
[image: Oracle Corporation]

Oracle® Fusion Middleware

WebLogic Tuxedo Connector Migration Guide for WLEC to Oracle WebLogic Server

11g Release 1 (10.3.6)

E13755-07

April 2015

This document introduces and provides information about how to migrate WLEC applications to use the Oracle WebLogic Tuxedo Connector for interoperating between Oracle WebLogic Server and Oracle Tuxedo.

Oracle Fusion Middleware WebLogic Tuxedo Connector Migration Guide for WLEC to Oracle WebLogic Server, 11g Release 1 (10.3.6)

E13755-07

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Overview of WLEC to Oracle WebLogic Tuxedo Connector Migration

	Guide to this Document
	Overview
	Prerequisites
	Comparing Oracle WebLogic Tuxedo Connector and WLEC Functionality
	Key Differences Between WLEC and Oracle WebLogic Tuxedo Connector
	New and Changed Features

2 How to Modify WLEC Applications for Oracle WebLogic Tuxedo Connector

	How to Modify Your Tuxedo Environment
	Create a Tuxedo dmconfig File
	Modify the Tuxedo UBBCONFIG File

	How to Modify Your WebLogic Server Environment
	How to Configure Oracle WebLogic Tuxedo Connector
	Create a WTC Service
	Create a Local Tuxedo Access Point
	Create a Remote Tuxedo Access Point
	Create an Imported Service

	How to Update the ejb-jar.xml File

	How to Modify WLEC Applications
	How to Modify WLEC EJBs to Reference CORBA Objects Used by Oracle WebLogic Tuxedo Connector
	Initialize the WTC ORB
	Use the ORB to get the FactoryFinder Object

	Transaction Issues

	How to Manage Security Issues Migrating from WLEC to WTC

3 How to Modify the Tuxedo CORBA Simpapp Example

	How to Modify the Tuxedo Environment
	Run the Tuxedo CORBA Simpapp Example
	Modify the UBB Configuration File
	Create a Domain Configuration
	Test the Tuxedo Environment

	Modify the ejb-jar.xml File
	Update the build.xml File
	Modify the WLEC ConverterBean
	Configure Oracle WebLogic Tuxedo Connector
	Create a WTC Service
	Create a Local Tuxedo Access Point
	Create a Remote Tuxedo Access Point
	Create an Imported Service

	Run the simpapp Example

Preface

This preface describes the document accessibility features and conventions used in this guide—WebLogic Tuxedo Connector Migration Guide for WLEC to Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Overview of WLEC to Oracle WebLogic Tuxedo Connector Migration

The following sections provide an overview of the requirements and procedures to migrate WLEC applications to the Oracle WebLogic Tuxedo Connector:

	
Guide to this Document

	
Overview

	
Prerequisites

	
Comparing Oracle WebLogic Tuxedo Connector and WLEC Functionality

	
Key Differences Between WLEC and Oracle WebLogic Tuxedo Connector

Guide to this Document

This document introduces the Oracle WebLogic Tuxedo Connector application development environment. This document provides information on how to migrate WLEC applications to use the Oracle WebLogic Tuxedo Connector to interoperate between Oracle WebLogic Server and Oracle Tuxedo.

The document is organized as follows:

	
This chapter, Chapter 1, "Overview of WLEC to Oracle WebLogic Tuxedo Connector Migration," provides information on migration prerequisites, functionality, and key administrative and programming differences between WLEC to Oracle WebLogic Tuxedo Connector.

	
Chapter 2, "How to Modify WLEC Applications for Oracle WebLogic Tuxedo Connector," provides information about how to modify your Tuxedo environment, your Oracle WebLogic Server environment, and your WLEC applications for use with the Oracle WebLogic Tuxedo Connector.

	
Chapter 3, "How to Modify the Tuxedo CORBA Simpapp Example," provides an example of how to convert a WLEC application so that it can use Oracle WebLogic Tuxedo Connector.

Overview

WLEC is a deprecated service in WebLogic Server 8.1. WLEC users should begin plans to migrate applications using WLEC to the Oracle WebLogic Tuxedo Connector.

Oracle WebLogic Tuxedo Connector provides bi-directional interoperability between WebLogic Server applications and Tuxedo services. The connector allows WebLogic Server clients to invoke Tuxedo services and Tuxedo clients to invoke WebLogic Server Enterprise Java Beans (EJBs) in response to a service request.

WLEC to Oracle WebLogic Tuxedo Connector migration requires minor application modification:

	
WLEC applications require modification of the portions of application code that use or call environmental objects.

	
Existing CORBA C++ server objects do not require server application changes.

Prerequisites

Before you can start migrating your WLEC applications to Oracle WebLogic Tuxedo Connector, make sure that you have installed:

	
Tuxedo

If necessary, migrate your Tuxedo applications to Tuxedo 8.1 or later. For more information, see http://www.oracle.com/technetwork/middleware/tuxedo/overview/index.html.

	
WebLogic Server

If necessary, migrate your WebLogic Server installation to WebLogic Server 9.2. For more information, see Upgrade Guide for Oracle WebLogic Server.

Comparing Oracle WebLogic Tuxedo Connector and WLEC Functionality

Table 1-1 compares the supported functionality in Oracle WebLogic Tuxedo Connector and WLEC:

Table 1-1 Oracle WebLogic Tuxedo Connector and WLEC Functionality

	Feature	WTC	WLEC
	
Outbound ATMI interoperability from WLS

	
Yes

	
No

	
Inbound ATMI interoperability from Tuxedo

	
Yes

	
No

	
Outbound CORBA interoperability

	
Yes

	
Yes

	
Inbound CORBA interoperability

	
Yes

	
No

	
Supports Tuxedo Buffers

	
Yes

	
No

	
Bi-directional security context propagation

	
Yes

	
No

	
Bi-directional transaction propagation

	
Yes

	
No

	
Bi-directional bridge between JMS and /Q or Tuxedo services

	
Yes

	
No

	
Conversations

	
Yes

	
No

	
VIEWS

	
Yes

	
No

Key Differences Between WLEC and Oracle WebLogic Tuxedo Connector

Table 1-2 provides information on key administration, configuration, and programming differences between Oracle WebLogic Tuxedo Connector and WLEC.

Table 1-2 WLEC and Oracle WebLogic Tuxedo Connector Key Differences

	Description	Oracle WebLogic Tuxedo Connector	WLEC
	
Connectivity

	
Uses the Tuxedo /T Domain gateway. The gateway creates a single network link between a WebLogic Server instance and a Tuxedo domain for all method invocations.

	
Uses a pool of connections and each invocation is sent over a connection obtained from this pool.

	
Failover Management

	
Uses Tuxedo domains.

	
Uses a failover list.

	
Object Routing

	
CORBA calls from WebLogic Server applications are propagated to the Tuxedo CORBA environment using the TGIOP/TDOMAINS protocol.

	
CORBA calls from WebLogic Server applications are propagated over IIOP connection pools using the CORBA API.

New and Changed Features

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

2 How to Modify WLEC Applications for Oracle WebLogic Tuxedo Connector

The following sections provide information on the steps required to convert your WLEC applications for use with Oracle WebLogic Tuxedo Connector:

	
How to Modify Your Tuxedo Environment

	
How to Modify Your WebLogic Server Environment

	
How to Modify WLEC Applications

How to Modify Your Tuxedo Environment

Tuxedo users need to make the environment changes described in the following sections:

	
Create a Tuxedo dmconfig File

	
Modify the Tuxedo UBBCONFIG File

Create a Tuxedo dmconfig File

A new dmconfig file must be created to provide connectivity between your Tuxedo and WebLogic Server applications. For more information on how to create Tuxedo domains, see Planning and Configuring CORBA Domains at http://www.oracle.com/technetwork/middleware/tuxedo/overview/index.html.

Modify the Tuxedo UBBCONFIG File

You need to modify the UBBCONFIG file so your application uses the Tuxedo /T Domain gateway. To do this, add the Tuxedo domain servers to the *SERVERS section of this file.

For example:

DMADM SRVGRP=SYS_GRP SRVID=7
GWADM SRVGRP=SYS_GRP SRVID=8
GWTDOMAIN SRVGRP=SYS_GRP SRVID=9

Oracle WebLogic Tuxedo Connector does not use ISL. If you no longer have other applications that require ISL, you can remove the ISL from the *SERVERS section from the UBBCONFIG file. Alternatively, you may comment out the ISL, as in the following example:

ISL
SRVGRP = SYS_GRP
SRVID = 5
CLOPT = "-A -- -n //lchp15:2468 -d /dev/tcp"

How to Modify Your WebLogic Server Environment

The following sections explain how to modify your WebLogic Server Environment.

	
How to Configure Oracle WebLogic Tuxedo Connector

	
How to Update the ejb-jar.xml File

How to Configure Oracle WebLogic Tuxedo Connector

	
Note:

For more information on how to configure Oracle WebLogic Tuxedo Connector, see "Configuring Oracle WebLogic Tuxedo Connector for Your Applications" in WebLogic Tuxedo Connector Administration Guide for Oracle WebLogic Server.

This section provides basic information about creating a WTC Service for a migrated WLEC application using the WebLogic Server Administration Console. A WTC Service represents configuration information that WebLogic Server uses to create a connection to a Tuxedo application. Typical WTC Service configurations for migrated WLEC applications consist of a local Tuxedo access point, a remote Tuxedo access point, and an imported service.

Complete the steps described in the following sections to create a configuration to administer your application:

	
Create a WTC Service

	
Create a Local Tuxedo Access Point

	
Create a Remote Tuxedo Access Point

	
Create an Imported Service

Create a WTC Service

To create and configure a WTC service using the WebLogic Server Administration Console:

	
In the Administration Console, expand Interoperability and select WTC Servers in the navigation tree.

	
On the WTC Servers page, click New.

	
On the Create a New WTC Server page, enter the name of your WTC Service in the Name field. For example, mySimpapp.

	
Click OK.

Your new WTC Service appears in the WTC Servers list.

Create a Local Tuxedo Access Point

	
Note:

When configuring the Network Address for a local access point, the port number used should be different from any port numbers assigned to other processes. For example, setting the Network Address to //mymachine:7001 is not valid if the WebLogic Server listening port is assigned to //mymachine:7001.

To configure a local Tuxedo access point:

	
In the Administration Console, expand Interoperability and select WTC Servers.

	
On the WTC Servers page, click the name of a WTC Service, such as mySimpapp, to access the settings page.

	
Click the Local APs tab.

	
Enter the following values for the following fields on the WTC Local Access Points page:

	
In Access Point, enter a name that uniquely identifies this local Tuxedo access point within a WTC Service configuration. This allows you to create Local Tuxedo Access Point configurations that have the same Access Point ID.

	
In Access Point Id, enter the connection name used when establishing a session connection to remote Tuxedo access points. The Access Point Id must match the corresponding DOMAINID in the *DM_REMOTE_DOMAINS section of your Tuxedo DMCONFIG file.

	
In Network Address, enter the network address and port for this local Tuxedo access point. For example, //123.123.123.123:5678.

	
Click OK.

	
If you are connecting to a Tuxedo 6.5 domain:

	
Click the Connections tab.

	
Set the Interoperate field to Yes.

	
Click Save.

Create a Remote Tuxedo Access Point

To configure a remote Tuxedo access point:

	
In the Administration Console, expand Interoperability and select WTC Servers.

	
On the WTC Servers page, click the name of a WTC Service, such as mySimpapp.

	
Click the Remote APs tab.

	
Enter the following values for the following fields on the WTC Remote Access Points page:

	
In Access Point, enter a name that uniquely identifies this remote Tuxedo access point within a WTC Service configuration. This allows you to create Remote Tuxedo Access Point configurations that have the same Access Point ID.

	
In Access Point Id, enter the connection name used to identify a remote Tuxedo access point when establishing a connection to a local Tuxedo access point. The Access Point Id of a remote Tuxedo access point must match the corresponding DOMAINID in the *DM_LOCAL_DOMAINS section of your Tuxedo DMCONFIG file.

	
In Local Access Point, enter the name of the local access point for this remote domain.

	
In Network Address, enter the network address and port for this remote domain. For example, //123.123.123.123:1234.

	
Click OK.

Create an Imported Service

To configure an imported service:

	
In the Administration Console, expand Interoperability and select WTC Servers.

	
On the WTC Servers page, click the name of a WTC Service, such as mySimpapp.

	
Click the Imported tab.

	
Enter the following values for the following fields on the WTC Imported Services page:

	
In Resource Name, enter a name to identify this imported service configuration. This name allows you create unique Imported Services configurations that have the same Remote Name within a WTC Service.

	
Set Local Access Point to the name of the Local Tuxedo Access Point that uses the service.

	
In Remote Access Point List, enter a list of Remote Access Point names that offer this imported service.

	
In Remote Name, enter //domain_id where domain_id is the DOMAINID specified in the Tuxedo UBBCONFIG file. The maximum length of this unique identifier for CORBA domains is 15 characters and includes the //. For example, //simpappff.

	
Click OK.

How to Update the ejb-jar.xml File

Oracle WebLogic Tuxedo Connector uses the Domain gateway to connect WebLogic and Tuxedo applications. IIOP connection pool are not used and the descriptors can be removed from the ejb-jar.xml file. The following is a code snippet from the wlec/ejb/simpapp example:

Example 2-1 IIOP Connection Pool Descriptors for the wlec/ejb/simpapp Example

.
.
.
<env-entry>
 <env-entry-name>IIOPPoolName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>simplepool</env-entry-value>
 </env-entry>
.
.
.

How to Modify WLEC Applications

The following sections explain how to modify WLEC applications to interoperate with WebLogic Server and Tuxedo CORBA objects using Oracle WebLogic Tuxedo Connector:

	
How to Modify WLEC EJBs to Reference CORBA Objects Used by Oracle WebLogic Tuxedo Connector

	
Transaction Issues

How to Modify WLEC EJBs to Reference CORBA Objects Used by Oracle WebLogic Tuxedo Connector

Complete the steps described in the following sections to modify your EJB so that it uses Oracle WebLogic Tuxedo Connector to invoke CORBA objects deployed in Tuxedo:

	
Initialize the WTC ORB

	
Use the ORB to get the FactoryFinder Object

Initialize the WTC ORB

WLEC uses the weblogic.jndi.WLInitialContextFactory to return a context used by the Tobj_Bootstrap object.

Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
InitialContext ic = new InitialContext(p);
rootCtx = (Context)ic.lookup("java:comp/env");

Replace the WLEC context reference and instantiate the WTC ORB in your Bean. For example:

// Initialize the ORB.
String args[] = null;
Properties Prop;
Prop = new Properties();
Prop.put("org.omg.CORBA.ORBClass",
"weblogic.wtc.corba.ORB");

orb = (ORB)new InitialContext().lookup("java:comp/ORB");

Use the ORB to get the FactoryFinder Object

Each WLEC connection pool has a Tobj_Bootstrap FactoryFinder object used to access the Tuxedo domain. For example:

Tobj_Bootstrap myBootstrap = Tobj_BootstrapFactory.getClientContext("myPool");
org.omg.CORBA.Object myFFObject =
 myBootstrap.resolve_initial_references("FactoryFinder");

Remove references to the Tobj_Bootstrap Factory Finder object. Use the following method to obtain the FactoryFinder object using the ORB:

// String to Object.
org.omg.CORBA.Object fact_finder_oref = orb.string_to_
object("corbaloc:tgiop:simpapp/FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =
FactoryFinderHelper.narrow(fact_finder_oref);

// Use the factory finder to find the simple factory.
org.omg.CORBA.Object simple_fact_oref =
fact_finder_ref.find_one_factory_by_id(SimpleFactoryHelper.id());

Transaction Issues

	
Note:

For more information how to implement JTA transactions, see Programming JTA for Oracle WebLogic Server.

The following section provides information about how to modify WLEC applications that use transactions.

	
WLEC applications using JTA transactions require no changes.

	
WLEC applications using CosTransactions need to convert to JTA. If the WLEC client is running within a transaction and needs to invoke a new CosTransaction, the new transaction is implemented in a new transaction context. To implement the same behavior in JTA, do the following:

	
Suspend the original transaction.

	
Start a new transaction.

	
Resume the original transaction after the new transaction has been completed.

How to Manage Security Issues Migrating from WLEC to WTC

The following table provides some mapping guidelines for security issues between WLEC and WTC as well as their relationship to Tuxedo.

Table 2-1 Security Mapping Guidelines Migrating from WLEC to WTC

	WLEC Security Items	Map to in WTC/WLS	Tuxedo
	
user name

	
Access the WTC Servers page and click the Local APs tab. Use the user name in the Access Point ID field.

	
DOMAINID in the DM_REMOTE_DOMAINS section of the DMCONFIG file

	
user password

	
Password pair in the password (rather than one password, you must define one for the local access point and one for the remote access point to form mutual authentication.)

You can use the weblogic.wtc.gwt.genpasswd utility to generate the encrypted password pair and then cut and paste to the Console WTC Password page.

	
Use dmadmin to add the password pair to each defined TDomain session.

	
role

	
Not supported.

WTC depends on impersonating user and uses the impersonated user role defined in Tuxedo.

	
Not applicable

	
application password

	
The password in the WTC Resources page. Use the weblogic.wtc.gwt.genpasswd utility to generate the encrypted application password.

	
No special configuration needs.

	
min encryption level

	
	
Access the WTC Servers page and click the name of a WTC Service.

	
Click Remote APs tab.

	
Click the Security tab and select the Min Encryption Level required.

	
MINENCRYPTBITS in the DM_TDOMAIN section of the DMCONFIG file.

	
max encryption level

	
	
Access the WTC Servers page and click the name of a WTC Service.

	
Click Remote APs tab.

	
Click the Security tab and select the Max Encryption Level required.

	
MAXENCRYPTBITS in the DM_TDOMAIN section of the DMCONFIG file.

	
certificate auth

	
Not supported.

	
Not applicable

	
security context propagation

	
	
Access the WTC Servers page and click the name of a WTC Service.

	
Click Remote APs tab.

	
Click the Security tab and select Global for the Credential Policy field to propagate user credential to Tuxedo.

	
ACL="GLOBAL" in the DM_REMOTE_DOMAINS section of the DMCONFIG file.

The following considerations may assist you in understanding how your current WLEC security can map to WTC and Tuxedo security.

	
The WLEC user name in the certificate can be used as your Access Point ID in the WTC Local APs page.

	
You must configure Access Point ID in the WTC Remote APs page using the remote Tuxedo domain gateway's DOMAINID. (This DOMAINID should be one of the entries in the DM_LOCAL_DOMAINS section in the DMCONFIG file.)

	
You must configure the user in both Tuxedo and WTC if you want security context propagation.

	
If you do not want security context propagation, do not configure credential-policy. By default, credential-policy is set to "LOCAL" which means no propagation. Also, do not configure ACL_POLICY in Tuxedo. By default ACL_POLICY is set to "LOCAL" which means do not accept any remote security context received. In this case, if the Tuxedo security level is higher than USER_AUTH, then the DOMAINID for WTC which is configured in the DM_REMOTE_DOMAINS section of the DMCONFIG file is used.

	
From the Security tab of the WTC Local APs page, select Domain Password for the Security field. You need to configure 'SECURITY="DM_PW"' in one of the entries in DM_LOCAL_DOMAINS section of the DMCONFIG file for Tuxedo. In this case, password must be configured for both WTC and the TDomain Gateway and application password is not required.

	
If you do not want to set Security to Domain Password, you can set it to Application Password. In this case, you do not have to configure password pair in the WTC Passwords page, but you need to configure App Password and App Password IV fields in the WTC Resources page.

3 How to Modify the Tuxedo CORBA Simpapp Example

The following sections provide an example of how to convert a WLEC application to use Oracle WebLogic Tuxedo Connector. This example provides information on the steps required to convert the WebLogic Server 6.1 examples\wlec\ejb\simpapp example to work using the Oracle WebLogic Tuxedo Connector.

Review Prerequisites, before proceeding.

	
How to Modify the Tuxedo Environment

	
Modify the ejb-jar.xml File

	
Update the build.xml File

	
Modify the WLEC ConverterBean

	
Configure Oracle WebLogic Tuxedo Connector

	
Run the simpapp Example

How to Modify the Tuxedo Environment

The following sections provide information on how to modify the Tuxedo configuration files to use with Oracle WebLogic Tuxedo Connector.

	
Run the Tuxedo CORBA Simpapp Example

	
Modify the UBB Configuration File

	
Create a Domain Configuration

	
Test the Tuxedo Environment

Run the Tuxedo CORBA Simpapp Example

You should run the Tuxedo CORBA simpapp example to verify your Tuxedo environment and prepare to run the WLEC simpapp application.

Use the following steps to run the Tuxedo example located at $TUXDIR/samples/corba/simpapp:

	
Create a working copy of the Tuxedo CORBA simpapp example. Copy the Tuxedo CORBA simpapp example from your Tuxedo installation and place it in your working simpapp directory.

	
Change directories to your working simpapp directory.

	
Build and run the example.

	
Set your Tuxedo environment. Windows users set %TUXDIR% in your shell environment. Unix users need to set the Tuxedo environment by running $TUXDIR/tux.env.

	
Make sure the C++ compiler is in your PATH.

	
Set the JAVA_HOME environment variable to the location of your Tuxedo Java JDK.

	
Set the environment by running the runme script. This will create the client stubs that provide the programming interface for CORBA object operations. A results directory is created in your working directory that contains the files used to configure the Tuxedo environment.

	
Run the Java client.

java -DTOBJADDR=%TOBJADDR% -classpath %CLASSPATH% SimpleClient

	
Shutdown the Tuxedo server.

tmshutdown -y

Modify the UBB Configuration File

In your working Tuxedo simpapp directory, use the following steps to modify your UBB configuration:

	
Rename the results/ubb file in your working directory as results/ubbdomain.

	
Edit the ubbdomain file using a text editor, such as vi or WordPad.

	
Add Tuxedo gateway servers to the *SERVERS section.

Example: Add the following servers.

DMADM SRVGRP=SYS_GRP SRVID=7
GWADM SRVGRP=SYS_GRP SRVID=8
GWTDOMAIN SRVGRP=SYS_GRP SRVID=9

	
Save the ubbdomain file.

Example 3-1 is an example of a modified ubbdomain file. Changed sections are marked in bold.

Example 3-1 Modified UBB File

*RESOURCES
 IPCKEY 55432
 DOMAINID simpapp
 MASTER SITE1
 MODEL SHM
 LDBAL N
*MACHINES
 "balto"
 LMID = SITE1
 APPDIR = "/tux_apps/corba/simpapp"
 TUXCONFIG = "/tux_apps/corba/simpapp/results/tuxconfig"
 TUXDIR = "/my_machine/tux/tuxedo8.1"
 MAXWSCLIENTS = 10
*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 APP_GRP
 LMID = SITE1
 GRPNO = 2
*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5
 TMSYSEVT
SRVGRP = SYS_GRP
 SRVID = 1
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"
simple_server
 SRVGRP = APP_GRP
 SRVID = 1
 RESTART = N

The ISL handler is not needed for WTC.
If you do not need it for other WLEC applications,
it can be removed.
ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -n //mymachine:2468 -d /dev/tcp"
DMADM
 SRVGRP = SYS_GRP
 SRVID = 7
GWADM
 SRVGRP = SYS_GRP
 SRVID = 8
GWTDOMAIN
 SRVGRP = SYS_GRP
 SRVID = 9
*SERVICES

Create a Domain Configuration

In your working Tuxedo simpapp directory, use the following steps to create a domain configuration:

	
Create a domain configuration file using a text editor, such as vi or NotePad. The simplest method is to cut and paste the DMCONFIG code example into your editor.

	
Replace all <bold bracketed> items in Example 3-2 with information about your environment.

Example 3-2 dmconfig File

 *DM_RESOURCES
 VERSION=U22
 *DM_LOCAL_DOMAINS
 TUXDOM GWGRP=SYS_GRP
 TYPE=TDOMAIN
 DOMAINID="TUXDOM"
 BLOCKTIME=20
 MAXDATALEN=56
 MAXRDOM=89
 DMTLOGDEV="<Path to domain TLOG device>"
 DMTLOGNAME="DMTLOG_TUXDOM"
 *DM_REMOTE_DOMAINS
 examples TYPE=TDOMAIN DOMAINID="examples"
 *DM_TDOMAIN
 TUXDOM NWADDR="<network address of Tuxedo domain>"
 examples NWADDR="<network address of WTC domain>"
 *DM_REMOTE_SERVICES

	
Save the file as DMCONFIG in your working simpapp/results directory.

Test the Tuxedo Environment

Use the following steps to validate your Tuxedo configuration:

	
In a new shell, change directories to your working simpapp/results directory.

	
Set the environment using the setenv script for your platform.

	
Load the ubbdomain file:

tmloadcf -y ubbdomain

	
Load the DMCONFIG file:

set BDMCONFIG=<path_to_your_working_simpapp_example>/simpapp/results/bdmconfig
dmloadcf -y dmconfig

	
Boot the Tuxedo domain

tmboot -y

	
Verify the Tuxedo environment.

java -DTOBJADDR=%TOBJADDR% -classpath %CLASSPATH% SimpleClient

	
Shutdown the Tuxedo server.

tmshutdown -y

Modify the ejb-jar.xml File

Use a text editor such as vi or Notepad to remove connection pool descriptors and update the trans-attribute. Example 3-3 is a code example showing how to remove references to the IIOP connection pool descriptors in the WLEC simpapp example ejb-jar.xml. This example

	
Removes the env-entry attribute.

	
Sets the trans-attribute in the container-transaction to Supports. As the example does not have a transaction, the container-transaction can not be Required.

Example 3-3 Example XML Configuration File for a CORBA Server Application

.
.
.
<ejb-jar>
<enterprise-beans>
<session>
 <ejb-name>ejb</ejb-name>
 <home>examples.wlec.ejb.simpapp.ConverterHome</home>
 <remote>examples.wlec.ejb.simpapp.Converter</remote>
<ejb-class>examples.wlec.ejb.simpapp.ConverterBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
<!-- Remove or comment out the following statements
 <env-entry>
 <env-entry-name>IIOPPoolName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>simplepool</env-entry-value>
 </env-entry>
-->
</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
 <method>
 <ejb-name>ejb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Update the build.xml File

A build.xml file is presented below to simplify compiling and deploying your migrated application in the WebLogic environment. Replace the contents of the build.xml file with the code shown in Example 3-4.

Example 3-4 Updated build.xml file

<project name="wlec-ejb-simpapp" default="all" basedir=".">

<!-- set global properties for this build -->
<property environment="env"/>
<property file="../../../../examples.properties"/>
<property name="build.compiler" value="${compiler}"/>
<property name="source" value="."/>
<property name="build" value="${source}/build"/>
<property name="dist" value="${source}/dist"/>
<property name="ejb_classes" value="Converter.java, ConverterHome.java, ConverterResult.java,
ProcessingErrorException.java, ConverterBean.java"/>
<property name="ejb_jar" value="wlec_simpapp_corba.jar"/>
<property name="client_classes" value="Converter.java, ConverterHome.java, ConverterResult.java,
ProcessingErrorException.java, Client.java"/>

<target name="all" depends="clean, init, compile_idl, compile_ejb, jar_ejb, appc, compile_client"/>

<target name="init">
<!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile
 and copy the deployment descriptors into it-->
 <mkdir dir="${build}"/>
 <mkdir dir="${build}/META-INF"/>
 <mkdir dir="${dist}"/>
 <copy todir="${build}/META-INF">
 <fileset dir="${source}">
 <include name="*.xml"/>
 <exclude name="build.xml"/>
 </fileset>
 </copy>
 </target>

<!-- Compile IDL stub classes into the build directory (jar preparation) -->
<target name="compile_idl">
 <exec executable="idlj" dir=".">
 <arg line="-td build -pkgPrefix Simple simple -pkgPrefix SimpleFactory simple simple.idl" />
 </exec>
 <javac srcdir="${build}" destdir="${build}"
 classpath="${CLASSPATH};${build}"/>
 <delete>
 <fileset dir="${build}">
 <include name="*.java"/>
 </fileset>
 </delete>
 </target>

<!-- Compile ejb classes into the build directory (jar preparation) -->
<target name="compile_ejb">
 <javac srcdir="${source}" destdir="${build}"
 includes="${ejb_classes}"
 classpath="${CLASSPATH};${build}"/>
 </target>

<!-- Make a standard ejb jar file, including XML deployment descriptors -->
<target name="jar_ejb" depends="compile_ejb">
 <jar jarfile="${dist}/std_${ejb_jar}"
 basedir="${build}">
 </jar>
 </target>

<!-- Run appc to create the deployable jar file -->
 <target name="appc" depends="jar_ejb">
<echo message="Generating container classes in ${apps.dir}/${ejb_jar}"/>
 <wlappc debug="${debug}"
 iiop="true"
 source="${dist}/std_${ejb_jar}"
 output="${apps.dir}/${ejb_jar}"
 />
 </target>

<!-- Compile EJB interfaces & client app into the clientclasses directory
-->
 <target name="compile_client">
 <javac srcdir="${source}"
 destdir="${client.classes.dir}"
 includes="${client_classes}"
 />
 </target>

<target name="run">
<java classname="examples.wlec.ejb.simpapp.Client">
</java>
</target>

 <target name="clean">
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
 </project>

Modify the WLEC ConverterBean

Example 3-5 provides a code example showing how to modify the wlec/ejb/simpapp example ConverterBean.java file to interoperate with Tuxedo using Oracle WebLogic Tuxedo Connector.

	
All changes are highlighted in bold and look like this: new code.

	
Statements that are no longer needed are commented out using // and look like this: // old code.

Example 3-5 Modified ConverterBean.java file

package examples.wlec.ejb.simpapp;

import javax.ejb.*;
import java.io.Serializable;
import java.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.omg.CORBA.*;
import com.beasys.Tobj.*;
import com.beasys.*;

/*These come from WebLogic Enterprise Simpapp sample */
//import SimpleFactory;
//import SimpleFactoryHelper;
//import Simple;
import simple.SimpleFactory;
import simple.SimpleFactoryHelper;
import simple.Simple;

/**
* ConverterBean is a stateless
* SessionBean.
* This bean illustrates:
*
* Accessing ISL/ISH process and then a WebLogic Enterprise server
* No persistence of state between calls to the SessionBean
* Application-defined exceptions
*
*/
public class ConverterBean implements SessionBean {

static SimpleFactory simple_factory_ref;

// ---
// private variables
private SessionContext ctx;
private Context rootCtx;
private ORB orb;

// ---
// SessionBean implementation

/**
* This method is required by the EJB Specification,
* but is not used by this example.
*
*/
public void ejbActivate() {}

/**
* This method is required by the EJB Specification,
* but is not used by this example.
*
*/
public void ejbRemove() {}

/**
* This method is required by the EJB Specification,
* but is not used by this example.
*
*/
public void ejbPassivate() {}

/**
* Sets the session context.
*
* @param ctx SessionContext context for session
*/
 public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;
}

// Interface exposed to EJBObject

/**
* This method corresponds to the create
* method in the home interface ConverterHome.java.
* The parameter sets of these two methods are identical. When the client calls the
* ConverterHome.create method, the
* container allocates an instance of the EJBean and calls the
* ejbCreate method.
*
* @exception CreateException
* if there is an error while initializing the IIOP pool
* @see examples.wlec.ejb.simpapp.Converter
*/
public void ejbCreate () throws CreateException {
try {
// try {
// Properties p = new Properties();
// p.put(Context.INITIAL_CONTEXT_FACTORY,
// "weblogic.jndi.WLInitialContextFactory");
// InitialContext ic = new InitialContext(p);
// rootCtx = (Context)ic.lookup("java:comp/env");
// }
//catch (NamingException ne) {
// throw new CreateException("Could not lookup context");
// }

// Initialize the ORB.
String args[] = null;
Properties Prop;
Prop = new Properties();
Prop.put("org.omg.CORBA.ORBClass",
"weblogic.wtc.corba.ORB");

orb = (ORB)new InitialContext().lookup("java:comp/ORB");

initIIOPpool();
}
catch (Exception e) {
throw new CreateException("ejbCreate called: " + e);
}
}

/**
* Converts the string to uppercase.
*
* @param mixed string input data
* @return ConverterResult conversion result
* @exception examples.wlec.ejb.simpapp.ProcessingErrorException
* if there is an error while converting the string
*/
public ConverterResult toUpper(String mixed)
throws ProcessingErrorException
{
return convert("UPPER", mixed);
}

/**
* Converts the string to lowercase.
*
* @param mixed string input data
* @return ConverterResult conversion result
* @exception examples.wlec.ejb.simpapp.ProcessingErrorException
* if there is an error while converting the string
*/
public ConverterResult toLower(String mixed)
throws ProcessingErrorException
{
return convert("LOWER", mixed);
}

protected ConverterResult convert (String changeCase, String mixed)
throws ProcessingErrorException
{
String result;
try {
// Find the simple object.
Simple simple = simple_factory_ref.find_simple();

if (changeCase.equals("UPPER")) {
// Invoke the to_upper opeation on M3 Simple object
org.omg.CORBA.StringHolder buf = new org.omg.CORBA.StringHolder(mixed);
simple.to_upper(buf);
result = buf.value;
}
else
{
result = simple.to_lower(mixed);
}

}
catch (org.omg.CORBA.SystemException e) {
throw new ProcessingErrorException("Converter error: Corba system exception: " + e);
}
catch (Exception e) {
throw new ProcessingErrorException("Converter error: " + e);
}
return new ConverterResult(result);
}

// Private methods

/**
* Returns the WebLogic Enterprise Connectivity pool name.
*
* @return String IIOP pool name
*/
// private String getIIOPPoolName() throws ProcessingErrorException {
// try {
// return (String) rootCtx.lookup("IIOPPoolName");
//}
// catch (NamingException ne) {
// throw new ProcessingErrorException ("IIOPPoolName not found in context");
//}
//}

/**
* Initializes an IIOP connection pool.
*/

private void initIIOPpool() throws Exception {
try {
// Create the bootstrap object,
// Tobj_Bootstrap bootstrap = // BootstrapFactory.getClientContext(getIIOPPoolName());

// Use the bootstrap object to find the factory finder.
// org.omg.CORBA.Object fact_finder_oref =
// bootstrap.resolve_initial_references("FactoryFinder") ;
org.omg.CORBA.Object fact_finder_oref =
 orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =
FactoryFinderHelper.narrow(fact_finder_oref);

// Use the factory finder to find the simple factory.
org.omg.CORBA.Object simple_fact_oref =
fact_finder_ref.find_one_factory_by_id(SimpleFactoryHelper.id());

// Narrow the simple factory.
simple_factory_ref =
SimpleFactoryHelper.narrow(simple_fact_oref);

}
catch (org.omg.CosLifeCycle.NoFactory e) {
throw new Exception("Can't find the simple factory: " +e);
}
catch (CannotProceed e) {
throw new Exception("FactoryFinder internal error: " +e);
}
catch (RegistrarNotAvailable e) {
throw new Exception("FactoryFinder Registrar not available: " +e);
}
//catch (InvalidName e) {
// throw new Exception("Invalid name from resolve_initial_reference(): " +e);
//}
// catch (org.omg.CORBA.BAD_PARAM e) {
// throw new Exception("Invalid TOBJADDR=//host:port property specified: " +e);
// }
catch (org.omg.CORBA.UserException e) {
throw new Exception("Unexpected CORBA user exception: " +e);
}
catch (org.omg.CORBA.SystemException e) {
throw new Exception("CORBA system exception: " +e);
}
}
}

Configure Oracle WebLogic Tuxedo Connector

The following sections describe the steps for configuring Oracle WebLogic Tuxedo Connector to connect WebLogic Server and the modified WLEC application:

	
Create a WTC Service

	
Create a Local Tuxedo Access Point

	
Create a Remote Tuxedo Access Point

	
Create an Imported Service

Create a WTC Service

To create and configure a WTC service using the WebLogic Server Administration Console:

	
In the Administration Console, expand Interoperability and select WTC Servers in the navigation tree.

	
On the WTC Servers page, click New.

	
On the Create a New WTC Server page, enter My_WLEC_App to identify this configuration in the name field.

	
Click OK.

Your new WTC Service appears in the WTC Servers list.

Create a Local Tuxedo Access Point

	
Note:

When configuring the Network Address for a local access point, the port number used should be different from any port numbers assigned to other processes. Example: Setting the Network Address to //mymachine:7001 is not valid if the WebLogic Server listening port is assigned to //mymachine:7001.

To configure a local Tuxedo access point:

	
In the Administration Console, expand Interoperability and select WTC Servers.

	
On the WTC Servers page, click the name of a WTC Service to access the settings page.

	
Click the Local APs tab.

	
Enter the following values for the following fields on the WTC Local Access Points page:

	
In Access Point, enter My_Local_WLS_Dom.

	
In Access Point Id, enter examples.

	
In Network Address, enter the network address and port of the WebLogic Server environment that will host this local domain. For example, //my_WLS_machine:5678.

	
Click OK.

Create a Remote Tuxedo Access Point

To configure a remote Tuxedo access point:

	
In the Administration Console, expand Interoperability and select WTC Servers.

	
On the WTC Servers page, click the name of a WTC Service.

	
Click the Remote APs tab.

	
Enter the following values for the following fields on the WTC Remote Access Points page:

	
In Access Point, enter My_WLEC_Dom.

	
In Access Point Id, enter TUXDOM.

	
In Local Access Point, enter My_Local_WLS_Dom.

	
In Network Address, enter the network address and port of the Tuxedo environment that will host this remote domain. For example, //my_TUX_machine:5678.

	
Click OK.

Create an Imported Service

To configure an imported service:

	
In the Administration Console, expand Interoperability and select WTC Servers.

	
On the WTC Servers page, click the name of a WTC Service.

	
Click the Imported tab.

	
Enter the following values for the following fields on the WTC Imported Services page:

	
In Resource Name, enter //simpapp.

	
In Local Access Point, enter My_Local_WLS_Dom.

	
In Remote Access Point List, enter My_WLEC_Dom.

	
In Remote Name, enter //domain_id where domain_id is DOMAINID specified in the Tuxedo UBBCONFIG file. The maximum length of this unique identifier for CORBA domains is 15 characters and includes the //. For example, //simpappff.

	
Click OK.

Run the simpapp Example

To run the simpapp example, complete the following steps:

	
Open a new shell and change directories to your working Tuxedo CORBA simpapp example.

	
Set environment variables.

	
For Windows NT and 2000 systems, run the following command:

results\setenv.cmd

	
For UNIX systems, run the following command:

results\setenv.sh

	
Boot the Tuxedo domain:

tmboot -y

	
Open a new shell and change directories to your WebLogic Server WLEC simpapp example.

	
Set environment variables. Update the following parameters:

	
Note:

On Windows NT or 2000 systems, modify and run the setExamplesEnv.cmd script. On Unix systems, copy the ./config/examples/setExamplesEnv.sh script to your WLEC simpapp directory, then modify and run the setExamplesEnv.sh script.

	
Copy the simple.idl file from the Tuxedo CORBA simpapp example to your WebLogic Server WLEC simpapp example.

	
Build the wlec_simpapp_corba.jar file using the following command:

ant

	
Use the WLS console to target My_WLEC_App to the server.

	
Run the client by entering the following command:

ant run

The Java application generates the following output:

Beginning simpapp.Client...
Start of Conversion for: It Works
Converting to lower case: It Works
...Converted: it works
Converting to upper case: It Works
...Converted: IT WORKS
Removing Converter
End simpapp.Client...

If you have a problem running the example, use the WTC tracing feature. See "Troubleshooting the WebLogic Tuxedo Connector" in WebLogic Tuxedo Connector Administration Guide for Oracle WebLogic Server.

Oracle Legal Notices

Copyright Notice

Copyright © 1994, 2020, Oracle and/or its affiliates.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNM