
[image: Oracle Corporation]

Oracle® Fusion Middleware

Configuring and Using the Diagnostics Framework for Oracle WebLogic Server 10.3.6

11g Release 1 (10.3.6)

E13714-08

December 2016

This document describes how to configure and use the monitoring and diagnostic services provided by WLDF in WebLogic Server 10.3.6.

Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server 10.3.6, 11g Release 1 (10.3.6)

E13714-08

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	What Is the WebLogic Diagnostics Framework?
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	WLDF Samples Available for Download

	New and Changed Features in this Release

2 Overview of the WLDF Architecture

	Overview of the WebLogic Diagnostics Framework
	Data Creation, Collection, and Instrumentation
	Archive
	Watch and Notification
	Data Accessor
	Monitoring Dashboard and Request Performance Pages
	Monitoring Dashboard
	Diagnostics Request Performance Page

	Diagnostic Image Capture
	How It All Fits Together

3 Using WLDF with Oracle JRockit Flight Recorder

	About Oracle JRockit Flight Recorder
	Key Features of WLDF Integration with JRockit Flight Recorder
	JRockit Flight Recorder Use Cases
	Diagnosing a Critical Failure — The "Black Box"
	Profiling During Performance Testing or in Production
	Real-time Application Diagnostics and Reporting (RADAR)

	Obtaining the JRockit Flight Recording File
	Analyzing Flight Recorder Data in JRockit Mission Control
	JFR Graphical User Interface
	Analyzing Execution Flow — A Sample Walkthrough
	Displaying Event Data for a Product Subcomponent
	Viewing the Event Log to Display Details
	Tracking Execution Flow by Analyzing an Operative Set
	Expanding the Operative Set and Viewing Correlated Diagnostic Data

	Changing the Location of Temporary JFR Files

4 Understanding WLDF Configuration

	Configuration MBeans and XML
	Tools for Configuring WLDF
	How WLDF Configuration Is Partitioned
	Server-Level Configuration
	Application-Level Configuration

	Configuring Diagnostic Image Capture and Diagnostic Archives
	Configuring Diagnostic Image Capture for JRockit Flight Recorder
	Configuring Diagnostic System Modules
	The Diagnostic System Module and Its Resource Descriptor
	Referencing the Diagnostics System Module from Config.xml
	The DIAG_MODULE.xml Resource Descriptor Configuration
	Managing Diagnostic System Modules
	More Information About Configuring Diagnostic System Resources

	Configuring Diagnostic Modules for Applications
	WLDF Configuration MBeans and Their Mappings to XML Elements

5 Configuring and Capturing Diagnostic Images

	How to Initiate Image Captures
	Configuring Diagnostic Image Captures
	Configuring WLDF Diagnostic Volume
	WLST Commands for Generating an Image Capture

	How Diagnostic Image Capture Is Persisted in the Server's Configuration
	Content of the Captured Image File
	Data Included in the Diagnostics Image Capture File
	WLST Online Commands for Downloading Diagnostics Image Captures

6 Configuring Diagnostic Archives

	Configuring the Archive
	Configuring a File-Based Store
	Configuring a JDBC-Based Store
	Creating WLDF Tables in the Database
	Configuring JDBC Resources for WLDF

	Retiring Data from the Archives
	Configuring Data Retirement at the Server Level
	Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	Sample Configuration

7 Configuring the Harvester for Metric Collection

	Harvesting, Harvestable Data, and Harvested Data
	Harvesting Data from the Different Harvestable Entities
	Configuring the Harvester
	Configuring the Harvester Sampling Period
	Configuring the Types of Data to Harvest
	Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	Harvesting from the DomainRuntime MBeanServer
	When Configuration Settings Are Validated
	Sample Configurations for Different Harvestable Types

8 Configuring Watches and Notifications

	Watches and Notifications
	Overview of Watch and Notification Configuration
	Sample Watch and Notification Configuration

9 Configuring Watches

	Types of Watches
	Configuration Options Shared by All Types of Watches
	Configuring Harvester Watches
	Configuring Log Watches
	Configuring Instrumentation Watches
	Defining Watch Rule Expressions

10 Configuring Notifications

	Types of Notifications
	Configuring JMX Notifications
	Configuring JMS Notifications
	Configuring SNMP Notifications
	Configuring SMTP Notifications
	Configuring Image Notifications

11 Configuring Instrumentation

	Concepts and Terminology
	Instrumentation Scope
	Configuration and Deployment
	Joinpoints, Pointcuts, and Diagnostic Locations
	Diagnostic Monitor Types
	Diagnostic Actions

	Instrumentation Configuration Files
	XML Elements Used for Instrumentation
	<Instrumentation> XML Elements
	<wldf-instrumentation-monitor> XML Elements
	Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	Configuring Server-Scoped Instrumentation
	Configuring Application-Scoped Instrumentation
	Comparing System-Scoped to Application-Scoped Instrumentation
	Overview of the Steps Required to Instrument an Application
	Creating a Descriptor File for a Delegating Monitor
	Creating a Descriptor File for a Custom Monitor
	Defining Pointcuts for Custom Monitors
	Annotation-based Pointcuts

	Creating Request Performance Data

12 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

	Contents, Life Cycle, and Configuration of a Diagnostic Context
	Context Life Cycle and the Context ID
	Dyes, Dye Flags, and Dye Vectors
	Where Diagnostic Context Is Configured

	Overview of the Process
	Configuring the Dye Vector via the DyeInjection Monitor
	Dyes Supported by the DyeInjection Monitor
	PROTOCOL Dye Flags
	THROTTLE Dye Flag
	When Diagnostic Contexts Are Created

	Configuring Delegating Monitors to Use Dye Filtering
	How Dye Masks Filter Requests to Pass to Monitors
	Dye Filtering Example

	Using Throttling to Control the Volume of Instrumentation Events
	Configuring the THROTTLE Dye
	How Throttling is Handled by Delegating and Custom Monitors

	Using weblogic.diagnostics.context

13 Accessing Diagnostic Data With the Data Accessor

	Data Stores Accessed by the Data Accessor
	Accessing Diagnostic Data Online
	Accessing Data Using the Administration Console
	Accessing Data Programmatically Using Runtime MBeans
	Using WLST to Access Diagnostic Data Online
	Using the WLDF Query Language with the Data Accessor

	Accessing Diagnostic Data Offline
	Accessing Diagnostic Data Programmatically
	Resetting the System Clock Can Affect How Data Is Archived and Retrieved

14 Deploying WLDF Application Modules

	Deploying a Diagnostic Module as an Application-Scoped Resource
	Using Deployment Plans to Dynamically Control Instrumentation Configuration
	Using a Deployment Plan: Overview
	Creating a Deployment Plan Using weblogic.PlanGenerator
	Sample Deployment Plan for Diagnostics
	Enabling Java HotSwap Capabilities
	Deploying an Application with a Deployment Plan
	Updating an Application with a Modified Plan

15 Using the Monitoring Dashboard

	Running the Monitoring Dashboard
	Scope of the Diagnostic Information Displayed
	About the Monitoring Dashboard Interface
	View List
	Metric Browser
	View Display Panel

	Understanding How Metrics Are Collected and Presented
	About Metrics and Chart Types
	Current Time Range Charts
	Custom Time Range Charts

	Sequence in which Metrics Data is Displayed
	Notes about Metric Data Retention

	The Parts of a Chart

16 Configuring and Using WLDF Programmatically

	How WLDF Generates and Retrieves Data
	Mapping WLDF Components to Beans and Packages
	Programming Tools
	Configuration and Runtime APIs
	Configuration APIs
	Runtime APIs

	WLDF Packages
	Programming WLDF: Examples
	Example: DiagnosticContextExample.java
	Example: HarvesterMonitor.java
	Notification Listeners
	HarvesterMonitor.java

	Example: JMXAccessorExample.java

A WLDF Query Language

	Components of a Query Expression
	Supported Operators
	Operator Precedence
	Numeric Relational Operations Supported on String Column Types
	Supported Numeric Constants and String Literals
	About Variables in Expressions
	Creating Watch Rule Expressions
	Creating Log Event Watch Rule Expressions
	Creating Instrumentation Event Watch Rule Expressions
	Creating Harvester Watch Rule Expressions

	Creating Data Accessor Queries
	Data Store Logical Names
	Data Store Column Names

	Creating Log Filter Expressions
	Building Complex Expressions

B WLDF Instrumentation Library

	Diagnostic Monitor Library
	Diagnostic Action Library
	TraceAction
	DisplayArgumentsAction
	TraceElapsedTimeAction
	TraceMemoryAllocationAction
	StackDumpAction
	ThreadDumpAction
	MethodInvocationStatisticsAction
	Instrumenting an Application with MethodInvocationStatisticsAction

and Querying the Results
	Configuring the Harvester to Collect

MethodInvocationStatisticsAction Data
	Configuring Watch Rules Based on MethodInvocationStatistics Metrics
	Using JMX to Collect Data

	MemoryAllocationStatisticsAction

C Using Wildcards in Expressions

	Using Wildcards in Harvester Instance Names
	Examples

	Specifying Complex and Nested Harvester Attributes
	Examples

	Using the Accessor with Harvested Complex or Nested Attributes
	Using Wildcards in Watch Rule Instance Names
	Specifying Complex Attributes in Harvester Watch Rules

D WebLogic Scripting Tool Examples

	Example: Dynamically Creating DyeInjection Monitors
	Example: Configuring a Watch and a JMX Notification
	Example: Writing a JMXWatchNotificationListener Class
	Example: Registering MBeans and Attributes For Harvesting
	Example: Setting the WLDF Diagnostic Volume
	Example: Capturing a Diagnostic Image
	Example: Retrieving a JFR File from a Diagnostic Image Capture

Glossary

Preface

This preface describes the document accessibility features and conventions used in this guide—Configuring and Using the Oracle WebLogic Diagnostics Framework.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction and Roadmap

This chapter describes the contents and audience for this guide—Configuring and Using the WebLogic Diagnostics Framework for Oracle WebLogic Server 10.3.6.

This chapter includes the following sections:

	
What Is the WebLogic Diagnostics Framework?

	
Document Scope and Audience

	
Guide to This Document

	
Related Documentation

	
Samples and Tutorials

	
New and Changed Features in this Release

What Is the WebLogic Diagnostics Framework?

The WebLogic Diagnostics Framework (WLDF) is a monitoring and diagnostic framework that defines and implements a set of services that run within WebLogic Server processes and participate in the standard server life cycle. Using WLDF, you can create, collect, analyze, archive, and access diagnostic data generated by a running server and the applications deployed within its containers. This data provides insight into the run-time performance of servers and applications and enables you to isolate and diagnose faults when they occur.

WLDF includes several components for collecting and analyzing data:

	
Integration with Oracle JRockit—If WebLogic Server is configured with JRockit, WLDF can generate diagnostic information about WebLogic Server that is captured in the JRockit Flight Recording file.

	
Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can be used for post-failure analysis. The diagnostic image capture includes JRockit Flight Recorder data, if it is available, that can be viewed in JRockit Mission Control.

	
Archive—Captures and persists data events, log records, and metrics from server instances and applications.

	
Instrumentation—Adds diagnostic code to WebLogic Server instances and the applications running on them to execute diagnostic actions at specified locations in the code. The Instrumentation component provides the means for associating a diagnostic context with requests so they can be tracked as they flow through the system. The WebLogic Server Administration Console includes a Request Performance page, which shows real-time and historical views of method performance information that has been captured through the WLDF instrumentation capabilities, serving as a tool that can help identify performance problems in applications.

	
Harvester—Captures metrics from run-time MBeans, including WebLogic Server MBeans and custom MBeans, which can be archived and later accessed for viewing historical data.

	
Watches and Notifications—Provides the means for monitoring server and application states and sending notifications based on criteria set in the watches.

	
Monitoring Dashboard—Graphically presents the current and historical operating state of WebLogic Server and hosted applications. The Monitoring Dashboard, which is accessed from the WebLogic Server Administration Console, provides a set of tools for organizing and displaying diagnostic data into views, which surface some of the more critical run-time WebLogic Server performance metrics and the change in those metrics over time

	
Logging services—Manage logs for monitoring server, subsystem, and application events. The WebLogic Server logging services are documented separately from the rest of the WebLogic Diagnostics Framework. See Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

WLDF provides a set of standardized application programming interfaces (APIs) that enable dynamic access and control of diagnostic data, as well as improved monitoring that provides visibility into the server. Independent Software Vendors (ISVs) can use these APIs to develop custom monitoring and diagnostic tools for integration with WLDF.

WLDF enables dynamic access to server data through standard interfaces, and the volume of data accessed at any given time can be modified without shutting down and restarting the server.

Document Scope and Audience

This document describes and tells how to configure and use the monitoring and diagnostic services provided by WLDF.

WLDF provides features for monitoring and diagnosing problems in running WebLogic Server instances and clusters and in applications deployed to them. Therefore, the information in this document is directed both to system administrators and to application developers. It also contains information for third-party tool developers who want to build tools to support and extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating system and platform where WebLogic Server is installed.

Guide to This Document

This document is organized as follows:

	
This chapter, "Introduction and Roadmap," provides an overview of WLDF components and describes the audience for this guide.

	
Chapter 2, "Overview of the WLDF Architecture", provides a high-level view of the WLDF architecture.

	
Chapter 3, "Using WLDF with Oracle JRockit Flight Recorder", describes the WLDF integration features with JRockit Flight Recorder, describes basic usage scenarios, and provides a sample walkthrough of using JRockit Mission Control to examine WebLogic Server events captured in a JRockit Flight Recorder file.

	
Chapter 4, "Understanding WLDF Configuration", provides an overview of how WLDF features are configured for servers and applications.

	
Chapter 5, "Configuring and Capturing Diagnostic Images", describes how to configure and use the WLDF Diagnostic Image Capture component to capture a snapshot of significant server configuration settings and the server state.

	
Chapter 6, "Configuring Diagnostic Archives", describes how to configure and use the WLDF Diagnostic Archive component to persist diagnostic data to a file store or database.

	
Chapter 7, "Configuring the Harvester for Metric Collection", describes how to configure and use the WLDF Harvester component to harvest metrics from runtime MBeans, including WebLogic Server MBeans and custom MBeans.

	
Chapter 8, "Configuring Watches and Notifications", provides an overview of WLDF watches and notifications.

	
Chapter 9, "Configuring Watches", describes how to configure watches to monitor server instances and applications for specific conditions and send notifications when those conditions are met.

	
Chapter 10, "Configuring Notifications", describes how to configure notifications that can be triggered by watches.

	
Chapter 11, "Configuring Instrumentation", describes how to add diagnostic instrumentation code to WebLogic Server classes and to the classes of applications running on the server.

	
Chapter 12, "Configuring the DyeInjection Monitor to Manage Diagnostic Contexts", describes how to use the DyeInjection monitor and how to use dye filtering with diagnostic monitors.

	
Chapter 13, "Accessing Diagnostic Data With the Data Accessor", tells how to use the WLDF Data Accessor component to retrieve diagnostic data.

	
Chapter 14, "Deploying WLDF Application Modules", explains how to configure and manage instrumentation for an application as a diagnostics application module.

	
Chapter 15, "Using the Monitoring Dashboard", explains how to graphically present the current and historical operating state of WebLogic Server and hosted applications using, in part, diagnostic data captured by WLDF.

	
Chapter 16, "Configuring and Using WLDF Programmatically", provides an overview of how you can use the JMX API and the WebLogic Scripting Tool (weblogic.WLST) to configure and use WLDF components.

	
Appendix A, "WLDF Query Language", describes the WLDF query language that is used for constructing expressions to query diagnostic data using the Data Accessor, constructing watch rules, and constructing rules for filtering logs.

	
Appendix B, "WLDF Instrumentation Library", describes the predefined diagnostic monitors and diagnostic actions that are included in the WLDF Instrumentation Library.

	
Appendix C, "Using Wildcards in Expressions", discusses how to use wildcards in WLDF expressions.

	
Appendix D, "WebLogic Scripting Tool Examples", provides examples of how to perform WLDF monitoring and diagnostic activities using the WebLogic Scripting Tool.

	
"Glossary" is a glossary of terms used in WLDF.

Related Documentation

	
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server describes how to use WLDF logging services to monitor server, subsystem, and application events.

	
"Configure the WebLogic Diagnostics Framework" in the Administration Console Online Help describes how to use the visual tools in the WebLogic Administration Console to configure WLDF.

	
The WLDF system resource descriptor conforms to the weblogic-diagnostics.xsd schema, available at http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd.

Samples and Tutorials

In addition to this document, we provide a variety of samples and tutorials that show WLDF configuration and use.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that simulates an independent, centralized medical record management system. The MedRec application provides a framework for patients, doctors, and administrators to manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights recommended best practices. MedRec is included in the WebLogic Server distribution, and can be accessed from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level installation directory for WebLogic Platform.

WLDF Samples Available for Download

Additional WLDF samples for download can be found at http://www.oracle.com/technetwork/indexes/samplecode/index.html. These examples are distributed as .zip files that you can unzip into an existing WebLogic Server samples directory structure. These samples include Oracle-certified ones, as well as samples submitted by fellow developers.

New and Changed Features in this Release

Two diagnostic monitors have been added:

	
JDBC_After_Reserve_Connection_Internal

	
JDBC_After_Release_Connection_Internal

These diagnostic instrumentation monitors can be configured in a WLDF module at the server level. They provide additional visibility when JDBC connections are reserved and released. For more information, see Diagnostic Monitor Library.

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

2 Overview of the WLDF Architecture

This chapter provides an architectural overview of the WebLogic Diagnostics Framework (WLDF) components in WebLogic Server 10.3.6. WLDF consists of a number of components that work together to collect, archive, and access diagnostic information about a WebLogic Server instance and the applications it hosts.

	
Note:

Concepts are presented in this section in a way to help you understand how WLDF works. Some of this differs from the way WLDF is surfaced in its configuration and runtime APIs and in the WebLogic Server Administration Console. If you want to start configuring and using WLDF right away, you can safely skip this discussion and start with Chapter 4, "Understanding WLDF Configuration"

This chapter includes the following sections:

	
Overview of the WebLogic Diagnostics Framework

	
Data Creation, Collection, and Instrumentation

	
Archive

	
Watch and Notification

	
Data Accessor

	
Monitoring Dashboard and Request Performance Pages

	
Diagnostic Image Capture

	
How It All Fits Together

Overview of the WebLogic Diagnostics Framework

WLDF consists of the following:

	
Data creators (data publishers and data providers that are distributed across WLDF components)

	
Data collectors (the Logger and the Harvester components)

	
Archive component

	
Accessor component

	
Instrumentation component

	
Watch and Notification component

	
Image Capture component

	
Monitoring Dashboard

Data creators generate diagnostic data that is consumed by the Logger and the Harvester. Those components coordinate with the Archive to persist the data, and they coordinate with the Watch and Notification subsystem to provide automated monitoring. The Accessor interacts with the Logger and the Harvester to expose current diagnostic data and with the Archive to present historical data. The Image Capture facility provides the means for capturing a diagnostic snapshot of a key server state. The relationship among these components is shown in Figure 2-1.

Figure 2-1 Major WLDF Components

[image: Description of Figure 2-1 follows]

All of the framework components operate at the server level and are only aware of server scope. All the components exist entirely within the server process and participate in the standard server lifecycle. All artifacts of the framework are configured and stored on a per server basis.

Data Creation, Collection, and Instrumentation

Diagnostic data is collected from a number of sources. These sources can be logically classified as either data providers, data creators that are sampled at regular intervals to harvest current values, or data publishers, data creators that synchronously generate events. Data providers and data publishers are distributed across components, and the generated data can be collected by the Logger and/or by the Harvester, as shown in Figure 2-2, and explained below.

Figure 2-2 Relationship of Data Creation Components to Data Collection Components

[image: Description of Figure 2-2 follows]

Invocations of the server logging infrastructure serve as inline data publishers, and the generated data is collected as events. (The logging infrastructure can be invoked through the catalog infrastructure, the debugging model, or directly through the Logger.)

The Instrumentation component creates monitors and inserts them at well-defined points in the flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as data providers by registering with the Harvester. Collected data is then exposed to both the Watch and Notification system for automated monitoring and to the Archive for persistence.

Archive

The past state is often critical in diagnosing faults in a system. This requires that the state be captured and archived for future access, creating a historical archive. In WLDF, the Archive meets this need with several persistence components. Both events and harvested metrics can be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion in the server log, is persisted through the standard logging appenders. New event data that is intended for system consumption is persisted into an event store using an event archiver. Metric data is persisted into a data store using a data archiver. The relationship of the Archive to the Logger and the Harvester is shown in Figure 2-3.

The Archive provides access interfaces so that the Accessor may expose any of the persisted historical data.

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

[image: Description of Figure 2-3 follows]

Watch and Notification

The Watch and Notification system can be used to create automated monitors that observe specific diagnostic states and send notifications based on configured rules.

A watch rule can monitor log data, event data from the Instrumentation component, or metric data from a data provider that is harvested by the Harvester. The Watch Manager is capable of managing watches that are composed of a number of watch rules. These relationships are shown in Figure 2-4.

Figure 2-4 Relationship of the Logger and the Harvester to the Watch and Notification System

[image: Description of Figure 2-4 follows]

One or more notifications can be configured for use by a watch. By default, every watch logs an event in the server log. SMTP, SNMP, JMX, and JMS notifications are also supported.

Data Accessor

The Accessor provides access to all the data collected by WLDF, including log, event, and metric data. The Accessor interacts with the Archive to get historical data including logged event data and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The Accessor provides for data lookup by type, by component, and by attribute. It permits time-based filtering and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this case, an offline Accessor is also provided. You can use it to export archived data to an XML file for later access. To use the Accessor in this way, you must use the WebLogic Scripting Tool (WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in Figure 2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Archive

[image: Description of Figure 2-5 follows]

Monitoring Dashboard and Request Performance Pages

WLDF provides two web pages from which diagnostic data is displayed visually:

	
Monitoring Dashboard

	
Diagnostics Request Performance Page

Monitoring Dashboard

The Monitoring Dashboard displays the current and historical operating state of WebLogic Server and hosted applications by providing visualizations of metric runtime MBean attributes, which surface some of the more critical run-time performance metrics and the change in those metrics over time. Historical operating state is represented by collected metrics that have been persisted into the Archive. To view collected metrics from the Archive, you must configure the Harvester to capture the data you want to monitor.

The Monitoring Dashboard displays metric information in a series of views. A view is a collection of one or more charts that display metrics. The Monitoring Dashboard includes a predefined set of built-in views of available run-time metrics for all running WebLogic Server instances in the domain. Built-in views surface some of the more critical run-time WebLogic Server performance metrics and serve as examples of the Monitoring Dashboard's graphic capabilities.

Custom views are available only to the user who creates them. Custom views are automatically persisted and can be accessed again when you restart the Monitoring Dashboard sessions.

For more information, see Chapter 15, "Using the Monitoring Dashboard".

Diagnostics Request Performance Page

The Diagnostics Request Performance page of the WebLogic Server Administration Console shows real-time and historical views of method performance information that is captured using the Instrumentation component. To view request performance information, you must first configure the Instrumentation component to make that data available.

For more information, see Creating Request Performance Data.

Diagnostic Image Capture

Diagnostic Image Capture support gathers the most common sources of the key server state used in diagnosing problems. It packages that state into a single artifact which can be made available to support technicians, as shown in Figure 2-6. The diagnostic image is in essence a diagnostic snapshot or dump from the server, analogous to a UNIX "core" dump.

If WebLogic Server is configured with Oracle JRockit, and JRockit Flight Recorder is not disabled, the diagnostic image capture includes all available JRockit Flight Recorder data from all producers. Furthermore, if WLDF is configured to generate WebLogic Server diagnostic information captured by JRockit Flight Recorder, the JFR file includes that information as well. The JFR file can be extracted from the diagnostic image capture and viewed in JRockit Mission Control. See Chapter 3, "Using WLDF with Oracle JRockit Flight Recorder".

Image Capture support includes:

	
On-demand capture, which is the creation of a diagnostic image capture by means of an operation or command issued from the WebLogic Server Administration Console, WLST script, or JMX application

	
Image notification, which is automatically creating a diagnostic image capture in response to the triggering of an associated Harvester watch, Log watch, or Instrumentation watch rule. For example, a Harvester watch that monitors runtime MBean attributes in a running server can trigger an image notification if the metrics harvested from specific runtime MBean instances indicate a performance issue. Data in the diagnostic image capture can be analyzed to determine the likely causes of the issue.

For more information, see:

	
Chapter 5, "Configuring and Capturing Diagnostic Images"

	
Configuring Image Notifications

Figure 2-6 Diagnostic Image Capture

[image: Description of Figure 2-6 follows]

How It All Fits Together

Figure 2-7 shows how all the parts of WLDF fit together.

Figure 2-7 Overall View of the WebLogic Diagnostics Framework

[image: Description of Figure 2-7 follows]

3 Using WLDF with Oracle JRockit Flight Recorder

This chapter provides an overview of WLDF integration with JRockit Flight Recorder and explains common usage scenarios that show how this integration can provide for a comprehensive performance analysis and diagnostic foundation for production systems based on WebLogic Server 10.3.6.

WLDF provides specific integration points with JRockit Flight Recorder. WebLogic Server events can optionally be propagated to the Flight Recorder for inclusion in a common data set for runtime or post-incident analysis. The Flight Recording data is also included in WLDF diagnostic image captures, enabling you to capture flight recording snapshots based on WLDF watch rules. This full set of functionality enables you to capture and analyze runtime system information for both the JVM and the Fusion Middleware components running on it, in a single view.

This chapter includes the following sections:

	
About Oracle JRockit Flight Recorder

	
Key Features of WLDF Integration with JRockit Flight Recorder

	
JRockit Flight Recorder Use Cases

	
Obtaining the JRockit Flight Recording File

	
Analyzing Flight Recorder Data in JRockit Mission Control

About Oracle JRockit Flight Recorder

The version of Oracle JRockit that is available in the WebLogic Server installation program includes a component called JRockit Flight Recorder (JFR), a performance monitoring and profiling tool. JFR records diagnostic information on a continuous basis, making it always available, even in the wake of catastrophic failure such as a system crash.

JFR maintains a buffer of diagnostics and profiling data, called a flight recording or a JFR file, that you can access whenever you need it. The flight recording functions in a manner similar to an aircraft "black box" in which new data is continuously added and older data is stripped out, as shown in Figure 3-1.

Figure 3-1 Circular Flight Recording Buffer

[image: Description of Figure 3-1 follows]

For details about how the JFR flight recording works, see "Introduction" in Oracle JRockit Flight Recorder Run Time Guide.

The JFR file can be analyzed at any time to examine the details of system execution flow that occurred leading up to an event. The data contained in the JFR file includes events from the JVM and from any other event producer, such as WebLogic Server and Oracle Dynamic Monitoring System (DMS).

The amount of additional processing overhead that results when you enable JFR recording, and also configure WLDF to generate WebLogic Server diagnostics to be captured by JFR, is minimal. This makes it ideal to be used on a full time basis, especially in production environments where it adds the greatest value.

JFR provides the following key benefits:

	
Designed to run continuously — When JFR is configured to run full-time, with both JVM and WLDF events captured in the flight recording, diagnostic data is always available at the time an event occurs, including a system crash. This ensures that a record of diagnostic data leading up to the event is available, allowing you to diagnose the event without having to recreate it.

	
Comprehensive data — JFR combines data generated by the JRockit Runtime Analyzer and the JRockit Latency Analysis Tool and presents it in one place.

	
Integration with event providers — JRockit includes a set of APIs that allow the JFR to monitor additional system components, including WebLogic Server, Oracle Dynamic Monitoring System (DMS), and other Oracle products.

For more information about JFR, see "Introduction" in Oracle JRockit Flight Recorder Run Time Guide.

Key Features of WLDF Integration with JRockit Flight Recorder

The key features provided by WLDF to leverage integration with JFR include the following:

	
WLDF diagnostic data captured in JFR flight recording

WLDF can be configured to generate diagnostic data about WebLogic Server events that is captured in the JFR flight recording. Captured events include those from components such as: web applications; EJBs; JDBC, JTA, and JMS resources; resource adapters; and WebLogic Web Services.

	
WLDF diagnostic volume control

The ability to generate WebLogic Server event data for the Flight Recording is controlled by the WLDF diagnostic volume configuration. This control also determines the amount of WebLogic Server event data that is captured by JFR, and can be adjusted to include more, or less, data for each WebLogic Server event that is generated. For more information, see Configuring WLDF Diagnostic Volume.

	
Notes:

	
By default, the WLDF diagnostic volume is set to Low.

	
The WLDF diagnostic volume setting does not affect explicitly configured diagnostic modules.

	
Automatic throttling of generated events under load

As processing load rises on a given WebLogic Server instance, WLDF automatically begins throttling the number of incoming WebLogic Server requests that are selected for event generation and recording into the JFR file. The degree of throttling is adjusted continuously as system load rises and falls.

Throttling provides three key benefits:

	
The overhead of capturing events generated by WLDF for JFR remains minimized, which is especially important when systems are under load.

	
The time interval encompassed in the JFR flight recording buffer is maximized, giving you a better historical record of data.

	
Throttling has the effect of sampling incoming WebLogic Server requests, maintaining high performance while still providing an accurate overall view of system activity under load.

	
Note:

Throttling affects only the Flight Recording data that is captured by WLDF. It does not affect data captured by other event producers, such as the JVM.

	
WLDF diagnostic image capture support for JFR files

WLDF diagnostic image capture automatically includes the JFR file, if one has been generated by Flight Recorder. The JFR file includes data generated by all active event producers, including WebLogic Server. An image captured using the Watch and Notification component may contain the JFR file, if available.

	
WLST commands for downloading the contents of diagnostic image captures

WLST includes a set of commands for downloading the contents of diagnostic image captures, described in WLST Online Commands for Downloading Diagnostics Image Captures. Although these commands are generally useful for listing, copying, and downloading all entries contained in the diagnostic image capture, they can also be used for obtaining the JFR file, if available. Once obtained from the diagnostic image capture, the JFR file can be viewed in JRockit Mission Control.

JRockit Flight Recorder Use Cases

This section summarizes three common business cases where using the JRockit Flight Recorder can help you resolve important diagnostic issues:

	
Diagnosing a Critical Failure — The "Black Box"

	
Profiling During Performance Testing or in Production

	
Real-time Application Diagnostics and Reporting (RADAR)

For more information about these scenarios, see "Flight Recorder Uses" in Oracle JRockit Flight Recorder Run Time Guide.

Diagnosing a Critical Failure — The "Black Box"

When a "catastrophic" failure occurs, the content of the Flight Recorder buffer can be made available for post-failure analysis in a manner analogous to the use of an aircraft's black box. Examples of such failures include a JVM crash or an out-of-memory error (OOME) resulting in an application terminating.

When these situations arise, the flight recording contains the following information, which can be helpful in determining the cause of the failure:

	
JVM core dump, including metadata about the Flight Recorder configuration at the time of the crash. Furthermore, if the Flight Recorder was running in persistent storage mode the data buffer file might contain a certain amount of data.

	
WebLogic Server events, captured by WLDF, that preceded the failure.

When running in persistent mode, the JFR uses a combination of memory and disk to store its buffer. The most recent data is stored in memory and is flushed out to disk as it "ages". In this mode, the on-disk data will be available even after a power failure or similar catastrophic event; only the most recent data will be unavailable (for example, the data that had not yet been flushed to disk). The text dump file will contain metadata about the Flight Recorder configuration at the time of the crash, including the path to the data buffer file when applicable. For more information, see "Configuring Disk Storage" in Oracle JRockit Flight Recorder Run Time Guide.

Profiling During Performance Testing or in Production

Profiling involves capturing data beginning at a specific point in time so that, later, you can analyze the events that were generated after that point. In contrast to RADAR, described in the following section, profiling involves analyzing the diagnostic data generated after a particular event occurs, as opposed to the data that precedes it.

Profiling with JRockit Flight Recorder optimizes the ability to perform deep analysis of lock contention and causes of latency.

Real-time Application Diagnostics and Reporting (RADAR)

RADAR is the examination of diagnostic data generated during run time when a particular event occurs for the purposes of understanding the system activity that preceded the event; for example, system activity occurring moments before a serious error message is generated. By using the diagnostic capabilities available in WLDF in conjunction with JRockit Flight Recorder, you can capture a large amount of system-wide diagnostic data the moment a problem occurs. You can then leverage the capabilities of JRockit Mission Control to quickly correlate that event with other system activity and process execution data within the "snapshot in time" that the JFR file provides, enabling you to quickly isolate likely causes of the problem.

One WLDF feature whose usage with JRockit Flight Recorder makes for a powerful RADAR capability is image notification, which allows you to create a diagnostic image capture automatically in response to a particular event or error condition. A diagnostic image capture, which created as the result of an image notification, automatically includes the JFR file. The JFR file can then be extracted from the diagnostic image capture and examined immediately in JRockit Mission Control or stored for later analysis. Image notification, used when WLDF data is captured by JRockit Flight Recorder, is particularly well suited for this sort of real-time diagnosis of intermittent problems.

Image notification is part of the Watch and Notifications system in WLDF. To set up image notification, you create one or more individual watch rules. A watch rule includes a logical expression that uses the WLDF query language to specify the event for the watch to detect. For example, the following log event watch rule expression detects the server log message with severity level Critical and ID BEA-149618:

(SEVERITY = 'Critical') AND (MSGID = 'BEA-149618')

Watch rules can monitor any of the following:

	
Harvestable runtime MBean instances in the local runtime MBean server

A harvester watch can trigger an image notification if runtime MBean attributes detect a performance issue, such as high memory utilization rates or problems with open socket connections to the server.

	
Messages published to the server log

A log watch can trigger an image notification if a specific message, severity level, or string is issued.

	
Event generated by the WLDF Instrumentation component

An event watch can trigger an image notification if an instrumentation service generates a particular event.

For more information, see the following topics:

	
Chapter 8, "Configuring Watches and Notifications"

	
Configuring Image Notifications

	
Appendix A, "WLDF Query Language"

The following sections explain how to obtain the JFR file from the diagnostic image capture and provide an example of using JRockit Mission Control to examine the WebLogic Server events contained in the JFR file:

	
Obtaining the JRockit Flight Recording File

	
Analyzing Flight Recorder Data in JRockit Mission Control

Obtaining the JRockit Flight Recording File

The diagnostic image capture itself is a single JFR file that contains individual images produced by the different server subsystems. If the JFR file is available, it is included in the diagnostic image as the file FlightRecording.jfr.

A diagnostic image capture can be generated on-demand — for example, from the WebLogic Server Administration Console, WLST, or a JMX application — or it can be generated as the result of an image notification. For information about how to generate a diagnostic image captures and configure the location in which they are created, see "Configure and capture diagnostic images" in Oracle WebLogic Server Administration Console Help.

To view the contents of the JFR file, you first need to extract it from the diagnostic image capture as described in Chapter 5, "Configuring and Capturing Diagnostic Images". Once you have extracted the JFR file, you can view its contents in JRockit Mission Control.

For an example WLST script that retrieves the JFR file from a diagnostic image file and saves it to a local directory, see Example: Retrieving a JFR File from a Diagnostic Image Capture.

Analyzing Flight Recorder Data in JRockit Mission Control

You use JRockit Mission Control to examine the contents of the Flight Recorder file after it has been extracted from the diagnostic image capture. The following sections highlight some of the capabilities of JRockit Mission Control's graphical user interface, which provides a lot of tooling support for drilling down into the diagnostic data generated not only by WLDF for WebLogic Server events, but also from all other available event producers, including the JRockit JVM:

	
JFR Graphical User Interface

	
Analyzing Execution Flow — A Sample Walkthrough

	
Changing the Location of Temporary JFR Files

For complete details about the JRockit Mission Control interface, see the Oracle JRockit Mission Control Online Help. See also Introduction to JRockit Mission Control Client.

JFR Graphical User Interface

JRockit Mission Control includes the JRockit Flight Recorder graphical user interface, which allows users who are running a Flight Recorder-compliant version of Oracle JRockit to view the JVM's recordings, current recording settings, and runtime parameters. The JFR interface includes the Events Type View, which gives you direct access to event information that has been recorded in the JFR file, such as event producers and types, event logging and graphing, event by thread, event stack traces, and event histograms.

The Overview tab in the JFR interface is useful for analyzing a system's general health because it can reveal behavior that might indicate bottlenecks or other sources of poor system performance. Figure 3-2 shows an example of the Overview tab in the Events Type View.

Note the following regarding the information shown in Figure 3-2:

	
The Events Type View is available by selecting the Events tab group icon.

	
The name of the Flight Recorder file appears at the top of the Overview tab. Note that the JFR is always named FlightRecording.jfr, it is useful to rename it descriptively after downloading it from the diagnostic image capture.

	
The Event Types Browser, on the left side, is a tree that shows the available event types in a recording. It works in conjunction with the Events tab group to provide a means to select events or groups of events in a recording that might be of interest to you and to obtain more granular information about them.

As you select and deselect entries in the Event Types Browser, the information displayed in the Overview tab is filtered dynamically. For example, by selecting only WebLogic Server, event data from all non-WebLogic event producers is filtered out.

	
The range navigator, which is the graph displayed below the Overview tab title, is a timeline that shows all events in a recording that pertain to the data displayed on the selected tab. A set of buttons are available for adjusting the range of data that is displayed, which can simplify the process of drilling down into the details of Flight Recorder data.

	
The Producers section identifies each event producer that generated the data that is displayed. Metrics are included for each producer, indicating the volume of event activity generated by each as a proportion of the total set of event data displayed.

	
The Event Types section lists all events represented in the Overview tab, along with key metric data about each event.

Figure 3-2 Example Overview Page of JRockit Flight Recorder File in JRockit Mission Control

[image: Description of Figure 3-2 follows]

Analyzing Execution Flow — A Sample Walkthrough

This section shows an example of the steps that a developer or support engineer might use to identify the event activity associated with a particular request in a Web application hosted on WebLogic Server. This example is not meant to recommend a specific way to diagnose performance problems, but simply shows how the JFR graphical user interface can be used to greatly simplify the process of locating and analyzing performance issues.

The following examples are shown in this section:

	
Displaying Event Data for a Product Subcomponent

	
Viewing the Event Log to Display Details

	
Tracking Execution Flow by Analyzing an Operative Set

	
Expanding the Operative Set and Viewing Correlated Diagnostic Data

Displaying Event Data for a Product Subcomponent

When you start JRockit Mission Control and open a JFR file, you can use the Event Types View to quickly select the specific events you want to analyze. As you select and deselect items in the Event Types Browser (which is available in the Event Types View), the information displayed in the JFR graphical user interface is updated instantly to show information about only the selected event types.

Figure 3-3 shows the Event Types Browser with only servlet event types selected.

Figure 3-3 Event Types Browser

[image: Description of Figure 3-3 follows]

Viewing the Event Log to Display Details

To view details about the events logged by one or more event types, select the Log tab, which is available at the bottom of the JFR graphical user interface. An example of the Log tab for servlet event types is shown in Figure 3-4.

Figure 3-4 Servlet Event Log

[image: Description of Figure 3-4 follows]

When using the Log tab, you can view details about events as follows:

	
You can click on individual column heads in the Event Log table to modify the sort order of the events. For example, by clicking the Duration column, you can quickly identify the events that took the longest time to execute.

	
When you select an event in the Event Log table, details about that event are displayed in the Event Attributes table. For example, Figure 3-4 shows the following attributes:

	
Event start, end, and duration times

	
User ID of person who issued the request on the servlet

	
Method, class name, and URI of invoked servlet

	
Execution context ID (ECID)

Different event types have different attributes. For example, if this were a JDBC event, you could scroll among the attributes to see the SQL statement, the JDBC connection pool used, and the stack from which it was called. The interface makes it easy to scan for unexpected behavior that can be analyzed in deeper detail.

	
Note:

The value of the ECID is a unique identifier that can be used to correlate individual events as being part of the same request execution flow. For example, events that are identified as being related to a particular request typically have the same ECID value, as shown in Tracking Execution Flow by Analyzing an Operative Set. However, the format of the ECID string itself is determined by an internal mechanism that is subject to change; therefore, you should not have or place any dependencies on that format.

Tracking Execution Flow by Analyzing an Operative Set

The JFR graphical user interface in JRockit Mission Control allows you to analyze the run-time trail of system activity that occurs as the result of a particular event. In this example, the run-time trail is analyzed by first defining an operative set. An operative set is any set of events that you choose to work in JRockit Mission Control.

In the example shown in this section, an operative set is created for the events that have the same execution context ID (ECID) attribute as the servlet invocation event selected in the Event Log table, shown in Figure 3-4. The operative set is then analyzed to see the execution flow that resulted from that servlet invocation. (Note that this operative set could be expanded to include events that match on different attributes as well; for example, events containing a specific SQL statement but not necessarily the same ECID.)

Figure 3-5 Operative Set Defined by Execution Context ID (ECID)

[image: Description of Figure 3-5 follows]

This operative set is defined by right-clicking the desired event in the Event Log, and then selecting Operative Set > Add matching ECID > ecid. See Figure 3-6.

Figure 3-6 Defining an Operative Set by Matching ECID

[image: Description of Figure 3-6 follows]

The operative set is then displayed by selecting Show Only Operative Set above the event log table, shown in Figure 3-7. Note how the operative set is indicated in the range navigator.

Figure 3-7 Displaying an Operative Set

[image: Description of Figure 3-7 follows]

The run-time trail of execution flow that results from the request that generated the servlet invocation event can be viewed by including additional event types. For example, Figure 3-8 shows the operative set when all WebLogic Server event types are added, using the Event Type Browser, and listing the events in chronological order. (You can sort the events chronologically by selecting the Start Time column head.)

Figure 3-8 Adding all WebLogic Server Events to Operative Set

[image: Description of Figure 3-8 follows]

In this example, note a portion of the execution flow shown in the Event Log:

	
The servlet URI is invoked.

	
The servlet uses an EJB, which requires access to the database.

	
A JDBC connection is obtained and a transaction is started.

Expanding the Operative Set and Viewing Correlated Diagnostic Data

The operative set can be further analyzed by constraining the time interval of the execution flow and adding correlated events from additional producers. By constraining the time interval for displayed events, you can add events to the Event Log that occurred simultaneously with the operative set. This allows you to see additional details about the execution context that can help diagnose performance issues.

The time interval can be constrained by using the range selection bars in the range navigator. You can grab these bars with your pointer and drag them inward or outward to change the range of events displayed in the Event Log. The range selection bars are activated when you hover your pointer over either end of the navigator, as shown in Figure 3-9.

Figure 3-9 Range Navigator Selection Bars

[image: Description of Figure 3-9 follows]

Events from additional producers, such as the JRockit JVM, can be selected in the Event Types Browser. Note that JVM events do not have ECID attributes, so they cannot be included among the WLDF events in the operative set. So to view the JVM events, you need to de-select Show Only Operative Set.

At this point the events that are displayed in the Event Log are those that occurred during the selected time interval but not correlated otherwise. Figure 3-10 shows drilling down into JDBC activity by selecting only JDBC events and JVM socket events. The Event Log is updated and listed in chronological order to show the socket activity that occurred simultaneously to the flow of the JDBC events in the selected time interval.

Figure 3-10 Adding JVM Events to JDBC Event Log

[image: Description of Figure 3-10 follows]

Changing the Location of Temporary JFR Files

The temporary JFR files created in the operating system's temp directory are managed directly by JRockit. WLDF does not control these files. (By default, WLDF temporary files related to JFR recordings are placed in the DOMAIN_NAME\servers\SERVER_NAME/server/logs/diagnostic_images directory.)

However, you can change the location in which JRockit places its temporary files by using the following command-line option when starting JFR, where path represents the preferred location:

-XX:FlightRecorderOptions=repository=path

For more information about JFR configuration settings, see "Starting the Flight Recorder" in Oracle JRockit Flight Recorder Run Time Guide.

4 Understanding WLDF Configuration

This chapter provides an overview of the WebLogic Diagnostics Framework (WLDF) configuration. WLDF provides features for generating, gathering, analyzing, and persisting diagnostic data from WebLogic Server 10.3.6 instances and from applications deployed to them. For server-scoped diagnostics, some WLDF features are configured as part of the configuration for a server in a domain. Other features are configured as system resource descriptors that can be targeted to servers (or clusters). For application-scoped diagnostics, diagnostic features are configured as resource descriptors for the application.

This chapter includes the following sections:

	
Configuration MBeans and XML

	
Tools for Configuring WLDF

	
How WLDF Configuration Is Partitioned

	
Configuring Diagnostic Image Capture and Diagnostic Archives

	
Configuring Diagnostic Image Capture for JRockit Flight Recorder

	
Configuring Diagnostic System Modules

	
Configuring Diagnostic Modules for Applications

	
WLDF Configuration MBeans and Their Mappings to XML Elements

For general information about WebLogic Server domain configuration, see Understanding Domain Configuration for Oracle WebLogic Server.

Configuration MBeans and XML

As in other WebLogic Server subsystems, WLDF is configured using configuration MBeans (Managed Beans), and the configuration is persisted in XML configuration files. The configuration MBeans are instantiated at startup, based on the configuration settings in config.xml. When you modify a configuration by changing the values of MBean attributes, those changes are saved (persisted) in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For example, the Enable attribute of the WLDFInstrumentationBean maps directly to the <enabled> sub-element of the <instrumentation> element in the resource descriptor file (configuration file) for a diagnostic module. If you change the value of the MBean attribute, the content of the XML element is changed when the configuration is saved. Conversely, if you were to edit an XML element in the configuration file directly (which is not recommended), the change to an MBean value would take effect after the next session is started.

For more information about WLDF Configuration MBeans, see WLDF Configuration MBeans and Their Mappings to XML Elements. For general information about how MBeans are implemented and used in WebLogic Server, see "Understanding WebLogic Server MBeans" in Developing Custom Management Utilities With JMX for Oracle WebLogic Server.

Tools for Configuring WLDF

As with other WebLogic Server subsystems, there are several ways to configure WLDF:

	
Use the Administration Console to configure WLDF for server instances and clusters. See "Configure the WebLogic Diagnostics Framework" in the Administration Console Online Help.

	
Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific information about using WLST with WLDF, see Appendix D, "WebLogic Scripting Tool Examples". Also see Oracle WebLogic Scripting Tool for general information about using WLST.

	
Configure WLDF programmatically using JMX and the WLDF configuration MBeans. See Chapter 16, "Configuring and Using WLDF Programmatically", for specific information about programming WLDF. See Oracle WebLogic Server MBean Reference and browse or search for specific MBeans for programming reference.

	
Edit the XML configuration files directly. This documentation explains many configuration tasks by showing and explaining the XML elements in the configuration files. The XML is easy to understand, and you can edit the configuration files directly, although it is recommended that you do not. (If you have a good reason to edit the files directly, you should first generate the XML files by configuring WLDF in the Administration Console. Doing so provides a blueprint for valid XML.)

	
Note:

If you make changes to a configuration by editing configuration files, you must restart the server for the changes to take effect.

How WLDF Configuration Is Partitioned

You can use WLDF to perform diagnostics tasks for server instances (and clusters) and for applications.

Server-Level Configuration

You configure the following WLDF components as part of a server instance in a domain. The configuration settings are controlled using MBeans and are persisted in the domain's config.xml file.

	
Diagnostic Image Capture

	
Diagnostic Archives

See Configuring Diagnostic Image Capture and Diagnostic Archives.

You configure the following WLDF components as the parts of one or more diagnostic system modules, or resources, that can be deployed to one or more server instances (or clusters). These configuration settings are controlled using Beans and are persisted in one or more diagnostic resource descriptor files (configuration files) that can be targeted to one or more server instances or clusters.

	
Harvester (for collecting metrics)

	
Watch and Notification

	
Instrumentation

See Configuring Diagnostic System Modules.

Application-Level Configuration

You can use the WLDF Instrumentation component with applications, as well as at the server level. The Instrumentation component is configured in a resource descriptor file deployed with the application in the application's archive file. See Configuring Diagnostic Modules for Applications.

Configuring Diagnostic Image Capture and Diagnostic Archives

In the config.xml file for a domain, you configure the Diagnostic Image Capture component and the Diagnostic Archive component in the <server-diagnostic-config> element, which is a child of the <server> element in a domain, as shown in Example 4-1.

Example 4-1 Sample WLDF Configuration Information in the config.xml File for a Domain

<domain>
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs/diagnostic_images</image-dir>
 <image-timeout>3</image-timeout>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server elements to configure other servers in this domain -->
 <!-- Other domain-based configuration elements, including references to
 WLDF system resources, or diagnostic system modules.
 See Example 4-2. -->
</domain>

	
Note:

If WebLogic Server is configured with Oracle JRockit, and JRockit Flight Recorder is enabled, the diagnostic image capture can optionally include a JRockit Flight Recorder (JFR) file that includes WebLogic Server events. The JFR file can then be viewed in JRockit Mission Control.

For more information, see the following:

	
Chapter 5, "Configuring and Capturing Diagnostic Images"

	
Chapter 6, "Configuring Diagnostic Archives"

Configuring Diagnostic Image Capture for JRockit Flight Recorder

If WebLogic Server is configured with Oracle JRockit R28 or later, and JRockit Flight Recorder is not explicitly disabled, the JFR file is automatically included in the diagnostic image capture. The JFR file contains data from all event producers that are enabled. However, the amount of WebLogic Server event data that is included in the JFR file is determined by the configuration of the WLDF diagnostic volume.

	
Note:

By default, the WLDF diagnostic volume is set to Low.

To include WebLogic Server event data in the JFR file:

	
Ensure that WebLogic Server is configured with Oracle JRockit R28, which is available from the WebLogic Server installation program.

For information, see Oracle WebLogic Server Installation Guide.

	
Ensure that JFR flight recording is not disabled in JRockit.

In a default installation of Oracle JRockit, Flight Recorder operates in Default Data Gathering Mode. No JRockit settings are required to have JVM events included in the JFR file.

For information, see Oracle JRockit Flight Recorder Run Time Guide.

	
Set the WLDF diagnostic volume as appropriate. For general use, Oracle recommends the default setting of Low. However, you can increase the volume of WebLogic Server event data that is generated, as appropriate, by setting the volume to Medium or High.

Note that the WLDF diagnostic volume setting has no impact on data recorded for other event producers, such as the JVM.

For information, see "Configure WLDF diagnostic volume" in Oracle WebLogic Server Administration Console Help.

	
Note:

If the WLDF diagnostic volume is set to Off, and Flight Recorder has not been explicitly disabled, the JFR file continues to include JVM event data and is always included in the diagnostic image capture.

Configuring Diagnostic System Modules

To configure and use the Instrumentation, Harvester, and Watch and Notification components at the server level, you must first create a system resource called a diagnostic system module, which will contain the configurations for all those components. Keep in mind that:

	
System modules are globally available for targeting to servers and clusters configured in a domain.

	
In a given domain, you can create multiple diagnostic system modules with distinct configurations.

	
At most, one diagnostic system module can be targeted to any given server or cluster.

The Diagnostic System Module and Its Resource Descriptor

You create a diagnostic system module through the Administration Console or the WebLogic Scripting Tool (WLST). It is created as a WLDFResourceBean, and the configuration is persisted in a resource descriptor file (configuration file), called DIAG_MODULE.xml, where DIAG_MODULE is the name of the diagnostic module. You can specify a name for the descriptor file, but it is not required. If you do not provide a file name, a file name is generated based on the value in the descriptor file's <name> element. The file is created by default in the DOMAIN_NAME\config\diagnostics directory, where DOMAIN_NAME is the name of the domain's home directory. The file has the extension .xml.

	
Note:

The diagnostic module conforms to the diagnostics.xsd schema, available at http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd.

For instructions on creating a diagnostic system module, see "Create diagnostic system modules" in the Oracle WebLogic Server Administration Console Help.

Referencing the Diagnostics System Module from Config.xml

When you create a diagnostic system module using the Administration Console or the WebLogic Scripting Tool (WLST), WebLogic Server creates it in DOMAIN_NAME/config/diagnostics, and a reference to the module is added to the domain's config.xml file.

	
Note:

Oracle recommends that you do not write XML configuration files directly. But if you have a valid reason to do so, you should first create a diagnostic module from the Console. That way, you can start with the valid XML that the Console creates. For instructions, see "Create diagnostic system modules" in the Oracle WebLogic Server Administration Console Help.

The config.xml file can contain multiple references to diagnostic modules, in one or more <wldf-system-resource> elements. The <wldf-system-resource> element includes the name of the diagnostic module file and the list of servers and clusters to which the module is targeted.

For example, Example 4-2 shows a config.xml file with a module named myDiagnosticModule targeted to the server myserver and another module named newDiagnosticMod targeted to servers ManagedServer1 and ManagedServer2.

Example 4-2 Sample WLDF Configuration Information in the Config.xml File for a Domain

<domain>
 <!-- Other domain-level configuration elements -->
 <wldf-system-resource
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics">
 <name>myDiagnosticModule</name>
 <target>myserver</target>
 <descriptor-file-name>diagnostics/MyDiagnosticModule.xml
 </descriptor-file-name>
 <description>My diagnostic module</description>
 </wldf-system-resource>
 <wldf-system-resource>
 <name>newDiagnosticMod</name>
 <target>ManagedServer1,ManagedServer2</target>
 <descriptor-file-name>diagnostics/newDiagnosticMod.xml
 </descriptor-file-name>
 <description>A diagnostic module for my managed servers</description>
 </wldf-system-resource>
<!-- Other WLDF system resource configurations -->
</domain>

The relationship of the config.xml file and the MyDiagnosticModule.xml file is shown in Figure 4-1.

Figure 4-1 Relationship of config.xml to System Descriptor File

[image: Description of Figure 4-1 follows]

The DIAG_MODULE.xml Resource Descriptor Configuration

Except for the name and list of targets, which are listed in the config.xml file, as described above, all configuration for a diagnostic system module is saved in its resource descriptor file. Example 4-3 shows portions of the descriptor file for a diagnostic system module named myDiagnosticModule.

Example 4-3 Sample Structure of a Diagnostic System Module Descriptor File, MyDiagnosticModule.xml

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <!-- Configuration elements for zero or more diagnostic monitors -->
 </instrumentation>
 <harvester>
 <!-- Configuration elements for harvesting metrics from zero or more
 MBean types, instances, and attributes -->
 </harvester>
 <watch-notification>
 <!-- Configuration elements for one or more watches and one or more
 notifications-->
 </watch-notification>
</wldf-resource>

Managing Diagnostic System Modules

A diagnostic system module can be targeted to zero, one, or more servers or clusters, although a given server can have only one module targeted to it at a time. You can create multiple modules that monitor different aspects of your system. You can then choose which module to target to a server or cluster, based on what you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write general purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server instance(s) to which it is targeted or untargeted. This gives you considerable flexibility in writing and using diagnostic monitors that address a specific diagnostic goal, without interfering with the operation of the server instances themselves.

More Information About Configuring Diagnostic System Resources

See the following sections for detailed instructions on configuring WLDF system resources:

	
Chapter 7, "Configuring the Harvester for Metric Collection"

	
Chapter 8, "Configuring Watches and Notifications"

	
Chapter 11, "Configuring Instrumentation"

	
Chapter 12, "Configuring the DyeInjection Monitor to Manage Diagnostic Contexts"

Configuring Diagnostic Modules for Applications

You can configure only the Instrumentation component in a diagnostic descriptor for an application.

You configure and deploy application-scoped instrumentation as a diagnostic module, which is similar to a diagnostic system module. However, an application module is configured in an XML descriptor (configuration) file named weblogic-diagnostics.xml, which is packaged with the application archive in the ARCHIVE_PATH/META-INF directory for the deployed application. For example, D:\bea\wlserver_10.3\samples\server\medrec\dist\standalone\exploded\medrec\META-INF\weblogic-diagnostics.xml

	
Note:

The DyeInjection monitor, which is used to configure diagnostic context (a way of tracking requests as they flow through the system), can be configured only at the server level. But once a diagnostic context is created, the context attached to incoming requests remains with the requests as they flow through the application. For information about the diagnostic context, see Chapter 12, "Configuring the DyeInjection Monitor to Manage Diagnostic Contexts".

For more information about configuring and deploying diagnostic modules for applications, see:

	
Configuring Application-Scoped Instrumentation

	
Chapter 14, "Deploying WLDF Application Modules"

WLDF Configuration MBeans and Their Mappings to XML Elements

Figure 4-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic system module beans for WLDF objects in a WebLogic Server domain.

Figure 4-2 WLDF Configuration Bean Tree

[image: Description of Figure 4-2 follows]

The following WLDF MBeans configure WLDF at the server level. They map to XML elements in the config.xml configuration file for a domain:

	
WLDFServerDiagnosticMBean controls configuration settings for the Data Archive and Diagnostic Images components for a server. It also controls whether diagnostic context for a diagnostic module is globally enabled or disabled. (Diagnostic context is a way to uniquely identify requests and track them as they flow through the system. See Chapter 12, "Configuring the DyeInjection Monitor to Manage Diagnostic Contexts".)

This MBean is represented by a <server-diagnostic-config> child element of the <server> element in the config.xml file for the server's domain.

	
WLDFSystemResourceMBean contains the name of a descriptor file for a diagnostic module in the DOMAIN_NAME/config/diagnostics directory and the name(s) of the target server(s) to which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the config.xml file for the domain.

	
Note:

You can create multiple diagnostic system modules in a domain. The configurations for the modules are saved in multiple descriptor files in the config/diagnostics directory for the domain. The domain's config.xml file, therefore, can contain the multiple <wldf-system-resource> elements that represent those modules. However, you can target only one diagnostic system module to a server at a time. You cannot have two files in the config/diagnostics directory whose active target is the same server.

	
WLDFResourceBean contains the configuration settings for a diagnostic system module. This bean is represented by a <wldf-resource> element in a DIAG_MODULE.xml diagnostics descriptor file in the domain's config/diagnostics directory. (See Figure 4-1 and Example 4-3.) The WLDFResourceBean contains configuration settings for the following components:

	
Harvester: The WLDFHarvesterBean is represented by the <harvester> element in a DIAG_MODULE.xml file.

	
Instrumentation: The WLDFInstrumentationBean is represented by the <instrumentation> element in a DIAG_MODULE.xml file.

	
Watch and Notification: The WLDFWatchNotificationBean is represented by the <watch-notification> element in a DIAG_MODULE.xml file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the settings for WLDF components apply to the targeted server. If a WLDFResourceBean is contained within a weblogic-diagnostics.xml descriptor file which is deployed as part of an application archive, you can configure only the Instrumentation component, and the settings apply only to that application. In the latter case, the WLDFResourceMBean is not a child of a WLDFSystemResourceMBean.

5 Configuring and Capturing Diagnostic Images

This chapter introduces the Diagnostic Image Capture component of the WebLogic Diagnostics Framework (WLDF) in WebLogic Server 10.3.6. You use the Diagnostic Image Capture component of WLDF to create a diagnostic snapshot, or dump, of a server's internal runtime state at the time of the capture. This information helps support personnel analyze the cause of a server failure

If WebLogic Server is configured with Oracle JRockit, and JRockit Flight Recorder is enabled, the diagnostic image capture includes WebLogic Server diagnostic data that can be viewed in JRockit Mission Control.

This chapter includes the following sections:

	
How to Initiate Image Captures

	
Configuring Diagnostic Image Captures

	
How Diagnostic Image Capture Is Persisted in the Server's Configuration

	
Content of the Captured Image File

How to Initiate Image Captures

A diagnostic image capture can be initiated by:

	
A configured watch notification. See Chapter 10, "Configuring Notifications".

	
A request initiated by a user in the Administration Console (and requests initiated from third-party diagnostic tools). See "Configure and capture diagnostic images" in the Oracle WebLogic Server Administration Console Help.

	
A direct API call, using JMX. See Example 5-1.

	
WLST command

Configuring Diagnostic Image Captures

Because the diagnostic image capture is meant primarily as a post-failure analysis tool, there is little control over what information is captured. Available configuration options are:

	
The destination for the image

	
For a specific capture, a destination that is different from the default destination

	
A lockout, or timeout, period, to control how often an image is taken during a sequence of server failures and recoveries

	
WLDF diagnostics volume, which determines the volume of WebLogic Server event information that is captured in the Flight Recorder file.

As with other WLDF components, you can configure Diagnostic Image Capture using the Administration Console (see "Configure and capture diagnostic images" in the Oracle WebLogic Server Administration Console Help), the WebLogic Scripting Tool (WLST), or programmatically.

	
Note:

It is often useful to generate a diagnostic image capture when a server fails. To do so, set a watch rule to evaluate to true when the server's state changes to FAILED; then associate an image notification with the watch.
The watch rule is as follows:

(${[weblogic.management.runtime.ServerRuntimeMBean]//State} = 'FAILED')

For more information, see Configuring Harvester Watches, and Configuring Image Notifications. Also see "Configure Watches and Notifications" in the Oracle WebLogic Server Administration Console Help.

Configuring WLDF Diagnostic Volume

If WebLogic Server is configured with Oracle JRockit, and the JRockit Flight Recorder is enabled, JRockit Flight Recorder data is automatically also captured in the diagnostic image capture. This data can be extracted from the diagnostic image capture and viewed in JRockit Mission Control. If JRockit Flight Recorder is not enabled, or if WebLogic Server is configured with a different JVM, the Flight Recorder data is not captured in the diagnostics image capture.

The volume of Flight Recorder data that is captured can be configured from the WebLogic Server Administration Console, which allows you to specify the following settings:

	
Off — No data is captured in the Flight Recorder diagnostic image.

	
Low — (Default). Basic information is captured when messages with the "emergency", "alert", or "critical" levels are recorded.

	
Note:

The default setting for the WLDF diagnostic volume is Low.

	
Medium — Additional information is captured when messages with the "error" level and above are recorded.

	
High — In-depth information is captured when messages with the "error" level and above are recorded.

For information about how to set the volume of data that is captured, see "Configure WLDF diagnostics volume" in the Oracle WebLogic Server Administration Console Help.

WLST Commands for Generating an Image Capture

Example 5-1 shows an example of WLST commands for generating an image capture.

Example 5-1 Sample WLST Commands for Generating a Diagnostic Image

url='t3://localhost:7001'
username='system'
password='gumby1234'
server='myserver'
timeout=120
connect(username, password, url)
serverRuntime()
cd('WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image')
argTypes = jarray.array(['java.lang.Integer'],java.lang.String)
argValues = jarray.array([timeout],java.lang.Object)
invoke('captureImage', argValues, argTypes)

How Diagnostic Image Capture Is Persisted in the Server's Configuration

The configuration for Diagnostic Image Capture is persisted in the config.xml file for a domain, under the <server-diagnostic-config> sub-element of the <server> element for the server, as shown in Example 5-2:

Example 5-2 Sample Diagnostic Image Capture Configuration

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs\diagnostic_images</image-dir>
 <image-timeout>2</image-timeout>
 </server-diagnostic-config>
 <!-- Other configuration details for this server -->
 </server>
 <!-- Other server configurations in this domain-->
</domain>

	
Note:

Oracle recommends that you do not edit the config.xml file directly.

Content of the Captured Image File

The most common sources of a server state are captured in a diagnostic image capture, including:

	
Configuration

	
Log cache state

	
Java Virtual Machine (JVM)

	
Work Manager state

	
JNDI state

	
Most recent harvested data

The Diagnostic Image Capture component captures and combines the images produced by the different server subsystems into a single ZIP file. In addition to capturing the most common sources of the server state, this component captures images from all the server subsystems including, for example, images produced by the JMS, JDBC, EJB, and JNDI subsystems.

If WebLogic Server is configured with Oracle JRockit, and JRockit Flight Recorder is enabled, the diagnostic image capture includes a JRockit Flight Recorder image, FlightRecording.jfr, that can be viewed in JRockit Mission Control. The contents of the JRockit Flight Recorder image contains all available data from the Flight Recorder, and the volume of data produced by WLDF depends on the diagnostics volume setting. When JRockit Flight Recorder is enabled, data is always provided by Oracle JRockit, and optionally includes data provided by WebLogic Server. Data from additional Oracle components, such as Oracle Dynamic Monitoring System (DMS), may be included in the Flight Recorder image as well.

	
Notes:

	
A diagnostic image is a heavyweight artifact meant to serve as a server-level state dump for the purpose of diagnosing significant failures. It enables you to capture a significant amount of important data in a structured format and then to provide that data to support personnel for analysis.

	
If a non-WebLogic event producer in the WebLogic Server environment, such as DMS, has configured JRockit Flight Recorder to record data, the WLDF diagnostic image capture includes a Flight Recorder image file with the recorded data even if the WLDF diagnostics volume is set to Off.

Data Included in the Diagnostics Image Capture File

Each image is captured as a single file for the entire server. The default location is SERVER\logs\diagnostic_images. Each image instance has a unique name, as follows:

 diagnostic_image_DOMAIN_SERVER_YYYY_MM_DD_HH_MM_SS.zip

The contents of the file include at least the following information:

	
Creation date and time of the image

	
Source of the capture request

	
Name of each image source included in the image and the time spent processing each of those image sources

	
JVM and OS information, if available

	
Command line arguments, if available

	
WLS version including patch and build number information

If WLDF is configured with Oracle JRockit as described in Configuring Diagnostic Image Capture for JRockit Flight Recorder, the image also contains the JRockit Flight Recorder (JFR) file, FlightRecording.jfr. The JFR file can be extracted as described in WLST Online Commands for Downloading Diagnostics Image Captures, and viewed in JRockit Mission Control. For more information, see Oracle JRockit Flight Recorder Run Time Guide.

Figure 5-1 shows the contents of an image file. You can open most of the files in this ZIP file with a text editor to examine the contents.

Figure 5-1 An Image File

[image: Description of Figure 5-1 follows]

WLST Online Commands for Downloading Diagnostics Image Captures

WLST online provides the following commands for downloading diagnostic image captures from the server to which WLST is connected:

	
getAvailableCapturedImages — Returns a list of diagnostic images that have been created in the image destination directory configured on the server.

	
saveDiagnosticImageCaptureFile — Downloads a specified diagnostic image capture file.

	
saveDiagnosticImageCaptureEntryFile — Downloads a specific entry within a diagnostic image capture. This command is particularly useful for obtaining the Flight Recorder diagnostics data for viewing in JRockit Mission Control.

For information about these commands, and examples of using them, see WebLogic Scripting Tool Command Reference. For examples of WLST scripts that return a list of diagnostic images and retrieve JFR files in them, see Appendix D, "WebLogic Scripting Tool Examples".

6 Configuring Diagnostic Archives

This chapter introduces the Archive component of the WebLogic Diagnostics Framework (WLDF) in WebLogic Server 10.3.6. The Archive component of WLDF captures and persists all data events, log records, and metrics collected by WLDF from server instances and applications running on them. You can access archived diagnostic data in online mode (that is, on a running server). You can also access archived data in off-line mode using the WebLogic Scripting Tool (WLST).

You can configure WLDF to archive diagnostic data to a file store or a Java Database Connectivity (JDBC) data source.

This chapter includes the following sections:

	
Configuring the Archive

	
Configuring a File-Based Store

	
Configuring a JDBC-Based Store

	
Retiring Data from the Archives

You can also specify when and under what conditions old data will be removed from the archive, as described in Retiring Data from the Archives.

Configuring the Archive

You configure the diagnostic archive on a per-server basis.The configuration is persisted in the config.xml file for a domain, under the <server-diagnostic-config> element for the server. Example configurations for file-based stores and JDBC-based stores are shown in Example 6-1 and Example 6-3.

	
Note:

Resetting the system clock while diagnostic data is being written to the archive can produce unexpected results. See Resetting the System Clock Can Affect How Data Is Archived and Retrieved.

Configuring a File-Based Store

For a file-based store, WLDF creates a file to contain the archived information. The only configuration option for a WLDF file-based archive is the directory where the file will be created and maintained. The default directory is DOMAIN_NAME/servers/SERVER_NAME/data/store/diagnostics, where DOMAIN_NAME is the home directory for the domain, and SERVER_NAME is the home directory for the server instance.

When you save to a file-based store, WLDF uses the WebLogic Server persistent store. For more information, see "Using the WebLogic Persistent Store" in Configuring Server Environments for Oracle WebLogic Server.

An example configuration for a file-based store is shown in Example 6-1.

Example 6-1 Sample Configuration for File-based Diagnostic Archive (in config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

Configuring a JDBC-Based Store

To use a JDBC store, the appropriate tables must exist in a database, and JDBC must be configured to connect to that database. For information about how to configure JDBC using the Administration Console, see "Configure database connectivity" in Oracle WebLogic Server Administration Console Help. For additional information about JDBC configuration, see Configuring and Managing JDBC for Oracle WebLogic Server.

Creating WLDF Tables in the Database

If they do not already exist, you must create the database tables used by WLDF to store data in a JDBC-based store. Two tables are required:

	
The wls_events table stores data generated from WLDF Instrumentation events.

	
The wls_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different databases, depending on the SQL variation supported by the database. Example 6-2 shows the DDL that you can use to create WLDF tables in Apache Derby.

Example 6-2 DDL Definition of the WLDF Tables for Apache Derby

-- WLDF Instrumentation and Harvester archive DDLs using Derby

AUTOCOMMIT OFF;

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_events;

CREATE TABLE wls_events (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 CONTEXTID varchar(128) default NULL,
 TXID varchar(32) default NULL,
 USERID varchar(32) default NULL,
 TYPE varchar(64) default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 SCOPE varchar(64) default NULL,
 MODULE varchar(64) default NULL,
 MONITOR varchar(64) default NULL,
 FILENAME varchar(64) default NULL,
 LINENUM INTEGER default NULL,
 CLASSNAME varchar(250) default NULL,
 METHODNAME varchar(64) default NULL,
 METHODDSC varchar(4000) default NULL,
 ARGUMENTS clob(100000) default NULL,
 RETVAL varchar(4000) default NULL,
 PAYLOAD blob(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES BIGINT default NULL,
 THREADNAME varchar(128) default NULL
);

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_hvst;

CREATE TABLE wls_hvst (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 TYPE varchar(64) default NULL,
 NAME varchar(250) default NULL,
 ATTRNAME varchar(64) default NULL,
 ATTRTYPE INTEGER default NULL,
 ATTRVALUE VARCHAR(4000)
);

COMMIT;

Consult the documentation for your database or your database administrator for specific instructions for creating these tables for your database.

Configuring JDBC Resources for WLDF

After you create the tables in your database, you must configure JDBC to access the tables. (See Configuring and Managing JDBC for Oracle WebLogic Server.) Then, as part of your server configuration, you specify that JDBC resource as the data store to be used for a server's archive.

An example configuration for a JDBC-based store is shown in Example 6-3.

Example 6-3 Sample configuration for JDBC-based Diagnostic Archive (in config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-data-archive-type>JDBCArchive
 </diagnostic-data-archive-type>
 <diagnostic-jdbc-resource>JDBCResource</diagnostic-jdbc-resource>
 <server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables do not exist in the database, WLDF uses the default file-based persistent store.

Retiring Data from the Archives

WLDF includes a configuration-based data retirement feature for periodically deleting old diagnostic data from the archives. You can configure size-based data retirement at the server level and age-based retirement at the individual archive level, as described in the following sections.

Configuring Data Retirement at the Server Level

You can set the following data retirement options for a server instance:

	
The preferred maximum size of the server instance's data store (<preferred-store-size-limit>) and the interval at which it is checked, on the hour, to see if it exceeds that size (<store-size-check-period>).

When the size of the store is found to exceed the preferred maximum, an appropriate number of the oldest records in the store are deleted to reduce the size below the specified threshold. This is called "size-based data retirement."

	
Note:

Size-based data retirement can be used only for file-based stores. These options are ignored for database-based stores.

	
Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data retirement options discussed above. For both file-based stores and database-based stores, this also enables or disables any age-based data retirement policies defined for individual archives in the store. See Configuring Age-Based Data Retirement Policies for Diagnostic Archives, below.

Configuring Age-Based Data Retirement Policies for Diagnostic Archives

The data store for a server instance can contain the following types of diagnostic data archives whose records can be retired using the data retirement feature:

	
Harvested metrics data (logical name: HarvestedDataArchive)

	
Instrumentation events data (logical name: EventsDataArchive)

	
Custom data (user-defined name)

	
Note:

WebLogic Server log files are maintained both at the server level and the domain level. Data is retired from the current log using the log rotation feature. See "Configuring WebLogic Logging Services" in Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

Age-based policies apply to individual archives. The data store for a server instance can have one age-based policy for the HarvestedDataArchive, one for the EventsDataArchive, and one each for any custom archives.

When records in an archive exceed the age limit specified for records in that archive, those records are deleted.

Sample Configuration

Data retirement configuration settings are persisted in the config.xml configuration file for the server's domain, as shown in Example 6-4.

Example 6-4 Data Retirement Configuration Settings in config.xml

<domain>
<!-- other domain configuration settings -->
 <server>
 <name>MedRecServer</name>
 <!-- other server configuration settings -->
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 <data-retirement-enabled>true</data-retirement-enabled>
 <preferred-store-size-limit>120</preferred-store-size-limit>
 <store-size-check-period>1</store-size-check-period>
 <wldf-data-retirement-by-age>
 <name>HarvestedDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>HarvestedDataArchive</archive-name>
 <retirement-time>1</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>45</retirement-age>
 </wldf-data-retirement-by-age>
 <wldf-data-retirement-by-age>
 <name>EventsDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>EventsDataArchive</archive-name>
 <retirement-time>10</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>72</retirement-age>
 </wldf-data-retirement-by-age>
 </server-diagnostic-config>
 </server>
</domain>

7 Configuring the Harvester for Metric Collection

This chapter introduces the Harvester component of the WebLogic Diagnostics Framework (WLDF) in WebLogic Server 10.3.6. The Harvester component of WLDF gathers metrics from attributes on qualified MBeans that are instantiated in a running server. The Harvester can collect metrics from WebLogic Server MBeans and from custom MBeans.

This chapter includes the following sections:

	
Harvesting, Harvestable Data, and Harvested Data

	
Harvesting Data from the Different Harvestable Entities

	
Configuring the Harvester

Harvesting, Harvestable Data, and Harvested Data

Harvesting metrics is the process of gathering data that is useful for monitoring the system state and performance. Metrics are exposed to WLDF as attributes on qualified MBeans. The Harvester gathers values from selected MBean attributes at a specified sampling rate. Therefore, you can track potentially fluctuating values over time.

Data must meet certain requirements in order to be harvestable, and it must meet further requirements in order to be harvested:

	
Harvestable data is data that can potentially be harvested from harvestable entities, including MBean types, instances, and attributes. To be harvestable, an MBean must be registered in the local WebLogic Server runtime MBean server. Only simple type attributes of an MBean can be harvestable.

	
Harvested data is data that is currently being harvested. To be harvested, the data must meet all the following criteria:

	
The data must be harvestable.

	
The data must be configured to be harvested.

	
For custom MBeans, the MBean must be currently registered with the JMX server.

	
The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and harvested data. The information returned by this MBean is a snapshot of a potentially changing state. For a description of the information about the data provided by this MBean, see the description of the weblogic.management.runtime.WLDFHarvesterRuntimeMBean in the Oracle WebLogic Server MBean Reference.

You can use the Administration Console, the WebLogic Scripting Tool (weblogic.WLST), or JMX to configure the harvester to collect and archive the metrics that the server MBeans and the custom MBeans contain.

Harvesting Data from the Different Harvestable Entities

You can configure the Harvester to harvest data from named MBean types, instances, and attributes. In all cases, the Harvester collects the values of attributes of MBean instances, as explained in Table 7-1.

Table 7-1 Sources of Harvested Data from Different Configurations

	When this entity is configured to be harvested as...	Data is collected from...
	
A type (only)

	
All harvestable attributes in all instances of the specified type

	
An attribute of a type

(type + attribute(s))

	
The specified attribute in all instances of the specified type

	
An instance of a type

(type + instance(s))

	
All harvestable attributes in the specified instance of the specified type

	
An attribute of an instance of a type

(type + instance(s) + attribute(s))

	
The specified attribute in the specified instance of the specified type

All WebLogic Server runtime MBean types and attributes are known at startup. Therefore, when the Harvester configuration is loaded, the set of harvestable WebLogic Server entities is the same as the set of WebLogic Server runtime MBean types and attributes. As types are instantiated, those instances also become known and thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be instantiated before its type can be known. (The type does not exist until at least one instance is created.) Therefore, as custom MBeans are registered with and removed from the MBean server, the set of custom harvestable types grows and shrinks. This process of detecting a new type based on the registration of a new MBean is called type discovery.

When you configure the Harvester through the Administration Console, the Console provides a list of harvestable entities that can be configured. The list is always complete for WebLogic Server MBeans, but for custom MBeans, the list contains only the currently discovered types. See "Configure metrics to collect in a diagnostic system module" in the Oracle WebLogic Server Administration Console Help.

Configuring the Harvester

The Harvester is configured and metrics are collected in the scope of a diagnostic module targeted to one or more server instances.

Example 7-1 shows Harvester configuration elements in a WLDF system resource descriptor file, myWLDF.xml. This sample configuration harvests from the ServerRuntimeMBean, the WLDFHarvesterRuntimeMBean, and from a custom (non-WLS) MBean. The text following the listing explains each element in the listing.

Example 7-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<name>myWLDF</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>5000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 </harvester>
<!-- ----- Other elements ----- -->
</wldf-resource>

Configuring the Harvester Sampling Period

The <sample-period> element sets the sample period for the Harvester, in milliseconds. For example:

 <sample-period>5000</sample-period>

The sample period specifies the time between each cycle. For example, if the Harvester begins execution at time T, and the sample period is I, then the next harvest cycle begins at T+I. If a cycle takes A seconds to complete and if A exceeds I, then the next cycle begins at T+A. If this occurs, the Harvester tries to start the next cycle sooner, to ensure that the average interval is I.

Configuring the Types of Data to Harvest

One or more <harvested-type> elements determine the types of data to harvest. Each <harvested-type> element specifies an MBean type from which metrics are to be collected. Optional sub-elements specify the instances and/or attributes to be collected for that type. Set these options as follows:

	
The optional <harvested-instance> element specifies that metrics are to be collected only from the listed instances of the specified type. In general, an instance is specified by providing its JMX ObjectName in JMX canonical form. However, you can use pattern-matching to specify instance names in non-canonical form, as described in Using Wildcards in Harvester Instance Names.

	
If no <harvested-instance> is present, all instances that are present at the time of each harvest cycle are collected.

	
The optional <harvested-attribute> element specifies that metrics are to be collected only for the listed attributes of the specified type. An attribute is specified by providing its name. The first character should be capitalized. For example, an attribute defined with getter method getFoo() is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling down" into attributes that are complex or aggregate objects, such as lists, maps, simple POJOs (Plain Old Java Objects), and various nestings of these types. See Specifying Complex and Nested Harvester Attributes, for details on this syntax. However, note that the result of these expressions must be a simple intrinsic type (int, boolean, String, etc.) in order to be harvested.

	
If no <harvested-attribute> is present, all harvestable attributes defined for the type are collected.

	
Attribute and instance lists can be combined in a type.

Specifying Type Names for WebLogic Server MBeans and Custom MBeans

The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic Server MBeans are those that come packaged as part of the WebLogic Server. Custom MBeans can be harvested as long as they are registered in the local runtime MBean server.

There is a difference in how WebLogic Server and customer types are specified. For WebLogic Server types, the type name is the name of the Java interface that defines the MBean. For example, the server runtime MBean's type name is weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

	
If the MBean is not a ModelMBean, the type name is the implementing class name. (For example, see Example 7-1.)

	
If the MBean is a ModelMBean, the type name is the value of the MBean Descriptor field DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is no value for the MBean Descriptor field DiagnosticTypeName) then the MBean can't be harvested.

Harvesting from the DomainRuntime MBeanServer

The <harvested-type> element supports a <namespace> attribute that lets you harvest metrics from MBeans registered in the DomainRuntime MBeanServer. However, Oracle recommends that you limit the usage to harvesting only DomainRuntime-specific MBeans, such as the ServerLifeCycleRuntimeMBean. Harvesting of remote managed server MBeans through the DomainRuntime MBeanServer is possible, but is discouraged for performance reasons. It is a best practice to use the resident Harvester in each managed server to capture metrics related to that managed server instance.

The <namespace> attribute can have one of two values:

	
ServerRuntime

	
DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

	
Note:

Harvesting from the DomainRuntime MBean server is available only on the Administration Server. Attempts to harvest DomainRuntime MBeans on a Managed Server are ignored. For an example, see Example 7-5.

When Configuration Settings Are Validated

WLDF attempts to validate configuration as soon as possible. Most configuration is validated at system startup and whenever a dynamic change is committed. However, due to limitations in JMX, custom MBeans cannot be validated until instances of those MBeans have been registered in the MBean server.

Sample Configurations for Different Harvestable Types

In Example 7-2, the <harvested-type> element in the DIAG_MODULE.xml configuration file specifies that the ServerRuntimeMBean is to be harvested. Because no <harvested-instance> sub-element is present, all instances of the type will be collected. However, because there is always only one instance of the server runtime MBean, there is no need to provide a specific list of instances. And because there are no <harvested-attribute> sub-elements present, all available attributes of the MBean are harvested for each of the two instances.

Example 7-2 Sample Configuration for Collecting All Instances and All Attributes of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>

In Example 7-3, the <harvested-type> element in the DIAG_MODULE.xml configuration file specifies that the WLDFHarvesterRuntimeMBean is to be harvested. As above, because there is only one WLDFHarvesterRuntimeMBean, there is no need to provide a specific list of instances. The sub-element <harvested-attribute> specifies that only two of the available attributes of the WLDFHarvesterRuntimeMBean will be harvested: TotalSamplingTime and CurrentSnapshotElapsedTime.

Example 7-3 Sample Configuration for Collecting Specified Attributes of All Instances of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>

In Example 7-4, the <harvested-type> element in the DIAG_MODULE.xml configuration file specifies that a single instance of a custom MBean type is to be harvested. Because this is a custom MBean, the type name is the implementation class. In this example, the two <harvested-instance> elements specify that only two instances of this type will be harvested. Each instance is specified using the canonical representation of its JMX ObjectName. Because no instances of <harvested-attribute> are specified, all attributes will be harvested.

Example 7-4 Sample Configuration for Collecting All Attributes of a Specified Instance of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>

In Example 7-5, the <harvested-type> element in the DIAG_MODULE.xml configuration file specifies that the ServerLifeCycleRuntimeMBean is to be harvested. The <namespace> attribute specifies that this is a DomainRuntime MBean, so this configuration will only be honored on the administration server (see the note in Harvesting from the DomainRuntime MBeanServer). The sub-element <harvested-attribute> specifies that only the StateVal attribute will be harvested.

Example 7-5 Sample configuration for Collecting Specified Attributes of the ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerLifeCycleRuntimeMBean</name>
 <namespace>DomainRuntime</namespace>
 <known-type>true</known-type>
 <harvested-attribute>StateVal</harvested-attribute>
 </harvested-type>

8 Configuring Watches and Notifications

This chapter introduces the Watch and Notification component of the WebLogic Diagnostics Framework (WLDF) in WebLogic Server 10.3.6. The Watch and Notification component of WLDF provides the means for monitoring server and application states and then sending notifications based on criteria set in the watches.Watches and notifications are configured as part of a diagnostic module targeted to one or more server instances in a domain.

This chapter includes the following sections:

	
Watches and Notifications

	
Overview of Watch and Notification Configuration

	
Sample Watch and Notification Configuration

Watches and Notifications

A watch identifies a situation that you want to trap for monitoring or diagnostic purposes. You can configure watches to analyze log records, data events, and harvested metrics. A watch is specified as a watch rule, which includes:

	
A watch rule expression

	
An alarm setting

	
One or more notification handlers

A notification is an action that is taken when a watch rule expression evaluates to true. WLDF supports the following types of notifications:

	
Java Management Extensions (JMX)

	
Java Message Service (JMS)

	
Simple Mail Transfer Protocol (SMTP), for example, e-mail

	
Simple Network Management Protocol (SNMP)

	
Diagnostic Images

You must associate a watch with a notification for a useful diagnostic activity to occur, for example, to notify an administrator about specified states or activities in a running server.

Watches and notifications are configured separately from each other. A notification can be associated with multiple watches, and a watch can be associated with multiple notifications. This provides the flexibility to recombine and re-use watches and notifications, according to current needs.

Overview of Watch and Notification Configuration

A complete watch and notification configuration includes settings for one or more watches, one or more notifications, and any underlying configurations required for the notification media, for example, the SNMP configuration required for an SNMP-based notification.

The main elements required for configuring watches and notifications in a WLDF system resource descriptor file, DIAG_MODULE.xml, are shown in Example 8-1. As the listing shows, the base element for defining watches and notifications is <watch-notification>. Watches are defined in <watch> elements, and notifications are defined in elements named for each of the types of notification, for example <jms-notification>, <jmx-notification>, <smtp-notification>, and <image-notification>.

Example 8-1 A Skeleton Watch and Notification Configuration (in DIAG_MODULE.xml)

<wldf-resource>
<!-- ----- Other system resource configuration elements ----- -->
 <watch-notification>
 <log-watch-severity>
 <!-- Threshold severity for a log watch to be evaluated further
 (This can be narrowed further at the watch level.) -->
 </log-watch-severity>
 <!-- ----- Watch configuration elements: ----- -->
 <watch>
 <!-- A watch rule -->
 </watch>
 <watch>
 <!-- A watch rule -->
 </watch>
 <!-- Any other watch configurations -->

 <!-- ----- Notification configuration elements: ----- -->
 <!-- The following notification configuration elements show one of each
 type of supported notifications. However, not all types are
 required in any one system resource configuration, and multiples
 of any type are permitted. -->
 <jms-notification>
 <!-- Configuration for a JMS-based notification; requires a
 corresponding JMS configuration via a jms-server element and a
 jms-system-resource element -->
 </jms-notification>

 <jmx-notification>
 <!-- Configuration for a JMX-based notification -->
 </jmx-notification>
 <smtp-notification>
 <!-- Configuration for an SMTP-based notification; requires a
 corresponding SMTP configuration via a mail-session element -->
 </smtp-notification>
 <snmp-notification>
 <!-- Configuration for an SNMP-based notification; requires a
 corresponding SNMP agent configuration via an snmp-agent
 element -->
 </snmp-notification>
 <image-notification>
 <!-- Configuration for an image-based notification -->
 </image-notification>
 <watch-notification>
<!-- ----- Other configuration elements ----- -->
</wldf-resource>

	
Note:

While the notification media must be configured so they can be used by the notifications that depend on them, those configurations are not part of the configuration of the diagnostic module itself. That is, they are not configured in the <wldf-resource> element in the diagnostic module's configuration file.

Each watch and notification can be individually enabled and disabled by setting <enabled>true</enabled> or <enabled>false</enabled> for the individual watch and/or notification. In addition, the entire watch and notification facility can be enabled and disabled by setting <enabled>true</enabled> or <enabled>false</enabled> for all watches and notifications. The default value is <enabled>true</enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which affects how notifications are triggered by log-rule watches.

If the maximum severity level of the log messages that triggered the watch do not at least equal the provided severity level, then the resulting notifications are not fired. Note that this only applies to notifications fired by watches which have log rule types. Do not confuse this element with the <severity> element defined on watches. The <severity> element assigns a severity to the watch itself, whereas the <log-watch-severity> element controls which notifications are triggered by log-rule watches.

For information about how to configure watches and notifications using the Administration Console, see "Configure Watches and Notifications" in Oracle WebLogic Server Administration Console Help.

Sample Watch and Notification Configuration

A complete configuration for a set of watches and notifications in a diagnostic module is shown in Example 8-2. The details of this example are explained in the following two sections:

	
Chapter 9, "Configuring Watches"

	
Chapter 10, "Configuring Notifications"

Example 8-2 Sample Watch and Notification Configuration (in DIAG_MODULE.xml)

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <!-- Instrumentation must be configured and enabled for instrumentation
 watches -->
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Dye Injection monitor</description>
 <dye-mask xsi:nil="true"></dye-mask> <properties>ADDR1=127.0.0.1</properties>
 </wldf-instrumentation-monitor>
 </instrumentation>
 <!-- Harvesting does not have to be configured and enabled for harvester
 watches. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvester>
 <name>mywldf1</name>
 <sample-period>20000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 </harvested-type>
 </harvester>
 <!-- All watches and notifications are defined under the
 watch-notification element -->
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <!-- A harvester watch configuration -->
 <watch>
 <name>myWatch</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>${com.bea:Name=myserver,Type=ServerRuntime//SocketsOpenedTotalCount} >= 1</rule-expression>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>60000</alarm-reset-period>
 <notification>myMailNotif,myJMXNotif,mySNMPNotif</notification>
 </watch>
 <!-- An instrumentation watch configuration -->
 <watch>
 <name>myWatch2</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (MONITOR LIKE 'JDBC_After_Execute') AND
 (DOMAIN = 'MedRecDomain') AND
 (SERVER = 'medrec-adminServer') AND
 ((TYPE = 'ThreadDumpAction') OR (TYPE = TraceElapsedTimeAction')) AND
 (SCOPE = 'MedRecEAR')
 </rule-expression>
 <notification>JMXNotifInstr</notification>
 </watch>
 <!-- A log watch configuration -->
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <!-- A JMX notification -->
 <jmx-notification>
 <name>myJMXNotif</name>
 </jmx-notification>
 <!-- Two SMTP notifications -->
 <smtp-notification>
 <name>myMailNotif</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a harvester alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <!-- An SNMP notification -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 <enabled>true</enabled>
 </snmp-notification>
 </watch-notification>
</wldf-resource>

9 Configuring Watches

This chapter describes the types of watches available in WebLogic Server 10.3.6 and their configuration options.

This chapter includes the following sections:

	
Types of Watches

	
Configuration Options Shared by All Types of Watches

	
Configuring Harvester Watches

	
Configuring Log Watches

	
Configuring Instrumentation Watches

	
Defining Watch Rule Expressions

For information about how to create a watch using the Administration Console, see "Create watches for a diagnostic system module" in Oracle WebLogic Server Administration Console Help.

Types of Watches

WLDF provides three main types of watches, based on what the watch can monitor:

	
Harvester watches monitor the set of harvestable MBeans in the local runtime MBean server.

	
Log watches monitor the set of messages generated into the server log.

	
Instrumentation (or Event Data) watches monitor the set of events generated by the WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of watch is defined in a <rule-type> element, which is a child of <watch>. For example:

 <watch>
 <rule-type>Harvester</rule-type>
 <!-- Other configuration elements -->
 </watch>

Watches with different rule types differ in two ways:

	
The rule syntax for specifying the conditions being monitored are unique to the type.

	
Log and Instrumentation watches are triggered in real time, whereas Harvester watches are triggered only after the current harvest cycle completes.

Configuration Options Shared by All Types of Watches

All watches share certain configuration options:

	
Watch rule expression

In the diagnostic module configuration file, watch rule expressions are defined in <rule-expression> elements.

A watch rule expression is a logical expression that specifies what significant events the watch is to trap. For information about the query language you use to define watch rules, including the syntax available for each type of watch rule, see Appendix A, "WLDF Query Language".

	
Notifications associated with the watch

In the diagnostic module configuration file, notifications are defined in <notification> elements.

Each watch can be associated with one or more notifications that are triggered whenever the watch evaluates to true. The content of this element is a comma-separated list of notifications. For information about configuring notifications, see Chapter 10, "Configuring Notifications".

	
Alarm options

In the diagnostic module configuration file, alarm options are set using <alarm-type> and <alarm-reset-period> elements.

Watches can be specified to trigger repeatedly, or to trigger once, when a condition is met. For watches that trigger repeatedly, you can optionally define a minimum time between occurrences. The <alarm-type> element defines whether a watch automatically repeats, and, if so, how often. A value of none causes the watch to trigger whenever possible. A value of AutomaticReset also causes the watch to trigger whenever possible, except that subsequent occurrences cannot occur any sooner than the millisecond interval specified in the <alarm-reset-period>. A value of ManualReset causes the watch to fire a single time. After it fires, you must manually reset it to fire again. For example, you can use the WatchNotificationRuntimeMBean to reset a manual watch. The default for <alarm-type> is None.

	
Severity options

Watches contain a severity value which is passed through to the recipients of notifications. The permissible severity values are as defined in the logging subsystem. The severity value is specified using sub-element <severity>. The default is Notice.

	
Enabled options

Each watch can be individually enabled and disabled, using the sub-element <enabled>. When disabled, the watch does not trigger and corresponding notifications do not fire. If the more generic watch/notification flag is disabled, it causes all individual watches to be effectively disabled (that is, the value of this flag on a specific watch is ignored).

Configuring Harvester Watches

A Harvester watch can monitor any runtime MBean in the local runtime MBean server.

	
Note:

If you define a watch rule to monitor an MBean (or MBean attributes) that the Harvester is not configured to harvest, the watch will work. The Harvester will "implicitly" harvest values to satisfy the requirements set in the defined watch rules. However, data harvested in this way (that is, implicitly for a watch) will not be archived. See Chapter 7, "Configuring the Harvester for Metric Collection", for more information about the Harvester.

Harvester watches are triggered in response to a harvest cycle. So, for Harvester watches, the Harvester sample period defines a time interval between when a situation is identified and when it can be reported though a notification. On average, the delay is SamplePeriod/2.

Example 9-1 shows a configuration example of a Harvester watch that monitors several runtime MBeans.When the watch rule (defined in the <rule-expression> element) evaluates to true, six different notifications are sent: a JMX notification, an SMTP notification, an SNMP notification, an image notification, and JMS notifications for both a topic and a queue.

The watch rule is a logical expression composed of four Harvester variables. The rule has the form:

 ((A >= 100) AND (B > 0)) OR C OR D.equals("active")

Each variable is of the form:

 {entityName}//{attributeName}

where {entityName} is the JMX ObjectName as registered in the runtime MBean server or the type name as defined by the Harvester, and where {attributeName} is the name of an attribute defined on that MBean type.

	
Note:

The comparison operators are qualified in order to be valid in XML.

Example 9-1 Sample Harvester Watch Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <harvester>
 <!-- Harvesting does not have to be configured and enabled for harvester
 watches. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 <!-- Other Harvester configuration elements -->
 </harvester>
 <watch-notification>
 <watch>
 <name>simpleWebLogicMBeanWatchRepeatingAfterWait</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>
 (${mydomain:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=
 WLDFHarvesterRuntime,WLDFRuntime=WLDFRuntime//TotalSamplingTime}
 >= 100
 AND
 ${mydomain:Name=myserver,Type=
 ServerRuntime//OpenSocketsCurrentCount} > 0)
 OR
 ${mydomain:Name=WLDFWatchNotificationRuntime,ServerRuntime=
 myserver,Type=WLDFWatchNotificationRuntime,
 WLDFRuntime=WLDFRuntime//Enabled} = true
 OR
 ${myCustomDomain:Name=myCustomMBean3//State} =
 'active')
 </rule-expression>
 <severity>Warning</severity>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>10000</alarm-reset-period>
 <notification>myJMXNotif,myImageNotif,
 myJMSTopicNotif,myJMSQueueNotif,mySNMPNotif,
 mySMTPNotif</notification>
 </watch>
 <!-- Other watch-notification configuration elements -->
 </watch-notification>
</wldf-resource>

This watch uses an alarm type of AutomaticReset, which means that it may be triggered repeatedly, provided that the last time it was triggered was longer than the interval set as the alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the watch, but will be passed on through the notifications.

Configuring Log Watches

Use Log watches to monitor the occurrence of specific messages and/or strings in the server log. Watches of this type are triggered as a result of a log message containing the specified data being issued.

An example configuration for a log watch is shown in Example 9-2.

Example 9-2 Sample Configuration for a Log Watch (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 </watch-notification>
</wldf-resource>

Configuring Instrumentation Watches

You use Instrumentation watches to monitor the events from the WLDF Instrumentation component. Watches of this type are triggered as a result of the event being posted.

Example 9-3 shows an example configuration for an Instrumentation watch.

Example 9-3 Sample Configuration for an Instrumentation Watch (in DIAG_MODULE.xml)

 <watch-notification>
 <watch>
 <name>myInstWatch</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')
 </rule-expression>
 <alarm-type xsi:nil="true"></alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 <name>mySMTPNotification</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject xsi:nil="true"></subject>
 <body xsi:nil="true"></body>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
</watch-notification>

Defining Watch Rule Expressions

A watch rule expression encapsulates all information necessary for specifying a rule. For documentation on the query language you use to define watch rules, see Appendix A, "WLDF Query Language".

10 Configuring Notifications

This chapter describes the types of notifications available in WebLogic Server 10.3.6 and their configuration options.

This chapter includes the following sections:

	
Types of Notifications

	
Configuring JMX Notifications

	
Configuring JMS Notifications

	
Configuring SNMP Notifications

	
Configuring SMTP Notifications

	
Configuring Image Notifications

For information about how to create a notification using the Administration Console, see "Create notifications for watches in a diagnostic system module" in Oracle WebLogic Server Administration Console Help.

Types of Notifications

A notification is an action that is triggered when a watch rule evaluates to true. WLDF supports four types of diagnostic notifications, based on the delivery mechanism: Java Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer Protocol (SMTP), and Simple Network Management Protocol (SNMP). You can also create a notification that generates a diagnostic image.

In the configuration file for a diagnostic module, the different types of notifications are identified by these elements:

	
<jmx-notification>

	
<jms-notification>

	
<snmp-notification>

	
<smtp-notification>

	
<image-notification>

These notification types all have <name> and <enabled> configuration options. The value of <name> is used as the value in a <notification> element for a watch, to map the watch to its corresponding notification(s). The <enabled> element, when set to true, enables that notification. In other words, the notification is fired when an associated watch evaluates to true. Other than <name> and <enabled>, each notification type is unique.

	
Note:

To define notifications programmatically, use weblogic.diagnostics.watch.WatchNotification.

Configuring JMX Notifications

For each defined JMX notification, WLDF issues JMX events (notifications) whenever an associated watch is triggered. Applications can register a notification listener with the server's WLDFWatchJMXNotificationRuntimeMBeans to receive all notifications and filter the provided output. You can also specify a JMX "notification type" string that a JMX client can use as a filter.

Example 10-1 shows an example of a JMX notification configuration.

Example 10-1 Example Configuration for a JMX Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <jmx-notification>
 <name>myJMXNotif</name>
 <enabled>true</enabled>
 </jmx-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

Here is an example of a JMX notification:

 Notification name: myjmx called. Count= 42.
 Watch severity: Notice
 Watch time: Jul 19, 2005 3:40:38 PM EDT
 Watch ServerName: myserver
 Watch RuleType: Harvester
 Watch Rule: ${com.bea:Name=myserver,Type=ServerRuntime//OpenSocketsCurrentCount} > 1
 Watch Name: mywatch
 Watch DomainName: mydomain
 Watch AlarmType: None
 Watch AlarmResetPeriod: 10000

Configuring JMS Notifications

JMS notifications are used to post messages to JMS topics and/or queues in response to the triggering of an associated watch. In the system resource configuration file, the elements <destination-jndi-name> and <connection-factory-jndi-name> define how the message is to be delivered.

Example 10-2 shows two JMS notifications that cause JMS messages to be sent through the provided topics and queues using the specified connection factory. For this to work properly, JMS must be properly configured in the config.xml configuration file for the domain, and the JMS resource must be targeted to this server.

Example 10-2 Example JMS Notifications

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <jms-notification>
 <name>myJMSTopicNotif</name>
 <destination-jndi-name>MyJMSTopic</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <jms-notification>
 <name>myJMSQueueNotif</name>
 <destination-jndi-name>MyJMSQueue</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

Configuring SNMP Notifications

Simple Network Management Protocol (SNMP) notifications are used to post SNMP traps in response to the triggering of an associated watch. To define an SNMP notification you only have to provide a notification name, as shown in Example 10-3. Generated traps contain the names of both the watch and notification that caused the trap to be generated. For an SNMP trap to work properly, SNMP must be properly configured in the config.xml configuration file for the domain.

Example 10-3 An Example Configuration for an SNMP Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 </snmp-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The trap resulting from the SNMP notification configuration shown in Example 10-3 is of type 85. It contains the following values (configured values are shown in angle brackets "<>"):

 .1.3.6.1.4.1.140.625.100.5 timestamp (e.g. Dec 9, 2004 6:46:37 PM EST
 .1.3.6.1.4.1.140.625.100.145 domainName (e.g. mydomain")
 .1.3.6.1.4.1.140.625.100.10 serverName (e.g. myserver)
 .1.3.6.1.4.1.140.625.100.120 <severity> (e.g. Notice)
 .1.3.6.1.4.1.140.625.100.105 <name> [of watch] (e.g.
 simpleWebLogicMBeanWatchRepeatingAfterWait)
 .1.3.6.1.4.1.140.625.100.110 <rule-type> (e.g. HarvesterRule)
 .1.3.6.1.4.1.140.625.100.115 <rule-expression>
 .1.3.6.1.4.1.140.625.100.125 values which caused rule to
 fire (e.g..State =
 null,weblogic.management.runtime.WLDFHarvesterRuntimeMBean.
 TotalSamplingTime = 886,.Enabled =
 null,weblogic.management.runtime.ServerRuntimeMBean.
 OpenSocketsCurrentCount = 1,)
 .1.3.6.1.4.1.140.625.100.130 <alarm-type> (e.g. None)
 .1.3.6.1.4.1.140.625.100.135 <alarm-reset-period> (e.g. 10000)
 .1.3.6.1.4.1.140.625.100.140 <name> [of notification]
 (e.g.mySNMPNotif)

Configuring SMTP Notifications

Simple Mail Transfer Protocol (SMTP) notifications are used to send messages (e-mail) over the SMTP protocol in response to the triggering of an associated watch. To define an SMTP notification, first configure the SMTP session. That configuration is persisted in the config.xml configuration file for the domain. In DIAG_MODULE.xml, you provide the configured SMTP session using sub-element <mail-session-jndi-name>, and provide a list of at least one recipient using sub-element <recipients>. An optional subject and/or body can be provided using sub-elements <subject> and <body> respectively. If these are not provided, they will be defaulted.

Example 10-4 shows an SMTP notification that causes an SMTP (e-mail) message to be distributed through the configured SMTP session, to the configured recipients. In this notification configuration, a custom subject and body are provided. If a subject and/or a body are not specified, defaults are provided, showing details of the watch and notification.

Example 10-4 Sample Configuration for SMTP Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <smtp-notification>
 <name>mySMTPNotif</name>
 <mail-session-jndi-name>MyMailSession</mail-session-jndi-name>
 <subject>Critical Problem!</subject>
 <body>A system issue occurred. Call Winston ASAP.
 Reference number 81767366662AG-USA23.</body>
 <recipients>administrator@myCompany.com</recipients>
 </smtp-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

Configuring Image Notifications

An image notification causes a diagnostic image to be generated in response to the triggering of an associated watch. You can configure two options for image notifications: a directory and a lockout period.

The directory name indicates where images will be generated. The lockout period determines the number of seconds that must elapse before a new image can be generated after the last one. This is useful for limiting the number of images that will be generated when there is a sequence of server failures and recoveries

You can specify the directory name relative to the DOMAIN_NAME\servers\SERVER_NAME, directory where DOMAIN_NAME is the name of the domain's home directory and SERVER_NAME is the name of the server. The default directory is DOMAIN_NAME\servers\SERVER_NAME\logs\diagnostic-images.

Image file names are generated using the current timestamp (for example, diagnostic_image_myserver_2005_08_09_13_40_34.zip), so a notification can fire m