

Oracle® Fusion Middleware
Developing Applications with Oracle User Messaging Service

Release 12c (12.1.2)

E27789-02

August 2013

Oracle Fusion Middleware Developing Applications with Oracle User Messaging Service Release 12c (12.1.2)

E27789-02

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Savija Vijayaraghavan

Contributing Author: Swati Thacker

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... ix
1.1 Introduction to User Messaging Service.. 1-1
1.2 User Messaging Service Sample Applications.. 1-1
2.1 Introduction to the UMS Java API.. 2-1
2.1.1 Creating a Java EE Application Module... 2-2
2.2 Creating a UMS Client Instance.. 2-2
2.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative

Approach 2-2
2.2.2 API Reference for Class MessagingClientFactory... 2-3
2.3 Sending a Message.. 2-3
2.3.1 Creating a Message.. 2-3
2.3.1.1 Creating a Plaintext Message.. 2-3
2.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

Parts) 2-3
2.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients

with Different Delivery Types 2-4
2.3.2 API Reference for Class MessageFactory ... 2-4
2.3.3 API Reference for Interface Message .. 2-5
2.3.4 API Reference for Enum DeliveryType.. 2-5
2.3.5 Addressing a Message .. 2-5
2.3.5.1 Types of Addresses .. 2-5
2.3.5.2 Creating Address Objects.. 2-5
2.3.5.2.1 Creating a Single Address Object ... 2-5
2.3.5.2.2 Creating Multiple Address Objects in a Batch .. 2-5
2.3.5.2.3 Adding Sender or Recipient Addresses to a Message 2-5
2.3.5.3 Creating a Recipient with a Failover Address.. 2-5
2.3.5.4 API Reference for Class AddressFactory .. 2-6
2.3.5.5 API Reference for Interface Address ... 2-6
2.3.6 Retrieving Message Status.. 2-6
2.3.6.1 Synchronous Retrieval of Message Status .. 2-6
2.3.6.2 Asynchronous Notification of Message Status .. 2-6
2.4 Receiving a Message... 2-6

iv

2.4.1 Registering an Access Point ... 2-6
2.4.2 Synchronous Receiving... 2-7
2.4.3 Asynchronous Receiving .. 2-7
2.4.4 Message Filtering ... 2-7
2.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application............... 2-8
2.5.1 Overview of Development ... 2-9
2.5.2 Configuring the Email Driver .. 2-9
2.5.3 Using JDeveloper 11g to Build the Application .. 2-9
2.5.3.1 Opening the Project .. 2-9
2.5.4 Deploying the Application .. 2-11
2.5.5 Testing the Application.. 2-11
2.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application .. 2-13
2.6.1 Overview of Development .. 2-14
2.6.2 Configuring the Email Driver ... 2-14
2.6.3 Using JDeveloper 11g to Build the Application ... 2-15
2.6.3.1 Opening the Project ... 2-15
2.6.4 Deploying the Application .. 2-18
2.6.5 Testing the Application.. 2-18
2.7 Creating a New Application Server Connection... 2-20
3.1 Introduction to the UMS Java API.. 3-2
3.2 Creating a UMS Client Instance and Specifying Runtime Parameters 3-2
3.3 Sending a Message.. 3-3
3.3.1 Creating a Message.. 3-4
3.3.1.1 Creating a Plaintext Message.. 3-4
3.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

Parts) 3-4
3.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients

with Different Delivery Types 3-5
3.3.2 Addressing a Message .. 3-6
3.3.2.1 Types of Addresses .. 3-6
3.3.2.2 Creating Address Objects.. 3-6
3.3.2.2.1 Creating a Single Address Object ... 3-6
3.3.2.2.2 Creating Multiple Address Objects in a Batch .. 3-6
3.3.2.2.3 Adding Sender or Recipient Addresses to a Message 3-6
3.3.2.3 Creating a Recipient with a Failover Address.. 3-6
3.3.2.4 API Reference for Class MessagingFactory .. 3-6
3.3.2.5 API Reference for Interface Address ... 3-6
3.3.3 Sending Group Messages ... 3-7
3.3.3.1 Sending Messages to a Group... 3-7
3.3.3.2 Sending Messages to a Group Through a Specific Channel 3-7
3.3.3.3 Sending Messages to an Application Role.. 3-8
3.3.3.4 Sending Messages to an Application Role Through a Specific Channel.............. 3-8
3.3.4 User Preference Based Messaging .. 3-9
3.4 Retrieving Message Status... 3-9
3.4.1 Synchronous Retrieval of Message Status.. 3-9
3.4.2 Asynchronous Receiving of Message Status ... 3-9
3.4.2.1 Creating a Listener Programmatically... 3-9
3.4.2.2 Default Status Listener.. 3-10

v

3.4.2.3 Per Message Status Listener... 3-10
3.5 Receiving a Message.. 3-10
3.5.1 Registering an Access Point .. 3-11
3.5.2 Synchronous Receiving.. 3-11
3.5.3 Asynchronous Receiving ... 3-11
3.5.3.1 Creating a Listener Programmatically.. 3-12
3.5.3.2 Default Message Listener ... 3-12
3.5.3.3 Per Access Point Message Listener ... 3-12
3.5.4 Message Filtering .. 3-13
3.6 Configuring for a Cluster Environment ... 3-13
3.7 Using UMS Client API for XA Transactions .. 3-14
3.7.1 About XA Transactions.. 3-14
3.7.2 Sending and Receiving XA Enabled Messages .. 3-14
3.8 Using UMS Java API to Specify Message Resends ... 3-16
3.9 Configuring Security ... 3-17
3.10 Threading Model.. 3-17
3.10.1 Listener Threading ... 3-18
4.1 Introduction to the UMS Web Service API ... 4-1
4.2 Creating a UMS Client Instance and Specifying Runtime Parameters 4-2
4.3 Sending a Message.. 4-3
4.3.1 Creating a Message.. 4-4
4.3.1.1 Creating a Plaintext Message.. 4-4
4.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts).................... 4-4
4.3.1.3 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

Parts) 4-4
4.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients

with Different Delivery Types 4-5
4.3.2 API Reference for Interface Message .. 4-6
4.3.3 API Reference for Enum DeliveryType.. 4-6
4.3.4 Addressing a Message .. 4-6
4.3.4.1 Types of Addresses .. 4-6
4.3.4.2 Creating Address Objects.. 4-6
4.3.4.2.1 Creating a Single Address Object ... 4-6
4.3.4.2.2 Creating Multiple Address Objects in a Batch .. 4-6
4.3.4.2.3 Adding Sender or Recipient Addresses to a Message 4-6
4.3.4.3 Creating a Recipient with a Failover Address.. 4-7
4.3.4.4 Recipient Types... 4-7
4.3.4.5 API Reference for Class MessagingFactory .. 4-7
4.3.4.6 API Reference for Interface Address ... 4-7
4.3.5 User Preference Based Messaging .. 4-7
4.4 Retrieving Message Status... 4-8
4.4.1 Synchronous Retrieval of Message Status.. 4-8
4.4.2 Asynchronous Receiving of Message Status ... 4-8
4.4.2.1 Creating a Listener Programmatically... 4-8
4.4.2.2 Publish the Callback Service ... 4-9
4.4.2.3 Stop a Dynamically Published Endpoint .. 4-9
4.4.2.4 Registration.. 4-9

vi

4.5 Receiving a Message... 4-9
4.5.1 Registering an Access Point .. 4-10
4.5.2 Synchronous Receiving.. 4-10
4.5.3 Asynchronous Receiving ... 4-10
4.5.3.1 Creating a Listener Programmatically.. 4-11
4.5.3.2 Default Message Listener ... 4-11
4.5.3.3 Per Access Point Message Listener ... 4-12
4.5.4 Message Filtering .. 4-12
4.6 Configuring for a Cluster Environment ... 4-12
4.7 Using UMS Web Service API to Specify Message Resends ... 4-13
4.8 Configuring Security ... 4-13
4.8.1 Client and Server Security ... 4-13
4.8.2 Listener or Callback Security .. 4-14
4.9 Threading Model.. 4-14
4.10 Sample Chat Application with Web Services APIs... 4-14
4.10.1 Overview.. 4-15
4.10.1.1 Provided Files .. 4-15
4.10.2 Running the Pre-Built Sample .. 4-15
4.10.3 Testing the Sample.. 4-17
4.10.4 Creating a New Application Server Connection.. 4-20
5.1 Introduction to Parlay X Messaging Operations.. 5-1
5.2 Send Message Interface .. 5-2
5.2.1 sendMessage Operation.. 5-2
5.2.2 getMessageDeliveryStatus Operation .. 5-3
5.3 Receive Message Interface ... 5-4
5.3.1 getReceivedMessages Operation... 5-4
5.3.2 getMessage Operation... 5-5
5.3.3 getMessageURIs Operation.. 5-5
5.4 Oracle Extension to Parlay X Messaging... 5-6
5.4.1 ReceiveMessageManager Interface ... 5-6
5.4.1.1 startReceiveMessage Operation ... 5-6
5.4.1.2 stopReceiveMessage Operation.. 5-7
5.5 Parlay X Messaging Client API and Client Proxy Packages... 5-7
5.6 Sample Chat Application with Parlay X APIs ... 5-8
5.6.1 Overview... 5-8
5.6.1.1 Provided Files ... 5-9
5.6.2 Running the Pre-Built Sample ... 5-9
5.6.3 Testing the Sample.. 5-11
5.6.4 Creating a New Application Server Connection.. 5-13
6.1 Introduction to User Communication Preferences .. 6-1
6.1.1 Terminology ... 6-2
6.2 Managing User Preferences... 6-2
6.2.1 Managing Communication Channels ... 6-2
6.2.1.1 Creating a Channel... 6-3
6.2.1.2 Modifying a Channel ... 6-3
6.2.1.3 Deleting a Channel ... 6-4
6.2.1.4 Setting a Default Channel.. 6-4

vii

6.2.2 Managing Filters .. 6-5
6.2.2.1 Creating a Filter .. 6-6
6.2.2.2 Modifying a Filter... 6-7
6.2.2.3 Deleting a Filter... 6-7
6.2.2.4 Disabling a Filter... 6-7
6.2.2.5 Organizing Filters... 6-8
6.2.3 Configuring Preference Settings.. 6-8
6.3 Administering User Communication Preferences ... 6-9
6.3.1 About Business Terms... 6-9
6.3.2 Configuring Profiles by using Oracle Enterprise Manager .. 6-10
6.3.3 Managing User Data using WLST Commands .. 6-13
6.4 Integrating UCP Web User Interface .. 6-14
6.4.1 Integrate ADF Web Application with UCP .. 6-14
6.4.1.1 Create a New ADF Application .. 6-14
6.4.1.2 Create an ADF Web Page ... 6-15
6.4.1.3 Connect UCP Task Flow Library... 6-17
6.4.1.4 Add a Region in the New Page ... 6-19
6.4.1.5 Reference UCP Libraries... 6-20
6.4.1.6 Manage Project Deployment Profile... 6-22
6.4.1.7 Create Application Deployment Profile... 6-24
6.4.2 Deploy Your Application .. 6-25
6.4.2.1 Deploy Application ... 6-25
6.4.2.2 Configure Application Server Connection .. 6-25
6.4.3 Verify Your Application .. 6-27
6.5 Java Application Interface .. 6-28
6.5.1 Obtain Delivery Preferences ... 6-29
6.5.2 Manage Channels ... 6-29
6.5.3 Manage Filters ... 6-30

A Using the User Messaging Service Sample Applications

A.1 Using the UMS Client API to Build a Client Application .. A-1
A.1.1 Overview of Development .. A-2
A.1.2 Configuring the Email Driver ... A-2
A.1.3 Using JDeveloper 12c to Build the Application.. A-2
A.1.3.1 Opening the Project ... A-2
A.1.4 Deploying the Application .. A-3
A.1.5 Testing the Application.. A-4
A.2 Using the UMS Client API to Build a Client Echo Application .. A-6
A.2.1 Overview of Development .. A-7
A.2.2 Configuring the Email Driver ... A-7
A.2.3 Using Oracle JDeveloper 12c to Build the Application... A-8
A.2.3.1 Opening the Project ... A-8
A.2.4 Deploying the Application .. A-10
A.2.5 Testing the Application.. A-11
A.3 Creating a New Application Server Connection... A-13

viii

ix

Preface

This document describes how to use Oracle User Messaging Service.

Audience
This guide is intended for process developers who use Oracle User Messaging Service
to send and receive messages from their applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ Release Notes

■ Administering Oracle User Messaging Service

■ Developing SOA Applications with Oracle SOA Suite

■ WLST Command Reference for Infrastructure Components

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

x

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

Overview 1-1

1
Overview

This chapter provides an overview of Oracle User Messaging Service (UMS). This
chapter includes the following sections:

■ Section 1.1, "Introduction to User Messaging Service"

■ Section 1.2, "User Messaging Service Sample Applications"

1.1 Introduction to User Messaging Service
Oracle User Messaging Service provides a common service responsible for sending out
messages from applications to devices. It also routes incoming messages from devices
to applications.

To learn more about the features of Oracle User Messaging Service and its features, see
the "Introduction to Oracle User Messaging Service" chapter in Administering Oracle
User Messaging Service.

1.2 User Messaging Service Sample Applications
The code samples for Oracle User Messaging Service are available on Oracle
Technology Network at:

http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-
1454424.html.

This document describes how to develop applications using User Messaging Service
Java API (see Chapter 3, "Sending and Receiving Messages using the User Messaging
Service Java API") and User Messaging Service Web Services API (see Chapter 4,
"Sending and Receiving Messages using the User Messaging Service Web Service
API"). You can build and deploy these sample applications using Oracle JDeveloper
12c, and also manage communication preferences through a web interface (see
Chapter 6, "User Communication Preferences").

Note: Unless explicitly identified as such, the sample codes are not
certified or supported by Oracle; it is intended for educational or
testing purposes only.

User Messaging Service Sample Applications

1-2 Developing Applications with Oracle User Messaging Service

2

Sending and Receiving Messages using the User Messaging Service EJB API 2-1

2Sending and Receiving Messages using the
User Messaging Service EJB API

This chapter describes how to use the User Messaging Service (UMS) EJB API to
develop applications, and describes how to build two sample applications,
usermessagingsample-ejb.ear and usermessagingsample-echo-ejb.ear.
This chapter includes the following sections:

■ Section 2.1, "Introduction to the UMS Java API"

■ Section 2.2, "Creating a UMS Client Instance"

■ Section 2.3, "Sending a Message"

■ Section 2.4, "Receiving a Message"

■ Section 2.5, "Using the UMS Enterprise JavaBeans Client API to Build a Client
Application"

■ Section 2.6, "Using the UMS Enterprise JavaBeans Client API to Build a Client
Echo Application"

■ Section 2.7, "Creating a New Application Server Connection"

2.1 Introduction to the UMS Java API
The UMS Java API supports developing applications for Enterprise JavaBeans clients.
It consists of packages grouped as follows:

■ Common and Client Packages

– oracle.sdp.client

Note: The User Messaging Service EJB API (described in this
chapter) is deprecated. Use the User Messaging Service Java API
instead, as described in Chapter 3, "Sending and Receiving Messages
using the User Messaging Service Java API".

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, see the samples at:

http://www.oracle.com/technetwork/indexes/samplecode
/sample-ums-1454424.html

Creating a UMS Client Instance

2-2 Developing Applications with Oracle User Messaging Service

– oracle.sdp.client.filter: A MessageFilter is used by an application to
exercise greater control over what messages are delivered to it.

■ User Preferences Packages

– oracle.sdp.client.userprefs

– oracle.sdp.client.userprefs.tools

2.1.1 Creating a Java EE Application Module
There are two choices for a Java EE application module that uses the UMS Enterprise
JavaBeans Client API:

■ Enterprise JavaBeans Application Module - Stateless Session Bean - This is a back
end, core message-receiving or message-sending application.

■ Web Application Module - This is for applications that have an HTML or web
front end.

Whichever application module is selected uses the UMS Client API to register the
application with the UMS Server and subsequently invoke operations to send or
retrieve messages, status, and register or unregister access points. For a complete list
of operations refer to the UMS Javadoc.

The samples with source code are available on Oracle Technology Network (OTN).

2.2 Creating a UMS Client Instance
This section describes the requirements for creating a UMS Enterprise JavaBeans
Client. You can create a MessagingEJBClient instance by using the code in the
MessagingClientFactory class.

When creating an application using the UMS Enterprise JavaBeans Client, the
application must be packaged as an EAR file, and the
usermessagingclient-ejb.jar module bundled as an Enterprise JavaBeans
module.

2.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative
Approach

Example 2–1 shows code for creating a MessagingEJBClient instance using the
programmatic approach:

Example 2–1 Programmatic Approach to Creating a MessagingEJBClient Instance

ApplicationInfo appInfo = new ApplicationInfo();
appInfo.setApplicationName("SampleApp");
appInfo.setApplicationInstanceName("SampleAppInstance");
MessagingClient mClient =
 MessagingClientFactory.createMessagingEJBClient(appInfo);

You can also create a MessagingEJBClient instance using a declarative approach.
The declarative approach is normally the preferred approach since it enables you to
make changes at deployment time.

You must specify all the required Application Info properties as environment entries
in your Java EE module's descriptor (ejb-jar.xml or web.xml).

Example 2–2 shows code for creating a MessagingEJBClient instance using the
declarative approach:

Sending a Message

Sending and Receiving Messages using the User Messaging Service EJB API 2-3

Example 2–2 Declarative Approach to Creating a MessagingEJBClient Instance

MessagingClient mClient = MessagingClientFactory.createMessagingEJBClient();

2.2.2 API Reference for Class MessagingClientFactory
The API reference for class MessagingClientFactory can be accessed from the
Javadoc.

2.3 Sending a Message
You can create a message by using the code in the MessageFactory class and
Message interface of oracle.sdp.client.

The types of messages that can be created include plaintext messages, multipart
messages that can consist of text/plain and text/html parts, and messages that include
the creation of delivery channel (DeliveryType) specific payloads in a single
message for recipients with different delivery types.

2.3.1 Creating a Message
This section describes the various types of messages that can be created.

2.3.1.1 Creating a Plaintext Message
Example 2–3 shows how to create a plain text message using the UMS Java API.

Example 2–3 Creating a Plaintext Message Using the UMS Java API

Message message = MessageFactory.getInstance().createTextMessage("This is a Plain
Text message.");
Message message = MessageFactory.getInstance().createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

2.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML
Parts)
Example 2–4 shows how to create a multipart or alternative message using the UMS
Java API.

Example 2–4 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessageFactory.getInstance().createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
 .setContent(
 "<html><head></head><body><i>This is an HTML
part.</i></body></html>",
 "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");

Sending a Message

2-4 Developing Applications with Oracle User Messaging Service

2.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for
Recipients with Different Delivery Types
When sending a message to a destination address, there can be multiple channels
involved. Oracle UMS application developers are required to specify the correct
multipart format for each channel.

Example 2–5 shows how to create delivery channel (DeliveryType) specific
payloads in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message should
contain one or more values of this header. The value of this header should be the name
of a valid delivery type. Refer to the available values for DeliveryType in the enum
DeliveryType.

Example 2–5 Creating Delivery Channel-specific Payloads in a Single Message for
Recipients with Different Delivery Types

Message message = MessageFactory.getInstance().createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");

part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");

// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><i>" + "HTML content for
EMAIL/IM." +
"</i></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");

// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload(true);

2.3.2 API Reference for Class MessageFactory
The API reference for class MessageFactory can be accessed from the Javadoc.

Sending a Message

Sending and Receiving Messages using the User Messaging Service EJB API 2-5

2.3.3 API Reference for Interface Message
The API reference for interface Message can be accessed from the Javadoc.

2.3.4 API Reference for Enum DeliveryType
The API reference for enum DeliveryType can be accessed from the Javadoc.

2.3.5 Addressing a Message
This section describes type of addresses and how to create address objects.

2.3.5.1 Types of Addresses
There are two types of addresses, device addresses and user addresses. A device address
can be of various types, such as email addresses, instant messaging addresses, and
telephone numbers. User addresses are user IDs in a user repository.

2.3.5.2 Creating Address Objects
You can address senders and recipients of messages by using the class
AddressFactory to create Address objects defined by the Address interface.

2.3.5.2.1 Creating a Single Address Object Example 2–6 shows code for creating a single
Address object:

Example 2–6 Creating a Single Address Object

Address recipient =
AddressFactory.getInstance().createAddress("Email:john@example.com");

2.3.5.2.2 Creating Multiple Address Objects in a Batch Example 2–7 shows code for
creating multiple Address objects in a batch:

Example 2–7 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john@example.com", "IM:jabber|john@example.com"};
Address[] recipients = AddressFactory.getInstance().createAddress(recipientsStr);

2.3.5.2.3 Adding Sender or Recipient Addresses to a Message Example 2–8 shows code for
adding sender or recipient addresses to a message:

Example 2–8 Adding Sender or Recipient Addresses to a Message

Address sender =
AddressFactory.getInstance().createAddress("Email:john@example.com");
Address recipient =
AddressFactory.getInstance().createAddress("Email:jane@example.com");
message.addSender(sender);
message.addRecipient(recipient);

2.3.5.3 Creating a Recipient with a Failover Address
Example 2–9 shows code for creating a recipient with a failover address:

Example 2–9 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john@example.com,
IM:jabber|john@example.com";
Address recipient =

Receiving a Message

2-6 Developing Applications with Oracle User Messaging Service

AddressFactory.getInstance().createAddress(recipientWithFailoverStr);

2.3.5.4 API Reference for Class AddressFactory
The API reference for class AddressFactory can be accessed from the Javadoc.

2.3.5.5 API Reference for Interface Address
The API reference for interface Address can be accessed from the Javadoc.

2.3.6 Retrieving Message Status
You can use Oracle UMS to retrieve message status either synchronously or
asynchronously.

2.3.6.1 Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the
MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

2.3.6.2 Asynchronous Notification of Message Status
To retrieve an asynchronous notification of message status, perform the following:

1. Implement a status listener.

2. Register a status listener (declarative way)

3. Send a message (messagingClient.send(message);)

4. The application automatically gets the status through an onStatus(status)
callback of the status listener.

2.4 Receiving a Message
This section describes how an application receives messages. To receive a message you
must first register an access point. From the application perspective there are two
modes for receiving a message, synchronous and asynchronous.

2.4.1 Registering an Access Point
AccessPoint represents one or more device addresses to receive incoming messages.
An application that wants to receive incoming messages must register one or more
access points that represent the recipient addresses of the messages. The server
matches the recipient address of an incoming message against the set of registered
access points, and routes the incoming message to the application that registered the
matching access point.

You can use AccessPointFactory.createAccessPoint to create an access point
and MessagingClient.registerAccessPoint to register it for receiving
messages.

To register an email access point:

Receiving a Message

Sending and Receiving Messages using the User Messaging Service EJB API 2-7

Address apAddress = MessagingFactory.createAddress("EMAIL:user1@example.com");
AccessPoint ap = MessagingFactory.createAccessPoint(apAddress);
MessagingClient.registerAccessPoint(ap);

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

2.4.2 Synchronous Receiving
You can use the method MessagingClient.receive to synchronously receive
messages. This is a convenient polling method for light-weight clients that do not want
the configuration overhead associated with receiving messages asynchronously. This
method returns a list of messages that are immediately available in the application
inbound queue.

It performs a nonblocking call, so if no message is currently available, the method
returns null.

2.4.3 Asynchronous Receiving
Asynchronous receiving involves many tasks, including configuring MDBs and
writing a Stateless Session Bean message listener. See the sample application
usermessagingsample-echo for detailed instructions.

2.4.4 Message Filtering
A MessageFilter is used by an application to exercise greater control over what
messages are delivered to it. A MessageFilter contains a matching criterion and an
action. An application can register a series of message filters; they are applied in order
against an incoming (received) message; if the criterion matches the message, the
action is taken. For example, an application can use MessageFilters to implement
necessary blacklists, by rejecting all messages from a given sender address.

You can use MessageFilterFactory.createMessageFilter to create a message
filter, and MessagingClient.registerMessageFilter to register it. The filter is
added to the end of the current filter chain for the application. When a message is
received, it is passed through the filter chain in order; if the message matches a filter's
criterion, the filter's action is taken immediately. If no filters match the message, the
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessageFilterFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);

Note: A single invocation does not guarantee retrieval of all
available messages. You must poll to ensure receiving all available
messages.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

2-8 Developing Applications with Oracle User Messaging Service

messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessageFilterFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

2.5 Using the UMS Enterprise JavaBeans Client API to Build a Client
Application

This section describes how to create an application called usermessagingsample, a web
client application that uses the UMS Enterprise JavaBeans Client API for both
outbound messaging and the synchronous retrieval of message status.
usermessagingsample also supports inbound messaging. Once you have deployed and
configured usermessagingsample, you can use it to send a message to an email client.

Of the two application modules choices described in Section 2.1.1, "Creating a Java EE
Application Module," this sample focuses on the Web Application Module (WAR),
which defines some HTML forms and servlets. You can examine the code and
corresponding XML files for the web application module from the provided
usermessagingsample-src.zip source. The servlets uses the UMS Enterprise
JavaBeans Client API to create an UMS Enterprise JavaBeans Client instance (which in
turn registers the application's info) and sends messages.

This application, which is packaged as an Enterprise Archive file (EAR) called
usermessagingsample-ejb.ear, has the following structure:

■ usermessagingsample-ejb.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the
import of the oracle.sdp.client shared library.

■ usermessagingclient-ejb.jar -- Contains the Message Enterprise
JavaBeans Client deployment descriptors.

* META-INF

– ejb-jar.xml

– weblogic-ejb-jar.xml

■ usermessagingsample-web.ear -- Contains the web-based front-end and
servlets.

* WEB-INF

– web.xml

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, see the Oracle SOA
Suite samples.

Once you have navigated to this page, you can find code samples for
Oracle User Messaging Service by entering the search term "UMS" and
clicking Search.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service EJB API 2-9

– weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-src.zip)
are available on OTN.

2.5.1 Overview of Development
The following steps describe the process of building an application capable of
outbound messaging using usermessagingsample-ejb.ear as an example:

1. Section 2.5.2, "Configuring the Email Driver"

2. Section 2.5.3, "Using JDeveloper 11g to Build the Application"

3. Section 2.5.4, "Deploying the Application"

4. Section 2.5.5, "Testing the Application"

2.5.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform outbound
messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the
OutgoingMailServer property.

2.5.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample through the following steps:

2.5.3.1 Opening the Project
1. Open usermessagingsample.jws (contained in the .zip file) in Oracle

JDeveloper.

Note: This sample application is generic and can support outbound
messaging through other channels when the appropriate messaging
drivers are deployed and configured.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

2-10 Developing Applications with Oracle User Messaging Service

Figure 2–1 Oracle JDeveloper Main Window

In the Oracle JDeveloper main window, the project appears.

2. Satisfy the build dependencies for the sample application by ensuring the "Oracle
UMS Client" library is used by the web module.

1. In the Application Navigator, right-click web module
usermessagingsample-web, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Figure 2–2 Verifying Libraries

3. Click OK.

3. Verify that the usermessagingclient-ejb project exists in the application. This is an
Enterprise JavaBeans module that packages the messaging client beans used by
UMS applications. The module allows the application to connect with the UMS
server.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service EJB API 2-11

4. Explore the Java files under the usermessagingsample-web project to see how the
messaging client APIs are used to send messages, get statuses, and synchronously
receive messages. The application info that is registered with the UMS Server is
specified programmatically in SampleUtils.java in the project (Example 2–10).

Example 2–10 Application Information

 ApplicationInfo appInfo = new ApplicationInfo();
 appInfo.setApplicationName(SampleConstants.APP_NAME);
 appInfo.setApplicationInstanceName(SampleConstants.APP_INSTANCE_NAME);
 appInfo.setSecurityPrincipal(request.getUserPrincipal().getName());

2.5.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the
navigation pane and selecting New. Follow the instructions in Section 2.7,
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample application,
Deploy, usermessagingsample, to, and SOA_server (Figure 2–3).

Figure 2–3 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample, you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Communication Preferences.

2.5.5 Testing the Application
Once usermessagingsample has been deployed to a running instance of Oracle
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows:
http://host:http-port/usermessagingsample/. For example, enter
http://localhost:7001/usermessagingsample/ into the browser’s
navigation bar.

Note: Refer to Administering Oracle User Messaging Service for more
information.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

2-12 Developing Applications with Oracle User Messaging Service

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure 2–4).

Figure 2–4 Testing the Sample Application

2. Click Send sample message. The Send Message page appears (Figure 2–5).

Figure 2–5 Addressing the Test Message

3. As an optional step, enter the sender address in the following format:

Email:sender_address.

For example, enter Email:sender@example.com.

4. Enter one or more recipient addresses. For example, enter
Email:recipient@example.com. Enter multiple addresses as a
comma-separated list as follows:

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 2-13

Email:recipient_address1, Email:recipient_address2.

If you have configured User Communication Preferences, you can address the
message simply to User:username. For example, User:testuser1.

5. As an optional step, enter a subject line or content for the email.

6. Click Send. The Message Status page appears, showing the progress of transaction
(Message received by Messaging engine for processing in Figure 2–6).

Figure 2–6 Message Status

7. Click Refresh to update the status. When the email message has been delivered to
the email server, the Status Content field displays Outbound message delivery to
remote gateway succeeded.

2.6 Using the UMS Enterprise JavaBeans Client API to Build a Client
Echo Application

This section describes how to create an application called usermessagingsample-echo,
a demo client application that uses the UMS Enterprise JavaBeans Client API to
asynchronously receive messages from an email address and echo a reply back to the
sender.

This application, which is packaged as a Enterprise Archive file (EAR) called
usermessagingsample-echo-ejb.ear, has the following structure:

■ usermessagingsample-echo-ejb.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the
import of the oracle.sdp.client shared library.

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, see the Oracle SOA
Suite samples.

Once you have navigated to this page, you can find code samples for
Oracle User Messaging Service by entering the search term "UMS" and
clicking Search.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

2-14 Developing Applications with Oracle User Messaging Service

■ usermessagingclient-ejb.jar -- Contains the Message Enterprise
JavaBeans Client deployment descriptors.

* META-INF

– ejb-jar.xml

– weblogic-ejb-jar.xml

■ usermessagingsample-echo-ejb.jar -- Contains the application session
beans (ClientSenderBean, ClientReceiverBean) that process a received message
and return an echo response.

* META-INF

– ejb-jar.xml

– weblogic-ejb-jar.xml

■ usermessagingsample-echo-web.war -- Contains the web-based
front-end and servlets.

* WEB-INF

– web.xml

– weblogic.xml

The prebuilt sample application, and the source code
(usermessagingsample-echo-src.zip) are available on OTN.

2.6.1 Overview of Development
The following steps describe the process of building an application capable of
asynchronous inbound and outbound messaging using
usermessagingsample-echo-ejb.ear as an example:

1. Section 2.6.2, "Configuring the Email Driver"

2. Section 2.6.3, "Using JDeveloper 11g to Build the Application"

3. Section 2.6.4, "Deploying the Application"

4. Section 2.6.5, "Testing the Application"

2.6.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform inbound and
outbound messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the OutgoingMailServer
property.

■ Enter the name of the IMAP4/POP3 mail server as the value for the
IncomingMailServer property. Also, configure the incoming user name, and
password.

Note: This sample application is generic and can support inbound
and outbound messaging through other channels when the
appropriate messaging drivers are deployed and configured.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 2-15

2.6.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample-echo through the following steps:

2.6.3.1 Opening the Project
1. Unzip usermessagingsample.echo-src.zip, to the JDEV_

HOME/communications/samples/ directory. This directory must be used for
the shared library references to be valid in the project.

2. Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle
JDeveloper.

In the Oracle JDeveloper main window, the project appears (Figure 2–7).

Figure 2–7 Oracle JDeveloper Main Window

3. Verify that the build dependencies for the sample application have been satisfied
by checking that the following library has been added to the
usermessagingsample-echo-web and usermessagingsample-echo-ejb
modules.

■ Library: oracle.sdp.client, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.client_12.1.2/
sdpclient.jar. This is the Java library used by UMS and applications that
use UMS to send and receive messages.

Perform the following steps for each module:

Note: If you choose to use a different directory, you must update the
oracle.sdp.client library source path to JDEV_HOME/
communications/modules/oracle.sdp.client_12.1.2/
sdpclient.jar.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

2-16 Developing Applications with Oracle User Messaging Service

1. In the Application Navigator, right-click the module and select Project
Properties.

2. In the left pane, select Libraries and Classpath (Figure 2–8).

Figure 2–8 Verifying Libraries

3. Click OK.

4. Verify that the usermessagingclient-ejb project exists in the application. This is an
Enterprise JavaBeans module that packages the messaging client beans used by
UMS applications. The module allows the application to connect with the UMS
server.

5. Explore the Java files under the usermessagingsample-echo-ejb project to see how
the messaging client APIs are used to asynchronously receive messages
(ClientReceiverBean), and send messages (ClientSenderBean).

6. Explore the Java files under the usermessagingsample-echo-web project to see
how the messaging client APIs are used to register and unregister access points.

7. Note that the application info that is registered with the UMS Server is specified
declaratively in the usermessagingclient-ejb project’s ejb-jar.xml file.
(Example 2–11).

Example 2–11 Application Information

 <env-entry>
 <env-entry-name>sdpm/ApplicationName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoApp</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>sdpm/ApplicationInstanceName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoAppInstance</env-entry-value>
 </env-entry>

 <env-entry>
 <env-entry-name>sdpm/ReceivingQueuesInfo</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMAppDefRcvQ1<

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 2-17

/env-entry-value>
 </env-entry>

 <env-entry>
 <env-entry-name>
 sdpm/MessageListenerSessionBeanJNDIName
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>
 sdpm/MessageListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 oracle.sdp.client.sample.ejbApp.ClientReceiverHomeLocal
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>
 sdpm/StatusListenerSessionBeanJNDIName
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>

<env-entry-name>sdpm/StatusListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>oracle.sdp.client.sample.ejbApp.ClientReceiverHomeLocal</env-e
ntry-value>
 </env-entry>

8. Note that the Application Name (UMSEchoApp) and Application Instance Name
(UMSEchoAppInstance) are also used in the Message Selector for the
MessageDispatcherBean MDB, which is used for asynchronous receiving of
messages and statuses placed in the application receiving queue (Example 2–12).

Example 2–12 Application Information

<activation-config-property>
 <activation-config-property-name>
 messageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 appName='UMSEchoApp' or sessionName='UMSEchoApp-UMSEchoAppInstance'
 </activation-config-property-value>
</activation-config-property>

Note: If you chose a different Application Name and Application
Instance Name for your own application, remember to update this
message selector. Asynchronous receiving does not work, otherwise.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

2-18 Developing Applications with Oracle User Messaging Service

2.6.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the
navigation pane and selecting New. Follow the instructions in Section 2.7,
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample-echo application,
Deploy, usermessagingsample-echo, to, and SOA_server (Figure 2–9).

Figure 2–9 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Communication Preferences.

2.6.5 Testing the Application
Once usermessagingsample-echo has been deployed to a running instance of Oracle
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows:
http://host:http-port/usermessagingsample-echo/. For example,
enter http://localhost:7001/usermessagingsample-echo/ into the
browser’s navigation bar.

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure 2–10).

Note: Refer to Administering Oracle User Messaging Service for more
information.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 2-19

Figure 2–10 Testing the Sample Application

2. Click Register/Unregister Access Points. The Access Point Registration page
appears (Figure 2–11).

Figure 2–11 Registering an Access Point

3. Enter the access point address in the following format:

EMAIL:server_address.

For example, enter EMAIL:myserver@example.com.

4. Select the Action Register and Click Submit. The registration status page appears,
showing "Registered" in Figure 2–12).

Creating a New Application Server Connection

2-20 Developing Applications with Oracle User Messaging Service

Figure 2–12 Access Point Registration Status

5. Send a message from your messaging client (for email, your email client) to the
address you just registered as an access point in the previous step.

If the UMS messaging driver for that channel is configured correctly, you should
expect to receive an echo message back from the usermessagingsample-echo
application.

2.7 Creating a New Application Server Connection
Perform the steps in Section A.3, "Creating a New Application Server Connection" to
create an Application Server Connection.

3

Sending and Receiving Messages using the User Messaging Service Java API 3-1

3Sending and Receiving Messages using the
User Messaging Service Java API

This chapter describes how to use the User Messaging Service (UMS) client API to
develop applications. This API serves as a programmatic entry point for Fusion
Middleware application developers to incorporate messaging features within their
enterprise applications.

For more information about the classes and interfaces, see User Messaging Service Java
API Reference.

This chapter includes the following sections:

■ Section 3.1, "Introduction to the UMS Java API"

■ Section 3.2, "Creating a UMS Client Instance and Specifying Runtime Parameters"

■ Section 3.3, "Sending a Message"

■ Section 3.4, "Retrieving Message Status"

■ Section 3.5, "Receiving a Message"

■ Section 3.6, "Configuring for a Cluster Environment"

■ Section 3.7, "Using UMS Client API for XA Transactions"

■ Section 3.8, "Using UMS Java API to Specify Message Resends"

■ Section 3.9, "Configuring Security"

■ Section 3.10, "Threading Model"

The API provides a plain old java (POJO/POJI) programming model and this
eliminates the needs for application developers to package and implement various
Java EE modules (such as an EJB module) in an application to access UMS features.
This reduces application development time because developers can create applications
to run in a Java EE container without performing any additional packaging of
modules, or obtaining specialized tools to perform such packaging tasks.

Consumers of the UMS Java API are not required to use any Java EE mechanism such
as environment entries or other Java EE deployment descriptor artifacts. Besides the
overhead involved in maintaining Java EE descriptors, many client applications
already have a configuration framework that does not rely on Java EE descriptors.

Introduction to the UMS Java API

3-2 Developing Applications with Oracle User Messaging Service

3.1 Introduction to the UMS Java API
The UMS Java API is exposed as a POJO/POJI API. Consumers of the API can get an
instance of a MessagingClient object using a factory method. The consumers do not
need to deploy any EJB or other Java EE modules in their applications, but must
ensure that the UMS libraries are available in an application’ s runtime class path. The
deployment is as a shared library, "oracle.sdp.client".

The UMS Java API consists of packages grouped as follows:

■ Common and Client Packages

– oracle.sdp.messaging

– oracle.sdp.messaging.filter: A MessagingFilter is used by an
application to exercise greater control over what messages are delivered to it.

The samples with source code are available on Oracle Technology Network (OTN).

3.2 Creating a UMS Client Instance and Specifying Runtime Parameters
This section describes the requirements for creating a UMS Client. You can create a
MessagingClient instance by using the code in the MessagingClientFactory class.
Specifically, use the MessagingClientFactory.createMessagingClient()
method to create the instance.

Client applications can specify a set of parameters at runtime when instantiating a
client object. For example, you configure a MessagingClient instance by specifying
parameters as a map of key-value pairs in a java.util.Map<String, Object>.
Among other things, the configuration parameters serve to identify the client
application, point to the UMS server, and establish security credentials. Client
applications are responsible for storing and loading the configuration parameters
using any available mechanism.

Table 3–1 lists some configuration parameters that may be set for the Java API. In
typical use cases, most of the parameters do not need to be provided and the API
implementation uses sensible default values.

Note: To learn more about the code samples for Oracle User Messaging
Service, or to run the samples yourself, refer to the samples at:

http://www.oracle.com/technetwork/indexes/samplecode/samp
le-ums-1454424.html

Table 3–1 Configuration Parameters Specified at Runtime

Parameter Notes

APPLICATION_NAME Optional. By default, the client is identified by
its deployment name. This identifier can be
overridden by specifying a value for key
ApplicationInfo.APPLICATION_NAME.

APPLICATION_INSTANCE_NAME Optional. Only required for certain clustered
use cases or to take advantage of session-based
routing.

Sending a Message

Sending and Receiving Messages using the User Messaging Service Java API 3-3

To release resources used by the MessagingClient instance when it is no longer
needed, call MessagingClientFactory.remove(client). If you do not call this
method, some resources such as worker threads and JMS listeners may remain active.

Example 3–1 shows code for creating a MessagingClient instance using the
programmatic approach:

Example 3–1 Programmatic Approach to Creating a MessagingClient Instance

Map<String, Object> params = new HashMap<String, Object>();
// params.put(key, value); // if optional parameters need to be specified.
MessagingClient messagingClient =
MessagingClientFactory.createMessagingClient(params);

A MessagingClient cannot be reconfigured after it is instantiated. Instead, you
must create a new instance of the MessagingClient class using the desired
configuration.

The API reference for class MessagingClientFactory can be accessed from the
Javadoc.

3.3 Sending a Message
The client application can create a message object using the MessagingFactory class
of oracle.sdp.messaging. MessagingFactory. You can use other methods in
this class to create Addresses, AccessPoints, MessageFilters, and
MessageQueries. See User Messaging Service Java API Reference for more information
about these methods.

SDPM_SECURITY_PRINCIPAL Optional. By default, the client's resources are
available to any application with the same
application name and any security principal.
This behavior can be overridden by specifying
a value for key ApplicationInfo.SDPM_
SECURITY_PRINCIPAL. If a security principal
is specified, then all subsequent requests
involving the application's resources (messages,
access points, and so on.) must be made using
the same security principal.

MESSAGE_LISTENER_THREADS
STATUS_LISTENER_THREADS

Optional. When listeners are used to receive
messages or statuses asynchronously, the
number of listener worker threads can be
controlled by specifying values for the
MessagingConstants.MESSAGE_LISTENER_
THREADS and
MessagingConstants.STATUS_LISTENER_
THREADS keys.

RECEIVE_ACKNOWLEDGEMENT_MODE
LISTENER_ACKNOWLEDGEMENT_MODE

Optional. When receiving messages, you can
control the reliability mode by specifying
values for the
MessagingConstants.RECEIVE_
ACKNOWLEDGEMENT_MODE (synchronous
receiving) and MessagingConstants.
LISTENER_ACKNOWLEDGEMENT_MODE
(asynchronous receiving) keys.

Table 3–1 (Cont.) Configuration Parameters Specified at Runtime

Parameter Notes

Sending a Message

3-4 Developing Applications with Oracle User Messaging Service

The client application can then send the message. The API returns a String identifier
that the client application can later use to retrieve message delivery status. The status
returned is the latest known status based on UMS internal processing and delivery
notifications received from external gateways.

The types of messages that can be created include plaintext messages, multipart
messages that can consist of text/plain and text/html parts, and messages that include
the creation of delivery channel (DeliveryType) specific payloads in a single
message for recipients with different delivery types.

The section includes the following topics:

■ Creating a Message

■ Addressing a Message

■ Sending Group Messages

■ User Preference Based Messaging

3.3.1 Creating a Message
This section describes the various types of messages that can be created.

3.3.1.1 Creating a Plaintext Message
Example 3–2 shows how to create a plaintext message using the UMS Java API.

Example 3–2 Creating a Plaintext Message Using the UMS Java API

Message message = MessagingFactory.createTextMessage("This is a Plain Text
message.");

or

Message message = MessagingFactory.createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

3.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML
Parts)
Example 3–3 shows how to create a multipart or alternative message using the UMS
Java API.

Example 3–3 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
 .setContent(
 "<html><head></head><body><i>This is an HTML
part.</i></body></html>",
 "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");

Sending a Message

Sending and Receiving Messages using the User Messaging Service Java API 3-5

3.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for
Recipients with Different Delivery Types
When sending a message to a destination address, there could be multiple channels
involved. Oracle UMS application developers are required to specify the correct
multipart format for each channel.

Example 3–4 shows how to create delivery channel (DeliveryType) specific
payloads in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message should
contain one or more values of this header. The value of this header should be the name
of a valid delivery type. Refer to the available values for DeliveryType in the enum
DeliveryType.

Example 3–4 Creating Delivery Channel-specific Payloads in a Single Message for
Recipients with Different Delivery Types

Message message = MessagingFactory.createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");

part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");

// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><i>" + "HTML content for
EMAIL/IM." +
"</i></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");

// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload(true);

The API reference for class MessagingFactory , interface Message and enum
DeliveryType can be accessed from User Messaging Service Java API Reference.

Sending a Message

3-6 Developing Applications with Oracle User Messaging Service

3.3.2 Addressing a Message
This section describes type of addresses and how to create address objects.

3.3.2.1 Types of Addresses
There are two types of addresses, device addresses and user addresses. A device address
can be of various types, such as email addresses, instant messaging addresses, and
telephone numbers. User addresses are user IDs in a user repository.

3.3.2.2 Creating Address Objects
You can address senders and recipients of messages by using the class
MessagingFactory to create Address objects defined by the Address interface.

3.3.2.2.1 Creating a Single Address Object Example 3–5 shows code for creating a single
Address object:

Example 3–5 Creating a Single Address Object

Address recipient = MessagingFactory.createAddress("Email:john@example.com");

3.3.2.2.2 Creating Multiple Address Objects in a Batch Example 3–6 shows code for
creating multiple Address objects in a batch:

Example 3–6 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john@example.com", "SMS:123456"};
Address[] recipients = MessagingFactory.createAddress(recipientsStr);

3.3.2.2.3 Adding Sender or Recipient Addresses to a Message Example 3–7 shows code for
adding sender or recipient addresses to a message:

Example 3–7 Adding Sender or Recipient Addresses to a Message

Address sender = MessagingFactory.createAddress("Email:john@example.com");
Address recipient = MessagingFactory.createAddress("Email:jane@example.com");
message.addSender(sender);
message.addRecipient(recipient);

3.3.2.3 Creating a Recipient with a Failover Address
Example 3–8 shows code for creating a recipient with a failover address:

Example 3–8 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john@example.com, SMS:123456";
Address recipient = MessagingFactory.createAddress(recipientWithFailoverStr);

3.3.2.4 API Reference for Class MessagingFactory
The API reference for class MessagingFactory can be accessed from User Messaging
Service Java API Reference.

3.3.2.5 API Reference for Interface Address
The API reference for interface Address can be accessed from User Messaging Service
Java API Reference.

Sending a Message

Sending and Receiving Messages using the User Messaging Service Java API 3-7

3.3.3 Sending Group Messages
You can send messages to a group of users by sending it to a group URI, or sending a
message to LDAP groups (or enterprise roles) and application roles.

3.3.3.1 Sending Messages to a Group
You can send messages to an LDAP group or to enterprise roles.

The message is resolved to the users by fetching the email address of each user. If the
email address of a particular user specified in the group does not exist, then that user
is skipped.

To send a message to a group, use the MessagingFactory property to create a
recipient address of type GROUP and send the message as shown in Example 3–9.

Example 3–9 Creating and addressing a message to a group

Address groupAddr = MessagingFactory.createAddress("GROUP:MyGroup");
Message message = MessagingFactory.createTextMessage("Sending message to a
group");
message.addRecipient(groupAddr);
message.setSubject("Testing groups");
String id = messagingClient.send(message);

The group address groupAddr is eventually replaced by user addresses and the result
will be as shown in Example 3–10.

Example 3–10 Group Address replaced by user addresses

Address groupMember1 = MessagingFactory.createAddress("USER:MyGroupMember1");
Address groupMember2 = MessagingFactory.createAddress("USER:MyGroupMember2");
Address groupMember3 = MessagingFactory.createAddress("USER:MyGroupMember3");
Message message = MessagingFactory.createTextMessage("Sending message to a
group");
message.addRecipient(groupMember1);
message.addRecipient(groupMember2);
message.addRecipient(groupMember3);
message.setSubject("Testing groups");
String id = messagingClient.send(message);

3.3.3.2 Sending Messages to a Group Through a Specific Channel
You can specify the outgoing channel before sending a group message. To specify the
outgoing channel for a group message, you must set the DeliveryType property of the
group address (groupAddr) as shown in Example 3–11.

Example 3–11 Creating and addressing a message to a group through a channel

Address groupAddr = MessagingFactory.createAddress("GROUP:MyGroup");
groupAddr.setDeliveryType(DeliveryType.EMAIL);
Message message = MessagingFactory.createTextMessage("Sending message to a
group");
message.addRecipient(groupAddr);
message.setSubject("Testing groups through email");
String id = messagingClient.send(message);

Sending a Message

3-8 Developing Applications with Oracle User Messaging Service

3.3.3.3 Sending Messages to an Application Role
An application role is a collection of users, groups, and other application roles; it can
be hierarchical. Application roles are defined by application policies and not
necessarily known to a JavaEE container. For more information about application role,
see Oracle Fusion Middleware Application Security Guide.

To send a message to an Application role, use must create a recipient address of type
APPROLE by using the MessagingFactory property. The message should, then, be sent.
An application role belongs to an application ID (also known as application name or
application stripe). Therefore, both these parameters must be specified in the recipient
address as shown in Example 3–12.

Example 3–12 Creating and addressing a message to an application role

Address appRoleAddr =
MessagingFactory.createAppRoleAddress("myAppRole", "theAppId");
Message message = MessagingFactory.createTextMessage("Message to an application
role");
message.addRecipient(appRoleAddr);
message.setSubject("Testing application roles");
String id = messagingClient.send(message);

The application role APPROLE is eventually replaced by user addresses. However, if
the application id is that of the calling application, then you need not specify the
application id when creating the recipient address. UMS will automatically fetch the
application id that is specified in the application.name parameter in the
JpsFilter(web.xml) or JpsInterceptor(ejb-jar.xml). For more information,
see Oracle Fusion Middleware Application Security Guide.

3.3.3.4 Sending Messages to an Application Role Through a Specific Channel
The user can specify a channel for the outgoing message in the same way as specifying
a channel for sending a message to a group. You must set the delivery type on the
application role address.

The following is an example of sending a message to an application role specifying
email as the delivery channel:

Example 3–13 Creating and addressing a message to an application through a channel

Address appRoleAddr =
MessagingFactory.createAppRoleAddress("myAppRole", "theAppId");
appRoleAddr.setDeliveryType(DeliveryType.EMAIL);
Message message = MessagingFactory.createTextMessage("Message to an application
role");
message.addRecipient(appRoleAddr);
message.setSubject("Testing application roles");
String id = messagingClient.send(message);

Note: An application role may map to other application roles, such
as the following roles:

■ Authenticated role: Any user who successfully authenticates. This
may result in a large number of recipients.

■ Anonymous role: There will no recipient for this role.

Retrieving Message Status

Sending and Receiving Messages using the User Messaging Service Java API 3-9

3.3.4 User Preference Based Messaging
When sending a message to a user recipient (to leverage the user's messaging
preferences), you can pass current values for various business terms in the message as
metadata. The UMS server matches the supplied facts in the message against
conditions for business terms specified in the user's messaging filters.

Example 3–14 shows how to specify a user recipient and supply facts for business
terms for the user preferences in a message. For a complete list of supported business
terms, refer to Chapter 6, "User Communication Preferences."

Example 3–14 User Preference Based Messaging

Message message = MessagingFactory.createMessage();
// create and add a user recipient
Address userRecipient1 = MessagingFactory.createAddress("USER:sampleuser1");
message.addRecipient(userRecipient1);
// specify business term facts
message.setMetaData(Message.NAMESPACE_NOTIFICATION_PREFERENCES, "Customer
Name", "ACME");
// where "Customer Name" is the Business Term name, and "ACME" is the
Business Term value (i.e, fact).

3.4 Retrieving Message Status
After sending a message, you can use Oracle UMS to retrieve the message status either
synchronously or asynchronously.

3.4.1 Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the
MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

3.4.2 Asynchronous Receiving of Message Status
When asynchronously receiving status, the client application specifies a Listener
object and an optional correlator object. When incoming status arrives, the listener’ s
onStatus callback is invoked. The originally-specified correlator object is also passed
to the callback method.

3.4.2.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the
oracle.sdp.messaging.Listener interface. You can implement it as any

Note: All facts must be added as metadata in the
Message.NAMESPACE_NOTIFICATION_PREFERENCES namespace.
Metadata in other namespaces are ignored (for resolving User
Communication Preferences).

Receiving a Message

3-10 Developing Applications with Oracle User Messaging Service

concrete class - one of your existing classes, a new class, or an anonymous or inner
class.

The following code example shows how to implement a status listener:

import oracle.sdp.messaging.Listener;

 public class StatusListener implements Listener {

 @Override
 public void onMessage(Message message, Serializable correlator) {
 }
 @Override
 public void onStatus(Status status, Serializable correlator) {
 System.out.println("Received Status: " + status + " with optional
correlator: " +

correlator);
 }
 }

You pass a reference to the Listener object to the setStatusListener or send
methods, as described in "Default Status Listener" and "Per Message Status Listener".
When a status arrives for your message, the UMS infrastructure invokes the Listener's
onStatus method as appropriate.

3.4.2.2 Default Status Listener
The client application typically sets a default status listener (Example 3–15). When the
client application sends a message, delivery status callbacks for the message invoke
the default listener’s onStatus method.

Example 3–15 Default Status Listener

messagingClient.setStatusListener(new MyStatusListener());
messagingClient.send(message);

3.4.2.3 Per Message Status Listener
In this approach, the client application sends a message and specifies a Listener object
and an optional correlator object (Example 3–16). When delivery status callbacks are
available for that message, the specified listener’s onStatus method is invoked. The
originally-specified correlator object is also passed to the callback method.

Example 3–16 Per Message Status Listener

messagingClient.send(message, new MyStatusListener(), null);

3.5 Receiving a Message
This section describes how an application receives messages. To receive a message you
must first register an access point.

An application that wants to receive incoming messages must register one or more
access points that represent the recipient addresses of the messages. The server
matches the recipient address of an incoming message against the set of registered
access points, and routes the incoming message to the application that registered the
matching access point. From the application perspective there are two modes for
receiving a message, synchronous and asynchronous.

Receiving a Message

Sending and Receiving Messages using the User Messaging Service Java API 3-11

3.5.1 Registering an Access Point
The client application can create and register an access point, specifying that it wants
to receive incoming messages sent to a particular address. Since the client application
has not specified any message listeners, any received messages are held by UMS. The
client application can then invoke the receive method to fetch the pending messages.
When receiving messages without specifying an access point, the application receives
messages for any of the access points that it has registered. Otherwise, if an access
point is specified, the application receives messages sent to that access point.

AccessPoint represents one or more device addresses to receive incoming messages.

You can use MessagingFactory.createAccessPoint to create an access point
and MessagingClient.registerAccessPoint to register it for receiving
messages.

To register an email access point:

Address apAddress = MessagingFactory.createAddress("EMAIL:user1@example.com");
AccessPoint ap = MessagingFactory.createAccessPoint(apAddress);
MessagingClient.registerAccessPoint(ap);

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

3.5.2 Synchronous Receiving
A receive is a nonblocking operation. If there are no pending messages for the
application or access point, the call returns a null immediately. Receive is not
guaranteed to return all available messages, but may return only a subset of available
messages for efficiency reasons.

You can use the method MessagingClient.receive to synchronously receive
messages that UMS makes available to the application. This is a convenient polling
method for light-weight clients that do not want the configuration overhead associated
with receiving messages asynchronously. This method returns an array of messages
that are immediately available in the application inbound queue.

3.5.3 Asynchronous Receiving
When asynchronously receiving messages, the client application registers an access
point and specifies a Listener object and an optional correlator object. When
incoming messages arrive at the specified access point address, the listener’ s

Note: A single invocation does not guarantee retrieval of all
available messages. You must poll to ensure receiving all available
messages.

Receiving a Message

3-12 Developing Applications with Oracle User Messaging Service

onMessage callback is invoked. The originally-specified correlator object is also
passed to the callback method.

3.5.3.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the
oracle.sdp.messaging.Listener interface. You can implement it as any
concrete class - one of your existing classes, a new class, or an anonymous or inner
class.

The following code example shows how to implement a message listener:

import oracle.sdp.messaging.Listener;

 public class MyListener implements Listener {

 @Override
 public void onMessage(Message message, Serializable correlator) {
 System.out.println("Received Message: " + message + " with optional
correlator: " +
correlator);
 }
 @Override
 public void onStatus(Status status, Serializable correlator) {
 System.out.println("Received Status: " + status + " with optional
correlator: " +
correlator);
 }

 }

You pass a reference to the Listener object to the setMessageListener or
registerAccessPoint methods, as described in "Default Message Listener" and
"Per Access Point Message Listener". When a message arrives for your application, the
UMS infrastructure invokes the Listener's onMessage method.

3.5.3.2 Default Message Listener
The client application typically sets a default message listener (Example 3–17). This
listener is invoked for any delivery statuses for messages sent by this client application
that do not have an associated listener. When Oracle UMS receives messages
addressed to any access points registered by this client application, it invokes the
onMessage callback for the client application’s default listener.

To remove a default listener, call this method with a null argument.

Example 3–17 Default Message Listener

messagingClient.setMessageListener(new MyListener());

See the sample application usermessagingsample-echo for detailed instructions
on asynchronous receiving.

3.5.3.3 Per Access Point Message Listener
The client application can also register an access point and specify a Listener object
and an optional correlator object (Example 3–18). When incoming messages arrive at
the specified access point address, the specified listener’ s onMessage method is
invoked. The originally-specified correlator object is also passed to the callback
method.

Configuring for a Cluster Environment

Sending and Receiving Messages using the User Messaging Service Java API 3-13

Example 3–18 Per Access Point Message Listener

messagingClient.registerAccessPoint(accessPoint, new MyListener(), null);

3.5.4 Message Filtering
A MessageFilter is used by an application to exercise greater control over what
messages are delivered to it. A MessageFilter contains a matching criterion and an
action. An application can register a series of message filters; they are applied in order
against an incoming (received) message; if the criterion matches the message, the
action is taken. For example, an application can use MessageFilters to implement
necessary blacklists, by rejecting all messages from a given sender address.

You can use MessagingFactory.createMessageFilter to create a message
filter, and MessagingClient.registerMessageFilter to register it. The filter is
added to the end of the current filter chain for the application. When a message is
received, it is passed through the filter chain in order; if the message matches a filter's
criterion, the filter's action is taken immediately. If no filters match the message, the
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessagingFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessagingFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

3.6 Configuring for a Cluster Environment
The API supports an environment where client applications and the UMS server are
deployed in a cluster environment. For a clustered deployment to function as
expected, client applications must be configured correctly. The following rules apply:

■ Two client applications are considered to be instances of the same application if
they use the same ApplicationName configuration parameter. Typically this
parameter is synthesized by the API implementation and does not need to be
populated by the application developer.

■ Instances of the same application share most of their configuration, and artifacts
such as Access Points and Message Filters that are registered by one instance are
shared by all instances.

■ The ApplicationInstanceName configuration parameter enables you to
distinguish instances from one another. Typically this parameter is synthesized by
the API implementation and does not need to be populated by the application
developer. Refer to the Javadoc for cases in which this value must be populated.

■ Application sessions are instance-specific. You can set the session flag on a
message to ensure that any reply is received by the instance that sent the message.

■ Listener correlators are instance-specific. If two different instances of an
application register listeners and supply different correlators, then when instance
A’s listener is invoked, correlator A is supplied; when instance B’s listener is
invoked, correlator B is supplied.

Using UMS Client API for XA Transactions

3-14 Developing Applications with Oracle User Messaging Service

3.7 Using UMS Client API for XA Transactions
UMS provides support for XA enabled transactions for outbound and inbound
messages. The industry standard, X/Open XA protocol, is widely supported in other
Oracle products such as Business Process Management (BPM).

3.7.1 About XA Transactions
Java Messaging Service (JMS) defines a common set of enterprise messaging concepts
and facilities. It is used in User Messaging Service (UMS) for messaging, queuing,
sorting, and routing. Java Transaction API (JTA) specifies local Java interfaces between
a transaction manager and the parties involved in a distributed transaction system -
the application, the resource manager, and the application server. The JTA package
consists of the following three components:

■ A high-level application interface that allows a transactional application to
demarcate transaction boundaries.

■ A Java mapping of the industry standard X/Open XA protocol that allows a
transactional resource manager to participate in a global transaction controlled by
an external transaction manager.

■ A high-level transaction manager interface that allows an application server to
control transaction boundary demarcation for an application being managed by
the application server.

JTA is used by a Java Messaging Service (JMS) provider to support XA transactions
(also known as distributed transactions). The JMS provider that supports XA Resource
interface is able to participate as a resource manager in a distributed transaction
processing system that uses a two-phase commit transaction protocol.

3.7.2 Sending and Receiving XA Enabled Messages
The XA support enables UMS to send messages from within a transaction boundary
only when the transaction is committed. If the transaction is rolled back, then the
sending of the message fails. A commit leads to a successful transaction; whereas
rollback leaves the message unaltered. UMS provides XA transaction support for both,
outbound and inbound messages.

Outbound messaging using XA
The messages sent from a UMS client application to recipients via UMS server are
called outbound messages. When an XA transaction is enabled on a UMS client, an
outbound message is sent to the UMS server, only if the transaction is committed.
Upon successful transaction, the message is safely stored and prepared for delivery to
the recipients. If the client transaction fails to commit and a rollback occurs, then the
message is not sent to the UMS server for delivery.

The following code snippet demonstrates how to send an outbound message using
XA:

transaction.begin();
String messageID = mClient.send(message);
transaction.commit();

Note: You do not need to install the XA support feature, as this
feature is included in the UMS server and in the UMS client. Also note
that the XA support is available only for the POJO API, not for the
Web Services API.

Using UMS Client API for XA Transactions

Sending and Receiving Messages using the User Messaging Service Java API 3-15

Inbound messaging using XA
The following code snippet demonstrates how to receive an inbound message using
XA:

The messages received by a UMS driver from the UMS server and later routed to a
UMS client are called inbound messages. When an XA transaction is enabled on a
UMS client, an inbound message is retrieved from the UMS server and deleted from
UMS server store, only if the transaction is committed. If a transaction rollback occurs,
then the message is left unaltered in the UMS server for later redelivery.

transaction.begin();
messages = mClient.receive();

 for (Message receivedMessage : messages) {
// process individual messages here.
}
transaction.commit();

Once the external XA transaction is committed by the client, the messages received by
the UMS driver will be permanently removed from the UMS server. If the transaction
fails to commit and a rollback occurs, then the messages will be received after the
transaction times out. This message will be redelivered with the
getJMSRedelivered method returning true. For more information about this
method, see User Messaging Service Java API Reference.

The transaction timed out can be changed by calling setTransactionTimeout. To
receive messages that failed to commit due to a server crash, the server and the client
must be restarted, or the specific server migration procedure must be executed. For
more information, see chapter Configuring Advanced JMS System Resources in Oracle
Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server.

Using a listener for XA transactions
You can also use a listener in a transaction while receiving messages. This is done by
specifying the constant MessagingConstants.LISTENER_TRANSACTED_MODE. Set
the value of this constant to TRUE or FALSE when creating a MessagingClient
instance, as shown in the example below.

Example 3–19 Using a listener to receive XA enabled messages

Map<String, Object> params = new HashMap<String, Object>();
params.put(MessagingConstants.LISTENER_TRANSACTED_MODE, Boolean.TRUE);
MessagingClient mClient = MessagingClientFactory.createMessagingClient(params);

mClient.registerAccessPoint(MessagingFactory.createAccessPoint(receiverAddr),
new MyListener(), null);

Note: If you use a listener, transactions will be committed when the
messaging constant LISTENER_TRANSACTED_MODE is set to TRUE
and when no exceptions are raised. When LISTENER_TRANSACTED_
MODE is set to FALSE, transactions will be committed irrespective of
the exceptions.

If you want to roll back a transaction, set the exception accordingly.
For more information about ListenerException, see User Messaging
Service Java API Reference.

Using UMS Java API to Specify Message Resends

3-16 Developing Applications with Oracle User Messaging Service

private class MyListener implements Listener {

 @Override
 public void onMessage(Message message,
 Serializable correlator) throws ListenerException {

 }}

For more information about the messaging constant, see User Messaging Service Java
API Reference.

Using EJB calls for XA transactions
You can send XA enabled messages using EJB calls. To roll back the transaction,
specify the setRollbackOnly() method. For more information about this method,
see:
http://docs.oracle.com/javaee/7/api/javax/ejb/EJBContext.html#se
tRollbackOnly()

You can also control the scope of a transaction by specifying the transaction attributes
(such as NotSupported, RequiresNew, and Never) as described in the Java EE tutorial
at:

http://docs.oracle.com/javaee/6/tutorial/doc/bncij.html

Example 3–20 Sending XA enabled messaging using an EJB call

Map<String, Object> params = new HashMap<String, Object>();
MessagingClient mClient =
MessagingClientFactory.createMessagingClient(params);
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart part1 = new MimeBodyPart();
Message message = MessagingFactory.createMessage();
...
...

mClient.sendMessage();

if(failure)
setRollbackOnly()

3.8 Using UMS Java API to Specify Message Resends
UMS allows you to schedule a message resend when the message send attempt fails.
You can specify the maximum number of message resends by calling the
setMaxResend method as shown in the following example:

MessageInfo msgInfo = message.getMessageInfo();
msgInfo.setMaxResend(1);
String mid = messagingClient.send(message);

The status of the failover addresses can be received by calling
getTotalFailovers() and getFailoverOrder(). When failover order equals
total failovers, the API user knows that the failover chain is exhausted. However, the
resend functionality works as a loop over the failover chain. You can call
getMaxResend() and getCurrentResend() to know when the resend and
failover chain is completely exhausted.

Threading Model

Sending and Receiving Messages using the User Messaging Service Java API 3-17

For more information about setMaxResend, getTotalFailovers ,
getFailoverOrder, and other methods, see User Messaging Service Java API
Reference.

3.9 Configuring Security
Client applications may need to specify one or more additional configuration
parameters (described in Table 3–1) to establish a secure listener.

3.10 Threading Model
Client applications that use the UMS Java API are usually multithreaded. Typical
scenarios include a pool of EJB instances, each of which uses a MessagingClient
instance; and a servlet instance that is serviced by multiple threads in a web container.
The UMS Java API supports the following thread model:

■ Each call to MessagingClientFactory.createMessagingClient returns a
new MessagingClient instance.

■ When two MessagingClient instances are created by passing parameter maps
that are equal to MessagingClientFactory.createMessagingClient, they
are instances of the same client. Instances created by passing different parameter
maps are instances of separate clients.

■ An instance of MessagingClient is not thread safe when it has been obtained
using MessagingClientFactory.createMessagingClient. Client
applications must ensure that a given instance is used by only one thread at a
time. They may do so by ensuring that an instance is only visible to one thread at a
time, or by synchronizing access to the MessagingClient instance.

■ Two instances of the same client (created with identical parameter maps) do share
some resources – notably they share Message and Status Listeners, and use a
common pool of Worker threads to execute asynchronous messaging operations.
For example, if instance A calls setMessageListener(), and then instance B
calls setMessageListener(), then B's listener is the active default message
listener.

The following are typical use cases:

■ To use the UMS Java API from an EJB (either a Message Driven Bean or a Session
Bean) application, the recommended approach is to create a MessagingClient
instance in the bean’ s ejbCreate (or equivalent @PostConstruct) method,
and store the MessagingClient in an instance variable in the bean class. The EJB
container ensures that only one thread at a time uses a given EJB instance, which
ensures that only one thread at a time accesses the bean’ s MessagingClient
instance.

■ To use the UMS Java API from a Servlet, there are several possible approaches. In
general, web containers create a single instance of the servlet class, which may be
accessed by multiple threads concurrently. If a single MessagingClient instance
is created and stored in a servlet instance variable, then access to the instance must
be synchronized.

Another approach is to create a pool of MessagingClient instances that are
shared among servlet threads.

Finally, you can associate individual MessagingClient instances with
individual HTTP Sessions. This approach allows increased concurrency compared
to having a single MessagingClient for all servlet requests. However, it is

Threading Model

3-18 Developing Applications with Oracle User Messaging Service

possible for multiple threads to access an HTTP Session at the same time due to
concurrent client requests, so synchronization is still required in this case.

3.10.1 Listener Threading
For asynchronous receiving described in Section 3.4.2, "Asynchronous Receiving of
Message Status" and Section 3.5.3, "Asynchronous Receiving" UMS by default uses one
thread for incoming messages and one thread for incoming status notifications
(assuming at least one message or status listener is registered, respectively). Client
applications can increase the concurrency of asynchronous processing by configuring
additional worker threads. This is done by specifying integer values for the
MessagingConstants.MESSAGE_LISTENER_THREADS and
MessagingConstants.STATUS_LISTENER_THREADS keys, settings these values to
the desired number of worker threads in the configuration parameters used when
creating a MessagingClient instance.

4

Sending and Receiving Messages using the User Messaging Service Web Service API 4-1

4Sending and Receiving Messages using the
User Messaging Service Web Service API

This chapter describes how to use the User Messaging Service (UMS) Web Service API
to develop applications. This API serves as a programmatic entry point for Fusion
Middleware application developers to implement UMS messaging applications that
run in a remote container relative to the UMS server.

This chapter includes the following sections:

■ Section 4.1, "Introduction to the UMS Web Service API"

■ Section 4.2, "Creating a UMS Client Instance and Specifying Runtime Parameters"

■ Section 4.3, "Sending a Message"

■ Section 4.4, "Retrieving Message Status"

■ Section 4.5, "Receiving a Message"

■ Section 4.6, "Configuring for a Cluster Environment"

■ Section 4.7, "Using UMS Web Service API to Specify Message Resends"

■ Section 4.8, "Configuring Security"

■ Section 4.9, "Threading Model"

■ Section 4.10, "Sample Chat Application with Web Services APIs"

4.1 Introduction to the UMS Web Service API
The UMS Web Service API is functionally identical to the Java API. The JAX-WS and
JAXB bindings of the web service types and interfaces are named similarly to the
corresponding Java API classes, but are in their own package space. Classes from the
two APIs are not interoperable.

The UMS Web Service API consists of packages grouped as follows:

■ Common and Client Packages

– oracle.ucs.messaging.ws

– oracle.ucs.messaging.ws.types

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, see the samples at:

http://www.oracle.com/technetwork/indexes/samplecode
/sample-ums-1454424.html

Creating a UMS Client Instance and Specifying Runtime Parameters

4-2 Developing Applications with Oracle User Messaging Service

■ Web Service API Web Service Definition Language (WSDL) files:

– messaging.wsdl: defines the operations invoked by a web service client.

– listener.wsdl: defines the callback operations that a client must
implement to receive asynchronous message or status notifications.

The samples with source code are available on Oracle Technology Network (OTN).

4.2 Creating a UMS Client Instance and Specifying Runtime Parameters
This section describes the requirements for creating a UMS Client. You can create a
instance of oracle.ucs.messaging.ws.MessagingClient by using the public
constructor. Client applications can specify a set of parameters at runtime when
instantiating a client object. For example, you configure a MessagingClient instance
by specifying parameters as a map of key-value pairs in a java.util.Map<String,
Object>. Among other things, the configuration parameters serve to identify the web
service endpoint URL identifying the UMS server to communicate with, and other
web service-related information such as security policies. Client applications are
responsible for storing and loading the configuration parameters using any available
mechanism.

You are responsible for mapping the parameters to or from whatever configuration
storage mechanism is appropriate for your deployment. The MessagingClient class
uses the specified key/value pairs for configuration, and passes through all
parameters to the underlying JAX-WS service. Any parameters recognized by JAX-WS
are valid. Table 4–1 lists the most common configuration parameters:

A MessagingClient cannot be reconfigured after it is instantiated. Instead, a new
instance of the MessagingClient class must be created using the new configuration.

Example 4–1 shows code for creating a MessagingClient instance using
username/token security, using the programmatic approach:

Table 4–1 Configuration Parameters Specified at Runtime

Key Type Use

javax.xml.ws.BindingProvider.EN
DPOINT_ADDRESS_PROPERTY

String Endpoint URL for the remote UMS
WS. This is typically
"http://<host>:<port>/ucs/messagin
g/webservice".

javax.xml.ws.BindingProvider.US
ERNAME_PROPERTY

String Username to be asserted in
WS-Security headers when relevant

oracle.ucs.messaging.ws.ClientC
onstants.POLICIES

String[] Set of OWSM WS-Security policies to
attach to the client's requests. These
must match the policies specified on
the server side.

oracle.wsm.security.util.Securi
tyConstants.Config.KEYSTORE_
RECIPIENT_ALIAS_PROPERTY

String Used for OWSM policy attachment.
Specifies an alternate alias to use for
looking up encryption and signing
keys from the credential store.

oracle.wsm.security.util.Securi
tyConstants.ClientConstants.WSS
_CSF_KEY

String Used for OWSM policy attachment.
Specifies a credential store key to use
for looking up remote
username/password information from
the Oracle Web Services Management
credential store map.

Sending a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 4-3

Example 4–1 Programmatic Approach to Creating a MessagingClient Instance,
Username/Token Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_username_token_
with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_CSF_KEY,
 "user1-passkey");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

Example 4–2 shows code for creating a MessagingClient instance using SAML
token security, using the programmatic approach:

Example 4–2 Programmatic Approach to Creating a MessagingClient Instance, SAML
Token Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_saml_token_
identity_switch_with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_
ALIAS_PROPERTY, "example.com");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

A MessagingClient cannot be reconfigured after it is instantiated. Instead, you
must create a new instance of the MessagingClient class using the desired
configuration.

Factory methods are provided for creating Web Service API types in the class
"oracle.ucs.messaging.ws.MessagingFactory".

4.3 Sending a Message
Invoking the send method causes the message to be delivered to UMS and processed
accordingly. The send method returns a String message identifier that the client
application can later use to retrieve message delivery status, or to correlate with
asynchronous status notifications that are delivered to a Listener. The status returned
is the latest known status based on UMS internal processing and delivery notifications
received from external gateways.

The types of messages that can be created include plaintext messages, multipart
messages that can consist of text/plain and text/html parts, and messages that include
the creation of delivery channel (DeliveryType) specific payloads in a single
message for recipients with different delivery types.

Sending a Message

4-4 Developing Applications with Oracle User Messaging Service

4.3.1 Creating a Message
This section describes the various types of messages that can be created.

4.3.1.1 Creating a Plaintext Message
Example 4–3 shows two ways to create a plaintext message using the UMS Web
Service API.

Example 4–3 Creating a Plaintext Message Using the UMS Web Service API

Message message = MessagingFactory.createTextMessage("This is a Plain Text
 message.");

or

Message message = MessagingFactory.createMessage();
message.setContent(new DataHandler(new StringDataSource("This is a Plain Text
 message.", "text/plain; charset=UTF-8")));

4.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts)
Example 4–4 shows how to create a multipart/mixed message using the UMS Web
Service API.

Example 4–4 Creating a Multipart/Mixed Message Using the UMS Web Service API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("mixed");

// Create the first body part
MimeBodyPart mp_partPlain = new MimeBodyPart();
StringDataSource plainDS = new StringDataSource("This is a Plain Text part.",
 "text/plain; charset=UTF-8");
mp_partPlain.setDataHandler(new DataHandler(plainDS));
mp.addBodyPart(mp_partPlain);

byte[] imageData;
// Create or load image data in the above byte array (code not shown for brevity)

// Create the second body part
MimeBodyPart mp_partBinary = new MimeBodyPart();
ByteArrayDataSource binaryDS = new ByteArrayDataSource(imageData, "image/gif");
mp_partBinary.setDataHandler(binaryDS);
mp.addBodyPart(mp_partBinary);

message.setContent(new DataHandler(mp, mp.getContentType()));

4.3.1.3 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML
Parts)
Example 4–5 shows how to create a multipart/alternative message using the UMS
Web Service API.

Example 4–5 Creating a Multipart/Alternative Message Using the UMS Web Service API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
StringDataSource plainDS = new StringDataSource("This is a Plain Text part.",
"text/plain; charset=UTF-8");

Sending a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 4-5

mp_partPlain.setDataHandler(new DataHandler(plainDS));
mp.addBodyPart(mp_partPlain);

MimeBodyPart mp_partRich = new MimeBodyPart();
StringDataSource richDS = new StringDataSource(
 "<html><head></head><body><i>This is an HTML part.</i></body></html>",
 "text/html");
mp_partRich.setDataHandler(new DataHandler(richDS));
mp.addBodyPart(mp_partRich);

message.setContent(new DataHandler(mp, mp.getContentType()));

4.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for
Recipients with Different Delivery Types
When sending a message to a destination address, there could be multiple channels
involved. Oracle UMS application developers are required to specify the correct
multipart format for each channel.

Example 4–6 shows how to create delivery channel (DeliveryType) specific
payloads in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message should
contain one or more values of this header. The value of this header should be the name
of a valid delivery type. Refer to the available values for DeliveryType in the enum
DeliveryType.

Example 4–6 Creating Delivery Channel-specific Payloads in a Single Message for
Recipients with Different Delivery Types

Message message = MessagingFactory.createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setDataHandler(new DataHandler(new StringDataSource("Text content for SMS.",
 "text/plain; charset=UTF-8")));
part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");
// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setDataHandler(new DataHandler(new StringDataSource("Text
 content for EMAIL/IM.", "text/plain; charset=UTF-8")));
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setDataHandler(new DataHandler(new
 StringDataSource("<html><head></head><body><i>" + "HTML content for EMAIL/IM."
 +
 "</i></body></html>", "text/html; charset=UTF-8")));
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, part2_mp.getContentType());
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");
// add second part
mp.addBodyPart(part2);

Sending a Message

4-6 Developing Applications with Oracle User Messaging Service

// set the content of the message
message.setContent(new DataHandler(mp, mp.getContentType()));

// set the MultiplePayload flag to true
MimeHeader multiHeader = new MimeHeader();
multiHeader.setName(oracle.sdp.client.Message.HEADER_SDPM_MULTIPLE_PAYLOAD);
multiHeader.setValue(Boolean.TRUE.toString());
message.getHeaders().add(multiHeader);

4.3.2 API Reference for Interface Message
The API reference for interface Message can be accessed from the Javadoc.

4.3.3 API Reference for Enum DeliveryType
The API reference for enum DeliveryType can be accessed from the Javadoc.

4.3.4 Addressing a Message
This section describes type of addresses and how to create address objects.

4.3.4.1 Types of Addresses
There are two types of addresses, device addresses and user addresses. A device address
can be of various types, such as email addresses, instant messaging addresses, and
telephone numbers. User addresses are user IDs in a user repository.

4.3.4.2 Creating Address Objects
You can address senders and recipients of messages by using the class
MessagingFactory to create Address objects defined by the Address interface.

4.3.4.2.1 Creating a Single Address Object Example 4–7 shows code for creating a single
Address object:

Example 4–7 Creating a Single Address Object

Address recipient = MessagingFactory.createAddress("Email:john@example.com");

4.3.4.2.2 Creating Multiple Address Objects in a Batch Example 4–8 shows code for
creating multiple Address objects in a batch:

Example 4–8 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john@example.com", "IM:john@example.com"};
Address[] recipients = MessagingFactory.createAddress(recipientsStr);

4.3.4.2.3 Adding Sender or Recipient Addresses to a Message Example 4–9 shows code for
adding sender or recipient addresses to a message:

Example 4–9 Adding Sender or Recipient Addresses to a Message

Address sender = MessagingFactory.createAddress("Email:john@example.com");
Address recipient = MessagingFactory.createAddress("Email:jane@example.com");
message.addSender(sender);
message.addRecipient(recipient);

Sending a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 4-7

4.3.4.3 Creating a Recipient with a Failover Address
Example 4–10 shows code for creating a recipient with a failover address:

Example 4–10 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john@example.com, IM:john@example.com";
Address recipient = MessagingFactory.createAddress(recipientWithFailoverStr);

4.3.4.4 Recipient Types
The WS API provides support for sending and receiving messages with To/Cc/Bcc
recipients for use with the email driver:

■ To send a message and specify a Cc/Bcc recipient, create the
oracle.ucs.messaging.ws.Address object using
oracle.ucs.messaging.ws.MessagingFactory.buildAddress method.
The arguments are the address value (for example, user@domain.com), delivery
type (for example, DeliveryType.EMAIL), and email mode (for example, "Cc" or
"Bcc").

■ To determine the recipient type of an existing address object, for example in a
received message, use the
oracle.ucs.messaging.ws.MessagingFactory.getRecipientType
method, passing it the Address object. It returns a string indicating the recipient
type.

4.3.4.5 API Reference for Class MessagingFactory
The API reference for class MessagingFactory can be accessed from the Javadoc.

4.3.4.6 API Reference for Interface Address
The API reference for interface Address can be accessed from the Javadoc.

4.3.5 User Preference Based Messaging
When sending a message to a user recipient (to leverage the user's messaging
preferences), you can pass facts (current values) for various business terms in the
message as metadata. The UMS server matches the supplied facts in the message
against conditions for business terms specified in the user's messaging filters.

Example 4–11 shows how to specify a user recipient and supply facts for business
terms for the user preferences in a message. For a complete list of supported business
terms, refer to Chapter 6, "User Communication Preferences."

Example 4–11 User Preference Based Messaging

Message message = MessagingFactory.createMessage();
// create and add a user recipient
Address userRecipient1 = MessagingFactory.createAddress("USER:sampleuser1");
message.addRecipient(userRecipient1);
// specify business term facts
MessagingFactory.setMetadata(message, oracle.sdp.client.Message.NAMESPACE_

Note: All facts must be added as metadata in the
oracle.sdp.client.Message.NAMESPACE_NOTIFICATION_
PREFERENCES namespace. Metadata in other namespaces are ignored
(for resolving User Communication Preferences).

Retrieving Message Status

4-8 Developing Applications with Oracle User Messaging Service

NOTIFICATION_PREFERENCES, "Customer Name", "ACME");
// where "Customer Name" is the Business Term name, and "ACME" is the
Business Term value (i.e, fact).

4.4 Retrieving Message Status
After sending a message, you can use Oracle UMS to retrieve the message status either
synchronously or asynchronously.

4.4.1 Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the
MessagingClient API:

String messageId = messagingClient.send(message);
List<Status> statuses = messagingClient.getStatus(messageId, null)

or,

List<Status> statuses = messagingClient.getStatus(messageId, addresses) --- where
addresses is a "List<Address>" of one or more of the recipients set in the
message.

4.4.2 Asynchronous Receiving of Message Status
To receive statuses asynchronously, a client application must implement the listener
web service as described in listener.wsdl. There is no constraint on how the
listener endpoint must be implemented. For example, one method is to use the
javax.xml.ws.Endpoint JAX-WS Service API to publish a web service endpoint.
This mechanism is available in Java SE 6 and does not require the consumer to
explicitly define a Java EE servlet module.

However, a servlet-based listener implementation is acceptable as well.

When sending a message, the client application can provide a reference to the listener
endpoint, consisting of the endpoint URL and a SOAP interface name. As statuses are
generated during the processing of the message, the UMS server invokes the listener
endpoint’ s onStatus method to notify the client application.

4.4.2.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the
oracle.ucs.messaging.ws.Listener interface. You can implement it as any
concrete class - one of your existing classes, a new class, or an anonymous or inner
class.

The following code example shows how to implement a status listener:

@PortableWebService(serviceName="ListenerService",
targetNamespace="http://xmlns.oracle.com/ucs/messaging/",
endpointInterface="oracle.ucs.messaging.ws.Listener",
wsdlLocation="META-INF/wsdl/listener.wsdl",
portName="Listener")
public class MyListener implements Listener {
 public MyListener() {
 }

 @Override
 public void onMessage(Message message, byte[] correlator) throws
MessagingException {

Receiving a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 4-9

 System.out.println("I got a message!");
 }

 @Override
 public void onStatus(Status status, byte[] correlator) throws MessagingException
{
 System.out.println("I got a status!");
 }
}

4.4.2.2 Publish the Callback Service
To publish the callback service, you can either declare a servlet in web.xml in a web
module within your application, or use the JAX-WS javax.xml.ws.Endpoint class's
publish method to programmatically publish a WS endpoint (Example 4–12):

Example 4–12 Publish the Callback Service

Listener myListener = new MyListener();
String callbackURL = "http://host:port/umswscallback";
Endpoint myEndpoint = javax.xml.ws.Endpoint.publish(callbackURL, myListener);

4.4.2.3 Stop a Dynamically Published Endpoint
To stop a dynamically published endpoint, call the stop() method on the Endpoint
object returned from Endpoint.publish() (Example 4–13).

Example 4–13 Stop a Dynamically Published Endpoint

// When done, stop the endpoint, ideally in a finally block or other reliable
cleanup mechanism
myEndpoint.stop();

4.4.2.4 Registration
Once the listener web service is published, you must register the fact that your client
has such an endpoint. There are the following relevant methods in the
MessagingClient API:

■ setStatusListener(ListenerReference listener)

■ send(Message message, ListenerReference listener, byte[]
correlator)

setStatusListener() registers a "default" status listener whose callback is
invoked for any incoming status messages. A listener passed to send() is only
invoked for status updates related to the corresponding message.

4.5 Receiving a Message
This section describes how an application receives messages.

An application that wants to receive incoming messages must register one or more
access points that represent the recipient addresses of the messages. The server
matches the recipient address of an incoming message against the set of registered
access points, and routes the incoming message to the application that registered the
matching access point. From the application perspective there are two modes for
receiving a message, synchronous and asynchronous.

Receiving a Message

4-10 Developing Applications with Oracle User Messaging Service

4.5.1 Registering an Access Point
The client application can create and register an access point, specifying that it wants
to receive incoming messages sent to a particular address.

The client application can then invoke the receive method to fetch the pending
messages. When receiving messages without specifying an access point, the
application receives messages for any of the access points that it has registered.
Otherwise, if an access point is specified, the application receives messages sent to that
access point.

AccessPoint represents one or more device addresses to receive incoming messages.

You can use MessagingFactory.createAccessPoint to create an access point
and MessagingClient.registerAccessPoint to register it for receiving
messages.

To register an email access point:

Address apAddress = MessagingFactory.createAddress("EMAIL:user1@example.com");
AccessPoint ap = MessagingFactory.createAccessPoint(apAddress);
MessagingClient.registerAccessPoint(ap);

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 MessagingFactory.createAccessPoint(AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 MessagingFactory.createAccessPoint(AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

4.5.2 Synchronous Receiving
Use the method MessagingClient.receive to synchronously receive messages
that UMS makes available to the application. This is a convenient polling method for
light-weight clients that do not want the configuration overhead associated with
receiving messages asynchronously.

Receive is a nonblocking operation. If there are no pending messages for the
application or access point, the call returns immediately with an empty list. Receive is
not guaranteed to return all available messages, but may return only a subset of
available messages for efficiency reasons.

It performs a nonblocking call, so if no message is currently available, the method
returns null.

4.5.3 Asynchronous Receiving
To receive messages asynchronously, a client application must implement the
Listener web service as described in listener.wsdl. There is no constraint on

Note: A single invocation does not guarantee retrieval of all
available messages. You must poll to ensure receiving all available
messages.

Receiving a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 4-11

how the listener endpoint must be implemented. For example, one mechanism is using
the javax.xml.ws.Endpoint JAX-WS Service API to publish a web service
endpoint. This mechanism is available in Java SE 6 and does not require the consumer
to explicitly define a Java EE servlet module. However, a servlet-based listener
implementation is also acceptable.

4.5.3.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the
oracle.ucs.messaging.ws.Listener interface. You can implement it as any
concrete class - one of your existing classes, a new class, or an anonymous or inner
class.

The following code example shows how to implement a message listener:

@PortableWebService(serviceName="ListenerService",
targetNamespace="http://xmlns.oracle.com/ucs/messaging/",
endpointInterface="oracle.ucs.messaging.ws.Listener",
wsdlLocation="META-INF/wsdl/listener.wsdl",
portName="Listener")
public class MyListener implements Listener {
 public MyListener() {
 }

 @Override
 public void onMessage(Message message, byte[] correlator) throws
MessagingException {
 System.out.println("I got a message!");
 }

 @Override
 public void onStatus(Status status, byte[] correlator) throws MessagingException
{
 System.out.println("I got a status!");
 }
}

You pass a reference to the Listener object to the setMessageListener or
registerAccessPoint methods, as described in "Default Message Listener" and
"Per Access Point Message Listener". When a message arrives for your application, the
UMS infrastructure invokes the Listener's onMessage method.

4.5.3.2 Default Message Listener
The client application typically sets a default message listener (Example 4–14). This
listener is invoked for any delivery statuses for messages sent by this client application
that do not have an associated listener. When Oracle UMS receives messages
addressed to any access points registered by this client application, it invokes the
onMessage callback for the client application’s default listener.

To remove a default listener, call this method with a null argument.

Example 4–14 Default Message Listener

ListenerReference listenerRef = new ListenerReference();
listenerRef.setEndpoint("url_to_your_webservice_message_listener");
messagingClient.setMessageListener(listenerRef);

Configuring for a Cluster Environment

4-12 Developing Applications with Oracle User Messaging Service

4.5.3.3 Per Access Point Message Listener
The client application can also register an access point and specify a Listener object
and an optional correlator object (Example 4–15). When incoming messages arrive at
the specified access point address, the specified listener’ s onMessage method is
invoked. The originally-specified correlator object is also passed to the callback
method.

Example 4–15 Per Access Point Message Listener

AccessPoint accessPoint =
 MessagingFactory.createAccessPoint(AccessPointType.SINGLE_ADDRESS,
DeliveryType.EMAIL, "test@example.org");
ListenerReference listenerRef = new ListenerReference();
listenerRef.setEndpoint("url_to_your_webservice_message_listener");
byte[] correlator = null; // Not to correlate the callback
messagingClient.registerAccessPoint(accessPoint, listenerRef, correlator);

4.5.4 Message Filtering
A MessageFilter is used by an application to exercise greater control over what
messages are delivered to it. A MessageFilter contains a matching criterion and an
action. An application can register a series of message filters; they are applied in order
against an incoming (received) message; if the criterion matches the message, the
action is taken. For example, an application can use MessageFilters to implement
necessary blacklists, by rejecting all messages from a given sender address.

You can use MessagingFactory.createMessageFilter to create a message
filter, and MessagingClient.registerMessageFilter to register it. The filter is
added to the end of the current filter chain for the application. When a message is
received, it is passed through the filter chain in order; if the message matches a filter's
criterion, the filter's action is taken immediately. If no filters match the message, the
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessagingFactory.createMessageFilter("spam",
 FilterFieldType.SUBJECT, null, FilterActionType.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessagingFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

4.6 Configuring for a Cluster Environment
The API supports an environment where client applications and the UMS server are
deployed in a cluster environment. For a clustered deployment to function as
expected, client applications must be configured correctly. The following rules apply:

■ Two client applications are considered to be instances of the same application if
they use the same ApplicationName configuration parameter.

■ The ApplicationInstanceName configuration parameter enables you to
distinguish instances from one another.

■ Application sessions are instance-specific. You can set the session flag on a
message to ensure that any reply is received by the instance that sent the message.

Configuring Security

Sending and Receiving Messages using the User Messaging Service Web Service API 4-13

■ Listener correlators are instance-specific. If two different instances of an
application register listeners and supply different correlators, then when instance
A’ s listener is invoked, correlator A is supplied; when instance B’ s listener is
invoked, correlator B is supplied.

4.7 Using UMS Web Service API to Specify Message Resends
UMS allows you to schedule a message resend when the message send attempt fails.
You can specify the maximum number of message resends by calling the
setMaxResend method as shown in the following example:

MessageInfo msgInfo = new oracle.ucs.messages.ws.types.MessageInfo();
msgInfo.setMaxResend(new Integer(1));
// When MessageInfo is created we must also set priority
msgInfo.setPriority(PriorityType.NORMAL);
message.setMessageInfo(msgInfo);
String mid = client.send(message, null, null);

The status of the failover addresses can be received by calling
getTotalFailovers() and getFailoverOrder(). When failover order equals
total failovers, the API user knows that the failover chain is exhausted. However, the
resend functionality works as a loop over the failover chain. You can call
getMaxResend() and getCurrentResend() to know when the resend and
failover chain is completely exhausted.

For more information about setMaxResend, getTotalFailovers() and
getFailoverOrder() methods, see User Messaging Service Java API Reference.

4.8 Configuring Security
The following sections discuss security considerations:

■ Section 4.8.1, "Client and Server Security"

■ Section 4.8.2, "Listener or Callback Security"

4.8.1 Client and Server Security
There are two supported security modes for the UMS Web Service: Security Assertions
Markup Language (SAML) tokens and username tokens.

The supported SAML-based policy is "oracle/wss11_saml_token_with_message_
protection_client_policy". This policy establishes a trust relationship between the client
application and the UMS server based on the exchange of cryptographic keys. The
client application is then allowed to assert a user identity that is respected by the UMS
server. To use SAML tokens for WS-Security, some keystore configuration is required
for both the client and the server. See Example 4–2 for more details about configuring
SAML security in a UMS web service client.

The supported username token policy is "oracle/wss11_username_token_with_
message_protection_client_policy". This policy passes an encrypted
username/password token in the WS-Security headers, and the server authenticates
the supplied credentials. It is highly recommended that the username and password
be stored in the Credential Store, in which case only a Credential Store key must be
passed to the MessagingClient constructor, ensuring that credentials are not
hard-coded or stored in an unsecure manner. See Example 4–1 for more details about
configuring SAML security in a UMS web service client.

Threading Model

4-14 Developing Applications with Oracle User Messaging Service

4.8.2 Listener or Callback Security
Username token and SAML token security are also supported for the Listener callback
web services. When registering a listener, the client application must supply
additional parameters specifying the security policy and any key or credential lookup
information that the server requires to establish a secure connection.

Example 4–16 illustrates how to establish a secure callback endpoint using username
token security:

Example 4–16 Establishing a Secure Callback Endpoint Using Username Token Security

MessagingClient client = new MessagingClient(clientParameters);
...
ListenerReference listenerRef = new ListenerReference();
// A web service implementing the oracle.ucs.messaging.ws.Listener
// interface must be available at the specified URL.
listenerRef.setEndpoint(myCallbackURL);
Parameter policyParam = new Parameter();
policyParam.setName(ClientConstants.POLICY_STRING);
policyParam.setValue("oracle/wss11_username_token_with_message_protection_client_
policy");
listenerRef.getParameters.add(policyParam);
// A credential store entry with the specified key must be
// provisioned on the server side so it will be available when the callback
// is invoked.
Parameter csfParam = new Parameter();
csfParam.setName(oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_
CSF_KEY);
csfParam.setValue("callback-csf-key");
listenerRef.getParameters.add(csfParam);
client.setMessageListener(listenerRef);

4.9 Threading Model
Instances of the WS MessagingClient class are not thread-safe due to the underlying
services provided by the JAX-WS stack. You are responsible for ensuring that each
instance is used by only one thread at a time.

4.10 Sample Chat Application with Web Services APIs
This section describes how to create, deploy and run the sample chat application with
the Web Services APIs provided with Oracle User Messaging Service on OTN.

This section describes the following topics:

■ Section 4.10.1, "Overview"

■ Section 4.10.2, "Running the Pre-Built Sample"

■ Section 4.10.3, "Testing the Sample"

■ Section 4.10.4, "Creating a New Application Server Connection"

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, see the samples at:

http://www.oracle.com/technetwork/indexes/samplecode
/sample-ums-1454424.html.

Sample Chat Application with Web Services APIs

Sending and Receiving Messages using the User Messaging Service Web Service API 4-15

4.10.1 Overview
This sample demonstrates how to create a web-based chat application to send and
receive messages through email, SMS, or IM. The sample uses the Web Service APIs to
interact with a User Messaging server. You define an application server connection in
Oracle JDeveloper, and deploy and run the application.

The application is provided as a pre-built Oracle JDeveloper project that includes a
simple web chat interface.

4.10.1.1 Provided Files
The following files are included in the sample application:

■ usermessagingsample-ws-src.zip – the archive containing the source code and
Oracle JDeveloper project files.

■ usermessagingsample-ws.ear - the pre-built sample application that can be
deployed to the container.

4.10.2 Running the Pre-Built Sample
Perform the following steps to run and deploy the pre-built sample application:

1. Extract "usermessagingsample-ws-src.zip" and open
usermessagingsample-ws.jws in Oracle JDeveloper.

Figure 4–1 Opening the Project in Oracle JDeveloper

In the Oracle JDeveloper main window the project appears.

Note: For this sample to work, a UMS Server must be available and
properly configured with the required drivers.

Sample Chat Application with Web Services APIs

4-16 Developing Applications with Oracle User Messaging Service

Figure 4–2 Oracle JDeveloper Main Window

The application contains one web module. All of the source code for the
application is in place.

2. Satisfy the build dependencies for the sample application by ensuring the "Oracle
UMS Client" library is used by the web module.

1. In the Application Navigator, right-click web module
usermessagingsample-ws-war, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Sample Chat Application with Web Services APIs

Sending and Receiving Messages using the User Messaging Service Web Service API 4-17

Figure 4–3 Adding a Library

3. Click OK.

3. Create an Application Server Connection by right-clicking the project in the
navigation pane and selecting New. Follow the instructions in Section 4.10.4,
"Creating a New Application Server Connection".

4. Deploy the project by selecting the usermessasgingsample-ws project, Deploy,
usermessasgingsample-ws, to, and SOA_server (Figure 4–4).

Figure 4–4 Deploying the Project

5. Verify that the message Build Successful appears in the log.

6. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

4.10.3 Testing the Sample
Perform the following steps to run and test the sample:

1. Open a web browser.

2. Navigate to the URL of the application as follows, and log in:

Sample Chat Application with Web Services APIs

4-18 Developing Applications with Oracle User Messaging Service

http://host:port/usermessagingsample-ws/

The Messaging Web Services Sample web page appears (Figure 4–5). This page
contains navigation tabs and instructions for the application.

Figure 4–5 Messaging Web Services Sample Web Page

3. Click Configure and enter the following values (Figure 4–6):

■ Specify the web service endpoint. For example,
http://example.com:8001/ucs/messaging/webservice

■ Specify the Username and Password.

■ Specify a Policy (required if the User Messaging Service instance has WS
security enabled).

Sample Chat Application with Web Services APIs

Sending and Receiving Messages using the User Messaging Service Web Service API 4-19

Figure 4–6 Configuring the Web Service Endpoints and Credentials

4. Click Save.

5. Click Manage.

6. Enter an address and optional keyword at which to receive messages (Figure 4–7).

Figure 4–7 Registering an Access Point

7. Click Start.

Verify that the message Registration operation succeeded appears.

8. Click Chat.

9. Enter recipients in the To: field.

Sample Chat Application with Web Services APIs

4-20 Developing Applications with Oracle User Messaging Service

10. Enter a message.

11. Click Send.

12. Verify that the message is received.

4.10.4 Creating a New Application Server Connection
You define an application server connection in Oracle JDeveloper, and deploy and run
the application. Perform the steps in Section A.3, "Creating a New Application Server
Connection" to create an Application Server Connection.

Parlay X Web Services Multimedia Messaging API 5-1

5
Parlay X Web Services Multimedia

Messaging API

This chapter describes the Parlay X Multimedia Messaging web service that is
available with Oracle User Messaging Service and how to use the Parlay X Web
Services Multimedia Messaging API to send and receive messages through Oracle
User Messaging Service.

This chapter includes the following sections:

■ Section 5.1, "Introduction to Parlay X Messaging Operations"

■ Section 5.2, "Send Message Interface"

■ Section 5.3, "Receive Message Interface"

■ Section 5.4, "Oracle Extension to Parlay X Messaging"

■ Section 5.5, "Parlay X Messaging Client API and Client Proxy Packages"

■ Section 5.6, "Sample Chat Application with Parlay X APIs"

5.1 Introduction to Parlay X Messaging Operations
The following sections describe the semantics of each of the supported operations
along with implementation-specific details for the Parlay X Gateway. The following
tables, describing input/output message parameters for each operation, are taken
directly from the Parlay X specification.

Note: The Parlay X Multimedia Messaging API (described in this
chapter) is deprecated. Use the User Messaging Service Java API
instead, as described in Chapter 3, "Sending and Receiving Messages
using the User Messaging Service Java API".

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, see the samples at:

http://www.oracle.com/technetwork/indexes/samplecode
/sample-ums-1454424.html

Note: Oracle User Messaging Service also ships with a Java client
library that implements the Parlay X API.

Send Message Interface

5-2 Developing Applications with Oracle User Messaging Service

Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia
Messaging specification. Specifically Oracle User Messaging Service supports the
SendMessage and ReceiveMessage interfaces. The MessageNotification and
MessageNotificationManager interfaces are not supported.

5.2 Send Message Interface
The SendMessage interface enables you to send a message to one or more recipient
addresses by using the sendMessage operation, or get the delivery status for a
previously sent message by using the getMessageDeliveryStatus operation. The
following requirements apply:

■ A recipient address must conform to the address format requirements of Oracle
User Messaging Service (in addition to being a valid URI). The general format is
delivery_type:protocol_specific_address, such as
email:user@domain, sms:5551212 or im:user@jabberdomain.

■ Certain characters are not allowed in URIs; if it is necessary to include them in an
address they can be encoded or escaped. Refer to the JavaDoc for java.net.URI
for details on how to create a properly encoded URI.

■ While the WSDL specifies that sender addresses can be any string, Oracle User
Messaging Service requires that they be valid Messaging addresses.

■ Oracle User Messaging Service requires that you specify sender addresses on a
per-delivery type basis. So for a sender address to apply to a recipient of a given
delivery type, say EMAIL, the sender address must also have delivery type of
EMAIL. Since this operation allows multiple recipient addresses but only one
sender address, the sender address only applies to the recipients with the same
delivery type.

■ Oracle User Messaging Service does not support the MessageNotification
interface, and therefore do not produce delivery receipts, even if a receiptRequest
is specified. In other words, the receiptRequest parameter is ignored.

5.2.1 sendMessage Operation
Table 5–1 describes message descriptions for the sendMessageRequest input in the
sendMessage operation.

Table 5–1 sendMessage Input Message Descriptions

Part Name Part Type Optional Description

addresses xsd:anyURI[0..unbounded] No Destination address for this
Message.

senderAddress xsd:string Yes Message sender address. This
parameter is not allowed for all
3rd party providers. The Parlay X
server must handle this according
to a SLA for the specific
application and its use can
therefore result in a
PolicyException.

subject xsd:string Yes Message subject. If mapped to
SMS, this parameter is used as the
senderAddress, even if a separate
senderAddress is provided.

Send Message Interface

Parlay X Web Services Multimedia Messaging API 5-3

Table 5–2 describes sendMessageResponse output messages for the sendMessage
operation.

5.2.2 getMessageDeliveryStatus Operation
The getMessageDeliveryStatus operation gets the delivery status for a
previously sent message. The input "requestIdentifier" is the "result" value from a
sendMessage operation. This is the same identifier that is referred to as a Message ID
in other Messaging documentation.

Table 5–3 describes the getMessageDeliveryStatusRequest input messages for
the getMessageDeliveryStatus operation.

Table 5–4 describes the getMessageDeliveryStatusResponse output messages for the
getMessageDeliveryStatus operation.

priority MessagePriority Yes Priority of the message. If not
present, the network assigns a
priority based on the operator
policy.Charging to apply to this
message.

charging common:
ChargingInformation

Yes Charging to apply to this message.

receiptRequest common:SimpleReference Yes Defines the application endpoint,
interface name and correlator that
is used to notify the application
when the message has been
delivered to a terminal or if
delivery is impossible.

Table 5–2 sendMessageResponse Output Message Descriptions

Part Name Part Type Optional Description

result xsd:string No This correlation identifier is used
in a getMessageDeliveryStatus
operation invocation to poll for
the delivery status of all sent
messages.

Table 5–3 getMessageDeliveryStatusRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifier related to the delivery
status request.

Table 5–4 getMessageDeliveryStatusResponse Output Message Descriptions

Part Name Part Type Optional Description

result DeliveryInformation
[0..unbounded]

Yes An array of status of the messages
that were previously sent. Each
array element represents a sent
message, its destination address
and its delivery status.

Table 5–1 (Cont.) sendMessage Input Message Descriptions

Part Name Part Type Optional Description

Receive Message Interface

5-4 Developing Applications with Oracle User Messaging Service

5.3 Receive Message Interface
The ReceiveMessage interface has three operations. The getReceivedMessages
operation polls the server for any messages received since the last invocation of
getReceivedMessages. Note that getReceivedMessages does not necessarily
return any message content; it generally only returns message metadata.

The other two operations, getMessage and getMessageURIs, are used to retrieve
message content.

5.3.1 getReceivedMessages Operation
This operation polls the server for any received messages. Note the following
requirements:

■ The registration ID parameter is a string that identifies the endpoint address for
which the application wants to receive messages. See the discussion of the
ReceiveMessageManager interface for more details.

■ The Parlay X specification says that if the registration ID is not specified, all
messages for this application should be returned. However, the WSDL says that
the registration ID parameter is mandatory. Therefore our implementation treats
the empty string ("") as the "not-specified" value. If you call getReceivedMessages
with the empty string as your registration ID, you get all messages for this
application. Therefore the empty string is not an allowed value of registration ID
when calling startReceiveMessages.

■ According to the Parlay X specification, if the received message content is "pure
ASCII text", then the message content is returned inline within the
MessageReference object, and the messageIdentifier (Message ID) element is null.
Our implementation treats any content with Content-Type "text/plain", and with
encoding "us-ascii" as "pure ASCII text" for the purposes of this operation. As per
the MIME specification, if no encoding is specified, "us-ascii" is assumed, and if no
Content-Type is specified, "text/plain" is assumed.

■ The priority parameter is currently ignored.

Table 5–5 describes the getReceivedMessagesRequest input messages for the
getReceivedMessages operation.

Table 5–6 describes the getReceivedMessagesResponse output messages for the
getReceivedMessages operation.

Table 5–5 getReceivedMessagesRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifies the off-line provisioning
step that enables the application to
receive notification of Message
reception according to the
specified criteria.

priority MessagePriority Yes The priority of the messages to
poll from the Parlay X gateway.
All messages of the specified
priority and higher are retrieved.
If not specified, all messages shall
be returned, that is, the same as
specifying "Low."

Receive Message Interface

Parlay X Web Services Multimedia Messaging API 5-5

5.3.2 getMessage Operation
The getMessage operation retrieves message content, using a message ID from a
previous invocation of getReceivedMessages. There is no SOAP body in the response
message; the content is returned as a single SOAP attachment.

Table 5–7 describes the getMessageRequest input messages for the getMessage
operation.

There are no getMessageResponse output messages for the getMessage
operation.

5.3.3 getMessageURIs Operation
The getMessageURIs retrieves message content as a list of URIs. Note the following
requirements:

■ These URIs are HTTP URLs that can be dereferenced to retrieve the content.

■ If the inbound message has a Content-Type of "multipart", then there are multiple
URIs returned, one per subpart. If the Content-Type is not "multipart", then a
single URI are returned.

■ Per the Parlay X specification, if the inbound messages a body text part, defined as
"the message body if it is encoded as ASCII text", it is returned inline within the
MessageURI object. For the purposes of our implementation, you define this
behavior as follows:

– If the message's Content-Type is "text/*" (any text type), and if the charset
parameter is "us-ascii", then the content is returned inline in the MessageURI
object. There are no URIs returned since there is no content other than what is
returned inline.

– If the message's Content-Type is "multipart/" (any multipart type), and if the
first body part's Content-Type is "text/" with charset "us-ascii", then that part
is returned inline in the MessageURI object, and there are no URIs returned
corresponding to that part.

Table 5–6 getReceivedMessagesResponse Output Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifies the off-line provisioning
step that enables the application to
receive notification of Message
reception according to the
specified criteria.

priority MessagePriority Yes The priority of the messages to
poll from the Parlay X gateway.
All messages of the specified
priority and higher are retrieved.
If not specified, all messages shall
be returned. This is equal to
specifying Low.

Table 5–7 getMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

messageRefIdentifier xsd:string No The identity of the message.

Oracle Extension to Parlay X Messaging

5-6 Developing Applications with Oracle User Messaging Service

– Per the MIME specification, if the charset parameter is omitted, the default
value of "us-ascii" is assumed. If the Content-Type header is not specified for
the message, then a Content-Type of "text/plain" is assumed.

Table 5–8 describes the getMessageURIsRequest input messages for the
getMessageURIs operation.

Table 5–9 describes the getMessageURIsResponse output messages for the
getMessageURIs operation.

5.4 Oracle Extension to Parlay X Messaging
The Parlay X Messaging specification leaves certain parts of the messaging flow
undefined. The main area that is left undefined is the process for binding a client to an
address for synchronous receiving (through the ReceiveMessage interface).

Oracle User Messaging Service includes an extension interface to Parlay X to support
this process. The extension is implemented as a separate WSDL in an Oracle XML
namespace to indicate that it is not an official part of Parlay X. Clients can choose to
not use this additional interface or use it in some modular way such that their core
messaging logic remains fully compliant with the Parlay X specification.

5.4.1 ReceiveMessageManager Interface
ReceiveMessageManager is the Oracle-specific interface for managing client
registrations for receiving messages. Clients use this interface to start and stop
receiving messages at a particular address. (This is analogous to the concept of
registering/unregistering access points in the Messaging API).

5.4.1.1 startReceiveMessage Operation
Invoking this operation allows a client to bind itself to a given endpoint for receiving
messages. Note the following requirements:

■ An endpoint consists of an address and an optional "criteria", defined by the
Parlay X specification as the first white space-delimited token of the message
subject or content.

■ In addition to the endpoint information, the client also specifies a "registration ID"
when invoking this operation; this ID is just a unique string which can be used
later to refer to this particular binding in the stopReceiveMessage and
getReceivedMessages operations.

Table 5–8 getMessageURIsRequest Input Message Descriptions

Part Name Part Type Optional Description

messageRefIdentifier xsd:string No The identity of the message to
retrieve.

Table 5–9 getMessageURIsResponse Output Message Descriptions

Part Name Part Type Optional Description

result MessageURI No Contains the complete message,
consisting of the textual part of
the message, if such exists, and a
list of file references for the
message attachments, if any.

Parlay X Messaging Client API and Client Proxy Packages

Parlay X Web Services Multimedia Messaging API 5-7

■ If an endpoint is already registered by another client application, or the
registration ID is already being used, a Policy Error results.

■ Certain characters are not allowed in URIs; if it is necessary to include them in an
address they can be encoded/escaped. See the javadoc for java.net.URI for details
on how to create a properly encoded URI. For example, when registering to
receive XMPP messages you must specify an address such as
IM:jabber|user@example.com, however the pipe (|) character is not allowed
in URIs, and must be escaped before submitting to the server.

■ There is no guarantee that the server can actually receive messages at a given
endpoint address. That depends on the overall configuration of Oracle User
Messaging Service, particularly the Messaging drivers that are deployed in the
system. No error is indicated if a client binds to an address where the server
cannot receive messages.

The startReceiveMessage operation has the following inputs and outputs:

Table 5–10 describes the startReceiveMessageRequest input messages for the
startReceiveMessage operation.

There are no startReceiveMessageResponse output messages for the
startReceiveMessage operation.

5.4.1.2 stopReceiveMessage Operation
Invoking this operation removes the previously-established binding between a client
and a receiving endpoint. The client specifies the same registration ID that was
supplied when startReceiveMessage was called to identify the endpoint binding
that is being broken. If there is no corresponding registration ID binding known to the
server for this application, a Policy Error results.

Table 5–11 describes the stopReceiveMessageRequest input messages for the
stopReceiveMessage operation.

There are no stopReceiveMessageResponse output messages for the
stopReceiveMessage operation.

5.5 Parlay X Messaging Client API and Client Proxy Packages
While it is possible to assemble a Parlay X Messaging Client using only the Parlay X
WSDL files and a web service assembly tool, prebuilt web service stubs and interfaces
are provided for the supported Parlay X Messaging interfaces. Due to difficulty in

Table 5–10 startReceiveMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No A registration identifier.

messageService
ActivationNumber

xsd:anyURI No Message Service Activation
Number.

criteria xsd:string Yes Descriptive string.

Table 5–11 stopReceiveMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No A registration identifier.

Sample Chat Application with Parlay X APIs

5-8 Developing Applications with Oracle User Messaging Service

assembling a web service with SOAP attachments in the style mandated by Parlay X,
Oracle recommends the use of the provided API rather than starting from WSDL.

For a complete listing of the classes available in the Parlay X Messaging API, see the
Messaging JavaDoc. The main entry points for the API are through the following client
classes:

■ oracle.sdp.parlayx.multimedia_
messaging.send.SendMessageClient

■ oracle.sdp.parlayx.multimedia_
messaging.receive.ReceiveMessageClient

■ oracle.sdp.parlayx.multimedia_messaging.extension.receive_
manager.ReceiveMessageManager

Each client class allows a client application to invoke the operations in the
corresponding interface. Additional web service parameters such as the remote
gateway URL and any required security credentials, are provided when an instance of
the client class is constructed. See the Javadoc for more details. The security credentials
are propagated to the server using standard WS-Security headers, as mandated by the
Parlay X specification.

The general process for a client application is to create one of the client classes above,
set the necessary configuration items (endpoint, username, password), then invoke
one of the business methods (for example, SendMessageClient.sendMessage(),
and so on). For examples of how to use this API, see the Messaging samples on Oracle
Technology Network (OTN), and specifically
usermessagingsample-parlayx-src.zip.

5.6 Sample Chat Application with Parlay X APIs
This chapter describes how to create, deploy and run the sample chat application with
Parlay X APIs provided with Oracle User Messaging Service on OTN.

This chapter contains the following sections:

■ Section 5.6.1, "Overview"

■ Section 5.6.2, "Running the Pre-Built Sample"

■ Section 5.6.3, "Testing the Sample"

■ Section 5.6.4, "Creating a New Application Server Connection"

5.6.1 Overview
This sample demonstrates how to create a web-based chat application to send and
receive messages through email, SMS, or IM. The sample uses standards-based Parlay
X Web Service APIs to interact with a User Messaging server. The sample application
includes web service proxy code for each of three web service interfaces: the
SendMessage and ReceiveMessage services defined by Parlay X, and the
ReceiveMessageManager service which is an Oracle extension to Parlay X. You define
an application server connection in Oracle JDeveloper, and deploy and run the
application.

The application is provided as a pre-built Oracle JDeveloper project that includes a
simple web chat interface.

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 5-9

5.6.1.1 Provided Files
The following files are included in the sample application:

■ Project – the directory containing the archived Oracle JDeveloper project files.

■ Readme.txt.

■ Release notes

5.6.2 Running the Pre-Built Sample
Perform the following steps to run and deploy the pre-built sample application:

1. Open the usermessagingsample-parlayx.jws (contained in the .zip file) in Oracle
JDeveloper.

In the Oracle JDeveloper main window the project appears.

Figure 5–1 Oracle JDeveloper Main Window

2. In Oracle JDeveloper, select File > Open..., then navigate to the directory above
and open workspace file "usermessagingsample-parlayx.jws".

This opens the precreated JDeveloper application for the Parlay X sample
application. The application contains one web module. All of the source code for
the application is in place. You must configure the parameters that are specific to
your installation.

3. Satisfy the build dependencies for the sample application by ensuring the "Oracle
UMS Client" library is used by the web module.

1. In the Application Navigator, right-click web module
usermessagingsample-parlayx-war, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Sample Chat Application with Parlay X APIs

5-10 Developing Applications with Oracle User Messaging Service

Figure 5–2 Adding a Library

3. Click OK.

4. Create an Application Server Connection by right-clicking the project in the
navigation pane and selecting New. Follow the instructions in Section 5.6.4,
"Creating a New Application Server Connection".

5. Deploy the project by selecting the usermessasgingsample-parlayx project,
Deploy, usermessasgingsample-parlayx, to, and SOA_server (Figure 5–3).

Figure 5–3 Deploying the Project

6. Verify that the message Build Successful appears in the log.

7. Enter the default revision and click OK.

8. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and configure a default device for the user
receiving the message in User Communication Preferences, as described in the
following sections.

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 5-11

5.6.3 Testing the Sample
Perform the following steps to run and test the sample:

1. Open a web browser.

2. Navigate to the URL of the application as follows, and log in:

http://host:port/usermessagingsample-parlayx/

The Messaging Parlay X Sample web page appears (Figure 5–4). This page
contains navigation tabs and instructions for the application.

Figure 5–4 Messaging Parlay X Sample Web Page

3. Click Configure and enter the following values (Figure 5–5):

■ Specify the Send endpoint. For example,
http://localhost:port/sdpmessaging/parlayx/SendMessageServ
ice

■ Specify the Receive endpoint. For example,
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageS
ervice

■ Specify the Receive Manager endpoint. For example,
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageM
essageService

■ Specify the Username and Password.

■ Specify a Policy (required if the User Messaging Service instance has WS
security enabled).

Note: Refer to Administering Oracle SOA Suite and Oracle Business
Process Management Suite for more information.

Sample Chat Application with Parlay X APIs

5-12 Developing Applications with Oracle User Messaging Service

Figure 5–5 Configuring the Web Service Endpoints and Credentials

4. Click Save.

5. Click Manage.

6. Enter a Registration ID to specify the registration and address at which to receive
messages (Figure 5–6). You can also use this page to stop receiving messages at an
address.

Figure 5–6 Specifying a Registration ID

7. Click Start.

Verify that the message Registration operation succeeded appears.

8. Click Chat (Figure 5–7).

9. Enter recipients in the To: field in the format illustrated in Figure 5–7.

10. Enter a message.

11. Click Send.

12. Verify that the message is received.

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 5-13

Figure 5–7 Running the Sample

5.6.4 Creating a New Application Server Connection
Perform the steps in Section A.3, "Creating a New Application Server Connection" to
create an Application Server Connection.

Sample Chat Application with Parlay X APIs

5-14 Developing Applications with Oracle User Messaging Service

User Communication Preferences 6-1

6
User Communication Preferences

This chapter describes the User Communication Preferences (UCP). It describes how
to work with communication channels and to create contact rules using messaging
filters. This chapter also discusses how to manage communication preferences from a
web interface by managing channels and filters. It also provides information for
system administrators about configuring User Communication Preferences; and for
developers about integrating their applications with User Communication Preferences.

This chapter includes the following sections:

■ Section 6.1, "Introduction to User Communication Preferences"

■ Section 6.2, "Managing User Preferences"

■ Section 6.3, "Administering User Communication Preferences"

■ Section 6.4, "Integrating UCP Web User Interface"

■ Section 6.5, "Java Application Interface"

6.1 Introduction to User Communication Preferences
User Communication Preferences allows a user who has access to multiple channels to
control how, when, and where they receive messages. Users define filters, or delivery
preferences, that specify which channel a message should be delivered to, and under
what circumstances. Information about a user's channels and filters are stored in any
database supported for use with Oracle Fusion Middleware. Since preferences are
stored in a database, this information is shared across all instances of User
Communication Preferences in a domain.

UCP does not provide services for message delivery, rather provides user interface
and APIs to access and manage a user's channels and delivery preferences. When a
message is addressed to a user, UMS acquires the user's delivery preferences from
UCP services and sends the message according to the user's preferences. For an
application developer, User Communication Preferences provide increased flexibility.
By sending messages through UMS, an application is indirectly using UCP service.
Applications can also directly access UCP services by calling UCP APIs to access and
manage a user's preferences and by integrating with UCP using task flow library to
provide web user interface.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Administering Oracle User Messaging Service.

Managing User Preferences

6-2 Developing Applications with Oracle User Messaging Service

6.1.1 Terminology
User Communication Preferences defines the following terminology:

■ Channel: a combination of delivery type and address. For instance, a cell phone
number 6503334444 can be used in two channels, SMS:650333444 and
VOICE:650333444, where SMS and VOICE are delivery types and 6503334444 is
the delivery address.

■ Channel address: one of the addresses that a channel can communicate with.

■ Filter: a message delivery preference rule that controls how, when, and where a
user receives messages.

■ System term: a pre-defined business term where the fact for the term is
automatically supplied by UCP service.

■ Business term: a named attribute for messages, such as a subject. The fact for a
business term can be extracted from messages or supplied by applications and
used to compare with a specified value in a filter condition to select the filter.

■ Fact: actual value for a business term extracted from messages or supplied by
applications.

■ Condition: a combination of a business term, an operator and a specified value.
The fact about a message is used to compare against the value to evaluate the truth
of the condition.

■ Action: the action to be taken if the specified conditions in a filter are true, such as
do not send message, send to first available channel, or send to all selected channels.

6.2 Managing User Preferences
This section provides information about managing user preferences using web user
interface. This section discusses the following topics:

■ Managing Communication Channels

■ Managing Filters

■ Configuring Preference Settings

6.2.1 Managing Communication Channels
A communication channel defines an address (such as a phone number) and a type
(such as a short message service or SMS) for message delivery.

User Communication Preferences (UCP) creates a few channels automatically for a
user based on the user profile settings in the Identity Store. These channels, called as
IDM channels, can be used for message delivery. A POPUP or WORKLIST channel is
automatically created when you deploy the corresponding driver. This channel will be
removed when the driver is undeployed. The address value for this channel is the
user's login ID. Users cannot modify these channels by using the UCP UI.

Alternately, users can create, modify, and delete user-defined channels. These are
called USER channels. Any channel that a user creates is associated with that user’s

Note: For messaging drivers you cannot specify a channel address
with spaces. As the channel address value is the login ID, do not use
spaces when you create the login ID for the user.

Managing User Preferences

User Communication Preferences 6-3

system ID. In Oracle User Communication Preferences, channels represent both
physical channels, such as mobile phones, and also email client applications running
on desktops, and are configurable in the UCP UI.

6.2.1.1 Creating a Channel
To create a USER channel, perform the following tasks:

1. Click the Create icon as shown in Figure 6–1, located in the toolbar under
Available Channels.

Figure 6–1 The Create Icon

The Create Channel dialog box appears as shown in Figure 6–2.

Figure 6–2 Creating a Channel

2. Enter a name for the channel in the Name field.

3. Select the delivery type from the Type drop-down list.

4. Enter the address appropriate to the delivery type you selected.

5. Select the Default check box if you want to set this channel as a default channel.
You can have multiple default channels.

6. Click OK to create the channel. The new channel appears in the Available Channels
section. The Available Channels page enables you to modify or delete the channel.

6.2.1.2 Modifying a Channel
To modify a USER channel, select it from the list of Channels in the Available Channels
section, and click the Modify icon as shown in Figure 6–3.

Managing User Preferences

6-4 Developing Applications with Oracle User Messaging Service

Figure 6–3 The Modify Icon

The Modify Channel page appears as shown in Figure 6–4. This page enables you to
change the channel properties described in Section 6.2.1.1, "Creating a Channel".

Figure 6–4 Modifying a Channel

6.2.1.3 Deleting a Channel
To delete a USER channel, select the channel from the list of channels in the Available
Channels section, and click the Delete icon as shown in Figure 6–5.

Figure 6–5 The Delete Icon

Certain channels are based on information retrieved from your user profile in the
identity store. These are called IDM channels. Users are not allowed to modify or
delete such channels through this interface. The only operation that can be performed
on such a channel is to make it the default channel. IDM channel addresses are
managed through Identity Management System.

6.2.1.4 Setting a Default Channel
You can configure one or more channels as default channels. You can set a channel as
default messaging channel either during channel creation or after channel creation
directly from the list of channels.

To set a channel as default, select that channel from the list of channels, and click the
default icon as shown in Figure 6–6. A checkmark appears next to the selected
channel, designating it as a default means of receiving messages. Repeat this
procedure to add additional default channels, if required.

Managing User Preferences

User Communication Preferences 6-5

Figure 6–6 The Default Icon

To remove the default setting of a channel already set as default, select that channel
from the list of channels, and click the icon shown in Figure 6–7.

Figure 6–7 The Remove Default Icon

6.2.2 Managing Filters
A messaging filter defines rules on how to handle incoming messages addressed to a
user. The Messaging Filters section on the User Communications Preferences page
(Figure 6–8) enables the users to build filters that specify not only the type of messages
they want to receive, but also the channel through which to receive these messages.

A filter is composed of two primary sections, condition (or the If section) and action
(or the Then section). For each incoming message, the filters are evaluated to
determine the appropriate filter that must be selected for handling the message. The
condition section determines the circumstances under which a filter is selected; while
the action section specifies how the message is handled if the filter is selected.

Figure 6–8 Messaging Filters

Note: The Business Email channel that is automatically created from
the Identity Store attribute is set as a default channel. You cannot
remove the default setting of the Business Email channel unless
another default channel is set.

For more information about configuring LDAP settings, see
Configuring User Messaging Service Access to LDAP User Profile in
Administering Oracle User Messaging Service.

Managing User Preferences

6-6 Developing Applications with Oracle User Messaging Service

6.2.2.1 Creating a Filter
To create a filter, perform the following tasks:

1. Click the Create icon as shown in Figure 6–1, located in the toolbar under
Messaging Filters. The Create Filter page appears as shown in Figure 6–9.

Figure 6–9 Creating a Filter

2. Enter a name for the filter in the Name field.

3. If needed, enter a description of the filter in the Description field.

The checkbox allows you to temporarily enable or disable a filter.

4. Select whether messages must meet all of the conditions or any of the conditions
by selecting either the match all of the following conditions or match any of the
following conditions options.

5. Create a filter condition in the If section as follows:

a. Click the Create icon located in the toolbar. The Create Condition dialog box
appears.

b. Select the message's attribute from the Attribute drop-down list that lists the
available Business terms. Refer to Table 6–1 for a list of these attributes.

c. Combine the selected attribute with one of the comparison operators from the
Operator drop-down list.

d. Enter an appropriate value in the Operand field. This is the value that the fact
for the selected attribute is used to compare with, using the selected operator.

For instance, if you select the Date attribute, select one of the comparison
operators and then select the appropriate dates from the date chooser. If you
choose a range operation such as is between, then two operand fields will
appear for entering lower and upper limit value.

e. Click OK to add the condition to the table.

6. Repeat the above mentioned steps to add more filter conditions. To delete a filter
condition, select the condition from the list of conditions in the table, and click the
Delete icon as shown in Figure 6–5.

Managing User Preferences

User Communication Preferences 6-7

7. When a message is addressed to a user, the If section of the user’s filters are
evaluated against the facts in the message. After a filter is selected in the If section,
the Then section determines how the message will be handled. The Then section
consists of action type and a list of channels. Select one of the following actions:

■ do not send message -- Select this option to block the receipt of any messages
that meet the filter conditions.

■ send to first available channel (Failover in the order) -- Select this option to
send messages matching the filter criteria to a preferred channel (set using the
up and down arrows) or to the next available channel.

■ send to all selected channels -- Select this option to send messages to every
listed channel.

8. If you have selected the action type to send messages, then you must select
channels from the drop-down list in the toolbar to add to the action channel list for
this filter. After selecting a channel, click Add as shown in Figure 6–10. To delete a
channel, click Delete as shown in Figure 6–5.

Figure 6–10 The Add Icon

9. If needed, use the up and down arrows to prioritize channels. If available, the
top-most channel receives messages meeting the filter criteria if you select send to
first available channel.

10. Click OK to create the filter, or Cancel to discard the filter.

6.2.2.2 Modifying a Filter
To modify a filter, select the filter from the list of messaging filters, and click Modify
as shown in Figure 6–3. The Modify Filter page appears. Except the filter name, this
page enables you to add or change the filter properties described in Section 6.2.2.1,
"Creating a Filter".

6.2.2.3 Deleting a Filter
To delete a filter, select the filter from the list of messaging filters, and click Delete as
shown in Figure 6–5.

6.2.2.4 Disabling a Filter
You can temporarily enable or disable a filter. A filter that is disabled will be skipped
during the message processing. You can disable or enable a filter in either of the
following ways:

■ Select the filter from the list of messaging filters. If the selected filter is enabled, the
disable filter icon appears in the toolbar as shown in Figure 6–11. Click this icon to
disable the filter.

Figure 6–11 The Disable Filter Icon

If the selected filter is disabled, the enable filter icon appears in the toolbar as
shown in Figure 6–12. Click this icon to enable the filter.

Managing User Preferences

6-8 Developing Applications with Oracle User Messaging Service

Figure 6–12 The Enable Filter Icon

■ You can also enable or disable a filter from the filter creation or modification
dialog box.

6.2.2.5 Organizing Filters
You can prioritize the order of the filters in the list by selecting the filter and moving
them up or down in the list, using the up or down arrow icons in the toolbar. During
message processing, filters are evaluated in the order from top to bottom in the list
until a filter matching the condition is found. If a matching filter is not found, the
default channel is used for message delivery with the send to all selected channels
action type.

6.2.3 Configuring Preference Settings
You can configure your preference settings by accessing the Settings tab located in the
upper right area of the UCP UI. You can set the following parameters:

■ Locale Source: Select From Identity Store or From Your Browser.

■ Accessibility Mode: Select Standard or Screen Reader.

■ Select the Highlight Text checkbox if you want the text to be displayed in high
contrast.

■ Select the Larger Text checkbox if you want the text to be displayed in large fonts.

■ Click Save Your Changes in order to save the changes you made, or click Reset to
Default to restore default settings.

Figure 6–13 Configuring Settings

Administering User Communication Preferences

User Communication Preferences 6-9

6.3 Administering User Communication Preferences
This section provides information about configuring profiles and managing user data
using WebLogic Scripting Tool (WLST). It also provides information about business
terms that are used during profile configuration.

6.3.1 About Business Terms
As mentioned earlier in this document, each filter condition is defined against a
Business Term. UCP supports the Business Terms as listed in the table below. A
business term consists of a name, a data type, and an optional description.

Table 6–1 lists the pre-defined business terms supported by User Communication
Preferences.

Table 6–1 Pre-defined Business Terms for User Communication Preferences

Business Term Data Type

Organization String

Priority String

Application String

Application Type String

Expiration Date Date

From String

To String

Customer Name String

Customer Type String

Status String

Amount Number (Decimal)

Due Date Date

Process Type String

Expense Type String

Total Cost Number (Decimal)

Processing Time Number (Decimal)

Order Type String

Service Request Type String

Group Name String

Source String

Classification String

Duration Number (Decimal)

User String

Role String

Subject String

Service Name String

Process Name String

Administering User Communication Preferences

6-10 Developing Applications with Oracle User Messaging Service

UCP supports two System Terms listed in Table 6–2. System Terms are pre-defined
business terms. Administrators cannot extend the system terms. System Terms are
available for defining conditions though they are not managed here. The facts for
System Terms are automatically obtained based on the current time and user's time
zone. Thus, unlike other Business Terms, during message processing, applications do
not need to supply facts for System Terms.

6.3.2 Configuring Profiles by using Oracle Enterprise Manager
Multiple applications may consume a single instance of UCP services. However, not
all applications might consume the same set of UCP features. To meet various
requirements of different applications, UCP features are virtualized into profiles. This
enables each application to target to a specific profile that encapsulates a subset of
UCP features.

Each profile is identified by a profile ID. Oracle UCP service provides APIs for a client
application to target to a profile, by specifying a profile ID. After upgrading, legacy
applications consuming old UCP APIs, without profile ID, will target to a default
profile sharing with other applications that targets to the default profile. It is
recommended to migrate legacy applications to use latest APIs so that each
application can target to a specific profile without sharing with other applications. For
more information about UCP API, refer to User Messaging Service Java API Reference.

You can manage messaging preferences profiles using Oracle Enterprise Manager
Fusion Middleware Control. This interface lists the existing configured profiles, and
allows the user to add, modify, or remove profiles. To configure preference profiles,
perform the following tasks:

System Code String

Error Code String

Occurrence Count Number (Decimal)

Table 6–2 System Terms Supported by User Communication Preferences

System Term Data Type Supported Values

Date Date Date is accepted as a java.util.Date object
or string representing the number of
milliseconds.

Time Time A 4-digit integer to represent time of the day
in HHMM format. First 2-digit is the hour in
24-hour format. Last 2-digit is minutes.

Note: The Server Properties page in the Oracle Enterprise Manager
enables you to manage business terms (add or remove business
terms). However, do not use this page to add or remove business
terms as this feature will soon be deprecated. You are allowed to use a
subset of business terms during profile configuration as discussed in
Section 6.3.2, "Configuring Profiles by using Oracle Enterprise
Manager".

Table 6–1 (Cont.) Pre-defined Business Terms for User Communication Preferences

Business Term Data Type

Administering User Communication Preferences

User Communication Preferences 6-11

1. Open the User Messaging Server home page in Oracle Enterprise Manager and
select Server Properties from the drop down menu, as shown in the following
figure.

The Server Properties page appears as shown in the following figure. All existing
profiles are listed in the Messaging Preference Profiles section.

2. To add a new profile, click the Add icon in the Messaging Preference Profiles
section. A dialog box appears as shown in the following figure. You must specify
the configuration details to add a new profile.

Click OK to save the new profile.

Administering User Communication Preferences

6-12 Developing Applications with Oracle User Messaging Service

You can define the profile features by selecting a Locale Source, availability of
IDM and/or User Channels and a subset of Business Terms. UCP renders the
web user interface based on the locale from three different locale sources, namely
Client Browser, Identity Store and System Default. The Locale Source field
provides a choice from two sources - Locale from Client Browser and, Locale from
Identity Store. This determines the locale lookup sequence for the UI rendering. If
Locale from Client Browser is selected, then the lookup sequence will be (1) Locale
from Client Browser, (2) Locale from Identity Store and (3) System Default Locale.
Otherwise, the sequence will be (1) Locale from Identity Store, (2) Locale from
Client Browser and (3) System Default Locale. In each sequence, UCP renders the
UI using the first supported locale.

In the above figure, the check box for User Channel defines the availability of user
defined channels for that particular profile. If the check box is selected, then the
users are allowed to create User Channels from the UCP web user interface. The
check box for IDM Channel determines the availability of auto-synced channels
from Identity Store. Channels are the properties of users. These check boxes
determine the visibility of channels for each profile.

Each Profile encapsulates a subset of Business Terms listed under Selected
Business Terms as shown in the above figure. In this example, only three terms -
From, To, and Subject, are selected. To add more terms, select them from the
Available Business Terms list on the left and click the right arrow (>) to move
them to the Selected Business Terms list. Only selected Business Terms are
available for users to define conditions for filters in a particular profile. This means
that, on defining filter conditions only the selected Business Terms will be seen in
the Attribute drop-down list in UCP web user interface.

3. To modify an existing profile, click the Edit icon in the Messaging Preference
Profiles section. A dialog box appears as shown in the following figure. You must
specify the configuration details to edit the profile.

Click OK to save the profile.

Administering User Communication Preferences

User Communication Preferences 6-13

4. To remove the messaging preference profile, select the profile from the list of
profiles and click Remove.

5. Click Apply to apply changes in the User Messaging Server instance. Restart the
server for the changes to take effect.

6.3.3 Managing User Data using WLST Commands
UCP provides a command line scripting tool, Oracle Weblogic Scripting Tool (WLST),
for downloading user preferences data from the UCP repository to the specified XML
file, or for uploading user preferences data from an XML file into the UCP repository.

For information about how to use WLST for uploading or downloading user
preferences data, see manageUserCommunicationPrefs in Oracle Fusion Middleware
Core Components WLST Command Reference. For information about how to get started
with WLST, refer to section Getting Started Using the Oracle Weblogic Scripting Tool
(WLST) in the Oracle Fusion Middleware Administering Oracle Fusion Middleware.

A user may be deleted from the identity store. If a new user is subsequently created
with the same name as the old deleted user, then the new user will have access to the
User Communication Preferences (UCP) data of the old user of the same name. Such
data includes communication channels, message delivery preferences, and messaging
filters configured by the old user. To prevent such access by the new user with the
same name as the old deleted user, perform the following steps after deleting a user
from the Identity Store:

1. Using the following WLST command, download the UCP data for all users into an
XML file, for example userdata.xml:

wls:/offline> manageUserCommunicationPrefs(operation='download',
filename='userdata.xml', url='t3://<hostname>:<portnumber>',
username='<adminusername>', password='<adminpassword>')

2. Make a backup copy of the XML file. Edit the userdata.xml file to delete all data for
the old deleted user. Each user data section is organized in the <user
guid=username> element in the XML file. Find the user element with guid for the
old user, and delete all data of the user from the user element. The following
example shows how the user element should appear after deleting all data of a
user, for example david:

<user guid="david">

Integrating UCP Web User Interface

6-14 Developing Applications with Oracle User Messaging Service

<devices>
</devices>
</user>

3. Save the userdata.xml file and upload the modified file using the following WLST
command:

wls:/offline> manageUserCommunicationPrefs(operation='upload',
filename='userdata.xml', merge=’overwrite’, url='t3://<hostname>:<portnumber>',
username='<adminusername>', password='<adminpassword>')

6.4 Integrating UCP Web User Interface
With UCP services, an end user can manage his communication preferences from a
web interface by managing his channels and filters. To ensure that the end users are
provided control over their communication preferences, the application developers
must ensure the integration of UCP web user interface to their application. UCP
provides an ADF task flow library which makes it easy to add a region in your web
application so that end users can access their preference directly from your
application.

This section discusses how to implement the web user interface using an ADF task
flow library and targeting a specific profile. The ADF task flow library makes it easy to
integrate the web interface with a new application or an existing application. For more
information about ADF task flows, refer to Creating ADF Task Flows in Developing
Fusion Web Applications with Oracle Application Development Framework. To integrate
your UCP instance with web user interface, perform the tasks in this section.

6.4.1 Integrate ADF Web Application with UCP
This section describes how to create an ADF web application, and how to add a page
or a region to an existing web application using the ADF task flow library in Oracle
JDeveloper.

6.4.1.1 Create a New ADF Application
You can integrate UCP with a new application or an existing application. To create a
new ADF web application in Oracle Jdeveloper, perform the following tasks:

1. Open the Oracle JDeveloper 12c wizard. Select New Application from the
Application Navigator on the left pane. A New Gallery window appears.

2. In the New Gallery window, select ADF Fusion Web Application from the list of
items, and click OK. The Create ADF Fusion Web Application window appears
as shown in the following figure.

Integrating UCP Web User Interface

User Communication Preferences 6-15

3. In this window, enter an application name, for example, MyApp. Also, enter the
application package prefix, for example, oracle.ucp. Click Finish to create a new
ADF application.

6.4.1.2 Create an ADF Web Page
The bounded task flow in the UCP library can be added in any region to provide
seamless integration to your application. In this section, we will create a demo ADF
web page to host a region for the UCP task flow. To create a new ADF web page,
perform the following tasks:

1. In the left window pane, right-click ViewController to display the context menu.

2. In the ViewController context menu, from the New menu, select Page. The Create
JSF Page window appears as shown in the following figure.

Integrating UCP Web User Interface

6-16 Developing Applications with Oracle User Messaging Service

3. In this wizard, enter the file name, for example, MyPage.jspx. From the Document
Type menu, select JSP XML.

4. From the Page Layout menu, select Create Blank Page. Click OK. The new
MyPage.jspx is created.

5. Open the newly created page by double-clicking MyPage.jspx under the
ViewController node in the navigation pane. In the MyPage.jspx window, select
Source from toolbar at the bottom to view the source code of the page as shown in
the following figure.

Integrating UCP Web User Interface

User Communication Preferences 6-17

6.4.1.3 Connect UCP Task Flow Library
If you have deployed UMS to Weblogic Server, then the UCP task flow library is
already deployed to the server. However, the UCP task flow library may not be
accessible from your JDeveloper instance. Therefore, it is important to connect the task
flow library to you application. You must first create a file system connection from
your JDeveloper instance to the library. To achieve this, perform the following steps:

1. Click the Window tab located in the toolbar on the top pane to display a
drop-down list. From the list, select Resources to add the Resources tab to the
right pane of the Jdeveloper window.

2. Under the Resources tab, click the folder icon to display a drop-down list. In the
list, navigate to IDE Connections, and select File System. The Create File System
Connection wizard appears as shown in the following figure.

Integrating UCP Web User Interface

6-18 Developing Applications with Oracle User Messaging Service

3. Enter the connection name, for example, UCP Task Flow.

4. Click Browse to select the folder that contains the UCP task flow library. This
folder is located in the oracle_common directory and the path would look like
the following:

oracle_common/communications/modules/oracle.ucs.userprefs.webapp_xx.x.x

where xx.x.x is the version number, for example, 12.1.2.

Navigate to this folder and click Select.

5. Click Ok. The File System Connection is created. To verify, expand the File
System navigation tree in the right pane. On expanding the ADF Task Flows
folder, you will see UserCommunicationPreferences as shown in the following
figure.

Integrating UCP Web User Interface

User Communication Preferences 6-19

6.4.1.4 Add a Region in the New Page
With the support of an ADF task flow library, you can add a region in your web
application so that the end users can access their preference directly from your
application. To achieve this, perform the following tasks:

1. Click the Source tab of the newly created page, MyPage.jspx.

2. From the File System navigation tree in the right pane, drag the
UserCommunicationPreferences task flow and drop it inside the <af:form>
</af:form> tag in the page source to create a region in this tag.

A context menu appears as shown in the following figure.

Integrating UCP Web User Interface

6-20 Developing Applications with Oracle User Messaging Service

3. Select Region from the context menu. A confirmation window appears.

4. Click Add Library. The Edit Task Flow Binding wizard appears.

5. In the Input Parameters table, enter a value for profield, for example, soa. The
value for the Profile ID determines that the created user interface accesses only
user filters and channels in this profile. This should be the same profile that your
application is targetting. Click OK. A region has been added to the page.

If you have an existing ADF web application that you want to integrate with UCP
by including a user preference page, then you can add a region to your existing or
new ADF page, in the same manner as mentioned in this section.

6.4.1.5 Reference UCP Libraries
Since UMS and UCP task flow libraries are deployed in WebLogic server, you do not
need these libraries in your application. You must reference these libraries from the
weblogic.xml file. To achieve this, perform the following tasks:

1. Right-click the ViewController node located in the navigation pane. A context
menu appears.

2. From the context menu, select New, and click From Gallery. The New Gallery
wizard appears.

3. In the navigation pane, expand the General node and select Deployment
Descriptors. From the list of items on the right pane, select Weblogic Deployment
Descriptor. Click OK. See the following figure.

Integrating UCP Web User Interface

User Communication Preferences 6-21

The Create WebLogic Deployment Descriptor wizard appears.

4. From the list of deployment descriptors, select weblogic.xml, and click Next. In
the next screen, select 12.1.1 or the newer version as the deployment descriptor
version, and click Next. In the Summary page, click Finish

5. Open the newly created page by double-clicking weblogic.xml under the
ViewController node in the navigation pane. In the weblogic.xml window, select
Source from toolbar at the bottom to view the source code of the page.

6. In the weblogic.xml file, you will reference two libraries, that is, the UMS library
(oracle.sdp.client) and the UCP library (oracle.ucs.userprefs.webapp). Add the
following library references as shown in the following figure:

<library-ref><library-name>oracle.sdp.client</library-name></library-ref>
<library-ref><library-name>oracle.ucs.userprefs.webapp</library-name></library-
ref>

Integrating UCP Web User Interface

6-22 Developing Applications with Oracle User Messaging Service

6.4.1.6 Manage Project Deployment Profile
Since you have already referenced the two libraries in the weblogic.xml file, you do
not need to package these libraries in your application. This can be managed through
the project deployment profile. To achieve this, perform the following tasks:

1. You must first create a project deployment profile. Right-click the ViewController
node from the navigation pane. A context menu appears.

2. From the context menu, click Deploy, and select New Deployment Profile. The
Create Deployment Profile wizard appears.

3. From the Profile Type drop-down list, select WAR File, and click OK.

The project deployment profile has been created. You must, now, ensure that the
libraries are not packaged in your application.

4. Under the General tab, select the Specify Java EE Web Context Root option, and
enter your application context root, for example, myapp as shown in the following
figure.

Integrating UCP Web User Interface

User Communication Preferences 6-23

5. From the navigation tree, select Filters listed under WEB-INF/lib. Deselect all the
.jar files listed in the right pane as shown in the following figure. Click OK to
save changes to your deployment profile.

This ensures that the libraries are not packaged in your application, as you have
already referenced the important libraries in the weblogic.xml file in the
previous section.

Integrating UCP Web User Interface

6-24 Developing Applications with Oracle User Messaging Service

6.4.1.7 Create Application Deployment Profile
To create a new application deployment profile, perform the following tasks:

1. From the Applications drop-down list in the left pane, select Deploy and click
New Deployment Profile from the context menu.

The Create Deployment Profile wizard appears.

2. From the Profile Type drop-down list, select EAR File, and enter a name for your
application deployment profile, for example, MyApp.

Click OK to create the application deployment profile. The Edit EAR Deployment
Profile Properties wizard appears.

3. From the navigation tree, select Application Assembly.

4. In the right pane, expand the ViewController.jpr node and select webapp1. to
include it in the application as shown in the following figure.

Integrating UCP Web User Interface

User Communication Preferences 6-25

5. In the toolbar, click Save All to save your application.

6.4.2 Deploy Your Application
You must, now, deploy your application to the WebLogic application server. If your
application server has not been configured already, then you must first configure your
application server connection.

6.4.2.1 Deploy Application
To deploy your application, perform the following tasks:

1. From the Applications drop-down list, select Deploy and click MyApp from the
context menu. The Deploy MyApp wizard appears.

2. In the Deployment Action screen, select Deploy to Application Server and click
Next.

3. In the Select Server screen, select the server from the list of Application servers,
and click Finish to deploy your application.

If the server is not in the list of application servers, then follow instructions in
Section 6.4.2.2, "Configure Application Server Connection" to configure your
server connection.

6.4.2.2 Configure Application Server Connection
If you have not configured your application server connection, then you must first
configure it by performing the following tasks:

1. From the Applications drop-down list, select Deploy and click MyApp from the
context menu. The Deploy MyApp wizard appears.

Integrating UCP Web User Interface

6-26 Developing Applications with Oracle User Messaging Service

2. In the Deployment Action screen, select Deploy to Application Server and click
Next.

3. In the Select Server screen, click the plus icon located at the top right corner.

The Create Application Server Connection wizard appears.

4. In the Connection Name field, enter your server connection name, for example,
MyServer. Click Next.

5. In the Authentication screen, enter your application server’s admin Username and
Password. Click Next.

6. In the Configuration screen, specify the host name, port numbers and, domain
name as shown in the following figure.

Click Next.

7. On the Test screen, verify your connection by clicking Test Connection. If the test
is successful, then click Finish. You should be able to see your application server
in the list of application servers as shown in the following figure.

Integrating UCP Web User Interface

User Communication Preferences 6-27

8. To deploy your application to the newly configured application server, select the
server from the list and click Finish. You will receive a confirmation for the
successful deployment of your application.

6.4.3 Verify Your Application
Your can access your application to manage user preferences. To verify your
application, open a browser and point the URL to your newly created page, for
example, http://localhost:7001/myapp/faces/MyPage.jspx. You should see your
communication preference web interface as shown in the following figure.

Java Application Interface

6-28 Developing Applications with Oracle User Messaging Service

6.5 Java Application Interface
UCP services can be consumed directly or indirectly from your application. To
consume UCP services indirectly, you must call UMS API that, in turn, will send
messages to the users. UMS will deliver messages to the best channels according to the
user’s preferences. If you want to consume UCP services directly, then you must call
UCP Java API. For instance, if you want to control the message format depending on
the delivery type of the channel that a user prefers, then you are required to consume
the UCP services directly. Or for instance, if you want to build a new application to
send messages to the users of your application on certain events, then you can
programmatically create a default email channel for each user using the UCP API to
ensure that each user receives the message initially upon the deployment of your
application. A user may change his preferences later if he does not want the email as
his default channel.

UCP Java APIs provide program interface for implementing applications to consume
UCP services. UCP also provides Java APIs for managing channels and filters. The

Note: When you access your application for the first time on your
browser, you might see a blank page. This is expected behavior if your
application does not include authentication. For the simplicity of this
demo, we have not included authentication. But it is recommended
that you protect your web application with proper authentication.

To test your demo application without authentication, you can try the
following workaround. If there is another Oracle SSO protected web
application, you can first log in to that application, and then access
your application from the same browser. As a result, you will see the
channels and filters of the authenticated user, instead of seeing a blank
page.

Java Application Interface

User Communication Preferences 6-29

Java interface, oracle.ucs.userprefs.UserCommunicationPreference is the
primary interface for clients to access UCP services. The oracle.ucs.userprefs
package contains the User Communication Preferences API classes. For more
information, refer to User Messaging Service Java API Reference. This is the root interface
for managing user's preference objects such as addresses, filtersets, etc. For more
information about APIs and interfaces for UCP services, refer to User Messaging Service
Java API Reference.

6.5.1 Obtain Delivery Preferences
A user’s delivery preferences can be obtained by invoking the Java method
getDeliveryPreference(String guid, String profileID,
Map>String,Object> facts), where guid is case-sensitive. The profileID
parameter, introduced in 12c, is used to target user preferences for a specific profile. It
is recommended that each application targets a specific profile. There is a default
profile ID that can be acquired by applications by calling the getDefaultProfileId
method. For applications that invoke the 11g APIs (without a Profile ID), the default
profile is automatically used. Finally, applications calling this API must provide all the
necessary facts so that UCP can select a matched filter in the target profile. The facts
are in a Map<String,Object> of name/value pair where the name is the business term
and the key in the map. For more information about using this API, refer to User
Messaging Service Java API Reference.

The following code snippet demonstrates how to obtain the delivery preferences for
testUser1:

// Obtain a UserCommunicationPreference object
UserCommunicationPreference ucp =
UserPrefsServicesFactory.createUserCommunicationPreference();

// Set target user ID
String userId = “testUser1”;

// Specify the Profile ID, or default id from ucp.getDefaultProfileId()
String profileId = “soa”;

// Add all facts into Hashtable facts. Facts for Date and Time are not needed.
Map <String, String> facts = new HashMap<String, Object>();
facts.put(“Application”, “BPEL”); // Add application name
facts.put(“Due Date”, new Date()); // Use current date
facts.put(“Amount”, new Double(“678.00”)); // Set number for 678

// Invoke getDeliveryPreference() function with userId, profileId and and facts.
DeliveryPreference dp = ucp.getDeliveryPreference(userId, profileId, facts);

// Retrieve Action Type and delivery Channels from the returned DeliveryPreference
object.
ActionType at = dp.getActionType();//Get Action Type
Vector <DeviceAddress> channels = dp.getDevices();//Get delivery Channels

6.5.2 Manage Channels
UCP provides an automatic channel management feature to sync UCP respository
with the Identity Store (usually, LDAP). When an email address is added to the
Identity Store, an EMAIL channel corresponding to that email address is automatically
created in the UCP respository. This channel is removed from the repository when the
corresponding email address is deleted from the Identity Store. UCP automatically

Java Application Interface

6-30 Developing Applications with Oracle User Messaging Service

creates channels for email, IM, business, home and mobile phones. These channels are
called IDM Channels.

Since these channels are automatically managed by UCP, applications must not
attempt to create or remove them. Applications are allowed only to set or unset these
channels as default channels. However, applications can create, modify, or remove
USER channels using APIs such as, createDeviceAddress,
getDeviceAddresses, etc. A channel can be flagged as a default channel using the
setDefaultChannel API.

The following code snippet demonstrates how to create a communication channel for a
user, testUser1 with a particular email address:

// Create an email channel for testUser1
DeviceAddress channel = ucp.createDeviceAddress(“testUser1”,// User ID
“myEmail”,// Channel name
DeliveryType.EMAIL,// Delivery Type for email
“myemail@somecompany.com”);// Email address
ucp.save(channel);// without this line, the Channel will not be persisted in UCP
repository

The channel name must be unique for each user. The combination of Delivery Type
and Delivery Address must also be unique for each user. Following are some sample
code snippets that demonstrate how to manage a channel:

// Set the Channel as a default Channel
ucp.setDefaultAddress(“testUser1”,// User ID
 “soa”,// Profile ID
 channel);// Channel to be flagged

// Unset a default Channel
ucp.removeDefaultAddress(“testUser1”, // User ID
 “soa”,// Profile ID
 channel);// Channel to be unset

// Modify the Channel’s address
channel.setAddress(newemail@somecompany.com);
ucp.save(channel); // without this line, the change will not be persisted in UCP
repository

// Remove the Channel
ucp.delete(channel);

6.5.3 Manage Filters
Filters are managed in a set for each profile. The following code snippet demonstrates
how to create a messaging filter for a user, testUser1 for the soa profile.

// Get, or create if not exist, user’s Filter Set for Profile “soa”
FilterSet filterSet = ucp.getFilterSet(“testUser1”// User ID
 “soa”);// Profile ID

// Create a new Filter
Filter filter = filterSet.createFilter(“Test Email Filter”);// Create a new
Filter named “Test Email Filter”
filter.setConditionType(ConditionType.MATCH_ANY).// Set the Condition Type to
logical OR

// Create a new Condition
Condition condition = filter.createCondition();// Create a new Condition first
Map<String, BusinessRuleTerm> terms = ucp.getBusinessTerms();

Java Application Interface

User Communication Preferences 6-31

BusinessRuleTerm term = terms.get(“Subject”);// Business Term for “Subject”
condition.setFilterTerm(term);
condition.setTermOperation(TermOperationType.Contains);
condition.setOperandOne(“approved”);// Set value “approved”
ArrayList<Condition> conditions = new ArrayList<Condition>();
conditions.add(condition);
fitler.setConditions(conditions);// Add the Condition list to the Filter

// Set Action Type
Filter.setActionType(ActionType.SERIAL);// Set Action Type for SERIAL

// Get all the Channels for “soa” Profile
Set<DeviceAddress> allAddresses = ucp.getDeviceAddress(“testUser1”,// User ID
 “soa”);// Profile ID
ArrayList<DeviceAddress> channels = new ArrayList(allAddresses);// Convert to a
List
filter.setDeviceAddressList(channels);// Add to the Filter as target Channels

// Add the Filter to the Filter Set
filterSet.addFilter(filter);

// Finally persist the FilterSet object
ucp.save(filterSet); // Required to persist the Filter

To deploy your application, you must reference the shared library
oracle.sdp.client from your application's development descriptor. The
application must be deployed in the same domain with the UCP service.

Though UCP provides Java APIs for applications to manage channels and filters, it is
recommended that users manage their preferences through UCP web interface
integrated in their web application using the UCP task flow library.

Java Application Interface

6-32 Developing Applications with Oracle User Messaging Service

A

Using the User Messaging Service Sample Applications A-1

AUsing the User Messaging Service Sample
Applications

This appendix describes how to create a client application that uses Oracle User
Messaging Service (UMS) Java API.

This appendix includes the following sections:

■ Section A.1, "Using the UMS Client API to Build a Client Application"

■ Section A.2, "Using the UMS Client API to Build a Client Echo Application"

■ Section A.3, "Creating a New Application Server Connection"

A.1 Using the UMS Client API to Build a Client Application
This section describes how to create an application called usermessagingsample, a web
client application that uses the UMS Client API for both outbound messaging and the
synchronous retrieval of message status. usermessagingsample also supports inbound
messaging. Once you have deployed and configured usermessagingsample, you can use
it to send a message to an email client.

This sample focuses on a Web Application Module (WAR), which defines some HTML
forms and servlets. You can examine the code and corresponding XML files for the
web application module from the provided usermessagingsample-src.zip
source. The servlets uses the UMS Client API to create an UMS Client instance (which
in turn registers the application's information) and sends messages.

This application, which is packaged as a Enterprise ARchive file (EAR) called
usermessagingsample.ear, has the following structure:

■ usermessagingsample.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the
import of the oracle.sdp.messaging shared library.

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, refer to the samples
at:

http://www.oracle.com/technetwork/indexes/samplecode
/sample-ums-1454424.html.

Using the UMS Client API to Build a Client Application

A-2 Oracle User Messaging Service Developer's Guide

■ usermessagingsample-web.ear -- Contains the web-based front-end and
servlets.

* WEB-INF

– web.xml

– weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-src.zip)
are available on OTN.

A.1.1 Overview of Development
The following steps describe the process of building an application capable of
outbound messaging using usermessagingsample.ear as an example:

1. Section A.1.2, "Configuring the Email Driver"

2. Section A.1.3, "Using JDeveloper 12c to Build the Application"

3. Section A.1.4, "Deploying the Application"

4. Section A.1.5, "Testing the Application"

A.1.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform outbound
messaging and status retrieval, when you configure the email driver, enter the name of
the SMTP mail server as the value for the OutgoingMailServer property.

For more information about configuring the email driver, see Administering Oracle User
Messaging Service.

A.1.3 Using JDeveloper 12c to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample through the following steps:

A.1.3.1 Opening the Project
1. Open usermessagingsample.jws (contained in the

usermessagingsample-src.zip file) in Oracle JDeveloper.

Note: This sample application is generic and can support outbound
messaging through other channels when the appropriate messaging
drivers are deployed and configured.

Using the UMS Client API to Build a Client Application

Using the User Messaging Service Sample Applications A-3

Figure A–1 Oracle JDeveloper Open Application Window

In the Oracle JDeveloper main window, the project appears.

2. Satisfy the build dependencies for the sample application by ensuring the "Oracle
UMS Client" library is used by the web module.

1. In the Application Navigator, right-click web module
usermessagingsample-web, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Figure A–2 Verifying Libraries

3. Click OK.

3. Explore the Java files under the usermessagingsample-web project to see how the
messaging client APIs are used to send messages, get statuses, and synchronously
receive messages. The MessagingClient instance is created in
SampleUtils.java in the project.

A.1.4 Deploying the Application
Perform the following steps to deploy the application:

Using the UMS Client API to Build a Client Application

A-4 Oracle User Messaging Service Developer's Guide

1. Create an Application Server Connection by right-clicking the application in the
navigation pane and selecting New. Follow the instructions in Section A.3,
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample application,
Deploy, usermessagingsample, to, and SOA_server (Figure A–3).

Figure A–3 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample, you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Communication Preferences.

A.1.5 Testing the Application
Once usermessagingsample has been deployed to a running instance of Oracle
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows:
http://host:http-port/usermessagingsample/. For example, enter
http://localhost:7001/usermessagingsample/ into the browser’s
navigation bar.

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure A–4).

Note: Refer to Administering Oracle User Messaging Service for more
information.

Using the UMS Client API to Build a Client Application

Using the User Messaging Service Sample Applications A-5

Figure A–4 Testing the Sample Application

2. Click Send sample message. The Send Message page appears (Figure A–5).

Figure A–5 Addressing the Test Message

3. As an optional step, enter the sender address in the following format:

Email:sender_address.

For example, enter Email:sender@oracle.com.

4. Enter one or more recipient addresses. For example, enter
Email:recipient@oracle.com. Enter multiple addresses as a
comma-separated list as follows:

Email:recipient_address1, Email:recipient_address2.

If you have configured User Communication Preferences, you can address the
message simply to User:username. For example, User:weblogic.

Using the UMS Client API to Build a Client Echo Application

A-6 Oracle User Messaging Service Developer's Guide

5. As an optional step, enter a subject line or content for the email.

6. Click Send. The Message Status page appears, showing the progress of transaction
(Message received by Messaging engine for processing in Figure A–6).

Figure A–6 Message Status

7. Click Refresh to update the status. When the email message has been delivered to
the email server, the Status Content field displays Outbound message delivery to
remote gateway succeeded., as illustrated in Figure A–7.

Figure A–7 Checking the Message Status

A.2 Using the UMS Client API to Build a Client Echo Application
This section describes how to create an application called usermessagingsample-echo,
a demo client application that uses the UMS Client API to asynchronously receive
messages from an email address and echo a reply back to the sender.

Using the UMS Client API to Build a Client Echo Application

Using the User Messaging Service Sample Applications A-7

This application, which is packaged as a Enterprise Archive file (EAR) called
usermessagingsample-echo.ear, has the following structure:

■ usermessagingsample-echo.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the
import of the oracle.sdp.messaging shared library.

■ usermessagingsample-echo-web.war -- Contains the web-based
front-end and servlets. It also contains the listener that processes a received
message and returns an echo response

* WEB-INF

– web.xml

– weblogic.xml

The prebuilt sample application, and the source code
(usermessagingsample-echo-src.zip) are available on OTN.

A.2.1 Overview of Development
The following steps describe the process of building an application capable of
asynchronous inbound and outbound messaging using
usermessagingsample-echo.ear as an example:

1. Section A.2.2, "Configuring the Email Driver"

2. Section A.2.3, "Using Oracle JDeveloper 12c to Build the Application"

3. Section A.2.4, "Deploying the Application"

4. Section A.2.5, "Testing the Application"

A.2.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform inbound and
outbound messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the OutgoingMailServer
property.

■ Enter the name of the IMAP4/POP3 mail server as the value for the
IncomingMailServer property. Also, configure the incoming user name, and
password.

For more information about configuring the Email driver, refer to section Configuring
the Email Driver in Oracle Fusion Middleware Administering Oracle User Messaging
Service.

Note: To learn more about the code samples for Oracle User
Messaging Service, or to run the samples yourself, refer to the Oracle
User Messaging Service samples at
http://www.oracle.com/technetwork/indexes/samplecode
/sample-ums-1454424.html.

Using the UMS Client API to Build a Client Echo Application

A-8 Oracle User Messaging Service Developer's Guide

A.2.3 Using Oracle JDeveloper 12c to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample-echo through the following steps:

A.2.3.1 Opening the Project
1. Unzip usermessagingsample-echo-src.zip, to the JDEV_

HOME/communications/
samples/ directory. This directory must be used for the shared library references
to be valid in the project.

2. Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle
JDeveloper (Figure A–8).

Figure A–8 Opening the Project

In the Oracle JDeveloper main window the project appears (Figure A–9).

Note: This sample application is generic and can support inbound
and outbound messaging through other channels when the
appropriate messaging drivers are deployed and configured.

Note: If you choose to use a different directory, you must update the
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_12.1.2/
sdpmessaging.jar.

Using the UMS Client API to Build a Client Echo Application

Using the User Messaging Service Sample Applications A-9

Figure A–9 Oracle JDeveloper Main Window

3. Verify that the build dependencies for the sample application have been satisfied
by checking that the following library has been added to the
usermessagingsample-echo-web module.

■ Library: oracle.sdp.messaging, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar. This is the Java library used by UMS and applications
that use UMS to send and receive messages.

Perform the following steps for each module:

1. In the Application Navigator, right-click the module and select Project
Properties.

2. In the left pane, select Libraries and Classpath (Figure A–10).

Using the UMS Client API to Build a Client Echo Application

A-10 Oracle User Messaging Service Developer's Guide

Figure A–10 Verifying Libraries

3. Click OK.

4. Explore the Java files under the usermessagingsample-echo-web project to see
how the messaging client APIs are used to register and unregister access points,
and how the EchoListener is used to asynchronously receive messages.

A.2.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the
navigation pane and selecting New. Follow the instructions in Section A.3,
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample-echo application,
Deploy, usermessagingsample-echo, to, and SOA_server (Figure A–11).

Figure A–11 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Communication Preferences.

Using the UMS Client API to Build a Client Echo Application

Using the User Messaging Service Sample Applications A-11

A.2.5 Testing the Application
Once usermessagingsample-echo has been deployed to a running instance of Oracle
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows:
http://host:http-port/usermessagingsample-echo/. For example,
enter http://localhost:7001/usermessagingsample-echo/ into the
browser’s navigation bar.

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure A–12).

Figure A–12 Testing the Sample Application

2. Click Register/Unregister Access Points. The Access Point Registration page
appears (Figure A–13).

Note: Refer to Developing Applications with Oracle User Messaging
Service for more information.

Using the UMS Client API to Build a Client Echo Application

A-12 Oracle User Messaging Service Developer's Guide

Figure A–13 Registering an Access Point

3. Enter the access point address in the following format:

EMAIL:server_address.

For example, enter EMAIL:myserver@example.com.

4. Select the Action Register and Click Submit. The registration status page appears,
showing "Registered" in Figure A–14).

Figure A–14 Access Point Registration Status

5. Send a message from your messaging client (for email, your email client) to the
address you just registered as an access point in the previous step.

If the UMS messaging driver for that channel is configured correctly, you should
expect to receive an echo message back from the usermessagingsample-echo
application.

Creating a New Application Server Connection

Using the User Messaging Service Sample Applications A-13

A.3 Creating a New Application Server Connection
You define an application server connection in Oracle JDeveloper, and deploy and run
the application. Perform the following steps to create an Application Server
Connection.

1. Right-click the project and select New. From the context menu, select From
Gallery. In the New Gallery window, navigate to Connections in the left pane,
and select Application Server Connection from list of items.

Click OK.

2. In the Connection Name field, enter your server connection name, for example,
SOA_server, and click Next as shown in Figure A–15.

3. Select WebLogic 12.x from the Connection Type drop-down list.

Figure A–15 Create Application Server Connection

4. In the Authentication screen, enter your application server’s admin Username
and Password. Click Next.

5. In the Configuration screen, enter the host name, port, and SSL port, and domain
name. Click Next.

6. On the Test screen, verify your connection by clicking Test Connection. If the test
is successful, then you will see a confirmation message. Click Finish.

The Application Server Connection has been created.

Creating a New Application Server Connection

A-14 Oracle User Messaging Service Developer's Guide

	A Using the User Messaging Service Sample Applications
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	1 Overview
	1.1 Introduction to User Messaging Service
	1.2 User Messaging Service Sample Applications

	2 Sending and Receiving Messages using the User Messaging Service EJB API
	2.1 Introduction to the UMS Java API
	2.1.1 Creating a Java EE Application Module

	2.2 Creating a UMS Client Instance
	2.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach
	2.2.2 API Reference for Class MessagingClientFactory

	2.3 Sending a Message
	2.3.1 Creating a Message
	2.3.1.1 Creating a Plaintext Message
	2.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	2.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	2.3.2 API Reference for Class MessageFactory
	2.3.3 API Reference for Interface Message
	2.3.4 API Reference for Enum DeliveryType
	2.3.5 Addressing a Message
	2.3.5.1 Types of Addresses
	2.3.5.2 Creating Address Objects
	2.3.5.2.1 Creating a Single Address Object
	2.3.5.2.2 Creating Multiple Address Objects in a Batch
	2.3.5.2.3 Adding Sender or Recipient Addresses to a Message

	2.3.5.3 Creating a Recipient with a Failover Address
	2.3.5.4 API Reference for Class AddressFactory
	2.3.5.5 API Reference for Interface Address

	2.3.6 Retrieving Message Status
	2.3.6.1 Synchronous Retrieval of Message Status
	2.3.6.2 Asynchronous Notification of Message Status

	2.4 Receiving a Message
	2.4.1 Registering an Access Point
	2.4.2 Synchronous Receiving
	2.4.3 Asynchronous Receiving
	2.4.4 Message Filtering

	2.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application
	2.5.1 Overview of Development
	2.5.2 Configuring the Email Driver
	2.5.3 Using JDeveloper 11g to Build the Application
	2.5.3.1 Opening the Project

	2.5.4 Deploying the Application
	2.5.5 Testing the Application

	2.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application
	2.6.1 Overview of Development
	2.6.2 Configuring the Email Driver
	2.6.3 Using JDeveloper 11g to Build the Application
	2.6.3.1 Opening the Project

	2.6.4 Deploying the Application
	2.6.5 Testing the Application

	2.7 Creating a New Application Server Connection

	3 Sending and Receiving Messages using the User Messaging Service Java API
	3.1 Introduction to the UMS Java API
	3.2 Creating a UMS Client Instance and Specifying Runtime Parameters
	3.3 Sending a Message
	3.3.1 Creating a Message
	3.3.1.1 Creating a Plaintext Message
	3.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	3.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	3.3.2 Addressing a Message
	3.3.2.1 Types of Addresses
	3.3.2.2 Creating Address Objects
	3.3.2.2.1 Creating a Single Address Object
	3.3.2.2.2 Creating Multiple Address Objects in a Batch
	3.3.2.2.3 Adding Sender or Recipient Addresses to a Message

	3.3.2.3 Creating a Recipient with a Failover Address
	3.3.2.4 API Reference for Class MessagingFactory
	3.3.2.5 API Reference for Interface Address

	3.3.3 Sending Group Messages
	3.3.3.1 Sending Messages to a Group
	3.3.3.2 Sending Messages to a Group Through a Specific Channel
	3.3.3.3 Sending Messages to an Application Role
	3.3.3.4 Sending Messages to an Application Role Through a Specific Channel

	3.3.4 User Preference Based Messaging

	3.4 Retrieving Message Status
	3.4.1 Synchronous Retrieval of Message Status
	3.4.2 Asynchronous Receiving of Message Status
	3.4.2.1 Creating a Listener Programmatically
	3.4.2.2 Default Status Listener
	3.4.2.3 Per Message Status Listener

	3.5 Receiving a Message
	3.5.1 Registering an Access Point
	3.5.2 Synchronous Receiving
	3.5.3 Asynchronous Receiving
	3.5.3.1 Creating a Listener Programmatically
	3.5.3.2 Default Message Listener
	3.5.3.3 Per Access Point Message Listener

	3.5.4 Message Filtering

	3.6 Configuring for a Cluster Environment
	3.7 Using UMS Client API for XA Transactions
	3.7.1 About XA Transactions
	3.7.2 Sending and Receiving XA Enabled Messages

	3.8 Using UMS Java API to Specify Message Resends
	3.9 Configuring Security
	3.10 Threading Model
	3.10.1 Listener Threading

	4 Sending and Receiving Messages using the User Messaging Service Web Service API
	4.1 Introduction to the UMS Web Service API
	4.2 Creating a UMS Client Instance and Specifying Runtime Parameters
	4.3 Sending a Message
	4.3.1 Creating a Message
	4.3.1.1 Creating a Plaintext Message
	4.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts)
	4.3.1.3 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	4.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	4.3.2 API Reference for Interface Message
	4.3.3 API Reference for Enum DeliveryType
	4.3.4 Addressing a Message
	4.3.4.1 Types of Addresses
	4.3.4.2 Creating Address Objects
	4.3.4.2.1 Creating a Single Address Object
	4.3.4.2.2 Creating Multiple Address Objects in a Batch
	4.3.4.2.3 Adding Sender or Recipient Addresses to a Message

	4.3.4.3 Creating a Recipient with a Failover Address
	4.3.4.4 Recipient Types
	4.3.4.5 API Reference for Class MessagingFactory
	4.3.4.6 API Reference for Interface Address

	4.3.5 User Preference Based Messaging

	4.4 Retrieving Message Status
	4.4.1 Synchronous Retrieval of Message Status
	4.4.2 Asynchronous Receiving of Message Status
	4.4.2.1 Creating a Listener Programmatically
	4.4.2.2 Publish the Callback Service
	4.4.2.3 Stop a Dynamically Published Endpoint
	4.4.2.4 Registration

	4.5 Receiving a Message
	4.5.1 Registering an Access Point
	4.5.2 Synchronous Receiving
	4.5.3 Asynchronous Receiving
	4.5.3.1 Creating a Listener Programmatically
	4.5.3.2 Default Message Listener
	4.5.3.3 Per Access Point Message Listener

	4.5.4 Message Filtering

	4.6 Configuring for a Cluster Environment
	4.7 Using UMS Web Service API to Specify Message Resends
	4.8 Configuring Security
	4.8.1 Client and Server Security
	4.8.2 Listener or Callback Security

	4.9 Threading Model
	4.10 Sample Chat Application with Web Services APIs
	4.10.1 Overview
	4.10.1.1 Provided Files

	4.10.2 Running the Pre-Built Sample
	4.10.3 Testing the Sample
	4.10.4 Creating a New Application Server Connection

	5 Parlay X Web Services Multimedia Messaging API
	5.1 Introduction to Parlay X Messaging Operations
	5.2 Send Message Interface
	5.2.1 sendMessage Operation
	5.2.2 getMessageDeliveryStatus Operation

	5.3 Receive Message Interface
	5.3.1 getReceivedMessages Operation
	5.3.2 getMessage Operation
	5.3.3 getMessageURIs Operation

	5.4 Oracle Extension to Parlay X Messaging
	5.4.1 ReceiveMessageManager Interface
	5.4.1.1 startReceiveMessage Operation
	5.4.1.2 stopReceiveMessage Operation

	5.5 Parlay X Messaging Client API and Client Proxy Packages
	5.6 Sample Chat Application with Parlay X APIs
	5.6.1 Overview
	5.6.1.1 Provided Files

	5.6.2 Running the Pre-Built Sample
	5.6.3 Testing the Sample
	5.6.4 Creating a New Application Server Connection

	6 User Communication Preferences
	6.1 Introduction to User Communication Preferences
	6.1.1 Terminology

	6.2 Managing User Preferences
	6.2.1 Managing Communication Channels
	6.2.1.1 Creating a Channel
	6.2.1.2 Modifying a Channel
	6.2.1.3 Deleting a Channel
	6.2.1.4 Setting a Default Channel

	6.2.2 Managing Filters
	6.2.2.1 Creating a Filter
	6.2.2.2 Modifying a Filter
	6.2.2.3 Deleting a Filter
	6.2.2.4 Disabling a Filter
	6.2.2.5 Organizing Filters

	6.2.3 Configuring Preference Settings

	6.3 Administering User Communication Preferences
	6.3.1 About Business Terms
	6.3.2 Configuring Profiles by using Oracle Enterprise Manager
	6.3.3 Managing User Data using WLST Commands

	6.4 Integrating UCP Web User Interface
	6.4.1 Integrate ADF Web Application with UCP
	6.4.1.1 Create a New ADF Application
	6.4.1.2 Create an ADF Web Page
	6.4.1.3 Connect UCP Task Flow Library
	6.4.1.4 Add a Region in the New Page
	6.4.1.5 Reference UCP Libraries
	6.4.1.6 Manage Project Deployment Profile
	6.4.1.7 Create Application Deployment Profile

	6.4.2 Deploy Your Application
	6.4.2.1 Deploy Application
	6.4.2.2 Configure Application Server Connection

	6.4.3 Verify Your Application

	6.5 Java Application Interface
	6.5.1 Obtain Delivery Preferences
	6.5.2 Manage Channels
	6.5.3 Manage Filters

	A Using the User Messaging Service Sample Applications
	A.1 Using the UMS Client API to Build a Client Application
	A.1.1 Overview of Development
	A.1.2 Configuring the Email Driver
	A.1.3 Using JDeveloper 12c to Build the Application
	A.1.3.1 Opening the Project

	A.1.4 Deploying the Application
	A.1.5 Testing the Application

	A.2 Using the UMS Client API to Build a Client Echo Application
	A.2.1 Overview of Development
	A.2.2 Configuring the Email Driver
	A.2.3 Using Oracle JDeveloper 12c to Build the Application
	A.2.3.1 Opening the Project

	A.2.4 Deploying the Application
	A.2.5 Testing the Application

	A.3 Creating a New Application Server Connection

