

Oracle® Fusion Middleware
Tuning Performance Guide

12c (12.1.2)

E28643-01

July 2013

Describes how to monitor and optimize performance,
configure components for optimal performance, and write
highly performant applications in the Oracle Fusion
Middleware environment.

Oracle Fusion Middleware Tuning Performance Guide 12c (12.1.2)

E28643-01

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Lisa Jamen

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Conventions ... x

Part I Introduction

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.3 Related Documentation.. 1-2

2 Top Performance Areas

2.1 Identifying Top Performance Areas... 2-1
2.2 Securing Sufficient Hardware Resources .. 2-2
2.3 Tuning the Operating System ... 2-3
2.4 Tuning Java Virtual Machines (JVMs) ... 2-3
2.5 Tuning the WebLogic Server... 2-4
2.6 Tuning Database Parameters .. 2-4
2.6.1 Tuning Database Parameters ... 2-4
2.6.2 Tuning Redo Logs Location and Sizing ... 2-5
2.6.3 Tuning Automatic Segment-Space Management (ASSM)... 2-5
2.7 Reusing Database Connections... 2-5
2.8 Enabling Data Source Statement Caching... 2-6
2.9 Controlling Concurrency ... 2-6
2.9.1 Setting Server Connection Limits .. 2-7
2.9.2 Configuring Connection Pools .. 2-8
2.9.3 Tuning the WebLogic Sever Thread Pool .. 2-9
2.10 Setting Logging Levels .. 2-10

3 Performance Planning

3.1 About Oracle Fusion Middleware Performance Planning ... 3-1
3.2 Performance Planning Methodology ... 3-1
3.2.1 Define Your Performance Objectives.. 3-1

vi

3.2.2 Design Applications for Performance and Scalability ... 3-4
3.2.3 Monitor and Measure Your Performance Metrics .. 3-4

4 Monitoring Oracle Fusion Middleware

4.1 About Oracle Fusion Middleware Management Tools ... 4-1
4.1.1 Measuring Your Performance Metrics.. 4-2
4.2 Oracle Enterprise Manager Fusion Middleware Control ... 4-2
4.3 Oracle WebLogic Server Administration Console ... 4-2
4.4 WebLogic Diagnostics Framework (WLDF)... 4-3
4.5 WebLogic Scripting Tool (WLST)... 4-3
4.6 DMS Spy Servlet.. 4-3
4.6.1 Viewing Performance Metrics Using the Spy Servlet .. 4-3
4.6.2 Using the DMS Spy Servlet .. 4-3
4.7 Native Operating System Performance Commands.. 4-5
4.8 Network Performance Monitoring Tools .. 4-5

5 Using the Oracle Dynamic Monitoring Service

5.1 About Dynamic Monitoring Service (DMS) ... 5-1
5.1.1 Understanding Common DMS Terms and Concepts .. 5-1
5.2 Understanding DMS Availability... 5-6
5.3 Understanding DMS Architecture ... 5-6
5.4 Viewing DMS Metrics .. 5-7
5.4.1 Viewing Metrics Using the Spy Servlet .. 5-7
5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework) 5-8
5.4.3 Viewing metrics with WLST (Oracle WebLogic Server).. 5-8
5.4.4 Viewing metrics with JConsole.. 5-9
5.4.5 Viewing metrics with Oracle Enterprise Manager .. 5-10
5.5 Accessing DMS Metrics with WLDF... 5-10
5.6 DMS Execution Context .. 5-11
5.6.1 DMS Execution Requests and Sub-Tasks .. 5-11
5.6.2 DMS Execution Context Usage... 5-12
5.6.3 DMS Execution Context Communication ... 5-12
5.7 DMS Tracing and Events .. 5-13
5.7.1 Configuring the DMS Event System.. 5-13
5.7.2 Configuring Destinations .. 5-16
5.7.3 Understanding the Format of DMS Events in Log Messages 5-24
5.7.4 Understanding DMS Event Actions... 5-27
5.8 DMS Best Practices... 5-28

Part II Core Components

6 Oracle HTTP Server Performance Tuning

6.1 About Oracle HTTP Server.. 6-1
6.2 Monitoring Oracle HTTP Server Performance ... 6-1
6.3 Basic Tuning Considerations .. 6-2
6.3.1 Tuning Oracle HTTP Server Directives .. 6-2

vii

6.3.2 Reducing Httpd Process Availability with Persistent Connections............................. 6-7
6.3.3 Logging Options for Oracle HTTP Server.. 6-8
6.4 Advanced Tuning Considerations ... 6-9
6.4.1 Tuning Oracle HTTP Server... 6-9
6.4.2 Tuning Oracle HTTP Server Security ... 6-11

7 Oracle Metadata Service (MDS) Performance Tuning

7.1 About Oracle Metadata Services (MDS).. 7-1
7.2 Monitoring Oracle Metadata Service Performance ... 7-1
7.3 Basic Tuning Considerations... 7-2
7.3.1 Tuning Database Repository.. 7-2
7.3.2 Tuning Cache Configuration ... 7-3
7.3.3 Purging Document Version History ... 7-4
7.3.4 Using Database Polling Interval for Change Detection ... 7-5
7.4 Advanced Tuning Considerations ... 7-6
7.4.1 Analyzing Performance Impact from Customization .. 7-6

Part III Oracle Fusion Middleware Server Components

8 Oracle Application Development Framework Performance Tuning

8.1 About Oracle ADF .. 8-1
8.2 Basic Tuning Considerations... 8-1
8.2.1 Oracle ADF Faces Configuration and Profiling .. 8-2
8.2.2 Performance Considerations for ADF Faces.. 8-2
8.2.3 Tuning ADF Faces Component Attributes ... 8-11
8.2.4 Performance Considerations for Table and Tree Components.................................. 8-13
8.2.5 Performance Considerations for autoSuggest .. 8-14
8.2.6 Data Delivery - Lazy versus Immediate.. 8-14
8.2.7 Performance Considerations for DVT Components.. 8-15
8.3 Advanced Tuning Considerations .. 8-16
8.3.1 ADF Server Performance... 8-16

9 Oracle TopLink (EclipseLink) JPA Performance Tuning

9.1 About Oracle TopLink and EclipseLink .. 9-1
9.2 Basic Tuning Considerations... 9-2
9.2.1 Creating Efficient SQL Statements and Queries ... 9-2
9.2.2 Tuning Cache Configuration .. 9-7
9.2.3 Tuning the Mapping and Descriptor Configurations ... 9-12
9.2.4 Using Data Partitioning ... 9-13
9.3 Advanced Tuning Considerations .. 9-13
9.3.1 Integrating with Oracle Coherence ... 9-13
9.3.2 Analyzing EclipseLink JPA Entity Performance.. 9-13

viii

ix

Preface

This guide describes how to monitor and optimize performance, review the key
components that impact performance, use multiple components for optimal
performance, and design applications for performance in the Oracle Fusion
Middleware environment.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Conventions

Audience
Tuning Performance is aimed at a target audience of Application developers, Oracle
Fusion Middleware administrators, database administrators, and Web masters.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

x

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Introduction

This part describes basic performance concepts, how to measure performance, and
designing applications for performance and scalability. It contains the following
chapters:

■ Chapter 1, "Introduction and Roadmap"

■ Chapter 2, "Top Performance Areas"

■ Chapter 3, "Performance Planning"

■ Chapter 4, "Monitoring Oracle Fusion Middleware"

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This section describes the contents and organization of this guide.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.3, "Related Documentation"

1.1 Document Scope and Audience
Tuning Performance is for a target audience of Application developers, Oracle Fusion
Middleware administrators, database administrators, and Web masters. This Guide
assumes knowledge of Fusion Middleware Administration and hardware performance
tuning fundamentals, WebLogic Server, XML, and the Java programming language.

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the objectives

and organization of this guide.

■ Chapter 2, "Top Performance Areas," describes top tuning areas for Oracle Fusion
Middleware and serves as a ’quick start’ for tuning applications.

■ Chapter 3, "Performance Planning," describes the performance planning
methodology and tuning concepts for Oracle Fusion Middleware.

■ Chapter 4, "Monitoring Oracle Fusion Middleware," describes how to monitor
Oracle Fusion Middleware and its components to obtain performance data that
can assist you in tuning the system and debugging applications with performance
problems.

■ Chapter 5, "Using the Oracle Dynamic Monitoring Service" provides an overview
and features available in the Oracle Dynamic Monitoring Service (DMS).

■ Chapter 6, "Oracle HTTP Server Performance Tuning," discusses the techniques for
optimizing Oracle HTTP Server performance, the Web server component for
Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and
the framework for hosting static pages, dynamic pages, and applications over the
Web.

■ Chapter 7, "Oracle Metadata Service (MDS) Performance Tuning," provides tuning
tips for Oracle Metadata Service (MDS). MDS is used by Oracle Application
Development Framework to manage metadata.

■ Chapter 8, "Oracle Application Development Framework Performance Tuning,"
provides basic guidelines on how to maximize the performance and scalability of

Related Documentation

1-2 Oracle Fusion Middleware Tuning Performance Guide

the ADF stack in applications. Oracle ADF is an end-to-end application framework
that builds on Java Platform, Enterprise Edition (Java EE) standards and
open-source technologies to simplify and accelerate implementing
service-oriented applications. This chapter covers design time, configuration time,
and deployment time performance considerations.

■ Chapter 9, "Oracle TopLink (EclipseLink) JPA Performance Tuning," provides
some of the available performance options for Java Persistence API (JPA) entity
architecture. Oracle TopLink includes EclipseLink as the JPA implementation.

1.3 Related Documentation
For more information, see the following documents in the Oracle Fusion Middleware
12c (12.1.2) documentation set:

■ Administering Oracle Fusion Middleware

■ Understanding Oracle Fusion Middleware

■ Securing Applications with Oracle Platform Security Services

■ High Availability Guide

■ Tuning Performance of Oracle WebLogic Server

■ Administering Oracle HTTP Server

■ Administering Web Services

2

Top Performance Areas 2-1

2Top Performance Areas

This chapter describes the top tuning areas for Oracle Fusion Middleware. It covers
critical Oracle Fusion Middleware performance areas and provides a quick start for
tuning Java applications in the following sections:

■ Section 2.1, "Identifying Top Performance Areas"

■ Section 2.2, "Securing Sufficient Hardware Resources"

■ Section 2.3, "Tuning the Operating System"

■ Section 2.4, "Tuning Java Virtual Machines (JVMs)"

■ Section 2.5, "Tuning the WebLogic Server"

■ Section 2.6, "Tuning Database Parameters"

■ Section 2.7, "Reusing Database Connections"

■ Section 2.8, "Enabling Data Source Statement Caching"

■ Section 2.9, "Controlling Concurrency"

■ Section 2.10, "Setting Logging Levels"

2.1 Identifying Top Performance Areas
One of the most challenging aspects of performance tuning is knowing where to begin.
This chapter serves as a ’quick start’ guide to performance tuning your Oracle Fusion
Middleware applications.

Table 2–1 provides a list of common performance considerations for Oracle Fusion
Middleware. While the list is a useful tool in starting your performance tuning, it is
not meant to be comprehensive list of areas to tune. You must monitor and track
specific performance issues within your application to understand where tuning can
improve performance. See Chapter 4, "Monitoring Oracle Fusion Middleware" for
more information.

Securing Sufficient Hardware Resources

2-2 Oracle Fusion Middleware Tuning Performance Guide

2.2 Securing Sufficient Hardware Resources
A key component of managing the performance of Oracle Fusion Middleware
applications is to ensure that there are sufficient CPU, memory, and network resources
to support the user and application requirements for your installation.

No matter how well you tune your applications, if you do not have the appropriate
hardware resources, your applications cannot reach optimal performance levels.
Oracle Fusion Middleware has minimum hardware requirements for its applications
and database tier. For details on Oracle Fusion Middleware supported configurations,
see "System Requirements and Prerequisites" in Planning an Installation of Oracle Fusion
Middleware.

Table 2–1 Top Performance Areas for Oracle Fusion Middleware

Performance Area Description and Reference

Hardware Resources Ensure that your hardware resources meet or exceed the application's
resource requirements to maximize performance.

See Section 2.2, "Securing Sufficient Hardware Resources" for information
on how to determine if your hardware resources are sufficient.

Operating System Each operating system has native tools and utilities that can be useful for
monitoring purposes.

See Section 2.3, "Tuning the Operating System"

Java Virtual Machines (JVMs) This section discusses best practices and provides practical tips to tune the
JVM and improve the performance of a Java EE application. It also
discusses heap size and JVM garbage collection options.

See Section 2.4, "Tuning Java Virtual Machines (JVMs)".

Database For applications that access a database, ensure that your database is
properly configured to support your application's requirements.

See Section 2.6, "Tuning Database Parameters" for more information on
garbage collection.

WebLogic Server If your Oracle Fusion Middleware applications are using the WebLogic
Server, see Section 2.5, "Tuning the WebLogic Server".

Database Connections Pooling the connections so they are reused is an important tuning
consideration.

See Section 2.7, "Reusing Database Connections"

Data Source Statement Caching For applications that use a database, you can lower the performance
impact of repeated statement parsing and creation by configuring
statement caching properly.

See Section 2.8, "Enabling Data Source Statement Caching"

Oracle HTTP Server Tune the Oracle HTTP Server directives to set the level of concurrency by
specifying the number of HTTP connections.

See Section 2.9, "Controlling Concurrency".

Concurrency This section discusses ways to control concurrency with Oracle Fusion
Middleware components.

See Section 2.9, "Controlling Concurrency"

Logging Levels Logging levels are thresholds that a system administrator sets to control
how much information is logged. Performance can be impacted by the
amount of information that applications log therefore it is important to set
the logging levels appropriately.

See Section 2.10, "Setting Logging Levels".

Tuning Java Virtual Machines (JVMs)

Top Performance Areas 2-3

Sufficient hardware resources should meet or exceed the acceptable response times
and throughputs for applications without becoming saturated. To verify that you have
sufficient hardware resources, you should monitor resource utilization over an
extended period to determine if (or when) you have occasional peaks of usage or
whether a resource is consistently saturated. For more information on monitoring, see
Chapter 4, "Monitoring Oracle Fusion Middleware".

If any of the hardware resources are saturated (consistently at or near 100%
utilization), one or more of the following conditions may exist:

■ The hardware resources are insufficient to run the application.

■ The system is not properly configured.

■ The application or database must be tuned.

For a consistently saturated resource, the solutions are to reduce load or increase
resources. For peak traffic periods when the increased response time is not acceptable,
consider increasing resources or determine if there is traffic that can be rescheduled to
reduce the peak load, such as scheduling batch or background operations during
slower periods.

Oracle Fusion Middleware provides a variety of mechanisms to help you control
resource concurrency; this can limit the impact of bursts of traffic. However, for a
consistently saturated system, these mechanisms should be viewed as temporary
solutions. For more information see Section 2.9, "Controlling Concurrency".

2.3 Tuning the Operating System
Each operating system has native tools and utilities that can be useful for monitoring
and tuning purposes. Native operating system commands enable you to monitor CPU
utilization, paging activity, swapping, and other system activity information.

For details on operating system commands, and guidelines for performance tuning of
the network or operating system, refer to the documentation provided by the
operating system vendor.

2.4 Tuning Java Virtual Machines (JVMs)
How you tune your Java virtual machine (JVM) greatly affects the performance of
Oracle Fusion Middleware and your applications. For more information on tuning
your JVM, see "Tuning Java Virtual Machines (JVM)" in Tuning Performance of Oracle
WebLogic Server.

Tip: Your target CPU usage should never reach 100% utilization. You
should determine a target CPU utilization based on your application
needs, including CPU cycles for peak usage.

If your CPU utilization is optimized at 100% during normal load
hours, you have no capacity to handle a peak load. In applications
that are latency sensitive and maintaining a fast response time is
important, high CPU usage (approaching 100% utilization) can
increase response times while throughput stays constant or even
decreases. For such applications, a 70% - 80% CPU utilization is
recommended. A good target for non-latency sensitive applications is
about 90%.

Tuning the WebLogic Server

2-4 Oracle Fusion Middleware Tuning Performance Guide

2.5 Tuning the WebLogic Server
If your Oracle Fusion Middleware applications are using the WebLogic Server, see
"Tuning WebLogic Server" in Tuning Performance of Oracle WebLogic Server.

2.6 Tuning Database Parameters
To achieve optimal performance for applications that use the Oracle database, the
database tables you access must be designed with performance in mind. Monitoring
and tuning the database ensures that you get the best performance from your
applications.

This section covers the following:

■ Tuning Database Parameters

■ Tuning Redo Logs Location and Sizing

■ Tuning Automatic Segment-Space Management (ASSM)

2.6.1 Tuning Database Parameters
The following tables provide common init.ora parameters and their descriptions.
Consider following these guidelines to set the database parameters. Ultimately,
however, the DBA should monitor the database health and tune parameters based on
the need. See Table 2–2 for more information:

Note: The information in this section is a subset of database tuning
information for Fusion Middleware. More information can be found in
Oracle Database Performance Tuning Guide. Make sure that you have
also reviewed your database tuning documentation.

Note: Always review the tuning guidelines in your database-specific
vendor documentation. For more information on tuning the Oracle
database, see the Oracle Database Performance Tuning Guide.

Table 2–2 Important inti.ora Oracle 11g Database Tuning Parameters

Database Parameter Description

AUDIT_TRAIL If there is NO policy to audit db activity, consider setting this parameter to NONE.
Enabling auditing can impact performance.

MEMORY_MAX_TARGET MEMORY_MAX_TARGET specifies the maximum value to which a DBA can set the
MEMORY_TARGET initialization parameter.

MEMORY_TARGET Consider setting the MEMORY_TARGET to NONE. Set SGA and PGA separately as
setting MEMORY_TARGET does not allocate sufficient memory to SGA and PGA as
needed.

Reusing Database Connections

Top Performance Areas 2-5

2.6.2 Tuning Redo Logs Location and Sizing
Tuning the redo log options can provide performance improvement for applications
running in an Oracle Fusion Middleware environment, and in some cases, you can
significantly improve I/O throughput by moving the redo logs to a separate disk.

Consider having at least 3 redo log groups with 2G of size each. Redo log files should
be placed on a disk separate from data files to improve I/O performance.

2.6.3 Tuning Automatic Segment-Space Management (ASSM)
For permanent tablespaces, consider using automatic segment-space management.
Such tablespaces, often referred to as bitmap tablespaces, are locally managed
tablespaces with bitmap segment space management.

For backward compatibility, the default local tablespace segment-space management
mode is MANUAL.

While configuring tablespaces, consider setting the extent allocation type to SYSTEM.
If the allocation type is set to UNIFORM, it might impact performance.

For more information, see "Free Space Management" in Oracle Database Concepts, and
"Specifying Segment Space Management in Locally Managed Tablespaces" in Oracle
Database Administrator's Guide.

2.7 Reusing Database Connections
Creating a database connection is a relatively resource intensive process in any
environment. Typically, a connection pool starts with a small number of connections.
As client demand for more connections grow, there may not be enough in the pool to
satisfy the requests. WebLogic Server creates additional connections and adds them to
the pool until the maximum pool size is reached.

One way to avoid connection creation delays is to initialize all connections at server
startup, rather than on-demand as clients need them. This may be appropriate if your
load is predictable and even. Set the initial number of connections equal to the
maximum number of connections in the Connection Pool tab of your data source
configuration. Determine the optimal value for the Maximum Capacity as part of your
pre-production performance testing.

If your load is uneven, and has a much higher number of connections at peak load
than at typical load, consider setting the initial number of connections equal to your
typical load. In addition, consider setting the maximum number of connections based

PGA_AGGREGATE_
TARGET

Consider using a value of 1G for PGA initially and then monitor the production
database on daily basis and adjust SGA and PGA accordingly.

If the database server has more memory, consider setting PGA_AGGREGATE_
TARGET to a value higher than 1G based on usage needs.

SGA_MAX_SIZE Consider setting MEMORY_TARGET instead of setting SGA and the PGA separately.

SGA_TARGET Consider using a value of 2G for SGA is 2G to start with and initially and then
monitor the production database on daily basis and adjust SGA and PGA accordingly.

If the database server has more memory, consider setting SGA_TARGET to a value
higher than 2G based on usage needs.

Table 2–2 (Cont.) Important inti.ora Oracle 11g Database Tuning Parameters

Database Parameter Description

Enabling Data Source Statement Caching

2-6 Oracle Fusion Middleware Tuning Performance Guide

on your supported peak load. With these configurations, WebLogic server can free up
some connections when they are not used for a period of time.

For more information, see "Tuning Data Source Connection Pool Options" in
Administering JDBC Data Sources for Oracle WebLogic Server.

2.8 Enabling Data Source Statement Caching
When you use a prepared statement or callable statement in an application or EJB,
there may be a performance impact associated with the processing of the
communication between the application server and the database server and on the
database server. To minimize the processing impact, enable the data source to cache
prepared and callable statements used in your applications. When an application or
EJB calls any of the statements stored in the cache, the server reuses the statement
stored in the cache. Reusing prepared and callable statements reduces CPU usage on
the database server, improving performance for the current statement and leaving
CPU cycles for other tasks.

Each connection in a data source has its own individual cache of prepared and callable
statements used on the connection. However, you configure statement cache options
per data source. That is, the statement cache for each connection in a data source uses
the statement cache options specified for the data source, but each connection caches
it's own statements. Statement cache configuration options include:

■ Statement Cache Type—The algorithm that determines which statements to store
in the statement cache.

■ Statement Cache Size—The number of statements to store in the cache for each
connection. The default value is 10. You should analyze your database's statement
parse metrics to size the statement cache sufficiently for the number of statements
you have in your application.

You can use the Administration Console to set statement cache options for a data
source. See "Configure the statement cache for a JDBC data source" in the Oracle
WebLogic Server Administration Console Online Help.

For more information on using statement caching, see "Increasing Performance with
the Statement Cache" in the Administering JDBC Data Sources for Oracle WebLogic Server.

2.9 Controlling Concurrency
Limiting concurrency, at multiple layers of the system to match specific usage needs,
can greatly improve performance. This section discusses a few of the areas within
Oracle Fusion Middleware where concurrency can be controlled.

When system capacity is reached, and a web server or application server continues to
accept requests, application performance and stability can deteriorate. There are
several places within Oracle Fusion Middleware where you can throttle the requests to
avoid overloading the mid-tier or database tier systems and tune for best performance.

■ Setting Server Connection Limits

■ Configuring Connection Pools

■ Tuning the WebLogic Sever Thread Pool

Controlling Concurrency

Top Performance Areas 2-7

2.9.1 Setting Server Connection Limits
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies
the maximum number of HTTP requests that can be processed simultaneously, logging
details, and certain limits and time outs.

For more information on modifying the httpd.conf file, see "Configuring Oracle HTTP
Server" in Administering Oracle HTTP Server.

You can use the MaxClients and ThreadsPerChild directives to limit incoming
requests to WebLogic instances from the Oracle HTTP Server based on your expected
client load and system resources. The following sections describe some Oracle HTTP
Server tuning parameters related to connection limits that you typically need to tune
based on your expected client load. See Chapter 6, "Oracle HTTP Server Performance
Tuning" for more information and a more complete list of tunable parameters.

2.9.1.1 MaxClients/ThreadsPerChild

The MaxClients property specifies a limit on the total number of server threads
running, that is, a limit on the number of clients who can simultaneously connect. If
the number of client connections reaches this limit, then subsequent requests are
queued in the TCP/IP system up to the limit specified (in the ListenBackLog
directive).

You can configure the MaxClients directive in the httpd.conf file up to a maximum
of 8K (the default value is 150). If your system is not resource-saturated and you have
a user population of more than 150 concurrent HTTP connections, you can improve
your performance by increasing MaxClients to increase server concurrency. Increase
MaxClients until your system becomes fully utilized (85% is a good threshold).

When system resources are saturated, increasing MaxClients does not improve
performance. In this case, the MaxClients value could be reduced as a throttle on the
number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent
httpd server processes to handle both active and idle connections. When you specify
MaxClients to act as a throttle for system concurrency, you need to consider that
persistent idle httpd connections also consume httpd processes. Specifically, the
number of connections includes the currently active persistent and non-persistent
connections and the idle persistent connections. When there are no httpd server
threads available, connection requests are queued in the TCP/IP system until a thread
becomes available, and eventually clients terminate connections.

You can define a number of server processes and the threads per process
(ThreadsPerChild) to handle the incoming connections to Oracle HTTP Server. The
ThreadsPerChild property specifies the upper limit on the number of threads that
can be created under a server (child) process.

Note: The MaxClients parameter is applicable only to UNIX
platforms and on Microsoft Windows (mpm_winnt), the same is
achieved through the ThreadsPerChild and ThreadLimit
parameters.

Controlling Concurrency

2-8 Oracle Fusion Middleware Tuning Performance Guide

2.9.1.2 KeepAlive
A persistent, KeepAlive, HTTP connection consumes an httpd child process, or
thread, for the duration of the connection, even if no requests are currently being
processed for the connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent
connections improves performance and prevents wasting CPU resources
re-establishing HTTP connections. Normally, you should not need to change
KeepAlive parameters.

2.9.1.3 Tuning HTTP Server Modules
The Oracle HTTP Server (OHS) uses the mod_wl_ohs module to route requests to the
underlying Weblogic server or the Weblogic Server cluster. The configuration details
for mod_wl_ohs are available in the mod_wl_ohs.conf file in the config directory.

For more information on the tuning parameters for mod_wl_ohs see, "Understanding
Oracle HTTP Server Modules" in Administering Oracle HTTP Server.

2.9.2 Configuring Connection Pools
Connection pooling is configured and maintained per Java runtime. Connections are
not shared across different runtimes. To use connection pooling, no configuration is
required. Configuration is necessary only if you want to customize how pooling is
done, such as to control the size of the pools and which types of connections are
pooled.

You configure connection pooling by using a number of system properties at program
startup time. Note that these are system properties, not environment properties and
that they affect all connection pooling requests.

For applications that use a database, performance can improve when the connection
pool associated with a data source limits the number of connections. You can use the
MaxCapacity attribute to limit the database requests from Oracle Application Server
so that incoming requests do not saturate the database, or to limit the database
requests so that the database access does not overload the Oracle Application
Server-tier resource.

The connection pool MaxCapacity attribute specifies the maximum number of
connections that a connection pool allows. By default, the value of MaxCapacity is
set to 15. For best performance, you should specify a value for MaxCapacity that
matches the number appropriate to your database performance characteristics.

Note: ThreadsPerChild, StartServers, and ServerLimit
properties are inter-related with the MaxClients setting. All of these
properties must be set appropriately to achieve the number of
connections as specified by MaxClients. See Table 6–1, " Oracle
HTTP Server Configuration Properties" for a description of all the
HTTP configuration properties.

Note: The default maximum requests for a persistent connection is
100, as specified with the MaxKeepAliveRequests directive in
httpd.conf. By default, the server waits for 15 seconds between
requests from a client before closing a connection, as specified with
the KeepAliveTimeout directive in httpd.conf.

Controlling Concurrency

Top Performance Areas 2-9

Limiting the total number of open database connections to a number your database
can handle is an important tuning consideration. You should check to make sure that
your database is configured to allow at least as large a number of open connections as
the total of the values specified for all the data sources MaxCapacity option, as
specified in all the applications that access the database.

2.9.3 Tuning the WebLogic Sever Thread Pool
By default WebLogic Server uses a single thread pool, in which all types of work are
executed. WebLogic Server uses Work Managers to prioritize work based on rules you
can define, and run-time metrics, including the actual time it takes to execute a request
and the rate at which requests are entering and leaving the pool. There is a default
work manager that manages the common thread pool.

The common thread pool changes its size automatically to maximize throughput.
WebLogic Server monitors throughput over time and based on history, determines
whether to adjust the thread count. For example, if historical throughput statistics
indicate that a higher thread count increased throughput, WebLogic increases the
thread count. Similarly, if statistics indicate that fewer threads did not reduce
throughput, WebLogic decreases the thread count.

Since the WebLogic Server thread pool by default is sized automatically, in most
situations you do not need to tune this. However, for special requirements, an
administrator can configure custom Work Managers to manage the thread pool at a
more granular level for sets of requests that have similar performance, availability, or
reliability requirements. With custom work managers, you can define priorities and
guidelines for how to assign pending work (including specifying a min threads or max
threads constraint, or a constraint on the total number of requests that can be queued
or executing before WebLogic Server begins rejecting requests).

Use the following guidelines to help you determine when to use Work Managers to
customize thread management:

■ The default fair share is not sufficient.

This usually occurs in situations where one application needs to be given a higher
priority over another.

■ A response time goal is required.

■ A minimum thread constraint needs to be specified to avoid server deadlock.

■ You use MDBs in your application.

To ensure MDBs use a well-defined share of server thread resources, and to tune
MDB concurrency, most MDBs should be modified to reference a custom work
manager that has a max-threads-constraint. In general, a custom work manager is
useful when you have multiple MDB deployments, or if you determine that a
particular MDB needs more threads.

See Also: "JDBC Data Source: Configuration: Connection Pool" in
the Oracle WebLogic Server Administration Console Online Help.

"Tuning Data Source Connection Pool Options" in Administering JDBC
Data Sources for Oracle WebLogic Server.

Setting Logging Levels

2-10 Oracle Fusion Middleware Tuning Performance Guide

2.10 Setting Logging Levels
The amount of information that applications log depends on how the environment is
configured and how the application code is instrumented. To maximize performance it
is recommended that the logging level is not set higher than the default INFO level
logging. If the logging setting does not match the default level, reset the logging level
to the default for best performance.

Once the application and server logging levels are set appropriately, ensure that the
debugging properties or other application level debugging flags are also set to
appropriate levels or disabled. To avoid performance impacts, do not set log levels to
levels that produce more diagnostic messages, including the FINE or TRACE levels.

Each component may have specific recommendations for logging levels. See the
component chapters in this book for more information.

See Also: For more information on how to use custom Work
Managers to customize thread management, and when to use custom
work managers, see the following:

■ "Tune Pool Sizes" in Tuning Performance of Oracle WebLogic Server

■ "Thread Management" in Tuning Performance of Oracle WebLogic
Server

■ "MDB Thread Management" in Tuning Performance of Oracle
WebLogic Server

■ "Using Work Managers to Optimize Scheduled Work" in
Administering Server Environments for Oracle WebLogic Server

■ "Avoiding and Managing Overload" in Administering Server
Environments for Oracle WebLogic Server

You can use Oracle WebLogic Administration Console to view general
information about the status of the thread pool (such as active thread
count, total thread count, and queue length.) You can also use the
Console to view each application's scoped work manager metrics from
the Workload tab on the Monitoring page. The metrics provided
include the number of pending requests and number of completed
requests.

For more information, see "Servers: Monitoring: Threads" and
"Deployments: Monitoring: Workload" in the Oracle WebLogic Server
Administration Console Online Help.

The work manager and thread pool metrics can also be viewed from
the Oracle Fusion Middleware Control.

3

Performance Planning 3-1

3 Performance Planning

This chapter discusses performance and tuning concepts for Oracle Fusion
Middleware. This chapter contains the following sections:

■ Section 3.1, "About Oracle Fusion Middleware Performance Planning"

■ Section 3.2, "Performance Planning Methodology"

3.1 About Oracle Fusion Middleware Performance Planning
To maximize Oracle Fusion Middleware performance, you must monitor, analyze, and
tune all the components that are used by your applications. This guide describes the
tools that you can use to monitor performance and the techniques for optimizing the
performance of Oracle Fusion Middleware components.

Performance tuning usually involves a series of trade-offs. After you have determined
what is causing the bottlenecks, you may have to modify performance in some other
areas to achieve the expected results. However, if you have a clearly defined plan for
achieving your performance objectives, the decision on what to trade for higher
performance is easier because you have identified the most important areas.

3.2 Performance Planning Methodology
The Fusion Middleware components are built for performance and scalability. To
maximize the performance capabilities of your applications, you must build
performance and scalability into your design. The performance plan should address
the current performance requirements, the existing issues (such as bottlenecks or
insufficient hardware resources) and any anticipated variances in load, users or
processes. The performance plan should also address how the components scale
during peak usage without impacting performance.

The following sections of this chapter discuss the steps you should take to help create
a plan to tune your application environment and optimize performance:

■ Step 1: Define Your Performance Objectives

■ Step 2: Design Applications for Performance and Scalability

■ Step 3: Monitor and Measure Your Performance Metrics

3.2.1 Define Your Performance Objectives
Before you can begin performance tuning your applications, you must first identify the
performance objectives you hope to achieve. To determine your performance

Performance Planning Methodology

3-2 Oracle Fusion Middleware Tuning Performance Guide

objectives, you must understand the applications deployed and the environmental
constraints placed on the system.

To understand what your performance objectives are, you must complete the
following steps:

■ Define Operational Requirements

■ Identify Performance Goals

■ Understand User Expectations

■ Conduct Performance Evaluations

Performance objectives are limited by constraints, such as:

■ The configuration of hardware and software such as CPU type, disk size, disk
speed, and sufficient memory.

There is no single formula for determining your hardware requirements. The
process of determining what type of hardware and software configuration is
required to meet application needs adequately is called capacity planning.

Capacity planning requires assessment of your system performance goals and an
understanding of your application. Capacity planning for server hardware should
focus on maximum performance requirements.

■ The configuration of high availability architecture to address peak usage and
response times. For more information on implementing high availability features
in Oracle Fusion Middleware applications, see the High Availability Guide.

■ The ability to interoperate between domains, use legacy systems, support legacy
data.

■ Development, implementation, and maintenance costs.

Understanding these constraints - and their impacts - ensure that you set realistic
performance objectives for your application environment, such as response times,
throughput, and load on specific hardware.

3.2.1.1 Define Operational Requirements
Before you begin to deploy and tune your application on Oracle Fusion Middleware, it
is important to clearly define the operational environment. The operational
environment is determined by high-level constraints and requirements such as:

■ Application Architecture

■ Security Requirements

■ Hardware Resources

3.2.1.2 Identify Performance Goals
Whether you are designing a new system or maintaining an existing system, you
should set specific performance goals so that you know how and what to optimize. To
determine your performance objectives, you must understand the application
deployed and the environmental constraints placed on the system.

Gather information about the levels of activity that components of the application are
expected to meet, such as:

■ Anticipated number of users

■ Number and size of requests

Performance Planning Methodology

Performance Planning 3-3

■ Amount of data and its consistency

■ Target CPU utilization

3.2.1.3 Understand User Expectations
Application developers, database administrators, and system administrators must be
careful to set appropriate performance expectations for users. When the system carries
out a particularly complicated operation, response time may be slower than when it is
performing a simple operation. Users should be made aware of which operations
might take longer.

For example, you might want to ensure that 90% of the users experience response
times no greater than 5 seconds and the maximum response time for all users is 20
seconds. Usually, it's not that simple. Your application may include a variety of
operations with differing characteristics and acceptable response times. You need to
set measurable goals for each of these.

You also need to determine how variances in the load can affect the response time. For
example, users might access the system heavily between 9:00am and 10:00am and then
again between 1:00pm and 2:00pm, as illustrated by the graph in Figure 3–1. If your
peak load occurs on a regular basis, for example, daily or weekly, the conventional
wisdom is to configure and tune systems to meet your peak load requirements. The
lucky users who access the application in off-time can experience better response times
than your peak-time users. If your peak load is infrequent, you may be willing to
tolerate higher response times at peak loads for the cost savings of smaller hardware
configurations.

Figure 3–1 Adjusting Capacity and Functional Demand

3.2.1.4 Conduct Performance Evaluations
With clearly defined performance goals and performance expectations, you can readily
determine when performance tuning has been successful. Success depends on the
functional objectives you have established with the user community, your ability to
measure whether the criteria are being met, and your ability to take corrective action
to overcome any exceptions.

Ongoing performance monitoring enables you to maintain a well-tuned system.
Keeping a history of the application's performance over time enables you to make

Performance Planning Methodology

3-4 Oracle Fusion Middleware Tuning Performance Guide

useful comparisons. With data about actual resource consumption for a range of loads,
you can conduct objective scalability studies and from these predict the resource
requirements for anticipated load volumes. For more information on evaluating
performance, see Chapter 4, "Monitoring Oracle Fusion Middleware".

3.2.2 Design Applications for Performance and Scalability
The key to good performance is good design. The design phase of the application
development cycle should be an on-going process. Cycling through the planning,
monitoring and tuning phases of the application development cycle is critical to
achieving optimal performance across Fusion Middleware deployments. Using an
iterative design methodology enables you to accommodate changes in your work
loads without impacting your performance objectives.

3.2.3 Monitor and Measure Your Performance Metrics
Oracle Fusion Middleware provides a variety of technologies and tools that can be
used to monitor Server and Application performance. Monitoring enables you to
evaluate Server activity, watch trends, diagnose system bottlenecks, debug
applications with performance problems and gather data that can assist you in tuning
the system. For more information, see Chapter 4, "Monitoring Oracle Fusion
Middleware.".

Performance tuning is specific to the applications and resources that you have
deployed on your system. Some common tuning areas are included in Chapter 2, "Top
Performance Areas."

See Also: Oracle Database Performance Tuning Guide

Tuning Performance of Oracle WebLogic Server

Administering Oracle Fusion Middleware

4

Monitoring Oracle Fusion Middleware 4-1

4 Monitoring Oracle Fusion Middleware

Oracle Fusion Middleware provides a variety of technologies and tools that can be
used to monitor Server and Application performance. Monitoring is an important step
in performance tuning and enables you to evaluate server activity, watch trends,
diagnose system bottlenecks, debug applications with performance problems and
gather data that can assist you in tuning the system.

This chapter contains the following sections:

■ Section 4.1, "About Oracle Fusion Middleware Management Tools"

■ Section 4.2, "Oracle Enterprise Manager Fusion Middleware Control"

■ Section 4.3, "Oracle WebLogic Server Administration Console"

■ Section 4.4, "WebLogic Diagnostics Framework (WLDF)"

■ Section 4.5, "WebLogic Scripting Tool (WLST)"

■ Section 4.6, "DMS Spy Servlet"

■ Section 4.7, "Native Operating System Performance Commands"

■ Section 4.8, "Network Performance Monitoring Tools"

4.1 About Oracle Fusion Middleware Management Tools
After you install and configure Oracle Fusion Middleware, you can use the graphical
user interfaces or command-line tools to manage your environment.

Each tool is described in "Overview of Oracle Fusion Middleware Administration
Tools" in Administering Oracle Fusion Middleware.

Note: Additional monitoring information is included for most
products in the product-specific chapters of this guide.

Note: The Oracle Process Manager and Notification Server (OPMN)
is no longer used in Oracle Fusion Middleware. Instead, system
components are managed by the WebLogic Management Framework,
which includes WLST, Node Manager and pack and unpack. See
"What Is the WebLogic Management Framework" in Understanding
Oracle Fusion Middleware.

Oracle Enterprise Manager Fusion Middleware Control

4-2 Oracle Fusion Middleware Tuning Performance Guide

4.1.1 Measuring Your Performance Metrics
Metrics are the criteria you use to measure your scenarios against your performance
objectives. You can use performance metrics to help locate bottlenecks, identify
resource availability issues, or help tune your components to improve throughput and
response times. After you have determined your performance criteria, take
measurements of the metrics used to quantify your performance objectives.

For example, you might use response time, throughput, and resource utilization as
your metrics. The performance objective for each metric is the value that is acceptable.
You match the actual value of the metrics to your objectives to verify that you are
meeting, exceeding, or failing to meet your performance objectives.

When you manage or monitor an Oracle Fusion Middleware component or application
with Fusion Middleware Control, you may see performance metrics that provide
insight into the current performance of the component or application. In many cases,
these metrics are shown in interactive charts; other times they are presented in tabular
format. The best way to use and correlate the performance metrics is from the
Performance Summary page for the component or application you are monitoring.

The next sections of this chapter provide an overview of the Oracle Fusion
Middleware technologies and tools that can be used to monitor Server and
Application performance.

If you are new to Oracle Fusion Middleware or if you need additional information
about monitoring your environment using the Performance Summary pages, see
"Viewing the Performance of Oracle Fusion Middleware" in Administering Oracle
Fusion Middleware. In addition, the Fusion Middleware Control online help provides
definitions and other information about specific performance metrics that are available
on its management and monitoring pages.

4.2 Oracle Enterprise Manager Fusion Middleware Control
Fusion Middleware Control is a Web browser-based, graphical user interface that you
can use to monitor and administer your domain. It can manage an Oracle WebLogic
Server domain with its Administration Server, one or more Managed Servers, clusters,
the Oracle Fusion Middleware components that are installed, configured, and running
in the domain, and the applications you deploy.

For more information, see "Getting Started Using Oracle Enterprise Manager Fusion
Middleware Control" in Administering Oracle Fusion Middleware.

4.3 Oracle WebLogic Server Administration Console
Oracle WebLogic Server Administration Console is a Web browser-based, graphical
user interface that you use to manage an Oracle WebLogic Server domain. It is
accessible from any supported Web browser with network access to the
Administration Server.

For more information on using the WebLogic Server console, see "Getting Started
Using Oracle WebLogic Server Administration Console" in Administering Oracle Fusion
Middleware.

Additional WebLogic Server Console Resources:

For details on the content contained in each summary table, see "Monitor Servers" in
WebLogic Administration Console Online Help.

DMS Spy Servlet

Monitoring Oracle Fusion Middleware 4-3

For detailed information on using the WebLogic Server to monitor your domain, see
the Tuning Performance of Oracle WebLogic Server.

4.4 WebLogic Diagnostics Framework (WLDF)
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that can collect diagnostic data that servers and applications generate. The
WLDF can be configured to collect the data and store it in various sources, including
log records, data events, and harvested metrics.

For more information, see "Understanding the Diagnostic Framework" in
Administering Oracle Fusion Middleware.

4.5 WebLogic Scripting Tool (WLST)
The Oracle WebLogic Scripting Tool (WLST) is a command-line scripting environment
that you can use to create, manage, and monitor Oracle WebLogic Server domains. It is
based on the Java scripting interpreter, Jython. In addition to supporting standard
Jython features such as local variables, conditional variables, and flow-control
statements, WLST provides a set of scripting functions (commands) that are specific to
WebLogic Server. You can extend the WebLogic scripting language to suit your needs
by following the Jython language syntax.

For more information, see "Getting Started Using the Oracle WebLogic Scripting Tool
(WLST)" in Administering Oracle Fusion Middleware.

4.6 DMS Spy Servlet
The DMS Spy servlet provides access to DMS metric data from a web browser. Data
that is created and updated by DMS-enabled applications and components is
accessible through the DMS Spy Servlet.

4.6.1 Viewing Performance Metrics Using the Spy Servlet
The DMS Spy Servlet is part of the DMS web application. The DMS web application's
web archive file is dms.war, and can be found in the same directory as dms.jar:
/modules/oracle.dms_12.1.2/dms.war.

The DMS web application is deployed by default as part of a JRF-enabled server
instance. The URL is: http://host:port/dms/Spy.

Only users who have Administrator role access can view this URL as access is
controlled by standard Java EE elements in web.xml.

4.6.2 Using the DMS Spy Servlet
Figure 4–1 shows the initial page of the Spy servlet: both sides show the same list of
metric tables.

Note: For more information on the WebLogic Diagnostics
Framework and how it can be leveraged for monitoring Oracle Fusion
Middleware components, see Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server.

DMS Spy Servlet

4-4 Oracle Fusion Middleware Tuning Performance Guide

Figure 4–1 Spy Servlet Page - Metrics Tables

Note that the Spy servlet can display metric tables for WebLogic Server and also for
non-Java EE components that are deployed.

For metric tables to appear in the Spy servlet, the component that creates and updates
that table must be installed and running. Metric tables for components that are not
running are not displayed. Metric tables with ":" in their name (for example, weblogic_
j2eeserver:app_overview) are aggregated metric tables generated by metric rules.

To view the contents of a metric table, click the table name. For example, Figure 4–2
shows the MDS_Partition table.

Network Performance Monitoring Tools

Monitoring Oracle Fusion Middleware 4-5

Figure 4–2 MDS Partition Table

To get a description of the fields in a metric table, click the Metric Definitions link
below the table.

4.7 Native Operating System Performance Commands
Each operating system has native tools and utilities that can be useful for monitoring
purposes. Native operating system commands enable you to gather and monitor for
example CPU utilization, paging activity, swapping, and other system activity
information.

For details on operating system commands, refer to the documentation provided by
the operating system vendor.

4.8 Network Performance Monitoring Tools
Your operating system’s network monitoring tools can be used to monitor utilization,
verify that the network is not becoming a bottleneck, or detect packet loss or other
network performance issues. For details on network performance monitoring, refer to
your operating system documentation.

Network Performance Monitoring Tools

4-6 Oracle Fusion Middleware Tuning Performance Guide

5

Using the Oracle Dynamic Monitoring Service 5-1

5Using the Oracle Dynamic Monitoring
Service

This chapter provides an overview and features available in the Oracle Dynamic
Monitoring Service (DMS).

■ Section 5.1, "About Dynamic Monitoring Service (DMS)"

■ Section 5.2, "Understanding DMS Availability"

■ Section 5.3, "Understanding DMS Architecture"

■ Section 5.4, "Viewing DMS Metrics"

■ Section 5.5, "Accessing DMS Metrics with WLDF"

■ Section 5.6, "DMS Execution Context"

■ Section 5.7, "DMS Tracing and Events"

■ Section 5.8, "DMS Best Practices"

5.1 About Dynamic Monitoring Service (DMS)
The Oracle Dynamic Monitoring Service (DMS) enables Oracle Fusion Middleware
components to provide administration tools, such as Oracle Enterprise Manager, with
data regarding the component's performance, state and on-going behavior. Fusion
Middleware components push data to DMS and in turn DMS publishes that data
through a range of different components. DMS measures and reports metrics, trace
events and system performance and provides a context correlation service for these
components.

5.1.1 Understanding Common DMS Terms and Concepts
This section defines common DMS terms and concepts related to the following:

■ DMS Sensors

■ DMS Nouns

■ DMS Tracing and Events

5.1.1.1 DMS Sensors
DMS sensors measure performance data and enable DMS to define and collect a set of
metrics. Certain metrics are always included with a sensor and other metrics are
optionally included with a sensor.

DMS has three different kinds of sensors:

About Dynamic Monitoring Service (DMS)

5-2 Oracle Fusion Middleware Tuning Performance Guide

■ Section 5.1.1.1.1, "DMS PhaseEvent Sensors"

■ Section 5.1.1.1.2, "DMS Event Sensors"

■ Section 5.1.1.1.3, "DMS State Sensors"

5.1.1.1.1 DMS PhaseEvent Sensors A DMS PhaseEvent sensor measures the time spent
in a specific section of code that has a beginning and an end. Use a PhaseEvent sensor
to track time in a method or in a block of code.

DMS can calculate optional metrics associated with a PhaseEvent, including the
average, maximum, and minimum time that is spent in the PhaseEvent sensor.

Table 5–1 lists the metrics available with PhaseEvent sensors.

5.1.1.1.2 DMS Event Sensors A DMS event sensor counts system events. Use a DMS
event sensor to track system events that have a short duration, or where the duration
of the event is not of interest but the occurrence of the event is of interest.

Table 5–2 describes the metric that is associated with an event sensor.

Table 5–1 DMS PhaseEvent Sensor Metrics

Metric Description

sensor_name.time Specifies the total time spent in the phase sensor_name.

Default metric: time is a default PhaseEvent sensor metric.

sensor_name.completed Specifies the number of times the phase sensor_name has
completed since the process was started.

Optional metric

sensor_name.minTime Specifies the minimum time spent in the phase sensor_name,
for all the times the sensor_name phase completed.

Optional metric

sensor_name.maxTime Specifies the maximum time spent in the phase sensor_name,
for all the times the sensor_name phase completed.

Optional metric

sensor_name.avg Specifies the average time spent in the phase sensor_name,
computed as the (total time)/(number of times the phase
completed).

Optional metric

sensor_name.active Specifies the number of threads in the phase sensor_name, at
the time the DMS statistics are gathered (the value may change
over time).

Optional metric

sensor_name.maxActive Specifies the maximum number of concurrent threads in the
phase sensor_name, since the process started.

Optional metric

Table 5–2 DMS Event Sensor Metrics

Metric Description

sensor_name.count Specifies the number of times the event has occurred since the
process started, where sensor_name is the name of the Event
sensor as specified in the DMS instrumentation API.

Default: count is the default metric for an event sensor. No other
metrics are available for an event sensor.

About Dynamic Monitoring Service (DMS)

Using the Oracle Dynamic Monitoring Service 5-3

5.1.1.1.3 DMS State Sensors A DMS state sensor tracks the value of Java primitives or
the content of a Java object. Supported types include integer, double, long, and object.
Use a state sensor when you want to track system status information or when you
need a metric that is not associated with an event. For example, use state sensors to
track queue lengths, pool sizes, buffer sizes, or host names. You assign a precomputed
value to a state sensor.

Table 5–3 describes the state sensor metrics. State sensors support a default metric
value, as well as optional metrics. The optional minValue and maxValue metrics
only apply for state sensors if the state sensor represents a numeric Java primitive (of
type integer, double, or long).

5.1.1.1.4 Sensor Naming Conventions The following list describes DMS sensor naming
conventions:

■ Sensor names should be descriptive, but not redundant. Sensor names should not
contain any part of the noun name hierarchy, or type, as this is redundant.

■ Sensor names should avoid containing the value for the individual metrics.

■ Where multiple words are required to describe a sensor, the first word should start
with a lowercase letter, and the following words should start with uppercase
letters. Example: computeSeries

■ In general, avoid using a "/" character in a sensor name. However, there are cases
where it makes sense to use a name that contains "/". If a "/" is used in a noun or
sensor name, then when you use the sensor in a string with DMS methods, you
need to use an alternative delimiter, such as "," or "_", which does not appear
anywhere in the path; this enables the "/" to be properly understood as part of the
noun or sensor name rather than as a delimiter.

For example, a child noun can have a name such as:

examples/jsp/num/numguess.jsp

and you can look this up using the string:

,default,WEBs,defaultWebApp,JSPs,example/jsp/num/numguess.jsp,service

where the delimiter is the "," character.

■ Event sensor and PhaseEvent sensor names should have the form verbnoun.
Examples: activateInstance and runMethod. When a PhaseEvent monitors a
function, method, or code block, it should be named to reflect the task performed
as clearly as possible.

Table 5–3 DMS State Sensor Metrics

Metric Description

sensor_name.value Specifies the metric value for sensor_name, using the type
assigned when sensor_name is created.

Default: value is the default State metric.

sensor_name.count Specifies the number of times sensor_name is updated.

Optional metric

sensor_name.minValue Specifies the minimum value for sensor_name since startup.

Optional metric

sensor_name.maxValue Specifies the maximum value this sensor_name since startup.

Optional metric

About Dynamic Monitoring Service (DMS)

5-4 Oracle Fusion Middleware Tuning Performance Guide

■ The name of a state sensor should be a noun, possibly preceded by an adjective,
which describes the semantics of the value which is tracked with this state sensor.
Examples: lastComputed, totalMemory, port, availableThreads,
activeInstances

■ To avoid confusion, do not name sensors with strings such as ".time", ".value", or
".avg", which are names of sensor metrics, as shown in Table 5–1, Table 5–2, and
Table 5–3.

5.1.1.2 DMS Nouns
DMS nouns organize performance data. Sensors, with their associated metrics, are
organized in an hierarchy according to nouns. Nouns enable you to organize DMS
metrics in a manner comparable to a directory structure in a file system. For example,
nouns can represent classes, methods, objects, queues, connections, applications,
databases, or other objects that you want to measure.

A noun type is the attribute that identifies the noun’s type. Nouns that represent
similar types of entities will typically have the same noun type and will usually record
a common set of measurements for each of those entities.

5.1.1.2.1 General DMS Naming A noun name is a simple string, not including a
delimiter. For example, BasicBinomial is a noun name. A noun full name consists of
the noun name with the namespace and localpart. The noun name is preceded by the
full name of its parent, and a delimiter.
/dmsDemo/BasicBinomial/"{http://mynamespace/}JAXWSHelloService"
is a noun full name.

A sensor name is a simple string, not including the "." or the derivation. For example,
computeSeries, loops, and lastComputed are sensor names.

A sensor full name consists of the sensor name, preceded by the name of its associated
noun, and a delimiter. Examples: /dmsDemo/BasicBinomial/computeSeries,
/dmsDemo/BasicBinomial/loops,
/dmsDemo/BasicBinomial/lastComputed.

A DMS metric name consists of a sensor name plus the "." character plus the metric.
For example, computeSeries.time, loops.count, and lastComputed.value
are valid DMS metric names.

5.1.1.2.2 General DMS Naming Conventions and Character Sets DMS names should be as
compact as possible. When you define noun and sensor names, avoid special
characters such as white space, slashes, periods, parenthesis, commas, and control
characters.

Table 5–4 shows DMS replacement for special characters in names.

Note: The suffixes .time, .count, and .value are immutable. Sensor
and noun names, however, can be modified as needed.

Table 5–4 Replacement for Special Characters in DMS Names

Character DMS Replacement Character

Space character Underscore character: _

Period character: . Underscore character: _

Control character Underscore character: _

About Dynamic Monitoring Service (DMS)

Using the Oracle Dynamic Monitoring Service 5-5

5.1.1.2.3 Noun and Noun Type Naming Conventions The following conventions are used
when naming noun and noun types:

■ A noun name should be unique.

■ A noun name should identify a specific entity of interest.

■ Noun types should have names that clearly reflect the set of metrics being
collected. For example, Servlet is the type for a noun under which the metrics that
are specific to a given servlet fall.

■ Noun type names should start with a capital letter to distinguish them from other
DMS names. All nouns of a given type should contain the same set of sensors.

■ The noun naming scheme uses a '/' as the root of the hierarchy, with each noun
acting as a container under the root, or under its parent noun.

5.1.1.3 DMS Tracing and Events
Conceptually DMS generates a stream of events; each event is in response to one of the
event-producing actions being performed on the DMS API by the components that
integrate with DMS (such as a sensor being updated). That stream of events can be
completely ignored or routed (and optionally filtered) to destinations that can respond
in some way to events.

Table 5–5 provides a list of DMS tracing and event terminology.

Less than character: < Open parenthesis: (

Greater than character: > Close parenthesis:)

Ampersand: & Caret: ^

Double quote: " Backquote: ‘

Single quote: ’ Backquote: ‘

Note: Oracle Fusion Middleware includes several built-in metrics.
The Oracle Fusion Middleware built-in metrics do not always
follow the DMS naming conventions.

Table 5–4 (Cont.) Replacement for Special Characters in DMS Names

Character DMS Replacement Character

Understanding DMS Availability

5-6 Oracle Fusion Middleware Tuning Performance Guide

5.2 Understanding DMS Availability
DMS functionality is available on all certified Java EE servers. This includes both the
runtime features and supporting commands. Also, several features of DMS will
operate in JSE applications and standalone C applications.

For more information on which servers are certified, see the Oracle Fusion Middleware
Certification Matrix.

5.3 Understanding DMS Architecture
DMS consists of the following features:

■ DMS Metrics - The DMS metrics feature provides Java and C APIs that are used
by Oracle Fusion Middleware components for instrumenting code with
performance measurements and other useful state metrics.

■ Execution Context - Execution Context supports the maintenance and propagation
of a specific context structure throughout the Oracle stack. By exploiting the
propagated context structure Oracle FMW components can record diagnostic
information (such as log records) that can be correlated between different

Table 5–5 DMS Tracing and Event Terminology

DMS Term Definition

Condition A condition is the logic behind a condition filter. It determines which events
may pass through a filter, based on the rules defined in the condition. Every
condition filter has zero or one root condition, but conditions may include
AND or OR arguments together to create compound conditions. The single
root condition can describe a relatively complex rule.

Two types of condition exist:

■ Noun Type Condition - operates on the name of the noun type associated
with a sensor or noun event.

■ Context Condition - operates on the values currently set within the
current Execution Context.

For more information on using conditions, see Section 5.7, "DMS Tracing and
Events".

Destination A destination implements a mechanism for reacting to events that are passed
to it. For example, a destination could log events to a file, another could send
transformed copies of event to the Java Flight Recorder, yet another might
render information gleaned from incoming events as data in an MBean.

Event Route An event route connects a filter to a destination. Event routes may be enabled
or disabled.

Filter An event tracing filter selectively passes a subset of all possible DMS runtime
events. Filters can be configured with rules that determine which events are
passed and which are blocked.

For example it is possible to define filters to:

■ Only pass sensor updates that are made when the execution context has a
key-value pair of "role"-"admin"

■ Only pass sensor updates from nouns of type "JDBC_Statement"

For more information on using filters, see Section 5.7, "DMS Tracing and
Events".

Listener A DMS listener is also known as the destination. See Section 5.7.2,
"Configuring Destinations" for more information.

Viewing DMS Metrics

Using the Oracle Dynamic Monitoring Service 5-7

components and products running on the same or different servers and hosts. For
more information see Section 5.6, "DMS Execution Context".

■ Events and Tracing - Event Tracing enables you to configure live tracing with no
restarts. DMS metrics updated during the course of using Oracle Fusion
Middleware products may be traced using the DMS Event Tracing feature. The
system has been designed to facilitate not only tracing, but also to support other
functionality that may be driven from DMS activity.

Figure 5–1 shows the components of DMS and how they interact with other Oracle
Fusion Middleware components. Arrows show the direction in which information
flows from one component to the next.

Figure 5–1 DMS Interactions with Oracle Fusion Middleware Components

5.4 Viewing DMS Metrics
Oracle Fusion Middleware components are instrumented with DMS metrics in order
to collect information that developers, system administrators, and support analysts
can use to analyze system performance or monitor system status. The Fusion
Middleware Control online help provides information on each of the specific metrics.
See "Viewing the Performance of Oracle Fusion Middleware" in Administering Oracle
Fusion Middleware for information on accessing metric information.

The Oracle Fusion Middleware metrics come from various sources and locations. They
include MBean attributes and DMS metrics. They also come from non-Java EE servers,
such as Oracle HTTP servers.

The following sections describe how to use various tools to view the DMS metrics:

■ Viewing Metrics Using the Spy Servlet

■ Viewing Metrics with WLDF (WebLogic Diagnostic Framework)

■ Viewing metrics with WLST (Oracle WebLogic Server)

■ Viewing metrics with JConsole

■ Viewing metrics with Oracle Enterprise Manager

5.4.1 Viewing Metrics Using the Spy Servlet
The Spy Servlet is part of the DMS Application that is deployed by default on
JRF-extended installations. The Spy Servlet is launched from
http://<host>:<port>/dms/Spy. The default port for WebLogic is 1521.

Viewing DMS Metrics

5-8 Oracle Fusion Middleware Tuning Performance Guide

The DMS Application's web archive file is dms.war, and can be found in the same
directory as dms.jar: oracle_common/modules/oracle.dms_
12.1.2/dms.war.

For more information see Section 4.6, "DMS Spy Servlet".

5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
You can use WebLogic Diagnostic Framework (WLDF) to harvest DMS metrics from
DMS metric MBeans. You can also use WLDF to monitor changes to the attribute value
of an MBean. For more information see "Configuring the Harvester for Metric
Collection" in Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server.

5.4.3 Viewing metrics with WLST (Oracle WebLogic Server)
DMS provides three commands to view metrics in WLST:

Note: The Spy Servlet is secured using standard Java EE declarative
security in the web-application's web.xml file, and will only grant
access to the Spy Servlet to members of the Administrator’s group.

Use this command... To do this...

displayMetricTableNames() List the names of the available metric tables.

If you have a large number of DMS metric tables,
consider using the outputfile parameter with
displayMetricTableNames(). This is useful
when the output is expected to be large. When
displayMetricTableNames() has the
outputfile parameter, it returns null to the script
instead of the whole output. This prevents the
command from running out of memory.

NOTE: In 12c, the command syntax for
displayMetricTableNames() differs slightly
for system components (such as OHS). After you
connect WLST to Node Manager using
nmConnect() command, you must specify both
server name and server type explicitly.

For example:

displayMetricTableNames(servertype="OH
S", servers="ohs1")

Viewing DMS Metrics

Using the Oracle Dynamic Monitoring Service 5-9

As well as displaying textual output, theses commands also return a structured object
or single value that you can use in a script to process.

For more information on using these commands, see the following:

■ "Getting Started Using the Oracle WebLogic Scripting Tool (WLST)" in
Administering Oracle Fusion Middleware

■ "DMS Custom WLST Commands" in WLST Command Reference for WebLogic Server

5.4.4 Viewing metrics with JConsole
To provide a standards-based way to access metrics, DMS exposes them through
MBeans. An MBean will be created and registered for each typed noun with the
runtime MBean Server. The DMS sensors contained by the noun are exposed as the
attributes of the MBean. Exposing the DMS metrics as MBeans allows administrators
to use tools such as JConsole (the Java monitoring and management console), and
other Java Management Extension (JMX) clients, to access the DMS metrics.

displayMetricTables() Show the content of the DMS metric tables.

If you have a large number of DMS metric tables,
consider using the outputfile parameter with
displayMetricTables(). This is useful when
the output is expected to be large. When
displayMetricTables() has the outputfile
parameter, it returns null to the script instead of the
whole output. This prevents the command from
running out of memory.

NOTE: In 12c, the command syntax for
displayMetricTables() differs slightly for
system components (such as OHS). After you
connect WLST to Node Manager using
nmConnect() command, you must specify both
server name and server type explicitly.

For example:

displayMetricTables(servertype="OHS",
servers="ohs1")

dumpMetrics() Display metrics in the internal format. Valid formats
for the dumpMetrics command include raw, xml
and pdml.

If you have a large number of DMS metric tables,
consider using the outputfile parameter with
dumpMetrics(). This is useful when the output is
expected to be large. When dumpMetrics() has
the outputfile parameter, it returns null to the
script instead of the whole output. This prevents the
command from running out of memory.

NOTE: In 12c, the command syntax for
dumpMetrics() differs slightly for system
components (such as OHS). After you connect
WLST to Node Manager using nmConnect()
command, you must specify both server name and
server type explicitly.

For example:

dumpMetrics()(servertype="OHS",
servers="ohs1")

Use this command... To do this...

Accessing DMS Metrics with WLDF

5-10 Oracle Fusion Middleware Tuning Performance Guide

MBeans also allow for integration with other Oracle diagnostics software such as
WLDF (WebLogic Diagnostics Framework), which is described in Section 5.5. The
noun name and noun type are exposed as the name and type properties of the metric
MBean object name. The MBean domain name is "oracle.dms". The object name also
reflects the DMS noun hierarchy.

5.4.5 Viewing metrics with Oracle Enterprise Manager
Oracle Fusion Middleware automatically and continuously measures data regarding
the component's performance, state and on-going behavior. The metrics are
automatically enabled; there is no need to set options or perform any extra
configuration to collect them. For more information see Section 4.2, "Oracle Enterprise
Manager Fusion Middleware Control".

5.5 Accessing DMS Metrics with WLDF
The WebLogic Diagnostics Framework (WLDF) provides a diagnostic feature that
allows MBean attributes to be harvested and monitored for specific conditions. This
provides a proactive way of monitoring activity in your environment and creating
E-mail and JMX notifications when a condition is triggered.

The following steps describe how to configure WLDF to send an E-mail notification
using the WebLogic Administration Console:

1. Select an existing or create a new Diagnostics Module from the Diagnostics screen.

2. Click on the Watches and Notifications tab.

3. Click New.

4. Enter a Watch Name and click Next.

5. Enter the text as the Watch Rule and click Next.

(${ServerRuntime//[NOUNTYPE]oracle.dms:name=/starWars/alliance,type=NounType//f
orceBalance_value} = 'BAD')

6. Select Use a manual reset alarm and click Next. The manual reset option means
that once an E-mail is triggered, you must reset the watch using the WebLogic
Administration Console.

7. Select the E-mail notification type and click Finish.

It is also possible to configure WLDF to collect the MBean data for offline storage and
analysis. This is achieved by configuring a WLDF Diagnostic Module to collect specific
MBean attributes, and can be done so using the WebLogic Administration Console.

For more information on using WLDF to harvest and monitor MBean data see
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Note: You can use JConsole to view DMS generated MBeans on a
Java EE server either locally or remotely. DMS generates an MBean for
each Java DMS noun that has a valid noun type. It does not generate
MBeans for the non-Java EE component's metrics and the DMS nouns
that have no noun types. Each DMS metric contained under the noun
is mapped to an attribute in the metric MBean.

DMS Execution Context

Using the Oracle Dynamic Monitoring Service 5-11

5.6 DMS Execution Context
The DMS execution context is the mechanism by which requests (such as HTTP or
RMI requests) can be uniquely identified and thus tracked as they flow through the
system. It also provides a means by which context information can be communicated
between cooperating Fusion Middleware components involved in fulfilling requests.

5.6.1 DMS Execution Requests and Sub-Tasks
The DMS execution context has been developed with the understanding that a single
request (or task) may form the root of a tree of sub-tasks that are coordinated to
complete the request or root task. Consider the following examples of requests and
their associated sub-tasks:

1. An HTTP request sent directly to Oracle WebLogic Server from a browser:

■ Root task only on Oracle WebLogic Server

2. An HTTP request sent through Oracle HTTP Server (acting as a reverse proxy) to
Oracle WebLogic Server:

■ Root task on Oracle HTTP Server

■ Single sub-task on Oracle WebLogic Server

3. An HTTP request sent from Oracle HTTP Server (acting as a reverse proxy) to
Oracle WebLogic Server that then requires invocation of two remote web services
from Oracle WebLogic Server in order to fulfill the request:

■ Root task on Oracle HTTP Server

■ Single sub-task on Oracle WebLogic Server

■ Two sub-sub-tasks, one on each web service

A DMS execution context is composed of the following:

■ A unique identifier, the ECID

The Execution Context ID (ECID) is unique for each new root task and is shared
across the tree of tasks associated with the root task.

■ A relationship identifier, the RID

The Relationship ID (RID) is an ordered set of numbers that describes the location
of each task in the tree of tasks. The leading number is usually a zero. A leading
number of 1 indicates that it has not been possible to track the location of the
sub-task within the overall sub-task tree.

■ A set of name-value pairs by which globally relevant data can be shared among
Oracle Fusion Middleware components.

The following three scenarios illustrate how ECID and RID are used when an HTTP
request is sent from Oracle HTTP Server (acting as a reverse proxy) to an Oracle
WebLogic Server and the server requires invocation of two remote web services from
Oracle WebLogic Server.

1. Root task on Oracle HTTP Server:

– New ECID = B5C094FA...BE4AE8

– Root RID = 0

2. Single sub-task on Oracle WebLogic Server:

– Same ECID = B5C094FA...BE4AE8

DMS Execution Context

5-12 Oracle Fusion Middleware Tuning Performance Guide

– Sub-task RID = 0:1

3. Two Sub-tasks, one on each web service:

– First web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:1

– Second web service invoked

Same ECID = B5C094FA...BE4AE8

Sub-task RID = 0:1:2

5.6.2 DMS Execution Context Usage
The most immediate benefits of the DMS execution context are realized when
attempting to correlate log messages between servers. The Oracle standard format for
logging involves a field dedicated to the ECID. Once the ECID is known, when its read
from an ERROR level log message for example, it is possible to locate all other log
messages associated with that task by querying the log files for messages containing
that ECID.

The following example shows a very specific case of using the command:

displayLogs(ecid="B5C094FA...BE4AE8");

In this example, any log files with messages that contain the ECID
B5C094FA...BE4AE8 will be displayed.

5.6.3 DMS Execution Context Communication
Figure 5–2 shows the components that cooperate in order to communicate the DMS
execution context between each other. Arrows pointing to a component indicate the
protocols that are inspected for incoming context information. Outgoing arrows show
protocols to which context information is added. It is possible for a single component
to send requests to itself, passing context information in that request.

Figure 5–2 DMS Execution Context Communication Protocols

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-13

5.7 DMS Tracing and Events
DMS can selectively trace the following:

■ DMS sensor lifecycle events (create, update, delete of state sensors, event sensors
and phase sensors)

■ Context events (start, stop)

■ HTTP events (start, stop)

The configuration that controls which of these types of events are traced, and how
those events are processed, is recorded in the dms_config.xml file. The DMS trace
configuration is split into three parts:

1. Filter Configuration

Defines the rules that select the events that are of interest

2. Destination Configuration

Defines how the events are used

3. eventRoute Configuration

Defines which filters are wired to which destinations

A filter can be associated with one or more destinations thus granting the
administrator the ability to define a filter rule once and have the resulting subset of all
possible events processed on one or more different destinations.

The configuration can be modified using the DMS configuration MBean or WLST
commands at runtime; this makes the DMS tracing feature invaluable for diagnosing
issues within a specific time period or collecting specific data at a specific time for a
specific set of criteria.

For more information, see "Configuring Selective Tracing Using WLST" in
Administering Oracle Fusion Middleware .

The following types of filter rules are supported:

■ Event Type Conditions

Used to identify if an event was triggered from the START or STOP of a PHASE_
SENSOR

■ Context Type Conditions

Used to identify if the event was generated from a unit of work whose context
contains a value (for example, "USER")

■ Noun Type Conditions

Used to identify if the event was triggered from a sensor whose noun is of a
specific type (for example, JDBC_CONNECTION

■ Logical AND and OR combinations of the above conditions

5.7.1 Configuring the DMS Event System
Configuration is recorded in each server's dms_config.xml file. MBean updates can be
made at runtime using command line interface (CLI) commands and through the
Event Configuration Mbean. Configuration updates are applied to the running system
in a thread safe, but non-atomic, manner.

DMS Tracing and Events

5-14 Oracle Fusion Middleware Tuning Performance Guide

The object name of the DMS Event configuration MBean is:
oracle.dms.event.config:name=DMSEventConfigMBean,type=JMXEventCo
nfig

To review the current state of your system's DMS event configuration, use the
following command:

listDMSEventConfiguration([server=<server>])

The resulting output will look similar to this:

Event routes:
 FILTER : auto662515911
 DESTINATION : destination1
 ENABLED : true
 FILTER : filter0
 DESTINATION : q
 ENABLED : true
Filters with no event route:
 Fred

Destinations with no event route:
 des4

5.7.1.1 Adding and Editing Filters
Filters define the rules that select which events are considered for tracing.

The following example shows how to add a filter that selects all events related to JDBC
operations:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE sw JDBC_'})

Or:

addDMSEventFilter(id='myJDBCFilter', props={'condition': 'NOUNTYPE startsWith
JDBC_'})

This filter assumes that all DMS sensor updates associated with JDBC operations are
performed on nouns of types whose names begin "JDBC_".

If the rule must be modified, the filter may be updated as shown in the following
example:

updateDMSEventFilter(id="myJDBCFilter", props={'condition': 'NOUNTYPE startsWith
JDBC_ OR NOUNTYPE startsWith MDS_'});

As of Oracle Fusion Middleware 11.1.1.6.0, the following shortened convenience
operators have been added. Operators can be specified using either the shortened or
longer name.

Note that operators with an underscore have been deprecated in favor of the ODL
format, which is to use mixed case. For example, not_equals becomes notEquals
or ne. The old format will still work, but is discouraged.

Noun Type Operators

equals, eq notEquals, ne

contains in

startsWith, sw

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-15

Example:

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE eq MDS_Connections AND CONTEXT user ne bruce'})

addDMSEventFilter(id='mdsbruce', name='MyFilter', props={'condition':
'NOUNTYPE equals MDS_Connections AND CONTEXT user notequals bruce'})
For more information about the syntax used to describe a filter's rule (the condition
property), refer to the WebLogic Scripting Tool Command Reference or the command
help.

5.7.1.2 Adding and Editing Destinations
Destinations encapsulate logic for responding to events. For example, a basic
destination will log the event, a different destination may transform an event and pass
it to another system for further processing.

The following example shows how to add a destination that will log events:

addDMSEventDestination(id="myLoggerDestination",
class="oracle.dms.trace2.runtime.LoggerDestination",
props={"loggerName":"myLogger"});

Note that merely adding the destination is not sufficient for events to be logged; to log
the events, you must associate a filter with a destination using an eventRoute, and the
eventRoute must be enabled (default).

The types of destination available, and their configuration options, are described in
Section 5.7.2. The following example shows how to edit an existing destination:

updateDMSEventDestination(id="myLoggerDestination",
props={"loggerName":"myTraceLogger"});

5.7.1.3 Adding and Editing Event Routes
The following example shows how to join the filter and destination created above:

addDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')

Note that you can invoke addDMSEventRoute without an explicit filterId. In these
scenarios, all events are passed to the destination without filtering.

To remove a filter or destination, you must first remove the event routes associated
with the filter or destination (even if the event route is disabled). For example, if you
wanted to remove myJDBCFilter, you would first need to remove the eventRoute
created in the previous example, and then remove the filter as shown in the following
example:

removeDMSEventRoute(filterid='myJDBCFilter', destinationid='myLoggerDestination')
removeDMSEventFilter(id='myJDBCFilter')

Context Operators

equals, eq notequals, ne

isnull isnotnull

startswith, sw contains

lt gt

DMS Tracing and Events

5-16 Oracle Fusion Middleware Tuning Performance Guide

5.7.1.4 Compound Operations
It is possible to create a filter and an eventRoute based on that filter using a single
command (rather than using two separate commands as shown in Section 5.7.1.3).
Note, however, that the destination to be used by the event route must already be
defined:

enableDMSEventTrace (destinationid='myLoggerDestination', condition='NOUNTYPE
starts_with JDBC_')

In the example above, enableDMSEventTrace automatically creates a filter with the
specified condition, and also creates and enables an event route using the new filter
and the nominated destination. The output is shown in the following example:

Filter "auto605449842" using Destination "myLoggerDestination" added, and
event-route enabled for server "AdminServer"

5.7.2 Configuring Destinations
DMS offers the following types of destinations:

■ LoggerDestination

■ MBean Creator Destination

■ HTTP Request Tracker Destination

■ Java Flight Recorder Destination

5.7.2.1 LoggerDestination

Instances of logger destinations write events to the named logger at a log level of
FINER.

The loggerName property specifies the name of a logger, but the logger does not
necessarily have to be described in logging.xml, though it can be. If the logger name
refers to a logger that is explicitly named in logging.xml, then the logger is referred to
as a static logger (see Section 5.7.2.1.1). If the logger name refers to a logger that is not
explicitly named in logging.xml, then the logger is referred to as a dynamic logger (see
Section 5.7.2.1.2).

Use in the default configuration: the default configuration defines a logger
destination, with an identification of LoggerDestination. This particular instance does
not form part of any eventRoute and therefore is not active. It is provided for
convenience, and uses a dynamic logger.

5.7.2.1.1 Static Loggers and Handlers Loggers are the objects to which log records are
presented. Log handlers are the objects through which log records are written to log
files.

For complete control over the log file to which DMS trace data is written, define the
logger named in the logger destination in logging.xml. Doing this allows you to

Description The LoggerDestination writes each event to the
associated logger.

Implementing Class oracle.dms.trace2.runtime.LoggerDestination

Properties

 loggerName The name of the ODL logger to which events
will be written.

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-17

explicitly define the name of the log file, the maximum size, format, file rotation and
policies.

Oracle recommends using commands (like the example below) to update the
configuration.

setLogLevel(logger="myTraceLogger", level="FINER", addLogger=1);

configureLogHandler(name="my-trace-handler", addToLogger=["myTraceLogger"],
path="/tmp/myTraceLogFiles/trace", maxFileSize="10m", maxLogSize="50m",
handlerType="oracle.core.ojdl.logging.ODLHandlerFactory", addHandler=1,
useParentHandlers=0);

configureLogHandler(name="my-trace-handler",
propertyName="useSourceClassandMethod", propertyValue="false", addProperty=1);

For more information on logging configuration, see "Managing Log Files and
Diagnostic Data" in the Administering Oracle Fusion Middleware.]

The use of the optional property useSourceClassandMethod set to FALSE prevents
the 'SRC_CLASS' and "SRC_METHOD' from appearing in every message and will
marginally improve performance by reducing file output times.

For static loggers, consider setting the useParentHandlers parameter to FALSE,
otherwise duplicate event messages will be logged to [server]-diagnostics.log, and
shown in a log query.

See Section 5.7.3, "Understanding the Format of DMS Events in Log Messages" for
more information about interpreting logger output.

5.7.2.1.2 Dynamic Loggers and Handlers If the named logger has no associated handler
defined in logging.xml, then the logger destination will dynamically create a handler
object that will write to a file in the server's default log output directory. (Instances of
logger destinations write events to the named logger at a log level of FINER.) The file
name will be the logger's name followed by "-event.log". For instance, in the example
in Section 5.7.2.1.1, DMS events would be written to "myTraceLogger-event.log".

5.7.2.1.3 Default Locations of the logging.xml File The logging.xml file can typically be
found in one of the following platform locations:

5.7.2.1.4 Using a CLI Command to Query the Trace Log File If the logger destination's
logger and handler are defined in logging.xml then you can take advantage of the
displayLogs() command to conveniently access logged trace data without having
to manually locate or search for it.

Examples:

■ To display all the log messages for the myTraceLogger:

displayLogs(query='MODULE equals myTraceLogger')

■ To display only the log messages for myTraceLogger which have an ECID of
'0000HpmSpLWEkJQ6ub3FEH194kwB000004':

Platform Server Location

Oracle WebLogic
Server

AdminServer ORACLE_HOME/WLS_Home/user_
projects/domains/base_
domain/config/fmwconfig/servers/AdminSer
ver/logging.xml

DMS Tracing and Events

5-18 Oracle Fusion Middleware Tuning Performance Guide

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004')

■ To display only the log messages for myTraceLogger which have an ECID of
'0000HpmSpLWEkJQ6ub3FEH194kwB000004' in the last 10 minutes:

displayLogs(query='MODULE equals myTraceLogger and ECID equals
0000HpmSpLWEkJQ6ub3FEH194kwB000004', last=10)

■ To display all the log messages from a dynamic logger the log's file name must be
included:

displayLogs(disconnected=1, log=DOMAIN_
ROOT+"/servers/AdminServer/logs/myTraceLogger-event.log")

5.7.2.2 MBean Creator Destination

Use in the default configuration: An instance of the MBean Creator destination is
configured and active by default, and will create MBeans for all nouns created in the
server.

By associating an instance of this destination type with a filter based on a noun-type
rule, it is possible to expose (as MBeans) only those noun types that are of interest to
the administrator.

Although it is possible to modify the configuration associated with an MBean creator
destination at runtime, it must be understood that the reinitialization process for this
type of destination may impact performance. Frequent runtime reconfiguration is
therefore discouraged.

Note that WebLogic Diagnostic Framework (WLDF) can be used to harvest DMS
metrics exposed by the MBean creator destination. For more information about WLDF,
see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

5.7.2.2.1 Metric MBean Object Name The noun name and noun type are exposed as the
name and type properties of the metric MBean object name. The MBean domain name
is "oracle.dms". The object name also reflects the DMS noun hierarchy.

For example if the noun's full path name is:

 /oracle/dfw/ofm/base_domain/AdminServer

and the noun type is DFW_Incident, the object name of the MBean representing the
noun is

oracle.dms:Location=AdminServer,name=/oracle/dfw/ofm/base_
domain/AdminServer,type=DFW_Incident.

Description The MBean creator destination make nouns accessible as
MBeans, exposing their metrics as attributes, for access
via WLDF, JConsole, etc.

Implementing Class oracle.dms.jmx.MetricMBeanFactory

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-19

5.7.2.3 HTTP Request Tracker Destination

Use in the default configuration: An instance of the HTTP request tracker destination
is enabled by default. In the case of a DFW incident being generated the active HTTP
request list will be dumped automatically, allowing an administrator to correlate the
failure with a specific request.

For each HTTP request the following information will be dumped:

■ Uniform Resource Identifier (URI)

■ Start time of the request

■ Execution Context ID (ECID)

■ Query string

■ HTTP Headers

When the HTTP request tracker is not enabled the HTTP Request Dump will output
the following:

HTTP Requests are not being tracked. To enable HTTP request tracking enable the
DMS oracle.dms.event.HTTPRequestTrackerDestination in dms_config.xml

5.7.2.3.1 Executing the HTTP Request Tracker Dump The information being maintained by
the HTTP request tracker can be accessed manually. In order to execute the dump that
reports the HTTP request information the WLST executeDump command can be
used, when connected to a server, as follows:

> executeDump(name="http.requests")
Active Requests:

StartTime: 2009-12-14 02:24:41.870
ECID: 0000IMChyqEC8xT6uBf9EH1B9X9^000009,0
URI: /myApp/Welcome.jsp
QueryString:
Headers:
 Host: myHost.myDomain.com:7001
 Connection: keep-alive
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.5
(KHTML, like Gecko) Chrome/4.0.249.30 Safari/532.5
 Accept:
application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*
/*;q=0.5
 Accept-Encoding: gzip,deflate
 Cookie: ORA_MOS_LOCALE=en%7CGB; s_nr...
 Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Description The HTTP Request Tracker destinations maintains a
list of active HTTP requests, and makes the requests
accessible to other Diagnostic Framework (DFW)
components.

Implementing Class oracle.dms.event.HTTPRequestTrackerDestination

Properties

 excludeHeaderNames Comma separated list of header names to exclude
from tracking

DMS Tracing and Events

5-20 Oracle Fusion Middleware Tuning Performance Guide

5.7.2.4 Java Flight Recorder Destination
The Java Flight Recorder (JFR) records information regarding the runtime status and
behavior of the Java JVM. JFR also exposes an API through which third party events
can be reported.

By themselves DMS traces and JFR traces only show part of the picture of the actions
being performed in the server. DMS integration with JFR enhances the diagnostic
information available to administrators and developers as follows:

1. Application level events and JVM level events can be reported as a single sequence
therefore avoiding the need to combine such events from separate log files based
only on timestamp (which may not tick over fast enough to accurately order
events created at or around the same time).

2. Recent DMS activity can be dumped, retroactively, from the JVM at will.

3. Recent DMS and JVM events can be dumped to disk in the event of a fatal error
that causes the JVM to exit gracefully.

4. The DMS ECID can be used to correlate activity relating to the same request, or
unit of work, across the span of a JFR recording.

5. The DMS ECID can be used to collect diagnostic information from all systems
involved with an event, or series of events, recorded by JFR.

5.7.2.4.1 Dynamically Derived JFR Event Types – Names, Values and Descriptions A DMS
noun type will be associated with a JFR InstantEvent event type:

■ The name of the JFR event type for a noun type will be the noun type’s name with
the suffix “state”.

■ The path of the JFR event type for a noun type will be “dms/” followed by the
producer-name, followed by the event type name.

■ Event sensors will not contribute any values to the noun type’s JFR event type.

■ The values of the JFR event for a noun type are described in Table 5–6:

Table 5–6 Values of the JFR Event for a Noun Type

Value Name Description Relational Notes

ECID The Execution Context ID
(ECID) associated with the
action.

Yes

RID The RID associated with the
action.

Yes

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-21

A DMS phase sensor will be associated with a JFR DurationEvent event type:

■ The name of the JFR event type for a phase sensor belonging to a noun of a
particular noun type will be the noun type’s name following by the phase sensor’s
name.

■ The path of the JFR event for a noun type will be “dms/” followed by the
producer-name, followed by the event type name.

■ The values of the duration event will be as above (except for the sensorName
value). For example the “stop” of a phase event will result in a JFR duration event
being reported to JFR that contains the state information of the phase event’s
parent noun.

Several DMS objects allow integrators to add descriptions. Descriptions from DMS
objects will be used as follows:

■ Noun type description will be used in creation of the JFR event type

■ State and event sensor descriptions will not be applied – there is nowhere to apply
them.

■ Phase sensor descriptions will be applied to their JFR event type.

5.7.2.4.2 Examples of Dynamically Derived Producers and Events Table 5–7 provides
examples for the rules described in Section 5.7.2.4.1:

<noun type> name The full path of the noun. This field will be populated
with the full path of the
noun. The field’s name
assumes that the noun_type
meaningfully categorizes all
objects being measured by
the nouns of that type.

<state-sensor-name> The value of the state sensor. No Each state sensor belonging
to the noun will contribute
one of these values to the
instant event. There may be
more that one value in each
noun.

event name The name of the event sensor
that was updated, left null
otherwise.

No The event name field is
required for being able to
count the number of times a
DMS event sensor has been
updated in a recording
(event sensors do not
contribute values to an
event type).

Table 5–6 (Cont.) Values of the JFR Event for a Noun Type

Value Name Description Relational Notes

DMS Tracing and Events

5-22 Oracle Fusion Middleware Tuning Performance Guide

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-23

Table 5–7 Examples of Dynamically Derived Producers and Events

DMS Java Flight Recorder (JFR)

Noun type:

 JDBC_Connection

Noun path:

/JDBC/Driver/CONNECT
ION_7

Sensors:

 CreateStatement (P)

 CreateNewStatement
(P)

 DBWaitTime (P)

 JDBC_Connection_Url
(S)

 JDBC_Connection_
Username (S)

Where:

P: Phase Sensor

S : State Sensor

E : Event Sensor

Producer Name: JDBC

The Producer Name is based on the leading component of the noun path.

Event Type 1

Event Type Name: JDBC_Connection State

<noun type> State

Event Type Path: dms/JDBC/JDBC_Connection_State

dms/<leading component of noun path>/<noun type>/_State

Fields:

■ ECID

■ RID

■ JDBC_Connection name

Value will be the full path of the noun

■ JDBC_Connection_Url

Value will be that of the state sensor of this name at the time of the event

■ JDBC_Connection_Username

Value will be that of the state sensor of this name at the time of the event

■ Event Name

Value will be one of the following:

■ The name of the DMS event sensor whose
activation caused this JFR event instance

■ Null if this JFR event instance was created for a
state sensor update

DMS Tracing and Events

5-24 Oracle Fusion Middleware Tuning Performance Guide

5.7.3 Understanding the Format of DMS Events in Log Messages
Table 5–8 describes the fields that make up a DMS event. Field elements are separated
by ":" (with a few exceptions). Sample events are provided to illustrate the position of
the field within an actual event string.

Producer Name: JDBC

Event Type 2

Event Type Name: JDBC_Connection CreateStatement

Event Type Path:

dms/JDBC/JDBC_Connection_CreateStatement

Fields:

■ ECID

■ RID

■ JDBC_Connection name

■ JDBC_Connection_Url

■ JDBC_Connection_Username

Producer Name: JDBC

Event Type 3

Event Type Name: JDBC_Connection CreateNewStatement

Event Type Path:

dms/JDBC/JDBC_Connection_CreateNewStatement

Fields:

■ ECID

■ RID

■ JDBC_Connection name

■ JDBC_Connection_Url

■ JDBC_Connection_Username

Producer Name: JDBC

Event Type 4

Event Type Name: JDBC_Connection DBWaitTime

Event Type Path:

dms/JDBC/JDBC_Connection_DBWaitTime

Fields:

■ ECID

■ RID

■ JDBC_Connection name

■ JDBC_Connection_Url

■ JDBC_Connection_Username

Table 5–7 (Cont.) Examples of Dynamically Derived Producers and Events

DMS Java Flight Recorder (JFR)

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-25

Table 5–8 Event Formatting Descriptions

Applicable
Events

Field
Number Name Description

All 1 Version number The version number of the event format

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

All 2 Event time The time at which the event occurred

For example:

v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp

All 3 Source object type The type of object on which an action was performed to
produce the event including:

■ NOUN

■ EVENT_SENSOR

■ STATE_SENSOR

■ PHASE_SENSOR

■ EXECUTION_CONTEXT

■ HTTP_REQUEST

For example:

v1:1280737384058:HTTP_
REQUEST:STOP:/MyWebApp/emp

All 4 Action type The type of action that resulted in the generation of this event.
A given source object type may not necessarily produce
events for every action type:

■ CREATE

■ UPDATE

■ DELETE

■ START

■ STOP

■ ABORT

For example:

v1:1280737384058:HTTP_
REQUEST:STOP:/MyWebApp/emp

Nouns 5 Noun type The name of the noun type

For example:

v1:1281344803506:NOUN:CREATE:JDBC_
Connection:/JDBC/JDBC Data Source-0/CONNECTION_1

6 Noun path The full path identifying the noun to which the sensor
belongs

For example:

v1:1281344803506:NOUN:CREATE:JDBC_
Connection:/JDBC/JDBC Data Source-0/CONNECTION_1

DMS Tracing and Events

5-26 Oracle Fusion Middleware Tuning Performance Guide

All Sensor
Types

5 Noun type The name of the noun type to which this sensor belongs

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_
Connection:LogicalConnection:/JDBC/JDBC Data
Source-0/CONNECTION_
1:State.ANY:LogicalConnection@13bed086

6 Sensor name The name of the sensor

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

7 Noun path The full path identifying the noun to which the sensor
belongs

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

Phase
Sensor
Types

8 Start token The start token of the phase.

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

9 Stop token The end token of the phase.

For example:

v1:1280737383069:PHASE_SENSOR:STOP:JDBC_
Connection:DBWaitTime:/JDBC/JDBC Data
Source-0/CONNECTION_1:1280737382950:1280737383069

Table 5–8 (Cont.) Event Formatting Descriptions

Applicable
Events

Field
Number Name Description

DMS Tracing and Events

Using the Oracle Dynamic Monitoring Service 5-27

5.7.4 Understanding DMS Event Actions
Table 5–9 shows the action types that can be performed on source object types.

State Sensor
Types

8 State value type The type of value held by the state sensor including:

■ State.DOUBLE

■ State.INTEGER

■ State.LONG

■ State.OBJECT

■ State.ANY

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_
Connection:LogicalConnection:/JDBC/JDBC Data
Source-0/CONNECTION_
1:State.ANY:LogicalConnection@13bed086

9 State value The value of the state represented in string form.

For example:

v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_
Connection:LogicalConnection:/JDBC/JDBC Data
Source-0/CONNECTION_
1:State.ANY:LogicalConnection@13bed086

HTTP
Requests

5 URI Uniform Resource Identifier (URI) identifies the resource
upon which to apply the request.

For example:

v1:1280737382889:HTTP_
REQUEST:START:/myWebApp/showEmployees

v1:1280737384058:HTTP_
REQUEST:STOP:/myWebApp/showEmployees

Execution
Context

5 ECID,RID The context identifier (composed of ECID and RID separated
by a comma).

For execution context events the complete substring starting
at the first character after the fourth event field separator (":")
records the ECID,RID identifiers - the context identifiers may
contain ":" but these should not be interpreted as event field
separators.

For example:

v1:1280737384058:EXECUTION_
CONTEXT:STOP:bc4fd0668f79d507:367c127f:12a23f2013c:-80
00-0000000000000f73,0

Table 5–9 Actions Performed on Source Object Types

Create Update Delete Start Stop Abort

Noun Yes - Yes - - -

Event Sensor Yes Yes Yes - - -

Phase Sensor Yes - Yes Yes Yes Yes

State Sensor Yes Yes Yes - - -

Table 5–8 (Cont.) Event Formatting Descriptions

Applicable
Events

Field
Number Name Description

DMS Best Practices

5-28 Oracle Fusion Middleware Tuning Performance Guide

5.8 DMS Best Practices
The use of DMS metrics can have an impact on application performance. When adding
metrics, consider the following:

■ Use a High Resolution Clock to increase DMS Precision

By default DMS uses the system clock for measuring time intervals during a
PhaseEvent. The default clock reports microsecond precision in C processes such
as Apache and reports millisecond precision in Java processes. Optionally, DMS
supports a high resolution clock to increase the precision of performance
measurements and lets you select the values for reporting time intervals. You can
use a high resolution clock when you need to time phase events more accurately
than is possible using the default clock or when the system's default clock does not
provide the resolution needed for your requirements.

System clocks are not necessarily as accurate as their precision implies. For
example, a system clock that reports time in milliseconds may not tick (change)
once per millisecond. Instead, it may take up to 15ms to tick as shown in the
following example:

Table 5–10 shows a phase with a 12ms duration that runs from actual time
12:00:00.002 to 12:00:00.014 would be calculated in system time as having a
duration of zero. Similarly, a phase with a 2ms duration running from 12:00:00.014
to 12:00:00.016 would be reported in system time as having a duration of 15ms.

■ Configure DMS Clocks for Reporting Time for Java

Execution Context - - - Yes Yes -

Http Request - - - Yes Yes -

Table 5–10 Default System Clock Time versus Actual Time (in milliseconds)

Actual Time System Time

12:00:00.000 12:00:00.000

12:00:00.001 12:00:00.000

12:00:00.002 12:00:00.000

[...]

12:00:00.014 12:00:00.000

12:00:00.015 12:00:00.015

12:00:00.016 12:00:00.015

Note: These behaviors are more evident on some operating systems
than others. Use caution when analyzing individual periods of time
that are shorter than the tick period of the system clock. Configuring
DMS to use a higher resolution clock will cause DMS to record phase
sensor activations with higher resolution, but the accuracy will still be
limited by the underlying system.

Table 5–9 (Cont.) Actions Performed on Source Object Types

Create Update Delete Start Stop Abort

DMS Best Practices

Using the Oracle Dynamic Monitoring Service 5-29

Selecting the high resolution clock changes clocks for all applications running on
the server where the clock is changed. You set the DMS clock and the reporting
values globally using the oracle.dms.clock and oracle.dms.clock.units
properties, which control process startup options.

For example, to use the high resolution clock with the default values, set the
following property on the Java command line:

-Doracle.dms.clock=highres

Table 5–11 shows supported values for the oracle.dms.clock property.

Table 5–12 shows supported values for the oracle.dms.clock.units property.

Note the following when using the high resolution DMS clock:

■ When you set the oracle.dms.clock and the oracle.dms.clock.units
properties, any combination of upper and lower case characters is valid for the
value that you select (case is not significant). For example, any of the following
values are valid to select the high resolution clock: highres, HIGHRES,
HighRes.

■ DMS checks the property values at startup. When the clock property is set
with a value not listed in Table 5–11, DMS uses the default clock. If the
oracle.dms.clock property is not set, DMS uses the default clock.

Caution: If you use the high resolution clock, the default values are
different from the value that Fusion Middleware Control expects
(msecs). If you need the Fusion Middleware Control displays to be
correct when using the high resolution clock, then you need to set the
units property as follows:

-Doracle.dms.clock.units=msecs

Table 5–11 oracle.dms.clock Property Values

Value Description

DEFAULT Specifies that DMS use the default clock. With the default clock, DMS uses
the Java call java.lang.System.currentTimeMillis to obtain times
for PhaseEvents.

The default value for the units for the default clock is MSECS.

HIGHRES The Java Highres clock uses System.nanoTime() (no JNI required).

Table 5–12 oracle.dms.clock.units Property Values

Value Description

MSECS Specifies that the time be converted to milliseconds and reported as
"msecs". A millisecond is 10-3 seconds.

Note: This is the default value for the default clock.

USECS Specifies that the time be converted to microseconds and reported as
"usecs". A microsecond is 10-6 seconds.

NSECS Specifies that the time be converted to nanoseconds and reported as "nsecs".
A nanosecond is 10-9 seconds.

Note: This is the default value for the high resolution clock.

DMS Best Practices

5-30 Oracle Fusion Middleware Tuning Performance Guide

■ When the clock units property is set to a value not listed in Table 5–12, DMS
uses the default units for the specified clock.

Part II
Part II Core Components

This part describes configuring core components to improve performance. It contains
the following chapters:

■ Chapter 5, "Using the Oracle Dynamic Monitoring Service"

■ Chapter 6, "Oracle HTTP Server Performance Tuning"

■ Chapter 7, "Oracle Metadata Service (MDS) Performance Tuning"

Note: For information on performance tuning the Oracle WebLogic
Server, see Tuning Performance of Oracle WebLogic Server.

6

Oracle HTTP Server Performance Tuning 6-1

6 Oracle HTTP Server Performance Tuning

This chapter discusses the techniques for optimizing Oracle HTTP Server
performance. This chapter contains the following sections:

■ Section 6.1, "About Oracle HTTP Server"

■ Section 6.2, "Monitoring Oracle HTTP Server Performance"

■ Section 6.3, "Basic Tuning Considerations"

■ Section 6.4, "Advanced Tuning Considerations"

6.1 About Oracle HTTP Server
Oracle HTTP Server (OHS) is the Web server component for Oracle Fusion
Middleware. It provides a listener for Oracle WebLogic Server and the framework for
hosting static pages, dynamic pages, and applications over the Web. Oracle HTTP
Server is based on the Apache 2.2.x infrastructure, and includes modules developed
specifically by Oracle. The features of single sign-on, clustered deployment, and high
availability enhance the operation of the Oracle HTTP Server.

For more information see "Introduction to Oracle HTTP Server" Administering Oracle
HTTP Server.

For more information on the Apache open-source software infrastructure, see the
Apache Software Foundation web site at http://www.apache.org/.

6.2 Monitoring Oracle HTTP Server Performance
Oracle Fusion Middleware automatically and continuously measures run-time
performance for Oracle HTTP Server. The performance metrics are automatically
enabled; you do not need to set options or perform any extra configuration to collect
them. If you encounter a problem, such as an application that is running slowly or is
hanging, you can view particular metrics to find out more information about the
problem.

Note: The configuration examples and recommended settings
described in this chapter are for illustrative purposes only. Consult
your own use case scenarios to determine which configuration options
can provide performance improvements.

Basic Tuning Considerations

6-2 Oracle Fusion Middleware Tuning Performance Guide

For monitoring, Oracle HTTP Server uses the Dynamic Monitoring Service (DMS),
which collects metrics for every functional piece. You can review these metrics as
needed to understand system behavior at a given point of time. This displays memory,
CPU information and the minimum, maximum, and average times for the request
processing at every layer in Oracle HTTP Server. The metrics also display details about
load level, number of threads, number of active connections, and so on, which can
help in tuning the system based on real usage.

For more information on using these DMS metrics, see Section 5.4.3, "Viewing metrics
with WLST (Oracle WebLogic Server)".

6.3 Basic Tuning Considerations
The following tuning configurations may improve the performance of the Oracle
HTTP Server. Always consult your own use case scenarios to determine if these
settings are applicable to your deployment.

■ Tuning Oracle HTTP Server Directives

■ Reducing Httpd Process Availability with Persistent Connections

■ Logging Options for Oracle HTTP Server

6.3.1 Tuning Oracle HTTP Server Directives
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies
the maximum number of HTTP requests that can be processed simultaneously, logging
details, and certain limits and time outs.

More information on configuring the Oracle HTTP Server, see "Management Tools for
Oracle HTTP Server" in Administering Oracle HTTP Server.

Oracle HTTP Server supports three different Multi-Processing Modules (MPMs) by
default. The MPMs supported are:

■ Worker - This uses Multi-Process-Multi-Threads model and is the default MPM on
all platforms other than Microsoft Windows platforms. Multi-thread support
makes it more scalable by using fewer system resources and multi-process support
makes it more stable.

■ WinNT - This MPM is for Windows platforms only. It consists of a parent process
and a child process. The parent process is the control process, and the child
process creates threads to handle requests.

■ Prefork - This is Apache 1.3.x style and uses processes instead of threads. This is
considered the least efficient MPM.

The directives for each MPM type are defined in the ORACLE_
INSTANCE/config/OHSComponent/<ohsname>/httpd.conf file. The default
MPM type is Worker MPM. To use a different MPM (such as Prefork MPM), edit the
/ohs/bin/apachectl file.

Note: Fusion Middleware Control provides real-time data. For more
information on using Fusion Middleware Control to view
performance metrics for HTTP Server, see "Managing and Monitoring
Server Processes" in Administering Oracle HTTP Server.

Basic Tuning Considerations

Oracle HTTP Server Performance Tuning 6-3

Note: The information in this chapter is based on the use of Worker
and WinNT MPMs, which use threads. The directives listed below
may not be applicable if you are using the prefork MPM. If you are
using Oracle HTTP Server based on Apache 1.3.x or Apache 2.2 with
prefork MPM, refer to the Oracle Application Server 10g Release 3
documentation at
http://www.oracle.com/technology/documentation/appse
rver10132.html.

Basic Tuning Considerations

6-4 Oracle Fusion Middleware Tuning Performance Guide

Table 6–1 Oracle HTTP Server Configuration Properties

Directive Description

ListenBackLog

This directive maps to the
Maximum Queue Length
field on the Performance
Directives screen.

Specifies the maximum length of the queue of pending connections. Generally no
tuning is needed. Note that some operating systems do not use exactly what is
specified as the backlog, but use a number based on, but normally larger than, what is
set.

Default Value: 511

MaxClients

This directive maps to the
Maximum Requests field
on the Performance
Directives screen.

Note that this parameter is
not available in mod_
winnt (Microsoft
Windows). Winnt uses a
single process,
multi-threaded model and
is controlled by
ThreadLimit directive.

Specifies a limit on the total number of servers running, that is, a limit on the number
of clients who can simultaneously connect. If the number of client connections reaches
this limit, then subsequent requests are queued in the TCP/IP system up to the limit
specified with the ListenBackLog directive (after the queue of pending connections
is full, new requests generate connection errors until a thread becomes available).

You can configure the MaxClients directive in the httpd.conf file up to a maximum
of 8000 (8K) (the default value is 150). If your system is not resource-saturated and
you have a user population of more than 150 concurrent HTTP/Thread connections,
you can improve your performance by increasing MaxClients to increase server
concurrency. Increase MaxClients until your system becomes fully utilized (85% is a
good threshold).

Conversely, when system resources are saturated, increasing MaxClients does not
improve performance. In this case, the MaxClients value could be reduced as a
throttle on the number of concurrent requests on the server.

If the server handles persistent connections, then it may require sufficient concurrent
httpd or thread server processes to handle both active and idle connections. When
you specify MaxClients to act as a throttle for system concurrency, you must
consider that persistent idle httpd connections also consume httpd/thread processes.
Specifically, the number of connections includes the currently active persistent and
non-persistent connections and the idle persistent connections. A persistent,
KeepAlive, http connection consumes an httpd child process, or thread, for the
duration of the connection, even if no requests are currently being processed for the
connection.

If you have sufficient capacity, KeepAlive should be enabled; using persistent
connections improves performance and prevents wasting CPU resources
reestablishing HTTP connections. Normally, you should not change KeepAlive
parameters.

The maximum allowed value for MaxClients is 8192 (8K).

Default Value: 150

StartServers

This directive maps to the
Initial Child Server
Processes field on the
Performance Directives
screen.

Specifies the number of child server processes created on startup. If you expect a
sudden load after restart, set this value based on the number child servers required.

Note that the following parameters are inter-related and applicable only on UNIX
platforms (worker_mpm):

■ MaxClients

■ MaxSpareThreads and MinSpareThreads

■ ServerLimit and StartServers

On the Windows platform (mpm_winnt), as well as UNIX platforms, the following
parameters are important to tune:

■ ThreadLimit

■ ThreadsPerChild

Note that each child process has a set of child threads defined for them and that can
actually handle the requests. Use ThreadsPerChild in connection with this
directive.

The values of ThreadLimit, ServerLimit, and MaxClients can indirectly affect
this value. Read the notes for these directives and use them in conjunction with this
directive.

Default Value: 2

Basic Tuning Considerations

Oracle HTTP Server Performance Tuning 6-5

ServerLimit

Note that this parameter is
not available in mod_
winnt (Microsoft
Windows). Winnt uses a
single process,
multi-threaded model

Specifies an upper limit on the number of server (child) processes that can exist or be
created. This value overrides the StartServers value if that value is greater than
the ServerLimit value. This is used to control the maximum number of server
processes that can be created.

Default Value: 16

ThreadLimit Specifies the upper limit on the number of threads that can be created under a server
(child) process. This value overrides the ThreadsPerChild value if that value is
greater than the ThreadLimit value. This is used to control the maximum number
of threads created per process to avoid conflicts/issues.

Default Values:

■ Windows Multi-Processing Module (mpm_winnt): 1920

■ All others: 64

ThreadsPerChild

This directive maps to the
Threads Per Child Server
Process field on the
Performance Directives
screen.

Sets the number of threads created by each server (child) process at startup.

Default Value: 64 when mpm_winnt is used and 25 when Worker MPM is used.

The ThreadsPerChild directive works with other directives, as follows:

At startup, Oracle HTTP Server creates a parent process, which creates several child
(server) processes as defined by the StartServers directive. Each server process
creates several threads (server/worker), as specified in ThreadsPerChild, and a
listener thread which listens for requests and transfers the control to the
worker/server threads.

After startup, based on load conditions, the number of server processes and server
threads (children of server processes) in the system are controlled by
MinSpareThreads (minimum number of idle threads in the system) and
MaxSpareThreads (maximum number of idle threads in the system). If the number
of idle threads in the system is more than MaxSpareThreads, Oracle HTTP Server
terminates the threads and processes if there are no child threads for a process. If the
number of idle threads is fewer than MinSpareThreads, it creates new threads and
processes if the ThreadsPerChild value has already been reached in the running
processes.

The following directives control the limit on the above directives. Note that the
directives below should be defined before the directives above for them to take effect.

■ ServerLimit - Defines the upper limit on the number of servers that can be
created. This affects MaxClients and StartServers.

■ ThreadLimit - Defines the upper limit on ThreadsPerChild. If
ThreadsPerChild is greater than ThreadLimit, then it is automatically
trimmed to the latter value.

■ MaxClients - Defines the upper limit on the number of server threads that can
process requests simultaneously. This should be equal to the number of
simultaneous connections that can be made. This value should be a multiple of
ThreadsPerChild. If MaxClients is greater than ServerLimit multiplied
by ThreadsPerChild, it is automatically be trimmed to the latter value.

Table 6–1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Basic Tuning Considerations

6-6 Oracle Fusion Middleware Tuning Performance Guide

MaxRequestsPerChild

This directive maps to the
Max Requests Per Child
Server Process field on the
Performance Directives
screen.

Specifies the number of requests each child process is allowed to process before the
child process dies. The child process ends to avoid problems after prolonged use
when Apache (and any other libraries it uses) leak memory or other resources. On
most systems, this is not needed, but some UNIX systems have notable leaks in the
libraries. For these platforms, set MaxRequestsPerChild to 10000; a setting of 0
means unlimited requests.

This value does not include KeepAlive requests after the initial request per
connection. For example, if a child process handles an initial request and 10
subsequent "keep alive" requests, it would only count as 1 request toward this limit.

Default Value: 0

Note: On Windows systems MaxRequestsPerChild should always be set to 0
(unlimited) since there is only one server process.

MaxSpareThreads

MinSpareThreads

These directives map to
the Maximum Idle
Threads and Minimum
Idle Threads fields on the
Performance Directives
screen.

Note that these parameters
are not available in mod_
winnt (Windows
platform).

Controls the server-pool size. Rather than estimating how many server threads you
need, Oracle HTTP Server dynamically adapts to the actual load. The server tries to
maintain enough server threads to handle the current load, plus a few additional
server threads to handle transient load increases such as multiple simultaneous
requests from a single browser.

The server does this by periodically checking how many server threads are waiting
for a request. If there are fewer than MinSpareThreads, it creates a new spare. If
there are more than MaxSpareThreads, some of the spares are removed.

Default Values:

MaxSpareThreads: 75

MinSpareThreads: 25

Timeout

This directive maps to the
Request Timeout field on
the Performance Directives
screen.

The number of seconds before incoming receives and outgoing sends time out.

Default Value: 300

KeepAlive

This directive maps to the
Multiple Requests Per
Connection field on the
Performance Directives
screen.

Whether or not to allow persistent connections (more than one request per
connection). Set to Off to deactivate.

Default Value: On

Table 6–1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Basic Tuning Considerations

Oracle HTTP Server Performance Tuning 6-7

6.3.2 Reducing Httpd Process Availability with Persistent Connections
If your browser supports persistent connections, you can support them on the server
using the KeepAlive directives in the Oracle HTTP Server. Persistent Connections
can improve performance by reducing the work load on the server. With Persistent
Connections enabled, the server does not have to repeat the work to set up the
connections with a client.

The default settings for the KeepAlive directives are:

KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeOut 5

These settings allow enough requests per connection and time between requests to
reap the benefits of the persistent connections, while minimizing the drawbacks. You
should consider the size and behavior of your own user population when setting these
values. For example, if you have a large user population and the users make small
infrequent requests, you may want to reduce the keepAlive directive default
settings, or even set KeepAlive to off. If you have a small population of users that
return to your site frequently, you may want to increase the settings.

KeepAlive option should be used judiciously along with MaxClients directive.
KeepAlive option would tie a worker thread to an established connection until it
times out or the number of requests reaches the limit specified by
MaxKeepAliveRequests. This means that the connections or users in the
ListenBacklog queue would be starving for a worker until the worker is
relinquished by the keep-alive user. The starvation for resources happens on the
KeepAlive user load with user population consistently higher than that specified in
the MaxClients.

MaxKeepAliveRequests The maximum number of requests to allow during a persistent connection. Set to 0 to
allow an unlimited amount.

If you have long client sessions, consider increasing this value.

Default Value: 100

KeepAliveTimeout

This directive maps to the
Allow With Connection
Timeout (seconds) field,
which is located under the
Multiple Requests Per
Connection field, on the
Performance Directives
screen.

Number of seconds to wait for the next request from the same client on the same
connection.

Default Value: 5 seconds

limit

ulimit

Number of objects that a program uses to read or write to an open file or open
network sockets. A lack of available file descriptors can impact operating system
performance.

Tuning the file descriptor limit can be accomplished by configuring the hard limit
(ulimit) in a shell script which starts the OHS. Once the hard limit has been set the
OHS will then adjust the soft limit (limit) to match.

Note that configuring file descriptor limits is platform specific. Refer to your
operating system documentation for more information.

Table 6–1 (Cont.) Oracle HTTP Server Configuration Properties

Directive Description

Basic Tuning Considerations

6-8 Oracle Fusion Middleware Tuning Performance Guide

Increasing MaxClients may impact performance in the following ways:

■ A high number of MaxClients can overload the system resources and may lead
to poor performance.

■ For a high user population with fewer requests, consider increasing the
MaxClients to support KeepAlive connections to avoid starvation. Note that
this can impact overall performance if the user concurrency increases. System
performance is impacted by increased concurrency and can possibly cause the
system to fail.

MaxClients should always be set to a value where the system would be stable or
performing optimally (~85% CPU).

Typically for high user population with less frequent requests, consider turning the
KeepAlive option off or reduce it to a very low value to avoid starvation.

Disabling the KeepAlive connection may impact performance in the following ways:

■ Connection establishment for every request has a cost.

■ If the frequency of creating and closing connections is higher, then some system
resources are used. The TCP connection has a time_wait interval before it can
close the socket connection and open file descriptors for every connection. The
default time_wait value is 60 seconds and each connection can take 60 seconds
to close, even after it is relinquished by the server.

6.3.3 Logging Options for Oracle HTTP Server
This section discusses types of logging, log levels, and the performance implications
for using logging.

6.3.3.1 Access Logging
Access logs are generally enabled to track who accessed what. The access_log file,
available in the ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory,
contains an entry for each request that is processed. This file grows as time passes and
can consume disk space. Depending on the nature of the workload, the access_log has
little impact on performance. If you notice that performance is becoming an issue, the
file can be disabled if some other proxy or load balancer is used and gives the same
information.

6.3.3.2 Configuring the HostNameLookups Directive
By default, the HostNameLookups directive is set to Off. The server writes the IP
addresses of incoming requests to the log files. When HostNameLookups is set to On,
the server queries the DNS system on the Internet to find the host name associated
with the IP address of each request, then writes the host names to the log. Depending
on the server load and the network connectivity to your DNS server, the performance

Note: The Maxclients property is applicable only to UNIX
platforms. On Windows, the same functionality is achieved through
the ThreadLimit and ThreadsPerChild parameters.

WARNING: To avoid potential performance issues, values for any
parameters should be set only after considering the nature of the
workload and the system capacity.

Advanced Tuning Considerations

Oracle HTTP Server Performance Tuning 6-9

impact of the DNS HostNameLookup may be high. When possible, consider logging
only IP addresses. On UNIX systems, you can resolve IP addresses to host names
off-line, with the logresolve utility found in the /Apache/Apache/bin/ directory.

6.3.3.3 Error logging
The server notes unusual activity in an error log. The ohsname.log file, available in
ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains errors,
warnings, system information, and notifications (depending on the log-level setting).

The httpd.conf file contains the error log configuration for OHS. The logging mode is
defined by the "OraLogMode" directive. The default is "odl-text", which produces the
Oracle diagnostic logging format in a text file. Alternatively, change this to "odl-xml"
to produce the Oracle diagnostic logging format in an XML file.

For Oracle diagnostic-style logging, "OraLogSeverity" directive is used for setting the
log level.

For Apache-style logging, the ErrorLog and LogLevel directives identify the log file
and the level of detail of the messages recorded. The default debug level is Warn.

Excessive logging can have some performance cost and may also fill disk space. The
log level control should be used based on need. For requests that use dynamic
resources, for example, requests that use mod_osso or mod_plsql, there is a
performance cost associated with setting higher debugging levels, such as the debug
level.

6.4 Advanced Tuning Considerations
This section provides advanced tuning recommendations which may or may not apply
to your environment. Review the following recommendations to determine if the
changes would improve your HTTP Server performance.

■ Tuning Oracle HTTP Server

■ Tuning Oracle HTTP Server Security

6.4.1 Tuning Oracle HTTP Server
The following tips can enable you to avoid or debug potential Oracle HTTP Server
performance problems:

■ Analyzing Static Versus Dynamic Requests

■ Managing PL/SQL Requests

■ Limiting the Number of Enabled Modules

■ Monitoring Oracle HTTP Server Performance

6.4.1.1 Analyzing Static Versus Dynamic Requests
It is important to understand where your server is spending resources so you can
focus your tuning efforts in the areas where the most stands to be gained. In
configuring your system, it can be useful to know what percentage of the incoming
requests are static and what percentage are dynamic.

Generally, you want to concentrate your tuning effort on dynamic pages because
dynamic pages can be costly to generate. Also, by monitoring and tuning your
application, you may find that much of the dynamically generated content, such as
catalog data, can be cached, sparing significant resource usage.

Advanced Tuning Considerations

6-10 Oracle Fusion Middleware Tuning Performance Guide

6.4.1.2 Managing PL/SQL Requests
You can get unrepresentative results when data outliers appear. This can sometimes
occur at start-up. To simulate a simple example, assume that you ran a PL/SQL "Hello,
World" application for about 30 seconds. Examining the results, you can see that the
work was all done in mod_plsql.c:

 /ohs_server/ohs_module/mod_plsql.c
 handle.maxTime: 859330
 handle.minTime: 17099
 handle.avg: 19531
 handle.active: 0
 handle.time: 24023499
 handle.completed: 1230

Note that handle.maxTime is much higher than handle.avg for this module. This
is probably because when the first request is received, a database connection must be
opened. Later requests can make use of the established connection. In this case, to
obtain a better estimate of the average service time for a PL/SQL module, that does
not include the database connection open time which causes the handle.maxTime to
be very large, recalculate the average as in the following:

(time - maxTime)/(completed -1)
For example:

(24023499 - 859330)/(1230 - 1) = 18847.98

6.4.1.3 Limiting the Number of Enabled Modules
Oracle HTTP Server, which is now based on Apache 2.2, has a slight change in
architecture in the way the requests are handled, compared to the previous release of
Oracle HTTP Server, which was based on Apache 1.3.

In the new architecture, Oracle HTTP Server invokes the service function of each
module that is loaded (in the order of definition in httpd.conf file) until the request
is serviced. This indicates that there is some cost associated with invoking the service
function of each module, to know if the service is accepted or declined.

Because of this change in architecture, consider placing the most frequently hit
modules above the others in the httpd.conf file.

For the static page requests, which are directly deployed to Oracle HTTP Server and
served by the default handler, the request has to go through all the modules before the
default handler is invoked. This process can impact performance of the request so
consider enabling only the modules that are required by the deployed application.
Example, if "mod_plsql" is never used by the deployed application, disable it to
maintain performance.

In addition, there are a few modules that register their hooks to do some work during
the URL translation phase, which would add to the cost of request processing time.
Example: mod_security, when enabled, has a cost of about 10% on CPU Cost per
Transaction for the specweb benchmark. Again, enable only those modules that are
required by your deployed applications to save CPU time.

6.4.1.4 Tuning the File Descriptor Limit
A lack of available file descriptors can cause a wide variety of symptoms which are not
always easily traced back to the operating system’s file descriptor limit. Tuning the file
descriptor limit can be accomplished by configuring the operating system’s hard limit
for the user who starts the OHS. Once configured, the OHS will adjust the soft limit to
match the operating system limit.

Advanced Tuning Considerations

Oracle HTTP Server Performance Tuning 6-11

Configuring file descriptor limits is platform-specific. Refer to your operating system
documentation for more information. The following code example shows the
command for Linux:

 APACHECTL_ULIMIT=ulimit -S -n `ulimit -H -n`

Note that this limit must be reconfigured after applying a patch set.

6.4.2 Tuning Oracle HTTP Server Security
This section covers the following topics:

■ Tuning Oracle HTTP Server Secure Sockets Layer (SSL)

■ Tuning Oracle HTTP Server Port Tunneling

6.4.2.1 Tuning Oracle HTTP Server Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications
Corporation that provides authentication and encrypted communication over the
Internet. Conceptually, SSL resides between the application layer and the transport
layer on the protocol stack. While SSL is technically an application-independent
protocol, it has become a standard for providing security over HTTP, and all major
web browsers support SSL.

SSL can become a bottleneck in both the responsiveness and the scalability of a
web-based application. Where SSL is required, the performance challenges of the
protocol should be carefully considered. Session management, in particular session
creation and initialization, is generally the most costly part of using the SSL protocol,
in terms of performance.

This section covers the following SSL performance-related information:

■ Section 6.4.2.1.1, "Caching SSL on Oracle HTTP Server"

■ Section 6.4.2.1.2, "Using SSL Application Level Data Encryption"

■ Section 6.4.2.1.3, "Tuning SSL Performance"

6.4.2.1.1 Caching SSL on Oracle HTTP Server When an SSL connection is initialized, a
session-based handshake between client and server occurs that involves the
negotiation of a cipher suite, the exchange of a private key for data encryption, and
server and, optionally, client, authentication through digitally-signed certificates.

After the SSL session state has been initiated between a client and a server, the server
can avoid the session creation handshake in subsequent SSL requests by saving and
reusing the session state. The Oracle HTTP Server caches a client’s SSL session
information by default. With session caching, only the first connection to the server
incurs high latency.

The SSLSessionCacheTimeout directive in ssl.conf determines how long the
server keeps a saved SSL session (the default is 300 seconds). Session state is discarded
if it is not used after the specified time period, and any subsequent SSL request must
establish a new SSL session and begin the handshake again. The SSLSessionCache
directive specifies the location for saved SSL session information (the default location
is the following directory):

See Also: Securing Applications with Oracle Platform Security Services

Advanced Tuning Considerations

6-12 Oracle Fusion Middleware Tuning Performance Guide

$ORACLE_INSTANCE/diagnostics/logs/$COMPONENT_ TYPE/$COMPONENT_
NAME

Note that multiple Oracle HTTP Server processes can use a saved session cache file.

Saving SSL session state can significantly improve performance for applications using
SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server,
the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With
SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.

The reuse of saved SSL session state has some performance costs. When SSL session
state is stored to disk, reuse of the saved state normally requires locating and
retrieving the relevant state from disk. This cost can be reduced when using HTTP
persistent connections. Oracle HTTP Server uses persistent HTTP connections by
default, assuming they are supported on the client side. In HTTP over SSL as
implemented by Oracle HTTP Server, SSL session state is kept in memory while the
associated HTTP connection is persisted, a process which essentially eliminates the
performance impacts associated with SSL session reuse (conceptually, the SSL
connection is kept open along with the HTTP connection). For more information see
Section 6.3.2, "Reducing Httpd Process Availability with Persistent Connections".

6.4.2.1.2 Using SSL Application Level Data Encryption In most applications using SSL, the
data encryption cost is small compared with the cost of SSL session management.
Encryption costs can be significant where the volume of encrypted data is large, and in
such cases the data encryption algorithm and key size chosen for an SSL session can be
significant. In general there is a trade-off between security level and performance.

Oracle HTTP Server negotiates a cipher suite with a client based on the
SSLCipherSuite attribute specified in ssl.conf. OHS 11g uses 128 bit Encryption
algorithm by default and no longer supports lower encryption. Note that the previous
release [10.1.3x] used 64 bit encryption for Windows. For UNIX, the 10.x releases had
128 bit encryption used by default.

6.4.2.1.3 Tuning SSL Performance The following recommendations can assist you with
determining performance requirements when working with Oracle HTTP Server and
SSL.

1. The SSL handshake is an inherently resource intensive process in terms of both
CPU usage and response time. Thus, use SSL only where needed. Determine the
parts of the application that require the security, and the level of security required,
and protect only those parts at the requisite security level. Attempt to minimize
the need for the SSL handshake by using SSL sparingly, and by reusing session
state as much as possible. For example, if a page contains a small amount of
sensitive data and several non-sensitive graphic images, use SSL to transfer the
sensitive data only, use normal HTTP to transfer the images. If the application
requires server authentication only, do not use client authentication. If the
performance goals of an application cannot be met by this method alone,
additional hardware may be required.

2. Design the application to use SSL efficiently. Group secure operations to take
advantage of SSL session reuse and SSL connection reuse.

3. Use persistent connections, if possible, to minimize cost of SSL session reuse.

See Also: Administering Oracle HTTP Server for information on using
supported cipher suites.

Advanced Tuning Considerations

Oracle HTTP Server Performance Tuning 6-13

4. Tune the session cache timeout value (the SSLSessionCacheTimeout directive
in ssl.conf). A trade-off exists between the cost of maintaining an SSL session
cache and the cost of establishing a new SSL session. As a rule, any secured
business process, or conceptual grouping of SSL exchanges, should be completed
without incurring session creation more than once. The default value for the
SSLSessionCacheTimeout attribute is 300 seconds. It is a good idea to test an
application’s usability to help tune this setting.

5. If large volumes of data are being protected through SSL, pay close attention to the
cipher suite being used. The SSLCipherSuite directive specified in ssl.conf
controls the cipher suite. If lower levels of security are acceptable, use a less-secure
protocol using a smaller key size (this may improve performance significantly).
Finally, test the application using each available cipher suite for the specified
security level to find the optimal suite.

6. If SSL remains a bottleneck to the performance and scalability of your application,
after taking the preceding considerations into account, consider deploying
multiple Oracle HTTP Server instances over a hardware cluster or consider the use
of SSL accelerator cards.

6.4.2.2 Tuning Oracle HTTP Server Port Tunneling
When OracleAS Port Tunneling is configured, every request processed passes through
the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can
have an impact on the overall Oracle HTTP Server request handling performance and
scalability.

With the exception of the number of OracleAS Port Tunneling processes to run, the
performance of OracleAS Port Tunneling is self-tuning. The only performance control
available is to start more OracleAS Port Tunneling processes; this increases the number
of available connections and the scalability of the system.

The number of OracleAS Port Tunneling processes is based on the degree of
availability required, and the number of anticipated connections. This number cannot
be automatically determined because for each additional process a new port must be
opened through the firewall between the DMZ and the intranet. You cannot start more
processes than you have open ports, and you do not want less processes than open
ports, since in this case ports would not have any process bound to them.

To measure the OracleAS Port Tunneling performance, determine the request time for
servlet requests that pass through the OracleAS Port Tunneling infrastructure. The
response time running with OracleAS Port Tunneling should be compared with a
system without OracleAS Port Tunneling to determine whether your performance
requirements can be met using OracleAS Port Tunneling.

See Also: Administering Oracle HTTP Server for information on
configuring OracleAS Port Tunneling

Advanced Tuning Considerations

6-14 Oracle Fusion Middleware Tuning Performance Guide

7

Oracle Metadata Service (MDS) Performance Tuning 7-1

7 Oracle Metadata Service (MDS) Performance
Tuning

This chapter provides tuning tips for Oracle Metadata Service (MDS).

■ Section 7.1, "About Oracle Metadata Services (MDS)"

■ Section 7.2, "Monitoring Oracle Metadata Service Performance"

■ Section 7.3, "Basic Tuning Considerations"

■ Section 7.4, "Advanced Tuning Considerations"

7.1 About Oracle Metadata Services (MDS)
Oracle Metadata Services (MDS) is an application server and Oracle relational
database that keeps metadata in these areas: the ClassPath, the ServletContext,
database repository and in some cases, the file system. One of the primary uses of
MDS is to store customizations and persisted personalization for Oracle applications.
MDS is used by components such as Oracle Application Development Framework
(ADF) to manage metadata. Examples of metadata objects managed by MDS are: JSP
pages and page fragments, ADF page definitions and task flows, and customized
variants of those objects.

7.2 Monitoring Oracle Metadata Service Performance
MDS uses DMS sensors to provide tuning and diagnostic information which can be
viewed using Enterprise Manager. This information is useful, for example, to see if the
MDS caches are large enough.

Information on DMS metrics can be found in the Fusion Middleware Control Console.
Click Help at the top of the page to get more information. In most cases, the Help
window displays a help topic about the current page. Click Contents in the Help
window to browse the list of help topics, or click Search to search for a particular word
or phrase.

Note: Most of the Oracle Metadata Service configuration parameters
are immutable and cannot be changed at run time unless otherwise
specified.

Basic Tuning Considerations

7-2 Oracle Fusion Middleware Tuning Performance Guide

7.3 Basic Tuning Considerations
Tuning is the adjustment of parameters to improve performance. The default MDS
configuration must be tuned in almost all deployments. Please review the
requirements and recommendations in this section carefully.

7.3.1 Tuning Database Repository
For optimal performance of MDS APIs, the database schema for the MDS repository
must be monitored and tuned by the database administrator. This section lists some
recommended actions to tune the database repository:

■ Collecting Schema Statistics

■ Increasing Redo Log Size

■ Reclaiming Disk Space

■ Monitoring the Database Performance

For additional information on tuning the database, see "Optimizing Instance
Performance" in Oracle Database Performance Tuning Guide.

7.3.1.1 Collecting Schema Statistics
While MDS provides database indexes, they may not be used as expected due to a lack
of schema statistics. If performance is an issue with MDS operations such as accessing
or updating metadata in database repository, the database administrator must ensure
that the statistics are available and current.

The following example shows one way that the Oracle database schema statistics can
be collected:

execute dbms_stats.gather_schema_stats(ownname => '<username>',
estimate_percent => dbms_stats.auto_sample_size, method_opt=> 'for all
columns size auto', cascade=>true);

If the performance does not improve after statistics collection, then try to flush the
database shared pool to clear out the existing SQL plans by using the following
command:

alter system flush shared_pool;

In general, the database should be configured with automatic statistics recollection.
For additional information on gathering statistics, see 'Automatic Performance
Statistics" in Oracle Database Performance Tuning Guide.

7.3.1.2 Increasing Redo Log Size
The size of the redo log files can influence performance because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally, larger
redo log files provide better performance. Undersized log files increase checkpoint
activity and can reduce performance.

For more information see "Sizing Redo Log Files" in Oracle Database Performance Tuning
Guide.

7.3.1.3 Reclaiming Disk Space
While manual and auto-purge operations delete the metadata content from the
repository, the database may not immediately reclaim the space held by tables and
indexes. This may result in the disk space consumed by MDS schema growing.

Basic Tuning Considerations

Oracle Metadata Service (MDS) Performance Tuning 7-3

Database administrators can manually rebuild the indexes and shrink the tables to
increase performance and to reclaim disk space.

For more information see "Reclaiming Unused Space" in Oracle Database Performance
Tuning Guide.

7.3.1.4 Monitoring the Database Performance
Database administrators must monitor the database (for example, by generating
automatic workload repository (AWR) reports for Oracle database) to observe lock
contention, I/O usage and take appropriate action to address the issues.

For more information see:

■ "Generating Automatic Workload Repository Reports" in Oracle Database
Performance Tuning Guide

■ "Monitoring Performance" in Oracle Database Administrator's Guide.

7.3.2 Tuning Cache Configuration
MDS uses a cache to store metadata objects and related objects (such as XML content)
in memory. MDS Cache is a shared cache that is accessible to all users of the
application (on the same JVM). If a metadata object is requested repeatedly, with the
same customizations, that object may be retrieved more quickly from the cache (a
“warm” read). If the metadata object is not found in the cache (a “cold” read), then
MDS may cache that object to facilitate subsequent read operations depending on the
cache configuration, the type of metadata object and the frequency of access.

Cache can be configured or changed post deployment through MBeans. This element
maps to the MaximumCacheSize attribute of the MDSAppConfig MBean. For more
information see "Changing MDS Configuration Attributes for Deployed Applications"
in Administering Oracle Fusion Middleware.

Having a correctly sized cache can significantly improve throughput for repeated
reading of metadata objects. The optimal cache size depends on the number of
metadata objects used and the individual sizes of these objects. Prior to packaging the
Enterprise ARchive (EAR) file, you can manually update the cache-config in
adf-config.xml, by adding the following entry:

<mds-config>
 <cache-config>
 <max-size-kb>200000</max-size-kb>
 </cache-config>
</mds-config>

Note: MDS Metrics, visible in Enterprise Manager, are useful for
tuning the MDS cache. In particular, "IOs Per MO Content Get"
or "IOs Per Metadata Object Get" should be less than 1. If not,
consider increasing the size of the MDS cache. For more information
on viewing DMS metric information, see Section 7.2, "Monitoring
Oracle Metadata Service Performance".

Basic Tuning Considerations

7-4 Oracle Fusion Middleware Tuning Performance Guide

7.3.2.1 Enabling Document Cache
In addition to the main MDS cache, MDS uses a document cache in conjunction with
each metadata store to store thumbnail information about metadata documents (base
document and customization documents) in memory. The entry for each document is
small (<100 bytes) and the cache size limit is specified in terms of the number of
document entries. MDS calculates an appropriate default size limit for the document
cache based on the configured maximum size of the MDS Cache, as follows:

■ If MDS cache is disabled, MDS defaults to having no document cache.

■ If MDS cache is enabled, MDS defaults the document cache size to one document
entry per KB of document cache configured.

■ If cache-config is not specified, MDS defaults to 10000 document entries.

■ If MDS cache is set to a very small value, MDS uses a minimum size of 500 for
document cache.

In general, the defaults should be sufficient in most cases. However, insufficient
document cache size may impact performance. Prior to packaging the Enterprise
ARchive (EAR) file, you can explicitly set document cache size by adding this entry to
adf-config.xml:

<metadata-store-usage id="db1">
 <metadata-store …>
 <property name = …/>
 </metadata-store>
 <document-cache max-entries="10000"/>
</metadata-store-usage>

The DMS metric "IOs Per Document Get" (visible in Enterprise Manager, see
Section 7.2) should be less than 1. If not, consider increasing the document cache size.

7.3.3 Purging Document Version History
MDS keeps document version history in the database’s metadata store. As version
history accumulates, it requires more disk space and degrades read/write
performance. Assuming the document versions are not part of an active label, there are
two ways to purge version history:

■ Auto Purge

■ Manual Purge

Note: MDS cache grows in size as metadata objects are accessed until
it hits max-size-kb. After that, objects are removed from the cache
to make room as needed on a least recently used (LRU) basis to make
room for new objects.

Note: Document cache is cleared when it exceeds the
document-cache max-entries value. To avoid performance issues,
consider increasing the document cache size if you receive a
notification like the following for example:

NOTIFICATION: Document cache DBMetadataStore : MDS
Repository connection = <> exceeds its maximum
number of entries <NNNN>, so the cache is cleared.

Basic Tuning Considerations

Oracle Metadata Service (MDS) Performance Tuning 7-5

7.3.3.1 Auto Purge
The auto-purge interval can be configured or changed post deployment through
MBeans. This element maps to the AutoPurgeTimeToLive attribute of the
MDSAppConfig MBean. If your application uses the database store for MDS, you can
set auto-purge by adding this entry in adf-config.xml prior to packaging the EAR:

<persistence-config>
 <auto-purge seconds-to-live="T"/>
</persistence-config>

In the example above, the auto-purge will be executed every T seconds and will
remove versions that are older than the specified time T (in seconds). For more
information, see "Changing MDS Configuration Attributes for Deployed Applications"
in Administering Oracle Fusion Middleware.

7.3.3.2 Manual Purge
When you suspect that the database is running out of space or performance is
becoming slower, you can manually purge existing version history using WLST
command or through Oracle Enterprise Manager. Manual purging may impact
performance, so plan to purge in a maintenance window or when the system is not
busy.

For more information about manually purging version history, see "Purging Metadata
Version History" in Administering Oracle Fusion Middleware.

7.3.4 Using Database Polling Interval for Change Detection
MDS employs a polling thread which queries the database to gauge if the data in the
MDS in-memory cache is out of sync with data in the database. This can happen when
metadata is updated in another JVM. If it is out of sync, MDS clears any out of
date-cached data so subsequent operations see the latest versions of the metadata.
MDS invalidates the document cache, as well as MDS cache, so subsequent operations
have the latest version of the metadata.

The polling interval can be configured or changed post deployment through MBeans.
The element maps to the ExternalChangeDetection and
ExternalChangeDetectionInterval attributes of the MDSAppConfig MBean.
Prior to packaging the Enterprise ARchive (EAR) file, you can configure the polling
interval by adding this entry in adf-config.xml:

<mds-config>
 <persistence-config>
 <external-change-detection enabled="true" polling-interval-secs="T"/>
 </persistence-config>
</mds-config>
In the example above, ’T’ specifies the polling interval in seconds. The minimum value
is 1. Lower values cause metadata updates, that are made in other JVMs, to be seen
more quickly. It is important to note, however, that a lower value can also create
increased middle tier and database CPU consumption due to the frequent queries. By
default, polling is enabled (’true’) and the default value of 30 seconds should be
suitable for most purposes. For more information, see "Changing MDS Configuration
Attributes for Deployed Applications" in Administering Oracle Fusion Middleware ".

Note: Purging version history manually may impact performance
depending on the number of metadata updates that have been made
since the last purge.

Advanced Tuning Considerations

7-6 Oracle Fusion Middleware Tuning Performance Guide

7.4 Advanced Tuning Considerations
After you have performed the modifications recommended in the previous section,
you can make additional changes that are specific to your deployment. Consider
carefully whether the recommendations in this section are appropriate for your
environment.

7.4.1 Analyzing Performance Impact from Customization
MDS customization may impact performance at run time.The impact from
customization depends on many factors including:

■ The type of customization that has been created (shared or user level)

■ The percentage of metadata objects in the system which is customized. The lower
this percentage the lower the impact of customization.

■ The number of configured customization layers, and the efficiency of the
customization classes.

There are two main types of customization:

■ Shared Customizations: these are layers of customization corresponding to
customization classes whose getCacheHint method returns ALL_USERS or
MULTI_USER, meaning the layer applies to all or multiple users. Shared
customizations are cached in the (shared) MDS cache.

■ User Level Customizations (also known as Personalizations): these are layers of
customization corresponding to customization classes whose getCacheHint
method returns SINGLE_USER, meaning the layer applies to just one user. User
customizations are generally cached on the user's session (HttpSession) until the
user logs out.

For more information about customization concepts, writing customization classes,
and configuring customization classes, see "Customizing Applications with MDS" in
Developing Fusion Web Applications with Oracle Application Development Framework.

Note: When setting the polling interval, consider the following: if
you poll too frequently, the database is queried for out-of-date
versions; too infrequently, and those versions may stack up and
polling can take longer to process.

Part III
Part III Oracle Fusion Middleware Server

Components

This part describes configuring Oracle Fusion Middleware server components to
improve performance. It contains the following chapters:

■ Chapter 8, "Oracle Application Development Framework Performance Tuning"

■ Chapter 9, "Oracle TopLink (EclipseLink) JPA Performance Tuning"

8

Oracle Application Development Framework Performance Tuning 8-1

8Oracle Application Development Framework
Performance Tuning

This chapter provides basic guidelines on how to maximize the performance and
scalability of the Oracle Application Development Framework (ADF). This chapter
covers design, configuration, and deployment performance considerations in the
following sections:

■ Section 8.1, "About Oracle ADF"

■ Section 8.2, "Basic Tuning Considerations"

■ Section 8.3, "Advanced Tuning Considerations"

This chapter assumes that you are familiar with building ADF applications. To learn
about ADF, see the following guides:

■ Developing Fusion Web Applications with Oracle Application Development Framework

■ Developing Web User Interfaces with Oracle ADF Faces

8.1 About Oracle ADF
Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies to simplify and accelerate implementing
service-oriented applications. Oracle ADF is suitable for enterprise developers who
want to create applications that search, display, create, modify, and validate data using
web, wireless, desktop, or web services interfaces. If you develop enterprise solutions
that search, display, create, modify, and validate data using web, wireless, desktop, or
web services interfaces, Oracle ADF can simplify your job. Used in tandem, Oracle
JDeveloper 11g and Oracle ADF give you an environment that covers the full
development lifecycle from design to deployment, with drag-and-drop data binding,
visual UI design, and team development features built-in.

For more information see "Introduction to Oracle ADF" in Developing Fusion Web
Applications with Oracle Application Development Framework.

8.2 Basic Tuning Considerations
Before building, configuring, and deploying ADF applications, review the following
tuning recommendations to achieve optimal performance:

■ Oracle ADF Faces Configuration and Profiling

■ Performance Considerations for ADF Faces

Basic Tuning Considerations

8-2 Oracle Fusion Middleware Tuning Performance Guide

■ Tuning ADF Faces Component Attributes

■ Performance Considerations for Table and Tree Components

■ Performance Considerations for autoSuggest

■ Data Delivery - Lazy versus Immediate

■ Performance Considerations for DVT Components

8.2.1 Oracle ADF Faces Configuration and Profiling
This section discusses the configuration and profiling concepts of the ADF Faces.
Configuration options for Oracle ADF Faces are set in the web.xml file. Most of these
have default values that are tuned for performance. Table 8–1 describes some of these
configuration options.

8.2.2 Performance Considerations for ADF Faces
Table 8–2 provides configuration recommendations that may improve performance of
ADF Faces:

Table 8–1 ADF Configuration Options

Parameter Description

Compression View State

org.apache.myfaces.trinidad.COMPRES
S_VIEW_STATE

Controls whether or not the page state is compressed. Latency
can be reduced if the size of the data is compressed. This
parameter should be set to True.

Enhanced Debug

org.apache.myfaces.trinidad.resourc
e.DEBUG

Controls whether output should be enhanced for debugging or
not. This parameter should be removed or set to False.

Check File Modification

oracle.adf.view.rich.CHECK_FILE_
MODIFICATION

Controls whether ADF faces check for modification date of JSP
pages and discard any saved state if the file is changed. This
parameter should be removed or set to False.

Client State Method

oracle.adf.view.rich.CLIENT_STATE_
METHOD

Specifies which type of saving (all or token) should be used
when client-side state saving is enabled. The default value is
token.

Client Side Log Level
oracle.adf.view.rich.LOGGER_LEVEL

Sets the log level on the client side. The default value is OFF.
This parameter should be removed or set to False.

Assertion Processing

oracle.adf.view.rich.ASSERT_ENABLED

Specifies when to process assertions on the client side. The
default value is OFF. This parameter should be removed or set to
False.

Note: When you are profiling or measuring client response time
using the Firefox browser, ensure that the Firebug plug-in is disabled.
While this plug-in is very useful for getting information about the
page and for debugging JavaScript code on the page, it can impact the
total response time.

For more information on disabling the Firefox Firebug plug-in, see the
Firefox Support Home Page at
http://support.mozilla.com/en-US/kb/.

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-3

Table 8–2 Configuration Parameters for ADF Faces

Configuration Recommendation Description

Avoid inline JavaScript in pages. Inline JavaScript can increase response payload size, will never be cached
in browser, and can block browser rendering. Instead of using inline
JavaScript, consider putting all scripts in .js files in JavaScript libraries and
add scripts to the page using af:resource tag.

TIP: Consider using af:resource rather than trh:script when possible.

Configure the JSP timeout parameter. Using the JavaServer Pages (JSP) timeout parameter causes infrequently
used pages to be flushed from the cache by the following setting in
web.xml:

<servlet>
 <servlet-name>
 oraclejsp
 <init-param>
 <param-name>
 jsp_timeout
 </param-name>
 <param-value>
 x
 </param-value>
 </init-param>
 </servlet-name>
</servlet>

NOTE: Set parameter x based on your own use case scenarios.

Create a single toolbar item with a
drop-down popup.

When the browser size is small because of the screen resolution, the
menubar/toolbar overflow logic becomes expensive in Internet Explorer 7
and 8. It especially has problems with laying out DOM structures with
input fields.

Create a single toolbar item with a drop-down popup and put all the input
fields inside it. This popup should have deferred child creation and
contentDelivery="lazy".

Remove unknown rowCount. A table that has an unknown rowCount can impact performance because
getting the last set of rows takes excessive scrolling from the user and the
application can appear to be very slow.

Remove unknown rowCount by setting
DeferEstimatedRowCountProperty="false" on the view object (VO).

Disable pop-ups that cannot be
displayed by the user.

The fnd:attachment component, when stamped in a table, can generate an
excessive amount of DOM and client component. The amount of DOM +
Client component is ~8K per cell which impacts the performance of the
entire page especially on slower browsers.

Most cells have no attachments initially and only one popup can be
displayed by the user. Therefore, pop-ups that cannot be displayed by the
user should have renderer="false". This will cut down the un-necessary
DOM/client components sent to the browser. Similarly the DOM has a
panelGroupLayout with a number of cells which are empty. There is no
need to send DOM for empty cells.

Do not use hover pop-ups on
navigation links.

A hover popup on a navigation link causes the navigation to wait for the
hover to be fetched first.

Consider removing the hover popup on the compensate workforce table
navigation link column and, instead, place it on a separate column or on
an icon inside the cell.

Basic Tuning Considerations

8-4 Oracle Fusion Middleware Tuning Performance Guide

Increase table scrolling timeout. Tables send a fetch request to the server on a scroll after a timeout. The
timeout, before the fetch is sent to the server, is typically only 20ms if the
user scrolls a short distance, but can increase to 200ms if the user scrolls
further. Therefore performance can be impacted when the user scrolls to
the bottom of a page and the table sends multiple requests to the server.

To prevent the performance impact, consider increasing the timeout limit
to 300ms.

Use a timeout to call _
prepareForIncompleteImages.

During Partial Page Rendering (PPR) some images may not load
completely. When this occurs, the parent component must be notified that
the size of one of its descendants has changed. In the past this was done by
using the "complete" attribute on the image tag. Now with Internet
Explorer 8 the complete attribute is always false to alleviate performance
issues with Internet Explorer 7 and 8. The attribute shows as false even for
cached images immediately after the PPR content is fetched.

For Internet Explorer 8 use a timeout (10ms) to call _
prepareForIncompleteImages so that the image tag called right after the
.xml HTTP request is processed. Note that this is not an issue for Mozilla
Firefox or Google Chrome.

Cache the
GetFirstVisibleRowKeyandRow.

Performance can be improved by locally caching the first visible Rowkey
and row. This cached value can be deleted on a scroll or a resize.

Use partial page navigation. Partial Page Navigation is a feature of the ADF Faces framework that
enables navigating from one ADF Faces page to another without a full
page transition in the browser.The new page is sent to the client using
Partial Page Rendering (PPR)/Ajax channel.

The main advantage of partial page navigation over traditional full page
navigation is improved performance: the browser no longer re-interprets
and re-executes Javascript libraries, and does not spend time for
cleanup/initialization of the full page. The performance benefit from this
optimization is very big; it should be enabled whenever possible.

Some known limitations of this feature are:

■ For the document's "metaContainer" facet (the HEAD section), only
scripts are brought over with the new page. Any other content, such
as icon links or style rules can be ignored.

■ Applications cannot use anchor (hash) URLs for their own purposes.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-5

Use page templates. Page templates enable developers to build reusable, data-bound templates
that can be used as a shell for any page. A developer can build one or more
templates that provide structure and consistency for other developers
building web pages. The templates have both static areas on them that
cannot be changed when they are used and dynamic areas on them where
the developer can place content specific to the page they are building.

There are some important considerations when using templates:

■ Since templates are present in every application page, they have to be
optimized so that common performance impacts are avoided. Adding
round corners to the template, for example, can impact the
performance for every page.

■ When building complex templates, sometimes it is easier to build
them in multiple pieces and include them in the top-level template
using <f:subview> tag. However, from a performance perspective,
this is not typically recommended since it can impact memory usage
on the server side. (<f:subview> introduces another level into the
ID scoping hierarchy, which results in longer IDs. Long IDs have a
negative impact on performance. Developers are advised to avoid
using <f:subview> unless it is required. It is not necessary to use
<f:subview> around <jsp:include> if you can ensure that all IDs
are unique. For example, if you are using <jsp:include>, break a
large page into multiple pieces for easier editing. And whenever
possible, avoid using <f:subview>. If you are including content
developed by someone else, use <f:subview> if you do not know
which IDs the developer used. In addition, you do not have to put
<f:subview> at the top of a region definition.

■ Avoid long IDs in all cases, especially on pageTemplates, subviews,
subforms, and on tables or within tables. Long IDs can have a
performance impact on the server side, network traffic, and client
processing.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

8-6 Oracle Fusion Middleware Tuning Performance Guide

Enable ADF rich client geometry
management.

ADF Rich Client supports geometry management of the browser layout
where parent components are in the UI explicitly. The children
components are sized to stretch and fill up available space in the browser.
While this feature makes the UI look better, it has a cost. The impact is on
the client side where the browser must spend time resizing the
components. The components that have geometry management by default
are:

PanelAccordion

PanelStretchLayout

PanelTabbed

BreadCrumbs

NavigationPane

PanelSplitter

Toolbar

Toolbox

Table

Train

Notes:

■ When using geometry management, try minimizing the number of
child components that are under a parent geometry managed
component.

■ The cost of geometry management is directly related to the complexity
of child components.

■ The performance cost of geometry management can be smaller (as
perceived by the user) for the pages with table or other data stamped
components when table data streaming is used. The client-side
geometry management can be executed while the browser is waiting
for the data response from the server.

Use the ADF rich client overflow
feature.

ADF Rich Client supports overflow feature. This feature moves the child
components to the non-visible overflow area if they cannot fit the page.
The components that have built-in support for overflow are: PanelTabbed,
BreadCrumbs, NavigationPane, PanelAccordion, Toolbar, and Train.
Toolbar should be contained in a Toolbox to handle the overflow.

While there were several optimizations done to reduce the cost of
overflow, it is necessary to pay special attention to the number of child
components and complexity of each of them in the overflow component.
Sometimes it is a good practice to set a big enough initial size of the
overflow component such that overflow does not happen in most cases.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-7

Use ADF Rich Client Partial Page
Rendering (PPR).

ADF Rich Client is based on Asynchronous JavaScript and XML (Ajax)
development technique. Ajax is a web development technique for creating
interactive web applications, where web pages feel more responsive by
exchanging small amounts of data with the server behind the scenes,
without the whole web page being reloaded. The effect is to improve a
web page's interactivity, speed, and usability.

With ADF Faces, the feature that delivers the Ajax partial page refresh
behavior is called partial page rendering (PPR). PPR enables small areas of
a page to be refreshed without having to redraw the entire page. For
example, an output component can display what a user has chosen or
entered in an input component or a command link or button can cause
another component on the page to be refreshed.

Two main Ajax patterns are implemented with partial page rendering
(PPR):

■ native component refresh

■ cross-component refresh

While the framework builds in native component refresh,
cross-component refresh has to be done by developers in certain cases.

Cross-component refresh is implemented declaratively or
programmatically by the application developer defining which
components are to trigger a partial update and which other components
are to act as partial listeners, and so be updated. Using cross-component
refresh and implementing it correctly is one of the best ways to improve
client-side response time. While designing the UI page always think about
what should happen when the use clicks a command button. Is it needed
for the whole page to be refreshed or just an output text field? What
should happen if the value in some field is updated? For more
information, refer to Developing Fusion Web Applications with Oracle
Application Development Framework).

Consider a typical situation in which a page includes an af:inputText
component, an af:commandButton component, and an
af:outputText component. When the user enters a value for the
af:inputText, then clicks the af:commandButton, the input value is
reflected in the af:outputText. Without PPR, clicking the
af:commandButton triggers a full-page refresh. Using PPR, you can limit
the scale of the refresh to only those components you want to refresh, in
this case the af:outputText component. To achieve this, you would do
two things:

■ Set up the af:commandButton for partial submit by setting the
partialSubmit attribute to true. Doing this causes the command
component to start firing partial page requests each time it is clicked.

■ Define which components are to be refreshed when the partial submit
takes place, in this example the af:outputText component, by
setting the partialTriggers attribute for each of them to the id of
the component triggering the refresh. In this example, this means
setting the partialTriggers attribute of the af:outputText
component to give the id of the af:commandButton component.

The steps above achieve PPR using a command button to trigger the
partial page refresh.

The main reason why partial page rendering can significantly boost the
performance is that full page refresh does not happen and the framework
artifacts (such as ADF Rich Client JS library, and style sheets) are not
reloaded and only a small part of page is refreshed. In several cases, this
means no extra data is fetched or no geometry management.

The ADF Rich Client has shown that partial page rendering results in the
best client-side performance. Besides the impact on the client side,
server-side processing can be faster and can have better server-side
throughput and scalability.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

8-8 Oracle Fusion Middleware Tuning Performance Guide

Use ADF rich client navigation. ADF Rich Client has an extensive support for navigation. One of the
common use cases is tabbed navigation. This is currently supported by
components like navigationPane which can bind to xmlMenuModel to
easily define navigation.

There is one drawback in this approach, however. It results in a full page
refresh every time the user switches the tab. One option is to use
panelTabbed instead. panelTabbed has built-in support for partial page
rendering of the tabbed content without requiring any developer work.
However, panelTabbed cannot bind to any navigational model and the
content has to be available from within the page, so it has limited
applicability.

Cache resources. Developers are strongly encouraged to ensure that any resources that can
be cached (images, CSS, JavaScript) have their cache headers specified
appropriately. Also, client requests for missing resources on the server
result in addition round trips to the server. To avoid this, make sure all the
resources are present on the server.

Consider using the ResourceServlet to configure web.xml to enable
resource caching:

<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/js/*</url-pattern>
 </servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/images/*</url-pattern>
 </servlet-mapping>

Reduce the size of state token cache. This property is defined in web.xml org.apache.myfaces.trinidad.CLIENT_
STATE_MAX_TOKENS in "token"-based client-side state saving and
determines how many tokens should be preserved at any one time. The
default value is 15. When this value is exceeded, state will be "forgotten"
for the least recently viewed pages, which can impact users that actively
use the Back button or that have multiple windows open simultaneously.

In order to reduce live memory per session, consider reducing this value to
2. Reducing the state token cache to 2 means one Back button click is
supported. For applications without support for a Back button, this value
should be set to 1.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-9

Define custom styles at the top of the
page.

A common developer task is to define custom styles inside a regular page
or template page. Since most browsers use progressive scanning of the
page, a late introduction of styles forces the browser to recompute the
page. This impacts the page layout performance. For better performance,
define styles at the top of the page and possibly wrap them inside the ADF
group tag.

An HTML page basically has two parts, the "head" and the "body". When
you put an af:document component on your page, this component
creates both parts of the page for you. Any child component of the
af:document is in the "body" part of the page. To get a component (or
static CDATA content) to show up in the "head", use the "metaContainer"
facet.

To get a component (or static CDATA content) to display in the "head", use
the "metaContainer" facet as follows:

<af:document title="#{attrs.documentTitle}" theme="dark">
<f:facet name="metaContainer">
<af:group><![CDATA[
<style type="text/css">
.TabletNavigationGlobal {
text-align: right;
padding-left: 0px;
padding-right: 10px;
white-space: nowrap;
}
HTML[dir=rtl] .TabletNavigationGlobal {
text-align: left;
padding-left: 10px;
padding-right: 0px;
}
</style>
]]>
<af:facetRef facetName="metaContainer"/>
</af:group>
</f:facet>
<af:form ...>
<af:facetRef facetName="body"/>
</af:form>
</af:document>

If you use page templates, consider including af:document and
af:form in the template definition and expose anything that you may
want to customize in those tags through the page template attributes and
page template af:facetRef. Your templates are then able to utilize the
metaContainer facet if they have template-specific styling as shown above.
Also, your usage pages do not have to repeat the same document and form
tags on every page.

See the Developing Fusion Web Applications with Oracle Application
Development Framework for details about af:facetRef.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

8-10 Oracle Fusion Middleware Tuning Performance Guide

Optimize custom JavaScript code. ADF Rich Client uses JavaScript on the client side. The framework itself
provides most of the functionality needed. However, you may have to
write custom JavaScript code. To get the best performance, consider
bundling the JavaScript code into one JS lib (one JavaScript file) and
deliver it to the client. The easiest approach is to use the ADF tag:
<af:resource type="javascript" source=" "/>.

If most pages require custom JavaScript code, the tag should be included
in the application template. Otherwise, including it in particular pages can
result in better performance. If custom the JavaScript code lib file becomes
too big, then consider splitting it into meaningful pieces and include only
the pieces needed by the page.Overall, this approach is faster since the
browser cache is used and the html content of the page is smaller.

Disable debug output mode. The debug-output element in the trinidad-config.xml file specifies
whether output should be more verbose to help with debugging. When set
to TRUE, the output debugging mechanism in Trinidad produces
pretty-printed, commented HTML content. To improve performance by
reducing the output size, you should disable the debug output mode in
production environments.

Set the debug-output element to FALSE, or if necessary, remove it
completely from the trinidad-config.xml file.

Disable test automation. Enabling test automation parameter
oracle.adf.view.rich.automation.ENABLED generates a client
component for every component on the page which can negatively impact
performance.

Set the oracle.adf.view.rich.automation.ENABLED parameter
value to FALSE (the default value) in the web.xml file to improve
performance.

Disable animation. ADF Rich Client framework has client side animation enabled by default.
Animation is introduced to provide an enhanced user experience. Some of
the components, like popup table, have animation set for some of the
operations. While using animation can improve the user experience, it can
increase the response time when an action is executed. If speed is the
biggest concern, then animation can be disabled by setting the flag in
trinidad-config.xml

Disable client-side assertions. Assertions on client-side code base can have a significant impact on
client-side performance. Set the parameter value to FALSE (the default
value) to disable client-side assertions. Also ensure that the
oracle.adf.view.rich.ASSERT_ENABLED is not explicitly set to
TRUE in the web.xml file.

Disable JavaScript Profiler. When the JavaScript oracle.adf.view.rich.profiler.ENABLED
profiler is enabled, an extra round-trip occurs on every page in order to
fetch the profiler data. Disable the profiler in the web.xml file to avoid
this extra round-trip.

Disable resource debug mode. When resource debug mode is enabled, the HTTP response headers do not
tell the browser that resources (JS libraries, CSS style sheets, or images) can
be cached.

Disable the org.apache.myfaces.trinidad.resource.DEBUG
parameter in the web.xml file to ensure that caching is enabled.

Disable timestamp checking. The org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
parameter controls whether jsp or jspx files are checked for modifications
each time they are accessed.

Ensure that the parameter value
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION is set
to FALSE (the default value) in the web.xml file.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-11

8.2.3 Tuning ADF Faces Component Attributes
Table 8–3 provides configuration recommendations for ADF Faces Component
Attributes:

Disable checking for CSS file
modifications.

The org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
parameter controls when CSS file modification checks are made. To aid in
performance, this configuration option defaults to false - do not check
for css file modifications. Set this to TRUE if you want the skinning css file
changes to be reflected without stopping or starting the server.

Enable content compression. By default, style classes that are rendered are compressed to reduce page
size. In production environments, make sure you remove the DISABLE_
CONTENT_COMPRESSION parameter from the web.xml file or set it to
FALSE.

For debugging, turn off the style class content compression. You can do
this by setting the DISABLE_CONTENT_COMPRESSION property to TRUE.

Enable JavaScript obfuscation. ADF Faces supports a run time option for providing a non-obfuscated
version of the JavaScript library. The obfuscated version is supplied by
default, but the non-obfuscated version is supplied for development
builds. Obfuscation reduces the overall size of the JavaScript library by
about 50%.

To provide an obfuscated ADF Faces build, set the
org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT parameter to
FALSE in the web.xml file.

There are two ways to check that the code is obfuscated using Firefox with
Firebug enabled:

Check the download size:

1. Ensure that "All" or "JS" is selected on the Net tab.

2. Locate the "all-11-version.js" entry.

3. Check the size of the column. It should be about 1.3 MB (as opposed
to 2.8 MB).

Check the source:

1. From the Script tab select "all-11-version.js from the drop-down menu
located above the tabs.

2. Examine the code. If there are comments and long variable names, the
library is not obfuscated.

Note: Copyright comments are kept even in the obfuscated version of
the JS files.

Enable library partitioning. In the Oracle 11g Release, library partitioning is on by default. In previous
versions library partitioning was off by default. Ensure that the library
partitioning is on by validating the
oracle.adf.view.rich.libraryPartitioning.DISABLED
property is set to false in the web.xml file.

Table 8–2 (Cont.) Configuration Parameters for ADF Faces

Configuration Recommendation Description

Basic Tuning Considerations

8-12 Oracle Fusion Middleware Tuning Performance Guide

Table 8–3 ADF Faces Component Attributes

Configuration Recommendation Description

Use the "immediate" attribute. ADF Rich Client components have an immediate attribute. If a
component has its immediate attribute set to TRUE
(immediate="true"), then the validation, conversion, and events
associated with the component are processed during the
applyRequestValues phase. These are some cases where setting
immediate to TRUE can lead to better performance.

■ The commandNavigationItem in the navigationPane can use the
immediate attribute set to TRUE to avoid processing the data from
the current screen while navigating to the new page.

■ If the input component value has to be validated before the other
values, immediate should be set to TRUE. In case of an error it be
detected earlier in the cycle and additional processing be avoided.

ADF Rich Client is built on top of JSF and uses standard JSF lifecycle. See
"Understanding the JSF and ADF Faces Lifecycles" in Developing Web
User Interfaces with Oracle ADF Faces.

There are some important issues associated with the immediate
attribute. Refer to "Using the Immediate Attribute" in Developing Web
User Interfaces with Oracle ADF Faces for more information.

Note that this is an advanced feature. Most of the performance
improvements can be achieved using the af:subform component.
Refer to Developing Web User Interfaces with Oracle ADF Faces for
af:subform details.

Use the "visible" and "rendered"
attributes.

All ADF Faces Rich Client display components have two properties that
dictate how the component is displayed on the page:

■ The visible property specifies simply whether the component is
to be displayed on the page, or is to be hidden.

■ The rendered property specifies whether the component shall exist
in the client page at all.

The EL expression is commonly used to control these properties. For
better performance, consider setting the component to not rendered
instead of not visible, assuming there is no client interaction with the
component. Making a component not rendered can improve server
performance and client response time since the component does not
have client side representation.

Use client-side events. ADF Rich Client framework provides the client-side event model based
on component-level events rather than DOM level. The client-side event
model is a very useful feature that can speed up the application. Review
the following performance considerations:

■ Consider using client-side events for relatively simple event
handling that can be done on the client side. This improves client
side performance by reducing the number of server round trips.
Also, it can increase server-side throughput and scalability since
requests do not have to be handled by the server.

■ By default, the events generated on the client by the client
components are propagated to the server. If a client-side event
handler is provided, consider canceling the event at the end of
processing so that the event does not propagate to the server.

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-13

8.2.4 Performance Considerations for Table and Tree Components
Table, Tree, and TreeTable are some of the most complex, and frequently used,
components. Since these components can include large sets of data, they can be the
common source of performance problems. Table 8–4 provides some performance
recommendations.

Use the "id" attribute. The "id" attribute should not be longer than 7 characters in length. This is
particularly important for naming containers. A long id can impact
performance as the amount of HTML that must be sent down to the
client is impacted by the length of the ids.

Use client-side components. ADF Rich Client framework has client-side components that play a role
in client-side event handling and component behavior. The
clientComponent attribute is used to configure when (or if) a
client-side component should be generated. Setting clientComponent
attribute to TRUE has a performance impact, so determine if its necessary
to generate client-side components.

For more information, see "Client-side Components" in Developing Web
User Interfaces with Oracle ADF Faces.

Set the childCreation attribute on
af:popup to deferred for a
server-side performance enhancement

Setting childCreation to deferred postpones construction of the
components under the popup until the content is delivered. A deferred
setting can therefore reduce the footprint of server-side state in some
cases.

CAUTION: This approach CANNOT be used if any of the following tags
are present inside the popup:

■ f:attribute

■ af:setPropertyListener

■ af:clientListener

■ af:serverListener

It also CANNOT be used if you need to refer to any child components of
the popup before the popup is displayed. Setting
childCreation="deferred" will postpone creating any child components
of the popup and you cannot refer to them until after the popup is
shown.

Table 8–3 (Cont.) ADF Faces Component Attributes

Configuration Recommendation Description

Basic Tuning Considerations

8-14 Oracle Fusion Middleware Tuning Performance Guide

8.2.5 Performance Considerations for autoSuggest
autoSuggest is a feature that can be enabled for inputText, inputListOfValues, and
inputComboboxListOfValues components. When the user types characters in the input
field, the component displays a list of suggested items. The feature performs a query
in the database table to filter the results. In order to speed up database processing, a
database index should be created on the column for which autosuggest is enabled.
This improves the component's response times especially when the database table has
a large number of rows.

8.2.6 Data Delivery - Lazy versus Immediate
Data for Table, Tree, and other stamped components can be delivered immediately or
lazily. By default, lazy delivery is used. This means that data is not delivered in the
initial response from the server. Rather, after the initial page is rendered, the client asks
the server for the data and gets it as a response to the second request.

Table 8–4 Table and Tree Component Configurations

Configuration Recommendation Description

Use editingMode="clickToEdit". When using editingMode="editAll" all content of the editable values
holders and their client components is sent. This can significantly increase
the HTTP payload and the Document Object Model (DOM) content on the
client.

Consider switching to editingMode="clickToEdit" to reduce the amount of
transmitted data and potentially improve user interaction.

Reduce fetchSize when possible. A larger fetch size attribute on af:table implies that more data needs to be
processed, fetched from the server, and displayed on the client. This can
also increase the amount of DOM displayed on the client.

Modify table fetch size. Tables have a fetch size which defines the number of rows to be sent to the
client in one round-trip. To get the best performance, keep this number
low while still allowing enough rows to fulfill the initial table view port.
This ensures the best performance while eliminating extra server requests.

In addition, consider keeping the table fetch size and iterator range size in
sync. By default, the table fetch size is set to the EL expression
#{bindings.<name>.rangeSize} and should be equal to the iterator
size.

For more information see "Using Tables and Trees" in Developing Web User
Interfaces with Oracle ADF Faces.

Disable column stretching. Columns in the table and treeTable components can be stretched so that
there is no unused space between the end of the last column and the edge
of the table or treeTable component. This feature is turned off by default
due to potential performance impacts. Turning this feature on may have a
performance impact on the client rendering time, so use caution when
enabling this feature with complex tables.

Consider using header rows and
frozen columns only when necessary.

The table component provides features that enable you to set the row
Header and frozen columns. These options can provide a well-designed
interface which can lead to a good user experience. However, they can
impact client-side performance. To get the best performance for table
components, use these options only when they are needed.

Consider using visitTree instead of
invokeOnComponent.

A partial visit using visitTree is always at least as fast as
invokeOnComponent. In addition, for components controlling visiting,
providing both invokeOnComponent and visitTree implementations is a
source of errors. Consider deprecating invokeOnComponent and use
visitTree instead.

For more information see "Using Tables and Trees" in Developing Web User
Interfaces with Oracle ADF Faces.

Basic Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-15

In the case of immediate delivery, data can be in line with the response to the page
request. It is important to note that data delivery is per component and not per page.
This means that these two can be mixed on the same page.

When choosing between these two options, consider the following:

8.2.7 Performance Considerations for DVT Components
DVT components are data visualization components built on top of ADF Rich Client
components. DVT components include graphs, gauges, Gantt charts, pivot tables and
maps. Table 8–5 provides some configuration recommendations for DVT components:

Lazy Delivery (default) Lazy delivery should be used for tables, or other stamped components, which are
known to have slow fetch time. The examples are stamped components are the
ones based on data controls using web services calls or other data controls with
slow data fetch. Lazy delivery can also be used on pages where content is not
immediately visible unless the user scrolls down to it. In this case the time to
deliver the visible context to the client will be shorter, and the user perceives
better performance.

Lazy delivery is implemented using data streaming technique. The advantage of
this approach is that the server has the ability to execute data fetches in parallel
and stream data back to the client as soon as the data is available. The technique
performs very well for a page with two tables, one that returns data very quickly
and one that returns data very slowly. Users see the data for the fast table as soon
as the data is available.

Executing data fetches in parallel also speeds up the total time to fetch data. This
gives an advantage to lazy loading in cases of multiple, and possibly slow, data
fetches. While streaming is the default mechanisms to deliver data in lazy mode,
parallel execution of data controls is not. In order to enable parallel execution,
open the page definition and change RenderHint on the iterator to background.

In certain situations, the advantage of parallel execution is faster response time.
Parallel execution could potentially use more resources due to multiple threads
executing request in parallel and possibly more database connections will be
opened.

Consider using parallel execution only when there are multiple slow components
on the page and the stamped components belong to different data control frames
(such as isolated taskflows). Since parallel execution synchronizes on the data
control frame level, when there is a single data control frame parallel execution
may not improve performance.

Immediate Delivery Immediate delivery (contentDelivery="immediate") should be used if table
data control is fast, or if it returns a small set of data. In these cases the response
time be faster than using lazy delivery.

Another advantage of immediate delivery is less server resource usage, compared
to lazy delivery. Immediate delivery sends only one request to the server, which
results in lower CPU and memory usage on the server for the given user
interaction.

Advanced Tuning Considerations

8-16 Oracle Fusion Middleware Tuning Performance Guide

8.3 Advanced Tuning Considerations
After you have performed the tuning modifications recommended in the previous
section, you can make additional changes that are specific to your ADF Server
deployment. Consider carefully whether the recommendations in this section are
appropriate for your environment.

8.3.1 ADF Server Performance
Oracle ADF Server components consist of the non-UI components within ADF. These
include the ADF implementations of the model layer (ADFm), business services layer
(ADFbc), and controller layer (ADFc). As the server components are highly
configurable, it is important to choose the combination of configurations that best suits
the available resources with the specified application performance and functionality.

8.3.1.1 HTTP Session Timeout Tuning
For ADF applications with a significant user community, the amount of memory held
by sessions waiting to expire can negatively impact performance when the default
HTTP session timeout of 45 minutes is used. The memory being held can be higher
than what is physically available, causing the server to not be able to handle the load.
For large numbers of users, such as those using a public facing website, the session
timeout should be as short as possible.

To improve performance, consider modifying the default session timeout value (in
minutes) in the web.xml file. Use a session timeout value that works with your use
case scenario. The example below shows a session timeout of 10 minutes:

<session-config>
 <session-timeout>

Table 8–5 DVT Component Configurations

Configuration Recommendation Description

Modify the RangeSize attribute. The RangeSize attribute defines the number of rows to return
simultaneously. A RangeSize value of -1 causes the iterator to return all
the rows. Using a lower value may improve performance, but it may be
harder to stop the data and any data beyond rangeSize is not available in
the view.

Use horizontal text instead of vertical
text.

By default, pivot tables use horizontal text for column headers. However,
there is an option to use vertical text as well. Vertical text can be used by
specifying a CSS style for the header format such as:

writing-mode:tb-rl;filter:flipV flipH;

While vertical text can look better in some cases, it has a performance
impact when the Firefox browser is used.

The problem is that vertical text is not native in Firefox as it is in Internet
Explorer. To show vertical text, the pivot table uses images produced by
GaugeServlet. These images cannot be cached as the text is dynamic and
depends on the binding value. Due to this, every rendering of the pivot
table incurs extra round-trips to the server to fetch the images, which
impact network traffic, server memory, and CPU.

To have the best performance, consider using horizontal text instead of
vertical text.

Note: When using ADFm, consider using deferred execution and
monitor the refresh conditions to maintain performance.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-17

 10
 </session-timeout>
</session-config>

8.3.1.2 View Objects Tuning
View objects (VOs) provide many tuning options to enable a developer to tailor the
View Object to the application's specific needs. View Objects should be configured to
use the minimal feature set required to fulfill the functional requirement. The
Developing Fusion Web Applications with Oracle Application Development Framework
provides detailed information on tuning View Objects. Provided here are some tips
pertaining to View Object performance.

8.3.1.2.1 Creating View Objects To maximize View Object performance, the View Object
should match the intended usage. For instance, data retrieved for a list of values
pick-list is typically read-only, so a read-only View Object should be used to query this
data. Tailoring the View Object to the specific needs of the application can improve
performance, memory usage, CPU usage, and network usage.

8.3.1.2.2 Configuring View Object Data Fetching View Object performance is largely
dependent on how the view object is configured to fetch data. If the fetch options are
not tuned correctly for the application, then the view object may fetch an excessive
amount of data or may take too many round-trips to the database. Fetch options can
be configured through the Retrieve from the Database group box in the View Object
dialog Figure 8–1.

View Object Type Description

Read-only View Objects Consider using a read-only View Object if the View Object does not have to
insert or update data. There are two options for read-only View Objects:

■ Non-updatable EO-based View Objects

■ Expert-mode View Objects

Non-updatable EO-based View Objects offer the advantage of a customizable
select list at run time which retrieve attributes needed in the UI, data reads
from local cache (instead of re-executing a database query), and data
consistency with other updatable View Objects based on the same EO.

Expert-mode View Objects have the ability to perform SQL operations not
supported by EOs and avoid the small performance impact from coordinating
View Object and EO rows. EO-based View Objects can be marked
non-updatable by deselecting the "updatable" option in the selected EO for the
View Object, which can also be done by adding the parameter
ReadOnly="true" on the EntityUsage attribute in the View Object XML
definition.

Insert-only View Objects For View Objects that are used only for inserting records, you can prevent
unnecessary select queries from being executed when using the View Object.
To do this, set the option No Rows in the Retrieve from the Database group
box in the View Objects Overview tab. This sets MaxFetchSize to 0 (zero) for
the View Object definition.

run time-created View Objects View Objects can be created at run time using the
createViewObjectFromQueryStmt() API on the AM. However, avoid
using run time-created View Objects unless absolutely necessary due to
potential performance impacts and complexity of tuning.

Advanced Tuning Considerations

8-18 Oracle Fusion Middleware Tuning Performance Guide

Figure 8–1 View Object Dialog

Fetch Option Description

Fetch Mode The default fetch option is the All Rows option, which is retrieved as needed
(FetchMode="FETCH_AS_NEEDED") or all at once (FetchMode="FETCH_
ALL"), depending on which option is appropriate. The As Needed option
ensures that an executeQuery() operation on the view object initially
retrieves only as many rows as necessary to fill the first page of a display. The
number of rows is set based on the view object's range size.

Fetch Size In conjunction with the fetch mode option, the Batches field controls the number
of records fetched simultaneously from the database (FetchSize in the View
Object, XML). The default value is 1, which may impact performance unless only
1 row is fetched. The suggested configuration is to set this value to n+1 where n
is the number of rows to be displayed in the user interface.

Note that for DVT objects, Fetch Size should be n+1 where n is either rangeSize
or the likely maximum rowset size if rangeSize is -1.

Max Fetch Size The default max fetch size for a View Object is -1, which means that there is no
limit to the number of rows the View Object can fetch. Setting a max fetch size of
0 (zero) makes the View Object insert-only. In cases where the result set should
only contain n rows of data, the option Only Up to Row Number should be
selected and set or call setMaxFetchSize(N) to set this programmatically. To
set this manually, add the parameter MaxFetchSize to the View Object XML.

For View Objects whose WHERE clause expects to retrieve a single row, set the
option At Most One Row. This option ensures that the view object knows not to
expect any more rows and skips its normal test for that situation. In this case no
select query is issued and no rows are fetched.

Max fetch size can also be used to limit the impact from an non-selective query
that may return hundreds (or thousands) of rows. In such cases, specifying the
max fetch size limits the number of rows that can be fetched and stored into
memory.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-19

8.3.1.2.3 Additional View Object Configurations Table 8–6 provides additional tuning
considerations when using the View Object:

8.3.1.3 Batch Processing
Batch processing enables multiple inserts, updates, and deletes to be processed
together when sending the operations to the database. Enabling this feature is done on
the Entity Object (EO) by either selecting the "Use Update Batching" check box in the

Forward-Only Mode If a data set is only traversed going forward, then forward-only mode can help
performance when iterating through the data set. This can be configured by
programmatically calling setForwardOnly(true) on the View Object. Setting
forward-only can also prevent caching previous sets of rows as the data set is
traversed.

Table 8–6 Additional View Object Configurations

Configuration Recommendation Description

Optimize large data sets. View Objects provide a mechanism to page through large data sets so that a
user can jump to a specific page in the results. This is configured by calling
setRangeSize(N) followed by setAccessMode(RowSet.RANGE_
PAGING) on the View Object where N is the number of rows contained
within 1 page. When navigating to a specific page in the data set, the
application can call scrollToRangePage(P) on the View Object to
navigate to page P. Range paging fetches and caches only the current page of
rows in the View Object row cache at the cost of another query execution to
retrieve each page of data. Range paging is not appropriate where it is
beneficial to have all fetched rows in the View Object row cache (for example,
when the application must read all rows in a data set for an LOV or page
back and forth in records of a small data set).

Disable "spillover" configurations
when possible.

You can use the data source as "virtual memory" when the JVM container
runs out of memory. By default this is disabled and can be enabled (if
needed) by setting jbo.use.pers.coll=true. Keep this option disabled
(if possible) to avoid a potential performance impact.

Review SQL style configuration. If the generic SQL92 SQL style is used to connect to generic SQL92-compliant
database, then some View Object tuning options do not apply. The View
Object fetch size is one such tuning option. When SQL92 SQL style is used,
the fetch size defaults to 10 rows, regardless of what is configured for the
View Object. The SQL style is set when defining the database connection. By
default when defining an Oracle database connection, the SQL style can be
Oracle. To manually override the SQL style, pass the parameter
-Djbo.SQLBuilder="SQL92" to the JVM at startup.

Use bind variables for view object
queries.

If the query associated with the View Object contains values that may change
from execution to execution, consider using bind variables. This may help to
avoid re-parsing the query on the database. Bind variables can be added to
the View Object in the Query section of the View Object definition.

Use query optimizer hints for view
object queries.

The View Object can pass hints to the database to influence which execution
plan to use for the associated query. The optimizer hints can be specified in
the Retrieve from the Database group box.

Use dynamic SQL generation. View Objects can be configured to dynamically generate SQL statements at
run time instead of defining the SQL at design time. A View Object instance,
configured with generating SQL statements dynamically, can avoid
re-querying a database. This is especially true during page navigation if a
subset of all attributes with the same key Entity Object list is used in the
subsequent page navigation. Performance can be improved by activating a
superset of all the required attributes to eliminate a subsequent query
execution.

Fetch Option Description

Advanced Tuning Considerations

8-20 Oracle Fusion Middleware Tuning Performance Guide

Tuning section of the EO's General tab, or by directly modifying the EO's XML file and
adding the parameter BatchThreshold with the specified batch size to the Entity
attribute.

The BatchThreshold value is the threshold at which a group of operations can be
batched instead of performing each operation one at a time. If the threshold is not
exceeded, then rows may be affected one at a time. On the other hand, more rows than
specified by the threshold can be batched into a single batch.

Note that the BatchThreshold configuration for the EO is not compatible if an
attribute in the EO exists with the configuration to refresh after insert
(RetrievedOnInsert="true") or update (RetrievedOnUpdate="true").

8.3.1.4 RangeSize Tuning
This parameter controls the number of records ADFm requests from the BC layer
simultaneously. The default RangeSize is 25 records. Consider setting this value to
the number of records to be displayed in the UI simultaneously for the View Object so
that the number of round-trips between the model and BC layers is reduced to one.
This is configured in the Iterator attribute of the corresponding page's page
definition XML.

8.3.1.5 Application Module Design Considerations
Designing an application's module granularity is an important consideration that can
significantly impact performance and scalability. It is important to note that each root
application module generally holds its own database connection. If a user session
consumes multiple root application modules, then that user session can potentially
hold multiple database connections simultaneously. This can occur even if the
connections are not actively being used, due to the general affinity maintained
between an application module and a user session. To reduce the possibility that a user
can hold multiple connections at once, consider the following options:

■ Design larger application modules to encompass all of the functionality that a user
needs.

■ Nest smaller application modules under a single root application module so that
the same database connection can be shared among the nested application
modules.

■ Use lazy loading for application modules. In the Application Module tuning
section, customize runtime instantiation behavior to use lazy loading. Lazy
loading can also be set JVM-wide by adding the following JVM argument:

-Djbo.load.components.lazily=true

8.3.1.6 Application Module Pooling
Application module (AM) pooling enables multiple users to share several application
module instances. The configurations for the AM pool vary depending on the
expected usage of the application.

Most of the AM pool parameters can be set through Oracle JDeveloper. The
configurations are saved in bc4j.xcfg, which can be manually edited if needed.
Parameters can also be set at the system level by specifying these as JVM parameters
(-Dproperty=value). The bc4j.xcfg configuration takes precedence over the JVM
configuration; this enables a generic system-level configuration to be overridden by an
application-specific exception.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-21

8.3.1.6.1 General AM Pool Configurations The following guidelines can be used as a
general starting point when tuning AM and AM pool behavior. More specific tuning
for memory or CPU usage can be found in Section 8.3.1.6.2, "Configuring AM Pool
Sizing".

Table 8–7 Application Module (AM) Pool Tuning

Configuration Recommendation Description

Optimize the number of AM pools in the
application.

Parameters applied at the system level are applied per AM pool. If the
application uses more than 1 AM pool, then system-level values for
the number of AM instances must be multiplied by the number of AM
pools to realize the actual limits specified on the system as a whole.

For example, if an application uses 4 separate AM pools to service the
application, and a system-level configuration is used to limit the max
AM pool size to 100, then this can result in a maximum of 400 AM
instances (4 pools * 100 max pool size).

If the intent is to limit the entire application to a max pool size of 100,
then the system-level configuration should specify a max pool size of
25 (100 max pool size / 4 pools). Finer granularity for configuring
each AM pool can be achieved by configuring each pool separately
through JDev or directly in bc4j.xcfg.

Optimize the number of database
connections.

By default AM instances retain their database connections even when
checked back into the AM pool. There are many performance benefits
to maintain this association. To maintain performance, consider
configuring more AM instances than the maximum number of
specified database connections.

NOTE: If you have an AM pool that needs to be used as root pool,
consider tuning at the specific AM pool level. For pools that are
infrequently used, consider tuning pool sizes on the pool level so that
top-level application parameters are not used.

Table 8–8 AM Pool Tuning Parameters

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize

Specifies the number of application module instances to create when the pool is
initialized (default is zero). Setting a nonzero initial pool size increases the time
to initialize the application, but improves subsequent performance for
operations requiring an AM instance.

Configure this value to 10% more than the anticipated number of concurrent
AM instances required to service all users.

Maximum Pool Size

jbo.ampool.maxpoolsize

Specifies the maximum number of application module instances that the pool
can allocate (default is 4096). The pool can never create more application
module instances than this limit imposes. A general guideline is to configure
this to 20% more than the initial pool size to allow for some additional growth.

Minimum Available Size

jbo.ampool.minavailables
ize

The minimum number of available application module instances that the pool
monitor should leave in the pool during a resource cleanup operation, when the
server is under light load.

Set to 0 (zero) if you want the pool to shrink to contain no instances when all
instances have been idle for longer than the idle time-out after a resource
cleanup.

The default is 5 instances.

While application module pool tuning allows different values for the
jbo.ampool.minavailablesize | jbo.ampool.maxavailablesize
parameters, in most cases it is fine to set these minimum and maximum tuning
properties to the same value.

Advanced Tuning Considerations

8-22 Oracle Fusion Middleware Tuning Performance Guide

Maximum Available Size

jbo.ampool.maxavailables
ize

The ideal maximum number of available application module instances in the
pool when the server is under load.

When the pool monitor wakes up to do resource cleanup, it will try to remove
available application module instances to bring the total number of available
instances down to this ideal maximum. Instances that have been not been used
for a period longer than the idle instance time-out will always get cleaned up at
this time, then additional available instances will be removed if necessary to
bring the number of available instances down to this size.

The default maximum available size is 25 instances. Configure this to leave the
maximum number of available instances desired after a resource cleanup. A
lower value generally results in more application module instances being
removed from the pool on a cleanup.

While application module pool tuning allows different values for the
jbo.ampool.maxavailablesize | jbo.ampool.minavailablesize
parameters, in most cases it is fine to set these minimum and maximum tuning
properties to the same value.

Referenced Pool Size

jbo.recyclethreshold

Specifies the maximum number of application module instances in the pool
that attempt to preserve session affinity for the next request made by the
session that used them last before releasing them to the pool in managed-state
mode (default is 10).

The referenced pool size should always be less than or equal to the maximum
pool size. This enables the configured number of available instances to try and
remain "loyal" to the affinity they have with the most recent session that
released them in managed state mode.

Configure this value to the expected number of concurrent users that perform
multiple operations with short think times. If there are no users expected to use
the application with short think times, then this can be configured to 0 (zero) to
eliminate affinity.

Maximum Instance Time to Live

jbo.ampool.timetolive

The number of milliseconds after which to consider an connection instance in
the pool as a candidate for removal during the next resource cleanup regardless
of whether it would bring the number of instances in the pool below
minavailablesize.

The default is 3600000 milliseconds of total time to live (which is 3600 seconds,
or one hour). A lower value reduces the time an application module instance
can exist before it must be removed at the next resource cleanup. The default
value is sufficient for most applications. A higher value increases the time an
application module instance can exist before it must be removed at the next
cleanup.

Idle Instance Timeout

jbo.ampool.maxinactiveag
e

The number of milliseconds after which to consider an inactive application
module instance in the pool as a candidate for removal during the next resource
cleanup.

The default is 600000 milliseconds of idle time (which is 600 seconds, or ten
minutes). A lower value results in more application module instances being
marked as a candidate for removal at the next resource cleanup. A higher value
results in fewer application module instances being marked as a candidate for
removal at the next resource cleanup.

Table 8–8 (Cont.) AM Pool Tuning Parameters

Parameter Description

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-23

For parameters that can be configured for memory-constrained systems, see Table 8–9.

Pool Polling Interval

jbo.ampool.monitorsleepi
nterval

The length of time in milliseconds between pool resource cleanup.

While the number of application module instances in the pool will never exceed
the maximum pool size, available instances which are candidates for getting
removed from the pool do not get "cleaned up" until the next time the
application module pool monitor wakes up to do its job.

The default is to have the application module pool monitor wake up every
600000 milliseconds (which is 600 seconds, or ten minutes). Configuring a lower
interval results in inactive application module instances being removed more
frequently to save memory. Configuring a higher interval results in less
frequent resource cleanups.

Failover

jbo.dofailover

Specifies whether to disable or enable failover. By default, failover is disabled.
To enable failover, set the parameter to true.

NOTE: When enabling application module state passivation, a failure can occur
when Oracle WebLogic Server is configured to forcibly release connection back
into the pool. A failure of this type produces a SQLException (Connection has
already been closed) that is saved to the server log. The exception is not
reported through the user interface.

To ensure that state passivation occurs and changes are saved, set an
appropriate value for the weblogic-application.xml deployment descriptor
parameter inactive-connection-timeout-seconds on the
<connection-check-params> pool-params element.

Setting the deployment descriptor parameter to several minutes, in most cases,
should avoid forcing the inactive connection timeout and the resulting
passivation failure. Adjust the setting as needed for your environment.

Locking Mode

jbo.locking.mode

Specifies the locking mode (optimistic or pessimistic). The default is
pessimistic, which means that a pending transaction state can be created on
the database with row-level locks. With pessimistic locking mode, each time an
AM is recycled, a rollback is issued in the JDBC connection. Web applications
should set the locking mode to optimistic to avoid creating the row-level
locks.

Database Connection Pooling

jbo.doconnectionpooling

Specifies whether the AM instance can be disconnected from the database
connection when the AM instance is returned to the AM pool. This enables an
application to size the AM pool larger than the database connection pool. The
default is false, which means that an AM instance can retain its database
connection when the AM instance is returned to the AM pool. When set to
true, the AM can release the database connection back to the database
connection pool when the AM instance is returned to the AM pool. Note that
before an AM is disconnected from the database connection, a rollback can be
issued on that database connection to revert any pending database state.

Transaction Disconnect Level

jbo.txn.disconnect_level

When used in conjunction with jbo.doconnectionpooling=true, specifies
BC4J behavior for maintaining JDBC ResultSets. By default
jbo.txn.disconnect_level is 0, and passivation can be used to close any
open ResultSets when the database connection is disconnected from the AM
instance. Configuring jbo.txn.disconnect_level to 1 can prevent this
behavior to avoid the passivation costs for this situation.

Table 8–8 (Cont.) AM Pool Tuning Parameters

Parameter Description

Advanced Tuning Considerations

8-24 Oracle Fusion Middleware Tuning Performance Guide

For parameters that can be configured to reduce the load on the CPU to some extent
through a few parameters, see Table 8–10.

8.3.1.6.2 Configuring AM Pool Sizing The Application Module pool sizing configuration
is largely dependant on the number of concurrent users you expect to have. To prevent
performance issues, you need to make sure AM pool size is sufficient to serve all
concurrent users.

To configure these parameters, open the setDomainEnv.sh file for the WebLogic
Server instance and find these lines:

JAVA_OPTIONS="${JAVA_OPTIONS}"
export JAVA_OPTIONS

Replace these lines with the following:

JAVA_OPTIONS="-Djbo.ampool.doampooling=true
-Djbo.ampool.minavailablesize=1
-Djbo.ampool.maxavailablesize=120
-Djbo.recyclethreshold=60
-Djbo.ampool.timetolive=-1
-Djbo.load.components.lazily=true
-Djbo.doconnectionpooling=true
-Djbo.txn.disconnect_level=1

Table 8–9 AM Pool Sizing Configurations - Memory Considerations

Parameter Description

Initial Pool Size

jbo.ampool.initpoolsize

Set this to a low value to conserve memory at the cost of slower performance
when additional AM instances are required. The default value of 0 (zero) does
not create any AM instances when the AM pool is initialized.

Maximum Pool Size

jbo.ampool.maxpoolsize

Configure this to prevent the number of AM instance from exceeding the
determined value. However, if this is set too low, then some users may see an
error accessing the application if no AM instances are available.

Minimum Available Pool Size

jbo.ampool.minavailables
ize

Set to 0 (zero) to shrink the pool to contain no instances when all instances have
been idle for longer than the idle time out after a resource cleanup. However, a
setting of 1 is commonly used to avoid the costs of re-creating the AM pool.

Maximum Available Pool Size

jbo.ampool.maxavailables
ize

Configure this to leave the maximum number of available instances specified
after a resource cleanup.

Table 8–10 AM Pool Sizing Configurations - CPU Considerations

Parameter Description

jbo.ampool.initpoolsize Set this value to the number of AM instances you want the application pool to
start with. Creating AM instances during initialization takes the CPU
processing costs of creating AM instances during the initialization instead of
on-demand when additional AM instances are required.

jbo.recyclethreshold Configure this value to maintain the AM instance's affinity to a user's session.
Maintaining this affinity as much as possible save the CPU processing cost of
needing to switch an AM instance from one user session to another.

Caution: The following example assumes at least 100 concurrent
users. Always consult your own use case scenarios to determine the
appropriate settings for your deployment.

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-25

-Djbo.connectfailover=false
-Djbo.max.cursors=5
-Doracle.jdbc.implicitStatementCacheSize=5
-Doracle.jdbc.maxCachedBufferSize=19 ${JAVA_OPTIONS}"

8.3.1.6.3 AM Pool Resource Cleanup Configurations These parameters affect the frequency
and characteristics for AM pool resource cleanups.

For memory-constrained systems, configure the AM pool to clean up more AM
instances more frequently so that the memory consumed by the AM instance can be
freed for other purposes. However, reducing the number of available AM instances
and increasing the frequency of cleanups can result in higher CPU usage and longer
response times. See Table 8–11 for more information.

The AM pool can be configured to reduce the need for CPU processing by allowing
more AM instances to exist in the pool for longer periods of time. This generally comes
at the cost of consuming more memory.

Note: To limit performance implications, set the
ampool.maxavailablesize to a value that is at least 20% more
than the maximum number of concurrent users you expect in your
own use case scenarios.

Table 8–11 AM Pool Resource Cleanup Configurations - Memory Considerations

Parameter Description

jbo.ampool.minavailablesiz
e

A setting of 0 (zero) shrinks the pool to contain no instances when all
instances have been idle for longer than the idle time out. However, a setting
of 1 is commonly used to avoid the costs of re-creating the AM pool

jbo.ampool.maxavailablesiz
e

A lower value generally results in more AM instances being removed from
the pool on a cleanup.

jbo.ampool.timetolive A lower value reduces the time an AM instance can exist before it must be
removed at the next resource cleanup.

jbo.ampool.maxinactiveage A low value results in more AM instances being marked as a candidate for
removal at the next resource cleanup.

jbo.ampool.monitorsleepint
erval

This controls how frequent resource cleanups can be triggered. Configuring a
lower interval results in inactive AM instances being removed more
frequently to save memory.

Table 8–12 AM Pool Resource Cleanup Configurations - CPU Considerations

Parameter Description

jbo.ampool.minavaila
blesize and
jbo.ampool.maxavaila
blesize

Setting these to a higher value leaves more idle instances in the pool, so that AM
instances do not have to be recreated at a later time. However, the values should not
be set excessively high to keep more AM instances than can be required at maximum
load.

jbo.ampool.timetoliv
e

A higher value increases the time an AM instance can exist before it must be removed
at the next resource cleanup.

jbo.ampool.maxinacti
veage

A higher value results in fewer AM instances being marked as a candidate for
removal at the next resource cleanup.

jbo.ampool.monitorsl
eepinterval

Configuring a higher interval results in less frequent resource cleanups.

Advanced Tuning Considerations

8-26 Oracle Fusion Middleware Tuning Performance Guide

8.3.1.7 ADFc: Region Usage
Adding regions to a page can be a powerful addition to the application. However,
regions can be a resource-intensive component on the page. For better performance,
consider using regions only when the specific functionality is required.

8.3.1.8 Defer Task Flow Execution
By default, task flows are activated when the page is loaded, even when the task flow
is not initially rendered. This causes unnecessary overhead if the task flow is never
displayed.

8.3.1.9 Task Flow in a Popup
By default, the child components under a popup are created even when popup is not
accessed. To avoid this overhead, consider the following:

■ Set childCreation to deferred

Set childCreation="deferred" on the popup

Set activation="deferred" on the taskflow

■ Use Conditional Activation

Add property listener on the popup in the jsff to set a condition

Set activation="conditional" on the taskflow

Set activate=<condition> on the taskflow

8.3.1.10 Configuring the Task Flow Inside Switcher
By default, task flows under switchers are activated when the page is loaded, not
when the switcher facet is displayed. To avoid this, use conditional activation and set
"active" to an expression language (EL) expression that returns ’true’ when the facet is
displayed.

Note: For regions and taskflows, the amount of time it takes to
evaluate the current viewId and the time it takes to calculate input
parameters to the flow can impact your overall performance.
Consider this during your design phase.

Caution: This approach cannot be used if any of the following tags
are present inside the popup:

■ f:attribute

■ af:setPropertyListener

■ af:clientListener

■ af:serverListener

t also cannot be used if you need to refer to any child components of
the popup before the popup is displayed. Setting
childCreation="deferred" will postpone creating any child
components of the popup and you cannot refer to them until after the
popup is shown. In that case, use Conditional Activation as described
below:

Advanced Tuning Considerations

Oracle Application Development Framework Performance Tuning 8-27

8.3.1.11 Reusing Static Data
If the application contains static data that can be reused across the application, the
cache data can be collected using a shared application module. More information on
creating and using shared application modules can be found in "Sharing Application
Module View Instances" in Developing Fusion Web Applications with Oracle Application
Development Framework.

8.3.1.12 Conditional Validations
For resource-intensive validations on entity attributes, consider using preconditions to
selectively apply the validations only when needed. The cost of validation must be
weighted against the cost of the precondition to determine if the precondition is
beneficial to the performance. More information on specifying preconditions for
validation can be found in "How to Set Preconditions for Validation" in Developing
Fusion Web Applications with Oracle Application Development Framework.

Advanced Tuning Considerations

8-28 Oracle Fusion Middleware Tuning Performance Guide

9

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-1

9 Oracle TopLink (EclipseLink) JPA
Performance Tuning

This chapter describes some of the available performance tuning features for
EclipseLink, an open-source persistence framework used with Oracle TopLink. The
chapter includes the following topics:

■ Section 9.1, "About Oracle TopLink and EclipseLink"

■ Section 9.2, "Basic Tuning Considerations"

■ Section 9.3, "Advanced Tuning Considerations"

9.1 About Oracle TopLink and EclipseLink
Oracle TopLink includes the open source EclipseLink as the Java Persistence API (JPA)
implementation. Oracle TopLink extends EclipseLink with advanced integration into
the Oracle Application Server.

The Java Persistence API is a specification for persistence in Java EE and Java SE
applications. In JPA, a persistent class is referred to as an entity. An entity is a plain old
Java object (POJO) class that is mapped to the database and configured for usage
through JPA using annotations, persistence XML, or both. This chapter focuses on
tuning JPA in the context of EJB3.0 and a Java EE environment.

The information in this chapter assumes that you are familiar with the basic
functionality of EclipseLink. Before you begin tuning, consider reviewing the
following introductory information:

Note: For more information on performance tuning in these areas,
see the following:

■ EclipseLink Performance Tuning at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA
/Advanced_JPA_Development/Performance

■ Performance Monitoring and Profiling at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA
/Advanced_JPA_
Development/Performance/Performance_Profiling

■ Introduction to Optimization at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA
/Advanced_JPA_
Development/Performance#Identifying_General_
Performance_Optimization

Basic Tuning Considerations

9-2 Oracle Fusion Middleware Tuning Performance Guide

■ The EclipseLink JPA User's Guide at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA

■ "Considering JPA Entity Architecture" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Introductio
n/Architecture

■ Introduction to EclipseLink Queries at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Querying

■ Introduction to Cache at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Caching

■ Introduction to Mapping and Configuration at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Mapping

For more information on Oracle TopLink, see the TopLink page on OTN
http://www.oracle.com/technology/products/ias/toplink/index.html
.

[Note that as of Oracle TopLink Release 11g, the older Toplink APIs have been
deprecated. For more information, see the TopLink Release Notes at
http://www.oracle.com/technology/products/ias/toplink/doc/11110/
relnotes/toplink-relnotes.html#CHDGAEDJ]

9.2 Basic Tuning Considerations
The following tuning recommendations are applicable to most deployments. Always
consult your own usecase scenarios before implementing any of these configurations.

■ Creating Efficient SQL Statements and Queries

■ Tuning Cache Configuration

■ Tuning the Mapping and Descriptor Configurations

■ Using Data Partitioning

9.2.1 Creating Efficient SQL Statements and Queries
This section covers using efficient SQL statements and SQL querying. Table 9–1 and
Table 9–2 show tuning parameters and performance recommendations related to SQL
statements and querying.

Note: This chapter serves as a 'Quick Start’ guide to performance
tuning JPA in the context of a Java EE environment. While the chapter
provides common performance tuning considerations and related
documentation resources, it is not meant to be comprehensive list of
areas to tune.

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-3

Table 9–1 EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Parameterized SQL
Binding

Using parameterized SQL and prepared statement
caching, you can improve performance by reducing
the number of times the database SQL engine parses
and prepares SQL for a frequently called query.
EclipseLink enables parameterized SQL by default.
However, not all databases and JDBC drivers
support these options. Note that the Oracle JDBC
driver bundled with Oracle Application Server does
support this option. The persistence property in
persistence.xml "eclipselink.jdbc.bind-parameters" is
used to configure this.

See Also: "Caching" at
http://wiki.eclipse.org/EclipseLink/Use
rGuide/JPA/Basic_JPA_
Development/Caching and "Querying" at
http://wiki.eclipse.org/EclipseLink/Use
rGuide/JPA/Basic_JPA_
Development/Querying

Default Value: PERSISTENCE_UNIT_DEFAULT
(which is true by default)

Leave parameterized SQL binding
enabled for selected databases and
JDBC drivers that support these
options.

JDBC Statement
Caching

Statement caching is used to lower the performance
impact of repeated cursor creation and repeated
statement parsing and creation; this can improve
performance for applications using a database.

Note: For Java EE applications, use the data source's
statement caching (and do not use EclipseLink
Statement Caching for EJB3.0/JPA, for example:
eclipselink.jdbc.cache-statements"="tru
e").

Set this option in an Oracle Weblogic data-source by
setting Statement Cached Type and Statement
Cached Size configuration options.

See also "Increasing Performance with the Statement
Cache" in Administering JDBC Data Sources for Oracle
WebLogic Server.

Default Value: The Oracle Weblogic Server data
source default statement cache size is 10 statements
per connection.

You should always enable statement
caching if your JDBC driver supports
this option. The Oracle JDBC driver
supports this option.

Basic Tuning Considerations

9-4 Oracle Fusion Middleware Tuning Performance Guide

Fetch Size The JDBC fetch size gives the JDBC driver a hint as
to the number of rows that should be fetched from
the database when more rows are needed.

For large queries that return a large number of
objects, you can configure the row fetch size used in
the query to improve performance by reducing the
number database hits required to satisfy the selection
criteria.

Most JDBC drivers use a default fetch size of 10. If
you are reading 1000 objects, increasing the fetch size
to 256 can significantly reduce the time required to
fetch the query's results.

Note: The default value means use the JDBC driver
default value, which is typically 10 rows for the
Oracle JDBC driver.

To configure this, use query hint
"eclipselink.jdbc.fetch-size".

Default Value: 0

The optimal fetch size is not always
obvious. Usually, a fetch size of one
half or one quarter of the total
expected result size is optimal. Note
that if you are unsure of the result set
size, incorrectly setting a fetch size
too large or too small can decrease
performance.

Batch Writing Batch writing can improve database performance by
sending groups of INSERT, UPDATE, and DELETE
statements to the database in a single transaction,
rather than individually.

The persistence property in persistence.xml
"eclipselink.jdbc.batch-writing"="JDBC"
is used to configure this.

Default Value: Off

Enable for the persistence unit.

Change Tracking This is an optimization feature that lets you tune the
way EclipseLink detects changes in an Entity.

Default Value: AttributeLevel if using weaving (Java
EE default), otherwise Deferred.

Leave at default AttributeLevel for
best performance.

Weaving Can disable through persistence.xml properties
"eclipselink.weaving"

Default Value: On

Leave on for best performance.

Table 9–1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-5

9.2.1.1 Tuning Entity Relationships Query Parameters
Table 9–2 shows the Entity relationship query parameters for performance tuning.

Read Only Setting an EJB3.0 JPA Entity to read-only ensures that
the entity cannot be modified and enables
EclipseLink to optimize unit of work performance.

Set through query hint "eclipselink.read-only".

Can also be set at entity level using @ReadOnly
class annotation.

Default Value: False

For optimal performance use
read-only on any query where the
resulting objects are not changed.

firstResult and
maxRows

These are JPA query properties that are used for
paging large queries. Typically, these properties can
be used when the entire result set of a query
returning a large number of rows is not needed. For
example, when a user scans the result set (a page at a
time) looking for a particular result and then
discards the rest of the data after the record is found.

Use on queries that can have a large
result set and only a subset of the
objects is needed.

Sequence number
pre-allocation

Sequence number pre-allocation enables a batch of
ids to be queried from the database simultaneously
in order to avoid accessing the database for an id on
every insert.

Default Value: 50

Always use sequence number
pre-allocation for best performance
for inserts. SEQUENCE or TABLE
sequencing should be used for
optimal performance, not IDENTITY
which does not allow pre-allocation.

Table 9–1 (Cont.) EJB/JPA Using Efficient SQL Statements and Querying

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

9-6 Oracle Fusion Middleware Tuning Performance Guide

Table 9–2 EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Batch Fetching The eclipselink.batch hint supplies EclipseLink
with batching information so subsequent queries
of related objects can be optimized in batches
instead of being retrieved one-by-one or in one
large joined read.

Batch fetching has three types: JOIN, EXISTS and
IN. The type is set through the query hint
"eclipselink.batch.type"

Note that batching is only allowed on queries
that have a single object in their select clause. The
query hint to configure this is "eclipselink.batch".
Batch fetching can also be set using the
@BatchFetch annotation.

Default Value: Off

Use for queries of tables with
columns mappings to table data
you need.You should only use
either batch fetching or joining if
you know that you are going to
access all of the data; if you do
not intend to access the
relationships, then just let
indirection defer their loading.

Batch fetching is more efficient
than joining because it avoids
reading duplicate data; therefore
for best performance for queries
where batch fetching is
supported, consider using batch
fetching instead of join reading.

Join Fetching Join fetching is a query optimization feature that
enables a single query for a class to return the
data to build the instances of that class and its
related objects.

Use this feature to improve query performance
by reducing database access. By default,
relationships are not join-read: each relationship
is fetched separately when accessed if you are
using lazy-loading, or as a separate database
query if you are not using lazy-loading.

You can specify the use of join in JPQL (JOIN
FETCH), or you can set it multi-level in a query
hint, "eclipselink.join-fetch". It also can be set in
the mapping annotation @JoinFetch.

Joining is part of the JPA specification, whereas
batch fetching is not. And, joining works on
queries that not work with batch fetching. For
example, joining works on queries with multiple
objects in the select clause, queries with a single
result, and for cursors and first/max results,
whereas batch fetching does not.

See Also: "Join Fetch" at
http://wiki.eclipse.org/EclipseLink/
UserGuide/JPA/Basic_JPA_
Development/Querying/Query_
Hints#Join_Fetch

Default Value: Not Used

Use for queries of tables with
columns mappings to table data
you need.You should only use
either batch fetching or joining if
you know that you are going to
access all of the data; if you do
not intend to access the
relationships, then just let
indirection defer their
loading.For the best performance
of selects, where batch fetching
is not supported, a join is
recommended

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-7

9.2.2 Tuning Cache Configuration
This section describes tuning the default internal cache that is provided by
EclipseLink. Oracle Toplink/EclipseLink can also be integrated with Oracle
Coherence. For information on configuring and tuning an EclipseLink Entity Cache
using Oracle Coherence, see Section 9.3.1, "Integrating with Oracle Coherence".

The default settings for EJB3.0/JPA used with the EclipseLink persistence manager
and cache are no locking, no cache refresh, and cache-usage DoNotCheckCache. To
ensure that your application uses the cache and does not read stale data from the cache
(when you do not have exclusive access), you must configure these and other isolation
related settings appropriately. Table 9–3 shows the cache configuration options.

For more information on cache configuration, see "Caching" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Caching.

Lazy loading Without lazy loading on, when EclipseLink
retrieves a persistent object, it retrieves all of the
dependent objects to which it refers. When you
configure lazy reading (also known as
indirection, lazy loading, or just-in-time reading)
for an attribute mapped with a relationship
mapping, EclipseLink uses an indirection object
as a place holder for the referenced object.

EclipseLink defers reading the dependent object
until you access that specific attribute. This can
result in a significant performance improvement,
especially if the application is interested only in
the contents of the retrieved object, rather than
the objects to which it is related.

See Also: "Lazy Loading" at
http://wiki.eclipse.org/EclipseLink/
UserGuide/JPA/Basic_JPA_
Development/Mapping/Basic_
Mappings/Lazy_Basics

Default Value: On for collection mapping
(ToMany mappings, @OneToMany,
@ManyToMany)

Default Value: Off for reference (ToOne
mappings, @OneToOne, @ManyToOne)

(Note that setting lazy loading On for
@OneToOne, @ManyToOne requires weaving,
which is On by default for Java Java EE.)

Use lazy loading for all
mappings. Using lazy loading
and querying the referenced
objects using batch fetching or
Join is more efficient than Eager
loading.

You may also consider using
optimized loading with
LoadGroups which allows a
query to force instantiation of
relationships.

Note: By default, EclipseLink assumes that your application has
exclusive access to the data it is using (that is, there are no external,
non-EclipseLink, applications modifying the data). If your application
does not have exclusive access to the data, then you must change
some of the defaults from Table 9–3.

Table 9–2 (Cont.) EJB3.0 Entity Relationship Query Performance Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

9-8 Oracle Fusion Middleware Tuning Performance Guide

Table 9–3 EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Object Cache EclipseLink sessions provide an object cache. EJB3.0
JPA applications that use the EclipseLink persistence
manager create EclipseLink sessions that by default
use this cache. This cache, known as the session cache,
retains information about objects that are read from or
written to the database, and is a key element for
improving the performance of an EclipseLink
application.

Typically, a server session's object cache is shared by
all client sessions acquired from it. Isolated sessions
provide their own session cache isolated from the
shared object cache.

The annotation type @Cacheable specifies whether an
entity should be cached. Caching is enabled when the
value of the persistence.xml caching element is
ENABLE_SELECTIVE or DISABLE_SELECTIVE. The
value of the Cacheable annotation is inherited by
subclasses; it can be overridden by specifying
Cacheable on a subclass.

Cacheable(false) means that the entity and its state
must not be cached by the provider.

Default Value: Enabled (shared is True)

Generally it is recommended
that you leave caching
enabled. If you have an object
that is always read from the
database, as in a pessimistic
locked object, then the cache
for that entity should be
disabled. Also, consider
disabling the cache for
infrequently accessed entities

Query Result Set Cache In addition to the object cache in EclipseLink,
EclipseLink also supports a query cache:

■ The object cache indexes objects by their primary
key, allowing primary key queries to obtain cache
hits. By using the object cache, queries that access
the data source can avoid the cost of building the
objects and their relationships if the object is
already present.

■ The query cache is distinct from the object cache.
The query cache is indexed by the query and the
query parameters - not the object's primary key.
This enables any query executed with the same
parameters to obtain a query cache hit and return
the same result set.

The query hints for a query cache are:

"eclipselink.query-cache"

"eclipselink.query-cache.size"

"eclipselink.query-cache.invalidation"

See Also: "Caching" at
http://wiki.eclipse.org/EclipseLink/User
Guide/JPA/Basic_JPA_Development/Caching
and "EclipseLink JPA Query Hints" at
http://wiki.eclipse.org/EclipseLink/User
Guide/JPA/Basic_JPA_
Development/Querying/Query_Hints

Default Value: Not Used

Use for frequently executed
non-primary key queries
with infrequently changing
result sets.Use with a cache
invalidation time out to
refresh as needed.

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-9

Cache Size Cache size can be configured through persistence
properties:
"eclipselink.cache.size.<entity>"

"eclipselink.cache.size.default"

"eclipselink.cache.type.default"

See Also: "Configuring Persistence Units Using
persistence.xml" at
http://wiki.eclipse.org/EclipseLink/User
Guide/JPA/Basic_JPA_
Development/Configuration/JPA/persistenc
e.xml and 'Class PersistenceUnitProperties" at
http://www.eclipse.org/eclipselink/api/2
.3/org/eclipse/persistence/config/Persis
tenceUnitProperties.html

Default Value: Type SoftWeak, Size 100 (per Entity).

Set the cache size relative to
how much memory you have
available, how many
instances of the class you
have, the frequency the
entities are accessed, and
how much caching you want
based on your tolerance for
stale data.

Consider creating larger
cache sizes for entities that
have many instances that are
frequently accessed and stale
data is not a big issue.

Consider using smaller cache
sizes or no cache for
frequently updated entities
that must always have fresh
data, or infrequently accessed
entities.

Locking Oracle supports the locking policies shown in
Table 9–4: no locking, optimistic, pessimistic, and
read-only.

Locking is set through JPA @Version annotation,
eclipselink.read-only

How to Use EclipseLink Locking at
http://wiki.eclipse.org/EclipseLink/Exam
ples/JPA/Locking

Default Value: No Locking

For entities that can be
updated concurrently,
consider using the locking
policy to prevent a user from
writing over another users
changes. To optimize
performance for read-only
entities, consider defining the
entity as read-only or use a
read-only query hint.

Table 9–3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

9-10 Oracle Fusion Middleware Tuning Performance Guide

Cache Usage By default, all query types search the database first
and then synchronize with the cache. Unless refresh
has been set on the query, the cached objects can be
returned without being refreshed from the database.
You can specify whether a given query runs against
the in-memory cache, the database, or both.

To get performance gains by avoiding the database
lookup for objects already in the cache, you can
configure that the search attempts to retrieve the
required object from the cache first, and then search
the data source only if the object is not in the cache.
For a query that looks for a single object based on a
primary key, this is done by setting the query hint
"eclipselink.cache-usage" to
CheckCacheByExactPrimaryKey.

Default Value: DoNotCheckCache

For faster performance on
primary key queries, where
the data is typically in the
cache and does not require a
lot of refreshing, it is
recommended to check the
cache first on these queries
(using
CheckCacheByExactPrim
aryKey).

This avoids the default
behavior of retrieving the
object from the database first
and then for objects already
in the cache, returning the
cached values (not updated
from the database access,
unless refresh has been set on
the query).

Isolation There is not a single tuning parameter that sets a
particular database transaction isolation level in a JPA
application that uses EclipseLink.

In a typical EJB3.0 JPA application, a variety of factors
affect when database transaction isolation levels apply
and to what extent a particular database transaction
isolation can be achieved, including the following:

■ Locking mode

■ Use of the Session Cache

■ External Applications

■ Database Login method
setTransactionIsolation

See Also: "Shared and Isolated Cache" at
http://wiki.eclipse.org/EclipseLink/User
Guide/JPA/Basic_JPA_
Development/Caching/Shared_and_Isolated

Table 9–3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-11

9.2.2.1 Cache Refreshing Scenarios
There are a few scenarios to consider for data refreshing in the cache, all with
performance implications:

■ In the case where you never want cached data and always want fresh data,
consider using an isolated cache (Shared=False). This is the case when certain data
in the application changes so frequently that it is desirable to always refresh the
data, instead of only refreshing the data when a conflict is detected.

■ In the case when you want to avoid stale data, but getting stale data is not a major
issue, then using a cache expiry policy would be the recommended solution. In
this case you should also use optimistic locking, which automatically refresh stale
objects when a locking error occurs. If using optimistic locking, you could also
enable the entity @Cache attributes alwaysRefresh and refreshOnlyIfNewer
to allow queries that access the database to refresh any stale objects returned, and
avoid refreshing invalid objects when unchanged. You may also want to enable
refreshing on certain query operations when you know you want refreshed data,
or even provide the option of refreshing something from the client that would call
a refreshing query.

■ In the case when you are not concerned about stale data, you should use
optimistic locking; this automatically refresh stale objects in the cache on locking
errors.

9.2.2.2 Tuning the Locking Mode Policies
The locking modes, as shown in Table 9–4, along with EclipseLink cache-usage and
query refreshing options, ensures data consistency for EJB entities using JPA. The
different combinations have both functional and performance implications, but often

Cache Refreshing By default, EclipseLink caches objects read from a data
source. Subsequent queries for these objects access the
cache and thus improve performance by reducing data
source access and avoiding the cost of rebuilding
object's and their relationships. Even if a query
accesses the data source, if the objects corresponding
to the records returned are in the cache, EclipseLink
uses the cached objects. This default caching policy
can lead to stale data in the application.

Refreshing can be enabled at the entity level
(alwaysRefresh or refreshOnlyIfNewer and
expiry) and at the query level (with the
eclipselink.refresh query hint). You can also
force queries to go to the database with
(disableHits). Using an appropriate locking policy
is the only way to ensure that stale or conflicting data
does not get committed to the database.

For more information see: Section 9.2.2.1, "Cache
Refreshing Scenarios"

See Also: "Caching Overview" at
http://wiki.eclipse.org/EclipseLink/User
Guide/JPA/Basic_JPA_
Development/Caching/Caching_Overview

Default Value: No Cache Refreshing

Try to avoid entity level
cache refresh and instead,
consider configuring the
following:

■ cache refresh on a
query-by-query basis

■ cache expiration

■ isolated caching

Table 9–3 (Cont.) EJB3.0 JPA Entities and Cache Configuration Options

Tuning Parameter Description Performance Notes

Basic Tuning Considerations

9-12 Oracle Fusion Middleware Tuning Performance Guide

the functional requirements for up-to-date data and data consistency lead to the
settings for these options, even when it may be at the expense of performance.

For more information, see "Locking" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Mapping/Locking.

9.2.3 Tuning the Mapping and Descriptor Configurations
EclipseLink can transform data between an object representation and a representation
specific to a data source. This transformation is called mapping and it is the core of a
EclipseLink project.

A mapping corresponds to a single data member of a domain object. It associates the
object data member with its data source representation and defines the means of
performing the two-way conversion between object and data source.

For information on Mapping see, "Configuring Mappings" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Mapping.

Table 9–4 Locking Mode Policies

Locking Option Description Performance Notes

No Locking The application does not prevent users overwriting
each other's changes. This is the default locking
mode. Use this mode if the Entity is never updated
concurrently or concurrent reads and updates to the
same rows with read-committed semantics is
sufficient.

Default Value: No Locking

In general, no locking is faster, but
may not meet your needs for data
consistency.

Optimistic All users have read access to the data. When a user
attempts to make a change, the application checks to
ensure the data has not changed since the user read
the data.

See Also: "Optimistic Locking" at
http://wiki.eclipse.org/EclipseLink/Us
erGuide/JPA/Basic_JPA_
Development/Mapping/Locking/Optimistic
_Locking

If infrequent concurrent updates to
the same rows are expected, then
optimistic locking may provide the
best performance while providing
data consistency guarantees.

Pessimistic The first user who accesses the data with the
purpose of updating it locks the data until
completing the update.

If frequent concurrent updates to the
same rows are expected, pessimistic
locking may be faster than optimistic
locking that is getting a lot of
concurrent access exceptions and
retries.

When using pessimistic locking at
the entity level, it is recommended
that you use it with an isolated cache
(Shared=False) for best performance.

Read Only Setting an EJB3.0 JPA Entity to read-only ensures
that the entity cannot be modified and enables
EclipseLink to optimize unit of work performance.

Set at the entity level using @ReadOnly class
annotation. Can also be set at the query level
through query hint "eclipselink.read-only".

Defining an entity as read-only can
perform better than an entity that is
not defined as read-only, yet does no
inserts, updates, or deletes, since it
enables EclipseLink to optimize the
unit of work performance. Always
use read-only for all read-only
operations

Advanced Tuning Considerations

Oracle TopLink (EclipseLink) JPA Performance Tuning 9-13

9.2.4 Using Data Partitioning
EclipseLink allows you to configure data partioning using the @Partitioned
annotation. Partitioning enables an application to scale information across multiple
databases; including clustered databases. For more information on using @Partioned
and other partitioning policy annotations, see "Data Partitioning" at
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Advanced_JPA_
Development/Data_Partitioning.

9.3 Advanced Tuning Considerations
After you have performed the modifications recommended in the previous section,
you can make additional changes that are specific to your deployment. Consider
carefully whether the recommendations in this section are appropriate for your
environment.

■ Integrating with Oracle Coherence

■ Analyzing EclipseLink JPA Entity Performance

9.3.1 Integrating with Oracle Coherence
Oracle Toplink can be integrated with Oracle Coherence. This integration is provided
through the Oracle TopLink Grid feature. With TopLink Grid, there are several types of
integration with EclipseLink JPA features.

For example:

■ Replace the default EclipseLink L2 cache with Coherence. This provides support
for very large L2 caches that span cluster nodes. EclipseLink's default L2 cache
improves performance for multi-threaded and Java EE server hosted applications
running in a single JVM, and requires configuring special cache coordination
features if used across a cluster.

■ Configure entities to execute queries in the Coherence data grid instead of the
database. This allows clustered application deployments to scale beyond
database-bound operations.

For more information on using EclipseLink JPA with a Coherence Cache, see "JPA on
the Grid" Approach at
http://www.oracle.com/technology/products/ias/toplink/doc/11110/
grid/tlgug003.htm

For more information on Oracle Toplink integration with Oracle Coherence, see
"Oracle TopLink Integration with Coherence Grid Guide" at
http://www.oracle.com/technology/products/ias/toplink/doc/11110/
grid/toc.htm

9.3.2 Analyzing EclipseLink JPA Entity Performance
This section lists a few features in EclipseLink that can help you analyze your JPA
application performance:

■ Form monitoring performance, see "Performance Monitoring" in the
EclipseLink User's Guide. Note that this tool is intended to profile and
monitor information in a multithreaded server environment.

■ For profiling performance, see "Measuring EclipseLink Performance with the
EclipseLink Profiler" in the EclipseLink User's Guide. Note that this tool is
intended for use with single-threaded finite use cases.

Advanced Tuning Considerations

9-14 Oracle Fusion Middleware Tuning Performance Guide

■ For debugging performance issues and testing, you can view the SQL generated
from EclipseLink. To view the SQL, increase the logging level to "FINE" by using
the EclipseLink JPA extensions for logging.

For best performance, remember to restore the logging levels to the default levels
when you are done profiling or debugging.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	Part I Introduction
	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation

	2 Top Performance Areas
	2.1 Identifying Top Performance Areas
	2.2 Securing Sufficient Hardware Resources
	2.3 Tuning the Operating System
	2.4 Tuning Java Virtual Machines (JVMs)
	2.5 Tuning the WebLogic Server
	2.6 Tuning Database Parameters
	2.6.1 Tuning Database Parameters
	2.6.2 Tuning Redo Logs Location and Sizing
	2.6.3 Tuning Automatic Segment-Space Management (ASSM)

	2.7 Reusing Database Connections
	2.8 Enabling Data Source Statement Caching
	2.9 Controlling Concurrency
	2.9.1 Setting Server Connection Limits
	2.9.1.1 MaxClients/ThreadsPerChild
	2.9.1.2 KeepAlive
	2.9.1.3 Tuning HTTP Server Modules

	2.9.2 Configuring Connection Pools
	2.9.3 Tuning the WebLogic Sever Thread Pool

	2.10 Setting Logging Levels

	3 Performance Planning
	3.1 About Oracle Fusion Middleware Performance Planning
	3.2 Performance Planning Methodology
	3.2.1 Define Your Performance Objectives
	3.2.1.1 Define Operational Requirements
	3.2.1.2 Identify Performance Goals
	3.2.1.3 Understand User Expectations
	3.2.1.4 Conduct Performance Evaluations

	3.2.2 Design Applications for Performance and Scalability
	3.2.3 Monitor and Measure Your Performance Metrics

	4 Monitoring Oracle Fusion Middleware
	4.1 About Oracle Fusion Middleware Management Tools
	4.1.1 Measuring Your Performance Metrics

	4.2 Oracle Enterprise Manager Fusion Middleware Control
	4.3 Oracle WebLogic Server Administration Console
	4.4 WebLogic Diagnostics Framework (WLDF)
	4.5 WebLogic Scripting Tool (WLST)
	4.6 DMS Spy Servlet
	4.6.1 Viewing Performance Metrics Using the Spy Servlet
	4.6.2 Using the DMS Spy Servlet

	4.7 Native Operating System Performance Commands
	4.8 Network Performance Monitoring Tools

	5 Using the Oracle Dynamic Monitoring Service
	5.1 About Dynamic Monitoring Service (DMS)
	5.1.1 Understanding Common DMS Terms and Concepts
	5.1.1.1 DMS Sensors
	5.1.1.1.1 DMS PhaseEvent Sensors
	5.1.1.1.2 DMS Event Sensors
	5.1.1.1.3 DMS State Sensors
	5.1.1.1.4 Sensor Naming Conventions

	5.1.1.2 DMS Nouns
	5.1.1.2.1 General DMS Naming
	5.1.1.2.2 General DMS Naming Conventions and Character Sets
	5.1.1.2.3 Noun and Noun Type Naming Conventions

	5.1.1.3 DMS Tracing and Events

	5.2 Understanding DMS Availability
	5.3 Understanding DMS Architecture
	5.4 Viewing DMS Metrics
	5.4.1 Viewing Metrics Using the Spy Servlet
	5.4.2 Viewing Metrics with WLDF (WebLogic Diagnostic Framework)
	5.4.3 Viewing metrics with WLST (Oracle WebLogic Server)
	5.4.4 Viewing metrics with JConsole
	5.4.5 Viewing metrics with Oracle Enterprise Manager

	5.5 Accessing DMS Metrics with WLDF
	5.6 DMS Execution Context
	5.6.1 DMS Execution Requests and Sub-Tasks
	5.6.2 DMS Execution Context Usage
	5.6.3 DMS Execution Context Communication

	5.7 DMS Tracing and Events
	5.7.1 Configuring the DMS Event System
	5.7.1.1 Adding and Editing Filters
	5.7.1.2 Adding and Editing Destinations
	5.7.1.3 Adding and Editing Event Routes
	5.7.1.4 Compound Operations

	5.7.2 Configuring Destinations
	5.7.2.1 LoggerDestination
	5.7.2.1.1 Static Loggers and Handlers
	5.7.2.1.2 Dynamic Loggers and Handlers
	5.7.2.1.3 Default Locations of the logging.xml File
	5.7.2.1.4 Using a CLI Command to Query the Trace Log File

	5.7.2.2 MBean Creator Destination
	5.7.2.2.1 Metric MBean Object Name

	5.7.2.3 HTTP Request Tracker Destination
	5.7.2.3.1 Executing the HTTP Request Tracker Dump

	5.7.2.4 Java Flight Recorder Destination
	5.7.2.4.1 Dynamically Derived JFR Event Types - Names, Values and Descriptions
	5.7.2.4.2 Examples of Dynamically Derived Producers and Events

	5.7.3 Understanding the Format of DMS Events in Log Messages
	5.7.4 Understanding DMS Event Actions

	5.8 DMS Best Practices

	Part II Core Components
	6 Oracle HTTP Server Performance Tuning
	6.1 About Oracle HTTP Server
	6.2 Monitoring Oracle HTTP Server Performance
	6.3 Basic Tuning Considerations
	6.3.1 Tuning Oracle HTTP Server Directives
	6.3.2 Reducing Httpd Process Availability with Persistent Connections
	6.3.3 Logging Options for Oracle HTTP Server
	6.3.3.1 Access Logging
	6.3.3.2 Configuring the HostNameLookups Directive
	6.3.3.3 Error logging

	6.4 Advanced Tuning Considerations
	6.4.1 Tuning Oracle HTTP Server
	6.4.1.1 Analyzing Static Versus Dynamic Requests
	6.4.1.2 Managing PL/SQL Requests
	6.4.1.3 Limiting the Number of Enabled Modules
	6.4.1.4 Tuning the File Descriptor Limit

	6.4.2 Tuning Oracle HTTP Server Security
	6.4.2.1 Tuning Oracle HTTP Server Secure Sockets Layer (SSL)
	6.4.2.2 Tuning Oracle HTTP Server Port Tunneling

	7 Oracle Metadata Service (MDS) Performance Tuning
	7.1 About Oracle Metadata Services (MDS)
	7.2 Monitoring Oracle Metadata Service Performance
	7.3 Basic Tuning Considerations
	7.3.1 Tuning Database Repository
	7.3.1.1 Collecting Schema Statistics
	7.3.1.2 Increasing Redo Log Size
	7.3.1.3 Reclaiming Disk Space
	7.3.1.4 Monitoring the Database Performance

	7.3.2 Tuning Cache Configuration
	7.3.2.1 Enabling Document Cache

	7.3.3 Purging Document Version History
	7.3.3.1 Auto Purge
	7.3.3.2 Manual Purge

	7.3.4 Using Database Polling Interval for Change Detection

	7.4 Advanced Tuning Considerations
	7.4.1 Analyzing Performance Impact from Customization

	Part III Oracle Fusion Middleware Server Components
	8 Oracle Application Development Framework Performance Tuning
	8.1 About Oracle ADF
	8.2 Basic Tuning Considerations
	8.2.1 Oracle ADF Faces Configuration and Profiling
	8.2.2 Performance Considerations for ADF Faces
	8.2.3 Tuning ADF Faces Component Attributes
	8.2.4 Performance Considerations for Table and Tree Components
	8.2.5 Performance Considerations for autoSuggest
	8.2.6 Data Delivery - Lazy versus Immediate
	8.2.7 Performance Considerations for DVT Components

	8.3 Advanced Tuning Considerations
	8.3.1 ADF Server Performance
	8.3.1.1 HTTP Session Timeout Tuning
	8.3.1.2 View Objects Tuning
	8.3.1.3 Batch Processing
	8.3.1.4 RangeSize Tuning
	8.3.1.5 Application Module Design Considerations
	8.3.1.6 Application Module Pooling
	8.3.1.7 ADFc: Region Usage
	8.3.1.8 Defer Task Flow Execution
	8.3.1.9 Task Flow in a Popup
	8.3.1.10 Configuring the Task Flow Inside Switcher
	8.3.1.11 Reusing Static Data
	8.3.1.12 Conditional Validations

	9 Oracle TopLink (EclipseLink) JPA Performance Tuning
	9.1 About Oracle TopLink and EclipseLink
	9.2 Basic Tuning Considerations
	9.2.1 Creating Efficient SQL Statements and Queries
	9.2.1.1 Tuning Entity Relationships Query Parameters

	9.2.2 Tuning Cache Configuration
	9.2.2.1 Cache Refreshing Scenarios
	9.2.2.2 Tuning the Locking Mode Policies

	9.2.3 Tuning the Mapping and Descriptor Configurations
	9.2.4 Using Data Partitioning

	9.3 Advanced Tuning Considerations
	9.3.1 Integrating with Oracle Coherence
	9.3.2 Analyzing EclipseLink JPA Entity Performance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

