.
3-34 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
1. In the Select a Data Source dialog choose Database function.

2. Click Next.

Figure 3–19 Importing Database Function Metadata

The Select Data Source dialog lets you choose the data source, database type, and
relational object for the new data service. Browse to specify a container. Choose a data
source type from the drop-down menu. In the next section of the form, there is a note:
"Please user the WebLogic Administration Tool to configure relational data sources."
Select a data source from the drop-down menu. Select a database type from the
drop-down menu. Choose one out of five relational database objects: Tables and views,
Stored procedures, SQL statement, or Database function.

3.2.4.3 Providing Database Function Details
Here are instructions for how to provide database function information.

1. Select a data source from the dropdown list of data sources available to your
server. You should identify a data source that contains the built-in or user-defined
database functions you want to access through your data services.

2. Enter the information necessary to identify your database function.

3. Complete the function definition including identifying parameters in Source view.
Creating and Updating Physical Data Services 3-35

How to Create Physical Data Services
Figure 3–20 Entering Database Function Information

On the Database Function Information dialog, there are five fields: Catalog (optional),
Schema (optional), Package (optional), Function Name, and XQuery Function. There is
a check mark in the Public check box.

3.2.4.4 Verifying Data Service Composition
On the Review New Data Service(s) page you can set, confirm or, optionally, change
suggested data service names depending on the type of physical data service you are
creating.

3.2.4.4.1 Default Physical Data Service Names

For more information, see "XML Name Conversion Considerations" on page 3-13.

3.2.4.4.2 About Automatic Data Service Name Changes Name conflicts occur when there is
a data service of the same name present in the target directory. Name conflicts are
highlighted in red.

There are several situations where you will need to change the name of your data
service:

Table 3–9 Database Function Information Dialog Options

Option Action Comment/Reference

Catalog: Enter catalog name, if needed by your RDBMS

Schema: Enter schema name, if needed by your RDBMS

Package: Enter package name, if needed by your RDBMS

Function name: Database function name Required.

XQuery function XQuery function name Required; will invoke the database
function.

Public Select, if you want to make your operation public Default for created XQuery functions is
protected.

Click Next

Review Enter library data service name If the name of an existing library data
service is provided.
3-36 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
■ There already is a data service of the same name in your application.

■ You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

3.2.5 How To Create a Physical Data Service from a Web Service
In Oracle Data Service Integrator, three top-level provider types are identified:

■ WSDL File

■ URI

■ ALSB Proxy

A Web service is a self-contained, platform-independent unit of business logic that is
accessible through application adaptors, as well as standards-based Internet protocols
such as HTTP or SOAP.

Web services greatly facilitate application-to-application communication. As such they
are increasingly central to enterprise data resources. A familiar example of an
externalized Web service is a frequent-update weather portlet or stock quotes portlet
that can easily be integrated into a Web application.

Similarly, a Web service can be effectively used to track a drop shipment order from a
seller to a manufacturer.

This section describes the following topics:

■ Section 3.2.5.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.5.2, "Accessing a Web Service"

■ Section 3.2.5.3, "Selecting Web Service Operations to Import"

■ Section 3.2.5.4, "Setting Characteristics of Imported Web Service Operations"

■ Section 3.2.5.5, "Setting the Data Service Name"

3.2.5.1 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.
Creating and Updating Physical Data Services 3-37

How to Create Physical Data Services
Figure 3–21 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data.

3.2.5.1.1 Starting the Wizard To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.

2. Choose New > Physical Data Service
3-38 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–22 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.5.2 Accessing a Web Service
After you select web service as your data source, you are given the option of
specifying a WSDL file, URI, or ALSB proxy service.
Creating and Updating Physical Data Services 3-39

How to Create Physical Data Services
Figure 3–23 Selecting Web Service as a Data Source

In the Select Data Source dialog, a Save In field lets you enter a directory. Under Data
Source Type, Web Service is selected.

There are several ways to access a specific web service:

■ From a Web Service Description Language (WSDL) file located in your current
OSDI Studio project or through the AquaLogic Service Consumption Framework
(SCF).

■ From a WSDL accessible via a URL.

■ Through an ALSB proxy service.

3.2.5.2.1 Locating a WSDL File You can select a WSDL file in two ways:

■ From your project using the Browse button or

■ By downloading a WSDL to your project through the consumption framework

3.2.5.2.2 Browsing to a WSDL Click Browse to navigate to a WSDL in your current
dataspace project.

3.2.5.2.3 Downloading a WSDL File via the Service Consumption Framework To download a
WSDL file using the Service Consumption Framework:

1. Click on Download WSDL...

2. Select from available Service Resource Options.

3. Click OK. A SCF message indicating success or failure will appear.

4. Click Next.

5. Choose from available operations.
3-40 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–24 Using the Service Consumption Framework to Access a WSDL

The Service Consumption dialog lets you browse to select an artifact folder. There is a
checkbox that lets you specify whether you want to overwrite existing files. In the
Service Resource pull-down menu, there are five choices: Enterprise Repository, File
System, UDDI, URI, and Workspace (which is selected). There is also a space that
shows available services.

The following table briefly describe available service resources:

3.2.5.2.4 Selecting the Product Type For a Workspace service resource, services can be
consumed from several types of products. By default, three product types are
available:

Note: Downloading a WSDL is similar to downloading a text file.
Once it is in your project, you can treat it as local and make changes.
Changes made to such a WSDL will not be reflected in the source
WSDL. Similarly, any changes to the source WSDL (new operations or
changes to the signature) would only be reflected if the WSDL was
again downloaded and re-imported.

Resource Description

Enterprise Repository WSDLs in the associated artifacts folder of the Enterprise Repository

UDDI UDDI resources registered with the UDDI registry.

URI Any valid WSDL accessible via URI (alternatively, use the URI option from the
primary dialog)

File System A WSDL retrievable from the local file system

Workspace WSDLs or services in other projects in the Workspace (alternatively, use the Browse
button for WSDLs in the current project on the primary dialog).
Creating and Updating Physical Data Services 3-41

How to Create Physical Data Services
■ Generic WSDL

■ SAM (Service Assembly Modeler)

■ AquaLogic Data Services Platform

Figure 3–25 Selecting a WSDL from an OSDI Studio Workspace

On the Service Consumption dialog, you can browse to select an artifact folder. There
is a checkbox that lets you specify whether you want to overwrite existing files. For
Service Resource, Workspace is selected. Under Available Services, in the
RetailDataspace folder, RetailWebServices/mapperService is selected.

If you download a WSDL via SCF through either the Enterprise Repository or
Workspace option and you are using the OSDI Studio or ALSB product type, you can
locate and view the originated service of the WSDL using the Navigate to External
Service right-click menu option on the WSDL file in the Project Explorer.

3.2.5.2.5 Specifying a WSDL URI Specifying a WSDL URI

You can test the ability to create a physical data service based on a web service using
the following WSDL (available as of this writing):

http://www.whitemesa.net/wsdl/r2/base.wsdl
3-42 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–26 Importing Metadata from a WSDL

On the Select Data Source dialog, browse to find a directory where you want to save.
From the Data source type pull-down, Web Service is selected. For Web Service Data
Source, there are three choices: WSDL file, URI, and ALSB proxy serviced. URI is
selected and a website is specified. There is a note: A WSDL file may be downloaded
to the current project for consumption from another workspace project, repository, or
registry, etc.

3.2.5.2.6 The ALSB Proxy Service Option To access web services through AquaLogic
Service Bus (ALSB) you need to:

■ Provide access and credential information to AquaLogic Service Bus.

■ Select a proxy service (if there is more than one).

AquaLogic Service Bus access requires providing the following:

■ Server name

■ Port number

■ User name

■ Password

This information should be available from your AquaLogic Service Bus administrator.

After the required information is provided, the WSDL will become available using the
name of the selected proxy service.

Note: ■You must configure the ALSB proxy service to use the sb
transport protocol to enable access through OSDI Studio.

■ The Select Proxy list only shows the WSDL-based AquaLogic
Service Bus transport proxies in the ALSB server you are
connected to.
Creating and Updating Physical Data Services 3-43

How to Create Physical Data Services
3.2.5.2.7 Steps in Importing a Web Service

1. Specify a Web service URL, local WSDL file, or ALSB proxy service.

2. Click Next.

3.2.5.3 Selecting Web Service Operations to Import
From the list of available webservice operations grouped by serviceName and
portname, choose the operation that you want to turn into data service operation.

Figure 3–27 Selecting Web Service Operations

The Select Web Services Operations to Compose a Data Service dialog, a web services
tree includes checkboxes next to operations you want to add. Check the operations to
be included in the new data service. There is Search button that lets you navigate to
available Web Services operations. On the dialog, in the web services tree, all
operations are selected.

3.2.5.3.1 Adding Operations to an Existing Data Service You can add operations to an
existing physical data service based a web service by adding an external function from
the same WSDL.

Note: During the import process you will be choosing the operations
you want to import, setting names and other characteristics. These
choices will determine whether a Library or Entity data service will be
created. Thus a familiarity with the operations of your Web service is
needed.
3-44 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
For more information, see "How To Add an External Function to an Existing Physical
Data Service" on page 3-91.

Figure 3–28 Adding an External Operation to a Data Service

The Select Web Services Operations to Compose a Data Service dialog, a web services
tree includes checkboxes next to operations you want to add. Check the operations to
be included in the existing data service. There is Search button that lets you navigate to
available Web Services operations. On the dialog, in the web services tree, one
operation is selected. A Properties table displays on the right side of the dialog with
Parameter, Name, Type, and Mode columns.

3.2.5.3.2 Steps Involved in Selecting Web Service Operations

1. Select the operations you want to turn into data services or library data service
functions.

2. Click Next.

3.2.5.4 Setting Characteristics of Imported Web Service Operations
The following table describes available options for each operation you have selected to
import.
Creating and Updating Physical Data Services 3-45

How to Create Physical Data Services
Figure 3–29 Setting Characteristics of Imported Web Service Operations

The Review New/Updated Data Service Operation(s) dialog shows the operation(s)
that will be created or added to the existing data service. The dialog lets you edit
information about the operations. There are six columns: Operation, Public, Kind,
Primary, Root Element, and Target Namespace.

3.2.5.5 Setting the Data Service Name
You can change the name of your data service to any legal name that does not conflict
with another name in the current data space.

Table 3–10 Options Available for Imported Web Service Operations

Characteristic Options Comment

Operation adjust as needed You can change the nominated name to any legal XML name
using the built-in line editor.

Public Boolean By default Web service-derived operations are protected. A
checkbox allows you to mark any function or procedure as
public. (Once in a data service, operations can be marked
private as needed.)

Kind ■ Read

■ Create

■ Update

■ Delete

■ Library function

■ Library procedure

Operations determined to return void are automatically marked
as library procedures.

You can change the nominated function type. The wizard
attempts to correctly set the function type being imported.

Note: Operations marked as create, update, or delete functions
will be packaged in an Entity data service. Otherwise, the
resulting data service will be of type Library.

Primary Boolean Not applicable for web service operations.

Root Element Root element of the
operation

For complex data types the topmost element is listed. In case of
RPC-style web services the top-most generated element is
listed.

Target Namespace imported value This represents the target namespace of the generated data
service.
3-46 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
In addition, if there already is a data service in your project based on the same WSDL
an option to add the new operation to the existing data service appears.

3.2.5.5.1 Implementation Notes This section contains implementation notes.

3.2.5.5.2 Special Considerations when Creating a Data Service Based on a RPC-Style Web
Service In case of RPC-style web services, results are return as qualified or unqualified
based on the setting of the schema attribute:

elementFormDefault

In the general case of web services, elementFormDefault can be overridden by setting
the form attribute for any child element. However, such individual settings are
ignored for RPC-style web services since only the global setting (qualified or
unqualified) is taken into account.

For example:

<s:schema elementFormDefault="qualified"
 targetNamespace="http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
 xmlns:s0="http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
 xmlns:s="http://www.w3.org/2001/XMLSchema">
 <s:complexType name="ORDER">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified" name="ORDER_ID" type="s:string"/>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified" name="CUSTOMER_ID"
 type="s:string"/>
 </s:sequence>
 </s:complexType>
</s:schema>

In the above code the global element is qualified but a child element (ORDER_ID) is
unqualified.

In the standard case, the special setting of "unqualified" for ORDER_ID will be honored.
In the case of RPC-style web services, however, the runtime will generate "qualified"
attributes for all the elements, including ORDER_ID.

3.2.5.5.3 Multi-dimensional Arrays in RPC Mode Multi-dimensional arrays in RPC mode
are not supported.

Note: When importing a web service operation that itself has one or
more dependent (or referenced) schemas, the wizard creates
second-level schemas according to internal naming conventions. If
several operations reference the same secondary schemas, the
generated name for the secondary schema may change if you
re-import or synchronize with the Web service.

Note: RPC-style web services such as those generated by ADO.NET
may contain child elements with "form" attributes which do not match
the schema's elementFormDefault declaration. In order for such web
services to be turned into executable data service operations, make
sure that all form element attributes and the elementFormDefault
attribute are in agreement (either "qualified" or "unqualified").
Creating and Updating Physical Data Services 3-47

How to Create Physical Data Services
3.2.5.5.4 See Also
For more information, see How to Create SOAP Handlers for Imported WSDLs.

3.2.6 Preparing to Create Physical Data Services From Java Functions
This topic provides an overview of how to create a new physical data service from
Java functions.

Before you can create physical data services based on custom Java functions, you need
to create a Java class containing both the schema and function information. The entire
process involves the following:

1. Using Apache XMLBeans, Oracle XMLBeans, or SDO DataObjects, create a schema
of the data that is being used as parameters and return values by the Java
functions.

2. Create the XMLBean classes or SDO DataObject classes and package them in a JAR
file.

3. Place the JAR file in the DSP-INF/lib folder of the project in which you want to
create the new Physical Data Service.

4. Create the new Physical Data Service based on your custom Java functions by
importing the corresponding .class file.

3.2.7 How To Create a Physical Data Service from a Java Function
The following sections describe how to create physical data services based on custom
Java functions that return both simple and complex types.

■ Section 3.2.7.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.7.2, "Accessing Java Functions"

■ Section 3.2.7.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.7.4, "Setting Characteristics of Imported Java Functions"

■ Section 3.2.7.5, "Setting the Physical Data Service Name"

■ Section 3.2.7.6, "See Also"

3.2.7.1 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.

Tip: For more information, see Creating XMLBean Support for Java
Functions.

Note: Before you can create physical data services based on custom
Java functions, you must create a Java class containing both the
schema and function information. For more information, see
"Preparing to Create Physical Data Services From Java Functions" on
page 3-48.

For more information about supported Java types and the
corresponding generated data services, see "Physical Data Services
from Java Functions Overview" on page 3-2.
3-48 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–30 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data.

3.2.7.1.1 Starting the Wizard To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.

2. Choose New > Physical Data Service.
Creating and Updating Physical Data Services 3-49

How to Create Physical Data Services
Figure 3–31 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.7.2 Accessing Java Functions
After you choose Java Function as your data source, you need to specify a class name
containing the Java functions.
3-50 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–32 Choosing Java Function as a Data Source

On the Select Data Source dialog, Java Function is selected as the data source type.

3.2.7.2.1 Choosing the Java class: To choose the Java class containing the Java functions:

1. Choose Java Function from the Data source type drop-down list.

2. Click Browse. The Open Java Class dialog appears.

3. Select the Java .class file and click Open.

The .class file must reside in the same dataspace into which you are importing
the Java functions.

4. Click Next.

Figure 3–33 Open Java Class Dialog

On the Open Java Class dialog, the .class file is selected.

Creating and Updating Physical Data Services 3-51

How to Create Physical Data Services
3.2.7.3 Selecting Java Functions to Import
After you select Java Function as your data source, you need to select the Java
functions to import.

Figure 3–34 Selecting Java Function Dialog

On the Select Java Function dialog, there is one panel containing function names on
the left. The function name checkbox is checked. The Select all and Unselect all options
are not selected. On the right is a reflecting properties for the selected function. There
are four columns: With Change Summary, Name, Type, and Native Name. There are
checkboxes in the With Change Summary column next to each property.

To select the Java functions to import:

1. Select the Java functions you want to import by checking the corresponding box.

Select With Change Summary to have Oracle Data Service Integrator declare the
parameter or return value as changed-element enabling you to use it with update
operations. This option is only available for SDO DataObject-generated classes.

2. Click Next.

3.2.7.4 Setting Characteristics of Imported Java Functions
After choosing the Java functions to import, you can optionally set the characteristics
of the functions.

Figure 3–35 Setting Characteristics of Imported Java Functions
3-52 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
On the Review New/Updated Data Service Operation(s) dialog, there is a table with
six columns: Operation, Public, Kind, Primary, Root Element, Target Namespace.
Characteristic for the updateOrders operation are provided in the table.

The following table describes the available options for each function you have selected
to import.

To set the characteristics of imported Java functions:

1. Optionally edit the details of each operation:

2. Click Next.

3.2.7.5 Setting the Physical Data Service Name
You can set the name of your data service to any legal name that does not conflict with
another name in the current dataspace.

To complete the wizard:

1. Type the name of the data service in the Data service name field.

2. Click Finish.

Oracle Data Service Integrator creates a pragma (visible in Source view) that defines
the function signature and relevant schema type for complex types such as schema
elements or SDO types.

If there are existing data services in your project, you have the option of adding
functions and procedures to that library or creating a new library for them. All the Java
file functions are located in the same data service.

Table 3–11 Options Available for Imported Java Functions

Characteristic Options Comment

Operation name Adjust as needed You can change the nominated name to any legal XML name using
the built-in line editor.

Public Boolean By default Java function-derived operations are protected. A
checkbox allows you to mark any function or procedure as public.
(Once in a data service, operations can be marked private as
needed.)

Kind ■ Read

■ Create

■ Update

■ Delete

■ Library
function

■ Library
procedure

Functions determined to return void are automatically marked as
library procedures.

You can change the nominated function type. The wizard attempts
to correctly set the function type being imported.

Note: Operations marked as create, update, or delete functions will
be packaged in an Entity data service. Otherwise, the resulting
data service will be of type Library.

is Primary Boolean Not applicable for Java functions.

Root Element Root element of the
operation

For complex data types the topmost element is listed.

Target Namespace Imported value This represents the target namespace of the generated data service.
Creating and Updating Physical Data Services 3-53

How to Create Physical Data Services
3.2.7.6 See Also

Concepts
■ Section 3.1.2, "Physical Data Services from Java Functions Overview"

How Tos
■ Section 3.2.6, "Preparing to Create Physical Data Services From Java Functions"

■ Section 3.3.4.2, "Creating XMLBean Classes for Java Functions"

3.2.8 How To Create a Physical Data Service from XML Data
XML files are a convenient means of handling hierarchical data. XML files and
associated schemas are easily turned into library data service functions.

The following topics cover the actions necessary to create physical data services from
XML data:

■ Section 3.2.8.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.8.2, "Specifying XML Data Schema and File"

■ Section 3.2.8.3, "Setting Properties for New Library Functions"

■ Section 3.2.8.4, "Verifying Data Service Composition"

■ Section 3.2.8.5, "XML File Import Sample"

You can use the physical data service creation wizard to:

■ Select XML Data as the Data Source type.

■ Select a schema file and option data file.

■ Create a Library data service based on the XML data.

3.2.8.1 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.

Note: When importing a Java function that itself has one or more
dependent (or referenced) schemas, the wizard creates second-level
schemas according to internal naming conventions. If several
operations reference the same secondary schemas, the generated name
for the secondary schema may change if you re-import or synchronize
with the Java class.
3-54 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–36 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data. Select XML data.

3.2.8.1.1 Starting the Wizard To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.

2. Choose New > Physical Data Service
Creating and Updating Physical Data Services 3-55

How to Create Physical Data Services
Figure 3–37 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.8.2 Specifying XML Data Schema and File
A physical data service based on XML data requires identification of a valid XML
schema and, optionally, a data source.
3-56 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–38 Import XML Data Wizard

On the Select Physical Data Service dialog, browse to specify the directory where you
want to save the XML schema. From a pull-down menu, data source type XML Data.
Browse to find the schema file. Browse to find the optional XML data file.

The scheme must be available in your dataspace.

The data source can be:

■ File-based

■ URI-based

In most cases the XML data will be available at runtime, through a URI.

However, in cases where the XML data is also in your project you can specify an
absolute location for the file. You can also import data from any XML file on your
system using an absolute path prepended with the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml
from the root C: directory using the following URI:

file:///c:/Orders.xml

On a UNIX system, you would access such a file with the following URI:

file:///home/Orders.xml

3.2.8.3 Setting Properties for New Library Functions
This general topic applies to setting properties for all types of library data service
functions.

Use the Review New Data Service Operations page to:

■ Change the function name.

■ Set the Public option (check if you want your function to be available to client
applications).

■ Set the kind of function (in some cases only one option will be available).
Creating and Updating Physical Data Services 3-57

How to Create Physical Data Services
■ Set the Primary option (check if you want your function to be the primary of its
type).

■ Select a common XML namespace for the entire data service.

■ Select a common XML namespace for the entire data service.

■ Set the target namespace.

The root element, which is read only, is also displayed.

3.2.8.4 Verifying Data Service Composition
On the Review New Data Service(s) page you can set, confirm or, optionally, change
suggested data service names depending on the type of physical data service you are
creating.

3.2.8.4.1 Default Physical Data Service Names The nominated name for a new data
service is, wherever possible, the same as the source object name. In some cases,
however, names are adjusted to conform with XML naming conventions.

When a source name is encountered that does not fit within XML naming conventions,
default generated names are converted according to rules described by the SQLX
standard.

Generally speaking, an invalid XML name character is replaced by its hexadecimal
escape sequence (having the form xUUUU).

3.2.8.4.2 About Automatic Data Service Name Changes Name conflicts occur when there is
a data service of the same name present in the target directory. Name conflicts are
highlighted in red.

There are several situations where you will need to change the name of your data
service:

■ There already is a data service of the same name in your application.

■ You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

3.2.8.5 XML File Import Sample
An XML file import sample can be found in the sample RTLApp directory:

DataServices/Demo

3.2.8.5.1 Testing the Import Wizard with an XML Data Source When you create metadata for
an XML data source but do not supply a data source name, you will need to identify
the URI of your data source as a parameter when you execute the data service's read
function.

The identification takes the form of:

<uri>/path/filename.xml

Note: In some cases this option may not be available.
3-58 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
where uri is representative of a path or path alias, path represents the directory and
filename.xml represents the filename. The .xml extension is required.

3.2.9 How To Create a Physical Data Service from a Delimited File
Spreadsheets offer a highly adaptable means of storing and manipulating information,
especially information which needs to be changed quickly. You can easily turn such
spreadsheet data into a data services.

Figure 3–39 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data. Select XML data.

You can use the physical data service creation wizard to:

■ Select a delimited file as the Data Source type.

■ Select either a schema file or a file with delimited data.

■ Specify whether the information has a header or not.

■ Specify delimiter.

■ Specify a fixed width value for each column.

The following topics cover the actions necessary to create physical data services from
delimited files:

■ Section 3.2.9.1, "Setting Up the Physical Data Service Creation Wizard"

■ Section 3.2.9.2, "Specifying Delimited File Information"

■ Section 3.2.9.3, "Setting Properties for New Library Functions"

■ Section 3.2.9.4, "Verifying Data Service Composition"
Creating and Updating Physical Data Services 3-59

How to Create Physical Data Services
3.2.9.1 Setting Up the Physical Data Service Creation Wizard
Physical data services are created using a wizard.

Figure 3–40 Physical Data Service Creation Wizard

Browse to specify a directory where you want to save the data service. The possible
data source types are Relational, Web Service, Java Function, Delimited Data, and XML
data.

3.2.9.1.1 Starting the Wizard To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.

2. Choose New > Physical Data Service.
3-60 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
Figure 3–41 Creating a New Physical Data Service

In the Project Explorer, a project is selected and the context window is displayed. New
is highlighted and Physical Data Service is selected.

3.2.9.2 Specifying Delimited File Information
A Library data service based on delimited data requires:

1. Schema in your project and/or a

2. Location of the delimited data file
Creating and Updating Physical Data Services 3-61

How to Create Physical Data Services
Figure 3–42 Import Delimited File Data Wizard

On the Import Delimited File Data Wizard, browse to a directory where you want to
save. Delimited Data is shown as the Data Source Type. You can browse for or enter a
Schema file name and Delimited data file name. A checkbox indicates Has header. In
the Instruction Place Holder section, Delimiter is selected and a comma is specified. As
an alternative, you can select Fixed Width.

The schema and data file must be available in your dataspace.

3.2.9.2.1 Providing a Document Name, a Schema Name, or Both There are several
approaches to developing metadata around delimited information, depending on your
needs and the nature of the source.

■ Provide a delimited document name only. If you supply the import wizard with
the name of a valid CSV file, the wizard will automatically create a schema based
on the columns in the document. All the columns will be of type string, although
you can later modify the generated schema with more accurate type information.
The generated schema will have the same name as the source file.

■ Providing a schema name only. This option is typically used when the source file
is dynamic; for example, when data is streamed.

■ Providing both a schema and a document name. Providing a schema with a CSV
file gives you the ability to more accurately type information in the columns of a
delimited document.

3.2.9.2.2 Locating the CSV File Using the import wizard you can browse to any file in
your project. You can also import data from any CSV file on your system using an
absolute path prepended with:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml
from the root C: directory using the following URI:

file:///<c:/home>/Orders.csv
3-62 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to Create Physical Data Services
On a UNIX system, you would access such a file with the URI:

file:///<home>/Orders.csv

3.2.9.2.3 Import Delimited Data Options There are two options:

■ Header. Indicates whether the delimited file contains header data. Header data is
located in the first row of the spreadsheet. If you check this option, the first row
will not be treated as imported data.

■ Delimited or Fixed Width. Data in your file is either separated by a specific
character (such as a comma) or is of a fixed width (such as 10 spaces). If the data is
delimited, you also need to provide the delimited character. By default the
character is a comma.

3.2.9.2.4 Supported Datatypes The following datatypes are supported for delimited file
metadata import operations:

XMLSchemaType.BASE64BINARY
XMLSchemaType.BOOLEAN
XMLSchemaType.DATE
XMLSchemaType.DATETIME
XMLSchemaType.DECIMAL
XMLSchemaType.DOUBLE
XMLSchemaType.FLOAT
XMLSchemaType.INT
XMLSchemaType.INTEGER
XMLSchemaType.LONG
XMLSchemaType.STRING
XMLSchemaType.SHORT

3.2.9.2.5 Additional Considerations Consider the following:

■ The number of delimiters in each row must match the number of header columns
in your source minus one (# of columns-1). If subsequent rows contain more than
the maximum number of delimiters (fields), subsequent use of the data service
will not be successful.

■ If the delimited file has rows with a variable number of delimiters (fields), you can
supply a schema that contains optional elements for the trailing set of extra
elements.

■ Not all characters are handled the same way. Some characters may need special
escape sequences before spreadsheet data can be accessed at runtime.

3.2.9.3 Setting Properties for New Library Functions
This general topic applies to setting properties for all types of library data service
functions.

Use the Review New Data Service Operations page to:

■ Change the function name.

■ Set the Public option (check if you want your function to be available to client
applications).

■ Set the kind of function (in some cases only one option will be available).
Creating and Updating Physical Data Services 3-63

How to
■ Select a common XML namespace for the entire data service.

■ Set the target namespace.

The root element, which is read only, is also displayed.

3.2.9.4 Verifying Data Service Composition
On the Review New Data Service(s) page you can set, confirm or, optionally, change
suggested data service names depending on the type of physical data service you are
creating.

3.2.9.4.1 Default Physical Data Service Names The nominated name for a new data
service is, wherever possible, the same as the source object name. In some cases,
however, names are adjusted to conform with XML naming conventions.

For more information, see XML Name Conversion Considerations.

3.2.9.4.2 About Automatic Data Service Name Changes Name conflicts occur when there is
a data service of the same name present in the target directory. Name conflicts are
highlighted in red.

There are several situations where you will need to change the name of your data
service:

■ There already is a data service of the same name in your application.

■ You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

3.3 How to
These sections describe procedures to create and update physical data services:

■ Section 3.3.1, "How To Enable Optimistic Locking"

■ Section 3.3.2, "How To Update Physical Data Service Metadata"

■ Section 3.3.3, "Creating SOAP Handlers for Imported WSDLs"

■ Section 3.3.4, "Creating XMLBean Support for Java Functions"

■ Section 3.3.5, "How To Browse and Select a Schema Type"

■ Section 3.3.6, "Physical Data Service from a Java Function - Example Code"

3.3.1 How To Enable Optimistic Locking
These sections describe how to enable optimistic locking in order to update a physical
relational data source.

■ Section 3.3.1.1, "Set the Locking Policy"

■ Section 3.3.1.2, "Select the Locking Fields"

■ Section 3.3.1.3, "See Also"

Note: In some cases this option may not be available.
3-64 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
3.3.1.1 Set the Locking Policy
Define the optimistic locking policy on the physical data sources that support your
logical data service before you attempt to test an update in Test view or use an update
map. Optimistic locking is used with physical data sources that are relational.

The current value of optimistic locking is defined in the Optimistic Locking Fields
property. You can see this property in the Properties tab in Overview mode.

Figure 3–43 Checking the Optimistic Locking Policy

On the Properties tab, under Data Service, properties and values are listed. Optimistic
Locking Fields is selected with a value of UPDATED.

Updates to relational data sources use a special XML structure called a data graph. The
root element of data graph is <sdo:datagraph>, and the data graph also has a
<changeSummary> element.

You can use any of these values for Optimistic Locking Fields. They describe how the
elements in the data graph compare to fields in the relational data source.

To set the locking policy:

1. Open a physical data service in OSDI Studio.

2. Click the Overview tab, then below it, the Properties tab.

3. At Optimistic Locking Fields, click in the Value column, then choose a value.

3.3.1.2 Select the Locking Fields
If you choose SELECTED FIELDS, you must also select the fields used to verify changes
in the data source. You can select any number of non-key fields. The key fields are
used to identify the data records to be updated. If you select a complex element, its
child elements also become selected elements.

Value of Optimistic Locking Fields Effect

PROJECTED All elements in the data graph are mapped to the data source to verify
whether it can be updated. Default value.

UPDATED Only elements that have changed in your data graph are used to verify
whether the data source has changed.

SELECTED FIELDS Selected elements are used to verify whether the data source has
changed. The elements must be non-key elements.
Creating and Updating Physical Data Services 3-65

How to
You can also disable a field once it is selected.

Figure 3–44 Choosing Fields for Optimistic Locking

The context menu displays when you right click on a field. Enable Optimistic Locking
is selected.

To select the fields used for optimistic locking:

1. Click the Overview tab.

2. Right-click a non-key element in the return type.

Key elements are marked with a key symbol.

3. Choose Enable Optimistic Locking.

When you enable optimistic locking for a field, its icon (in the return type in the
Overview tab) changes to. You can also see the optimistic locking fields in the pragma
statement at the top of the service's Source tab:

(::pragma xds <x:xds targetType="t:CREDITRATING" xmlns:x="urn:annotations.ld.oracle.com"
 xmlns:t="ld:physical/CREDITRATING"> ... <optimisticLockingFields> <field name="RATING"/>
 </optimisticLockingFields>

3.3.1.3 See Also
For more information, see the following resources:

3.3.1.3.1 How To

■ "How To Test an Update Procedure" on page 9-49

3.3.1.3.2 Concepts

■ Brief Overview of Service Data Objects (for Eclipse for WebLogic)

■ Data Programming Model and Update Framework (in depth, for client
applications.

3.3.2 How To Update Physical Data Service Metadata
When you first create a physical data service its underlying metadata is, by definition,
consistent with its data source. Over time, however, your metadata may become "out
of sync" for several reasons:
3-66 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
■ The structure of underlying data sources may have changed, in which case it is
important to be able to identify those changes so that you can determine when and
if you need to update your metadata.

■ You have modified schemas or added relationships to your data service.

In some cases relationships between data services will be preserved during metadata
update. See "Using the Update Source Metadata Wizard" on page 3-69 for details.

This section describes the following topics:

■ Section 3.3.2.1, "Topics"

■ Section 3.3.2.2, "Scope of Metadata Update"

■ Section 3.3.2.3, "Important Considerations When Updating Source Metadata"

■ Section 3.3.2.4, "Using the Update Source Metadata Wizard"

■ Section 3.3.2.5, "Inspecting and Reverting Changes Using Local History"

3.3.2.1 Topics
This section describes the following topics:

■ Scope of Metadata Update

■ Important Considerations When Updating Source Metadata

■ Using the Update Source Metadata Wizard

■ Inspecting and Reverting Changes Using Local History

In Project Explorer you can use the right-click menu option Update metadata to see if
there are any differences between your source metadata files and the underlying
source.
Creating and Updating Physical Data Services 3-67

How to
Figure 3–45 Update Metadata Option in Project Explorer

In the Project Explorer, a metadata source is highlighted and Update metadata is
selected on the right-click menu.

The Update metadata option can be used with:

■ Relational table and view associated with changes to the relational database
including providerID, the sourceBindingProviderClassName, columns, and
optimistic locking fields.

■ Web services

■ Java functions

■ Delimited files

Metadata update cannot be applied to data services based on:

■ Relational stored procedures

■ XML files

3.3.2.2 Scope of Metadata Update
When you run the Metadata update option, differences between your physical data
service and the underlying data source are categorized according to the following
scheme:
3-68 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
3.3.2.3 Important Considerations When Updating Source Metadata
The update metadata operation can have both direct and indirect consequences.

Source metadata should be updated with care by someone who is quite familiar with
the underlying data source. For example, if you have added a relationship between
two physical data services, updating your source metadata may remove the
relationship from both data services. If the relationship appears in a model diagram,
the relationship line will appear in red, indicating that the relationship is no longer
described by the respective data services.

3.3.2.3.1 Direct and Indirect Effects Direct effects apply to physical data services. Indirect
effects occur to logical data services, since such services are themselves based — at
least indirectly — on physical data services.

For example, if you have created a new relationship between a physical and a logical
data service (not a recommended practice), updating the physical data service can
invalidate the relationship. In the case of the physical data service, there will be no
relationship reference. The logical data service will retain the code describing the
relationship but it will be invalid if the opposite relationship notations is no longer be
present.

3.3.2.4 Using the Update Source Metadata Wizard
The Update metadata wizard allows you to update your source metadata.

You can perform a metadata update on your entire dataspace project, folders from the
project, or any qualified data service. Generally speaking, metadata updates should be
performed as specifically as possible.

Category Meaning

Objects added The data source contains one or more objects that are not currently represented in
the physical data service. From the perspective of the data source, information from
the existing data service is added back after the metadata update. Another way to
look at this is from the perspective of the data service. In this view, certain artifacts
are retained. A typical example is a relationship with another data service. Existing
relationships are identified and retained, the metadata is updated to reflect the
current data source, and the relationships are added back to the data service.

Objects deleted One or more objects in the physical data service is not found in the underlying data
source. A typical artifact that will be marked for deletion would be a schema that is
referenced by an operation (such as a relationship function) in the data service.
Objects marked for delete generally appear together.

Note: You should carefully inspect the update wizard for items marked for deletion.
In the case of schemas, in particular, a prudent course of action would be to retain
the schema (uncheck the delete option) unless you are certain that it is not needed by
an operation in your data service. Deleting a needed schema will make your data
service invalid and undeployable.

Objects changed One or more objects in the physical data service and the underlying data source do
not match and an adjustment will be made. An example of an artifact that will be
marked as changed would be if the relational providerID underlying the data source
has changed or is unavailable.

Source unavailable The data source underlying the physical data service could not be accessed.

Note: Before attempting to update source metadata you should
make sure that your build project has no errors.
Creating and Updating Physical Data Services 3-69

How to
After you select your target(s), the wizard identifies the metadata that will be verified
and any differences between your metadata and the underlying source.

You can select/deselect any data service listed in the dialog using the checkbox to the
left of the name. You can also choose to select/deselect specific changes for the data
service using the checkbox to the left of the change description.

Figure 3–46 Update Metadata Command

Shows an Update Metadata command for ElectronicsWS project in the sample
application.

Note: Use Shift-click or Ctrl-click to select multiple data services or
folders in a single dataspace.
3-70 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
Figure 3–47 Original Source and Refactored Source Details

The Update Methods screen, there are three sections: Changes to be performed,
Product - Original Source and Refracted Source.

The upper portion of the Update metadata plan shows the changes to be performed. In
some cases items are presented and selected (checked). In other cases items are
presented but unchecked.

In the details view, the left-hand side shows the current source (called Original
Source). The right-hand side shows what the result will be after metadata update
(called Refactored Source).

Your only options in the dialog are to select or deselect specific changes using the
adjacent checkboxes.

Up/down arrows are available on the Update Metadata titlebar to move through the
possible changes. (The Filter Changes option icon next to the arrows is not applicable
to metadata update and is not active.

Figure 3–48 Update Metadata Wizard Navigation Arrows
Creating and Updating Physical Data Services 3-71

How to
Up/down arrows are available on the Update Metadata titlebar to move through the
possible changes. (The Filter Changes option icon next to the arrows is not applicable
to metadata update and is not active.

3.3.2.5 Inspecting and Reverting Changes Using Local History
You can use the Local History option provided with Eclipse to review changes that
have been made through the Metadata Update Wizard.

Here are the steps involved:

1. In the Project Explorer right-click on your data service.

2. Select:

Compare With > Local History...

The Compare With Local History window will open. If there have been several
changes made, each will be identified through a timestamp.

It is also often possible to revert a metadata update using a similar mechanism:

1. In the Project Explorer right-click on your data service.

2. Select:

Replace With > Local History...

The Replace With Local History window will open. If there have been several
changes made, each will be identified through a timestamp.

3.3.3 Creating SOAP Handlers for Imported WSDLs
When you import metadata from web services for Oracle Data Service Integrator, you
can create SOAP handler for intercepting SOAP requests and responses. The handler
will be invoked when a web service method is called. You can chain handlers that are
invoked one after another in a specific sequence by defining the sequence in a
configuration file.

To create and chain handlers, the following steps are involved:

1. Create a Java Class Implementing the Generic Handler Interface.

2. Compile your intercept handler into a JAR file.

3. Define a Configuration File.

4. Define the Interceptor Configuration.

5. Concluding Actions.

3.3.3.1 Create a Java Class Implementing the Generic Handler Interface
The GenericHandler interface is:

javax.xml.rpc.handler.GenericHandler

The following code illustrates an example of implementing a generic handler.

Note: If you just want to revert to the immediate previous change,
use the right-click option:

Replace With > Previous from Local History...
3-72 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
package WShandler;

import java.util.Iterator;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.soap.SOAPElement;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.GenericHandler;
import javax.xml.namespace.QName;

/**
* Purpose: Log all messages to the Server console
*/
public class WShandler extends GenericHandler
{
 HandlerInfo hinfo = null;

 public void init (HandlerInfo hinfo) {
 this.hinfo = hinfo;
 System.out.println("*****************************");
 System.out.println("ConsoleLoggingHandler r: init");
 System.out.println(
 "ConsoleLoggingHandler : init HandlerInfo" + hinfo.toString());
 System.out.println("*****************************");
 }

For more information, see Creating and Using Client-Side SOAP Message Handlers in
Oracle WebLogic documentation.

3.3.3.2 Compile your intercept handler into a JAR file.
The steps are to compile your intercept handler and JAR the class file.

3.3.3.2.1 Define a Configuration File The configuration file specifies the handler chain
and the order in which the handlers will be invoked.

The following is an example of the handler chain configuration. The handler-class
attribute specifies the fully-qualified name of the handler.

Example 3–1 Code Sample: Handler Chain Configuration

<weblogic-wsee-clientHandlerChain
xmlns="http://www.oracle.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">
<handler>
 <j2ee:handler-name>sampleHandler</j2ee:handler-name>
 <j2ee:handler-class>WShandler.WShandler</j2ee:handler-class>
 <j2ee:init-param>
 <j2ee:param-name>ClientParam1</j2ee:param-name>
 <j2ee:param-value>value1</j2ee:param-value>
 </j2ee:init-param>
</handler>
</weblogic-wsee-clientHandlerChain>

3.3.3.2.2 Define the Interceptor Configuration In your Oracle Data Service Integrator
application, define the interceptor configuration for the method in the data service to
which you want to attach the handler.
Creating and Updating Physical Data Services 3-73

How to
Example 3–2 Code Sample: Intercept Configuration

xquery version "1.0" encoding "WINDOWS-1252";

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
 targetType="t:echoStringArray_return"
 xmlns:t="ld:SampleWS/echoStringArray_return">
<creationDate>2005-05-24T12:56:38</creationDate>
<webService targetNamespace=
"http://soapinterop.org/WSDLInteropTestRpcEnc"
wsdl="http://webservice.bea.com:7001/rpc/WSDLInteropTestRpcEncService?WSDL"/></x:xds>::)

declare namespace f1 = "ld:SampleWS/echoStringArray_return";

import schema namespace t1 = "ld:AnilExplainsWS/echoStringArray_return" at
 "ld:SampleWS/schemas/echoStringArray_param0.xsd";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com" kind="read"
 nativeName="echoStringArray" nativeLevel1Container="WSDLInteropTestRpcEncService"
 nativeLevel2Container="WSDLInteropTestRpcEncPort" style="rpc">
<params>
 <param nativeType="null"/>

<interceptorConfiguration aliasName="LoggingHandler"
 fileName="ld:SampleWS/handlerConfiguration.xml" />
 </f:function>::)

declare function f1:echoStringArray($x1 as element(t1:echoStringArray_param0)) as
 schema-element(t1:echoStringArray_return) external;
<interceptorConfiguration aliasName="LoggingHandler"
 fileName="ld:testHandlerWS/handlerConfiguration.xml">

In the file the aliasName attribute specifies the name of the handler chain to be
invoked and the fileName attribute specifies the location of the configuration file.

3.3.3.2.3 Concluding Actions

■ Place the JAR file that was based on the intercept handler (created above) in your
project's dsp-inf/lib folder.

■ Compile and run your application. Your handlers will be invoked in the order
specified in the configuration file.

3.3.4 Creating XMLBean Support for Java Functions
Before you can create a Physical Data Service from Java functions, you need to create
a .class file that contains XMLBean classes based on global elements and compiled
versions of your Java functions. This topic describes how to create XMLBean classes
based on a schema of your data.

■ Section 3.3.4.1, "Supported XMLBean Standards"

■ Section 3.3.4.2, "Creating XMLBean Classes for Java Functions"

■ Section 3.3.4.3, "See Also"

3.3.4.1 Supported XMLBean Standards
Imported Java functions containing complex types must have a schema that conforms
to one of the following XMLBean standards:
3-74 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
If your Java routines were compiled under previous versions, they will need to be
recompiled before they can be imported.

3.3.4.2 Creating XMLBean Classes for Java Functions
This topic describes how to create XMLBean classes based on a schema of your data.

3.3.4.2.1 Creating a New Project You need to create a new project to build the XMLBean
classes.

Figure 3–49 New Project

On the right-click menus in the Project Explorer, New is highlighted and Project is
selected.

To create a new project:

1. Using Eclipse for WebLogic, create a new project by right-clicking in the Project
Explorer and choosing New > Project in the menu. The New Project wizard is
launched.

Version URL

Apache org.apache.xmlbeans

Oracle com.bea.xml

Note: The New Physical Data Service wizard requires that all the
complex parameter or return types used by the functions correspond
to XMLBean global element types whose content model is an
anonymous type. Thus only functions referring to a top level element
are imported.
Creating and Updating Physical Data Services 3-75

How to
2. Choose Java > Java Project and click Next.

3. Type a name for the project and select Create separate source and output folders in
the Project layout area.

4. Click Finish. Eclipse for WebLogic creates a new project in the Project Explorer.

Figure 3–50 New Java Project Wizard

The Create a Java project wizard enables you to create a new project. There is a field
for you to specify the project name, in this case, myProject. There are two choices for
Contents: Create new project in workspace (selected) or Create project from existing
source. If Create project from existing source is selected, you can browse to specify a
directory. For JRE, there are two choices: Use default JRE and Create separate source
and output folders. You can click to configure the JRE. For Project layout, there are two
choices: Use project folder as root for sources and class files and Create separate source
and output folders. You can click to configure the default.

3.3.4.2.2 Enabling XMLBeans Builder You need to enable the XMLBeans Builder in the
project to allow it to create classes based on the Java source and XML schema files.
3-76 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
Figure 3–51 Project Properties

In the Project Explorer, the new project is selected and Properties is selected on the
right-click menu.

To enable XMLBeans Builder:

1. Right-click the new project, and choose Properties from the menu. The Properties
dialog appears.

2. Click XMLBeans, select the Enable XMLBeans Builder checkbox, and click OK.
Creating and Updating Physical Data Services 3-77

How to
Figure 3–52 Enabling XMLBeans Builder

The XML Beans Builder dialog enables you to create classes based on the Java source
and XML schema files. There are two panels. On the left is a field that includes "type
filter text." XMLBeans is shown at the bottom of the tree displayed. On the right, the
Enable XMLBeans Builder checkbox is selected. On the Source Paths tab, the Use Java
source paths for XMLBeans Builder input checkbox is selected. There are Restore
Defaults and Apply buttons as well as OK and Cancel.

3.3.4.2.3 Importing Schema and Java Source Files You need to import the schema files and
Java source files into the project.

To import the schema and Java source files:

■ Copy the schema files representing the data used by the Java functions along with
the Java source files into the src folder.

3.3.4.2.4 Creating a Project Reference The final step involves creating a reference to your
XMLBeans-based project from the dataspace in which you want to use the Java
functions.

To create the project reference:

1. Right-click the dataspace project in which you want to use the Java functions and
choose Properties from the menu.

2. Select Project References in the Properties dialog.

3. Select your XMLBeans-based project, and click OK.

When your project is deployed, Oracle Data Service Integrator does the following:
3-78 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
■ Rebuilds your XMLBeans-based project, if required, and generates a JAR file

■ Copies the JAR file to the DSP-INF/lib folder in the dataspace project

Figure 3–53 Project References

The Project References dialog lets you specify the projects referenced by the current
project. Project References is selected on the right. The project references for the
RetailDataspace project are shown on the right with checkboxes. The myProject
checkbox is selected.

3.3.4.3 See Also
How Tos

■ Section 3.2.7, "How To Create a Physical Data Service from a Java Function"

Reference

■ Section 3.1.2, "Physical Data Services from Java Functions Overview"

■ Section 3.4, "Example: XMLBeans Example Using a Metadata-rich Java Class"

3.3.5 How To Browse and Select a Schema Type
This topic describes how to use the Schema Type Browser to locate and associate
schema types within your dataspace projects.

■ Section 3.3.5.1, "Browsing and Selecting Schema Types"

■ Section 3.3.5.2, "Browsing Schema Types"

■ Section 3.3.5.3, "Selecting a Schema Type"
Creating and Updating Physical Data Services 3-79

How to
3.3.5.1 Browsing and Selecting Schema Types
When developing Oracle Data Service Integrator dataspace projects, it is typically the
case that the associated schema documents are distributed throughout multiple
directories within the project. You can use the Schema Type Browser in Eclipse for
WebLogic to quickly locate schema types and associate a schema type with a data
service without having to remember the specific schema document that contains the
type.

3.3.5.2 Browsing Schema Types
You can browse the schema types within your dataspace projects using the Schema
Type Browser. Browsing for schema types enables you to search for global types
declared in schema files in the selected project or in all available dataspace projects.

To browse the schema types:

1. Select a dataspace project, a folder in the project, or an .xsd file using the Project
Explorer.

This serves as the initial scope within the Schema Type Browser.

2. Choose Navigate > Open Schema Type from the main menu.

Alternatively, you can right-click the entity in the Project Explorer and choose
Open Schema Type from the context-sensitive menu. The Open Schema Type
dialog appears.

Figure 3–54 Open Schema Type Dialog

The Open Schema Type dialog has fields where you can type a namespace and name.
You can use a question mark (?) to search any character or an asterisk (*) to search any
string. There are checkboxes for three global types: Elements/Attributes, User-defined
types, and Built-in types. There are two options for Scope: All Projects and Project. A
Change button lets you change projects. Matching types are displayed.

3-80 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
3. Type a search string for the namespace and the name, as appropriate, in the
respective fields.

You can use the wildcard character "?" to represent any character and "*" to
represent any string.

4. Select the global types, including elements and attributes, user-defined types, and
built-in types, to include in the search.

5. Select the scope of the search.

By default, the scope of the search is the project or folder selected when you
opened the Schema Type Browser. You can select all projects or choose a specific
folder by clicking the Change button. The schema types matching the search
criteria appear in the Matching types list, along with the namespace and
associated icon. The number of matches appears below the list. The results are
updated as you specify new search criteria.

6. Select a type in the list to display the location of the schema file in which the type
is declared.

Click Show Details to enable this additional information to be displayed about the
selected type.

7. Double-click a type (or select the type and click OK) to display the type using the
default XML schema editor.

3.3.5.3 Selecting a Schema Type
You can select schema types within your Oracle Data Service Integrator dataspace
projects using the Schema Type Browser when specifying the signature for an
operation or when associating an XML type with a data service.

3.3.5.3.1 Editing a Signature You can select a schema type directly from an input field in
cases, for instance, when you are adding an operation or editing an operation
signature and need to associate a type directly with a parameter. When selecting a
schema type in this manner, the schema scope is restricted to the specific project and
the matches return only element types.

To select a schema type when editing a signature or adding an operation:

1. Click the browse button that appears in a schema type field.

For example, you could click the browse button in the Type field when adding a
new data service operation.
Creating and Updating Physical Data Services 3-81

How to
Figure 3–55 Add Operation Dialog

The Add Operation dialog enables you to add a new data service operation. There are
two choices from pull-down menus: Visibility (public is selected) and Kind (read is
selected. There is a field for you to specify the name of the operation. In the Parameters
section, there are four columns: Name, Type, Kind, and Occurrence. There is a browse
button in the Type column. Four buttons appear on the right side of the Parameters
matrix: Add, Clear, Up, and Down. There are two Options: Primary (selected) and
Empty function body.

The Select Schema Type dialog appears.

Figure 3–56 Select Schema Type Dialog
3-82 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to
On the Select Schema Type dialog, there are fields that let you specify the Namespace
and Name of the schema you want to find. You can use a question mark (?) to search
for any character and an asterisk (*) to search for any string. For Global type, there are
three choices: Elements (selected), Simple types (selected), and Built-in types
(selected). For Scope, there are two choices: All projects and Project (which displays
the name of the project). A Change button lets you change the name of the project. The
Matching Types section displays the types matched by your search.

2. Type a search string for the namespace and the name, as appropriate, in the
respective fields.

You can use the wildcard character "?" to represent any character and "*" to
represent any string.

3. Select the global types, including elements, simple types, and built-in types, to
include in the search.

4. Select the scope of the search.

By default, the scope of the search is the current dataspace project. You can choose
a specific folder by clicking the Change button. The schema types matching the
search criteria appear in the Matching types list, along with the namespace and
associated icon. The number of matches appears below the list. The results are
updated as you specify new search criteria.

5. Select a type in the list to display the location of the schema file in which the type
is declared.

Click Show Details to enable this additional information to be displayed about the
selected type.

6. Double-click a type (or select the type and click OK) to populate the field with the
selected type.

3.3.5.3.2 Associating a Type with a Data Service You can associate an XML type with a
data service using the Select Schema Type dialog.

To associate an XML type:

1. Open a data service using the Project Explorer.

2. Right-click in the data service and choose Associate XML Type from the
context-sensitive menu.

The Select Schema Type dialog appears.

3. Select the scope of the search.

By default, the scope of the search is the project selected when you opened the
Schema Type Browser. You can choose a specific folder by clicking the Change
button. The schema types matching the search criteria appear in the Matching
types list, along with the namespace and associated icon. The number of matches
appears below the list. The results are updated as you specify new search criteria.

4. Select a type in the list to display the location of the schema file in which the type
is declared.

Click Show Details to enable this additional information to be displayed about the
selected type.

5. Double-click a type (or select the type and click OK) to associate the XML type
with the data service.
Creating and Updating Physical Data Services 3-83

How to
3.3.6 Physical Data Service from a Java Function - Example Code
This topic provides examples showing the use of imported Java functions in an
XQuery and the processing of complex types.

■ Using a Function Returning an Array of Java Primitives

■ Processing complex types represented via XMLBeans

3.3.6.1 Using a Function Returning an Array of Java Primitives
As an example, the Java function getRunningTotal can be defined as follows:

public static float[] getRunningTotal(float[] list) {
 if (null == list || 1 >= list.length)
 return list;
 for (int i = 1; i < list.length; i++) {
 list[i] = list[i-1] + list[i];
 }
 return list;
}

The corresponding XQuery for executing the above function is as follows:

Declare namespace f1="ld:javaFunc/float"
Let $y := (2.0, 4.0, 6.0, 8.0, 10.0)
Let $x := f1:getRunningTotal($y)
Return $x

The results of the query is as follows:

2.0, 6.0, 12.0, 20.0, 30.0

3.3.6.2 Processing complex types represented via XMLBeans
Consider a schema called Customer (customer.xsd), as shown in the following:

<?xml version="1.0" encoding="UTF-8" ?>
 <xs:schema targetNamespace="ld:xml/cust:/BEA_BB10000"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FIRST_NAME" type="xs:string" minOccurs="1"/>
 <xs:element name="LAST_NAME" type="xs:string" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

You could compile the schema using XMLBeans to generate a Java class corresponding
to the types in the schema.

xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER

For more information, see http://xmlbeans.apache.org.

Following this, you can use the CUSTOMER element as shown in the following:

public static xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER[]
 getCustomerListGivenCustomerList(xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER[]
 ipListOfCust) throws XmlException {
 xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER [] mylocalver = pListOfCust;
3-84 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: XMLBeans Example Using a Metadata-rich Java Class
 return mylocalver;
}

The resulting metadata information produced by the New Physical Data Service
wizard will be:

(::pragma function <f:function xmlns:f="urn:annotations.ld.oracle.com"
 kind="datasource" access="public">
 xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER [] mylocalver = pListOfCust;
 return mylocalver;
}

The corresponding XQuery for executing the above function is:

declare namespace f1 = "ld:javaFunc/CUSTOMER";
let $z := (
validate(<n:CUSTOMER xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2
</FIRST_NAME><LAST_NAME>Smith2</LAST_NAME>
</n:CUSTOMER>),

validate(<n:CUSTOMER xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2
</FIRST_NAME><LAST_NAME>Smith2</LAST_NAME>
</n:CUSTOMER>),

validate(<n:CUSTOMER xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2
</FIRST_NAME><LAST_NAME>Smith2</LAST_NAME>
</n:CUSTOMER>),

validate(<n:CUSTOMER xmlns:n="ld:xml/cust:/BEA_BB10000"><FIRST_NAME>John2
</FIRST_NAME><LAST_NAME>Smith2</LAST_NAME>
</n:CUSTOMER>))

for $zz in $z
return

3.4 Example: XMLBeans Example Using a Metadata-rich Java Class
This topic shows an example of an XMLBeans-based Java function that can be
imported into a dataspace project. Importing the Java function into a physical data
service results in data service functions corresponding to the source Java functions.

The topic provides the following source listings for the example:

■ Section 3.4.1, "Java Source"

■ Section 3.4.2, "Schema Definition"

■ Section 3.4.3, "Data Service Function"

3.4.1 Java Source
The Java code in the following listing calculates the price of all the items in ORDER_
LINE_ITEM to determine the total order amount.

Example 3–3 Java Source Listing

package performUpdates;

import java.math.BigDecimal;
import java.util.List;
Creating and Updating Physical Data Services 3-85

Example: XMLBeans Example Using a Metadata-rich Java Class
import java.util.Iterator;

import org.openuri.temp.sampleapp.customerorder.ELEC_ORDER;
import org.openuri.temp.sampleapp.customerorder.ELEC_ORDER;
import org.openuri.temp.sampleapp.customerorder.ELEC_ORDER.ITEMS.ORDER_LINE_ITEM;

public class ELECOrderUpdate {

 // Change the TotalOrderAmount based on the updated LINE ITEMS.
 // Input and return are the Data objects

 public static ELEC_ORDER[] updateOrders(ELEC_ORDER[] custOrders) {
 System.out.println("\n\n>>> ELECOrderUpdate updateTotalAmount started.");

 if (custOrders == null)
 return custOrders;

 int size = custOrders.length;
 for (int i=0; i<size; i++) {
 ELEC_ORDER order = (ELEC_ORDER)custOrders[i];
 BigDecimal subTotal = new BigDecimal(0);
 BigDecimal totalOrderAmount = new BigDecimal(0);
 BigDecimal saleTax = new BigDecimal(0);

 ITEMS items = order.getITEMS();
 List itemlist = items.getORDER_LINE_ITEM();
 Iterator item = itemlist.iterator();

 String maxID = "0";

 // Calculate the subTotal and totalOrderAmount
 while (item.hasNext()) {
 ORDER_LINE_ITEM lineitem = (ORDER_LINE_ITEM)item.next();
 BigDecimal quantity = new BigDecimal(Integer.toString(lineitem.getQUANTITY()));
 subTotal = subTotal.add(quantity.multiply(lineitem.getPRICE()));

 lineitem.setLINE_ID(maxID);
 maxID = Integer.toString(new Integer(maxID).intValue() + 1);
 }

 System.out.println(">>> ELECOrderUpdate updateTotalAmount completed.\n\n");
 return custOrders;
 }
}

3.4.2 Schema Definition
The schema used to create XMLBeans is shown below. It simply models the structure
of the complex element; it could have been obtained by first introspecting the data
directly.

Example 3–4 Schema Definition for ELEC_ORDER

<_p_r_e_:schema targetNamespace="http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns="http://temp.openuri.org/SampleApp/CustomerOrder.xsd" xmlns:_p_r_e_
="http://www.w3.org/2001/XMLSchema" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:conv="http://www.openuri.org/2002/04/soap/conversation/" xmlns:s0="http://www.openuri.org/"
xmlns:cw="http://www.openuri.org/2002/04/wsdl/conversation/"
3-86 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Example: XMLBeans Example Using a Metadata-rich Java Class
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:s0="http://www.openuri.org/"
xmlns:jms="http://www.openuri.org/2002/04/wsdl/jms/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://www.openuri.org/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s0="http://www.openuri.org/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <s:element name="ELEC_ORDER">
 <s:complexType>
 <s:sequence>
 <s:element name="ORDER_ID" type="xsd:string" minOccurs="1"/>
 <s:element name="CUSTOMER_ID" type="xsd:string" minOccurs="1"/>
 <s:element name="ORDER_DATE" type="xsd:date" minOccurs="1"/>
 <s:element name="SHIPMENT_METHOD" type="xsd:string" minOccurs="1"/>
 <s:element name="HANDLING_CHARGE" type="xsd:decimal" minOccurs="1"/>
 <s:element name="SUBTOTAL" type="xsd:decimal" minOccurs="1"/>
 <s:element name="TOTAL_ORDER_AMOUNT" type="xsd:decimal" minOccurs="1"/>
 <s:element name="SALE_TAX" type="xsd:decimal" minOccurs="1"/>
 <s:element name="SHIP_TO" type="xsd:string" minOccurs="1"/>
 <s:element name="SHIP_TO_NAME" type="xsd:string" minOccurs="1"/>
 <s:element name="BILL_TO" type="xsd:string" minOccurs="1"/>
 <s:element name="ESTIMATED_SHIP_DATE" type="xsd:date" minOccurs="1"/>
 <s:element name="STATUS" type="xsd:string" minOccurs="1"/>
 <s:element name="TRACKING_NUMBER" type="xsd:string" minOccurs="0" nillable="true"/>
 <s:element name="ITEMS">
 <s:complexType>
 <s:sequence>
 <s:element name="LINE_ID" type="xsd:string" minOccurs="1"/>
 <s:element name="ORDER_ID" type="xsd:string" minOccurs="1"/>
 <s:element name="PROD_ID" type="xsd:string" minOccurs="1"/>
 <s:element name="PROD_DESC" type="xsd:string" minOccurs="1"/>
 <s:element name="QUANTITY" type="xsd:int" minOccurs="1"/>
 <s:element name="PRICE" type="xsd:decimal" minOccurs="1"/>
 <s:element name="STATUS" type="xsd:string" minOccurs="1"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:sequence>
 </s:complexType>
 </s:element>
</_p_r_e_:schema>

3.4.3 Data Service Function
The following listing shows the generated data service function based on the imported
Java code.

Example 3–5 Generated Data Service Function

xquery version "1.0" encoding "UTF-8";

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">
<creationDate>2008-04-23T10:40:54</creationDate>
<creationDate>2008-04-23T10:40:54</creationDate>
<javaFunction class="performUpdates.ELECOrderUpdate"/>
</x:xfl>::)
Creating and Updating Physical Data Services 3-87

Reference
declare namespace f1 = "ld:UpdateOrder";

import schema namespace t1 = "http://temp.openuri.org/SampleApp/CustomerOrder.xsd" at
"ld:schemas/CustomerOrders.xsd";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com" visibility="protected"
kind="library" isPrimary="false" nativeName="updateOrders">

<params>
 <param nativeType="[Lorg.openuri.temp.sampleapp.customerorder.ELEC_ORDER;"/>
</params>
</f:function>::)

declare function f1:updateOrders($parameter1 as element(t1:ELEC_ORDER)*) as
schema-element(t1:ELEC_ORDER)* external;

3.5 Reference
The following are reference sections for creating and updating physical data services:

■ Section 3.5.1, "Stored Procedure Configuration Reference"

■ Section 3.5.2, "Simple Java Types and Their XQuery Counterparts"

3.5.1 Stored Procedure Configuration Reference
The following topics provide detailed information regarding various configuration
options associated with creating data services based on stored procedures.

■ Section 3.5.1.1, "In Mode, Out Mode, Inout Mode"

■ Section 3.5.1.2, "Procedure Profile"

■ Section 3.5.1.3, "Supporting Stored Procedures with Nullable Input Parameter(s)"

3.5.1.1 In Mode, Out Mode, Inout Mode
In, Out, and Inout mode settings determine how a parameter passed to a stored
procedure is handled.

3.5.1.2 Procedure Profile
Each element in a stored procedure is associated with a type. If the item is a simple
type, you can simply choose from the pop-up list of types. If the type is complex, you
may need to supply an appropriate schema. Click on the schema location button and
either enter a schema pathname or browse to a schema. The schema must reside in
your application.

After selecting a schema, both the path to the schema file and the URI appear.

Parameter Mode Effect

In Parameter is passed by reference or value.

Inout Parameter is passed by reference.

Out Parameter is passed by reference. However the parameter being passed is first
initialized to a default value. If your stored procedure has an OUT parameter
requiring a complex element, you may need to provide a schema.
3-88 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
3.5.1.2.1 Complex Parameter Types Complex parameter types are supported under only
three conditions:

■ As the output parameter

■ As the Return type

■ As a rowset

3.5.1.2.2 About Rowsets A rowset type is a complex type.

The rowset type contains a sequence of a repeatable elements (for example called
CUSTOMER) with the fields of the rowset.

In some cases the wizard can automatically detect the structure of a rowset and create
an element structure. However, if the structure is unknown, you will need to provide
it.

The name of the rowset type can be:

■ The parameter name (in case of a input/output or output only parameter).

■ An assigned name.

■ The referenced element name (result rowsets) in a user-specified schema.

Not all databases support rowsets. In addition, JDBC does not report information
related to defined rowsets.

3.5.1.2.3 Using Rowset Information In order to create data services from stored
procedures that use rowset information, you need to supply the correct ordinal
(matching number) and a schema. If the schema has multiple global elements, select
the one you want from the Type column. Otherwise the type used match the first
global element in your schema file.

The order of rowset information is significant; it must match the order in your data
source. Use the Move Up / Move Down commands to adjust the ordinal number
assigned to the rowset.

3.5.1.2.4 Stored Procedure Version Support Only the most recent version of a particular
stored procedure can be imported into Oracle Data Service Integrator. For this reason
you cannot identify a stored procedure version number when creating a physical data
service based on a stored procedure. Similarly, adding a version number for your
stored procedure in the Source editor will result in a query exception.

3.5.1.3 Supporting Stored Procedures with Nullable Input Parameter(s)
If you know that an input parameter of a stored procedure is nullable (can accept null
values), you can change the signature of the function in Source View to make such
parameters optional by adding a question mark at end of the parameter.

For example (question-mark (?)):

Note: All rowset-type definitions must conform to this structure.

Note: XML types in data services generated from stored procedures
do not display native types. However, you can view the native type in
the Source editor; it is located in the pragma section.
Creating and Updating Physical Data Services 3-89

Reference
function myProc($arg1 as xs:string) ...

would become:

function myProc($arg1 as xs:string?) ...

3.5.2 Simple Java Types and Their XQuery Counterparts
The following outlines the mapping between simple Java types and the corresponding
XQuery or schema types:

Java functions can consume parameters and return values of the following types:

■ Java primitives and types listed in the previous table

■ Apache XMLBeans

■ Oracle XMLBeans

■ SDO DataObject (typed or untyped)

Java Simple or Defined Type XQuery/Schema Type

boolean xs:boolean

byte xs:byte

char xs:char

double xs:double

float xs:float

int xs:int

long xs:long

short xs:short

string xd:string

java.lang.Date xs:datetime

java.lang.Boolean xs:boolean

java.math.BigInteger xs:integer

java.math.BigDecimal xs:decimal

java.lang.Byte xs.byte

java.lang.Char xs:char

java.lang.Double xs:double

java.lang.Float xs:float

java.lang.Integer xs:integer

java.lang.Long xs:long

java.lang.Short xs:short

java.sql.Date xs:date

java.sql.Time xs:time

java.sql.Timestamp xs:datetime

java.util.Calendar xs:datetime
3-90 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Related Topics
3.6 Related Topics
The following section describes how to add an external function to an existing physical
data service.

3.6.1 How To Add an External Function to an Existing Physical Data Service
You can add qualified external operations (functions and procedures) from the same
data source to existing physical data services based on:

■ Relational

■ Web service

■ Java functions

This is a very convenient way of enhancing a data service based on changes in
underlying data or other business needs.

The steps involved in adding an external function to a qualified data service are:

1. Open the data service in Project Explorer.

2. Select Overview mode.

3. Right click > Add External Function...

4. A wizard appropriate to the data service type will appear. Complete the steps as
you would when creating a data service. For example, select from the set of
currently unselected operations in the WSDL that underlies a web service-based
data service.

Figure 3–57 Adding an External Function to a Data Service

Note: The elements or types referred to in the schema should be
global elements.
Creating and Updating Physical Data Services 3-91

Related Topics
The CUSTOMER_ORDER_LINE_ITEM.ds Data Service panel is shown in the Project
Explorer. The right-click menu is displayed and Add External Function is selected.

External operations cannot be added to physical data services based on:

■ XML data

■ Delimited data

3.6.1.1 Additional Constraints
■ Table-based functions cannot be added to data services.

■ Only library operations can be added to library data services.

■ Read or primary create-update-delete functions can be added to entity data
services as long as the entity data services constraints are not violated.

Table 3–12 Qualified Operation and Physical Data Service Type Matrix

Artifact
Physical Data
Service Type Comment

Operation Web Service Only visible operations will be from the WSDL that underlies the
physical data service.

Function Java Only functions from the Java class defined by the underlying data
service will be visible.

Stored Procedure Relational Only stored procedures from the same data source defined by the
underlying data service will be visible.

SQL Statement Relational Query must be to the same database as that underlying the data service.
3-92 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

4

4Designing Logical Data Services

Logical dataservices let you create a new loosely coupled architecture by piecing
together the data assets you already have. This means combining data from relational
data sources, web services, XML files, other files, or Java functions.

This chapter describes the following topics:

■ Concepts

■ How-to

■ Examples

■ Reference

■ Related Topics

4.1 Concepts
This section describes the following topics:

■ Building Logical Entity Data Services

■ Data Service Keys

■ XML Types and Return Types

4.1.1 Building Logical Entity Data Services
This topic introduces you to logical entity data services.

■ The Benefits of Logical Services

■ Design View

■ Query Map View

■ Update Map View

■ Test View

■ See Also

4.1.1.1 The Benefits of Logical Services
The benefit of data services is the ability to combine multiple data sources of different
types into service-oriented architectures. Enterprise data is often stored in relational
databases, non-relational databases, packaged applications (such as SAP, PeopleSoft,
Siebel, and others), custom applications, or files of various types. You might also be
accessing data from web services.
Designing Logical Data Services 4-1

Concepts
The goal is to create a new loosely coupled architecture by piecing together the data
assets you already have. In a practical sense, this means combining data from
relational data sources, web services, XML files, other files, or Java functions. Logical
data services are of two types, entity and library.

Logical entity services allow you to design, model, and create a data view from many
underlying data sources. Logical library services are simply a collection of related
functions and procedures within a data service container. This topic introduces logical
entity services.

On a tangible level, a logical entity service is an XQuery source file with functions and
procedures that act on data. A logical entity service has:

■ Exactly one XML schema that represents the data the service returns (its return
type).

■ Any number of create, update, or delete procedures, where up to one of each type
is primary.

■ Any number of library functions and procedures.

■ Any number of relationships with other entity services.

In addition, a logical entity service must have a primary read function if you want the
service to have an update map.

4.1.1.2 Design View
Logical data services have their foundation in XML web services. The backbone of a
logical data service is its return type, which is a combination of data you design
expressed as an XML schema.

You can see the return type in the Overview tab in Eclipse for WebLogic.

Figure 4–1 Design View of a Logical Data Service

On the Overview tab in the Eclipse for WebLogic, the logical service's return type is
shown in the center. You can right-click it to see the XML schema source. On the left,
you see the definitions for the service. On the right, you see other data services that
underlie the logical data service.

4-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
The underlying data services can be physical or logical.

The beauty of a logical data service is that a return type is a model. Logical models
capture the complexity of data integration once, and allow you to write clients that
remain the same even when underlying physical data sources change.

The structure of a return type does not need to match the structure of the underlying
data sources. Here, the CUSTOMER element has a 1-to-many relationship with its child
element ADDRESS, and a 1-to-1 relationship with its other child element, CREDITRATING.
Each complex element represents a separate physical data source.

Example 4–1 The Return Type Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/CustomerProfile"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMER_PROFILE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="FIRST_NAME" type="xs:string"/>
 <xs:element name="LAST_NAME" type="xs:string"/>
 <xs:element name="EMAIL_ADDRESS" type="xs:string"/>
 <xs:element name="ADDRESS" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ADDR_ID" type="xs:string"/>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="STREET_ADDRESS1" type="xs:string"/>
 <xs:element name="STREET_ADDRESS2" type="xs:string" minOccurs="0"/>
 <xs:element name="CITY" type="xs:string"/>
 <xs:element name="STATE" type="xs:string"/>
 <xs:element name="ZIPCODE" type="xs:string"/>
 <xs:element name="COUNTRY" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CREDITRATING" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="RATING" type="xs:int" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

However, this structure is only by design. You could also have designed the return
type with fewer elements, or in a flat structure, depending on how you want the
service to return data.
Designing Logical Data Services 4-3

Concepts
4.1.1.2.1 The Primary Read Function The functions and procedures in a logical entity
service are implemented in XQuery, which queries XML data much as SQL queries
relational data. You can get information about any function or procedure by
right-clicking it in the Overview tab.

A read function, for example, often takes no parameters and returns an instance of the
return type.

Figure 4–2 Viewing the Signature of a Read Function

The Edit Function Signature dialog lets you view and edit the signature of a selected
function. There are three fields at the top of the dialog: View (drop-down menu), Kind
(drop-down menu), and Name (in this case, read). The Return Type is displayed. An
Edit button lets you edit the return type. A Clear button lets you clear your edits.
There is a Parameters matrix with two columns: Name and Type. There are five
buttons: Add, Edit, Remove, Up, and Down. The Primary and Update references
options are selected. Function signature not changed is displayed.

In a logical entity service, you can designate one read function as primary. A primary
read function captures the main data integration logic in the service. Oracle Data
Service Integrator generates the create, update, and delete procedures and the update
map from the primary read function.

You can see the source code of the primary read function in the Source tab.

Example 4–2 Checking the Primary Read Function Source

declare function tns:read() as element(tns:CUSTOMER_PROFILE)*{
for $CUSTOMER in cus1:CUSTOMER()
return
 <tns:CUSTOMER_PROFILE>
 <CUSTOMER>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
4-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
 <EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
 {
 for $ADDRESS in add:ADDRESS()
 where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID
 return
 <ADDRESS>
 <ADDR_ID>{fn:data($ADDRESS/ADDR_ID)}</ADDR_ID>
 <CUSTOMER_ID>{fn:data($ADDRESS/CUSTOMER_ID)}</CUSTOMER_ID>
 <STREET_ADDRESS1>{fn:data($ADDRESS/STREET_ADDRESS1)}</STREET_ADDRESS1>
 <STREET_ADDRESS2?>{fn:data($ADDRESS/STREET_ADDRESS2)}</STREET_ADDRESS2>
 <CITY>{fn:data($ADDRESS/CITY)}</CITY>
 <STATE>{fn:data($ADDRESS/STATE)}</STATE>
 <ZIPCODE>{fn:data($ADDRESS/ZIPCODE)}</ZIPCODE>
 <COUNTRY>{fn:data($ADDRESS/COUNTRY)}</COUNTRY>
 </ADDRESS>
 }
 {
 for $CREDITRATING in cre:CREDITRATING()
 where $CUSTOMER/CUSTOMER_ID eq $CREDITRATING/CUSTOMER_ID
 return
 <CREDITRATING>
 <CUSTOMER_ID>{fn:data($CREDITRATING/CUSTOMER_ID)}</CUSTOMER_ID>
 <RATING?>{fn:data($CREDITRATING/RATING)}</RATING>
 </CREDITRATING>
 }
 </CUSTOMER>
 </tns:CUSTOMER_PROFILE>
};

This read function returns a CUSTOMER_PROFILE element with a nested
CUSTOMER element. Each CUSTOMER element has some number of ADDRESS
elements and some number of CREDITRATING elements, where the CUSTOMER_ID
in ADDRESS or CREDITRATING matches the CUSTOMER_ID in CUSTOMER.
(The XQuery where clauses create table joins; see "Add a Where Clause to a Query" on
page 6-16).

4.1.1.2.2 Create, Update, and Delete Procedures A logical entity service also typically has
create, update, and delete procedures that act on underlying data sources. (The
difference between a function and a procedure is that a procedure can have side
effects, while a function cannot; see "Data Service Types and Functions" on page 1-52).

Figure 4–3 Viewing Functions and Procedures

The Customer Profile service has one create procedure, one update procedure, and two
delete procedures. It also has a library procedure named stringToShort, which casts
two data types.

Designing Logical Data Services 4-5

Concepts
4.1.1.3 Query Map View
The Query Map view maps elements in data sources to the return type.

Figure 4–4 Mapping Data Sources to the Return Type

The Query Map view maps elements in the data sources to the return type. Data
sources are on the left and the return type is on the right. The blue lines map elements
from the data sources to elements in the return.

The green dashed lines between the data source blocks create joins, which become
where clauses in the XQuery source, for example:

for $ADDRESS in add:ADDRESS()
where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID
return

If you click a data element (not a container element) in the return type, you see its
XQuery expression in the expression editor.

Figure 4–5 Mapping Data in an XQuery Expression

In the Expression editor, an XQuery expression is shown.

Notice that the mapping expressions use the built-in XQuery function fn:data, which
extracts the data value from an XML element.

As you map elements visually in the Query Map, Oracle Data Service Integrator
creates XQuery source (for example, the read function shown above). The XQuery
source is later converted to SQL queries, which you can see in Plan view.
4-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
Figure 4–6 Viewing a SQL Query in Plan View

In the query plan, the left outer join between the CUSTOMER and ADDRESS
relational tables is shown. This was created by the green dashed line drawn between
the Customer and Address blocks in Query Map view.

When you build XQuery functions and procedures visually in Query Map view or by
editing in Source view, you can test and run them on an Oracle Data Service Integrator
server. During server runtime, the functions and procedures are compiled into an
executable query plan. Examine the query plan before you finalize the queries. Query
Plan view gives you a peek into a query's execution logic and flags potential
performance and memory problems. Building XQuery functions is an iterative process
of test, view plan, and edit.

4.1.1.4 Update Map View
While Query Map view shows how a service reads from data sources, Update Map
view shows how the service writes data to them.
Designing Logical Data Services 4-7

Concepts
Figure 4–7 Checking Update Map View

In the map view, the data sources are on the left, with updates coming from the return
type on the right.

The return type is available to client applications, where users update data.

The blocks on the left are update blocks. Each mapped element in an update block has
an XQuery expression that defines how the element is updated. You can see the
expression in the expression editor below the mapping area.

Figure 4–8 Viewing an XQuery Expression

The Element Update Configuration dialog shows an update expression.

Oracle Data Service Integrator generates the update map for you when you create a
logical data service under these conditions:

■ Your service has a primary read function

■ Your service has a primary read function

(If you are using other data source types, you must edit the update template.)
4-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
You can then customize the update map and test it in Test view, without
programming.

An application client uses the Service Data Objects programming model to update
data sources. SDO is an application framework that allows you to update data sources
while disconnected from them, using a flexible, optimistic concurrency model. You use
only one API, the SDO API, to update multiple data sources -- relational, web service,
XML files, and so on.

4.1.1.5 Test View
The Test view available in Eclipse for WebLogic works like a built-in client where you
can easily test any function or procedure in the data service, before you build a custom
client.

Figure 4–9 Selecting an Operation

The Test view lets you select an operation to test. Select operation is a drop-down
menu that displays the operation, in this case, read(). Under Parameter, No Parameters
is displayed. Under Settings, there is a Run button.

Testing a read function, for example, returns data as the service would to a client, in
the shape of the return type.

Figure 4–10 Reading Customer Profile Data

Customer profile data is shown. For the CUSTOMER element, values are shown for
CUSTOMER_ID, FIRST_NAME, LAST_NAME and EMAIL_ADDRESS.

To test a simple update, click the Edit button, edit some data in the result, then click
Submit. When you test the read function again, the results show the change.
Designing Logical Data Services 4-9

Concepts
You can also test an SDO update by submitting a datagraph with a change summary
(see Test an Update Procedure).

4.1.1.6 See Also
For more information, see the following sources:

Concepts:

■ Understanding Update Maps

How tos:

■ Create a Return Type

■ Example: How to Create Your First Data Services

■ Add a Where Clause to a Query

Reference:

■ XQuery Source of a Logical Entity Service

Other Source:

■ Introduction to Service Data Objects (ibm.com)

4.1.2 Data Service Keys
This topic describes what data service keys are and how they are used.

■ Overview

■ Parts of a Key

■ Composite Keys

■ See Also

4.1.2.1 Overview
You are probably familiar with the concept of keys from relational databases, where a
key is a set of one or more columns whose combined values are unique among all
occurrences in a table.

When you create a physical data service, Oracle Data Service Integrator computes keys
by introspecting the physical data sources. A physical data service key can have one or
more fields, which are elements taken from the service's return type. Tangibly, a key is
defined as an XML schema in an XSD file.

You can see the physical data service keys in your dataspace project in Eclipse for
WebLogic. They appear in schema files with names such as:

datasource_KEY.xsd
4-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
Figure 4–11 Physical Data Service Keys in Eclipse for WebLogic

In the Eclipse for WebLogic, six keys are shown in the schemas folder. The key
extension is .xsd.

In the generated XSD file, a key for a physical data service looks something like this.

Example 4–3 Key for the CUSTOMER Table

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:physical/CUSTOMER"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMER_KEY">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

In this case, CUSTOMER_ID is the primary key in a relational table named CUSTOMER.

In a logical data service, a key also uniquely defines a data record. However, the data
in the record can originate from multiple data sources of different types and can have a
structure unlike the underlying physical data sources.

For a logical entity service, you must create the key. You can choose one of these
options:

■ Have Oracle Data Service Integrator generate the key based on the service's
primary read function. Oracle Data Service Integrator generates a minimal key.

■ Select the fields that make up the key. The elements that comprise the key must
have a cardinality of 0 or 1 in the service's return type (with maxOccurs="1" or
maxOccurs="0", but not maxOccurs="unbounded").

4.1.2.2 Parts of a Key
Suppose a logical service has a nested return type where a parent element with single
cardinality can have multiple child elements, say one CUSTOMER element with many
CUSTOMER_ORDER child elements.

Example 4–4 A Nested Return Type with a One-to-Many Relationship

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/CustomersAndOrders"
Designing Logical Data Services 4-11

Concepts
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CustomersAndOrders">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="FIRST_NAME" type="xs:string"/>
 <xs:element name="LAST_NAME" type="xs:string"/>
 <xs:element name="SSN" type="xs:string" minOccurs="0"/>
 <xs:element name="CUSTOMER_ORDER" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ORDER_ID" type="xs:string"/>
 <xs:element name="C_ID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This is the key that Oracle Data Service Integrator auto-generates from this return
type, from the unique CUSTOMER_ID field:

Example 4–5 An Auto-Generated Simple Key

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/CustomerOrder" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CustomersAndOrders_KEY">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

If you choose to select the key fields, you need to use a unique field or fields with
single cardinality. You can choose CUSTOMER_ID or SSN, or both. You cannot define the
key on ORDER_ID or C_ID, because they belong to the CUSTOMER_ORDER element, which
has multiple cardinality.

If you choose SSN, the key schema file looks like this.

Example 4–6 A Manually Selected Key

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/CustomerOrder" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CustomersAndOrders_KEY">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SSN" maxOccurs="1" minOccurs="0" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
4-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
 </xs:element>
</xs:schema>

A data service key has distinct parts:

■ A selector. A key selector identifies a collection of data records. A key's selector is
the element that contains the key field in the service's return type. You can see a
key's selector in the Manage Key dialog when you create the key (below, it's the
CUSTOMER element):

Figure 4–12 Associate Schema for the Key

The Manage Keys dialog enables you to choose the generate option to create a new
schema for the key, or select an existing schema type which represents the key. There
are two options: Generate a new schema and Select an existing schema. Under the
Generate a new schema option, browse to select a directory and provide a file name.
The Global Element is already selected. Under the Select an existing schema type
option, browse to select the schema type. There is a pulldown menu that lets you select
the global element. The Selector is already selected.

You can see that the CUSTOMER element is the root element of the return type:
Designing Logical Data Services 4-13

Concepts
Figure 4–13 Return Type

A return type tree is shown.

■ The key fields. The fields that make up the key uniquely identify an element in the
collection. For example, one customer identified by a CUSTOMER_ID value. Within
Oracle Data Service Integrator, a key field is stored as a path which must not
contain any repeating elements. Therefore, you cannot use elements with multiple
cardinality in keys.

4.1.2.3 Composite Keys
With a logical service, a key can also be a composite key of multiple elements, as long
as the elements have single cardinality in the return type. This is especially easy with a
flat return type.

Example 4–7 A Flat, Non-Nested Return Type

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/MyFlatOne" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMERORDER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="FIRST_NAME" type="xs:string"/>
 <xs:element name="LAST_NAME" type="xs:string"/>
 <xs:element name="EMAIL_ADDRESS" type="xs:string"/>
 <xs:element name="ORDER_ID" type="xs:string"/>
 <xs:element name="ORDER_DT" type="xs:date"/>
 <xs:element name="TOTAL_ORDER_AMT" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Oracle Data Service Integrator auto-generates a composite key using the key fields
from the underlying physical data sources (in this example, CUSTOMER_ID and ORDER_
ID). The composite key generated from this return type is shown below.

Example 4–8 An Auto-Generated Composite Key

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/MyFlatOne" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MyFlatOne_KEY">
 <xs:complexType>
4-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Concepts
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="ORDER_ID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This key allows you to identify a unique combination of Customer and Order, that is,
one order for one customer.

4.1.2.4 See Also
For more information, refer to the following sources:

4.1.2.4.1 How Tos

■ Create Logical Data Service Keys

4.1.3 XML Types and Return Types
In entity data services there are two types of types:

■ Return types

■ XML types

XML types and return types are very closely related. In data service operations
involving entity data services, XML types define the shape of the data service.

Physically XML Types are represented a global elements in XML schemas (XSD files.)
In other words, the XML types represents in hierarchical form the shape of the data
service.

A way to think of these two artifacts is to first consider the class and the instance of the
class in such languages as Java.

XML types can be thought of as a class from which objects in the form of functions are
created. In many cases the information needed by these functions is either:

■ A subset of the overall XML types -- for example, a function that returns last name
and address but not first name or social security number.

■ In need of further specification -- for example, adjusting a query to list all orders
inside each customer rather than to repeat customer information each time.

4.1.3.1 Where XML Types are Used
Oracle Data Service Integrator uses XML types in its model diagrams, entity data
services, query editor, update mapper, and metadata browser.

4.1.3.2 Where Return Types are Used
Return types are sometimes called target schemas.

Return types can be thought of as the backbone of both data services and data models.
Programmatically, return types are the "r" in FLWR (for-let-where-return) queries.

Note: Return and XML types can be see in action in the following
example:

Creating Your First Data Services
Designing Logical Data Services 4-15

How-to
Return types have the following main purposes:

■ Provide a template for the mapping of data from a variety of data sources and, in
the case of updates, back to those data sources.

■ Help determine the arrangement of the XML document generated by the XQuery.

Return types describes the structure or shape of data that a query produces when it is
run.

4.2 How-to
This section describes the following topics:

■ How To Add a Read Function

■ How To Add a Library Function or Procedure

■ How To Create Logical Data Service Keys

■ How To Declare a Security Resource in Eclipse for WebLogic

4.2.1 How To Add a Read Function
This topic describes how to add a read function to a logical entity service.

■ Overview

■ Create the Function in Eclipse for WebLogic

■ See Also

4.2.1.1 Overview
A read function in a logical entity service retrieves data from underlying data sources,
either physical or logical, and returns XML elements in the shape of the service's
return type. You can build a logical service without a read function. However, the
service must have at least one read function, marked primary, to have an update map.
Only one read function in a service can be primary.

A read function is associated with exactly one XML schema, which is the service's
return type. The read function must return the return type, but cannot take any other
actions or have any side effects.

When you create a primary read function visually in Eclipse for WebLogic, Oracle
Data Service Integrator generates a pragma annotation and XQuery source. The
pragma looks something like this:

(::pragma function <f:function kind="read" visibility="public" isPrimary="true"
 xmlns:f="urn:annotations.ld.bea.com"/>::)

Note: In order to maintain the integrity of Oracle Data Service
Integrator queries used by your application, it is important that the
query return type match the XML type in the containing data service.
Thus if you make changes in the return type, you should use the
XQuery Editor's Save and associate schema command to make the
data service's XML type consistent with query-level changes.
Alternatively, create a new data service based on your return type. For
details see Creating a Simple Data Service Function.
4-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
The initial XQuery source, before you map data types in Query Map view, shows that
the read function returns an instance of the service's return type:

declare function tns:read() as element(tns:CustomerAndAddress)*{
 <tns:CustomerAndAddress>
 <CUSTOMER>
 <CUSTOMER_ID></CUSTOMER_ID>
 <FIRST_NAME></FIRST_NAME>
 <LAST_NAME></LAST_NAME>
 <SSN?></SSN>
 {
 <ADDRESS>
 <ADDR_ID></ADDR_ID>
 <FIRST_NAME></FIRST_NAME>
 <ZIPCODE></ZIPCODE>
 <COUNTRY></COUNTRY>
 </ADDRESS>
 }
 </CUSTOMER>
 </tns:CustomerAndAddress>
};

At this point, the return type has no values. The values are added after you map data
sources to the return type in Query Map view:

declare function tns:read() as element(tns:CustomerAndAddress)*{
for $CUSTOMER in cus1:CUSTOMER()
return
 <tns:CustomerAndAddress>
 <CUSTOMER>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
 {
 for $ADDRESS in add:ADDRESS()
 return
 <ADDRESS>
 <ADDR_ID>{fn:data($ADDRESS/ADDR_ID)}</ADDR_ID>
 <CUSTOMER_ID>{fn:data($ADDRESS/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($ADDRESS/FIRST_NAME)}</FIRST_NAME>
 <ZIPCODE>{fn:data($ADDRESS/ZIPCODE)}</ZIPCODE>
 <COUNTRY>{fn:data($ADDRESS/COUNTRY)}</COUNTRY>
 </ADDRESS>
 }
 </CUSTOMER>
 </tns:CustomerAndAddress>
};

4.2.1.2 Create the Function in Eclipse for WebLogic
Follow these steps to create the function:

1. Create a logical entity service. See Section 1.3, "Example: How to Create Your First
Data Services"

2. In the Overview tab, right-click at the left, right, or top, and choose Add
Operation.

3. At Visibility, choose an access level.
Designing Logical Data Services 4-17

How-to
Public means the procedure can be called from the same dataspace and from client
APIs; protected, only from the same dataspace; private, only from the same data
service.

4. At Kind, choose read.

5. Enter a name for the function.

6. At Return Type, click Edit.

7. Click Complex Type, and choose a schema file.

8. At Kind, choose element.

9. At Occurrence, choose Zero or More.

10. Select Primary, and click OK.

4.2.1.3 See Also
How Tos

■ "Create a Return Type" on page 6-1

■ Test a Read Function and Simple Update

Concepts

■ "Data Service Types and Functions" on page 1-52

4.2.2 How To Add a Library Function or Procedure
This topic describes how to add a library function or procedure to a data service.

■ Overview

■ Add the Function or Procedure

■ Test in Eclipse for WebLogic

4.2.2.1 Overview
Library functions and procedures are utility operations that you can add to any
service, physical, logical, or library. Library functions and procedures:

■ Have a kind of library

■ Are not marked as primary or non-primary

■ Have a visibility of public, protected or private

4.2.2.2 Add the Function or Procedure
The example in this section is a library function that casts a value from xs:integer to
xs:string.

1. Open the service and click the Overview tab.

2. Right-click at the left, right, or top, and choose Add Operation.

3. Select a value at Visibility (public = call from anywhere; protected = from the
same dataspace; private = from the same data service).

4. At Kind, choose libraryFunction or libraryProcedure.
4-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
Figure 4–14 Add Operation - Library Function

On the Add Operation dialog, there are three fields at the top: Visibility, Kind, and
Name. Select visibility with the drop-down menu. Select Library Function in the Kind
with the drop-down menu. Specify the name. The Return Type is pre-selected. An Edit
button enables you to edit the return type. A Clear button lets you clear your edits.
There is a Parameters table with two columns: Name and Type. There are five buttons:
Add, Edit, Remove, Up, and Down. There are two options: Primary and Empty
Function Body. Primary is selected.

5. Give your function or procedure a name.

6. At Return Type, click Edit and choose a simple or complex return type. Click OK.

7. At Parameters, click Edit. Enter a parameter name, and choose a simple or
complex return type. Click OK.

8. Click Empty Function Body, then OK.

9. Click the Source tab.

 Oracle Data Service Integrator has generated a pragma statement and an empty
function or procedure body, like this:

(::pragma function <f:function kind="library" visibility="public"
isPrimary="false" xmlns:f="urn:annotations.ld.bea.com"/>::)

declare function cus2:integerToString($theInt as xs:positiveInteger) as
xs:string* {
 $var-bea:tbd
};

10. In the function body, delete $var-bea:tbd and add your own XQuery code, for
example:

declare function cus2:integerToString($theInt as xs:positiveInteger) as
xs:string* {
};
Designing Logical Data Services 4-19

How-to
4.2.2.3 Test in Eclipse for WebLogic
You can test the library function or procedure directly in Eclipse for WebLogic, before
you use it from a client application.

1. Open the service, and click the Test tab.

2. At Select Operation, choose the library function or procedure you want to test.

3. Enter a value in the Parameters box.

4. (Optional) Expand Settings and enter new values for results, transactions, and
authentication.

5. Click Run.

If the function or procedure works, you see valid results.

If not, you see an exception message that provides details, so that you can correct
the error.

Figure 4–15 Result Validation in Eclipse for WebLogic

In Eclipse for WebLogic, the CustomerAndAddress data service is open. There is a
Select operation drop-down menu; integerToString(positiveInteger) is selected. In the
Parameters section, 444 is entered and xs:positiveInteger is displayed. In the Settings
section, there is a Run button. In the Result section, the checkbox is checked and green,
and Result is valid is displayed. The number 444 is displayed.

4.2.2.3.1 How Tos

■ How To Add a Read Function

■ Add Update Map Procedures

4.2.2.3.2 Reference

■ Data Service Types and Functions

4.2.3 How To Create Logical Data Service Keys
This topic describes how to create a key for a logical data service.

■ Generate a Key

■ Select Elements for a Key

■ Select a Key Schema File

■ View and Map a Key
4-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
■ See Also

A logical data service key uniquely identifies a data record the logical service defines.
Because a logical service combines data from various physical and logical services, its
key can combine or be different from the keys defined on underlying data sources.

For example, you might have a logical data service with a flat return type that
combines data from two relational tables, CUSTOMER and ORDER. These tables
have keys CUSTOMER_ID and ORDER_ID, respectively. In your logical data service,
each data record is a unique combination of Customer and Order, so you create a
composite key that combines CUSTOMER_ID and ORDER_ID.

Create procedures return a key to identify the data record that was inserted. Update
and Delete procedures act on the data record the key identifies. A logical data service
can have one key, although you can have multiple key schema files from which you
select the key. You can have Oracle Data Service Integrator auto-generate the key,
choose the elements you want in the key, or select an available schema (XSD) file to
use for the key. The key definition requires specific knowledge of your data and the
update map the service uses.

You can create a key for any logical data service that has a primary Read function.
Once you create the key, you can view it in an update map and test it.

4.2.3.1 Generate a Key
To auto-generate the key:

1. Be sure the logical data service has a primary Read function.

2. Open the logical data service in Eclipse for WebLogic, and click the Overview tab.

3. Right-click in the service name bar, or at the left or right of the screen, and choose
Manage Key.

4. Select Generate a New Schema.

5. Accept the default key name, or give your key a name ending in .xsd.

6. Click Next.

7. Select Auto Generate the Key, then click Finish.
Designing Logical Data Services 4-21

How-to
Figure 4–16 Auto-Generating a Logical Data Service Key

The Manage Keys dialog lets you automatically select the fields that specify the Key
for the data service. There are two choices: Auto generate the key using the primary
function - "read()" (selected) and Manually select the fields that make up the key
(deselected). There is a tree that displays the elements you could select manually if you
choose manual selection.

You can now use the key as an argument or return type to an update map procedure,
such as a Create, Update, or Delete procedure.

If you create a key, then delete it and create another one, you need to edit the signature
of your Create procedure to return the new key:

Overview tab > right-click > Edit Signature

4.2.3.2 Select Elements for a Key
When you select elements for a key, you can add any element with single (1..1) or zero
(0..1) cardinality, whether or not it is a key element in the underlying data source. An
element with zero cardinality is optional and might contain null values, but you can
use it as a key element. This allows you to create a wider variety of keys.

For example, you might have two data sources, one using a Social Security Number to
identify records, and the other, a tax identification number. Your logical data service
might have a return type that joins the two sources, so that a data record has either a
social security number or a tax ID number. In the return type, both the social security
number and the tax ID number are optional. The key can use either element to identify
the record.
4-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
To create a key with elements that you select:

1. Be sure the logical data service has a primary Read function.

2. Open the logical data service in Eclipse for WebLogic.

3. Click the Overview tab.

4. Right-click in the service name bar, or the left or right of the screen, and choose
Manage Keys.

5. Click Generate a New Schema.

6. Give your key schema a name ending in .xsd.

7. Click Manually select the fields that make up the key.

8. Select the key fields you want, then click Finish.

Figure 4–17 Selecting Elements for a Key

The Manage Keys dialog lets you select the fields that specify the Key for the data
service. There are two choices: Auto generate the key using the primary function -
"read()" (deselected) and Manually select the fields that make up the key (selected).
There is a tree that displays the elements you can choose.

Note: You cannot select an element that has multiple (0..m or 1..m)
cardinality to be part of a key.
Designing Logical Data Services 4-23

How-to
4.2.3.3 Select a Key Schema File
You can also select an existing schema (XSD) file to use as the key:

1. Be sure the logical data service has a primary Read function.

2. Open the logical data service in Eclipse for WebLogic.

3. Click the Overview tab.

4. Right-click in the service name bar, or the left or right of the screen, and choose
Manage Key.

5. Click Select an existing schema type, then Browse.

The Manage Keys dialog shows you the key schema's global element and selector
element.

6. Click Finish.

The schema in the Overview tab now displays a key icon next to the current key
element or elements.

Figure 4–18 Selecting the Key Schema

The Associate Schema for Key dialog enables you to choose the generate option to
create a new schema for the key, or select an existing schema type which represents the
key. There are two options: Generate a new schema (deselected) and Select an existing
schema (selected). Under the Generate a new schema option, browse to select a
directory and provide a file name. The Global Element is already selected. Under the
Select an existing schema type option, browse to select the schema type. There is a
pulldown menu that lets you select the global element. The Selector is already
selected.
4-24 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to

4.2.3.4 View and Map a Key
Once you create the key (whether by auto-generating, identifying key fields, or
selecting a key schema file), you can see the key elements in the service's update map,
at the lower left.

Figure 4–19 Viewing the Key in the Update Map

In the update map, the CUSTOMER_ID string is shown for CustomerAndAddress_
KEY1.

The Return Key block represents the key elements a Create procedure returns when a
new data record is added. In most cases, the key fields are automatically mapped to
elements in the data sources on the left. If they are not mapped, you can add a
mapping.

1. Locate the Update block on the left that contains the key element.

2. Drag from the key element in the Update block to the key element in the Return
Key block.

Figure 4–20 Mapping a Key Element from an Update Block to the Return Key
Designing Logical Data Services 4-25

How-to
The update map shows how the CUSTOMER_ID return key is mapped in the Update
CUSTOMER block and the Update CREDITRATING block.

Once the key element is mapped, you can test it (preferably using sample data):

1. Click the Test tab.

2. At Select operation, choose one of the service's Create procedures.

3. Enter data in the XML template in the Parameters box.

4. Click Run.

The key value is returned in the Result box:

Figure 4–21 Key Value Return

In the Result box, for key CUSTOMER_ID, value CUSTOMER44 is returned.

You can also view the key schema file by locating the key in the Project Explorer,
right-clicking, and choosing an XML editor to open the file. A key schema looks like
this:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/CustomerOrder" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CustomersAndOrders_KEY">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

In the key schema, all elements must be in the same namespace as the root element. In
the previous example, the namespace of the root element is:

ld:logical/CustomerOrder

A key schema cannot contain elements in different namespaces.

Note: Map the key element from an update block on the left, not
from the return type on the right. If you map the key from the return
type on the right, you allow the key value to be updated from data a
user enters.

Note: If you have key schema files from a previous version of Oracle
Data Service Integrator that you want to reuse, be sure that all
elements within the schema are in the same namespace.
4-26 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
4.2.3.5 See Also
For more information, see the following resource:

■ "Data Service Keys" on page 4-10

4.2.4 How To Declare a Security Resource in Eclipse for WebLogic
This topic describes how to add a security resource to a data service, so that the service
returns data only if the caller has proper access.

■ Choose a Technique

■ Create the Security Resource

■ Use the Security Resource in XQuery

■ Assign Security Resources

■ Test Security

■ See Also

4.2.4.1 Choose a Technique
You can add a security resource to a data service in two ways:

■ The first way is to use the Oracle Data Service Integrator Console to set elements
and attributes that should be secured based on a security policy set by an
administrator. This technique works in most cases for which you want to add a
security policy.

■ The other way, described here, is to create a custom security resource for an entity
or library data service in Eclipse for WebLogic. The custom security resource is
used directly in an XQuery expression to secure all or part of the service's return
type. You can use the same custom security resource more than once in a single
data service.

You can add a security resource to any data service, physical or logical, entity or
library.

4.2.4.2 Create the Security Resource
You add a security resource to a logical entity service in Eclipse for WebLogic and then
activate it using the Oracle Data Service Integrator Console.

To create a security resource:

1. Open the service in Eclipse for WebLogic.

2. Make sure the Properties tab is displayed:

Window > Show View > Properties

3. Click Overview, then Properties.

4. Expand the schema in the center. Locate the element you want to add the security
resource to.

Note: You can follow these steps on a physical or logical entity
service. Be sure the service has a query map and a primary read
function.
Designing Logical Data Services 4-27

How-to
5. In the Properties tab, locate Security Resources.

6. Click the Add New field below it, then click the plus sign.

7. In the Value column, enter the name of the element you want to secure.

Figure 4–22 Creating a Security Resource

Use the Properties tab to add the name of the element you want to secure. There are
two columns: Property and Value. The Security Resource has the value of
CUSTOMER.

Use just an element name (CUSTOMER), not a pathname (CUSTOMER_
PROFILE/CUSTOMER) or a variable ($CUSTOMER). You can use a simple element, a
complex element, or the root element of the return type.

8. If needed, add more security resources and elements.

9. Click the Source tab.

The pragma statement at the top of the XQuery source file shows the new security
resource:

(::pragma xds <x:xds targetType="cus:CustomerOrder"
 xmlns:x="urn:annotations.ld.oracle.com" xmlns:cus="ld:logical/CustomerOrder">
<creationDate>2007-10-22T13:36:48</creationDate>
<userDefinedView/>
<key name="DefaultKey" inferred="true" inferredSchema="true"
type="cus:CustomersAndOrders_KEY">
 <selector xpath="CUSTOMER"/>
</key>
<secureResources>
 <secureResource>CUSTOMER</secureResource>
</secureResources>
</x:xds>::-)

4.2.4.3 Use the Security Resource in XQuery
The next step is to add a condition to the return type so that it is returned only if the
caller has access. To do this, make changes visually in the Query Map. You want to add
a conditional statement to the service's primary read function, something like this:

declare function tns:read() as element(cus:CustomerOrder)*{
for $CUSTOMER in cus1:CUSTOMER()
return
 <cus:CustomerOrder>
 {
 if (add-authentication-expression-here) then
 <CUSTOMER>
 return type here ..
 </CUSTOMER>
 else
4-28 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
 <CUSTOMER>{return nothing here}</CUSTOMER>
 }
 </cus:CustomerOrder>

The following example shows how to create a security resource on an element in the
return type, using the primary read function.

4.2.4.3.1 Create the If Condition

1. Click the Query Map tab.

2. At Select Operation, choose the primary read function.

Figure 4–23 Selecting the Read Operation

On the Query Map tab, you can select the read operation. Selection is shown with an
arrow and a green circle.

3. In the return type, right-click the element for which you created a security resource
in the Properties tab. Choose Make Conditional.

A node named Conditional is added to the return type.

Figure 4–24 Adding a Conditional Return Type

A conditional return type is added. Conditional is under Customer Order, and
CUSTOMER is under Conditional.

4. Click the Conditional node.

You see the default conditional expression, (true), in the expression editor.

Figure 4–25 Expression Editor

The default conditional expression, (true), is shown in the expression editor.

5. Make sure the Design Palette is displayed (Window > Show View > Design
Palette), then click it.

6. Expand:

XQuery Functions > Data Services Access Control Functions
Designing Logical Data Services 4-29

How-to
7. In the mapping area, click the double arrow icon to open the expression editor.

8. Click the expression label in the editor.

9. Double-click (true), then delete it.

10. Drag the function fn-bea:is-access-allowed from the Design Palette to the
editor.

fn-bea:is-access-allowed($label, $data_service)

11. For the $label argument, enter the name of your security resource as a string
within quotes.

Use the same name you used in the Properties tab.

12. For the $data_service argument, enter the namespace-qualified name of your
data service as a string within quotes:

fn-bea:is-access-allowed("CustomerOrder/CUSTOMER",
 "ld:logical/CustomersAndOrders.ds")

13. Click the Source tab, and check the read function. Make sure it has no errors.

Notice that the new expression is added to the if expression in the read function:

declare function tns:read() as element(cus:CustomerOrder)*{
for $CUSTOMER in cus1:CUSTOMER()
return
 <cus:CustomerOrder>
 {
 if (fn-bea:is-access-allowed("CUSTOMER",
 "ld:logical/CustomersAndOrders.ds")) then
 <CUSTOMER>
 ...
 </CUSTOMER>
 else
 <CUSTOMER>
 ...
 </CUSTOMER>
}

14. Click Save.

You now need to define what is returned in the else clause.

4.2.4.3.2 Create the Else Condition

1. Click the Query Map tab.

2. In the return type, click the second conditional element.

Figure 4–26 Return Type

The second conditional element (CUSTOMER) is shown in the return type.

4-30 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How-to
3. In the expression editor, enter "NA", and click Save.

4. Click the Source tab.

The read function now shows the return value for the else clause as the string
"NA".

declare function tns:read() as element(cus:CustomerOrder)*{
for $CUSTOMER in cus1:CUSTOMER()
return
 <cus:CustomerOrder>
 {
 if (fn-bea:is-access-allowed("CUSTOMER",
 "ld:logical/CustomersAndOrders.ds")) then
 <CUSTOMER>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
 ...
 </CUSTOMER>
 else
 <CUSTOMER>{"NA"}</CUSTOMER>
 }
 </cus:CustomerOrder>
}

4.2.4.4 Assign Security Resources
The next step is to use the Oracle Data Service Integrator console to create a security
policy.

For more information, see Securing Oracle Data Service Integrator Platform Resources

All you need to do in the Oracle Data Service Integrator console is create a security
policy. You have already created a custom security resource and added it to an XQuery
function or procedure.

4.2.4.5 Test Security
Once you establish security resources, you should test security in Test view.

To test a security resource:

1. Open the service in Eclipse for WebLogic.

2. Click the Test tab.

3. At Select Operation, choose the function you want to test.

4. Enter any parameters the function requires.

5. Expand Settings and enter the authentication credentials you want to use.

6. Click Run.

Check that the function returns either valid results if the authentication credential
passes the security policy, or the string NA if it is not.
Designing Logical Data Services 4-31

Examples
Figure 4–27 Testing the Read Function in Test View

Test view lets you select and test your operation. In the Test View, in the Select
Operation pull-down menu, select your operation (read). In the Parameter section, No
Parameters is displayed. In the Settings section, Limit Elements in Array Results is set
to number 500, and Element (by path) is set to Customer Order, selected from the
pull-down menu. Start Client Transaction is deselected. Use default authentication is
selected. There is a Run button. Under Result, there is a green check mark and the
words Result is Valid. Below, CustomerOrder appears many times.

4.2.4.6 See Also
■ "How To Add a Read Function" on page 4-16

■ Securing Oracle Data Service Integrator Resources

4.3 Examples
This section describes the following topics:

■ How to Create a Logical Data Service with a Group By Clause

■ How To Create a Data Service with a Flat Return Type

4.3.1 How to Create a Logical Data Service with a Group By Clause
This topic shows how to add a group by clause to a logical data service, using the
Oracle extensions to XQuery.

■ Overview

■ Design the Return Type Schema

■ Create the Logical Data Service
4-32 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Examples
■ Create the Group By Node

■ Create the For Node

■ Add an Aggregate Function

■ Test the Service

■ See Also

4.3.1.1 Overview
In relational data sources, a SQL GROUP BY statement is used with aggregate functions
to group retrieved data by one or more columns. If you want to retrieve a list of
distinct customers and the total amount of all orders each customer has placed from a
relational data source, you might use a SQL statement like this:

SELECT CUSTOMER_ID, SUM(TOTAL_ORDER_AMOUNT) FROM ORDERS
 GROUP BY CUSTOMER_ID

The output produced groups all orders by customer and then totals the order amounts
for each:

Oracle Data Service Integrator logical data services use XQuery 1.0 to query data.
XQuery, as defined by the W3C standard, does not support group by clauses.
However, Oracle Data Service Integrator has extended XQuery to allow a group by
clause in an XQuery FLWOR statement:

declare function tns:read() as element(ord1:ORDER_GROUP_BY)*{
for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
group $CUSTOMER_ORDER as $CUSTOMER_ORDER_group by $CUSTOMER_ORDER/CUSTOMER_ID as $CUSTOMER_ID_group
return ...

You can add the XQuery group by statement to a logical data service visually in
Eclipse for WebLogic. You should first make sure the service has a return type that
supports the group by.

Suppose that after you retrieve all customer orders, group them by customer, and find
the total amount of all orders each customer has placed, you also want a list of order
IDs for each customer. You can design a logical data service to do this, doing part of
the work in the mapping editor (in Eclipse for WebLogic) and part in the XQuery
source.

4.3.1.2 Design the Return Type Schema
The return type schema needs an element to group by, such as a customer ID, and an
element to hold an aggregate value, such as a sum or an average. The return type can
also have a complex element that contains additional elements that provide
information. This example provides the list of order IDs that are totalled for each
customer, as one element with multiple cardinality within a complex element.

CUSTOMER_ID TOTAL_OF_ALL_ORDERS

Customer0 9155.10

Customer1 5336.5

Customer2 11245.05

Customer3 1419.95
Designing Logical Data Services 4-33

Examples
Figure 4–28 Return Type Schema for a Group By

The return type schema for a Group By provides a list of order IDs that are totalled for
each customer, as one element with multiple cardinality within a complex element.
Under ORDER_GROUP_BY, there are three elements: CUSTOMER_ID, TOTAL_FOR_
THIS_CUSTOMER, and ORDERS. Under ORDERS, there is ORDER_ID + xsd:string.

If you want to design the schema top down using an XML editor, you can start with
code like this and refactor it for your use case:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="ld:logical/OrderGroupBy">
 <xs:element name="ORDER_GROUP_BY">
 <xs:complexType>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="TOTAL_FOR_THIS_CUSTOMER" type="xs:decimal"/>
 <xs:element name="ORDERS">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ORDER_ID" type="xs:string" maxOccurs="unbounded"
 form="unqualified" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

You can also create the return type bottom up, as you design the query map (see
Example: How to Create Your First Data Services).

4.3.1.3 Create the Logical Data Service
Once you have defined the return type, create the logical data service and add the
group by statement visually, using the mapping editor.

1. Create a new data space and import physical data sources (see "Example: How to
Create Your First Data Services" on page 1-13).

2. Create a new logical data service.

3. Click Overview, right-click the name bar, choose Associate XML Type, and select
the schema file for the return type.

4. Create a primary Read function.

5. Click Query Map. Drag the primary Read function from the relevant physical data
source.

4.3.1.4 Create the Group By Node
Now create the group by node visually:
4-34 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Examples
1. Right-click the element in the For block that you want to use as a grouping
element, and select Create Group By.

A Group By node is created, and mappings are automatically drawn to it. The
lower section of the Group By block shows the grouping element.

Figure 4–29 Add Group by Node

Mappings are automatically drawn when a Group By node is created. The lower
section of the Group By block shows the grouping element: CUSTOMER_ID.

2. Drag a mapping from the grouping element in the By section of the Group By
node to the grouping element in the return type (here, from GroupBy CUSTOMER_ID
to Return CUSTOMER_ID).

3. Drag a mapping from the appropriate element in the top section of the Group By
node to the aggregate element in the return type (here, from Group By TOTAL_
ORDER_AMOUNT to Return TOTAL_FOR_THIS_CUSTOMER).
Designing Logical Data Services 4-35

Examples
Figure 4–30 Mapping from the Group By Node

In the Group by block, TOTAL_ORDER_AMOUNT is mapped to TOTAL_FOR_THIS_
CUSTOMER, and CUSTOMER_ID is mapped to CUSTOMER_ID in the Return type.
Blue lines show the mapping.

4.3.1.5 Create the For Node
To map the information element, edit the XQuery code in the Source tab.

1. In the Source tab, add an XQuery for clause to the correct node in the primary
Read function (here, the ORDERS node):

declare function tns:read() as element(ord1:ORDER_GROUP_BY)*{
for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
group $CUSTOMER_ORDER as $CUSTOMER_ORDER_group by $CUSTOMER_ORDER/CUSTOMER_ID
as $CUSTOMER_ID_group
return
 <ord1:ORDER_GROUP_BY>
 <CUSTOMER_ID>{fn:data($CUSTOMER_ID_group)}</CUSTOMER_ID>
 <TOTAL_FOR_THIS_CUSTOMER>{fn:data($CUSTOMER_ORDER_group/
 TOTAL_ORDER_AMOUNT)}</TOTAL_FOR_THIS_CUSTOMER>
 <ORDERS> {
 for $order in $CUSTOMER_ORDER_group/ORDER_ID
 return
 <ORDER_ID>{fn:data($order)}</ORDER_ID>
 }
 </ORDERS>
 </ord1:ORDER_GROUP_BY>
};

The for statement declares a variable (here $order) and then looks for an element
($CUSTOMER_ORDER_group/ORDER_ID) in the first group the group by statement
declares (CUSTOMER_ORDER_group). The for clause then returns the value of the
element using the fn:data function.
4-36 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Examples
2. Click Query Map. Notice that a For node has been added.

Figure 4–31 Adding a For Node to a Group By

A For node for variable $order has been created.

4.3.1.6 Add an Aggregate Function
Last, add an aggregate function to the aggregate element in the return type (here,
TOTAL_FOR_THIS_CUSTOMER).

1. In Query Map, click the aggregate element in the return type.

Notice that it uses the fn:data function, for example:

{fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMOUNT)}

2. Click in the expression. Make sure the Save and Cancel icons are enabled.

3. Click the Design Palette (Window > Show View > Design Palette).

4. Expand XQuery Functions, then Aggregate Functions.

5. Choose a function (here, the fn:sum function with one argument) and drag it to
the expression editor. Leave the existing expression there.

6. Edit the expression to use the existing expression as an argument to the aggregate
function, for example:

{fn:sum(fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMOUNT)) }

7. Click Save.

4.3.1.7 Test the Service
The only way to test a logical data service with a group clause is to run the primary
Read function in the Test tab. This type of data service does not have an update map,
Designing Logical Data Services 4-37

Examples
so you cannot edit data and submit it or test an Update procedure. Likewise, you
cannot test a Create procedure.

1. Click Test.

2. At Select Operation, choose the primary Read function.

3. Click Run.

You should see data grouped by the grouping element, with a result for the aggregate
element, and containing a number of information elements.

Figure 4–32 Results of a Group By Statement

Data is grouped by grouping element. There is a result for the aggregate element,
containing a number of information elements. Under ORDER_GROUP_BY, there are
three elements: CUSTOMER_ID, TOTAL_FOR_THIS_CUSTOMER, and ORDERS.
Under ORDERS, there are many ORDER_IDs with their corresponding values.

4.3.1.8 See Also
Examples

■ Example: How to Create Your First Data Services

Other Resources

■ W3C XQuery Language Specification

■ Extending XQuery for Grouping, Duplicate Elimination, and Outer Joins

4.3.2 How To Create a Data Service with a Flat Return Type
This topic shows you how to create an update map from a logical data service with a
flat, non-nested return type, using the sample database that ships with Oracle Data
Service Integrator.

■ Overview

■ Create a Dataspace Project

■ Create the Return Type

■ Create Physical Data Services

■ Create a Logical Data Service
4-38 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Examples
■ Create the Query Map

■ See Also

4.3.2.1 Overview
A return type can be non-nested, or flat, even if it joins two relational tables, where one
table has a one-to-many relationship with the other table. An example is one customer
in a CUSTOMER table with many Orders in an ORDERS table. One approach to the return
type is to nest an Orders element of multiple cardinality beneath the Customer
element.

Figure 4–33 A Nested Customer-and-Orders Schema

A nested customer and orders schema is shown. Under CustomerOrder, there are two
entries: CUSTOMER and CUSTOMER_ORDER. Under CUSTOMER, there are four
entries: CUSTOMER_ID (key), FIRST_NAME, LAST_NAME, and SSN. Under
CUSTOMER_ORDER, there are four entries: ORDER_ID, C_ID, TOTAL_ORDER_
AMT, and STATUS.

Because you can design a logical data service with any structure, regardless of the
underlying data sources, it is just as valid to define a flat return type to model the
relationship between Customers and Orders.

Figure 4–34 A Flat Customer-and-Orders Schema

A flat customer and orders schema is shown. Under CUSTOMERS_AND_ORDERS,
there are seven entries: CUSTOMER_ID, FIRST_NAME, LAST_NAME, EMAIL_
ADDRESS, ORDER_ID (key), ORDER_DT, and TOTAL_ORDER_AMT.

4.3.2.2 Create a Dataspace Project
First, create a new dataspace project to contain your physical and logical data services:

1. In Eclipse for WebLogic, choose File > New > Dataspace Project.
Designing Logical Data Services 4-39

Examples
2. Enter a project name such as FlatReturnType, then click Finish.

3. Right-click the new dataspace project name, and choose New > Folder.

4. Create folders named physical and logical. Within logical, create a folder named
schemas.

Using separate folders for physical and logical services helps separate the physical
and logical integration layers.

Figure 4–35 New Dataspace Project

The New Dataspace Project dialog lets you create a new project. There is a field for a
project name. Under Project Contents, there is a Use Default checkbox, which in this
case is checked. The Directory field is inactive. There is a drop down menu for
Runtime Target, as well as a New button. There is a drop-down menu for Select
Deployment Target Service.

4.3.2.3 Create the Return Type
The return type the logical data service uses combines data from the CUSTOMER table
and the ORDERS table. It has a non-nested XML structure, even though the data shows
that customers and orders have a one-to-many relationship.

You can define the return type by creating an XML schema (XSD) file. In an XML
editor, create a schema file like this one:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/FlatReturnType" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMERS_AND_ORDERS">
 <xs:complexType>
 <xs:element name="CUSTOMER_ID" type="xs:string"/>
 <xs:element name="FIRST_NAME" type="xs:string"/>
 <xs:element name="LAST_NAME" type="xs:string"/>
 <xs:element name="EMAIL_ADDRESS" type="xs:string"/>
 <xs:element name="ORDER_ID" type="xs:string"/>
 <xs:element name="ORDER_DT" type="xs:date"/>
 <xs:element name="TOTAL_ORDER_AMT" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
4-40 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Examples
 </xs:element>
</xs:schema>

Be sure to:

1. Define targetNamespace to make sense for your dataspace project.

Make sure you have only one top-level element of the name you choose (here,
CUSTOMERORDER) in your target namespace. You can give the targetNamespace the
same name as the dataspace project, but you are not required to.

2. Save the schema file in the logical/schemas folder within your dataspace project.

Note that the cardinality of all elements uses the default values, minOccurs="1" and
maxOccurs="1". Each customer has many orders, but there is only one combination of
customer and order, so the cardinality of the order elements (ORDER_ID, ORDER_DT, and
TOTAL_ORDER_AMT) is still 1.

4.3.2.4 Create Physical Data Services
Now, create physical data services based on the sample database or your own physical
data sources.

1. In Project Explorer, right-click the physical folder in your dataspace project.

2. Choose New > Physical Data Service.

3. Choose Relational for Data source type and dspSamplesDataSource for Data
source, then click Next.

4. Expand RTLCUSTOMER and select CUSTOMER.

5. Expand RTLAPPLOMS and select CUSTOMER_ORDER, then click Next.

6. Select Public for both CUSTOMER and CUSTOMER_ORDER, then click Next.

7. Click Finish.

8. When asked if you want to open the new data services, click No.
Designing Logical Data Services 4-41

Examples
Figure 4–36 Adding Physical Data Services

The Select Data Service dialog lets you choose a data source, database type, and
relational object for the new data service.

4.3.2.5 Create a Logical Data Service
Now that you have physical data services and a schema for the return type, you can
create the logical data service.

1. Right-click the logical folder, then choose New > Logical Data Service.

2. Enter a name for the service, such as FlatCustomersAndOrders.

3. Make sure Entity Data Service is selected, then click Finish.

Now associate a return type with the service:

1. Right-click in the Overview tab and choose Associate XML Type.

2. Select the schema and click OK.
4-42 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Examples
Figure 4–37 A New Logical Data Service with a Return Type

In the FlatCustomersAndOrders.ds Data Service display, a CUSTOMER_AND_
ORDERS return type is shown. Below CUSTOMER_AND_ORDERS are CUSTOMER_
ID, FIRST_NAME, LAST_NAME, EMAIL_ADDRESS, ORDER_ID, ORDER_DT, and
TOTAL_ORDER_AMT.

You also need to define a primary Read function, in order to create both the query map
and update map.

1. Right-click in the service name bar at the top, and choose Add Operation.

2. Make sure Kind is set to read, then enter a function name, such as read.

3. Make sure Primary is selected, then click OK.

Figure 4–38 Creating a Primary Read Function

The Add Operation dialog lets you create a primary read function. There are three
fields at the top of the dialog. Visibility is a drop-down menu set to public. Kind is a
drop-down menu set to read. Name is set to read. The Return Type is displayed. There
is an Edit button that lets you edit the return type. A Clear button lets you clear your
edits. There is a Parameters table with two columns: Name and Type. There are five
buttons: Add, Edit, Remove, Up, and Down. The Primary option is selected and the
Empty Function Body option is deselected.

Designing Logical Data Services 4-43

Examples
4.3.2.6 Create the Query Map
Now you need to create the query map visually in Eclipse for WebLogic, which in turn
generates an update map.

1. Click the Query Map tab.

2. In Project Explorer, expand the physical data services CUSTOMER.ds and CUSTOMER_
ORDER.ds.

3. Drag the Read function from each physical service to the mapping area.

Notice that you cannot scope the CUSTOMER_ORDER block to a subtype in the return
type, because the return type has no subtypes.

4. Drag mappings from the CUSTOMER block on the left to the return type for
CUSTOMER_ID, FIRST_NAME, LAST_NAME, and EMAIL_ADDRESS.

5. Drag mappings from the CUSTOMER_ORDER block on the left to the return type for
ORDER_ID, ORDER_DT, and TOTAL_ORDER_AMT.

6. In the For blocks, drag from CUSTOMER/CUSTOMER_ID to CUSTOMER_
ORDER/CUSTOMER_ID.

This creates a join between the two data sources.

Figure 4–39 A Query Map with Mappings and a Join

A query map is shown with mappings and a join. Blue lines connect CUSTOMER and
CUSTOMER_ORDER with the return type. The join between CUSTOMER and
CUSTOMER_ORDER is shown with dotted orange lines.

If you click the Source tab and expand the Read function, you see XQuery code like
this:
4-44 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
declare function tns:read() as element(fla:CUSTOMERS_AND_ORDERS)*{
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
for $CUSTOMER in cus:CUSTOMER()
where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID
return
 <fla:CUSTOMERS_AND_ORDERS>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
 <ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
 <ORDER_DT>{fn:data($CUSTOMER_ORDER/ORDER_DT)}</ORDER_DT>
 <TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDER_AMT>
 </fla:CUSTOMERS_AND_ORDERS>
};

Notice that the XQuery code has a for statement nested directly within another for
statement. This creates an inner join between the two tables in SQL. To confirm the
SQL that is created:

1. Click the Test tab.

2. At Select operation, make sure the primary Read function is selected.

3. Click Run (saving your data service as necessary).

You should see an XQuery FLWOR statement node. If you expand it, you should see a
SQL query like this, showing an inner join:

SELECT t1."ORDER_DT" AS c1, t1."ORDER_ID" AS c2, t1."TOTAL_ORDER_AMT" AS c3,
 t2."CUSTOMER_ID" AS c4, t2."EMAIL_ADDRESS" AS c5, t2."FIRST_NAME" AS c6, t2."LAST_NAME" AS c7
FROM "RTLAPPLOMS"."CUSTOMER_ORDER" t1
JOIN "RTLCUSTOMER"."CUSTOMER" t2
ON (t2."CUSTOMER_ID" = t1."C_ID"

The inner join is created because the logical data service has a flat return type. When
you mouse over the SQL query, you see this message:

Generated SQL query does not have a WHERE clause. This may cause the query to take longer to finish
and use excessive memory resources.

4.3.2.7 See Also
■ Example: How to Create Your First Data Services

4.4 Reference
The following example is for your reference.

4.4.1 XQuery Source of a Logical Entity Service
This topic shows sample XQuery source code for a logical entity data service.

■ Source Code

■ See Also

4.4.1.1 Source Code
xquery version "1.0" encoding "UTF-8";
(::pragma xds <x:xds targetType="cus:CUSTOMER_PROFILE"
Designing Logical Data Services 4-45

Reference
xmlns:x="urn:annotations.ld.oracle.com" xmlns:cus="ld:logical/CustomerProfile">
 <creationDate>2007-10-05T10:29:01</creationDate>
 <userDefinedView/>
 <key name="DefaultKey" inferred="true" inferredSchema="true" type="cus:CustomerProfile_KEY">
 <selector xpath="CUSTOMER"/>
 </key>
</x:xds>::)

import schema namespace cus="ld:logical/CustomerProfile" at
 "ld:logical/schemas/CustomerProfile.xsd";

declare namespace cus1= "ld:physical/CUSTOMER";

declare namespace add= "ld:physical/ADDRESS";

declare namespace cre= "ld:physical/CREDITRATING";

import schema namespace cus2="ld:logical/CustomerProfile" at
"ld:logical/schemas/CustomerProfile_KEY.xsd";

declare namespace tns="ld:logical/CustomerProfile";

declare function tns:stringToShort($theString) as xs:short {
 xs:short($theString)
};

(::pragma function <f:function kind="read" visibility="public" isPrimary="true"
 xmlns:f="urn:annotations.ld.oracle.com">
 <uiProperties>
 <component identifier="returnNode" minimized="false" x="842" y="11" w="244" h="601">
 <treeInfo id="0">
 <collapsedNodes>
 <collapsedNode>CUSTOMER_PROFILE\CUSTOMER</collapsedNode>
 <collapsedNode>CUSTOMER_PROFILE\CUSTOMER\ADDRESS</collapsedNode>
 <collapsedNode>CUSTOMER_PROFILE\CUSTOMER\CREDITRATING</collapsedNode>
 </collapsedNodes>
 </treeInfo>
 </component>
 <component identifier="CUSTOMER" x="44" y="56" h="300" w="219" minimized="false"/>
 <component identifier="ADDRESS" x="303" y="216" h="336" w="193" minimized="false"/>
 <component identifier="CREDITRATING" x="547" y="485" h="102" w="170" minimized="false"/>
 </uiProperties>
</f:function>::)

declare function tns:read() as element(tns:CUSTOMER_PROFILE)*{
for $CUSTOMER in cus1:CUSTOMER()
return
 <tns:CUSTOMER_PROFILE>
 <CUSTOMER>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
 {
 for $ADDRESS in add:ADDRESS()
 where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID
 return
 <ADDRESS>
 <ADDR_ID>{fn:data($ADDRESS/ADDR_ID)}</ADDR_ID>
 <CUSTOMER_ID>{fn:data($ADDRESS/CUSTOMER_ID)}</CUSTOMER_ID>
4-46 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
 <STREET_ADDRESS1>{fn:data($ADDRESS/STREET_ADDRESS1)}</STREET_ADDRESS1>
 <CITY>{fn:data($ADDRESS/CITY)}</CITY>
 <STATE>{fn:data($ADDRESS/STATE)}</STATE>
 <ZIPCODE>{fn:data($ADDRESS/ZIPCODE)}</ZIPCODE>
 <COUNTRY>{fn:data($ADDRESS/COUNTRY)}</COUNTRY>
 </ADDRESS>
 }
 {
 for $CREDITRATING in cre:CREDITRATING()
 where $CUSTOMER/CUSTOMER_ID eq $CREDITRATING/CUSTOMER_ID
 return
 <CREDITRATING>
 <CUSTOMER_ID>{fn:data($CREDITRATING/CUSTOMER_ID)}</CUSTOMER_ID>
 <RATING?>{fn:data($CREDITRATING/RATING)}</RATING>
 </CREDITRATING>
 }
 </CUSTOMER>
 </tns:CUSTOMER_PROFILE>

};

(::pragma function <f:function kind="delete" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.oracle.com">
 <nonCacheable/>
 <implementation>
 <updateTemplate/>
 </implementation>
</f:function>::)

declare procedure tns:createCUSTOMER_PROFILE($arg as element(tns:CUSTOMER_PROFILE)*) as
 element(tns:CustomerProfile_KEY)* external;

(::pragma function <f:function kind="create" visibility="public" isPrimary="true"
 xmlns:f="urn:annotations.ld.oracle.com">
 <nonCacheable/>
 <implementation>
 <updateTemplate/>
 </implementation>
</f:function>::)

(::pragma function <f:function kind="update" visibility="public" isPrimary="true"
 xmlns:f="urn:annotations.ld.oracle.com">
 <nonCacheable/>
 <implementation>
 <updateTemplate/>
 </implementation>
</f:function>::)

declare procedure tns:updateCUSTOMER_PROFILE($arg as changed-element(tns:CUSTOMER_PROFILE)*) as
 empty() external;

(::pragma function <f:function kind="delete" visibility="public" isPrimary="false"
xmlns:f="urn:annotations.ld.oracle.com"/>::)

declare procedure tns:deleteByKey($arg0 as element(tns:CustomerProfile_KEY)){
 do return ();
};
Designing Logical Data Services 4-47

Related Topics
4.4.1.2 See Also
Concepts

■ Building Logical Entity Data Services

How Tos

■ Example: How to Create Your First Data Services

4.5 Related Topics
For more information, refer to the following sources.

How Tos:

■ Example: How to Create Your First Data Services

■ Create a Return Type

■ Add a Complex Child Element to a Return Type

■ Check Namespaces in Return Types

■ Create Conditional Elements in Return Types

■ Test a Read Function and Simple Update

■ Test a Create or Delete Procedure

Concepts:

■ Data Service Types and Functions
4-48 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

5

5Modeling Data Services Relationships

This chapter describes modeling data services relationships.

This chapter contains the following sections:

■ Section 5.1, "Relationship Between Data Services and Models"

■ Section 5.2, "How to..."

■ Section 5.3, "Reference"

5.1 Relationship Between Data Services and Models
In large enterprises modeling is — or at least should be — an early task in developing
a data services layer. By starting with a graphical representation of data resources it is
easier to view data resources globally, leveraging existing information in interesting
and useful ways. It is also easy to see opportunities for creating additional business
logic in the form of logical services.

Model diagrams are quite flexible; they can be based on existing data services (and
corresponding underlying data sources), planned data services, or a combination. You
can also create and modify data services and data service XML types directly from the
model.

Relationships can be surfaced through the Relationship Modeler in several ways:

■ Automatically. By dragging two or more relational-based data services into a
model diagram simultaneously. In such cases primary/foreign key relationships --
already available in the respective data service -- appear.

■ Graphically. Through gestures you make in your model diagram or through the
right-click menu*.*

■ Programmatically. Through a data service Source editor.

Relationship functions allows data associated with one data service (such as
Customer) to serve as a complex parameter for a related data service (such as Orders).
Models can represent any combination of logical and physical data services.

A visual representation of a relationship between two data services can convey a
considerable amount of information:

■ Cardinality. Is the relationship one-to-zero (customers and promotional offers),
one-to-one (customer and primary email), one-to-many (customers and orders), or
many-to-many (customer orders and ordered items)?

■ Direction. Arrows indicate possible navigation paths. Is there an originating entity
associated with a subordinate entity (such as orders and order items) or is the
relationship bidirectional (such as customers and orders)?
Modeling Data Services Relationships 5-1

How to...
■ Roles. A name matching the name of the adjacent data services navigation
function (see below). Does the assigned relationship name capture the purpose of
the navigation function it represents?

Many data service-related operations can be performed from the relationship modeler
including:

■ Modeling a high-level, visual view of data resources

■ Viewing and adding to the relationships between data services

■ Accessing or creating a data service

■ Add operations to a data service

■ Change the XML type (schema) associated with a data service

Navigation functions are visible as properties of each data service in the binary
relationship. They can be fully inspected in the Source editor for each data service.
Navigation functions also appear as mouse-over text over each endpoint of the
relationship line.

By default, types shown in model diagrams are XML schema types, but you can
change this to display native data source types in the case of physical data services.

5.2 How to...
This section provides procedures for modeling in Oracle Data Service Integrator.

This section describes the following sections:

■ Section 5.2.1, "Create Your First Data Services Model"

■ Section 5.2.2, "Work with Large Models"

■ Section 5.2.3, "Generate a Relationship Modeler Report"

5.2.1 Create Your First Data Services Model

Modeling Data Services
This section provides a basic overview of modeling in Oracle Data Service Integrator
and a tutorial.

This section describes the following sections:

■ Section 5.2.1.1, "Introduction"

■ Section 5.2.1.2, "Building a Simple Data Service Relationship Model"

■ Section 5.2.1.3, "Setting Relationship Properties"

■ Section 5.2.1.4, "Configuring Navigation Functions"

5.2.1.1 Introduction
Using Oracle Data Service Integrator, you can create and maintain models of your
enterprise data services. A model diagram is a graphical representation of a data
model supported by Oracle Data Service Integrator.

Through data models you can:

Tip: For more information on data service modeling concepts see
Modeling and a Service-Oriented Architecture in the ODSI Concepts Guide.
5-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to...
■ Model a high-level, visual view of data resources.

■ View and extend relationships between data services.

■ Access and create a data service.

■ Add operations to a data service.

■ Change the XML type (schema) associated with a data service.

In model diagrams, a relationship can be created by the gesture of drawing a line from
one data service to another. In some cases (such as relational data services)
relationships and the lines representing the relationship can be automatically inferred.
In other cases, you need to create the relationship.

A visual representation of a relationship between two data services conveys a
considerable amount of information:

■ Cardinality. Is the relationship one-to-zero (customers and promotional offers),
one-to-one (customer and primary email), one-to-many (customers and orders), or
many-to-many (customer orders and ordered items)?

■ Direction. Arrows indicate possible navigation paths. Is there an originating entity
associated with a subordinate entity (such as orders and order items) or is the
relationship bidirectional (such as customers and orders)?

■ Roles. A name matching the name of the adjacent data services navigation
function (see below). Does the assigned relationship name capture the purpose of
the navigation function it represents?

Navigation functions are visible as properties of each data service in a binary
relationship. Navigation functions also appear as mouse-over text over each endpoint
of the relationship line.

Types shown in model diagrams are XML schema types.

Figure 5–1 Model Diagram of Physical Data Services
Modeling Data Services Relationships 5-3

How to...
This figure shows a model diagram of physical data services

5.2.1.2 Building a Simple Data Service Relationship Model
You can create a sample data service relationship model by selecting a dataspace
project and choosing:

File > New > Relationship Modeler

You can locate your model diagram anywhere in your project. Any legal filename can
be used.

5.2.1.2.1 About the Data Services This example assumes that you are using the Oracle
Data Service Integrator RTLApp as a data source.

The physical data services used in this sample are:

■ CUSTOMER

■ CUSTOMER_ORDER

■ CUSTOMER_ORDER_LINE_ITEM

5.2.1.2.2 Adding Data Services to the Modeler You can add data services to your model
using simple drag-and-drop from the Project Explorer. In the Project Explorer you can
multi-select data services using either:

■ Shift-click (contiguous services) or

■ Control-click (individual services)

If you drag a set of data services into a model diagram, existing relationships to other
data services in the model will be shown.

Note: See Chapter 3, "Creating and Updating Physical Data
Services".
5-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to...
Figure 5–2 Populating the Relationship Modeler

Shows how to populate the relationship modeler.

Since the data services in this example are representations of relational sources, a
several bidirectional relationships between CUSTOMER_ORDER and CUSTOMER_
ORDER_LINE_ITEMS were inferred:

■ The role named CUSTOMER_ORDER has a 1-to-1 relationship with
CUSTOMER_ORDER_LINE_ITEM, meaning that a line item can only belong to
one order.

■ The role named CUSTOMER_ORDER_LINE_ITEM has a 0-to-n relationship
with CUSTOMER_ORDER, meaning that there can be many line items associated
with an order.

5.2.1.2.3 Creating an Additional Relationship A next step could be to create a relationship
between CUSTOMER and CUSTOMER_ORDER.

1. Right-click on CUSTOMER_ORDER node.

2. Select Create Relationship to another data service.

3. Select CUSTOMER as the target data service.

4. Click OK.

The Relationship Properties wizard appears.

5.2.1.3 Setting Relationship Properties
Relationship properties can be uni- or bi-directional.
Modeling Data Services Relationships 5-5

How to...
Figure 5–3 Setting Relationship Options

Shows how to set properties in the Relationship Properties dialog.

Click Next.

Table 5–1 Relationship Properties Dialog Options

Option Action Comment/Reference

Set directionality Select the directions to be supported in the
relationship. The example is bidirectional
so the default checked condition for the
following relationships need not be
changed:

■ CUSTOMER_ORDER ->
CUSTOMER

■ CUSTOMER -> CUSTOMER_
ORDER

Creating relationships in a model
automatically creates relationship
functions between data services.
Bi-directional settings mean that “get”
functions for the related data service will
be created on both sides of the
relationship. By default, relationships are
bidirectional.

Target Role Name Enter the name of the role function. In the
example, default names can be used:

■ CUSTOMER

■ CUSTOMER_ORDER

By default the name will be based on the
name of the related data service. It can be
changed to any unique and legal name in
your dataspace project.

Set maximum and
minimum occurrences

Enter cardinality settings for the respective
function. For the example the following
settings are used:

■ CUSTOMER_ORDER ->
CUSTOMER: 1-to-1

■ CUSTOMER -> CUSTOMER_
ORDER 0-to-n

The minimum and maximum occurrence
settings definite the nature of the
relationship between the two services.
5-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to...
5.2.1.4 Configuring Navigation Functions
Each navigation function (one or two) being created also needs to be configured.
Configuration includes:

■ Setting a name for the navigation function

■ Selecting a function from the newly related data service.

■ Mapping input parameters

■ Building a WHERE clause

Figure 5–4 Configuring a Navigation Function

Shows how to configure a navigation function in CUSTOMER_ORDER_L?INE_ITEM.

Table 5–2 Specifying Relationship Wizard Function Name, Parameters, and Where
Clauses

Element Purpose

Navigation function
name

By default, the navigation function name is the name of the target data
service with “get“ prepended, as in “getCustomer.” If a function of
that name exists, numbers will be appended to the function name as in
getCustomer1.

Note: When you invoke the Relationship wizard through a model
diagram the opposite data service is determined by the gesture of
drawing a line from one data service to another. In such cases the
option of selecting a navigation function name is not present.

Related data service
function

By default, the root function in the target data service is selected.
However, you can select any available read function in the target data
service.
Modeling Data Services Relationships 5-7

How to...
Figure 5–5 Customer-Order-Item Model

Shows the customer-order-item model.

5.2.2 Work with Large Models

How To Work with Large Model Diagrams
Model diagrams can hold any number of data services. The only limitation is that each
data service must reside in the same dataspace.

Some tools are available in cases where very large models have been created.

Map input
parameters

If the related function has input parameters, the name and type of the
available parameters appear. You can then use a pull-down menu to
select an element from the target data service to map as the input
parameter.

Build WHERE clause Where clauses can be added to the function using pull-down menus
that allow you to select join elements from each side of the
relationship.

Add or Remove Allows you to add additional where clauses or delete an identified
where clause.

Next When the relationship between data services is bidirectional clicking
Next changes the focus to the second data service, where you can
identify a navigation function name, parameters, and add where
clauses for the second side of the relationship.

Table 5–2 (Cont.) Specifying Relationship Wizard Function Name, Parameters, and
Where Clauses

Element Purpose
5-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How to...
5.2.2.1 Search
You can locate any data services in your model diagram.

1. Right-click in the white space (not on a data service representation) and select
Find Data Service.

2. Type in the name of your data service using standard search options available in
the dialog.

A dialog will appear containing a dropdown list of matching data services. The data
service you select will be appear.

5.2.2.2 Outline Mode
For larger models you can use Outline view which will allow you to scroll through
your model.

Window > Show View > Outline

Figure 5–6 Model Diagram Outline View

Shows the model diagram outline view.

5.2.3 Generate a Relationship Modeler Report

Generating Reports on Your Models
Both summary and detailed reports are available from the currently selected
relationship model.

To create a report:

1. Right-click in any blank space in your model diagram.

2. Select:

Generated Report > Detailed or Generate Report > Summary

3. Select a filename and location.

4. Click Finish.
Modeling Data Services Relationships 5-9

Reference
When you choose the Create a Model Report right-click option you are asked to select
a name for the HTML document that is generated. By default, the name of the
summary report is:

<model_name>_md_summary.html

and the name of the detail report is:

<model_name>_md_detail.html

You can save the report to any location in your application, including to a new folder.

5.2.3.1 Model Report Format
The model report is in HTML format.

5.3 Reference
This section describes the following sections:

■ Section 5.3.1, "Relationship Modeler Options"

■ Section 5.3.2, "Model Diagram Rules"

■ Section 5.3.3, "Notable Relationship Modeler Properties"

■ Section 5.3.4, "Relationship Models in Source View"

Table 5–3 Summary and Detailed Report Categories Compared

Type Description

Summary Report Provides general information related the model including:

■ Location of each data service in the model

■ Type: logical or physical

■ Allows updates: true/false

■ Data source type

■ Data source name

■ Owner (if any)

■ Comment (if any)

■ Date created

■ Date last modified

Detailed Report A detailed model report contains all summary information listed
above and, for each relationship between data services, the following
additional information:

■ Return type fully qualified name (the qname)

■ Details on each Read function including Return type,
description, and comments

■ Details on the data service relationships including role name,
target data service, minimum and maximum occurrences,
opposite role name, navigation functions including Return type,
description, comment and user-defined properties

■ Dependencies — a list of all dependent data services

Note: Print your report from any browser or application that
supports HTML printing.
5-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
5.3.1 Relationship Modeler Options
This section describes some of the common operations you will use when working
with the relationship modeler.

5.3.1.1 Model Right-click Menu Options
You can edit your model using a combination of right-click menu options and the
model Property Editor. Table 5–4 and Table 5–5 describe right-click options based on
the functional area of the model diagram that is in scope.

Table 5–4 Data Model: Notable Data Model Options

Command Meaning

New Data Service Allows you to create a new data service. After selecting a name
and physical location for the data service, the service is created
and placed on the diagram.

Find Data Service Locates a data service within your model.

Select Router Type Adjusts visual presentation of relationship lines based on the
Manhattan model or shortest-path model.

Generate Report Creates either a Summary or Detail report in an Eclipse
HTML-based page. The report describes data services in your
model, their bilateral relationships, and a description of each
data service.

Table 5–5 Data Service: Notable Data Model Options

Command Meaning

Open Dialog allows you to select from a list of data services in the
model diagram. As with drawing a line between two data
services, this option brings up the Relationship wizard. (See
Using the Relationship Wizard to Create Navigation Functions).

Create Relationship to
Another Data Service

The Add Related command is available when one or several
data services are selected in the model. Add Related lists data
services that contain navigation functions referencing your
currently selected data source. Click on the service you want to
add and then repeat the process to add other available related
services, if any.

Add Related Data Service Adjusts visual presentation of relationship lines based on the
Manhattan model or shortest-path model.

Remove from Diagram Removes the selected data service from the model diagram.
Alternatively, use the Delete key.

Note: This operation does not affect the underlying data service.

Refactor Provides for either safe delete or renaming of the currently
selected data service. This is comparable to operations available
for a data service from the Overview tab.

Associate XML Type Provides a dialog where a different schema (XSD) file can be
selected from the current project.

Note: Changing a schema type for a data service can affect its
functions as well as its relationships to other data services.

Manage Key... Opens the Manage Key dialog box, allowing for modification of
the key associated with the current data service.

Delete Key... Deletes any key associated with the current data service.
Modeling Data Services Relationships 5-11

Reference
5.3.2 Model Diagram Rules

Rules Governing Model Diagrams
Model diagrams follow a set of rules:

■ Each entity in the model has a title which is the local name of the data service (the
fully-qualified name is visible as a mouse-over).

■ Associated Read functions can be displayed, with or without signatures.

■ Model diagrams do not “own” data services, but simply reference them. Multiple
models can, without limit, contain representations of the same data service or
relationships between data services.

■ Models are not nested. That is, a model diagram cannot reference another.

■ Multiple models can be defined and located anywhere in your project.

■ Changes made to a model diagram can be reversed using the Edit Undo
command. However it is important to keep in mind that changes to any
underlying files such as schemas (XML types) or data services made through the
model will not be undone. Instead, edit the data service directly or close and
reopen your application before saving your changes.

5.3.3 Notable Relationship Modeler Properties
Properties both reflect and define relationships created in the model diagram.

Add Operation Adds an operation (function or procedure) to the currently
selected data service.

Show/Hide Native XML
Types

Optionally displays/hides native types for elements
representing physical objects associated with simple data types.
Example: VARCHAR(25).

Show Function Signatures Displays/hides full read function signatures such as:
getAddress() as element(Address)

Tip: Relationship lines connecting data services can be deleted by
first selecting the line, then pressing Delete.

Note: Changes to a model diagram that affect data services such as
when a new relationship is created are only made permanent in
Eclipse for WebLogic after you do a File > Save All.

Table 5–5 (Cont.) Data Service: Notable Data Model Options

Command Meaning
5-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
5.3.4 Relationship Models in Source View

Generated Relationship Declarations in Source View
An example of a navigation function in the underlying source is:

(::pragma function <f:function xmlns:f="urn:annotations.ld.oracle.com"
kind="navigate" roleName="ADDRESS"/>::-)

This specifies a relationship to the Address data service from the Customer data
service.

Data services also contain declarations describing the nature of the relationship; this
information is the source for the role names and cardinality values that appear in your
model diagram.

For example, the data service Address contains the following relationship
declarations:

<relationshipTarget roleName="CUSTOMER" roleNumber="1"
XDS="ld:DataServices/CustomerDB/CUSTOMER.ds" opposite="ADDRESS"/>

For each data service, a relationship is created which identifies its role name,
cardinality, opposite data service, and a unique (to the data service) role number.

In the above example, a navigation function is automatically created that retrieves
customer information based on the customerID.

In the case of the relationship between Customer and Address, the relationship is
0-to-n for the Address role (it can make and appearance any number of times or not at
all) based on CustomerID being a foreign key in Address and a primary key in the
Customer data service (and the underlying relational data sources respectively).

Since the relationships are bilateral, Customer's opposite is Address while Address's
opposite is Customer.

If your data model is composed of both physical and logical data services, you should
keep in mind that a metadata update on any underlying physical data services will
remove any relationships you have created involving those data services.

Table 5–6 Notable Data Modeling Properties

Scope Property Settings Comments

Data Service Properties described in Managing Your Data Service.

Relationships Nodes Read only Shows names of the related data services and their
respective roles. Roles are assigned as source data
service and target data service, but these assignments
are arbitrary in the case of bidirectional relationships.

Source and Target
Cardinality

Drop down Value can be 0-to-1, 0-to-many, 1-to-1, 1-to-many, and
many-to-many.

Operations Properties described in Managing Your Data Service.
Modeling Data Services Relationships 5-13

Reference
5-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

6

6Building XQueries

This chapter describes how to build XQueries.

This chapter contains the following sections:

■ Section 6.1, "How To"

■ Section 6.2, "Reference"

■ Section 6.3, "Related Topics"

6.1 How To
These sections describe how to build XQueries:

■ Section 6.1.1, "Create a Return Type"

■ Section 6.1.2, "Add a Complex Child Element to a Return Type"

■ Section 6.1.3, "Check Namespaces in Return Types"

■ Section 6.1.4, "Create Conditional Elements in Return Types"

■ Section 6.1.5, "Add a Where Clause to a Query"

■ Section 6.1.6, "Use the XQuery Expression Editor"

■ Section 6.1.7, "Use the Source Editor"

6.1.1 Create a Return Type

How To Create a Return Type
This topic describes the basics of creating return types for logical entity data services in
the Query Mapper and directly in XML.

This section describes the following topics:

■ Section 6.1.1.1, "Choose a Technique"

■ Section 6.1.1.2, "Write a Return Type Schema"

■ Section 6.1.1.3, "Generate a Schema File"

■ Section 6.1.1.4, "See Also"

6.1.1.1 Choose a Technique
Data services use both XML types and return types.
Building XQueries 6-1

How To
XML types represent the shape of a logical data service, in the form of an XML
schema. They are templates from which return types are created, comparable to a Java
class. You use an XML type when you first create a logical entity service and add an
XML schema to define its shape.

Figure 6–1 Adding an XML Type to a Service

This graphic shows the Associate XML Type option.

Return types represent the shape of data that a query produces when it is run. They
are specific instances of an XML type, comparable to a Java object. Return types are the
R in an XQuery FLWOR clause. For example, a service's primary read function returns
a return type.

Figure 6–2 Checking the Return Type of a Read Function

This graphic shows the Edit Function Signature dialog.
6-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To

An XML type is the backbone of a logical data service, because it defines the data the
service returns. The XML schema that represents the XML type can combine any
elements from any data sources the logical data service uses, including relational
sources, web services, XML files, text files, and Java methods.

The schema for the logical data service is designed as a separate layer of the dataspace
project, regardless of the actual structure of the underlying physical data sources. The
schema is not required to use all elements in, or the same structure as, the physical
data sources.

You can create a return type schema, an XSD file, in two ways:

■ Top down, in an XML editor, either the one built into Eclipse for WebLogic or a
standalone editor.

■ Bottom up, by building the service visually in Query Map view and then using the
Save and Associate XML Type command.

You should create the XSD file in the logical layer of your dataspace project, as it
belongs to the logical data service. Eclipse for WebLogic provides several XML editors,
which you can see if you right-click an XSD file in the Project Explorer and choose
Open With.

Figure 6–3 Choosing an XML Editor in Eclipse for WebLogic

This graphic shows the Open with > XML Editor option.

6.1.1.2 Write a Return Type Schema
To create the schema in an XML editor in Eclipse for WebLogic:

1. Choose a location for logical data service schemas in your dataspace project.

You may want to create a folder for schemas in the logical layer of your project (for
example, MyDataSpace/logical/schemas) separate from the schemas folder that
Oracle Data Service Integrator auto-generates for physical data services.
Building XQueries 6-3

How To
Figure 6–4 Project structure

This option shows the tree structure of a project.

2. Choose File > New > Other.

3. Choose XML > XML Schema, and click Next.

4. Choose a folder, enter a file name that ends in .xsd, and click Finish.

The generated schema looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/MySchema"
xmlns:tns="http://www.example.org/MySchema" elementFormDefault="qualified">

</schema>

5. In the XML editor, change the URL of targetNamespace to one within your
dataspace project:

targetNamespace="ld:logical/CustomerAndAddress"

The targetNamespace URL should start with the prefix ld:, and logical indicates
that the schema resides in the folder named logical in your dataspace project. The
identifier that follows (here, CustomerAndAddress) defines the namespace.

6. Delete the namespace definition for xmlns:tns, if your service binds tns to a
different namespace. You can check this by clicking the Overview tab, then the
Properties tab.

Figure 6–5 Data Service Properties

This graphic shows the properties tab.

6-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
At this point, your schema file should like this:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="ld:logical/CustomersAndOrders"
elementFormDefault="qualified">

</schema>

7. Continue adding complex types, elements, and attributes using the XML editor.

8. Save the file, then right-click anywhere in it and choose Validate.

You can also create the return type schema using an XML editor outside Eclipse for
WebLogic and then move the XSD file to your Eclipse for WebLogic dataspace project.

6.1.1.3 Generate a Schema File
You can also have Oracle Data Service Integrator generate the return type schema after
you build the query map visually.

To generate the schema in Eclipse for WebLogic, follow these instructions (or see
Section 1.3, "Example: How to Create Your First Data Services" for detailed
instructions):

1. Create a dataspace.

2. Create physical data services in the dataspace.

3. Also in the dataspace, create a logical data service (File > New > Logical Data
Service).

4. Create a Read function in the logical data service (Overview tab, right-click, Add
Operation).

5. Drag the Read functions of the physical services you want to use to the Query
Map tab.

6. Click Overwrite , and drag the root element in the For box to the root
element in the Return type.

7. Right-click on the complex element in the Return type, and choose Expand
Complex Mapping.

8. Right-click the return type box, and choose Save and Associate XML Type.

Figure 6–6 Save and Associate XML Type dialog

This graphic shows the Save and Associate XML Type dialog.
Building XQueries 6-5

How To

For Location, select the correct folder for logical schemas. In Namespace, enter a
namespace that starts with ld:logical, such as ld:logical/MyCustomer. Be sure
that the name of the root element (here, CUSTOMER) is unique within the
namespace. (The ld namespace refers to the original name of Oracle Data Service
Integrator, Liquid Data).

9. Click OK.

10. Save the file, then right-click anywhere in it and choose Validate.

6.1.1.4 See Also

How Tos
■ Section 6.1.2, "Add a Complex Child Element to a Return Type"

■ Section 1.3, "Example: How to Create Your First Data Services"

Other Resources
■ XML Schema Tutorial (W3Schools)

http://www.w3schools.com/schema/default.asp

■ XML Schema Part 1: Structures (W3C)

http://www.w3.org/TR/xmlschema-1/

■ XML Schema Part 2: Datatypes (W3C)

http://www.w3.org/TR/xmlschema-2/

6.1.2 Add a Complex Child Element to a Return Type

Add a Complex Child Element to a Return Type
This topic describes how to add a complex child element to a return type, in Eclipse for
WebLogic or in the XML source of the return type.

This section describes the following topics:

■ Section 6.1.2.1, "Add the Child Element Visually"

■ Section 6.1.2.2, "Edit the XML Source"

■ Section 6.1.2.3, "See Also"

6.1.2.1 Add the Child Element Visually
Once you create a return type, you can add a complex type as a child of any element,
in Query Map view. The complex child element must represent a physical data
service. The parent element can have a one-to-many or one-to-one relationship with
the child, depending on how you want the result data returned.
6-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
Figure 6–7 A Simple Return Type Before Adding a Child Element

This graphic shows a sample project tree.

To add a complex child element to a return type visually:

1. Open the logical data service in Eclipse for WebLogic.

2. Check Project Explorer. Be sure that your dataspace project has a physical data
service for the complex child element you want to add. If it does not, add one

File > New > Physical Data Service

3. Click the Query Map tab.

4. In the return type, right-click the new parent element, and choose Add Complex
Child Element.

Figure 6–8 Add Complex Child Element dialog

This graphic shows the Add Complex Child Element dialog.

5. For the Schema File field, browse (...) to the schema of the physical data service
that represents the complex child element.

6. For Type, choose a complex type from the schema, then click OK.

7. From Project Explorer, drag the primary read function of the physical data service
to the Query Map.

8. Starting from the child element's For block, drag the zone icon to the child element
in the return type.
Building XQueries 6-7

How To
9. Starting from the child element's For block, drag the parent type of the complex
element to the return type.

This step maps all of the elements in the complex child to the return type.

Figure 6–9 Mapping Elements

This graphic shows the mappings.

10. Right-click the title bar of the return type, and choose Save and Associate XML
Type.

11. Click the Overview tab, and expand the schema to view the complex child in the
return type.

You can also right-click the schema and choose Edit Schema to view the XML
source.
6-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
Figure 6–10 Mapped Element

This graphic shows the mapped ADDRESS table.

6.1.2.2 Edit the XML Source
Adding the complex child element to the return type in the XML source accomplishes
the same thing as adding it visually.

To add a complex child element to a return type in XML source:

1. Open the logical data service in Eclipse for WebLogic.

2. Check Project Explorer. Be sure that your dataspace project has a physical data
service for the complex child element you want to add. If it does not, add it:

File > New > Physical Data Service

3. Click the Overview tab.

4. Right-click the return type schema in the center, and choose Edit Schema.

You see the schema for the logical data service, without the child element:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/MyCustomer"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CUSTOMER">
<xs:complexType>

<xs:sequence>
<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
Building XQueries 6-9

How To
<xs:element name="CUSTOMER_SINCE" type="xs:date"/>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:schema>

5. In Project Explorer, right-click the schema file of the physical data service that

represents the child element, and choose Open With.

You see the schema of the child element.

6. Copy the complex type from the physical data service schema to the logical data
service schema. Take only the complex type:

<xs:complexType>
<xs:sequence>

<xs:element name="ADDR_ID" type="xs:string"/>
<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="STREET_ADDRESS1" type="xs:string"/>
<xs:element name="STREET_ADDRESS2" type="xs:string" minOccurs="0"/>
<xs:element name="CITY" type="xs:string"/>
<xs:element name="STATE" type="xs:string"/>
<xs:element name="ZIPCODE" type="xs:string"/>
<xs:element name="COUNTRY" type="xs:string"/>
<xs:element name="DAY_PHONE" type="xs:string" minOccurs="0"/>
<xs:element name="EVE_PHONE" type="xs:string" minOccurs="0"/>
<xs:element name="ALIAS" type="xs:string" minOccurs="0"/>
<xs:element name="STATUS" type="xs:string" minOccurs="0"/>
<xs:element name="IS_DEFAULT" type="xs:short"/>

</xs:sequence>
</xs:complexType>

7. Right-click in the schema, and choose Validate.

6.1.2.3 See Also

How Tos
■ Section 6.1.1, "Create a Return Type"

■ Section 6.1.3, "Check Namespaces in Return Types"

Other Resources
■ XML Schema Tutorial (W3Schools)

http://www.w3schools.com/schema/default.asp

■ XML Schema Part 1: Structures (W3C)

http://www.w3.org/TR/xmlschema-1/

■ XML Schema Part 2: Datatypes (W3C)

http://www.w3.org/TR/xmlschema-2/
6-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
6.1.3 Check Namespaces in Return Types

How To Check Namespaces in Return Types
This topic shows you how to make sure the namespaces used in your return type are
correct.

This section describes the following topics:

■ Section 6.1.3.1, "Check Prefix Bindings"

■ Section 6.1.3.2, "Edit the Namespace"

■ Section 6.1.3.3, "See Also"

6.1.3.1 Check Prefix Bindings
In the return type, a child element must be in the same namespace as its parent. If a
return type uses elements in different namespaces, you cannot deploy the logical data
service to the server or test it from Eclipse for WebLogic.

The exception to this rule is when the parent and child are in different namespaces, but
both namespaces have the same prefix binding. Check prefix bindings first, and then
edit the namespace, if needed.

To check prefix bindings in the Overview tab:

1. Click the Overview tab.

2. Click the Properties tab (if it's not visible, choose Window > Show View >
Properties).

Figure 6–11 Properties tab

This graphic shows the Properties tab.

To check prefix bindings in Source:

1. Click the Source tab.

2. Look for the XQuery namespace statements:

import schema namespace myc="ld:logical/MyCustomer" at
"ld:logical/schemas/MyCustomer.xsd";
declare namespace cus= "ld:physical/CUSTOMER";
import schema namespace myc1="ld:logical/MyCustomer" at
"ld:logical/schemas/MyCustomer_KEY.xsd";
Building XQueries 6-11

How To
In both these examples, the myc and myc1 namespaces have the same prefix binding.
You can have a parent element in one and a child element in another. But if you have a
parent element in myc and a child in cus, you need to change one namespace in the
return type.

6.1.3.2 Edit the Namespace
Once you check the prefix binding, you can check a namespace used in a return type
and change it in the Query Map or Source view.

To edit a namespace in Query Map view:

1. Click the Query Map tab.

2. Select the parent element in the return type, then click it.

Be sure to select and then click; do not double-click.

Figure 6–12 Parent Element

This graphic shows the selected parent element.

3. Select the child element in the return type, then click it.

4. If the child element is in a different namespace, change it to the namespace of the
parent.

5. Right-click the title bar of the return type, and choose Save and Associate XML
Type.

Figure 6–13 Save and Associate XML Type dialog

This graphic shows the Save and Associate XML Type dialog

6. Enter the correct location, namespace, and root element name for the return type.
Click OK.

To edit a namespace in Source view:

1. Click the Source tab.
6-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
2. Expand the primary Read function:

Figure 6–14 Primary Read Function

3. Locate the namespace of the child element and change it to the namespace of the
parent, both in the start and end elements:

declare function myc:read() as element(myc:CUSTOMER)*{
for $CUSTOMER in cus:CUSTOMER()
return

<myc:CUSTOMER>
...
{

for $ADDRESS in add:ADDRESS()
where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID
return
<myc:ADDRESS >
...
</myc:ADDRESS>

}

4. Save the changes.

6.1.3.3 See Also

How Tos
■ Section 6.1.1, "Create a Return Type"

■ Section 6.1.2, "Add a Complex Child Element to a Return Type"

Other Resources
■ XML Schema Tutorial (W3Schools)

http://www.w3schools.com/schema/default.asp

■ XML Schema Part 1: Structures (W3C)

http://www.w3.org/TR/xmlschema-1/

■ XML Schema Part 2: Datatypes (W3C)

http://www.w3.org/TR/xmlschema-2/

6.1.4 Create Conditional Elements in Return Types
These sections describe how to add a condition to a return type and determine the
elements that are returned when the condition is true or false:

■ Section 6.1.4.1, "Add the Condition"

■ Section 6.1.4.2, "Create the Expression"

■ Section 6.1.4.3, "See Also"

6.1.4.1 Add the Condition
A condition in a return type defines two groups of elements: those returned when an
expression is true, and those returned when an expression is false. When you add a
condition to a return type, you see two groups of return type elements.
Building XQueries 6-13

How To
To add a condition to the return type:

1. Click the Query Map tab.

2. Right-click an element in the return type, and choose Make Conditional.

The conditional element is now duplicated.

Figure 6–15 Duplicated Element

This graphic shows the duplicated conditional element.

6.1.4.2 Create the Expression
You must add the conditional expression, that determines which element is returned,
in the XQuery source. You cannot add a conditional expression in the expression
editor.

1. Click the Source tab.

The primary Read function now has an if...else clause:

declare function tns:read() as element(cus:CustomerOrder)*{
for $CUSTOMER in cus1:CUSTOMER()
return

if (true()) then
<cus:CustomerOrder>
...
</cus:CustomerOrder>

else
<cus:CustomerOrder>
...
</cus:CustomerOrder>

};

The expression after the if statement is evaluated, and the service returns either the
first or second set of elements. The XQuery true() function simply returns the
Boolean value true.

2. In the XQuery source, replace true() with another XQuery expression, for
example:

if (fn:data($CUSTOMER/LAST_NAME) = "Black") then

You can use any XQuery expression that returns a value of true or false. In this
example, if a customer has the last name Black, the first element group is returned.
If not, the second element group is returned.

To add the value of an element in a For block, use the XQuery fn:data function,
which takes the value of an element:

<LAST_NAME>Black</LAST_NAME>

3. Click the Query Map tab.
6-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
4. In the return type, add or delete elements in either group to create the return
groups you want.

Remember that the first group is returned if the expression is true, and the second
group if the expression is false.

Figure 6–16 Add or Delete Elements

This graphic shows adding or deleting elements.

5. Click the Test tab. Choose the Read function, and click Run. Check that the results
are what you intend.

In this example, the full group of elements is only returned for customers with the
last name Black. For other customers, only the CUSTOMER_ID is returned.

Figure 6–17 Results from Read Function
Building XQueries 6-15

How To
This graphic shows the results from the Read function.

6.1.4.3 See Also

How Tos
■ Section 6.1.1, "Create a Return Type"

■ Section 6.1.2, "Add a Complex Child Element to a Return Type"

■ Test a Read Function and Simple Update

Other Resources
■ Introduction to XQuery

http://www.devx.com/xml/Article/8046/0/page/3

■ XQuery Tutorial
http://www.w3schools.com/xquery/default.asp

■ XQuery 1.0 Specification
http://www.w3.org/TR/xquery/

6.1.5 Add a Where Clause to a Query

Add a Where Clause to a Query
These sections describe several ways of adding XQuery where clauses to queries to
join relational data sources:

■ Section 6.1.5.1, "Define the Condition"

■ Section 6.1.5.2, "Join Tables with a Where Clause"

■ Section 6.1.5.3, "Use an XQuery Function in a Where Clause"

■ Section 6.1.5.4, "See Also"

6.1.5.1 Define the Condition
A where clause in XQuery specifies criteria defining some return data. This is a simple
XQuery where clause:

where $CUSTOMER/CUSTOMER_ID = "1111"

A where clause is usually part of an XQuery FLWOR (for-let-where-order by-return)
expression. The where clause can be any XQuery expression, including another
FLWOR expression. A common use of a where clause is to join two relational data
sources, for example:

for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID
return
... xml elements here ...

The where clause here specifies a condition that defines a subset of results to return.
The SQL statement Oracle Data Service Integrator generates from this XQuery
expression creates a left outer join between two tables:

SELECT t1."CUSTOMER_ID" AS c1, t1."FIRST_NAME" AS c2, t1."LAST_NAME" AS c3,
t1."SSN" AS c4,t2."C_ID" AS c5, t2."ORDER_ID" AS c6, t2."STATUS" AS c7, t2.
6-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
"TOTAL_ORDER_AMT" AS c8
FROM "RTLCUSTOMER"."CUSTOMER" t1
LEFT OUTER JOIN "RTLAPPLOMS"."CUSTOMER_ORDER" t2
ON (t1."CUSTOMER_ID" = t2."C_ID")
ORDER BY t1."CUSTOMER_ID" ASC

Before you add a where clause to a logical data service, think about how to structure it.
If you want to join two data sources, you can only do so on a key field that appears in
both. In this example, the CUSTOMER table has a primary key named CUSTOMER_
ID joined to a CUSTOMER_ORDER table with a foreign key named C_ID.

6.1.5.2 Join Tables with a Where Clause
The simplest way to create a where clause between two relational data sources is to
map it in Query Map view.

To map the where clause:

1. Open a logical data service in Eclipse for WebLogic.

2. Click Query Map.

3. Drag the read functions of at least two physical data sources from Project
Explorer to the Query Map view.

Figure 6–18 Read Functions

This graphic shows the read function from the data source.

4. In Query Map view, drag from a key element in the first data source to the
corresponding key element in the second.
Building XQueries 6-17

How To
Figure 6–19 Key Elements

This graphic shows the association of the key element between the data sources.

If you click the second data source, you see the XQuery where clause in the
expression editor:

Where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID

6.1.5.3 Use an XQuery Function in a Where Clause
A where clause can also contain an XQuery function, including any built-in or
Oracle-defined functions available from the Design Palette. The where clause is
defined on an element within a For node.

To create a where clause with an XQuery function:

1. Click Query Map.

2. Click the For title bar of the node that contains the element.

3. Click Add Where Clause to insert the where clause.

4. Open the Design Palette (Window > Show View > Design Palette).

5. Expand XQuery Functions, then choose a function (for example: Duration, Date,
and Time Functions > fn:year-from-date).

6. Drag the function to the expression editor.

7. Delete $arg in the function, then click the element in the For node that you want to
add.

8. Add an operator and a value to complete the expression.

fn:year-from-date($CUSTOMER/CUSTOMER_SINCE) < 2000

You can use any of the XQuery operators available in Design Palette > XQuery
Operators.

9. Click Save .

In Source view, the where clause in the read function looks like this:

declare function tns:read() as element(tns:CUSTOMER_PROFILE)*{
6-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
for $CUSTOMER in cus1:CUSTOMER()
where fn:year-from-date($CUSTOMER/CUSTOMER_SINCE) < 2000
return
... xml elements here ...

10. Test the query in Test view, preferably on sample data, to make sure the results are
what you expect.

6.1.5.4 See Also

How Tos
■ Test a Read Function and Simple Update

■ Test a Create or Delete Procedure

6.1.6 Use the XQuery Expression Editor

How To Edit XQuery Expressions
This topic describes how to edit XQuery expressions in the expression editor in Eclipse
for WebLogic.

This section describes the following topics:

■ Section 6.1.6.1, "Overview"

■ Section 6.1.6.2, "The fn-bea:value Function"

■ Section 6.1.6.3, "See Also"

6.1.6.1 Overview
You can edit the generated XQuery expressions in an update map using the expression
editor.

Figure 6–20 The Expression Editor in an Update Map

This graphic shows the expression editor.

The update map expression language is a subset of XQuery syntax. In an update map,
you can use any of the following XQuery constructs.
Building XQueries 6-19

How To
Namespace prefixes are declared in the data service's XQuery source, which you can
see in the Source tab. If a namespace is only used in the update map, and not in the
logical data service, you must declare it. If a namespace cannot be resolved, it is shown
with the prefix ns?.

The most common ways you use the expression editor are to:

■ Add a constant to an unmapped element

■ Cast a constant to an XSD data type, especially to resolve update block elements
with no mappings

■ Use an XQuery function available in the Design Palette to cast a value

■ Use a custom XQuery cast function you have written

6.1.6.2 The fn-bea:value Function
A mapping between an element in a return type and an element in an update block
uses the fn-bea:value function with a path name, for example:

fn-bea:value($CUSTOMER/CUSTOMER_ID)

An update mapping should always use fn-bea:value, whether Oracle Data Service
Integrator auto-generates the mapping or you draw it. If you remove the
fn:bea:value function from the expression and simply use an XQuery path
expression ($CUSTOMER/CUSTOMER_ID), the element becomes disabled in the update
map and you see this error message:

The expression does not match the expected type for this element
The expression assigned to this element is not valid
Hint: did you forget to use the value function?

The fn-bea:value function is required, because an update map updates a Service Data
Object (SDO) and requires a special XML structure called a datagraph that includes a

Table 6–1 XQuery Constructs

Type Description Example

Variable A variable already defined in a For Each
or Update block in the update map.

$$root is a special predefined variable
that refers to the root of the service's
XML type.

$ORDER_WITH_LINE_ITEM

$CUSTOMER

Constant A numeric, string, or other constant. "a"

"12345"

Constant Cast A constant cast to another XSD data type
using the parentheses operator.

xsd:date("2007-01-01")

Function A call to any XQuery function. You can
see the built-in and Oracle-provided
functions in the Design Palette. You can
use a variable, path, or constant as an
argument to a function.

fn-bea:value($CUSTOMER/FIRST_NAME)

Path An expression that locates an XML
element in a tree using variables,
elements, and attributes. The syntax is:

$VARIABLE_NAME
/elementName
@attributeName

$ORDER_WITH_LINE_ITEM/CUSTOMER_ORDER/ORDER_ID
6-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
change summary showing both the old and new values. The fn-bea:value function
handles the update to the SDO correctly.

If you do not use fn-bea:value, Oracle Data Service Integrator throws an exception
when you attempt to update the value.

6.1.6.3 See Also

Concepts
■ Understanding Update Maps

How Tos
■ How To Handle Unmapped Required Values (includes Cast a Constant)

■ How to Cast Using a Built-in XQuery Function

■ How To Cast Using a Custom XQuery Function

Other Sources
■ W3Schools XQuery Tutorial

6.1.7 Use the Source Editor
This section describes the Oracle Data Service Integrator Source editor and highlights
its editing features. The following topics are included:

■ Section 6.1.7.1, "What is the Source Editor?"

■ Section 6.1.7.2, "Searching Source"

■ Section 6.1.7.3, "Navigating to Specific Functions"

■ Section 6.1.7.4, "Color Coding"

■ Section 6.1.7.5, "Code Completion"

6.1.7.1 What is the Source Editor?
The Source editor is available from a tab in the Oracle Data Service Integrator Eclipse
perspective. As you build up your data service, the underlying source is always
available from this editor.

Data service source typically:

■ References a schema as the data service's XML type (for Entity data services).

■ Defines functions in the data service.

■ Declares namespaces for referenced data services.

■ Contains pragma directives to the query engine.

In addition, data services created from physical data sources contain physical source
metadata. For example, data services based on relational data describe the XML type
(such as xs:string), the XPath, native size, native type, null-ability setting and so
forth.

In developing data services there are many occasions when it is necessary or
convenient to view and/or modify source.

The Source editor allows you to directly edit data service source code, as well as
schemas. Changes to source are immediately reflected in other data service modes
Building XQueries 6-21

How To
such as the Query view editor; similarly, source is immediately updated when changes
are made through the Query editor or in Overview mode.

6.1.7.2 Searching Source
Eclipse offers several types of search.

■ You can find all occurrences of a string in Source view using Eclipse Search menu.
Each instance of the term in your project will be highlighted.

■ You can use page search (Ctrl-F). search to find the next occurrence of a term.
Standard search/replace functionality is available.

Figure 6–21 File Search in Eclipse

This graphic shows the File Search function in Eclipse.

6.1.7.3 Navigating to Specific Functions
To open Source View to a particular query function in Overview mode, first select the
function, then click the Source tab.

Tip: When a data service is created the root level of your dataspace
has "ld:" as its namespace. ld referred to the original name of Oracle
Data Service Integrator, Liquid Data.

declare namespace ns4= "ld:Update/PhysicalDSs/SDO_WLCO_SET";

Note: Data Service Annotations
6-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
6.1.7.4 Color Coding
XQuery documents in Source View are color-coded according to the following
scheme:

6.1.7.5 Code Completion
Code completion is available for XPath built-in and user-defined functions. Similarly,
function completion is invoked when you type a namespace prefix followed by a
colon.

Figure 6–22 Function Completion from Namespace

This graphic shows the code completion for a function.

Figure 6–23 XPath Completion in Source View

Color Meaning

Blue Keywords

Dark gray Comments

Magenta Variable

Dark green XML markup

Red Error conditions
Building XQueries 6-23

How To
This graphic shows the code completion for an XPath.

Figure 6–24 Selecting from Available XQuery Functions

This graphic shows the code completion for an XQuery function.

6.1.7.5.1 Error Identification

Syntax errors that occur in source either as a result of editing or as a result of changes
made in the XQuery Editor appear in the Problems tab.

Windows > Show View > Problems

Figure 6–25 Induced Error Condition in Source View

This graphic shows an error condition.
6-24 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference

6.2 Reference
These sections provide reference information for building XQueries:

■ Section 6.2.1, "XQuery Language Version Support"

■ Section 6.2.2, "Built-in XQuery Functions"

6.2.1 XQuery Language Version Support
Oracle Data Service Integrator supports the XQuery language as specified in XQuery
1.0: An XML Query Language, W3C Working Draft of July, 23, 2004. You can use any
feature of the language described by the specification.

Oracle Data Service Integrator supplements the base XQuery syntax with a set of
elements and directives that appear in Source View as pragmas. Pragmas are a
standard XQuery feature that give implementors and vendors a way to include custom
elements and directives within XQuery code.

The Oracle implementation of XQuery also contains some extensions to the language
and additional functions. Oracle extensions to XQuery and links to W3C
documentation are described in the XQuery and XQSE Developer's Guide
(http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/xquery/index.html).

6.2.2 Built-in XQuery Functions

XQuery Functions in Eclipse for WebLogic
Eclipse for WebLogic provides numerous XQuery functions in the Design Palette. If it
is not visible you can access it with:

Window > Show View > Design Palette

XQuery functions can be utilized in both Query and Update Map views.

Tip: ■Click on the error condition in the Problems tab, your cursor
will be placed on the relevant line of code.

■ Mouse over the error indicator in the Source editor, the complete
error condition will appear.

■ Right-click on the left margin of Source view several options
appear including the option to make line numbering active.

■ Right-click anywhere in Source view to access Source editor
Preferences including permanently displaying line numbering.
Building XQueries 6-25

Related Topics
Figure 6–26 XQuery Functions in the Design Palette

This graphic shows the XQuery functions.

6.3 Related Topics

How-to...
■ Section 1.3, "Example: How to Create Your First Data Services"

■ Test a Read Function and Simple Update

■ Test a Create or Delete Procedure

■ How To Develop Good XQSEs

Concepts...
■ Understanding Data Service Annotations

Reference...
■ XQuery Scripting Extensions

Tip:

■ For information on fn-bea XQuery functions, see the XQuery and
XQSE Developer's Guide.

■ For information on standard XQuery functions, see the W3C
XQuery 1.0 and XPath 2.0 Functions and Operators specification.
6-26 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

7

7Testing Update Procedures Using SDO Data

Graphs

This chapter is a brief overview of Service Data Objects and data graphs, which you
use to test update procedures in Eclipse for WebLogic. This chapter contains the
following sections:

■ Section 7.1, "Key Points"

■ Section 7.2, "Updates in Test View"

■ Section 7.3, "Optimistic Locking"

7.1 Key Points
Remember these points:

■ To test an Update procedure in Test view, you must submit a data graph as an
argument.

■ A data graph is an XML structure that contains the data you are changing, as well
as the original data.

■ When you update a relational data source, Oracle Data Service Integrator uses
optimistic locking. The data source is locked at update, not when the data is
initially retrieved.

7.2 Updates in Test View
When you test an Update procedure in Test view, you are actually updating a Service
Data Object (SDO) from within Eclipse for WebLogic.

Figure 7–1 Update in Test View
Testing Update Procedures Using SDO Data Graphs 7-1

Optimistic Locking
Selecting an Update Procedure in Test View

SDO is a programming model for Java platforms that unifies data programming across
many types of data sources. SDO is based on data objects, which are simply object
instances that contain data. You can update the data objects using either static or
dynamic data APIs. With a static API, the shape of the data is defined in advance.
However, with a dynamic data API, you can update properties at run time that are not
known at development time.

The SDO model is based on data graphs, which are collections of tree-structured data,
usually XML. A client retrieves a data graph from a data source, modifies it, and
applies the data graph back to the data source.

A data graph contains a <changeSummary> element with the original data you are
updating. It also contains an XML element with the new data. When both the old and
new data are passed back to the data object, the object can be updated.

Example 7–1 A Data Graph with Old and New Data

<sdo:datagraph xmlns:sdo="commonj.sdo">
 <changeSummary>
 <sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_SINCE>1999-01-01T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
 </changeSummary>
 <sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
 <CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

7.3 Optimistic Locking
When an SDO updates a relational source, it uses optimistic locking to avoid change
conflicts. With optimistic locking, the data source is not locked after the client acquires
the data. Later, when an update is needed, the data in the source is compared to a copy
of the data taken when it was acquired. If any of the underlying data was changed
before the client applies the changes, the update is rejected, and the client must
recover.

The optimistic locking policy is set for each relational data source.
7-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

8

8Understanding Query Plans

This chapter describes how to obtain and use query plans. This chapter contains the
following sections:

■ Section 8.1, "Using Query Plan View"

■ Section 8.2, "Analyzing a Sample Query"

■ Section 8.3, "Working with a Query Plan"

8.1 Using Query Plan View
To obtain a query plan for any function in your data service, select the Query Plan tab
and select a function, just as you would in Test View. In addition, as a convenience,
you can obtain an ad hoc query plan for XQuery or SQL.

The interface for Query Plan View is quite similar to that used for testing your query
functions. You select a function or procedure from a drop down list and then click the
Show Query Plan button.

A query plan identifies the following query components:

■ Joins

■ Outer join

■ Select statements

■ Data sources

■ Custom function calls

■ Order-bys

■ Remove duplicates

There are several ways that a query plan can be viewed:

■ Tree view. A collapsible graphical presentation of the query plan.

■ Text view. Presents the information as text.
Understanding Query Plans 8-1

Using Query Plan View
Figure 8–1 Customer Order Items Query Plan

Customer order items query plan

8-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Using Query Plan View
8.1.1 Query Plan Information and Warnings
The query plan shows both informational and warning messages. When a section of
the plan is flagged with a warning, the plan segment is highlighted in red. If you
mouse over the segment, the warning message appears.

Informational messages also can appear with plan segments. Such segments are
highlighted in yellow.

8.1.2 Printing or Saving Your Query Plan
There are two right-click options associated with query plans:

■ Prints the plan

■ Saves the plan

The default file name for the saved file will appear in the form:

<dataServiceName_qp>

If you right-click on the root element of the plan, Plan A right-mouse option on the
root element in the plan allows you to print a query plan to a printer or a file.
Right-click on any node in the plan and select either the print or print to a file option.

If you print to a file the filename will be of type XML. The name of the file will be the
function name followed by the letters _qp, as in: getCustomerView_qp.xml

The file can be saved anywhere in your application.

Table 8–1 Informational and Warning Messages Associated With Query Plans

Warning Message Type Informational Message Type

XQuery compiler: Typematch. Typematch issues will be
resolved by the compiler (may affect performance)

Audit. Auditing has been set for this
particular function (will affect
performance).

XQuery compiler: No where clause. There is no
predicate associated with the query function (will affect
performance).

Cache. Function is cached (may
enhance performance).

XQuery compiler: Untyped data. Possible untyped
atomic data found in the node constructor.

SQL pushdown generation details.

XQuery compiler: No such element. The element (name
provided) is not found in in-scope schemas.

NA

SQL generation: missing key. Underlying table/view
does not have a key.

NA

SQL generation: cannot generate subquery. isSubquery
property is set to false on the data service. (See the
"Function Annotations" section of the Understanding
Data Services Annotations section of the XQuery
Developer's Guide.

NA

SQL generation: cannot generate SQL for join
expression. Unable to translate join condition.

NA

SQL generation: cannot generate SQL for aggregate
expression (named). Function does not operate on a
sequence.

NA

SQL generation: fn:string() function encountered. Use
xs:string() instead since xs:string() can be pushed
down to the database for processing.

NA
Understanding Query Plans 8-3

Analyzing a Sample Query
8.1.3 Loading a Previously Saved Query Plan
You can load a previously saved query plan using the following steps:

1. Select

Load from file...

from the plan drop down box.

2. In the Browse File dialog locate an existing query plan in the current project.

3. Click Open.

The selected query plan will be appear.

8.2 Analyzing a Sample Query
Assume a query returns data related to order details after it is passed an order ID and
a customer ID.

The following is a "pseudocode" description of the query:

for electronic orders matching CustomerID and OrderID
 return order information and ship-to information
 for credit card information matching an AddressID
 return credit information and bill-to address information
 for electronic line item information matching the line item in the order
 return line item information

The statements represent mappings or projections in the data service. This can be
useful when trying to trace performance issues.

The join conditions are identified in the plan as a left-outer join driven by a complex
parameter. By definition, joins have left and right sides, each of which can contain
additional joins. One of the best uses of the query plan is to see how the query logic
works up the various data threads to return results.

8.3 Working with a Query Plan
Two options are available in Query Plan:

■ Expand All. This right-click menu option expands the currently selected element
and any children. If applied to the top-most element in the plan, all elements are
expanded.

■ Match highlighting. When you click on a variable name any elements (open or
closed) containing a match for that variable are highlighted. This feature helps you
trace variables in the query plan.

8.3.1 Identifying Problematic Conditions Through the Query Plan
When you show a query plan for a particular function, you may notice red or yellow
highlighting of particular routines. These correspond to warnings or informational
messages from the plan interpreter. For example, if a for statement is missing a where
clause (potentially leading to slow performance or retrieval of a massive amount of
data) a red warning will appear adjacent to the statement. Simply mouse-over the
highlighted section of the plan to view the information or warning.
8-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

9

9Managing Update Maps

This chapter describes how to manage update maps. This chapter contains the
following sections:

■ Section 9.1, "Understanding Update Maps"

■ Section 9.2, "Changing a Mapping"

■ Section 9.3, "Removing a Mapping"

■ Section 9.4, "Reverting Customizations"

■ Section 9.5, "Adding a Condition to an Update Block"

■ Section 9.7, "Adding an Update Map Procedure"

■ Section 9.8, "Determining the Scope of a Variable"

■ Section 9.9, "Reference"

■ Section 9.10, "How To"

■ Section 9.11, "Testing Update Maps"

■ Section 9.12, "How To Test an Update Procedure"

9.1 Understanding Update Maps
An update map allows you to easily update your logical entity data service without
having to write Java or XQSE code. This overview provides a foundation for
understanding what an update map is and how you can use one.

Oracle Data Service Integrator generates a default update map automatically when
you create a logical entity data service with a primary read function. You can see the
update map associated with a data service by clicking the "Update Map" tab at the
bottom of the screen (see the example that follows).
Managing Update Maps 9-1

Understanding Update Maps
Figure 9–1 Custom Order Update Map

Custom Order Map

In this overview, as a running example we use an update map for a data service that
joins together customers and orders.

The image to the left shows the update map for the data service (CustomerOrders.ds).
The orange arrow identifies the location of the "Update Map" tab.

An update map procedure is a create, update, or delete procedure that is implemented by
an update map. The update map maps values from the input to the update map
procedure to the inputs of the procedures in the underlying data services. These
underlying data services that the logical entity data service is composed of are referred
to as the source data services. In the previous example, the input is mapped to the two
source data services CUSTOMER and ORDERS. The blue arrows in the update map
show how the values are mapped.

A logical entity data service has a target type that describes the entity that the data
service is about. All read functions in the data service must return instances of the
target type and all update map procedures must accept instances of the target type as
input. For example, say that we have an entity data service about customers. The read
functions of this data service must return customers and update map procedures must
take customers as input.
9-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Understanding Update Maps
9.1.1 The Target Box
The target box displays the data type of the input to the update map procedures, and
the procedure icons. There is exactly one target block in an update map and it is
displayed on the right.

Figure 9–2 Target Box

Shows the Target Box which displays the data type of the input to the update map
procedures, and the procedure icons.

9.1.1.1 The Input Type
The input type (or, target type) is the type of the data that is passed to the update map
procedures. Elements and attributes from the input type are mapped to the update
blocks on the left.

9.1.1.2 Procedure Icons
The Create, Update, and Delete procedure icons indicate the status of the
corresponding update map procedures. They appear in the upper-right corner of the
target box. Each icon may have a green check, a yellow exclamation or a red 'X'. A
green check indicates that the update map is fully capable of implementing the
procedure. A yellow exclamation indicates that you can invoke the procedure, but
there may be problems at runtime. A red 'X' indicates there is a serious problem that
needs to be addressed. Any time that there is a red 'X' or a yellow exclamation on the
Managing Update Maps 9-3

Understanding Update Maps
icon, you can hover the mouse pointer over the icon to get a tool tip providing more
information (see Figure 9–3).

Figure 9–3 Procedure icons

Shows procedure icons indicating the status of update map procedures.

9.1.1.3 For Each Blocks
A for each block loops over elements in the input to the update map procedure. A for
each block is associated with a variable and a path expression. The path expression
defines the sequence to iterate over and the variable binds to elements in the sequence.
The variable may be referenced by expressions inside the for each block.

Figure 9–4 For Each Blocks

For Each Blocks

9.1.1.4 Update Blocks
An update block invokes the primary create, update, or delete procedure of a source
data service. It will invoke a procedure every iteration of the for each block that
9-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Understanding Update Maps
contains it. The contents of the update block represent the type of the input given to
the procedure. Each element and attribute in the update block is assigned a mapping
expression that determines what its value will be when the procedure is invoked. You
can select an element or attribute to view or change the expression that determines
what value it receives when the procedure is invoked (see the example below).

9.1.1.4.1 Procedure icons Like the target box, an update block also has a procedure
status icon. Here the icons indicate the ability of the update block to propagate creates,
updates, and deletes to the underlying data service. Otherwise, the meaning of the
icons is the same as it is for the target box.

9.1.1.4.2 Output variable A primary create procedure may return a key. If the update
block invokes a primary create procedure, it will bind the returned key to the output
variable (also referred to as the key variable). The purpose of having the output
variable available is for cases when the key value is generated automatically by an
external source but is not part of the input. For example, your source data service is a
wrapper for a customers relational database table. Say that the key of this table is an
attribute CUSTOMER_ID which is an auto-generated number. If you are inserting a
customer and some orders at the same time, you may need the auto-generated value
for CUSTOMER_ID to pass to the input of the create procedure for ORDERS. When
an update block results in the underlying update or delete procedure being invoked,
the output variable will bind to the empty sequence.

9.1.1.4.3 Condition An update block can optionally have a condition. The condition is a
Boolean expression that determines if the update block should be invoked or not. If
there is no condition, then the update block will always be invoked (see the example
below).

9.1.1.4.4 Dependencies When two or more update blocks appear as siblings within the
same for-each block, it may be desirable to specify dependencies between them (e.g.,
due to referential constraints), so an update block can also include a list of
dependencies. If update block A depends on update block B, update block B will
execute before update block A in the case of a create or update operation (and in the
opposite order in the case of a delete). Dependencies between update blocks that are
not within the same for each block are not necessary, as the execution of an update
map is implicitly outside-in.

9.1.1.4.5 Disabling an update block An update block can be disabled so that it will never
be invoked at runtime. You can disable an update block by right clicking on it and
selecting "Disable" The update block should then appear yellow instead of white to
indicate that it has been disabled. Disabling an update block is effectively the same as
adding a condition that is always false.
Managing Update Maps 9-5

Understanding Update Maps
Figure 9–5 Update Blocks

Update Blocks

The images to the left show the update map for the data service CustomerOrders.ds.
In the first image, the two orange arrows identify the two update blocks in the map.
One update map is for the source data service CUSTOMER and the other is for
ORDERS.

In this case, the ORDERS update block is selected and its details are identified by the
orange rectangle (select an update block by clicking on it). We can see that the output
variable for this update operation is $ORDERS_key. The condition is set to
fn-bea:value($order/status) eq "OPEN" which means that this update block will
only be executed when the input element status has the value "OPEN". $order is a
variable that is defined by the for each block containing the update block ("For Each
$order").
9-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Understanding Update Maps
Figure 9–6 Update Block Element

Update Block Element

In the second image, the orange arrow identifies the ORDER_TOTAL element of the
ORDERS update block. The orange rectangle identifies the mapping expression
($fn-bea:value($order/total)) for ORDER_TOTAL which is displayed because
ORDER_TOTAL is currently selected. The ORDER_TOTAL element will receive the
value of the total element when the source data service procedure is invoked.

9.1.1.5 The Return Key Block
The key block describes what will be returned by the update map create procedure. If
the data service does not have a key specified, then there will not be a key block and
there will never be more than one key block for an update map.
Managing Update Maps 9-7

Understanding Update Maps
Figure 9–7 The Return Key Block

The Return Key Block

The image to the left shows the update map for the data service CustomerOrders.ds.
The orange arrow identifies the key block in the update map. The key specified for the
CustomerOrders data service is the element CID so the key block constructs the CID
element to be returned and uses the output variable of the CUSTOMER update block
to get the value.

9.1.1.6 Customization
Oracle Data Service Integrator generates a default update map automatically when
you create a logical entity data service with a primary read function. This default
update map is generated based on the primary read function of the data service. As
you change the primary read function, the update map will be regenerated
automatically.

There are several ways to customize an update map. See the following topics for more
information:

■ Changing a Mapping

■ Removing a Mapping

■ Reverting Customizations

■ Editing XQuery Expressions

■ Adding a Condition to an Update Block
9-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Changing a Mapping
Figure 9–8 Customize

Customize

The image to the left shows the update map for the data service CustomerOrders.ds.
The orange arrow identifies the "customized" symbol that appears after something in
the update map has been changed. In this case, it is the mapping expression for
ORDER_STATUS that has been modified.

Clicking the Customized icon and choosing View Customization from the menu
displays a dialog showing the current customizations to the update map, including the
enabling of update blocks, any conditions that have been set, and any changes to the
mappings. This can help you to identify potential problems with the update map that
might occur after you make a change to the primary read function, for example. If a
problem has been identified, clicking OK accepts the correction and generates a new
update map.

Note that in previous versions of Oracle Data Service Integrator, customizing the
update map and then changing the primary read function resulted in the update map
no longer being automatically regenerated. In the current version of Oracle Data
Service Integrator, the update map is updated incrementally after customizations, as
required.

9.2 Changing a Mapping
This section describes how to change a mapping in a default update map generated in
Eclipse for WebLogic.
Managing Update Maps 9-9

Changing a Mapping
Once you have generated an update map, you can customize it by adding or removing
mappings, changing an XQuery expression, adding dependencies, or changing the
return type--all in Eclipse for WebLogic.

Figure 9–9 Sample Update Map

This graphic displays a sample update map.

Initially, an update map is generated from the primary read function of a logical data
service and changes with the read function.

Once you customize an update map, it is no longer linked to the primary read
function. If you change the primary read function after customizing the update map,
either in a dialog box or in the Source tab, the update map does not change as a result.
To re-link the update map to the primary read function, you must revert
customizations.

9.2.1 Example
To change a mapping:

1. Click the Update Map tab.

2. Right-click an existing mapping line, and choose Delete.
9-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Changing a Mapping
Figure 9–10 Deleting a Status Mapping

This graphic displays the deletion of a status mapping.

3. Drag from an element in the return type on the right to a new element in a data
source on the left.

Figure 9–11 Creating a Status Mapping

This graphic displays the creation of a status mapping.

4. Make sure that the Create, Update, and Delete procedure icons (on both the right
and left sides) are still enabled and not disabled.

5. Test the new mapping in the Test tab.

The CustomerOrderLineItem Service
In this service, you can draw a new mapping between elements of the same type.

1. Click the Update Map tab.
Managing Update Maps 9-11

Removing a Mapping
2. Right-click the mapping line between CUSTOMER_ORDER/STATUS in the return
type and CUSTOMER_ORDER/STATUS in the update block, and choose Delete.

3. Drag a new mapping from CUSTOMER_ORDER_LINE_ITEM/STATUS, the child
element in the return type, to CUSTOMER_ORDER/STATUS in the update block.
These elements have the same data type.

4. Make sure that the procedure icons are enabled.

5. Click CUSTOMER_ORDER/STATUS on the left, and check the new mapping in
the expression editor.

6. Click the Test tab.

7. Run a read function, then click Edit.

8. Choose a CUSTOMER_ORDER element, then change the value of the first
CUSTOMER_ORDER_LINE_ITEM/STATUS child element.

9. Click Submit.

10. Run the read function again, then check that the value of CUSTOMER_
ORDER/STATUS has changed.

In this example, the child element (CUSTOMER_ORDER_LINE_ITEM) has a multiple
cardinality, while the parent element (CUSTOMER_ORDER/STATUS) has a single
cardinality. You can see this by checking the XML return type in the Overview tab. By
default, the first child element value is read to update the data source. You can
override this behavior by adding a dependency or writing a custom update function.

When you map one element to another, be sure that the elements have the same or
compatible data types. To be compatible, data types must be in the same type
hierarchy in the XML Schema DataTypes specification, such as xs:integer and
xs:decimal. These types are cast automatically. If you draw a mapping between two
elements of different types and hierarchies, you must cast one data type to the other,
using a built-in cast function or a custom cast function.

9.3 Removing a Mapping
This section describes how to remove a mapping from an update map.

An update map shows mappings for required, optional, and key elements. In an
update map, optional elements are displayed with a question mark, and key elements
with a key symbol. A key element is usually required. If you remove a mapping from a
key element, it becomes disabled with a warning icon.

Figure 9–12 Mappings to LINE_ID and PROD_ID Deleted
9-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Adding a Condition to an Update Block
This graphic displays mappings to LINE_ID and PROD_ID deleted.

Removing a mapping might also cause create, update, or delete procedures to become
disabled. However, you can correct either of these conditions, by handling unmapped
required values.

If you need to remove a mapping, you can do so in either the update map or query
map.

To remove a mapping in the update map:

1. Click the Update Map tab.

2. Right-click the mapping line, then choose Delete.

3. If the element becomes disabled in the update block on the left, resolve it.

To remove a mapping in the query map:

1. In the Query Map tab, right-click the mapping, then choose Delete.

2. Handle any required unmapped values in the update map.

9.4 Reverting Customizations
This section describes how remove anything you have changed in an update map,
regenerating the update map from the primary read function.

You can undo all changes you have made to an update map. Undoing changes creates
a new update map, generating it from the primary read function. When you choose
Revert Customizations, all changes you have made to the update map are lost, even
changes that you have previously saved.

If the update map had errors or warnings that your changes corrected, the errors or
warnings will reappear.

To undo changes and generate a new update map:

1. Click the Update Map tab.

2. Right-click and choose Revert Customizations.

3. Correct any warnings, errors, or disabled procedure icons that appear.

9.5 Adding a Condition to an Update Block
This section describes how to add a condition to an update block in an update map.

In the update map, you can override an Update block by defining conditions in the
expression editor that determine when the block is updated.

A condition is a Boolean expression based on XQuery functions and values defined in
the update map, for example:

fn-bea:value($CUSTOMER/CUSTOMER_ORDER/TOTAL_ORDER_AMT) > 1000

For example, you might have a logical data service with a return type that combines
Customer, Order, and CreditRating data. Each customer can have multiple orders and
one credit rating.
Managing Update Maps 9-13

Adding a Condition to an Update Block
Figure 9–13 Return Type with Customer, Order, and CreditRating Data

This graphic displays a logical data service with a return type that combines Customer,
Order, and CreditRating data.

9.5.1 Example
In the update map, you may want to set a condition that a customer's credit rating can
only be updated if the customer places an order with an amount greater than 1000.00.

To set an update map condition:

1. Click the Update Map tab.

2. Click the update block on the left that contains the element for which you want to
set the condition (for example, the CREDITRATING box for the
CREDITRATING/RATING element).

You can now enter a condition in the expression editor.

3. Enter a condition in the Condition box, for example:

fn-bea:value($CUSTOMER/CUSTOMER_ORDER/TOTAL_ORDER_AMT) > 1000.00

4. Save the data service.

5. Click the Test tab.

The logical data service returns the data in Figure 9–14:
9-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Editing XQuery Expressions
Figure 9–14 Data Returned from Logical Data Service

This graphic displays the data returned by the logical data service.

6. Run a read function, then click Edit and attempt to submit a value for the element
that has the condition.

When you test the update map, you can only update the CREDITRATING data
source if TOTAL_ORDER_AMT for any of the customer's orders is greater than
1000.00.

9.6 Editing XQuery Expressions
The following sections describe how to edit XQuery expressions in the expression
editor in Eclipse for WebLogic:

■ Section 9.6.1, "Overview"

■ Section 9.6.2, "The fn-bea:value Function"

9.6.1 Overview
You can edit the generated XQuery expressions in an update map using the expression
editor.

The update map expression language is a subset of XQuery syntax. In an update map,
you can use any of the following XQuery constructs.

Table 9–1 Editing XQuery Expressions

Type Description Example

Variable A variable already defined in a For Each or Update block in the update
map.

$$root is a special predefined variable that refers to the root of the
service's XML type.

$ORDER_WITH_LINE_ITEM

$CUSTOMER

Constant A numeric, string, or other constant. "a"

"12345"
Managing Update Maps 9-15

Adding an Update Map Procedure
Namespace prefixes are declared in the data service's XQuery source, which you can
see in the Source tab. If a namespace is only used in the update map, and not in the
logical data service, you must declare it. If a namespace cannot be resolved, it is shown
with the prefix ns?.

The most common ways you use the expression editor are to:

■ Add a constant to an unmapped element

■ Cast a constant to an XSD data type, especially to resolve update block elements
with no mappings

■ Use an XQuery function available in the Design Palette to cast a value

■ Use a custom XQuery cast function you have written

9.6.2 The fn-bea:value Function
A mapping between an element in a return type and an element in an update block
uses the fn-bea:value function with a path name, for example:

fn-bea:value($CUSTOMER/CUSTOMER_ID)

An update mapping should always use fn-bea:value, whether Oracle Data Service
Integrator auto-generates the mapping or you draw it. If you remove the fn:bea:value
function from the expression and simply use an XQuery path expression
($CUSTOMER/CUSTOMER_ID), the element becomes disabled in the update map
and you see this error message:

 The expression does not match the expected type for this element

 The expression assigned to this element is not valid

 Hint: did you forget to use the value function?

The fn-bea:value function is required, because an update map updates a Service Data
Object (SDO) and requires a special XML structure called a datagraph that includes a
change summary showing both the old and new values. The fn-bea:value function
handles the update to the SDO correctly.

If you do not use fn-bea:value, Oracle Data Service Integrator throws an exception
when you attempt to update the value.

9.7 Adding an Update Map Procedure
This section describes how to add a create, update, or delete procedure to a logical
entity service.

Constant Cash A constant cast to another XSD data type using the parentheses
operator.

xsd:date("2007-01-01")

Function A call to any XQuery function. You can see the built-in and
Oracle-provided functions in the Design Palette. You can use a variable,
path, or constant as an argument to a function.

fn-bea:value($CUSTOMER/FIRST_
NAME)

Path An expression that locates an XML element in a tree using variables,
elements, and attributes. The syntax is:

$VARIABLE_NAME

/elementName

@attributeName

$ORDER_WITH_LINE_
ITEM/CUSTOMER_
ORDER/ORDER_ID

Table 9–1 (Cont.) Editing XQuery Expressions

Type Description Example
9-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Adding an Update Map Procedure
9.7.1 Overview
In a logical entity service, you can add create, update, and delete procedures (called
update map procedures) that act on underlying data sources. A procedure is an
operation that can have side effects, for example, a create procedure that adds a new
record to a database table and returns a key value.

You can create update map procedures visually in Eclipse for WebLogic and have the
framework generate XQuery pragma statements and source code, or you can write the
source code directly in XQuery or XQSE.

The XQuery pragma statement looks something like this:

(::pragma function <f:function kind="create" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com">

This statement defines a create procedure, with public visibility, that is primary. Even
though the pragma statement uses the keyword function, the operation you define is a
procedure, as you can see from the declaration:

declare procedure cus:createCustomerAndAddress($arg as
element(cus:CustomerAndAddress)*) as element(cus:CustomerAndAddress_KEY)*
external;

This line declares the procedure with the name createCustomerAndAddress, defines
one argument with the service's return type, and specifies a key as a return value.

9.7.2 Generating Default Procedures
When you generate default update map procedures, they have these parameters and
return values:

Before you create update map procedures, especially create procedures, add a key to
your service. A primary create procedure must return a key. Primary update and
delete procedures require the Return type as an argument; their non-primary
equivalents can be written to accept a key instead.

To generate a default update map procedure:

1. Create a key for your service.

2. In the Overview tab, right-click at the left, right, or top, and choose Add Update
Map Procedures.

Table 9–2 Parameters and Return Values

Type Parameters Return Value

Create The service's Return type The current key, empty if no key is defined

Update The service's Return type using a
changed-element kind

Empty

Delete The service's Return type Empty
Managing Update Maps 9-17

Adding an Update Map Procedure
Figure 9–15 Add Update Map Procedures

This graphic displays the Add Update Map Procedures dialog.

3. Select Add to indicate which procedures to add.

4. Add names in the Name fields.

5. Mark Primary to indicate if each procedure should be primary.

6. Click OK.

Figure 9–16 Added Procedures

This graphic displays the procedures added to the data service.

7. In the Overview tab, right-click a procedure name and choose Edit Signature.
9-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Adding an Update Map Procedure
Figure 9–17 Creating a Procedure Signature

This graphic displays the Edit Function Signature dialog.

8. Make any necessary changes to the procedure signature in the dialog box.

9.7.3 Designing Custom Procedures
You can also create procedures with the arguments and return types you choose. This
is useful for procedures in addition to the primary create, update, and delete
procedures.

To design custom procedures:

1. Click Overview.

2. Right-click at the top, left, or right, and choose Add Operation.
Managing Update Maps 9-19

Determining the Scope of a Variable
Figure 9–18 Add Operation

This graphic displays the Add Operation dialog box.

3. Choose a value for Visibility.

4. In the Kind field, choose create, update, or delete.

5. In the Name field, enter a procedure name.

6. (Optional) At Return Type, click Edit. Choose a primitive or complex type, then
click OK.

7. Click Add in the Parameters pane.

8. Choose a primitive or complex type from an XML or XSD file, then click OK.

9. In the Kind field, choose a value.

Choose element to use the exact XML element you selected as a parameter;
changed-element, if values in the element must be updated; schema-element, if the
element must be validated according to an XML schema.

10. Choose a value for Occurrence.

11. Click OK in both dialog boxes.

9.8 Determining the Scope of a Variable
This section describes how variables may be used when customizing an update map
expression. If you are new to update maps, it is recommended that you first read
Understanding Update Maps.

9.8.1 Variable Types and Scoping Rules
Variables may be defined by a for-each block or by an update block (as an output
variable). An output variable may be used in an expression if the expression is
contained within an update block that depends on the update block that defines the
variable. A for each block variable may be used by an expression if the expression is
immediately inside the for-each block that defines the variable. However, if the
9-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Determining the Scope of a Variable
defining for-each block contains any other for each blocks which also contain the
expression, the variable may not be used in the expression.

9.8.1.1 Example: an update map for a customer-orders data service
The image to the left shows an update map for a logical data service about customers
and orders (see Understanding Update Maps for more info). Notice that the update
block for customers is selected and the name of its output variable $CUSTOMER_key
is shown at the bottom of the screen (the output variable is also referred to as the key
variable). In this case, $CUSTOMER_key can be referenced anywhere from within the
update block for orders (e.g. in a mapping expression or in the condition for the
update block).

Figure 9–19 Using Variables for Customizing Maps

Using Variables for Customizing

Also notice that we have two for-each blocks that define the variables $customer and
$order. Within the update block for customers, only the $customer variable is visible
Managing Update Maps 9-21

Determining the Scope of a Variable
and within the update block for orders only the $order variable is visible (with one
exception which will be discussed next).

These restrictions are in place to prevent unintuitive or complicated behavior by the
update map at runtime. If these rules are too restrictive for your application, you may
want to consider using XQSE. However, there is one exception to the for each block
variable usage rule. If the variable is used as part of a path expression that references a
key value, then usage is valid as long as the expression is within the defining block. It
is important to note that updates will be effectively disabled for such "outside"
mappings (creates and deletes will still work).

9.8.1.2 Example: an outside mapping to a key value
In the image on the left, the CUSTOMER_ID element in the update block for orders is
selected and its mapping expression (fn-bea:value($customer/CID)) is shown at the
bottom of the screen. Normally, the variable $customer could not be used within the
orders update block since it is not directly contained within the corresponding for-each
block. However, since it is being used to reference CID it is allowed because CID is
equivalent to the key value of the customer data service. Updates for this outside
mapping will be disabled. That is, if customer/CID is modified in the input to the
update map procedure, the CUSTOMER_ID element in the orders update block will
not have the modified value.
9-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Determining the Scope of a Variable
Figure 9–20 Outside Mapping

Outside Mapping

9.8.2 Updating Foreign Key Values
The function fn-bea:coalesce takes 1 or more arguments and simply returns the first
argument that is not empty. The function fn-bea:coalesce-equal works the same
way except that it additionally checks that all non empty arguments are equal. If it
finds that any two non empty arguments are not equal, it will throw an exception at
runtime. The automatically generated update map may use fn-bea:coalesce-equal
for the mapping expression for foreign key values if it can be inferred from the target
data service that the values should always be equal.

If an argument to fn-bea:coalsece-equal contains an a path expression that falls
under the exception to the for each block variable rule mentioned above, then updates
will be disabled for the entire expression containing fn-bea:coalsece-equal. If your
automatically generated update map is in this situation and you wish to be able to
Managing Update Maps 9-23

Determining the Scope of a Variable
update the foreign key value, you can simply remove the argument that contains the
offending mapping. (See the example that follows)

9.8.2.1 Example: coalesce-equal
In the first image on the left, the CUSTOMER_ID element in the update block for
orders is selected and its mapping expression (fn-bea:coalesce-equal(...)) is
shown at the bottom of the screen. When the update map is used to create a customer
with orders, the value for CID may not be known as it may be auto generated by an
underlying relational database. This means that $customer/CID and $order/OCID
may be empty. In this case the generated key value will be returned and the orders will
get the value for CUSTOMER_ID via fn-bea:value($CUSTOMER_key/CUSTOMER_ID). If
the update map is used to update or delete customers and orders, $CUSTOMER_
key/CUSTOMER_ID will be empty but $customer/CID and $order/OCID should not
be.

Figure 9–21 Updating Foreign Key Values: Customer ID

Updating Foreign Key Values: Customer ID

9-24 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Reference
This mapping contains an outside reference to the variable $customer so updates will
be disabled for customer/order/OCID in the input to the update map procedure. To
enable updates to OCID, we can remove the outside mapping. The second image on
the left shows what the update map looks like after this modification.

Figure 9–22 Outside Reference Mapping

Outside reference mapping

9.9 Reference
This section provides reference information for managing update maps.

9.9.1 Update Map Functions
The following functions are useful in update map expressions (e.g. update block
conditions and mapping expressions).

fn-bea:coalesce($arg ... as xdt:anyAtomicType) as xdt:anyAtomicType?

The function fn-bea:coalesce takes 1 or more arguments and returns the first that is
not empty.
Managing Update Maps 9-25

How To
fn-bea:coalesce-equal($arg ... as xdt:anyAtomicType) as xdt:anyAtomicType?

The function fn-bea:coalesce-equal takes 1 or more arguments and returns the first
that is not empty. If any of its non empty arguments are not equal then it will throw an
exception at runtime. (see also How to update a foreign key values mapped using
fn-bea:coalesce-equal)

fn-bea:value($arg as item()?) as xdt:anyAtomicType?

The function fn-bea:value is essentially the same as fn:data except that it
additionally indicates to the Oracle Data Service Integrator runtime that the variable
$arg may bind to a changed-element() depending on the context (like in the case of an
update procedure driven by the update map). As a general rule, fn-bea:value should
always be used in place of fn:data in update map expressions since they should be
written to support all three flavors of update procedures (create, update, and delete).

fn-bea:ambiguous($arg ... as xdt:anyAtomicType) as xdt:anyAtomicType?

The function fn-bea:ambiguous may appear in the default update map when there
are multiple target values (on the right) that map to the same source value (on the left).
For example, if the same value is projected (that is, returned) more than once in the
primary read function, this may result in fn-bea:ambiguous being used in the
corresponding update map by default. It is expected that the user will manually
remove the call to fn-bea:ambiguous when resolving the ambiguous mapping. For
example, the user may choose to pick one of the arguments in the fn-bea:ambiguous
call to be the new mapping expression and disregard the others.

9.10 How To
This section describes procedures for managing update maps.

9.10.1 How To Recognize When Something is Wrong
The following sections describe why an update map might appear disabled and point
you to solutions:

■ Section 9.10.1.1, "Understand the Symptoms"

■ Section 9.10.1.2, "Check the Problems Tab"

■ Section 9.10.1.3, "Resolve Errors and Warnings"

9.10.1.1 Understand the Symptoms
The signs of a disabled update map appear on the update map itself, in the Generate
Log, and in the Problems tab.

In the update map, you may see disabled (or yellow) update blocks. When an update
block is completely or partially disabled, updates do not occur in the data source the
block maps to.
9-26 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
Figure 9–23 Disabled Update Block

A totally disabled update block

9.10.1.1.1 A Disabled Update Block An update map procedure that is disabled has a
yellow or red status indicator at the upper right.

9.10.1.1.2 Disabled Procedure Icons You might also see a message with a link to view the
Generate Log.

9.10.1.1.3 A View Generate Log Message Clicking the link displays the Update Map
Generate Log window.

9.10.1.1.4 Update Map Generate Log Here is an example of an Update Map Generate log.

Figure 9–24 Update Map Generate Log

Example of an Update Map Generate log

9.10.1.2 Check the Problems Tab
If you see disabled procedure icons or other symptoms, you should also check the
Problems tab for detailed Error and Warning messages. The Problems tab shows errors
Managing Update Maps 9-27

How To
and warnings that the View Generate Log message does not. For example, this update
map shows two errors and three warnings.

Figure 9–25 Check the Problems Tab for a Disabled Update Map

Checking for problems.

Errors prevent you from deploying the update map to the Oracle Data Service
Integrator server and testing it. Warnings tell you that something is not supported in
the update map, but the update will proceed.

To sort the Problems tab, as shown above:

1. Click the Problems tab.

2. Click the triangle icon at the upper right, and choose Sorting.

3. Sort first by Resource, then by Severity and Description.

9.10.1.3 Resolve Errors and Warnings
You may have a valid reason to use a certain logical data service design that initially
generates an update map with constraints. This is fine. You can find workarounds and
resolve most disabled update map conditions.
9-28 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
9.10.1.3.1 Disabled Update Blocks When you encounter a disabled, or yellow, update
block, you can right-click it and choose Enable. The most likely reasons an update
block is disabled are shown below.

Once you enable the update block, you will likely see:

■ Elements that have warnings or are completely disabled

■ Disabled Create-Update-Delete procedure icons

9.10.1.3.2 Disabled Procedure Icons When you see disabled procedure icons, check the
update blocks on the left. The procedure icons in the return type on the right naturally
result from those on the left.

In general, the status indicators for update map procedures are:

■ Green if the update map will work at run time as you have designed it, even if
parts of it are disabled

■ Yellow if some parts of the update map will work at run time, but you might see
run-time errors on other parts

■ Red if the update map will not work at run time

If you want to correct an update map before run time, a red or yellow status indicator
on the left can have any of the following meanings.

9.10.2 How To Understand Mappings with Different Data Types
The following sections describe casts between elements of different data types in an
update map:

■ Section 9.10.2.1, "Overview"

Table 9–3 Status Indicators

Status Type of Procedure Meaning Solution

Red Create, Update, Delete The data service does not have a
primary procedure of that type.

Create a primary procedure

(Overview tab, right-click, Add
Update Map Procedures, select
Primary)

Red Update, Delete The data service does not have a
key.

Create Logical Data Service Keys

Red Create The update block has missing
mappings or mappings of the
wrong data type

Understand Mappings with
Different Data Types

Handle Unmapped Required
Values

Red Create The return type contains
non-element or non-attribute
XML items that are not allowed.

Handle an Unsupported Node
Constructor Error

Red Create, Update, Delete The update block references a
variable from another disabled
update block.

Right-click the disabled block,
and choose Enable.

Red Update, Delete The data service has a key, but
one or more key fields have
missing mappings, mappings of
the wrong data type, or mappings
to invalid items in the return type.

Handle Unmapped Required
Values

Yellow Update, Delete The update block has missing
mappings, mappings of the
wrong data type, or mappings to
invalid items in the return type.

Understand Mappings with
Different Data Types

Handle Unmapped Required
Values
Managing Update Maps 9-29

How To
■ Section 9.10.2.2, "Built-In Cast Functions"

■ Section 9.10.2.3, "Custom Cast Functions"

9.10.2.1 Overview
In an update map, you may need to map elements of different data types between a
return type and an underlying data source.

For example, a return type might contain an xsd:dateTime element that maps to an
xs:date element in the data source. When data types differ, you need to cast between
them in order to enable the update map. Type differences occur because a logical data
service design can differ from actual physical data sources or because data types used
by an underlying data source are unknown at design time.

When the update map is first generated, the element in the data source has no
mapping and a warning icon.

If you draw a mapping line in Update Map view, from the xsd:dateTime value in the
return type to the xsd:date value in the update block, the element becomes disabled.

Figure 9–26 An Error Due to Data Type Mismatch

Element Data Type Mismatch

You can fix this type of error by using different techniques to cast, according to the
data types you are casting.

First, review the built-in datatypes chart in the XML Schema Datatypes specification to
understand the hierarchies of data types used in XML Schema. The type xs:string
and its subtypes belong to one type hierarchy, and the type xs:decimal and its
subtypes belong to another.

Casts between elements of different types are handled in one of three ways:

1. Type promotion. If both data types are in the same type hierarchy and the cast
moves up the hierarchy, Oracle Data Service Integrator casts them implicitly. This
is known as type promotion. For example, xs:token is promoted to xs:string and
xs:integer is promoted to xs:decimal. Implicit casts are implemented in Oracle
Data Service Integrator according to the XQuery 1.0 specification.

2. Built-in cast function. If the types do not use a cast up the same type hierarchy and
type promotion does not occur, you can use a built-in XQuery function available
from the Design Palette.

3. Custom cast function. If a built-in XQuery function is not available, you can write
your own custom cast function in the Source tab of your primary logical data
service or in a specialized library data service that performs casting.

9.10.2.2 Built-In Cast Functions
If a built-in function provides the cast you need, you can simply drag it from the
Design Palette to the expression editor and enter argument values.
9-30 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
Figure 9–27 Built-in XQuery Casting Functions

Built-in XQuery Casting Functions

9.10.2.3 Custom Cast Functions
Before you write a custom XQuery cast function, make sure that XQuery allows the
cast you want to perform. Check the casting section in the XQuery 1.0 specification to
understand the rules for casting between types in XQuery, especially the chart that
describes casting between primitive types.

Remember these general guidelines:

■ The primitive type chart shows which casts can be performed between primitive
types. For example, an integer (such as 44) can always be cast to a string ("44").
However, a string can only be cast to an integer in some cases. The string "55" can
be cast to the integer 55, but the string "hello" cannot be cast to an integer.

■ If both the source and target types are derived from the same primitive type, you
can cast between them.

■ If the source and target types are derived from different primitive types, you are
casting across the type hierarchy. In general, you need to cast the source type up
the hierarchy to its primitive type; then, cast from the primitive type of the source
to the primitive type of the target; and last, cast from the primitive type of the
target to the target type (see the rules in the XQuery 1.0 specification).

Once you write the cast function, you can test it in Eclipse for WebLogic, before you
run it with a client application.

9.10.3 How to Cast Using a Built-in XQuery Function
The following sections describe how to use a built-in XQuery function to cast values of
different data types in an update map.

9.10.3.1 Example
You can cast an element from one data type to another using a built-in XQuery cast
function when:

■ Type promotion does not occur.

■ The data comes from a variable or an other source that is not a constant
Managing Update Maps 9-31

How To
■ A built-in function that performs the cast you want is available in the Design
Palette.

To cast using a built-in XQuery function:

1. Click the Update Map tab.

2. Click the disabled element in an update block on the left.

In the expression editor, you see an expression that uses fn-bea:value() to map
from the return type on the right, for example:

fn-bea:value($CUSTOMER/CUSTOMER_SINCE)

This expression represents a dateTime value coming from the return type.

3. Open the Design Palette

Window > Show View > Design Palette

4. Expand XQuery Functions, then a category (for example, Duration, Date, and
Time Functions).

5. Drag the function you want to the expression editor (for example,
fn-bea:date-from-dateTime), leaving the existing expression there.

6. If feasible, use the existing expression as an argument to the function, for example:

fn-bea:date-from-dateTime(fn-bea:value($CUSTOMER/CUSTOMER_SINCE))

Here the original value is used as the $dateTime argument to
fn-bea:date-from-dateTime().

7. Test the update map cast to make sure it works as you expect.

9.10.4 How To Cast Using a Custom XQuery Function
This section describes how to write a custom XQuery function to cast between
elements of different data types in an update map.

9.10.4.1 Example
An example of a custom XQuery cast function is one that casts from integer to string.
Suppose the logical data service's return type uses xsd:integer for the TELEPHONE_
NUMBER element, while the underlying data source uses xsd:string.

Figure 9–28 Mapping from Integer to String
9-32 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
Mapping from Integer to String

The mapping between the two TELEPHONE_NUMBER elements is initially disabled.
The value from the return type is something like 4155551212, which can easily be
converted between xsd:integer and xsd:string. Check the type casting chart in the
XQuery 1.0 specification to make sure the cast you want to perform is allowed.

To write a custom XQuery cast function:

1. Click the Source tab.

2. Write an XQuery function that takes an argument of the data type you are casting
from and returns a value of the data type you are casting to, for example:

declare function tns:intToString($theint as xs:integer) as xs:string {
xs:string($theint)
};
Assign your function to an XML namespace your logical data service uses. Be sure
both the parameter and return type are valid XML Schema data types. Then, write
a statement that performs the cast.

3. In the Update Map tab, click the element in the data source on the left.

At this point, the element is disabled: . Its value is taken from the return type, so
its XQuery expression looks something like this:

fn-bea:value($CUSTOMER/TELEPHONE_NUMBER)

Remember that the value from the return type is an xs:integer.

4. Add your new cast function, using the existing expression as its argument, for
example:

tns:intToString(fn-bea:value($CUSTOMER/TELEPHONE_NUMBER))

At this point, the update map should be completely enabled.

5. If the disabled icon on the element does not disappear immediately, click another
element in the update map.

6. Test the update map cast to make sure it works as you expect.

9.10.5 How To Test an Update Map Cast
This section describes how to test a cast between elements of different data types in an
update map.

9.10.5.1 Example
The easiest way to test an update map cast function is to use Read-Edit-Submit from
the Test tab in Eclipse for WebLogic.

Suppose you are casting from xs:integer to xs:string. To test the cast function, you
need to retrieve data from the data source as xs:string and display it in the Test tab as
xs:integer, so you also need to cast in the reverse direction. The primitive types
casting chart in the XQuery 1.0 specification shows that you can always cast from
xs:integer to xs:string, but you can only cast from xs:string to xs:integer in some cases.

Caution: When you test the cast function, you also need to perform
the opposite cast (in this case, xsd:string to xsd:integer).
Managing Update Maps 9-33

How To
To test an update map cast using Read-Edit-Submit, you first edit the source code of
the primary Read function to do a comparable cast when the data is read from the data
source. For example, suppose you want to cast from dateTime to date during an
update. To test, you must first cast the date value to dateTime when you read it from
the data source.

Before you use this test method, check the casting chart in the XQuery specification to
make sure the XQuery cast you want to perform works in both directions. In the
example given here, the cast is from xs:dateTime to xs:date in the update map and
from xs:date to xs:dateTime in the primary Read function. Both casts must be valid
in XQuery.

1. Click the Source tab.

2. Locate the primary Read function, which looks something like this:

declare function tns:read() as element(cus:CUSTOMER)*{
for $CUSTOMER in cus1:CUSTOMER()
return
 <cus:CUSTOMER>
 <CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 <CUSTOMER_SINCE>{fn:data($CUSTOMER/CUSTOMER_SINCE}</CUSTOMER_SINCE>
 <EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
 <TELEPHONE_NUMBER>{fn:data($CUSTOMER/TELEPHONE_NUMBER)}
</TELEPHONE_NUMBER>
 <SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
 <BIRTH_DAY?>{fn:data($CUSTOMER/BIRTH_DAY)}</BIRTH_DAY>
 <DEFAULT_SHIP_METHOD?>{fn:data($CUSTOMER/DEFAULT_SHIP_
METHOD)}</DEFAULT_SHIP_METHOD>
 <EMAIL_NOTIFICATION?>{fn:data($CUSTOMER/
EMAIL_NOTIFICATION)}</EMAIL_NOTIFICATION>
 <NEWS_LETTTER?>{fn:data($CUSTOMER/NEWS_LETTTER)}</NEWS_LETTTER>
 <ONLINE_STATEMENT?>{fn:data($CUSTOMER/ONLINE_STATEMENT)}
</ONLINE_STATEMENT>
 <LOGIN_ID?>{fn:data($CUSTOMER/LOGIN_ID)}</LOGIN_ID>
 </cus:CUSTOMER>
};

3. Locate the element you want to cast and add a XQuery cast expression to it. For
example, this casts an xs:date to an xs:dateTime in the CUSTOMER_SINCE
element:

<CUSTOMER_SINCE>{ xs:dateTime(fn:data($CUSTOMER/CUSTOMER_SINCE)) }
</CUSTOMER_SINCE>

To cast an xs:string to an xs:integer in TELEPHONE_NUMBER, enter this:

<TELEPHONE_NUMBER>{xs:integer(fn:data($CUSTOMER/TELEPHONE_NUMBER))
}</TELEPHONE_NUMBER>

4. Click the Test tab.

5. At Select Operation, choose the service's primary Read function and click Run.

In the Result pane, you might see that the values have been cast, if the new type
looks different.

6. Click a customer record, then Edit.

7. Change one of the values you have just cast.
9-34 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
If you are working with xs:date and xs:dateTime, change the date portion of the
value, rather than the time. The time is truncated when you store the value in the
data source as an xs:date. When you read it back as an xs:dateTime, it looks like
00:00:00.

8. Click Submit.

You should see this message:

Data has been submitted

9. Click Run again to verify the change.

9.10.6 How To Handle Disabled Procedures in Underlying Data Sources
This section explains how to enable an update map for a logical data service when an
underlying data source has disabled procedures.

9.10.6.1 Check the Data Sources
If a Create, Update, or Delete procedure is disabled in a data source that your logical
data service uses, part of the update map is disabled as well. Specifically, the update
block that maps to the data source is disabled.

For example, you might have a physical data service that is missing a Create, Update,
or Delete procedure.

Figure 9–29 Physical Data Service with No Create or Delete Procedure

Physical Data Service with No Create or Delete Procedure

As a result, the update block that maps to this data source has its Create and Delete
procedures disabled.
Managing Update Maps 9-35

How To
Figure 9–30 Update Block with Disabled Create and Delete Procedures

Update Block with Disabled Create and Delete Procedures

9.10.6.2 Resolve the Disabled Procedures
If you do not need to use the procedures that are disabled in the underlying data
source, you can disable the entire update block:

1. Click Update Map.

2. Right-click the update block, and choose Disable.

Figure 9–31 Disable the Update Block

Disable the Update Block

Disabling the block might also disable procedures or key elements in other blocks.

3. Resolve any mappings that become disabled.
9-36 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
9.10.6.3 Add or Enable Procedures in the Underlying Data Source
You can also enable procedures in or add them to the underlying data source. For
example, to add a procedure to a physical data service:

1. Open the physical data service, and click the Overview tab.

2. Right-click near the top, and choose Add Operation.

Figure 9–32 Add Operation

Add Operation

3. Choose the Visibility and Kind of the procedure, then enter a name.

4. Click Add to add a parameter. Enter a Parameter Name, then choose a Type,
Kind, and Occurrence. Click OK.

5. Select Primary if you want the procedure to be primary for its type.

6. Click the Update Map tab.

7. Right-click in the update map, then choose Revert Customizations.

Be sure that the procedures in the update block that maps to the underlying data
source is enabled.

9.10.6.4 Change the XML Return Type
You can also change the XML schema the logical data service uses for its return type.
For example, you might remove the element that attempts to update the disabled data
source. You can even do this dynamically from Eclipse for WebLogic.

To change the return type from Eclipse for WebLogic:

1. Open the logical data service, and click the Overview tab.

2. Right-click the schema, then choose Edit Schema.

3. Remove the entire element, between the <xs:element> and </xs:element> tags.

4. Click the Query Map tab.
Managing Update Maps 9-37

How To
5. Right-click the return type, then choose Show Type Difference.

You should see the removed elements in blue.

Figure 9–33 Show Type Difference

Show Type Difference

6. Right-click the removed element, and choose Remove Element.

7. Click the Update Map tab.

8. Resolve any disabled elements or procedures.

9.10.7 How To Handle Non-Unique Joins
This section shows how to enable an update map when a logical data service uses a
non-unique join between relational data sources.

9.10.7.1 Understand the Join
In a logical data service, you can join tables visually in the Query Map by dragging
from a key element in one data source to a corresponding key element in another data
source.
9-38 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
Figure 9–34 Joining tables in the Query Map

Joining tables in the Query Map

You can also create a join by adding an XQuery WHERE statement in the expression
editor or the Source tab:

where $CUSTOMER/CUSTOMER_ID eq $CREDIT_CARD/CUSTOMER_ID

If both tables are in the same database, the XML return type is nested, and you are
joining on a unique key, Oracle Data Service Integrator creates a left outer join. You can
see the SQL in the query plan for the service (click the Plan tab, then Show Query
Plan):

SELECT ...
FROM "RTLCUSTOMER"."CUSTOMER" t1
LEFT OUTER JOIN "RTLCUSTOMER"."ADDRESS" t2
ON (t1."CUSTOMER_ID" = t2."CUSTOMER_ID")

If the XML return type is flat, Oracle Data Service Integrator creates an inner join, and
the SQL looks like this:

SELECT ...
FROM "RTLAPPLOMS"."CUSTOMER_ORDER" t1
JOIN "RTLCUSTOMER"."CUSTOMER" t2
ON (t2."CUSTOMER_ID" = t1."C_ID")

A left outer join returns rows from the left (meaning, the first) table, even if they do not
match any rows in the right (second) table.

An inner join requires that a value in the left table match a value in the right table in
order for the left values to be included in the result. For example, you might match one
customer to many orders, creating a joined table like this:
Managing Update Maps 9-39

How To
Here, CUSTOMER_ID is a unique key and has one row in the relational source. However,
in the joined table, CUSTOMER1 has three orders and three rows. If you update
information for CUSTOMER1 such as FIRST_NAME in the joined table, where each
customer has multiple rows, the value to use to update the underlying data source is
ambiguous.

With a non-unique join, all or part of the update map is temporarily disabled and
looks like this:

Figure 9–35 A Disabled Update Block

A Disabled Update Block

When you click View Generate Log in the update map, you see a message like this
one:

The primary read function has a non-unique join involving this data source.

In your function or procedure code, in the Source tab, you might see for statements
directly nested within each other, without an intervening WHERE clause:

for $CUSTOMER in ns1:CUSTOMER()
for $CREDIT_CARD in ns2:CREDIT_CARD()
return

Or, you might see XML elements directly nested within each other without intervening
SQL statements:

<ns7:CUSTOMER_PROFILE>
 <CUSTOMER>
 ...
 {
 <CREDIT_CARD>

Table 9–4 Inner Join Value Requirements

CUSTOMER_ID FIRST_NAME LAST_NAME EMAIL_ADDRESS ORDER_ID ORDER_DT TOTAL_ORDER_AMT

CUSTOMER1 Jack Black jack@yahoo.com ORDER_1_0 2001-10-01 156.39

CUSTOMER1 Jack Black jack@yahoo.com ORDER_1_1 2002-02-17 596.65

CUSTOMER1 Jack Black jack@yahoo.com ORDER_1_2 2002-07-07 656.65
9-40 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
 ...
 </CREDIT_CARD>
 }
 </CUSTOMER>
</ns7:CUSTOMER_PROFILE>

These are all symptoms of a non-unique join. You need to enable the update map so
that you can deploy the service, test it, and make it available to client applications.

In an update map, the most common causes of a non-unique join are:

■ A logical data service with a flat (non-nested) return type.

■ An incorrect block scope in the query map.

■ An incorrect table join, or no table join, in the query map.

■ An attempt to join on a field other than a key field.

9.10.7.2 Correct the Block Scope
If your logical data service has a nested XML return type, scope the data sources to
XML blocks within the return type.

1. In Query Map, click the zone icon of a data source.

2. Drag the zone icon from the data source to the nested element in the return type.

3. Mouse over the zone icon in the data source. Verify that only the nested element is
highlighted in the return type.

Figure 9–36 Checking the Scope in the Return Type

Checking the Scope in the Return Type

9.10.7.3 Correct the Table Join
You might also get a non-unique join if the data sources are not joined correctly. You
can join the tables either visually in the Query Map or by entering a WHERE clause in
Managing Update Maps 9-41

How To
the expression editor or the Source tab. Be sure to join tables on a key element, marked
like this:

ORDER_ID string-

To join tables visually:

1. Click the Query Map tab.

2. Drag from a key element in one data source to the same key element in another
data source (for example, $CUSTOMER/CUSTOMER_ID to $ADDRESS/CUSTOMER_ID).

3. Click the Source tab and expand the read function to check the location of the
WHERE clause. For example, if your XML return type is nested, the XQuery code
should also be nested:

for $CUSTOMER in ns1:CUSTOMER()
return
 ...
 for $CREDIT_CARD in ns2:CREDIT_CARD()
 where $CUSTOMER/CUSTOMER_ID eq $CREDIT_CARD/CUSTOMER_ID
 return
 ...

To use the expression editor:

1. Click the Query Map tab.

2. Click the For block of the data source you are joining to.

3. In the expression editor, click Add Where Clause.

4. After the Where keyword, add the elements to be joined (for example,
$CUSTOMER/CUSTOMER_ID eq $CREDIT_CARD/CUSTOMER_ID).

5. Click Save.

6. Check the WHERE clause in the Source tab, as described above.

Remember that Oracle Data Service Integrator creates a left outer join if both tables are
in the same database and the XML return type is nested. If the XML return type is flat,
Oracle Data Service Integrator creates an inner join.

9.10.7.4 Enable Update Blocks and Procedures
If your service has a return type with a flat structure, you may get a non-unique join,
even if the join is correct in the Query Map and the Source tab.

If this happens, or if all or part of the update map is disabled for any reason, you can
enable an update block or the Create-Update-Delete procedures within the block.

To enable a disabled (yellow) update block:

1. Right-click in the block, and choose Enable.

The update block should now have a white (enabled) background. The Create,
Update, or Delete procedure icons might still appear red or yellow, if they are
disabled. However, you should be able to test the primary read function.

2. Click the Test tab.

3. At Select Operation, choose the primary read function, and click Run.

To enable an update map procedure:

1. If an element is marked with a Warning icon indicating that a mapping is required,
select it.
9-42 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
2. In the expression editor, give the element a value with the correct data type.

3. Continue for all disabled elements.

4. In the Test tab, test an update procedure to ensure that the value overrides you
have entered do what you want.

9.10.7.5 Test a Non-Unique Join
Let's go back to the sample joined table data (which we can see in the Test tab, by
choosing the primary read function and clicking Run):

In this case, the XML return type is flat, and Oracle Data Service Integrator has created
an inner join between the CUSTOMER and CUSTOMER_ORDER tables in underlying
relational data sources. In the joined table view, one customer has many orders. The
CUSTOMER_ID can appear multiple times, but the ORDER_ID is unique.

Once the update map is enabled, you can update data in either the CUSTOMER or
CUSTOMER_ORDER table in the data sources:

1. Click a row in the joined table data, then click Edit.

2. Locate the correct node in the XML tree data, and expand it.

3. Click the value you want to change, then edit it.

4. Click Submit.

If you update TOTAL_ORDER_AMT, from the CUSTOMER_ORDER table, the
amount changes in one row of the joined table view.

However, if you update EMAIL_ADDRESS, the email address changes in one row of
the data source table and in all rows for that customer in the joined table view.

9.10.8 How To Handle Non-Unique Values
This section describes how to handle an update map that is disabled because two
values in a return type map to one value in a data source.

9.10.8.1 Example
In a query map, you might attempt to map one value in a data source to two values in
an XML return type. When the update map is generated and the flow is reversed, two
values map from the return type to one in the data source, which creates an update
error.

Table 9–5 Testing a Non-Unique Join

CUSTOMER_ID FIRST_NAME LAST_NAME EMAIL_ADDRESS ORDER_ID ORDER_DT TOTAL_ORDER_AMT

CUSTOMER1 Jack Black jack@yahoo.com ORDER_1_0 2001-10-01 156.39

CUSTOMER1 Jack Black jack@yahoo.com ORDER_1_1 2001-02-17 596.65

CUSTOMER1 Jack Black jack@yahoo.com ORDER_1_2 2001-07-07 656.65
Managing Update Maps 9-43

How To
Figure 9–37 An Error from a Non-Unique Value

An Error from a Non-Unique Value

The cause of the error is that two values are attempting to update one in the data
source. This creates a build error in the logical data service, and you cannot deploy or
test it. You cannot right-click and enable the update block either. The update doesn't
work unless you write a custom update function in XQSE.

The best solution is to disable the multiple mapping in the Query Map tab:

1. Click Query Map.

2. Delete the mapping line from the data source to the second, duplicate element in
the return type. This should reverse the error.

3. Save the data service and click Update Map to check the change.

4. If the error still exists, right-click and choose Revert Customizations.

9.10.9 How To Handle Unmapped Required Values
This section describes how to enable an update map when the data sources on the left
have required elements that are not mapped from the return type on the right.
9-44 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To
9.10.9.1 Overview
When required mappings are missing, the Create-Update-Delete procedures for the
update block are disabled. That means you cannot create, update, or delete the
underlying data sources. In Eclipse for WebLogic, the update map looks like this.

Figure 9–38 Required Mappings Are Missing

Required Mappings Are Missing

■ A mapping that was deleted from or did not exist in the query map.

■ An XML return type that does not contain all required elements. This can be valid,
especially if you do not want to expose all elements in your data sources to a client
application.

If an element is required but does not have a value, it is marked with a Warning icon.

In either case, the Create, Update, or Delete procedures do not work, so you need to
resolve the error. You can do either of these:

■ Draw the mapping in Query Map view.

■ Enter an override value (either an expression or a constant) in the expression
editor.
Managing Update Maps 9-45

How To
9.10.9.2 Draw the Mapping
To draw the mapping in the Query Map tab:

1. Click Query Map.

2. Drag from an element in a data source on the left to the matching element in a
return type on the right.

Make sure the elements have the same data types or similar data types that are
cast implicitly.

9.10.9.3 Cast a Constant
If you enter a constant to override the missing mapping, it is only used with Create
procedures, to insert data into the data source. Update procedures ignore the override
values you enter and leave the data source unchanged. (Of course, Delete procedures
delete a record from the data source, so override values are not relevant to them.)

When you enter an override value, make sure the value you enter has the data type the
element in the physical data source requires. You can enter a constant like "44" or
"2007-01-01" and cast it to an XML Schema data type such as xs:integer or xs:date,
using either of these:

■ A built-in XQuery cast function

■ The parentheses cast operator, as in xs:date("string"), to invoke an XML Schema
type constructor function

The parentheses cast operator uses any XML Schema data type outside the
parentheses and a string that is appropriate for the data type you are casting to within
the parentheses. For example, you can perform these casts:

xs:date("2007-01-01")
xs:dateTime("2007-01-01T16:44:44")
xs:integer("44")

But you cannot perform these:

xs:date("2007-01-01T16:44:44")
xs:dateTime("date")
xs:integer("text")

To cast a constant in the expression editor:

1. Click the Update Map tab.

2. Click an unmapped element in a data source on the left.

3. In the expression editor, enter a constant that has the data type the element
requires. For example, for an element of type xs:string, you might enter:

"Bob"

If the element has another data type, enter a string within a cast expression, for
example:

xs:integer("44")
xs:dateTime("2007-07-17T09:00:00")

4. Continue for all disabled elements.

5. In the Test tab, test an update using Run - Edit - Submit to make sure the value
overrides work as you expect.
9-46 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Testing Update Maps
9.11 Testing Update Maps
This section describes how to test an Update procedure in Test view in Eclipse for
WebLogic.

9.11.1 Configure Audit Properties
To test an Update procedure in Eclipse for WebLogic, you must submit a data graph in
the Parameters box in Test view. A data graph is an XML structure with a root element
of <sdo:datagraph> and a <changesummary> element. The easiest way to submit a data
graph is to capture one from an audit.

First, configure audit properties in the Oracle Data Service Integrator Console.

Figure 9–39 Configuring Audit Properties in the Oracle Data Service Integrator Console

Configuring Audit Properties in the Oracle Data Service Integrator Console

To configure audit properties so that Oracle Data Service Integrator generates data
graphs:

1. Open the Oracle Data Service Integrator Console and log in.

2. Click the name of a data space project.

3. Click the Audit Properties tab.

4. Click Lock & Edit in the upper left pane.

5. Navigate to the Update > Service node (be careful not to move to Update > Error >
Procedure).

6. For Name, Parameters, and Result, choose Always from the Is Audited menu.

7. Click Save.

8. Click Activate Changes in the upper left pane.

9.11.2 Capture the Data Graph
You can then capture a data graph from the audit messages displayed in the Eclipse
for WebLogic Console tab, and edit the data graph to submit to the Update procedure
in Test view.
Managing Update Maps 9-47

Testing Update Maps
Figure 9–40 Viewing a Data Graph in the Eclipse for WebLogic Console Tab

Viewing a Data Graph in the Eclipse for WebLogic Console Tab

To capture the data graph:

1. Open a logical data service in Eclipse for WebLogic.

2. Click the Test tab.

3. Choose the service's primary Read function, then click Run.

4. Click Edit, edit a value, then click Submit.

5. (Optional) Check the Eclipse for WebLogic Console tab.

If you see the Oracle WebLogic Server console data, not the Oracle Data Service
Integrator console data, click the drop-down arrow next to the console icon, and
choose Oracle Data Service Integrator Console.

6. Scroll up in the Eclipse for WebLogic Console tab until you locate the data graph,
right-click, and copy it.

9.11.3 Submit the Update
When you update relational sources, the SDO update mechanism uses optimistic
locking to avoid change conflicts. With optimistic locking, the data source is not locked
when the SDO client acquires the data. Later, when the client wants to update, the data
in the source is compared to a copy of the data at a time when it was acquired. If there
are discrepancies, the update is not committed. Before you submit the data graph to
the Update procedure, be sure that optimistic locking is enabled in the underlying data
source you are updating.

You can then submit the data graph to the Update procedure. However, you may need
to edit it, as the data graph you captured from the Eclipse for WebLogic Console tab
reflected the last change you made, not the change you are presently submitting to the
Update procedure.

Figure 9–41 Submitting the Data Graph to the Update Procedure
9-48 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To Test an Update Procedure
Submitting the Data Graph to the Update Procedure

The data graph you submit to the Update procedure takes the place of the return type
as an argument, even if you are updating only some of the elements in the return type.

To submit the data graph to an Update procedure:

1. Enable optimistic locking on any physical relational data sources the data graph is
updating.

2. Open a data service in Eclipse for WebLogic, and click the Test tab.

3. At Select Operation, choose an Update procedure.

4. Copy a data graph you have captured from the Eclipse for WebLogic Console tab
to the Parameters box.

5. Edit the data graph for the change you want to make.

The data graph you captured applies to a change made in the visual interface.
Update the change summary to the values the object presently has, and the
remaining elements to the new values you want to set. For example, this is a
change summary captured from the Eclipse for WebLogic Console tab:

<sdo:datagraph xmlns:sdo="commonj.sdo">
 <changeSummary>
 <sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_SINCE>1999-01-01T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
 </changeSummary>
 <sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
 <CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

This version has been updated in the Parameters box (note the difference in the
CUSTOMER_SINCE dates):

<sdo:datagraph xmlns:sdo="commonj.sdo">
 <changeSummary>
 <sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
 </changeSummary>
 <sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
 <CUSTOMER_SINCE>2008-04-04T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

6. Click Run. You should see this message in Test view:

Operation was successful.

9.12 How To Test an Update Procedure
This section describes how to test an Update procedure in Test view in Eclipse for
WebLogic.
Managing Update Maps 9-49

How To Test an Update Procedure
9.12.1 Configure Audit Properties
To test an Update procedure in Eclipse for WebLogic, you must submit a data graph in
the Parameters box in Test view. A data graph is an XML structure with a root element
of <sdo:datagraph> and a <changesummary> element. The easiest way to submit a data
graph is to capture one from an audit.

First, configure audit properties in the Oracle Data Service Integrator Console.

To configure audit properties so that Oracle Data Service Integrator generates data
graphs:

1. Open the Oracle Data Service Integrator Console and log in.

2. Click the name of a data space project.

3. Click the Audit Properties tab.

4. Click Lock & Edit in the upper left pane.

5. Navigate to the Update > Service node (be careful not to move to Update > Error >
Procedure).

6. For Name, Parameters, and Result, choose Always from the Is Audited menu.

7. Click Save.

8. Click Activate Changes in the upper left pane.

9.12.2 Capture the Data Graph
You can then capture a data graph from the audit messages displayed in the Eclipse
for WebLogic Console tab, and edit the data graph to submit to the Update procedure
in Test view.

To capture a data graph:

1. Open a logical data service in Eclipse for WebLogic.

2. Click the Test tab.

3. Choose the service's primary Read function, then click Run.

4. Click Edit, edit a value, then click Submit.

5. (Optional) Check the Eclipse for WebLogic Console tab.

If you see the Oracle WebLogic Server console data, not the Oracle Data Service
Integrator console data, click the drop-down arrow next to the console icon, and
choose Oracle Data Service Integrator Console.

6. Scroll up in the Eclipse for WebLogic Console tab until you locate the data graph,
right-click, and copy it.

9.12.3 Submit the Update
When you update relational sources, the SDO update mechanism uses optimistic
locking to avoid change conflicts. With optimistic locking, the data source is not locked
when the SDO client acquires the data. Later, when the client wants to update, the data
in the source is compared to a copy of the data at a time when it was acquired. If there
are discrepancies, the update is not committed. Before you submit the data graph to
the Update procedure, be sure that optimistic locking is enabled in the underlying data
source you are updating.
9-50 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

How To Test an Update Procedure
You can then submit the data graph to the Update procedure. However, you may need
to edit it, as the data graph you captured from the Eclipse for WebLogic Console tab
reflected the last change you made, not the change you are presently submitting to the
Update procedure.

The data graph you submit to the Update procedure takes the place of the return type
as an argument, even if you are updating only some of the elements in the return type.

To submit the data graph to an Update procedure:

1. Enable optimistic locking on any physical relational data sources the data graph is
updating.

2. Open a data service in Eclipse for WebLogic, and click the Test tab.

3. At Select Operation, choose an Update procedure.

4. Copy a data graph you have captured from the Eclipse for WebLogic Console tab
to the Parameters box.

5. Edit the data graph for the change you want to make.

The data graph you captured applies to a change made in the visual interface.
Update the change summary to the values the object presently has, and the
remaining elements to the new values you want to set. For example, this is a
change summary captured from the Eclipse for WebLogic Console tab:

<sdo:datagraph xmlns:sdo="commonj.sdo">
 <changeSummary>
 <sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_SINCE>1999-01-01T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
 </changeSummary>
 <sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
 <CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

This version has been updated in the Parameters box (note the difference in the
CUSTOMER_SINCE dates):

<sdo:datagraph xmlns:sdo="commonj.sdo">
 <changeSummary>
 <sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
 </changeSummary>
 <sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">
 <CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
 <CUSTOMER_SINCE>2008-04-04T00:00:00</CUSTOMER_SINCE>
 </sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

6. Click Run. You should see this message in Test view:

Operation was successful.
Managing Update Maps 9-51

How To Test an Update Procedure
9-52 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

10

10Preparing Services for Clients

This chapter describes how to prepare client JAR files and web service maps for client
applications. This chapter includes the following sections:

■ Section 10.1, "Generating a Mediator Client JAR File"

■ Section 10.2, "Generating a Web Services Mediator Client JAR File"

■ Section 10.3, "Generating a Web Service Map and WSDL from a Data Service"

■ Section 10.4, "Configuring Security for Web Services Applications"

■ Section 10.5, "Web Services Map File Reference"

■ Section 10.6, "Understanding SQL Maps"

■ Section 10.7, "Map Functions and Procedures to SQL Objects"

■ Section 10.8, "SQL Object Mapping Rules"

■ Section 10.9, "Constraints on Publishing Data Service Objects to SQL"

10.1 Generating a Mediator Client JAR File
To use the Static Mediator API in a client application, you must generate a Mediator
Client JAR file. This JAR file contains the Static Mediator API interfaces, plus all the
necessary SDO-compiled schemas for a dataspace.

One Java method is generated for each mapped data service operation. Method names
match the mapped data service operation names. Client developers access data service
operations by calling these methods.

This section explains how to generate a Mediator Client JAR by these two methods:

■ Section 10.1.1, "Using the IDE"

■ Section 10.1.2, "Using the Command-Line Tool"

10.1.1 Using the IDE
To generate a mediator client JAR file using the IDE:

1. Select File > Export.

Note: You can also generate a Mediator Client JAR using the
Administration Console. See the Oracle Data Service Integrator
Administration Guide for details.
Preparing Services for Clients 10-1

Generating a Mediator Client JAR File
2. In the Export dialog, select Oracle Data Service Integrator > Mediator Client JAR
File.

3. Click Next.

4. Complete the Mediator Client JAR File dialog as follows:

1. Select a Dataspace project to export. You can only select one Dataspace project
at a time.

2. Specify a directory in which to place the exported JAR file. You can use the
drop down list to select a recently specified directory or use the Browse button
to locate one.

3. Unselect the Use default name checkbox if you want to enter a name for the
JAR file.

4. Click Finish to create the JAR file.

The Oracle Data Service Integrator Console view displays the export task
status and any errors that may have occurred. You can click the Cancel button
to cancel the export task before it has completed.

10.1.2 Using the Command-Line Tool
This section explains how to generate a Mediator Client JAR file using the
command-line tool. Before using the command-line tool, be sure you have the
following:

■ Oracle WebLogic Server 10.3 installed with Oracle Data Service Integrator installed
in the default location BEA_HOME/odsi_10.3.

■ A Dataspace project on your local file system that contains data service (.ds) and
schema (.xsd) files. Miscellaneous IDE files within the project folder are allowed
and will not affect the export.

■ Ant installed and in your path.

To generate the client JAR, use this Ant command:

ant -Dapproot=PROJECT_HOME -f BEA_HOME/odsi/bin/sdo_dspclientgen.xml

where PROJECT_HOME is the full path to the Data Space project's root folder, and BEA_
HOME is the root path for your Oracle WebLogic installation.

For example (all on one line):

ant -Dapproot=/home/myprojects/myapp -f /home/bea/odsi/bin/sdo_dspclientgen.xml

This Ant script produces a file named PROJECTNAME-dsp-client.jar in PROJECT_
HOME, where PROJECTNAME is the name of the directory PROJECT_HOME (as opposed to the
full path to that directory). For example, the above script produces the Mediator Client
JAR file:

/home/myprojects/myapp/myapp-dsp-client.jar.

Optional command-line features include:

■ Your environment must contain a WL_HOME environment variable, pointing to
the WLS 9.2 installation. If it does not, you can provide an alternate by adding
-Dwl.home=/path to specify the WLS root directory.
10-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Generating a Web Services Mediator Client JAR File
■ Your Oracle Data Service Integrator installation must be in the default directory
BEA_HOME/odsi_10.3. If it is not, you can provide an alternate by adding
-Ddsp.home=/path to specify the directory.

■ To specify a full directory path for the output, add -Doutdir=/dirpath to the Ant
command. You must provide an absolute path; a relative path, including ".", will
not work, as it is assumed to be relative to PROJECT_HOME.

■ To specify a different name for the JAR file, add -Dsdojarname=name.jar.

10.2 Generating a Web Services Mediator Client JAR File
This section explains how to generate a Web Services Mediator Client JAR file. This
JAR is required by developers writing Java clients that access data services through
web services using the Static Mediator API.

This section includes these sections:

■ Section 10.2.1, "Overview"

■ Section 10.2.2, "Using Eclipse for WebLogic"

■ Section 10.2.3, "Using the Command-Line Tool"

10.2.1 Overview
To use the Static Mediator API in a web services-enabled client application, you must
generate a Web Services Mediator Client JAR file. This JAR file contains the Static
Mediator API interfaces, plus all the necessary SDO-compiled schemas for a
dataspace.

One Java method is generated for each data service function that is mapped to a
WSDL operation. Method names match the mapped WSDL operation name. Client
developers access data service functions through the web service by calling these
methods. If the web service requires message-level security, you can add a credential
provider and trust manager through initial context properties. For more information
on security, see Configure Security for Web Services Applications.

10.2.2 Using Eclipse for WebLogic
To generate a Web Services Mediator Client JAR file using Eclipse for WebLogic:

1. Select File > Export.

2. In the Export dialog, select Oracle Data Service Integrator > Web Services
Mediator Client JAR File.

3. Click Next.

4. Complete the Web Services Mediator Client JAR File dialog as follows:

1. In the left panel, select the Dataspace project that contains the .ws file(s) to
export. You can only export .ws files in one Dataspace project at a time.
Checking or unchecking the checkbox next to a project or a folder
automatically checks or unchecks all the sub-folders and .ws files under that
project/folder.

Note: You can also generate a Mediator Client JAR using the
Administration Console. See the Oracle Data Service Integrator
Administration Guide for details.
Preparing Services for Clients 10-3

Generating a Web Services Mediator Client JAR File
2. In the right panel, select the Web Service Map file to export. You can select one
or more .ws files. To see and selectively check the .ws files in a sub-folder,
expand and click on the folder on the left panel. The message under the right
panel shows the total number of .ws files currently checked for export.

3. Specify a directory in which to place the exported JAR file. You can select any
location on your system. You can use the dropdown list to select a recently
specified directory or use the Browse button to locate one. By default, the
exported JAR will be named: <data_space_name>-ws-client.jar.

4. Unselect the Use default name checkbox if you want to enter a name for the
JAR file.

5. Click Finish.

The Oracle Data Service Integrator Console view displays the export task status
and any errors that may have occurred. You can click the Cancel button to cancel
the export task before it has completed.

10.2.3 Using the Command-Line Tool
This section explains now to generate the Web Services Mediator Client JAR file using
Ant and presents example Ant commands. Before using the command-line tool, be
sure you have the following:

■ Oracle WebLogic Server 10.3 installed with Oracle Data Service Integrator installed
in the default location BEA_HOME/odsi_10.3.

■ A Dataspace project on your local filesystem that contains data service (.ds) and
schema (.xsd) files. Miscellaneous IDE files within the project folder are allowed
and will not affect the export.

■ Ant installed and in your path.

To generate the client JAR, use this Ant command:

ant -Dapproot=PROJECT_HOME -Dwslocator=locator -f BEA_HOME/odsi_10.3/bin/sdo_
dspclientgen.xml

Where:

■ PROJECT_HOME is the path to the Dataspace project. You must specify a full path for
the values of BEA_HOME and PROJECT_HOME.

■ The locator option takes one of these values:

– d:URI - Specifies a URI (or a semicolon-separated or space-separated list of
URIs) to a .ws file in the Dataspace project from which to generate the JAR file.
For example:

ld:MediatorTestDataServices/CustomerWeb.ws

– ALL - Generates the JAR for all .ws files in the dataspace.

The result of executing this Ant script is a file named PROJECT-ld-client.jar in
PROJECT_HOME, where PROJECT is the name of the directory PROJECT_HOME (as
opposed to the full path to that directory).

Optional command-line features include:

■ Your environment must contain a WL_HOME environment variable, pointing to
the WLS 9.2 installation. If it does not, you can provide an alternate by adding
-Dwl.home=/path to specify the WLS root directory.
10-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Generating a Web Service Map and WSDL from a Data Service
■ Your Oracle Data Service Integrator installation must be in the default directory
BEA_HOME/odsi_10.3. If it is not, you can provide an alternate by adding
-Ddsp.home=/path to specify the directory.

■ To specify a full directory path for the output, add -Doutdir=/dirpath to the Ant
command. You must provide an absolute path; a relative path, including ".", will
not work, as it is assumed to be relative to PROJECT_HOME.

■ To specify a different name for the JAR file, add -Dsdojarname=name.jar.

This example specifies multiple .ws files. The command must be entered on one line.

ant -Dapproot=/home/myprojects/myapp
-Dwslocator='ld:MediatorTestDataServices/CustomerWeb.ws;
ld:MediatorTestDataServices/OtherCustomerWeb.ws' -f /home/bea/odsi_10.3/bin/
sdo_dspclientgen.xml

This example generates a JAR that includes all of the .ws files in the dataspace. The
command must be entered on line.

ant -Dapproot=/home/myprojects/myapp -Dwslocator=ALL -f /home/bea/
odsi_10.3/bin/sdo_dspclientgen.xml

10.3 Generating a Web Service Map and WSDL from a Data Service
If you intend to access a data service through web services using the Data Services
Mediator API, you must generate a web service map file first. A web service map file
maps data service functions to web service operations. The map file is also used for
setting and configuring security policies for web services applications.

This section describes the following topics:

■ Section 10.3.1, "Creating a Map File"

■ Section 10.3.2, "Generating a WSDL File from a Map File"

■ Section 10.3.3, "Examining the Generated WSDL"

■ Section 10.3.4, "Testing the Generated WSDL"

■ Section 10.3.5, "Modifying the Map File"

10.3.1 Creating a Map File
This section describes the basic steps that are required to create a map file. You can
accomplish all of these tasks using the Oracle Data Service Integrator Eclipse IDE. The
procedure assumes that you have created or have access to the data service (.ds) file
from which you want to create a data service.

There are two ways to create a web service map file (.ws file):

Method 1
1. Obtain access to the data space project containing the data service you wish to

make accessible from a web service.

2. Right-click on the data service name in Project Explorer and select Create Web
Service Map. The map file (.ws file) is created with the same name as the data
service file, and the map file is opened in the editor.
Preparing Services for Clients 10-5

Generating a Web Service Map and WSDL from a Data Service
Method 2
1. Obtain access to the data space project containing the data service you wish to

make accessible from a web service.

2. Right-click on the data service name in Project Explorer and select New > Web
Service Map.

3. Use the dialog to create an empty web service map file with a name of your
choosing (example: OrderService).

4. Click Finish. The empty map file opens in the editor.

5. Drag either an entire data service file onto the map file or drag individual data
service operations.

Example: RetailApplication > OrderManagement > OrderService.ds

6. Click OK. A file named OrderService.ws is created in the same folder as the source
data service.

Figure 10–1 shows a data service file called OrderService.ds as the source for a
map file called OrderService.ws (created using Method 2).

Figure 10–1 Adding a Data Service to a Web Services Map File

This graphic displays a data service file as the source for a map file.

Note: Only the data service functions that are mapped in the map
file are available to clients. Only public data service operations can be
mapped.
10-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Generating a Web Service Map and WSDL from a Data Service

10.3.2 Generating a WSDL File from a Map File
To generate a WSDL file from a .WS file:

1. Right-click on the .WS file.

2. Choose Save WSDL As.

3. Specify a name for the WSDL file.

4. Click Save. Your new WSDL file should appear in the directory identified in the
Save as dialog.

5. Double-click on the WSDL file to verify the SOAP service for the WSDL.

10.3.3 Examining the Generated WSDL
You can examine the generated WSDL file. See Section 10.5, "Web Services Map File
Reference" for details.

10.3.4 Testing the Generated WSDL
You can test the generated WSDL file. See Section 10.5, "Web Services Map File
Reference" for details.

10.3.5 Modifying the Map File
 This section describes additional ways to add data services and operation to a map,
and how to delete operations from an existing map.

Note: You can add additional public operations from other data
services to the same web service map file.

Note: A WSDL that has more than one schema section pointing to
the same target namespace results in validation errors with the Eclipse
WTP default WSDL validator. The WSDL generated in the above
example is valid; however the project indicates a validation error
condition.

The error condition does not interfere with your ability to build and
deploy the project. Also, you can use the following Eclipse option
settings to prevent the validation error report from displaying:

1. Select Project > Properties > Validation.

2. Select Override validation preferences.

3. Uncheck the Build option associated with the WSDL Validator.

4. Click Apply, then OK.

5. Select Project > Clean.

6. Click OK.

The validation error warnings should disappear.
Preparing Services for Clients 10-7

Configuring Security for Web Services Applications
10.3.5.1 Adding Data Services and Operations
You can drag and drop either an entire data service or individual data service
operations from the Project Explorer onto an existing map file in the map file editor.

You can right-click in the map editor and select Add Data Services/Operations to
Map. Use the Select Resources to Add to Map dialog to add data service resources to
the map.

10.3.5.2 Deleting Data Services and Operations from a Map File
To delete one or more operations, select the operations and right-click on the selected
operations, and then select Delete.

To delete all operations that are related to a data service, right-click on the .ds
dataservice box and select Delete.

10.3.5.3 Renaming Mapped Operations
To rename a mapped operation, select the operation, right-click and select Rename
Operation. Then enter a new name for the mapped operation.

10.4 Configuring Security for Web Services Applications
This section describes the following topics:

■ Section 10.4.1, "Configuring Basic Authentication"

■ Section 10.4.2, "Configuring Transport Level Security (HTTPS)"

■ Section 10.4.3, "Configuring Web Services Security (WSS)"

■ Section 10.4.4, "Specifying Policies"Section 10.4.3, "Configuring Web Services
Security (WSS)"

Oracle Data Service Integrator Native Web Services supports the following security
features:

■ Basic authentication (Web Application Security)

■ Transport level security (HTTPS)

■ Message level security (Web Services Security)

10.4.1 Configuring Basic Authentication
To use basic authentication, set the Basic Auth Required property of the web services
map file to true. For more information, see Section 10.5, "Web Services Map File
Reference".

10.4.2 Configuring Transport Level Security (HTTPS)
Use the web service map file property editor to change the Transport Type to HTTPS.
HTTP is the default. For more information, see Section 10.5, "Web Services Map File
Reference".

Note: When configuring a BPEL process with SOAPReference, you
must set oracle.soa.ws.outbout.omitWSA to true by updating the
composite.xml file or using the Properties > Composite option. Then
save the process and re-run the project.
10-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Configuring Security for Web Services Applications
For HTTPS, you can configure either 1-way or 2-way SSL. For detailed information on
transport level security, see the Oracle WebLogic Server document Configuring Security:
Configuring Transport-Level Security.

10.4.3 Configuring Web Services Security (WSS)
WSS provides message level security. For WSS, Oracle Data Service Integrator Native
Web Services supports the same standards that are supported by Oracle WebLogic
Server. For detailed information on WSS, see the Oracle WebLogic Server document,
Configuring Security: Updating a Client Application to Invoke a Message-Secured Web
Service.

The supported standards include:

■ SOAP Message Security

■ Username Token Profile

■ X.509 Certificate Token Profile

■ SAML Token Profile

To use Web Services Security with an Oracle Data Service Integrator web services
application:

1. Choose the type of web services security you want to use with your Oracle Data
Service Integrator application.

2. Configure security policies through the appropriate policy file(s). See the Oracle
WebLogic Server document Configuring Security: Overview of Web Services Security
for detailed information on configuring policy files for each type of web services
security.

3. Edit the web services mapping file to include your policy file(s). You can associate
policies with an entire mapping file or for specific operations within the file. See
Section 10.4.4, "Specifying Policies" for details.

10.4.4 Specifying Policies
You can specify policies for a map file or for individual operations in a map file.

10.4.4.1 Specifying Global Policies
To specify a policy for web services security for a map file:

1. Create the policy file. See the Oracle WebLogic Server document WebLogic Web
Services: Security for detailed information on configuring policy files for each type
of web services security.

2. Import the policy file into your Oracle Data Service Integrator project. The easiest
way to do this is to use the IDE to import the file as a resource. The policy file
must reside in the DSP-INF/policies directory.

3. Configure the web services map file to include the policy.

The following listing shows an example .ws file that includes the optional, top-level
policies element. Each policy element describes one policy file. The policies element
can contain one or more policy elements. The locator attribute contains either an
Oracle Data Service Integrator locator for the policy file or a fixed URI that describes
the location of the standard WLS policy file.

Oracle Data Service Integrator supports three security policy types. Their URIs are:
policy: Auth, policy: Encrypt, and policy: Sign. These are abstract policy files
Preparing Services for Clients 10-9

Configuring Security for Web Services Applications
provided by Oracle WebLogic Server that describe authentication, encryption, and
digital signature policies. These policy files do not have to physically reside in DSP
project repository.

The policy element contains a required attribute Direction. This attribute represents at
which direction the security policy will apply. The policy direction can be: REQUEST,
RESPONSE, or REQUEST_RESPONSE.

■ REQUEST - The policy applies only to the inbound request message.

■ RESPONSE - The policy applies only to the response message.

■ REQUEST_RESPONSE - The policy applies to both inbound request and the
response message.

Refer to the schema definition for detailed information on the structure of the map file
(see Section 10.5, "Web Services Map File Reference").

Example 10–1 Sample Map File

<?xml version="1.0" encoding="UTF-8"?>
<web:WebServicesMap targetNamespace="ld:myMapper.ws" soapVersion="SOAP_1.1"
transportType="HTTP" ADODotNETEnabled="false" basicAuthRequired="false"
xmlns:web="http://www.oracle.com/odsi/management/configuration/webservices">
 <web:policies>
 <web:policy locator="ld:mypolicy.xml">
 <web:policy direction="REQUEST_RESPONSE">
 </web:policies>
 <web:dataServices>
 <web:dataService locator="ld:CUSTOMER.ds">
 <web:function name="deleteCUSTOMER" arity="1"
 operation="deleteCUSTOMER" returnInHeader="false">
 <web:parameterMapping>
 <web:parameter name="p" wsdlMapping="SOAP_BODY"/>
 </web:parameterMapping>
 </web:function>
 <web:function name="updateCUSTOMER" arity="1"
 operation="updateCUSTOMER" returnInHeader="false">
 <web:parameterMapping>
 <web:parameter name="p" wsdlMapping="SOAP_BODY"/>
 </web:parameterMapping>
 </web:function>
 </web:dataService>
 </web:dataServices>
</web:WebServicesMap>

10.4.4.2 Specifying Policies for a Function
To specify policies for a function in a map file:

1. Follow the same basic instructions for specifying a policy for a web service map
file, described previously.

2. In the .ws file, add the policies element to the function element. The policies
element contains one or more policy element. A policy element represents the
security policy that applies to the WSDL operation. The optional child element
ParameterMapping for the function element contains a list of parameters that are
mapped to the SOAP header.
10-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Web Services Map File Reference
10.5 Web Services Map File Reference
The web services map file is an XML file that provides an explicit mapping between
Oracle Data Service Integrator data service functions and web service operations. The
map file is the basis for generating the WSDL that describes the web services interface
for a data service. This section discusses the configurable parts of the map file in detail.
For details on creating a map file, see Section 10.3, "Generating a Web Service Map and
WSDL from a Data Service."

This section describes the following topics:

■ Section 10.5.1, "Map File-Level Properties"

■ Section 10.5.2, "Operation Level Properties"

■ Section 10.5.3, "Map File XML Schema Definition"

■ Section 10.5.4, "Mapping of Data Service Type to WSDL Message Type"

■ Section 10.5.5, "Examining the Generated WSDL"

■ Section 10.5.6, "Testing the Generated WSDL"

■ Section 10.5.7, "Copying and Saving a WSDL Generated from a Map"

10.5.1 Map File-Level Properties
The Oracle Data Service Integrator Eclipse IDE lets you create the web services map
file (as explained in Section 10.3, "Generating a Web Service Map and WSDL from a
Data Service") and configure the map file. The New Web Service Map wizard creates
a .ws file in a specified location within the Dataspace project. This section describes the
configurable map file properties. To configure these properties, use the Properties
editor in the IDE.

Figure 10–2 shows a sample map file that maps functions from a data service called
Customer.ds. To view properties for a map file, select the map file in the IDE and
select Window > Show View > Properties.

Figure 10–2 Map File-Level Properties
Preparing Services for Clients 10-11

Web Services Map File Reference
This graphic displays a sample map file.

Table 10–1 describes each of the map file properties.

10.5.2 Operation Level Properties
This section describes the operation-level properties that you can modify in the IDE.
Operations match up with data service functions. Each data service function maps to a
WSDL operation. Operation-level properties apply to the specific operation only.

Figure 10–3 shows the properties displayed for a selected data service function. To
view properties for a data service operation, select the operation in the IDE and select
Window > Show View > Properties.

Table 10–1 Map File Properties

Property Description

ADO.net Enabled If enabled, a .NET style WSDL is generated. This WSDL includes
.NET datasets in the WSDL construct. Disabled by default. For
more information on ADO.NET, see the Client Application
Developer's Guide.

Basic Auth Required If true, basic authentication is required to access the WSDL
operations.

Map Name (Read-only) The name of the map file.

SOAP Version SOAP 1.1 and 1.2 are supported. The version is used by Oracle
Data Service Integrator to decide which kind of SOAP binding to
create during WSDL generation. The default is 1.1. SOAP 1.2
encoding is not supported. Encoding is an optional feature
defined by the SOAP 1.2 specification.

Target Name Space The default value is generated from the web service based on the
location of the map file and the file name.

Transport Type HTTP and HTTPS are the only supported types. Default is
HTTP.

Policies Lets you specify security policies that apply to all the functions
in the map. For information on policies, see Section 10.4,
"Configuring Security for Web Services Applications."
10-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Web Services Map File Reference
Figure 10–3 Operation-Level Properties

This graphic displays properties for a selected data service function.

Table 10–2 describes each of the operation properties.

10.5.3 Map File XML Schema Definition
Example 10-1 is the schema file for the map (.ws file) definition.

Example 10–2 Web Services Map File Schema Definition

<xs:schema
targetNamespace="http://www.oracle.com/dsp/management/configuration/webservices"
 xmlns:tns="http://www.oracle.com/dsp/management/configuration/webservices"
 xmlns="http://www.oracle.com/dsp/management/configuration/webservices"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

Table 10–2 Operation Properties

Property Description

Data Service Name Read-only.

Function Name Read-only.

Operation Name The WSDL operation name that is used to generate a WSDL.
This name has to be unique within the map file.

Return Type Maps the WSDL operation return type to either a SOAP header
or body.

Parameters Lists all parameters for the operation and lets you map each
parameter to either a SOAP header or body.

Policies Specifies security policies that apply to the operation. For
information on policies, see Section 10.4, "Configuring Security
for Web Services Applications."
Preparing Services for Clients 10-13

Web Services Map File Reference
 <xs:element name="WebServicesMap">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="policies" type="PoliciesType" minOccurs="0"/>
 <xs:element name="dataServices" type="DataServicesType"/>
 </xs:sequence>
 <xs:attribute name="targetNamespace" type="xs:anyURI" use="required"/>
 <xs:attribute name="soapVersion" type="SoapVersionType" default="SOAP_1.1"/>
 <xs:attribute name="transportType" type="TransportTypeType" default="HTTP"/>
 <xs:attribute name="ADODotNETEnabled" type="xs:boolean" default="false"/>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="SoapVersionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="SOAP_1.1"/>
 <xs:enumeration value="SOAP_1.2"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="TransportTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="HTTP"/>
 <xs:enumeration value="HTTPS"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="PoliciesType">
 <xs:sequence>
 <xs:element name="policy" type="PolicyType" minOccurs="1"
maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PolicyType">
 <xs:attribute name="locator" type="xs:string" use="required"/>
 <xs:attribute name="direction" type="PolicyDirectionType"default="REQUEST_
RESPONSE"/>

 </xs:complexType>

 <xs:simpleType name="PolicyDirectionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="REQUEST"/>
 <xs:enumeration value="RESPONSE"/>
 <xs:enumeration value="REQUEST_RESPONSE"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="DataServicesType">
 <xs:sequence>
 <xs:element name="dataService" type="DataServiceType"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="DataServiceType">
 <xs:sequence>
 <xs:element name="function" type="FunctionType" minOccurs="1"
10-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Web Services Map File Reference
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="locator" type="xs:string" use="required"/>
 </xs:complexType>

 <xs:complexType name="FunctionType">
 <xs:sequence>
 <xs:element name="policies" type="PoliciesType" minOccurs="0"/>
 <xs:element name="parameterMapping" type="ParameterMappingType"
minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="arity" type="xs:integer" use="required"/>
<xs:attribute name="operation" type="xs:string" use="required"/>
<xs:attribute name="returnInHeader" type="xs:boolean" default="false"/>
 </xs:complexType>

 <xs:complexType name="ParameterMappingType">
 <xs:sequence>
 <xs:element name="parameter" type="ParameterType" minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ParameterType">
 <xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="wsdlMapping" type="WSDLMappingType" use="required"/>
 </xs:complexType>

 <xs:simpleType name="WSDLMappingType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="SOAP_HEADER"/>
 <xs:enumeration value="SOAP_BODY"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

10.5.4 Mapping of Data Service Type to WSDL Message Type
This section explains how data service types are mapped to WSDL message types
when you map a data service function to a WSDL operation.

■ Two Schema Elements Per Function

■ Mapping of Update Functions with DataGraphs

■ Overloading Data Service Functions

10.5.4.1 Two Schema Elements Per Function
For each data service function, two WSDL schema elements are generated. The first
element is the name of the request message, and it is the same as the data service
function name that is mapped to the WSDL message. The second represents the
response message. The response message name is the same as the function name with
"Response" appended to it. The following listing shows an example schema where
getCustomer is the request name and getCustomerResponse is the response name. The
response element contains the return type of the data service function, which can be
complex or simple.
Preparing Services for Clients 10-15

Web Services Map File Reference
Example 10–3 Operation Element and Return Element

<types>
 <xsd:schema targetNamespace="ld:DataServices/RTLServices/Customer.ws"
 xmlns:dsns0="urn:retailerType">
 <xsd:import namespace="urn:retailerType"/>

 <xsd:element name="getCustomer">
 <xsd:complexType>
 <xsd:sequence/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="getCustomerResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="dsns0:CUSTOMER_PROFILE" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</types>

10.5.4.2 Mapping of Update Functions with DataGraphs
This section explains how a data service update operation's parameters and return
type are mapped to a WSDL schema definition.

Consider the following data service definition for an operation called
updateADDRESS:

(::pragma function <f:function xmlns:f="urn:annotations.ld.oracle.com"
visibility="public" kind="update" isPrimary="true" nativeName="ADDRESS"
nativeLevel2Container="RTLCUSTOMER" style="table">

<nonCacheable/> </f:function>::)

 declare procedure f1:updateADDRESS($p as changed-element(t1:ADDRESS)*)
as empty() external;

Note that the operation's parameter type is changed-element(UserType). In this case
the element is ADDRESS. The changed-element type is translated to a DataGraph in
the WSDL schema. The WSDL schema must also include a schema definition for the
DataGraph. The following listing shows the translated updateADDRESS operation
and the schema definition for the DataGraph.

Example 10–4

<xs:element name="updateADDRESS">
<xs:complexType>
<xs:sequence>
<xs:element name="p">
<xs:complexType>
<xs:sequence>
 <xs:element ref="dsns0:ADDRESSDataGraph" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
10-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Web Services Map File Reference
 </xs:complexType>
 </xs:element>
<xs:element name="updateADDRESSResponse">
<xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>
...
<xs:schema targetNamespace="ld:ADDRESS" xmlns:dsns0="ld:ADDRESS"
 xmlns:sdo="commonj.sdo">
 <xs:import namespace="commonj.sdo"
 schemaLocation="http://www.osoa.org/sdo/2.1/schemas/datagraph.xsd" />
 <xs:element name="ADDRESSDataGraph" type="dsns0:ADDRESSDataGraphType" />
<xs:complexType name="ADDRESSDataGraphType">
<xs:complexContent>
<xs:extension base="sdo:BaseDataGraphType">
<xs:sequence>
 <xs:element ref="dsns0:ADDRESS" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:schema>

10.5.4.3 Overloading Data Service Functions
Data service functions can be overloaded, meaning that two functions in the same data
service have the same name but a different number of parameters. For example, in the
following listing two getCustomer() functions are declared, each with a different
parameter set. To support WSDL generation for overloaded data service functions, the
web services map requires the overloaded function to be mapped to a different WSDL
operation. In other words, if you drag two functions with the same name from a data
service onto a web service map file, Oracle Data Service Integrator generates different
WSDL operation names for the two functions. You can accept the default names or
change them.

Example 10–5 Overloaded Functions

declare function ns9:getCustomer() as element(ns2:CUSTOMER_PROFILE)*

declare function ns9:getCustomer($customerID as xs:string) as
element(ns2:CUSTOMER_PROFILE)*

10.5.5 Examining the Generated WSDL
You can examine the generated WSDL file. The dataspace project's associated Oracle
WebLogic server must be started and the dataspace project be deployed to the server
to view the WSDL or test the Web Service.

1. Right-click on the web service file name (example: CUSTOMER.ws).

2. Choose View WSDL.

The WSDL appears in its own window in the work area.
Preparing Services for Clients 10-17

Web Services Map File Reference
Figure 10–4 View of Generated WSDL

This graphic displays a view of the generated WSDL.

You can also request the WSDL for a deployed project by entering the following URL:

http://host:port/dataSpaceProjectName/folderName/.../mapFileName.ws?WSDL

For example:

http://localhost:7001/myDataSpace/myWSMapper.ws?WSDL

10.5.6 Testing the Generated WSDL
You can test the generated WSDL file using these steps. The dataspace project's
associated Oracle WebLogic server must be started and the dataspace project be
deployed to the server to view the WSDL or test the Web Service.

1. Right-click on the web service file name (example: CUSTOMER.ws).

2. Choose Test Web Service.

The WSDL appears in its own window.

Figure 10–5 View of Tested Web Service

This graphic displays a view of the tested web service.

10.5.7 Copying and Saving a WSDL Generated from a Map
You can copy or save a WSDL by right-clicking the map file and selecting Copy WSDL
URL or Save WSDL As.
10-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Understanding SQL Maps
10.6 Understanding SQL Maps
This section describes mapping functions in data services to SQL objects. It describes
the following topics:

■ Section 10.6.1, "Overview"

■ Section 10.6.2, "Publishable Operations"

■ Section 10.6.3, "General Conditions"

10.6.1 Overview
A SQL Map enables you to publish data service functions as SQL objects (which are
created when you specify the mapping). Using SQL Maps, you can expose data
services modeled in Oracle Data Service Integrator as relational data sources. This
enables you to use reporting tools (such as Crystal Reports and Microsoft Access,
among others), Java applications, and development tools (such as Data Tools Platform
or SQL Explorer) to access information from data services using SQL queries (through
a JDBC client).

Figure 10–6 Sample SQL Map

This graphic displays a sample SQL map.

As Figure 10–7 shows, source data can be consolidated, integrated, and transformed
using Oracle Data Service Integrator data services. The source data itself can come
from disparate sources throughout the enterprise, including relational databases and
web services, among others. Using SQL Maps you can, in turn, expose the data service
operations as a relational data source accessible using SQL queries. This enables JDBC
clients to access data consolidated through Oracle Data Service Integrator.
Preparing Services for Clients 10-19

Understanding SQL Maps
Figure 10–7 SQL Mapping Overview

This graphic displays an overview of SQL mapping.

You can publish the following types of data service artifacts for SQL access:

■ Data service functions, either with or without parameters.

■ External database functions. These are database-specific functions which are either
built into a particular commercial database or which were custom-designed on the
database side and then declared to Oracle Data Service Integrator as external
database functions.

10.6.2 Publishable Operations
SQL mappable data service functions can be thought of as relationally-compatible
XQuery functions. Depending on their signature, you can publish such functions for
use as SQL tables or stored procedures. The association between the function and the
SQL object is defined at design time when creating a SQL map.

The following summarizes the types of data service functions you can publish as SQL
tables or stored procedures:

■ You can map non-parameterized data service functions as SQL tables, and
parameterized data service functions as stored procedures.

■ You cannot map private or protected functions as part of a SQL Map.

■ You cannot map procedures as part of a SQL Map.

You can map library data service database functions to functions, but not to SQL tables
and stored procedures.
10-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Map Functions and Procedures to SQL Objects
10.6.3 General Conditions
The following general conditions apply when exposing data service operations as
relational data sources:

■ The exposed data service XQuery function signatures must only involve types that
are supported by the relational (JDBC) type system.

■ The structure of the underlying schema (the Return type) must have a
relationally-compatible data shape, which means that the data service type cannot
include repeating data (data elements with cardinality greater than 1). This is
because SQL provides a traditional, two-dimensional approach to data access, as
opposed to the multi-level, non-normalized approach defined by XML.

■ You cannot map data service operations that return scalar (primitive) values as
SQL tables or stored procedures.

10.7 Map Functions and Procedures to SQL Objects
This section describes how to create SQL objects (tables, stored procedures, and
database functions) from dataspace project operations including conforming physical
and logical functions and procedures. Once created, the objects will be available to
client applications through JDBC.

■ Creating an SQL Map

■ Removing an SQL Map

10.7.1 Creating an SQL Map
To create an SQL map:

1. In Eclipse for WebLogic, right-click a dataspace project folder in the Project
Explorer and choose Add SQL Map. Eclipse for WebLogic creates an SQL Map
with a default catalog and schema.

You can rename the default catalog and schema by expanding the SQL Map in the
Project Explorer, right-clicking the catalog or schema, choosing Rename, and
entering the new name.

2. Select the schema to which you want to map the data service functions and
procedures. Eclipse for WebLogic displays folder tabs for Tables, Stored
Procedures, and Functions.

Note: See Section 10.8, "SQL Object Mapping Rules" for details about
permitted mappings.

Note: For more information about creating data services with flat
schemas, see Section 1.5.2, "Create a Data Service with a Flat Return
Type."

Note: You can define only a single SQL Map for a dataspace. You
can, however, add multiple catalogs and schemas to an SQL Map.
Preparing Services for Clients 10-21

SQL Object Mapping Rules
3. Drag-and-drop the data service functions and procedures from the Project
Explorer to the corresponding folder tab in the SQL Map.

If you drag-and-drop an entire data service to a folder tab in the SQL Map, Eclipse
for WebLogic attempts to map all functions contained in the data service to the
corresponding SQL object type (Table, Stored Procedure, or Function).

You can map the same data service function or procedure to multiple schemas.
You can also map a function or procedure to multiple SQL object types, however,
Eclipse for WebLogic displays an alert dialog (see Map Data Service Functions for
SQL Use Alert Dialog) in case of a naming conflict and suggests a new SQL name.
You can edit this new name, as required.

Figure 10–8 Populated SQL Map

This graphic displays a populated SQL map.

10.7.2 Removing an SQL Map
To remove an SQL map, right-click the dataspace project folder and choose Remove
SQL Map.

10.8 SQL Object Mapping Rules
The function and procedure types used in data services map to various types of SQL
objects. The general mapping rules are described in Table 10–3.

Note: If you attempt to map a dataspace object which does not meet
SQL map criteria, a dialog will appear, explaining the problem.

Table 10–3 Mapping Rules

Type Element Type Optional Functions

Read functions Yes Yes No

Navigation functions Yes Yes No

Private functions No No No

Protected functions No No No

Procedures No No No

Library data service functions (non-database) Yes Yes No

Library data service database functions No No Yes
10-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Constraints on Publishing Data Service Objects to SQL
10.9 Constraints on Publishing Data Service Objects to SQL
There are semantic and structural constraints to publishing data service objects to SQL.

Semantic constraints include some general types of objects as private functions.

Table 10–4 outlines the structural constraints on publishing data service artifacts to
SQL.

Table 10–4 Structural Constraints

Limitation Discussion

Limitation affecting all SQL objects Limitations in this section affect publication to any
type of SQL object.

Functions referring to types that are neither simple nor
elements

Examples of such types include item, node, and
attribute.

Functions with anonymous element types Functions containing elements where the name is
not defined are not mapable. For example:

declare function f() as element()

Functions declarations using recursive XML types For example, a function declaration with a
complex type (PersonType) containing an element
that is also of type PersonType is not mapable:

<element name="PERSON"
type="tns:PersonType"/>

<complexType name="PersonType">
 <sequence>
 <element name="first_name"
type="string"/>
 <element name="last_name"
type="string"/>
 <element name="contact"
type="tns:PersonType"/>
 </sequence>
</complexType>

XML types with content models containing wildcards XML wildcards include:

• xs:any
• xs:anyAttribute

XML types with mixed content

<a>
 <child/>
 this is simply text
 <child/>

Limitations affecting publishing as a SQL Table Limitations in this category affect publishing as
SQL tables.

Functions with parameters Functions with parameters can be mapped as
stored procedures.

Functions containing simple return types Functions containing simple return types can be
mapped as SQL functions.
Preparing Services for Clients 10-23

Constraints on Publishing Data Service Objects to SQL
10.9.1 Non-Tabular Element Types Affect Ability to Publish Functions as SQL Objects
The structure of a data service function determines whether it can be mapped to an
SQL object or not. For example, a parameterized function cannot be published as an
SQL table since by definition SQL tables do not take parameters. Some structural
constraints are practically self-evident; others are less obvious.

For example, functions with non-tabular element types cannot be published as tables
or stored procedures because XML output structure cannot be mapped to a
normalized SQL table.

Underlying each data service is an XML type, or schema. Some XML types are readily
mapped for JDBC use because they are — like SQL tables — two dimensional.

Functions containing any non-tabular element type See Section 10.9.1, "Non-Tabular Element Types
Affect Ability to Publish Functions as SQL
Objects". Also applies to stored procedures.

Functions with any AtomicType types Also applies to stored procedures.

Limitations affecting publishing as a stored procedure Limitations in this category affect publishing as a
stored procedure.

Functions accepting element parameter types These functions cannot be published as stored
procedures.

Functions containing a sequence of simple return types, such
as xs:string*

The function declaration is not eligible. For
example:

declare function f($p as xs:string*) as
xs:int

Functions with anyAtomicType types Also applies to tables.

Functions with any non-tabular element types See Section 10.9.1, "Non-Tabular Element Types
Affect Ability to Publish Functions as SQL
Objects". Also applies to tables.

Limitations affecting publishing as a SQL Function Limitations in this category affect publishing as a
SQL functions.

Function with a sequence parameter type and an arity greater
than 1.

An example shows xs:int* as the sequence
parameter type:

declare function f($p as xs:int*, $q as
xs:string) as xs:int

Functions with element types

declare function f ($p as element(e)) as
xs:int

Note: A quick way to determine if a particular function can be
published to a particular type of SQL object is to drag the function to a
SQL object table, stored procedure, or functions folder. Even if the
function is grayed out — meaning that it cannot be published to any
type of SQL object — an alert dialog will appear explaining why the
selected object cannot be published.

Table 10–4 (Cont.) Structural Constraints

Limitation Discussion
10-24 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Constraints on Publishing Data Service Objects to SQL
<CUSTOMER>
 <FIRST_NAME>
 <LAST_NAME>
 <CUSTOMER_ID>
</CUSTOMER>

When published as SQL, the table structure corresponds to the following:

FIRST_NAME LAST_NAME CUSTOMER_ID
Jack Black CUSTOMER1

As long as the object mapper can reduce the structure of the XML document to
rank-one, the mapping can occur. For example:

<CUSTOMER>
 <FIRST_NAME>
 <LAST_NAME>
 <CUSTOMER_ID>
 <CUSTOMER_ORDER>
 <ORDER_ID>
 <C_ID>
 <ORDER_DT>
 </CUSTOMER_ORDER>
</CUSTOMER>

This is publishable as a table in the following form as long as there is one or fewer
customer orders associated with the customer:

FIRST_NAME LAST_NAME CUSTOMER_ID ORDER_ID C_ID ORDER_DT
Jack Black CUSTOMER1 ORDER_1_0 CUSTOMER1 2001-10-01

If, however, the CUSTOMER_ORDER type is unbounded, meaning that it can represent
more than one order associated with a single customer, the structure no longer
corresponds to a well-formed relational table and the mapping is not allowed.
Preparing Services for Clients 10-25

Constraints on Publishing Data Service Objects to SQL
10-26 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

11

11Data Service Annotations

This chapter describes the syntax and semantics of annotations in data service
documents developed within Eclipse for WebLogic. This chapter contains the
following sections:

■ Section 11.1, "Overview"

■ Section 11.2, "XDS Annotations"

■ Section 11.3, "Function Annotations"

■ Section 11.4, "XFL Annotations"

■ Section 11.5, "Data Service Annotations Schema"

11.1 Overview
Data service documents define collections of XQuery functions and/or XQSE
functions or procedures. Annotations are XML fragments comprising the character
content of XQuery pragmas.

There are two types of annotations:

■ Global annotations: these pertain to the entire entity or library data service
document. Global annotations are also referred to as XDS or XFL annotations
respectively.

■ Local annotations: these pertain to a particular function. Local annotations are also
referred to as function annotations.

11.2 XDS Annotations
There is a single XDS ("XQuery Data Service") annotation per entity data service
document, which appears before all function annotations. The identifier for the
pragma carrying the XDS annotation is xds. The qualified name of the top level
element of the XML fragment corresponding to an XDS annotation has the local name
xds and the namespace URI:

urn:annotations.ld.oracle.com

Each entity data service is associated with a unique target type. The prime type of the
return type of every read function must match its target type. The target type of an
entity data service is an element type whose qualified name is specified by the
targetType attribute of the xds element. It is defined in a schema file associated with
the entity data service.
Data Service Annotations 11-1

XDS Annotations
The contents of the top-level xds element is a sequence of the following blocks of
properties:

■ Section 11.2.1, "General Properties"

■ Section 11.2.2, "Data Access Properties"

■ Section 11.2.3, "Target Type Properties"

■ Section 11.2.4, "Key Properties"

■ Section 11.2.5, "Relationship Properties"

■ Section 11.2.6, "Update Properties"

The following is an example of an XDS annotation. In this case, the target type
t:CUSTOMER associates the entity data service with a t:CUSTOMER type in a schema file.

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.oracle.com"
targetType="t:CUSTOMER" xmlns:t="ld:oracleDS/CUSTOMER">

<author>Joe Public</author>
<relationalDB name="OracleDS"/>

<field type="xs:string" xpath="FIRST_NAME">
 <extension nativeFractionalDigits="0" nativeSize="64"
 nativeTypeCode="12" nativeType="VARCHAR2"
 nativeXpath="FIRST_NAME"/>
 <properties nullable="false"/>
</field>

<field type="xs:string" xpath="LAST_NAME">
 <extension nativeFractionalDigits="0" nativeSize="64"
 nativeTypeCode="12" nativeType="VARCHAR2"
 nativeXpath="LAST_NAME"/>
 <properties nullable="false"/>
</field>

<field type="xs:string" xpath="CUSTOMER_ID">
 <extension nativeFractionalDigits="0" nativeSize="64"
 nativeTypeCode="12" nativeType="VARCHAR2"
 nativeXpath="CUSTOMER_ID"/>
 <properties nullable="false" nativeKey="true"/>
</field>

<field type="xs:dateTime" xpath="CUSTOMER_SINCE">
 <extension nativeFractionalDigits="0" nativeSize="7"
 nativeTypeCode="93" nativeType="DATE"
 nativeXpath="CUSTOMER_SINCE"/>
 <properties nullable="false"/>
</field>

<field type="xs:string" xpath="EMAIL_ADDRESS">
 <extension nativeFractionalDigits="0" nativeSize="32"
 nativeTypeCode="12" nativeType="VARCHAR2"
 nativeXpath="EMAIL_ADDRESS"/>
 <properties nullable="false"/>
</field>

<key name="CUSTOMER_ID"/>

<relationshipTarget roleName="CUSTOMER_ORDER" roleNumber="2"
 XDS="ld:oracleDS/CUSTOMER_ORDER.xds" minOccurs="0"
11-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

XDS Annotations
 maxOccurs="unbounded" opposite="CUSTOMER"/>
</x:xds>::-)

11.2.1 General Properties
There are two types of general XDS properties:

■ Section 11.2.1.1, "Standard Document Properties"

■ Section 11.2.1.2, "User-Defined Properties"

11.2.1.1 Standard Document Properties
You can specify a set of standard document properties consisting of optional XML
elements containing information pertaining to the author, creation date, or version of
the document. You can also use the optional element named "documentation" to
specify related documentation. The names and types of the elements in the standard
document properties block, as well as examples of their use, are shown in Table 11–1.

11.2.1.2 User-Defined Properties
In addition to the standard properties, you can specify custom properties pertaining to
the entire data service document using a sequence of zero (0) or more "property"
elements. Each property element must be named using its "name" attribute and may
contain any string content. For example:

<property name="data-refresh-rate">week</property>

11.2.2 Data Access Properties
A data service may be used to model access to an external data source or to model a
transformation on top of one or more data sources or other transformations. Data
services modeling external data sources are referred to as physical. Transformation
data services not representing a particular data source are referred to as logical.

The block of data access properties allows each data service to define whether it is
physical or not. When a data service is physical, the data access annotation describes
the type of the external source being accessed by its external functions (there may be a
single external source per data service) and its connection properties. When a data
service is logical, the data service is designated as a user-defined view, and no
connection information is required.

The following types of physical data services are supported:

■ Relational

■ Web service

■ Java function

Table 11–1 Standard Document Properties

Element Name Element Type Optional Example Instance

author xs:string Yes <author>J. Public</author>

creationDate xs:date Yes <creationDate>2004-05-31</creationDate>

version xs:decimal Yes <version>2.2<version>

documentation xs:string Yes <documentation> Models an online Customer
</documentation>
Data Service Annotations 11-3

XDS Annotations
■ Delimited content

■ XML content

The following sections describe the data access annotation for the physical data service
types, as well as for data services that are designated as user-defined views. You can
specify only one of these annotations in each data service. If no annotation is provided,
the data service is considered a user-defined view.

■ Section 11.2.2.1, "Relational Data Service Annotations"

■ Section 11.2.2.2, "Source Binding Provider"

■ Section 11.2.2.3, "Web Service Data Service Annotations"

■ Section 11.2.2.4, "Java Function Data Service Annotations"

■ Section 11.2.2.5, "Delimited Content Data Service Annotations"

■ Section 11.2.2.6, "XML Content Data Service Annotations"

■ Section 11.2.2.7, "User Defined View XDS Annotations"

11.2.2.1 Relational Data Service Annotations
The data access annotation for a relational data service consists of the element
relationalDB with two required attributes, described in Table 11–2:

<relationalDB name="OracleDS" providerId="Oracle-9"/>

In addition, the relationalDB element can contain the following optional parts:

■ An optional element, "properties", that exposes relational provider-specific
attributes, such as the values of specific settings of the Relational Database
Management System (RDBMS) represented by the relational source.

■ An optional attribute, sourceBindingProviderClassName, that specifies the
transformation used to determine the relational source to be used at system
runtime in the place of the statically defined source.

11.2.2.2 Source Binding Provider
The value of the optional sourceBindingProviderClassName attribute should be
bound to the fully-qualified name of a user-defined Java class implementing the
interface:

com.bea.ld.bindings.SourceBindingProvider

defined by the following:

package com.bea.ld.bindings;
public interface SourceBindingProvider
{
 public String getBinding(String genericLocator, boolean isUpdate);
}

Table 11–2 Required Attributes for the relationalDB Element

Attribute Description

name The JNDI name by which the external relational data source has
been registered with the application server.

providerId The identifier of the Oracle Data Service Integrator relational
provider in use for the specified relational data source.
11-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

XDS Annotations
The user-defined implementation should provide the transformation that, given the
statically configured relational source name (parameter genericLocator) and a
Boolean flag indicating whether the relational source is accessed in query or update
mode (parameter isUpdate), determines the name of the relational source name used
by the system at runtime.

You can use this transformation mechanism to perform credential mapping. In this
case, a single set of query or update operations to be performed in the name of two
distinct users U1 and U2 against the same statically-configured relational source R0, is
executed against two distinct relational sources R1 and R2 respectively (where all
sources R0, R1, R2 represent the same RDBMS and the security policies applied to the
connection credentials used for R1 and R2 correspond to the security policies applied
to the application credentials of user U1 and U2, respectively).

11.2.2.3 Web Service Data Service Annotations
The data access annotation for a data service based on a Web service consists of the
empty element webService with two required attributes, described in Table 11–3:

For example:

<webService targetNamespace="urn:GoogleSearch"
 wsdl="ld:google/GoogleSearch.wsdl"/>

In addition, if the physical data service models an Oracle Service Bus proxy service,
the webService element can carry the optional attributes described in Table 11–4:

11.2.2.4 Java Function Data Service Annotations
The data access annotation for a Java function data service consists of the empty
element javaFunction with a single required attribute named class, whose value you
set to the fully qualified name of the Java class serving as the external source.

Note: Set the source binding provider name uniformly across all
relational data services sharing the same relational source JNDI name.
Although this restriction is not enforced, its violation could result in
unpredictable behavior at runtime.

Table 11–3 Required Attributes for the webService Element

Attribute Description

wsdl A valid http: or ld: URI pointing to the location of the WSDL
file containing the definition of the external Web service source.

Note: You must configure the Eclipse proxy information in order
to access the external web service. Refer to the Eclipse
documentation for details.

targetNamespace A valid URI that is identical to the targetNamespace URI of the
WSDL.

Table 11–4 Optional Attributes for the webService Element

Attribute Description

sbProxyServiceName The name of the Oracle Service Bus proxy service.

sbTransportProtocol The name of the protocol used by the proxy service. Valid values
are: t3, iiop, http, t3s, iiops or https.
Data Service Annotations 11-5

XDS Annotations
For example:

<javaFunction class="com.example.Test"/>

11.2.2.5 Delimited Content Data Service Annotations
The data access annotation for a delimited content data service is the empty element
delimitedFile, accepting the optional attributes described in Table 11–5:

For example:

<delimitedFile schema="ld:df/schemas/ALL_TYPES.xsd" hasHeader="true"
 delimiter="," file="ld:df/ALL_TYPES.csv"/>

11.2.2.6 XML Content Data Service Annotations
The data access annotation for an XML content data service is the empty element
xmlFile accepting the attributes described in Table 11–6.

For example:

<xmlFile schema="ld:xml/somewhere/CUSTOMER.xsd"
 file="ld:xml/CUSTOMER_NESTED.xml"/>

11.2.2.7 User Defined View XDS Annotations
The data access annotation for a user-defined view data service is also known as a
logical data service. It consists of the single empty element:

userDefinedView

For example:

Table 11–5 Optional Attributes for the delimitedFile Element

Attribute Description

file A valid URI pointing to the location of the delimited file.

schema A valid URI pointing to the location of the XML schema file
defining the type (structure) of the delimited contents. If absent,
the schema is derived based on the contents.

inferredSchema Specifies whether the schema was inferred or provided by the
user. The default value is false.

delimiter The string used as the delimiter. If absent, the fixedLength
attribute should be present.

fixedLength The fixed length of the tokens contained in fixed length content.
If absent, the delimiter attribute should be present.

hasHeader A Boolean flag indicating whether the first line of the content
should be interpreted as a header. The default value is false.

Table 11–6 Attributes for the xmlFile Element

Attribute Description

file (Optional) A valid URI pointing to the location of the XML file.

schema A valid URI pointing to the location of the XML schema file
defining the type (structure) of the XML contents.
11-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

XDS Annotations
<userDefinedView/>

11.2.3 Target Type Properties
The optional block of target type properties enables you to annotate simple valued
fields in the target type of the entity data service with native type information
pertaining to the following:

■ The type of the corresponding field in the underlying external source (applicable
only to data source data services)

■ Information about the field's properties with respect to its update behavior. Each
annotated field is represented by the element named "field"with two required
attributes, described in Table 11–7:

The following is an example of a field element definition:

<field type="xs:string" xpath="FIRST_NAME">
 <extension nativeSize="64" nativeTypeCode="12" nativeType="VARCHAR2"
 nativeXpath="FIRST_NAME"/>
 <properties nullable="false"/>
</field>

11.2.3.1 Native Type Properties
Each "field" element can contain an optional "extension" element that accepts the
optional attributes described in Table 11–8:

Table 11–7 Required Attributes for the field Element

Attribute Description

xpath An XPath value pointing to the field.

type The qualified name of the field's simple XML schema or XQuery
type.

Table 11–8 Optional Attributes for the extension Element

Attribute Description

nativeXpath A native XPath value pointing to the corresponding native field
in the external source.

nativeType The native name of the native type of the corresponding native
field, as it is known to the external source.

nativeTypeCode The native type code of the native type of the corresponding
native field, as it is known to the external source. In the case of
relational sources, this is the type code as reported by JDBC.

nativeSize The native size of the native type of the corresponding native
field, as it is known to the external source. In the case of
relational sources, this is the size as reported by JDBC.

nativeFractionalDigits The native scale of the native type of the corresponding native
field, as it is known to the external source. In the case of
relational sources, this is the scale as reported by JDBC.

nativeKey A Boolean value indicating whether the field participates in the
native record's key. The default is false.
Data Service Annotations 11-7

XDS Annotations
11.2.3.2 Update-related Type Properties
Each "field" element can also contain an optional "properties" element that accepts the
optional attributes described in Table 11–9:

11.2.4 Key Properties
The optional block of key properties enables you to specify an identity constraint (key)
on the entity data service target type. An identity constraint for an entity data service
is represented by the element "key" along with an XML schema specifying the key
type.

The "key" element accepts a required attribute "type", whose value should be bound to
the qualified name of the element type defining the locations of the data fields
comprising the key. The key type should in turn be specified by an XML schema
imported by the data service.

The "key" element may also carry the optional attributes in Table 11–10:

In most cases, the identity constraint refers to the collection of data bindings returned
by the entity data service's read functions, with each binding's type being the data
service target type. In the case that a data service returns an XML document, the
collection on which the identity constraint may be specified is normally defined by
some element nested within the document element. In such a case, the "key" element
contains an optional "selector" element that is used to specify the collection. The
"selector" element carries a required "xpath" attribute, whose value is an XPath value
pointing to the nested element defining the collection root. The XPath forms accepted
by this attribute are simplified XPaths, using only the element or attribute axes and no
predicates.

The following is an example of a "key" element definition:

<key name="CUSTOMER_ID"/>
 <selector xpath="CUSTOMER"/>
</key>

Table 11–9 Optional Attributes for the properties Element

Attribute Description

immutable A Boolean value specifying whether the field is immutable
(read-only) or not. The default value is false.

nullable A Boolean value specifying whether the field accepts null values
or not. The default value is false.

Table 11–10 Optional Attributes for the key Element

Attribute Description

name Serves as the key alias. Might be used as a user-friendly
description of the semantic constraints expressed by the key.

inferred A Boolean value specifying whether the key was auto-derived or
user-defined. The default is true.

inferredSchema A Boolean value specifying whether the key schema was
auto-derived or user-defined. The default is true.
11-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

XDS Annotations
11.2.5 Relationship Properties
The optional block of relationship properties enables you to specify a set of
relationship targets. A relationship target of an entity data service is an entity data
service with which first service maintains a unidirectional or bidirectional relationship.
Unidirectional relationships are realized through one or more navigate functions in the
first data service that returns one or more instances of objects of the second service
target type. Bidirectional relationships require that reciprocal functions are present in
the second data service as well.

A relationship target is represented by the element relationshipTarget that accepts
the attributes described in Table 11–11:

Additionally, the relationshipTarget element can itself contain the element
"relationship" which in turn contains the nested element "description" that contains a
human readable description about the relationship.

The following is an example of a relationshipTarget element definition:

<relationshipTarget roleName="CUSTOMER_ORDER" roleNumber="2"
 XDS="ld:oracleDS/CUSTOMER_ORDER.xds" minOccurs="0"
 maxOccurs="unbounded" opposite="CUSTOMER"/>

11.2.6 Update Properties
The optional block of update properties enables you to specify a set of properties that
establish certain policies about updating an entity data service's underlying sources. In
particular, you can specify the following policies:

■ Section 11.2.6.1, "Optimistic Locking Fields"

■ Section 11.2.6.2, "Security Properties"

Table 11–11 Attributes for the relationshipTarget Element

Attribute Description

roleName A string that uniquely identifies the relationship target inside
the data service.

roleNumber (Optional) Either 1 or 2 (default is 1). The roleNumber specifies
the index of the relationship target within the relationship.

XDS The Oracle Data Service Integrator URI of the data service
serving as the relationship target.

minOccurs (Optional) The minimum cardinality of relationship target
instances participating in this relationship. Possible values are all
non-negative integers and the empty string. The default value is
the empty string.

maxOccurs (Optional) The maximum cardinality of relationship target
instances participating in this relationship. Possible values are all
positive integers, the string unbounded, and the empty string.
The default is the empty string.

opposite (Optional) String attribute that indicates the reciprocal
relationship target in the case of bidirectional relationships. The
value of this attribute is the identifier used to identify this data
service as a relationship target in the data service identified by
the value of the XDS attribute.
Data Service Annotations 11-9

Function Annotations
11.2.6.1 Optimistic Locking Fields
SDO update assumes optimistic locking transactional semantics. The data service
being updated can specify the fields that should be checked for updates during the
interim using the empty element optimisticLockingFields that accepts one of the
following as its content:

■ An empty element, named updated, to specify only updated fields.

■ An empty element, named projected, to specify all projected fields.

■ One or more elements, named "field", that accept a required string-valued
attribute named name to specify user-specified fields.

The following is an example of a functionForDecomposition element definition:

<optimisticLockingFields>
 <updated/>
</optimisticLockingFields>

11.2.6.2 Security Properties
You can use a data service to define one or more user-defined, logical protected
resources.

The element secureResources, containing one or more string-valued elements named
secureResource, can be used for this purpose.

For example:

<secureResources>
 <secureResource>MyResource</secureResource/>
 <secureResource>MyOtherResource</secureResource/>
</secureResources>

You can link a logical resource defined using this syntax to a user-provided security
policy using the Oracle Data Service Integrator Console. Query content can inquire
about a user's ability to access a logical resource using the built-in function
isAccessAllowed().

11.3 Function Annotations
There is a single function annotation per data service function or procedure, which
appears before the function or procedure declaration in the document. The identifier
for the pragma carrying the function annotation is "function". The qualified name of
the top level element of the XML fragment corresponding to a function annotation has
the local name "function" and the namespace URI urn:annotations.ld.oracle.com.

Modeling Kind
Each entity data service function or procedure is classified using one of the following
categories:

■ Create procedure

■ Read function

■ Update procedure

■ Delete procedure

■ Navigate function
11-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Function Annotations
■ Library function or procedure

The classification of a data service method is determined by the value of the optional
attribute "kind" in the function element, which accepts the values create, read, update,
delete, navigate, or library to denote the corresponding categories. The default value is
library.

Each library data service function or procedure is always of kind library.

The prime type of the return type of a read function must match the target type of the
entity data service. In addition, the function element for a navigate function must carry
a string-valued attribute returns whose value must match the role name of a
relationship target defined in the data service. Moreover, the prime type of the return
type of a navigate function must match the target type of the data service serving as
the relationship target.

An operation designated as a procedure has in the general case side-effects. In other
words, its invocation entails modifications of the state of the affected data sources.
Therefore, a procedure may not be referenced by Oracle Data Service Integrator
functions.

A library function residing in a relational database function library data service file is
always external. It may not be invoked directly by clients. Instead, it should be
referenced by other data service functions or ad-hoc queries.

Visibility
Functions or procedures may also be classified based on their visibility using one of
the following categories:

■ Public

■ Protected

■ Private

The classification of a data service method is determined by the value of the optional
attribute "visibility" in the function element, which accepts the values public,
protected, or private to denote the corresponding categories. The default value is
protected.

Public methods are accessible by Oracle Data Service Integrator dataspace clients as
well as other data services within the dataspace.

Protected methods are not accessible by Oracle Data Service Integrator dataspace
clients but can be accessed by other data services within the dataspace.

Private methods may be accessed only by other methods within the data service in
which they are defined.

Primary
The optional boolean attribute isPrimary may also be used to classify entity data
service methods as primary or non-primary. The default value is false.

This property is applicable only to create, update and delete procedures or read
functions.

In the case of a procedure, when this property is set to true, it denotes that the
procedure should be the one to be automatically used by the update maps of logical
data services directly depending on the data service defining the procedure, in order to
perform the corresponding update operation (that is, create, update or delete).
Data Service Annotations 11-11

Function Annotations
In the case of a read function, when this property is set to true, it denotes that the read
function should be the one to be used to infer the data service update map.

There may exist at most one primary method of each kind specified within an entity
data service.

URI
Finally, the namespace URIs of the qualified names of all the functions and/or
procedures in a data service must specify the location of the data service document in
the Oracle Data Service Integrator repository. For example:

ld:{directory path to data service folder}/{data service file name without
extension}

The function element accepts the additional optional attributes described in
Table 11–12.

The content of the top-level function element is a sequence of the following blocks of
properties:

■ Section 11.3.1, "General Properties"

■ Section 11.3.2, "UI Properties"

Table 11–12 Optional Attributes for the function Element

Attribute Description

nativeName Applicable to data source functions or procedures, nativeName
is the name of the function or procedure as it is known to the
external source. In the case of relational sources, for example, it
corresponds to the table name.

nativeLevel1Container Applicable to data source functions or procedures that represent
external sources employing hierarchical containment schemes;
nativeLevel1Container is the name of the top-level native
container, as it is known to the external source.In the case of
relational sources, for example, it corresponds to the catalog
name, whereas, in the case of Web service sources, it
corresponds to the service name.

nativeLevel2Container Applicable to data source functions or procedures that represent
external sources employing hierarchical containment schemes;
nativeLevel2Containeris the name of the second-level native
container, as it is known to the external source. In the case of
relational sources, for example, it corresponds to the schema
name. In the case of Web service sources, it corresponds to the
port name.

nativeLevel3Container Applicable to data source functions or procedures that represent
external sources employing hierarchical containment schemes;
nativeLevel3Containeris the name of the top-level native
container, as it is known to the external source. In the case of
relational sources, for example, it corresponds to the stored
procedure package name.

style Applicable to data source functions or procedures, style is a
native qualifier by which the function is known to the external
source (e.g. table, view, storedProcedure, or sqlQuery for
relational sources; rpc or document for Web services).

roleName Applicable to navigate functions, roleName should match the
value of the roleName attribute of the relationshipTarget
implemented by the function.
11-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Function Annotations
■ Section 11.3.3, "Cache Properties"

■ Section 11.3.4, "Transaction Properties"

■ Section 11.3.5, "Behavioral Properties"

■ Section 11.3.6, "Polymorphic Functions"

■ Section 11.3.7, "Signature Properties"

■ Section 11.3.8, "Native Properties"

■ Section 11.3.9, "Implementation Properties"

The following is an example of a function annotation:

(::pragma function
<f:function xmlns:f="urn:annotations.ld.oracle.com" kind="read"
nativeName="CUSTOMER" nativeLevel2Container="RTL" style="table">
<nonCacheable/>
</f:function>::-)

11.3.1 General Properties
All standard document properties and user-defined properties defined in
Section 11.2.1.1, "Standard Document Properties" and Section 11.2.1.2, "User-Defined
Properties" are applicable to function annotations.

11.3.2 UI Properties
A set of user interface properties may be introduced by the XQuery Editor to persist
location information about the graphical components representing the expression in
the function body. UI properties are represented by the element uiProperties which
accepts a sequence of one or more elements, named component, as its content. Each
"component" element accepts the attributes described in Table 11–13.

In addition, each "component" element may optionally contain one or more treeInfo
elements containing information about the tree representation of the types pertaining
to the component. In the absence of the above property, the query editor uses the
default layout.

Table 11–13 Attributes for the component Element

Attribute Description

identifier An identifier for the UI component.

minimized A Boolean flag indicating whether the UI component has been
minimized or not.

x The x-coordinate for the UI component.

y The y-coordinate for the UI component.

w The width of the UI component.

h The height of the UI component.

viewPosX The x-coordinate of the scrollbar position of the component.

viewPosY The y-coordinate of the scrollbar position of the component.
Data Service Annotations 11-13

Function Annotations
11.3.3 Cache Properties
You can use the optional block of cache properties to specify whether a function can be
cached or not. You should specify a function whose results for the same set of
arguments are intrinsically highly volatile as non-cached. On the other hand, you
should specify a function whose results for the same set of arguments are either fixed
or remain unchanged for a period of time as cacheable.

This property of a function is represented by the empty element nonCacheable. In the
absence of the nonCacheable element, a function is considered to be potentially
cacheable. The following is an example:

<nonCacheable/>

11.3.4 Transaction Properties
You can use the optional block of transaction properties to specify whether a
procedure can participate in a transaction or not. This property is applicable only to
physical procedures bound to external data sources of type Java or Oracle Service Bus
proxy service. A transactional procedure should rollback its effects if the overall
transaction, in which it participates, fails.

This property is represented by the empty element nonTransactional. In the absence
of the nonTransactional element, a procedure is considered to be transactional. The
following is an example:

<nonTransactional/>

11.3.5 Behavioral Properties
The optional block of behavioral properties allows you to provide information related
to known associations between a function's input and its output, or across two or more
functions. In particular, you may specify the following:

■ Section 11.3.5.1, "Inverse Functions"

■ Section 11.3.5.2, "Equivalent Transforms"

11.3.5.1 Inverse Functions
Given an XQuery function f, the optional block of inverse functions may be used in
order to denote a function g, defined over the range of f, that, when composed with f
(that is, g(f)), renders one of the parameters of f. If f has multiple parameters, an inverse
function may be defined for each one of its parameters.

The inverse functions block is represented by an optional element, named
inverseFunctions, which accepts as its content a sequence of empty elements, named
inverseFunction. Each inverseFunction element accepts the following attributes:

■ parameterIndex: optional attribute denoting the index of the parameter for which
the inverse function is defined. The index of the first parameter is assumed to be 1.
It may be omitted if the function being annotated has a single parameter.

■ name: required attribute denoting the fully-qualified name of the inverse function.

Note: Both the annotated and the inverse function must be either
built-in or external XQuery functions.
11-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Function Annotations
The following is an example of an inverseFunctions element definition:

<inverseFunctions>
 <inverseFunction parameterIndex="2" name="p:MyInverse" xmlns:p ="urn:test"/>
</inverseFunctions>

11.3.5.2 Equivalent Transforms
Given an XQuery function: f, the optional block of equivalent transforms may be used
in order to denote a pair of functions_C_ and C' with identical signatures and
equivalent semantics, that accept f as one of their parameters. In simple terms, the
equivalence is perceived to mean that each occurrence of C(...,f,...) may be safely
substituted with: C'(...,f,...).

The equivalent transforms block is represented by an optional element, named
equivalentTransforms, which accepts as its content a sequence of empty elements,
named pair. Each pair element accepts the following required attributes:

■ source: denotes the fully qualified name of the source transform (that is, C).

■ target: denotes the fully qualified name of the target transform (that is, C').

■ arity: denotes the (common) arity of the source and target transforms.

The following is an example of an equivalentTransforms element definition:

<equivalentTransforms>
 <pair source="p:sourceFunction_1" target="p:targetFunction_1" arity="1"
xmlns:p ="urn:test1"/>
 <pair source="q:sourceFunction_2" target="q:targetFunction_2" arity="3"
xmlns:q="urn:test2"/>
</equivalentTransforms>

11.3.6 Polymorphic Functions
A library function residing in a relational database function library data service may
be designated as polymorphic if its actual return type can be determined from the
actual type of one of its parameters. A polymorphic function is annotated by an
optional element, isPolymorphic, which accepts as its content an empty element,
named parameter. The parameter element accepts the following optional attribute:

■ index: denotes the index of the parameter whose actual type determines the
function's actual return type. The index of the first parameter is assumed to be 1. It
may be omitted if the function being annotated has a single parameter.

The following is an example of an isPolymorphic element definition:

<isPolymorphic>
 <parameter index = "2"/>
</isPolymorphic>

Note: The source transform may be either a built-in or external
function. Both source and target transforms must not be defined as
invertible functions.
Data Service Annotations 11-15

Function Annotations
11.3.7 Signature Properties
You can use the optional block of signature properties to annotate the parameters of a
data service function or procedure with additional information to that provided by the
function signature. These properties are applicable to physical data service functions
or procedures.

The signature properties block is represented by the element params which accepts a
sequence of one or more elements, named param, as its content. Each param element is
an empty element that accepts the optional attributes described in Table 11–14:

The following is an example of a params element definition:

<params>
 <param nativeType="java.lang.String"/>
 <param nativeType="java.lang.int"/>
</params>

11.3.8 Native Properties
You can use native properties to further annotate a data source function or procedure
based on the type of the external source that it represents. There are two types of
native properties pertaining to relational and Web service sources respectively:

■ Section 11.3.8.1, "SQL Query Properties"

■ Section 11.3.8.2, "SOAP Handler Properties"

11.3.8.1 SQL Query Properties
The function annotation element of a function that represents a user-defined SQL
query has its style attribute set to sqlQuery and accepts a nested element, named sql.
The sql element accepts string content that corresponds to the statement of the
(possibly parameterized) SQL query that the function represents.

If required, the statement can be escaped inside a CDATA section to account for
reserved XML characters (for example: <, >, &). The sql element also accepts the
optional attribute isSubquery whose boolean value indicates whether the SQL
statement may be used as a nested SQL sub-query. If the attribute is absent, its value
defaults to true.

The following is an example of a sqlQuery element definition:

<sql isSubquery="true">
 SELECT t.FIRST_NAME FROM RTLALL.dbo.CUSTOMER t</sql>

Table 11–14 Optional Attributes for the param Element

Attribute Description

name The name of the parameter, as it is known to the external source.

nativeType The native type of the parameter, as it is known to the external
source.

nativeTypeCode The native type code of the parameter, as it is known to the
external source.

xqueryType The qualified name of the XML Schema or XQuery type used for
the parameter.

kind One of the following values: unknown, in, inout, out, return or
result (applicable to stored procedures).
11-16 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

XFL Annotations
11.3.8.2 SOAP Handler Properties
The "function" annotation element of a function or procedure that represents a Web
service call accepts a nested element, interceptorConfiguration. The
interceptorConfiguration element accepts two required attributes:

11.3.9 Implementation Properties
You can use implementation properties to specify that an external create, update or
delete procedure is implemented by the update map of the data service in which it is
defined.

The optional element implementation accepts the required empty element
updateTemplate as its content.

For example:

<implementation>
 <updateTemplate/>
</implementation>

11.4 XFL Annotations
There is a single XFL ("XQuery Function Library") annotation per library data service
document, which appears before any function annotation in the document. The
identifier for the pragma carrying the XFL annotation is xfl. The qualified name of the
top level element of the XML fragment corresponding to an XFL annotation has the
local name:

xfl

and the namespace URI:

urn:annotations.ld.oracle.com

The contents of the top-level xfl element is a sequence of the following blocks of
properties.

■ Section 11.4.1, "General Properties"

■ Section 11.4.2, "Data Access Properties"

■ Section 11.4.3, "Security Properties"

The following sections provide detailed descriptions of each block of properties, while
the following excerpt provides an example of a XFL annotation, which may serve as a
reference.

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.oracle.com">
<creationDate>2005-03-09T17:48:58</creationDate>

Table 11–15 Required Attributes for the interceptorConfiguration Element

Attribute Description

fileName The location of the file containing the configuration of the SOAP
handler chains that are applicable to the Web service.

aliasName The alias name by which the SOAP handler chain has been
configured.
Data Service Annotations 11-17

XFL Annotations
<webService targetNamespace="urn:GoogleSearch"
 wsdl="ld:google/GoogleSearch.wsdl"/>
</x:xfl>::-)

11.4.1 General Properties
The general properties applicable to an library data service document are identical to
the general properties for an entity data service document, as described in
Section 11.2.1, "General Properties".

11.4.2 Data Access Properties
Each library data service document defines one or more XQuery functions and/or
XQSE functions or procedures that serve as library operations that can be used either
inside other entiry or library data service documents.

Since library data service documents do not have a target type, the return types of the
library functions found inside these document may differ from each other. In
particular, a function inside a library data service document may return a value having
a simple type (or any other type). Library data service functions can be external data
source functions or user-defined.

The following types of library data service documents are supported:

■ Relational (physical)

■ Web service (physical)

■ Java function (physical)

■ Relational database function (physical)

■ User-defined view (logical)

You can specify only one of the annotations in each library data service. If no
annotation is provided, the library data service is considered a user-defined view.

The data access properties for Relational, Web service, Java function, and user-defined
view library data service documents are the same as the corresponding properties for
entity data service documents, as described above.

A relational database function library data service contains native functions, either
database vendor-provided or user-defined in the database, from one or more relational
data sources, modeled as external XQuery functions.

The data access annotation for a relational database function library data service
comprises an element named customNativeFunctions with a single child element,
named relational, whose content is a sequence of one or more elements named
dataSource. Each dataSource element contains a single text value, which should be set
to the JNDI name by which the external relational source has been registered with the
application server.

For example:

<customNativeFunctions>
<relational>
 <dataSource>oracleDS1</dataSource>
 <dataSource>oracleDS2</dataSource>
 </relational>
</customNativeFunctions>
11-18 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Data Service Annotations Schema
11.4.3 Security Properties
The same as in entity data services.

11.5 Data Service Annotations Schema
This section provides the schema for data service annotations.

<?xml version="1.0"?>
<xs:schema targetNamespace="urn:annotations.ld.oracle.com"
xmlns:tns="urn:annotations.ld.oracle.com"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <!--==================-->
 <!-- XDS annotation -->
 <!--==================-->
 <xs:element name="xds">
 <xs:complexType>
 <xs:sequence>
 <!-- document properties -->
 <xs:element name="author" type="xs:string" minOccurs="0"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="documentation" type="xs:string" minOccurs="0"/>
 <xs:element name="version" type="xs:decimal" minOccurs="0"/>
 <!-- user defined properties -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="property">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- data access properties -->
 <xs:choice>
 <!-- choice 1: java functions -->
 <xs:element name="javaFunction">
 <xs:complexType>
 <xs:attribute name="class" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 2: web services -->
 <xs:element name="webService">
 <xs:complexType>
 <xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
 <xs:attribute name="targetNamespace" type="xs:anyURI" use="required"/>
 <xs:attribute name="sbProxyServiceName" type="xs:string"/>
 <xs:attribute name="sbTransportProtocol" type="tns:SBTransportProtocolType"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 3: relational sources -->
 <xs:element name="relationalDB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="properties" minOccurs="0">
 <xs:complexType>
Data Service Annotations 11-19

Data Service Annotations Schema
 <xs:anyAttribute processContents="lax" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="providerId" type="xs:string" />
 <xs:attribute name="dbType" type="xs:string"/>
 <xs:attribute name="dbVersion" type="xs:string"/>
 <xs:attribute name="driver" type="xs:string"/>
 <xs:attribute name="uri" type="xs:string"/>
 <xs:attribute name="username" type="xs:string"/>
 <xs:attribute name="password" type="xs:string"/>
 <xs:attribute name="SID" type="xs:string"/>
 <xs:attribute name="sourceBindingProviderClassName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 4: delimited files -->
 <xs:element name="delimitedFile">
 <xs:complexType>
 <xs:attribute name="file" type="xs:anyURI"/>
 <xs:attribute name="schema" type="xs:anyURI"/>
 <xs:attribute name="inferredSchema" type="xs:boolean" default="false"/>
 <xs:attribute name="delimiter" type="xs:string"/>
 <xs:attribute name="fixedLength" type="xs:positiveInteger"/>
 <xs:attribute name="hasHeader" type="xs:boolean" default="false"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 5: XML files -->
 <xs:element name="xmlFile">
 <xs:complexType>
 <xs:attribute name="file" type="xs:anyURI"/>
 <xs:attribute name="schema" type="xs:anyURI" use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 6: user defined view -->
 <xs:element name="userDefinedView" minOccurs="0"/>
 <!-- choice 7: nothing, defaults to userDefinedView -->
 <xs:sequence/>
 </xs:choice>
 <!-- field annotations -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="field">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="extension" minOccurs="0">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element name="autoNumber">
 <xs:complexType>
 <xs:attribute name="type" type="tns:autoNumberType" use="required"/>
 <xs:attribute name="sequenceObjectName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="nativeXpath" type="xs:string"/>
 <xs:attribute name="nativeType" type="xs:string"/>
 <xs:attribute name="nativeTypeCode" type="xs:int"/>
 <xs:attribute name="nativeSize" type="xs:int"/>
 <xs:attribute name="nativeFractionalDigits" type="tns:scaleType"/>
 <xs:attribute name="nativeKey" type="xs:boolean" default="false"/>
11-20 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Data Service Annotations Schema
 <!-- relational: autoNumber -->
 <!-- relational: native column names and types -->
 </xs:complexType>
 </xs:element>
 <xs:element name="properties">
 <xs:complexType>
 <xs:attribute name="immutable" type="xs:boolean" default="false"/>
 <xs:attribute name="nullable" type="xs:boolean" default="false"/>
 <xs:attribute name="transient" type="xs:boolean" default="false"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="xpath" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- keys -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="key">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="selector" minOccurs="0">
<!-- defaults to . -->
 <xs:complexType>
 <xs:sequence>
 <xs:element name="extension" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="nativeXpath" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="xpath" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="type" type="xs:QName"/>
 <xs:attribute name="inferred" type="xs:boolean" default="true"/>
 <xs:attribute name="inferredSchema" type="xs:boolean" default="true"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- relationships -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="relationshipTarget">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="relationship" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="roleName" type="xs:string" use="required"/>
 <xs:attribute name="roleNumber" type="tns:roleType" default="1"/>
 <xs:attribute name="XDS" type="xs:string" use="required"/>
 <xs:attribute name="minOccurs" type="tns:allNNI" default="1"/>
Data Service Annotations 11-21

Data Service Annotations Schema
 <xs:attribute name="maxOccurs" type="tns:allNNI" default="1"/>
 <xs:attribute name="opposite" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- SDO elements -->
 <xs:element name="functionForDecomposition" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="name" type="xs:QName" use="required"/>
 <xs:attribute name="arity" type="xs:int" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="javaUpdateExit" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="className" type="xs:string" use="required"/>
 <xs:attribute name="classFile" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="optimisticLockingFields" minOccurs="0">
 <xs:complexType>
 <xs:choice>
 <xs:element name="updated">
 <xs:complexType/>
 </xs:element>
 <xs:element name="projected">
 <xs:complexType/>
 </xs:element>
 <xs:element name="field" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <!-- security -->
 <xs:element name="secureResources" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="secureResource" type="xs:NCName" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="readOnly" minOccurs="0">
 <xs:complexType/>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="targetType" type="xs:QName" use="required"/>
 </xs:complexType>
 </xs:element>
 <!--==================-->
 <!-- XFL annotation -->
 <!--==================-->
 <xs:element name="xfl">
 <xs:complexType>
 <xs:sequence>
 <!-- document properties -->
 <xs:element name="author" type="xs:string" minOccurs="0"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
11-22 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Data Service Annotations Schema
 <xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="documentation" type="xs:string" minOccurs="0"/>
 <xs:element name="version" type="xs:decimal" minOccurs="0"/>
 <!-- user defined properties -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="property">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- data access properties -->
 <xs:choice>
 <!-- choice 1: java functions -->
 <xs:element name="javaFunction">
 <xs:complexType>
 <xs:attribute name="class" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 2: web services -->
 <xs:element name="webService">
 <xs:complexType>
 <xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
 <xs:attribute name="targetNamespace" type="xs:anyURI" use="required"/>
 <xs:attribute name="sbProxyServiceName" type="xs:string"/>
 <xs:attribute name="sbTransportProtocol" type="tns:SBTransportProtocolType"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 3: relational sources -->
 <xs:element name="relationalDB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="properties" minOccurs="0">
 <xs:complexType>
 <xs:anyAttribute processContents="lax" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="providerId" type="xs:string" />
 <xs:attribute name="dbType" type="xs:string"/>
 <xs:attribute name="dbVersion" type="xs:string"/>
 <xs:attribute name="driver" type="xs:string"/>
 <xs:attribute name="uri" type="xs:string"/>
 <xs:attribute name="username" type="xs:string"/>
 <xs:attribute name="password" type="xs:string"/>
 <xs:attribute name="SID" type="xs:string"/>
 <xs:attribute name="sourceBindingProviderClassName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 6: user defined view -->
 <xs:element name="userDefinedView" minOccurs="0"/>
 <!-- choice 7: nothing, defaults to userDefinedView -->
 <xs:sequence/>
 <!-- choice 8: custom native functions -->
 <xs:element name="customNativeFunctions">
Data Service Annotations 11-23

Data Service Annotations Schema
 <xs:complexType>
 <xs:choice>
 <xs:element name="relational">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="dataSource" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <!-- field annotations -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="field">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="extension" minOccurs="0">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element name="autoNumber">
 <xs:complexType>
 <xs:attribute name="type" type="tns:autoNumberType" use="required"/>
 <xs:attribute name="sequenceObjectName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="nativeXpath" type="xs:string"/>
 <xs:attribute name="nativeType" type="xs:string"/>
 <xs:attribute name="nativeTypeCode" type="xs:int"/>
 <xs:attribute name="nativeSize" type="xs:int"/>
 <xs:attribute name="nativeFractionalDigits" type="tns:scaleType"/>
 <!-- relational: autoNumber -->
 <!-- relational: native column names and types -->
 </xs:complexType>
 </xs:element>
 <xs:element name="properties">
 <xs:complexType>
 <xs:attribute name="immutable" type="xs:boolean" default="false"/>
 <xs:attribute name="nullable" type="xs:boolean" default="false"/>
 <xs:attribute name="transient" type="xs:boolean" default="false"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="xpath" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <xs:element name="secureResources" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="secureResource" type="xs:NCName" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
11-24 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Data Service Annotations Schema
 </xs:complexType>
 </xs:element>
 <!--=======================-->
 <!-- function annotation -->
 <!--=======================-->
 <xs:element name="function">
 <xs:complexType>
 <xs:sequence>

 <!-- standard properties -->
 <xs:element name="author" type="xs:string" minOccurs="0"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="version" type="xs:decimal" minOccurs="0"/>
 <xs:element name="documentation" type="xs:string" minOccurs="0"/>

 <!-- user defined properties -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="property">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 <!-- UI properties -->
 <xs:element name="uiProperties" minOccurs="0">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="component">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="treeInfo" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="collapsedNodes" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="collapsedNode" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="identifier" type="xs:string"/>
 <xs:attribute name="minimized" type="xs:boolean" default="false"/>
 <xs:attribute name="x" type="xs:int"/>
 <xs:attribute name="y" type="xs:int"/>
 <xs:attribute name="w" type="xs:int"/>
 <xs:attribute name="h" type="xs:int"/>
 <xs:attribute name="viewPosX" type="xs:int"/>
 <xs:attribute name="viewPosY" type="xs:int"/>
 </xs:complexType>
Data Service Annotations 11-25

Data Service Annotations Schema
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <!-- sql statement -->
 <xs:element name="sql" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="isSubquery" type="xs:boolean" default="true"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <!-- cache -->
 <xs:element name="nonCacheable" minOccurs="0">
 <xs:complexType/>
 </xs:element>

 <!-- transactions -->
 <xs:element name="nonTransactional" minOccurs="0">
 <xs:complexType/>
 </xs:element>

 <!-- optimization -->
 <xs:element name="outputIsOrderedBy" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <!-- absent for parameters whose order in the function signature
 coincides with their order in the order by list -->
 <xs:element name="parameter" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <!-- 1, 2, ... -->
 <xs:attribute name="index" type="xs:int" use="required"/>
 <!-- overrides default -->
 <xs:attribute name="mode" type="tns:orderingModeType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="mode" type="tns:orderingModeType" use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="inverseFunctions" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="inverseFunction" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <!-- 1, 2, ... -->
 <xs:attribute name="parameterIndex" type="xs:int"/>
 <xs:attribute name="name" type="xs:QName" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="equivalentTransforms" minOccurs="0">
 <xs:complexType>
11-26 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Data Service Annotations Schema
 <xs:sequence>
 <xs:element name="pair" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="source" type="xs:QName" use="required"/>
 <xs:attribute name="target" type="xs:QName" use="required"/>
 <xs:attribute name="arity" type="xs:int" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <!-- polymorphism -->
 <xs:element name="isPolymorphic" minOccurs="0">
 <xs:complexType>
 <xs:choice>
 <xs:element name="parameter">
 <xs:complexType>
 <xs:sequence/>
 <!-- optional: defaults to 1 -->
 <xs:attribute name="index" type="xs:nonNegativeInteger"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <!-- signature: used by java functions and stored procedures -->
 <xs:element name="params" minOccurs="0">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="param">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="nativeType" type="xs:string"/>
 <xs:attribute name="nativeTypeCode" type="xs:int"/>
 <xs:attribute name="xqueryType" type="xs:QName"/>
 <xs:attribute name="kind" type="tns:paramKindType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- interceptor configuration: used by webservice SOAP interceptors -->
 <xs:element name="interceptorConfiguration" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="aliasName" type="xs:string" use="required"/>
 <xs:attribute name="fileName" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>

 <!-- implementation -->
 <xs:element name="implementation" minOccurs="0">
 <xs:complexType>
 <xs:choice>
 <xs:element name="updateTemplate">
 <xs:complexType/>
 </xs:element>
 </xs:choice>
 </xs:complexType>
Data Service Annotations 11-27

Data Service Annotations Schema
 </xs:element>
 </xs:sequence>

 <xs:attribute name="visibility" type="tns:functionVisibilityType" default="protected"/>
 <xs:attribute name="kind" type="tns:functionKindType" default="library"/>
 <xs:attribute name="isPrimary" type="xs:boolean" default="false"/>
 <xs:attribute name="roleName" type="xs:string"/>
 <xs:attribute name="nativeName" type="xs:string"/>
 <xs:attribute name="nativeLevel1Container" type="xs:string"/>
 <xs:attribute name="nativeLevel2Container" type="xs:string"/>
 <xs:attribute name="nativeLevel3Container" type="xs:string"/>
 <xs:attribute name="style" type="tns:functionStyleType"/>
 </xs:complexType>
 </xs:element>
 <!--================-->
 <!-- common types -->
 <!--================-->
 <xs:simpleType name="functionVisibilityType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="public"/>
 <xs:enumeration value="protected"/>
 <xs:enumeration value="private"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="functionKindType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="read"/>
 <xs:enumeration value="navigate"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="update"/>
 <xs:enumeration value="delete"/>
 <xs:enumeration value="library"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="functionStyleType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="table"/>
 <xs:enumeration value="view"/>
 <xs:enumeration value="storedProcedure"/>
 <xs:enumeration value="sqlQuery"/>
 <xs:enumeration value="document"/>
 <xs:enumeration value="rpc"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- used by stored procedures -->
 <xs:simpleType name="paramKindType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="in"/>
 <xs:enumeration value="inout"/>
 <xs:enumeration value="out"/>
 <xs:enumeration value="return"/>
 <xs:enumeration value="result"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- used by maxOccurs in relationship -->
 <xs:simpleType name="allNNI">
 <xs:union memberTypes="xs:nonNegativeInteger">
 <xs:simpleType>
 <xs:restriction base="xs:string">
11-28 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Data Service Annotations Schema
 <xs:enumeration value="unbounded"/>
 <xs:enumeration value=""/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <!-- used by relationships -->
 <xs:simpleType name="roleType">
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="autoNumberType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="identity"/>
 <xs:enumeration value="sequence"/>
 <xs:enumeration value="userComputed"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nullSortOrderType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="high"/>
 <xs:enumeration value="low"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="scaleType">
 <xs:union memberTypes="xs:int">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="null"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:simpleType name="orderingModeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ascending"/>
 <xs:enumeration value="descending"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="stringListType">
 <xs:list itemType="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="dataSourcesType">
 <xs:restriction base="tns:stringListType">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SBTransportProtocolType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="t3"/>
 <xs:enumeration value="iiop"/>
 <xs:enumeration value="http"/>
 <xs:enumeration value="t3s"/>
 <xs:enumeration value="iiops"/>
 <xs:enumeration value="https"/>
 </xs:restriction>
 </xs:simpleType>
Data Service Annotations 11-29

Data Service Annotations Schema
</xs:schema>
11-30 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

12

12Best Practices When Building Data Services

This topic introduces a series of best practices you can consider when building data
services using Oracle Data Service Integrator. This chapter contains the following
sections:

■ Section 12.1, "Overview"

■ Section 12.2, "Oracle Data Service Integrator Development Best Practices"

■ Section 12.3, "Performance and Optimization Best Practices"

■ Section 12.4, "How To Get More Help"

■ Section 12.5, "Related Topics"

12.1 Overview
The Oracle Data Service Integrator runtime is hosted inside a WebLogic server
container and can co-exist with other server platforms such as AquaLogic Service Bus
10gR3 (Oracle Data Service Integrator 10gR3and higher), WebLogic Integration (WLI)
or WebLogic Portal. Clients access the Oracle Data Service Integrator data services
through the Data Service Mediator API, Web Services API, the Oracle Data Service
Integrator JDBC driver, and the Service Bus Oracle Data Service Integrator Transport.
Oracle Workshop for WebLogic-based applications can access Oracle Data Service
Integrator data services through an Oracle Data Service Integrator Control.

Oracle Data Service Integrator was one of the first products to introduce the concept of
dataspaces. A dataspace is a unit of deployment, administration, and security policy
control. A single Oracle Data Service Integrator runtime environment can host one or
more dataspaces. A dataspace contains a set of related data services. Data services
hosted in a dataspace run in the same context and can be reused from other data
services.

12.1.1 Understanding the Oracle Data Service Integrator Server
When the Oracle Data Service Integrator server receives a request, it does the
following:

1. The Oracle Data Service Integrator server looks up the data service by namespace,
and the operation by function name and number of arguments.

2. The server looks in the query plan cache for a compiled query plan. If the server
does not find one, it compiles the query and caches the resulting query plan. (The
query plan cache uses a "most-recently-used" algorithm, with a default size of 100
plans.)

3. After the server has a query plan, it binds the operation's arguments to the plan.
Best Practices When Building Data Services 12-1

Oracle Data Service Integrator Development Best Practices
4. The server runs the query and streams the data from the back-end systems
through the Oracle Data Service Integrator server.

12.1.2 Understanding the Oracle Data Service Integrator Client
For detailed information about Oracle Data Service Integrator clients, refer to
Introducing Data Services for Client Applications in the Client Application
Developer's Guide.

12.2 Oracle Data Service Integrator Development Best Practices
Oracle Data Service Integrator, similar to other advanced development systems, offers
a powerful and flexible environment for creating high performance and feature-rich
programs. This section provides a series of best practice guidelines for organizing and
structuring your projects.

12.2.1 Organizing Data Services Using Projects
Oracle Data Service Integrator treats all artifacts within a dataspace project as being
within the same context. This means that you are free to organize projects in any way
that makes logical sense. For example, you could choose to create a single project with
100 data services, or 10 projects with 10 data services each.

In practical terms, however, there are advantages to organizing in specific ways. For
example, Studio builds a project at a time. Therefore Studio can typically build a
project containing fewer data services faster than one containing a larger number of
data services.

WARNING: There are cases, however, that require full
materialization of the data inside the Oracle Data Service Integrator
server, such as during an in-memory sort operation run in the Oracle
Data Service Integrator server middle tier. For these types of
operations, the server can optionally use secondary storage (disk) as
needed so as not to exhaust the virtual memory of the JVM. Here are
some specifics:

■ If the operation is initiated using the data service mediator API or
the Oracle Data Service Integrator JDBC driver, the query result
can be streamed all the way to the client as the client iterates
through the results.

■ If the operation is initiated using the Web Service client API or
DSP transport, the results are streamed through the server but
fully materialized inside the server before sending the results to
the client.

Best Practice Overview

Organize using dataspace projects You can reduce build and deployment
times by organizing your data services
into projects.

Build data services in layers Building projects using a layered
approach can simplify development
and increase reliability
12-2 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Oracle Data Service Integrator Development Best Practices
12.2.2 Building Data Services in Layers
Oracle Data Service Integrator enables you to design and build your data services as a
series of layers extending from the physical data sources to your business and
application logic. This section provides an overview of the most common layers used
in Oracle Data Service Integrator and offers suggestions on the types of operations that
you should include in each layer.

Figure 12–1 Oracle Data Service Integrator Layers

The following table provides an overview of the layers in a typical Oracle Data Service
Integrator dataspace project:

12.2.2.1 Physical Layer
The physical layer contains imported operations related to resources such as
databases, Web services, XML files, and Java functions.

To create the physical layer, do the following:

1. At the top-level of the dataspace project, create a folder named Physical.

Tip: In general, you should consider organizing data services into
projects if the data services (across the projects) do not need to
participate in building views. This means, for example, grouping
logically-related data services in one project and non-related services
in another project, and so on.

Table 12–1 Oracle Data Service Integrator Layers

Layer Overview

Physical Contains imported operations related to resources such as
databases, Web services, XML files, and Java functions

Logical Contains operations matching the physical layer
operations that perform simple transformations to the
data.

Integration Contains the coarse-grained business objects that are
manipulated by the dataspace project

Application Can add a further layer of abstraction and specialization to a
data service project.
Best Practices When Building Data Services 12-3

Oracle Data Service Integrator Development Best Practices
2. Create a subdirectory for each physical resource in the Physical folder.

3. Import the operations for each resource into the respective folders.

12.2.2.2 Logical Layer
The logical layer contains operations matching the physical layer operations that
perform simple transformations to the data.

To create the logical layer, do the following:

1. At the top-level of the dataspace project, create a folder named Logical.

2. Mirror the directory structure from the Physical folder in the Logical folder. Create
a corresponding data service in the Logical folder for each data service in the
Physical folder.

3. Create a schema for each data service.

4. For each data service in the Logical folder, create a new operation that calls the
corresponding physical operation.

Assign meaningful names to elements. For example, CUST_ID might become
CustomerId. You can also add computation and other logic to operations in the
logical layer, for example, LoanDuration = $LOAN/END_DATE - $LOAN/START_DATE.

The logical layer typically does not include significant joins or selections. The layer
instead focuses on data access and element construction. Therefore the resulting query
plans will simply be calls to the physical source along with element construction.

This means that there is typically little opportunity to improve query efficiency in the
logical layer, so it normally does not help to examine the query plans at this layer.

The following shows a sample operation in the logical layer:

function getCustomer() {

for $c in CUSTOMER()
return
 <Customer>
 <CustomerId>{$c/CUSTOMER_ID}</CustomerId>
 <LastName>{$c/LAST_NAME}</ LastName >
 <FirstName>{$c/FIRST_NAME}</FirstName>
 <Email>{$c/EMAIL}</Email>
 <CustomerSince>{$c/CUSTOMER_SINCE}</CustomerSince>
 <SupportLevel>{$c/SUPPORT_LEVEL}</SupportLevel>
</Customer>
}

Note: You typically should not modify these physical data services.
This makes it easier to re-import changes to the physical resources, if
necessary.

Note: You can also use the logical layer to define inverse functions,
as required. Ideally, this is the only layer that should have expanded
mappings, although the application layer can also use expanded
element mappings to retrieve required elements.
12-4 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Oracle Data Service Integrator Development Best Practices
12.2.2.3 Integration Layer
The integration layer contains the coarse-grained business objects that are
manipulated by the dataspace project.

To create the integration layer, do the following:

1. At the top-level of the dataspace project, create a folder named Integration.

2. Create a folder in the Integration directory for each group of coarse-grained
business objects you plan to create.

You might, for example, have folders named Ordering, Customer, and Product.

3. Create a data service for each coarse-grained business object.

If possible, also create a 'get all' base function in the data service (such as
CustomerOrderLineItem) that constructs an element by joining elements such as
Customer >Order > LineItem.

If possible, design data services in the integration layer to only use compound
mappings, since expanded mappings are expensive in terms of time and memory. The
example below shows how to construct nested output using compound mappings
only. Note the introduction of envelope elements. The LineItemEnvelope element is
not required since it is at the bottom; it is included for consistency.

function getCustomers(){

for $c in Customer()
return
 <CustomerEnvelope>
 {$c}
 {
 for $o in Order()
 where $o/CustomerId eq $c/CustomerId
 return
 <OrderEnvelope>
 {$o}
 {
 for $l in LineItem()
 where $l/OrderId eq $o/OrderId
 return
 <LineItemEnvelope>
 {$l}
 </LineItemEnvelope>
 }
 </OrderEnvelope>
 }
 </CustomerEnvelope>
}

Note: The integration layer is where you should perform data
integration, joining, for instance Customer, Order, and LineItemto
create the coarse-grained XML structure CustomerOrderLineItem.

Note: Do not put selection operations, such as 'by CustomerId' for
example, in this 'get all' function. Also, operations in the integration
layer should only call operations in the logical layer.
Best Practices When Building Data Services 12-5

Oracle Data Service Integrator Development Best Practices
After you have created the base function, you can write specific selection functions
using the base function. For example:

function getCustomerById($customerId as xs:string) {
for $c in getCustomers()
 where $c/CustomerId eq $customerId
 return
 $c
}

function getCustomersByLastName($LastName as xs:string) {
for $c in getCustomers()
 where $c/LastName eq $LastName
 return
 $c
}

function getCustomersByOrderAmountExceeding($orderAmount as xs:decimal) {
for $c in getCustomers()
 where some $o in $c/OrderEnvelope/Order
 satisfies $o/OrderAmount > $orderAmount
 return
 $c
}

Since the integration layer contains joins and possibly selections, there is the
possibility of inefficient query plans. As you create each function, examine the
resulting query plan and evaluate its efficiency.

In some cases, it may even be useful to examine the query plan as you develop each
function. For instance, when creating the base operation, getCustomers(), consider
examining the query plan after you add the join on Orders, but before you add the join
on LineItems.

If adding the join Customer > Order produces an inefficient query plan, there is little
point in continuing to complicate the query by also joining to LineItem before
correcting the join on Customer > Order.

12.2.2.4 Application Layer
For simple dataspace projects, three layers will likely be sufficient. However, if your
dataspace has more demanding requirements, you can add an application layer.

The application layer adds a further layer of abstraction and specialization to a data
service project. For instance, you could add row or column-level security in the
application layer, or only expose required columns to reduce unnecessary data
retrieval. Similarly, you could use the application layer to create a highly-specialized
data service to fulfill a specific need.

The structure of the application layer resembles the integration layer, and makes calls
directly to the integration layer.

The benefit of these layers is that once they are created, you will have constructed a
virtual database around all your disparate data. You will be able to create and modify
data services that are only loosely coupled with the underlying physical data. Changes
in the underlying data will be much less likely to affect your data service developers
both in term of data service development and maintenance.
12-6 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Performance and Optimization Best Practices
And your application developers will be able to write to layer that is highly insulated
and far more powerful as compared to writing to separate data sources and processing
the results locally (perhaps in yet another database).

12.3 Performance and Optimization Best Practices
Oracle Data Service Integrator attempts to optimize the operation of your dataspace
project as well as interactions between your dataspace and the underlying data
sources. This section describes a series of best practices that you can use to potentially
increase the levels of optimization and boost the performance of your dataspace
projects.

12.3.1 Database Access
This section describes performance and optimization best practices related to data
access.

12.3.1.1 Retrieving Only the Necessary Data
Examine the query plan and verify that the SQL statements retrieve only the necessary
data. For example, suppose you have the following selection in your XQuery:

where $c/POSTAL_CODE eq $postalCode

You should then find that condition in the SQL statements as:

WHERE POSTAL_CODE = ?

Category Best Practice

Database Access ■ Retrieve only necessary data

■ Design functions that can be pushed to
the database

■ Verify that joins are implemented as
left-outer or inner/natural joins

■ Push left-outer joins to the database

■ Use a ppci-impl join

■ Avoid casting

■ Optimize ad hoc queries

■ Write your own SQL in some cases

Fail-Over Exercise care when using fail-over,
fail-over-retry, and timeout

Inverse Functions Use inverse functions

Caching/Auditing Take advantage of caching

Query Plans ■ Evaluate performance before running the
query

■ Precompile query plans

■ Evaluate performance by running the
query

Performance Monitoring Evaluate and monitor operational
performance
Best Practices When Building Data Services 12-7

Performance and Optimization Best Practices
If this clause does not appear in the SQL, you need to determine why this is the case to
enable the code generated by Oracle Data Service Integrator to be pushed to the
database.

12.3.1.2 Designing Functions Which can be Pushed to the Database
To have a function pushed to the database, and thereby increase efficiency and
performance, the function must have an equivalent database operation or an inverse
operation. For example, suppose you have the following selection in your XQuery:

where match($c/LAST_NAME, $regexpr)

Oracle Data Service Integrator cannot push this selection to the database because there
is no equivalent to the match() function in SQL, and there is no inverse function for
match() defined in Oracle Data Service Integrator.

12.3.1.3 Verifying that Joins are Implemented as Left-Outer or Inner/Natural Joins
You need to consider how joins are implements in your XQuery. For example, suppose
you have a join in your XQuery similar to the following:

where $c/CUSTOMER_ID eq $o/CUSTOMER_ID

If both tables are in the same database and the returned XML is nested, the query plan
should contain SQL with a left-outer-join of these tables. If the returned XML is flat,
the query plan should include SQL with a inner/natural join of the two tables.

If the join is not implemented as either a left-outer or inner/natural join in the SQL,
you need to determine why. Similarly, you need to examine options for ensuring that
the joins are pushed to the database.

12.3.1.4 Pushing Left Outer Joins to the Database
The following conditions need to be satisfied for a join producing nested output to be
pushed to the database as a left-outer join:

■ Both tables need to be in the same database.

■ The driving (left) table must have a unique key.

The second condition is necessary because the result set from SQL will contain
duplicate rows, and Oracle Data Service Integrator needs to detect these rows so that
the right-hand side can be grouped by the left-hand side key. If the left table does not
have a unique key, Oracle Data Service Integrator is forced to get the records from the
left table only, generate a key, retrieve corresponding rows from the right table, and
join them with those from the left. If this occurs, you will find two SQL statements, one
for each table, joined using an index-cpp join and a generate-key() operator above the
left table.

If the conditions are met, there is no limit to the number of levels of nested output that
can be joined in a single SQL statement. However, if within the nesting, there are
sibling child elements, the second child cannot be in the join. For example, Customers
> Orders > LineItems > Products > Pricings can be pushed as a single SQL statement
with multiple left-outer-joins. But in Customers > (Orders, Addresses), Customers >

Note: In most cases, your XQuery functions will test for simple
equality and inequality. Oracle Data Service Integrator can
automatically push these types of operators to the database.
12-8 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Performance and Optimization Best Practices
Orders can be pushed as a left-outer join, but Addresses will be implemented as a
clustered, parameter-passing join (cpp).

The reason that Address is not joined as another left-outer join in the same SQL is
because adding it would produce a cross-product between Orders and Addresses as
they are not dependent on each other. So, if a Customer had 1,000 orders and 1,000
addresses, the resulting SQL would return 1,000,000 rows and Oracle Data Service
Integrator would be left to remove the duplicates.

By splitting this into two separate SQL statements, the first would retrieve 1,000 rows
and the second would retrieve another 1,000 rows (total 2,000). In addition, the reason
that Address is not retrieved in the same SQL statement through a union is that this
would disrupt the streamability of the query, and Oracle Data Service Integrator
would need to read all of the Customer > Order rows before it got to the first
Customer > Address row.

Although this would not be a problem for small results, Oracle Data Service Integrator
is unaware of the result set size and, whenever possible, prepares a query plan that can
handle results of any size.

12.3.1.5 Using a ppci-impl Join
When Oracle Data Service Integrator cannot push the join of two tables to the
database, the system implements the join as a parameter-passing, clustered-indexed
join. Specifically, consider a JDBC dataspace project that needs to retrieve the list of
customers and their associated orders. You could use code similar to the following:

=// will need stmt2 later
stmt2=conn.prepareStatement("select * from ORDER where CUSTOMER_ID = ?");

stmt1= conn.prepareStatement("select * from CUSTOMER where ZIPCODE=?");
stmt1.setString(1, zipcode);
rs1 = stmt1.executeQuery();
while (rs1.next()){
 System.out.println("customer :"+rs1.getString("CUSTOMER_ID"));
 stmt2.setString(1, rs1.getString("CUSTOMER_ID")); // set parameter
 rs2=stmt2.executeQuery();
 while(rs2.next()) {
 System.out.println(" order :"+rs2.getString("ORDER_ID"));
 }
}=

This uses a parameter-passing join (the parameter is CUSTOMER_ID). If, however, you
have a lengthy list of customers from the first SQL statement, you will need to call the
second SQL statement quite a few times. One thing you could do to reduce the
number of calls would be to fetch orders from several customers at a time. Once you
have the orders for several customers, you can manually join the rows with the
customers.

This is exactly what Oracle Data Service Integrator does automatically for you! So, if
you have a join that can not be pushed as a single statement, Oracle Data Service
Integrator performs a batched (clustered) parameter-passing join. The first SQL
statement would therefore be as follows:

select ... from CUSTOMER ...

Similarly, the second statement would be as follows:

select ... from ORDER where CUSTOMER_ID = ? or CUSTOMER_ID = ?
Best Practices When Building Data Services 12-9

Performance and Optimization Best Practices
You may wonder why there are 20 arguments. Why not use the exact number of
customers, for example? The answer is that there are limits to the number of
arguments that you can pass to an SQL statement.

But, more importantly, database performance quickly degrades as more arguments are
passed (at some point, a full-table scan would be a good idea if there are many
lookups to perform). That's the first reason why there are 20 arguments.

Second, if you were to specify the exact number of arguments, you would need to
create a separate SQL statement (and PreparedStatement) in the worst case, for up to
20 arguments resulting in 20 times the number of PreparedStatements that you really
need.

In addition, since the database needs to compile PreparedStatements not encountered
earlier, this would require 20 times the number of compilations. In some cases, this
could even cause statements to be discarded from the cache, resulting in even more
compiling.

The final point to consider is what happens when the number of customers is not an
exact multiple of 20? In this case, the final argument is repeated to fill in the remaining
places since the logical operation CUSTOMER='ZZZ' OR CUSTOMER='ZZZ' is the
same as CUSTOMER='ZZZ'. This is a very simple optimization for a database and
testing has shown that it does not significantly impact performance.

Note that ppci-join seems like a lot of effort simply to eliminate a few database round
trips. If the join is on an indexed column, there will be 20 indexed lookups
independent of whether you make one call with 20 parameters, or make 20 calls with
one parameter.

While this is the case, if the join is on an unindexed column, one call with 20
parameters takes one full table scan and 20 calls with one parameter takes 20 full table
scans. Obviously you may need a noticeable performance difference between these
two approaches.

12.3.1.6 Avoiding Casting
You should generally avoid casting data, especially casting that cannot be performed
by the database.

The reason for this is as follows: If there is a cast from one type to another for the
purpose of a join or a selection, and that cast cannot be handled by the database,
Oracle Data Service Integrator is forced to retrieve all the rows and perform the cast
itself, followed by the join or selection.

You can determine if the casting cannot be performed by the database by examining
the cast operators in the query plan.

12.3.1.7 Optimizing Ad Hoc Queries
Clients can submit ad hoc queries, which are essentially data service functions that
exist only while the queries are run. From the engine's perspective, ad hoc queries go
through the same life-cycle as regular queries.

Note: When a JDBC connection pool maintains a cached
PreparedStatement, it uses resources (cursors) in the database. This is
a further motivation to keep the number of PreparedStatements to a
minimum.
12-10 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Performance and Optimization Best Practices
Oracle Data Service Integrator caches the query plan from an ad hoc query, just as it
does with a query plan for a data service function. If the same ad hoc query is run
again, the cached query plan is used.

If you are relatively certain that the same ad hoc query will not be requested a second
time, you can have the client application instruct Oracle Data Service Integrator not to
cache the ad hoc query plan using the following request config attribute:

DO_NOT_CACHE_QUERY_PLAN

However, use of this directive is generally not needed. (Note that using the Oracle
Data Service Integrator Filter API generates an ad-hoc query based on the filter.)

You can use the Oracle Data Service Integrator Query Plan view to display the query
plan and present hints regarding operators that may not be optimal. Oracle Data
Service Integrator also supplies audit information that shows additional details of the
query run. Both of these tools are helpful for developing Oracle Data Service
Integrator dataspace projects.

12.3.1.8 Writing Your Own SQL for Oracle Data Service Integrator to Use
You should only consider writing your own SQL statements for Oracle Data Service
Integrator to use when it's easier than letting Oracle Data Service Integrator generate
the SQL statements.

However, keep the following in mind if you choose to write your own SQL:

■ It gets more difficult as the queries become more complex.

■ Oracle Data Service Integrator is limited in the optimizations that it can perform
with SQL that you have written.

■ Oracle Data Service Integrator cannot use your SQL statements with a ppci-impl
join.

■ Oracle Data Service Integrator cannot use your SQL statements containing a
left-outer join to implement nested elements.

Note that Oracle Data Service Integrator attempts to push all access to the same
database into a single SQL statement, with the following exceptions:

■ Oracle Data Service Integrator does not push unions to the database because this
does not offer a significant improvement and forces the system to group the
retrieved rows in the query engine. It can also break streamability.

■ Oracle Data Service Integrator does not push cross-products to the database
because a cross product with 1,000 rows on the left and 1,000 rows on the right
results in 1,000,000 rows (instead of 1,000 + 1,000).

■ Oracle Data Service Integrator does not push a left-outer join to the database in
cases when the left-hand side does not have a unique key. For example, Oracle
Data Service Integrator does not push the following:

A left-outer-join B on A.x=B.x left-outer-join C on A.y = C.y

This results in a cross-product as B and C are not related.

12.3.2 Exercising Care when Using Fail-over, Fail-over-retry, and Timeout
The BEA XQuery fail-over function is an XQuery extension that enables you to catch
unexpected, unavoidable exceptions, such as a database or a Web service being
unavailable.
Best Practices When Building Data Services 12-11

Performance and Optimization Best Practices
To appreciate the advantage of using the fail-over function, consider the example of a
Web service that is overloaded to the point that calling it blocks for five minutes and
then fails. If an XQuery calls this Web service 100 times, it could take up to 500
minutes to complete the query.

The fail-over mechanism provides a solution in that once the primary expression fails,
the assumption is that it will continue to fail for some time, so there is no need to
re-evaluate within the same query execution.

Notwithstanding this feature, however, you should exercise care in using the fail-over,
fail-over-retry, and timeout functions. This is because when you specify that a certain
portion of the XQuery is to fail-over, the compiler and optimizer does exactly that and
cannot combine expressions outside the fail-over with expressions inside the fail-over.

For example, suppose that you are retrieving a database table using the CUSTOMER()
function, but want it to fail-over if the database is not available. You could use the
following expression:

for $CUSTOMER in fail-over(CUSTOMER_in_db_1(), CUSTOMER_in_db_2())

Consider further that in a higher-level function, you select from that result using the
following clause:

where $CUSTOMER/CUSTOMER_ID = $CustId

Because of the fail-over, Oracle Data Service Integrator is forced to read the entire
CUSTOMER table and then, in memory, select the one customer that you need.

Note that use of Java functions put similar restrictions on the Oracle Data Service
Integrator compiler and optimizer, since it cannot examine the Java functions (which
are opaque to Oracle Data Service Integrator). This can also thwart optimizations.

One solution is to move Java function logic into Oracle Data Service Integrator
operations. If this is not possible, and you find that the Java functions are blocking
optimizations, you might explore using inverse functions.

12.3.3 Using Inverse Functions
Oracle Data Service Integrator enables data service developers to register inverse
functions with the system, enabling you to define and use general user-defined data
transformations without sacrificing query pushdown and updateability. Using this
information, Oracle Data Service Integrator is able to perform a reverse transformation
of the data when analyzing query predicates or attempting to decompose updates into
underlying data source updates.

Consider the following example: You have a column called dateTimes in a database,
defined as the number of milliseconds since January 1, 1970. You then declare a
function called millisToDateTime() which converts the millisecond values to dateTime
enabling you to query on that column and retrieve a dateTime that you can display as
part of the query output.

Now suppose that you have a dateTime value in XQuery, either from a query
argument or from another data source, and you want to retrieve all the rows that
match the dateTime from the database table. The only obvious solution is to retrieve
every row from the table, convert the milliseconds to dateTime, and then compare it to
the dateTime value in the XQuery (discarding all rows that do not match).

This is very inefficient. It would be better to convert the dateTime to milliseconds, and
push that selection to the database. You could write a dateTimeToMillis() function and
use the output to select directly on the milliseconds column. But there are a couple
problems with this approach.
12-12 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

Performance and Optimization Best Practices
First, you would need to expose the milliseconds column to the outside world. And
second, you would need to know information about the milliseconds column to use
the dateTimeToMillis() function.

A much more elegant solution is to define an inverse function for the
millisToDateTime() function that, given the output of millisToDateTime(), returns the
input argument. Once defined, Oracle Data Service Integrator can run the dateTime
value through the inverse function to obtain the correct value in milliseconds to push
to the database.

Since Oracle Data Service Integrator can determine that the milliseconds value from
the database was sent through millisToDateTime(), it knows that applying the inverse
function to a dateTime will return a value suitable for the database.

12.3.4 Using Caching and Auditing
Caching or auditing a specific function requires that the function call remain in the
query plan. This means that if you cache a function such as getOrders($customer), the
optimizer cannot combine the function getCustomers() with getOrders($customer) to
produce the following SQL statement:

select ... from CUSTOMER C, ORDER O where C.CID eq O.CID

Instead, the optimizer has to leave the getOrders($customer) function as the following:

select ... from ORDER O where O.CID = ?

Another consideration may be less obvious. Suppose you have a function
getCustomerCreditScore($cid) that retrieves the credit score from the
getAllCustomerInfo($cid) function. If the getAllCustomerInfo($cid) function is not
cached, then the resulting query plan needs to access only the database tables
necessary to get the credit score.

However, if the getAllCustomerInfo($cid) function is cached, then the optimizer
cannot determine exactly the data from getAllCustomerInfo($cid) that may be
required by a different function that calls getAllCustomerInfo($cid).

This means that Oracle Data Service Integrator will have no choice but to retrieve and
cache everything. In the case that the getAllCustomerInfo($cid) function retrieves the
customer profile, orders, customer support cases, credit information, and so on, and all
you need is the credit score, you would be forced to retrieve (and cache) an excessive
amount of data just to get the credit score.

12.3.5 Query Plans
This section describes performance and optimization best practices related to query
plans.

12.3.5.1 Evaluating Performance Before Running the Query
You should consider examining the query plan for an operation and evaluating its
expected performance before running the query. This is useful because, in some cases,
the operation may run endlessly as a result of an infinite loop.

12.3.5.2 Precompiling Query Plans
Precompiling query plans can increase performance, especially since the initial
compile time can sometimes be significant. However, this is not always the case.

Best Practices When Building Data Services 12-13

How To Get More Help
Instead of immediately precompiling your query plans, examine the plan to see if you
can reduce the compile time in other ways. For example, using compound mappings
can often help.

12.3.5.3 Evaluating the Performance by Running the Query
Ultimately, the best way to evaluate the performance of an operation is to run the
query and examine the results.

To evaluate performance, do the following:

1. Turn on auditing.

2. Run the query and examine the audit information.

3. If the query does not finish running, check the query plan. Look at the individual
SQL execution times. If you see simple SQL statements that take excessively long
to run, check that you have the appropriate indexes defined.

4. Run the SQL through 'explain plan' and check whether the SQL is retrieving more
rows that needed.

5. Finally, verify that the selections and joins are getting pushed to the database.

12.3.6 Monitoring Operational Performance and Service Level Agreements
For information about monitoring operational performance and Service Level
Agreements (SLA), refer to the audit and profiler samples installed with Oracle Data
Service Integrator.

<ALDSP_HOME>/samples/Audit
<ALDSP_HOME>/samples/Profiler

The listener sample sample writes audit records to a database and produces the
necessary reports.

12.4 How To Get More Help
For additional help and further suggestions for dataspace optimization, post to Post to
the Oracle Data Integration forum.Customers can also open cases with Oracle
Customer Support, as required.

12.5 Related Topics
XQuery Reference Information

 W3C XML Query (XQuery)

 XQuery 1.0 and XPath 2.0 Data Model (XDM)

 XQuery 1.0 and XPath 2.0 Functions and Operators

Tip: Post to the Oracle Data Integration forum if you would like to
be forwarded a startup class that precompiles query plans.

Note: Do not enable auditing of individual functions; this changes
the query plan.
12-14 Oracle® Fusion Middleware Developing Applications with Data Service Integrator

