
[image: Oracle Corporation]

Oracle® Fusion Middleware

Programming RMI for Oracle WebLogic Server

11g Release 1 (10.3.6)

E13721-07

April 2015

This document is written for application developers who want to build e-commerce applications using Remote Method Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP) features.

Oracle Fusion Middleware Programming RMI for Oracle WebLogic Server 11g Release 1 (10.3.6)

E13721-07

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	Examples in the WebLogic Server Distribution

	New and Changed Features in This Release

2 Understanding WebLogic RMI

	What is WebLogic RMI?
	Features of WebLogic RMI

3 WebLogic RMI Features

	WebLogic RMI Overview
	WebLogic RMI Security Support
	WebLogic RMI Transaction Support
	Failover and Load Balancing RMI Objects
	Clustered RMI Applications
	Load Balancing RMI Objects
	Parameter-Based Routing for Clustered Objects
	Custom Call Routing and Collocation Optimization

	Creating Pinned Services
	Dynamic Proxies in RMI
	Using the RMI Timeout

4 Using the WebLogic RMI Compiler

	Overview of the WebLogic RMI Compiler
	WebLogic RMI Compiler Features
	Hot Code Generation
	Proxy Generation
	Additional WebLogic RMI Compiler Features

	WebLogic RMI Compiler Options
	Non-Replicated Stub Generation
	Using Persistent Compiler Options

5 Using WebLogic RMI with T3 Protocol

	RMI Communication in WebLogic Server
	Determining Connection Availability
	Using a WebLogic T3/T3s Client Proxy

6 How to Implement WebLogic RMI

	Procedures for Implementing WebLogic RMI
	Creating Classes That Can Be Invoked Remotely
	Step 1. Write a Remote Interface
	Step 2. Implement the Remote Interface
	Step 3. Compile the Java Class
	Step 4. Compile the Implementation Class with RMI Compiler
	Step 5: Write Code That Invokes Remote Methods

	Hello Code Sample

7 Using RMI over IIOP

	What is RMI over IIOP?
	Overview of WebLogic RMI-IIOP
	Support for RMI-IIOP with RMI (Java) Clients
	Support for RMI-IIOP with Tuxedo Client
	Support for RMI-IIOP with CORBA/IDL Clients

	Protocol Compatibility
	Server-to-Server Interoperability
	Client-to-Server Interoperability

8 WebLogic RMI Integration with Load Balancers

	How WebLogic Server Supports Load Balancers
	HTTP Tunneled T3 Load Balancing
	How to Configure the External Listen Address
	Example Custom Channel Configuration for a Load Balancer

	Session Failover
	Cookie Persistence
	Pinned Objects
	Stateful Session EJBs

	Native T3 Load Balancing
	Failover Support

9 Configuring WebLogic Server for RMI-IIOP

	Set the Listening Address
	Setting Network Channel Addresses
	Considerations for Proxys and Firewalls
	Considerations for Clients with Multiple Connections

	Using a IIOPS Thin Client Proxy
	Using RMI-IIOP with SSL and a Java Client
	Accessing WebLogic Server Objects from a CORBA Client through Delegation
	Overview of Delegation
	Example of Delegation

	Configuring CSIv2 authentication
	Using RMI over IIOP with a Hardware Load Balancer
	Limitations of WebLogic RMI-IIOP
	Limitations Using RMI-IIOP on the Client
	Limitations Developing Java IDL Clients
	Limitations of Passing Objects by Value

	Propagating Client Identity

10 Best Practices for Application Design

	Use java.rmi
	Use PortableRemoteObject
	Use WebLogic Work Areas
	How to Handle Changes in Security Context
	Guidelines on Using the RMI Timeout

A CORBA Support for WebLogic Server

	Specification References
	Supported Specification Details
	Tools

Preface

This preface describes the document accessibility features and conventions used in this guide—Programming RMI for Oracle WebLogic Server

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction and Roadmap

This chapter describes the contents and organization of this guide—Programming RMI for Oracle WebLogic Server.

	
Document Scope and Audience

	
Guide to this Document

	
Related Documentation

	
Samples and Tutorials

	
New and Changed Features in This Release

Document Scope and Audience

This document is written for application developers who want to build e-commerce applications using Remote Method Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP) features. It is assumed that readers know Web technologies, object-oriented programming techniques, and the Java programming language. This document emphasizes the value-added features provided by WebLogic Server and key information about how to use WebLogic Server features when developing applications with RMI.

Guide to this Document

This document describes the Oracle WebLogic Server RMI implementation of the JavaSoft Remote Method Invocation (RMI) specification. The Oracle implementation is known as WebLogic RMI.

	
This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization of this guide.

	
Chapter 2, "Understanding WebLogic RMI," is an overview of WebLogic RMI features and its architecture.

	
Chapter 3, "WebLogic RMI Features," describes the features that you use to program RMI for WebLogic Server.

	
Chapter 4, "Using the WebLogic RMI Compiler," provides information on the WebLogic RMI compiler.

	
Chapter 5, "Using WebLogic RMI with T3 Protocol," provides information on using RMI and the T3 protocol.

	
Chapter 6, "How to Implement WebLogic RMI," provides a simple step by step example of how to implement WebLogic RMI.

	
Chapter 7, "Using RMI over IIOP," defines RMI over IIOP and provides general information about the WebLogic Server RMI-IIOP implementation.

	
Chapter 8, "WebLogic RMI Integration with Load Balancers," describes WebLogic RMI support for load balancers, including hardware load balancers and web servers with a web server plug-in.

	
Chapter 9, "Configuring WebLogic Server for RMI-IIOP," describes concepts, issues, and procedures related to using WebLogic Server to support RMI-IIOP applications.

	
Chapter 10, "Best Practices for Application Design,"describes recommended design patterns when developing RMI and RMI over IIOP applications.

	
Appendix A, "CORBA Support for WebLogic Server," provides information on CORBA support for WebLogic Server.

Related Documentation

For information on topics related to WebLogic RMI, see the following documents:

	
Java RemoteMethod Invocation (RMI) at http://download.oracle.com/javase/6/docs/technotes/guides/rmi/ is a link to basic tutorials on Remote Method Invocation.

	
Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic Server applications.

	
Programming JNDI for Oracle WebLogic Server is a guide using the WebLogic Java Naming and Directory Interface.

	
Programming Stand-alone Clients for Oracle WebLogic Server is a guide to developing common stand alone clients that interoperate with WebLogic Server.

	
Performance and Tuning for Oracle WebLogic Server contains information on monitoring and improving the performance of WebLogic Server applications.

	
http://www.oracle.com/technetwork/java/javase/tech/corba-135898.html provides an overview of CORBA and Java platform.

	
http://download.oracle.com/javase/6/docs/technotes/guides/idl/index.html contains information using standard IDL (Object Management Group Interface Definition Language) and IIOP.

	
http://www.omg.org is the Object Management Group home page.

	
CORBA Language Mapping Specification at http://www.omg.org/technology/documents/index.htm

Samples and Tutorials

In addition to this document, Oracle provides a variety of code samples and tutorials for developers. The examples and tutorials illustrate WebLogic Server in action, and provide practical instructions on how to perform key development tasks.

Oracle recommends that you run some or all of the RMI examples before developing your own applications.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java Platform, Enterprise Edition (Java EE) application shipped with WebLogic Server that simulates an independent, centralized medical record management system. The MedRec application provides a framework for patients, doctors, and administrators to manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-recommended best practices. MedRec is included in the WebLogic Server distribution, and can be accessed from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level installation directory for WebLogic Platform.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs) that work together to process requests from web applications, web services, and workflow applications, and future client applications. The application includes message-driven, stateless session, stateful session, and entity EJBs.

Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level directory of your WebLogic Server installation. You can start the examples server, and obtain information about the samples and how to run them from the WebLogic Server Start menu.

New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

2 Understanding WebLogic RMI

This chapter describes the features of WebLogic RMI.

	
What is WebLogic RMI?

	
Features of WebLogic RMI

What is WebLogic RMI?

Remote Method Invocation (RMI) is the standard for distributed object computing in Java. RMI enables an application to obtain a reference to an object that exists elsewhere in the network, and then invoke methods on that object as though it existed locally in the client's virtual machine. RMI specifies how distributed Java applications should operate over multiple Java virtual machines.

This document contains information about using WebLogic RMI, but it is not a beginner's tutorial on remote objects or writing distributed applications. If you are just beginning to learn about RMI, visit http://download.oracle.com/javase/1.5.0/docs/guide/rmi/ and review the RMI Tutorial.

Features of WebLogic RMI

The following table highlights important features of WebLogic implementation of RMI:

Table 2-1 WebLogic RMI Features

	Feature	WebLogic RMI
	
Overall performance

	
Enhanced by WebLogic RMI integration into the WebLogic Server framework, which provides underlying support for communications, scalability, management of threads and sockets, efficient garbage collection, and server-related support.

	
Standards compliant

	
Compliance with the Java Platform Standard Edition 6.0 API Specification

	
Failover and Load balancing

	
WebLogic Server support for failover and load balancing of RMI objects.

	
WebLogic RMI compiler

	
Stubs and skeletons dynamically generated by WebLogic RMI at run time, which obviates need to explicitly run weblogic.rmic, except for clusterable or Internet Inter-ORB Protocol (IIOP) clients.

	
Dynamic Proxies

	
A class used by the clients of a remote object. In the case of RMI, skeleton and a stub classes are used. The stub class is the instance that is invoked upon in the client's Java Virtual Machine (JVM). The skeleton class, which exists in the remote JVM, unmarshals the invoked method and arguments on the remote JVM, invokes the method on the instance of the remote object, and then marshals the results for return to the client.

	
Security Support

	
No Security Manager required. WebLogic Server implements authentication, authorization, and Java EE security services.

	
Transaction Support

	
WebLogic Server supports transactions in the Java Platform, Enterprise Edition (Java EE) programming model.

	
Internet Protocol version 6 (IPv6) Support

	
Support for 128 bit addressing space.

3 WebLogic RMI Features

This chapter describes the WebLogic RMI features and guidelines required to program RMI for use with WebLogic Server.

	
WebLogic RMI Overview

	
WebLogic RMI Security Support

	
WebLogic RMI Transaction Support

	
Failover and Load Balancing RMI Objects

	
Creating Pinned Services

	
Dynamic Proxies in RMI

	
Using the RMI Timeout

WebLogic RMI Overview

WebLogic RMI is divided between a client and server framework. The client run time does not have server sockets and therefore does not listen for connections. It obtains its connections through the server. Only the server knows about the client socket. Therefore if you plan to host a remote object on the client, you must connect the client to WebLogic Server. WebLogic Server processes requests for and passes information to the client. In other words, client-side RMI objects can only be reached through a single WebLogic Server, even in a cluster. If a client-side RMI object is bound into the JNDI naming service, it only be reachable as long as the server that carried out the bind is reachable.

WebLogic RMI Security Support

WebLogic Server implements authentication, authorization, and Java EE security services. For more information see Programming WebLogic Security.

WebLogic RMI Transaction Support

WebLogic Server supports transactions in the Java Platform, Enterprise Edition (Java EE) programming model. For detailed information on using transactions in WebLogic RMI applications, see the following:

	
"Transactions in WebLogic Server RMI Applications" in Programming JTA for Oracle WebLogic Server provides an overview on how transactions are implemented in WebLogic RMI applications.

	
"Transactions in RMI Applications" in Programming JTA for Oracle WebLogic Server provides general guidelines when implementing transactions in RMI applications for WebLogic Server.

Failover and Load Balancing RMI Objects

The following sections contain information on WebLogic Server support for failover and load balancing of RMI objects:

	
Clustered RMI Applications

	
Load Balancing RMI Objects

	
Parameter-Based Routing for Clustered Objects

Clustered RMI Applications

For clustered RMI applications, failover is accomplished using the object's replica-aware stub. When a client makes a call through a replica-aware stub to a service that fails, the stub detects the failure and retries the call on another replica.

To make Java EE services available to a client, WebLogic binds an RMI stub for a particular service into its JNDI tree under a particular name. The RMI stub is updated with the location of other instances of the RMI object as the instances are deployed to other servers in the cluster. If a server within the cluster fails, the RMI stubs in the other server's JNDI tree are updated to reflect the server failure.

You specify the generation of replica-aware stubs for a specific RMI object using the -clusterable option of the WebLogic RMI compiler, as explained in Table 4-1, "WebLogic RMI Compiler Options". For example:

 $ java weblogic.rmic -clusterable classes

For more information, see "Replication and Failover for EJBs and RMIs" in Using Clusters for Oracle WebLogic Server.

Load Balancing RMI Objects

The load balancing algorithm for an RMI object is maintained in the replica-aware stub obtained for a clustered object. You specify the load balancing algorithm for a specific RMI object using the -loadAlgorithm <algorithm> option of the WebLogic RMI compiler. A load balancing algorithm that you configure for an object overrides the default load balancing algorithm for the cluster. The WebLogic Server RMI compiler supports the following load balancing algorithms:

	
"Round Robin Load Balancing"

	
"Weight-Based Load Balancing"

	
"Random Load Balancing"

	
"Server Affinity Load Balancing Algorithms"

For example, to set load balancing on an RMI object to round robin, use the following rmic options:

 $ java weblogic.rmic -clusterable -loadAlgorithm round-robin classes

To set load balancing on an RMI object to weight-based server affinity, use rmic options:

 $ java weblogic.rmic -clusterable -loadAlgorithm weight-based -stickToFirstServer classes

For more information, see "Load Balancing for EJBs and RMI Objects" in Using Clusters for Oracle WebLogic Server.

Parameter-Based Routing for Clustered Objects

Parameter-based routing allows you to control load balancing behavior at a lower level. Any clustered object can be assigned a CallRouter using the weblogic.rmi.cluster.CallRouter interface. This is a class that is called before each invocation with the parameters of the call. The CallRouter is free to examine the parameters and return the name server to which the call should be routed.

 weblogic.rmi.cluster.CallRouter.

 Class java.lang.Object
 Interface weblogic.rmi.cluster.CallRouter
 (extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to enable parameter-based routing. Run rmic on the service implementation using these options (to be entered on one line):

 $ java weblogic.rmic -clusterable -callRouter <callRouterClass> <remoteObjectClass>

The call router is called by the clusterable stub each time a remote method is invoked. The router is responsible for returning the name of the server to which the call should be routed.

Each server in the cluster is uniquely identified by its name as defined with the WebLogic Server Console. These are the names that the method router must use for identifying servers.

Consider the ExampleImpl class which implements a remote interface Example, with one method foo:

 public class ExampleImpl implements Example {
 public void foo(String arg) { return arg; }
 }

This CallRouter implementation ExampleRouter ensures that all foo calls with 'arg' < "n " go to server1 (or server3 if server1 is unreachable) and that all calls with 'arg' >= "n " go to server2 (or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {
 private static final String[] aToM = { "server1", "server3" };
 private static final String[] nToZ = { "server2", "server3" };

 public String[] getServerList(Method m, Object[] params) {
 if (m.GetName().equals("foo")) {
 if (((String)params[0]).charAt(0) < 'n') {
 return aToM;
 } else {
 return nToZ;
 }
 } else {
 return null;
 }
 }
}

This rmic call associates the ExampleRouter with ExampleImpl to enable parameter-based routing:

 $ rmic -clusterable -callRouter ExampleRouter ExampleImpl

Custom Call Routing and Collocation Optimization

If a replica is available on the same server instance as the object calling it, the call is not load-balanced as it is more efficient to use the local replica. For more information, see "Optimization for Collocated Objects" in Using Clusters for Oracle WebLogic Server.

Creating Pinned Services

You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These stubs are known as "pinned " services, because after they are registered they are available only from the host with which they are registered and will not provide transparent failover or load balancing. Pinned services are available cluster-wide, because they are bound into the replicated cluster-wide JNDI tree. However, if the individual server that hosts the pinned services fails, the client cannot failover to another server.

You specify the generation of non-replicated stubs for a specific RMI object by not using the -clusterable option of the WebLogic RMI compiler, as explained in Table 4-1, "WebLogic RMI Compiler Options". For example:

 $ java weblogic.rmic classes

Dynamic Proxies in RMI

A dynamic proxy or proxy is a class used by the clients of a remote object. This class implements a list of interfaces specified at runtime when the class is created. In the case of RMI, dynamically generated bytecode and proxy classes are used. The proxy class is the instance that is invoked upon in the client's Java Virtual Machine (JVM). The proxy class marshals the invoked method name and its arguments; forwards these to the remote JVM. After the remote invocation is completed and returns, the proxy class unmarshals the results on the client. The generated bytecode — which exists in the remote JVM — unmarshals the invoked method and arguments on the remote JVM, invokes the method on the instance of the remote object, and then marshals the results for return to the client.

Using the RMI Timeout

WebLogic Server allows you to specify a timeout for synchronous remote call. This allows an RMI client making a remote call to return before the remote method that it invoked has returned from the server instance it called. This can be useful in legacy applications where a client wants to be able to return quickly if there is no response from the remote system. See Guidelines on Using the RMI Timeout.

To implement a synchronous RMI timeout, use the remote-client-timeout deployment descriptor element found in the weblogic-ejb-jar.xml. For more information, see the "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

4 Using the WebLogic RMI Compiler

This chapter describes how to use the features and options of the WebLogic RMI compiler.

	
Overview of the WebLogic RMI Compiler

	
WebLogic RMI Compiler Features

	
WebLogic RMI Compiler Options

Overview of the WebLogic RMI Compiler

The WebLogic RMI compiler (weblogic.rmic) is a command-line utility for generating and compiling remote objects. Use weblogic.rmic to generate dynamic proxies on the client-side for custom remote object interfaces in your application and provide hot code generation for server-side objects.

You only need to explicitly run weblogic.rmic for clusterable or IIOP clients. WebLogic RMI over IIOP extends the RMI programming model by providing the ability for clients to access RMI remote objects using the Internet Inter-ORB Protocol (IIOP). See Chapter 7, "Using RMI over IIOP."

WebLogic RMI Compiler Features

The following sections provide information on WebLogic RMI Compiler features for this release:

	
Hot Code Generation

	
Proxy Generation

	
Additional WebLogic RMI Compiler Features

Hot Code Generation

When you run rmic, you use WebLogic Server's hot code generation feature to automatically generate bytecode in memory for server classes. This bytecode is generated on the fly as needed for the remote object. WebLogic Server no longer generates the skeleton class for the object when weblogic.rmic is run.

Hot code generation produces the bytecode for a server-side class that processes requests from the dynamic proxy on the client. The dynamically created bytecode de-serializes client requests and executes them against the implementation classes, serializing results and sending them back to the proxy on the client. The implementation for the class is bound to a name in the WebLogic RMI registry in WebLogic Server.

Proxy Generation

The default behavior of the WebLogic RMI compiler is to produce proxies for the remote interface and for the remote classes to share the proxies. A proxy is a class used by the clients of a remote object. In the case of RMI, dynamically generated bytecode and proxy classes are used.

For example, example.hello.HelloImpl and counter.example.CiaoImpl are represented by a single proxy class and bytecode—the proxy that matches the remote interface implemented by the remote object, in this case, example.hello.Hello.

When a remote object implements more than one interface, the proxy names and packages are determined by encoding the set of interfaces. You can override this default behavior with the WebLogic RMI compiler option -nomanglednames, which causes the compiler to produce proxies specific to the remote class. When a class-specific proxy is found, it takes precedence over the interface-specific proxy.

In addition, with WebLogic RMI proxy classes, the proxies are not final. References to collocated remote objects are references to the objects themselves, not to the proxies.

The dynamic proxy class is the serializable class that is passed to the client. A client acquires the proxy for the class by looking up the class in the WebLogic RMI registry. The client calls methods on the proxy just as if it were a local class and the proxy serializes the requests and sends them to WebLogic Server.

Additional WebLogic RMI Compiler Features

Other features of the WebLogic RMI compiler include the following:

	
Signatures of remote methods do not need to throw RemoteException.

	
Remote exceptions can be mapped to RuntimeException.

	
Remote classes can also implement non-remote interfaces.

WebLogic RMI Compiler Options

The WebLogic RMI compiler accepts any option supported by the Java compiler; for example, you could add -d \classes examples.hello.HelloImpl to the compiler option at the command line. All other options supported by the Java compiler can be used and are passed directly to the Java compiler.

The following table lists java weblogic.rmic options. Enter these options after java weblogic.rmic and before the name of the remote class.

 $java weblogic.rmic [options] <classes>...

Table 4-1 WebLogic RMI Compiler Options

	Option	Description
	
-help

	
Prints a description of the options.

	
-version

	
Prints version information.

	
-d <dir>

	
Specifies the target (top level) directory for compilation.

	
-dispatchPolicy <queueName>

	
Specifies a configured execute queue that the service should use to obtain execute threads in WebLogic Server. For more information, see "Using Execute Queues to Control Thread Usage" in Performance and Tuning for Oracle WebLogic Server.

	
-oneway

	
Specifies all calls are one-way calls.

	
-idl

	
Generates IDLs for remote interfaces.

	
-idlOverwrite

	
Overwrites existing IDL files.

	
-idlVerbose

	
Displays verbose information for IDL information.

	
-idlDirectory <idlDirectory>

	
Specifies the directory where IDL files will be created (Default is the current directory).

	
-idlFactories

	
Generates factory methods for valuetypes.

	
-idlNoValueTypes

	
Prevents the generation of valuetypes and the methods/attributes that contain them.

	
-idlNoAbstractInterfaces

	
Prevents the generation of abstract interfaces and the methods/attributes that contain them.

	
-idlStrict

	
Generates IDL according to OMG standard.

	
-idlVisibroker

	
Generate IDL compatible with Visibroker 4.5 C++.

	
-idlOrbix

	
Generate IDL compatible with Orbix 2000 2.0 C++.

	
-iiopTie

	
Generate CORBA skeletons using Sun's version of rmic.

	
-iiopSun

	
Generate CORBA stubs using Sun's version of rmic.

	
-nontransactional

	
Suspends the transaction before making the RMI call and resumes after the call completes.

	
-compiler <javac>

	
Specifies the Java compiler. If not specified, the -compilerclass option will be used.

	
-compilerclass <com.sun.tools.javac.Main>

	
Compiler class to invoke.

	
-clusterable

	
This cluster-specific options marks the service as clusterable (can be hosted by multiple servers in a WebLogic Server cluster). Each hosting object, or replica, is bound into the naming service under a common name. When the service stub is retrieved from the naming service, it contains a replica-aware reference that maintains the list of replicas and performs load-balancing and fail-over between them.

	
-loadAlgorithm <algorithm>

	
Only for use in conjunction with -clusterable. Specifies a service-specific algorithm to use for load-balancing and fail-over (Default is weblogic.cluster.loadAlgorithm). Must be one of the following: round-robin, random, or weight-based.

	
-callRouter <callRouterClass>

	
This cluster-specific option used in conjunction with -clusterable specifies the class to be used for routing method calls. This class must implement weblogic.rmi.cluster.CallRouter. If specified, an instance of the class is called before each method call and can designate a server to route to based on the method parameters. This option either returns a server name or null. Null means that you use the current load algorithm.

	
-stickToFirstServer

	
This cluster-specific option used in conjunction with -clusterable enables "sticky " load balancing. The server chosen for servicing the first request is used for all subsequent requests.

	
-methodsAreIdempotent

	
This cluster-specific option used in conjunction with -clusterable indicates that the methods on this class are idempotent. This allows the stub to attempt recovery from any communication failure, even if it can not ensure that failure occurred before the remote method was invoked. By default (if this option is not used), the stub only retries on failures that are guaranteed to have occurred before the remote method was invoked.

	
-iiop

	
Generates IIOP stubs from servers.

	
-iiopDirectory

	
Specifies the directory where IIOP proxy classes are written.

	
-timeout

	
Used in conjunction with "remote-client-timeout".

	
-commentary

	
Emits commentary.

	
-nomanglednames

	
Causes the compiler to produce proxies specific to the remote class.

	
-g

	
Compile debugging information into the class.

	
-O

	
Compile with optimization.

	
-nowarn

	
Compile without warnings.

	
-verbose

	
Compile with verbose output.

	
-verboseJavac

	
Enable Java compiler verbose output.

	
-nowrite

	
Prevent the generation of .class files.

	
-deprecation

	
Provides warnings for deprecated calls.

	
-classpath <path>

	
Specifies the classpath to use.

	
-J<option>

	
Use to pass flags through to the Java runtime.

	
-keepgenerated

	
Allows you to keep the source of generated stub and skeleton class files when you run the WebLogic RMI compiler.

	
-disableHotCodeGen

	
Causes the compiler to create stubs at skeleton classes when compiled.

Non-Replicated Stub Generation

You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These stubs are known as "pinned " services, because after they are registered they are available only from the host with which they are registered and will not provide transparent failover or load balancing. Pinned services are available cluster-wide, because they are bound into the replicated cluster-wide JNDI tree. However, if the individual server that hosts the pinned services fails, the client cannot failover to another server.

Using Persistent Compiler Options

During deployment, appc and ejbc run each EJB container class through the RMI compiler to create RMI descriptors necessary to dynamically generate stubs and skeletons. Use the weblogic-ejb-jar.xml file to persist iiop-security-descriptor elements. For more information, see "weblogic-ejb-jar.xml Elements" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

5 Using WebLogic RMI with T3 Protocol

This chapter provides information on using WebLogic RMI with T3 protocol.

	
RMI Communication in WebLogic Server

	
Determining Connection Availability

	
Using a WebLogic T3/T3s Client Proxy

RMI Communication in WebLogic Server

RMI communications in WebLogic Server use the T3 protocol to transport data between WebLogic Server and other Java programs, including clients and other WebLogic Server instances. A server instance keeps track of each Java Virtual Machine (JVM) with which it connects, and creates a single T3 connection to carry all traffic for a JVM. See "Configure T3 protocol" in Oracle WebLogic Server Administration Console Help.

For example, if a Java client accesses an enterprise bean and a JDBC connection pool on WebLogic Server, a single network connection is established between the WebLogic Server JVM and the client JVM. The EJB and JDBC services can be written as if they had sole use of a dedicated network connection because the T3 protocol invisibly multiplexes packets on the single connection.

Determining Connection Availability

Any two Java programs with a valid T3 connection—such as two server instances, or a server instance and a Java client—use periodic point-to-point "heartbeats " to announce and determine continued availability. Each end point periodically issues a heartbeat to the peer, and similarly, determines that the peer is still available based on continued receipt of heartbeats from the peer.

	
The frequency with which a server instance issues heartbeats is determined by the heartbeat interval, which by default is 60 seconds.

	
The number of missed heartbeats from a peer that a server instance waits before deciding the peer is unavailable is determined by the heartbeat period, which by default, is 4. Hence, each server instance waits up to 240 seconds, or 4 minutes, with no messages—either heartbeats or other communication—from a peer before deciding that the peer is unreachable.

	
Changing timeout defaults is not recommended.

Using a WebLogic T3/T3s Client Proxy

The WebLogic T3/T3s Client Proxy provides the ability to route outbound client requests to a proxy WebLogic T3 server. In this situation, each client routes all outbound requests to the proxy server. The proxy server then directs the request to the WebLogic Server instance that services the request. On both of client and server side, the configuration affects all applications using a T3 connection as client. For example, if an application creates T3 connection to access a WebLogic T3 server, such as calling methods on remote objects using WebLogic RMI, the proxy configuration is applied to the connection logic.

To enable a client proxy, set the following properties:

T3:

-Dhttp.proxyHost=<proxy hostname>
-Dhttp.proxyPort=<proxy port>
-Dhttp.nonProxyHosts=<hostnames>

T3s:

-Dhttps.proxyHost=<proxy hostname>
-Dhttps.proxyPort=<proxy port>
-Dhttps.nonProxyHosts=<hostnames>

where:

	
proxy hostname is the network address of the user's proxy server.

	
proxy port is the port number. If not explicitly set, the value of the port number is set to 80.

	
hostnames is a "|" separated list of one or more host names that WebLogic Server excludes from a proxy configuration. You can use the wildcard character "*" for matching. For example: -Dhttp.nonProxyHosts="*.oracle.com|localhost".

6 How to Implement WebLogic RMI

This chapter describes the java.rmi.Remote interface which is the basic building block for all remote objects even though it contains no methods. You extend this "tagging" interface—that is, it functions as a tag to identify remote classes—to create your own remote interface, with method stubs that create a structure for your remote object. Then you implement your own remote interface with a remote class. This implementation is bound to a name in the registry, where a client or server can look up the object and use it remotely.

If you have written RMI classes, you can drop them in WebLogic RMI by changing the import statement on a remote interface and the classes that extend it. To add remote invocation to your client applications, look up the object by name in the registry. WebLogic RMI exceptions are identical to and extend java.rmi exceptions so that existing interfaces and implementations do not have to change exception handling.

Procedures for Implementing WebLogic RMI

The following sections describe how to implement WebLogic Server RMI:

	
Creating Classes That Can Be Invoked Remotely

	
Step 1. Write a Remote Interface

	
Step 2. Implement the Remote Interface

	
Step 3. Compile the Java Class

	
Step 4. Compile the Implementation Class with RMI Compiler

	
Step 5: Write Code That Invokes Remote Methods

	
Hello Code Sample

Creating Classes That Can Be Invoked Remotely

You can write your own WebLogic RMI classes in just a few steps. Here is a simple example.

Step 1. Write a Remote Interface

Every class that can be remotely invoked implements a remote interface. Using a Java code text editor, write the remote interface in adherence with the following guidelines.

	
A remote interface must extend the interface java.rmi.Remote, which contains no method signatures. Include method signatures that will be implemented in every remote class that implements the interface. For detailed information on how to write an interface, see the JavaSoft tutorial Creating Interfaces.

	
The remote interface must be public. Otherwise a client gets an error when attempting to load a remote object that implements it.

	
Unlike the JavaSoft RMI, it is not necessary for each method in the interface to declare java.rmi.RemoteException in its throws block. The exceptions that your application throws can be specific to your application, and can extend RuntimeException. WebLogic RMI subclasses java.rmi.RemoteException, so if you already have existing RMI classes, you will not have to change your exception handling.

	
Your Remote interface may not contain much code. All you need are the method signatures for methods you want to implement in remote classes.

Here is an example of a remote interface with the method signature sayHello().

package examples.rmi.multihello;
import java.rmi.*;
public interface Hello extends java.rmi.Remote {
 String sayHello() throws RemoteException;
}

With JavaSoft's RMI, every class that implements a remote interface must have accompanying, precompiled proxies. WebLogic RMI supports more flexible runtime code generation; WebLogic RMI supports dynamic proxies and dynamically created bytecode that are type-correct but are otherwise independent of the class that implements the interface. If a class implements a single remote interface, the proxy and bytecode that is generated by the compiler will have the same name as the remote interface. If a class implements more than one remote interface, the name of the proxy and bytecode that result from the compilation depend on the name mangling used by the compiler.

Step 2. Implement the Remote Interface

Still using a Java code text editor, write the class be invoked remotely. The class should implement the remote interface that you wrote in Step 1, which means that you implement the method signatures that are contained in the interface. Currently, all the code generation that takes place in WebLogic RMI is dependent on this class file.

With WebLogic RMI, your class does not need to extend UnicastRemoteObject, which is required by JavaSoft RMI. (You can extend UnicastRemoteObject, but it isn't necessary.) This allows you to retain a class hierarchy that makes sense for your application.

	
Note:

With WebLogic Server, you can use both WebLogic RMI and standard JDK RMI. If you use WebLogic RMI, then you must use java weblogic.rmic ... as the rmic compiler and you must not create your RMI implementation as a subclass of java.rmi.server.UnicastRemoteObject. If you use standard JDK RMI, then you must use %JAVA_HOME%\bin\rmic as the rmic compiler and you must create your RMI implementation class as a subclass of java.rmi.server.UnicastRemoteObject.

Your class can implement more than one remote interface. Your class can also define methods that are not in the remote interface, but you cannot invoke those methods remotely.

This example implements a class that creates multiple HelloImpls and binds each to a unique name in the registry. The method sayHello() greets the user and identifies the object which was remotely invoked.

package examples.rmi.multihello;
import java.rmi.*;
public class HelloImpl implements Hello {
 private String name;
 public HelloImpl(String s) throws RemoteException {
 name = s;
 }
 public String sayHello() throws RemoteException {
 return "Hello! From " + name;
 }

Next, write a main() method that creates an instance of the remote object and registers it in the WebLogic RMI registry, by binding it to a name (a URL that points to the implementation of the object). A client that needs to obtain a proxy to use the object remotely will be able to look up the object by name.

Below is an example of a main() method for the HelloImpl class. This registers the HelloImpl object under the name HelloRemoteWorld in a WebLogic Server registry.

 public static void main(String[] argv) {
 // Not needed with WebLogic RMI
 // System.setSecurityManager(new RmiSecurityManager());
 // But if you include this line of code, you should make
 // it conditional, as shown here:
 // if (System.getSecurityManager() == null)
 // System.setSecurityManager(new RmiSecurityManager());
 int i = 0;
 try {
 for (i = 0; i < 10; i++) {
 HelloImpl obj = new HelloImpl("MultiHelloServer" + i);
 Context.rebind("//localhost/MultiHelloServer" + i, obj);
 System.out.println("MultiHelloServer" + i + " created.");
 }
 System.out.println("Created and registered " + i +
 " MultiHelloImpls.");
 }
 catch (Exception e) {
 System.out.println("HelloImpl error: " + e.getMessage());
 e.printStackTrace();
 }
 }

WebLogic RMI does not require that you set a Security Manager in order to integrate security into your application. Security is handled by WebLogic Server support for SSL and ACLs. If you must, you may use your own security manager, but do not install it in WebLogic Server.

Step 3. Compile the Java Class

Use javac or some other Java compiler to compile the .java files to produce .class files for the remote interface and the class that implements it.

Step 4. Compile the Implementation Class with RMI Compiler

Run the WebLogic RMI compiler (weblogic.rmic) against the remote class to generate the dynamic proxy and bytecode, on the fly. A proxy is the client-side proxy for a remote object that forwards each WebLogic RMI call to its matching server-side bytecode, which in turn forwards the call to the actual remote object implementation. To run the weblogic.rmic, use the command pattern:

 $ java weblogic.rmic nameOfRemoteClass

where nameOfRemoteClass is the full package name of the class that implements your Remote interface. With the examples we have used previously, the command would be:

$ java weblogic.rmic examples.rmi.hello.HelloImpl

Set the flag -keepgenerated when you run weblogic.rmic if you want to keep the generated source when creating stub or skeleton classes. For a listing of the available command-line options, see WebLogic RMI Compiler Options.

Step 5: Write Code That Invokes Remote Methods

Using a Java code text editor, once you compile and install the remote class, the interface it implements, and its proxy and the bytecode on the WebLogic Server, you can add code to a WebLogic client application to invoke methods in the remote class.

In general, it takes just a single line of code to get a reference to the remote object. Do this with the Naming.lookup() method. Here is a short WebLogic client application that uses an object created in a previous example.

package mypackage.myclient;
import java.rmi.*;

public class HelloWorld throws Exception {

 // Look up the remote object in the
 // WebLogic's registry
 Hello hi = (Hello)Naming.lookup("HelloRemoteWorld");
 // Invoke a method remotely
 String message = hi.sayHello();
 System.out.println(message);
}

This example demonstrates using a Java application as the client.

Hello Code Sample

Here is the full code for the Hello interface.

package examples.rmi.hello;
import java.rmi.*;

public interface Hello extends java.rmi.Remote {

 String sayHello() throws RemoteException;

}

Here is the full code for the HelloImpl class that implements it:

package examples.rmi.hello;