

[1] Oracle® Fusion Middleware
Programming Message-Driven Beans for Oracle WebLogic
Server

11g Release 1 (10.3.6)

E15493-06

April 2015

This document is a resource for software developers who
develop applications that use message-driven beans (MDBs).

Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server, 11g Release 1
(10.3.6)

E15493-06

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Understanding Message-driven Beans

1.1 JCA-Based MDBs .. 1-1

2 MDB Life Cycle

2.1 Overview.. 2-1
2.2 MDBs and Concurrent Processing ... 2-1
2.3 Limitations for Multi-threaded Topic MDBs .. 2-2

3 MDBs and Messaging Models

3.1 Point-to-Point (Queue) Model: One Message Per Listener... 3-1
3.2 Publish/Subscribe (Topic) Model .. 3-2
3.3 Exactly-Once Processing .. 3-3

4 Deploying MDBs

4.1 Destination and MDBs: Collocation vs. non-Collocation ... 4-1
4.2 Collocated Destination/MDBs.. 4-1
4.3 Non-Collocated Destination/MDBs .. 4-2
4.4 JMS Distributed Destinations.. 4-3
4.5 Best Practice ... 4-4

5 Programming and Configuring MDBs: Main Steps

5.1 Required JMS Configuration... 5-1
5.2 Create MDB Class and Configure Deployment Elements .. 5-2

6 Programming and Configuring MDBs: Details

6.1 Configuring Destination Type .. 6-1
6.2 Configuring Transaction Management Strategy for an MDB .. 6-2
6.3 Configuring MDBs for Destinations .. 6-3
6.3.1 Whether to Use Foreign JMS Server Mappings .. 6-3

iv

6.3.2 How to Set provider-url.. 6-4
6.3.3 How to Set initial-context-factory ... 6-4
6.3.4 How to Set destination-jndi-name .. 6-4
6.3.5 How to Set connection-factory-jndi-name ... 6-4
6.3.6 Common Destination Scenarios: Illustrations and Key Element Settings 6-5
6.4 Configuring Message Handling Behaviors ... 6-8
6.4.1 Ensuring Message Receipt Order ... 6-8
6.4.2 Preventing and Handling Duplicate Messages... 6-9
6.4.3 Redelivery and Exception Handling.. 6-10
6.5 Using the Message-Driven Bean Context... 6-11
6.6 Configuring Suspension of Message Delivery During JMS Resource Outages.............. 6-11
6.7 Manually Suspending and Resuming Message Delivery ... 6-12
6.8 Configuring the Number of Seconds to Suspend a JMS Connection............................... 6-12
6.8.1 How the EJB Container Determines How Long to Suspend a JMS Connection 6-12
6.8.2 Turning Off Suspension of a JMS Connection.. 6-13
6.9 Configuring a Security Identity for a Message-Driven Bean .. 6-13
6.10 Using MDBs With Cross Domain Security .. 6-14
6.11 Configuring EJBs to Use Logical Message Destinations .. 6-14
6.11.1 Configuring Logical JMS Message Destinations for Individual MDBs 6-14
6.11.2 Configuring Application-Scoped Logical JMS Message Destinations...................... 6-15

7 Using EJB 3.0 Compliant MDBs

7.1 Implementing EJB 3.0 Compliant MDBs ... 7-1
7.2 Programming EJB 3.0 Compliant MDBs.. 7-1
7.2.1 MDB Sample Using Annotations .. 7-3

8 Migration and Recovery for Clustered MDBs

9 Using Batching with Message-Driven Beans

9.1 Configuring MDB Transaction Batching ... 9-1
9.2 How MDB Transaction Batching Works ... 9-2

10 Configuring and Deploying MDBs Using JMS Topics

10.1 Supported Topic Types ... 10-2
10.2 The Most Commonly Used MDB Attributes ... 10-2
10.2.1 Setting the JMS Destination, Destination Type, and Connection Factory................ 10-3
10.2.2 Setting Subscription Durability .. 10-3
10.2.3 Setting Automatic Deletion of Durable Subscriptions .. 10-4
10.2.4 Setting Container Managed Transactions ... 10-4
10.2.5 Setting Message Filtering (JMS Selectors) ... 10-4
10.2.6 Controlling MDB Concurrency... 10-4
10.2.7 Setting Subscription Identifiers .. 10-5
10.2.8 Setting Message Distribution Tuning .. 10-5
10.2.8.1 Setting topicMessagesDistributionMode ... 10-5
10.2.8.2 Setting distributedDestinationConnection .. 10-7
10.3 Best Practices .. 10-8

v

10.3.1 Warning about Non-Transactional MDBs in Compatibility Mode........................... 10-8
10.3.2 Warning About Using Local RDTs with Durable MDBs.. 10-8
10.3.3 Warning about Changing Durable MDB Attributes, Topic Type, EJB Name 10-9
10.3.4 Choosing Between Partitioned and Replicated Topics ... 10-9
10.3.5 Choosing an MDB Topic Messages Distribution Mode.. 10-9
10.3.6 Managing and Viewing Subscriptions: ... 10-9
10.3.7 Handling Uneven Message Loads and/or Message Processing Delays 10-9
10.4 Configuring for Service Migration .. 10-10
10.5 Upgrading Applications from Previous Releases ... 10-10
10.6 Topic MDB Sample .. 10-11

11 Deployment Elements and Annotations for MDBs

A Topic Deployment Scenarios

A.1 How Configuration Permutations Determine Deployment Actions A-1
A.2 Typical Scenarios.. A-3
A.2.1 Standalone (Non-distributed) Topic Scenarios .. A-4
A.2.1.1 One-Copy-Per-Server.. A-4
A.2.1.2 One-Copy-Per-Application .. A-4
A.2.2 Replicated Distributed Topic Scenarios .. A-4
A.2.2.1 Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only

Consumption ...A-4
A.2.2.2 Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every

Member Consumption, ...A-5
A.2.2.3 Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment............. A-6
A.2.2.4 Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local

Only Consumption .. A-7
A.2.2.5 Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every

Member Consumption ...A-8
A.2.2.6 Scenario 6: Replicated DT One Copy Per Application, Remote Deployment A-9
A.2.3 Partitioned Distributed Topic Scenarios ... A-10
A.2.3.1 Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only

Consumption ...A-11
A.2.3.2 Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every

Member Consumption ...A-11
A.2.3.3 Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment.......... A-12
A.2.3.4 Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment, Local

Only Consumption ..A-12
A.2.3.5 Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every

Member Consumption ...A-12
A.2.3.6 Scenario 12: Partitioned DT, One Copy Per Application,

Remote Deployment ... A-13

B Topic Subscription Identifiers

C How WebLogic MDBs Leverage WebLogic JMS Extensions

vi

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Message-Driven Beans for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Understanding Message-driven Beans 1-1

1Understanding Message-driven Beans

A message-driven bean (MDB) is an enterprise bean that allows Java EE applications
to process messages asynchronously. An MDB acts as a JMS or JCA message listener,
which is similar to an event listener except that it receives messages instead of events.
The messages may be sent by any Java EE component—an application client, another
enterprise bean, or a Web component—or by non-Java EE applications.

These are the key features of message-driven beans:

■ Clients do not access message-driven beans through interfaces. A message-driven
bean has only a bean class.

■ A message-driven bean's instances retain no data or conversational state for a
specific client. All instances of a message-driven bean are equivalent, allowing the
EJB container to assign a message to any message-driven bean instance. The
container can pool these instances to allow streams of messages to be processed
concurrently.

When a message arrives, the container calls the message-driven bean's onMessage
method to process the message. The onMessage method may call helper methods, or it
may invoke a session or entity bean to process the information in the message or to
store it in a database.

A message may be delivered to a message-driven bean within a transaction context, so
that all operations within the onMessage method are part of a single transaction. If
message processing is rolled back, the message will be re-delivered.

For information about design alternatives for message-driven beans, see Section 3,
"MDBs and Messaging Models."

For a description of the overall EJB development process, see Programming WebLogic
Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server

1.1 JCA-Based MDBs
MDBs can be configured to receive messages from JCA 1.5-compliant resource
adapters, as defined by the JCA specification. To configure a MDB to use JCA, set the
resource-adapter-jndi-name deployment descriptor.

For more information, see the JCA 1.5 specification and "resource-adapter-jndi-name"
in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

JCA-Based MDBs

1-2 Programming Message-Driven Beans for Oracle WebLogic Server

2

MDB Life Cycle 2-1

2MDB Life Cycle

This section describes the phases in the life cycle of a message-driven bean instance
and how you can configure an MDB to control the life cycle.

■ Section 2.1, "Overview"

■ Section 2.2, "MDBs and Concurrent Processing"

■ Section 2.3, "Limitations for Multi-threaded Topic MDBs"

2.1 Overview
A message-driven bean implements loosely coupled or asynchronous business logic in
which the response to a request need not be immediate. A message-driven bean
receives messages from a JMS Queue or Topic, and performs business logic based on
the message contents. It is an asynchronous interface between EJBs and JMS.

All instances of a message-driven bean are equivalent—the EJB container can assign a
message to any MDB instance. The container can pool these instances to allow streams
of messages to be processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean
instances and passing JMS messages to those instances as necessary. The container
creates bean instances at deployment time and may add and remove instances during
operations based on message traffic.

2.2 MDBs and Concurrent Processing
MDBs support concurrent processing for both topics and queues. For more
information about topics and queues, see Section 3, "MDBs and Messaging Models."

On a WebLogic Server instance, each MDB deployment maintains one or more MDB
instance pools, also known as free pools, that hold MDB instances not currently
servicing requests. The maximum number of MDB instances in a free pool is
controlled by the value of the max-beans-in-free-pool attribute, the number of
available threads in the thread pool, the type of thread pool, and sometimes other
factors. See "Tuning Message-Driven Beans" in Performance and Tuning for Oracle
WebLogic Server.

The number of free pools associated with an MDB deployment depends on the type of
destination the MDB deployment is connect to. Typically, an MDB deployment is
associated with a single free pool on each WebLogic Server instance that hosts the
deployment. However, on each WebLogic Server instance that hosts the deployment,
an MDB deployment connected to a WebLogic JMS distributed destination might have
one free pool for each physical destination associated with the distributed destination.

Limitations for Multi-threaded Topic MDBs

2-2 Programming Message-Driven Beans for Oracle WebLogic Server

The number of free pools is automatically determined by the EJB container; and, for
MDBs associated with a JMS destination, each MDB free pool always corresponds to a
single JMS connection.

In a queue-based JMS application (point-to-point model), each MDB instance creates a
single internal JMS session and corresponds to an MDB thread.

A topic-based JMS application (the publish/subscribe model) may require a single
instance, may share a single JMS session between multiple instances, or may create a
session for each instance. This is automatically determined by the MDB container
based on the message processing pattern specified by MDB application settings, the
type of topic, the work-manager, and the max-beans-in-free-pool setting. See
Chapter 10, "Configuring and Deploying MDBs Using JMS Topics." Also see "Tuning
Messaging Driven Beans" in Performance and Tuning for Oracle WebLogic Server.

2.3 Limitations for Multi-threaded Topic MDBs
The default behavior for non-transactional topic MDBs is to multi-thread the message
processing. There are some limitations when using:

■ Non-transactional topic MDBs that work with foreign (non-WebLogic) topics

■ Non-transactional topic MDBs that consume from a WebLogic JMS topic and
process messages that have a WebLogic JMS Unit-of-Order (UOO) value

For details, see the Caution in Section 10.2.6, "Controlling MDB Concurrency."

3

MDBs and Messaging Models 3-1

3MDBs and Messaging Models

WebLogic Server MDBs can be used in either a point-to-point (queue) or
publish/subscribe (topic) messaging model. These models are described in detail in
"Understanding WebLogic JMS" in Programming JMS for Oracle WebLogic Server.

The following sections describe the key differences between point-to-point and
publish/subscribe messaging applications.

■ Section 3.1, "Point-to-Point (Queue) Model: One Message Per Listener"

■ Section 3.2, "Publish/Subscribe (Topic) Model"

■ Section 3.3, "Exactly-Once Processing"

3.1 Point-to-Point (Queue) Model: One Message Per Listener
In the point-to-point model, a message from a JMS queue is picked up by one MDB
listener and stays in the queue until processed. If the MDB goes down, the message
remains in the queue, waiting for the MDB to come up again.

Example: A department must update its back-end inventory system to reflect items
sold throughout the day. Each message that decrements inventory must be processed
once, and only once. It is not necessary for messages to be processed immediately
upon generation or in any particular order, but it is critical that each message be
processed.

Figure 3–1 illustrates a point-to-point application. Each message is processed by single
instance of MDB_A. Message "M1" is processed by MDB_A(1), "M2" is processed by
MDB_A(2), and "M3" is processed by MDB_A(3).

Publish/Subscribe (Topic) Model

3-2 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 3–1 Point-to-Point Model

3.2 Publish/Subscribe (Topic) Model
In the publish/subscribe model, a JMS topic publishes a copy of each message to each
logical subscription. A logical subscription may consist of one or more physical
subscriptions, where each physical subscription is associated with a different member
of a distributed topic. For stand-alone (non-distributed) topics, a logical subscription
always consists of a single physical subscription on the topic. If an MDB goes down,
that MDB will miss the message, unless the topic is a durable subscription topic. For
information on durable subscriptions and for configuration instructions, see
Chapter 10.2.2, "Setting Subscription Durability."

Example: A financial news service broadcasts stock prices and financial stories to
subscribers, such as news wire services. Each message is distributed to each subscriber.

Figure 3–2 illustrates a publish/subscribe application. In contrast to a point-to-point
application, in a publish/subscribe model, a copy of the message is processed for each
of the logical subscriptions. In this diagram, there are two logical subscriptions, where
each logical subscription consists of a separate physical subscription on the single
topic. MDB_A has two instances that process the messages for a single dedicated
subscription. Similarly, MDB_B has two instances that process the messages for a
different single dedicated subscription. Message M1 is processed by an instance of
MDB_A and an instance of MDB_B. Similarly, message M2 is processed by an instance
of each of the subscribing MDBs.

Exactly-Once Processing

MDBs and Messaging Models 3-3

Figure 3–2 Publish/Subscribe Model

3.3 Exactly-Once Processing
An MDB application processes each message at least once. Potentially, a message can
be processed more than once:

■ If an application fails, a transaction rolls back, or the hosting server instance fails
during or after the onMessage() method completes but before the message is
acknowledged or committed, the message will be redelivered and processed
again.

■ Non-persistent messages are also redelivered in the case of failure, except when
the message's host JMS server shuts down or crashes, in which case the messages
are destroyed.

To ensure that a message is processed exactly once, use container-managed
transactions, so that failures cause transactional MDB work to roll back and force the
message to be redelivered.

Exactly-Once Processing

3-4 Programming Message-Driven Beans for Oracle WebLogic Server

4

Deploying MDBs 4-1

4Deploying MDBs

This section describes various approaches for deploying MDBs and the JMS
destination to which the MDBs listen.

■ Section 4.1, "Destination and MDBs: Collocation vs. non-Collocation"

■ Section 4.2, "Collocated Destination/MDBs"

■ Section 4.3, "Non-Collocated Destination/MDBs"

■ Section 4.4, "JMS Distributed Destinations"

4.1 Destination and MDBs: Collocation vs. non-Collocation
You can deploy an MDB on the same server instance(s) as the JMS destination on
which it listens or on separate server instance(s). These alternatives are referred to as
collocation or non-collocation, respectively.

4.2 Collocated Destination/MDBs
Collocating an MDB with the destination to which it listens keeps message traffic local
and avoids network round trips. Collocation is the best choice if you use WebLogic
Server JMS and want to minimize message processing latency and network traffic.

You cannot collocate the MDB and the JMS destination if you use a third-party JMS
provider that cannot run on WebLogic Server, such as MQ Series.

Figure 4–1 and Figure 4–2 illustrate architectures in which the MDB application is
deployed to the server instance that hosts the associated JMS destination. These
architectures vary in that the first has a distributed destination and the second does not.
In an application that uses distributed destinations, the MDB is deployed to each
server instance that hosts a member of the distributed destination set. For more
information about distributed destinations, see Section 4.4, "JMS Distributed
Destinations." As illustrated in Figure 4–1 the message "M1" is delivered to an instance
of MDB_A on each server instance where a distributed destination and MDB_A are
deployed. Figure 4–1 illustrates a One-Copy-Per-Server topic message distribution
mode pattern. Topic patterns are discussed in more detail in Chapter 10.2.8.1, "Setting
topicMessagesDistributionMode."

Non-Collocated Destination/MDBs

4-2 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 4–1 Collocated Destination/MDBs, Distributed Topic, One-Copy-Per-Server
Pattern

Figure 4–2 Collocated Destination/MDBs, Non-Distributed Destination

4.3 Non-Collocated Destination/MDBs
Figure 4–3 illustrates an architecture in which an MDB runs on a separate server
instance than the JMS Destination to which the MDB listens.

Figure 4–3 Non-Collocated Application, Non-Distributed Destination

JMS Distributed Destinations

Deploying MDBs 4-3

Running your MDBs on a separate server instance from the JMS Destination to which
the MDB listens is suitable if:

■ Your application uses a 3rd-party JMS provider, such as MQ Series.

■ You want to isolate application code (the MDBs) from the JMS infrastructure. By
placing JMS destinations and MDBs on separate server instances, you prevent
application problems—for example, MDBs consuming all of your virtual
machine's memory—from interrupting the operation of the JMS infrastructure.

■ Your MDB application is very CPU-intensive. On a separate machine, your
application can use 100 percent of the CPU without affecting the operation of the
JMS infrastructure.

■ One machine in your configuration has more processing power, disk space, and
memory than other machines in the configuration.

The JMS destination and MDBs could also be deployed on non-clustered servers,
servers within the same cluster, or to servers in separate clusters.

4.4 JMS Distributed Destinations
If your MDB application runs on a WebLogic Server cluster, you can configure
multiple physical destinations (queues or topics) as a distributed destination, which
appears to message producers and consumers to be a single destination.

If you configure a distributed destination, WebLogic JMS distributes the messaging
load across available members of the distributed destination. If a member of the
destination becomes unavailable due to a server failure, message traffic is re-directed
to the other available physical destinations in the distributed destination set. You
control whether an MDB that accesses a WebLogic distributed queue in the same
cluster consumes from all distributed destination members or only those members
local to the current WebLogic Server, using the distributed-destination-connection
element in the weblogic-ejb-jar.xml file or the distributedDestinationConnection
annotation. Similarly, this setting controls behavior for some topic MDB scenarios, as
described in Chapter 10, "Configuring and Deploying MDBs Using JMS Topics," and
Appendix A, "Topic Deployment Scenarios."

If you deploy an MDB and the associated distributed queue to the same cluster,
WebLogic Server automatically enumerates the distributed queue members and
ensures that each member is serviced by at least one MDB pool. For distributed
queues, there will be one MDB pool for each local member when
distributedDestinationConnection is LocalOnly (the default); otherwise, for queues,
when distributedDestinationConnection is set to EveryMember, each WebLogic
Server instance creates multiple local MDB pools - one for each local member plus one
for each remote member.

If you deploy an MDB and its associated queue to different clusters, WebLogic Server
automatically enumerates the distributed queue members and ensures that each
member is serviced by an MDB pool on each server in the MDB cluster. For example, if
the distributed queue has three members, each JVM in the MDB cluster will create
three MDB pools.

For more information about distributed topics, see Chapter 10, "Configuring and
Deploying MDBs Using JMS Topics."

Best Practice

4-4 Programming Message-Driven Beans for Oracle WebLogic Server

4.5 Best Practice
WebLogic clustering, and WebLogic JMS distributed destinations increase scalability
and high availability. Oracle recommends that the machines that host a cluster have
identical or similar processing power, disk space, and memory to ensure
well-load-balanced message processing. Similarly, it is recommended that the
WebLogic Server instances in a particular WebLogic cluster have homogenous JMS
configuration and MDB deployments.

For an example, see Figure 4–1. For additional information about distributed
destinations, see "Using Distributed Destinations" in Programming JMS for Oracle
WebLogic Server.

5

Programming and Configuring MDBs: Main Steps 5-1

5Programming and Configuring MDBs: Main
Steps

This section provides step-by-step instructions for implementing an MDB using
pre-EJB 3.0 style XML descriptors to configure its behavior. For an EJB 3.0 annotation
sample, see Section 10.6, "Topic MDB Sample.".

For a summary of key deployment elements for MDBs, see Chapter 11, "Deployment
Elements and Annotations for MDBs." For an introduction to key deployment
elements for topic MDBs, see Chapter 10, "Configuring and Deploying MDBs Using
JMS Topics."

This chapter contains the following sections:

■ Section 5.1, "Required JMS Configuration"

■ Section 5.2, "Create MDB Class and Configure Deployment Elements"

5.1 Required JMS Configuration
The steps in the following section assume that you have access to the appropriate JMS
components:

■ A JMS connection factory.

A connection factory must be XA transaction (global JTA transaction) capable in
order to support transactional MDBs.

The default WebLogic JMS MDB connection factory is XA-capable, is
automatically generated on WebLogic clusters, and is sufficient for the majority of
MDBs that consume from WebLogic JMS destinations. For information about
WebLogic JMS default connection factories, see "Using a Default Connection
Factory" in Configuring and Managing JMS for Oracle WebLogic Server.

For instructions about how to create a custom WebLogic JMS connection factory,
see "Create connection factories in a system module" in Oracle WebLogic Server
Administration Console Help.

The default behavior and configuration methods for other JMS provider
connection factories vary. If you use a non-Oracle JMS provider, see the vendor
documentation for details.

■ A JMS destination

For instructions on configuring WebLogic JMS destinations, see "Configure
Messaging" in Oracle WebLogic Server Administration Console Help.

Create MDB Class and Configure Deployment Elements

5-2 Programming Message-Driven Beans for Oracle WebLogic Server

5.2 Create MDB Class and Configure Deployment Elements
Use the following steps to implement a message-driven bean:

1. Create a source file (message-driven bean class) that implements both the
javax.ejb.MessageDrivenBean and javax.jms.MessageListener interfaces.

The MDB class must define the following methods:

– One ejbCreate() method that the container invokes after creating each new
instance of the MDB.

– One onMessage() method that is called by the EJB container when a message
is received. This method contains the business logic that processes the
message.

– One setMessageDrivenContext{} method that provides information to the
bean instance about its environment (certain deployment descriptor values);
the MDB also uses the context to access container services. See Section 6.5,
"Using the Message-Driven Bean Context,".

– One ejbRemove() method that removes the message-driven bean instance
from the free pool.

2. Declare the MDB in ejb-jar.xml, as illustrated in the excerpt below:

<ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>...</ejb-name>
 <ejb-class>...</ejb-class>
 <transaction-type>Container</transaction-type>
 <acknowledge-mode>auto_acknowledge</acknowledge-mode>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
 </message-driven-destination>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>...</ejb-name>
 <method-name>onMessage()</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

Note: If your JMS provider is a remote WebLogic Server JMS
provider or a foreign JMS provider, and you use the wrapper
approach recommended in Section 6.3.1, "Whether to Use Foreign JMS
Server Mappings," in addition to configuring the non-local JMS
components, you must also configure a Foreign Connection Factory
and Foreign JMS Destination in your local JNDI tree.

Note: Most EJB 3.0 applications implement only
javax.jms.MessageListener, which defines a single method -
onMessage().

Create MDB Class and Configure Deployment Elements

Programming and Configuring MDBs: Main Steps 5-3

 </assembly-descriptor>
</ejb-jar>

The key behaviors to configure are:

– Transaction management strategy—The MDB's transaction management
strategy, in the transaction-type element. For instructions, see Section 6.2,
"Configuring Transaction Management Strategy for an MDB."

– Destination type—The type of destination to which the MDB listens. For more
information, see Section 6.1, "Configuring Destination Type."

3. Configure WebLogic-specific behaviors for the MDB in the
message-driven-descriptor element of weblogic-ejb-jar.xml. For example:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>exampleMessageDrivenA</ejb-name>
 <message-driven-descriptor>
 <pool>...</pool>
 <timer-descriptor>...</timer-descriptor>
 <destination-jndi-name>...</destination-jndi-name>
 <initial-context-factory>...</initial-context-factory>
 <provider-url>...</provider-url>
 <connection-factory-jndi-name>...</connection-factory-jndi-name>
 <jms-polling-interval-seconds>...</jms-polling-interval-seconds>
 <jms-client-id>...</jms-client-id>
 <generate-unique-jms-client-id>...</generate-unique-jms-client-id>
 <durable-subscription-deletion>...</durable-subscription-deletion>
 <max-messages-in-transaction>...</max-messages-in-transaction>
 <init-suspend-seconds>...</init-suspend-seconds>
 <max-suspend-seconds>...</max-suspend-seconds>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

The key elements to configure are those that specify how to access the destination.
In general, applications that follow best practices should never need to specify the
initial-context-factory or provider-url fields. For instructions, see
Section 6.3, "Configuring MDBs for Destinations."

4. Compile and generate the MDB class using the instructions in "Compile Java
Source" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

5. Deploy the bean on WebLogic Server using the instructions in the section
"Preparing Applications and Modules for Deployment" in Deploying Applications to
Oracle WebLogic Server

If WebLogic Server cannot find an MDB's JMS destination during deployment,
deployment succeeds, but WebLogic Server prints a message saying the
destination was not found. The MDB bean then periodically tries to connect to its
JMS queue until it succeeds. For more information, see Section 8, "Migration and
Recovery for Clustered MDBs."

Create MDB Class and Configure Deployment Elements

5-4 Programming Message-Driven Beans for Oracle WebLogic Server

6

Programming and Configuring MDBs: Details 6-1

6Programming and Configuring MDBs: Details

The topics in this section supplement the instructions in Section 5, "Programming and
Configuring MDBs: Main Steps."

■ Section 6.1, "Configuring Destination Type"

■ Section 6.2, "Configuring Transaction Management Strategy for an MDB"

■ Section 6.3, "Configuring MDBs for Destinations"

■ Section 6.4, "Configuring Message Handling Behaviors"

■ Section 6.5, "Using the Message-Driven Bean Context"

■ Section 6.6, "Configuring Suspension of Message Delivery During JMS Resource
Outages"

■ Section 6.7, "Manually Suspending and Resuming Message Delivery"

■ Section 6.8, "Configuring the Number of Seconds to Suspend a JMS Connection"

■ Section 6.9, "Configuring a Security Identity for a Message-Driven Bean"

■ Section 6.10, "Using MDBs With Cross Domain Security"

■ Section 6.11, "Configuring EJBs to Use Logical Message Destinations"

6.1 Configuring Destination Type
Configure the type of destination to which the MDB listens in the destination-type
element in the message-driven-destination element of ejb-jar.xml or by using an
annotation.

■ To specify a topic, set destination-type to javax.jms.Topic. If the destination is
a topic, specify subscription-durability as either Durable or NonDurable. For
important additional Topic related settings see Chapter 10, "Configuring and
Deploying MDBs Using JMS Topics," and Chapter 11, "Deployment Elements and
Annotations for MDBs."

■ To specify a queue, set destination-type to javax.jms.Queue. For additional
Queue related settings see Chapter 11, "Deployment Elements and Annotations for

Note: This chapter uses a pre-EJB 3.0 deployment descriptor to
illustrate basic MDB configuration. If you plan to use EJB 3.0
annotations, see also Chapter 11, "Deployment Elements and
Annotations for MDBs." and Chapter 7, "Using EJB 3.0 Compliant
MDBs," for the equivalent settings.

Configuring Transaction Management Strategy for an MDB

6-2 Programming Message-Driven Beans for Oracle WebLogic Server

MDBs."

6.2 Configuring Transaction Management Strategy for an MDB
An MDB can manage its own transactions or defer transaction management to the
container.

To configure container-level transaction management using descriptor elements:

■ Set the transaction-type element in the message-driven element in the
ejb-jar.xml file to Container.

■ Set the trans-attribute element in the container-transaction element in
ejb-jar.xml to Required.

■ To change the timeout period for the transaction, set trans-timeout-seconds in
the transaction-descriptor element of weblogic-ejb-jar.xml. If a transaction
times out, it is rolled back, and the message is redelivered. By default, transactions
time out after 30 seconds. For an application with long-running transactions, it
may be appropriate to increase the timeout period.

To configure container-level transaction management using EJB annotations:

 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 ...
 @TransactionAttribute(value = TransactionAttributeType.REQUIRED)
 public void onMessage(Message msg) {
 ...

To configure bean-level transaction management using descriptor elements:

■ Set the transaction-type element in the message-driven element in the
ejb-jar.xml file to Bean.

■ Set the acknowledge-mode element to specify the desired JMS acknowledgment
semantics, either one of the following:

– AUTO_ACKNOWLEDGE (the default) as described at
http://www.oracle.com/technetwork/java/jms/index.html#AUTO_
ACKNOWLEDGE

– DUPS_OK_ACKNOWLEDGE as described at
http://www.oracle.com/technetwork/java/jms/index.html#DUPS_OK_
ACKNOWLEDGE

For more information, see "Session" in Programming JMS for Oracle WebLogic Server.

Note: If transaction-type is set to Container, and trans-attribute
is not set, the default transaction-attribute values are applied:
required (for EJB 3.0 MDBs) and NotSupported (for MDBs prior to
EJB 3.0). WebLogic Server allows you to deploy the MDB, and logs a
compliance error. However, if you make this configuration error, the
MDB will not run transactionally—if a failure occurs mid-transaction,
updates that occurred prior to the failure will not be rolled back.

Configuring MDBs for Destinations

Programming and Configuring MDBs: Details 6-3

6.3 Configuring MDBs for Destinations
WebLogic Server MDBs support WebLogic JMS destinations and foreign (non-Oracle)
JMS provider destinations.

A local destination is one that runs on the same machine or in the same cluster as the
MDB. A remote destination is one that runs on a different machine and is not a member
of the same cluster as the MDB. Whether a destination is local or remote depends on
whether or not it and the MDB share the same JNDI context.

To be considered local to one another, an MDB and the associated JMS destination
must both run either on the same machine or within the same WebLogic Server cluster.
An MDB and a JMS destination on server instances in the same WebLogic Server
cluster are local to one another even if they are on separate machines, because the
server instances in a WebLogic Server cluster each have a copy of the same
cluster-wide JNDI tree.

Destinations that run under a non-Oracle JMS provider are referred to as foreign.
Foreign JMS providers have their own JNDI provider and foreign JMS objects do not
share the same context with a WebLogic Server MDB—unless the foreign JMS objects
are configured with mappings to appear in the MDB's JNDI context. This approach is
discussed in Section 6.3.1, "Whether to Use Foreign JMS Server Mappings."

The nature of a destination—local versus remote and WebLogic JMS versus
non-Oracle—governs the configuration alternatives available, and dictates to some
extent how you configure these key elements in the message-destination-descriptor
for the MDB in weblogic-ejb-jar.xml:

■ initial-context-factory

■ provider-url

■ destination-jndi-name

■ connection-factory-jndi-name

For foreign and remote destinations, the simplest configuration strategy is to use
WebLogic Server foreign JMS server mappings. These mappings allow you to create a
"symbolic link" between a JMS object in a third-party JNDI provider or in a different
WebLogic Server cluster or domain, and an object in the local WebLogic JNDI tree.

For more information on when foreign JMS server mappings are appropriate, and the
rules for configuring the message-driven-descriptor in weblogic-ejb-jar.xml, see
these sections:

■ Section 6.3.1, "Whether to Use Foreign JMS Server Mappings"

■ Section 6.3.2, "How to Set provider-url"

■ Section 6.3.3, "How to Set initial-context-factory"

■ Section 6.3.4, "How to Set destination-jndi-name"

■ Section 6.3.5, "How to Set connection-factory-jndi-name"

To configure the elements in message-driven-descriptor for specific scenarios, see
Section 6.3.6, "Common Destination Scenarios: Illustrations and Key Element Settings."

6.3.1 Whether to Use Foreign JMS Server Mappings
Using mappings means configuring a Foreign Connection Factory and a Foreign
Destination that correspond to remote JMS objects (either non-Oracle or WebLogic
JMS) as entries in your local JNDI tree.

Configuring MDBs for Destinations

6-4 Programming Message-Driven Beans for Oracle WebLogic Server

■ The use of mappings is recommended if you use a foreign JMS provider or a
remote WebLogic JMS provider. For more information on JMS mapping classes,
see "Simplified Access to Remote or Foreign JMS Providers" in "Enhanced Support
for Using WebLogic JMS with EJBs and Servlets" in Programming JMS for Oracle
WebLogic Server.

■ If you use a mapping for either the connection factory or the destination, you must
create and use mappings for each of these objects.

Whether or not you use mappings determines how you configure the
initial-context-factory and destination-jndi-name, as described below.

6.3.2 How to Set provider-url
provider-url specifies the URL of the JNDI service used by the JMS provider for the
destination to which the MDB listens.

■ If the JMS provider is local to the MDB (by definition, WebLogic JMS), do not
specify provider-url.

■ If the JMS provider is remote, whether WebLogic JMS or a foreign provider, and:

– You do not use mappings, specify provider-url.

– You do use mappings, do not specify provider-url. The URL is implicitly
encoded in the mapping.

6.3.3 How to Set initial-context-factory
initial-context-factory identifies the class that implements the initial context
factory used by the JMS provider.

■ If your JMS provider is WebLogic JMS, whether local or remote, do not specify
initial-context-factory.

■ If your JMS provider is foreign, and

– you do not use mappings, specify the initial context factory used by the JMS
provider.

– you do use mappings, do not specify initial-context-factory.

6.3.4 How to Set destination-jndi-name
destination-jndi-name identifies the JNDI name of destination to which the MDB
listens.

■ If your JMS provider is local, specify the name bound in the local JNDI tree for the
destination.

■ If your JMS provider is foreign and:

– You do not use mappings, specify the name of the destination, as bound in the
foreign provider's JNDI tree.

– You do use mappings, specify the name Foreign Destination you set up in
your local JNDI tree that corresponds the remote or foreign destination.

6.3.5 How to Set connection-factory-jndi-name
connection-factory-jndi-name identifies the JNDI name of the connection factory
used by the JMS provider.

Configuring MDBs for Destinations

Programming and Configuring MDBs: Details 6-5

■ If your JMS provider is local, do not specify connection-factory-jndi-name
unless you have configured a custom connection factory that the MDB will use.

Custom connection factories are used when the default WebLogic Server
connection factory does not satisfy your application requirements. For example,
you might configure a custom connection factory in order to specify a particular
desired value for the MessagesMaximum attribute. The procedure for configuring a
connection factory is described in "Configure connection factories" in Oracle
WebLogic Server Administration Console Help.

■ If your JMS provider is remote or foreign, and:

– You do not use mappings, specify the name of the connection factory used by
the JMS provider, as bound in the remote JNDI tree.

– You do use mappings, specify the Foreign Connection Factory you set up in
your local JNDI tree that corresponds to the remote or foreign JMS provider's
connection factory.

6.3.6 Common Destination Scenarios: Illustrations and Key Element Settings
The figures in this section illustrate common destination configurations. For remote
and foreign destinations, scenarios with and without mappings are included.

■ Figure 6–1, "A. Destination on a Local WebLogic JMS Server"

■ Figure 6–2, "B. Destination On a Remote WebLogic JMS Server—No Mappings"

■ Figure 6–3, "C. Destination on Foreign JMS Server—No Mappings"

■ Figure 6–4, "D. Destination on a Remote WebLogic Server or Foreign JMS
Server—With Mappings"

Table 6–1 summarizes how to configure the elements in the
message-driven-descriptor element of weblogic-ejb-jar.xml for each scenario.

Note: If you configure a custom JMS connection factory for an MDB,
be sure to set the Acknowledge Policy attribute to Previous, and that
the UserTransactionsEnabled attribute is enabled.

Configuring MDBs for Destinations

6-6 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 6–1 A. Destination on a Local WebLogic JMS Server

Figure 6–2 B. Destination On a Remote WebLogic JMS Server—No Mappings

Configuring MDBs for Destinations

Programming and Configuring MDBs: Details 6-7

Figure 6–3 C. Destination on Foreign JMS Server—No Mappings

Figure 6–4 D. Destination on a Remote WebLogic Server or Foreign JMS Server—With
Mappings

Configuring Message Handling Behaviors

6-8 Programming Message-Driven Beans for Oracle WebLogic Server

6.4 Configuring Message Handling Behaviors
These topics provide guidelines for behaviors related to message delivery:

■ Section 6.4.1, "Ensuring Message Receipt Order"

■ Section 6.4.2, "Preventing and Handling Duplicate Messages"

■ Section 6.4.3, "Redelivery and Exception Handling"

6.4.1 Ensuring Message Receipt Order
Make sure that the MDB's business logic allows for asynchronous message processing.
Do not assume that MDBs receive messages in the order the client issues them.

When using WebLogic JMS destinations, Oracle recommends using the Unit-of-Order
feature if strict ordering is required. This feature enforces ordering under all
circumstances without requiring modification of the MDB, enables concurrent
processing of sub-orderings that exist within the same destinations, and can be
enabled via configuration or programmatically as appropriate. See "Using Message
Unit-of-Order" in Programming JMS for Oracle WebLogic Server.

If you are not using WebLogic destinations with unit-of-order to ensure that receipt
order matches the order in which the client sent the message, you must do the
following:

■ Set max-beans-in-free-pool to 1 for the MDB. This ensures that the MDB is the
sole consumer of the message.

■ If your MDBs are deployed on a cluster, deploy them to a single node in the
cluster, as illustrated in Figure 6–5.

To ensure message ordering in the event of transaction rollback and recovery,
configure a custom connection factory with MessagesMaximum set to 1, and ensure that
no redelivery delay is configured. Foreign vendors have different names for the

Table 6–1 Common Configuration Scenarios

Scena
rio

If destination
is on...

Mappings
Configured? destination-jndi-name initial-context-factory provider-url

connection-factory
-jndi-name

A Local
WebLogic JMS
server

Not
applicable
for local
WebLogic
JMS server

Name of the local
destination, as bound
in local JNDI tree

Do not specify Do not specify Specify only if using
a custom connection
factory

B Remote
WebLogic JMS
Server

No
mappings
configured

Name of the remote
destination, as bound
in the remote JNDI tree

Do not specify URL or cluster
address for the
remote
WebLogic JMS
Server

Specify only if using
a custom connection
factory on the
remote provider

C Foreign JMS
Provider

No
mappings
configured

Name of the remote
destination, as bound
in the remote JNDI tree

Name of remote initial
context factory, as
bound in remote JNDI
tree

URL to access
the foreign
JMS provider

JNDI name of
foreign connection
factory

D Remote
Weblogic JMS
Server

or

Foreign JMS
server

Mappings
configured

The name of the
Foreign
Destination—as bound
in your local JNDI tree
—that maps to the
remote or foreign
destination

Do not specify Do not specify The name of the
Foreign Connection
Factory—as bound
in your local JNDI
tree —that maps to
the remote or
foreign connection
factory

Configuring Message Handling Behaviors

Programming and Configuring MDBs: Details 6-9

equivalent setting. This setting controls the number of messages that a vendor may
push to a consumer before the consumer completes processing of its current message.

For more information see "Ordered Redelivery of Messages" in Programming JMS for
Oracle WebLogic Server.

See the Java documentation on the Interface
MessageListener—javax.jms.MessageListener.onMessage()—for more information,
at
http://download.oracle.com/javaee/1.2.1/api/javax/jms/MessageListener.html.

6.4.2 Preventing and Handling Duplicate Messages
A JMS vendor expects an MDB to acknowledge received messages. If the MDB
receives the message, but fails to send an acknowledgement, the JMS vendor re-sends
the same message.

Your MDB design should allow for the likelihood of duplicate messages. Duplicate
messages can be undesirable in certain cases. For example, if an MDB's onMessage()
method includes code to debit a bank account, receiving and processing that message
twice would result in the account being debited twice. In addition, re-sending
messages consumes more processing resources.

The best way to prevent delivery of duplicate messages is to use container-managed
transactions. In a container-managed transaction, message receipt and
acknowledgement occur within the transaction; either both happen or neither
happens. However, while this provides more reliability than using bean-managed
transactions, performance can be compromised because container-managed
transactions use more CPU and disk resources.

If the MDB manages its own transactions, your onMessage() code must handle
duplicate messages, as receipt and acknowledgement occur outside of a transaction. In
some applications, receipt and processing of duplicate messages is acceptable. In other
cases, such as the bank account scenario described above, if a transaction is
bean-managed, the bean code must prevent processing of duplicate messages. For
example, the MDB could track messages that have been consumed in a database.

Even if an MDB's onMessage() method completes successfully, the MDB can still
receive duplicate messages if the server crashes between the time onMessage()
completes and the time the container acknowledges message delivery. Figure 6–5
illustrates this scenario.

Configuring Message Handling Behaviors

6-10 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 6–5 Server Crash Between Completion of onMessage() and Container Delivery
Acknowledgement

6.4.3 Redelivery and Exception Handling
If an MDB is consuming a message when an unexpected error occurs, the MDB can
throw a system exception that causes JMS to resend, delay, and then resend or give up,
depending on how JMS is configured.

To force message redelivery for a transactional MDB, use the bean context to call
setRollbackOnly().

To force message redelivery for any MDB—transactional or non-transactional—you
can throw an exception derived from the RuntimeException or Error thrown by the
MDB. This causes the MDB instance to be destroyed and recreated, which incurs a
performance penalty. If you want to avoid the overhead of a destroy and recreate,
while still throwing a runtime exception, you can use a WebLogic extension. Throw an
instance of a weblogic.ejb.NonDestructiveRuntimeException, for example,

throw new weblogic.ejb.NonDestructiveRuntimeException("force redelivery");

You may want to configure a redelivery delay based on what type of task the MDB's
onMessage() method is performing. In some cases, redelivery should be
instantaneous, for example, in an application that posts breaking news to a newswire
service. In other cases, for example, if the MDB throws an exception because the
database is down, redelivery should not occur immediately, but after the database is
back up.

For instructions on configuring a redelivery delay, and other JMS exception handling
features that can be used with MDB see "Managing Rolled Back, Recovered,
Redelivered, or Expired Messages" in Programming JMS for Oracle WebLogic Server.

Note: For fully ordered MDBs that do not use the Unit-of-Order
feature, do not set a redelivery delay.

Configuring Suspension of Message Delivery During JMS Resource Outages

Programming and Configuring MDBs: Details 6-11

6.5 Using the Message-Driven Bean Context
WebLogic Server calls setMessageDrivenContext() to associate the MDB instance
with a container context. Alternatively, EJB 3.0 MDB applications can specify an
annotation that injects the MDB context. This is not a client context; the client context
is not passed along with the JMS message.

To access the container context's properties from within the MDB instance, use the
following methods from the MessageDrivenContext interface:

■ getCallerPrincipal()—Inherited from the EJBContext interface and should not
be called by MDB instances.

■ isCallerInRole()—Inherited from the EJBContext interface and should not be
called by MDB instances.

■ setRollbackOnly()—Can only be used by EJBs that use container-managed
transactions.

■ getRollbackOnly()— Can only be used by EJBs that use container-managed
transactions.

■ getUserTransaction()—Can only be used by EJBs that use bean-managed
transaction demarcations.

6.6 Configuring Suspension of Message Delivery During JMS Resource
Outages

In this release of WebLogic Server, you can configure how an MDB behaves when the
EJB container detects a JMS resource outage (an MDB throwing the same exception ten
times in succession).

You can configure:

■ An MDB to suspend the JMS connection and thereby stop receiving additional
messages when the EJB container detects a JMS resource outage. If you choose this
configuration option, you can specify:

– The initial number of seconds the MDB should wait before it first resumes
receiving messages.

– The maximum number of seconds the MDB should wait before it resumes
receiving messages.

■ An MDB to not suspend the JMS connection when the EJB container detects a JMS
resource outage.

When a JMS connection is suspended, message delivery is suspended for all JMS
sessions associated with the connection. By default, when it detects a JMS resource
outage, the EJB container suspends an MDB's JMS connection for
init-suspend-seconds.

Note: Although getEJBHome() is also inherited as part of the
MessageDrivenContext interface, message-driven beans do not have a
home interface. Calling getEJBHome() from within an MDB instance
causes an IllegalStateException.

Manually Suspending and Resuming Message Delivery

6-12 Programming Message-Driven Beans for Oracle WebLogic Server

6.7 Manually Suspending and Resuming Message Delivery
Administrators can use the Administration Console to manually suspend and resume
message delivery to deployed MDBs. For information see "Suspend and resume MDB
JMS connections" in Oracle WebLogic Server Administration Console Help.

6.8 Configuring the Number of Seconds to Suspend a JMS Connection
You may want to suspend a JMS connection during a resource outage, which can be
defined as an MDB throwing the same exception 10 times in succession.

To suspend an MDB's JMS connection, configure the following elements in the
weblogic-ejb-jar.xm file:

■ init-suspend-seconds—the initial amount of time, in seconds, to suspend a JMS
connection when the EJB container detects a JMS resource outage. The default
value is 5.

■ max-suspend-seconds—the maximum amount of time, in seconds, to suspended a
JMS connection when the EJB container detects a JMS resource outage. The default
value is 60.

6.8.1 How the EJB Container Determines How Long to Suspend a JMS Connection
The EJB container uses the following algorithm, based on the init-suspend-seconds
and max-suspend-seconds, to determine the amount of time a JMS connection is
suspended.

When the EJB container detects a JMS resource outage:

1. The MDB's JMS connection is suspended for the amount of time specified by
init-suspend-seconds.

2. The connection is checked. If the resource is available, go to Step 12.

3. If the value of init-suspend-seconds is greater than or equal to
max-suspend-seconds, go to Step 9.

4. The amount of time used to suspend the JMS connection, represented by Xseconds,
is calculated by multiplying the time of the previous suspension by 2.

5. The MDB's JMS connection is suspended for the amount of time specified by
Xseconds.

6. The connection is checked. If the resource is available, go to Step 12.

7. If the value of init-suspend-seconds is greater than or equal to
max-suspend-seconds, go to Step 9

8. Go to Step 4.

9. The MDB's JMS connection is suspended for the amount of time specified by
max-suspend-seconds.

10. Check the connection. If the resource is available, go to Step 12.

11. Go to Step 9.

12. Continue processing.

Configuring a Security Identity for a Message-Driven Bean

Programming and Configuring MDBs: Details 6-13

6.8.2 Turning Off Suspension of a JMS Connection
If you do not want an MDB's JMS connection to be suspended when the EJB container
detects a resource outage, set the value of max-suspend-seconds to 0. When the value
of max-suspend-seconds is 0, the value of init-suspend-seconds is ignored.

6.9 Configuring a Security Identity for a Message-Driven Bean
When a message-driven bean (MDB) receives messages from a JMS queue or topic, the
EJB container uses a Credential Mapping provider and a credential map to obtain the
security identity—username and password—to use when establishing the JMS
connection and to execute the onMessage() method. This credential mapping occurs
only once, when the MDB is started.

Once the EJB container is connected, the JMS provider uses the established security
identity to retrieve all messages.

To configure a security identity for an MDB:

1. Create a WebLogic user for the MDB. See "Users, Groups, and Security Roles" in
Securing Resources Using Roles and Policies for Oracle WebLogic Server. Assign the
user the username and password that the non-Oracle JMS provider requires to
establish a JMS connection.

2. In the ejb-jar.xml deployment descriptor, define a run-as identity for the MDB:

<security-identity>
 <run-as>
 <role-name>admin</role-name>
 </run-as>
</security-identity>

3. To create the security-identity, you must also define the security-role inside
the assembly-descriptor element in ejb-jar.xml, as shown below.

<assembly-descriptor>
 <security-role>
 <role-name>jmsrole</role-name>
 </security-role>

</assembly-descriptor>

4. In the weblogic-ejb-jar.xml deployment descriptor, map the run-as identity to
the user defined in Step 2, as shown below:

<security-role-assignment>
 <role-name>admin</role-name>
 <principal-name>username</principal-name>
</security-role-assignment>

where username is the username for the user created in step 1.

5. If the JMS provider is not WebLogic JMS, configure the credential mapper as
described in "Create EJB component credential mappings" in Oracle WebLogic
Server Administration Console Help.

Note: If the JMS provider is WebLogic JMS, it is not necessary to
configure a credential mapper.

Using MDBs With Cross Domain Security

6-14 Programming Message-Driven Beans for Oracle WebLogic Server

6.10 Using MDBs With Cross Domain Security
MDBs may require you to configure Cross Domain Security. You should consider the
following guidelines when implementing MDBs:

■ If your MDBs must handle transactional messages, you must correctly configure
either Cross Domain Security or Security Interop Mode for all participating
domains.

Keep all the domains used by your process symmetric with respect to Cross
Domain Security configuration and Security Interop Mode. Because both settings
are set at the domain level, it is possible for a domain to be in a mixed mode,
meaning the domain has both Cross Domain Security and Security Interop Mode
set. For more information, see "Configuring Domains for Inter-Domain
Transactions" in Programming JTA for Oracle WebLogic Server.

■ You must configure Cross Domain Security in cases where an MDB listens to a
distributed destination in a different domain.

■ MDBs handling non-transactional messages do not require you to configure Cross
Domain Security. However, you must configure Cross Domain Security for all the
domains with which your process communicates, if Cross Domain Security is
configured on one domain and the membership of the distributed destination that
the MDB listens to in any domain changes. You must configure Cross Domain
Security for cases where an MDB listens to a distributed destination that is in a
different domain.

A best practice is to keep all the domains used by your process symmetric with
respect to Cross Domain Security configuration— that is, all domains use Cross
Domain Security (or are on the appropriate exception lists) or none of the domains
have Cross Domain Security configured. See "Configuring Security for a WebLogic
Domain" in Securing Oracle WebLogic Server.

6.11 Configuring EJBs to Use Logical Message Destinations

Declare logical message destinations in an EJB's deployment descriptor and map the
logical message destinations to actual message destinations (JMS queues or topics, or
MDBs). Once you declare logical message destinations, you can then create message
destination references that are linked to the logical message destinations. EJBs use the
logical message destination name to perform a JNDI lookup and access the actual
message destination. Logical JMS message destinations can be defined for individual
MDBs or entire applications.

For information on how unresolved and unavailable message destinations are
handled, see "EJBs and Message Destination References" in Programming WebLogic
Enterprise JavaBeans for Oracle WebLogic Server.

6.11.1 Configuring Logical JMS Message Destinations for Individual MDBs
You can configure logical JMS message destinations for individual MDBs.

Note: Logical destinations and application-scoped destinations are
not commonly used and are for advanced users only. For most users,
Oracle recommends using the methods discussed in Section 6.3,
"Configuring MDBs for Destinations."

Configuring EJBs to Use Logical Message Destinations

Programming and Configuring MDBs: Details 6-15

To configure an MDB to use a logical message destination to link to an actual message
destination:

1. Declare the message destination in the message-destination-descriptor element
in weblogic-ejb-jar.xml.

2. Declare message destination references in the following elements in ejb-jar.xml:

– message-destination-ref

– message-destination-ref-name—the environment name used in the
enterprise bean code for the message destination, relative to java:comp/env.
For example,
<message-destination-ref>jms/StockQueue</message-destination-ref>.

– message-destination-type—the expected type of the referenced destination.
For example,
<message-destination-type>javax.jms.Queue</message-destination-type
>.

– message-destination-usage—specifies whether messages are consumed
from the destination, produced for the destination, or both. For example,
<message-destination-usage>Produces<message-destination-usage>.

– message-destination-link—links the message destination reference to the
actual message destination. This value must match the destination defined in
message-destination-name in the weblogic-ejb-jar.xml file.

6.11.2 Configuring Application-Scoped Logical JMS Message Destinations
In this release of WebLogic Server, you can configure resources for applications.
Resources that are configured for entire applications are called application-scoped
resources. This section describes application-scoped logical JMS destinations for an
EJB application. For additional information on application-scoped resources, such as
JMS and JDBC, see Programming JMS for Oracle WebLogic Server and Programming JDBC
for Oracle WebLogic Server.

Application-scoped resources, such as logical JMS message destinations, for EJBs
apply to all MDBs in the application. You can override application-scoped JMS for
specific MDBs by configuring the MDBs to use logical message destinations to link to
actual message destinations, as described in Section 6.11.1, "Configuring Logical JMS
Message Destinations for Individual MDBs."

To configure application-scoped JMS for EJBs:

1. Declare the message destination in the message-destination-descriptor element
in weblogic-ejb-jar.xml.

2. Declare message destination references in the following elements in ejb-jar.xml:

■ message-driven

– message-destination-type—the expected type of the referenced destination.
For example,
<message-destination-type>javax.jms.Queue</message-destination-type
>.

– message-destination-usage—specifies whether messages are consumed
from the destination, produced for the destination, or both. For example,
<message-destination-usage>Produces<message-destination-usage>.

– message-destination-link—links the message destination reference to the
actual message destination. For example,

Configuring EJBs to Use Logical Message Destinations

6-16 Programming Message-Driven Beans for Oracle WebLogic Server

<message-destination-link>ExpenseProcessingQueue<message-destinatio
n-link>. This value must match the destination defined in
message-destination-name in the weblogic-ejb-jar.xml file.

■ message-destination

– message-destination-name—the name of the message destination. For
example,
<message-destination-name>ExpenseProcessingQueue<message-destinatio
n-name>. This value must match the destination defined in
message-destination-name in weblogic-ejb-jar.xml.

7

Using EJB 3.0 Compliant MDBs 7-1

7Using EJB 3.0 Compliant MDBs

The following topics provide information on how to program and implement EJB 3.0
compliant MDBs:

■ Section 7.1, "Implementing EJB 3.0 Compliant MDBs"

■ Section 7.2, "Programming EJB 3.0 Compliant MDBs"

7.1 Implementing EJB 3.0 Compliant MDBs
To implement EJB 3.0 compliant MDBs, follow the steps described in "Overview of the
EJB 3.0 Development Process" in Programming WebLogic Enterprise JavaBeans, Version 3.0
for Oracle WebLogic Server.

7.2 Programming EJB 3.0 Compliant MDBs
To program EJB 3.0 compliant MDBs, follow the steps described in "Programming the
Bean File: Typical Steps" in Programming WebLogic Enterprise JavaBeans, Version 3.0 for
Oracle WebLogic Server.

You must use the @javax.ejb.MessageDriven annotation to declare the EJB type as
message-driven. You can specify the following optional attributes:

■ messageListenerInterface—Specifies the message listener interface, if you
haven't explicitly implemented it or if the bean implements additional interfaces.

■ activationConfig—Specifies an array of activation configuration properties that
configure the bean in its operational environment.

Activation configuration properties are name-value pairs that are passed to the
MDB container when an MDB is deployed. The properties can be declared in
either an ejb-jar.xml deployment descriptor or by using the
@ActivationConfigProperty annotation on the MDB bean class. An example
using the @ActivationConfigProperty annotation is shown in Example 7–1. An
example using the ejb-jar.xml deployment descriptor is shown in Example 7–2.

Example 7–1 Example @ActivationConfigProperty Code

. . .

Note: The bean class must implement, directly or indirectly, the
message listener interface required by the messaging type that it
supports or the methods of the message listener interface. In the case
of JMS, this is the javax.jms.MessageListener interface.

Programming EJB 3.0 Compliant MDBs

7-2 Programming Message-Driven Beans for Oracle WebLogic Server

@ActivationConfigProperties(
 {
 @ActivationConfigProperty(
 name="connectionFactoryJndiName", value="JNDINameOfMDBSourceCF"
),
 @ActivationConfigProperty(
 name="initialContextFactory",
value="weblogic.jndi.WLInitialContextFactory"
)
 }
)
. . .

To set activation configuration properties in the ejb-jar.xml descriptor, use the
activation-config-property element in the message-driven stanza, as shown in
Example 7–2.

Example 7–2 Activation Configuration Properties Set in ejb-jar.xml

<message-driven>
 . . .
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>destinationJNDIName</activation-config-property-name>
 <activation-config-property-value>myQueue</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>destinationType</activation-config-property-name>
 <activation-config-property-value>javax.jms.Queue</activation-config-property-value>
 <activation-config-property>
 </activation-config>
 . . .
 </message-driven>
 <message-driven>
 . . .
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>destinationJNDIName</activation-config-property-name>
 <activation-config-property-value>myQueue</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>destinationType</activation-config-property-name>
 <activation-config-property-value>javax.jms.Queue</activation-config-property-value>
 <activation-config-property>
 </activation-config>
 . . .
 </message-driven>

Because activation configuration properties can be set in an ejb.jar deployment
descriptor or by using activationConfigProperty annotation properties, conflicts
may result if the same name is used in both places. Conflicts may also result from
using same-named properties from pre-3.0 versions of EJB or from proprietary
WebLogic Server EJB annotations. Such conflicts are resolved following the
following priority order, in sequence from high to low is

1. Properties set in the weblogic-ejb-jar.xml deployment descriptor

2. Proprietary WebLogic Server 10.0 (and later) annotations

3. activation-config-property properties set in the ejb-jar.xml deployment
descriptor

Programming EJB 3.0 Compliant MDBs

Using EJB 3.0 Compliant MDBs 7-3

4. activationConfigProperty annotation properties

For example, if the same property exists in the weblogic-ejb-jar.xml descriptor
and the ejb-jar.xml descriptor, the one in weblogic-ejb-jar.xml has the higher
priority and overrides the one in ejb-jar.xml value. Or, if the same property is set
in both an ejb-jar.xml descriptor element and in an activationConfigProperty
annotation, the descriptor element takes precedence and the annotation is ignored.

For more information about activation configuration properties, see
"javax.ejb.ActivationConfigProperty" in Programming WebLogic Enterprise
JavaBeans, Version 3.0 for Oracle WebLogic Server. Also see Table 11–1, which
summarizes the activation configuration properties supported by WebLogic
Server.

For detailed information on developing MDBs to support the messaging modes as
described in Section 3, "MDBs and Messaging Models," see Section 6, "Programming
and Configuring MDBs: Details."

7.2.1 MDB Sample Using Annotations
 Example 7–3 shows a WebLogic MDB that uses a subscription to a WebLogic JMS
queue (from WebLogic Server 10.3.4 or later), transactionally processes the messages,
and forwards the messages to a target destination.

The MDB connects using JMS connection factory MyCF to receive from queue MyQueue.
It forwards the messages to MyTargetDest using a connection generated from
connection factory MyTargetCF.

Resource reference pooling note: The MDB uses a resource reference to access MyTargetCF.
The resource reference automatically enables JMS producer pooling, as described in
"Enhanced Support for Using WebLogic JMS with EJBs and Servlets" in Programming
JMS for Oracle WebLogic Server.

For a similar sample using topics instead of queues, see Example 10–1, "Sample MDB
Using Distributed Topics".

Example 7–3 Sample MDB Using Distributed Queues

package test;
import javax.annotation.Resources;
import javax.annotation.Resource;
import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.ejb.MessageDrivenContext;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.jms.*;

@MessageDriven(
 name = "MyMDB",
 activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "connectionFactoryJndiName",
 propertyValue = "MyCF"), // External JNDI Name

 @ActivationConfigProperty(propertyName = "destinationJndiName",
 propertyValue = "MyQueue") // Ext. JNDI Name
 }
)

Programming EJB 3.0 Compliant MDBs

7-4 Programming Message-Driven Beans for Oracle WebLogic Server

@Resources ({
 @Resource(name="targetCFRef",
 mappedName="MyTargetCF", // External JNDI name
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="MyTargetDest", // External JNDI name
 type=javax.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;
 private Destination targetDest;

 @TransactionAttribute(value = TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 System.out.println("My MDB got message: " + message);

 // Forward the message to "MyTargetDest" using "MyTargetCF"

 Connection jmsConnection = null;

 try {
 if (targetCF == null)
 targetCF = (javax.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

 if (targetDest == null)
 targetDest = (javax.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();
 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 mp.send(targetDest, message);

 } catch (JMSException e) {

 System.out.println("Forcing rollback due to exception " + e);
 e.printStackTrace();
 mdctx.setRollbackOnly();

 } finally {

 // Closing a connection automatically returns the connection and
 // its session plus producer to the resource reference pool.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }

Programming EJB 3.0 Compliant MDBs

Using EJB 3.0 Compliant MDBs 7-5

 // emulate 1 second of "think" time

 try { Thread.currentThread().sleep(1000); }
 catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Restore the interrupted status
 }
 }

}

Programming EJB 3.0 Compliant MDBs

7-6 Programming Message-Driven Beans for Oracle WebLogic Server

8

Migration and Recovery for Clustered MDBs 8-1

8Migration and Recovery for Clustered MDBs

WebLogic Server supports migration and recovery for clustered JMS destinations. In
the event of failure, you can bring a JMS destination back online on a different JVM.
You can design your cluster so that when a server instance fails, it automatically
migrates the JMS destination from the failed server in the cluster to an available server
instance. In turn, any MDB deployment associated with a migrated JMS destination is
automatically updated. Such an update may include closing and reinitializing MDB
pools and/or reconnecting to the JMS destination

Caution: Service migration is not recommended for the following
cases. In these cases, migration can result in either missing messages
or duplicate message processing.

Case 1, when all of the following are true:

■ The MDB topicMessagesDistributionMode is
One-Copy-Per-Server

■ The MDB distributedDestinationConnection is LocalOnly

■ The MDB is Durable

■ The destination is configured as the logical name of a replicated
distributed topic

Case 2, when all of the following are true:

■ The MDB topicMessagesDistributionMode is Compatibility

■ The MDB is Durable

■ The destination is configured as the logical name of a distributed
topic

Case 3, when all of the following are true:

■ The MDB topicMessagesDistributionMode is
One-Copy-Per-Application

■ The MDB distributedDestinationConnection is LocalOnly

■ The migration target server has no MDB instance. Best practice is
to target MDB deployments to the entire cluster, to avoid this
problem.

For more information on topic message processing, see Chapter 10,
"Configuring and Deploying MDBs Using JMS Topics."

8-2 Programming Message-Driven Beans for Oracle WebLogic Server

After a WebLogic JMS destination migrates to another server, an MDB deployment, or
"connection poller," reconnects to the migrated JMS destination and begins to receive
messages from the JMS destination again; the MDB may also create and close pools as
needed.

MDBs can be targeted to clusters or individual WebLogic Server instances, but not to
migratable targets. If an MDB is running in the same cluster as a migratable
destination, you must ensure that MDB is deployed everywhere that its source
destination may be hosted. You can do this in two ways:

■ Deploy MDBs homogeneously to the cluster. (Recommended)

■ Ensure that the MDB's target set includes all WebLogic Server instances that are in
the candidate lists for the migratable targets in the config.xml file used by the
JMS servers that host the destination. For more information on configuring
migratable targets, see "Understanding Migratable Target Servers in a Cluster" in
Using Clusters for Oracle WebLogic Server.

For instructions on implementing the migratable service and for background
information on WebLogic JMS migration and recovery services for clustered
architectures, see "JMS as a Migratable Service within a Cluster" in Configuring and
Managing JMS for Oracle WebLogic Server.

Note: A migratable service works with clustered servers only. A
WebLogic JMS destination can migrate to another server within a
cluster, but cannot migrate to a different cluster.

9

Using Batching with Message-Driven Beans 9-1

9Using Batching with Message-Driven Beans

Within an MDB, business logic, possibly including database transactions, is performed
within the onMessage() method. Within an EJB application, multiple MDBs can
perform multiple onMessage() calls concurrently. If each onMessage() call performs a
container-managed transaction, this can create a lot of overhead.

WebLogic Server provides a mechanism for grouping multiple container-managed
transaction MDB onMessage() calls together under a single transaction. This
mechanism can help increase the performance of an EJB application by implicitly
grouping all of the work from different onMessage calls into a single request.

For information on transaction management within MDBs, see Section 6.2,
"Configuring Transaction Management Strategy for an MDB."

■ Section 9.1, "Configuring MDB Transaction Batching"

■ Section 9.2, "How MDB Transaction Batching Works"

9.1 Configuring MDB Transaction Batching
You can enable MDB transaction batching by defining the
max-messages-in-transaction element or using the equivalent property in
activationConfigProperty. The element is part of the message-driven-descriptor
element of the weblogic-ejb-jar.xml deployment descriptor.

max-messages-in-transaction defines the batch size WebLogic Server uses to process
onMessage() transactions. However, increasing the batch size can increase latency. You
should start with a small value, 5 for example. You can increase this value as your
application performance allows.

When using MDB batching, more messages are processed per transaction. This may
cause more transactions to time out since more work is being performed in each
transaction. You can increase the transaction timeout be increasing the value of
trans-timeout-seconds attribute of weblogic-ejb-jar.xml. Alternatively, you can
use @TransactionTimeoutSeconds annotation, as follows:

import weblogic.javaee.TransactionTimeoutSeconds;
...;

Note: Transaction batching is not effective for all MDB applications.
For example, database deadlocks can occur in an application where an
MDB makes multiple calls to a database. Using the transaction
batching feature will cause the MDB to lock more rows per transaction
which can lead to database deadlocks.

How MDB Transaction Batching Works

9-2 Programming Message-Driven Beans for Oracle WebLogic Server

@TransactionTimeoutSeconds(value = 60);
...;
public class MyMDB ...

9.2 How MDB Transaction Batching Works
MDB transaction batching does not require any changes to application code. As far as
the application is concerned, individual messages are still processed one by one. There
is no application level message list.

Internally, WebLogic Server creates a transaction for a batch. A message is added to the
transaction until the number of messages in the transaction is equal to the batch size
defined by max-messages-in-transaction or the equivalent property in
activationConfigProperty. When the number of messages in the equals
max-messages-in-transaction or there is no next message to be added to the
transaction, the transaction is submitted for processing. See Figure 9–1.

Figure 9–1 MDB Transaction Batching Transaction Processing Flow

If an individual onMessage() call fails, then the entire batch is rolled back. If the failure
was due to a transaction timeout, as defined in the trans-timeout-seconds attribute
of weblogic-ejb-jar.xml, the MDB container temporarily reduces the batch size and
attempts to process the transactions with smaller batches.

If failure occurs for another reason, the MDB reprocesses each message within the
failed batch as an individual transaction. This avoids the scenario where an individual
onMessage() call can permanently hang an entire batch.

10

Configuring and Deploying MDBs Using JMS Topics 10-1

10Configuring and Deploying MDBs Using JMS
Topics

This chapter describes how to develop an MDB that automatically sets up JMS topic
subscriptions and then processes subscription messages. A message that is published
to a JMS topic is replicated to all subscriptions that have a matching selector filter. A
single deployed MDB may create multiple topic subscriptions and may have one or
more free pools per host WebLogic Server instance. This behavior is controlled by
MDB attribute settings, topic type, and whether the MDB is running on the same
cluster or JVM as its topic. (For information about MDB free pools, see Section 2.2,
"MDBs and Concurrent Processing.")

This chapter also describes how to use topic MDBs together with WebLogic JMS
distributed topics. WebLogic JMS distributed topics are logical topics that are
composed of multiple physical topics, where each physical topic is hosted on a
different JMS Server instance. This distributed topic capability was significantly
enhanced in WebLogic Server 10.3.4 to provide increased scalability and high
availability. The enhancements include direct support for remotely hosted distributed
topics, for fully distributing the processing of a single logical subscription across
multiple physical subscriptions, and for multiple JVMs to process messages from the
same physical subscription.

This chapter is organized as follows:

■ Section 10.1, "Supported Topic Types"

■ Section 10.2, "The Most Commonly Used MDB Attributes"

■ Section 10.3, "Best Practices"

■ Section 10.4, "Configuring for Service Migration"

■ Section 10.5, "Upgrading Applications from Previous Releases"

■ Section 10.6, "Topic MDB Sample"

For additional information about JMS topics see:

■ Appendix A, "Topic Deployment Scenarios"

■ Appendix B, "Topic Subscription Identifiers"

■ Appendix C, "How WebLogic MDBs Leverage WebLogic JMS Extensions"

■ "Developing Advanced Pub/Sub Applications" in Programming JMS for Oracle
WebLogic Server.

■ "Tuning WebLogic JMS" in Performance and Tuning for Oracle WebLogic Server

Supported Topic Types

10-2 Programming Message-Driven Beans for Oracle WebLogic Server

■ "Tuning Message-Driven Beans" in Performance and Tuning for Oracle WebLogic
Server.

Oracle recommends reviewing the previous chapters of this book before reading this
chapter.

10.1 Supported Topic Types
WebLogic MDBs support the following types of topics:

■ Singleton topics -- A singleton topic is either a non-distributed WebLogic JMS
topic or a reference to a particular member topic of a WebLogic JMS distributed
topic. The JNDI name syntax for a WebLogic JMS uniform distributed topic
member is based on the name of the JMS server that hosts the member:
jms-server-name@jndi-name-of-distributed-topic.

■ Foreign provider topics -- Non-WebLogic JMS topics are called foreign provider
topics. MDBs treat foreign provider topics similarly to singleton topics. Such topics
are typically considered to be remote.

■ Replicated distributed topics -- WebLogic JMS distributed topics are logical topics
composed of multiple physical topics, where each physical topic is hosted on a
different JMS server instance in the same cluster. In releases of WebLogic Server
prior to 10.3.4, each message sent to any member of a distributed topic is always
automatically replicated (forwarded) to all subscriptions on all of the other
members of the distributed topic. This kind of distributed topic is still supported
and is now called a replicated distributed topic (abbreviated RDT).

■ Partitioned distributed topics - WebLogic JMS distributed topics are logical topics
composed of multiple physical topics, where each physical topic is hosted on a
different JMS server instance in the same cluster. A partitioned distributed topic
(abbreviated PDT) does not forward messages between members. Messages
published to a member of a PDT are only copied to subscriptions on that member.
Partitioned distributed topics are supported starting with WebLogic Server 10.3.4.

To configure a distributed topic type, you set Partitioned or Replicated as the value
for the JMS distributed topic configuration attribute JMS Forwarding Policy. For
more information, see "Configuring Partitioned Distributed Topics" in Configuring and
Managing JMS for Oracle WebLogic Server.

10.2 The Most Commonly Used MDB Attributes
The most commonly used topic MDB attributes are:

■ JMS destination and connection factory

■ Subscription durability

■ Container managed transactions

■ Message distribution tuning

Some other useful topic MDB attributes are:

■ Free pool size

■ Auto-delete on undeploy

■ Message filtering (JMS selectors)

■ Subscription identifier

The Most Commonly Used MDB Attributes

Configuring and Deploying MDBs Using JMS Topics 10-3

The message distribution tuning settings include the
topicMessagesDistributionMode, distributedDestinationConnection, and
generate-unique-client-id attributes.

Most attributes can be configured either by using an annotation or via descriptor XML
stanzas. In addition, specific attribute names for descriptor XML stanzas and
annotations are summarized in the tables in Chapter 11, "Deployment Elements and
Annotations for MDBs."

10.2.1 Setting the JMS Destination, Destination Type, and Connection Factory
A topic MDB's configuration must properly specify the location of its JMS connection
factory, its destination, and its destination type. Typically, this is accomplished by:

1. Specifying a topic type. In the message-driven-destination element of
ejb-jar.xml, set destination-type to javax.jms.Topic. Alternatively, if using
annotations, specify an ActivationConfigProperty with propertyName =
"destinationType" and propertyValue = "javax.jms.Topic".

2. Specifying a connection factory JNDI name and a destination JNDI name.
Specifying a connection factory JNDI name is usually not necessary if the
connection factory is hosted on the same cluster or server as the MDB. The default
usually suffices.

3. If the destination is not located in the same cluster or server as the MDB pool,
administratively configure a mapping from the remote destination and connection
factory JNDI entries to local JNDI entries that match those specified in #2, above.
There are alternative approaches to referencing remote resources, but the mapping
approach is the Oracle-recommended best practice.

For each free pool, the MDB container creates a connection using the specified
connection factory, then uses the connection to find or create one or more subscriptions
on its destination, and finally uses the connection to create JMS consumers that receive
the messages from the subscription(s).

For the specific names of connection factory and destination MDB attributes, as well as
recommended JNDI mapping configuration, see Section 6.3, "Configuring MDBs for
Destinations."

10.2.2 Setting Subscription Durability
MDBs automatically create subscriptions on JMS topics. JMS topics support two types
of subscriptions: durable and non-durable.

■ Non-durable subscriptions exist only for the length of time their subscribers exist.
When a subscription has no more subscribers, the subscription is automatically
deleted. Messages stored in a non-durable subscription are never recovered after a
JMS server shut down or crash.

■ Durable subscriptions make it possible for a subscriber to receive messages that
are published while the subscriber application is unavailable. For each durable
subscription on a topic, JMS stores a copy of each published persistent message in
a file or database until it can be delivered (or until it expires), even if there are no
active subscribers on the subscription at the time the message is delivered. JMS
also stores a copy of each non-persistent message in each durable subscription, but
such messages are not recovered if the JMS server shuts down or crashes.

Non-durable subscriptions are the default. To specify a durable subscription, in
the message-driven-destination element of ejb-jar.xml, set
subscription-durability to Durable. Alternatively, when using annotations,

The Most Commonly Used MDB Attributes

10-4 Programming Message-Driven Beans for Oracle WebLogic Server

specify an ActivationConfigProperty with propertyName =
"subscriptionDurability" and propertyValue = "Durable".

10.2.3 Setting Automatic Deletion of Durable Subscriptions
You can configure an MDB to automatically delete a durable topic subscription when
the MDB is undeployed or deleted from a server. To configure an MDB to
automatically delete durable topic subscriptions, set durable-subscription-deletion
to True. By default, durable-subscription-deletion is set to False

10.2.4 Setting Container Managed Transactions
See Section 6.2, "Configuring Transaction Management Strategy for an MDB."

10.2.5 Setting Message Filtering (JMS Selectors)
JMS provides an SQL-like syntax for filtering messages based on standard JMS
message header fields and message properties. In addition, WebLogic JMS supports an
extension to the selector syntax that allows the specification of selectors that include
XML "xpath" expressions for filtering XML messages based on their XML contents.

One way to specify a message selector is to specify it as the propertyValue for an
ActivationConfigProperty with propertyName = "messageSelector".

The syntax of JMS selectors is fully described in the Javadoc for the
javax.jms.Message class. The WebLogic xpath selector extension syntax is described
in "Filtering Messages" in Programming JMS for Oracle WebLogic Server.

10.2.6 Controlling MDB Concurrency
As discussed in Appendix A, "Topic Deployment Scenarios,", an MDB deployment
may create one or more MDB free pools. The max-beans-in-free-pool and
dispatch-policy descriptor attributes work together to control MDB thread
concurrency in an MDB free pool as follows:

■ For a discussion of how to determine the number of concurrent MDBs, see
"Determining the Number of Concurrent MDBs" in Performance and Tuning for
Oracle WebLogic Server.

■ When an MDB topicMessagesDistributionMode is set to Compatibility and the
MDB uses container-managed transactions, concurrent MDB invocations are
prevented. In addition, max-beans-in-free-pool should be explicitly set to 1 for
bean-managed transaction MDBs that are driven by a foreign (non-WebLogic)
topic.

The Most Commonly Used MDB Attributes

Configuring and Deploying MDBs Using JMS Topics 10-5

See "Tuning Message-Driven Beans" in Performance and Tuning for Oracle WebLogic
Server for more information.

10.2.7 Setting Subscription Identifiers
Individual JMS topic subscriptions are created and referenced based on their
"subscription identifier," which an MDB generates based on a number of MDB
configuration settings. For a discussion of the syntax of generated subscription
identifiers, see Appendix B, "Topic Subscription Identifiers."

10.2.8 Setting Message Distribution Tuning
This section describes how and when to use message distribution tuning settings. It
contains information that applies to all topic types (singleton, foreign, and
distributed). The settings include the topicMessagesDistributionMode,
distributedDestinationConnection, and generate-unique-client-id attributes.
They control where topic subscriptions are created, what the subscription identifiers
are, and whether an MDB processes each published topic message only once or once
per server.

For detailed descriptions and diagrams of the resulting automatically generated
subscription IDs, subscription locations, and deployed MDB free pool locations, see
Appendix A, "Topic Deployment Scenarios," and Appendix B, "Topic Subscription
Identifiers."

10.2.8.1 Setting topicMessagesDistributionMode
Use the topicMessagesDistributionMode setting in combination with the
distributedDestinationConnection setting or the generate-unique-client-id
setting to control topic message processing behavior. To set the
topicMessagesDistributionMode, you can use the same-named
@ActivationConfigProperty annotation or specify an
<activation-config-property> in the ejb-jar.xml deployment descriptor.

The valid values for topicMessagesDistributionMode are:

■ One-Copy-Per-Application -- Specifies that the MDB application as a whole
receives each message published to a distributed topic once, no matter how many
servers host the application. This mode works with WebLogic JMS singleton and
distributed topics in WebLogic Server 10.3.4 and later.

Caution:

Non-transactional Foreign Topics: Oracle recommends explicitly setting
max-beans-in-free-pool to 1 for non-transactional MDBs that work
with foreign (non-WebLogic) topics. Failure to do so may result in lost
messages in the event of certain failures, such as the MDB application
throwing Runtime or Error exceptions.

Unit-of-Order: Oracle recommends explicitly setting
max-beans-in-free-pool to 1 for non-transactional Compatibility
mode MDBs that consume from a WebLogic JMS topic and process
messages that have a WebLogic JMS Unit-of-Order value.
Unit-of-Order messages in this use case may not be processed in order
unless max-beans-in-free-pool is set to 1.

The Most Commonly Used MDB Attributes

10-6 Programming Message-Driven Beans for Oracle WebLogic Server

■ One-Copy-Per-Server -- Specifies that each deployment instance of the MDB
application receives every message published to a distributed topic. This mode
works with WebLogic JMS singleton and distributed topics in WebLogic Server
10.3.4 and later.

■ Compatibility - (Default) Specifies that the MDB application handles messages
from distributed topics in the same way they were handled in WebLogic Server
releases prior to 10.3.4. The mode supports durable and non-durable subscriptions
with foreign (non-WebLogic) topics, local replicated distributed topics (RDTs), and
singleton WebLogic topics; it also supports non-durable subscriptions with a
remote replicated distributed topics. See the Compatibility notes section below for
more detail.

The topic distribution modes support different topic types and versions with the
following restrictions:

– The One-Copy-Per-Application and One-Copy-Per-Server modes work only
with WebLogic singleton and distributed topics in WebLogic Server 10.3.4 and
later. WebLogic MDBs log a warning and do not process messages with these
modes when using a foreign (non-WebLogic) topic or when using a WebLogic
topic from WebLogic Server releases prior to 10.3.4.

– One-Copy-Per-Application topic MDBs that are durable, that subscribe to a
local RDT, and that use the default LocalOnly value for the
distributedDestinationConnection attribute, do not support Service
Migration and require that exactly one topic member be configured per
WebLogic Server instance. If a service migration occurs, if there is no local
topic member configured, or if more than one topic member is deployed per
server, then the application may experience duplicate or lost messages and
may also create abandoned subscriptions that accumulate unprocessed
messages. If service migration is required, then use the EveryMember option for
the distributedDestinationConnection attribute instead of the default
LocalOnly.

– The Compatibility mode supports durable and non-durable subscriptions
with foreign (non-WebLogic) topics, with local replicated distributed topics
(RDTs) (with limitations described later), and with singleton WebLogic topics.
Compatibility mode also supports non-durable subscriptions with a remote
RDT. A deployment of a durable MDB that subscribes to the logical JNDI
name of a remote RDT may succeed, but the MDB deployment will fail to
connect, with Warning log messages. Similarly, a deployment of an MDB that
subscribes to a WebLogic PDT may succeed, but the MDB deployment will fail
to connect, with Warning log messages. See "Notes on the Compatibility mode
of topicMessagesDistributionMode" below, for more detail.

– Compatibility mode MDBs that are durable and subscribes to a local RDT, see
Section , "Notes on the Compatibility mode of
topicMessagesDistributionMode."

For a detailed descriptions and diagrams of MDB generated subscriptions,
subscription IDs, and free pool locations, refer to Appendix A, "Topic Deployment

Note: Oracle recommends using the One-Copy-Per-Application and
One-Copy-Per-Server modes for most new applications, except those
that must consume from WebLogic JMS topics in versions of
WebLogic Server prior to 10.3.4 or from foreign (non-WebLogic)
topics.

The Most Commonly Used MDB Attributes

Configuring and Deploying MDBs Using JMS Topics 10-7

Scenarios," and Appendix B, "Topic Subscription Identifiers.".

10.2.8.2 Setting distributedDestinationConnection
To optionally fine tune the behavior of the One-Copy-Per-Application and
One-Copy-Per-Server modes of topicMessagesDistributionMode for a local
distributed topic, you can use the distributedDestinationConnection activation
config property. Alternatively, you can use the distributed-destination-connection
element in the weblogic-ejb-jar.xml deployment descriptor. The valid values are
LocalOnly and EveryMember.

The distributedDestinationConnection setting specifies whether a WebLogic Server
MDB container sets up a local MDB free pool for each subscription in the entire cluster
(EveryMember), or local free pools only for subscriptions on members local to the
current WebLogic Server (LocalOnly - the default).

The use of distributedDestinationConnection is restricted as follows: if it is
specified for an MDB that subscribes to a remote cluster, a warning message is given
and the option is ignored. If you try to use it in Compatibility mode, a warning is
given and the option is ignored.

One reason to use EveryMember is that the LocalOnly option for durable MDBs has
restrictions for local RDTs in the One-Copy-Per-Server mode. See Section 10.3.2,
"Warning About Using Local RDTs with Durable MDBs."

Another reason to use EveryMember is to better handle uneven message loads or
message processing delays. See Section 10.3.7, "Handling Uneven Message Loads
and/or Message Processing Delays," for advice.

Notes on the Compatibility mode of topicMessagesDistributionMode
■ See Section 10.2.8.1, "Setting topicMessagesDistributionMode," above, for a

statement about supported topic types and versions.

■ If you're using the Compatibility topicMessagesDistributionMode in
combination with non-transactional MDBs, and the topic is a foreign
(non-WebLogic) destination, or the topic is a WebLogic destination with
Unit-of-Order (UOO) messages, then see Section 10.2.6, "Controlling MDB
Concurrency," for warnings.

■ Set the generate-unique-client-id attribute to change behavior:

– If generate-unique-client-id is set to true, each durable MDB free pool
generates a unique subscriber ID. Each MDB free pool will then receive a copy
of each published message. For more information see Appendix B, "Topic
Subscription Identifiers." For more information about free pools, see
Section 2.2, "MDBs and Concurrent Processing," and Appendix A, "Topic
Deployment Scenarios."

– If generate-unique-client-id is false (the default), only one subscription will
be created by a durable MDB, and only one MDB free pool will successfully
connect to the durable subscription (the remaining MDB pools will fail to
connect, log warnings, and will keep retrying).

■ For durable subscription MDBs that subscribe to the logical name of a local
replicated distributed topic (a local RDT), only the configuration described in
Section 10.3.2, "Warning About Using Local RDTs with Durable MDBs," below, is
supported.

■ For durable subscription MDBs that subscribe to the logical name of a remote
replicated topic (a remote RDT):

Best Practices

10-8 Programming Message-Driven Beans for Oracle WebLogic Server

– A deployment of a durable MDB that subscribes to the logical JNDI name of
the RDT may succeed, but the MDB deployment will fail to connect, with
Warnings logs.

■ For durable subscription MDBs that subscribe to a particular member destination
of a remote replicated topic:

– A deployment of a durable MDB that subscribes directly to a member of the
RDT will succeed, and the subsequent behavior will be determined by the
generate-unique-client-id setting, as described above. For a uniform
distributed destination, the JNDI name of a particular member is
"jms-server-name@udd-jndi-name".

■ For a non-durable subscription MDB that subscribes to the logical name of a local
replicated distributed topic (a local RDT), the logical name of a remote replicated
distributed topic (a remote RDT), a foreign topic, or a singleton topic, each server
will receive a copy of each message that is sent to the topic.

■ The distributedDestinationConnection option does not apply to Compatibility
mode. When set, a warning is given and it is ignored.

10.3 Best Practices
Consider the information in the following sections to help you configure MDBs.

10.3.1 Warning about Non-Transactional MDBs in Compatibility Mode
If you're using the Compatibility mode of topicMessagesDistributionMode in
combination with non-transactional MDBs and the topic is a foreign (non-WebLogic)
destination or the topic is a WebLogic destination with Unit-of-Order (UOO)
messages, see Section 10.2.6, "Controlling MDB Concurrency," above, for warnings.

10.3.2 Warning About Using Local RDTs with Durable MDBs
In Compatibility mode, for durable subscription MDBs that subscribe to the logical
name of a local replicated distributed topic (a local RDT), only the following
configuration is supported:

■ Always set generate-unique-client-id to true.

■ Ensure each WebLogic Server in the cluster hosts exactly one member of the RDT.

■ Do not use WebLogic JMS service-migration. It is unsupported for this use case;
but you can use "whole server migration."

■ Note that each server receives a copy of each message sent to the topic. When a
message arrives at one of the RDT physical topic members, the RDT automatically
ensures that a copy of the message is forwarded to each of the other members of
the topic.

Similarly, in One-Copy-Per-Application mode when
distributedDestinationConnection is set to LocalOnly, for durable subscription
MDBs that subscribe to the logical name of a local replicated distributed topic (a local
RDT), only the following configuration is supported:

■ If your configuration does not match the above recommendations, you may get
nondeterministic behavior, including lost messages, duplicate messages, and stuck
messages. For more information, including alternatives, see Section 10.2.8.1,
"Setting topicMessagesDistributionMode," above.

Best Practices

Configuring and Deploying MDBs Using JMS Topics 10-9

10.3.3 Warning about Changing Durable MDB Attributes, Topic Type, EJB Name
Changing MDB or JMS settings can cause the current messages on durable
subscriptions to be deleted, or can cause existing durable subscriptions to be
abandoned, deleted, or replaced in favor of new durable subscriptions. These settings
include topic type, JMS selector, distribution tuning, subscription durability, ejb-name,
and, client-id.

Abandoned durable subscriptions continue to accumulate messages even though no
MDB is processing the messages. This can eventually lead to quota exceptions or even
JVM out-of-memory errors that prevent additional messages from being published to
the topic.

For a discussion about locating and removing abandoned subscriptions see "Managing
Durable Subscriptions" in Programming JMS for Oracle WebLogic Server. For a discussion
about subscription IDs and locations, see Appendix B, "Topic Subscription Identifiers."

10.3.4 Choosing Between Partitioned and Replicated Topics
Section 10.1, "Supported Topic Types," above, describes the two types of WebLogic
distributed topics (partitioned and replicated). In general, Oracle recommends using
partitioned topics (PDTs), when available, except for these two cases:

■ When replicated topic (RDT) behavior is required to interoperate with legacy
applications or non-MDB applications.

■ In the local RDT case in the One-Copy-Per-Server LocalOnly case under certain
message loads. The message load determines whether the heavy forwarding
overhead built into an RDT is less expensive in comparison to the increased
network traffic required for the fully connected topology in the PDT
One-Copy-Per-Server mode. In general, it is better to use a PDT for non-persistent
or "lighter" persistent message loads.

To configure a distributed topic type, you set Partitioned or Replicated as the value
for the WebLogic JMS Distributed Topic configuration attribute JMS Forwarding
Policy. For more information, see "Configuring Partitioned Distributed Topics" in
Configuring and Managing JMS for Oracle WebLogic Server.

10.3.5 Choosing an MDB Topic Messages Distribution Mode
Oracle recommends using the One-Copy-Per-Application and One-Copy-Per-Server
modes for most new applications, except for those that must consume from WebLogic
JMS topics in WebLogic Server releases prior to 10.3.4 or from foreign (non-WebLogic)
topics. These two modes only work with WebLogic JMS topics in WebLogic Server
10.3.4 or later.

10.3.6 Managing and Viewing Subscriptions:
See Appendix A, "Topic Deployment Scenarios," and Appendix B, "Topic Subscription
Identifiers," for detailed discussions of the names and location of subscriptions.

See also "Managing Durable Subscriptions" in Programming JMS for Oracle WebLogic
Server.

10.3.7 Handling Uneven Message Loads and/or Message Processing Delays
For applications with uneven message loads or unanticipated message processing
delays, you may want to consider the following:

Configuring for Service Migration

10-10 Programming Message-Driven Beans for Oracle WebLogic Server

■ For local distributed topics when the topic distribution mode is
One-Copy-Per-Server or One-Copy-Per-Application, tune
distributedDestinationConnection to EveryMember. While the LocalOnly option
can yield significantly better performance since it avoids unnecessary network
traffic, there are use cases where the LocalOnly optimization network savings does
not outweigh the benefit of distributing message processing for unbalanced queue
loads as evenly as possible across all JVMs in a cluster. This is especially a concern
when message backlogs develop unevenly throughout the cluster and message
processing is expensive. In these use cases, the LocalOnly configuration should be
avoided in favor of the EveryMember scenario with durable subscribers.

■ Use a PDT instead of an RDT, and tune producer load balancing in the producer's
connection factory configuration so that each producer's messages are evenly
processed on a round-robin basis throughout the cluster. Incoming messages can
be load balanced among the distributed topic members using the WebLogic JMS
connection factory Server Affinity Enabled and Load Balancing Enabled attributes.
Disabling affinity can increase network overhead but helps ensure that messages
are evenly load balanced across a cluster. The affinity setting has no effect with
RDTs. See "Load Balancing Messages Across a Distributed Destination" in
Configuring and Managing JMS for Oracle WebLogic Server.

■ Decrease the WebLogic JMS asynchronous message pipeline size to 1 to prevent
additional messages from being pushed to an MDB thread that is already blocked
processing a previous message. The default for this setting is 10, and it is
configured by (a) configuring a custom WebLogic connection factory with the
Messages Maximum attributed tuned to 1 and XA Enabled set to true, (b)
targeting the connection factory to the same cluster that hosts the distributed topic,
and (c) modifying the MDB so that it references the custom connection factory.

10.4 Configuring for Service Migration
For durable subscriptions, JMS service migration (auto or manual) is not supported
once LocalOnly is applied on local replicated topics. Normally LocalOnly means the
MDB deployment instance is pinned on the local distributed topic member once the
distributed topic member is migrated to another server. The MDB deployment
instance cannot subscribe to the same original distributed member after a restart,
which may cause warning messages to be generated. Therefore, to use JMS service
migration, you should configure as EveryMember. Whole server migration is supported
for both cases.

10.5 Upgrading Applications from Previous Releases
As described throughout this chapter, new JMS features in WebLogic Server 10.3.4,
such as relaxed client ID, sharable subscriptions, and partitioned durable topics, make
it possible to implement and deploy MDBs that provide enhanced scalability and high
availability. To take advantage of these features, you must upgrade MDB applications
written for releases of WebLogic Server prior to 10.3.4.

Applications written to run on releases of WebLogic Server prior to 10.3.4 will
continue to run without modification in Compatibility mode, which is the default
setting for topicMessagesDistributionMode, as described in Section 10.2.8.1, "Setting
topicMessagesDistributionMode."

To upgrade applications from previous releases,

1. Consider changing to a partitioned distributed topic. See Section 10.3.4, "Choosing
Between Partitioned and Replicated Topics," above.

Topic MDB Sample

Configuring and Deploying MDBs Using JMS Topics 10-11

2. Set the topicMessagesDistributionMode to One-Copy-Per-Server or
One-Copy-Per-Application and tune the distributedDestinationConnection
options. See Section 10.2.8, "Setting Message Distribution Tuning," above.

10.6 Topic MDB Sample
 Example 10–1 shows a WebLogic MDB that uses a durable subscription to a JMS topic
(in WebLogic Server 10.3.4 or later), transactionally processes the messages, and
forwards the messages to a target destination.

The MDB connects using JMS connection factory MyCF to receive from topic MyTopic. It
forwards the messages to MyTargetDest using a connection generated from connection
factory MyTargetCF.

Resource reference pooling note: The MDB uses a resource reference to access MyTargetCF.
The resource reference automatically enables JMS producer pooling, as described in
"Enhanced Support for Using WebLogic JMS with EJBs and Servlets" in Programming
JMS for Oracle WebLogic Server.

For a similar sample using queues instead of topics, see Example 7–3, "Sample MDB
Using Distributed Queues".

Example 10–1 Sample MDB Using Distributed Topics

package test;
import javax.annotation.Resources;
import javax.annotation.Resource;
import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.ejb.MessageDrivenContext;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.jms.*;

@MessageDriven(
 name = "MyMDB",
 activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Topic"),

 @ActivationConfigProperty(propertyName = "subscriptionDurability",
 propertyValue = "Durable"),

 @ActivationConfigProperty(propertyName = "connectionFactoryJndiName",
 propertyValue = "MyCF"), // External JNDI Name

 @ActivationConfigProperty(propertyName = "destinationJndiName",
 propertyValue = "MyTopic"), // Ext. JNDI Name

 @ActivationConfigProperty(propertyName = "topicMessagesDistributionMode",
 propertyValue = "One-Copy-Per-Application")
 }
)

@Resources ({

Caution: Current messages are not preserved when changing out of
Compatibility mode. See Section 10.3.3, "Warning about Changing
Durable MDB Attributes, Topic Type, EJB Name."

Topic MDB Sample

10-12 Programming Message-Driven Beans for Oracle WebLogic Server

 @Resource(name="targetCFRef",
 mappedName="MyTargetCF", // External JNDI name
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="MyTargetDest", // External JNDI name
 type=javax.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;
 private Destination targetDest;

 @TransactionAttribute(value = TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 System.out.println("My MDB got message: " + message);

 // Forward the message to "MyTargetDest" using "MyTargetCF"

 Connection jmsConnection = null;

 try {
 if (targetCF == null)
 targetCF = (javax.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

 if (targetDest == null)
 targetDest = (javax.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();
 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 mp.send(targetDest, message);

 } catch (JMSException e) {

 System.out.println("Forcing rollback due to exception " + e);
 e.printStackTrace();
 mdctx.setRollbackOnly();

 } finally {

 // Closing a connection automatically returns the connection and
 // its session plus producer to the resource reference pool.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }

 // emulate 1 second of "think" time

Topic MDB Sample

Configuring and Deploying MDBs Using JMS Topics 10-13

 try { Thread.currentThread().sleep(1000); }
 catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Restore the interrupted status
 }
 }

}

Topic MDB Sample

10-14 Programming Message-Driven Beans for Oracle WebLogic Server

11

Deployment Elements and Annotations for MDBs 11-1

11Deployment Elements and Annotations for
MDBs

Table 11–1 shows deployment elements and configuration properties that affect the
behavior of MDBs. Each row in the table describes a deployment element (used in an
EJB deployment descriptor) and its associated configuration property (specified in
annotations). Not all elements have associated properties.

For information about using deployment descriptors vs. using annotations in MDBs,
see Section 7.2, "Programming EJB 3.0 Compliant MDBs."

Table 11–1 is organized as follows:

■ Each element in the Element column is followed in parentheses by the name of the
deployment descriptor in which the element is used. Elements in the
weblogic-ejb-jar.xml descriptor link to a more complete explanation of the
element in "weblogic-ejb-jar.xml Deployment Descriptor Reference" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server. For elements
in ejb-jar.xml, see the schema at
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd.

■ Unless otherwise noted, all the properties listed in the Configuration Property
column are activation configuration properties, that is, properties defined using
@ActivationConfigProperty annotations or using an
activation-config-property element in the message-driven stanza of an
ejb-jar.xml descriptor. For more information about using
@ActivationConfigProperty, see Section 7.2, "Programming EJB 3.0 Compliant
MDBs."

■ The Configuration Property column also lists annotations and properties that are
not @ActivationConfigProperty properties. In those cases, the property is
followed by the name of the annotation and by the import statement required for
using that annotation.

Note: For those elements that have an associated configuration
property, Oracle recommends that you use that property instead of the
element.

11-2 Programming Message-Driven Beans for Oracle WebLogic Server

Table 11–1 Deployment Elements and Annotations for MDBs

Element
Configuration
Property Description Allowable Values Default

acknowledge-mode

(ejb-jar.xml)

acknowledgeMode Notifies the JMS provider that the
message was received and processed. The
acknowledgement mode is ignored if
using container-managed transactions.
(The acknowledgement is performed in
the context of the transaction.)

■ AUTO_
ACKNOWLEDGE
- the message
is
acknowledge
d
immediately

■ DUPS_OK_
ACKNOWLEDGE
- the
acknowledge
ment may be
delayed,
allowing
duplicate
messages to
be received

AUTO_
ACKNOWLEDGE

connection-factory
-jndi-name

(weblogic-ejb-jar.x
ml)

connectionFactoryJ
ndiName

The JNDI name of the JMS
ConnectionFactory that the MDB looks up
to create its queues and topics. See
Section 6.3.5, "How to Set
connection-factory-jndi-name."

Valid JNDI name weblogic.jms.M
essageDrivenBe
anConnectionFa
ctory

connection-factory
-resource-link

(weblogic-ejb-jar.x
ml)

connectionFactoryR
esourceLink

Maps to a resource within a JMS module
defined in ejb-jar.xml to an actual JMS
Module Reference in WebLogic Server.
Rarely used.

Valid resource
within a JMS
module

n/a

destination-jndi-n
ame

(weblogic-ejb-jar.x
ml)

destinationJndiNam
e

The JNDI name used to associate an MDB
with an actual JMS queue or topic
deployed in the WebLogic Server JNDI
tree. See Section 6.3.4, "How to Set
destination-jndi-name."

Valid JNDI name n/a

destination-resour
ce-link

(weblogic-ejb-jar.x
ml)

destinationResourc
eLink

Maps to a resource within a JMS module
defined in ejb-jar.xml to an actual JMS
Module Reference in WebLogic Server.
Rarely used.

Valid resource
within a JMS
module

n/a

dispatch-policy

(weblogic-ejb-jar.x
ml)

n/a This optional element allows you to
specify a particular WorkManager for the
bean. See "Tuning Message-Driven Beans"
in Performance and Tuning for Oracle
WebLogic Server.

Valid execute
queue name

n/a

distributed-destin
ation-connection

(weblogic-ejb-jar.x
ml)

distributedDestina
tionConnection

Specifies whether an MDB that accesses a
WebLogic JMS distributed destination
(topic or queue) in the same cluster
consumes from all distributed destination
members or only those members local to
the current WebLogic Server instance.
May not apply to all use cases. See
Section 4.4, "JMS Distributed
Destinations," and Chapter 10,
"Configuring and Deploying MDBs Using
JMS Topics."

■ LocalOnly

■ EveryMember

LocalOnly

durable-subscripti
on-deletion

(weblogic-ejb-jar.x
ml)

durableSubscriptio
nDeletion

Indicates whether you want durable topic
subscriptions to be automatically deleted
when an MDB is undeployed or removed.

■ True

■ False

False

Deployment Elements and Annotations for MDBs 11-3

generate-unique-jm
s-client-id

(weblogic-ejb-jar.x
ml)

See the
generateUniqueClie
ntID attribute of the
weblogic.javaee.JM
SClientID
annotation.

Indicates whether or not you want the EJB
container to generate a unique client-id
for every instance of an MDB. This setting
should be used only when
topicMessagesDistributionMode is set to
Compatibility (the default). See
Chapter 10, "Configuring and Deploying
MDBs Using JMS Topics."

■ True

■ False

False

initial-beans-in-f
ree-pool

(weblogic-ejb-jar.x
ml)

n/a Sets the initial size of the free pool.
WebLogic Server populates the free pool
with the specified number of bean
instances for every bean class at startup.
Populating the free pool in this way
improves initial response time for the
MDB, because initial requests for the bean
can be satisfied without generating a new
instance.

0 to maxBeans 0

initial-context-fa
ctory

(weblogic-ejb-jar.x
ml)

initialContextFact
ory

The initial context factory that the EJB
container uses to create its connection
factories. See Section 6.3.3, "How to Set
initial-context-factory."

Valid name of an
initial context
factory

weblogic.jndi.
WLInitialConte
xtFactory

init-suspend-secon
ds

(weblogic-ejb-jar.x
ml)

initSuspendSeconds The initial number of seconds to suspend
an MDB's JMS connection when the EJB
container detects a JMS resource outage.
See Section 6.6, "Configuring Suspension
of Message Delivery During JMS
Resource Outages."

Any integer 5

jms-client-id

(weblogic-ejb-jar.x
ml)

jmsClientId The client ID for the MDB when it
connects to a JMS destination. Optional.
Used for durable subscriptions to JMS
topics. For more information, see
Appendix B, "Topic Subscription
Identifiers."

n/a Depends on the
topicMessagesD
istributionMod
e activation
config property
and possibly on
generate-uniqu
e-client-id.
See Appendix B,
"Topic
Subscription
Identifiers")

jms-polling-interv
al-seconds

(weblogic-ejb-jar.x
ml)

jmsPollingInterval
Seconds

The number of seconds between attempts
by the EJB container to reconnect to a JMS
destination that has become unavailable.
See Section 8, "Migration and Recovery
for Clustered MDBs."

Any integer 10 seconds

max-beans-in-free-
pool

(weblogic-ejb-jar.x
ml)

n/a The maximum number of bean instances
in an MDB free pool. The actual number
of instances is also limited by thread pool
size as well as other factors. See "Tuning
Message-Driven Beans" in Performance and
Tuning for Oracle WebLogic Server.

0 to maxBeans 1000

max-messages-in-tr
ansaction

(weblogic-ejb-jar.x
ml)

maxMessagesInTrans
action

Specifies the maximum number of
messages that can be in a transaction for
this MDB.

All positive
integers

n/a

max-suspend-second
s

(weblogic-ejb-jar.x
ml)

maxSuspendSeconds The maximum number of seconds to
suspend an MDB's JMS connection when
the EJB container detects a JMS resource
outage. See Section 6.6, "Configuring
Suspension of Message Delivery During
JMS Resource Outages."

Any integer 60

Table 11–1 (Cont.) Deployment Elements and Annotations for MDBs

Element
Configuration
Property Description Allowable Values Default

11-4 Programming Message-Driven Beans for Oracle WebLogic Server

message-destinatio
n-type

(ejb-jar.xml)

destinationType Specifies the type of the JMS
destination—the Java interface expected
to be implemented by the destination.

■ javax.jms.Queue

■ javax.jms.Topic

n/a

message-selector

(ejb-jar.xml)

messageSelector A string used by a client to specify, by
header field references and property
references, the messages it is interested in.
Only messages whose header and
property values match the selector are
delivered

Conditional
expression using
message
properties, or
message header

Null

messaging-type

(ejb-jar.xml)

n/a Rarely used. javax.jms.Messag
eListener

n/a

provider-url

(weblogic-ejb-jar.x
ml)

providerURL The URL provider to be used by the
InitialContext. Typically, this is the
host:port. See Section 6.3.2, "How to Set
provider-url."

Valid URL Null

resource-adapter-j
ndi-name

(weblogic-ejb-jar.x
ml)

resourceAdapterJnd
iName

For JCA-driven MDBs, identifies the
resource adapter from which this MDB
receives messages.

n/a n/a

security-role-assi
gnment

(weblogic-ejb-jar.x
ml)

n/a Maps application roles in the ejb-jar.xml
file to the names of security principals
available in WebLogic Server.

n/a n/a

start-mdbs-with-ap
plication

(weblogic-applicati
on.xml)

n/a Controls when MDBs start processing
messages. When set to true, an MDB
starts processing messages as soon as it is
deployed, even if WebLogic Server has
not completed booting. This can cause an
MDB application to access uninitialized
services or applications during boot up
and, therefore, to fail.

Set to false to defer message processing
until after WebLogic Server opens its
listen port.

■ True

■ False

False

subscription-durab
ility

(ejb-jar.xml)

subscriptionDurabi
lity

Specifies whether a JMS topic
subscription is Durable or NonDurable.
For more information, see Section 10.2.2,
"Setting Subscription Durability."

■ Durable

■ NonDurable

NonDurable

n/a topicMessagesDistr
ibutionMode

Sets the distribution mode for topic
messages. See Chapter 10, "Configuring
and Deploying MDBs Using JMS Topics.".

■ One-Copy-Per-Ap
plication

■ One-Copy-Per-Se
rver

■ Compatibility

Compatibility

transaction-type

(ejb-jar.xml)

See trans-attribute Specifies an enterprise bean's transaction
management type. For more information,
see Section 6.2, "Configuring Transaction
Management Strategy for an MDB."

■ Bean

■ Container

Container

Table 11–1 (Cont.) Deployment Elements and Annotations for MDBs

Element
Configuration
Property Description Allowable Values Default

Deployment Elements and Annotations for MDBs 11-5

trans-attribute

(ejb-jar.xml)

TransactionAttribu
teType property of
@TransactionAttrib
ute, for example:

import
javax.ejb.Transact
ionAttribute
@TransactionAttrib
ute(TransactionAtt
ributeType.REQUIRE
D)

Specifies how the container must manage
the transaction boundaries when
delegating a method invocation to an
enterprise bean's business method.

Note: f the bean is specified as using
container-managed transaction
demarcation, either the REQUIRED or the
NOT_SUPPORTED transaction attribute must
be used for the message listener methods,
and either the REQUIRED, REQUIRES_NEW, or
the NOT_SUPPORTED transaction attribute
for timeout callback methods. For more
information, see Section 6.2, "Configuring
Transaction Management Strategy for an
MDB."

■ Required

■ NotSupported

■ Supports

■ RequiresNew

■ Mandatory

■ Never

Required

trans-timeout-seco
nds

(weblogic-ejb-jar.x
ml)

@TransactionTimeou
tSeconds

import
weblogic.javaee.Tr
ansactionTimeoutSe
conds

The maximum duration for an EJB's
container-initiated transactions, in
seconds, after which the transaction is
rolled back. See Section 6.2, "Configuring
Transaction Management Strategy for an
MDB."

0 to max If the transaction
timeout is not
specified or is
set to 0, the
transaction
timeout
configured for
the domain is
used. If a
timeout is not
configured for
the domain, the
default is 30.

use81-style-pollin
g

(weblogic-ejb-jar.x
ml)

use81StylePolling Enables backwards compatibility for
WebLogic Server version 8.1-style polling.

■ True

■ False

False

Table 11–1 (Cont.) Deployment Elements and Annotations for MDBs

Element
Configuration
Property Description Allowable Values Default

11-6 Programming Message-Driven Beans for Oracle WebLogic Server

A

Topic Deployment Scenarios A-1

ATopic Deployment Scenarios

The following sections describe MDB deployment actions for various topic MDB
configurations. The actions include where and how many MDB free pools are created,
where and how many subscriptions are created, and how the subscribers work
together to achieve a given messaging consumption pattern.

These sections do not cover details about legacy behavior which occurs when the
topicMessagesDistributionMode is set to Compatibility, when the topics are foreign
(non-WebLogic) topics, or when the topics are WebLogic JMS topics from WebLogic
Server releases prior to 10.3.4.

For help determining the right scenario (permutation) for your application, including
suggested settings, see Chapter 10, "Configuring and Deploying MDBs Using JMS
Topics."

A.1 How Configuration Permutations Determine Deployment Actions
The following settings determine how WebLogic MDBs that consume from WebLogic
JMS topics (from WebLogic Server 10.3.4 or later) create instances of MDB free pools,
subscription naming, subscription locations, and how messages are distributed to
those MDB pool instances:

■ The topic location (in the same cluster or server as the MDB deployment or on a
remote cluster or server).

■ The topic type (singleton WebLogic topic, Replicated or Partitioned distributed
topic).

■ The subscriptionDurability setting.

■ The topicMessagesDistributionMode and distributedDestinationConnection
settings.

Table A–1 describes possible configuration permutations and corresponding
deployment actions. The first two columns describe the configuration permutations,
and the last two columns describe the resulting deployment. The columns are as
follows:

■ topicMessagesDistributionMode -- The value of the topicMessagesDistribution
configuration option, that is, One-Copy-Per-Server or
One-Copy-Per-Application. The legacy Compatibility mode is not covered in
this table.

■ Topic Type Permutation -- Options include the following:

■ Local or Remote -- Whether the topic is deployed to the same cluster or server
as the MDB (Local) or to a different cluster or server (Remote).

How Configuration Permutations Determine Deployment Actions

A-2 Programming Message-Driven Beans for Oracle WebLogic Server

■ PDT, RDT, or Singleton WebLogic JMS topic -- The type of topic: partitioned
distributed topic (PDT), replicated distributed topic (RDT), or singleton
WebLogic JMS topic.

■ EveryMember or LocalOnly -- The value of
distributedDestinationConnection. Specifies whether the MDB that
accesses a Local distributed topic in the same cluster consumes from all
distributed topic members or only from those local to the current server. If
neither EveryMember nor LocalOnly is specified, the permutation applies
regardless of how distributedDestinationConnection is set.

For example, the topic type permutation "Local RDT LocalOnly" means "An MDB
is deployed to the same cluster (Local) as the replicated topic (RDT), and the MDB
is configured to consume only from members of the topic on the same WebLogic
Server as the MDB (LocalOnly)."

■ Each Server Subscribes to... -- The number of MDB pools a WebLogic Server
instance creates, and the members of the distributed topic to which the MDB
instances subscribe. For example,

– "Each server subscribes to ... All members" means "the container creates one
local MDB pool for each member of the distributed topic."

– "Each server subscribes to ... All local members" means "the container creates
one MDB pool for each of the members that are running on the same server,
and each MDB pool subscribes to one of those members."

■ MDB Pools Per Server -- The number of MDB deployment instances on each
server in the cluster (and thereby the number of connections to the distributed
topic members). M = the number of distributed topic members (M=1 for
standalone topics).

Table A–1 Configuration Permutations and Their Resulting Deployment Actions

MDB Configuration Deployment Actions

topicMessagesDistributionMode Topic Type Permutation
Each Server Subscribes
to...

MDB Pools
per Server

One-Copy-Per-Server ■ RDT Local LocalOnly1 One of the local members One

One-Copy-Per-Server ■ RDT Remote
(Non-durable only)2

One of the remote members One

Typical Scenarios

Topic Deployment Scenarios A-3

A.2 Typical Scenarios
The following sections show possible deployment scenarios of an MDB application:

■ Standalone (Non-distributed) Topic Scenarios

■ Replicated Distributed Topic Scenarios

■ Partitioned Distributed Topic Scenarios

Images and labels used in the figures presented in the scenarios are explained in
Table A–2:

One-Copy-Per-Server ■ PDT Local EveryMember3

■ PDT Remote2

■ RDT Local EveryMember

■ RDT Remote (durable
subscriptions only)2

■ Singleton WebLogic JMS
(M=1)

All members M

One-Copy-Per-Application ■ PDT Local LocalOnly

■ RDT Local LocalOnly

All local members One per
local
member

One-Copy-Per-Application ■ PDT Local EveryMember

■ PDT Remote2

■ RDT Local EveryMember

■ RDT Remote2

■ Singleton WebLogic JMS
(M=1)

All members M

1 The "One-Copy-Per-Server, RDT, Local, LocalOnly" permutation is not supported for durable subscription cases in some
configuration topologies (See details in Section A.2.2.1, "Scenario 1: Replicated DT, One Copy Per Server, Local Deployment,
Local Only Consumption.")

2 For remote distributed topics, WebLogic Server always creates subscriptions to every topic member except for non-durable
subscriptions in the "One-Copy-Per-Server, Replicated Distributed Topic, Remote" permutation. In that case, only one
subscription to one of the remote members is created. (See Section A.2.2.3, "Scenario 3: Replicated DT, One Copy Per Server,
Remote Deployment.")

3 The LocalOnly setting is always automatically replaced with EveryMember in the "One-Copy-Per-Server, Partitioned Distributed
Topic, Local" permutation. (See Section A.2.3.1, "Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local
Only Consumption.")

Table A–2 Explanation of Images and Text Used in Scenarios

Image or Text Explanation

Messages published to a distributed topic.

Messages are duplicated, and copies are forwarded to other
members of the topic. This indicates that the topics are replicated
distributed topics.

DT Member n Member of a distributed topic.

Table A–1 (Cont.) Configuration Permutations and Their Resulting Deployment Actions

MDB Configuration Deployment Actions

topicMessagesDistributionMode Topic Type Permutation
Each Server Subscribes
to...

MDB Pools
per Server

Typical Scenarios

A-4 Programming Message-Driven Beans for Oracle WebLogic Server

A.2.1 Standalone (Non-distributed) Topic Scenarios
Standalone topic scenarios are as follows.

A.2.1.1 One-Copy-Per-Server
On each WebLogic Server instance that hosts the MDB application, an MDB pool is
created for the topic, whether the topic is running in the same cluster or in a different
cluster. For an MDB cluster of N nodes, N MDB pools are created. Each MDB pool
creates an individual subscription on the topic, and subscribers from different MDB
pools do not share the same subscription.

A.2.1.2 One-Copy-Per-Application
On each WebLogic Server instance that hosts the MDB application, an MDB pool is
created for the topic, whether the topic is running in the same cluster or in a different
cluster. For an MDB cluster of N nodes, N MDB pools are created. All subscribers
created by the MDB pools of the same MDB application share the same subscription.

A.2.2 Replicated Distributed Topic Scenarios
With replicated distributed topics, all physical topic members receive each message
sent. When a message arrives at one of the physical topic members, a copy of the
message is automatically internally forwarded to the other members of the topic.

The following are the possible deployment scenarios for a replicated distributed topic:

■ Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only
Consumption

■ Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption,

■ Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment

■ Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local
Only Consumption

■ Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every
Member Consumption

■ Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

A.2.2.1 Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local
Only Consumption
Figure A–1 shows the following configuration:

MDB Pool An MDB free bean pool.

A subscription. The MDB on one end of the arrow listens for and
consumes messages from the topic on the other end of the arrow.

Shared subscription.

Non-shared subscription. S1 is Managed Server 1’s subscription,
S2 is Managed Server 2’s subscription, etc.

Table A–2 (Cont.) Explanation of Images and Text Used in Scenarios

Image or Text Explanation

Typical Scenarios

Topic Deployment Scenarios A-5

■ Replicated distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Server.

■ The MDB and the topic are deployed in the same (local) cluster.

■ distributedDestinationConnection = LocalOnly.

Figure A–1 Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local
Only Consumption

In this scenario:

■ Copies of messages are forwarded to other servers in the cluster by the RDT.

■ One MDB pool is created on each server in the local cluster.

■ Each MDB pool listens to one of the distributed topic member on the same server.

This approach can yield higher performance than "RDT, One Copy Per Server, Local
Deployment, EveryMember," because all messaging is local (it avoids transferring
messages over network calls) and still ensures that all distributed topic members are
serviced by MDB consumers. However for some use cases, the EveryMember
alternative may work better, based on the trade-offs discussed in Section 10.3.7,
"Handling Uneven Message Loads and/or Message Processing Delays."

This scenario does not work correctly for durable subscriptions when there are
multiple members on the same server, when there are no members on any of the local
servers that host the MDB application, or when JMS service migration (auto or
manual) is involved.

A.2.2.2 Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption,
Figure A–2 shows the following configuration:

■ Replicated distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Server.

■ The MDB and the topic are deployed in the same (local) cluster.

■ distributedDestinationConnection = EveryMember.

Typical Scenarios

A-6 Programming Message-Driven Beans for Oracle WebLogic Server

Figure A–2 Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption

In this scenario:

■ Copies of messages are forwarded to other servers in the cluster by the RDT, but
these copies are filtered out (ignored) by the MDB subscriptions.

■ An MDB pool is created for each distributed topic member on each server in the
local cluster.

■ Each MDB pool listens to one of the distributed topic members in the cluster.

■ Each WebLogic Server instance that hosts the MDB application listens to all
members of the distributed topic.

■ Each server's subscribers on the same member of the DT have their own
independent subscriptions. In other words, subscribers from different servers to
the same member do not share any subscriptions.

This configuration yields high flexibility and is good for an application where an RDT
is required, but it cannot be guaranteed that there will be exactly one member per
server, for example due to migration.

This configuration does not give the best performance in comparison to Scenario 1:
Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption,
especially for a static environment where no migration is involved and there is one
and only one member of the distributed topic on each managed server. Applications
where no migration is involved and where there is one and only one member of the
distributed topic on each managed server can use Scenario 1.

A.2.2.3 Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment
Figure A–3 shows the following configuration:

■ Replicated distributed topic

■ Durable subscription

■ topicMessagesDistributionMode = One-Copy-Per-Server.

■ The MDB and the topic are deployed in different (remote) clusters.

■ distributedDestinationConnection ignored for remote deployments.

Typical Scenarios

Topic Deployment Scenarios A-7

Figure A–3 Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment

In this scenario:

■ Copies of messages are forwarded to other servers in the cluster by the RDT, but
these copies are filtered out (ignored) by the MDB subscriptions.

■ An MDB pool for each distributed topic member is created on each server in the
remote cluster.

■ Each WebLogic Server instance that hosts the MDB application listens to all
members of the distributed topic (one local pool for each remote member).

■ Each server's subscribers on the same member of the DT have their own
independent subscription. In other words, subscribers from different servers to the
same member do not share any subscriptions.

Note that this is the behavior for durable cases. For non-durable cases, each WebLogic
Server instance creates a single MDB pool which connects to one of the members (any
member) as an optimization.

A.2.2.4 Scenario 4: Replicated DT, One Copy Per Application, Local Deployment,
Local Only Consumption
Figure A–4 shows the following configuration:

■ Replicated distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Application.

■ The MDB and the topic are deployed in the same (local) cluster.

■ distributedDestinationConnection = LocalOnly.

Typical Scenarios

A-8 Programming Message-Driven Beans for Oracle WebLogic Server

Figure A–4 Scenario 4: Replicated DT, One Copy Per Application, Local Deployment,
Local Only Consumption

In this scenario:

■ Copies of messages are forwarded to other servers in the cluster by the RDT, but
these copies are filtered out (ignored) by the MDB subscriptions.

■ One MDB pool is created on each server in the local cluster for each local member
(Figure A–5 shows a configuration where each WebLogic Server instance hosts
only one member. When there are multiple members on the same local WebLogic
Server instance, multiple MDB pools are created on the server).

■ A message is given to only one MDB pool.

■ All subscribers on the same member share the same subscription.

A.2.2.5 Scenario 5: Replicated DT, One Copy Per Application, Local Deployment,
Every Member Consumption
Figure A–5 shows the following configuration:

■ Replicated distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Application.

■ The MDB and the topic are deployed in the same (local) cluster.

■ distributedDestinationConnection = EveryMember.

Typical Scenarios

Topic Deployment Scenarios A-9

Figure A–5 Scenario 5: Replicated DT, One Copy Per Application, Local Deployment,
Every Member Consumption

In this scenario:

■ Copies of messages are forwarded to other servers in the cluster by the RDT, but
these copies are filtered out (ignored) by the MDB subscriptions.

■ One MDB pool is created on each server in the local cluster for each member.

■ A message is given to only one MDB pool.

■ All subscribers on the same member share the same subscription.

A.2.2.6 Scenario 6: Replicated DT One Copy Per Application, Remote Deployment
Figure A–6 shows the following configuration:

■ Replicated distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Application.

■ The MDB and the topic are deployed in different (remote) clusters.

■ distributedDestinationConnection ignored for remote deployments.

Typical Scenarios

A-10 Programming Message-Driven Beans for Oracle WebLogic Server

Figure A–6 Scenario 6: Replicated DT, One Copy Per Application, Remote Deployment

In this scenario:

■ Copies of messages are forwarded to other servers in the cluster by the RDT, but
these copies are filtered out (ignored) by the MDB subscriptions.

■ One MDB pool is created on each server in the local cluster for each member in the
remote cluster.

■ A message is given to only one MDB pool.

■ All subscribers on the same member share the same subscription.

A.2.3 Partitioned Distributed Topic Scenarios
With partitioned topics:

■ The distributed topic member receiving the message is the only member that is
aware of the message. The message is not forwarded to other members, and
subscribers on other members do not get a copy of the message.

■ Incoming messages can be load balanced among the distributed topic members
using the JMS Affinity and Load Balance attributes. See "Load Balancing
Partitioned Distributed Topics" in Configuring and Managing JMS for Oracle
WebLogic Server.

The following are the possible deployment scenarios for a partitioned distributed
topic:

■ Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only
Consumption

■ Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every
Member Consumption

■ Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment

■ Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Typical Scenarios

Topic Deployment Scenarios A-11

■ Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every
Member Consumption

■ Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment

A.2.3.1 Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local
Only Consumption
The setting of distributedDestinationConnection is ignored for this scenario and a
warning message is logged. The setting is forced to EveryMember instead. The behavior
becomes the same as the "EveryMember" case (see "Scenario 8: Partitioned DT, One
Copy Per Server, Local Deployment, Every Member Consumption").

A.2.3.2 Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every
Member Consumption
Figure A–7 shows the following configuration:

■ Partitioned distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Server.

■ The MDB and the topic are deployed in the same (local) cluster.

■ distributedDestinationConnection = EveryMember.

Figure A–7 Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every
Member Consumption

In this scenario:

■ Messages are distributed individually to the distributed topic members. Messages
are not duplicated or copied to other members in the cluster.

■ An MDB pool is created for each distributed topic member on each server in the
local cluster.

■ Each server's subscribers on the same member of the DT have their own
independent subscription. In other words, subscribers from a particular server to
the same member do not share any subscriptions with subscribers from another
server.

Typical Scenarios

A-12 Programming Message-Driven Beans for Oracle WebLogic Server

A.2.3.3 Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment
The details of this scenario are the same as the previous one except that the MDB
deployment and the PDT are in different clusters.

A.2.3.4 Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment,
Local Only Consumption
Figure A–8 shows the following configuration:

■ Partitioned distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Application.

■ The MDB and the topic are deployed in the same (local) cluster.

■ distributedDestinationConnection = LocalOnly.

Figure A–8 Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment,
LocalOnly Consumption

In this scenario:

■ Messages are distributed individually to the distributed topic members. Messages
are not duplicated or copied to other members in the cluster.

■ One MDB pool is created on each server in the local cluster for each local member
(Figure A–9 shows a configuration where each WebLogic Server hosts only one
member. When there are multiple members on the same local WebLogic Server,
multiple MDB pools are created on each WebLogic Server instance).

This scenario is the recommended configuration for One-Copy-Per-Application and
Local PT for high performance. However for some use cases, the EveryMember
alternative may work better, based on the trade-offs discussed in Section 10.3.7,
"Handling Uneven Message Loads and/or Message Processing Delays."

A.2.3.5 Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment,
Every Member Consumption
Figure A–10 shows the following configuration:

■ Partitioned distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Application.

Typical Scenarios

Topic Deployment Scenarios A-13

■ The MDB and the topic are deployed in the same (local) cluster.

■ distributedDestinationConnection = EveryMember.

Figure A–9 Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment,
Every Member Consumption

For a partitioned distributed topic, one copy per application, local deployment, it is
better to use LocalOnly consumption for most use cases, as shown in Scenario 9:
Partitioned DT, One Copy Per Application, Local Deployment, Local Only
Consumption. However the trade-offs discussed in Section 10.3.7, "Handling Uneven
Message Loads and/or Message Processing Delays," apply here.

A.2.3.6 Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment
Figure A–10 shows the following configuration:

■ Partitioned distributed topic

■ topicMessagesDistributionMode = One-Copy-Per-Application.

■ The MDB and the topic are deployed in different (remote) cluster.

■ distributedDestinationConnection ignored for remote deployments.

Typical Scenarios

A-14 Programming Message-Driven Beans for Oracle WebLogic Server

Figure A–10 Scenario 12: Partitioned DT, One Copy Per Application, Remote
Deployment

In this scenario:

■ Messages are distributed individually to the distributed topic members. Messages
are not duplicated or copied to other members in the cluster.

■ Subscriptions are created on all the distributed topic members automatically and
dynamically.

■ A message is given to only one MDB pool.

■ All subscribers from the same MDB application on the same member share the
same subscription.

B

Topic Subscription Identifiers B-1

BTopic Subscription Identifiers

In JMS, a subscription is identified and located based on (a) the topic with which it is
associated, (b) the connection "Client ID" string that is specified for the connection that
is used to access the subscription, and (c), if using durable subscriptions, the
subscription name that is specified when the durable subscription is created.

Furthermore, in WebLogic JMS, a subscription is also identified by (d) the "Client ID
Policy" option. If two WebLogic JMS subscription references on the same physical
topic have the same Client ID and subscription name, then the references resolve to a
single subscription if the Client ID Policy is also the same, but they resolve to two
different subscriptions if the Client ID Policies are different.

A WebLogic MDB container generates a, b, c, and d automatically, based on the
following settings:

■ The ejb-name

■ jms-client-id

■ topicMessagesDistributionMode

■ distributedDestinationConnection

■ generate-unique-client-id

■ subscriptionDurability

■ Other elements of the MDB deployment and JMS configurations

The last four settings, above, apply only to Compatibility mode MDBs.

Table B–1 summarizes how the settings are used to generate subscription IDs:

B-2 Programming Message-Driven Beans for Oracle WebLogic Server

Table B–1 How Subscription IDs are Generated

Setting ClientID

Subscription Name for
the Durable Subscription
Case

Client ID Policy for
WebLogic Topics

topicMessagesDistributi
onMode =
One-Copy-Per-Applicatio
n

jmsClientIDBase ejb-name Unrestricted

topicMessagesDistributi
onMode =
One-Copy-Per-Server

jmsClientIDBase

 + "_"

 + currentDomainName

 + "_"

+ currentServerName

ejb-name Unrestricted

topicMessagesDistributi
onMode = Compatibility

generateUniqueClientID
= true

distributedDestinationC
onnection = LocalOnly

subscriptionDurability
= Durable1

1 Non-durable Compatibility mode MDBs do not set a Client-ID or Subscription-Name, and use the default Restricted Client ID
Policy.

jmsClientIDBase

 + "_"

 + currentDomainName

 + "_"

 + uniqueKey

Same as the ClientId Restricted

Same as previous row,
except:

distributedDestinationC
onnection = EveryMember

jmsClientIDBase

 + "_"

 + currentDomainName

 + "_"

 + uniqueKey

 + "_"

 + DDMemberName

Same as the ClientId Restricted

topicMessagesDistributi
onMode = Compatibility

generateUniqueClientID
= false

subscriptionDurability
= Durable1

jmsClientIDBase Same as the ClientId Restricted

Key:

■ jms-client-id = an optional MDB attribute string set by the MDB descriptor or an annotation; alternatively
(but rarely), the jms-client-id can be set by changing the MDB to reference a custom JMS connection factory
that in turn has a client-id configured

■ ejb-name = the name of the EJB

■ jmsClientIDBase = jms-client-id (if specified by user) or ejb-name (if jms-client-id is not specified)

■ currentDomainName = the name of the WebLogic domain that runs the MDB

■ currentServerName = the name of the WebLogic Server that the MDB is running on

■ uniqueKey = a string that contains some of the MDB deployment elements, possibly the currentServerName,
plus, if the destination is a WebLogic destination that is hosted by a JMS server that is using a migratable
target, then it includes this migratable target name.

■ DDMemberName = the name of a distributed destination member; or, alternatively, the destination name if the
topic is a singleton or a distributed destination in releases of WebLogic Server prior to 10.3.4.

Topic Subscription Identifiers B-3

Client ID uniqueness is enforced as follows:

■ For foreign (non-WebLogic) JMS vendors: Some JMS vendors prevent more than one
connection from specifying the same connection Client ID. (An exception is
thrown on an attempt to create the second connection.) This limitation in turn can
prevent more than one free pool from using the same Client ID, because each free
pool creates a single JMS connection with potentially the same Client ID as other
free pool connections. After a first free pool instance of the MDB starts on a server
instance in the cluster, an additional instance of the EJB can deploy successfully on
another clustered server; but when the MDB attempts to create a JMS connection, a
Client ID conflict is detected and that instance of the MDB fails to fully connect to
JMS.

■ For WebLogic JMS: For WebLogic JMS in releases of WebLogic Server prior to
10.3.4, JMS connections were restricted so only one connection with the same
Client ID could exist in the scope of a cluster. However, for WebLogic Server 10.3.4
and later, WebLogic JMS connection factories or connections can optionally set a
Client ID Policy to control this restriction. With a Client ID Policy of RESTRICTED,
the pre-10.3.4 behavior remains in effect, while with a Client ID Policy of
UNRESTRICTED, this limitation is lifted. For more information, see Programming
JMS for Oracle WebLogic Server. Unrestricted client IDs make it possible for multiple
WebLogic subscriber connections and subscriptions to share the same client ID.
Both One-Copy-Per-Server and One-Copy-Per-Application Topic Message
Distribution Modes set the ClientIDPolicy to Unrestricted. Note that if two
WebLogic JMS subscription references on the same physical topic have the same
Client ID and durable subscription name, then the references resolve to a single
subscription if the Client ID Policy is also the same, but they resolve to two
different subscriptions if the Client ID Policies are different.

B-4 Programming Message-Driven Beans for Oracle WebLogic Server

C

How WebLogic MDBs Leverage WebLogic JMS Extensions C-1

CHow WebLogic MDBs Leverage WebLogic JMS
Extensions

The MDB deployment scenarios described in Appendix A, "Topic Deployment
Scenarios." take advantage of the following JMS features, which are new in WebLogic
Server 11g Release 1 (10.3.4):

■ Shared subscriptions -- Shared subscriptions allow multiple subscribers to share
one subscription, even when the subscribers are created from different MDB
servers. All subscribers that share the same subscription collectively process all of
the messages published to the topic. Each message is processed by only one of the
subscribers. For example, if there are two subscribers, S1 and S2, and three
messages, M1, M2, and M3, S1 might receive M1 and M2 (but not M3) and, then,
S2 would receive M3 (but not M1 and M2).

This enables applications to employ "round-robin" distributed or parallel
processing of a single subscription's topic messages. MDBs can create multiple
subscribers on the same subscription identifier, whether it is durable or
non-durable. For more information about the JMS Subscription Sharing Policy, see
"Configure Shared Subscriptions" in Configuring and Managing JMS for Oracle
WebLogic Server.

■ Unrestricted Client IDs -- Unrestricted Client IDs allow multiple concurrently
active connections to use the same Client ID. The JMS clientID identifies a JMS
connection and is used to identify a durable subscription on that connection.
Setting the clientID to Unrestricted allows you to create multiple physical
subscriptions, with the same name, on different destinations. This allows
subscriptions with the same name to exist on different members of the same
distributed topic, and together, these subscriptions can be treated as a single
logical subscription. For more information, see "Configure an Unrestricted Client
ID" in Configuring and Managing JMS for Oracle WebLogic Server.

The topicMessagesDistributionMode defines permutations of the JMS attributes
SubscriptionSharingPolicy and ClientIdPolicy (set on the connection factory), to
control how messages are distributed to distributed topics. WebLogic Server sets those
values as shown in Table C–1.

Table C–1 Relationships Between topicMessagesDistributionMode Settings and
Settings on JMS Connection Factory

topicMessagesDistributionMode SubscriptionSharingPolicy ClientIdPolicy

One-Copy-Per-Server or
One-Copy-Per-Application

Sharable Unrestricted

C-2 Programming Message-Driven Beans for Oracle WebLogic Server

If the settings on the connection factory are not these values, WebLogic Server
overrides them and gives a warning message. If WebLogic Server cannot override the
values for any reason, it throws an exception, and the MDB cannot process any
messages unless the administrator changes the settings on the JMS connection factory.
You cannot programmatically set these attributes on the connection factory directly.
Instead, use topicMessagesDistributionMode, and the MDB deployment will set the
values on the connection instances.

Compatibility (replicated
distributed topics and foreign topics
only)

Exclusive Restricted

Table C–1 (Cont.) Relationships Between topicMessagesDistributionMode Settings and
Settings on JMS Connection Factory

topicMessagesDistributionMode SubscriptionSharingPolicy ClientIdPolicy

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Understanding Message-driven Beans
	1.1 JCA-Based MDBs

	2 MDB Life Cycle
	2.1 Overview
	2.2 MDBs and Concurrent Processing
	2.3 Limitations for Multi-threaded Topic MDBs

	3 MDBs and Messaging Models
	3.1 Point-to-Point (Queue) Model: One Message Per Listener
	3.2 Publish/Subscribe (Topic) Model
	3.3 Exactly-Once Processing

	4 Deploying MDBs
	4.1 Destination and MDBs: Collocation vs. non-Collocation
	4.2 Collocated Destination/MDBs
	4.3 Non-Collocated Destination/MDBs
	4.4 JMS Distributed Destinations
	4.5 Best Practice

	5 Programming and Configuring MDBs: Main Steps
	5.1 Required JMS Configuration
	5.2 Create MDB Class and Configure Deployment Elements

	6 Programming and Configuring MDBs: Details
	6.1 Configuring Destination Type
	6.2 Configuring Transaction Management Strategy for an MDB
	6.3 Configuring MDBs for Destinations
	6.3.1 Whether to Use Foreign JMS Server Mappings
	6.3.2 How to Set provider-url
	6.3.3 How to Set initial-context-factory
	6.3.4 How to Set destination-jndi-name
	6.3.5 How to Set connection-factory-jndi-name
	6.3.6 Common Destination Scenarios: Illustrations and Key Element Settings

	6.4 Configuring Message Handling Behaviors
	6.4.1 Ensuring Message Receipt Order
	6.4.2 Preventing and Handling Duplicate Messages
	6.4.3 Redelivery and Exception Handling

	6.5 Using the Message-Driven Bean Context
	6.6 Configuring Suspension of Message Delivery During JMS Resource Outages
	6.7 Manually Suspending and Resuming Message Delivery
	6.8 Configuring the Number of Seconds to Suspend a JMS Connection
	6.8.1 How the EJB Container Determines How Long to Suspend a JMS Connection
	6.8.2 Turning Off Suspension of a JMS Connection

	6.9 Configuring a Security Identity for a Message-Driven Bean
	6.10 Using MDBs With Cross Domain Security
	6.11 Configuring EJBs to Use Logical Message Destinations
	6.11.1 Configuring Logical JMS Message Destinations for Individual MDBs
	6.11.2 Configuring Application-Scoped Logical JMS Message Destinations

	7 Using EJB 3.0 Compliant MDBs
	7.1 Implementing EJB 3.0 Compliant MDBs
	7.2 Programming EJB 3.0 Compliant MDBs
	7.2.1 MDB Sample Using Annotations

	8 Migration and Recovery for Clustered MDBs
	9 Using Batching with Message-Driven Beans
	9.1 Configuring MDB Transaction Batching
	9.2 How MDB Transaction Batching Works

	10 Configuring and Deploying MDBs Using JMS Topics
	10.1 Supported Topic Types
	10.2 The Most Commonly Used MDB Attributes
	10.2.1 Setting the JMS Destination, Destination Type, and Connection Factory
	10.2.2 Setting Subscription Durability
	10.2.3 Setting Automatic Deletion of Durable Subscriptions
	10.2.4 Setting Container Managed Transactions
	10.2.5 Setting Message Filtering (JMS Selectors)
	10.2.6 Controlling MDB Concurrency
	10.2.7 Setting Subscription Identifiers
	10.2.8 Setting Message Distribution Tuning
	10.2.8.1 Setting topicMessagesDistributionMode
	10.2.8.2 Setting distributedDestinationConnection

	10.3 Best Practices
	10.3.1 Warning about Non-Transactional MDBs in Compatibility Mode
	10.3.2 Warning About Using Local RDTs with Durable MDBs
	10.3.3 Warning about Changing Durable MDB Attributes, Topic Type, EJB Name
	10.3.4 Choosing Between Partitioned and Replicated Topics
	10.3.5 Choosing an MDB Topic Messages Distribution Mode
	10.3.6 Managing and Viewing Subscriptions:
	10.3.7 Handling Uneven Message Loads and/or Message Processing Delays

	10.4 Configuring for Service Migration
	10.5 Upgrading Applications from Previous Releases
	10.6 Topic MDB Sample

	11 Deployment Elements and Annotations for MDBs
	A.1 How Configuration Permutations Determine Deployment Actions
	A.2 Typical Scenarios
	A.2.1 Standalone (Non-distributed) Topic Scenarios
	A.2.1.1 One-Copy-Per-Server
	A.2.1.2 One-Copy-Per-Application

	A.2.2 Replicated Distributed Topic Scenarios
	A.2.2.1 Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption
	A.2.2.2 Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every Member Consumption,
	A.2.2.3 Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment
	A.2.2.4 Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local Only Consumption
	A.2.2.5 Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every Member Consumption
	A.2.2.6 Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

	A.2.3 Partitioned Distributed Topic Scenarios
	A.2.3.1 Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only Consumption
	A.2.3.2 Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every Member Consumption
	A.2.3.3 Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment
	A.2.3.4 Scenario 9: Partitioned DT, One Copy Per Application, Local Deployment, Local Only Consumption
	A.2.3.5 Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every Member Consumption
	A.2.3.6 Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment

