

[1] Oracle® Fusion Middleware
Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server

11g Release 1 (10.3.6)

E13739-08

April 2015

This document describes how you use WebLogic Server
logging services to monitor server, subsystem, and
application events.

Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server,
11g Release 1 (10.3.6)

E13739-08

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Documentation Accessibility ... v
Conventions ... v

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-2
1.4 Logging Samples and Tutorials .. 1-2
1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..................................... 1-2
1.4.2 Log4j Integration in MedRec.. 1-2
1.4.3 Logging Examples in the WebLogic Server Distribution .. 1-2
1.5 New and Changed Logging Features in This Release... 1-3

2 Understanding WebLogic Logging Services

2.1 What You Can Do With WebLogic Logging Services ... 2-1
2.2 How WebLogic Logging Services Work.. 2-1
2.2.1 Components and Environment ... 2-2
2.2.2 Terminology ... 2-2
2.2.3 Overview of the Logging Process.. 2-3
2.2.4 Best Practices: Integrating Java Logging or Log4j with WebLogic Logging

Services.. 2-4
2.2.5 Server Log Files and Domain Log Files.. 2-4
2.2.6 How a Server Instance Forwards Messages to the Domain Log 2-5
2.3 Server and Subsystem Logs... 2-6
2.3.1 Server Log ... 2-6
2.3.2 Subsystem Logs.. 2-7
2.4 Log Message Format... 2-8
2.4.1 Format of Output to Standard Out and Standard Error .. 2-9
2.5 Message Attributes ... 2-9
2.6 Message Severity.. 2-10
2.7 Viewing WebLogic Server Logs... 2-11
2.8 Server Logging Bridge... 2-12
2.8.1 Java Logging.. 2-12
2.8.2 Log4J Logging ... 2-14

iv

2.8.3 Propagating Log Messages to the Root Logger.. 2-15
2.8.4 Best Practice: Use Generic Overrides to Insert Logging Properties File................... 2-15

3 Configuring WebLogic Logging Services

3.1 Configuration Scenarios... 3-1
3.2 Overview of Logging Services Configuration .. 3-1
3.2.1 Using Log Severity Levels .. 3-2
3.2.2 Using Log Filters.. 3-3
3.3 Logging Configuration Tasks: Main Steps.. 3-3
3.4 Log4j and the Commons Logging API .. 3-4
3.4.1 About Log4j .. 3-4
3.4.1.1 Loggers... 3-4
3.4.1.2 Appenders ... 3-4
3.4.1.3 Layouts... 3-4
3.5 How to Use Log4j with WebLogic Logging Services .. 3-5
3.5.1 Using WLST to Configure and Enable Log4j for WebLogic Server Logging.............. 3-5
3.6 How to Use the Commons API with WebLogic Logging Services 3-7
3.6.1 Specifying Severity Level for Loggers .. 3-8
3.6.1.1 Specifying Severity Level for WebLogic Server Subsystem Loggers.................... 3-8
3.6.1.2 Specifying the Severity Level for Commons Logging API Loggers 3-9
3.7 Rotating Log Files .. 3-10
3.7.1 Specifying the Location of Archived Log Files... 3-11
3.7.2 Notification of Rotation ... 3-11
3.8 Redirecting JVM Output ... 3-12

4 Filtering WebLogic Server Log Messages

4.1 The Role of Logger and Handler Objects .. 4-1
4.2 Filtering Messages by Severity Level or Other Criteria .. 4-3
4.3 Setting the Severity Level for Loggers and Handlers.. 4-3
4.3.1 Setting the Level for Loggers ... 4-3
4.3.2 Setting the Level for Handlers ... 4-4
4.4 Setting a Filter for Loggers and Handlers ... 4-5
4.4.1 Filtering Domain Log Messages .. 4-7
4.5 Setting a Severity Level and Filter on a Log4j Appender ... 4-7

5 Subscribing to Messages

5.1 Overview of Message Handlers.. 5-1
5.2 Creating and Subscribing a Handler: Main Steps .. 5-2
5.3 Example: Subscribing to Messages in a Server JVM.. 5-3
5.3.1 Example: Implementing a Handler Class .. 5-4
5.3.2 Example: Subscribing to a Logger Class .. 5-6
5.4 Example: Implementing a Log4j Appender Class.. 5-7
5.5 Comparison of Java Logging Handlers with JMX Listeners .. 5-9

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This section describes the contents and organization of this guide - Configuring Log
Files and Filtering Log Messages.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "Logging Samples and Tutorials"

■ Section 1.5, "New and Changed Logging Features in This Release"

1.1 Document Scope and Audience
This document describes how you use WebLogic Server logging services to monitor
server, subsystem, and application events. It explains how you configure WebLogic
Server to write messages to log files and listen for the log messages that WebLogic
Server broadcasts. It also describes how to view log messages through the WebLogic
Server Administration Console.

This document is a resource for system administrators who configure WebLogic
logging services and monitor server and subsystem events, and for Java Platform,
Enterprise Edition (Java EE) application developers who want to integrate their
application logs with WebLogic Server logs. This document is relevant to all phases of
a software project, from development through test and production phases.

This document does not address application logging or localization and
internationalization of log message catalogs. For links to information on these topics,
see Section 1.3, "Related Documentation."

It is assumed that the reader is familiar with Java EE and Web technologies,
object-oriented programming techniques, and the Java programming language.

1.2 Guide to This Document
The document is organized as follows:

■ This chapter, Chapter 1, "Introduction and Roadmap," describes the scope of this
guide and lists related documentation.

■ Chapter 2, "Understanding WebLogic Logging Services," discusses the logging
process, log files, and log messages.

■ Chapter 3, "Configuring WebLogic Logging Services," describes basic
configuration scenarios and tasks.

Related Documentation

1-2 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

■ Chapter 4, "Filtering WebLogic Server Log Messages," describes how to specify
which types of messages WebLogic Server writes to its logs and to standard out.

■ Chapter 5, "Subscribing to Messages," describes how WebLogic Server instantiates
and subscribes a set of message handlers that receive and print log messages.

1.3 Related Documentation
The corporate Web site provides all documentation for WebLogic Server. Specifically,
"View and configure logs" in the Oracle WebLogic Server Administration Console Help
describes how to view and configure log files that a WebLogic Server instance
generates, and Using Logging Services for Application Logging for Oracle WebLogic Server
describes how you can use WebLogic Server message catalogs, non-catalog logging,
and servlet logging to produce log messages from your application or a remote Java
client, and describes WebLogic’s support for internationalization and localization of
log messages.

1.4 Logging Samples and Tutorials
In addition to this document, Oracle provides a variety of logging code samples that
show logging configuration and API use.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
recommended best practices. MedRec is included in the WebLogic Server distribution,
and can be accessed from the Start menu on Windows machines. For Linux and other
platforms, you can start MedRec from the WL_HOME\samples\domains\medrec
directory, where WL_HOME is the top-level installation directory for WebLogic Server.

1.4.2 Log4j Integration in MedRec
The MedRec domain installed with WebLogic Server is configured to enable Log4j
logging. Several action classes and MedRec utility classes use the
weblogic.logging.log4j.Log4jLoggingHelper class to create a new logger, access a
Log4j Appender, and register the Appender with the logger. Classes extending the
base classes then use the logger to write informational messages to the WebLogic
Server log file.

1.4.3 Logging Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in WL_
HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and
obtain information about the samples and how to run them from the WebLogic Server
Start menu.

New and Changed Logging Features in This Release

Introduction and Roadmap 1-3

1.5 New and Changed Logging Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

New and Changed Logging Features in This Release

1-4 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

2

Understanding WebLogic Logging Services 2-1

2Understanding WebLogic Logging Services

WebLogic logging services provide facilities for writing, viewing, filtering, and
listening for log messages. These log messages are generated by WebLogic Server
instances, subsystems, and Java EE applications that run on WebLogic Server or in
client JVMs.

The following sections describe the WebLogic logging services environment, logging
process, and log files:

■ Section 2.1, "What You Can Do With WebLogic Logging Services"

■ Section 2.2, "How WebLogic Logging Services Work"

■ Section 2.3, "Server and Subsystem Logs"

■ Section 2.4, "Log Message Format"

■ Section 2.5, "Message Attributes"

■ Section 2.6, "Message Severity"

■ Section 2.7, "Viewing WebLogic Server Logs"

■ Section 2.8, "Server Logging Bridge"

2.1 What You Can Do With WebLogic Logging Services
WebLogic Server subsystems use logging services to provide information about events
such as the deployment of new applications or the failure of one or more subsystems.
A server instance uses them to communicate its status and respond to specific events.
For example, you can use WebLogic logging services to report error conditions or
listen for log messages from a specific subsystem.

Each WebLogic Server instance maintains a server log. Because each WebLogic Server
domain can run concurrent, multiple instances of WebLogic Server, the logging
services collect messages that are generated on multiple server instances into a single,
domain-wide message log. The domain log provides the overall status of the domain.
See Section 2.2.5, "Server Log Files and Domain Log Files."

2.2 How WebLogic Logging Services Work
The following sections describe the logging environment and provide an overview of
the logging process.

How WebLogic Logging Services Work

2-2 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

2.2.1 Components and Environment
There are two basic components in any logging system: a component that produces log
messages and another component to distribute (publish) messages. WebLogic Server
subsystems use a message catalog feature to produce messages and the Java Logging
APIs to distribute them, by default. Developers can also use message catalogs for
applications they develop.

The message catalog framework provides a set of utilities and APIs that your
application can use to send its own set of messages to the WebLogic server log. The
framework is ideal for applications that need to localize the language in their log
messages, but even for those applications that do not need to localize, it provides a
rich, flexible set of tools for communicating status and output.

See "Using Message Catalogs with WebLogic Server" in Using Logging Services for
Application Logging for Oracle WebLogic Server.

In addition to using the message catalog framework, your application can use the
following mechanisms to send messages to the WebLogic server log:

■ weblogic.logging.NonCatalogLogger APIs

With NonCatalogLogger, instead of calling messages from a catalog, you place the
message text directly in your application code. See "Using the NonCatalogLogger
APIs" in Using Logging Services for Application Logging for Oracle WebLogic Server.

■ Server Logging Bridge

WebLogic Server provides a mechanism by which your logging application can
have its messages redirected to WebLogic logging services without the need to
make code changes or implement any of the propriety WebLogic Logging APIs.
See Section 2.8, "Server Logging Bridge."

Use of either the NonCatalogLogger APIs or Server Logging Bridge is suitable for
logging messages that do not need to be internationalized or that are internationalized
outside the WebLogic I18n framework.

To distribute messages, WebLogic Server supports Java based logging by default. The
LoggingHelper class provides access to the java.util.logging.Logger object used for
server logging. This lets developers take advantage of the Java Logging APIs to add
custom handlers, filters, and formatters. See the java.util.logging API
documentation at
http://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary
.html.

Alternatively, you can configure WebLogic Server to use the Jakarta Project Log4j APIs
to distribute log messages. See Section 3.4, "Log4j and the Commons Logging API."

2.2.2 Terminology
Logger - A Logger object logs messages for a specific subsystem or application
component. WebLogic logging services use a single instance of
java.util.logging.Logger for logging messages from the Message Catalogs,
NonCatalogLogger, and the Debugging system.

Handler - A class that extends java.util.logging.Handler and receives log requests
sent to a logger. Each Logger instance can be associated with a number of handlers to
which it dispatches log messages. A handler attaches to a specific type of a log
message; for example, the File Handler for the server log file.

How WebLogic Logging Services Work

Understanding WebLogic Logging Services 2-3

Appender - An appender is Log4j terminology for a handler, in this case, an instance of
a class that implements org.apache.log4j.Appender and is registered with an
org.apache.log4j.Logger to receive log events.

2.2.3 Overview of the Logging Process
WebLogic Server subsystems or application code send log requests to Logger objects.
These Logger objects allocate LogRecord objects which are passed to Handler objects
for publication. Both loggers and handlers use severity levels and (optionally) filters to
determine if they are interested in a particular LogRecord object. When it is necessary
to publish a LogRecord object externally, a handler can (optionally) use a formatter to
localize and format the log message before publishing it to an I/O stream.

Figure 2–1 shows the WebLogic Server logging process: WebLogic Catalog APIs or
Commons Logging APIs are used for producing messages; Java Logging (default) and
Log4j are options for distributing messages.

Figure 2–1 WebLogic Server Logging Process

Figure 2–1 illustrates the following process:

1. The client, in this case, a WebLogic Server subsystem or Java EE application,
invokes a method on one of the generated Catalog Loggers or the Commons
Logging implementation for WebLogic Server.

a. When WebLogic Server message catalogs and the NonCatalogLogger generate
messages, they distribute their messages to the server Logger object.

b. The Jakarta Commons Logging APIs define a factory API to get a Logger
reference which dispatches log requests to the server Logger object.

The server Logger object can be an instance of java.util.logging.Logger or
org.apache.log4j.Logger.

2. The server Logger object publishes the messages to any message handler that has
subscribed to the Logger.

For example, the Stdout Handler prints a formatted message to standard out and
the File Handler writes formatted output to the server log file. The Domain Log
Broadcaster sends log messages to the domain log, which resides on the

How WebLogic Logging Services Work

2-4 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

Administration Server, and the JMX Log Broadcaster sends log messages to JMX
listeners on remote clients.

2.2.4 Best Practices: Integrating Java Logging or Log4j with WebLogic Logging
Services

Consider the following recommendations for using WebLogic logging services with
Java Logging or Log4j:

■ Use the Catalog and NonCatalog loggers or the Commons API for producing log
messages for publishing by WebLogic logging services.

■ Use a Java Logging or Log4j Logger reference for adding custom handlers,
appenders, or filters to WebLogic logging services for publishing messages.

■ If your application is configured for Java Logging or Log4j, in order to publish
application events using WebLogic logging services, you can do either of the
following:

– (Recommended) Configure your application’s logger to use the Server
Logging Bridge, which provides a lightweight means for your application’s
log messages to be redirected to WebLogic logging services without requiring
any code changes. For more information, see Section 2.8, "Server Logging
Bridge."

– Create a custom handler or appender that relays the application events to
WebLogic logging services using programmatic API. For information, see
Section 3.5, "How to Use Log4j with WebLogic Logging Services."

2.2.5 Server Log Files and Domain Log Files
Each WebLogic Server instance writes all messages from its subsystems and
applications to a server log file that is located on the local host computer. By default,
the server log file is located in the logs directory below the server instance root
directory; for example, DOMAIN_NAME\servers\SERVER_NAME\logs\SERVER_NAME.log,
where DOMAIN_NAME is the name of the directory in which you located the domain and
SERVER_NAME is the name of the server.

In addition to writing messages to the server log file, each server instance forwards a
subset of its messages to a domain-wide log file. By default, servers forward only
messages of severity level NOTICE or higher. While you can modify the set of messages
that are forwarded, servers can never forward messages of the DEBUG severity level.
See "Forward messages to the domain log" in the Oracle WebLogic Server Administration
Console Help.

The domain log file provides a central location from which to view the overall status of
the domain. The domain log resides in the Administration Server logs directory. The
default name and location for the domain log file is DOMAIN_NAME\servers\ADMIN_
SERVER_NAME\logs\DOMAIN_NAME.log, where DOMAIN_NAME is the name of the directory
in which you located the domain and ADMIN_SERVER_NAME is the name of the
Administration Server. See "Change domain log file name and location" in the Oracle
WebLogic Server Administration Console Help.

The timestamp for a record in the domain log is the timestamp of the server where the
message originated. Log records in the domain log are not written in the order of their
timestamps; the messages are written as soon as they arrive. It may happen that a
Managed Server remains out of contact with the Administration Server for some
period of time. In that case, the messages are buffered locally and sent to the
Administration Server once the servers are reconnected.

How WebLogic Logging Services Work

Understanding WebLogic Logging Services 2-5

2.2.6 How a Server Instance Forwards Messages to the Domain Log
To forward messages to the domain log, each server instance broadcasts its log
messages. A server broadcasts all messages and message text except for messages of
the DEBUG severity level.

The Administration Server listens for a subset of these messages and writes them to
the domain log file. To listen for these messages, the Administration Server registers a
listener with each Managed Server. By default, the listener includes a filter that allows
only messages of severity level NOTICE and higher to be forwarded to the
Administration Server. (See Figure 2–2.)

Figure 2–2 WebLogic Server and Domain Logs

For any given WebLogic Server instance, you can override the default filter and create
a log filter that causes a different set of messages to be written to the domain log file.
For information on setting up a log filter for a WebLogic Server instance, see "Create
log filters" in the Oracle WebLogic Server Administration Console Help.

If the Administration Server is unavailable, Managed Servers continue to write
messages to their local server log files. However, by default, when the servers are
reconnected, not all the messages written during the disconnected period are
forwarded to the domain log file. A Managed Server keeps a specified number of
messages in a buffer so they can be forwarded to the Administration Server when the
servers are reconnected.

The number of messages kept in the buffer is configured by the LogMBean attribute
DomainLogBroadcasterBufferSize. DomainLogBroadcasterBufferSize controls the
frequency with which log messages are sent from the managed server to the domain
server. With the development default of 1, there is not batching of log messages; only
the last logged message is forwarded to the Administration Server domain log. For
example, if the Administration Server is unavailable for two hours and then is
restored, the domain log will not contain any messages that were generated during the

Server and Subsystem Logs

2-6 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

two hours. See "MSI Mode and the Domain Log File" in Managing Server Startup and
Shutdown for Oracle WebLogic Server. In production mode, the default buffer size on the
managed server is 10. When the buffer reaches its capacity, the messages in the buffer
are flushed by sending them to the domain log on the administration server. For
performance reasons, it is recommended that you set this value to 10 or higher in
production. A higher value will cause the buffer to be broadcast to the domain log less
frequently.

If you have configured a value greater than 1, that number of messages will be
forwarded to the domain log when the Managed Server is reconnected to the
Administration Server.

2.3 Server and Subsystem Logs
Each subsystem within WebLogic Server generates log messages to communicate its
status. For example, when you start a WebLogic Server instance, the Security
subsystem writes a message to report its initialization status. To keep a record of the
messages that its subsystems generate, WebLogic Server writes the messages to log
files.

2.3.1 Server Log
The server log records information about events such as the startup and shutdown of
servers, the deployment of new applications, or the failure of one or more subsystems.
The messages include information about the time and date of the event as well as the
ID of the user who initiated the event.

You can view and sort these server log messages to detect problems, track down the
source of a fault, and track system performance. You can also create client applications
that listen for these messages and respond automatically. For example, you can create
an application that listens for messages indicating a failed subsystem and sends E-mail
to a system administrator.

The server log file is located on the computer that hosts the server instance. Each
server instance has its own server log file. By default, the server log file is located in
the logs directory below the server instance root directory; for example, DOMAIN_
NAME\servers\SERVER_NAME\logs\SERVER_NAME.log, where DOMAIN_NAME is the name
of the directory in which you located the domain and SERVER_NAME is the name of the
server. See "Change server log file name and location" in the Oracle WebLogic Server
Administration Console Help.

To view messages in the server log file, you can log on to the WebLogic Server host
computer and use a standard text editor, or you can log on to any computer and use
the log file viewer in the Administration Console. See "View server logs" in the Oracle
WebLogic Server Administration Console Help.

Note: This can result in a domain log file that lists messages with
earlier timestamps after messages with later timestamps. When
messages from the buffer of a previously disconnected Managed
Server are flushed to the Administration Server, those messages are
simply appended to the domain log, even though they were generated
before the previous messages in the domain log.

Server and Subsystem Logs

Understanding WebLogic Logging Services 2-7

In addition to writing messages to a log file, each server instance prints a subset of its
messages to standard out. Usually, standard out is the shell (command prompt) in
which you are running the server instance. However, some operating systems enable
you to redirect standard out to some other location. By default, a server instance prints
only messages of a NOTICE severity level or higher to standard out. (A subsequent
section, Section 2.6, "Message Severity," describes severity levels.) You can modify the
severity threshold so that the server prints more or fewer messages to standard out.

If you use the Node Manager to start a Managed Server, the messages that would
otherwise be output to stdout or stderr when starting a Managed Server are instead
displayed in the Administration Console and written to a single log file for that server
instance, SERVER_NAME.out. The server instance’s output log is located in the same
logs directory, below the server instance root directory, along with the WebLogic
Server SERVER_NAME.log file; for example, DOMAIN_NAME\servers\SERVER_
NAME\logs\SERVER_NAME.out, where DOMAIN_NAME is the name of the directory in
which you located the domain and SERVER_NAME is the name of the server.

The Node Manager writes its own startup and status messages to a single log file, NM_
HOME/nodemanager.log, where NM_HOME designates the Node Manager installation
directory, by default, WL_HOME/common/nodemanager.

For more information on Node Manager log files, see "Node Manager Configuration
and Log Files" in Node Manager Administrator's Guide for Oracle WebLogic Server.

2.3.2 Subsystem Logs
The server log messages and log file communicate events and conditions that affect the
operation of the server or the application. Some subsystems maintain additional log
files to provide an audit of the subsystem’s interactions under normal operating
conditions. The following list describes each of the additional log files:

■ The HTTP subsystem keeps a log of all HTTP transactions in a text file. The
default location and rotation policy for HTTP access logs is the same as the server
log. You can set the attributes that define the behavior of HTTP access logs for
each server or for each virtual host that you define. See "Setting Up HTTP Access
Logs" in Configuring Server Environments for Oracle WebLogic Server and "Enable
and configure HTTP logs" in the Oracle WebLogic Server Administration Console
Help.

■ Each server has a transaction log which stores information about committed
transactions coordinated by the server that may not have been completed.
WebLogic Server uses the transaction log when recovering from system crashes or
network failures. You cannot directly view the transaction log - the file is in a
binary format.

The Transaction Manager uses the default persistent store to store transaction log
files. Using the Administration Console, you can change where the default store is

Note: Oracle recommends that you do not modify log files by editing
them manually. Modifying a file changes the timestamp and can
confuse log file rotation. In addition, editing a file might lock it and
prevent updates from WebLogic Server, as well as interfere with the
Accessor.

For information about the Diagnostic Accessor Service, see "Accessing
Diagnostic Data With the Data Accessor" in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

Log Message Format

2-8 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

located. See "Configure the default persistent store for Transaction Recovery
Service migration" in the Oracle WebLogic Server Administration Console Help.

■ The WebLogic Auditing provider records information from a number of security
requests, which are determined internally by the WebLogic Security Framework.
The WebLogic Auditing provider also records the event data associated with these
security requests, and the outcome of the requests. Configuring an Auditing
provider is optional. The default security realm (myrealm) does not have an
Auditing provider configured. See "Configuring the WebLogic Auditing Provider"
in Securing Oracle WebLogic Server.

All auditing information recorded by the WebLogic Auditing provider is saved in
WL_HOME\DOMAIN_NAME\servers\SERVER_NAME\logs\DefaultAuditRecorder.log.
Although an Auditing provider is configured per security realm, each server
writes auditing data to its own log file in the server directory.

■ The JDBC subsystem records various events related to JDBC connections,
including registering JDBC drivers and SQL exceptions. The events related to
JDBC are now written to the server log, such as when connections are created or
refreshed or when configuration changes are made to JDBC objects. See
"Monitoring WebLogic JDBC Resources" in Configuring and Managing JDBC for
Oracle WebLogic Server.

■ JMS logging is enabled by default when you create a JMS server, however, you
must specifically enable it on message destinations in the JMS modules targeted to
this JMS server (or on the JMS template used by destinations).

JMS server log files contain information on basic message life cycle events, such as
message production, consumption, and removal. When a JMS destination hosting
the subject message is configured with message logging enabled, then each of the
basic message life cycle events will generate a message log event in the JMS
message log file.

The message log is located in the logs directory, below the server instance root
directory, DOMAIN_NAME\servers\SERVER_NAME\logs\jmsServers\SERVER_
NAMEJMSServer\jms.messages.log, where DOMAIN_NAME is the name of the
directory in which you located the domain and SERVER_NAME is the name of the
server.

After you create a JMS server, you can change the default name of its log file, as
well as configure criteria for moving (rotating) old log messages to a separate file.
See "Configure topic message logging" in the Oracle WebLogic Server Administration
Console Help and "Monitoring JMS Statistics and Managing Messages" in
Configuring and Managing JMS for Oracle WebLogic Server.

2.4 Log Message Format
When a WebLogic Server instance writes a message to the server log file, the first line
of each message begins with #### followed by the message attributes. Each attribute is
contained between angle brackets.

Here is an example of a message in the server log file:

####<Sept 22, 2004 10:46:51 AM EST> <Notice> <WebLogicServer> <MyComputer>
<examplesServer><main> <<WLS Kernel>> <> <null> <1080575211904> <BEA-000360>
<Server started in RUNNING mode>

In this example, the message attributes are: Locale-formatted Timestamp, Severity,
Subsystem, Machine Name, Server Name, Thread ID, User ID, Transaction ID,
Diagnostic Context ID, Raw Time Value, Message ID, and Message Text. (A

Message Attributes

Understanding WebLogic Logging Services 2-9

subsequent section, Section 2.5, "Message Attributes," describes each attribute.)

If a message is not logged within the context of a transaction, the angle brackets for
Transaction ID are present even though no Transaction ID is present.

If the message includes a stack trace, the stack trace is included in the message text.

WebLogic Server uses the host computer’s default character encoding for the messages
it writes.

2.4.1 Format of Output to Standard Out and Standard Error
When a WebLogic Server instance writes a message to standard out, the output does
not include the #### prefix and does not include the Server Name, Machine Name,
Thread ID, User ID, Transaction ID, Diagnostic Context ID, and Raw Time Value fields.

Here is an example of how the message from the previous section would be printed to
standard out:

<Sept 22, 2004 10:51:10 AM EST> <Notice> <WebLogicServer> <BEA-000360> <Server
started in RUNNING mode>

In this example, the message attributes are: Locale-formatted Timestamp, Severity,
Subsystem, Message ID, and Message Text.

2.5 Message Attributes
The messages for all WebLogic Server instances contain a consistent set of attributes as
described in Table 2–1. In addition, if your application uses WebLogic logging services
to generate messages, its messages will contain these attributes.

Table 2–1 Server Log Message Attributes

Attribute Description

Locale-formatted
Timestamp

Time and date when the message originated, in a format that is
specific to the locale. The Java Virtual Machine (JVM) that runs each
WebLogic Server instance refers to the host computer operating
system for information about the local time zone and format.

Severity Indicates the degree of impact or seriousness of the event reported by
the message. See Section 2.6, "Message Severity."

Subsystem Indicates the subsystem of WebLogic Server that was the source of the
message; for example, Enterprise Java Bean (EJB) container or Java
Messaging Service (JMS).

Machine Name

Server Name

Thread ID

Identifies the origins of the message:

■ Server Name is the name of the WebLogic Server instance on
which the message was generated.

■ Machine Name is the DNS name of the computer that hosts the
server instance.

■ Thread ID is the ID that the JVM assigns to the thread in which
the message originated.

Log messages that are generated within a client JVM do not include
these attributes. For example, if your application runs in a client JVM
and it uses the WebLogic logging services, the messages that it
generates and sends to the WebLogic client log files will not include
these attributes.

Message Severity

2-10 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

2.6 Message Severity
The severity attribute of a WebLogic Server log message indicates the potential impact
of the event or condition that the message reports.

Table 2–2 lists the severity levels of log messages from WebLogic Server subsystems,
starting from the lowest level of impact to the highest.

User ID The user ID under which the associated event was executed.

To execute some pieces of internal code, WebLogic Server
authenticates the ID of the user who initiates the execution and then
runs the code under a special Kernel Identity user ID.

Java EE modules such as EJBs that are deployed onto a server
instance report the user ID that the module passes to the server.

Log messages that are generated within a client JVM do not include
this field.

Transaction ID Present only for messages logged within the context of a transaction.

Diagnostic Context ID Context information to correlate messages coming from a specific
request or application.

Raw Time Value The timestamp in milliseconds.

Message ID A unique six-digit identifier.

All message IDs that WebLogic Server system messages generate start
with BEA- and fall within a numerical range of 0-499999.

Your applications can use a Java class called NonCatalogLogger to
generate log messages instead of using an internationalized message
catalog. The message ID for NonCatalogLogger messages is always
000000.

See "Writing Messages to the WebLogic Server Log" in Using Logging
Services for Application Logging for Oracle WebLogic Server.

Message Text A description of the event or condition.

Table 2–2 Message Severity

Severity Meaning

TRACE Used for messages from the Diagnostic Action Library. Upon enabling
diagnostic instrumentation of server and application classes, TRACE messages
follow the request path of a method.

See "Diagnostic Action Library" in Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server.

DEBUG A debug message was generated.

INFO Used for reporting normal operations; a low-level informational message.

NOTICE An informational message with a higher level of importance.

WARNING A suspicious operation or configuration has occurred but it might not affect
normal operation.

ERROR A user error has occurred. The system or application can handle the error with
no interruption and limited degradation of service.

CRITICAL A system or service error has occurred. The system can recover but there
might be a momentary loss or permanent degradation of service.

Table 2–1 (Cont.) Server Log Message Attributes

Attribute Description

Viewing WebLogic Server Logs

Understanding WebLogic Logging Services 2-11

WebLogic Server subsystems generate many messages of lower severity and fewer
messages of higher severity. For example, under normal circumstances, they generate
many INFO messages and no EMERGENCY messages.

If your application uses WebLogic logging services, it can use an additional severity
level, DEBUG. See "Writing Debug Messages" in Using Logging Services for Application
Logging for Oracle WebLogic Server.

2.7 Viewing WebLogic Server Logs
The WebLogic Server Administration Console provides a log viewer for all the log files
in a domain. The log viewer can find and display the messages based on any of the
following message attributes: date, subsystem, severity, machine, server, thread, user
ID, transaction ID, context ID, timestamp, message ID, or message. It can also display
messages as they are logged or search for past log messages. (See Figure 2–3.)

Figure 2–3 Log Viewer

ALERT A particular service is in an unusable state while other parts of the system
continue to function. Automatic recovery is not possible; the immediate
attention of the administrator is needed to resolve the problem.

EMERGENCY The server is in an unusable state. This severity indicates a severe system
failure or panic.

Table 2–2 (Cont.) Message Severity

Severity Meaning

Server Logging Bridge

2-12 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

For information about viewing, configuring, and searching message logs, see the
following topics in the Oracle WebLogic Server Administration Console Help:

■ "View and configure logs"

■ "View server logs"

■ "View the domain log"

For a detailed description of log messages in WebLogic Server message catalogs, see
Oracle Fusion Middleware Oracle WebLogic Server Message Catalog. This index of
messages describes all of the messages emitted by WebLogic subsystems and provides
a detailed description of the error, a possible cause, and a recommended action to
avoid or fix the error. To view available details, click on the appropriate entry in the
Range column (if viewing by range) or the Subsystem column (if viewing by
subsystem).

2.8 Server Logging Bridge
The Server Logging Bridge provides a lightweight mechanism for applications that
currently use Java Logging or Log4J Logging to have their log messages redirected to
WebLogic logging services. Applications can use the Server Logging Bridge with their
existing configuration; no code changes or programmatic use of the WebLogic Logging
APIs is required.

To use the Server Logging Bridge, you only need to create a logging configuration
properties file as described in the following sections. You do not need to reconfigure
the logging API that is enabled for WebLogic logging services; the Server Logging
Bridge works the same regardless of whether WebLogic logging services are currently
configured for Java Logging (the default) or for Log4j.

2.8.1 Java Logging
For applications that use the Java Logging API, WebLogic Server exposes the Server
Logging Bridge as handler object, weblogic.logging.ServerLoggingHandler. The
logging implementation configured for WebLogic Server can be either Java Logging
(the default), or Log4J Logging. When the handler receives an application log message,
in the form of a java.util.logging.LogRecord object, the handler redirects the
message to the WebLogic logging service destinations, such as stdout, server log,
domain log, and so on, as appropriate.

The following information contained in the LogRecord determines how the log
message is redirected:

■ Message severity level

The severity level is automatically converted to one of the standard WebLogic
logging service severity levels when the log message redirected.

■ Logger name

The Server Logging Bridge handler publishes the application message to a logger
in the WebLogic Logger tree matching the logger name contained in the
LogRecord.

Note: Applications that use the com.oracle.wls namespace do not
require the logging properties file, or any other configuration changes,
to use the Server Logging Bridge.

Server Logging Bridge

Understanding WebLogic Logging Services 2-13

If no logger name exists in the LogRecord, the message is published to the root
logger.

■ Log Level

The Level of the LogRecord is automatically converted to one of the standard
WebLogic logging service severity levels when the log message redirected.

To use the Server Logging Bridge handler, create a logging.properties file to be
passed as an argument in the server's weblogic.Server startup command. This
properties file, which can be placed in any directory, registers the Server Logging
Bridge handler in the application’s logger tree. For detailed information about
configuring Java Logging, see the following Java logging API documentation:

http://docs.oracle.com/javase/6/docs/technotes/guides/logging/overview.htm
l

Example 2–1 shows an example logging.properties file for an application that uses
the Java Logging API.

Example 2–1 Example logging.properties File Using the ServerLoggingHandler

Specify the handlers to create in the root logger
handlers = weblogic.logging.ServerLoggingHandler

Register handlers for the com.foo.toyshop and its child loggers
com.foo.toyshop.handlers = java.util.logging.ConsoleHandler,
weblogic.logging.ServerLoggingHandler

Do not send the toyshop log messages to the root handler
com.foo.toyshop.useParentHandlers = false

Set the default logging level for the root logger
.level = ALL

Set the default logging level for new ConsoleHandler instances
java.util.logging.ConsoleHandler.level = INFO

Set the default logging level for new FileHandler instances
weblogic.logging.ServerLoggingHandler.level = ALL

The following example shows passing the logging.properties file in the
-Djava.util.logging.config.file argument to the weblogic.Server startup
command:

java -Djava.util.logging.config.file=C:\mydomain\logging.properties
weblogic.Server

Note: As a best practice, configuring the Logger Severity level in the
LogMBean.LoggerSeverityProperties attribute is recommended
because it is dynamic and can be persisted in the domain’s
config.xml file. For more information, see Section 3.6.1.1, "Specifying
Severity Level for WebLogic Server Subsystem Loggers."

Server Logging Bridge

2-14 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

2.8.2 Log4J Logging
For applications that use the Log4J Logging API, WebLogic Server exposes the Server
Logging Bridge as the appender object,
weblogic.logging.log4j.ServerLoggingAppender. The logging implementation
configured for WebLogic Server can be either Java Logging (the default), or Log4J
Logging. When the appender receives an application log message, in the form of a
org.apache.log4j.spi.LoggingEvent object, the appender redirects the message to
the WebLogic logging service destinations such as stdout, server log, domain log, and
so on, as appropriate.

The following information contained in the LoggingEvent determines how the log
message is redirected:

■ Message severity level

The severity level is automatically converted to one of the standard WebLogic
logging service severity levels when the log message redirected.

■ Logger name

The Server Logging Bridge appender publishes the application message to a
logger in the WebLogic Log4J Logger tree matching the logger name contained in
the LoggingEvent.

If no logger name exists in the LoggingEvent, the message is published to the root
logger.

To use the Server Logging Bridge appender, create a log4j.properties file to be
included in the application classpath. The log4j.properties file registers the Server
Logging Bridge appender in the application's logger tree. For detailed information
about configuring Log4j logging, see the following Logging Services documentation
published by logging.apache.org:

http://logging.apache.org/log4j/1.2/manual.html

Example 2–2 shows an example log4j.properties file for an application that uses
Log4J Logging.

Example 2–2 Example log4j.properties File Using the ServerLoggingAppender

log4j.rootLogger=debug, stdout, server

Note: When you start WebLogic Server by passing a
logging.properties file as shown in the preceding example, the
default Java logging.properties file located in JAVA_HOME/jre/lib is
overridden. As an alternative to creating a separate
logging.properties file that you explicitly pass to the
weblogic.Server command, you can update the default Java
logging.properties file with properties for using the Server Logging
Bridge handler.

Note: As a best practice, configuring the Logger Severity level in the
LogMBean.LoggerSeverityProperties attribute is recommended
because it is dynamic and can be persisted in the domain’s
config.xml file. For more information, see Section 3.6.1.1, "Specifying
Severity Level for WebLogic Server Subsystem Loggers."

Server Logging Bridge

Understanding WebLogic Logging Services 2-15

***** stdout is set to be a ConsoleAppender.
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) - %m%n

log4j.appender.server=weblogic.logging.log4j.ServerLoggingAppender

2.8.3 Propagating Log Messages to the Root Logger
By default, log messages originating from loggers with the com.oracle.wls
namespace that are redirected by the Server Logging Bridge are not propagated to the
application’s root logger. However, you can propagate messages to the application’s
root logger by enabling the
LogMBean.ServerLoggingBridgeUseParentLoggersEnabled attribute.

For more information, see the description of Server Logging Bridge Uses Parent
Loggers in "Servers: Logging: General" in Oracle WebLogic Server Administration Console
Help.

2.8.4 Best Practice: Use Generic Overrides to Insert Logging Properties File
If you are using Log4j for application logging, the log4j.properties file can use the
generic overrides feature in WebLogic Server to have this file inserted into your
existing deployment plan directory structure. The generic overrides feature provides a
convenient means to insert, or make changes to, specific resources types used by an
application and to continue using the existing ClassLoader and resource loading rules
and behaviors for the application, without having to revise the application JAR files.

For more information, see "Generic File Loading Overrides" in Deploying Applications to
Oracle WebLogic Server.

Server Logging Bridge

2-16 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

3

Configuring WebLogic Logging Services 3-1

3Configuring WebLogic Logging Services

The following sections describe WebLogic Server logging scenarios and basic
configuration tasks. For detailed instructions on filtering and subscribing to messages,
see Chapter 4, "Filtering WebLogic Server Log Messages," and Chapter 5, "Subscribing
to Messages."

■ Section 3.1, "Configuration Scenarios"

■ Section 3.2, "Overview of Logging Services Configuration"

■ Section 3.3, "Logging Configuration Tasks: Main Steps"

■ Section 3.4, "Log4j and the Commons Logging API"

■ Section 3.5, "How to Use Log4j with WebLogic Logging Services"

■ Section 3.6, "How to Use the Commons API with WebLogic Logging Services"

■ Section 3.7, "Rotating Log Files"

■ Section 3.8, "Redirecting JVM Output"

3.1 Configuration Scenarios
WebLogic Server system administrators and developers configure logging output and
filter log messages to troubleshoot errors or to receive notification for specific events.

The following tasks describe some logging configuration scenarios:

■ Stop DEBUG and INFO messages from going to the log file.

■ Allow INFO level messages from the HTTP subsystem to be published to the log
file, but not to standard out.

■ Specify that a handler publishes messages that are WARNING severity level or
higher.

■ Track log information for individual servers in a cluster.

3.2 Overview of Logging Services Configuration
Volume control of logging is provided through the LogMBean interface. In the logging
process, a logging request is dispatched to subscribed handlers or appenders.
WebLogic Server provides handlers for sending log messages to standard out, the
server log file, broadcasting messages to the domain log, remote clients, and a memory
buffer for tail viewing log events in the WebLogic Server Administration Console. You
can achieve volume control for each type of handler by filtering log messages based on
severity level and other criteria. The LogMBean, described in Oracle WebLogic Server

Overview of Logging Services Configuration

3-2 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

MBean Reference, defines attributes for setting the severity level and specifying filter
criteria for WebLogic Server handlers.

In earlier versions of WebLogic Server, system administrators and developers had only
programmatic access to loggers and handlers. In this release of WebLogic Server, you
can configure handlers using MBeans, eliminating the need to write code for most
basic logging configurations. The Administration Console and WebLogic Server
Scripting Tool (WLST) provide an interface for interacting with logging MBeans.
Additionally, you can specify LogMBean parameters on the command line using
Dweblogic.log.attribute-name=value; for example,
Dweblogic.log.StdoutSeverity=Debug. See "Message Output and Logging" in
Command Reference for Oracle WebLogic Server.

For advanced usage scenarios and for configuring loggers, you use the Java Logging
APIs.

Setting the severity level on a handler is the simplest type of volume control; for
example, any message of a lower severity than the specified threshold severity level,
will be rejected. For example, by default, the Stdout Handler has a NOTICE threshold
severity level. Therefore, INFO and DEBUG level messages are not sent to standard out.

Configuring a filter on a handler lets you specify criteria for accepting log messages
for publishing; for example, only messages from the HTTP and JDBC subsystems are
sent to standard out.

The following sections describe in more detail the control points for configuring
WebLogic Server logging behavior.

3.2.1 Using Log Severity Levels
Each log message has an associated severity level. The level gives a rough guide to the
importance and urgency of a log message. WebLogic Server has predefined severities,
ranging from TRACE to EMERGENCY, which are converted to a log level when dispatching
a log request to the logger. A log level object can specify any of the following values,
from lowest to highest impact:

TRACE, DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL, ALERT, EMERGENCY

You can set a log severity level on the logger and the handler. When set on the logger,
none of the handlers receive an event which is rejected by the logger. For example, if
you set the log level to NOTICE on the logger, none of the handlers will receive INFO
level events. When you set a log level on the handler, the restriction only applies to
that handler and not the others. For example, turning DEBUG off for the File Handler

Note: The java.util.logging.LoggingPermission class, described
at
http://docs.oracle.com/javase/6/docs/api/java/util/logging/L
oggingPermission.html, is required for a user to change the
configuration of a logger or handler. In production environments, we
recommend using the Java Security Manager with
java.util.logging.LoggingPermission enabled for the current user.

See "Using the Java Security Manager to Protect WebLogic Resources"
in Programming Security for Oracle WebLogic Server, and see also the
Java Logging Overview at
http://docs.oracle.com/javase/6/docs/technotes/guides/loggin
g/overview.html.

Logging Configuration Tasks: Main Steps

Configuring WebLogic Logging Services 3-3

means no DEBUG messages will be written to the log file, however, DEBUG messages will
be written to standard out.

See the description of the weblogic.logging.Severities class in the Oracle WebLogic
Server API Reference for a description of the supported severity levels.

You set log levels for handlers and loggers using the Administration Console, WLST,
or the command line. See Section 3.6.1, "Specifying Severity Level for Loggers."
Loggers and handlers can also be configured through the API. See Section 4.3, "Setting
the Severity Level for Loggers and Handlers."

3.2.2 Using Log Filters
To provide more control over the messages that a Logger object publishes, you can
create and set a filter. A filter is a class that uses custom logic to evaluate the log record
content which you use to accept or reject a log message; for example, to filter out
messages of a certain severity level, from a particular subsystem, or according to
specified criteria. The Logger object publishes only the log messages that satisfy the
filter criteria. You can create separate filters for the messages that each server instance
writes to its server log file, standard out, memory buffer, or broadcasts to the
domain-wide message log.

You can associate a filter with loggers and handlers. You configure filters for handlers
using the Administration Console, WLST, or the command line. There are
LogFilterMBean attributes to define filters for Stdout, Log File, Log Broadcaster, and
Memory Handlers, or you can implement custom filtering logic programmatically. The
LogFilterMBean, described in the Oracle WebLogic Server MBean Reference, defines the
filtering criteria based on user ID and subsystem. Filters for loggers are configured
only through the API.

See Section 4.4, "Setting a Filter for Loggers and Handlers."

3.3 Logging Configuration Tasks: Main Steps
The following steps summarize how you configure and filter log messages that
WebLogic Server generates. Related documentation and later sections in this guide
describe these steps in more detail.

1. Use the Administration Console to manage log files and configure the following
logging options:

a. Domain and server log file name and location, rotation pattern, location of
archived log files, and number of log files stored. See "View and configure
logs" in the Oracle WebLogic Server Administration Console Help.

b. Types of messages that the server sends to standard out. See "Specify messages
for standard out" in the Oracle WebLogic Server Administration Console Help.

c. Which messages a server instance sends to the domain log. See "Forward
messages to the domain log" in the Oracle WebLogic Server Administration
Console Help.

d. Log files for HTTP requests. See "Enable and configure HTTP logs" in the
Oracle WebLogic Server Administration Console Help.

e. Specify the logging implementation (Java Logging or Log4j). See Section 3.5,
"How to Use Log4j with WebLogic Logging Services."

f. Specify message destination and configure filtering log messages by severity
level or other criteria. See "Filter log messages" in the Oracle WebLogic Server

Log4j and the Commons Logging API

3-4 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

Administration Console Help. See also Section 3.6.1, "Specifying Severity Level
for Loggers."

2. Alternatively, configure log message filtering on the message handler using the
WebLogic Scripting Tool. See "Configuring Existing Domains" in Oracle WebLogic
Scripting Tool.

3. Filter log messages published by the logger using the Java APIs. See Section 4.2,
"Filtering Messages by Severity Level or Other Criteria."

3.4 Log4j and the Commons Logging API
Application developers who want to use the WebLogic Server message catalogs and
logging services as a way for their applications to produce log messages must know
XML and the Java APIs. Many developers and system administrators use Log4j, which
is a predecessor to the Java Logging APIs. Log4j is an open source tool developed for
putting log statements in your application. The Log4j Java logging facility was
developed by the Jakarta Project of the Apache Foundation. You can learn more about
Log4j at The Log4j Project at http://logging.apache.org/.

WebLogic Server supports Log4j as a configuration option for WebLogic logging
services. See Section 3.5, "How to Use Log4j with WebLogic Logging Services."

The Jakarta Commons Logging APIs provide an abstraction layer that insulates users
from the underlying logging implementation, which can be Log4j or Java Logging
APIs. WebLogic Server provides an implementation of the Commons LogFactory
interface, letting you issue requests to the server Logger using this API. See Section 3.6,
"How to Use the Commons API with WebLogic Logging Services."

3.4.1 About Log4j
Log4j has three main components: loggers, appenders, and layouts. The following
sections provide a brief introduction to Log4j.

3.4.1.1 Loggers
Log4j defines a Logger class. An application can create multiple loggers, each with a
unique name. In a typical usage of Log4j, an application creates a Logger instance for
each application class that will emit log messages. Loggers exist in a namespace
hierarchy and inherit behavior from their ancestors in the hierarchy.

You can set the Severity level for each Logger at any level in the hierarchy. See
Section 3.6.1, "Specifying Severity Level for Loggers."

3.4.1.2 Appenders
Log4j defines appenders (handlers) to represent destinations for logging output.
Multiple appenders can be defined. For example, an application might define an
appender that sends log messages to standard out, and another appender that writes
log messages to a file. Individual loggers might be configured to write to zero or more
appenders. One example usage would be to send all logging messages (all levels) to a
log file, but only ERROR level messages to standard out.

3.4.1.3 Layouts
Log4j defines layouts to control the format of log messages. Each layout specifies a
particular message format. A specific layout is associated with each appender. This lets
you specify a different log message format for standard out than for file output, for
example.

How to Use Log4j with WebLogic Logging Services

Configuring WebLogic Logging Services 3-5

3.5 How to Use Log4j with WebLogic Logging Services
WebLogic logging services use an implementation based on the Java Logging APIs by
default. However, you can reconfigure WebLogic logging services to use Log4j instead.

To use Log4j instead of the default Java Logging, complete the following steps:

1. Obtain a copy of the log4j.jar file. WebLogic Server does not provide a Log4j
version in its distribution, but you can download one from Apache at the
following location:

http://logging.apache.org/

2. Copy the log4j.jar file and the WL_HOME/server/lib/wllog4j.jar file to the
server classpath, which you can do simply by copying both files into the DOMAIN_
NAME/lib directory.There, they will be added to the server classpath dynamically
during server startup.

If you place these .jar files elsewhere, make sure that both are placed in the same
directory and that you update the server classpath to include this directory.

3. Configure WebLogic Server to use Log4j logging using one of the following
methods:

■ The WebLogic Server Administration Console. For information, see "Specify
the logging implementation" in the Oracle WebLogic Server Administration
Console Help.

■ The -Dweblogic.log.Log4jLoggingEnabled=true option in the Java command
that starts WebLogic Server. For information, see "weblogic.Server
Configuration Options" in Command Reference for Oracle WebLogic Server.

■ A WLST script that enables the LogMBean.isLog4jLoggingEnabled attribute.
For information, see Section 3.5.1, "Using WLST to Configure and Enable
Log4j for WebLogic Server Logging".

When Log4j is enabled, you get a reference to the org.apache.log4j.Logger that the
server is using from the weblogic.logging.log4j.Log4jLoggingHelper class.

With a Log4j Logger reference, you can attach you own custom appender to receive the
server log events; for example, you might attach an appender that sends the server log
events to Syslog or the Windows Event Viewer. Additionally, you can use the Logger
reference to issue log requests to WebLogic logging services; this requires that the
Log4j libraries be available to your deployed application.

If your application has no requirement to interact with WebLogic logging services,
package the Log4j libraries in the application’s LIB directory. The server logging will
continue to use the default Java Logging implementation.

Example 3–2 is a Log4j code example that demonstrates using the Log4j Logger.

3.5.1 Using WLST to Configure and Enable Log4j for WebLogic Server Logging
This section explains how to use WLST to configure and enable Log4j logging instead
of the default Java Logging. Java Logging is the default for client and server-side
logging; Log4j is available only for server-side and not client-side logging.

Example 3–1 shows setting the value of the Log4jLoggingEnabled property to enable
logging to a Log4j Logger in the Administration Server. Note that after you run such a
script, restart the server for the settings to take effect.

How to Use Log4j with WebLogic Logging Services

3-6 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

Example 3–1 Enabling Log4j Logging

#invoke WLST
C:\>java weblogic.WLST
#connect WLST to an Administration Server
wls:/offline> connect('username','password')
#navigate to the writable MBean configuration tree
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
#set cmo to the server log config
wls:/mydomain/edit !> cd("Servers/myserver/Log/myserver")
#set log4j logging to true
wls:/mydomain/edit/Servers/myserver/Log/myserver !>
cmo.setLog4jLoggingEnabled(true)
#save and activate the changes
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()

For more information about isLog4jLoggingEnabled, see LogMBean in the Oracle
WebLogic Server MBean Reference.

You can enable Log4j for the server Logger as well as the domain Logger, which
resides only on the Administration Server. The domain Log4j Logger reference is
provided by invoking the
weblogic.logging.log4j.Log4jLoggingHelper.getLog4jDomainLogger() method.
Example 3–2 shows configuring the server Logger to use Log4j and the domain Logger
to use the default Java Logger.

Example 3–2 Log4j Code Example

import org.apache.log4j.Logger;
import weblogic.logging.log4j.Log4jLoggingHelper;
import weblogic.logging.LoggerNotAvailableException;
/**
 * This example shows how to use the Log4j server Logger.
 */
public class MyLog4jTest {
 public void testWLSLog4j() {
 try {
 Logger logger = Log4jLoggingHelper.getLog4jServerLogger();
 logger.addAppender(myAppender); // The Appender is configured using either
the log4j props file or other custom mechanism.
 logger.info("Test log message");
 } catch(LoggerNotAvailableException lex) {
 System.err.println("Unable to get a reference to the log4j Logger: "+
 lex.getMessage())
 }
 }
}

Example 3–3 is a Log4j logging configuration example that shows how to specify a
severity level for Stdout and a filter for messages going to the server log file in the
config.xml file.

Example 3–3 Logging Configuration Example

<con:log>
 <con:name>medrec</con:name>
 <con:file-name>medrec.log</con:file-name>
 <con:rotation-type>bySize</con:rotation-type>
 <con:file-min-size>20000</con:file-min-size>

How to Use the Commons API with WebLogic Logging Services

Configuring WebLogic Logging Services 3-7

 <con:log4j-logging-enabled>false</con:log4j-logging-enabled>
</con:log>
<con:log>
 <con:name>MedRecServer</con:name>
 <con:rotation-type>bySize</con:rotation-type>
 <con:file-min-size>20000</con:file-min-size>
 <con:stdout-severity>Debug</con:stdout-severity>
 <con:stdout-filter>MyFilter</con:stdout-filter>
 <con:log4j-logging-enabled>true</con:log4j-logging-enabled>
</con:log>
<con:log-filter>
 <con:name>MyFilter</con:name>
 <con:subsystem-name>HTTP</con:subsystem-name>
 <con:subsystem-name>IIOP</con:subsystem-name>
 <con:subsystem-name>JDBC</con:subsystem-name>
 <con:subsystem-name>JMS</con:subsystem-name>
</con:log-filter>

You have programmatic access to the Log4j Logger and its appenders (handlers) and
layouts (formatters) for configuration purposes. See Section 4.5, "Setting a Severity
Level and Filter on a Log4j Appender."

For more information about using WLST, see "Using the WebLogic Scripting Tool" in
Oracle WebLogic Scripting Tool.

3.6 How to Use the Commons API with WebLogic Logging Services
WebLogic logging services provide the Commons LogFactory and Log interface
implementations that direct requests to the underlying logging implementation being
used by WebLogic logging services.

To use Commons Logging, put the WebLogic-specific Commons classes, $MW_
HOME/modules/com.bea.core.weblogic.commons.logging_1.3.0.0.jar, together
with the commons-logging.jar file in one of the following locations:

■ APP-INF/LIB or WEB-INF/LIB directory

■ DOMAIN_NAME/LIB directory

■ server CLASSPATH

Example 3–4 illustrates how to use the Commons interface by setting the appropriate
system property.

Note: WebLogic Server does not provide a Commons logging
version in its distribution.

Note: When you use the org.apache.commons.logging.LogFactory
system property to implement the Commons interface as described
here, you are implementing it for all application instances running on
the server. For information on how to implement Commons logging
for specific application instances, without affecting other applications,
use the JDK service discovery mechanism or
commons-logging.properties mechanism to specify the LogFactory
as described at
http://commons.apache.org/logging/apidocs/org/apache/commons
/logging/LogFactory.html#getFactory().

How to Use the Commons API with WebLogic Logging Services

3-8 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

1. Set the system property org.apache.commons.logging.LogFactory to
weblogic.logging.commons.LogFactoryImpl.

This LogFactory creates instances of weblogic.logging.commons.LogFactoryImpl
that implement the org.apache.commons.logging.Log interface.

2. From the LogFactory, get a reference to the Commons Log object by name.

This name appears as the subsystem name in the log file.

3. Use the Log object to issue log requests to WebLogic logging services.

The Commons Log interface methods accept an object. In most cases, this will be a
string containing the message text.

The Commons LogObject takes a message ID, subsystem name, and a string
message argument in its constructor. See org.apache.commons.logging at
http://commons.apache.org/logging/apidocs/index.html.

4. The weblogic.logging.commons.LogImpl log methods direct the message to the
server log.

Example 3–4 Commons Code Example

import org.apache.commons.logging.LogFactory;
import org.apache.commons.logging.Log;

public class MyCommonsTest {
 public void testWLSCommonsLogging() {
 System.setProperty(LogFactory.FACTORY_PROPERTY,
 "weblogic.logging.commons.LogFactoryImpl");
 Log clog = LogFactory.getFactory().getInstance("MyCommonsLogger");
 // Log String objects
 clog.debug("Hey this is common debug");
 clog.fatal("Hey this is common fatal", new Exception());
 clog.error("Hey this is common error", new Exception());
 clog.trace("Dont leave your footprints on the sands of time");
 }
}

3.6.1 Specifying Severity Level for Loggers
WebLogic Server provides a hierarchical Logger tree that lets you specify the Severity
level for:

■ Generated Message Catalog Logger classes from the XML I18N catalog using
weblogic.i18ngen.

■ Instances of the Commons Logging APIs when the WebLogic Server
implementation of the Commons org.apache.commons.logging.LogFactory
interface is enabled.

All Loggers inherit their Severity level from the nearest parent in the tree. You can,
however, explicitly set the Severity level of a Logger, thereby overriding the level that
is set for the nearest parent. You can set the Severity level for loggers from the
Administration Console, WLST, or the command line.

3.6.1.1 Specifying Severity Level for WebLogic Server Subsystem Loggers
If you are using the Message Catalog Loggers, the Severity level for messages coming
from a specific subsystem are determined by the Severity level of the root Logger. You
can override the root Logger Severity level for individual subsystem Loggers such as

How to Use the Commons API with WebLogic Logging Services

Configuring WebLogic Logging Services 3-9

the DeploymentService Logger, Security Logger, or EJB Logger. For example, suppose
the root Logger severity level is CRITICAL, and you want to set the Severity Level to
NOTICE for the Security subsystem logger and to WARNING for the EJB subsystem logger.
You can do this from the Administration Console, WLST, or from the command line:

■ From the Administration Console, create the following entries in the Logger
severities properties box of the Logging > General tab for the server. Note that
each string is entered on an individual line in this properties box; that is, press the
Enter key after each string, then click Save.

Security=Notice
EJB=Warning

■ Via WLST, use the set command to set the value of the
LoggerSeverityProperties attribute of the LogMBean (see Oracle WebLogic
Scripting Tool).

■ From the command line, specify the following parameter in the startup command:

-Dweblogic.Log.LoggerSeverityProperties="Security=Notice;EJB=Warning"

For a complete index of all subsystem names, see Oracle Fusion Middleware Oracle
WebLogic Server Message Catalog. The subsystem name is case-sensitive and must
be entered exactly as shown in the Subsystem column of the index.

3.6.1.2 Specifying the Severity Level for Commons Logging API Loggers
If you are using the Commons Logging API, logger names follow the Java package dot
notation naming convention. For example, logger names could be a.b.FooLogger or
a.b.c.Barlogger, corresponding to the name of the classes in which they are used. In
this case, each dot-separated identifier appears as a node in the Logger tree. For
example, there will be a child node named "a" under the root Logger, a child node
named "b" whose parent is "a", and so on.

You can configure the Severity for a package or for any Logger at any level in the tree.
For example, if you specify the Severity level for package a.b=Info, then DEBUG and
TRACE messages coming from all child nodes of package a.b will be blocked. You can,
however, override the Severity level of a parent node by explicitly setting a value for a
child node. For example, if you specify the Severity level for logger
a.b.FooLogger=Debug, all log messages from FooLogger will be allowed, while DEBUG
and TRACE messages will still be filtered for other child nodes under a.b.

You can specify the severity level for a package or Logger from the Administration
Console, WLST, or the command line:

■ From the Administration Console, enter the following semicolon-separated string
in the Logger severities properties box of the Logging > General tab page for the
server.

a.b=Info;a.b.FooLogger=Debug

■ Via WLST, use the set command to set the value of the
LoggerSeverityProperties attribute of the LogMBean (see Oracle WebLogic
Scripting Tool).

■ From the command line, specify the following parameter in the startup command:

-Dweblogic.Log.LoggerSeverityProperties="a.b=Info;a.b.FooLogger=Debug"

Rotating Log Files

3-10 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

3.7 Rotating Log Files
By default, when you start a WebLogic Server instance in development mode, the
server automatically renames (rotates) its local server log file as SERVER_NAME.log.n.
For the remainder of the server session, log messages accumulate in SERVER_NAME.log
until the file grows to a size of 500 kilobytes.

Each time the server log file reaches this size, the server renames the log file and
creates a new SERVER_NAME.log to store new messages. By default, the rotated log files
are numbered in order of creation filenamennnnn, where filename is the name
configured for the log file. You can configure a server instance to include a time and
date stamp in the file name of rotated log files; for example,
server-name-%yyyy%-%mm%-%dd%-%hh%-%mm%.log.

By default, when you start a server instance in production mode, the server rotates its
server log file whenever the file grows to 5000 kilobytes in size. It does not rotate the
local server log file when you start the server. For more information about changing
the mode in which a server starts, see "Change to production mode" in the Oracle
WebLogic Server Administration Console Help.

You can change these default settings for log file rotation. For example, you can change
the file size at which the server rotates the log file or you can configure a server to
rotate log files based on a time interval. You can also specify the maximum number of
rotated files that can accumulate. After the number of log files reaches this number,
subsequent file rotations delete the oldest log file and create a new log file with the
latest suffix.

For information on setting up log file rotation, see "Rotate log files" in the Oracle
WebLogic Server Administration Console Help.

To cause the immediate rotation of the server, domain, or HTTP access log file, use the
LogRuntime.forceLogRotation() method. See LogRuntimeMBean in the Oracle
WebLogic Server MBean Reference.

The WLST commands in Example 3–5 cause the immediate rotation of the server log
file.

Example 3–5 Log Rotation on Demand

#invoke WLST
C:\>java weblogic.WLST
#connect WLST to an Administration Server
wls:/offline> connect('username','password')
#navigate to the ServerRuntime MBean hierarchy
wls:/mydomain/serverConfig> serverRuntime()
wls:/mydomain/serverRuntime>ls()
#navigate to the server LogRuntimeMBean
wls:/mydomain/serverRuntime> cd('LogRuntime/myserver')
wls:/mydomain/serverRuntime/LogRuntime/myserver> ls()
-r-- Name myserver
-r-- Type LogRuntime
-r-x forceLogRotation java.lang.Void :
#force the immediate rotation of the server log file
wls:/mydomain/serverRuntime/LogRuntime/myserver> cmo.forceLogRotation()
wls:/mydomain/serverRuntime/LogRuntime/myserver>

Note: WebLogic Server sets a threshold size limit of 500 MB before it
forces a hard rotation to prevent excessive log file growth.

Rotating Log Files

Configuring WebLogic Logging Services 3-11

The server immediately rotates the file and prints the following message:

<Mar 2, 2005 3:23:01 PM EST> <Info> <Log Management> <BEA-170017> <The log file
C:\diablodomain\servers\myserver\logs\myserver.log will be rotated. Reopen the
log file if tailing has stopped. This can happen on some platforms like Windows.>
<Mar 2, 2005 3:23:01 PM EST> <Info> <Log Management> <BEA-170018> <The log file
has been rotated to C:\diablodomain\servers\myserver\logs\myserver.log00001. Log
messages will continue to be logged in
C:\diablodomain\servers\myserver\logs\myserver.log.>

3.7.1 Specifying the Location of Archived Log Files
By default, the rotated files are stored in the same directory where the log file is stored.
You can specify a different directory location for the archived log files by using the
Administration Console or setting the LogFileRotationDir property of the
LogFileMBean from the command line. See LogFileMBean in the Oracle WebLogic Server
MBean Reference.

The following command specifies the directory location for the archived log files using
the -Dweblogic.log.LogFileRotationDir Java startup option:

java -Dweblogic.log.LogFileRotationDir=c:\foo
-Dweblogic.management.username=installadministrator
-Dweblogic.management.password=installadministrator weblogic.Server

3.7.2 Notification of Rotation
When the log file exceeds the rotation threshold that you specify, the server instance
prints a log message that states that the log file will be rotated. Then it rotates the log
file and prints an additional message that indicates the name of the file that contains
the old messages.

For example, if you set up log files to rotate by size and you specify 500K as the
minimum rotation size, when the server determines that the file is greater than 500K in
size, the server prints the following message:

<Sept 20, 2004 1:51:09 PM EST> <Info> <Log Management> <MachineName>
<MedRecServer> <ExecuteThread: '2' for queue: 'weblogic.kernel.System'> <<WLS
Kernel>> <> <> <1095692939895> <BEA-170017> <The log file
C:\Oracle\Middleware\wlserver_
10.3\samples\domains\medrec\servers\MedRecServer\logs\medrec.log will be rotated.
Reopen the log file if tailing has stopped. This can happen on some platforms like
Windows.>

The server immediately rotates the file and prints the following message:

<Sept 20, 2004 1:51:09 PM EST> <Info> <Log Management> <MachineName>
<MedRecServer> <ExecuteThread: '2' for queue: 'weblogic.kernel.System'>
<<WLS Kernel>> <> <> <1095692939895> <BEA-170018> <The log file has been rotated
to C:\Oracle\Middleware\wlserver_
10.3\samples\domains\medrec\servers\MedRecServer\logs\medrec.log00001.
Log messages will continue to be logged in C:\Oracle\Middleware\wlserver_
10.3\samples\domains\medrec\servers\MedRecServer\logs\medrec.log.>

Note that the severity level for both messages is INFO. The message ID for the message
before rotation is always BEA-170017 and the ID for the message after rotation is
always BEA-170018.

File systems such as the standard Windows file system place a lock on files that are
open for reading. On such file systems, if your application is tailing the log file, or if
you are using a command such as the DOS tail -f command in a command prompt,

Redirecting JVM Output

3-12 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

the tail operation stops after the server has rotated the log file. The tail -f command
prints messages to standard out as lines are added to a file. For more information,
enter help tail in a DOS prompt.

To remedy this situation for an application that tails the log file, you can create a JMX
listener that notifies your application when the server emits the log rotation message.
When your application receives the message, it can restart its tailing operation. To see
an example of a JMX listener, see Chapter 5, "Subscribing to Messages."

3.8 Redirecting JVM Output
The JVM in. which a WebLogic Server instance runs, sends messages to standard error
and standard out. Server as well as application code write directly to these streams
instead of using the logging mechanism. Through a configuration option, you can
redirect the JVM output to all the registered log destinations, like the server terminal
console and log file. When enabled, a log entry appears as a message of NOTICE
severity. Redirecting the JVM output does not capture output from native code, for
example thread dumps from the JVM.

For example, to redirect the JVM standard out messages:

■ When you start the Administration Server, include the following Java option in the
weblogic.Server command:

-Dweblogic.log.RedirectStdoutToServerLogEnabled=true

See "weblogic.Server Configuration Options" in Command Reference for Oracle
WebLogic Server.

■ After the Administration Server has started, use the Administration Console to
redirect the JVM standard out messages. See "Redirect JVM output" in the Oracle
WebLogic Server Administration Console Help.

■ Use the WLST to change the value of the RedirectStdoutToServerLogEnabled
property of the LogMBean and re-start the server.

The WLST commands in Example 3–6 redirect the JVM standard out messages in
the Administration Server to the server logging destinations.

Example 3–6 Redirecting Stdout to Server Logging Destinations

C:\>java weblogic.WLST
wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit !> cd("Servers/myserver/Log/myserver")
wls:/mydomain/edit/Servers/myserver/Log/myserver !>
cmo.setRedirectStdoutToServerLogEnabled(true)
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()

For more information about using WLST, see "Navigating MBeans (WLST Online)"
inOracle WebLogic Scripting Tool. For more information about
RedirectStdoutToServerLogEnabled, see LogMBean in the Oracle WebLogic Server
MBean Reference.

4

Filtering WebLogic Server Log Messages 4-1

4Filtering WebLogic Server Log Messages

WebLogic logging services provide several filtering options that give you the flexibility
to determine which messages are written to WebLogic Server log files and standard
out, and which are written to the log file and standard out that a client JVM maintains.
Most of these filtering features are implementations of the Java Logging APIs, which
are available in the java.util.logging package.

The following sections describe how to filter messages that the WebLogic logging
services generate:

■ Section 4.1, "The Role of Logger and Handler Objects"

■ Section 4.2, "Filtering Messages by Severity Level or Other Criteria"

■ Section 4.3, "Setting the Severity Level for Loggers and Handlers"

■ Section 4.4, "Setting a Filter for Loggers and Handlers"

■ Section 4.5, "Setting a Severity Level and Filter on a Log4j Appender"

For related information, see:

■ "Create log filters" for information on setting up a log filter for a WebLogic Server
instance in the Oracle WebLogic Server Administration Console Help.

■ Chapter 5, "Subscribing to Messages," for information about creating and
subscribing a message handler.

4.1 The Role of Logger and Handler Objects
When WebLogic Server message catalogs and the NonCatalogLogger generate
messages, they distribute their messages to a java.util.logging.Logger object. The
Logger object publishes the messages to any message handler that has subscribed to
the Logger.

WebLogic Server instantiates Logger and Handler objects in three distinct contexts (See
Figure 4–1):

■ In client JVMs that use WebLogic logging services. This client Logger object
publishes messages that are sent from client applications running in the client
JVM.

The following handlers subscribe to the Logger object in a client JVM:

– ConsoleHandler, which prints messages from the client JVM to the client’s
standard out.

If you use the -Dweblogic.log.StdoutSeverityLevel Java startup option for
the client JVM, WebLogic logging services create a filter for this handler that

The Role of Logger and Handler Objects

4-2 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

limits the messages that the handler writes to standard out. See "Writing
Messages from a Client Application" in Using Logging Services for Application
Logging for Oracle WebLogic Server.

– FileStreamHandler, which writes messages from the client JVM to the client’s
log file.

■ In each instance of WebLogic Server. This server Logger object publishes messages
that are sent from subsystems and applications that run on a server instance.

The following handlers subscribe to the server Logger object:

– ConsoleHandler, which makes messages available to the server’s standard
out.

– FileStreamHandler, which writes messages to the server log file.

– An internal handler, which broadcasts messages to the domain log and JMX
clients, and publishes messages to the Administration Server.

■ The Administration Server maintains a domain Logger object in addition to a
server Logger object. The domain Logger object receives messages from each
Managed Server’s Logger object.

The following handler subscribes to the domain Logger object:

– FileStreamHandler, which writes messages to the domain log file.

Figure 4–1 WebLogic Logging Services Contexts

Setting the Severity Level for Loggers and Handlers

Filtering WebLogic Server Log Messages 4-3

4.2 Filtering Messages by Severity Level or Other Criteria
When WebLogic Server message catalogs and the NonCatalogLogger generate
messages, they convert the message severity to a weblogic.logging.WLLevel object. A
WLLevel object can specify any of the following values, from lowest to highest impact:

TRACE, DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL, ALERT, EMERGENCY

By default, a Logger object publishes messages of all levels. To set the lowest-level
message that a Logger object publishes, you use a simple Logger.setLevel API. When
a Logger object receives an incoming message, it checks the message level with the
level set by the setLevel API. If the message level is below the Logger level, it returns
immediately. If the message level is above the Logger level, the Logger allocates a
WLLogRecord object to describe the message.

For example, if you set a Logger object level to WARNING, the Logger object publishes
only WARNING, ERROR, CRITICAL, ALERT, or EMERGENCY messages.

To provide more control over the messages that a Logger object publishes, you can also
create and set a filter. A filter is a class that compares data in the WLLogRecord object
with a set of criteria. The Logger object publishes only the WLLogRecord objects that
satisfy the filter criteria. For example, a filter can configure a Logger to publish only
messages from the JDBC subsystem. To create a filter, you instantiate a
java.util.logging.Filter object and use the Logger.setFilter API to set it for a
Logger object.

Instead of (or in addition to) setting the level and a filter for the messages that a
Logger object publishes, you can set the level and filters on individual message
handlers.

For example, you can specify that a Logger publishes messages that are of the WARNING
level or higher. Then you can do the following for each handler:

■ For the ConsoleHandler, set a level and filter that selects only ALERT messages
from the JDBC, JMS, and EJB subsystems. This causes standard out to display only
ALERT messages from the JDBC, JMS, and EJB subsystems.

■ For the FileStreamHandler, set no additional level or filter criteria. Because the
Logger object has been configured to publish only messages of the WARNING level
or higher, the log file will contain all messages from all subsystems that are of
WARNING severity level or higher.

■ Publish all messages of WARNING severity level or higher to the domain-wide
message log on the Administration Server.

4.3 Setting the Severity Level for Loggers and Handlers
The Administration Console and WLST provide a way to set the severity level for a
Handler object through standard MBean commands. To set the Severity level for a
Logger object, you can use the Logger API. You can also set the Severity level for a
Logger via the Administrator Console, WLST, or the command line; see Section 3.6.1,
"Specifying Severity Level for Loggers." To configure Logger and Handler severity
level for WLS clients (such as EJB and Web Service clients), you must use the Java
Logging API.

4.3.1 Setting the Level for Loggers
To set the severity level for a Logger object, create a class that does the following:

1. Invokes one of the following LoggingHelper methods:

Setting the Severity Level for Loggers and Handlers

4-4 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

■ getClientLogger if the current context is a client JVM.

■ getServerLogger if the current context is a server JVM and you want to
retrieve the Logger object that a server uses to manage its local server log.

■ getDomainLogger if the current context is the Administration Server and you
want to retrieve the Logger object that manages the domain log.

The LoggerHelper method returns a Logger object. See the API documentation for
the Logger class at
http://docs.oracle.com/javase/6/docs/api/java/util/logging/Logger.html.

2. Invokes the Logger.setLevel(Level level) method.

To set the level of a WebLogic Server Logger object, you must pass a value that is
defined in the weblogic.logging.WLLevel class. WebLogic Server maps the
java.util.logging.Level to the appropriate WLLevel. For a list of valid values,
see the description of the weblogic.logging.WLLevel class in the Oracle WebLogic
Server API Reference.

For example:

setLevel(WLLevel.ALERT)

4.3.2 Setting the Level for Handlers
To set the severity level for a Handler object using the API, create a class that does the
following (See Example 4–1):

1. Invokes one of the following LoggingHelper methods:

■ getClientLogger if the current context is a client JVM.

■ getServerLogger if the current context is a server JVM and you want to
retrieve the Logger object that a server uses to manage its local server log.

■ getDomainLogger if the current context is the Administration Server and you
want to retrieve the Logger object that manages the domain log.

The LoggerHelper method returns a Logger object. See the API documentation for
the Logger class at
http://docs.oracle.com/javase/6/docs/api/java/util/logging/Logger.html.

2. Invokes the Logger.getHandlers() method.

The method returns an array of all handlers that are registered with the Logger
object.

3. Iterates through the list of handlers until it finds the Handler object for which you
want to set a level.

Use Handler.getClass().getName() to determine the type of handler to which
the current array index refers.

4. Invokes the Handler.setLevel(Level level) method.

To set the level of a WebLogic Server Handler object, you must pass a value that is
defined in the weblogic.logging.WLLevel class. WebLogic Server maps the
java.util.logging.Level to the appropriate WLLevel. For a list of valid values,
see the description of the weblogic.logging.WLLevel class in the Oracle WebLogic
Server API Reference.

For example:

setLevel(WLLevel.ALERT)

Setting a Filter for Loggers and Handlers

Filtering WebLogic Server Log Messages 4-5

Example 4–1 Example: Setting Level for a Handler Object Using the API

import java.util.logging.Logger;
import java.util.logging.Handler;
import weblogic.logging.LoggingHelper;
import weblogic.logging.WLLevel;
public class LogLevel {
 public static void main(String[] argv) throws Exception {
 Logger serverlogger = LoggingHelper.getServerLogger();
 Handler[] handlerArray = serverlogger.getHandlers();
 for (int i=0; i < handlerArray.length; i++) {
 Handler h = handlerArray[i];
 if(h.getClass().getName().equals
 ("weblogic.logging.ConsoleHandler")){
 h.setLevel(WLLevel.ALERT);
 }
 }
 }
}

You can configure the severity level for a Handler object through the LogMBean
interface using the Administration Console or the command line:

■ See "Filter log messages" in the Oracle WebLogic Server Administration Console Help,
for information on setting a severity level.

■ The WLST commands in Example 4–2 set the severity level for the Stdout Handler
to INFO.

Example 4–2 Setting the Severity Level for the Stdout Handler

C:\>java weblogic.WLST
wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit !> cd("Servers/myserver/Log/myserver")
wls:/mydomain/edit/Servers/myserver/Log/myserver !> cmo.setStdoutSeverity("Info")
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()

For more information about using WLST, see "Using the WebLogic Scripting Tool" in
Oracle WebLogic Scripting Tool. For more information about setStdoutSeverity, see
LogMBean in the Oracle WebLogic Server MBean Reference.

4.4 Setting a Filter for Loggers and Handlers
When you set a filter on the Logger object, the filter specifies which messages the
object publishes; therefore, the filter affects all handlers that are registered with the
Logger object as well. When you set a filter on a handler, the filter affects only the
behavior of the specific handler.

The Administration Console and WLST provide a way to set a filter on the Handler
object through standard MBean commands. To set a filter on the Logger object, you
must use the Logger API. For client-side logging, the only way to set a filter is through
using the Java Logging API.

To set a filter:

1. Create a class that implements java.util.logging.Filter. See Example 4–3.

Setting a Filter for Loggers and Handlers

4-6 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

The class must include the Filter.isLoggable method and logic that evaluates
incoming messages. If the logic evaluates as true, the isLoggable method enables
the Logger object to publish the message.

2. Place the filter object in the classpath of the JVM on which the Logger object is
running.

3. To set a filter for a Logger object, create a class that does the following:

a. Invokes one of the following LoggingHelper methods:

■ getClientLogger if the current context is a client JVM.

■ getServerLogger if the current context is a server JVM and you want to filter
the Logger object that a server uses to manage its local server log.

■ getDomainLogger if the current context is the Administration Server and you
want to filter the Logger object that manages the domain server log.

a. Invokes the Logger.setFilter(Filter newFilter) method.

4. To set a filter for a Handler object using the API, create a class that does the
following:

a. Invokes one of the following LoggingHelper methods:

■ getClientLogger if the current context is a client JVM.

■ getServerLogger if the current context is a server JVM and you want to filter
the Logger object that a server uses to manage its local server log.

■ getDomainLogger if the current context is the Administration Server and you
want to filter the Logger object that manages the domain server log.

a. Iterates through the list of handlers until it finds the Handler object for which
you want to set a level.

Use Handler.getClass().getName() to determine the type of handler to
which the current array index refers.

b. Invokes the Handler.setFilter(Filter newFilter) method.

Example 4–3 provides an example class that rejects all messages from the Deployer
subsystem.

Example 4–3 Example Filter for a Java Logger Object

import java.util.logging.Logger;
import java.util.logging.Filter;
import java.util.logging.LogRecord;
import weblogic.logging.WLLogRecord;
import weblogic.logging.WLLevel;
public class MyFilter implements Filter {
 public boolean isLoggable(LogRecord record) {
 if (record instanceof WLLogRecord) {
 WLLogRecord rec = (WLLogRecord)record;
 if (rec.getLoggerName().equals("Deployer")) {
 return false;
 } else {
 return true;
 }
 } else {
 return false;
 }
 }

Setting a Severity Level and Filter on a Log4j Appender

Filtering WebLogic Server Log Messages 4-7

}

You can configure a filter for a Handler object through the LogMBean interface using the
Administration Console or the command line:

■ See "Create log filters" for information on setting up a log filter for a WebLogic
Server instance in the Oracle WebLogic Server Administration Console Help.

■ The WLST commands in Example 4–4 create and set a filter on the Domain Log
Broadcaster.

Example 4–4 Setting up a Domain Log Filter

C:\>java weblogic.WLST
wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit !> cmo.createLogFilter('myFilter')
wls:/mydomain/edit !> cd("Servers/myserver/Log/myserver")
wls:/mydomain/edit/Servers/myserver/Log/myserver !>
cmo.setDomainLogBroadcastFilter(getMBean('/LogFilters/myFilter'))
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()

For more information about using WLST, see "Using the WebLogic Scripting Tool" in
Oracle WebLogic Scripting Tool. For more information about
setDomainLogBroadcastFilter, see LogMBean in the Oracle WebLogic Server MBean
Reference.

4.4.1 Filtering Domain Log Messages
To filter the messages that each Managed Server publishes to the domain log, you can
use the Administration Console (see "Create log filters") or WLST (see Example 4–4) to
create a log filter for the domain log.

Any Java Logging severity level or filter that you set on the Logger object that
manages a server instance’s log file supersedes a domain log filter. For example, if the
level of the server Logger object is set to WARNING, a domain log filter will receive only
messages of the WARNING level or higher.

You can define a domain log filter which modifies the set of messages that one or more
servers send to the domain log. By default, all messages of severity NOTICE or higher
are sent.

See "Filter log messages" in the Oracle WebLogic Server Administration Console Help,
which describes configuring a domain log filter for a WebLogic Server instance using
the Administration Console.

4.5 Setting a Severity Level and Filter on a Log4j Appender
The Administration Console and WLST provide a way to set the level for an Appender
object through standard MBean commands. To set the level for a Logger object, you
can use the Logger API as described in this section, or you can do so from the

Note: Messages of severity DEBUG are never sent to the domain log,
even if you use a filter.

Setting a Severity Level and Filter on a Log4j Appender

4-8 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

Administration Console, WLST, or the command line as described in Section 3.6.1,
"Specifying Severity Level for Loggers."

To set the level for an Appender object using the API, create a class that does the
following:

1. Invokes the one of the following Log4jLoggingHelper methods (See Example 4–5).

■ getLog4jServerLogger if the current context is a server JVM and you want to
retrieve the Logger object that a server uses to manage its local server log.

■ getLog4jDomainLogger if the current context is the Administration Server and
you want to retrieve the Logger object that manages the domain log.

2. Invokes the logger.getAllAppenders() method.

Enumeration e = logger.getAllAppenders();

The method returns all the appenders that are registered with the Logger object.

3. Iterates through the list of appenders and gets each appender name.

4. Invokes the app.setThreshold(WLLog4jLevel level) method.

To set the level of a Log4j Appender object, you must pass a value that is defined in
the weblogic.logging.log4j.WLLog4jLevel class. WebLogic Server maps the
org.apache.log4j.Level to the appropriate WLLevel. For a list of valid values, see
the description of the weblogic.logging.WLLevel class in the Oracle WebLogic
Server API Reference.

To set a filter, implement a class that extends org.apache.log4j.Filter and adds the
filter to the Appender, invoke the app.addFilter(Filter newFilter) method.

Example 4–5 provides an example class that does the following:

■ Publishes messages of the WARNING level or higher in the server log.

■ Publishes messages of the INFO level or higher to standard out.

■ Rejects INFO messages from the HTTP subsystem.

Example 4–5 Example: Setting a Log4j Level and Filter

package weblogic.logging.examples;
import java.util.Enumeration;
import org.apache.log4j.AppenderSkeleton;
import org.apache.log4j.Logger;
import org.apache.log4j.spi.Filter;
import org.apache.log4j.spi.LoggingEvent;
import weblogic.logging.LoggerNotAvailableException;
import weblogic.logging.NonCatalogLogger;
import weblogic.logging.Severities;
import weblogic.logging.log4j.AppenderNames;
import weblogic.logging.log4j.Log4jLoggingHelper;
import weblogic.logging.log4j.WLLog4jLevel;
import weblogic.logging.log4j.WLLog4jLogEvent;
/**
 * This class sets a level and filter on a Log4j Appender.
 */
public class Log4jFilterExamplesStartup {
 public static void main(String[] args) {
 try {
 System.out.println("Invoked the log4j filter example startup class");
 Logger logger = Log4jLoggingHelper.getLog4jServerLogger();
 Enumeration e = logger.getAllAppenders();

Setting a Severity Level and Filter on a Log4j Appender

Filtering WebLogic Server Log Messages 4-9

 while (e.hasMoreElements()) {
 AppenderSkeleton app = (AppenderSkeleton) e.nextElement();
 String name = app.getName();
 if (name == null) continue;
 if (name.equals(AppenderNames.LOG_FILE_APPENDER)) {
 // Set the threshold level of messages going to the log file to WARNING
 // This will result in NOTICE, INFO, DEBUG, and TRACE messages being
 // suppressed from going to the server log file
 app.setThreshold(WLLog4jLevel.WARN);
 System.out.println("Set WARNING level on the log file appender");
 } else if (name.equals(AppenderNames.STDOUT_APPENDER)) {
 // Set level to INFO on the stdout filter
 app.setThreshold(WLLog4jLevel.INFO);
 // First clear the existing filters on the appender
 app.clearFilters();
 // Add a filter to block INFO messages from the HTTP subsystem
 app.addFilter(new MyFilter());
 }
 }
 // Now test the filter
 NonCatalogLogger nc = new NonCatalogLogger("MyFilterTest");
 nc.info("INFO messages will not be published to the file but to stdout");
 nc.warning("WARNINFG messages will be published to the file and stdout");

 } catch(LoggerNotAvailableException lex) {
 System.err.println("Log4j logger is not available on this server
 }
 }
 /**
 * Deny messages from the HTTP subsystem of level INFO
 */
 private static class MyFilter extends Filter {
 public int decide(LoggingEvent event) {
 if (event instanceof WLLog4jLogEvent) {
 WLLog4jLogEvent wlsEvent = (WLLog4jLogEvent)event;
 if (wlsEvent.getSubsystem().equals("HTTP")
 && wlsEvent.getSeverity() == Severities.INFO) {
 return DENY;
 }
 }
 return ACCEPT;
 }
 }
}

Setting a Severity Level and Filter on a Log4j Appender

4-10 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

5

Subscribing to Messages 5-1

5Subscribing to Messages

When WebLogic Server message catalogs and the NonCatalogLogger generate
messages, they distribute their messages to a java.util.logging.Logger object. The
Logger object allocates a WLLogRecord object to describe the message and publishes the
WLLogRecord to any message handler that has subscribed to the Logger.

The following sections describe creating and subscribing a message handler:

■ Section 5.1, "Overview of Message Handlers"

■ Section 5.2, "Creating and Subscribing a Handler: Main Steps"

■ Section 5.3, "Example: Subscribing to Messages in a Server JVM"

■ Section 5.4, "Example: Implementing a Log4j Appender Class"

■ Section 5.5, "Comparison of Java Logging Handlers with JMX Listeners"

For more information about WebLogic Server loggers and handlers, see Section 4.1,
"The Role of Logger and Handler Objects."

5.1 Overview of Message Handlers
WebLogic Server instantiates and subscribes a set of message handlers that receive and
print log messages. You can also create your own message handlers and subscribe
them to the WebLogic Server Logger objects (see Figure 5–1).

Creating and Subscribing a Handler: Main Steps

5-2 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

Figure 5–1 Subscribing a Handler

For example, if your application runs in a client JVM and you want the application to
listen for the messages that your application generates, you can create a handler and
subscribe it to the Logger object in the client JVM. If your application receives a log
message that signals the failure of a specific subsystem, it can perform actions such as:

■ E-mail the log message to the WebLogic Server administrator.

■ Shut down or restart itself or its subcomponents.

5.2 Creating and Subscribing a Handler: Main Steps
A handler that you create and subscribe to a Logger object receives all messages that
satisfy the level and filter criteria of the logger. Your handler can specify additional
level and filter criteria so that it responds only to a specific set of messages that the
logger publishes.

To create and subscribe a handler:

1. Create a handler class that includes the following minimal set of import
statements:

import java.util.logging.Handler;
import java.util.logging.LogRecord;
import java.util.logging.ErrorManager;
import weblogic.logging.WLLogRecord;

Note: When creating your own message handlers, be careful to avoid
executing custom code which runs in the WebLogic Server process
before the server initialization has completed and the server has come
to a running state. In some cases, custom code can interfere with
server services which are being initialized. For example, custom log
handlers that make an outbound RMI call which use the
PortableRemoteObject before the IIOP server service is initialized,
can cause server startup to fail.

Example: Subscribing to Messages in a Server JVM

Subscribing to Messages 5-3

import weblogic.logging.WLLevel;
import weblogic.logging.WLErrorManager;
import weblogic.logging.LoggingHelper;

2. In the handler class, extend java.util.logging.Handler.

3. In the handler class, implement the Handler.publish(LogRecord record)
method.

This method:

a. Casts the LogRecord objects that it receives as WLLogRecord objects.

b. Applies any filters that have been set for the handler.

c. If the WLLogRecord object satisfies the criteria of any filters, the method uses
WLLogRecord methods to retrieve data from the messages.

d. Optionally writes the message data to one or more resources.

4. In the handler class, implement the Handler.flush and Handler.close methods.

All handlers that work with resources should implement the flush method so that
it flushes any buffered output and the close method so that it closes any open
resources.

When the parent Logger object shuts down, it calls the Handler.close method on
all of its handlers. The close method calls the flush method and then executes its
own logic.

5. Create a filter class that specifies which types of messages your Handler object
should receive. See Section 4.4, "Setting a Filter for Loggers and Handlers."

6. Create a class that invokes one of the following LoggingHelper methods:

■ getClientLogger if the current context is a client JVM.

■ getServerLogger if the current context is a server JVM and you want to attach
a handler to the server Logger object.

■ getDomainLogger if the current context is the Administration Server and you
want to attach a handler to the domain Logger object.

LoggingHelper.getDomainLogger() retrieves the Logger object that manages
the domain log. You can subscribe a custom handler to this logger and process
log messages from all the servers in a single location.

7. In this class, invoke the Logger.addHandler(Handler myHandler) method.

8. Optional. Invoke the Logger.setFilter(Filter myFilter) method to set a filter.

5.3 Example: Subscribing to Messages in a Server JVM
This example creates a handler that connects to a JDBC data source and issues SQL
statements that insert messages into a database table. The example implements the
following classes:

■ A Handler class. See Section 5.3.1, "Example: Implementing a Handler Class."

■ A Filter class. See Section 4.4, "Setting a Filter for Loggers and Handlers."

■ A class that subscribes the handler and filter to a server's Logger class. See
Section 5.3.2, "Example: Subscribing to a Logger Class."

Example: Subscribing to Messages in a Server JVM

5-4 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

5.3.1 Example: Implementing a Handler Class
The example Handler class in Example 5–1 writes messages to a database by doing the
following:

1. Extends java.util.logging.Handler.

2. Constructs a javax.naming.InitialContext object and invokes the
Context.lookup method to look up a data source named myPoolDataSource.

3. Invokes the javax.sql.DataSource.getConnection method to establish a
connection with the data source.

4. Implements the setErrorManager method, which constructs a
java.util.logging.ErrorManager object for this handler.

If this handler encounters any error, it invokes the error manager's error method.
The error method in this example:

a. Prints an error message to standard error.

b. Disables the handler by invoking
LoggingHelper.getServerLogger().removeHandler(MyJDBCHandler.this).

For more information about error managers, see the API documentation for the
java.util.logging.ErrorManager class at
http://docs.oracle.com/javase/6/docs/api/java/util/logging/ErrorManager
.html.

5. Implements the Handler.publish(LogRecord record) method. The method does
the following:

a. Casts each LogRecord object that it receives as a WLLogRecord objects.

b. Calls an isLoggable method to apply any filters that are set for the handler.
The isLoggable method is defined at the end of this handler class.

c. Uses WLLogRecord methods to retrieve data from the messages.

For more information about WLLogRecord methods, see the description of the
weblogic.logging.WLLogRecord class in the Oracle WebLogic Server API
Reference.

d. Formats the message data as a SQL prepareStatement and executes the
database update.

The schema for the table used in the example is as follows:

Note: Instead of defining the ErrorManager class in a separate class
file, the example includes the ErrorManager as an anonymous inner
class.

Table 5–1 Schema for Database Table in Handler Example

Name Null? Type

MSGID n/a CHAR(25)

LOGLEVEL n/a CHAR(25)

SUBSYSTEM n/a CHAR(50)

MESSAGE n/a CHAR(1024)

Example: Subscribing to Messages in a Server JVM

Subscribing to Messages 5-5

6. Invokes a flush method to flush the connection.

7. Implements the Handler.close method to close the connection with the data
source.

When the parent Logger object shuts down, it calls the Handler.close method,
which calls the Handler.flush method before executing its own logic.

Example 5–1 illustrates the steps described in this section.

Example 5–1 Example: Implementing a Handler Class

import java.util.logging.Handler;
import java.util.logging.LogRecord;
import java.util.logging.Filter;
import java.util.logging.ErrorManager;
import weblogic.logging.WLLogRecord;
import weblogic.logging.WLLevel;
import weblogic.logging.WLErrorManager;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.PreparedStatement;
import weblogic.logging.LoggingHelper;
public class MyJDBCHandler extends Handler {
 private Connection con = null;
 private PreparedStatement stmt = null;
 public MyJDBCHandler() throws NamingException, SQLException {
 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("myPoolDataSource");
 con = ds.getConnection();
 PreparedStatement stmt = con.prepareStatement
 setErrorManager(new ErrorManager() {
 public void error(String msg, Exception ex, int code) {
 System.err.println("Error reported by MyJDBCHandler "
 + msg + ex.getMessage());
 //Removing any prior istantiation of this handler
 LoggingHelper.getServerLogger().removeHandler(
 MyJDBCHandler.this);
 }
 });
 }
 public void publish(LogRecord record) {
 WLLogRecord rec = (WLLogRecord)record;
 if (!isLoggable(rec)) return;
 try {
 ("INSERT INTO myserverLog VALUES (?, ?, ? ,?)");
 stmt.setEscapeProcessing(true);
 stmt.setString(1, rec.getId());
 stmt.setString(2, rec.getLevel().getLocalizedName());
 stmt.setString(3, rec.getLoggerName());
 stmt.setString(4, rec.getMessage());
 stmt.executeUpdate();
 flush();
 } catch(SQLException sqex) {
 reportError("Error publihsing to SQL", sqex,
 ErrorManager.WRITE_FAILURE);
 }

Example: Subscribing to Messages in a Server JVM

5-6 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

 }
 public void flush() {
 try {
 con.commit();
 } catch(SQLException sqex) {
 reportError("Error flushing connection of MyJDBCHandler",
 sqex, ErrorManager.FLUSH_FAILURE);
 }
 }
 public boolean isLoggable(LogRecord record) {
 Filter filter = getFilter();
 if (filter != null) {
 return filter.isLoggable(record);
 } else {
 return true;
 }
 }
 public void close() {
 try {
 con.close();
 } catch(SQLException sqex) {
 reportError("Error closing connection of MyJDBCHandler",
 sqex, ErrorManager.CLOSE_FAILURE);
 }
 }
}

5.3.2 Example: Subscribing to a Logger Class
The example Logger class in Example 5–2 does the following:

1. Invokes the LoggingHelper.getServerLogger method to retrieve the Logger
object.

2. Invokes the Logger.addHandler(Handler myHandler) method.

3. Invokes the Logger.getHandlers method to retrieve all handlers of the Logger
object.

4. Iterates through the array until it finds myHandler.

5. Invokes the Handler.setFilter(Filter myFilter) method.

If you wanted your handler and filter to subscribe to the server's Logger object each
time the server starts, you could deploy this class as a WebLogic Server startup class.
For information about startup classes, see "Use custom classes to configure servers" in
the Oracle WebLogic Server Administration Console Help.

Example 5–2 Example: Subscribing to a Logger Class

import java.util.logging.Logger;
import java.util.logging.Handler;
import java.util.logging.Filter;
import java.util.logging.LogRecord;
import weblogic.logging.LoggingHelper;
import weblogic.logging.FileStreamHandler;
import weblogic.logging.WLLogRecord;
import weblogic.logging.WLLevel;
import java.rmi.RemoteException;
import weblogic.jndi.Environment;
import javax.naming.Context;
public class LogConfigImpl {

Example: Implementing a Log4j Appender Class

Subscribing to Messages 5-7

 public void configureLogger() throws RemoteException {
 Logger logger = LoggingHelper.getServerLogger();
 try {
 Handler h = null;
 h = new MyJDBCHandler();
 logger.addHandler(h);
 h.setFilter(new MyFilter());
 } catch(Exception nmex) {
 System.err.println("Error adding MyJDBCHandler to logger "
 + nmex.getMessage());
 logger.removeHandler(h);
 }
 }
 public static void main(String[] argv) throws Exception {
 LogConfigImpl impl = new LogConfigImpl();
 impl.configureLogger();
 }
}

5.4 Example: Implementing a Log4j Appender Class
The example Appender class in Example 5–3 connects to a JDBC data source and issues
SQL statements that insert messages into a database table:

1. Extends AppenderSkelton.

2. Constructs a javax.naming.InitialContext object and invokes the
Context.lookup method to look up a data source named MyDataSource.

3. Invokes the javax.sql.DataSource.getConnection method to establish a
connection with the data source.

4. Implements the append(LoggingEvent event) method. The method does the
following:

a. Casts each LoggingEvent object that it receives as a WLLog4jLogEvent.

b. Uses WLLog4jLogEvent methods to retrieve data from the messages.

For more information about WLLog4jLogEvent methods, see the description of
the weblogic.logging.log4j.WLLog4jLogEvent class in the Oracle WebLogic
Server API Reference.

c. Creates a SQL prepareStatement and executes the database update whenever
a logging event arrives.

The schema for the table used in the example is as follows:

5. Implements the close method to close the connection with the data source.

Table 5–2 Schema for Database Table in Log4j Appender Example

Name Null? Type

SERVERNAME n/a CHAR(30)

MSGID n/a CHAR(20)

SEVERITYLEVEL n/a CHAR(20)

LOGGERNAME n/a CHAR(100)

MESSAGE n/a VARCHAR(2048)

TIMESTAMP n/a LONG

Example: Implementing a Log4j Appender Class

5-8 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

Example 5–3 illustrates the steps described in this section.

Example 5–3 Example: Log4j Appender Examples Startup

package weblogic.logging.examples;
import java.util.Enumeration;
import org.apache.log4j.AppenderSkeleton;
import org.apache.log4j.PropertyConfigurator;
import org.apache.log4j.Logger;
import org.apache.log4j.spi.Filter;
import org.apache.log4j.spi.LoggingEvent;
import weblogic.logging.LoggerNotAvailableException;
import weblogic.logging.NonCatalogLogger;
import weblogic.logging.Severities;
import weblogic.logging.log4j.AppenderNames;
import weblogic.logging.log4j.Log4jLoggingHelper;
import weblogic.logging.log4j.WLLog4jLevel;
import weblogic.logging.log4j.WLLog4jLogEvent;
import org.apache.log4j.jdbc.JDBCAppender;
import java.sql.Connection;
import java.sql.SQLException;
import javax.naming.InitialContext;
import weblogic.logging.log4j.WLLog4jLogEvent;
import weblogic.logging.Severities;
/**
 * This class sets up a Log4j Appender as a listener to the
 * Server Logger for log events.
 */
public class Log4jAppenderExampleStartup {
 public static void main(String[] args) {
 try {
 System.out.println("Invoked the appender example startup class");
 Logger serverLogger = Log4jLoggingHelper.getLog4jServerLogger();
 // Configure the JDBC appender
 MyJDBCAppender jdbcAppender = new MyJDBCAppender();
 // Now add the JDBC appender to the server logger
 serverLogger.addAppender(jdbcAppender);
 // Now test the filter
 NonCatalogLogger nc = new NonCatalogLogger("MyAppenderTest");
 nc.info("Test INFO message");
 nc.warning("Test WARNING message");
 } catch(Exception ex) {
 System.err.println("Init failure " + ex.getMessage());
 ex.printStackTrace();
 }
 }
 private static class MyJDBCAppender extends AppenderSkeleton {
 private Connection connection;
 private java.sql.PreparedStatement stmt;
 public MyJDBCAppender() throws javax.naming.NamingException, SQLException {
 InitialContext ctx = new InitialContext();
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("MyDataSource");
 connection = ds.getConnection();
 // Table schema creation SQL command
 // Create table SERVER_LOG (server_name char(30),msg_id char(20),
 // severity_level char(20),logger_name char(100),message varchar(2048),
 // timestamp long);
 stmt = connection.prepareStatement("INSERT INTO SERVER_LOG VALUES (?, ?, ?,
?, ?, ?)");

Comparison of Java Logging Handlers with JMX Listeners

Subscribing to Messages 5-9

 stmt.setEscapeProcessing(true);
 connection.setAutoCommit(true);
 }
 // Override execute method
 public void append(LoggingEvent event) {
 WLLog4jLogEvent wlsEvent = (WLLog4jLogEvent) event;
 try {
 stmt.setString(1, wlsEvent.getServerName());
 stmt.setString(2, wlsEvent.getId());
 stmt.setString(3,
Severities.severityNumToString(wlsEvent.getSeverity()));
 stmt.setString(4, wlsEvent.getSubsystem());
 stmt.setString(5, wlsEvent.getMessage().toString());
 stmt.setLong(6, wlsEvent.getTimestamp());
 stmt.executeUpdate();
 } catch (SQLException e) {
 System.err.println(e.toString());
 }
 }
 public boolean requiresLayout() {
 return false;
 }
 public void close() {
 try {
 stmt.close();
 connection.close();
 } catch(SQLException sqlex) {
 System.err.println("Error closing JDBC appender");
 sqlex.printStackTrace();
 }
 }
 }
 }

5.5 Comparison of Java Logging Handlers with JMX Listeners
Prior to WebLogic Server 8.1, the only technique for receiving messages from the
WebLogic logging services was to create a Java Management Extensions (JMX) listener
and register it with a LogBroadcasterRuntimeMBean. With the release of WebLogic
Server 8.1, you can also use Java Logging handlers to receive (subscribe to) log
messages.

While both techniques - Java Logging handlers and JMX listeners - provide similar
results, the Java Logging APIs include a Formatter class that a Handler object can use
to format the messages that it receives. JMX does not offer similar APIs for formatting
messages. For more information about formatters, see the API documentation for the
Formatter class at
http://docs.oracle.com/javase/6/docs/api/java/util/logging/Formatter.html.

In addition, the Java Logging Handler APIs are easier to use and require fewer levels
of indirection than JMX APIs. For example, the following lines of code retrieve a Java
Logging Logger object and subscribe a handler to it:

Logger logger = LoggingHelper.getServerLogger();
Handler h = null;
h = new MyJDBCHandler();
logger.addHandler(h)

To achieve a similar result by registering a JMX listener, you must use lines of code
similar to Example 5–4. The code looks up the MBeanHome interface, looks up the

Comparison of Java Logging Handlers with JMX Listeners

5-10 Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

RemoteMBeanServer interface, looks up the LogBroadcasterRuntimeMBean, and then
registers the listener.

Optimally, you would use Java Logging handlers to subscribe to log messages on your
local machine and JMX listeners to receive log messages from a remote machine. If you
are already using JMX for monitoring and you simply want to listen for log messages,
not to change their formatting or reroute them to some other output, use JMX listeners.
Otherwise, use the Java Logging handlers.

Example 5–4 Registering a JMX Listener

MBeanHome home = null;
RemoteMBeanServer rmbs = null;
//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
//Using MBeanHome to get MBeanServer.
try {
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(username);
 env.setSecurityCredentials(password);
 Context ctx = env.getInitialContext();
 //Getting the Administration MBeanHome.
 home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 System.out.println("Got the Admin MBeanHome: " + home);
 rmbs = home.getMBeanServer();
} catch (Exception e) {
 System.out.println("Caught exception: " + e);
}
try {
 //Instantiating your listener class.
 MyListener listener = new MyListener();
 MyFilter filter = new MyFilter();
 //Construct the WebLogicObjectName of the server's
 //log broadcaster.
 WebLogicObjectName logBCOname = new
 WebLogicObjectName("TheLogBroadcaster",
 "LogBroadcasterRuntime", domainName, serverName);
 //Passing the name of the MBean and your listener class to the
 //addNotificationListener method of MBeanServer.
 rmbs.addNotificationListener(logBCOname, listener, filter, null);
 } catch(Exception e) {
 System.out.println("Exception: " + e);
 }
}

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Logging Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 Log4j Integration in MedRec
	1.4.3 Logging Examples in the WebLogic Server Distribution

	1.5 New and Changed Logging Features in This Release

	2 Understanding WebLogic Logging Services
	2.1 What You Can Do With WebLogic Logging Services
	2.2 How WebLogic Logging Services Work
	2.2.1 Components and Environment
	2.2.2 Terminology
	2.2.3 Overview of the Logging Process
	2.2.4 Best Practices: Integrating Java Logging or Log4j with WebLogic Logging Services
	2.2.5 Server Log Files and Domain Log Files
	2.2.6 How a Server Instance Forwards Messages to the Domain Log

	2.3 Server and Subsystem Logs
	2.3.1 Server Log
	2.3.2 Subsystem Logs

	2.4 Log Message Format
	2.4.1 Format of Output to Standard Out and Standard Error

	2.5 Message Attributes
	2.6 Message Severity
	2.7 Viewing WebLogic Server Logs
	2.8 Server Logging Bridge
	2.8.1 Java Logging
	2.8.2 Log4J Logging
	2.8.3 Propagating Log Messages to the Root Logger
	2.8.4 Best Practice: Use Generic Overrides to Insert Logging Properties File

	3 Configuring WebLogic Logging Services
	3.1 Configuration Scenarios
	3.2 Overview of Logging Services Configuration
	3.2.1 Using Log Severity Levels
	3.2.2 Using Log Filters

	3.3 Logging Configuration Tasks: Main Steps
	3.4 Log4j and the Commons Logging API
	3.4.1 About Log4j
	3.4.1.1 Loggers
	3.4.1.2 Appenders
	3.4.1.3 Layouts

	3.5 How to Use Log4j with WebLogic Logging Services
	3.5.1 Using WLST to Configure and Enable Log4j for WebLogic Server Logging

	3.6 How to Use the Commons API with WebLogic Logging Services
	3.6.1 Specifying Severity Level for Loggers
	3.6.1.1 Specifying Severity Level for WebLogic Server Subsystem Loggers
	3.6.1.2 Specifying the Severity Level for Commons Logging API Loggers

	3.7 Rotating Log Files
	3.7.1 Specifying the Location of Archived Log Files
	3.7.2 Notification of Rotation

	3.8 Redirecting JVM Output

	4 Filtering WebLogic Server Log Messages
	4.1 The Role of Logger and Handler Objects
	4.2 Filtering Messages by Severity Level or Other Criteria
	4.3 Setting the Severity Level for Loggers and Handlers
	4.3.1 Setting the Level for Loggers
	4.3.2 Setting the Level for Handlers

	4.4 Setting a Filter for Loggers and Handlers
	4.4.1 Filtering Domain Log Messages

	4.5 Setting a Severity Level and Filter on a Log4j Appender

	5 Subscribing to Messages
	5.1 Overview of Message Handlers
	5.2 Creating and Subscribing a Handler: Main Steps
	5.3 Example: Subscribing to Messages in a Server JVM
	5.3.1 Example: Implementing a Handler Class
	5.3.2 Example: Subscribing to a Logger Class

	5.4 Example: Implementing a Log4j Appender Class
	5.5 Comparison of Java Logging Handlers with JMX Listeners

