

[1] Oracle® Fusion Middleware
Administering Oracle HTTP Server

12c (12.1.2)

E37888-13

July 2015

This document describes how to configure and use Oracle
HTTP Server as a framework for hosting static pages,
dynamic pages, and applications over the Web.

Oracle Fusion Middleware Administering Oracle HTTP Server, 12c (12.1.2)

E37888-13

Copyright © 2002, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tom Pfaeffle

Contributor: Jeff Trawick,Leonard Bottleman, Ken Vincent, Maria Choudhary, Edwin Spear

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x

What's New in Oracle HTTP Server 12c 12.1.2.. xi

New and Changed Features in 12c (12.1.2).. xi
Features Removed from 12c (12.1.2) ... xiii

Part I Understanding Oracle HTTP Server

1 Introduction to Oracle HTTP Server

1.1 What is Oracle HTTP Server?.. 1-1
1.2 Oracle HTTP Server 12c (12.1.2) Topologies ... 1-2
1.3 Key Features of Oracle HTTP Server ... 1-4
1.3.1 Security: Encryption with Secure Sockets Layer... 1-5
1.3.2 Security: Single Sign-On with WebGate... 1-5
1.3.3 URL Rewriting and Proxy Server Capabilities.. 1-5
1.3.4 PL/SQL Server Pages.. 1-5
1.3.5 Server-Side Includes.. 1-5
1.3.6 Perl ... 1-6
1.3.7 Dynamic Scripting Languages... 1-6
1.3.8 C / C++ (CGI and FastCGI) ... 1-6
1.3.9 Load Balancing... 1-6
1.4 Domain Types ... 1-6
1.4.1 WebLogic Server Domain... 1-6
1.4.2 Standalone Domain ... 1-7
1.5 Understanding Oracle HTTP Server Directory Structure... 1-7
1.6 Understanding Configuration Files ... 1-7
1.6.1 Staging and Run-time Configuration Directories ... 1-8
1.6.2 Editing the Configuration... 1-8
1.6.3 Configuration Files .. 1-9
1.7 Oracle HTTP Server Support ... 1-9

iv

2 Understanding Oracle HTTP Server Modules

2.1 List of Included Modules ... 2-1
2.2 mod_certheaders... 2-3
2.3 mod_context .. 2-4
2.4 mod_dms.. 2-4
2.5 mod_odl.. 2-4
2.6 mod_ossl... 2-4
2.7 mod_perl .. 2-5
2.7.1 Using mod_perl with a Database .. 2-5
2.8 mod_plsql... 2-8
2.8.1 Creating a DAD.. 2-8
2.8.2 Configuration Files for mod_plsql .. 2-10
2.8.3 Using Configuration Files and Parameters... 2-11
2.8.4 Additional Documentation ... 2-11
2.9 mod_webgate ... 2-11
2.10 mod_wl_ohs.. 2-11

3 Understanding Oracle HTTP Server Management Tools

3.1 Overview of Oracle HTTP Server Management .. 3-1
3.2 Special Note on Oracle HTTP Server Mbeans .. 3-2
3.3 Accessing Fusion Middleware Control ... 3-2
3.4 Accessing the Oracle HTTP Server Home Page ... 3-2
3.4.1 Navigating Within Fusion Middleware Control... 3-2
3.5 Using Fusion Middleware Control to Edit Configuration Files... 3-3
3.6 Using the WebLogic Scripting Tool ... 3-4
3.6.1 Using WLST in a Standalone Environment ... 3-4
3.6.2 Additional Information... 3-4

Part II Managing Oracle HTTP Server

4 Working with Oracle HTTP Server

4.1 Before You Begin .. 4-1
4.2 Creating an OHS Instance.. 4-2
4.2.1 Creating a Managed Instance in a WebLogic Server Domain 4-2
4.2.2 Creating a Standalone Domain Instance .. 4-5
4.3 Performing Basic OHS Tasks .. 4-6
4.3.1 Understanding the PID File.. 4-6
4.3.2 Starting Oracle HTTP Server Instances .. 4-7
4.3.3 Stopping Oracle HTTP Server Instances .. 4-9
4.3.4 Restarting Oracle HTTP Server Instances .. 4-11
4.3.5 Checking the Status of a Running Oracle HTTP Server Instance.............................. 4-11
4.3.6 Deleting an Oracle HTTP Server Instance... 4-13
4.4 Remotely Administering Oracle HTTP Server .. 4-15
4.4.1 Setting Up a Remote Environment... 4-15
4.4.2 Running Oracle HTTP Server Remotely ... 4-17
4.5 Specifying Server Properties .. 4-17

v

4.5.1 Specifying Server Properties by Using Fusion Middleware Control 4-17
4.5.2 Editing the httpd.conf File to Specify Server Properties... 4-18
4.6 Configuring Oracle HTTP Server .. 4-19
4.6.1 Configuring Secure Sockets Layer ... 4-20
4.6.2 Configuring Secure Sockets Layer in Standalone Mode... 4-20
4.6.3 Configuring MIME Settings .. 4-24
4.6.4 Configuring mod_perl ... 4-25
4.6.5 Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)................. 4-27
4.6.6 Modifying an Oracle HTTP Server Configuration File ... 4-27
4.6.7 Removing Access to Unneeded Content ... 4-27
4.6.8 Using the apxs Command to Install Extension Modules.. 4-30
4.6.9 Disabling the Options Method ... 4-31
4.6.10 Updating Oracle HTTP Server Component Configurations on a Shared Filesystem

4-32

5 Managing and Monitoring Server Processes

5.1 Oracle HTTP Server Processing Model ... 5-1
5.1.1 Request Process Model ... 5-1
5.1.2 Single Unit Process Model.. 5-1
5.2 Monitoring Oracle HTTP Server Performance ... 5-2
5.2.1 Viewing Oracle HTTP Server Performance Metrics... 5-2
5.2.2 Understanding Oracle HTTP Server Performance Metrics ... 5-3
5.3 Configuring Oracle HTTP Server Performance Directives... 5-4
5.3.1 Using Fusion Middleware Control to Set the Request Configuration......................... 5-5
5.3.2 Using Fusion Middleware Control to Set the Connection Configuration................... 5-6
5.3.3 Using Fusion Middleware Control to Set the Process Configuration.......................... 5-6
5.4 Understanding Process Security... 5-7

6 Managing Connectivity

6.1 Default Listen Ports .. 6-1
6.2 Defining the Admin Port ... 6-1
6.3 Viewing Port Number Usage .. 6-1
6.3.1 Using the Fusion Middleware Control to View Port Number Usage.......................... 6-2
6.4 Managing Ports ... 6-2
6.4.1 Using Fusion Middleware Control to Create Ports ... 6-3
6.4.2 Using Fusion Middleware Control to Edit Ports ... 6-3
6.4.3 Disabling a Listening Port in a Standalone Environment.. 6-4
6.5 Configuring Virtual Hosts ... 6-5
6.5.1 Using Fusion Middleware Control to Create Virtual Hosts.. 6-5
6.5.2 Using Fusion Middleware Control to Configure Virtual Hosts 6-7

7 Managing Oracle HTTP Server Logs

7.1 Overview of Server Logs ... 7-1
7.1.1 About Error Logs ... 7-1
7.1.2 About Access Logs... 7-2
7.1.3 Log Rotation ... 7-3

vi

7.2 Configuring Oracle HTTP Server Logs.. 7-4
7.2.1 Using Fusion Middleware Control to Configure Error Logs .. 7-5
7.2.2 Configuring Access Logs by Using Fusion Middleware Control................................. 7-7
7.3 Log Directives for Oracle HTTP Server ... 7-8
7.3.1 Oracle Diagnostic Logging Directives .. 7-8
7.3.2 Apache HTTP Server Log Directives ... 7-10
7.4 Viewing Oracle HTTP Server Logs ... 7-11
7.5 Terminating SSL Requests .. 7-12
7.5.1 Terminating SSL Before Oracle HTTP Server... 7-12
7.5.2 Terminating SSL at Oracle HTTP Server... 7-13

8 Managing Application Security

8.1 About Oracle HTTP Server Security .. 8-1
8.2 Classes of Users and Their Privileges .. 8-1
8.3 Resources Protected.. 8-2
8.4 Authentication, Authorization and Access Control .. 8-2
8.4.1 Access Control.. 8-2
8.4.2 User Authentication and Authorization... 8-2
8.4.3 Support for FMW Audit Framework.. 8-3
8.5 Disable SSLv2 and SSLv3 Security Protocols.. 8-3

Part III Appendixes and Glossary

A OHS Introspector Plug-in for OVAB

A.1 Versions Supported ... A-1
A.2 Oracle HTTP Server Introspection Parameters ... A-1
A.3 Resulting Artifact Type ... A-1
A.4 Requirements.. A-2
A.5 Wiring .. A-2
A.6 Wiring Properties... A-2
A.7 Oracle HTTP Server Appliance Properties .. A-2
A.8 Extensions of the Plug-in .. A-2
A.9 Supported Template Types .. A-2
A.10 Plug-in Limitations .. A-2
A.11 Related Documents.. A-3

B Frequently Asked Questions

B.1 How Do I Create Application-Specific Error Pages? .. B-1
B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS? B-2
B.3 Can I Use Different Language and Character Set Versions of Document? B-2
B.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server? B-2
B.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?...................... B-3
B.6 Can I Compress Output From Oracle HTTP Server? ... B-3
B.7 How Do I Create a Namespace That Works Through Firewalls and Clusters? B-3
B.8 How Do I Protect the Website from Hackers?... B-4
B.9 Should I Re-register Partner Applications with SSO Server If I Disable or Enable SSL? B-5

vii

B.10 Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors? B-5
B.11 How can I hide information about the Web Server Vendor and Version B-5
B.12 Can I Start OHS by Using apachectl or Other Command-Line Tool?................................ B-5

C Troubleshooting Oracle HTTP Server

C.1 Oracle HTTP Server Unable to Start Due to Port Conflict ... C-1
C.2 System Overloaded by Number of httpd Processes ... C-1
C.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024 C-2
C.4 Oracle HTTP Server May Fail To Start If PM Files Are Not Located Correctly C-2
C.5 Exception Thrown when Unsetting PerSetEnv and Removing Variable C-2
C.6 Using Log Files to Locate Errors.. C-3
C.6.1 Rewrite Log.. C-3
C.6.2 Script Log ... C-3
C.6.3 Error Log .. C-3
C.7 Recovering an OHS Instance on a Remote Host ... C-3
C.8 Oracle HTTP Server Performance Issues.. C-4
C.8.1 Special Runtime Files Reside on a Network File System.. C-4
C.8.2 UNIX Sockets on a Network File System .. C-4
C.8.3 DocumentRoot on a Slow File System... C-4
C.9 Out of DMS Shared Memory.. C-5

D Configuration Files

D.1 httpd.conf .. D-1
D.2 ssl.conf ... D-1
D.3 admin.conf .. D-2
D.4 mod_wl_ohs.conf ... D-2
D.5 moduleconf/*.conf... D-2
D.6 disabled/*.conf... D-2
D.7 mime.types.. D-2
D.8 ohs.plugins.nodemanager.properties ... D-3
D.9 magic.. D-3
D.10 keystores/<wallet-directory> .. D-3
D.11 auditconfig.xml .. D-3
D.12 component-logs.xml .. D-3
D.13 component_events.xml ... D-3
D.14 Additional Reference... D-4

E Property Files

E.1 ohs_admin.properties.. E-1
E.2 ohs_nm.properties ... E-1
E.3 ohs.plugins.nodemanager.properties ... E-2
E.3.1 Cross-platform Properties ... E-2
E.3.2 Environment Variable Configuration Properties... E-3
E.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX E-5

viii

F Configuring mod_security

F.1 Enabling mod_security ... F-1
F.2 Configuring mod_security ... F-2

G OHS Module Directives

G.1 mod_certheaders.. G-1
G.1.1 AddCertHeader .. G-1
G.1.2 SimulateHttps.. G-1
G.2 mod_ossl.. G-2
G.2.1 SSLAccelerator .. G-2
G.2.2 SSLCARevocationFile .. G-3
G.2.3 SSLCARevocationPath... G-3
G.2.4 SSLCipherSuite.. G-3
G.2.5 SSLEngine .. G-5
G.2.6 SSLFIPS... G-5
G.2.7 SSLInsecureRenegotiation ... G-6
G.2.8 SSLMutex ... G-7
G.2.9 SSLNZTraceLogLevel .. G-8
G.2.10 SSLOptions .. G-8
G.2.11 SSLPassPhraseDialog ... G-10
G.2.12 SSLProtocol.. G-10
G.2.13 SSLProxyCipherSuite ... G-11
G.2.14 SSLProxyEngine.. G-11
G.2.15 SSLProxyProtocol ... G-12
G.2.16 SSLProxyWallet... G-12
G.2.17 SSLRequire... G-13
G.2.18 SSLRequireSSL .. G-15
G.2.19 SSLSessionCache... G-15
G.2.20 SSLSessionCacheTimeout.. G-16
G.2.21 SSLVerifyClient... G-16
G.2.22 SSLWallet ... G-16
G.3 mod_plsql ... G-16
G.3.1 plsql.conf .. G-17
G.3.2 dads.conf .. G-18
G.3.3 cache.conf... G-36

Glossary

Index

ix

Preface

This guide describes how to manage Oracle HTTP Server, including how to start and
stop Oracle HTTP Server, how to manage network components, configure listening
ports, and extend basic functionality using modules.

Audience
Administering Oracle HTTP Server is intended for application server administrators,
security managers, and managers of databases used by application servers. This
documentation is based on the assumption that readers are already familiar with
Apache HTTP Server.

Unless otherwise mentioned, the information in this document is applicable when
Oracle HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion
Middleware Control. It is assumed that readers are familiar with the key concepts of
Oracle Fusion Middleware as described in the Oracle Fusion Middleware Concepts Guide
and the Administering Oracle Fusion Middleware.

For information about installing Oracle HTTP Server in standalone mode, see Installing
and Configuring Oracle HTTP Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
11g Release 1 (11.1.1) documentation set:

■ Understanding Oracle Fusion Middleware

■ Administering Oracle Fusion Middleware

■ High Availability Guide

x

■ Apache documentation included in this library

Conventions
The following text conventions are used in this document:

Note: Readers using this guide in PDF or hard copy formats will
be unable to access third-party documentation, which Oracle
provides in HTML format only. To access the third-party
documentation referenced in this guide, use the HTML version of
this guide and click the hyperlinks.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

What's New in Oracle HTTP Server 12c 12.1.2

The following topics introduce the new and changed features of Oracle HTTP Server
and other significant changes that are described in this guide, and provides pointers to
additional information. This document is the new edition of the formerly titled
Administrator's Guide for Oracle HTTP Server.

New and Changed Features in 12c (12.1.2)
This section contains the following information:

■ New Features in 12c (12.1.2)

■ Significant Updates in 12c (12.1.2)

New Features in 12c (12.1.2)
This section describes new features in this version of Oracle HTTP Server. These
features include:

■ 12c (12.1.2) Introduces the WebLogic Management Framework

■ OHS 12.1.2 Supports FIPS 140

■ Search Capability on mod_wl_ohs Configuration Page

■ AutoFill Capability on mod_wl_ohs Configuration Page

12c (12.1.2) Introduces the WebLogic Management Framework
This version of Oracle HTTP Server introduces the WebLogic Management
Framework, a set of tools that leverage Oracle WebLogic 12c (12.1.2) interfaces to
provide a simple, consistent and distributed framework for managing Oracle. For
more information on the WebLogic Management Framework, see "What is the
WebLogic Management Framework?" in Understanding Oracle Fusion Middleware.

The following changes are a result of the new framework:

■ Configuration is a postinstallation task that begins with creating a domain,
primarily by using Configuration Wizard. For more information, see Installing and
Configuring Oracle HTTP Server.

■ Support for remote management of OHS instances cannot be added after creation.
The necessary domain type (WebLogic Server or standalone) should be chosen
before installation (see Section 1.4, "Domain Types"). This is different from Oracle
HTTP Server 11g where you could register an Oracle instance with a WebLogic
domain at a later time to manage it by using the non-J2EE management tool.

■ Configuration files for instances that are part of a WebLogic Server domain are
maintained on the administration server node, not on the managed server.

xii

■ Changes made to configuration files on the managed server are not preserved
when updates are made on the administration server, for example, by using
Fusion Middleware Control.

■ Command support for managing Oracle HTTP Server is provided primarily
within WLST, instead of from the operating system shell. Existing WLST
commands and new commands added in this release are applicable to Oracle
HTTP Server (see Section 3.6, "Using the WebLogic Scripting Tool").

■ Server-specific configuration previously maintained in opmn.xml is now
configured in ohs.plugins.nodemanager.properties within the Oracle HTTP Server
configuration directory.

■ When starting or stopping Oracle HTTP Server, console output is now written to
the Node Manager log instead a special console log file.

■ Server configuration directories no longer include product code, such as Apache
HTTP Server documentation, FastCGI programming libraries, or icon files used by
content generated by Oracle HTTP Server. This code resides only in the product
directory.

■ The administration port, previously referred to as the Proxy MBean or Admin
Port, is now used whether or not the instance is managed as part of a WebLogic
Server domain. The port should now be limited to the loopback interface. In the
previous release, the administration server would connect to the port.

■ The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware
Control or WLST, are provided for the use of Oracle management tools. The
interfaces are not supported for other use and are subject to change without notice.

OHS 12.1.2 Supports FIPS 140
Oracle HTTP Server 12.1.2 now complies with the Federal Information Processing
Standard publication 140 (FIPS 140). Although the modules used in this version of
Oracle HTTP Server are still undergoing their FIPS 140 validation, it uses a version of
the underlying SSL libraries that has gone through formal FIPS certification.

As part of Oracle HTTP Server’s FIPS 140 compliance, the mod_ossl plug-in now
includes the SSLFIPS directive. This directive enables FIPS from Oracle HTTP Server
configuration files by toggling the SSL library FIPS_mode flag on or off. SSLFIPS must
be set in the global server context and cannot be configured with conflicting settings
(for example, SSLFIPS on followed by SSLFIPS off or similar). The mode applies to all
SSL library operations.

For more information on SSLFIPS, see Section G.2.6, "SSLFIPS".

Search Capability on mod_wl_ohs Configuration Page
When configuring mod_wl_ohs by using Fusion Middleware Control, you can see a
list of clusters or servers available to the selected Oracle HTTP Server instance by
clicking the Search icon:

Selecting this tool displays a selection dialog box, from which you can select the cluster
or server you want to use.

Note: FIPS is available only on the UNIX/Linux platform. It is not
available on the Windows platform

xiii

AutoFill Capability on mod_wl_ohs Configuration Page
You can now easily add valid WebLogic Server and endpoint locations for a specified
Base URL to the Locations table on the mod_wl_ohs Configuration screen by clicking
the AutoFill button. Data for any location of the same name will be updated and any
new locations will be added to the table.

Significant Updates in 12c (12.1.2)
This section describes features that have been significantly updated from earlier
versions of Oracle HTTP Server. These updates include:

■ WLS Plug-in Logs Are Now Part of the Web Server Logs

■ sqlnet.ora NZ Trace Logging Mechanism is No Longer Supported

■ Privileged Ports on UNIX Have Different Support Implementation

WLS Plug-in Logs Are Now Part of the Web Server Logs
The WebLogic Server plug-in logs are now part of the Oracle HTTP Server error log
and are prefixed with weblogic: to easily identify them. Hence the directives
WLLogFile and Debug are deprecated. If the configuration still uses any of these
directives, the following note will appear in the console log file:

The WLLogFile directive is ignored. The web server log file is used instead.
The Debug directive is ignored. The web server log level is used instead.

sqlnet.ora NZ Trace Logging Mechanism is No Longer Supported
Oracle HTTP Server no longer supports the sqlnet.ora NZ trace logging mechanism.
As of version 12.1.2, you should use the new SSLNZTraceLogLevel directive to enable
NZ trace logging using ssl.conf file. For more information, see Section G.2.9,
"SSLNZTraceLogLevel".

Privileged Ports on UNIX Have Different Support Implementation
Support for listening on privileged ports on UNIX has a different implementation that
does not require running any Oracle HTTP Server code as root. The User and Group
directives no longer have to be configured.

Features Removed from 12c (12.1.2)
The following features were removed from 12.1.2:

■ Integration with Oracle Web Cache

■ mod_oradav

■ mod_osso

■ SSO Plug-ins for Third-party Web Servers

■ Oracle WebLogic Server Proxy Plug-Ins for Third-party Web Servers

■ SSL Protocol Version 2 and Export Ciphers

Integration with Oracle Web Cache
Oracle Web Cache is no longer included in Fusion Middleware 12c. Oracle HTTP
Server support for integration with Oracle Web Cache has been removed.

xiv

mod_oradav
The mod_oradav module is no longer included with Oracle HTTP Server. Customers
who require DAV support in Oracle HTTP Server must use a third-party solution, such
as the open source module mod_dav.

mod_osso
The mod_osso module is no longer included with Oracle HTTP Server. Oracle
WebGate is the recommended replacement. WebGate is now installed with Oracle
HTTP Server.

SSO Plug-ins for Third-party Web Servers
The SSO plug-ins for IIS and iPlanet are no longer included with Oracle HTTP Server.
Oracle WebGate is the recommended replacement.

Oracle WebLogic Server Proxy Plug-Ins for Third-party Web Servers
The proxy plug-ins for IIS and iPlanet are no longer included with Oracle HTTP
Server. Customers who require proxy support for those web servers can use any proxy
support bundled with the web server or use third-party solutions.

SSL Protocol Version 2 and Export Ciphers
Support for SSL Protocol Version 2 and export ciphers has been removed. Their use is
no longer recommended for secure communication.

Part I
Part I Understanding Oracle HTTP Server

This part presents introductory and conceptual information about Oracle HTTP
Server. It contains the following chapters:

■ Chapter 1, "Introduction to Oracle HTTP Server"

■ Chapter 2, "Understanding Oracle HTTP Server Modules"

■ Chapter 3, "Understanding Oracle HTTP Server Management Tools"

1

Introduction to Oracle HTTP Server 1-1

1Introduction to Oracle HTTP Server

[2] This chapter serves as an introduction to the Oracle HTTP Server (OHS). It describes
key features of OHS and its place within the Oracle Fusion Middleware Web Tier and
also provides information on the OHS directory structure, the OHS configuration files,
and how to obtain OHS support.

Oracle HTTP Server is the web server component for Oracle Fusion Middleware. It
provides a listener for Oracle WebLogic Server and the framework for hosting static
pages, dynamic pages, and applications over the Web.

This chapter includes the following sections:

■ Section 1.1, "What is Oracle HTTP Server?"

■ Section 1.2, "Oracle HTTP Server 12c (12.1.2) Topologies"

■ Section 1.3, "Key Features of Oracle HTTP Server"

■ Section 1.4, "Domain Types"

■ Section 1.5, "Understanding Oracle HTTP Server Directory Structure"

■ Section 1.6, "Understanding Configuration Files"

■ Section 1.7, "Oracle HTTP Server Support"

1.1 What is Oracle HTTP Server?
Oracle HTTP Server 12c (12.1.2) is based on Apache HTTP Server 2.2.22 infrastructure
(with critical bug fixes from higher versions) and includes modules developed
specifically by Oracle. The features of single sign-on, clustered deployment, and high
availability enhance the operation of the Oracle HTTP Server. Oracle HTTP Server has
the following components to handle client requests:

■ HTTP listener, to handle incoming requests and route them to the appropriate
processing utility.

■ Modules (mods), to implement and extend the basic functionality of Oracle HTTP
Server. Many of the standard Apache HTTP Server modules are included with
Oracle HTTP Server. Oracle also includes several modules that are specific to
Oracle Fusion Middleware to support integration between Oracle HTTP Server
and other Oracle Fusion Middleware components.

■ Perl interpreter, a persistent Perl runtime environment embedded in Oracle HTTP
Server through mod_perl.

Oracle HTTP Server enables developers to program their site in a variety of languages
and technologies, such as:

Oracle HTTP Server 12c (12.1.2) Topologies

1-2 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Perl (through mod_perl, CGI and FastCGI)

■ C and C++ (through CGI and FastCGI)

■ PHP, Ruby and Python (through CGI and FastCGI)

■ Oracle PL/SQL

Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse
proxy enables content served by different servers to appear as if coming from one
server.

1.2 Oracle HTTP Server 12c (12.1.2) Topologies
Oracle HTTP Server leverages the WebLogic Management Framework to provide a
simple, consistent and distributed environment for administering Oracle HTTP Server,
Oracle WebLogic Server, and the rest of the Fusion Middleware stack. It acts as the
HTTP front-end by hosting the static content from within and by leveraging its built-in
Oracle WebLogic Server Proxy Plug-In 12.1.2 to route dynamic content requests to
WebLogic-managed servers. In such cases, there are multiple ways of implementing
Oracle HTTP Server, depending on your requirements. The major implementations, or
"topologies," are described in Table 1–1.

Note: For more information about Fusion Middleware concepts, see
Understanding Oracle Fusion Middleware.

Table 1–1 Oracle HTTP Server Topologies

Topology Description For More Information

Standard Installation Topology for
Oracle HTTP Server in a WebLogic
Server Domain

This topology provides enhanced
management capabilities through the Fusion
Middleware Control and WebLogic
Management Framework. A WebLogic Server
domain can be scaled out to multiple physical
machines and be centrally managed by the
administration server. This topology is
depicted in Figure 1–1.

See "Standard Installation
Topology for Oracle HTTP
Server in a WebLogic Server
Domain" in Installing and
Configuring Oracle HTTP
Server.

Oracle HTTP Server 12c (12.1.2) Topologies

Introduction to Oracle HTTP Server 1-3

Standard Installation Topology for
Oracle HTTP Server in a
Standalone Domain

This topology is similar to an Oracle
WebLogic Server Domain topology, but does
not provide an administration server or
managed servers. It is useful when you do not
want your Oracle HTTP Server
implementation to front a Fusion Middleware
domain and do not need the management
functionality provided by Fusion Middleware
Control. This topology is depicted in
Figure 1–2.

See "Standard Installation
Topology for Oracle HTTP
Server in a Standalone
Domain" in Installing and
Configuring Oracle HTTP
Server.

High availability implementation,
with two separate hosts for Oracle
HTTP Server on a Web Tier,
managed by FMW Control

This topology provides a highly available
Oracle Fusion Middleware deployment where
each pair of components (Oracle HTTP Server
and Web Logic Managed Servers) exist on
different host computers. You access the
system from the client tier and requests are
routed, through a load balancer, to Web
servers running Oracle HTTP Servers in the
web tier. This topology is depicted in
Figure 1–1.

See "Understanding the
Oracle Fusion Middleware
Standard HA Topology" in
the High Availability Guide.

Managed Oracle HTTP Server Test
Domain

This topology provides a single machine
WebLogic Server Domain with an Oracle
HTTP Server instance and is geared toward
testing. It provides all the administrative
capabilities of a full production domain but
does not require an external database. The test
domain cannot be scaled out to other
machines and is not certified to be used in
production.

See
"createOHSTestDomain()" in
the WLST Command Reference
for Infrastructure Components.

Table 1–1 (Cont.) Oracle HTTP Server Topologies

Topology Description For More Information

Key Features of Oracle HTTP Server

1-4 Oracle Fusion Middleware Administering Oracle HTTP Server

Figure 1–1 Standard Installation Topology for OHS in a WebLogic Server Domain

Figure 1–2 Standard Installation Topology for OHS in a Standalone Domain

1.3 Key Features of Oracle HTTP Server
The following sections describe some key features of Oracle HTTP Server:

■ Section 1.3.1, "Security: Encryption with Secure Sockets Layer"

■ Section 1.3.2, "Security: Single Sign-On with WebGate"

■ Section 1.3.3, "URL Rewriting and Proxy Server Capabilities"

■ Section 1.3.4, "PL/SQL Server Pages"

■ Section 1.3.5, "Server-Side Includes"

■ Section 1.3.6, "Perl"

■ Section 1.3.7, "Dynamic Scripting Languages"

■ Section 1.3.8, "C / C++ (CGI and FastCGI)"

Key Features of Oracle HTTP Server

Introduction to Oracle HTTP Server 1-5

■ Section 1.3.9, "Load Balancing"

1.3.1 Security: Encryption with Secure Sockets Layer
Secure Sockets Layer (SSL) is required to run any website securely. Oracle HTTP
Server supports SSL encryption based on patented, industry standard, algorithms. SSL
works seamlessly with commonly-supported Internet browsers. Security features
include the following:

■ SSL hardware acceleration support uses dedicated hardware for SSL. Hardware
encryption is faster than software encryption.

■ Variable security per directory allows individual directories to be protected by
different strength encryption.

■ Oracle HTTP Server and Oracle WebLogic Server communicate using the HTTP
protocol to provide both encryption and authentication. You can also enable HTTP
tunneling for the T3 or IIOP protocols to provide non-browser clients access to
WebLogic Server services.

1.3.2 Security: Single Sign-On with WebGate
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and if
so, retrieves the session information for the user. Through WebGate, Oracle HTTP
Server becomes an SSO partner application enabled to use SSO to authenticate users,
obtain their identity by using Oracle Single Sign-On, and to make user identities
available to web applications accessed through Oracle HTTP Server.

1.3.3 URL Rewriting and Proxy Server Capabilities
Active websites usually update their web pages and directory contents often, and
possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the
changes by including an engine that supports URL rewriting so end users do not have
to change their bookmarks.

Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make
content served by different servers to appear from one single server.

1.3.4 PL/SQL Server Pages
PL/SQL Server Pages are similar in concept to the JavaServer Pages. The mod_plsql
module enables PL/SQL to be used as the scripting language within an HTML page.
PL/SQL Server Pages get translated into a stored procedure, which then uses the
module to send the output to the browser.

1.3.5 Server-Side Includes
Server-Side Includes provide an easy way of adding dynamic or uniform static content
across all pages on a site. It is typically used for header and footer information. Oracle
HTTP Server supports special directives to enable these only for certain types of files,
or for specified virtual hosts.

See Also: Securing Applications with Oracle Platform Security Services

See Also: Securing Applications with Oracle Platform Security Services

Domain Types

1-6 Oracle Fusion Middleware Administering Oracle HTTP Server

1.3.6 Perl
Perl is a scripting language often used to provide dynamic content. Perl scripts can
either be called as a CGI program, or directly through the mod_perl module. Oracle
Fusion Middleware uses Perl version 5.10.

1.3.7 Dynamic Scripting Languages
Dynamic Scripting languages, for example Ruby, PHP, Python, which capable of being
embedded in HTML, making them well-suited for Web development. Their scripts can
be executed within Oracle HTTP Server through the built-in CGI or FastCGI modules.

1.3.8 C / C++ (CGI and FastCGI)
CGI programs are commonly used to program Web applications. Oracle HTTP Server
enhances the programs by providing a mechanism to keep them active beyond the
request lifecycle.

1.3.9 Load Balancing
Oracle HTTP Server includes the mod_wl_ohs module, which routes requests to
Oracle WebLogic Server. The mod_wl_ohs module provides the same load balancing
functionality as the Oracle WebLogic Server plug-in for Apache HTTP Server (mod_
wl).

1.4 Domain Types
You can install Oracle HTTP Server either collocated with Oracle WebLogic Server,
called a WebLogic Server Domain or as a standalone domain. You can select which
environment you want to use during server configuration. Be aware that certain
functionality will not be available to standalone domains.

1.4.1 WebLogic Server Domain
A WebLogic Server Domain is one configured with an administration server and
managed servers. A WebLogic Server Domain contains a WebLogic Administration
Server, zero or more WebLogic Managed Servers, and zero or more System
Component Instances (for example, an Oracle HTTP Server instance). This type of
domain provides enhanced management capabilities through the Fusion Middleware
Control and WebLogic Management Framework present throughout the system. A
WebLogic Server Domain can span multiple physical machines, and it is centrally
managed by the administration server. Because of these properties, a WebLogic Server
Domain provides the best integration between your System Components and Java EE
Components.

WebLogic Server Domains support all WebLogic Management Framework tools.

Because Fusion Middleware Control provides advanced management capabilities,
Oracle recommends using WebLogic Server Domain.

See Also: Section 2.7, "mod_perl"

See Also: "The Dynamic Server List" in Using Oracle WebLogic Server
Proxy Plug-Ins 12.1.2.

Understanding Configuration Files

Introduction to Oracle HTTP Server 1-7

1.4.2 Standalone Domain
A standalone domain is a container for system components, such as Oracle HTTP
Server. It has a directory structure similar to an Oracle WebLogic Server Domain, but it
does not contain an Administration Server or Managed Servers. It can contain one or
more instances of system components of the same type, such as Oracle HTTP Server,
or a mix of system component types.

For standalone domains, the WebLogic Management Framework supports these tools:

■ Node Manager

■ The WebLogic Scripting Tool (WLST) commands, including:

■ nmStart(), nmStop(), nmSoftRestart(), and nmKill() that start and stop
Oracle HTTP Server instance.

■ nmConnect() to connect to the node manager

■ nmLog() to get the node manager log information

For a complete list of supported WLST Node Manager commands, see "Node
Manager Commands" in "WLST Command Reference for WebLogic Server".

■ Config Wizard

■ Pack/Unpack

Generally, you would use a standalone domain when you do not want your Oracle
HTTP Server implementation to front an Fusion Middleware domain and do not need
the management functionality provided by Fusion Middleware Control. Nor would
you use it when you want to keep Oracle HTTP Server in a "demilitarized zone"
(DMZ; that is, the zone between the internal and external firewalls) and you do not
want to open management ports used by the Node Manager.

1.5 Understanding Oracle HTTP Server Directory Structure
As described in Section 1.4, "Domain Types", Oracle HTTP Server domains can be
either WebLogic Server or standalone. When installed, each domain has its own
directory structure that contains files necessary to implement the domain type. For a
complete file structure topology, see Appendix A "Understanding the Oracle HTTP
Server Directory Structures" in Installing and Configuring Oracle HTTP Server.

1.6 Understanding Configuration Files
The Oracle HTTP Server configuration is specified through configuration files of
several types, notably .conf files, similar to those used in Apache HTTP Server. This
section explains the layout of the configuration file directories, mechanisms for editing
the files, and more about the files themselves.

Note: If you have a remote Oracle HTTP Server in a managed mode
and another in standalone with the remote administration mode
enabled, you can use WLST to perform management tasks such as SSL
configuration. A vanilla Oracle HTTP Server in a standalone domain
can be used only as a WebLogic Server Node Manager and for Oracle
HTTP Server start/stop purposes. You can also do this by using a
command-line script.

Understanding Configuration Files

1-8 Oracle Fusion Middleware Administering Oracle HTTP Server

1.6.1 Staging and Run-time Configuration Directories
Two configuration directories exist for each Oracle HTTP Server instance:

■ Staging directory

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

■ * Run-time directory

DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName

Each of the configuration directories will contain the complete OHS configuration --
httpd.conf, admin.conf, auditconfig.xml, etc.

Modifications to the configuration are made in the staging directory. (See Section 1.6.2,
"Editing the Configuration") These modifications are automatically propagated to the
run-time directory during the following operations:

■ Oracle HTTP Server instances which are part of a WebLogic Server Domain

Modifications are replicated to the run-time directory on the node with the
managed OHS instance after changes are activated from within Fusion
Middleware Control, or when the administration server initializes and prior
changes need to be replicated. If communication with node manager is broken at
the time of the action, replication will occur at a later time when communication
has been restored.

■ Standalone Oracle HTTP Server instances

Modifications are synchronized with the run-time directory when a start, restart,
or stop action is initiated. Some changes might be written to the run-time directory
during domain update, but the changes will be finalized during synchronization.

Any modifications to the configuration within the run-time directory will be lost
during replication or synchronization.

1.6.2 Editing the Configuration
For instances that are part of a WebLogic Server Domain, the Oracle HTTP Server
configuration is managed by Fusion Middleware Control and the management
infrastructure. Direct editing of the configuration in the staging directory is subject to
being overwritten after subsequent management operations, including modifying the
configuration in Fusion Middleware Control. For such instances, direct editing should
only be performed when the administration server is inactive. When the
administration server is subsequently started, the results of any manual edits will be
replicated to the run-time directory on the node of the managed instance.

Note: When a standalone instance is created, the keystores directory
containing a demo wallet is created only in the run-time directory.

Before creating the first new wallet for the instance, you must create a
keystores directory within the staging directory.

DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/keyst
ores

Wallets must then be created within that keystores directory.

Oracle HTTP Server Support

Introduction to Oracle HTTP Server 1-9

For standalone instances, the configuration can be edited directly within the staging
directory at any time. The configuration will be activated during start, restart, or stop.

1.6.3 Configuration Files
The default Oracle HTTP Server configuration contains the files described in
Appendix D, "Configuration Files".

Additional files can be added to the configuration and included in the top-level .conf
file httpd.conf using the Include directive. For information on how to use this
directive, see the Include directive documentation, at:

http://httpd.apache.org/docs/2.2/mod/core.html#include)

The default configuration provides an Include directive which includes all .conf files in
the moduleconf/ directory within the configuration.

An Include directive should be added to an existing .conf file, usually httpd.conf, for
.conf files which are not stored in the moduleconf/ directory. This may be required if
the new .conf file must be included at a different configuration scope, such as within
an existing virtual host definition.

1.7 Oracle HTTP Server Support
Oracle provides technical support for the following Oracle HTTP Server features and
conditions:

■ Modules included in the Oracle distribution. Oracle does not support modules
obtained from any other source, including the Apache Software Foundation.
Oracle HTTP Server will still be supported when non-Oracle-provided modules
are included. If it is suspected that the non-Oracle-provided modules are
contributing to reported problems, customers may be requested to reproduce the
problems without including those modules.

■ Problems that can be reproduced within an Oracle HTTP Server configuration
consisting only of supported Oracle HTTP Server modules.

■ Use of the included Perl interpreter with the supported Oracle HTTP Server
configuration.

Oracle HTTP Server Support

1-10 Oracle Fusion Middleware Administering Oracle HTTP Server

2

Understanding Oracle HTTP Server Modules 2-1

2Understanding Oracle HTTP Server Modules

[3] This chapter provides a high-level description of the Oracle-developed modules, or
"plug-ins," used by the Oracle HTTP Server (OHS). It also provides a list of all other
Apache- and third party-developed modules for OHS.

Modules (mods) extend the basic functionality of Oracle HTTP Server and support
integration between Oracle HTTP Server and other Oracle Fusion Middleware
components.

This chapter discusses the modules developed specifically by Oracle for Oracle HTTP
Server. It includes the following sections:

■ Section 2.1, "List of Included Modules"

■ Section 2.2, "mod_certheaders"

■ Section 2.3, "mod_context"

■ Section 2.4, "mod_dms"

■ Section 2.5, "mod_odl"

■ Section 2.6, "mod_ossl"

■ Section 2.7, "mod_perl"

■ Section 2.8, "mod_plsql"

■ Section 2.9, "mod_webgate"

■ Section 2.10, "mod_wl_ohs"

2.1 List of Included Modules
This section lists all of the modules bundled with Oracle HTTP Server.

Oracle-developed Modules for Oracle HTTP Server
The following modules have been developed specifically by Oracle for Oracle HTTP
Server:

■ mod_certheaders

■ mod_context

■ mod_dms

■ mod_odl

■ mod_ossl

■ mod_plsql

List of Included Modules

2-2 Oracle Fusion Middleware Administering Oracle HTTP Server

■ mod_webgate

■ mod_wl_ohs

Apache HTTP Server and Third-party Modules in Oracle HTTP Server
Oracle HTTP Server also includes out-of-the-box the Apache HTTP Server and
third-party modules listed in Table 2–1. These modules are not developed by Oracle.

Table 2–1 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module For more information, see:

mod_actions http://httpd.apache.org/docs/2.2/mod/mod_actions.html

mod_alias http://httpd.apache.org/docs/2.2/mod/mod_alias.html

mod_asis http://httpd.apache.org/docs/2.2/mod/mod_asis.html

mod_auth_basic http://httpd.apache.org/docs/2.2/mod/mod_auth_basic.html

mod_authn_alias http://httpd.apache.org/docs/2.2/mod/mod_authn_alias.html

mod_authn_anon http://httpd.apache.org/docs/2.2/mod/mod_authn_anon.html

mod_authn_default http://httpd.apache.org/docs/2.2/mod/mod_authn_
default.html

mod_authn_file http://httpd.apache.org/docs/2.2/mod/mod_authn_file.html

mod_authz_default http://httpd.apache.org/docs/2.2/mod/mod_authz_
default.html

mod_authz_groupfile http://httpd.apache.org/docs/2.2/mod/mod_authz_
groupfile.html

mod_authz_host http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html

mod_authz_user http://httpd.apache.org/docs/2.2/mod/mod_authz_user.html

mod_autoindex http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

mod_cern_meta http://httpd.apache.org/docs/2.2/mod/mod_cern_meta.html

mod_cgi http://httpd.apache.org/docs/2.2/mod/mod_cgi.html

mod_cgid (UNIX only) http://httpd.apache.org/docs/2.2/mod/mod_cgid.html

mod_deflate http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

mod_dir http://httpd.apache.org/docs/2.2/mod/mod_dir.html

mod_dumpio http://httpd.apache.org/docs/2.2/mod/mod_dumpio.html

mod_env http://httpd.apache.org/docs/2.2/mod/mod_env.html

mod_expires http://httpd.apache.org/docs/2.2/mod/mod_expires.html

mod_fastcgi http://www.fastcgi.com/drupal/node/6

mod_file_cache http://httpd.apache.org/docs/2.2/mod/mod_file_cache.html

mod_filter http://httpd.apache.org/docs/2.2/mod/mod_filter.html

mod_headers http://httpd.apache.org/docs/2.2/mod/mod_headers.html

mod_imagemap http://httpd.apache.org/docs/2.2/mod/mod_imagemap.html

mod_include http://httpd.apache.org/docs/2.2/mod/mod_include.html

mod_info http://httpd.apache.org/docs/2.2/mod/mod_info.html

mod_log_config http://httpd.apache.org/docs/2.2/mod/mod_log_config.html

mod_logio http://httpd.apache.org/docs/2.2/mod/mod_logio.html

mod_certheaders

Understanding Oracle HTTP Server Modules 2-3

2.2 mod_certheaders
The mod_certheaders module enables reverse proxies that terminate Secure Sockets
Layer (SSL) connections in front of Oracle HTTP Server to transfer information
regarding the SSL connection, such as SSL client certificate information, to Oracle
HTTP Server and the applications running behind Oracle HTTP Server. This
information is transferred from the reverse proxy to Oracle HTTP Server using HTTP
headers. The information is then transferred from the headers to the standard CGI
environment variable. The mod_ossl module or the mod_ssl module populate the
variable if the SSL connection is terminated by Oracle HTTP Server.

The mod_certheaders module also enables certain requests to be treated as HTTPS
requests even though they are received through HTTP. This is done using the
SimulateHttps directive.

SimulateHttps takes the container it is contained within, such as <VirtualHost> or
<Location>, and treats all requests received for this container as if they were received
through HTTPS, regardless of the real protocol used by the request.

See Section G.1, "mod_certheaders" for a list and description of the directives accepted
by mod_certheaders.

mod_mime http://httpd.apache.org/docs/2.2/mod/mod_mime.html

mod_mime_magic http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html

mod_negotiation http://httpd.apache.org/docs/2.2/mod/mod_negotiation.html

mod_perl http://perl.apache.org/

mod_proxy http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

mod_proxy_balancer http://httpd.apache.org/docs/2.2/mod/mod_proxy_
balancer.html

mod_proxy_connect http://httpd.apache.org/docs/2.2/mod/mod_proxy_
connect.html

mod_proxy_ftp http://httpd.apache.org/docs/2.2/mod/mod_proxy_ftp.html

mod_proxy_http http://httpd.apache.org/docs/2.2/mod/mod_proxy_http.html

mod_reqtimeout http://httpd.apache.org/docs/2.2/mod/mod_reqtimeout.html

mod_rewrite http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

mod_security http://www.modsecurity.org/documentation/

Also, for Oracle HTTP Server-specific information regarding
mod_security, see Appendix F, "Configuring mod_security".

mod_setenvif http://httpd.apache.org/docs/2.2/mod/mod_setenvif.html

mod_speling http://httpd.apache.org/docs/2.2/mod/mod_speling.html

mod_status http://httpd.apache.org/docs/2.2/mod/mod_status.html

mod_substitute http://httpd.apache.org/docs/2.2/mod/mod_substitute.html

mod_unique_id http://httpd.apache.org/docs/2.2/mod/mod_unique_id.html

mod_userdir http://httpd.apache.org/docs/2.2/mod/mod_userdir.html

mod_usertrack http://httpd.apache.org/docs/2.2/mod/mod_usertrack.html

mod_vhost_alias http://httpd.apache.org/docs/2.2/mod/mod_vhost_alias.html

Table 2–1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module For more information, see:

mod_context

2-4 Oracle Fusion Middleware Administering Oracle HTTP Server

2.3 mod_context
mod_context creates or propagates Execution Context IDs, or ECIDs, for requests
handled by Oracle HTTP Server. If an ECID has been created for the request execution
flow before it reaches Oracle HTTP Server, mod_context will make the ECID available
for logging within Oracle HTTP Server and for propagation to other Fusion
Middleware components, such as WebLogic Server. If an ECID has not been created
when the request reaches Oracle HTTP Server, mod_context will create one.

mod_context is not configurable. It is enabled by loading it into the server with the
LoadModule directive, and disabled by removing or commenting out the LoadModule
directive corresponding to this module. It should always be enabled to aid with
problem diagnosis.

2.4 mod_dms
mod_dms provides FMW infrastructure access to the OHS Oracle Dynamic
Monitoring Service (DMS) data.

2.5 mod_odl
The mod_odl module allows Oracle HTTP Server to access Oracle Diagnostic Logging
(ODL). ODL generates log messages in text or XML-formatted logs, in a format which
complies with Oracle standards for generating error log messages. Oracle HTTP Server
uses ODL by default.

Oracle HTTP Server complies with the Federal Information Processing Standard
publication 140 (FIPS 140); it uses a version of the underlying SSL libraries that has
gone through formal FIPS certification. As part of Oracle HTTP Server’s FIPS 140
compliance, the mod_ossl plug-in now includes the SSLFIPS directive. For more
information, see Section G.2.6, "SSLFIPS."

ODL provides the following benefits:

■ The capability to limit the total amount of diagnostic information saved. You can
set the level of information saved and you can specify the maximum size of the log
file and the log file directory.

■ When you reach the specified size, older segment files are removed and newer
segment files are saved in chronological fashion.

■ Components can remain active, and do not need to be shutdown, when older
diagnostic logging files are deleted.

You can view log files using Fusion Middleware Control or with WLST commands, or
you can download log files to your local client and view them using another tool (for
example, a text edit or another file viewing utility).

For more information on using ODL with Oracle HTTP Server, see Chapter 7,
"Managing Oracle HTTP Server Logs."

2.6 mod_ossl
mod_ossl, the Oracle Secure Sockets Layer (SSL) implementation in use with the
Oracle database, enables strong cryptography for Oracle HTTP Server. It is a plug-in to
Oracle HTTP Server that enables the server to use SSL and is very similar to the

See Also: "Managing Log Files and Diagnostic Data" in
Administering Oracle Fusion Middleware.

mod_perl

Understanding Oracle HTTP Server Modules 2-5

OpenSSL module, mod_ssl. mod_ossl supports SSL version 3 and TLS versions 1.0,
1.1. and 1.2, and is based on Certicom and RSA Security technology.

Oracle HTTP Server complies with the Federal Information Processing Standard
publication 140 (FIPS 140); it uses a version of the underlying SSL libraries that has
gone through formal FIPS certification. As part of Oracle HTTP Server’s FIPS 140
compliance, the mod_ossl plug-in now includes the SSLFIPS directive. For more
information, see Section G.2.6, "SSLFIPS."

Oracle no longer supports mod_ssl. A tool is provided to enable you to migrate from
mod_ssl to mod_ossl, and convert your text certificates to Oracle wallets.

mod_ossl provides:

■ Encrypted communication between client and server, using RSA or DES
encryption standards.

■ Integrity checking of client-server communication using MD5 or SHA checksum
algorithms.

■ Certificate management with Oracle wallets.

■ Authorization of clients with multiple access checks, exactly as performed in mod_
ssl.

mod_ossl Directives
See Section G.2 for a list and descriptions of directives accepted by mod_ossl.

2.7 mod_perl
The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This
eliminates start-up overhead and enables you to write modules in Perl. Oracle Fusion
Middleware uses Perl version 5.10.

The module is disabled, by default. To enable mod_perl, follow the instructions in
Section 4.6.4, "Configuring mod_perl".

2.7.1 Using mod_perl with a Database
This section provides information for mod_perl users working with databases. It
explains how to test a local database connection and set character forms.

2.7.1.1 Using Perl to Access the Database
Perl scripts access databases using the DBI/DBD driver for Oracle. The DBI/DBD
driver is part of Oracle Fusion Middleware. It calls Oracle Call Interface (OCI) to
access the databases.

Once mod_perl is enabled, DBI must be enabled in the mod_perl.conf file to function.
To enable DBI, perform the following steps:

See Also: "Configuring SSL for the Web Tier" section of
Administering Oracle Fusion Middleware.

See Also: mod_perl documentation at
http://perl.apache.org/docs/index.html

mod_perl

2-6 Oracle Fusion Middleware Administering Oracle HTTP Server

1. Edit the mod_perl.conf file:

a. In Fusion Middleware Control, navigate to the Oracle HTTP Server Advanced
Server Configuration page.

b. Select the mod_perl.conf file from the menu and click Go.

c. Add the following line to the mod_perl.conf file:

PerlModule Apache::DBI

2. Click Apply to save the file.

3. Restart Oracle HTTP Server as described in Section 4.3.4, "Restarting Oracle HTTP
Server Instances."

Place the Perl scripts that you want to run in the DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName/cgi-bin.

Example 2–1 Using a Perl Script to Access a Database

#!ORACLE_HOME/perl/bin/perl -w
 use DBI;
 my $dataSource = "host=hostname.domain;sid=orclsid;port=1521";
 my $userName = "userid";
 my $password = "password";
 my $dbhandle = DBI->connect("dbi:Oracle:$dataSource", $userName, $password)
 or die "Can't connect to the Oracle Database: $DBI::errstr\n";
 print "Content-type: text/plain\n\n";
 print "Database connection successful.\n";
 ### Now disconnect from the database
 $dbhandle->disconnect
 or warn "Database disconnect failed; $DBI::errstr\n";
 exit;

To run the DBI scripts, the URLs would look like the following:

http://hostname.domain:port/cgi-bin/scriptname
http://hostname.domain:port/perl/scriptname

If a script specifies "use Apache::DBI" instead of "use DBI", then it can only run from
the URL http://hostname.domain:port/perl/scriptname.

2.7.1.2 Testing a Database Connection
Example 2–2 shows a sample Perl script for testing a database connection. Replace the
instance name, user ID, and password in the connect statement with proper values for
the target database.

Example 2–2 Sample Perl Script For Testing Connection for Local Seed Database

use DBI;
print "Content-type: text/plain\n\n";
$dbh = DBI->connect("dbi:Oracle:instance_name", userid/password, "") ||

 die $DBI::errstr;
$stmt = $dbh->prepare("select * from emp order by empno")|| die $DBI::errstr;
$rc = $stmt->execute() || die $DBI::errstr;

Note: The following steps assume you are using Fusion Middleware
Control and a managed server. For general information on editing a
configuration file, see Section 1.6.2, "Editing the Configuration".

mod_perl

Understanding Oracle HTTP Server Modules 2-7

while (($empno, $name) = $stmt->fetchrow()) {
print "$empno $name\n";

}
warn $DBI::errstr if $DBI::err;
die "fetch error: " . $DBI::errstr if $DBI::err;
$stmt->finish() || die "can't close cursor";
$dbh->disconnect() || die "can't log off Oracle";

2.7.1.3 Using SQL NCHAR Data Types
SQL NCHAR data types (NCHAR, NVARCHAR2 and NCLOB) are reliable Unicode
data types. SQL NCHAR data types enable you to store Unicode characters regardless
of the database character set. The character set for those data types is specified by the
national character set, which is either AL16UTF16 or UTF8.

Example 2–3 shows an example of accessing SQL NCHAR data.

Example 2–3 Sample Script to Access SQL NCHAR Data

declare to use the constants for character forms
use DBD::Oracle qw(:ora_forms);
connect to the database and get the database handle
$dbh = DBI->connect(...);

prepare the statement and get the statement handle
$sth = $dbh->prepare('SELECT * FROM TABLE_N WHERE NCOL1 = :nchar1');

bind the parameter of a NCHAR type
$sth->bind_param(':nchar1', $param_1);
set the character form to NCHAR
$sth->func({ ':nchar1' => ORA_NCHAR } , 'set_form');

$sth->execute;

As shown in Example 2–3, the set_form function is provided as a private function that
you can invoke with the standard DBI func method. The set_form function takes an
anonymous hash that enables you to set the character form for parameters.

The valid values of character form are either ORA_IMPLICIT or ORA_NCHAR.
Setting the character form to ORA_IMPLICIT causes the application's bound data to be
converted to the database character set, and ORA_NCHAR to the national character
set. The default is ORA_IMPLICIT.

The constants are available as ora_forms in DBD::Oracle.

set_default_form sets the default character form for a database handle. The following
example shows its syntax:

specify the default form to be NCHAR
$dbh->func(ORA_NCHAR, 'set_default_form');

This syntax causes the form of all parameters to be ORA_NCHAR, unless otherwise
specified with set_form calls. Unlike the set_form function, the set_default_form
functions on the database handle, so every statement from the database handle has the
form of your choice.

Example 2–4 Sample for set_form

a declaration example for the constants ORA_IMPLICIT and ORA_NCHAR
use DBD::Oracle qw(:ora_forms);

mod_plsql

2-8 Oracle Fusion Middleware Administering Oracle HTTP Server

set the character form for the placeholder :nchar1 to NCHAR
$sth->func({ ':nchar1' => ORA_NCHAR } , 'set_form');

set the character form using the positional index
$sth->func({ 2 => ORA_NCHAR } , 'set_form');

set the character form for multiple placeholders at once
$sth->func({ 1 => ORA_NCHAR, 2 => ORA_NCHAR } , 'set_form');

2.8 mod_plsql
The mod_plsql module connects Oracle HTTP Server to an Oracle database, enabling
you to create Web applications using Oracle stored procedures.

To access a Web-enabled PL/SQL application, configure a PL/SQL database access
descriptor (DAD) for the mod_plsql module. A DAD is a set of values that specifies
how the module connects to a database server to fulfill an HTTP request. Besides the
connection details, a DAD contains important configuration parameters for various
operations in the database and for the mod_plsql module in general. Any Web-enabled
PL/SQL application which uses the PL/SQL Web ToolKit needs to create a DAD to
invoke the application.

This section contains the following topics:

■ Section 2.8.1, "Creating a DAD"

■ Section 2.8.2, "Configuration Files for mod_plsql"

■ Section 2.8.3, "Using Configuration Files and Parameters"

■ Section 2.8.4, "Additional Documentation"

mod_plsql Directives
See Section G.3.1 for a list and descriptions of directives accepted by mod_plsql.

2.8.1 Creating a DAD
To create a DAD, perform the following steps:

1. Open the dads.conf configuration file.

For the locations of mod_plsql configuration files, see Table 2–2.

2. Add the following:

a. The <Location> element, which defines a virtual path used to access the
PL/SQL Web Application. This directive groups a set of directives that apply
to the named Location.

For example, the following directive defines a virtual path called /myapp that
will be used to invoke a PL/SQL Web application through a URL such as
http://host:port/myapp/.

Note: You can also open and edit the dads.conf file by using Oracle
Fusion Middleware Control, on the Oracle HTTP Server Advanced
Server Configuration page, as described in Section 4.6.6, "Modifying
an Oracle HTTP Server Configuration File."

mod_plsql

Understanding Oracle HTTP Server Modules 2-9

<Location /myapp>

b. The SetHandler directive, which directs Oracle HTTP Server to enable the
mod_plsql module to handle the request for the virtual path defined by the
named Location:

SetHandler pls_handler

c. Additional Oracle HTTP Server directives that are allowed in the context of a
<Location> directive. Typically, the following directives are used:

Order deny,allow
Allow from all

d. One or more specific mod_plsql directives. For example:

PlsqlDatabaseUsername scott
PlsqlDatabasePassword tiger
PlsqlDatabaseConnectString orcl
PlsqlAuthenticationMode Basic

e. The </Location> tag to close the <Location> element.

3. Save the edits.

4. Obfuscate the DAD password by running the dadTool.pl script located in the
ORACLE_HOME/bin directory.

5. Restart Oracle HTTP Server as described in Section 4.3.4, "Restarting Oracle HTTP
Server Instances."

You can create additional DADs by defining other uniquely named <Location>
elements in dads.conf.

Example DADs
The following DAD connects as a specific user and has a default home page:

<Location /pls/mydad>
SetHandler pls_handler
Order allow,deny
Allow from All
PlsqlDatabaseUsername scott
PlsqlDatabasePassword tiger
PlsqlDatabaseConnectString prod_db
PlsqlDefaultPage scott.myapp.home
</Location>

The following DAD uses HTTP Basic Authentication and supports document
upload/download operations:

<Location /pls/mydad2>
SetHandler pls_handler

Note: Earlier releases of the mod_plsql module were always
mounted on a virtual path with a prefix of /pls. This restriction is
removed in later releases but might still be a restriction imposed by
some earlier PL/SQL applications.

See Also: "PlsqlDatabasePassword" for instructions on performing
the obfuscation.

mod_plsql

2-10 Oracle Fusion Middleware Administering Oracle HTTP Server

Order allow,deny
Allow from All
PlsqlDatabaseConnectString prod_db2
PlsqlDefaultPage scott.myapp.my_home
PlsqlDocumentTablename scott.my_documents
PlsqlDocumentPath docs
PlsqlDocumentProcedure scott.docpkg.process_download
</Location>

2.8.2 Configuration Files for mod_plsql
The mod_plsql configuration parameters reside in the configuration files that are
located in the configuration directory (typically, DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/), as described in
Table 2–2.

For information on editing these .conf files, see Section 1.6.2, "Editing the
Configuration".

The mod_plsql configuration parameters are described in these sections:

■ Section 2.8.2.1, "plsql.conf"

■ Section 2.8.2.2, "dads.conf"

■ Section 2.8.2.3, "cache.conf"

2.8.2.1 plsql.conf
The plsql.conf file resides in the CONFIG_DIR/moduleconf directory and Oracle
HTTP Server automatically loads all .conf files under this location. The plsql.conf file
contains the LoadModule directive to load the mod_plsql module into Oracle HTTP
Server, any global settings for the mod_plsql module, and include directives for
dads.conf and cache.conf.

mod_plsql Directives in plsql.conf
See Section G.3.1 for a list and description of the directives used in plsql.conf.

2.8.2.2 dads.conf
The dads.conf file contains the configuration parameters for the PL/SQL database
access descriptor. (See Table 2–2 for the file location.) A DAD is a set of values that
specifies how the mod_plsql module connects to a database server to fulfill a HTTP
request.

mod_plsql Directives in dads.conf
See Section G.3.2 for a list and description of the directives used in dads.conf

Table 2–2 mod_plsql Configuration Files In a System Component Instance

Directory Name Contents

CONFIG_DIR/moduleconf plsql.conf

CONFIG_DIR/mod_plsql dads.conf and
cache.conf

See Also: The plsql.README file, located in ORACLE_
HOME/ohs/mod_plsql, for a detailed description of plsql.conf.

mod_wl_ohs

Understanding Oracle HTTP Server Modules 2-11

2.8.2.3 cache.conf
The cache.conf file contains the configuration settings for the file system caching
functionality implemented in the mod_plsql module. This configuration file is relevant
only if PL/SQL applications use the OWA_CACHE package to cache dynamically
generated content in the file system.

mod_plsql Directives in cache.conf
See Appendix G.3.3 for a list and description of the directives used in cache.conf

2.8.3 Using Configuration Files and Parameters
While specifying a value for a configuration parameter, follow Oracle HTTP Server
conventions for specifying values. For instance, if a value has white spaces in it,
enclose the value with double quotes. For example:

PlsqlNLSLanguage "TRADITIONAL CHINESE_TAIWAN.UTF8"

Multi-line directives enable you to specify same directive multiple times in a DAD.

2.8.4 Additional Documentation
For more Oracle HTTP Server-relevant information on PL/SQL, see the following:

■ Oracle® Fusion Middleware User's Guide for mod_plsql

■ Oracle® Fusion Middleware PL/SQL Web Toolkit Reference

2.9 mod_webgate
The mod_webgate module enables single sign-on (SSO) for Oracle HTTP Server.
WebGate examines incoming requests and determines whether the requested resource
is protected, and if so, retrieves the session information for the user.

For more information, see Section 8.4.2.2, "Using WebGate to Authenticate Users" and
Section 1.3.2, "Security: Single Sign-On with WebGate." For information on configuring
WebGate, see "Configuring Oracle HTTP Server WebGate for Oracle Access Manager"
in Installing and Configuring Oracle HTTP Server.

2.10 mod_wl_ohs
The mod_wl_ohs module enables requests to be proxied from Oracle HTTP Server 12c
(12.1.2) to Oracle WebLogic Server. This module is generally referred to as the Oracle
WebLogic Server Proxy Plug-In.

For information about the prerequisites and procedure for configuring mod_wl_ohs,
see "Configuring the Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server
Proxy Plug-Ins 12.1.2. Directives for this module are listed in "Parameters for Oracle
WebLogic Server Proxy Plug-Ins" in that document.

See Also: "Securing Applications with Oracle Platform Security Services"

Note: mod_wl_ohs is similar to the mod_wl plug-in, which you can
use to proxy requests from Apache HTTP Server to Oracle WebLogic
server. However, while the mod_wl plug-in for Apache HTTP Server
should be downloaded and installed separately, the mod_wl_ohs
plug-in is bundled with Oracle HTTP Server.

mod_wl_ohs

2-12 Oracle Fusion Middleware Administering Oracle HTTP Server

3

Understanding Oracle HTTP Server Management Tools 3-1

3 Understanding Oracle HTTP Server
Management Tools

[4] This chapter describes the management tools available with the Oracle HTTP Server
(OHS). It includes information on OHS management, how to access Fusion
Middleware Control, how to access the OHS home page, and how to use the WebLogic
Scripting Tool (WLST).

Oracle provides the following management tools for Oracle HTTP Server:

■ The Configuration Wizard, which enables you to create and delete Oracle HTTP
Server instances. For more information, see Installing and Configuring Oracle HTTP
Server.

■ Fusion Middleware Control, which is a browser-based management tool. For more
information, see Administering Oracle Fusion Middleware.

■ The WebLogic Scripting Tool, which is a command-driven scripting tool. For more
information, see Understanding the WebLogic Scripting Tool.

This chapter includes the following sections:

■ Section 3.1, "Overview of Oracle HTTP Server Management"

■ Section 3.2, "Special Note on Oracle HTTP Server Mbeans"

■ Section 3.3, "Accessing Fusion Middleware Control"

■ Section 3.4, "Accessing the Oracle HTTP Server Home Page"

■ Section 3.5, "Using Fusion Middleware Control to Edit Configuration Files"

■ Section 3.6, "Using the WebLogic Scripting Tool"

3.1 Overview of Oracle HTTP Server Management
The main tool for managing Oracle HTTP Server is Fusion Middleware Control, which
is a browser-based tool for administering and monitoring the Oracle Fusion
Middleware environment.

Note: The management tools available to your Oracle HTTP Server
implementation depend on whether you have configured it in a
WebLogic Server domain (with FMW Infrastructure) or in a
standalone domain. For details, see Section 1.4, "Domain Types".

See Also: Administering Oracle Fusion Middleware

Special Note on Oracle HTTP Server Mbeans

3-2 Oracle Fusion Middleware Administering Oracle HTTP Server

3.2 Special Note on Oracle HTTP Server Mbeans
The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware
Control or the WebLogic Scripting Tool (WLST) are provided for the use of Oracle
management tools. The interfaces are not supported for other use and are subject to
change without notice.

3.3 Accessing Fusion Middleware Control
To display Fusion Middleware Control, you enter the Fusion Middleware Control
URL, which includes the name of the WebLogic Administration Server host and the
port number assigned to Fusion Middleware Control during the installation. The
following shows the format of the URL:

http://hostname.domain:port/em

If you saved the installation information by clicking Save on the last installation
screen, the URL for Fusion Middleware Control is included in the file that is written to
disk.

1. Display Fusion Middleware Control by entering the URL in your Web browser.
For example:

http://host1.example.com:7001/em

The Welcome page appears.

2. Enter the Fusion Middleware Control administrator user name and password and
click Login.

The default user name for the administrator user is weblogic. This is the account
you can use to log in to the Fusion Middleware Control for the first time. The
weblogic password is the one you supplied during the installation of Fusion
Middleware Control.

3.4 Accessing the Oracle HTTP Server Home Page
The Oracle HTTP Server Home page in Fusion Middleware Control contains menus
and regions that enable you to manage the server. Use the menus for monitoring,
managing, routing, and viewing general information.

3.4.1 Navigating Within Fusion Middleware Control
When you select a target, such as a WebLogic Managed Server or a component, such as
Oracle HTTP Server, the target's home page is displayed in the content pane and that
target's menu is displayed at the top of the page, in the context pane. For example, if
you select an Oracle HTTP Server component from the Web Tier folder, the Oracle
HTTP Server menu is displayed. You can also view the menu for a target by
right-clicking the target in the navigation pane.

Figure 3–1 shows the target navigation pane and the home page of Oracle HTTP
Server.

Using Fusion Middleware Control to Edit Configuration Files

Understanding Oracle HTTP Server Management Tools 3-3

Figure 3–1 Oracle HTTP Server Home in Fusion MIddleware Control

The Oracle HTTP Server home page contains the following regions:

■ Virtual Hosts Region: Shows the virtual hosts for Oracle HTTP Server.

■ Module Request Statistics Region: Shows the modules for Oracle HTTP Server.

■ Response and Load Region: Provides information such as the number of active
requests, how many requests were submitted, and how long it took for Oracle
HTTP Server to respond to a request. It also provides information about the
number of bytes processed with the requests.

■ CPU and Memory Usage Region: Shows how much CPU (by percentage) and
memory (in megabytes) are being used by an Oracle HTTP Server instance.

■ Resource Center: Provides links to books and topics related to Oracle HTTP
Server.

3.5 Using Fusion Middleware Control to Edit Configuration Files
The Advanced Server Configuration page in Fusion Middleware Control enables you
to edit your Oracle HTTP Server configuration without directly editing the
configuration (.conf) files (for details, see Section 4.6.6, "Modifying an Oracle HTTP
Server Configuration File"). Be aware that Fusion Middleware Control and other
Oracle software that manage the Oracle HTTP Server configuration might save these
files in a different, equivalent format. After using the software to make a configuration
change, multiple configuration files might be rewritten.

See Also: Administering Oracle Fusion Middleware contains detailed
descriptions of all the items on the target navigation pane and the
home page.

Using the WebLogic Scripting Tool

3-4 Oracle Fusion Middleware Administering Oracle HTTP Server

3.6 Using the WebLogic Scripting Tool
Five OHS-specific WLST commands are provided for management of Oracle HTTP
Server in WebLogic Server Domains. Most are online commands, which require a
connection between WLST and the administration server for the domain.

■ createOHSInstance()

■ deleteOHSInstance()

■ addOHSAdminProperties()

■ addOHSNMProperties()

One off-line command is provided for creating a domain appropriate for testing OHS:

■ createOHSTestDomain()

You should use the createOHSInstance() and deleteOHSInstance() commands to
create and delete Oracle HTTP Server instances instead of using the Configuration
Wizard or offline WLST, as these custom commands perform additional error checking
and, in the case of instance creation, automatic port assignment.

3.6.1 Using WLST in a Standalone Environment
An Oracle HTTP Server standalone implementation can only use WLST to start and
stop the server (nmStart() and nmKill() commands; see Section 4.3, "Performing
Basic OHS Tasks"). Other administration tasks are not possible. Thus in a standalone
configuration, WLST offers limited benefits.

If you have a remote Oracle HTTP Server in a managed mode and another in
standalone with the remote administration mode enabled, you can use WLST to
perform management tasks such as SSL configuration. A vanilla Oracle HTTP Serverin
a standalone domain can be used only as a WebLogic Server Node Manager and for
Oracle HTTP Server start/stop purposes. You can also do this by using a
command-line script.

3.6.2 Additional Information
For more information on the custom WLST commands for Oracle HTTP Server, see
"Oracle HTTP Server Custom WLST Commands" in the WLST Command Reference for
Infrastructure Components.

See Also: For more information on WLST, see Understanding the
WebLogic Scripting Tool

Part II
Part II Managing Oracle HTTP Server

This part presents information about management tasks for Oracle HTTP Server. It
contains the following chapters:

■ Chapter 4, "Working with Oracle HTTP Server"

■ Chapter 5, "Managing and Monitoring Server Processes"

■ Chapter 6, "Managing Connectivity"

■ Chapter 7, "Managing Oracle HTTP Server Logs"

■ Chapter 8, "Managing Application Security"

4

Working with Oracle HTTP Server 4-1

4Working with Oracle HTTP Server

[5] This chapter provides information on how to work with Oracle HTTP Server (OHS). It
discusses the procedures needed to configure and use OHS in your environment.

This chapter includes the following sections:

■ Section 4.1, "Before You Begin"

■ Section 4.2, "Creating an OHS Instance"

■ Section 4.3, "Performing Basic OHS Tasks"

■ Section 4.4, "Remotely Administering Oracle HTTP Server"

■ Section 4.5, "Specifying Server Properties"

■ Section 4.6, "Configuring Oracle HTTP Server"

4.1 Before You Begin
Before performing any of the tasks described in this chapter, you need to do the
following:

1. Install and configure Oracle HTTP Server, as described in Installing and Configuring
Oracle HTTP Server.

2. If you run Oracle HTTP Server in a WebLogic Server Domain, start WebLogic
Server as described in "Starting and Stopping Servers" in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

3. Start Node Manager (required for both WebLogic and standalone domains), as
described in "Using Node Manager" in Administering Node Manager for Oracle
WebLogic Server.

Note: When you start WebLogic Server from the command line, you
might encounter many warning messages scrolling by. Despite these
messages, WebLogic Server should start normally.

Note: As Node Manager starts, you might encounter many warnings
scrolling by. You can ignore these messages.

Creating an OHS Instance

4-2 Oracle Fusion Middleware Administering Oracle HTTP Server

4.2 Creating an OHS Instance
The Configuration Wizard enables you to create multiple Oracle HTTP Server
instances simultaneously when you create a domain. If you are creating a WebLogic
Server Domain, then you are not required to create any instances, whereas if you are
creating a standalone domain, you need to create at least one Oracle HTTP Server
instance. Note that, when creating a WebLogic Server domain, if you elect not to create
any instances, a warning appears; however, you are allowed to proceed with the
configuration process.

4.2.1 Creating a Managed Instance in a WebLogic Server Domain
You can create a managed Oracle HTTP Server instance in a WebLogic Server Domain
by using either the custom WebLogic Scripting Tool (WLST) command
createOHSInstance() or from Fusion Middleware Control. These procedures are
described in the following sections.

4.2.1.1 Creating an Instance by Using WLST
To create an OHS instance in a WebLogic Server Domain by using WLST, do the
following:

1. From the command line, launch WLST:

Linux: $ORACLE_HOME/ohs/common/bin/wlst.sh

Windows: $ORACLE_HOME\ohs\common\bin\wlst.cmd

2. Connect to WLST:

■ In a WebLogic Server Domain:

> connect('loginID', 'password', '<adminHost>:<adminPort>')

For example:

> connect('weblogic', 'welcome1', 'abc03lll.myCo.com:7001')

Note: If you are attempting to create an Oracle HTTP Server instance
that uses a TCP port in the reserved range (typically less than 1024),
then you must perform some extra configuration to allow the server to
bind to privileged ports. For more information, see Section 4.3.2.4,
"Starting Oracle HTTP Server Instances on a Privileged Port (UNIX
Only)."

Note: Oracle Fusion Middleware contains more than one version of
WLST. The WLST commands used in all procedures in this chapter
will only work if you run the WLST implementation on ORACLE_
HOME/ohs/common/bin/.

Note: If you are working with a WebLogic Server Domain, you
should use the Oracle HTTP Server custom WLST commands,
described in Section 3.6, "Using the WebLogic Scripting Tool". These
commands offer superior error checking, provide automatic port
management, and so on.

Creating an OHS Instance

Working with Oracle HTTP Server 4-3

3. Use the createOHSInstance() command, with an instance and machine
name—which was assigned during domain creation—to create the instance:

> createOHSInstance(instanceName='ohs1', machine='abc03lll.myCo.com'
[listenPort=XXXX] [sslPort=XXXX] [adminPort=XXXX])

For example:

> createOHSInstance(instanceName='ohs1', machine='abc03lll.myCo.com')

4.2.1.2 Creating an Instance by Using Fusion Middleware Control
To create an Oracle HTTP Server instance in a WebLogic Server Domain by using
Fusion Middleware Control, do the following:

1. Log in to Fusion Middleware Control and navigate to the system component
instance home page for the WebLogic Server Domain within which you want to
create the Oracle HTTP Server instance.

2. Open the WebLogic Server Domain menu and select Administration then
Create/Delete OHS.

Note: If Node Manager should be down, the create command will
take place partially. The master copy of the config files will appear at
OHS/componentName. Once Node Manager comes back up, the
system will resync and the runtime copy of the files will appear at
OHS/instances/componentName.

Note: If you do not provide port numbers, they will be assigned
automatically.

See also: For information on using the WebLogic Scripting Tool
(WLST), see Understanding the WebLogic Scripting Tool.

Note: Create/Delete OHS will only appear if you have extended the
domain by using the Oracle HTTP Server domain template.
Otherwise, this command will not be available.

Creating an OHS Instance

4-4 Oracle Fusion Middleware Administering Oracle HTTP Server

The OHS Instances page appears.

3. Click Create.

The Create OHS Instance page appears.

4. In Instance Name, type a unique name for the Oracle HTTP Server instance; for
example, ohs4.

5. In Machine Name, click the drop-down control and select the machine to which
you want to associate the instance.

6. Click OK.

Creating an OHS Instance

Working with Oracle HTTP Server 4-5

The OHS Instance page reappears, showing a confirmation message and the new
instance.

After creating the instance, you will note that the Column on the OHS Instances page
shows a down-arrow for that instance.

This indicates that the instance is not running. For instructions on starting an instance,
see Section 4.3.2, "Starting Oracle HTTP Server Instances". Once started, the arrow will
point up.

4.2.1.3 Instance Provisioning
Once an instance is created, it will be provisioned within the DOMAIN_HOME.

■ The master copy will be in:

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

■ The runtime will be in:

DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName

Immediately after creation, the state reported for an OHS instance will vary depending
on how the instance was created:

■ If createOHSInstance() was used, the reported state for the instance will be
SHUTDOWN.

■ If the Configuration Wizard was used, the reported state for the instance will be
UNKNOWN.

4.2.2 Creating a Standalone Domain Instance
If you select Standalone as your domain during server configuration, the
Configuration Wizard will create the domain but during this process you must create
at least one Oracle HTTP Server instance. For more information, see Installing and
Configuring Oracle HTTP Server.

4.2.2.1 Using WLST in a Standalone Domain
If your Oracle HTTP Server instance is running in a standalone domain, you can use
WLST but must use the offline, or "agent", commands that route tasks through Node

Performing Basic OHS Tasks

4-6 Oracle Fusion Middleware Administering Oracle HTTP Server

Manager. The specific commands are described elsewhere in this chapter, in the
context of the task they perform; however, you will need to use the nmConnect()
command to actually connect to offline WLST. For both Linux and Windows, enter:

nmConnect('login','password','hostname','port','<domainName>')

For example:

nmConnect('weblogic','welcome1','localhost','5556','myDomain')

4.3 Performing Basic OHS Tasks
You can use Fusion Middleware Control or WebLogic Scripting Tool for the following
tasks:

■ Starting Oracle HTTP Server Instances

■ Stopping Oracle HTTP Server Instances

■ Restarting Oracle HTTP Server Instances

■ Checking the Status of a Running Oracle HTTP Server Instance

■ Deleting an Oracle HTTP Server Instance

About Using the WLST Commands
If you plan to use WLST, you should familiarize yourself with that tool. You should
also be aware of the following:

■ The online WLST commands described in this section and used in WebLogic
Server Domains will only work if you run them from the WLST implementation
on ORACLE_HOME/ohs/common/bin/wlst.sh (wlst.cmd on Windows).

■ If you run a standalone version of Oracle HTTP Server, you must use the offline,
or "agent", WLST commands, which are also available in ORACLE_
HOME/ohs/common/bin/wlst.sh (wlst.cmd on Windows). These commands are
described in their appropriate context.

For more information, see "Getting Started Using the Oracle WebLogic Scripting Tool
(WLST)" in the Oracle® Fusion Middleware Administrator's Guide.

4.3.1 Understanding the PID File
When Oracle HTTP Server starts, it writes the process ID (PID) of the parent httpd
process to the httpd.pid file located in the following directory:

DOMAIN_HOME/servers/<componentName>/logs

The process ID can be used by the administrator when restarting and terminating the
daemon. If a process stops abnormally, it is necessary to stop the httpd child processes
using the kill command. You must not change the default PID file name or its
location.

The PidFile directive in httpd.conf specifies the location of the PID file; however, you
should never modify the value of this directive.

Note: On UNIX/Linux platforms, if you edit the PidFile directive,
you also have to edit the ORACLE_HOME/ohs/bin/apachectl file to
specify the new location of the PID file.

Performing Basic OHS Tasks

Working with Oracle HTTP Server 4-7

4.3.2 Starting Oracle HTTP Server Instances
This section describes how to start Oracle HTTP Server using Fusion Middleware
Control and WLST.

4.3.2.1 Starting Oracle HTTP Server Instances by Using Fusion Middleware Control
To start Oracle HTTP Server using Fusion Middleware Control, navigate to the Oracle
HTTP Server home page and do one of the following:

■ From the Oracle HTTP Server menu:

1. Select Control.

2. Select Start Up from the Control menu.

■ From the Target Navigation tree:

1. Right-click the Oracle HTTP Server instance you want to start.

2. Select Control.

3. Select Start Up from the Control menu.

■ From the page header, select Start Up.

The instance will start in the state UNKNOWN.

4.3.2.2 Starting Oracle HTTP Server Instances by Using WLST
To start all Oracle HTTP Server components in a system component instance by using
WLST (this procedure assumes you have created as OHS instance, as described in
Section 4.2, "Creating an OHS Instance" and WLST is running), use the start()
command in a WebLogic Server Domain or nmStart() for standalone domain, as
shown here:

See Also: PidFile directive in the Apache HTTP Server
documentation at:

http://httpd.apache.org/docs/current/mod/mpm_
common.html#pidfile

Notes: Node Manager must be running for these commands to
work. If it is down, you will receive an error message.

serverType is required for standalone domains. If it is not included an
error will be thrown referencing an inability to find startWebLogic.

Domain Syntax Example

WebLogic start('instanceName')

or

nmStart(serverName='name',
serverType='type')

start('ohs1')

or

nmStart(serverName='ohs1',
serverType='OHS')

Standalone nmStart(serverName='name',
serverType='type')

nmStart(serverName='ohs1',
serverType='OHS')

Performing Basic OHS Tasks

4-8 Oracle Fusion Middleware Administering Oracle HTTP Server

If you used createOHSInstance() to create the instance (Section 4.2, "Creating an OHS
Instance"), the state initially reported for the instance will be SHUTDOWN.

4.3.2.3 Starting Oracle HTTP Server Instances from the Command Line
You can start Oracle HTTP Server directly from a command line—that is, without
launching WLST—by entering the following command:

Linux: $DOMAIN_HOME/bin/startComponent.sh componentName

Windows: %DOMAIN_HOME%\bin\startComponent.cmd componentName

For example:

$DOMAIN_HOME/bin/startComponent.sh ohs1

This command invokes WLST and tells it to run its start() command.

After a few seconds, you will be prompted for your Node Manager password. Type
that and press Enter.

Successfully started server componentName...
Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.

You can avoid having to enter your Node Manager password every time you launch
the server with startComponent.sh/.cmd by starting it with the storeUserConfig
option for the first time. Do the following:

1. At the prompt, enter the following command:

$DOMAIN_HOME/bin/startComponent.sh componentName storeUserConfig

The system will prompt for your Node Manager password.

2. Type the password and press Enter.

The system responds with this message:

Creating a key file can reduce the security of your system if it is not a
secured location after it is created. Do you want to create the key file? y or
n.

3. Type y to store your Node manager password. When you subsequently use this
command, you will not need to enter a password.

4.3.2.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)

On a UNIX system, TCP ports in a reserved range (typically less than 1024) can only be
bound by processes with root privilege. Oracle HTTP Server always runs as a non-root
user; that is, the user who installed Oracle Fusion Middleware. On UNIX, special
configuration is required to allow Oracle HTTP Server to bind to privileged ports.

To enable Oracle HTTP Server to listen on a port in the reserved range (for example,
the default port 80 or port 443) as a process without root privilege, use the following
one-time setup on each Oracle HTTP Server machine:

WARNING: When this procedure is completed, any Oracle HTTP
Server processes running from this Oracle Home as a user in the
same group will be able to bind to privileged ports.

Performing Basic OHS Tasks

Working with Oracle HTTP Server 4-9

1. As the same user who will start Oracle HTTP Server, create a temporary cap.ora
file by entering the following:

echo `id -ng`: bind > /tmp/cap.ora

2. Update the ORACLE_HOME/oracle_common/bin/hasbind file by performing the
following steps:

a. Change ownership of the file to root:

chown root $ORACLE_HOME/oracle_common/bin/hasbind

b. Change the permissions on the file as follows:

chmod 4755 $ORACLE_HOME/oracle_common/bin/hasbind

3. Generate the /etc/cap.ora file by performing the following steps:

a. If /etc/cap.ora does not exist, copy the temporary cap.ora file you created in
step 1 to the /etc/ directory:

cp /tmp/cap.ora /etc/cap.ora

If /etc/cap.ora does exist, append the contents of the temporary file you
created in step 1 to the existing /etc/cap.ora file:

cat /tmp/cap.ora >> /etc/cap.ora

b. Change the permissions on the /etc/cap.ora file as follows:

chmod 644 /etc/cap.ora

c. Change ownership of the file to root:

chown root /etc/cap.ora

The steps that require root permissions are now complete.

4. If you prefer, remove the temporary cap.ora you created in step 1:

rm /tmp/cap.ora

5. Modify the port settings for Oracle HTTP Server as described in Section 6.4,
"Managing Ports".

6. Start (or restart) the instance by using any of the start-up methods described in
Section 4.3.2, "Starting Oracle HTTP Server Instances".

4.3.3 Stopping Oracle HTTP Server Instances
This section describes how to stop Oracle HTTP Server using Fusion Middleware
Control. Be aware that other services might be impacted when Oracle HTTP Server is
stopped.

Note: The next steps must be performed as the root user. If you do
not have root access, have the system administrator perform these
steps.

Performing Basic OHS Tasks

4-10 Oracle Fusion Middleware Administering Oracle HTTP Server

4.3.3.1 Stopping Oracle HTTP Server Instances by Using Fusion Middleware
Control
To stop Oracle HTTP Server using Fusion Middleware Control, navigate to the Oracle
HTTP Server home page and do one of the following:

■ From the Oracle HTTP Server menu:

1. Select Control.

2. Select Shut Down from the Control menu.

■ From the Target Navigation tree:

1. Right-click the Oracle HTTP Server component you want to stop.

2. Select Control.

3. Select Shut Down from the Control menu.

■ From the page header, select Shut Down.

4.3.3.2 Stopping Oracle HTTP Server Instances by Using WLST
To stop Oracle HTTP Server by using WLST, from within the scripting tool, use one of
the following commands:

4.3.3.3 Stopping Oracle HTTP Server Instances from the Command Line
You can stop Oracle HTTP Server directly from a command line—that is, without
launching WLST—by entering the following command:

$DOMAIN_HOME/bin/stopComponent.sh componentName

For example:

$DOMAIN_HOME/bin/stopComponent.sh ohs1

This command invokes WLST and tells it to run its shutdown() command.

After a few seconds, you will be prompted for your Node Manager password. Type
that and press Enter. Once the server is stopped, the system will respond:

Successfully killed server componentName...

Notes: Node Manager must be running for these commands to
work. If it is down, you will receive an error message.

serverType is required for standalone domains. If it is not included an
error will be thrown referencing an inability to find startWebLogic

Domain Syntax Example

WebLogic shutdown('serverName') shutdown('ohs1')

Standalone nmKill(serverName='serverName',
serverType='type')

nmKill(serverName='ohs1',
serverType='OHS')

WARNING: If you run shutdown() without specifying any
parameters, WLS will terminate and boot you out of WLST. Oracle
HTTP Server will continue running.

Performing Basic OHS Tasks

Working with Oracle HTTP Server 4-11

Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.

4.3.4 Restarting Oracle HTTP Server Instances
Restarting Oracle HTTP Server causes the Apache parent process to advise its child
processes to exit after their current request (or to exit immediately if they are not
serving any requests). Upon restarting, the parent process re-reads its configuration
files and reopens its log files. As each child process exits, the parent replaces it with a
child process from the new generation of the configuration file, which begins serving
new requests immediately.

The following sections describe how to restart Oracle HTTP Server using by Fusion
Middleware Control and the WLST.

4.3.4.1 Restarting Oracle HTTP Server Instances by Using Fusion Middleware
Control
To restart OHS using Fusion Middleware Control, navigate to the Oracle HTTP Server
home page and do one of the following:

■ From the Oracle HTTP Server menu:

1. Select Control.

2. Select Restart from the Control menu.

■ From the Target Navigation tree:

1. Right-click the OHS instance you want to stop.

2. Select Control.

3. Select Restart from the Control menu.

4.3.4.2 Restarting Oracle HTTP Server Instances by Using WLST
To restart OHS by using WLST, use the softRestart() command. From within the
scripting tool, enter one of the following commands:

4.3.5 Checking the Status of a Running Oracle HTTP Server Instance
This section describes how to check the status of a running Oracle HTTP Server
instance. You can check this information from either Fusion Middleware Control or by
using WLST.

Notes: Node Manager must be running for these commands to
work. If it is down, you will receive an error message.

All parameters are required for standalone domains. If they are not
included, an error will be thrown referencing an inability to find
startWebLogic.

Domain Syntax Example

WebLogic softRestart('serverName') softRestart('ohs1')

Standalone nmSoftRestart(serverName='name',
serverType='type')

nmSoftRestart(serverName='ohs1',
serverType='OHS')

Performing Basic OHS Tasks

4-12 Oracle Fusion Middleware Administering Oracle HTTP Server

4.3.5.1 Checking Server Status by Using Fusion Middleware Control
An up or down arrow in the top left corner of any Oracle HTTP Server page's header
indicates whether the selected server instance is running. This image shows the up
arrow, indicating that the server instance, in this case, "ohs2", is running:

This image shows a down arrow, indicating that the server instance, in this case,
"ohs2", is not running:

4.3.5.2 Checking Server Status by Using WLST
In a WebLogic Server Domain, if you used createOHSInstance() to create the Oracle
HTTP Server instance, its initial state (that is, before starting it) will be SHUTDOWN.

If you used the Configuration Wizard to generate the instance (both WebLogic Server
Domain and standalone domain), its initial state (that is, before starting) will be
UNKNOWN.

To check the status of a running Oracle HTTP Server instance by using WLST, from
within the scripting tool, enter the following:

Notes: Node Manager must be running for these commands to
work. If it is down, you will receive an error message. If Node
Manager goes down in a WebLogic Server Domain, the state will be
returned as UNKNOWN, regardless of the real state of the instance.
Additionally state() does not inform you that it cannot connect to
Node Manager.

Unlike other WLST commands, state() will not tell you when Node
Manager is down so there is no way to distinguish an instance that
truly is in state UNKNOWN as opposed to Node Manager simply
being down.

All parameters are required for standalone domains. If they not
included an error will be thrown referencing an inability to find
startWebLogic.

Domain Syntax Example

WebLogic state('serverName') state('ohs1')

Standalone nmServerStatus(serverName='name',
serverType='type')

nmServerStatus(serverName='ohs1',
serverType='OHS')

Performing Basic OHS Tasks

Working with Oracle HTTP Server 4-13

4.3.6 Deleting an Oracle HTTP Server Instance
You can delete an Oracle HTTP Server instance in both a WebLogic Server Domain and
a standalone domain.

4.3.6.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
In a WebLogic Server Domain, you can use either the custom WLST command
deleteOHSInstance() or from Fusion Middleware Control. These procedures are
described in the following sections.

4.3.6.1.1 Deleting an Instance by Using WLST If you are in a WebLogic Server Domain,
you can delete an Oracle HTTP Server instance by using the customer WLST
command deleteOHSInstance(). When you use this command, the following
happens:

■ The selected instance information is removed form config.xml.

■ All OHS configuration directories and their contents are deleted; for example,
OHS/instanceName and OHS/instances/instanceName).

■ All logfiles associated with the deleted instance are deleted.

■ All state information for the deleted instance is removed.

To delete an instance by using WLST:

1. Connect to WLST, as described in Section 4.3.2.2, "Starting Oracle HTTP Server
Instances by Using WLST".

2. At the command prompt, enter:

deleteOHSInstance(instanceName='instanceName')

For example, to delete an OHS instance named ohs1 use the following command:

deleteOHSInstance(instanceName='ohs1')

You cannot delete any OHS instance in either an UNKNOWN or a RUNNING state.

4.3.6.1.2 Deleting an Instance by Using Fusion Middleware Control To delete an Oracle HTTP
Server instance by using Fusion Middleware Control:

Note: This command does not distinguish between non-existent
components and real components in state UNKNOWN. Thus, if you
enter a non-existent instance (for example, if you mis-identify the
instance with a non-existent instance name—for example, ohsz
instead of ohs2)— UNKNOWN will be returned.

Note: You cannot delete an instance by using deleteOHSInstance() if
Node Manager is down.

Note: You cannot delete a running Oracle HTTP Server instance. If
the instance is running, stop it, as described in Section 4.3.3, "Stopping
Oracle HTTP Server Instances" and then proceed with the following
steps.

Performing Basic OHS Tasks

4-14 Oracle Fusion Middleware Administering Oracle HTTP Server

1. Log in to Fusion Middleware Control and navigate to the system component
instance home page for the WebLogic Server Domain within which you want to
delete the Oracle HTTP Server instance.

2. Open the WebLogic Server Domain menu and select Administration then
Create/Delete OHS.

The OHS Instances page appears.

3. Select the instance you want to delete and click Delete.

A confirmation window appears.

4. Click Yes to complete the deletion.

The OHS Instances page appears, with an information method indicating that the
selected Oracle HTTP Server instance was deleted.

4.3.6.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain
You can delete an Oracle HTTP Server instance in a standalone domain by using the
Configuration Wizard so long as it is not the only instance in the domain. The
Configuration Wizard always requires at least one Oracle HTTP Server instance in a
standalone domain so you will not be able to delete one if it's the only instance in the
domain. If you want to delete the only instance in a standalone domain, you should
instead completely remove the entire domain directory.

Deleting Oracle HTTP Server instances by using the Configuration Wizard is actually
only a partial deletion (and is inconsistent with the way deletion is done on the
WebLogic Server domain side by using deleteOHSInstance(); see Section 4.3.6.1.1,
"Deleting an Instance by Using WLST"). When you delete a standalone instance by
using the Configuration Wizard, the following occurs:

■ Information on the specific instance is removed from config.xml, so this instance is
no longer recognized as valid. When you launch the Configuration Wizard again
for another update, the deleted instance will not appear.

■ The logs compiled for the deleted instance are left intact at: DOMAIN_
HOME/servers/ohs1... If a new instance with the same name is subsequently
created, it will inherit and continue logging to these files.

■ The deleted instance's configuration directories and their contents are not deleted;
they remain intact at: DOMAIN_
HOME/config/fmwconfig/components/OHS/instanceName and DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/instanceName. The only
change in both directories is that the following files are renamed: httpd.conf
becomes httpd.conf.bak; ssl.conf becomes ssl.conf.bak; and admin.conf becomes
admin.conf.bak. This prevents the instance from being started. (If you create a new
instance with the same name as the instance you deleted, this information will be
overwritten, but the *.bak files will remain).

■ The deleted instance's state information is left intact at DOMAIN_HOME/system_
components/... If a new instance of the same name is subsequently created, it will
inherit the state of the old instance. Instead of starting in UNKNOWN, it could be
SHUTDOWN or even FAILED_NOT_RESTARTABLE out of the gate.

To delete an Oracle HTTP Server instance in a standalone domain, do the following:

1. Shutdown all running instances (see Section 4.3.3, "Stopping Oracle HTTP Server
Instances"). Be aware the Configuration Wizard will not check the state of the
Oracle HTTP Server instance so you will need to verify that all instances are
indeed stopped.

Remotely Administering Oracle HTTP Server

Working with Oracle HTTP Server 4-15

2. If it is running, shut down Node Manager.

3. Launch the Configuration Wizard (see Installing and Configuring Oracle HTTP
Server) and do the following:

a. Select Update an existing domain and select the path to the domain.

b. Skip both the Templates screen and the JDK Selection screen by clicking Next
on each.

c. On the System Components screen, select the instance you want to delete and
click Delete.

The selected instance is deleted.

d. Click Next and, on the OHS Server screen, click Next again.

e. On the Configuration Summary screen, verify that the selected instance has
been deleted and click Update.

f. On the Success screen, click Finish.

4.4 Remotely Administering Oracle HTTP Server
You can remotely manage an Oracle HTTP Server running in a standalone
environment from a collocated Oracle HTTP Server implementation running on a
separate machine. This feature enables you to use the WebLogic Scripting Tool (WLST)
or Fusion Middleware Control from the remote machine to start, restart, stop, and
configure the component. This chapter describes how to set up the environments to

■ Section 4.4.1, "Setting Up a Remote Environment"

■ Section 4.4.2, "Running Oracle HTTP Server Remotely"

4.4.1 Setting Up a Remote Environment
The following instructions describe how to set up a remote environment, which will
enable you to run Oracle HTTP Server installed on one machine from an installation
on another. This section contains the following information:

■ Section 4.4.1.1, "Host Requirements."

■ Section 4.4.1.2, "Task 1: Set Up an Expanded Domain on host1."

■ Section 4.4.1.3, "Task 2: Pack the Domain on host1."

■ Section 4.4.1.4, "Task 3: Unpack the Domain on host2."

4.4.1.1 Host Requirements
To remotely manage Oracle HTTP Server, you need to have separate hosts installed on
separate machines:

■ A collocated installation (for this document, this installation will be called host1).

■ A standalone installation (host2). The path to standalone MW_HOME on host2
must be the same as the path to collocated MW_HOME on host1; for example:

/scratch/user/work

Remotely Administering Oracle HTTP Server

4-16 Oracle Fusion Middleware Administering Oracle HTTP Server

4.4.1.2 Task 1: Set Up an Expanded Domain on host1
The following steps describe how to set up an expanded domain and link it to a
database on the collocated version of Oracle HTTP Server (host1).

1. Using the Repository Configuration Utility (RCU), set up and install a database for
the expanded domain. For more information, see Oracle Fusion Middleware Creating
Schemas with the Repository Creation Utility.

2. Launch the Configuration Wizard and create an expanded domain. Use the values
specified in Table 4–1.

4.4.1.3 Task 2: Pack the Domain on host1
On host1, use the following command to pack the domain:

<MW_HOME>/ohs/common/bin/pack.sh -domain=path to domain -template=path to template
-template_name=name -managed=true

For example:

<MW_HOME>/ohs/common/bin/pack.sh -domain=<MW_HOME>/user_projects/domains/ohs1_
domain -template=/tmp/ohs1_tmplt.jar -template_name=ohs1 -managed=true

Table 4–1 Setting Up an Expanded Domain

For... Select or Enter...

Create Domain Create a new domain and specify its path (for example, MW_
HOME/user_projects/domains/ohs1_domain)

Templates Oracle HTTP Server (Collocated)

Application Locations The default

Administrator Account A username and password (for example, weblogic and welcome1)

Database Configuration
Type

The RCU data. Then, click Get RCU Configuration and then
Next.

Optional Configuration The following items:

■ Administration Server

■ Node Manager

■ System Components

■ Deployment and Services

Administration Server The listen address (All Local Addresses or the valid name or
address for host1) and port

 Node Manager Per Domain and specify the NodeManager credentials (for
example, weblogic and welcome1).

System Components Add and set the fields, using OHS as the Component Type (for
example, use a System Component value of ohs1).

OHS Server The listen addresses and ports or use the defaults.

Machines Add. This will add a machine to the domain (for example, ohs1_
Machine) and the Node Manager listen and port values. You
must specify a listen address for host2 that is accessible from
host1, such the valid name or address for host2 (do not use
localhost or All Local Addresses).

Assign System Components The OHS component (for example, ohs1) then use the right
arrow to assign the component to the machine (ohs1_machine,
for example).

Configuration Summary Create (note that the OPSS steps may take some minutes).

Specifying Server Properties

Working with Oracle HTTP Server 4-17

4.4.1.4 Task 3: Unpack the Domain on host2
Use the following steps to unpack the domain you packed on host1, above, on host2:

1. Copy the template file created in "Task 2: Pack the Domain on host1" from host1 to
host2.

2. Use the following command to unpack the domain:

<MW_HOME>/ohs/common/bin/unpack.sh -domain=path to domain -template=path to
template

For example:

<MW_HOME>/ohs/common/bin/unpack.sh -domain=<MW_HOME>/user_
projects/domains/ohs1_domain -template=/tmp/ohs1_tmplt.jar

4.4.2 Running Oracle HTTP Server Remotely
Once you have unpacked the domain created on host1 onto host2, you can use the
same set of WLST commands and Fusion Middleware Control tools you would in a
collocated environment to start, stop, restart, and configure the component.

To run an Oracle HTTP Server remotely, do the following:

1. Start the WebLogic Administration Server on host1:

<MW_HOME>/user_projects/domains/ohs1_domain/bin/startWebLogic.sh &

2. Start Node Manager on host2:

<MW_HOME>/user_projects/domains/ohs1_domain/bin/startNodeManager.sh &

You can now run the Oracle HTTP Server instance on host2 from the collocated
implementation on host1. You can use any of the WLST commands or any of the
Fusion Middleware Control tools. For example, to connect host2 to Node Manager and
start the server ohs1, from host1 enter:

<MW_HOME>/ohs/common/bin/wlst.sh
nmConnect('weblogic', 'welcome1', '<nm-host>', '<nm-port>', 'ohs1_domain')
nmStart(serverName='ohs1', serverType='OHS')

See Section 4.3, "Performing Basic OHS Tasks" for information on starting, stopping,
restarting, and configuring Oracle HTTP Server components.

4.5 Specifying Server Properties
Server properties for Oracle HTTP Server can be set using Fusion Middleware Control
or direct editing of the Oracle HTTP Server configuration files. You cannot use WLST
commands to specify the server properties.

■ Specifying Server Properties by Using Fusion Middleware Control

■ Editing the httpd.conf File to Specify Server Properties

4.5.1 Specifying Server Properties by Using Fusion Middleware Control
To specify the server properties using the Fusion Middleware Control:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Server Configuration from the Administration menu. The Server
Configuration page appears.

Specifying Server Properties

4-18 Oracle Fusion Middleware Administering Oracle HTTP Server

3. Enter the documentation root directory in the Document Root field that forms the
main document tree visible from the website.

4. Enter the e-mail address in the Administrator's E-mail field that the server will
includes in error messages sent to the client.

5. Enter the directory index in the Directory Index field. The is the main (index) page
that will be displayed when a client first accesses the website.

6. Optional: Enter the user name in the Operating System User field.

This field is normally blank. It may be set to the user that installed Oracle HTTP
Server and starts Node Manager.

7. Optional: Enter the group name in the Operating System Group field.

This field is normally blank. It may be set to the group of the user that installed
Oracle HTTP Server and starts Node Manager.

8. The Modules region is used to enable or disable modules. There are three modules
that you can enable or disable: mod_perl, mod_fcgi, and mod_plsql.

For instructions on configuring the mod_perl module, see "Configuring mod_perl"
on page 4-25.

9. Create an alias, if necessary in the Aliases table. An alias maps to a specified
directory. For example, to use a specific set of content pages for a group you can
create an alias to the directory that has the content pages.

10. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

11. Restart Oracle HTTP Server as described in Section 4.3.4.

The server properties are saved, and shown on the Server Configuration page.

4.5.2 Editing the httpd.conf File to Specify Server Properties
To specify the server properties using the httpd.conf file:

Configuring Oracle HTTP Server

Working with Oracle HTTP Server 4-19

1. Open the httpd.conf file using either a text editor or the Advanced Server
Configuration page in Fusion Middleware Control. (See Section 4.6.6, "Modifying
an Oracle HTTP Server Configuration File.")

2. In the DocumentRoot section of the file, enter the directory that stores the main
content for the website. The following is an example of the syntax:

DocumentRoot "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/htdocs"

3. In the ServerAdmin section of the file, enter the administrator's email address.
This is the e-mail address that will appear on client pages. The following is an
example of the syntax:

ServerAdmin WebMaster@example.com

4. In the DirectoryIndex section of the file, enter the directory index. This is the main
(index) page that will be displayed when a client first accesses the website. The
following is an example of the syntax:

DirectoryIndex index.html index.html.var

5. Create aliases, if needed. An alias maps to a specified directory. For example, to
use a specific set of icons, you can create an alias to the directory that has the icons
for the Web pages. The following is an example of the syntax:

Alias /icons/ "${PRODUCT_HOME}/icons/"

<Directory "${PRODUCT_HOME}/icons">
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

6. Save the file.

7. Restart Oracle HTTP Server as described in Section 4.3.4.

4.6 Configuring Oracle HTTP Server
This section includes the following sections:

■ Section 4.6.1, "Configuring Secure Sockets Layer"

■ Section 4.6.3, "Configuring MIME Settings"

■ Section 4.6.4, "Configuring mod_perl"

■ Section 4.6.5, "Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_
ohs)"

■ Section 4.6.6, "Modifying an Oracle HTTP Server Configuration File"

■ Section 4.6.7, "Removing Access to Unneeded Content"

Note: Before attempting to edit any .conf file, you should familiarize
yourself with the layout of the configuration file directories,
mechanisms for editing the files, and learn more about the files
themselves. For this information, see Section 1.6, "Understanding
Configuration Files".

Configuring Oracle HTTP Server

4-20 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Section 4.6.8, "Using the apxs Command to Install Extension Modules"

■ Section 4.6.9, "Disabling the Options Method"

4.6.1 Configuring Secure Sockets Layer
Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed to
securely send messages across the Internet. It resides between Oracle HTTP Server on
the application layer and the TCP/IP layer, transparently handling encryption and
decryption when a secure connection is made by a client.

One common use of SSL is to secure Web HTTP communication between a browser
and a Web server. This case does not preclude the use of non-secured HTTP. The
secure version is simply HTTP over SSL (HTTPS). The differences are that HTTPS uses
the URL scheme https:// rather than http://. The default communication port is
4443 in Oracle HTTP Server. Oracle HTTP Server does not use the 443 standard
https:// privileged port because of security implications. For information about
running Oracle HTTP Server on privileged ports see Section 4.3.2.4, "Starting Oracle
HTTP Server Instances on a Privileged Port (UNIX Only)."

By default, an SSL listen port is configured and enabled using a default wallet during
installation. Wallets store your credentials, such as certificate requests, certificates, and
private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for
testing purposes only. A real wallet must be created for your production server. The
default wallet is located in the DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName/keystores/
default directory. You can either place the new wallet in this location, or change the
SSLWallet directive in DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName/ssl.conf to
point to the location of your real wallet.

For the changes to take effect, you should restart the Oracle HTTP Server components
as described in Section 4.3.4.

For information about configuring wallets and SSL using Fusion Middleware Control,
see "Enabling SSL for Oracle HTTP Server Virtual Hosts" in the Administering Oracle
Fusion Middleware.

4.6.2 Configuring Secure Sockets Layer in Standalone Mode
The following sections contain information about how to enable and configure SSL for
Oracle HTTP Server in standalone mode. These instructions make use of the mod_ossl
plug-in to Oracle HTTP Server which enables the server to use SSL.

■ Section 4.6.2.1, "Configure SSL"

■ Section 4.6.2.2, "Specify SSLVerifyClient on the Server Side"

■ Section 4.6.2.3, "Enable SSL Between Oracle HTTP Server and Oracle WebLogic
Server"

Note: Fusion Middleware Control and other Oracle software which
manage the Oracle HTTP Server configuration might save
configuration files in a different, equivalent format. After using the
software to make a configuration change, multiple configuration files
might be rewritten.

Configuring Oracle HTTP Server

Working with Oracle HTTP Server 4-21

4.6.2.1 Configure SSL
By default, SSL is enabled when you install Oracle HTTP Server. Perform these tasks
to modify and configure SSL:

■ Section 4.6.2.1.1, "Create a Real Wallet"

■ Section 4.6.2.1.2, "(Optional) Customize Your Configuration"

■ Section 4.6.2.1.3, "Basic Configuration Example"

4.6.2.1.1 Create a Real Wallet To configure Oracle HTTP Server for SSL, you need a
wallet that contains the certificate for the server. Wallets store your credentials, such as
certificate requests, certificates, and private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for
testing purposes only. A real wallet must be created for your production server. The
default wallet is located in $ORACLE_
INSTANCE/config/fmwconfig/components/$COMPONENT_TYPE/instances/$COMPONENT_
NAME/keystores/default. You can either place the new wallet in that location, or
change the SSLWallet directive in $ORACLE_
INSTANCE/config/fmwconfig/components/$COMPONENT_TYPE/instances/$COMPONENT_
NAME/ssl.conf (the pre-install location) to point to the location of your real wallet.

4.6.2.1.2 (Optional) Customize Your Configuration Optionally, you can further customize
your configuration using mod_ossl directives.

4.6.2.1.3 Basic Configuration Example Your SSL configuration must contain, at
minimum, the following directives:

LoadModule ossl_module "${PRODUCT_HOME}/modules/mod_ossl.so"
Listen 4443
ServerName www.testohs.com
SSLEngine on
SSL Protocol Support:
List the supported protocols.
SSLProtocol nzos_Version_1_2 nzos_Version_1_1 nzos_Version_1_0
SSL Cipher Suite:
List the ciphers that the client is permitted to negotiate.
SSLCipherSuite SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA,SSL_RSA_WITH_
3DES_EDE_CBC_SHA,SSL_RSA_WITH_DES_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_
WITH_AES_256_CBC_SHA
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"
</VirtualHost>To enable client authentication, do the following:

See Also: "orapki" in Administering Oracle Fusion Middleware for
instructions on creating a wallet. It is important that you do the
following:

Generate a certificate request: For the Common Name, specify the
name or alias of the site you are configuring. Make sure that you
enable this auto_login_only feature.

See Also: Section G.2, "mod_ossl" for a list and descriptions of
directives accepted by mod_ossl.

Note: The files installed during configuration contain all of the
necessary SSL configuration directives and a default setup for SSL.

Configuring Oracle HTTP Server

4-22 Oracle Fusion Middleware Administering Oracle HTTP Server

4.6.2.2 Specify SSLVerifyClient on the Server Side
Use the appropriate client certificate on your client side for the HTTPS connection. See
your client documentation for information on getting and using a client certificate. Be
sure that your client certificate is trusted by the server wallet.

■ Section 4.6.2.2.1, "Forcing Clients to Authenticate Using Certificates"

■ Section 4.6.2.2.2, "Forcing a Client to Authenticate for a Particular URL"

■ Section 4.6.2.2.3, "Authorizing a Client for a Particular URL"

■ Section 4.6.2.2.4, "Allowing Clients with Strong Ciphers and CA Client Certificate
or Basic Authentication"

4.6.2.2.1 Forcing Clients to Authenticate Using Certificates You can force the client to
validate its client certificate and allow access to the server using the following method.
This scenario is valid for all clients having a client certificate supplied by the server
Certificate Authority (CA). The server can validate client's supplied certificates against
its CA for additional permission.

require a client certificate which has to be directly
signed by our CA certificate
SSLVerifyClient require
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"

4.6.2.2.2 Forcing a Client to Authenticate for a Particular URL To force a client to
authenticate using certificates for a particular URL, you can use the per-directory
reconfiguration features of mod_ossl:

SSLVerifyClient none
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"
<Location /secure/area>
 SSLVerifyClient require
</Location>

4.6.2.2.3 Authorizing a Client for a Particular URL To do this, check that part of the client
certificate matches what you expect. Usually, this means checking all or part of the
Distinguished Name (DN), to see if it contains some known string. There are two ways
to do this, using either mod_auth_basic or SSLRequire.

The mod_auth_basic method is generally required when the certificates are completely
arbitrary, or when their DNs have no common fields (usually the organization, and so
on). In this case, you should establish a password database containing all of the clients
allowed, for example:

SSLVerifyClient none
<Directory /access/required>
 SSLVerifyClient require
 SSLOptions +FakeBasicAuth
 SSLRequireSSL
 AuthName "Oracle Auth"
 AuthType Basic
 AuthBasicProvider file
 AuthUserFile httpd.passwd
 Require valid-user

See Also: "Importing a Certificate or a Trusted Certificate Using
WLST" in Administering Oracle Fusion Middleware Guide for instructions
on how to import a trusted certificate into your wallet.

Configuring Oracle HTTP Server

Working with Oracle HTTP Server 4-23

</Directory>

The password used in this example is the DES encrypted string password. For more
information on the directive, see Section G.2.10, "SSLOptions" which describes the
SSLOptions directive of the mod_ossl module.

httpd.passwd

Subject: OU=Class 3 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US
Subject: CN=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutions\,
Inc.,O=GTE Corporation,C=US
Subject: CN=localhost,OU=FOR TESTING ONLY,O=FOR TESTING ONLY
Subject: OU=Class 2 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US
Subject: OU=Class 1 Public Primary Certification Authority,O=VeriSign\,
Inc.,C=US

When your clients are all part of a common hierarchy, which is encoded into the DN,
you can match them more easily using SSLRequire, for example:

SSLVerifyClient none
SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"

<Directory /access/required>
 SSLVerifyClient require
 SSLOptions +FakeBasicAuth
 SSLRequireSSL
 SSLRequire %{SSL_CLIENT_S_DN_O} eq "VeriSign\, Inc." \
and %{SSL_CLIENT_S_DN_OU} in {"Class", "Public", "Primary"}
</Directory>

4.6.2.2.4 Allowing Clients with Strong Ciphers and CA Client Certificate or Basic Authentication
The following examples presume that clients on the Intranet have IPs in the range
192.168.1.0/24, and that the part of the Intranet website you want to allow Internet
access to is /access/required. This configuration should remain outside of your
HTTPS virtual host, so that it applies to both HTTPS and HTTP.

SSLWallet "$ORACLE_INSTANCE/config/fmwconfig/components/$COMPONENT_
TYPE/instances/$COMPONENT_NAME/keystores/default"
<Directory /access/required>
 # Outside the subarea only Intranet access is granted
 Require ip 192.168.1.0/24
</Directory>

<Directory /access/required>
 # Inside the subarea any Intranet access is allowed
 # but from the Internet only HTTPS + Strong-Cipher + Password
 # or the alternative HTTPS + Strong-Cipher + Client-Certificate

 # If HTTPS is used, make sure a strong cipher is used.
 # Additionally allow client certs as alternative to basic auth.
 SSLVerifyClient optional
 SSLOptions +FakeBasicAuth +StrictRequire
 SSLRequire %{SSL_CIPHER_USEKEYSIZE}>= 128
 # Force clients from the Internet to use HTTPS
 RewriteEngine on
 RewriteCond %{REMOTE_ADDR} !^192\.168\.1\.[0-9]+$
 RewriteCond %{HTTPS} !=on
 RewriteRule . - [F]

Configuring Oracle HTTP Server

4-24 Oracle Fusion Middleware Administering Oracle HTTP Server

 # Allow Network Access and/or Basic Auth
 Satisfy any

 # Network Access Control
 Require ip 192.168.1.0/24
 # HTTP Basic Authentication
 AuthType basic
 AuthName "Protected Intranet Area"
 AuthBasicProvider file
 AuthUserFile htpasswd
 Require valid-user
</Directory>

4.6.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server
Use the Oracle WebLogic Server Proxy Plug-In to enable SSL between Oracle HTTP
Server and Oracle WebLogic Server. The plug-ins allow you to configure SSL libraries
and configure one-way and two- way SSL communications. For more information, see
"Use SSL with Plug-Ins" and "Parameters for Oracle WebLogic Server Proxy Plug-Ins"
in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.2.

4.6.3 Configuring MIME Settings
Multipurpose Internet Mail Extension (MIME) settings are used by Oracle HTTP
Server to interpret file types, encodings, and languages. MIME settings for Oracle
HTTP Server can only be set using Fusion Middleware Control. You cannot use WLST
commands to specify the MIME settings.

The following tasks can be completed on the MIME Configuration page:

■ Configuring MIME Types

■ Configuring MIME Encoding

■ Configuring MIME Languages

4.6.3.1 Configuring MIME Types
MIME type maps a given file extension to a specified content type. The MIME type is
used for filenames containing an extension.

4.6.3.1.1 Using Fusion Middleware Control to Configure MIME Types To configure a MIME
type using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears.

3. Click Add Row in MIME Configuration region. A new, blank row is added to the
list.

4. Enter the MIME type.

5. Enter the file extension.

6. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

7. Restart Oracle HTTP Server, as described in Section 4.3.4.

The MIME configuration is saved, and shown on the MIME Configuration page.

Configuring Oracle HTTP Server

Working with Oracle HTTP Server 4-25

4.6.3.2 Configuring MIME Encoding
MIME encoding enables Oracle HTTP Server to determine the file type based on the
file extension. You can add and remove MIME encodings. The encoding directive
maps the file extension to a specified encoding type.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears.

3. Expand the MIME Encoding region by clicking the plus sign (+) next to MIME
Encoding.

4. Click Add Row in MIME Encoding region. A new, blank row is added to the list.

5. Enter the MIME encoding, such as x-gzip.

6. Enter the file extension, such as .gx.

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server as described in Section 4.3.4.

4.6.3.3 Configuring MIME Languages
The MIME language setting maps file extensions to a particular language. This
directive is commonly used for content negotiation, in which Oracle HTTP Server
returns the document that most closely matched the preferences set by the client.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears.

3. Expand the MIME Languages region by clicking the plus sign (+) next to MIME
Languages.

4. Click Add Row in MIME Languages region. A new, blank row is added to the list.

5. Enter the MIME language, such as en-US.

6. Enter the file extension, such as en-us.

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server as described in Section 4.3.4.

4.6.4 Configuring mod_perl
The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This
eliminates start-up overhead and enables you to write modules in Perl. The module is
disabled, by default.

To enable the mod_perl module using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select mod_perl Configuration from the Administration menu. The mod_perl
configuration page appears.

Configuring Oracle HTTP Server

4-26 Oracle Fusion Middleware Administering Oracle HTTP Server

3. Enter the switch information in the Switches field.

4. Enter the environment variables to be passed to the scripts in the Environment
field.

5. Enter the required script names in the Require field.

6. Click Add Row to create a new row.

7. Configure mod_perl directives for a Location in the Perl Locations table. The
Location assigns many rules that the server should follow when the request's URI
matches the Location.

a. Enter the base URI for the Perl scripts in the Locations field. Just as it is the
widely accepted convention to use /cgi-bin for your mod_cgi scripts, it is also
conventional to use /perl as the base URI of the Perl scripts that run under
mod_perl.

b. Enter options in the Options field. The PerlOptions directive provides
fine-grained configuration by providing control over which class of Perl
interpreter pool to be used. Options are enabled by prepending them with a
plus sign (+) and are disabled by prepending them with a minus sign (-).

c. If you want to send headers, then click the Send Header check box. The
PerlSendHeader directive is for mod_perl 1.0 backwards-compatibility. When
enabled, the server sends an HTTP header to the browser on every script
invocation. You should disable this option for NPH (non-parsed-headers)
scripts.

d. Enter the environment in the Environment field. The PerlSetEnv directive
enables you to specify system environment variables and pass them into your
mod_perl handlers.

e. Enter the response handler in the Response Handler field. The
PerlResponseHandler directive tells mod_perl which callback is going to do
the job.

f. Enter the authentication handler in the Authentication Handler field. The
PerlAuthenHandler directive is used to set the handler to verify a user's
identification credentials.

8. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

9. Restart Oracle HTTP Server as described in Section 4.3.4.

The mod_perl module configuration is saved and shown on the mod_perl
Configuration page.

Note: If mod_perl has not been enabled, then you will be redirected
to the Server Configuration page. Select mod_perl and click Apply to
enable mod_perl. After the confirmation page has been displayed,
restart Oracle HTTP Server, and then return to the mod_perl
Configuration page.

Configuring Oracle HTTP Server

Working with Oracle HTTP Server 4-27

4.6.5 Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
You can configure the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) either by
using Fusion Middleware Control or by editing the mod_wl_ohs.conf configuration
file manually.

For information about the prerequisites and procedure for configuring the Oracle
WebLogic Server Proxy Plug-In to proxy requests from Oracle HTTP Server to Oracle
WebLogic Server, see "Configuring the Plug-In for Oracle HTTP Server" in Using Oracle
WebLogic Server Proxy Plug-Ins 12.1.2.

4.6.6 Modifying an Oracle HTTP Server Configuration File

To modify an Oracle HTTP Server configuration file by using Fusion Middleware
Control, do the following:

1. Select Administration from the HTTP Server menu.

2. Select Advanced Configuration from the Administration menu item. The
Advanced Server Configuration page appears.

3. Select the configuration file from the list, such as the httpd.conf file.

4. Edit the file, as needed.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server as described in Section 4.3.4.

The file is saved and shown on the Advanced Server Configuration page.

4.6.7 Removing Access to Unneeded Content
By default, the httpd.conf file allows server access to extra content such as
documentation and sample scripts. This access might present a low level security risk.

You might want to tailor this extra content in your own environment to suit your use
cases. Follow the instructions in Section 4.6.6, "Modifying an Oracle HTTP Server
Configuration File" to access the file.

■ Section 4.6.7.1, "Edit the cgi-bin Section"

■ Section 4.6.7.2, "Edit the Fancy Indexing Section"

Note: If you are manually editing the mod_perl configuration
instead of using Fusion Middleware Control, then all directives must
be defined within the <IfModule mod_perl.c> block of the mod_
perl.conf file. Any mod_perl related directives defined outside of this
block might be ignored.

Note: Fusion Middleware Control and other Oracle software that
manage the Oracle HTTP Server configuration might save these files
in a different, equivalent format. After using the software to make a
configuration change, multiple configuration files might be rewritten.

See Also: Section 1.6, "Understanding Configuration Files"

Configuring Oracle HTTP Server

4-28 Oracle Fusion Middleware Administering Oracle HTTP Server

■ Section 4.6.7.3, "Edit the Product Documentation Section"

4.6.7.1 Edit the cgi-bin Section
Examine the contents of the cgi-bin directory. You can either remove the code from
the httpd.conf file that you do not need, or change the following Directory directive to
point to your own CGI script directory.

...

"${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/cgi-bin" should be changed to whatever your
ScriptAliased
CGI directory exists, if you have that configured.
#
<Directory "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
</Directory>
...

4.6.7.2 Edit the Fancy Indexing Section
Edit the following sections pertaining to fancy indexing in the httpd.conf file for your
use cases.

...
#
IndexOptions: Controls the appearance of server-generated directory
listings.
#
IndexOptions FancyIndexing HTMLTable VersionSort

We include the /icons/ alias for FancyIndexed directory listings. If
you do not use FancyIndexing, you may comment this out.
#
Alias /icons/ "${PRODUCT_HOME}/icons/"

<Directory "${PRODUCT_HOME}/icons">
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

#
AddIcon* directives tell the server which icon to show for different
files or filename extensions. These are only displayed for
FancyIndexed directories.
#
AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*
AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe
AddIcon /icons/binhex.gif .hqx

Configuring Oracle HTTP Server

Working with Oracle HTTP Server 4-29

AddIcon /icons/tar.gif .tar
AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip
AddIcon /icons/a.gif .ps .ai .eps
AddIcon /icons/layout.gif .html .shtml .htm .pdf
AddIcon /icons/text.gif .txt
AddIcon /icons/c.gif .c
AddIcon /icons/p.gif .pl .py
AddIcon /icons/f.gif .for
AddIcon /icons/dvi.gif .dvi
AddIcon /icons/uuencoded.gif .uu
AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl
AddIcon /icons/tex.gif .tex
AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..
AddIcon /icons/hand.right.gif README
AddIcon /icons/folder.gif ^^DIRECTORY^^
AddIcon /icons/blank.gif ^^BLANKICON^^

#
DefaultIcon is which icon to show for files which do not have an icon
explicitly set.
#
DefaultIcon /icons/unknown.gif

#
AddDescription allows you to place a short description after a file in
server-generated indexes. These are only displayed for FancyIndexed
directories.
Format: AddDescription "description" filename
#
#AddDescription "GZIP compressed document" .gz
#AddDescription "tar archive" .tar
#AddDescription "GZIP compressed tar archive" .tgz
...
#
ReadmeName is the name of the README file the server will look for by
default, and append to directory listings.
#
HeaderName is the name of a file which should be prepended to
directory indexes.
ReadmeName README.html
HeaderName HEADER.html

#
IndexIgnore is a set of filenames which directory indexing should ignore
and not include in the listing. Shell-style wildcarding is permitted.
#
IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t
...

4.6.7.3 Edit the Product Documentation Section
You can remove the following documentation configuration sections from the
httpd.conf file if they are not needed.

...
#
This should be changed to the ServerRoot/manual/. The alias provides

Configuring Oracle HTTP Server

4-30 Oracle Fusion Middleware Administering Oracle HTTP Server

the manual, even if you choose to move your DocumentRoot. You may comment
this out if you do not care for the documentation.
#
AliasMatch ^/manual(?:/(?:de|en|es|fr|ja|ko|pt-br|ru|tr))?(/.*)?$ "${PRODUCT_
HOME}/manual$1"

<Directory "${PRODUCT_HOME}/manual">
 AllowOverride None
 Order allow,deny
 Allow from all

 <Files *.html>
 SetHandler type-map
 </Files>
 # .tr is text/troff in mime.types!
 <Files *.html.tr.utf8>
 ForceType text/html
 </Files>

 SetEnvIf Request_URI ^/manual/(de|en|es|fr|ja|ko|pt-br|ru|tr)/
prefer-language=$1
 RedirectMatch 301 ^/manual(?:/(de|en|es|fr|ja|ko|pt-br|ru|tr)){2,}(/.*)?$
/manual/$1$2

 LanguagePriority en de es fr ja ko pt-br ru tr
 ForceLanguagePriority Prefer Fallback
</Directory>

...

4.6.8 Using the apxs Command to Install Extension Modules

The Apache Extension Tool (apxs) can be used to build and install Apache HTTP
Server extension modules for Oracle HTTP Server. apxs installs modules in the
ORACLE_HOME/ohs/modules directory for access by any Oracle HTTP Server
instances which run from this installation.

Recommended apxs options for use with Oracle HTTP Server are:

Note: This command is only for UNIX and Linux and should be
used only for modules which are supplied in source code form.
Follow the installation instructions for modules supplied in binary
form.

For more information about the apxs command, see the Apache HTTP
Server documentation at:

http://httpd.apache.org/docs/2.2/programs/apxs.html

Option Purpose Example Command

-c Compile module source $ORACLE_HOME/ohs/bin/apxs -c mod_example.c

-i Install module binary into
ORACLE_HOME

$ORACLE_HOME/ohs/bin/apxs -ci mod_example.c

Configuring Oracle HTTP Server

Working with Oracle HTTP Server 4-31

When the module binary has been installed into ORACLE_HOME, a LoadModule
directive in httpd.conf or other configuration file is used to load the module into the
server processes; for example:

LoadModule example_module "${ORACLE_HOME}/ohs/modules/mod_example.so"

The directive is required in the configurations for all instances which must load the
module.

When the -a or -A option is specified, apxs will edit httpd.conf to add a LoadModule
directive for the module. Do not use the -a and -A options with Oracle HTTP Server
instances that are part of a WebLogic Server Domain. Instead, use Fusion Middleware
Control to update the configuration, as described in Section 1.6.2, "Editing the
Configuration".

You can use the -a or -A option with Oracle HTTP Server instances that are part of a
standalone domain if the CONFIG_FILE_PATH environment variable is set to the
staging directory for the instance before invoking apxs; for example:

CONFIG_FILE_PATH=$ORACLE_HOME/user_projects/domains/base_
domain/config/fmwconfig/components/OHS/ohs1
export CONFIG_FILE_PATH
$ORACLE_HOME/ohs/bin/apxs -cia mod_example.c

By default, apxs uses the Perl interpreter in /usr/bin. If apxs cannot locate the product
install or encounters other operational errors when using /usr/bin/perl, use the Perl
interpreter within the Middleware home by invoking apxs as follows:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/ohs/bin/apxs -c mod_example.c

Modules often require directives besides LoadModule to properly function. After the
module has been installed and loaded using the LoadModule directive, refer to the
documentation for the module for any additional configuration requirements.

4.6.9 Disabling the Options Method
The Options method enables clients to determine which methods are supported by a
web server. If enabled, it appears in the Allow line of HTTP response headers.

For example, if you send a request such as:

---- Request -------
OPTIONS / HTTP/1.0
Content-Length: 0
Accept: */*
Accept-Language: en-US
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Win32)
Host: host123:80

you might get the following response from the web server:

---- Response --------
HTTP/1.1 200 OK
Date: Wed, 23 Apr 2008 20:20:49 GMT
Server: Oracle-Application-Server-11g/11.1.1.0.0 Oracle-HTTP-Server
Allow: GET,HEAD,POST,OPTIONS
Content-Length: 0
Connection: close
Content-Type: text/html

Configuring Oracle HTTP Server

4-32 Oracle Fusion Middleware Administering Oracle HTTP Server

Some sources consider exposing the Options method a low security risk because
malicious clients could use it to determine the methods supported by a web server.
However, because web servers support only a limited number of methods, disabling
this method will just slow down malicious clients, not stop them. In addition, the
Options method may be used by legitimate clients.

If your Oracle Fusion Middleware environment does not have clients that require the
Options method, you can disable it by including the following lines in the httpd.conf
file:

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^OPTIONS
RewriteRule .* – [F]
</IfModule>

4.6.10 Updating Oracle HTTP Server Component Configurations on a Shared
Filesystem

Functional or performance issues may be encountered when an Oracle HTTP Server
component is created on a shared filesystem, including NFS (Network File System). In
particular, lock files or UNIX sockets used by Oracle HTTP Server may not work or
may have severe performance degradation; WLS requests routed by mod_wl_ohs may
have severe performance degradation due to filesystem accesses in the default
configuration.

Table 4-1 provides information about the Lock file issues and the suggested changes in
the httpd.conf file specific to the operating systems.

Table 4–2 Lock File issues

Operating System Description httpd.conf changes

Linux Lock files are not required. The
Sys V semaphore is the preferred
cross-process mutex
implementation.

Change AcceptMutex fcntl to
AcceptMutex sysvsem (two places).

Comment out the LockFile directive
(three places).

Solaris Lock files are not required. The
cross-process pthread mutex is
the preferred cross-process
mutex implementation.

Change AcceptMutex fcntl to
AcceptMutex pthread (two places).

Comment out the LockFile directive
(three places).

Other UNIX
platforms

Change the LockFile directive to point
to a local filesystem (three places).

UNIX socket issues mod_cgid is not enabled by
default. If enabled, use the
ScriptSock directive to place
mod_cgid's UNIX socket on a
local filesystem.

mod_fastcgi is not enabled by
default. If enabled, use the
FastCgiIpcDir directive to place
mod_fastcgi's UNIX sockets on a
local filesystem.

5

Managing and Monitoring Server Processes 5-1

5Managing and Monitoring Server Processes

[6] This chapter describes how to manage and monitor Oracle HTTP Server. It discusses
the procedures and tools to manage OHS in your environment.

This chapter includes the following sections:

■ Section 5.1, "Oracle HTTP Server Processing Model"

■ Section 5.2, "Monitoring Oracle HTTP Server Performance"

■ Section 5.3, "Configuring Oracle HTTP Server Performance Directives"

■ Section 5.4, "Understanding Process Security"

5.1 Oracle HTTP Server Processing Model
The following sections explain the processing model for Oracle HTTP Server.

5.1.1 Request Process Model
After Oracle HTTP Server is started, it is ready to listen for and respond to HTTP(S)
requests. The request processing model on Microsoft Windows systems differs from
that on UNIX systems.

■ On Microsoft Windows, there is a single parent process and a single child process.
The child process creates threads that are responsible for handling client requests.
The number of created threads is static and can be configured for performance.

■ On UNIX, there is a single parent process that manages multiple child processes.
The child processes are responsible for handling requests. The parent process
brings up additional child processes as necessary, based on configuration.
Although the server has the ability to dynamically bring up additional child
processes, it is best to configure the server to start enough child processes initially
so that requests can be handled without having to spawn more child processes.

5.1.2 Single Unit Process Model
Oracle HTTP Server provides functionality that allows it to terminate as a single unit if
the parent process fails. The parent process is responsible for starting and stopping all
the child processes for an Oracle HTTP Server instance. The failure of the parent
process without first shutting down the child processes leaves Oracle HTTP Server in
an inconsistent state that can only be fixed by manually shutting down all the
orphaned child processes. Until all the child processes are closed, a new Oracle HTTP
Server instance cannot be started because the orphaned child processes still occupy the
ports the new Oracle HTTP Server instance needs to access.

Monitoring Oracle HTTP Server Performance

5-2 Oracle Fusion Middleware Administering Oracle HTTP Server

To prevent this from occurring, the DMS instrumentation layer in child processes on
UNIX and monitor functionality within WinNT MPM on Windows monitor the parent
process. If they detect that the parent process has failed, then all of the remaining child
processes are shut down.

5.2 Monitoring Oracle HTTP Server Performance
Oracle Fusion Middleware automatically and continuously measures run-time
performance for Oracle HTTP Server. The performance metrics are automatically
enabled; you do not need to set options or perform any extra configuration to collect
them. If you encounter a problem, such as an application that is running slowly or is
hanging, you can view particular metrics to find out more information about the
problem.

Note that Fusion Middleware Control provides real-time data. If you are interested in
viewing historical data, consider using Grid Control.

5.2.1 Viewing Oracle HTTP Server Performance Metrics
You can view metrics from the Oracle HTTP Server home menu of Fusion Middleware
Control:

1. Select the Oracle HTTP Server that you want to monitor.

The Oracle HTTP Server home page is displayed.

2. From the Oracle HTTP Server menu, choose Monitoring, and then select
Performance Summary.

The Performance Summary page is displayed. It shows performance metrics, and
information about response time and request processing time for the Oracle HTTP
Server instance.

3. To see additional metrics, click Show Metric Palette and expand the metric
categories.

The following figure shows the Oracle HTTP Server Performance Summary page
with the Metric Palette displayed:

Tip: Oracle HTTP Server port usage information is also available
from the Oracle HTTP Server home menu.

Monitoring Oracle HTTP Server Performance

Managing and Monitoring Server Processes 5-3

4. Select additional metrics to add them to the Performance Summary.

5.2.2 Understanding Oracle HTTP Server Performance Metrics
This section lists some most commonly-used metrics that can help you analyze Oracle
HTTP Server performance.

OHS Server Metrics
The OHS Server Metrics folder contains performance metric options for Oracle HTTP
Server. The following table describes the metrics in the OHS Server Metrics folder:

Element Description

CPU Usage CPU usage and idle times

Memory Usage Memory usage and free memory, in MB

Processes Busy and idle process metrics

Request Throughput Request throughput, as measured by requests per second

Request Processing Time Request processing time, in seconds

Response Data Throughput Response data throughput, in KB per second

Response Data Processed Response data processed, in KB per response

Active HTTP Connections Number of active HTTP connections

Connection Duration Length of time for connections

HTTP Errors Number of HTTP 4xx and 5xx errors

Configuring Oracle HTTP Server Performance Directives

5-4 Oracle Fusion Middleware Administering Oracle HTTP Server

OHS Virtual Host Metrics
The OHS Virtual Host Metrics folder contains performance metric options for virtual
hosts, also known as access points. The following table describes the metrics in the
OHS Virtual Host Metrics folder:

OHS Module Metrics
The OHS Module Metrics folder contains performance metric option for modules. The
following table describes the metrics in the OHS Module Metrics folder.

5.3 Configuring Oracle HTTP Server Performance Directives
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies the
maximum number of HTTP requests that can be processed simultaneously, logging
details, and certain limits and timeouts. Oracle HTTP Server supports and ships with
the following three Multi-Processing Modules (MPMs) which are responsible for
binding to network ports on the machine, accepting requests, and dispatching children
to handle the requests:

■ Worker: This is the default MPM for Oracle HTTP Server on UNIX/Linux
platforms. This MPM implements a hybrid multi-process multi-threaded server.
By using threads to serve requests, it is able to serve a large number of requests
with fewer system resources than a process-based server. However, it retains much
of the stability of a process-based server by keeping multiple processes available,
each with many threads.

■ WinNT: This is the default MPM for Oracle HTTP Server on Windows platforms. It
uses a single control process which launches a single child process which in turn
creates threads to handle requests.

■ Prefork: This MPM implements a non-threaded, pre-forking server that handles
requests in a manner similar to Apache 1.3. It is appropriate for sites that need to
avoid threading for compatibility with non-thread-safe libraries. It is also the best
MPM for isolating each request, so that a problem with a single request will not
affect any other.

Element Description

Request Throughput for a
Virtual Host

Number of requests per second for each virtual host

Request Processing Time for
a Virtual Host

Time to process each request for each virtual host

Response Data Throughput
for a Virtual Host

Amount of data being sent for each virtual host

Response Data Processed
for a Virtual Host

Amount of data being processed for each virtual host

Element Description

Request Handling
Throughput

Request handling throughput for a module, in requests per
second

Request Handling Time Request handling time for a module, in seconds

Module Metrics Modules including active requests, throughput, and time for
each module

Configuring Oracle HTTP Server Performance Directives

Managing and Monitoring Server Processes 5-5

The discussion and recommendations in this section are based on the use of Worker or
WinNT MPM, which uses threads. The thread-related directives listed below are not
applicable if you are using the Prefork MPM.

The Performance Directives page enables you to tune performance-related directives
for Oracle HTTP Server, as illustrated in the following figure:

Performance directives management consists of three areas: request configuration,
connection configuration, and process configuration. You can set these configurations
using the Performance Directive page of Fusion Middleware Control and by following
the instructions in the following sections:

■ Using Fusion Middleware Control to Set the Request Configuration

■ Using Fusion Middleware Control to Set the Connection Configuration

■ Using Fusion Middleware Control to Set the Process Configuration

5.3.1 Using Fusion Middleware Control to Set the Request Configuration
To specify the Oracle HTTP Server request configuration using Fusion Middleware
Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum number of requests in the Maximum Requests field
(MaxClients directive). This setting limits the number of requests that can be dealt
with at one time. The default and recommended value is 150. This is applicable for
all Linux/UNIX platforms.

4. Set the maximum requests per child process in the Maximum Request per Child
Process field (MaxRequestPerChild directive). You can choose to have no limit, or a
maximum number. If you choose to have a limit, enter the maximum number in
the field.

5. Enter the request timeout value in the Request Timeout (seconds) field (Timeout
directive). This value sets the maximum time, in seconds, Oracle HTTP Server
waits to receive a GET request, the amount of time between receipt of TCP packets

Configuring Oracle HTTP Server Performance Directives

5-6 Oracle Fusion Middleware Administering Oracle HTTP Server

on a POST or PUT request, and the amount of time between ACKs on
transmissions of TCP packets in responses.

6. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

7. Restart Oracle HTTP Server. See Section 4.3.4.

The request configuration settings are saved, and shown on the Performance
Directives page.

5.3.2 Using Fusion Middleware Control to Set the Connection Configuration
To specify the connection configuration using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum connection queue length in the Maximum Connection Queue
Length field (ListenBacklog directive). This is the queue for pending connections.
This is useful if the server is experiencing a TCP SYN overload, which causes
numerous new connections to open up, but without completing the pending task.

4. Set the Multiple Requests per Connection field (KeepAlive directive) to indicate
whether to allow multiple connections. If you choose to allow multiple
connections, enter the number of seconds for timeout in the Allow With
Connection Timeout field.

The Allow With Connection Timeout value sets the number of seconds the server
waits for a subsequent request before closing the connection. Once a request has
been received, the specified value applies. The default is 15 seconds.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server. See Section 4.3.4.

The connection configuration settings are saved, and shown on the Performance
Directives page.

5.3.3 Using Fusion Middleware Control to Set the Process Configuration
The child process and configuration settings impact the ability of the server to process
requests. You may need to modify the settings as the number of requests increase or
decrease to maintain a well-performing server.

For UNIX, the default number of child server processes is 2. For Microsoft Windows,
the default number of threads to handle requests is 150.

To specify the process configuration using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

Understanding Process Security

Managing and Monitoring Server Processes 5-7

3. Enter the number for the initial child server processes in the Initial Child Server
Processes field (StartServers directive). This is the number of child server
processes created when Oracle HTTP Server is started. The default is 2. This is for
UNIX only.

4. Enter the number for the maximum idle threads in the Maximum Idle Threads
field (MaxSpareThreads directive). An idle thread is a process that is running, but
not handling a request.

5. Enter the number for the minimum idle threads in the Minimum Idle Threads
field (MinSpareThreads directive).

6. Enter the number for the threads per child server process in the Threads per Child
Server Process field (ThreadsPerChild directive).

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server. See Section 4.3.4, "Restarting Oracle HTTP Server
Instances".

The process configuration settings are saved, and shown on the Performance
Directives page.

5.4 Understanding Process Security
By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved
range (typically less than 1024). To enable Oracle HTTP Server to listen on ports in the
reserved range (for example, port 80 and port 443) on UNIX, see Section 4.3.2.4,
"Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)".

If your PL/SQL application is using the file system caching functionality in mod_
plsql, then Oracle HTTP server should have read and write privileges to the cache
directory, specified through the parameter PlsqlCacheDirectory in DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/mod_
plsql/cache.conf. By default, this parameter points to DOMAIN_
HOME/servers/componentName.

Finally, given that the cached content might contain sensitive data, the contents of the
file system cache should be protected. So, access to the system as this user should be
well-protected.

See Also: Section 2.8, "mod_plsql"

Understanding Process Security

5-8 Oracle Fusion Middleware Administering Oracle HTTP Server

6

Managing Connectivity 6-1

6Managing Connectivity

[7] This chapter describes how to manage Oracle HTTP Server connectivity. It includes
procedures for viewing port number usage, managing ports, and configuring virtual
hosts.

This chapter includes the following sections:

■ Section 6.1, "Default Listen Ports"

■ Section 6.2, "Defining the Admin Port"

■ Section 6.3, "Viewing Port Number Usage"

■ Section 6.4, "Managing Ports"

■ Section 6.5, "Configuring Virtual Hosts"

6.1 Default Listen Ports
Oracle HTTP Server comes configured with two listen ports: a non-SSL port (http) and
an SSL port (https). The default, non-SSL port is 7777. If port 7777 is occupied, the next
available port number, within a range of 7777-7877, is assigned. The default SSL port is
4443. Similarly, if port 4443 is occupied, the next available port number, within a range
of 4443-4543, is assigned.

You can set these ports when you create the instance or modify the instance
configuration later. Automatic port assignment occurs only if you use
createOHSInstance() or Fusion Middleware Control. You must do your own port
management if you create instances by using the Configuration Wizard.

For information about specifying ports when creating a new Oracle HTTP Server
component, see Section 4.2, "Creating an OHS Instance".

6.2 Defining the Admin Port
The Admin or Proxy MBean port is an additional SSL port (9999) that is used internally
by Oracle HTTP Server to communicate with Fusion Middleware Control. It is also
used to monitor Oracle HTTP Server through Node Manager. This port is configured
to run out-of-the-box in the admin.conf file; however, if for any reason you need to use
the default port for another purpose, you can reconfigure the Admin port by using the
Configuration Wizard to update the domain and manually reset ports there.

6.3 Viewing Port Number Usage
This section describes how to view ports using Fusion Middleware Control.

Managing Ports

6-2 Oracle Fusion Middleware Administering Oracle HTTP Server

6.3.1 Using the Fusion Middleware Control to View Port Number Usage
To view the port number usage using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Port Usage from the Oracle HTTP Server menu.

The Port Usage detail page shows the component, the ports that are in use, the IP
address the ports are bound to, and the protocol being used, as illustrated in the
following figure:

6.4 Managing Ports
The ports used by Oracle HTTP Server can be set during and after installation. In
addition, you can change the port numbers, as needed. This section describes how to
create, edit, and delete ports using Fusion Middleware Control.

■ Using Fusion Middleware Control to Create Ports

■ Using Fusion Middleware Control to Edit Ports

Caution: The Oracle HTTP Server administration (proxy MBean)
virtual host and its configuration, defined in the admin.conf file, must
not be edited with the WebLogic Scripting Tool (WLST).

See Also: "Changing the Oracle HTTP Server Listen Ports" in the
Administering Oracle Fusion Middleware.

Managing Ports

Managing Connectivity 6-3

6.4.1 Using Fusion Middleware Control to Create Ports
To create ports using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

4. Click Create.

5. Use the IP Address menu to select an IP address for the new port. Ports can listen
on a local IP Address of an associated host or on any available network interfaces.

SSL for a port can be configured on the Virtual Hosts page, as described in
Section 6.5.2, "Using Fusion Middleware Control to Configure Virtual Hosts".

6. In Port, enter the port number.

7. Click OK.

8. Restart Oracle HTTP Server. See Section 4.3.4.

6.4.2 Using Fusion Middleware Control to Edit Ports
To create the ports using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Ports Configuration from the Administration menu.

Note: When deleting a port, if there is a virtual host configured to
use the port you want to delete, you must first delete that virtual host
before deleting the port.

Note: If you change the port or make other changes that affect the
URL, such as changing the host name, enabling or disabling SSL, you
need to re-register partner applications with the SSO server using the
new URL. For more information, see "Registering Oracle HTTP Server
mod_osso with OSSO Server 10.1.4" in Securing Applications with
Oracle Platform Security Services.

Managing Ports

6-4 Oracle Fusion Middleware Administering Oracle HTTP Server

4. Select the port for which you want to change the port number.

The Admin port cannot be edited by using Fusion Middleware Control. Although
this is a port Oracle HTTP Server uses for its internal communication with Fusion
Middleware Control, in most of the cases it does not need to be changed. If you
really want to change it, manually edit the DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/admin.conf file.

5. Click Edit.

6. Edit the IP Address and/or Port number for the port.

SSL for a port can be configured on the Virtual Hosts page, as described in
Section 6.5.2, "Using Fusion Middleware Control to Configure Virtual Hosts".

7. Click OK.

8. Restart Oracle HTTP Server. See Section 4.3.4.

6.4.3 Disabling a Listening Port in a Standalone Environment
While you can use Fusion Middleware Control to disable a listen port in a WebLogic
Server environment, to do so in a standalone environment, you must directly update
master configuration file (DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/httpd.conf) by
commenting-out the line where port is exposed; for example:

#Listen slc01qtd.us.myCo.com:7777

Note: If you change the port or make other changes that affect the
URL, such as changing the host name, enabling or disabling SSL, you
need to re-register partner applications with the SSO server using the
new URL.

Note: Before attempting to edit any .conf file, you should familiarize
yourself with the layout of the configuration file directories,
mechanisms for editing the files, and learn more about the files
themselves. For this information, see Section 1.6, "Understanding
Configuration Files".

Configuring Virtual Hosts

Managing Connectivity 6-5

6.5 Configuring Virtual Hosts
You can create virtual hosts to run more than one website (such as www.company1.com
and www.company2.com) on a single machine. Virtual hosts can be IP-based, meaning
that you have a different IP address for every website, or name-based, meaning that you
have multiple names running on each IP address. The fact that they run on the same
physical server is not apparent to the end user.

This section describes how to create and edit virtual hosts using Fusion Middleware
Control.

■ Using Fusion Middleware Control to Create Virtual Hosts

■ Using Fusion Middleware Control to Configure Virtual Hosts

6.5.1 Using Fusion Middleware Control to Create Virtual Hosts
To create a virtual Host using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Click Create.

Caution: The Oracle HTTP Server administration (proxy MBean)
virtual host and its configuration, defined in the admin.conf file, must
not be edited with the WebLogic Scripting Tool (WLST).

See Also: For more information about virtual hosts, refer to the
Apache HTTP Server documentation.

Configuring Virtual Hosts

6-6 Oracle Fusion Middleware Administering Oracle HTTP Server

5. Enter a name for the virtual host field and then choose whether to enter a new
listen address or to use an existing listen address.

■ New listen address - use this option when you want to create a virtual host
that maps to a specific hostname or IP address, for example
mymachine.com:8080. This will create following type NameVirtualHost and
VirtualHost directives:

NameVirtualHost mymachine.com:8080
<VirtualHost mymachine.com:8080>

■ Use existing listen address - use this option when you want to create a virtual
host using an existing listen port and the one that maps to all IP addresses.
This will create following type VirtualHost directive:

<VirtualHost *:8080>

6. Enter the remaining attributes for the new virtual host.

■ Server Name—the name of the server for Oracle HTTP Server

■ Document Root— documentation root directory that forms the main
document tree visible from the website

■ Directory Index—the main (index) page that will be displayed when a client
first accesses the website

■ Administrator’s E-mail Address—the e-mail address that the server will
include in error messages sent to the client

■ Type—Virtual hosts can be IP-based, meaning that you have a different IP
address for every website, or name-based, meaning that you have multiple
names running on each IP address.

7. Use the Type field to select whether the virtual host will be IP-based or
name-based.

8. Click OK.

9. Restart Oracle HTTP Server. See Section 4.3.4.

Configuring Virtual Hosts

Managing Connectivity 6-7

6.5.2 Using Fusion Middleware Control to Configure Virtual Hosts
You can use the options on the Configure menu to specify Server, MIME, Log, mod_
perl, SSL, and mod_wl_ohs configuration for a selected virtual host.

To configure a virtual host using Fusion Middleware Control, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.

3. Select Virtual Hosts from the Administration menu.

4. Highlight an existing virtual host in the table.

5. Click Configure.

6. Select one of the following options from Configure menu to open its
corresponding configuration page. The values on these pages apply only to the
virtual host. If the fields are blank, the virtual host uses the values configured at
the server level.

■ Server Configuration: Configure basic virtual host properties, such as
document root directory, installed modules, and aliases. See Section 4.5.1,
"Specifying Server Properties by Using Fusion Middleware Control."

■ MIME Configuration: Configure MIME settings, which are used by Oracle
HTTP Server to interpret file types, encodings, and languages. Section 4.6.3,
"Configuring MIME Settings."

■ Log Configuration: Configure access logs that will record all requests
processed by the virtual host. The logs contain basic information about every
HTTP transaction handled by the virtual host. See Section 7.2, "Configuring
Oracle HTTP Server Logs."

■ mod_perl Configuration: Configure the mod_perl module to embed the Perl
interpreter into the virtual host, thereby eliminating startup overhead and
enabling you to write modules in Perl. This module is disabled, by default. See
Section 4.6.4, "Configuring mod_perl."

Configuring Virtual Hosts

6-8 Oracle Fusion Middleware Administering Oracle HTTP Server

■ SSL Configuration: For instructions on configuring SSL using Fusion
Middleware Control, see "Enabling SSL for Oracle HTTP Server Virtual Hosts"
in the Administering Oracle Fusion Middleware.

■ mod_wl_ohs Configuration: Configure the mod_wl_ohs module to allow
requests to be proxied from an Oracle HTTP Server to Oracle WebLogic Server.
See Section 4.6.5, "Configuring the Oracle WebLogic Server Proxy Plug-In
(mod_wl_ohs)."

7. Review the settings on each configuration page. If the settings are correct, click
OK to apply the changes. If the settings are incorrect, or you decide to not apply
the changes, click Cancel to return to the original settings.

8. Restart Oracle HTTP Server. See Section 4.3.4, "Restarting Oracle HTTP Server
Instances".

7

Managing Oracle HTTP Server Logs 7-1

7Managing Oracle HTTP Server Logs

[8] This chapter describes how to manage Oracle HTTP Server logs. It describes how to
configure server logs, how to find information about the cause of an error and its
corrective action, to view and manage log files to assist in monitoring system activity
and to diagnose problems

Oracle HTTP Server generates log files containing messages that record all types of
events, including startup and shutdown information, errors, warning messages, access
information on HTTP requests, and additional information.

This chapter includes the following sections:

■ Section 7.1, "Overview of Server Logs"

■ Section 7.2, "Configuring Oracle HTTP Server Logs"

■ Section 7.3, "Log Directives for Oracle HTTP Server"

■ Section 7.4, "Viewing Oracle HTTP Server Logs"

■ Section 7.5, "Terminating SSL Requests"

7.1 Overview of Server Logs
You can view Oracle Fusion Middleware log files using either Fusion Middleware
Control or a text editor. The log files for Oracle HTTP Server are located in the
following directory:

ORACLE_HOME/user_projects/domains/base_
domain/servers/componentName/logs

Oracle HTTP Server has two types of logs:

■ Error logs, which record server problems.

■ Access logs, which record which components and applications are being accessed
and by whom.

This section contains the following topics:

■ Section 7.1.1, "About Error Logs"

■ Section 7.1.2, "About Access Logs"

■ Section 7.1.3, "Log Rotation"

7.1.1 About Error Logs
Oracle HTTP Server enables you to choose the format in which you want to generate
log messages. You can choose to generate log messages in the legacy Apache HTTP

Overview of Server Logs

7-2 Oracle Fusion Middleware Administering Oracle HTTP Server

Server message format, or use Oracle Diagnostic Logging (ODL) to generate log
messages in text or XML-formatted logs, which complies with Oracle standards for
generating error log messages.

By default, Oracle HTTP Server error logs use ODL for generating diagnostic
messages. It provides a common format for all diagnostic messages and log files, and a
mechanism for correlating the diagnostic messages from various components across
Oracle Fusion Middleware.

The default name of the error log file is instance_name.log.

7.1.2 About Access Logs
Access logs record all requests processed by the server. The logs contain basic
information about every HTTP transaction handled by the server. The access log
contains the following information:

■ Host name

■ Remote log name

■ Remote user and time

■ Request

■ Response code

■ Number of transferred bytes

The default name of the access log file is access_log.

Access Log Format
You can specify the information to include in the access log, and the manner in which
it is written. The default format is the Common Log Format (CLF).

The CLF format contains the following fields:

host ident authuser date request status bytes

■ host: This is the client domain name or its IP number. Use %h to specify the host
field in the log.

■ ident: If IdentityCheck is enabled and the client system runs identd, this is the
client identity information. Use %i to specify the client identity field in the log.

■ authuser: This is the user ID for the authorized user. Use %a to specify the
authorized user field in the log.

■ date: This is the date and time of the request in the
day/month/year:hour:minute:second format. Use %t to specify date and time in
the log.

■ request: This is the request line, in double quotes, from the client. Use %r to
specify request in the log.

■ status: This is the three-digit status code returned to the client. Use %s to specify
the status in the log. If the request will be forwarded from another server, use %>s
to specify the last server in the log.

■ bytes: This is the number of bytes, excluding headers, returned to the client. Use
%b to specify number of bytes in the log. Use %i to include the header in the log.

See Also: Access Log in the Apache HTTP Server documentation.

Overview of Server Logs

Managing Oracle HTTP Server Logs 7-3

7.1.3 Log Rotation
Oracle HTTP Server supports two types of log rotation policies: size-based and
time-based. You can configure the Oracle HTTP Server logs to use either of the two
rotation polices, by using odl_rotatelogs in ORACLE_HOME/ohs/bin. By default,
Oracle HTTP Server uses odl_rotatelogs for both error and access logs.

odl_rotatelogs supports all the features of Apache HTTP Server's rotatelogs and
the additional feature of log retention.

You can find information about the features and options provided by rotatelogs at
the following URL:

http://httpd.apache.org/docs/2.2/programs/rotatelogs.html

The following is the general syntax of odl_rotatelogs:

odl_rotatelogs [-u:offset] logfile {size-|time-based-rotation-options}

odl_rotatelogs is meant to be used with the piped logfile feature. This feature allows
error and access log files to be written through a pipe to another process, rather than
directly to a file. This increases the flexibility of logging, without adding code to the
main server. To write logs to a pipe, replace the filename with the pipe character "|",
followed by the name of the executable which should accept log entries on its standard
input. For more information on the piped logfile feature, see the following URL:

http://httpd.apache.org/docs/2.2/logs.html#piped

Used with the piped logfile feature, the syntax of odl_rotatelogs becomes the
following:

CustomLog " |${PRODUCT_HOME}/bin/odl_rotatelogs [-u:offset] logfile
{size-|time-based-rotation-options}” log_format

Whenever there is an input to odl_rotatelogs, it checks if the specified condition for
rotation has been met. If so, it rotates the file. Otherwise it simply writes the content. If
no input is provided, then it will do nothing.

Table 7–1 describes the size- and time-based rotation options:

Table 7–1 Options for odl_rotatelogs

Option Description

-u The time (in seconds) to offset from UTC.

logfile The path and name of the log file, followed by a hyphen (-) and then the
timestamp format.

The following are the common timestamp format strings:

■ %m: Month as a two-digit decimal number (01-12)

■ %d: Day of month as a two-digit decimal number (01-31)

■ %Y: Year as a four-digit decimal number

■ %H: Hour of the day as a two-digit decimal number (00-23)

■ %M: Minute as a two-digit decimal number (00-59)

■ %S: Second as a two-digit decimal number (00-59)

It should not include formats that expand to include slashes.

frequency The time (in seconds) between log file rotations.

retentionTime The maximum time for which the rotated log files are retained.

startTime The time when time-based rotation should start.

Configuring Oracle HTTP Server Logs

7-4 Oracle Fusion Middleware Administering Oracle HTTP Server

Syntax and Examples for Time- and Size-Based Rotation
■ Time-based rotation

Syntax:

odl_rotatelogs u:offset logfile frequency retentionTime startTime

Example:

CustomLog "| odl_rotatelogs u:-18000 /varlog/error.log-%Y-%m-%d 21600 172800
2014-03-10T08:30:00" common

This configures log rotation to be performed for a location UTC-05:00 (18000
seconds, such as New York). The rotation will be performed every 21600 seconds
(6 hours) starting from 8:30 a.m. on March 10, 2014, and it specifies that the rotated
log files should be retained for 172800 seconds (2 days). The log format is common.

Syntax:

odl_rotatelogs logfile frequency retentionTime startTime

Example:

CustomLog "| odl_rotatelogs /varlog/error.log-%Y-%m-%d 21600 172800
2014-03-10T08:30:00" common

This configures log rotation to be performed every 21600 seconds (6 hours)
starting from 8:30 a.m. on March 10, 2014, and it specifies that the rotated log files
should be retained for 172800 seconds (2 days). The log format is common.

■ Size-based rotation

Syntax:

odl_rotatelogs logfile maxFileSize allFileSize

Example:

This configures log rotation to be performed when the size of the log file reaches
10 MB, and it specifies the maximum size of all the rotated log files as 70 MB (up
to 7 log files (=70/10) will be retained). The log format is common.

CustomLog "| odl_rotatelogs /var/log/error.log-%Y-%m-%d 10M 70M" common

7.2 Configuring Oracle HTTP Server Logs
You can use Fusion Middleware Control to configure error and access logs. The
following logging tasks can be set from the Log Configuration page:

■ Using Fusion Middleware Control to Configure Error Logs

■ Configuring Access Logs by Using Fusion Middleware Control

maxFileSize The maximum size (in MB) of log files.

allFileSize The total size (in MB) of files retained.

Table 7–1 (Cont.) Options for odl_rotatelogs

Option Description

Configuring Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 7-5

7.2.1 Using Fusion Middleware Control to Configure Error Logs
To configure an error log for Oracle HTTP Server using Fusion Middleware Control,
do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

The Log Configuration page is displayed, as shown in the following figure.

3. The following error log configuration tasks can be set from this page:

■ Configuring the Error Log Format and Location

■ Configuring the Error Log Level

■ Configuring Error Log Rotation Policy

7.2.1.1 Configuring the Error Log Format and Location
Oracle HTTP Server by default uses ODL-Text as the error log format and creates the
log file with the name component_name.log under the DOMAIN_
HOME/servers/component_name/logs directory. To use a different format or log
location, do the following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select the desired file format. Although both ODL-Text and ODL-XML formats
provide the same information, the ODL-XML file includes XML elements and
wrappers, and so may be easier to read.

Configuring Oracle HTTP Server Logs

7-6 Oracle Fusion Middleware Administering Oracle HTTP Server

■ ODL-Text: the format of the diagnostic messages conform to an Oracle
standard and are written in text format.

■ ODL-XML: the format of the diagnostic messages conform to an Oracle
standard and are written in XML format.

■ Apache: the format of the diagnostic messages conform to the legacy Apache
HTTP Server message format.

3. Enter a path for the error log in the Log File/Directory field. This directory must
exist before you enter it here.

4. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

5. Restart Oracle HTTP Server. See Section 4.3.4.

7.2.1.2 Configuring the Error Log Level
You can configure the amount and type of information written to log files by
specifying the message type and level. Error log level for Oracle HTTP Server by
default is configured to WARNING:32. To use a different error log level do the
following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select a level for the logging from the Level menu. The higher the log level, the
more information that is included in the log.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

4. Restart Oracle HTTP Server. See Section 4.3.4.

7.2.1.3 Configuring Error Log Rotation Policy
Log rotation policy for error logs can either be time-based, such as once a week, or
sized-based, such as 120MB. By default, the error log file is rotated when it reaches 10
MB in size and a maximum of 7 error log files will be retained. To use a different
rotation policy, do the following:

1. From the Log Configuration page, navigate to the General section under the Error
Log section.

2. Select a rotation policy.

■ No Rotation: if you do not want to have the log file rotated ever.

Note: The log levels are different for the Apache HTTP Server log
format from ODL-Text and the ODL-XML log format.

■ For details on ODL log levels, refer to "Setting the Level of
Information Written to Log Files" in the Administering Oracle
Fusion Middleware.

■ For details on Apache HTTP Server log levels, refer to the
LogLevel Directive in the Apache HTTP Server documentation.

Configuring Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 7-7

■ Size Based: rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

■ Time Based: rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

3. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

4. Restart Oracle HTTP Server. See Section 4.3.4.

7.2.2 Configuring Access Logs by Using Fusion Middleware Control
To configure an access log for Oracle HTTP Server using Fusion Middleware Control,
do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

The following access log configuration tasks can be set from this page:

■ Configuring the Access Log Format

■ Configuring the Access Log File

7.2.2.1 Configuring the Access Log Format
Log format specifies the information included in the access log file and the manner in
which it is written. To add a new access log format or to edit or remove an existing
format, do the following:

1. From the Log Configuration page, navigate to the Access Log section.

2. Click Manage Log Formats.

The Manage Custom Access Log Formats page is displayed, as shown in the
following figure.

3. Select an existing format to change or remove, or click Add Row to create a new
format.

4. If you choose to create a new format, then enter the new log format in the Log
Format Name field and the log format in the Log Format Pattern field.

Log Directives for Oracle HTTP Server

7-8 Oracle Fusion Middleware Administering Oracle HTTP Server

5. Click OK to save the new format.

7.2.2.2 Configuring the Access Log File
To configure an access log for file Oracle HTTP Server, do the following:

1. From the Log Configuration page, navigate to the Access Log section.

2. Click Create to create a new access log, or select a row from the table and click
Edit button to edit an existing access log file.

The Create or Edit Access Log page is displayed.

3. Enter the path for the access log in the Log File Path field. This directory must
exist before you enter it.

4. Select an existing access log format from the Log Format menu.

5. Select a rotation policy.

■ No Rotation: if you do not want to have the log file rotated ever.

■ Size Based: rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

■ Time Based: rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

6. Click OK to continue.

Note that you can create multiple access log files.

7.3 Log Directives for Oracle HTTP Server
This section discuss Oracle HTTP Server error and access log-related directives in the
httpd.conf file. The directives discussed are:

■ Oracle Diagnostic Logging Directives

■ Apache HTTP Server Log Directives

7.3.1 Oracle Diagnostic Logging Directives
Oracle HTTP Server by default uses Oracle Diagnostic Logging (ODL) for generating
diagnostic messages. The following directives are used to set up logging using ODL:

See Also: Refer to the Apache HTTP Server documentation for
information about log format directives.

Log Directives for Oracle HTTP Server

Managing Oracle HTTP Server Logs 7-9

■ OraLogMode

■ OraLogDir

■ OraLogSeverity

■ OraLogRotationParams

7.3.1.1 OraLogMode
Enables you to choose the format in which you want to generate log messages. You
can choose to generate log messages in the legacy Apache HTTP Server, ODL text, or
ODL XML format.

OraLogMode Apache | ODL-Text | ODL-XML

Default value: ODL-Text

For example: OraLogMode ODL-XML

7.3.1.2 OraLogDir
Specifies the path to the directory that contains all log files. This directory must exist.

This directive is used only when OraLogMode is set to either ODL-Text or ODL-XML.
When OraLogMode is set to Apache, OraLogDir is ignored and ErrorLog is used instead.

OraLogDir <path>

Default value: ORACLE_INSTANCE/servers/componentName/logs

For example: OraLogDir /tmp/logs

7.3.1.3 OraLogSeverity
Enables you to set message severity. The message severity specified with this directive
is interpreted as the lowest desired message severity, and all messages of that severity
level and higher are logged.

This directive is used only when OraLogMode is set to either ODL-Text or ODL-XML.
When OraLogMode is set to Apache, OraLogSeverity is ignored and LogLevel is used
instead.

OraLogSeverity <msg_type>[:msg_level]

Default value: WARNING:32

For example: OraLogSeverity NOTIFICATION:16

msg_type
Message types can be specified in upper or lower case, but appear in the message
output in upper case. This parameter must be of one of the following values:

■ INCIDENT_ERROR

■ ERROR

■ WARNING

Note: The Apache HTTP Server log directives ErrorLog and
LogLevel are only effective when OraLogMode is set to Apache. When
OraLogMode is set to either ODL-Text or ODL-XML, the ErrorLog and
LogLevel directives are ignored.

Log Directives for Oracle HTTP Server

7-10 Oracle Fusion Middleware Administering Oracle HTTP Server

■ NOTIFICATION

■ TRACE

msg_level
This parameter must be an integer in the range of 1–32, where 1 is the most severe, and
32 is the least severe. Using level 1 will result in fewer messages than using level 32.

7.3.1.4 OraLogRotationParams
Enables you to choose the rotation policy for an error log file. This directive is used
only when OraLogMode is set to either ODL-Text or ODL-XML. When OraLogMode is set
to Apache, OraLogRotationParams is ignored.

OraLogRotationParams <rotation_type> <rotation_policy>

Default value: S 10:70

For example: OraLogRotationParams T 43200:604800 2009-05-08T10:53:29

rotation_type
This parameter can either be S (for sized-based rotation) or T (for time-based rotation).

rotation_policy
When rotation_type is set to S (sized-based), set the rotation_policy parameter to:

maxFileSize:allFilesSize (in MB)

For example, when configured as 10:70, the error log file is rotated whenever it
reaches 10MB in size and a total of 70MB is allowed for all error log files (a maximum
of 70/10=7 error log files will be retained).

When rotation_type is set to T (time-based), set the rotation_policy parameter to:

frequency(in sec) retentionTime(in sec) startTime(in YYYY-MM-DDThh:mm:ss)

For example, when configured as 43200:604800 2009-05-08T10:53:29, the error log is
rotated every 43200 seconds (that is, 12 hours), rotated log files are retained for
maximum of 604800 seconds (7 days) starting from May 5, 2009 at 10:53:29.

7.3.2 Apache HTTP Server Log Directives
Although Oracle HTTP Server uses ODL by default for error logs, you can configure
the OraLogMode directive to Apache to generate error log messages in the legacy
Apache HTTP Server message format. The following directives are discussed in this
section:

■ ErrorLog

■ LogLevel

■ LogFormat

■ CustomLog

7.3.2.1 ErrorLog
The ErrorLog directive sets the name of the file where the server logs any errors it
encounters. If the filepath is not absolute then it is assumed to be relative to the
ServerRoot.

Viewing Oracle HTTP Server Logs

Managing Oracle HTTP Server Logs 7-11

This directive is used only when OraLogMode is set to Apache. When OraLogMode is set
to either ODL-Text or ODL-XML, ErrorLog is ignored and OraLogDir is used instead.

7.3.2.2 LogLevel
The LogLevel directive adjusts the verbosity of the messages recorded in the error
logs.

This directive is used only when 3 is set to Apache. When OraLogMode is set to either
ODL-Text or ODL-XML, LogLevel is ignored and OraLogSeverity is used instead.

7.3.2.3 LogFormat
The LogFormat directive specifies the format of the access log file. By default, Oracle
HTTP Server comes with the following four access log formats defined:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

7.3.2.4 CustomLog
The CustomLog directive is used to log requests to the server. A log format is specified
and the logging can optionally be made conditional on request characteristics using
environment variables. By default, the access log file is configured to use the common
log format.

7.4 Viewing Oracle HTTP Server Logs
You can search, view, and list Oracle HTTP Server log files using Fusion Middleware
Control, or you can download a log file to your local client and view the log files using
another tool.

You can also use the text editor of your choice to view Oracle HTTP Server log files
directly from the DOMAIN_HOME directory. By default, Oracle HTTP Server log files
are located in the DOMAIN_HOME/servers/component_name/logs directory.

As discussed in Section 7.1, "Overview of Server Logs", there are mainly two types of
log files for Oracle HTTP Server: error logs and access logs. The error log file is an

See Also: For information about the Apache ErrorLog directive, see:

http://httpd.apache.org/docs/current/mod/core.html#errorlog

See Also: For information about the Apache HTTP Server LogLevel
directive see:

http://httpd.apache.org/docs/current/mod/core.html#loglevel

See Also: For information about the Apache HTTP Server
LogFormat directive, see:

http://httpd.apache.org/docs/current/mod/mod_log_
config.html#logformat

See Also: For information about the Apache CustomLog directive,
see:

http://httpd.apache.org/docs/current/mod/mod_log_
config.html#customlog

Terminating SSL Requests

7-12 Oracle Fusion Middleware Administering Oracle HTTP Server

important source of information for maintaining a well-performing server. The error
log records all of the information about problem situations so that the system
administrator can easily diagnose and fix the problems. The access log file contains
basic information about every HTTP transaction that the server handles. This
information can be used to generate statistical reports about the server's usage
patterns.

7.5 Terminating SSL Requests
This section describes how to terminate SSL before or within Oracle HTTP Server,
where the mod_wl_ohs module is used to forward requests to WebLogic Server.
Whether you terminate SSL before the request reaches Oracle HTTP Server or when
the request is in the server, depends on your topology. A common reason to terminate
SSL is for performance considerations when an internal network is otherwise
protected with no risk of a third-party intercepting data within the communication.
Another reason is when WebLogic Server is not configured to accept HTTPS requests.

■ Terminating SSL Before Oracle HTTP Server

■ Terminating SSL at Oracle HTTP Server

7.5.1 Terminating SSL Before Oracle HTTP Server
If you are using another device such as a load balancer or a reverse proxy which
terminates requests using SSL before reaching Oracle HTTP Server, then you must
configure the server to treat the requests as if they were received through HTTPS. The
server must also be configured to send HTTPS responses back to the client.

Figure 7–1 illustrates an example where the request transmitted from the browser
through HTTPS to WebLogic Server. The load balancer terminates SSL and transmits
the request as HTTP. Oracle HTTP Server must be configured to treat the request as if
it was received through HTTPS.

Figure 7–1 Terminating SSL Before Oracle HTTP Server

To instruct the Oracle HTTP Server to treat requests as if they were received through
HTTPS, configure the httpd.conf file with the SimulateHttps directive in the mod_
certheaders module.

For more information on mod_certheaders module, see Section G.1, "mod_
certheaders."

1. Configure the httpd.conf configuration file with the external name of the server
and its port number, for example:

See Also: For information about searching and viewing log files,
see the Administering Oracle Fusion Middleware

Note: This procedure is not necessary if SSL is configured on Oracle
HTTP Server (that is, if you are directly accessing Oracle HTTP Server
using HTTPS).

Terminating SSL Requests

Managing Oracle HTTP Server Logs 7-13

ServerName <www.company.com:port>

2. Configure the httpd.conf configuration file to load the mod_certheaders module,
for example:

■ On UNIX:

LoadModule certheaders_module libexec/mod_certheaders.so

■ On Windows:

LoadModule certheaders_module modules/ApacheModuleCertHeaders.dll
AddModule mod_certheaders.c

3. Configure the SimulateHttps directive at the bottom of the httpd.conf file to send
HTTPS responses back to the client, for example:

For use with other load balancers and front-end devices:
SimulateHttps On

4. Restart Oracle HTTP Server and test access to the server. Especially, test whether
you can access static pages such as https://host:port/index.html

Test your configuration as a basic setup. If you are having issues, then you should
troubleshoot from here to avoid overlapping with other potential issues, such as
with virtual hosting.

5. Ideally, you may want to configure a VirtualHost in the httpd.conf file to handle
all HTTPS requests. This separates the HTTPS requests from the HTTP requests as
a more scalable approach. This may be more desirable in a multi-purpose site or if
a load balancer or other device is in front of Oracle HTTP Server which is also
handling both HTTP and HTTPS requests.

The following sample instructions load the mod_certheaders module, then creates
a virtual host to handle only HTTPS requests.

Load correct module here or where other LoadModule lines exist:
LoadModule certheaders_module libexec/mod_certheaders.so
This only handles https requests:
NameVirtualHost <name>:<port>
 <VirtualHost <name>:<port>
 # Use name and port used in url:
 ServerName <www.company.com:port>
 SimulateHttps On
 # The rest of your desired configuration for this VirtualHost goes here
 </VirtualHost>

6. Restart Oracle HTTP Server and test access to the server, First test a static page
such as https://host:port/index.html and then your test your application.

7.5.2 Terminating SSL at Oracle HTTP Server
If SSL is configured in Oracle HTTP Server but not on WebLogic Server, then you can
terminate SSL for requests sent by Oracle HTTP Server.

The following figures illustrate request flows, showing where HTTPS stops. In
Figure 7–2, an HTTPS request is sent from the browser. The load balancer transmits the

Note: Oracle recommends that the AddModule line should be
included with other AddModule directives.

Terminating SSL Requests

7-14 Oracle Fusion Middleware Administering Oracle HTTP Server

HTTPS request to Oracle HTTP Server. SSL is terminated in Oracle HTTP Server and
the HTTP request is sent to WebLogic Server.

Figure 7–2 Terminating SSL at Oracle HTTP Server—With Load Balancer

In Figure 7–3, there is no load balancer and the HTTPS request is sent directly to
Oracle HTTP Server. Again, SSL is terminated in Oracle HTTP Server and the HTTP
request is sent to WebLogic Server.

Figure 7–3 Terminating SSL at Oracle HTTP Server—Without Load Balancer

1. Configure the mod_wl_ohs.conf file to add the WLSProxySSL directive for the
location of your non-SSL configured managed servers, for example:

WLProxySSL ON

2. If using a load balancer or other device in front of Oracle HTTP Server (which is
also using SSL), you might need to configure the WLProxySSLPassThrough directive
instead, depending on if it already sets WL-Proxy-SSL, for example:

WLProxySSLPassThrough ON

For more information, see your load balancer documentation. For more
information on WLProxySSLPassThrough, see "Parameters for Web Server
Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.2.

3. Ensure that the SecureProxy directive is not configured, as it will interfere with
the intended communication between the components. This directive is to be used
only when SSL is used throughout. The SecureProxy directive is commented out
in the following example:

To configure SSL throughout (all the way to WLS):
SecureProxy ON
WLSSLWallet "<Path to Wallet>"

4. Restart Oracle HTTP Server and test access to a Java application, for example:
https://host:port/path/application_name.

8

Managing Application Security 8-1

8Managing Application Security

[9] This chapter contains an overview of Oracle HTTP Server security features and
provides configuration information for setting up a secure website.

This chapter includes the following sections:

■ Section 8.1, "About Oracle HTTP Server Security"

■ Section 8.2, "Classes of Users and Their Privileges"

■ Section 8.3, "Resources Protected"

■ Section 8.4, "Authentication, Authorization and Access Control"

■ Section 8.5, "Disable SSLv2 and SSLv3 Security Protocols"

8.1 About Oracle HTTP Server Security
Security can be organized into the three categories of authentication, authorization,
and confidentiality. Oracle HTTP Server provides support for all three of these
categories. It is based on the Apache HTTP Server, and its security infrastructure is
primarily provided by the Apache modules, mod_auth_basic, mod_authn_file, mod_
auth_user, and mod_authz_groupfile, and WebGate. The mod_auth_basic, mod_
authn_file, mod_auth_user, and mod_authz_groupfile modules provide authentication
based on user name and password pairs, while mod_authz_host controls access to the
server based on the characteristics of a request, such as host name or IP address, mod_
ossl provides confidentiality and authentication with X.509 client certificates over SSL.

Oracle HTTP Server provides access control, authentication, and authorization
methods that can be configured with access control directives in the httpd.conf file.
When URL requests arrive at Oracle HTTP Server, they are processed in a sequence of
steps determined by server defaults and configuration parameters. The steps for
handling URL requests are implemented through a module or plug-in architecture that
is common to many Web listeners.

8.2 Classes of Users and Their Privileges
Oracle HTTP Server authorizes and authenticates users before allowing them to
access, or modify resources on the server. The following are three classes of users that
access the server using Oracle HTTP Server, and their privileges:

■ Users who access the server without providing any authentication. They have
access to unprotected resources only.

■ Users who have been authenticated and potentially authorized by modules within
Oracle HTTP Server. This includes users authenticated by Apache HTTP Server

Resources Protected

8-2 Oracle Fusion Middleware Administering Oracle HTTP Server

modules like mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_
groupfile modules and Oracle's mod_ossl. Such users have access to URLs defined
in http.conf file.

■ Users who have been authenticated through Oracle Access Manager. These users
have access to resources allowed by Single Sign-On.

8.3 Resources Protected
Oracle HTTP Server can be configured to protect all resources that it manages. You are
responsible for configuring any protection that your resources require.

8.4 Authentication, Authorization and Access Control
Oracle HTTP Server provides user authentication and authorization at two stages:

■ Access Control (stage one): This is based on the details of the incoming HTTP
request and its headers, such as IP addresses or host names.

■ User Authentication and Authorization (stage two): This is based on different
criteria depending on the HTTP server configuration. The server can be configured
to authenticate users with user name and password pairs that are checked against
a list of known users and passwords. You can also configure the server to use
single sign-on authentication for Web applications or X.509 client certificates over
SSL.

8.4.1 Access Control
Access control refers to any means of controlling access to any resource.

8.4.2 User Authentication and Authorization
Authentication is any process by which you verify that someone is who they claim
they are. Authorization is any process by which someone is allowed to be where they
want to go, or to have information that they want to have.

8.4.2.1 Using Apache HTTP Server Modules to Authenticate Users
Access control refers to any means of controlling access to any resource.

See Also: Section 8.4, "Authentication, Authorization and Access
Control".

See Also: Securing Applications with Oracle Platform Security
Services

See Also: Refer to the Apache HTTP Server documentation for more
information on how to configure access control to resources.

See Also: For more information on how to authenticate users, see
the Apache HTTP Server documentation on "Authentication and
Authorization" at:

http://httpd.apache.org/docs/2.2/howto/auth.html

Disable SSLv2 and SSLv3 Security Protocols

Managing Application Security 8-3

8.4.2.2 Using WebGate to Authenticate Users
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and if
so, retrieves the session information for the user.

Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled
to use SSO to authenticate users, obtain their identity by using Oracle Single Sign-On,
and to make user identities available to web applications accessed through Oracle
HTTP Server.

By using WebGate, web applications can register URLs that require SSO
authentication. WebGate detects which requests received by Oracle HTTP Server
require SSO authentication, and redirects them to the SSO server. Once the SSO server
authenticates the user, it passes the user's authenticated identity back to WebGate in a
secure token. WebGate retrieves the user's identity from the token and propagates it to
applications accessed through Oracle HTTP Server, including applications running in
Oracle WebLogic Server and CGIs and static files handled by Oracle HTTP Server.

8.4.3 Support for FMW Audit Framework
Oracle HTTP Server supports authentication and authorization auditing by using the
FMW Common Audit Framework. As part of enabling auditing, Oracle HTTP Server
supports a directive called OraAuditEnable, which defaults to On. When it is enabled,
audit events enabled in auditconfig.xml will be recorded in an audit log. By default, no
audit events are enabled in auditconfig.xml.

When OraAuditEnable is set to Off, auditing is disabled regardless of the settings in
auditconfig.xml.

Audit filters can be configured using Fusion Middleware Control or by editing
auditconfig.xml directly.

8.5 Disable SSLv2 and SSLv3 Security Protocols
Because of security concerns, Oracle strongly recommends that you disable the SSLv3
security protocol from Oracle HTTP Server.

To disable SSL security protocols from Oracle HTTP Server:

1. Locate the ssl.conf file in the staging directory and the runtime directory.

You can find the ssl.conf files in the following locations:

Staging directory: DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName

Runtime directory: DOMAIN_
HOME/config/fmwconfig/components/OHS/instances/componentName

2. Edit the security declaration to use a non-SSL protocol.

For example, to remove the SSLv3 security protocol:

SSLProtocol -SSLv3

See Also: Securing Applications with Oracle Platform Security
Services

See Also: "Overview of Audit Features" in Securing Applications with
Oracle Platform Security Services

Disable SSLv2 and SSLv3 Security Protocols

8-4 Oracle Fusion Middleware Administering Oracle HTTP Server

or to add the TLS version 1.0 and 1.2 security protocols:

SSLProtocol nzos_Version_1_1 nzos_Version_1_2

or to add the TLS version 1.0, 1.1, and 1.2 security protocols:

SSLProtocol nzos_Version_1_0 nzos_Version_1_1 nzos_Version_1_2

3. Save the files and restart Oracle HTTP Server.

Note: ■

■ If you are editing files manually, ensure you edit a currently
configured value instead of adding another. It could be easy to
add a global parameter when it will be overridden by a value in
the VirtualHost.

■ Using the new nzos_Version_* syntax is now preferred. If you are
using Oracle Fusion Middleware Control, this is how security will
be configured.

Part III
Part III Appendixes and Glossary

This part contains the following appendices plus a glossary:

■ Appendix A, "OHS Introspector Plug-in for OVAB"

■ Appendix B, "Frequently Asked Questions"

■ Appendix C, "Troubleshooting Oracle HTTP Server"

■ Appendix D, "Configuration Files"

■ Appendix E, "Property Files"

■ Appendix F, "Configuring mod_security"

■ Appendix G, "OHS Module Directives"

■ "Glossary"

A

OHS Introspector Plug-in for OVAB A-1

AOHS Introspector Plug-in for OVAB

[10] The Oracle HTTP Server (OHS) introspector plug-in for the Oracle Virtual Assembly
Builder (OVAB) plug-in introspects all the available Oracle HTTP Server instances in a
WebLogic Server domain. This plug-in is an extension of WebLogic Server plug-in for
OVAB.

This chapter contains the following sections:

■ Section A.1, "Versions Supported"

■ Section A.2, "Oracle HTTP Server Introspection Parameters"

■ Section A.3, "Resulting Artifact Type"

■ Section A.4, "Requirements"

■ Section A.5, "Wiring"

■ Section A.6, "Wiring Properties"

■ Section A.7, "Oracle HTTP Server Appliance Properties"

■ Section A.8, "Extensions of the Plug-in"

■ Section A.9, "Supported Template Types"

■ Section A.10, "Plug-in Limitations"

■ Section A.11, "Related Documents"

A.1 Versions Supported
This plug-in supports version 12.1.2.

A.2 Oracle HTTP Server Introspection Parameters
The OHS Introspector plug-in for OVAB is an extension of WebLogic Server plug-in
for OVAB, thus it works with the Introspector parameters provided for the WLS
plug-in.

For the parameters required by WebLogic Server, see "Using the Introspection Plug-in
for Oracle Virtual Assembly Builder," in Administering Server Environments for Oracle
WebLogic Server.

A.3 Resulting Artifact Type
Multiple scalable appliances, one per Oracle HTTP Server instance.

Requirements

A-2 Oracle Fusion Middleware Administering Oracle HTTP Server

A.4 Requirements
All of WebLogic Server requirements must be satisfied. For these requirements, see
"Using the Introspection Plug-in for Oracle Virtual Assembly Builder," in Administering
Server Environments for Oracle WebLogic Server.

In addition to the WebLogic Server requirements, reference system implementations
require that WLS and Oracle HTTP Server be installed in the same ORACLE_HOME.

A.5 Wiring
Inputs are created on the Oracle HTTP Server appliance for each Listen or Port
directive found in the configuration. The protocol of an Oracle HTTP Server input is
set to http unless the Listen directive is found inside a VirtualHost directive and the
directive SSLEngine is set to on. In that case, the protocol is https.

Outputs on the Oracle HTTP Server appliance are created based on various directives
related to Oracle WebLogic Server in the Oracle HTTP Server configuration. The
outputs indicate which inputs on an Oracle WebLogic Server assembly to connect to
through the output 'description'.

A.6 Wiring Properties
All instance appliance input endpoints have one editable property, port, and two
non-editable properties, name and a list of protocols. The protocols indicate what sort
of outputs can be connected to the input. An administration server appliance will
always have one secure http listener input endpoint, port, which is editable.

All output endpoints have three non-editable properties, description, protocol and
singleton. The protocol indicates what sort of input can be connected to the output.
Singleton indicates what sort of appliance the output can be connected to. If
singleton is true, the output can only be connected to an input on an appliance that
has a scalability absolute max value of 1. Administration Server appliance do not have
output endpoints.

A.7 Oracle HTTP Server Appliance Properties
There are no relevant Oracle HTTP Server appliance properties.

A.8 Extensions of the Plug-in
None.

A.9 Supported Template Types
The supported template type is Oracle Enterprise Linux (OEL).

A.10 Plug-in Limitations
Be aware of the following plug-in limitations:

■ Any changes done manually to Oracle HTTP Server instance(s) on the reference
system without the administration interfaces will not be introspected by the
plug-in.

Related Documents

OHS Introspector Plug-in for OVAB A-3

■ On the reference implementation, the OVAB Oracle HTTP Server plug-in does not
introspect Oracle HTTP Server standalone deployments. It only supports
WebLogic Server Oracle HTTP Server deployments.

A.11 Related Documents
For more information on using OVAB, see the following documents:

■ Developing Applications and Introspection Plug-ins for Oracle Virtual Assembly Builder

■ Using Oracle Virtual Assembly Builder

Related Documents

A-4 Oracle Fusion Middleware Administering Oracle HTTP Server

B

Frequently Asked Questions B-1

BFrequently Asked Questions

[11] This appendix provides answers to frequently asked questions about Oracle HTTP
Server (OHS). It includes the following topics:

■ Section B.1, "How Do I Create Application-Specific Error Pages?"

■ Section B.2, "What Type of Virtual Hosts Are Supported for HTTP and HTTPS?"

■ Section B.3, "Can I Use Different Language and Character Set Versions of
Document?"

■ Section B.4, "Can I Apply Apache HTTP Server Security Patches to Oracle HTTP
Server?"

■ Section B.5, "Can I Upgrade the Apache HTTP Server Version of Oracle HTTP
Server?"

■ Section B.6, "Can I Compress Output From Oracle HTTP Server?"

■ Section B.7, "How Do I Create a Namespace That Works Through Firewalls and
Clusters?"

■ Section B.8, "How Do I Protect the Website from Hackers?"

■ Section B.9, "Should I Re-register Partner Applications with SSO Server If I Disable
or Enable SSL?"

■ Section B.10, "Why is REDIRECT_ERROR_NOTES not set for "File Not Found"
errors?"

■ Section B.11, "How can I hide information about the Web Server Vendor and
Version"

■ Section B.12, "Can I Start OHS by Using apachectl or Other Command-Line Tool?"

Documentation from the Apache Software Foundation is referenced when applicable.

B.1 How Do I Create Application-Specific Error Pages?
Oracle HTTP Server has a default content handler for dealing with errors. You can use
the ErrorDocument directive to override the defaults.

Note: Readers using this guide in PDF or hard copy formats will
be unable to access third-party documentation, which Oracle
provides in HTML format only. To access the third-party
documentation referenced in this guide, use the HTML version of
this guide and click the hyperlinks.

What Type of Virtual Hosts Are Supported for HTTP and HTTPS?

B-2 Oracle Fusion Middleware Administering Oracle HTTP Server

B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
For HTTP, Oracle HTTP Server supports both name-based and IP-based virtual hosts.
Name-based virtual hosts are virtual hosts that share a common listening address (IP
plus port combination), but route requests based on a match between the Host header
sent by the client and the ServerName directive set within the VirtualHost. IP-based
virtual hosts are virtual hosts that have distinct listening addresses. IP-based virtual
hosts route requests based on the address they were received on.

For HTTPS, only IP-based virtual hosts are possible with Oracle HTTP Server. This is
because for name-based virtual hosts, the request must be read and inspected to
determine which virtual host is used to process the request. If HTTPS is used, an SSL
handshake must be performed before the request can be read. To perform the SSL
handshake, a server certificate must be provided. To have a meaningful server
certificate, the host name in the certificate must match the host name the client
requested, which implies a unique server certificate per virtual host. However, because
the server cannot know which virtual host to route the request to until it has read the
request, and it can't properly read the request unless it knows which server certificate
to provide, there is no way to make name-based virtual hosting work with HTTPS.

B.3 Can I Use Different Language and Character Set Versions of
Document?

Yes, you can use multiviews, a general name given to the Apache HTTP Server's
ability to provide language and character-specific document variants in response to a
request.

B.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP
Server?

No, you cannot apply the Apache HTTP Server security patches to Oracle HTTP
Server for the following reasons:

■ Oracle tests and appropriately modifies security patches before releasing them to
Oracle HTTP Server users.

■ In many cases, the Apache HTTP Server alerts, such as OpenSSL alerts, may not be
applicable because Oracle has removed those components from the stack.

The latest security related fixes to Oracle HTTP Server are performed through the
Oracle Critical Patch Update (CPU). For more details, refer to Oracle's Critical Patch
Updates and Security Alerts Web page.

See Also: Apache HTTP Server documentation on the
ErrorDocument directive at:

http://httpd.apache.org/docs/current/mod/core.html#errordo
cument

See Also: Multiviews option in the Apache HTTP Server
documentation on Content Negotiation, at:

http://httpd.apache.org/docs/current/content-negotiation.h
tml

How Do I Create a Namespace That Works Through Firewalls and Clusters?

Frequently Asked Questions B-3

B.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP
Server?

No, you cannot upgrade only the Apache HTTP Server version inside Oracle HTTP
Server. Oracle provides a newer version of Apache HTTP Server that Oracle HTTP
Server is based on, which is part of either a patch update or the next major or minor
release of Oracle Fusion Middleware.

B.6 Can I Compress Output From Oracle HTTP Server?
In general, Oracle recommends using mod_deflate, which is included with Oracle
HTTP Server. For more information pertaining to mod_deflate, see
http://httpd.apache.org/docs/current/mod/mod_deflate.html

B.7 How Do I Create a Namespace That Works Through Firewalls and
Clusters?

The general idea is that all servers in a distributed website should use a single URL
namespace. Every server serves some part of that namespace, and is able to redirect or
proxy requests for URLs that it does not serve to a server that is closer to that URL. For
example, your namespaces could be the following:

/app1/login.html
/app1/catalog.html
/app1/dologin.jsp
/app2/orderForm.html
/apps/placeOrder.jsp

You could initially map these name spaces to two Web servers by putting app1 on
server1 and app2 on server2. The configuration for server1 might look like the
following:

Redirect permanent /app2 http://server2/app2
Alias /app1 /myApps/application1
<Directory /myApps/application1>
 ...
</Directory>

The configuration for Server2 is complementary.

If you decide to partition the namespace by content type (HTML on server1, and JSP
on server2), then you can change server configuration and move files around, but you
do not have to make changes to the application itself. The resulting configuration of
server1 might look like the following:

RedirectMatch permanent (.*) \.jsp$ http://server2/$1.jsp
AliasMatch ^/app(.*) \.html$ /myPages/application$1.html
<DirectoryMatch "^/myPages/application\d">
 ...
</DirectoryMatch>

Note: After applying a CPU, the Apache HTTP Server-based version
may stay the same, but the vulnerability will be fixed. There are
third-party security detection tools that can check the version, but do
not check the vulnerability itself.

How Do I Protect the Website from Hackers?

B-4 Oracle Fusion Middleware Administering Oracle HTTP Server

The amount of actual redirection can be minimized by configuring a hardware load
balancer like F5 system BIG-IP to send requests to server1 or server2 based on the
URL.

B.8 How Do I Protect the Website from Hackers?
There are many attacks by hackers, and new attacks are invented everyday. The
following are some general guidelines for securing your site. You can never be
completely secure, but you can avoid being an easy target.

■ Use a commercial firewall, such as Checkpoint FW-1 or Cisco PIX between your
ISP and your Web server. Remember not all hackers are outside your organization.

■ Use switched Ethernet to limit the amount of traffic a compromised server can
detect. Use additional firewalls between Web server machines and highly sensitive
internal servers running the database and enterprise applications.

■ Remove unnecessary network services such as RPC, Finger, and telnet from your
server.

■ Carefully validate all input from Web forms. Be especially wary of long input
strings and input that contains non-printable characters, HTML tags, or javascript
tags.

■ Encrypt or randomize the contents of cookies that contain sensitive information to
prevent a hacker from hijacking a valid session. For example, it should be difficult
to guess a valid sessionID.

■ Check often for security patches for all your system and application software, and
install them as soon as possible. Be sure these patches come from reliable sources.
Only download patches from trusted sites and verify the cryptographic checksum.

■ Use an intrusion detection package to monitor for defaced Web pages, viruses, and
presence of rootkits that indicate hackers have broken into your site. If possible,
mount system executables and Web content on read-only file systems.

■ Have a forensic analysis package on hand to capture evidence of a break in as soon
as detected. This aids in prosecution of the hackers.

■ Perform Pen testing or other relevant security testing on your application.
Configure the appropriate custom mod_security rules to protect your application.
For more information on mod_security, see Appendix F, "Configuring mod_
security."

■ If you want to use the open source Open Web Application Security Project
(OWASP)-based core rule set, then you must ensure that the rule set corresponds
to the version of mod_security included with Oracle HTTP Server. Note that the
core rule set provides only a general set of rules and is not very
application-specific. Thus, the core rule set might not adequately protect your
application. For more information on the OWASP core rule set, see the following
URL:

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_
Set_Project

■ Remove unneeded content from the httpd.conf file. For more information, see
Section 4.6.7, "Removing Access to Unneeded Content."

Can I Start OHS by Using apachectl or Other Command-Line Tool?

Frequently Asked Questions B-5

B.9 Should I Re-register Partner Applications with SSO Server If I Disable
or Enable SSL?

Yes, if you enable or disable SSL, you have to re-register partner applications with the
SSO server. When you make any changes that affect the URL (for example, changing
the host name or port, or enabling or disabling SSL), you have to re-register partner
applications with the SSO server because the old URL registered with the SSO server is
no longer valid. You have to re-register the partner applications with the new URL.

B.10 Why is REDIRECT_ERROR_NOTES not set for "File Not Found"
errors?

The REDIRECT_ERROR_NOTES CGI environment variable is not set for "File Not
Found" errors in Oracle HTTP Server because compatibility with Apache HTTP Server
does not make that information available to CGI and other applications for this
condition.

B.11 How can I hide information about the Web Server Vendor and
Version

Specify ServerSignature Off to remove this information from web server generated
responses. Specify ServerTokens Custom some-server-string to disguise the web
server software when Oracle HTTP Server generates the web Server response header.
(When a backend server generates the response, the server response header may come
from the backend server depending on the proxy mechanism.)

B.12 Can I Start OHS by Using apachectl or Other Command-Line Tool?
Oracle HTTP Server 12.1.2 process management is handled by Node Manager. The
startComponent command can be used to start Oracle HTTP Server without using
WLST or Fusion Middleware Control directly. For more information, see
Section 4.3.2.3, "Starting Oracle HTTP Server Instances from the Command Line".

Note: ServerTokens Custom some-server-string is a replacement
for the ServerHeader Off setting in Oracle HTTP Server 10g.

Can I Start OHS by Using apachectl or Other Command-Line Tool?

B-6 Oracle Fusion Middleware Administering Oracle HTTP Server

C

Troubleshooting Oracle HTTP Server C-1

CTroubleshooting Oracle HTTP Server

[12] This appendix describes common problems that you might encounter when using
Oracle HTTP Server (OHS), and explains how to solve them. It includes the following
topics:

■ Section C.1, "Oracle HTTP Server Unable to Start Due to Port Conflict"

■ Section C.2, "System Overloaded by Number of httpd Processes"

■ Section C.3, "Permission Denied When Starting Oracle HTTP Server On a Port
Below 1024"

■ Section C.4, "Oracle HTTP Server May Fail To Start If PM Files Are Not Located
Correctly"

■ Section C.5, "Exception Thrown when Unsetting PerSetEnv and Removing
Variable"

■ Section C.6, "Using Log Files to Locate Errors"

■ Section C.7, "Recovering an OHS Instance on a Remote Host"

■ Section C.8, "Oracle HTTP Server Performance Issues"

■ Section C.9, "Out of DMS Shared Memory"

C.1 Oracle HTTP Server Unable to Start Due to Port Conflict
You can get the following error if Oracle HTTP Server cannot start due to port conflict:

[VirtualHost: main] (98)Address already in use: make_sock: could not bind to
address [::]:7777

Solution
Determine what process is already using that port, and then either change the IP:port
address of Oracle HTTP Server or the port of the conflicting process.

C.2 System Overloaded by Number of httpd Processes
When too many httpd processes run on a system, the response time degrades because
there are insufficient resources for normal processing.

Solution
Lower the value of MaxClients to a value the machine can accommodate.

Permission Denied When Starting Oracle HTTP Server On a Port Below 1024

C-2 Oracle Fusion Middleware Administering Oracle HTTP Server

C.3 Permission Denied When Starting Oracle HTTP Server On a Port
Below 1024

You will get the following error if you try to start Oracle HTTP Server on a port below
1024:

[VirtualHost: main] (13)Permission denied: make_sock: could not bind to address
[::]:443

Oracle HTTP Server will not start on ports below 1024 because root privileges are
needed to bind these ports.

Solution
Follow the steps in Section 4.3.2.4, "Starting Oracle HTTP Server Instances on a
Privileged Port (UNIX Only)" to start Oracle HTTP Server on a Privileged Port.

C.4 Oracle HTTP Server May Fail To Start If PM Files Are Not Located
Correctly

If Oracle HTTP Server is not able to locate Perl module (PM) files in the path defined
in the PERL5LIB variable, Oracle HTTP Server may encounter the following errors, and
fail to start:

[error] Can't locate mod_perl.pm in @INC (@INC contains:$ORACLE_HOME/perl/...)

or:

[error] Can't locate Apache::Registry.pm in @INC (@INC contains: $ORACLE_
HOME/perl/...)

Solution
Check that ORACLE_HOME/ohs/bin/apachectl is correctly defined in the PERL5LIB
variable. It should point to the path(s) containing the PM files. By default, it points to
PM files in the following directories:

ORACLE_HOME/ohs/mod_perl/lib/site_perl/5.10.0
ORACLE_HOME/perl/lib/5.10.0
ORACLE_HOME/perl/lib/site_perl/5.10.0

C.5 Exception Thrown when Unsetting PerSetEnv and Removing Variable
If you configure mod_perl by using the EM mod_perl configuration page and try to
remove a previously configured PerSetEnv variable from the Environment field, this
error is thrown:

Failed to invoke operation save on MBean
oracle.as.management.mbeans.register:type=component,name=ohs1,instance=webtier

_inst7971,Location=AdminServer
Apply failed, modify required parameters and save again. Validation of
configuration trying to apply failed
.
.
.

Recovering an OHS Instance on a Remote Host

Troubleshooting Oracle HTTP Server C-3

Solution
To correct this situation:

1. Close the pop-up error and click Revert.

2. Remove the PerSetEnv by doing one of the following:

■ Go to the Advanced Configuration page of Fusion Middleware Control and
modify the mod_perl.conf file directly.

OR

■ Go to the DOMAIN_
HOME/config/fmwconfig/components/OHS/componentName/moduleconf/
mod_perl.conf and edit the configuration file directly to remove the PerSetEnv
value.

3. Restart OHS.

C.6 Using Log Files to Locate Errors
You can use the following log files to help locate errors:

■ Rewrite Log

■ Script Log

■ Error Log

C.6.1 Rewrite Log
This log file is necessary for debugging when mod_rewrite is used. The log file
produces a detailed analysis of how the rewriting engine transforms requests. The
level of detail is controlled by the RewriteLogLevel directive.

C.6.2 Script Log
This log file enables you to record the input to and output from the CGI scripts. This
should only be used in testing, and not for production servers.

C.6.3 Error Log
This log file records overall server problems. Refer to Chapter 7, "Managing Oracle
HTTP Server Logs" for details on configuring and viewing error logs.

C.7 Recovering an OHS Instance on a Remote Host
If you need to recover an Oracle HTTP Server instance that is installed on a remote
host (that is, a host with just managed servers but no Administration Server), you
must use tar and untar; pack.sh and unpack.sh do not work in this scenario.

See Also: ScriptLog in the Apache HTTP Server documentation
at:

http://httpd.apache.org/docs/current/mod/mod_
cgi.html#scriptlog

Oracle HTTP Server Performance Issues

C-4 Oracle Fusion Middleware Administering Oracle HTTP Server

C.8 Oracle HTTP Server Performance Issues
The following are performance issues, along with their solutions, that you might
encounter when running Oracle HTTP Server:

■ Special Runtime Files Reside on a Network File System

■ UNIX Sockets on a Network File System

■ DocumentRoot on a Slow File System

C.8.1 Special Runtime Files Reside on a Network File System
Oracle HTTP Server uses locks for its internal processing, which in turn use lock files.
These files are created dynamically when the lock is created and are accessed every
time the lock is taken or released. If these files reside on a slower file system (for
example, network file system), then there could be severe performance degradation.
To counter this issue:

■ On Linux

1. In httpd.conf, change AcceptMutex fcntl to AcceptMutex sysvsem (two
places).

2. In httpd.conf, comment-out the LockFile directive (three places).

■ On Solaris

1. In httpd.conf, change AcceptMutex fcntl to AcceptMutex pthread (two
places).

2. In httpd.conf, comment-out the LockFile directive (three places).

■ Other UNIX Platforms

In httpd.conf, change the LockFile directive to point to a local filesystem (three
places).

C.8.2 UNIX Sockets on a Network File System
mod_cgid and mod_fastcgi are not enabled by default. If enabled, these modules use
UNIX sockets internally. If UNIX sockets reside on a slower file system (e.g., network
file system), a severe performance degradation could be observed. You can set the
following directives to avoid the issue:

■ If mod_cgid is enabled, use the ScriptSock directive to place mod_cgid's UNIX
socket on a local filesystem.

■ If mod_fastcgi is enabled, use the FastCgiIpcDir directive to place mod_fastcgi's
UNIX sockets on a local filesystem.

C.8.3 DocumentRoot on a Slow File System
If you are using mod_wl_ohs to route the requests to back-end WLS server/cluster,
and the DocumentRoot is on a slower file system (e.g., network file system), then
every request that is routed to the backend server can experience performance issues.
This can be overcome by setting WLSRequest to ON instead of SetHandler
weblogic-handler.

Out of DMS Shared Memory

Troubleshooting Oracle HTTP Server C-5

C.9 Out of DMS Shared Memory
In some extreme configurations, you might see the following message in the OHS
error log:

dms_fail_shm_expansion: out of DMS shared memory in pid XXX, disabling DMS;
increase DMSThreadSharedMem directive from YYY

This is because of an incorrect calculation of required shared memory for OHS DMS.
This can be resolved by setting DMSThreadSharedMem to a larger value than the default
of 350. Continue setting DMSThreadSharedMem 50% higher until the problem is
resolved.

In a configuration with a very large number of virtual hosts (hundreds or thousands),
if the above workaround does not work, you can instead set the environment variable
OHS_DMS_BLOCKSIZE to the desired value.

Out of DMS Shared Memory

C-6 Oracle Fusion Middleware Administering Oracle HTTP Server

D

Configuration Files D-1

DConfiguration Files

The default Oracle HTTP Server configuration contains the files described in the
following sections:

■ Section D.1, "httpd.conf"

■ Section D.2, "ssl.conf"

■ Section D.3, "admin.conf"

■ Section D.4, "mod_wl_ohs.conf"

■ Section D.5, "moduleconf/*.conf"

■ Section D.6, "disabled/*.conf"

■ Section D.7, "mime.types"

■ Section D.8, "ohs.plugins.nodemanager.properties"

■ Section D.9, "magic"

■ Section D.10, "keystores/<wallet-directory>"

■ Section D.11, "auditconfig.xml"

■ Section D.12, "component-logs.xml"

■ Section D.13, "component_events.xml"

■ Section D.14, "Additional Reference"

For more information about the configuration files, see Section 1.6, "Understanding
Configuration Files"

D.1 httpd.conf

D.2 ssl.conf

Description Top-level web server configuration file

Format Apache HTTP Server .conf file format

Primary feature configured Various, including non-SSL listening socket

Description Web server configuration file for SSL

Format Apache HTTP Server .conf file format

Primary feature configured mod_ossl

admin.conf

D-2 Oracle Fusion Middleware Administering Oracle HTTP Server

D.3 admin.conf

D.4 mod_wl_ohs.conf

D.5 moduleconf/*.conf

D.6 disabled/*.conf

D.7 mime.types

Description Web server configuration file for administration port

Format Apache HTTP Server .conf file format

Primary feature configured mod_dms; administration port used for communication
with node manager

Note: Only the listen port and local address are intended for
customer configuration.

Description Web server configuration file for WebLogic plug-in

Format Apache HTTP Server .conf file format

Primary feature configured WebLogic plug-in (mod_wl_ohs)

Description Optional, enabled web server configuration files for
specific features, such as mod_plsql

Format Apache HTTP Server .conf file format

Primary feature configured default: mod_plsql

Note: To disable .conf move it from moduleconf/ to disabled/.

Description Optional, disabled web server configuration files for
specific features, such as mod_plsql

Format Apache HTTP Server .conf file format

Primary feature configured default: mod_perl, mod_fastcgi (if .conf file is moved to
moduleconf/)

Note: To enable a .conf file in the disabled directory, move it from
moduleconf/ to disabled/.

Description Web server configuration file for mod_mime

Format mod_mime file format

Primary feature configured Mime types used by mod_mime

component_events.xml

Configuration Files D-3

D.8 ohs.plugins.nodemanager.properties

D.9 magic

D.10 keystores/<wallet-directory>
Name example: keystores/default

D.11 auditconfig.xml

D.12 component-logs.xml

D.13 component_events.xml

Description Configuration file for Oracle HTTP Server node manager
plug-ins

Format Java property file format

Primary feature configured Oracle HTTP Server Node Manager plug-ins

Description Optional, disabled web server configuration file for mod_
mime_magic

Format mod_mime_magic file format

Primary feature configured File content patterns used by mod_mime_magic

Description Oracle wallet

Format Oracle wallet format

Primary feature configured Oracle wallets for SSL/TLS communication

Description Configuration of OHS auditing and logging

Format FMW audit framework audit configuration XML format

Primary feature configured FMW audit framework auditing of Oracle HTTP Server
operations

Description Configuration of OHS log files for log collection

Format FMW log file configuration XML format

Primary feature configured Log collection

Description Static configuration of OHS audit event definitions

Format FMW audit framework component event XML format

Primary feature configured FMW audit framework

Additional Reference

D-4 Oracle Fusion Middleware Administering Oracle HTTP Server

D.14 Additional Reference
For additional information, see the following documentation:

■ Apache HTTP Server .conf file format:

http://httpd.apache.org/docs/2.2/configuring.html

■ mod_mime file format:

http://httpd.apache.org/docs/2.2/mod/mod_mime.html

■ mod_mime_magic file format:

http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html

Note: This configuration file is not intended for modification by
customers.

E

Property Files E-1

EProperty Files

[13] This appendix documents the property files used by Oracle HTTP Server. The files
include:

■ Section E.1, "ohs_admin.properties"

■ Section E.2, "ohs_nm.properties"

■ Section E.3, "ohs.plugins.nodemanager.properties"

E.1 ohs_admin.properties
The ohs_admin.properties file is a per domain file used to configure the Oracle HTTP
Server administration server MBeans. This file must be edited manually and the
administration server restarted for the change to take effect.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_
admin.properties

Editable properties in this file are listed here:

E.2 ohs_nm.properties
The ohs_nm.properties file is a per domain file used to configure the Oracle HTTP
Server Node Manager plug-in. This file must be edited manually and Node Manager
restarted for the change to take effect.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_
nm.properties

Property Description

LogLevel The log level for the OHS Node Manager plug-in.

Accepted Values:

■ SEVERE (highest value)

■ WARNING

■ INFO

■ CONFIG

■ FINE

■ FINER

■ FINEST (lowest value)

Default: INFO

ohs.plugins.nodemanager.properties

E-2 Oracle Fusion Middleware Administering Oracle HTTP Server

E.3 ohs.plugins.nodemanager.properties
The ohs.plugins.nodemanager.properties file exists for each configured Oracle HTTP
Server and contains configured parameters OHS process management. This file must
be manually edited and propagated to the run-time area.

File path: DOMAIN_
HOME/config/fmwconfig/components/OHS/ohs1/ohs.plugins.nodemanager.prope
rties

E.3.1 Cross-platform Properties
The following table lists the cross-platform properties:

Property Description

LogLevel The log level for the OHS undemanding plug-in.

Accepted values:

■ SEVERE (highest value)

■ WARNING

■ INFO

■ CONFIG

■ FINE

■ FINER

■ FINEST (lowest value)

 Default: INFO

Property Description

config-file The base filename of the initial Oracle HTTP Server configuration file.

config-file accepts any valid .conf file in the instance configuration
directory.

Caution: The specified .conf file must include admin.conf in the same
manner as the default httpd.conf.

Default: httpd.conf

command-line Extra arguments to add to the httpd invocation.

command-line accepts any valid httpd command-line parameters.

Caution: These must not conflict with the usual start, stop, and restart
parameters. Using -D and symbol is the expected use of this property.

Default: None

start-timeout The maximum number of seconds to wait for Oracle HTTP Server to
start and initialize.

 start-timeout accepts any numeric value from 5 to 3600.

Default: 120

stop-timeout The maximum number of seconds to wait for the Oracle HTTP Server to
terminate.

stop-timeout accepts any numeric value from 5 to 3600.

Default: 60

ohs.plugins.nodemanager.properties

Property Files E-3

Example:
config-file = httpd.conf
command-line = -DSYMBOL
start-timeout = 120
stop-timeout = 60
restart-timeout = 180
ping-interval = 30
ping-timeout = 60

E.3.2 Environment Variable Configuration Properties
Additional environment variables for the OHS server may be specified using
environment properties.

The environment property syntax is:

environment[.append][.<order>].<name> = <value>

Where:

■ The optional .append will append the new <value> to any existing value for
<name>. If <name> has not yet been defined, then <value> will be the new value.

■ The optional .<order> value sets order for this definition's setting in the
environment (the default is 0). The order determines when the configured variable
is added to the process' environment (and its value evaluated). Environment
properties with lower order values are processed before those with higher order
values. The order value must be an integer with a value greater than or equal to 0.

■ <name> is the environment variable name, which must begin with a letter or
underscore, and consist of letters, numeric digits or underscores.

■ <value> is the value of environment variable <name>. The value can reference
other environment variable names, including its own.

The following special references may be included in the value:

– "$:" for the path separator

– "$/" for the file separator

– "$$" for '$'

restart-timeout The maximum number of seconds to wait for the Oracle HTTP Server to
restart.

restart-timeout accepts any numeric value from 5 to 3600.

Default: 180

ping-interval The number of seconds from the completion of one Node Manager
health check ping to the Oracle HTTP Server until the start of the next. A
value of 0 disables pings.

ping-interval accepts any numeric value from 0 to 3600.

Default: 30

ping-timeout The maximum number of seconds to wait for an Oracle HTTP Server
health check ping to complete.

ping-tmeout accepts any numeric value from 5 to 3600.

Default: 60

Property Description

ohs.plugins.nodemanager.properties

E-4 Oracle Fusion Middleware Administering Oracle HTTP Server

With the exception of these special characters, UNIX variable syntax references
("$name" or "${name}") and the Windows variable syntax reference ("%name%") are
supported.

Note that each property name within the same property file must be unique (the
behavior is not defined for multiple properties defined with the same name), thus the
.<order> field should be used to keep property names unique when multiple
definitions are provided for the same environment variable <name>.

The following environment variables are set by the Oracle HTTP Server Node
Manager plug-in:

■ SHELL: From Node Manager's environment, or defaults to /bin/sh, or cmd.exe
for Windows

■ ORA_NLS33: Set to $ORACLE_HOME/nls/data

■ NLS_LANG: From Node Manager's environment, otherwise default

■ LANG: From Node Manager's environment, otherwise default

■ LC_ALL: From Node Manager's environment, if set

■ TZ: From Node Manager's environment, if set

■ ORACLE_HOME: Full path to the Oracle home

■ ORACLE_INSTANCE: Full path to the domain home

■ INSTANCE_NAME: The name of the domain

■ PRODUCT_HOME: The path to the OHS install: $ORACLE_HOME/ohs

■ PATH: Defaults to

– On UNIX:

$PRODUCT_HOME/bin:$ORACLE_HOME/bin:

$ORACLE_HOME/jdk/bin:/bin:/usr/bin:/usr/local/bin

– On Windows:

%PRODUCT_HOME%\bin;%ORACLE_HOME%\bin;

%ORACLE_HOME%\jdk\bin;%SystemRoot%;%SystemRoot%\system32

These variables apply to UNIX only:

■ TNS_ADMIN: From Node Manager's environment, or $ORACLE_
HOME/network/admin

■ LD_LIBRARY_PATH: $PRODUCT_HOME/lib:$ORACLE_
HOME/lib:$ORACLE_HOME/jdk/lib

■ LIBPATH: Same as LD_LIBARY_PATH

■ X_LD_LIBRARY_PATH_64: Same as LD_LIBRARY_PATH

These variables apply to Windows only:

■ ComSpec: Defaults to %ComSpec% value from the system.

■ SystemRoot: Defaults to %SystemRoot% value from the system.

■ SystemDrive: Defaults to %SystemDrive% value from the system.

ohs.plugins.nodemanager.properties

Property Files E-5

Example
On a UNIX like system with the web tier installed as /oracle and the environment
variable "MODX_RUNTIME=special" set in the NodeManager's environment, the
following definitions:

environment.MODX_RUNTIME = $MODX_RUNTIME
environment.1.MODX_ENV = Value A
environment.1.MODX_PATH = $PATH$:/opt/modx/bin
environment.2.MODX_ENV = ${MODX_ENV}, Value B
environment.append.2.MODX_PATH = /var/modx/bin
MODX_ENV = Value A, Value B
MODX_PATH = /oracle/ohs/bin:/oracle/bin:/oracle/jdk/bin:/bin:/usr/bin:
/usr/local/bin:/opt/modx/bin:/var/modx/bin

would result in the following additional environment variables set for Oracle HTTP
Server:

MODX_RUNTIME = special

E.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX
These should only be configured for instances running on Linux or other UNIX like
systems.

Property Description

restart-mode Determines whether to use graceful or hard restart for the Oracle HTTP
Server when configuration changes are activated.

restart-mode accepts these values:

■ restart

■ graceful

Default: graceful

stop-mode Determines whether to use a graceful or hard stop when stopping Oracle
HTTP Server.

stop-mode accepts these values:

■ stop

■ graceful-stop

Default: stop

mpm Determines whether to use the prefork or worker MPM for Oracle HTTP
Server.

mpm accepts these values:

■ prefork

■ worker

Default: worker

allow-corefiles Determines whether ulimit should be set to allow core files to be written
for OHS server crashes.

allow-corefiles accepts these values:

■ yes

■ no

Default: no

ohs.plugins.nodemanager.properties

E-6 Oracle Fusion Middleware Administering Oracle HTTP Server

Example
restart-mode = graceful
stop-mode = stop
mpm = worker
allow-corefiles = no

F

Configuring mod_security F-1

FConfiguring mod_security

[14] mod_security is an open-source module that you can use to detect and prevent
intrusion attacks against Oracle HTTP Server; for example, you can specify a mod_
security rule to screen all incoming requests and deny requests that match the
conditions specified in the rule. The mod_security module (version 2.7.2) and its
prerequisites are included in the Oracle HTTP Server installation as a shared object
named mod_security2.so in the ORACLE_HOME/ohs/modules directory.

This version of Oracle HTTP Server supports only mod_security (version 2.7.2)
directives, variables, action, phases and functions. It will not be supported if you replace
this module with a later version.

This appendix contains a usable example (Example F–1) of the mod_security.conf file,
including the LoadModule statement.

For more information on mod_security, see the mod_security documentation site, at:

http://www.modsecurity.org/documentation/

This chapter contains the following sections:

■ Section F.1, "Enabling mod_security"

■ Section F.2, "Configuring mod_security"

F.1 Enabling mod_security
To make the mod_security module available for use when Oracle HTTP Server is
running, ensure that mod_security.conf begins with the following lines:

Notes: Be aware of the following:

■ mod_security was removed from earlier versions of Oracle HTTP
Server but was reintroduced in version 11.1.1.7. This version
follows the recommendations and practices prescribed for open
source mod_security 2.7.2. Only documentation applicable to
open source mod_security 2.7.2 is applicable to the Oracle HTTP
Server implementation of the module.

■ In Oracle HTTP Server 11.1.1.7 and later, mod_security is not
loaded or configured by default; however, if you have an
installation patched from 11.1.1.6, implementing the patch might
have already loaded and configured the module.

■ Oracle only supports the Oracle-supplied version of mod_security.
Newer versions from modsecurity.org will not be supported.

Configuring mod_security

F-2 Oracle Fusion Middleware Administering Oracle HTTP Server

#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"

as shown in the mod_security.conf example inExample F–1.

F.2 Configuring mod_security
Configuring mod_security involves specifying certain directives in the Oracle HTTP
Server configuration file. You can specify the directives directly in the httpd.conf file in
an IfModule container. Alternatively, you can specify the mod_security directives in a
separate mod_security.conf file and include that .conf file in httpd.conf by using the
Include directive.

By default, mod_security.conf does not exist, so you need to create it, preferably by
using the template in Example F–1. Copy and paste the sample into a text editor and
read the entire file, editing it for your system. Then save it as your own mod_
security.conf and include it from your httpd.conf. If you implement mod_security.conf
as described in this appendix, it will use the LoadModule directive to load mod_
security2.so into the run time environment.

Example F–1 mod_security.conf Sample

#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"
-- Rule engine initialization --

Enable ModSecurity, attaching it to every transaction. Use detection
only to start with, because that minimises the chances of post-installation
disruption.
#
SecRuleEngine DetectionOnly

-- Request body handling ---

Allow ModSecurity to access request bodies. If you don't, ModSecurity
won't be able to see any POST parameters, which opens a large security
hole for attackers to exploit.
#
SecRequestBodyAccess On

Enable XML request body parser.
Initiate XML Processor in case of xml content-type
#
SecRule REQUEST_HEADERS:Content-Type "text/xml"
"id:'200000',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XML"

Maximum request body size we will accept for buffering. If you support
file uploads then the value given on the first line has to be as large
as the largest file you are willing to accept. The second value refers
to the size of data, with files excluded. You want to keep that value as
low as practical.
#
SecRequestBodyLimit 13107200

Note: Oracle strongly recommends that you change the value of the
/tmp/ directory to a location where users do not have access.

Configuring mod_security

Configuring mod_security F-3

SecRequestBodyNoFilesLimit 131072

Store up to 128 KB of request body data in memory. When the multipart
parser reachers this limit, it will start using your hard disk for
storage. That is slow, but unavoidable.
#
SecRequestBodyInMemoryLimit 131072

What do do if the request body size is above our configured limit.
Keep in mind that this setting will automatically be set to ProcessPartial
when SecRuleEngine is set to DetectionOnly mode in order to minimize
disruptions when initially deploying ModSecurity.
#
SecRequestBodyLimitAction Reject

Verify that we've correctly processed the request body.
As a rule of thumb, when failing to process a request body
you should reject the request (when deployed in blocking mode)
or log a high-severity alert (when deployed in detection-only mode).
#
SecRule REQBODY_ERROR "!@eq 0" \
"id:'200001', phase:2,t:none,log,deny,status:400,msg:'Failed to parse request
 body.',logdata:'%{reqbody_error_msg}',severity:2"

By default be strict with what we accept in the multipart/form-data
request body. If the rule below proves to be too strict for your
environment consider changing it to detection-only. You are encouraged
not to remove it altogether.
#
SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"id:'200002',phase:2,t:none,log,deny,status:44, \
msg:'Multipart request body failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \
DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \
SM %{MULTIPART_MISSING_SEMICOLON}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IP %{MULTIPART_INVALID_PART}, \
IH %{MULTIPART_INVALID_HEADER_FOLDING}, \
FL %{MULTIPART_FILE_LIMIT_EXCEEDED}'"

Did we see anything that might be a boundary?
#
SecRule MULTIPART_UNMATCHED_BOUNDARY "!@eq 0" \
"id:'200003',phase:2,t:none,log,deny,status:44,msg:'Multipart parser detected a possible unmatched
boundary.'"

PCRE Tuning
We want to avoid a potential RegEx DoS condition
#
SecPcreMatchLimit 1000
SecPcreMatchLimitRecursion 1000

Some internal errors will set flags in TX and we will need to look for these.
All of these are prefixed with "MSC_". The following flags currently exist:
#

Configuring mod_security

F-4 Oracle Fusion Middleware Administering Oracle HTTP Server

MSC_PCRE_LIMITS_EXCEEDED: PCRE match limits were exceeded.
#
SecRule TX:/^MSC_/ "!@streq 0" \
 "id:'200004',phase:2,t:none,deny,msg:'ModSecurity internal error flagged: %{MATCHED_VAR_
NAME}'"

-- Response body handling --

Allow ModSecurity to access response bodies.
You should have this directive enabled in order to identify errors
and data leakage issues.

Do keep in mind that enabling this directive does increases both
memory consumption and response latency.
#
SecResponseBodyAccess On

Which response MIME types do you want to inspect? You should adjust the
configuration below to catch documents but avoid static files
(e.g., images and archives).
#
SecResponseBodyMimeType text/plain text/html text/xml

Buffer response bodies of up to 512 KB in length.
SecResponseBodyLimit 524288

What happens when we encounter a response body larger than the configured
limit? By default, we process what we have and let the rest through.
That's somewhat less secure, but does not break any legitimate pages.
#
SecResponseBodyLimitAction ProcessPartial

-- Filesystem configuration --

The location where ModSecurity stores temporary files (for example, when
it needs to handle a file upload that is larger than the configured limit).

This default setting is chosen due to all systems have /tmp available however,
this is less than ideal. It is recommended that you specify a location that's private.
#
SecTmpDir /tmp/

The location where ModSecurity will keep its persistent data. This default setting
is chosen due to all systems have /tmp available however, it
too should be updated to a place that other users can't access.
#
SecDataDir /tmp/

-- File uploads handling configuration -------------------------------------

The location where ModSecurity stores intercepted uploaded files. This
location must be private to ModSecurity. You don't want other users on
the server to access the files, do you?
#
#SecUploadDir /opt/modsecurity/var/upload/

By default, only keep the files that were determined to be unusual
in some way (by an external inspection script). For this to work you
will also need at least one file inspection rule.
#

Configuring mod_security

Configuring mod_security F-5

#SecUploadKeepFiles RelevantOnly

Uploaded files are by default created with permissions that do not allow
any other user to access them. You may need to relax that if you want to
interface ModSecurity to an external program (e.g., an anti-virus).
#
#SecUploadFileMode 0600

-- Debug log configuration ---

The default debug log configuration is to duplicate the error, warning
and notice messages from the error log.
#
#SecDebugLog /opt/modsecurity/var/log/debug.log
#SecDebugLogLevel 3

-- Audit log configuration ---

Log the transactions that are marked by a rule, as well as those that
trigger a server error (determined by a 5xx or 4xx, excluding 404,
level response status codes).
#
SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus "^(?:5|4(?!04))"

Log everything we know about a transaction.
SecAuditLogParts ABIJDEFHZ

Use a single file for logging. This is much easier to look at, but
assumes that you will use the audit log only ocassionally.
#
SecAuditLogType Serial
SecAuditLog "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/modsec_audit.log"

Specify the path for concurrent audit logging.
SecAuditLogStorageDir "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs"
#Simple test
SecRule ARGS "\.\./" "t:normalisePathWin,id:99999,severity:4,msg:'Drive Access'"

-- Miscellaneous ---

Use the most commonly used application/x-www-form-urlencoded parameter
separator. There's probably only one application somewhere that uses
something else so don't expect to change this value.
#
SecArgumentSeparator &

Settle on version 0 (zero) cookies, as that is what most applications
use. Using an incorrect cookie version may open your installation to
evasion attacks (against the rules that examine named cookies).
#
SecCookieFormat 0

Specify your Unicode Code Point.
This mapping is used by the t:urlDecodeUni transformation function
to properly map encoded data to your language. Properly setting
these directives helps to reduce false positives and negatives.
#

Configuring mod_security

F-6 Oracle Fusion Middleware Administering Oracle HTTP Server

#SecUnicodeCodePage 20127
#SecUnicodeMapFile unicode.mapping

G

OHS Module Directives G-1

GOHS Module Directives

[15] This appendix describes the directives available in the Oracle-developed modules
supported by OHS. It contains these sections:

■ Section G.1, "mod_certheaders"

■ Section G.2, "mod_ossl"

■ Section G.3, "mod_plsql"

G.1 mod_certheaders
mod_certheaders accepts the following directives:

■ AddCertHeader

■ SimulateHttps

G.1.1 AddCertHeader
Specify which headers should be translated to CGI environment variables. This can be
achieved by using the AddCertHeader directive. This directive takes a single argument,
which is the CGI environment variable that should be populated from a HTTP header
on incoming requests. For example, to populate the SSL_CLIENT_CERT CGI
environment variable.

G.1.2 SimulateHttps
mod_certheaders can be used to instruct Oracle HTTP Server to treat certain requests
as if they were received through HTTPS even though they were received through
HTTP. This is useful when Oracle HTTP Server is front-ended by a reverse proxy or
load balancer, which acts as a termination point for SSL requests, and forwards the
requests to Oracle HTTP Server through HTTPS.

Category Value

Syntax AddCertHeader environment_variable

Example AddCertHeader SSL_CLIENT_CERT

Default None

Category Value

Syntax SimulateHttps on|off

Example SimulateHttps on

mod_ossl

G-2 Oracle Fusion Middleware Administering Oracle HTTP Server

G.2 mod_ossl
To configure SSL for your Oracle HTTP Server, enter the mod_ossl directives you want
to use in the ssl.conf file.

The following directives are described in subsequent sections:

■ SSLAccelerator

■ SSLCARevocationFile

■ SSLCARevocationPath

■ SSLCipherSuite

■ SSLEngine

■ SSLFIPS

■ SSLInsecureRenegotiation

■ SSLMutex

■ SSLNZTraceLogLevel

■ SSLOptions

■ SSLPassPhraseDialog

■ SSLProtocol

■ SSLProxyCipherSuite

■ SSLProxyEngine

■ SSLProxyProtocol

■ SSLProxyWallet

■ SSLRequire

■ SSLRequireSSL

■ SSLSessionCache

■ SSLSessionCacheTimeout

■ SSLVerifyClient

■ SSLWallet

G.2.1 SSLAccelerator
Specifies if SSL accelerator is used. Currently only nFast card is supported.

Default off

Category Value

Syntax SSLAccelerator yes|no

Example SSLAccelerator yes

Default SSLAccelerator no

Category Value

mod_ossl

OHS Module Directives G-3

G.2.2 SSLCARevocationFile
Specifies the file where you can assemble the Certificate Revocation Lists (CRLs) from
CAs (Certificate Authorities) that you accept certificates from. These are used for client
authentication. Such a file is the concatenation of various PEM-encoded CRL files in
order of preference. This directive can be used alternatively or additionally to
SSLCARevocationPath.

G.2.3 SSLCARevocationPath
Specifies the directory where PEM-encoded Certificate Revocation Lists (CRLs) are
stored. These CRLs come from the CAs (Certificate Authorities) that you accept
certificates from. If a client attempts to authenticate itself with a certificate that is on
one of these CRLs, then the certificate is revoked and the client cannot authenticate
itself with your server.

G.2.4 SSLCipherSuite
Specifies the SSL cipher suite that the client can use during the SSL handshake. This
directive uses a colon-separated cipher specification string to identify the cipher suite.
Table 11–2 shows the tags you can use in the string to describe the cipher suite you
want. SSLCipherSuite accepts the following values:

■ none: Adds the cipher to the list

■ + : Adds the cipher to the list and place it in the correct location in the list

■ - : Remove the cipher from the list (can be added later)

■ ! : Remove the cipher from the list permanently

Tags are joined with prefixes to form a cipher specification string. Cipher suite tags are
listed in Table G–1.

Note: The SSLAccelerator directive has been deprecated. For
information on enabling SSL acceleration support using a wallet, refer
to the Oracle Advanced Security Administrator's Guide on
http://www.oracle.com/technology/documentation.

Category Value

Syntax SSLCARevocationFile file_name

Example SSLCARevocationFile ${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/crl/ca_bundle.cr

Default None

Category Value

Syntax SSLCARevocationPath path/to/CRL_directory/

Example SSLCARevocationPath ${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/crl

Default None

mod_ossl

G-4 Oracle Fusion Middleware Administering Oracle HTTP Server

Table G–2 lists the Cipher Suites supported in Oracle Advanced Security 12.1.2.

Category Value

Example SSLCipherSuite ALL:!MD5

In this example, all ciphers are specified except MD5 strength ciphers.

Syntax SSLCipherSuite cipher-spec

Default ALL:!ADH:+HIGH:+MEDIUM:+LOW

Table G–1 SSLCipher Suite Tags

Function Tag Meaning

Key exchange kRSA RSA key exchange

Key exchange kDHr Diffie-Hellman key exchange with RSA key

Authentication aNULL No authentication

Authentication aRSA RSA authentication

Authentication aDH Diffie-Hellman authentication

Encryption eNULL No encryption

Encryption DES DES encoding

Encryption 3DES Triple DES encoding

Encryption RC4 RC4 encoding

Encryption ECC Elliptic curve cryptography encoding

Data Integrity MD5 MD5 hash function

Data Integrity SHA SHA hash function

Data Integrity SHA256 SHA256 hash function

Data Integrity SHA384 SHA384 hash function

Aliases SSLv3 All SSL version 3.0 ciphers

Aliases TLSv1 All TLS version 1 ciphers

Aliases TLSv1.1 All TLS version 1.1 ciphers

Aliases TLSv1.2 All TLS version 1.2 ciphers

Aliases LOW All low strength ciphers (export and single DES)

Aliases MEDIUM All ciphers with 128-bit encryption

Aliases HIGH All ciphers using triple DES

Aliases AES All ciphers using AES encryption.

Aliases RSA All ciphers using RSA key exchange

Aliases DH All ciphers using Diffie-Hellman key exchange

mod_ossl

OHS Module Directives G-5

G.2.5 SSLEngine
Toggles the usage of the SSL Protocol Engine. This is usually used inside a
<VirtualHost> section to enable SSL for a particular virtual host. By default, the SSL
Protocol Engine is disabled for both the main server and all configured virtual hosts.
Example 11–1 is an example for using SSLEngine directive.

G.2.6 SSLFIPS
This directive toggles the usage of the SSL library FIPS_mode flag. It must be set in the
global server context and cannot be configured with conflicting settings (SSLFIPS on
followed by SSLFIPS off or similar). The mode applies to all SSL library operations.

Table G–2 Cipher Suites Supported in Oracle Advanced Security 12.1.2

Cipher Suite Authentication Encryption
Data
Integrity TLSv1 TLSv1.1 TLSv1.2

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 (128) MD5 Yes Yes Yes

SSL_RSA_WITH_RC4_128_SHA RSA RC4 (128) SHA Yes Yes Yes

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES (168) SHA Yes Yes Yes

SSL_RSA_WITH_AES_128_CBC_SHA RSA AES (128) SHA Yes Yes Yes

SSL_RSA_WITH_AES_256_CBC_SHA RSA AES (256) SHA Yes Yes Yes

RSA_WITH_AES_128_CBC_SHA256 RSA AES (128) SHA256 No No Yes

RSA_WITH_AES_256_CBC_SHA256 RSA AES (256) SHA256 No No Yes

RSA_WITH_AES_128_GCM_SHA256 RSA AES (128) SHA256 No No Yes

RSA_WITH_AES_256_GCM_SHA384 RSA AES (256) SHA384 No No Yes

ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDSA AES (128) SHA Yes Yes Yes

ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDSA AES (256) SHA Yes Yes Yes

ECDHE_ECDSA_WITH_AES_128_CBC_
SHA256

ECDSA AES (128) SHA256 No No Yes

ECDHE_ECDSA_WITH_AES_256_CBC_
SHA384

ECDSA AES (256) SHA384 No No Yes

ECDHE_ECDSA_WITH_AES_128_GCM_
SHA256

ECDSA AES (128) SHA256 No No Yes

ECDHE_ECDSA_WITH_AES_256_GCM_
SHA384

ECDSA AES (256) SHA384 No No Yes

Category Value

Syntax SSLEngine on|off

Example SSLEngine on

Default off

Note: FIPS is available only on the UNIX/Linux platform. It is not
available on the Windows platform

mod_ossl

G-6 Oracle Fusion Middleware Administering Oracle HTTP Server

Configuring an SSLFIPS change requires that the SSLFIPS on/off directive be set
globally in ssl.conf. Virtual level configuration is disabled in SSLFIPS directive. Hence,
setting SSLFIPS to virtual directive will result in an error.

The cipher suites supported the SSLFIPS mode are:

■ SSL_RSA_WITH_3DES_EDE_CBC_SHA

■ SSL_RSA_WITH_AES_128_CBC_SHA

■ SSL_RSA_WITH_AES_256_CBC_SHA

■ RSA_WITH_AES_128_CBC_SHA256

■ RSA_WITH_AES_256_CBC_SHA256

■ RSA_WITH_AES_256_GCM_SHA384

■ ECDHE_ECDSA_WITH_AES_128_CBC_SHA

■ ECDHE_ECDSA_WITH_AES_256_CBC_SHA

■ ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

■ ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

■ ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

■ ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

For instructions on how to implement these cipher suites, see Section G.2.4,
"SSLCipherSuite".

G.2.7 SSLInsecureRenegotiation
As originally specified, all versions of the SSL and TLS protocols (up to and including
TLS/1.2) were vulnerable to a Man-in-the-Middle attack (CVE-2009-3555) during a
renegotiation. This vulnerability allowed an attacker to "prefix" a chosen plaintext to
the HTTP request as seen by the web server. A protocol extension was developed
which fixed this vulnerability if supported by both client and server.

For more information on Man-in-the-Middle attack (CVE-2009-3555), see:

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3555

Default mode

When the directive SSLInsecureRenegotion is not specified in the configuration, Oracle
HTTP Server operates in compatibility mode.

In this mode, vulnerable peers that do not have RI/SCSV support are allowed to
connect, but renegotiation is allowed only with those peers that have RI/SCSV
support.

SSLInsecureRenegotiation ON

Category Value

Syntax SSLFIPS ON | OFF

Example SSLFIPS ON

Default Off

mod_ossl

OHS Module Directives G-7

This option allows vulnerable peers that do not have RI/SCSV to perform
renegotiation. Hence this option must be used with caution, as it leaves the server
vulnerable to the renegotiation attack described in CVE-2009-3555.

SSLInsecureRenegotiation OFF

If this option is used, the behavior of Oracle HTTP Server is similar to that described in
Default mode.

 To configure SSLInsecureRenegotiation, edit ssl.conf file and set
SSLInsecureRenegotiation ON/OFF globally or virtually to enable disable insecure
renegotiation.

G.2.8 SSLMutex
Type of semaphore (lock) for SSL engine's mutual exclusion of operations that have to
be synchronized between Oracle HTTP Server processes. Accepted values are:

■ file:path/to/mutex: Uses a file for locking. The process ID (PID) of the Oracle
HTTP Server parent process is appended to the filename to ensure uniqueness. If
the filename does not begin with a slash (/), it is assumed to be relative to
ServerRoot. This setting is not available on Windows.

■ none: Uses no mutex at all. Not recommended, because the mutex synchronizes
the write access to the SSL session cache. If you do not configure a mutex, the
session cache can become garbled.

■ pthread: This directive tells the SSL Module to use Posix thread mutexes. It is only
available if the underlying platform and Apache Portable Runtime (APR) supports
it.

■ sem: Uses an operating system semaphore to synchronize writes. On UNIX, it
would be a Sys V IPC semaphore; on Windows, it is a Windows Mutex. This is the
best choice, if the operating system supports it.

Category Value

Syntax SSLInsecureRenegotiation ON | OFF

Example SSLInsecureRenegotiation ON

Default Off

Category Value

Syntax SSLMutex none | file | pthread | sem

Example SSLMutex sem

Default pthread

mod_ossl

G-8 Oracle Fusion Middleware Administering Oracle HTTP Server

G.2.9 SSLNZTraceLogLevel
SSLNZTraceLogLevel adjusts the verbosity of the messages recorded in the NZ library
error logs. When a particular level is specified, messages from all other levels of higher
significance will be reported as well. For example, when SSLNZTraceLogLevel ssl is
set, messages with log levels of error, warn, user and debug will also be posted.

SSLNZTraceLogLevel accepts the following log levels:

■ none: NZ Trace disable

■ fatal: Fatal error; system is unusable.

■ error: Error conditions.

■ warn: Warning conditions.

■ user: Normal but significant condition.

■ debug: Debug-level condition

■ ssl: SSL level debugging

G.2.10 SSLOptions
Controls various runtime options on a per-directory basis. In general, if multiple
options apply to a directory, the most comprehensive option is applied (options are not

Notes:

■ In the Oracle HTTP Server default ssl.conf template file, pthread
is defined as the default value for the SSLMutex directive for
non-Windows platforms and none is defined as a default value for
the Windows platform as follows:

<IfModule mpm_winnt_module>
 SSLMutex "none"
</IfModule>
<IfModule !mpm_winnt_module>
 SSLMutex pthread
</IfModule>

As new Oracle HTTP Server instances are created for
non-Windows platforms, the default value for SSLMutex will
continue to be pthread unless you explicitly modify your
configuration. If you comment out these lines in the ssl.conf file
and no value is specified for SSLMutex in the Oracle HTTP Server
configuration files, then Oracle HTTP Server will use none as the
default value for SSLMutex.

■ The none value for the SSLMutex directive is not recommended
for non-Windows platforms, because it can create a garbled
session cache and can lead to core dumps.

Category Value

Syntax SSLNZTraceLogLevel none | fatal | error | warn | user | debug |
ssl

Example SSLNZTraceLogLevel fatal

Default None

mod_ossl

OHS Module Directives G-9

merged). However, if all of the options in an SSLOptions directive are preceded by a
plus ('+') or minus ('-') symbol, then the options are merged. Options preceded by a
plus are added to the options currently in force, and options preceded by a minus are
removed from the options currently in force.

Accepted values are:

■ StdEnvVars: Creates the standard set of CGI/SSI environment variables that are
related to SSL. This is disabled by default because the extraction operation uses a
lot of CPU time and usually has no application when serving static content.
Typically, you only enable this for CGI/SSI requests.

■ ExportCertData: Enables the following additional CGI/SSI variables:

SSL_SERVER_CERT

SSL_CLIENT_CERT

SSL_CLIENT_CERT_CHAIN_n (where n= 0, 1, 2...)

These variables contain the Privacy Enhanced Mail (PEM)-encoded X.509
certificates for the server and the client for the current HTTPS connection, and can
be used by CGI scripts for deeper certificate checking. All other certificates of the
client certificate chain are provided. This option is "Off" by default because there is
a performance cost associated with using it.

SSL_CLIENT_CERT_CHAIN_n variables are in the following order: SSL_CLIENT_CERT_
CHAIN_0 is the intermediate CA who signs SSL_CLIENT_CERT. SSL_CLIENT_CERT_
CHAIN_1 is the intermediate CA who signs SSL_CLIENT_CERT_CHAIN_0, and so
forth, with SSL_CLIENT_ROOT_CERT as the root CA.

■ FakeBasicAuth: Translates the subject distinguished name of the client X.509
certificate into an HTTP basic authorization user name. This means that the
standard HTTP server authentication methods can be used for access control. Note
that no password is obtained from the user; the string 'password' is substituted.

■ StrictRequire: Denies access when, according to SSLRequireSSL or directives,
access should be forbidden. Without StrictRequire, it is possible for a 'Satisfy
any' directive setting to override the SSLRequire or SSLRequireSSL directive,
allowing access if the client passes the host restriction or supplies a valid user
name and password.

Thus, the combination of SSLRequireSSL or SSLRequire with SSLOptions
+StrictRequire gives mod_ossl the ability to override a 'Satisfy any' directive
in all cases.

■ CompatEnvVars: Exports obsolete environment variables for backward
compatibility to Apache SSL 1.x, mod_ssl 2.0.x, Sioux 1.0, and Stronghold 2.x. Use
this to provide compatibility to existing CGI scripts.

■ OptRenegotiate: This enables optimized SSL connection renegotiation handling
when SSL directives are used in a per-directory context.

Category Value

Syntax SSLOptions [+-] StdEnvVars | ExportCertData | FakeBasicAuth |
StrictRequire | CompatEnvVars | OptRenegotiate

Example SSLOptions -StdEnvVars

Default None

mod_ossl

G-10 Oracle Fusion Middleware Administering Oracle HTTP Server

G.2.11 SSLPassPhraseDialog
Type of pass phrase dialog for wallet access. mod_ossl asks the administrator for a
pass phrase to access the wallet. Accepted values are:

■ builtin: when the server is started, mod_ossl prompts for a password for each
wallet.

■ exec:path/to/program - when the server is started, mod_ossl calls an external
program configured for each wallet. This program is invoked with two arguments:
servername:portnumber and RSA or DSA.

G.2.12 SSLProtocol
Specifies SSL protocol(s) for mod_ossl to use when establishing the server
environment. Clients can only connect with one of the specified protocols. Accepted
values are:

■ SSLv3

■ TLSv1

■ TLSv1.1

■ TLSv1.2

■ All

You can specify multiple values as a space-delimited list. In the syntax for SSLProtocol,
the "-" and "+" symbols have the following meaning:

■ + : Adds the protocol to the list

■ - : Removes the protocol from the list

In the current release All is defined as +SSLv3 +TLSv1 +TLSv1.1 +TLSv1.2 (SSLv2 is
disabled out-of-the-box. You must explicitly disable SSLv3 in this case.)

Category Value

Syntax SSLPassPhraseDialog builtin | exec

Example SSLPassPhraseDialog exec:/usr/local/sbin/pfilter

Default builtin

Note: Because of security concerns, Oracle strongly recommends that
you disable the SSLv3 security protocol from Oracle HTTP Server. For
instructions on how to disable SSL, see "Disable SSL Security
Protocols" in Oracle HTTP Server Release Notes.

Note: The syntax for the SSLProtocol directive can use either TLSv1
as a value or the nzos_Version_1_0 syntax (or TLSv1.1 and nzos_
Version_1_1, or TLSv1.2 and nzos_Version_1_2).

If you are using Oracle Fusion Middleware Control, security will be
configured using the nzos* syntax. Both options represent TLS 1.0
protocol version. The nzos_Version_1_0 syntax is the Oracle
representation of TLS1.0 and TLSv1 is an open source representation.
Oracle HTTP Server supports both ways to represent SSL protocol in
its config files.

mod_ossl

OHS Module Directives G-11

G.2.13 SSLProxyCipherSuite
Specifies the SSL cipher suite that the proxy can use during the SSL handshake. This
directive uses a colon-separated cipher specification string to identify the cipher suite.
Table G–1 shows the tags to use in the string to describe the cipher suite you want.
SSLProxyCipherSuite accepts the following values:

■ none: Adds the cipher to the list

■ + : Adds the cipher to the list and place it in the correct location in the list

■ - : Remove the cipher from the list (can be added later)

■ ! : Remove the cipher from the list permanently

Tags are joined with prefixes to form a cipher specification string. The
SSLProxyCipherSuite directive uses the same tags as the SSLCipherSuite directive. For
a list of supported suite tags, see Table G–1.

The SSLProxyCipherSuite directive uses the same cipher suites as the SSLCipherSuite
directive. For a list of the Cipher Suites supported in Oracle Advanced Security 12.1.2,
see Table G–2.

G.2.14 SSLProxyEngine
Enables or disables the SSL/TLS protocol engine for proxy. SSLProxyEngine is usually
used inside a <VirtualHost> section to enable SSL/TLS for proxy usage in a particular
virtual host. By default, the SSL/TLS protocol engine is disabled for proxy both for the
main server and all configured virtual hosts.

SSLProxyEngine should not be included in a virtual host that will be acting as a
forward proxy (by using Proxy or ProxyRequest directives). SSLProxyEngine is not
required to enable a forward proxy server to proxy SSL/TLS requests.

Category Value

Syntax SSLProtocol [+-] SSLv3 | TLSv1 | TLSv1.1 | TLSv1.2 | All

Example SSLProtocol +TLSv1 +TLSv1.1 +TLSv1.2

Default ALL

Category Value

Example SSLProxyCipherSuite ALL:!MD5

In this example, all ciphers are specified except MD5 strength ciphers.

Syntax SSLProxyCipherSuite cipher-spec

Default ALL:!ADH:+HIGH:+MEDIUM:+LOW

Category Value

Syntax SSLProxyEngine ON | OFF

Example SSLProxyEngine on

Default Disable

mod_ossl

G-12 Oracle Fusion Middleware Administering Oracle HTTP Server

G.2.15 SSLProxyProtocol
Specifies SSL protocol(s) for mod_ossl to use when establishing a proxy connection in
the server environment. Proxies can only connect with one of the specified protocols.
Accepted values are:

■ SSLv3

■ TLSv1

■ TLSv1.1

■ TLSv1.2

■ All

You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+"
symbols have the following meaning:

■ + : Adds the protocol to the list

■ - : Removes the protocol from the list

In the current release All is defined as +SSLv3 +TLSv1 +TLSv1.1 +TLSv1.2 (SSLv2 is
disabled out of the box. You must explicitly disable SSLv3 in this case.)

G.2.16 SSLProxyWallet
Specifies the location of the wallet with its WRL, specified as a filepath, that a proxy
connection needs to use.

Note: Because of security concerns, Oracle strongly recommends that
you disable the SSLv3 security protocol from Oracle HTTP Server. For
instructions on how to disable SSL, see "Disable SSL Security
Protocols" in Oracle HTTP Server Release Notes.

Note: The syntax for the SSLProxyProtocol directive can use either
TLSv1 as a value or the nzos_Version_1_0 syntax (or TLSv1.1 and
nzos_Version_1_1, or TLSv1.2 and nzos_Version_1_2).

If you are using Oracle Fusion Middleware Control, security will be
configured using the nzos* syntax. Both options represent TLS 1.0
protocol version. The nzos_Version_1_0 syntax is the Oracle
representation of TLS1.0 and TLSv1 is an open source representation.
Oracle HTTP Server supports both ways to represent SSL protocol in
its config files.

Category Value

Syntax SSLProxyProtocol [+-] SSLv3 | TLSv1 | TLSv1.1 | TLSv1.2 |
All

Example SSLProxyProtocol +TLSv1 +TLSv1.1 +TLSv1.2

Default ALL

Category Value

Syntax SSLProxyWallet file:path to wallet

mod_ossl

OHS Module Directives G-13

G.2.17 SSLRequire
Denies access unless an arbitrarily complex boolean expression is true.

Understanding the Expression
The expression must match the following syntax (given as a BNF grammar notation):

expr ::= "true" | "false"
"!" expr
expr "&&" expr
expr "||" expr
"(" expr ")"

comp ::=word "==" word | word "eq" word
word "!=" word |word "ne" word
word "<" word |word "lt" word
word "<=" word |word "le" word
word ">" word |word "gt" word
word ">=" word |word "ge" word
word "=~" regex
word "!~" regex
wordlist ::= word
wordlist "," word

word ::= digit
cstring
variable
function

digit ::= [0-9]+

cstring ::= "..."

variable ::= "%{varname}"

Table G–3 and Table G–4 list standard and SSL variables. These are valid values for
varname.

function ::= funcname "(" funcargs ")"

For funcname, the following function is available:

file(filename)

The file function takes one string argument, the filename, and expands to the contents
of the file. This is useful for evaluating the file's contents against a regular expression.

Table G–3 lists the standard variables for SSLRequire varname.

Example SSLProxyWallet "${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/proxy"

Default None

Category Value

Syntax SSLRequire expression (see Understanding the Expression)

Example SSLRequire word ">=" word |word "ge" word

Default None

Category Value

mod_ossl

G-14 Oracle Fusion Middleware Administering Oracle HTTP Server

Table G–4 lists the SSL variables for SSLRequire varname.

Table G–3 Standard Variables for SSLRequire Varname

Standard Variables Standard Variables Standard Variables

HTTP_USER_AGENT PATH_INFO AUTH_TYPE

HTTP_REFERER QUERY_STRING SERVER_SOFTWARE

HTTP_COOKIE REMOTE_HOST API_VERSION

HTTP_FORWARDED REMOTE_IDENT TIME_YEAR

HTTP_HOST IS_SUBREQ TIME_MON

HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY

HTTP_ACCEPT SERVER_ADMIN TIME_HOUR

HTTP:headername SERVER_NAME TIME_MIN

THE_REQUEST SERVER_PORT TIME_SEC

REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY

REQUEST_SCHEME REMOTE_ADDR TIME

REQUEST_URI REMOTE_USER ENV:variablename

REQUEST_FILENAME

Table G–4 SSL Variables for SSLRequire Varname

SSL Variables SSL Variables SSL Variables

HTTPS SSL_PROTOCOL SSL_CIPHER_ALGKEYSIZE

SSL_CIPHER SSL_CIPHER_EXPORT SSL_VERSION_INTERFACE

SSL_CIPHER_USEKEYSIZE SSL_VERSION_LIBRARY SSL_SESSION_ID

SSL_CLIENT_V_END SSL_CLIENT_M_SERIAL SSL_CLIENT_V_START

SSL_CLIENT_S_DN_ST SSL_CLIENT_S_DN SSL_CLIENT_S_DN_C

SSL_CLIENT_S_DN_CN SSL_CLIENT_S_DN_O SSL_CLIENT_S_DN_OU

SSL_CLIENT_S_DN_G SSL_CLIENT_S_DN_T SSL_CLIENT_S_DN_I

SSL_CLIENT_S_DN_UID SSL_CLIENT_S_DN_S SSL_CLIENT_S_DN_D

SSL_CLIENT_I_DN_C SSL_CLIENT_S_DN_Email SSL_CLIENT_I_DN

SSL_CLIENT_I_DN_O SSL_CLIENT_I_DN_ST SSL_CLIENT_I_DN_L

SSL_CLIENT_I_DN_T SSL_CLIENT_I_DN_OU SSL_CLIENT_I_DN_CN

SSL_CLIENT_I_DN_S SSL_CLIENT_I_DN_I SSL_CLIENT_I_DN_G

SSL_CLIENT_I_DN_Email SSL_CLIENT_I_DN_D SSL_CLIENT_I_DN_UID

SSL_CLIENT_CERT SSL_CLIENT_CERT_CHAIN_n SSL_CLIENT_ROOT_CERT

SSL_CLIENT_VERIFY SSL_CLIENT_M_VERSION SSL_SERVER_M_VERSION

SSL_SERVER_V_START SSL_SERVER_V_END SSL_SERVER_M_SERIAL

SSL_SERVER_S_DN_C SSL_SERVERT_S_DN_ST SSL_SERVER_S_DN

SSL_SERVER_S_DN_OU SSL_SERVER_S_DN_CN SSL_SERVER_S_DN_O

SSL_SERVER_S_DN_I SSL_SERVER_S_DN_G SSL_SERVER_S_DN_T

SSL_SERVER_S_DN_D SSL_SERVER_S_DN_UID SSL_SERVER_S_DN_S

mod_ossl

OHS Module Directives G-15

G.2.18 SSLRequireSSL
Denies access to clients not using SSL. This is a useful directive for absolute protection
of a SSL-enabled virtual host or directories in which configuration errors could create
security vulnerabilities.

G.2.19 SSLSessionCache
Specifies the global/interprocess session cache storage type. The cache provides an
optional way to speed up parallel request processing. The accepted values are:

■ dc:UNIX:/path/to/socket: This makes use of the distcache distributed session
caching libraries. The argument should specify the location of the server or proxy
to be used using the distcache address syntax; for example,
UNIX:/path/to/socket specifies a UNIX domain socket (typically a local dc_client
proxy); IP:server.example.com:9001 specifies an IP address.

■ none: disables the global/interprocess session cache. Produces no impact on
functionality, but makes a major difference in performance.

■ nonenotnull: This disables any global/inter-process Session Cache. However it
does force OpenSSL to send a non-null session ID to accommodate buggy clients
that require one.

■ shmcb:/path/to/datafile[bytes]: Uses a high-performance Shared Memory Cyclic
Buffer (SHMCB) session cache to synchronize the local SSL memory caches of the
server processes. The performance of shmcb is more uniform in all environments
when compared to shmht. Note: in this shm setting, no log files are created under
/path/to/datafile on local disk.

■ shmht:/path/to/datafile[bytes]: Uses a high-performance hash table (bytes
specifies approximate size) inside a shared memory segment in RAM, which is
established by the /path/to/datafile. This hash table synchronizes the local SSL
memory caches of the server processes. Note: in this shm setting, no log files are
created under /path/to/datafile on local disk.

SSL_SERVER_I_DN SSL_SERVER_I_DN_C SSL_SERVER_S_DN_Email

SSL_SERVER_I_DN_L SSL_SERVER_I_DN_O SSL_SERVER_I_DN_ST

SSL_SERVER_I_DN_CN SSSL_SERVER_I_DN_T SSL_SERVER_I_DN_OU

SSL_SERVER_I_DN_G SSL_SERVER_I_DN_I

Category Value

Syntax SSLRequireSSL

Example SSLRequireSSL

Default None

Category Value

Syntax SSLSessionCache dc:UNIX:/path/to/socket | none
|nonetonull | shmcb:/path/to/datafile[bytes] | shmht:
/path/to/datafile[bytes]

Table G–4 (Cont.) SSL Variables for SSLRequire Varname

SSL Variables SSL Variables SSL Variables

mod_plsql

G-16 Oracle Fusion Middleware Administering Oracle HTTP Server

G.2.20 SSLSessionCacheTimeout
Specifies the number of seconds before a SSL session in the session cache expires.

G.2.21 SSLVerifyClient
Specifies whether a client must present a certificate when connecting. The accepted
values are:

■ none: No client certificate is required

■ optional: Client can present a valid certificate

■ require: Client must present a valid certificate

G.2.22 SSLWallet
Specifies the location of the wallet with its WRL, specified as a filepath.

G.3 mod_plsql
The mod_plsql configuration parameters are described in these sections:

Examples SSLSessionCache "shmcb:${ORACLE_
INSTANCE}/servers/${COMPONENT_NAME}/logs/ssl_
scache(512000)"

Default SSLSessionCache none

Category Value

Syntax SSLSessionCacheTimeout seconds

Example SSLSessionCacheTimeout 120

Default 300

Category Value

Syntax SSLVerifyClient none | optional | require

Example SSLVerifyClient optional

Default None

Note: The level optional_no_ca included with mod_ssl (in which
the client can present a valid certificate, but it need not be
verifiable) is not supported in mod_ossl.

Category Value

Syntax SSLWallet file:path to wallet

Example SSLWallet "${ORACLE_
INSTANCE}/config/fmwconfig/components/${COMPONENT_
TYPE}/instances/${COMPONENT_NAME}/keystores/default"

Default None

Category Value

mod_plsql

OHS Module Directives G-17

■ Section G.3.1, "plsql.conf"

■ Section G.3.2, "dads.conf"

■ Section G.3.3, "cache.conf"

G.3.1 plsql.conf
The following parameters are used with the plsql.conf file:

■ PlsqlDMSEnable

■ PlsqlLogEnable

■ PlsqlLogDirectory

■ PlsqlIdleSessionCleanupInterval

G.3.1.1 PlsqlDMSEnable
Enables Dynamic Monitoring Service (DMS) for the mod_plsql module.

G.3.1.2 PlsqlLogEnable
Enables debug level logging for the mod_plsql module. Debug level logging is meant
to be used for debugging purposes only.

When logging is enabled, Oracle HTTP Server log files are typically created in the
PlsqlCacheDirectory DOMAIN_HOME/servers/componentName/ directory.
However, the location specified in PlsqlLogDirectory determines the final location.

This parameter should be set to Off unless recommended by Oracle support to debug
problems with the mod_plsql module.

To view more details about the internal processing of the mod_plsql module, set this
directive to On. This causes the mod_plsql module to start logging every request that is
processed. The log files are generated as specified by the PlsqlLogDirectory directive.

G.3.1.3 PlsqlLogDirectory
Specifies the directory where debug level logs are written.

Set the directory name of the location where log files should be generated when
logging is enabled. To avoid possible confusion about the location of this directory, an
absolute path is recommended.

On UNIX, this directory must have write permissions by the owner of the child httpd
processes.

Category Value

Syntax PlsqlDMSEnable On | Off

Example PlsqlDMSEnable On

Default On

Category Value

Syntax PlsqlLogEnable On | Off

Example PlsqlLogEnable Off

Default Off

mod_plsql

G-18 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.1.4 PlsqlIdleSessionCleanupInterval
Specifies the time (in minutes) in which the idle database sessions should be closed
and cleaned by the mod_plsql module.

This directive is used with connection pooling of database connections and sessions in
the mod_plsql module. When a session is not used for the specified amount of time, it
is closed and freed. This is done so that unused sessions can be cleaned, and the
memory is freed on the database side.

Setting this time to a low number helps in faster cleanup of unused database sessions.
If this number is too low, then this may adversely affect the performance benefits of
connection pooling in the mod_plsql module.

If the number of open database sessions is not a concern, you can increase the value of
this parameter for best performance. In such a case, if the site is accessed frequently
enough that the idle session cleanup interval is never reached for a session, then the
DAD configuration parameter PlsqlMaxRequestsPerSession can be modified so that it
is guaranteed that a pooled database session gets recycled on a regular basis.

For most installations, the default value is adequate.

G.3.2 dads.conf
The dads.conf file contains the configuration parameters for the PL/SQL database
access descriptor. (See Table G–1 for the file location.) A DAD is a set of values that
specifies how the mod_plsql module connects to a database server to fulfill a HTTP
request.

The following parameters are used with the dads.conf file:

Category Value

Syntax PlsqlLogDirectory directory

Example PlsqlLogDirectory "${ORACLE_INSTANCE}/servers/${COMPONENT_
NAME}/logs"

Default None

Category Value

Syntax PlsqlIdleSessionCleanupInterval number

Example PlsqlIdleSessionCleanupInterval 10

Default 15 (minutes)

mod_plsql

OHS Module Directives G-19

G.3.2.1 PlsqlAfterProcedure
Specifies the procedure to be invoked after calling the requested procedure. This
enables you to put a hook point after the requested procedure is called. This is useful
in doing SQL*Traces/SQL Profiles while debugging a problem with the requested
procedure. This is also useful when you want to ensure that a specific call is made after
running every procedure.

G.3.2.2 PlsqlAlwaysDescribeProcedure
Specifies whether the mod_plsql module should describe a procedure before trying to
run it. If this is set to On, then the mod_plsql module will always describe a procedure
before invoking it. Otherwise, the mod_plsql module will only describe a procedure
when its internal heuristics have interpreted a parameter type incorrectly.

■ PlsqlAfterProcedure

■ PlsqlAlwaysDescribeProcedure

■ PlsqlAuthenticationMode

■ PlsqlBeforeProcedure

■ PlsqlBindBucketLengths

■ PlsqlBindBucketWidths

■ PlsqlCGIEnvironmentList

■ PlsqlConnectionTimeout

■ PlsqlConnectionValidation

■ PlsqlConnectionValidation

■ PlsqlDatabaseConnectString

■ PlsqlDatabasePassword

■ PlsqlDatabaseUserName

■ PlsqlDefaultPage

■ PlsqlDocumentPath

■ PlsqlDocumentProcedure

■ PlsqlDocumentTablename

■ PlsqlErrorStyle

■ PlsqlExclusionList

■ PlsqlFetchBufferSize

■ PlsqlInfoLogging

■ PlsqlMaxRequestsPerSession

■ PlsqlNLSLanguage

■ PlsqlPathAlias

■ PlsqlPathAliasProcedure

■ PlsqlRequestValidationFunction

■ PlsqlSessionCookieName

■ PlsqlSessionStateManagement

■ PlsqlTransferMode

■ PlsqlUploadAsLongRaw

Category Value

Syntax PlsqlAfterProcedure string

Example PlsqlAfterProcedure portal.mypkg.myafterproc

Default None

Note: This parameter should only be used for debugging purposes.
In addition, you could use this parameter to stop SQL trace/SQL
profiling.

Category Value

Syntax PlsqlAlwaysDescribeProcedure On | Off

Example PlsqlAlwaysDescribeProcedure On

Default Off

mod_plsql

G-20 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.2.3 PlsqlAuthenticationMode
Specifies the authentication mode to use for allow access through the DAD. The
accepted values for PlsqlAuthenticationMode are Basic, SingleSignOn, GlobalOwa,
CustomOwa, PerPackageOwa.

■ Basic is the default mode and determines whether to ask for username and
password if they are not provided with PlsqlDatabaseUsername and
PlsqlDatabasePassword. This setting is required for WebDB 2.x applications. If the
DAD is not using the Basic authentication, then you must include a valid
username/password in the DAD configuration.

■ SingleSignOn specifies that you want to use Single Sign-On server. This is
required for DADs using Oracle9iAS Portal. As already stated the provided
username and password need to be the one from your single sign-on server.

■ GlobalOwa, CustomOwa, and PerPackageOwa are used only by very few PL/SQL
applications. Custom authentication enables applications to authenticate users
within the application itself, not at the database level.

Authorization is performed by invoking a user-written authorization function.
Custom authentication uses a static username/password that is stored in the
DAD. It cannot be combined with dynamic username/password authentication.
To enable custom authentication, set the level of authentication for
PlsqlAuthenticationMode and implement the authorize function.

You should also be aware of the following:

■ If the DAD is not using the Basic authentication, then you must include a valid
username/password in the DAD configuration. For the Basic mode, to perform
dynamic authentication, the DAD username/password parameters must be
omitted.

■ The SingleSignOn mode is supported only for Oracle Fusion Middleware releases,
and is used by Oracle Portal and Oracle Single Sign-On. Most customer
applications use Basic authentication. Custom authentication modes (GlobalOwa,
CustomOwa, and PerPackageOwa) are used by very few PL/SQL applications.

G.3.2.4 PlsqlBeforeProcedure
Specifies the procedure to be invoked before calling the requested procedure. This
enables you to put a hook point before the requested procedure is called. This is useful
in doing SQL*Traces/SQL Profiles while debugging a problem with the requested
procedure. This is also useful when you want to ensure that a specific call be made
before running every procedure.

Note: This parameter should only be used for debugging purposes.

Category Value

Syntax PlsqlAuthenticationMode Basic | SingleSignOn | GlobalOwa |
CustomOwa | PerPackageOwa

Example PlsqlAuthenticationMode CustomOwa

Default Basic

mod_plsql

OHS Module Directives G-21

G.3.2.5 PlsqlBindBucketLengths

Specifies the rounding size to use while binding the number of elements in a collection
bind. While executing PL/SQL statements, the Oracle database maintains a cache of
PL/SQL statements in the shared SQL area, and attempts to reuse the cached
statement if the same statement is run again. Oracle's matching criteria requires that
the statement texts be identical, and that the bind variable data types match.
Unfortunately, the type match for strings is sensitive to the exact byte size specified,
and for collection bindings is also sensitive to the number of elements in the collection.
Since the mod_plsql module binds statements dynamically, the odds of hitting the
shared cache are low, and it may fill up with near-duplicates and lead to contention for
the latch on the shared area. This parameter reduces that effect by bucketing bind
lengths to the nearest level.

All numbers specified should be in ascending order. After the last specified size,
subsequent bucket sizes will be assumed to be twice the last one.

■ This parameter is relevant only if you are using procedures with array parameters,
and passing varying number of parameters to the procedure.

■ The default should be sufficient for most PL/SQL applications.

■ To see if this parameter must be changed, check the number of versions of a SQL
statement in the SQL area.

■ After the higher configured value, mod_plsql starts auto-generating bucket sizes
of larger values by doubling the last value, as needed. Therefore, after 400, the next
bucket value becomes 800, then 1600, and so on.

■ Consider using flexible parameter passing to reduce the problem.

Category Value

Syntax PlsqlBeforeProcedure string

Example PlsqlBeforeProcedure portal.mypkg.mybeforeproc

Default None

Note: This parameter should only be used for debugging purposes.
In addition, you could use this parameter to start SQL Trace/SQL
Profiling.

Note: This configuration property is rarely ever changed, and system
defaults suffice in most cases.

Category Value

Syntax PlsqlBindBucketLengths number multiline

Example PlsqlBindBucketLengths 4

PlsqlBindBucketLengths 25

PlsqlBindBucketLengths 125

Default 4,20,100,400

mod_plsql

G-22 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.2.6 PlsqlBindBucketWidths

Specifies the rounding size to use while binding the number of elements in a collection
bind. While executing PL/SQL statements, the Oracle database maintains a cache of
PL/SQL statements in the shared SQL area, and attempts to reuse the cached
statement if the same statement is run again. Oracle's matching criteria requires that
the statement texts be identical, and that the bind variable data types match.
Unfortunately, the type match for strings is sensitive to the exact byte size specified,
and for collection bindings is also sensitive to the number of elements in the collection.
Since the mod_plsql module binds statements dynamically, the odds of hitting the
shared cache are low, and it may fill up with near-duplicates and lead to contention for
the latch on the shared area. This parameter reduces that effect by bucketing bind
widths to the nearest level.

All numbers specified should be in ascending order. After the last specified size,
subsequent bucket sizes will be assumed to be twice the last one.

The last bucket width must be equal to or less than 4000. This is due to the restriction
imposed by OCI where array bind widths cannot be greater than 4000.

■ This parameter is relevant only if you are using procedures with array parameters,
and passing varying number of parameters to the procedure.

■ The default should be sufficient for most PL/SQL applications.

■ To see if this parameter must be changed, check the number of versions of a SQL
statement in the SQL area.

■ After the higher configured value, mod_plsql starts auto-generating bucket sizes
of larger values by doubling the last value, as needed. Therefore, after 400, the next
bucket value becomes 800, then 1600, and so on.

■ Consider using flexible parameter passing to reduce the problem.

G.3.2.7 PlsqlCGIEnvironmentList
Specifies overrides and additions of CGI environment variables to the default set of
environment variables passed to a PL/SQL procedure. This is a multi-line directive of
name-value pairs to be added, overridden or removed. You can only specify one
environment variable for each directive.

You can add CGI environment variables from the Oracle HTTP Server environment by
specifying the variable name. To remove a CGI environment variable, set it equal to
blank. To add your own name-value pair, use the syntax myname=myvalue.

Note: This configuration property is rarely ever changed, and system
defaults suffice in most cases.

Category Value

Syntax PlsqlBindBucketWidths number multiline

Example PlsqlBindBucketWidths 40

PlsqlBindBucketWidths 400

PlsqlBindBucketWidths 2000

Default 32,128,1450,2048,4000

mod_plsql

OHS Module Directives G-23

■ Environment variables added here are available in the PL/SQL application
through the function owa_util.get_cgi_env.

G.3.2.8 PlsqlConnectionTimeout
Specifies the timeout in milliseconds for testing a connection pool in the mod_plsql
module.

When PlsqlConnectionValidation is set to Automatic or AlwaysValidate, the mod_
plsql module attempts to test pooled database connections. This parameter specifies
the maximum time the mod_plsql module should wait for the test request to complete
before it assumes that the connection is not usable.

G.3.2.9 PlsqlConnectionValidation
Specifies the mechanism the mod_plsql module should use to detect terminated
connections in its connection pool.

For performance reasons, the mod_plsql module pools database connections. If a
database instance goes down, and the mod_plsql module was maintaining a pool of
connections to the instance, then each pooled database connection results in an error
when it is next used to service a request. This can be a concern in high availability
configurations such as Oracle RAC where even if one node goes down, other nodes
servicing the database might have been able to service the request successfully. The
mod_plsql module provides for a mechanism whereby it can self-correct after it
detects a failure that could be caused by a database node going down. This mechanism
to self-correct is controlled by the parameter PlsqlConnectionValidation.

Category Value

Syntax PlsqlCGIEnvironmentList string multiline

Default None

Example ■ To add a new environment variable from the Oracle HTTP Server
environment:

PlsqlCGIEnvironmentList DOCUMENT_ROOT

■ To remove an environment variable:

PlsqlCGIEnvironmentList MYENVAR2=

■ To override from the Oracle HTTP Server environment:

PlsqlCGIEnvironmentList REQUEST_PROTOCOL=HTTPS

■ To add your own environment variable:

PlsqlCGIEnvironmentList MY_VARNAME=MY_VALUE

Category Value

Syntax PlsqlConnectionTimeout number

Example PlsqlConnectionTimeout 5000

Default 10000 (milliseconds)

Note: This configuration property is rarely ever changed, and system
defaults suffice in most cases.

mod_plsql

G-24 Oracle Fusion Middleware Administering Oracle HTTP Server

The following are the valid values for PlsqlConnectionValidation:

■ Automatic: The mod_plsql module tests all pooled database connections which
were created before the detection of a failure that could mean an instance failure.

■ ThrowAwayOnFailure: The mod_plsql module throws away all pooled database
connections which were created before the detection of a failure that could mean
an instance failure.

■ AlwaysValidate: The mod_plsql module always tests all pooled database
connections which were created before issuing a request. Since this option has an
associated performance overhead for each request, this should be used with
caution.

■ NeverValidate: The mod_plsql module never pings any pooled database
connection.

When the mod_plsql module encounters one of the following errors, it assumes that
the database may have been down.

■ 00443 — background process <string> did not start

■ 00444 — background process <string> failed while starting

■ 00445 — background process did not start after <x> seconds

■ 00447 — fatal error in background processes

■ 00448 — normal completion of background process

■ 00449 — background process <string> unexpectedly terminated with error

■ 00470 — LGWR process terminated with error

■ 00471 — DBWR process terminated with error

■ 00472 — PMON process terminated with error

■ 00473 — ARCH process terminated with error

■ 00474 — SMON process terminated with error

■ 00475 — TRWR process terminated with error

■ 00476 — RECO process terminated with error

■ 00480 — LCK* process terminated with error

■ 00481 — LMON process terminated with error

■ 00482 — LMD* process terminated with error

■ 00484 — LMS* process terminated with error

■ 00485 — DIAG process terminated with error

■ 01014 — ORACLE shutdown in progress

■ 01033 — ORACLE initialization or shutdown in progress

Category Value

Syntax PlsqlConnectionValidation Automatic | ThrowAwayOnFailure |
AlwaysValidate | NeverValidate

Example PlsqlConnectionValidation ThrowAwayOnFailure

Default Automatic

mod_plsql

OHS Module Directives G-25

■ 01034 — ORACLE not available

■ 01041 — internal error. hostdef extension doesn't exist

■ 01077 — background process initialization failure

■ 01089 — immediate shutdown in progress- no operations permitted

■ 01090 — shutdown in progress- connection is not permitted

■ 01091 — failure during startup force

■ 01092 — ORACLE instance terminated. Disconnection forced

■ 03106 — fatal two-task communication protocol error

■ 03113 — end-of-file on communication channel

■ 03114 — not connected to ORACLE

■ 12570 — TNS: packet reader failure

■ 12571 — TNS: packet writer failure

G.3.2.10 PlsqlDatabaseConnectString
Specifies the connection to an Oracle database.

Category Value

Syntax PlsqlDatabaseConnectString string {ServiceNameFormat | SIDFormat |
TNSFormat | NetServiceNameFormat}

The string parameter depends on the second argument:

■ If the second argument is ServiceNameFormat, string is HOST:PORT:SERVICE_
NAME, where HOST is the host name running the database, PORT is the port
number the TNS listener is listening at, and SERVICE_NAME is the database
service name.

An IPv6 address can be specified using the format [IPv6_
ADDRESS]:PORT:SERVICE_NAME.

■ If the second argument is SIDFormat, string is HOST:PORT:SID where HOST is
the host name running the database, PORT is the port number the TNS listener
is listening at, and SID is the database SID.

An IPv6 address can be specified using the format [IPv6_
ADDRESS]:PORT:SID.

■ If the second argument is TNSFormat, string is a valid TNS alias that can be
resolved using Oracle Net utilities like tnsping and SQL*Plus.

■ If the second argument is NetServiceNameFormat, string is a valid net service
name that can be resolved to a connect descriptor. A connect descriptor is a
specially formatted description of the destination for a network connection.
A connect descriptor contains destination service and network route
information.

If the format argument is not specified, then the mod_plsql module assumes the
string is either in the HOST:PORT:SID format, or resolvable by Oracle Net. The
differentiation between the two is made by the presence of the colon in the
specified string.

It is recommended that newer DADs do not use the SIDFormat syntax. This exists
only for backward compatibility reasons. Use the new two argument format for
newly created DADs.

mod_plsql

G-26 Oracle Fusion Middleware Administering Oracle HTTP Server

■ If the database is running in the same Oracle home, or the environment variable
TWO_TASK is set, then this parameter need not be specified.

■ If the database is running in a separate Oracle home, then this parameter is
mandatory.

■ If you have problems connecting to the database:

■ Check the username and password information in the DAD.

■ Make sure that you run tnsping db_connect_string, and commands such as:

sqlplus DADUsername/DADPassword@db_connect_string

■ Ensure that TNS_ADMIN is configured properly.

■ Verify that the HOST:PORT:SERVICE_NAME format works correctly.

■ Ensure that the TNS listener and database are up and running.

■ Ensure that you can ping the host from this machine.

■ From a the mod_plsql module perspective, TNSFormat and NetServiceNameFormat
are synonymous and denote connect descriptors that are resolved by Oracle Net.
The TNSFormat is provided as a convenience so that end-users use this to signify
that the name resolution happens through the local tnsnames.ora. For situations
where the resolution is through an LDAP lookup as configured in sqlnet.ora, it is
recommended that the format specifier of NetServiceNameFormat be used.

If your database supports high availability, for example, Oracle Real Application
Clusters database, it is highly recommended that you use the
NetServiceNameFormat such that the resolution for the net service name is through
LDAP. This enables you to add or remove Oracle RAC nodes accessible through
the mod_plsql module by changing Oracle Internet Directory with the new or
deleted node information. In such situations, hard-coding database listener
HOST:PORT information in dads.conf or in the local tnsnames.ora is not
recommended.

G.3.2.11 PlsqlDatabasePassword
Specifies the password to use to log in to the database.

Example ■ PlsqlDatabaseConnectString example.com:1521:myhost.iasdb.inst
ServiceNameFormat

■ PlsqlDatabaseConnectString
[2001:DB8:f1ff:f1ff]:1521:myhost.iasdb.inst ServiceNameFormat

■ PlsqlDatabaseConnectString example.com:1521:iasdb SIDFormat

■ PlsqlDatabaseConnectString [2001:DB8:ff1ff:f1ff]:1521:iasdb
SIDFormat

■ PlsqlDatabaseConnectString myhost_tns TNSFormat

■ PlsqlDatabaseConnectString cn=oracle,cn=iasdb NetServiceNameFormat

■ PlsqlDatabaseConnectString
(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(Host=example.com)(Port=
1521))(CONNECT_DATA=(SID=iasdb))) TNSFormat

■ PlsqlDatabaseConnectString myhost_tns

■ PlsqlDatabaseConnectString example.com:1521:iasdb

Default None

Category Value

mod_plsql

OHS Module Directives G-27

■ This is a mandatory parameter, except for a DAD that sets
PlsqlAuthenticationMode to Basic and uses dynamic authentication.

■ For DADs using SingleSignOn authentication, this parameter uses the name of the
schema owner.

After making manual configuration changes to DAD passwords, you should obfuscate
the DAD passwords by running the dadTool.pl script, located in ORACLE_HOME/bin.

To obfuscate DAD passwords:

1. If necessary, change the user to the Oracle software owner user, typically oracle,
using the following command:

$ su - oracle

2. Set the ORACLE_HOME environment variable to specify the path to the Oracle home
directory for the current release, and set the PATH environment variable to include
the directory containing the Perl executable and the location of the dadTool.pl
script.

Bourne, Bash, or Korn shell:

$ ORACLE_HOME=new_ORACLE_HOME_path;export ORACLE_HOME
$ PATH=ORACLE_HOME/bin:ORACLE_HOME/perl/bin:$PATH;export PATH

C or tcsh shell:

% setenv ORACLE_HOME new_ORACLE_HOME_PATH
% setenv PATH ORACLE_HOME/bin:ORACLE_HOME/perl/bin:PATH

On Microsoft Windows, set the PATH and PERL5LIB environment variable:

set PATH=ORACLE_HOME\bin;ORACLE_HOME\perl\bin;%PATH%
set PERL5LIB=ORACLE_HOME\perl\lib

3. On UNIX platforms, set the shared library path environment variable.

Include the ORACLE_HOME/lib or lib32 directory in your shared library path.
Table G–5 shows the appropriate directory and environment variable for each
platform.

For example, on HP-UX PA-RISC systems, set the SHLIB_PATH environment to
include the ORACLE_HOME/lib directory:

Category Value

Syntax PlsqlDatabasePassword string

Example PlsqlDatabasePassword tiger

Default None

Table G–5 Shared Library Path Environment Variable

Platform Environment Variable Include Directory

AIX Based Systems LIBPATH ORACLE_HOME/lib

HP-UX PA-RISC SHLIB_PATH ORACLE_HOME/lib

Solaris Operating System LD_LIBRARY_PATH ORACLE_HOME/lib32

Other UNIX platforms, including
Linux and HP Tru64 UNIX

LD_LIBRARY_PATH ORACLE_HOME/lib

mod_plsql

G-28 Oracle Fusion Middleware Administering Oracle HTTP Server

SHLIB_PATH=$ORACLE_HOME/lib:$SHLIB_PATH;export SHLIB_PATH

4. Change directory to the bin directory for the current release of Oracle HTTP
Server:

cd $ORACLE_HOME/ohs/bin

5. Invoke the following Perl script to obfuscate DAD password:

perl dadTool.pl -f dadfilename

where dadfilename is the filename for dads.conf, which includes the full path to
the DAD file.

For example:

perl dadTool.pl -f
/u01/app/oracle/user_projects/domains/base_
domain/config/fmwconfig/components/OHS/ohs1/mod_plsql/dads.conf

G.3.2.12 PlsqlDatabaseUserName
Specifies the username to use to log in to the database.

■ This is a mandatory parameter, except for a DAD that sets
PlsqlAuthenticationMode to Basic and uses dynamic authentication.

■ For DADs using SingleSignOn authentication, this parameter is the name of the
schema owner.

G.3.2.13 PlsqlDefaultPage
Specifies the default procedure to call if none is specified in the URL.

You can also use Oracle HTTP Server Rewrite rules to achieve the same effect as you
get by setting this configuration parameter.

G.3.2.14 PlsqlDocumentPath
Specifies a virtual path in the URL that initiates document download from the
document table. For example, if this parameter is set to docs, then the following URLs
will start the document downloading process for URLs of the format:

/pls/dad/docs
/pls/plsqlapp/docs

Category Value

Syntax PlsqlDatabaseUsername string

Example PlsqlDatabaseUsername scott

Default None

Category Value

Syntax PlsqlDefaultPage string

Example PlsqlDefaultPage myschema.mypackage.home

Default None

mod_plsql

OHS Module Directives G-29

Omit this parameter for applications that do not perform document uploads or
downloads.

G.3.2.15 PlsqlDocumentProcedure
Specifies the procedure to call when a document download is initiated. This procedure
is called to process the download.

Omit this parameter for applications that do not perform document uploads or
downloads.

G.3.2.16 PlsqlDocumentTablename
Specifies the table in the database to which all documents are uploaded.

Omit this parameter for applications that do not perform document uploads or
downloads.

G.3.2.17 PlsqlErrorStyle
Specifies the error reporting mode for mod_plsql errors.

Category Value

Syntax PlsqlDocumentPath string

Example PlsqlDocumentPath docs

Default docs

Category Value

Syntax PlsqlDocumentProcedure string

Example PlsqlDocumentProcedure portal.wwdoc_process.process_download

Default None

Category Value

Syntax PlsqlDocumentTablename string

Example PlsqlDocumentTablename myschema.document_table

Default None

mod_plsql

G-30 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.2.18 PlsqlExclusionList
Specifies a pattern for procedures, packages, or schema names which are forbidden to
be directly run from a browser. This is a multi-line directive in which each pattern is
on a separate line. The pattern is not case sensitive and can accept a wildcard such as
an asterisk (*). The default patterns disallowed from direct URL access are as follows:

■ sys.*

■ dbms_*

■ utl_*

■ owa_util*

■ owa.*

■ htp.*

■ htf.*

■ wpg_docload.*

Setting this directive to #NONE# will disable all protection. This is strongly discouraged
for an active site and should not be done. It may be used for debugging purposes.

If this parameter is overridden, the defaults still apply, which means that you do not
have to explicitly add the default list to the list of excluded patterns.

Category Value

Syntax PlsqlErrorStyle {ApacheStyle | ModplsqlStyle |
DebugStyle}

■ ApacheStyle: The mod_plsql module indicates to Oracle
HTTP Server the HTTP error that was encountered. Oracle
HTTP Server then generates the error page. This can be used
with the Oracle HTTP Server ErrorDocument directive to
produce customized error messages.

■ ModplsqlStyle: The mod_plsql module generates the error
pages, usually a short message indicating the PL/SQL error
encountered and PL/SQL exception stack, if any. For example:

scott.foo PROCEDURE NOT FOUND

■ DebugStyle: This mode provides more details than
ModplsqlStyle. The mod_plsql module provides more details
about the URL and parameters, and also produces server
configuration information. This mode is for debugging
purposes only. Do not use this in a production system, since
displaying internal server variables could be a security risk.

Example PlsqlErrorStyle ModplsqlStyle

Default ApacheStyle

Category Value

Syntax PlsqlExclusionList {string | "#NONE#" multiline}

mod_plsql

OHS Module Directives G-31

■ In addition to the patterns specified with this parameter, the mod_plsql module
disallows any procedure name which contains the following special characters:

■ tabs

■ new lines

■ carriage-return

■ single quotation mark

■ reverse slash

■ form feed

■ left parenthesis

■ right parenthesis

■ space

This cannot be changed.

G.3.2.19 PlsqlFetchBufferSize
Specifies the number of rows of content to fetch from the database for each trip, using
either owa_util.get_page or owa_util.get_page_raw.

By default, the mod_plsql module attempts to fetch 200 response lines of output where
each line is of 255 bytes. In situations where the response bytes are single-bytes, the
response buffer is populated to the maximum and can pack 255*200=51000 bytes for
each round trip. For responses containing multibyte data, the byte packing for each
row could be less than ideal resulting in lesser bytes getting transferred for each round
trip. If your application generates large pages frequently and the response does not fit
in one round trip, then consider setting this parameter higher. The memory usage for
the mod_plsql module will increase.

Example PlsqlExclusionList myschema.private.*

PlsqlExclusionList myschema.private1.*

will disallow access to URLs which contain one of:

sys.*, dbms_*, utl_*, owa_util*, owa.*, htp.*, htf.*, wpg_
docload.*, myschema.private.*, myschema.private1.*

PlsqlExclusionList "#NONE#"

will disable all protection. Its use is strongly discouraged for an
active site.

Default sys.*

dbms_*

utl_*

owa_util*

owa.*

htp.*

htf.*

wpg_docload.*

Category Value

mod_plsql

G-32 Oracle Fusion Middleware Administering Oracle HTTP Server

■ This parameter is changed only for performance reasons. The minimum value for
this parameter is 28, but it is seldom reduced.

■ Change this parameter only under the following circumstances:

■ The average response page is large and you want to reduce the number of
round-trips the mod_plsql module makes to the database to fetch the
response.

■ The character set in use is multibyte, and you want to compensate for the
problem of get_page or get_page_raw fetching fewer bytes for each row.
Calculations in the PL/SQL Web ToolKit are character-based and in the case of
multibyte characters, OWA packages assume a worst-case character byte size
and do not attempt to pack each row to its maximum.

G.3.2.20 PlsqlInfoLogging
Specifies what mode the mod_plsql module should use to do extra performance
logging.

InfoDebug mode: This logs more information to the Apache's error_log. This is used
with Apache's info logging level. If the Apache's logging level is not at least set to this
high, this setting will be ignored.

The logging setting is useful for debugging problems in your PL/SQL application.

G.3.2.21 PlsqlMaxRequestsPerSession
Specifies the maximum number of requests a pooled database connection should
service before it is closed and re-opened.

■ This parameter helps relieve memory and resource problems that may occur due
to prolonged session reuse by a PL/SQL application.

■ This parameter should not need to be changed. The default is sufficient in most
cases.

Category Value

Syntax PlsqlFetchBufferSize number

Example PlsqlFetchBufferSize 256

Default 200

Category Value

Syntax PlsqlInfoLogging InfoDebug

Example PlsqlInfoLogging InfoDebug

Default Empty

Category Value

Syntax PlsqlMaxRequestsPerSession number

Example PlsqlMaxRequestsPerSession 500

Default 1000

mod_plsql

OHS Module Directives G-33

■ Setting this parameter to a low number can degrade performance. A case for a
lower value might be an infrequently-used DAD whose performance is not a
concern, and for which limiting the number of requests provides some benefit.

G.3.2.22 PlsqlNLSLanguage
Specifies the NLS_LANG variable for this DAD. This parameter overrides the NLS_
LANG environment variable. When this parameter is set, the PL/SQL Gateway uses
the specified NLS_LANG to connect to the database. Once connected, an alter session
command is issued to switch to the specified language and territory. If the middle tier
character set matches that of the database, then no alter session call is issued by the
mod_plsql module.

■ Most applications have PlsqlTransferMode set to CHAR which means that the
character set in PlsqlNLSLanguage needs to match the character set of the
database. In one special case, where the database and the mod_plsql module are
both using fixed-size character sets, and the character set width matches, the
character set can be different. The response character set is always the mod_plsql
module character set.

■ If PlsqlTransferMode is set to RAW, then this parameter can be ignored.

G.3.2.23 PlsqlPathAlias
Specifies a virtual path alias to map to a procedure call. This is application-specific.
This directive is used with PlsqlPathAliasProcedure.

For applications that do not use path aliasing, this parameter may be omitted.

G.3.2.24 PlsqlPathAliasProcedure
Specifies the procedure to call when the virtual path in the URL matches the path alias
as configured by PlsqlPathAlias.

For applications that do not use path aliasing, this parameter may be omitted.

Category Value

Syntax PlsqlNLSLanguage string

Example PlsqlNLSLanguage America_America.UTF8

Default None

Category Value

Syntax PlsqlPathAlias string

Example PlsqlPathAlias url

Default None

Category Value

Syntax PlsqlPathAliasProcedure string

Example PlsqlPathAliasProcedure portal.wwpth_api_alias.process_
download

Default None

mod_plsql

G-34 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.2.25 PlsqlRequestValidationFunction
Specifies an application-defined PL/SQL function which gives you the opportunity to
allow and disallow further processing of the requested procedure. This is useful in
implementing tight security for your PL/SQL application by blocking out package and
procedure calls that should not be allowed to run from a DAD.

The function defined by this parameter must have the following prototype:

boolean function_name (procedure_name IN varchar2)

The procedure_name parameter will contain the name of the procedure that the request
is trying to run.

For example, if all the PL/SQL application procedures callable from a browser are
inside the package mypkg, then an implementation of this function can be as follows:

boolean my_validation_check (procedure_name varchar2)
is
begin
 if (upper (procedure_name) like upper ('myschema.mypkg%')) then
 return TRUE
 else
 return FALSE
 end if;
end;

■ By default, the mod_plsql module already disallows direct URL access to certain
schemas and packages. For more information, refer to PlsqlExclusionList.

■ It is highly recommended that you provide an implementation for this function
such that it only allows requests that belong to your application, and are callable
from a browser.

■ Since this function will be called for every request, be sure to make this function as
optimized as possible. Suggested recommendations are:

– Name your PL/SQL packages in a fashion such that the implementation of
this function can be similar to the previous example.

– If your implementation performs a table lookup to determine what packages
and procedures should be allowed, then performance can be improved if you
pin the cursor in the shared pool.

G.3.2.26 PlsqlSessionCookieName
Specifies the cookie name when PlsqlAuthenticationMode is set to SingleSignOn. This
parameter is supported only for Oracle Fusion Middleware releases, and is used by
Oracle Portal and Oracle Single Sign-On.

Category Value

Syntax PlsqlRequestValidationFunction string

Example PlsqlRequestValidationFunction myschema.mypkg.my_
validation_check

Default none

mod_plsql

OHS Module Directives G-35

■ For DADs not using SingleSignOn authentication, this parameter can be omitted.
In most other cases, the session cookie name should be omitted (and this
parameter automatically defaults to the DAD name).

■ A session cookie name must be specified only for Oracle Portal instances that need
to participate in a distributed Oracle Portal environment. For those Oracle Portal
nodes you want to seamless participate as a federated cluster, ensure that the
session cookie name for all the participating nodes is the same.

■ Independent Oracle Portal nodes need to use distinct session cookie names.

G.3.2.27 PlsqlSessionStateManagement
Specifies how package and session state should be cleaned up at the end of each the
mod_plsql request.

■ StatelessWithResetPackageState causes the mod_plsql module to call dbms_
session.reset_package_state at the end of each mod_plsql request. This is the
default.

■ StatelessWithPreservePackageState causes the mod_plsql module to call
htp.init at the end of each mod_plsql request. This cleans up the state of session
variables in the PL/SQL Web ToolKit. The PL/SQL application is responsible for
cleaning up its own session state. Failure to do so causes erratic behavior, in which
a request starts recognizing or manipulating state modified in previous requests.

■ StatelessWithFastResetPackageState causes the mod_plsql module to call
dbms_session.modify_package_state(dbms_session.reinitialize) at the end
of each mod_plsql request. This API is faster than the mode of
StatelessWithResetPackageState, and avoids some latch contention issues, but
exists only in Oracle database releases 8.1.7.2 and later. This mode uses slightly
more memory than the default mode.

■ The earlier values of stateful=no or stateful=STATELESS_RESET corresponds to
StatelessWithResetPackageState.

■ The earlier value of stateful=STATELESS_FAST_RESET corresponds to
StatelessWithFastResetPackageState.

■ The earlier value of stateful=STATELESS_PRESERVE corresponds to
StatelessWithPreservePackageState.

Category Value

Syntax PlsqlSessionCookieName cookie_name

Example PlsqlSessionCookieName mycookie

Default Same as DAD name

Category Value

Syntax PlsqlSessionStateManagement
{StatelessWithResetPackageState |
StatelessWithFastResetPackageState |
StatelessWithPreservePackageState}

Example PlsqlSessionStateManagement
StatelessWithPreservePackageState

Default StatelessWithResetPackageState

mod_plsql

G-36 Oracle Fusion Middleware Administering Oracle HTTP Server

The mod_plsql module does not support stateful mode of operation. To allow PL/SQL
applications stateful behavior, save the state in cookies and/or in the database.

G.3.2.28 PlsqlTransferMode
Specifies the transfer mode for data from the database back to the mod_plsql module.
Most applications use the default value of CHAR.

This parameter only must be changed to enable sending back responses in different
character sets from the same DAD. In such a case, the CHAR mode is useless, since it
always converts the response data from the database character set to the mod_plsql
character set.

G.3.2.29 PlsqlUploadAsLongRaw
Specifies the file extensions to be uploaded as LONGRAW data type, as opposed to
using the default BLOB data type. The default can be overridden by specifying
multi-line directives of file extensions for field. A value of asterisk (*) in this field
causes all documents to be uploaded as LONGRAW.

For applications that do not upload or download documents, this parameter may be
omitted.

G.3.3 cache.conf
The cache.conf file contains the configuration settings for the file system caching
functionality implemented in the mod_plsql module. This configuration file is relevant
only if PL/SQL applications use the OWA_CACHE package to cache dynamically
generated content in the file system.

The following parameters are specified in the cache.conf file:

■ PlsqlCacheCleanupTime

■ PlsqlCacheDirectory

■ PlsqlCacheEnable

■ PlsqlCacheMaxAge

■ PlsqlCacheMaxSize

■ PlsqlCacheTotalSize

Category Value

Syntax PlsqlTransferMode {CHAR | RAW}

Example PlsqlTransferMode CHAR

Default CHAR

Category Value

Syntax PlsqlUploadAsLongRaw string multiline

Example PlsqlUploadAsLongRaw jpg

PlsqlUploadAsLongRaw gif

Default None

mod_plsql

OHS Module Directives G-37

G.3.3.1 PlsqlCacheCleanupTime
Specifies the time to start the cleanup of the cache storage.

This setting defines the exact day and time in which cleanup should occur. The
frequency can be set as daily, weekly, and monthly.

■ To define daily frequency, the keyword Everyday is used. The cleanup starts every
day at the time defined. For example, Everyday 2:00 causes the cleanup to
happen everyday at 2:00 a.m. (local time).

■ To define weekly frequency, the days of the week, (Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday) are used. For example, Wednesday 15:30
causes the cleanup to happen every Wednesday at 3:30 p.m. (local time).

■ To define monthly frequency, the keyword Everymonth is used. The cleanup starts
on the Saturday of the month at the time defined. For example, Saturday
Everymonth 23:00 causes the cleanup to happen the first Saturday of every month
at 11:00 p.m. (local time).

G.3.3.2 PlsqlCacheDirectory
Specifies the directory where cache files are written out by the mod_plsql module. This
directory must exist or Oracle HTTP Server will not start.

On UNIX, this directory must have write permissions by the owner of the child httpd
processes.

G.3.3.3 PlsqlCacheEnable
Enables mod_plsql caching.

If an application does not make use of the OWA_CACHE package in the PL/SQL Web
Toolkit, then you can choose to disable caching. In such situations, there will be a
minor performance benefit.

Category Value

Syntax PlsqlCacheCleanupTime {Sunday-Saturday | Everyday |
Everymonth} {hh:mm}

Example PlsqlCacheCleanupTime Monday 20:00

Default Saturday 23:00

Category Value

Syntax PlsqlCacheDirectory directory

Example PlsqlCacheDirectory "${ORACLE_
INSTANCE}/servers/${COMPONENT_NAME}"

Default none

Category Value

Syntax PlsqlCacheEnable {On | Off}

Example PlsqlCacheEnable On

Default Off

mod_plsql

G-38 Oracle Fusion Middleware Administering Oracle HTTP Server

G.3.3.4 PlsqlCacheMaxAge
Specifies the maximum time, in days, a cache file can reside in a file system cache, after
which the cached file will be removed for cache maintenance.

This setting is to ensure that the cache system does not contain old content. This
setting removes old cache files and makes space for new ones.

G.3.3.5 PlsqlCacheMaxSize
Specifies the maximum possible size of a cache file.

This setting prevents the case in which one file can fill up the entire cache. In general,
it is recommended that this be set to about 1-3 percent of the total cache size, which is
specified by PlsqlCacheTotalSize.

G.3.3.6 PlsqlCacheTotalSize
Specifies the total size of the cache directory. The default is 20 MB.

This setting limits the amount of space the cache is allowed to use. Both PL/SQL cache
and Session Cookie cache share this cache space. This setting is not a hard limit. It
might exceed the limit temporarily during normal processing. This is normal behavior.

The cleanup algorithm uses this setting to determine how much to reduce the cache
files. Therefore, the real space limit is the physical storage's available size.

This parameter takes bytes as values:

■ 1 megabytes = 1048576 bytes

■ 10 megabytes = 10485760 bytes

Category Value

Syntax PlsqlCacheMaxAge number

Example PlsqlCacheMaxAge 20

Default 30 (days)

Category Value

Syntax PlsqlCacheMaxSize number

Example PlsqlCacheMaxSize 1048576

Default 1048576

Category Value

Syntax PlsqlCacheTotalSize number

Example PlsqlCacheTotalSize 20971520

Default 20971520 (bytes)

Glossary-1

Glossary

Apache HTTP Server

Apache HTTP Server is an open source web server originally derived from the
National Center for Supercomputing Applications (NCSA).

authentication

The process of verifying the identity of a user, device, or other entity in a host system,
often as a prerequisite to granting access to resources in a system. A recipient of an
authenticated message can be certain of the message's origin (its sender).
Authentication is presumed to preclude the possibility that another party has
impersonated the sender.

availability

The percentage or amount of scheduled time that a computing system provides
application service.

certificate

Also called a digital certificate. An ITU x.509 v3 standard data structure that securely
binds an identity to a public key.

A certificate is created when an entity's public key is signed by a trusted identity, a
certificate authority The certificate ensures that the entity's information is correct and
that the public key actually belongs to that entity.

A certificate contains the entity's name, identifying information, and public key. It is
also likely to contain a serial number, expiration date, and information about the
rights, uses, and privileges associated with the certificate. It also contains information
about the certificate authority that issued it.

certificate authority

A trusted third party that certifies that other entities—users, databases, administrators,
clients, servers—are who they say they are. When it certifies a user, the certificate
authority first seeks verification that the user is not on the certificate revocation list
(CRL), then verifies the user's identity and grants a certificate, signing it with the
certificate authority's private key. The certificate authority has its own certificate and
public key which it publishes. Servers and clients use these to verify signatures the
certificate authority has made. A certificate authority might be an external company
that offers certificate services, or an internal organization such as a corporate MIS
department.

CGI

Glossary-2

CGI

Common Gateway Interface (CGI) is the industry-standard technique for transferring
information between a Web server and any program designed to accept and return
data that conforms to the CGI specifications.

ciphertext

Data that has been encrypted. Ciphertext is unreadable until it has been converted to
plain text (decrypted) with a key. See decryption.

cleartext

See plaintext.

cryptography

The art of protecting information by transforming it (encrypting) into an unreadable
format. See encryption.

DAD

See database access descriptor.

database access descriptor

A database access descriptor (DAD) is a set of values that specify how an application
connects to an Oracle database to fulfill an HTTP request. The information in the DAD
includes the username (which also specifies the schema and the privileges), password,
connect-string, error log file, standard error message, and national language support
(NLS) parameters such as NLS language, NLS date format, NLS date language, and
NLS currency.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

digital certificate

See certificate.

digital wallet

See wallet.

encryption

The process of converting a message thereby rendering it unreadable to any but the
intended recipient. Encryption is performed by converting data into code that cannot
be understood by unauthorized people or systems. There are two main types of
encryption: public-key encryption (also known as asymmetric-key encryption) and
symmetric-key encryption.

entry

In the context of a directory service, entries are the building blocks of a directory. An
entry is a collection of information about an object in the directory. Each entry is
composed of a set of attributes that describe one particular trait of the object. For
example, if a directory entry describes a person, that entry can have attributes such as
first name, last name, telephone number, or e-mail address.

plaintext

Glossary-3

Execution Context ID

Execution Context ID (or ECID) is a unique identifier that can be used to correlate
events in different components of Fusion Middleware or in different log files as being
part of the same request execution flow.

failover

The ability to reconfigure a computing system to use an alternate active component
when a similar component fails.

Fusion Middleware Control

See Oracle Enterprise Manager Fusion Middleware Control.

HTTP

See Hypertext Transfer Protocol.

Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) is the underlying format used by the Web to
format and transmit messages and determine what actions Web servers and browsers
should take in response to various commands. HTTP is the protocol used between
Oracle Fusion Middleware and clients.

LDAP

See Lightweight Directory Access Protocol.

Lightweight Directory Access Protocol

A standard, extensible directory access protocol. It is a common language that LDAP
clients and servers use to communicate. The framework of design conventions
supporting industry-standard directory products, such as the Oracle Internet
Directory.

modules

Modules extend the basic functionality of a Web server, and support integration
between Oracle HTTP Server and other Oracle Fusion Middleware components.

Oracle Enterprise Manager Fusion Middleware Control

Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware Control)
provides Web-based management tools designed specifically for Oracle Fusion
Middleware. Using Fusion Middleware Control, you can monitor and configure the
components of your application server, such as deploy applications, manage security,
and create and manage Oracle Fusion Middleware clusters.

PEM

Privacy-enhanced Electronic Mail. An encryption technique that provides encryption,
authentication, message integrity, and key management.

PL/SQL

PL/SQL is the Oracle proprietary extension to the SQL language. PL/SQL adds
procedural and other constructs to SQL that make it suitable for writing applications.

plaintext

Also called cleartext. Unencrypted data in ASCII format.

plug-in

Glossary-4

plug-in

A module that adds a specific feature or service to a larger system.

port

A port is a number that TCP uses to route transmitted data to and from a particular
program.

private key

In public-key cryptography, this key is the secret key. It is primarily used for
decryption but is also used for encryption with digital signatures. See public/private
key pair.

proxy server

A proxy server typically resides on a network firewall and allows clients behind the
firewall to access Web resources. All requests from clients go to the proxy server rather
than directly to the destination server. The proxy server forwards the request to the
destination server and passes the received information back to the client. The proxy
server channels all Web traffic at a site through a single, secure port; this allows an
organization to create a secure firewall by preventing Internet access to internal
systems, while allowing Web access.

public key

In public-key cryptography, this key is made public to all. It is primarily used for
encryption but can be used for verifying signatures. See public/private key pair.

public-key cryptography

Encryption method that uses two different random numbers (keys). See public key
and public-key encryption.

public-key encryption

The process where the sender of a message encrypts the message with the public key
of the recipient. Upon delivery, the message is decrypted by the recipient using its
private key.

public/private key pair

A set of two numbers used for encryption and decryption, where one is called the
private key and the other is called the public key. Public keys are typically made
widely available, while private keys are held by their respective owners. Though
mathematically related, it is generally viewed as computationally infeasible to derive
the private key from the public key. Public and private keys are used only with
asymmetric encryption algorithms, also called public-key encryption algorithms, or
public-key cryptosystems. Data encrypted with either a public key or a private key
from a key pair can be decrypted with its associated key from the key-pair. However,
data encrypted with a public key cannot be decrypted with the same public key, and
data encrypted with a private key cannot be decrypted with the same private key.

RSA

A public-key encryption technology developed by RSA Data Security. The RSA
algorithm is based on the fact that it is laborious to factor very large numbers. This
makes it mathematically unfeasible, because of the computing power and time
required to decode an RSA key.

X.509

Glossary-5

scalability

A measure of how well the software or hardware product is able to adapt to future
business needs.

Secure Sockets Layer

Secure Sockets Layer (SSL) is a standard for the secure transmission of documents over
the Internet using HTTPS (secure HTTP). SSL uses digital signatures to ensure that
transmitted data is not tampered with.

single sign-on

Single sign-on enables a you to authenticate once, combined with strong
authentication occurring transparently in subsequent connections to other databases
or applications. It lets you access multiple accounts and applications with a single
password, entered during a single connection.

SSL

See Secure Sockets Layer.

wallet

Also called a digital wallet. A wallet is a data structure used to store and manage
security credentials for an individual entity. It implements the storage and retrieval of
credentials for use with various cryptographic services. A Wallet Resource Locator
(WRL) provides the necessary information to locate the wallet.

Wallet Resource Locator

A wallet resource locator (WRL) provides all necessary information to locate a wallet.
It is a path to an operating system directory that contains a wallet.

WRL

See Wallet Resource Locator.

X.509

A standard for creating digital certificates.

X.509

Glossary-6

Index-1

Index

A
access log, 7-2
accessing

Fusion Middleware Control, 3-2
Al16UTF-16, 2-7
Apache, Glossary-1

security patches, B-2
version, 1-1

Apache HTTP Server, 1-1
ApacheStyle, G-30
application-specific error pages, B-1
authentication, 8-1, Glossary-1
authorization, 8-1
availability, Glossary-1

C
cache.conf, 2-11, G-36
certificate, Glossary-1

digital, Glossary-2
X.509, G-9

certificate authority, Glossary-1
certificate revocation list, G-3
CGI, Glossary-2
ciphertext, Glossary-2
cleartext, Glossary-2
CompatEnvVars, G-9
confidentiality, 8-1
configuration files

cache.conf, 2-11, G-36
dads.conf, 2-10, G-18
plsql.conf, 2-10
syntax, 1-7

creating
DAD, 2-8

cryptography, Glossary-2

D
DAD, Glossary-2

creating, 2-8
password

obfuscation, G-27
dads.conf, 2-10, G-18
dadTool.pl, G-27

database access descriptor, 2-10, G-18, Glossary-2
database usage notes, 2-5
DebugStyle, G-30
decryption, Glossary-2
digital certificate, Glossary-2
digital wallet, Glossary-2
directives

create name space, B-3
RewriteLogLevel, C-3

directory structure, 1-7
distinguished name, G-9
Dynamic Monitoring Service, G-17

E
encryption, 1-5, Glossary-2
entry, Glossary-2
error log, C-3
ExportCertData, G-9

F
failover, Glossary-3
FakeBasicAuth, G-9
FAQ, B-1

Apache security patches, B-2
compressing

output, B-3
offering HTTPS to ISP customers, B-2
protecting Web site

hackers, B-4
features, 1-1
frequently asked questions, B-1
Fusion Middleware Control, Glossary-3

accessing, 3-2
managing, 3-1

Oracle HTTP Server, 3-2
Oracle HTTP Server Home page, 3-2

H
hackers, B-4
HTTP, Glossary-3
HTTP listener, 1-1
Hypertext Transfer Protocol, Glossary-3

Index-2

I
identd, 7-2
IdentityCheck, 7-2
InfoDebug, G-32

L
LDAP, Glossary-3
lightweight directory access protocol, Glossary-3
listener addresses, 6-1
listener ports, 6-1
LoadModule directive, 2-10
log files, C-3

locations, C-3
log formats

authuser, 7-2
bytes, 7-2
Common Log Format, 7-2
data, 7-2
host, 7-2
ident, 7-2
request, 7-2
status, 7-2

log rotation, 7-6

M
managing

Fusion Middleware Control, 3-1
Oracle HTTP Server, 3-2

mod_certheaders, 2-3
mod_dms, 2-4
mod_ossl, 2-4

directives
SSLAccelerator, G-2
SSLCARevocationFile, G-3
SSLCARevocationPath, G-3
SSLCipherSuite, G-3, G-11
SSLEngine, G-5
SSLMutex, G-7
SSLOptions, G-8
SSLPassPhraseDialog, G-10
SSLProtocol, G-10
SSLRequire, G-13
SSLRequireSSL, G-15
SSLSessionCache, G-15
SSLSessionCacheTimeout, G-16
SSLVerifyClient, G-16
SSLWallet, G-16

mod_perl, 1-1, 2-5
database usage notes, 2-5
testing database connection, 2-6

mod_plsql, 2-8
configuration files, 2-10, G-16

cache.conf, 2-11, G-36
dads.conf, 2-10, G-18
plsql.conf, 2-10

configuration parameters, 2-11
CustomOwa, G-20
PerPackageOwa, G-20

mod_ssl, 2-5
ModplsqlStyle, G-30
modules, 1-1, Glossary-3

mod_certheaders, 2-3
mod_dms, 2-4
mod_ossl, 2-4
mod_perl, 2-5
mod_plsql, 2-8
mod_ssl, 2-5

Multipurpose Internet Mail Extension, 4-24
multiviews, B-2

N
nFast, G-2

O
OptRenegotiate, G-9
ORA_IMPLICIT, 2-7
ORA_NCHAR, 2-7
Oracle Enterprise Manager Application Server

Control, Glossary-3
Oracle HTTP Server

C/C++, 1-6
components

HTTP listener, 1-1
modules, 1-1
Perl interpreter, 1-1

compressing
output, B-3

configuration files syntax, 1-7
directory structure, 1-7
FAQ, B-1
features, 1-1
load balancing, 1-6
managing, 3-2
overview, 1-1
Perl, 1-6
PHP, 1-6
PL/SQL server pages, 1-5
process model

security considerations, 5-7
restarting, 4-11
security, 1-5
server side include, 1-5
single sign-on, 1-5
starting, 4-7
stopping, 4-9
support, 1-9
URL rewriting and proxy server, 1-5

Oracle HTTP Server Home page, 3-2
overview, 1-1

P
PEM, Glossary-3
Perl

access database, 2-5
Perl interpreter, 1-1
PID file, 4-6

Index-3

plaintext, Glossary-3
PL/SQL, Glossary-3
plsql.conf, 2-10
PlsqlErrorStyle

ApacheStyle, G-30
DebugStyle, G-30
ModplsqlStype, G-30

PlsqlInfoLogging
InfoDebug, G-32

plug-in, Glossary-4
port, Glossary-4
private key, Glossary-4
protecting

Web site, B-4
proxy server, Glossary-4
public key, Glossary-4
public-key cryptography, Glossary-4
public-key encryption, Glossary-4
public/private key pair, Glossary-4

R
restarting, 4-11
rewrite log, C-3
RewriteLogLevel, C-3
RSA, Glossary-4

S
scalability, Glossary-5
script log, C-3
Secure Sockets Layer, Glossary-5
secure sockets layer, 4-20
security

authentication, 8-1
authorization, 8-1
confidentiality, 8-1

single sign-on, Glossary-5
specifying

listener addresses, 6-1
listener ports, 6-1
log file locations, C-3
log files, C-3

access log, 7-2
error log, C-3
lot rotation, 7-6
PID file, 4-6
rewrite log, C-3
script log, C-3

SQL NCHAR datatypes, 2-7
SSL, 4-20, Glossary-5
SSL HW Acceleration Support, 1-5
SSLAccelerator, G-2

nFast, G-2
SSLCARevocationFile, G-3
SSLCARevocationPath, G-3
SSLCipherSuite, G-3, G-11

tags, G-4
SSLEngine, G-5
SSLMutex, G-7

SSLOptions, G-8
CompatEnvVars, G-9
ExportCertData, G-9
FakeBasicAuth, G-9
OptRenegotiate, G-9
StdEnvVars, G-9
StrictRequire, G-9

SSLPassPhraseDialog, G-10
SSLProtocol, G-10
SSLReqiureSSL, G-15
SSLRequire, G-13

variables
SSL, G-14
standard, G-14

SSLSessionCache, G-15
SSLSessionCacheTimeout, G-16
SSLVerifyClient, G-16
SSLWallet, G-16
starting, 4-7
StdEnvVars, G-9
stopping, 4-9
StrictRequire, G-9
support, 1-9

T
troubleshooting, C-1

Oracle HTTP Server may fail to start if PM files are
not located correctly, C-2

permission denied, C-2

U
UTF8, 2-7

W
wallet, Glossary-5

digital, Glossary-2
Wallet Resource Locator, Glossary-5
WRL, Glossary-5

X
X.509, Glossary-5

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle HTTP Server 12c 12.1.2
	New and Changed Features in 12c (12.1.2)
	Features Removed from 12c (12.1.2)

	Part I Understanding Oracle HTTP Server
	1 Introduction to Oracle HTTP Server
	1.1 What is Oracle HTTP Server?
	1.2 Oracle HTTP Server 12c (12.1.2) Topologies
	1.3 Key Features of Oracle HTTP Server
	1.3.1 Security: Encryption with Secure Sockets Layer
	1.3.2 Security: Single Sign-On with WebGate
	1.3.3 URL Rewriting and Proxy Server Capabilities
	1.3.4 PL/SQL Server Pages
	1.3.5 Server-Side Includes
	1.3.6 Perl
	1.3.7 Dynamic Scripting Languages
	1.3.8 C / C++ (CGI and FastCGI)
	1.3.9 Load Balancing

	1.4 Domain Types
	1.4.1 WebLogic Server Domain
	1.4.2 Standalone Domain

	1.5 Understanding Oracle HTTP Server Directory Structure
	1.6 Understanding Configuration Files
	1.6.1 Staging and Run-time Configuration Directories
	1.6.2 Editing the Configuration
	1.6.3 Configuration Files

	1.7 Oracle HTTP Server Support

	2 Understanding Oracle HTTP Server Modules
	2.1 List of Included Modules
	2.2 mod_certheaders
	2.3 mod_context
	2.4 mod_dms
	2.5 mod_odl
	2.6 mod_ossl
	2.7 mod_perl
	2.7.1 Using mod_perl with a Database
	2.7.1.1 Using Perl to Access the Database
	2.7.1.2 Testing a Database Connection
	2.7.1.3 Using SQL NCHAR Data Types

	2.8 mod_plsql
	2.8.1 Creating a DAD
	2.8.2 Configuration Files for mod_plsql
	2.8.2.1 plsql.conf
	2.8.2.2 dads.conf
	2.8.2.3 cache.conf

	2.8.3 Using Configuration Files and Parameters
	2.8.4 Additional Documentation

	2.9 mod_webgate
	2.10 mod_wl_ohs

	3 Understanding Oracle HTTP Server Management Tools
	3.1 Overview of Oracle HTTP Server Management
	3.2 Special Note on Oracle HTTP Server Mbeans
	3.3 Accessing Fusion Middleware Control
	3.4 Accessing the Oracle HTTP Server Home Page
	3.4.1 Navigating Within Fusion Middleware Control

	3.5 Using Fusion Middleware Control to Edit Configuration Files
	3.6 Using the WebLogic Scripting Tool
	3.6.1 Using WLST in a Standalone Environment
	3.6.2 Additional Information

	Part II Managing Oracle HTTP Server
	4 Working with Oracle HTTP Server
	4.1 Before You Begin
	4.2 Creating an OHS Instance
	4.2.1 Creating a Managed Instance in a WebLogic Server Domain
	4.2.1.1 Creating an Instance by Using WLST
	4.2.1.2 Creating an Instance by Using Fusion Middleware Control
	4.2.1.3 Instance Provisioning

	4.2.2 Creating a Standalone Domain Instance
	4.2.2.1 Using WLST in a Standalone Domain

	4.3 Performing Basic OHS Tasks
	4.3.1 Understanding the PID File
	4.3.2 Starting Oracle HTTP Server Instances
	4.3.2.1 Starting Oracle HTTP Server Instances by Using Fusion Middleware Control
	4.3.2.2 Starting Oracle HTTP Server Instances by Using WLST
	4.3.2.3 Starting Oracle HTTP Server Instances from the Command Line
	4.3.2.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)

	4.3.3 Stopping Oracle HTTP Server Instances
	4.3.3.1 Stopping Oracle HTTP Server Instances by Using Fusion Middleware Control
	4.3.3.2 Stopping Oracle HTTP Server Instances by Using WLST
	4.3.3.3 Stopping Oracle HTTP Server Instances from the Command Line

	4.3.4 Restarting Oracle HTTP Server Instances
	4.3.4.1 Restarting Oracle HTTP Server Instances by Using Fusion Middleware Control
	4.3.4.2 Restarting Oracle HTTP Server Instances by Using WLST

	4.3.5 Checking the Status of a Running Oracle HTTP Server Instance
	4.3.5.1 Checking Server Status by Using Fusion Middleware Control
	4.3.5.2 Checking Server Status by Using WLST

	4.3.6 Deleting an Oracle HTTP Server Instance
	4.3.6.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
	4.3.6.1.1 Deleting an Instance by Using WLST
	4.3.6.1.2 Deleting an Instance by Using Fusion Middleware Control

	4.3.6.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain

	4.4 Remotely Administering Oracle HTTP Server
	4.4.1 Setting Up a Remote Environment
	4.4.1.1 Host Requirements
	4.4.1.2 Task 1: Set Up an Expanded Domain on host1
	4.4.1.3 Task 2: Pack the Domain on host1
	4.4.1.4 Task 3: Unpack the Domain on host2

	4.4.2 Running Oracle HTTP Server Remotely

	4.5 Specifying Server Properties
	4.5.1 Specifying Server Properties by Using Fusion Middleware Control
	4.5.2 Editing the httpd.conf File to Specify Server Properties

	4.6 Configuring Oracle HTTP Server
	4.6.1 Configuring Secure Sockets Layer
	4.6.2 Configuring Secure Sockets Layer in Standalone Mode
	4.6.2.1 Configure SSL
	4.6.2.1.1 Create a Real Wallet
	4.6.2.1.2 (Optional) Customize Your Configuration
	4.6.2.1.3 Basic Configuration Example

	4.6.2.2 Specify SSLVerifyClient on the Server Side
	4.6.2.2.1 Forcing Clients to Authenticate Using Certificates
	4.6.2.2.2 Forcing a Client to Authenticate for a Particular URL
	4.6.2.2.3 Authorizing a Client for a Particular URL
	4.6.2.2.4 Allowing Clients with Strong Ciphers and CA Client Certificate or Basic Authentication

	4.6.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server

	4.6.3 Configuring MIME Settings
	4.6.3.1 Configuring MIME Types
	4.6.3.1.1 Using Fusion Middleware Control to Configure MIME Types

	4.6.3.2 Configuring MIME Encoding
	4.6.3.3 Configuring MIME Languages

	4.6.4 Configuring mod_perl
	4.6.5 Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	4.6.6 Modifying an Oracle HTTP Server Configuration File
	4.6.7 Removing Access to Unneeded Content
	4.6.7.1 Edit the cgi-bin Section
	4.6.7.2 Edit the Fancy Indexing Section
	4.6.7.3 Edit the Product Documentation Section

	4.6.8 Using the apxs Command to Install Extension Modules
	4.6.9 Disabling the Options Method
	4.6.10 Updating Oracle HTTP Server Component Configurations on a Shared Filesystem

	5 Managing and Monitoring Server Processes
	5.1 Oracle HTTP Server Processing Model
	5.1.1 Request Process Model
	5.1.2 Single Unit Process Model

	5.2 Monitoring Oracle HTTP Server Performance
	5.2.1 Viewing Oracle HTTP Server Performance Metrics
	5.2.2 Understanding Oracle HTTP Server Performance Metrics

	5.3 Configuring Oracle HTTP Server Performance Directives
	5.3.1 Using Fusion Middleware Control to Set the Request Configuration
	5.3.2 Using Fusion Middleware Control to Set the Connection Configuration
	5.3.3 Using Fusion Middleware Control to Set the Process Configuration

	5.4 Understanding Process Security

	6 Managing Connectivity
	6.1 Default Listen Ports
	6.2 Defining the Admin Port
	6.3 Viewing Port Number Usage
	6.3.1 Using the Fusion Middleware Control to View Port Number Usage

	6.4 Managing Ports
	6.4.1 Using Fusion Middleware Control to Create Ports
	6.4.2 Using Fusion Middleware Control to Edit Ports
	6.4.3 Disabling a Listening Port in a Standalone Environment

	6.5 Configuring Virtual Hosts
	6.5.1 Using Fusion Middleware Control to Create Virtual Hosts
	6.5.2 Using Fusion Middleware Control to Configure Virtual Hosts

	7 Managing Oracle HTTP Server Logs
	7.1 Overview of Server Logs
	7.1.1 About Error Logs
	7.1.2 About Access Logs
	7.1.3 Log Rotation

	7.2 Configuring Oracle HTTP Server Logs
	7.2.1 Using Fusion Middleware Control to Configure Error Logs
	7.2.1.1 Configuring the Error Log Format and Location
	7.2.1.2 Configuring the Error Log Level
	7.2.1.3 Configuring Error Log Rotation Policy

	7.2.2 Configuring Access Logs by Using Fusion Middleware Control
	7.2.2.1 Configuring the Access Log Format
	7.2.2.2 Configuring the Access Log File

	7.3 Log Directives for Oracle HTTP Server
	7.3.1 Oracle Diagnostic Logging Directives
	7.3.1.1 OraLogMode
	7.3.1.2 OraLogDir
	7.3.1.3 OraLogSeverity
	7.3.1.4 OraLogRotationParams

	7.3.2 Apache HTTP Server Log Directives
	7.3.2.1 ErrorLog
	7.3.2.2 LogLevel
	7.3.2.3 LogFormat
	7.3.2.4 CustomLog

	7.4 Viewing Oracle HTTP Server Logs
	7.5 Terminating SSL Requests
	7.5.1 Terminating SSL Before Oracle HTTP Server
	7.5.2 Terminating SSL at Oracle HTTP Server

	8 Managing Application Security
	8.1 About Oracle HTTP Server Security
	8.2 Classes of Users and Their Privileges
	8.3 Resources Protected
	8.4 Authentication, Authorization and Access Control
	8.4.1 Access Control
	8.4.2 User Authentication and Authorization
	8.4.2.1 Using Apache HTTP Server Modules to Authenticate Users
	8.4.2.2 Using WebGate to Authenticate Users

	8.4.3 Support for FMW Audit Framework

	8.5 Disable SSLv2 and SSLv3 Security Protocols

	Part III Appendixes and Glossary
	A.1 Versions Supported
	A.2 Oracle HTTP Server Introspection Parameters
	A.3 Resulting Artifact Type
	A.4 Requirements
	A.5 Wiring
	A.6 Wiring Properties
	A.7 Oracle HTTP Server Appliance Properties
	A.8 Extensions of the Plug-in
	A.9 Supported Template Types
	A.10 Plug-in Limitations
	A.11 Related Documents
	B.1 How Do I Create Application-Specific Error Pages?
	B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
	B.3 Can I Use Different Language and Character Set Versions of Document?
	B.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?
	B.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?
	B.6 Can I Compress Output From Oracle HTTP Server?
	B.7 How Do I Create a Namespace That Works Through Firewalls and Clusters?
	B.8 How Do I Protect the Website from Hackers?
	B.9 Should I Re-register Partner Applications with SSO Server If I Disable or Enable SSL?
	B.10 Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?
	B.11 How can I hide information about the Web Server Vendor and Version
	B.12 Can I Start OHS by Using apachectl or Other Command-Line Tool?
	C.1 Oracle HTTP Server Unable to Start Due to Port Conflict
	C.2 System Overloaded by Number of httpd Processes
	C.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
	C.4 Oracle HTTP Server May Fail To Start If PM Files Are Not Located Correctly
	C.5 Exception Thrown when Unsetting PerSetEnv and Removing Variable
	C.6 Using Log Files to Locate Errors
	C.6.1 Rewrite Log
	C.6.2 Script Log
	C.6.3 Error Log

	C.7 Recovering an OHS Instance on a Remote Host
	C.8 Oracle HTTP Server Performance Issues
	C.8.1 Special Runtime Files Reside on a Network File System
	C.8.2 UNIX Sockets on a Network File System
	C.8.3 DocumentRoot on a Slow File System

	C.9 Out of DMS Shared Memory
	D.1 httpd.conf
	D.2 ssl.conf
	D.3 admin.conf
	D.4 mod_wl_ohs.conf
	D.5 moduleconf/*.conf
	D.6 disabled/*.conf
	D.7 mime.types
	D.8 ohs.plugins.nodemanager.properties
	D.9 magic
	D.10 keystores/<wallet-directory>
	D.11 auditconfig.xml
	D.12 component-logs.xml
	D.13 component_events.xml
	D.14 Additional Reference
	E.1 ohs_admin.properties
	E.2 ohs_nm.properties
	E.3 ohs.plugins.nodemanager.properties
	E.3.1 Cross-platform Properties
	E.3.2 Environment Variable Configuration Properties
	E.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX

	F.1 Enabling mod_security
	F.2 Configuring mod_security
	G.1 mod_certheaders
	G.1.1 AddCertHeader
	G.1.2 SimulateHttps

	G.2 mod_ossl
	G.2.1 SSLAccelerator
	G.2.2 SSLCARevocationFile
	G.2.3 SSLCARevocationPath
	G.2.4 SSLCipherSuite
	G.2.5 SSLEngine
	G.2.6 SSLFIPS
	G.2.7 SSLInsecureRenegotiation
	G.2.8 SSLMutex
	G.2.9 SSLNZTraceLogLevel
	G.2.10 SSLOptions
	G.2.11 SSLPassPhraseDialog
	G.2.12 SSLProtocol
	G.2.13 SSLProxyCipherSuite
	G.2.14 SSLProxyEngine
	G.2.15 SSLProxyProtocol
	G.2.16 SSLProxyWallet
	G.2.17 SSLRequire
	G.2.18 SSLRequireSSL
	G.2.19 SSLSessionCache
	G.2.20 SSLSessionCacheTimeout
	G.2.21 SSLVerifyClient
	G.2.22 SSLWallet

	G.3 mod_plsql
	G.3.1 plsql.conf
	G.3.1.1 PlsqlDMSEnable
	G.3.1.2 PlsqlLogEnable
	G.3.1.3 PlsqlLogDirectory
	G.3.1.4 PlsqlIdleSessionCleanupInterval

	G.3.2 dads.conf
	G.3.2.1 PlsqlAfterProcedure
	G.3.2.2 PlsqlAlwaysDescribeProcedure
	G.3.2.3 PlsqlAuthenticationMode
	G.3.2.4 PlsqlBeforeProcedure
	G.3.2.5 PlsqlBindBucketLengths
	G.3.2.6 PlsqlBindBucketWidths
	G.3.2.7 PlsqlCGIEnvironmentList
	G.3.2.8 PlsqlConnectionTimeout
	G.3.2.9 PlsqlConnectionValidation
	G.3.2.10 PlsqlDatabaseConnectString
	G.3.2.11 PlsqlDatabasePassword
	G.3.2.12 PlsqlDatabaseUserName
	G.3.2.13 PlsqlDefaultPage
	G.3.2.14 PlsqlDocumentPath
	G.3.2.15 PlsqlDocumentProcedure
	G.3.2.16 PlsqlDocumentTablename
	G.3.2.17 PlsqlErrorStyle
	G.3.2.18 PlsqlExclusionList
	G.3.2.19 PlsqlFetchBufferSize
	G.3.2.20 PlsqlInfoLogging
	G.3.2.21 PlsqlMaxRequestsPerSession
	G.3.2.22 PlsqlNLSLanguage
	G.3.2.23 PlsqlPathAlias
	G.3.2.24 PlsqlPathAliasProcedure
	G.3.2.25 PlsqlRequestValidationFunction
	G.3.2.26 PlsqlSessionCookieName
	G.3.2.27 PlsqlSessionStateManagement
	G.3.2.28 PlsqlTransferMode
	G.3.2.29 PlsqlUploadAsLongRaw

	G.3.3 cache.conf
	G.3.3.1 PlsqlCacheCleanupTime
	G.3.3.2 PlsqlCacheDirectory
	G.3.3.3 PlsqlCacheEnable
	G.3.3.4 PlsqlCacheMaxAge
	G.3.3.5 PlsqlCacheMaxSize
	G.3.3.6 PlsqlCacheTotalSize

	Glossary
	Index
	A
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

