
 

[1] Oracle® Fusion Middleware
Developing Secure Applications with Oracle Security Developer 
Tools 

11g Release 1 (11.1.1) 

E56402-01

April 2015



Oracle Fusion Middleware Developing Secure Applications with Oracle Security Developer Tools, 11g 
Release 1 (11.1.1)  

E56402-01

Copyright © 2005, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author:  Vinaye Misra

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.



iii

Contents

Preface ..............................................................................................................................................................   xvii

Intended Audience...................................................................................................................................    xvii
Documentation Accessibility ..................................................................................................................    xvii
Related Documents ..................................................................................................................................    xvii
Conventions .............................................................................................................................................    xviii

 What's New in Oracle Security Developer Tools?.................................................................   xix

New Features in 11g Release 1 (11.1.1.9.) ..............................................................................................    xix
New Features in 11g Release 1 (11.1.1.7.0) ............................................................................................     xx
New Features in 11g Release 1 (11.1.1.6.0) ............................................................................................     xx
New Features for Release 11g (11.1.1) ....................................................................................................     xx
Oracle SAML Changes..............................................................................................................................     xx

1  Introduction to Oracle Security Developer Tools

1.1 About Cryptography..................................................................................................................   1-1
1.1.1 Types of Cryptographic Algorithms.................................................................................   1-2
1.1.1.1 Symmetric Cryptographic Algorithms......................................................................   1-2
1.1.1.2 Asymmetric Cryptographic Algorithms...................................................................   1-3
1.1.1.3 Hash Functions .............................................................................................................   1-3
1.2 About Public Key Infrastructure (PKI) ....................................................................................   1-3
1.2.1 Key Pairs ...............................................................................................................................   1-3
1.2.2 Certificate Authority ...........................................................................................................   1-4
1.2.3 Digital Certificates ...............................................................................................................   1-4
1.2.4 Related PKI Standards ........................................................................................................   1-4
1.2.5 Benefits of PKI ......................................................................................................................   1-5
1.3 About Web Services Security ....................................................................................................   1-6
1.4 About the SAML Format ...........................................................................................................   1-6
1.4.1 SAML Assertions .................................................................................................................   1-7
1.4.2 SAML Requests and Responses.........................................................................................   1-8
1.4.2.1 SAML Request and Response Cycle ..........................................................................   1-8
1.4.2.2 SAML Protocol Bindings and Profiles.......................................................................   1-9
1.4.2.3 SAML and XML Security ............................................................................................   1-9
1.5 About Identity Federation ......................................................................................................    1-10
1.6 Overview of Oracle Security Developer Tools ....................................................................    1-10
1.6.1 Toolkit Architecture .........................................................................................................    1-11



iv

1.6.2 Supported Standards........................................................................................................    1-14
1.6.3 Oracle Crypto ....................................................................................................................    1-15
1.6.4 Oracle Security Engine.....................................................................................................    1-15
1.6.5 Oracle CMS........................................................................................................................    1-15
1.6.6 Oracle S/MIME.................................................................................................................    1-15
1.6.7 Oracle PKI SDK.................................................................................................................    1-16
1.6.7.1 Oracle PKI LDAP SDK..............................................................................................    1-16
1.6.7.2 Oracle PKI TSP SDK..................................................................................................    1-16
1.6.7.3 Oracle PKI OCSP SDK ..............................................................................................    1-16
1.6.7.4 Oracle PKI CMP SDK................................................................................................    1-16
1.6.8 Oracle XML Security ........................................................................................................    1-17
1.6.9 Oracle SAML .....................................................................................................................    1-17
1.6.10 Oracle Web Services Security..........................................................................................    1-17
1.6.11 Oracle Liberty SDK...........................................................................................................    1-18
1.6.12 Oracle XKMS .....................................................................................................................    1-18
1.6.13 Oracle JWT.........................................................................................................................    1-18
1.7 References .................................................................................................................................    1-18

2  Migrating to the JCE Framework 

2.1 About The JCE Framework .......................................................................................................   2-1
2.2 Working with JCE Keys .............................................................................................................   2-2
2.2.1 Converting an Existing Key Object to a JCE Key Object................................................   2-2
2.3 Working with JCE Certificates ..................................................................................................   2-4
2.3.1 Switching to a JCE Certificate ............................................................................................   2-4
2.4 Creating JCE Certificate Revocation Lists (CRLs)..................................................................   2-4
2.5 Working with JCE Keystores.....................................................................................................   2-5
2.5.1 Working with standard KeyStore-type Wallets ..............................................................   2-5
2.5.2 Working with PKCS12 and PKCS8 Wallets .....................................................................   2-6
2.6 The Oracle JCE Provider Java API Reference .........................................................................   2-6

3  Oracle Crypto 

3.1 Oracle Crypto Features and Benefits .......................................................................................   3-1
3.1.1 Oracle Crypto Packages......................................................................................................   3-2
3.2 Setting Up Your Oracle Crypto Environment ........................................................................   3-2
3.2.1 System Requirements for Oracle Crypto..........................................................................   3-2
3.2.2 Setting the CLASSPATH Environment Variable ............................................................   3-2
3.2.2.1 Setting the CLASSPATH on Windows......................................................................   3-2
3.2.2.2 Setting the CLASSPATH on UNIX ...........................................................................   3-2
3.3 Core Classes and Interfaces .......................................................................................................   3-3
3.3.1   About Key Classes and Interfaces ...................................................................................   3-3
3.3.1.1 About the oracle.security.crypto.core.Key Interface ...............................................   3-3
3.3.1.2 About the oracle.security.crypto.core.PrivateKey Interface ..................................   3-3
3.3.1.3 About the oracle.security.crypto.core.PublicKey Interface ....................................   3-3
3.3.1.4 About the oracle.security.crypto.core.SymmetricKey Class ..................................   3-3
3.3.2 Generating Keys and Key Pairs .........................................................................................   3-3
3.3.2.1 Using the oracle.security.crypto.core.KeyPairGenerator Class .............................   3-4
3.3.2.2 Using the oracle.security.crypto.core.SymmetricKeyGenerator Class .................   3-4



v

3.3.3 Working with Ciphers.........................................................................................................   3-5
3.3.3.1 Using Symmetric Ciphers ...........................................................................................   3-5
3.3.3.2 Using the RSA Cipher..................................................................................................   3-6
3.3.3.3 Using Password-based Encryption............................................................................   3-7
3.3.4 Using Signature Algorithms ..............................................................................................   3-7
3.3.5 Working with Message Digests .........................................................................................   3-8
3.3.5.1 Using the oracle.security.crypto.core.MessageDigest Class ..................................   3-8
3.3.5.2 Using the oracle.security.crypto.core.MAC Class ...................................................   3-9
3.3.6 Working with Key Agreement Schemes ..........................................................................   3-9
3.3.7 Using Pseudo-Random Number Generators................................................................    3-10
3.3.7.1 Using the oracle.security.crypto.core.RandomBitsSource class .........................    3-10
3.3.7.2 Using the oracle.security.crypto.core.EntropySource class.................................    3-10
3.4 The Oracle Crypto and Crypto FIPS Java API References.................................................    3-11

4  Oracle Security Engine

4.1 Oracle Security Engine Features and Benefits ........................................................................   4-1
4.1.1 About Oracle Security Engine Packages ..........................................................................   4-2
4.2 Setting Up Your Oracle Security Engine Environment .........................................................   4-2
4.2.1 System Requirements for Oracle Security Engine ..........................................................   4-2
4.2.2 Setting the CLASSPATH Environment Variable ............................................................   4-2
4.2.2.1 Setting the CLASSPATH on Windows......................................................................   4-2
4.2.2.2 Setting the CLASSPATH on UNIX ............................................................................   4-3
4.3 Using Core Classes and Interfaces ...........................................................................................   4-3
4.3.1 Using the oracle.security.crypto.cert.X500RDN Class ...................................................   4-3
4.3.2 Using the oracle.security.crypto.cert.X500Name Class..................................................   4-4
4.3.3 Using the oracle.security.crypto.cert.CertificateRequest Class.....................................   4-4
4.3.4 Using the java.security.cert.X509Certificate Class ..........................................................   4-5
4.4 The Oracle Security Engine Java API Reference ....................................................................   4-6

5  Oracle CMS

5.1 Oracle CMS Features and Benefits ...........................................................................................   5-1
5.1.1 Content Types ......................................................................................................................   5-1
5.1.2 Understanding Differences Between Oracle CMS Implementation and RFCs ..........   5-2
5.2 Setting Up Your Oracle CMS Environment ............................................................................   5-2
5.2.1 Understanding System Requirements ..............................................................................   5-2
5.2.2 Setting the CLASSPATH Environment Variable ............................................................   5-3
5.2.2.1 Setting the CLASSPATH on Windows......................................................................   5-3
5.2.2.2 Setting the CLASSPATH on UNIX ............................................................................   5-3
5.3 Developing Applications with Oracle CMS............................................................................   5-3
5.3.1 About CMS Object Types ...................................................................................................   5-4
5.3.2 Constructing CMS Objects using the CMS***ContentInfo Classes ..............................   5-4
5.3.2.1 Using the Abstract Base Class CMSContentInfo .....................................................   5-5
5.3.2.1.1 Constructing a CMS Object..................................................................................   5-5
5.3.2.1.2 Reading a CMS Object ..........................................................................................   5-5
5.3.2.2 Using the CMSDataContentInfo Class ......................................................................   5-5
5.3.2.3 Using the ESSReceipt Class.........................................................................................   5-6



vi

5.3.2.4 Using the CMSDigestedDataContentInfo Class ......................................................   5-7
5.3.2.4.1 Constructing a CMS Digested-data Object ........................................................   5-8
5.3.2.4.2 Reading a CMS Digested-data Object ................................................................   5-8
5.3.2.4.3 Working with Detached digested-data Objects ................................................   5-9
5.3.2.5 Using the CMSSignedDataContentInfo Class..........................................................   5-9
5.3.2.5.1 Constructing a CMS Signed-data Object ........................................................    5-10
5.3.2.5.2 Reading a CMS Signed-data Object.................................................................    5-11
5.3.2.5.3 Working with External Signatures (Detached Objects) ................................    5-12
5.3.2.5.4 Working with Certificates/CRL-Only Objects ..............................................    5-12
5.3.2.6 Using the CMSEncryptedDataContentInfo Class.................................................    5-13
5.3.2.6.1 Constructing a CMS Encrypted-data Object ..................................................    5-13
5.3.2.6.2 Reading a CMS Encrypted-data Object...........................................................    5-13
5.3.2.6.3 Working with Detached Encrypted-data CMS Objects ................................    5-14
5.3.2.7 Using the CMSEnvelopedDataContentInfo Class ................................................    5-14
5.3.2.7.1 Constructing a CMS Enveloped-data Object..................................................    5-15
5.3.2.7.2 Reading a CMS Enveloped-data Object ..........................................................    5-16
5.3.2.7.3 About the Key Transport Key Exchange Mechanism...................................    5-17
5.3.2.7.4 About the Key Agreement Key Exchange Mechanism.................................    5-17
5.3.2.7.5 About the Key Encryption (Wrap) Key Exchange Mechanism ...................    5-17
5.3.2.7.6 Working with Detached Enveloped-data CMS Objects ...............................    5-17
5.3.2.8 Using the CMSAuthenticatedDataContentInfo Class..........................................    5-18
5.3.2.8.1 Constructing a CMS Authenticated-data Object ...........................................    5-19
5.3.2.8.2 Reading a CMS Authenticated-data Object....................................................    5-20
5.3.2.8.3 Detached Authenticated-data CMS Objects ...................................................    5-21
5.3.2.9 Working with Wrapped (Triple or more) CMSContentInfo Objects .................    5-21
5.3.2.9.1 Reading a Nested (Wrapped) CMS Object .....................................................    5-21
5.3.3 Constructing CMS Objects using the CMS***Stream and CMS***Connector Classes.......    

5-21
5.3.3.1 Understand Limitations of the CMS***Stream and CMS***Connector Classes    5-22
5.3.3.2 Understand Difference between CMS***Stream and CMS***Connector Classes .......    

5-22
5.3.3.3 Using the CMS***OutputStream and CMS***InputStream Classes...................    5-23
5.3.3.3.1 About CMS id-data Objects ..............................................................................    5-23
5.3.3.3.2 About CMS id-ct-receipt Objects......................................................................    5-23
5.3.3.3.3 About CMS id-digestedData Objects .............................................................    5-23
5.3.3.3.4 About CMS id-signedData Objects..................................................................    5-23
5.3.3.3.5 About CMS id-encryptedData Objects............................................................    5-23
5.3.3.3.6 About CMS id-envelopedData Objects ...........................................................    5-24
5.3.3.3.7 About CMS id-ct-authData Objects .................................................................    5-24
5.3.3.4 Wrapping (Triple or more) CMS***Connector Objects........................................    5-24
5.4 The Oracle CMS Java API Reference.....................................................................................    5-25

6  Oracle S/MIME

6.1 Oracle S/MIME Features and Benefits ....................................................................................   6-1
6.2 Setting Up Your Oracle S/MIME Environment .....................................................................   6-1
6.2.1 Understanding System Requirements for Oracle S/MIME ..........................................   6-1
6.2.2 Setting the CLASSPATH Environment Variable ............................................................   6-2



vii

6.2.2.1 Setting the CLASSPATH on Windows......................................................................   6-2
6.2.2.2 Setting the CLASSPATH on UNIX ............................................................................   6-3
6.3 Developing Applications with Oracle S/MIME.....................................................................   6-3
6.3.1 Using the Core Classes and Interfaces..............................................................................   6-3
6.3.1.1 Using the oracle.security.crypto.smime.SmimeObject Interface ...........................   6-4
6.3.1.2 Using the oracle.security.crypto.smime.SmimeSignedObject Interface...............   6-4
6.3.1.3 Using the oracle.security.crypto.smime.SmimeSigned Class ................................   6-5
6.3.1.4 Using the oracle.security.crypto.smime.SmimeEnveloped Class .........................   6-6
6.3.1.5 Using the oracle.security.crypto.smime.SmimeMultipartSigned Class ...............   6-6
6.3.1.6 Using the oracle.security.crypto.smime.SmimeSignedReceipt Class ...................   6-7
6.3.1.7 Using the oracle.security.crypto.smime.SmimeCompressed Class ......................   6-8
6.3.2 Supporting Classes and Interfaces ....................................................................................   6-8
6.3.2.1 Using the oracle.security.crypto.smime.Smime Interface ......................................   6-9
6.3.2.2 Using the oracle.security.crypto.smime.SmimeUtils Class....................................   6-9
6.3.2.3 Using the oracle.security.crypto.smime.MailTrustPolicy Class ............................   6-9
6.3.2.4 Using the oracle.security.crypto.smime.SmimeCapabilities Class .......................   6-9
6.3.2.5 Using the oracle.security.crypto.smime.SmimeDataContentHandler Class .......   6-9
6.3.2.6 Using the oracle.security.crypto.smime.ess Package ..............................................   6-9
6.3.3 Using the Oracle S/MIME Classes.................................................................................    6-10
6.3.3.1 Using the Abstract Class SmimeObject ..................................................................    6-10
6.3.3.2 Signing Messages.......................................................................................................    6-11
6.3.3.3 Creating "Multipart/Signed" Entities.....................................................................    6-11
6.3.3.4 Creating Digital Envelopes ......................................................................................    6-12
6.3.3.5 Creating "Certificates-Only" Messages...................................................................    6-12
6.3.3.6 Reading Messages .....................................................................................................    6-13
6.3.3.7 Authenticating Signed Messages ............................................................................    6-13
6.3.3.8 Opening Digital Envelopes (Encrypted Messages) ..............................................    6-14
6.3.3.9 Adding Enhanced Security Services (ESS).............................................................    6-14
6.3.3.10 Processing Enhanced Security Services (ESS) .......................................................    6-15
6.4 The Oracle S/MIME Java API Reference .............................................................................    6-15

7  Oracle PKI SDK

7.1 Oracle PKI CMP SDK .................................................................................................................   7-1
7.1.1 Oracle PKI CMP SDK Features and Benefits ...................................................................   7-1
7.1.1.1 About Oracle PKI CMP SDK Packages .....................................................................   7-2
7.1.2 Setting Up Your Oracle PKI CMP SDK Environment....................................................   7-2
7.1.2.1 Understanding System Requirements for Oracle PKI CMP SDK .........................   7-2
7.1.2.2 Setting the CLASSPATH Environment Variable .....................................................   7-2
7.1.2.2.1 Setting the CLASSPATH on Windows ..............................................................   7-2
7.1.2.2.2 Setting the CLASSPATH on UNIX .....................................................................   7-3
7.1.3 The Oracle PKI CMP SDK Java API Reference ...............................................................   7-3
7.2 Oracle PKI OCSP SDK................................................................................................................   7-3
7.2.1 Oracle PKI OCSP SDK Features and Benefits .................................................................   7-3
7.2.2 Setting Up Your Oracle PKI OCSP SDK Environment ..................................................   7-4
7.2.2.1 Understanding System Requirements for Oracle PKI OCSP SDK........................   7-4
7.2.2.2 Setting the CLASSPATH Environment Variable .....................................................   7-4



viii

7.2.2.2.1 Setting the CLASSPATH on Windows
   7-4

7.2.2.2.2 Setting the CLASSPATH on Unix ............................................................................   7-4
7.2.3 The Oracle PKI OCSP SDK Java API Reference..............................................................   7-4
7.3 Oracle PKI TSP SDK ...................................................................................................................   7-5
7.3.1 Oracle PKI TSP SDK Features and Benefits .....................................................................   7-5
7.3.1.1 About Oracle PKI TSP SDK Classes and Interfaces.................................................   7-5
7.3.2 Setting Up Your Oracle PKI TSP SDK Environment......................................................   7-5
7.3.2.1 Understanding System Requirements for Oracle PKI TSP SDK ...........................   7-6
7.3.2.2 Setting the CLASSPATH Environment Variable .....................................................   7-6
7.3.2.2.1 Setting the CLASSPATH on Windows....................................................................   7-6
7.3.2.2.2 Setting the CLASSPATH on Unix ............................................................................   7-6
7.3.3 The Oracle PKI TSP SDK Java API Reference .................................................................   7-6
7.4 Oracle PKI LDAP SDK ...............................................................................................................   7-7
7.4.1 Oracle PKI LDAP SDK Features and Benefits .................................................................   7-7
7.4.1.1  About Oracle PKI LDAP SDK Classes .....................................................................   7-7
7.4.2 Setting Up Your Oracle PKI LDAP SDK Environment..................................................   7-7
7.4.2.1 Understanding System Requirements for Oracle PKI LDAP SDK .......................   7-7
7.4.2.2 Setting the CLASSPATH Environment Variable .....................................................   7-8
7.4.2.2.1 Setting the CLASSPATH on Windows....................................................................   7-8
7.4.2.2.2 Setting the CLASSPATH on Unix ............................................................................   7-8
7.4.3 The Oracle PKI LDAP SDK Java API Reference .............................................................   7-8

8  Oracle XML Security

8.1 About Oracle XML Security Features and Benefits ...............................................................   8-1
8.1.1 About the Supported XML Algorithms............................................................................   8-2
8.1.2 Oracle XML Security API ...................................................................................................   8-2
8.2 Setting Up Your Oracle XML Security Environment ............................................................   8-3
8.3 Signing Data ................................................................................................................................   8-3
8.3.1 Identifying What to Sign.....................................................................................................   8-4
8.3.1.1 Determining the Signature Envelope ........................................................................   8-4
8.3.1.2 Deciding How to Sign Binary Data ...........................................................................   8-5
8.3.1.3 Signing Multiple XML Fragments with a Signature ...............................................   8-6
8.3.1.4 Excluding Elements from a Signature .......................................................................   8-6
8.3.2 Deciding on a Signing Key .................................................................................................   8-6
8.3.2.1 Setting Up Key Exchange ............................................................................................   8-6
8.3.2.2 Providing a Receiver Hint ...........................................................................................   8-6
8.4 Verifying Data ............................................................................................................................   8-7
8.5 Encrypting Data .........................................................................................................................   8-7
8.5.1 Identifying what to Encrypt ...............................................................................................   8-8
8.5.1.1 Using the Content Only Encryption Mode...............................................................   8-8
8.5.1.2 Encrypting Binary Data ...............................................................................................   8-8
8.5.2 Deciding on the Encryption Key .......................................................................................   8-9
8.6 Decrypting Data ..........................................................................................................................   8-9
8.7 Using Element Wrappers in the OSDT XML APIs .............................................................    8-10
8.7.1 Constructing the Wrapper Object ..................................................................................    8-10
8.7.2 Obtaining the DOM Element from the Wrapper Object .............................................    8-10



ix

8.7.3 Parse Complex Elements .................................................................................................    8-11
8.7.4 Construct Complex Elements .........................................................................................    8-11
8.8 How to Sign Data with the Oracle XML Security API .......................................................    8-12
8.8.1 Basic Procedure to Create a Detached Signature .........................................................    8-12
8.8.2 Variations on the Basic Signing Procedure ...................................................................    8-13
8.8.2.1 Multiple References...................................................................................................    8-13
8.8.2.2 Enveloped Signature .................................................................................................    8-13
8.8.2.3 XPath Expression.......................................................................................................    8-14
8.8.2.4 Certificate Hint...........................................................................................................    8-14
8.8.2.5 Sign with HMAC Key ..............................................................................................    8-14
8.9 How to Verify Signatures with the Oracle XML Security API..........................................    8-14
8.9.1 Basic Procedure to Check What is Signed.....................................................................    8-14
8.9.2 Set Up Callbacks ...............................................................................................................    8-15
8.9.3 Write a Custom Key Retriever ........................................................................................    8-15
8.9.4 Check What is Signed.......................................................................................................    8-16
8.9.5 Verify the Signature..........................................................................................................    8-16
8.9.5.1 If Callbacks are Set Up..............................................................................................    8-16
8.9.5.2 If Callbacks are Not Set Up ......................................................................................    8-16
8.9.5.3 Debugging Verification ...........................................................................................    8-16
8.10 How to Encrypt Data with the Oracle XML Security API .................................................    8-17
8.10.1 Encrypt with a Shared Symmetric Key..........................................................................    8-17
8.10.2 Encrypt with a Random Symmetric Key.......................................................................    8-17
8.11 How to Decrypt Data with the Oracle XML Security API .................................................    8-19
8.11.1 Decrypt with a Shared Symmetric Key .........................................................................    8-19
8.11.2 Decrypt with a Random Symmetric Key ......................................................................    8-19
8.12 Supporting Classes and Interfaces ........................................................................................    8-19
8.12.1 The oracle.security.xmlsec.util.XMLURI Interface ......................................................    8-20
8.12.2 The oracle.security.xmlsec.util.XMLUtils class ............................................................    8-20
8.13 Common XML Security Questions........................................................................................    8-20
8.14 Best Practices ............................................................................................................................    8-20
8.15 The Oracle XML Security Java API Reference .....................................................................    8-20

9  Oracle SAML

9.1 Oracle SAML Features and Benefits.........................................................................................   9-1
9.2 Oracle SAML 1.0/1.1 ..................................................................................................................   9-1
9.2.1 Oracle SAML 1.0/1.1 Packages..........................................................................................   9-2
9.2.2 Setting Up Your Oracle SAML 1.0/1.1 Environment.....................................................   9-2
9.2.2.1 System Requirements for Oracle SAML 1.0/1.1 ......................................................   9-2
9.2.2.2 Setting the CLASSPATH Environment Variable .....................................................   9-2
9.2.2.2.1 Setting the CLASSPATH on Windows ..............................................................   9-2
9.2.2.2.2 Setting the CLASSPATH on UNIX .....................................................................   9-3
9.2.3 Classes and Interfaces .........................................................................................................   9-3
9.2.3.1 Core Classes...................................................................................................................   9-3
9.2.3.1.1 The oracle.security.xmlsec.saml.SAMLInitializer Class ..................................   9-3
9.2.3.1.2 The oracle.security.xmlsec.saml.Assertion Class..............................................   9-3
9.2.3.1.3 The oracle.security.xmlsec.samlp.Request Class ..............................................   9-4
9.2.3.1.4 The oracle.security.xmlsec.samlp.Response Class ...........................................   9-5



x

9.2.3.2 Supporting Classes and Interfaces .............................................................................   9-5
9.2.3.2.1 The oracle.security.xmlsec.saml.SAMLURI Interface......................................   9-5
9.2.3.2.2 The oracle.security.xmlsec.saml.SAMLMessage Class....................................   9-6
9.2.4 The Oracle SAML 1.0/1.1 Java API Reference ................................................................   9-6
9.3 Oracle SAML 2.0 .........................................................................................................................   9-6
9.3.1 Oracle SAML 2.0 Packages .................................................................................................   9-6
9.3.2 Setting Up Your Oracle SAML 2.0 Environment ............................................................   9-7
9.3.2.1 System Requirements for Oracle SAML 2.0..............................................................   9-7
9.3.2.2 Setting the CLASSPATH Environment Variable .....................................................   9-7
9.3.2.2.1 Setting the CLASSPATH on Windows ..............................................................   9-7
9.3.2.2.2 Setting the CLASSPATH on UNIX .....................................................................   9-8
9.3.3 Classes and Interfaces .........................................................................................................   9-8
9.3.3.1 Core Classes...................................................................................................................   9-8
9.3.3.1.1 The oracle.security.xmlsec.saml2.core.Assertion Class ...................................   9-8
9.3.3.1.2 The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class ...................   9-9
9.3.3.1.3 The oracle.security.xmlsec.saml2.protocol.StatusResponseType Class ........   9-9
9.3.3.2 Supporting Classes and Interfaces ..........................................................................    9-10
9.3.3.2.1 The oracle.security.xmlsec.saml2.util.SAML2URI Interface........................    9-10
9.3.4 The Oracle SAML 2.0 Java API Reference.....................................................................    9-10

10  Oracle Web Services Security

10.1 Setting Up Your Oracle Web Services Security Environment...........................................    10-1
10.2 Classes and Interfaces..............................................................................................................    10-2
10.2.1 Element Wrappers ............................................................................................................    10-2
10.2.2 The <wsse:Security> header ...........................................................................................    10-3
10.2.2.1 Outgoing Messages ...................................................................................................    10-3
10.2.2.2 Incoming Messages ...................................................................................................    10-4
10.2.3 Security Tokens (ST).........................................................................................................    10-4
10.2.3.1 Creating a Username Token.....................................................................................    10-5
10.2.3.2 Creating an X509 Token............................................................................................    10-6
10.2.3.3 Creating a Kerberos Token.......................................................................................    10-6
10.2.3.4 Creating a SAML Assertion Token .........................................................................    10-8
10.2.4 Security Token References (STR) ...................................................................................    10-8
10.2.4.1 Creating a direct reference STR ...............................................................................    10-8
10.2.4.2 Creating a Reference STR for a username token...................................................    10-8
10.2.4.3 Creating a Reference STR for a X509 Token ..........................................................    10-8
10.2.4.4 Creating a Reference STR for Kerberos Token......................................................    10-8
10.2.4.5 Creating a Reference STR for a SAML Assertion token.......................................    10-9
10.2.4.6 Creating a Reference STR for an EncryptedKey ...................................................    10-9
10.2.4.7 Creating a Reference STR for a generic token .......................................................    10-9
10.2.4.8 Creating a Key Identifier STR..................................................................................    10-9
10.2.4.9 Creating a KeyIdentifier STR for an X509 Token..................................................    10-9
10.2.4.10 Creating a KeyIdentifier STR for a Kerberos Token...........................................    10-10
10.2.4.11 Creating a KeyIdentifier STR for a SAML Assertion Token .............................    10-10
10.2.4.12 Creating a KeyIdentifier STR for an EncryptedKey ...........................................    10-10
10.2.4.13 Adding an STRTransform ......................................................................................    10-10
10.2.5 Signing and Verifying ....................................................................................................    10-10



xi

10.2.5.1 Signing SOAP Messages.........................................................................................    10-11
10.2.5.1.1 Adding IDs to elements...................................................................................    10-11
10.2.5.1.2 Creating the WSSignatureParams object ......................................................    10-11
10.2.5.1.3 Specifying Transforms.....................................................................................    10-12
10.2.5.1.4 Calling the WSSecurity.sign method.............................................................    10-12
10.2.5.2 Verifying SOAP Messages......................................................................................    10-12
10.2.5.3 Confirming Signatures............................................................................................    10-15
10.2.5.3.1 Signature Confirmation Response Generation ............................................    10-15
10.2.5.3.2 Signature Confirmation Response Processing ............................................    10-15
10.2.6 Encrypting and Decrypting...........................................................................................    10-16
10.2.6.1 Encrypting SOAP messages with EncryptedKey ...............................................    10-16
10.2.6.2 Encrypting SOAP messages without EncryptedKey .........................................    10-17
10.2.6.3 Encrypting SOAP Headers into an EncryptedHeader.......................................    10-18
10.2.6.4 Decrypting SOAP messages with EncryptedKey ...............................................    10-18
10.2.6.5 Decrypting SOAP messages without EncryptedKey .........................................    10-18
10.3 The Oracle Web Services Security Java API Reference ....................................................    10-18

11  Oracle Liberty SDK 

11.1 Oracle Liberty SDK Features and Benefits ...........................................................................    11-1
11.2 Oracle Liberty 1.1 .....................................................................................................................    11-2
11.2.1 Setting Up Your Oracle Liberty 1.1 Environment........................................................    11-2
11.2.1.1 System Requirements for Oracle Liberty 1.1 .........................................................    11-2
11.2.1.2 Setting the CLASSPATH Environment Variable ..................................................    11-2
11.2.1.2.1 Setting the CLASSPATH on Windows ...........................................................    11-2
11.2.1.2.2 Setting the CLASSPATH on UNIX ..................................................................    11-3
11.2.2 Overview of Oracle Liberty 1.1 Classes and Interfaces...............................................    11-3
11.2.2.1 Core Classes and Interfaces......................................................................................    11-3
11.2.2.1.1 The oracle.security.xmlsec.liberty.v11.AuthnRequest Class .......................    11-3
11.2.2.1.2 The oracle.security.xmlsec.liberty.v11.AuthnResponse Class.....................    11-4
11.2.2.1.3 The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification 

Class   11-4
11.2.2.1.4 The oracle.security.xmlsec.liberty.v11.LogoutRequest Class ......................    11-5
11.2.2.1.5 The oracle.security.xmlsec.liberty.v11.LogoutResponse Class....................    11-6
11.2.2.1.6 The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class ....    

11-6
11.2.2.1.7 The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class

   11-7
11.2.2.2 Supporting Classes and Interfaces ..........................................................................    11-8
11.2.2.2.1 The oracle.security.xmlsec.liberty.v11.LibertyInitializer class ....................    11-8
11.2.2.2.2 The oracle.security.xmlsec.liberty.v11.LibertyURI interface .......................    11-8
11.2.2.2.3 The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface..    

11-8
11.2.2.2.4 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class    11-9
11.2.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface...................................    11-9
11.2.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage class ..................................    11-9
11.2.3 The Oracle Liberty SDK 1.1 API Reference...................................................................    11-9
11.3 Oracle Liberty 1.2 .....................................................................................................................    11-9



xii

11.3.1 Setting Up Your Oracle Liberty 1.2 Environment........................................................    11-9
11.3.1.1 System Requirements for Oracle Liberty 1.2 .......................................................    11-10
11.3.1.2 Setting the CLASSPATH Environment Variable ................................................    11-10
11.3.1.2.1 Setting the CLASSPATH on Windows...............................................................    11-10
11.3.1.2.2 Setting the CLASSPATH on Unix .......................................................................    11-10
11.3.2 Overview of Oracle Liberty 1.2 Classes and Interfaces.............................................    11-11
11.3.2.1 Core Classes and Interfaces....................................................................................    11-11
11.3.2.1.1 The oracle.security.xmlsec.saml.Assertion class..........................................    11-11
11.3.2.1.2 The oracle.security.xmlsec.samlp.Request class ..........................................    11-12
11.3.2.1.3 The oracle.security.xmlsec.samlp.Response class ......................................    11-12
11.3.2.1.4 The oracle.security.xmlsec.liberty.v12.AuthnRequest class.......................    11-13
11.3.2.1.5 The oracle.security.xmlsec.liberty.v12.AuthnResponse class....................    11-14
11.3.2.1.6 The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class   

11-14
11.3.2.1.7 The oracle.security.xmlsec.liberty.v12.LogoutRequest class .....................    11-15
11.3.2.1.8 The oracle.security.xmlsec.liberty.v12.LogoutResponse class...................    11-15
11.3.2.1.9 The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class .....    

11-16
11.3.2.1.10 The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class...    

11-17
11.3.2.2 Supporting Classes and Interfaces ........................................................................    11-18
11.3.2.2.1 The oracle.security.xmlsec.liberty.v12.LibertyInitializer class ..................    11-18
11.3.2.2.2 The oracle.security.xmlsec.liberty.v12.LibertyURI interface .....................    11-18
11.3.2.2.3 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class ...........    

11-18
11.3.2.2.4 The oracle.security.xmlsec.saml.SAMLInitializer class ..............................    11-18
11.3.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface.................................    11-18
11.3.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage Class...............................    11-18
11.3.3 The Oracle Liberty SDK 1.2 API Reference.................................................................    11-19

12  Oracle XKMS

12.1 Oracle XKMS Features and Benefits .....................................................................................    12-1
12.1.1 Oracle XKMS Packages ....................................................................................................    12-1
12.2 Setting Up Your Oracle XKMS Environment ......................................................................    12-2
12.2.1 System Requirements for Oracle XKMS........................................................................    12-2
12.2.2 Setting the CLASSPATH Environment Variable .........................................................    12-2
12.2.2.1 Setting the CLASSPATH on Windows...................................................................    12-2
12.2.2.2 Setting the CLASSPATH on UNIX ........................................................................    12-3
12.3 Core Classes and Interfaces ....................................................................................................    12-3
12.3.1 oracle.security.xmlsec.xkms.xkiss.LocateRequest .......................................................    12-3
12.3.2 oracle.security.xmlsec.xkms.xkiss.LocateResult ..........................................................    12-4
12.3.3 oracle.security.xmlsec.xkms.xkiss.ValidateRequest ....................................................    12-4
12.3.4 oracle.security.xmlsec.xkms.xkiss.ValidateResult .......................................................    12-5
12.3.5 oracle.security.xmlsec.xkms.xkrss.RecoverRequest ....................................................    12-5
12.3.6 oracle.security.xmlsec.xkms.xkrss.RecoverResult .......................................................    12-6
12.4 The Oracle XKMS Java API Reference..................................................................................    12-7



xiii

13  Oracle JSON Web Token

13.1 Oracle JSON Web Token Features and Benefits..................................................................    13-1
13.1.1 About JWT .........................................................................................................................    13-1
13.1.2 Oracle JSON Web Token Features..................................................................................    13-2
13.2 Setting Up Your Oracle JSON Web Token Environment...................................................    13-2
13.2.1 System Requirements for Oracle JSON Web Token ....................................................    13-2
13.2.2 Setting the CLASSPATH Environment Variable .........................................................    13-2
13.2.2.1 Setting the CLASSPATH on Windows...................................................................    13-3
13.2.2.2 Setting the CLASSPATH on UNIX .........................................................................    13-3
13.3 Core Classes and Interfaces ....................................................................................................    13-3
13.4 Examples of Usage...................................................................................................................    13-3
13.4.1 Creating the JWT Token ..................................................................................................    13-4
13.4.2 Signing the JWT Token ....................................................................................................    13-4
13.4.3 Verifying the JWT Token .................................................................................................    13-4
13.4.4 Serializing the JWT Token without Signing .................................................................    13-5
13.5 The Oracle JSON Web Token Reference...............................................................................    13-5



xiv

List of Figures

1–1 SAML Request-Response Cycle................................................................................................   1-9
1–2 The Oracle Security Developer Tools....................................................................................    1-11
1–3 Tools for XML, SAML, and WS Security ..............................................................................    1-12
1–4 PKI Tools ...................................................................................................................................    1-13
1–5 CMS and S/MIME Tools ........................................................................................................    1-13
1–6 Cryptographic Tools................................................................................................................    1-14



xv

List of Tables

1–1 Summary of Public and Private Key Usage ...........................................................................   1-4
1–2  Supported Standards.............................................................................................................    1-14
5–1 Content Types Supported by Oracle CMS .............................................................................   5-1
5–2 CMS***ContentInfo Classes......................................................................................................   5-4
5–3 Useful Methods of CMSContentInfo.......................................................................................   5-5
5–4 Useful Methods of ESSReceipt.................................................................................................   5-6
5–5 Useful Methods of CMSDigestedDataContentInfo ...............................................................   5-7
5–6 Useful Methods of CMSSignedDataContentInfo ..................................................................   5-9
5–7 Useful Methods of CMSEncryptedDataContentInfo.........................................................    5-13
5–8 Useful Methods of CMSEnvelopedDataContentInfo ........................................................    5-15
5–9 Useful Methods of CMSAuthenticatedDataContentInfo..................................................    5-18
5–10 The CMS***Stream Classes ....................................................................................................    5-21
5–11 The CMS***Connector Classes ..............................................................................................    5-22
6–1 Classes in the oracle.security.crypto.smime.ess Package.....................................................   6-9
7–1 Oracle PKI TSP SDK Classes and Interfaces ..........................................................................   7-5
10–1  Element Wrappers for Oracle Web Services Security.......................................................    10-2
10–2  Security Tokens for Oracle Web Services Security............................................................    10-4
10–3  Callbacks to Resolve STR Key Identifiers.........................................................................    10-13
12–1  Packages in the Oracle XKMS Library................................................................................    12-2



xvi



xvii

Preface

The Oracle Fusion Middleware Reference for Oracle Security Developer Tools provides 
reference information about the Oracle Security Developer Tools. This Preface contains 
the following topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
Oracle Fusion Middleware Reference for Oracle Security Developer Tools is intended for Java 
developers responsible for developing secure applications. This documentation 
assumes programming proficiency using Java, and familiarity with security concepts 
such as cryptography, public key infrastructure, Web services security, and identity 
federation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support 
through My Oracle Support. For information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Related Documents
For more information, see the following documentation available in the Oracle Fusion 
Middleware 11g Release 1 (11.1.1) documentation set:

■ Oracle Fusion Middleware Security Overview 

■ Oracle Fusion Middleware Security Guide 



xviii

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



xix

 What's New in Oracle Security Developer
Tools?

This preface introduces the new and changed features of Oracle Security Developer 
Tools 11g Release 1 (11.1.1).

Topics in this section include:

■ New Features in 11g Release 1 (11.1.1.9.)

■ New Features in 11g Release 1 (11.1.1.7.0)

■ New Features in 11g Release 1 (11.1.1.6.0)

■ New Features for Release 11g (11.1.1)

■ Oracle SAML Changes

New Features in 11g Release 1 (11.1.1.9.) 
New Java API references have been published for all the tools. The references are 
available at:

■ Section 3.4, "The Oracle Crypto and Crypto FIPS Java API References"

■ Section 4.4, "The Oracle Security Engine Java API Reference"

■ Section 5.4, "The Oracle CMS Java API Reference"

■ Section 6.4, "The Oracle S/MIME Java API Reference"

■ Section 7.1.3, "The Oracle PKI CMP SDK Java API Reference"

■ Section 7.2.3, "The Oracle PKI OCSP SDK Java API Reference"

■ Section 7.3.3, "The Oracle PKI TSP SDK Java API Reference"

■ Section 7.4.3, "The Oracle PKI LDAP SDK Java API Reference"

■ Section 8.15, "The Oracle XML Security Java API Reference"

■ Section 9.2.4, "The Oracle SAML 1.0/1.1 Java API Reference"

■ Section 9.3.4, "The Oracle SAML 2.0 Java API Reference"

■ Section 10.3, "The Oracle Web Services Security Java API Reference"

■ Section 11.2.3, "The Oracle Liberty SDK 1.1 API Reference"

■ Section 11.3.3, "The Oracle Liberty SDK 1.2 API Reference"

■ Section 12.4, "The Oracle XKMS Java API Reference"



xx

■ Section 13.5, "The Oracle JSON Web Token Reference"

■ Section 2.6, "The Oracle JCE Provider Java API Reference"

New Features in 11g Release 1 (11.1.1.7.0) 
New Java API references have been published for all the tools. 

New Features in 11g Release 1 (11.1.1.6.0) 
11g Release 1 (11.1.1) Patch Set 5 provides these features:

■ JWT toolkit

For details, see Chapter 13, "Oracle JSON Web Token".

This document contains the following updates:

■ Graphics have been revised.

■ Documentation errata have been corrected.

New Features for Release 11g (11.1.1)
The new features of Oracle Security Developer Tools include the following:

■ All higher level toolkits now take JCE keys and certificates as parameters instead 
of Oracle crypto keys and certificates.

This lets you use any JCE provider, in particular a hardware-based JCE provider.

■ Support for Web Services Security 1.1. This includes:

– implementation of Kerberos and SAML 2.0 profiles

– WS-i BSP conformance

■ Upper layers of the toolkit hierarchy that called the Oracle Security Engine now 
call the new JCE Provider for cryptographic functions

 Figure 1–2  on page 1-11 depicts the relationships between tools in the toolkit.

Oracle SAML Changes

Oracle Fusion Middleware 11g contains updates to most classes in the SAML2 library. 
The fixes fall into a few broad categories:

■ Schema Errors

■ Extraneous Namespace Declarations

■ Missing Namespace Declarations

Note: Due to this change, the 11g Release 1 (11.1.1) APIs are not 
compatible with pre-11g Release 1 (11.1.1). Your existing code will 
need to be changed to compile with 11g Release 1 (11.1.1) Oracle 
Security Developer Tools.



xxi

■ Extraneous xsi:type Declarations

■ Incomplete Support for Boolean Types

Schema Errors
These include issues such as incorrectly spelled XML element or attribute names, 
incorrect namespace URIs, or incorrect ordering of child elements.

Extraneous Namespace Declarations
Many classes were outputting both a default declaration and a prefix-bound 
declaration for the same namespace. This causes issues for some XML parsers and 
SOAP implementations, which can cause XML signature verification errors in some 
3rd-party SAML software. 

The fixes remove the extra default namespace declarations, leaving only the 
prefix-bound declarations.

Missing Namespace Declarations
Some of the SAML classes needed to have a namespace prefix declared.

Extraneous xsi:type Declarations
Many classes had both a concrete XML element type name and an xsi:type 
declaration. This is redundant and confusing; only extension XML types should 
declare the xsi:type of the element.

Incomplete Support for Boolean Types
Some classes that implement XML elements with attribute of type xsd:boolean 
recognized only the values "true" and "false", while the values "1" and "0" should also 
be allowed.



xxii



1

Introduction to Oracle Security Developer Tools 1-1

1 Introduction to Oracle Security Developer
Tools

[2] Security tools are a critical component for today's application development projects. 
Commercial requirements and government regulations dictate that sensitive data be 
kept confidential and protected from tampering or alteration. 

Oracle Security Developer Tools provide you with the cryptographic building blocks 
necessary for developing robust security applications, ranging from basic tasks like 
secure messaging to more complex projects such as securely implementing a 
service-oriented architecture. The tools build upon the core foundations of 
cryptography, public key infrastructure, web services security, and federated identity 
management. 

A wide range of Oracle products utilize the Oracle Security Developer Tools, 
including:

■ applications such as Oracle BPEL Process Manager and Oracle Collaboration Suite 

■ Oracle Platform Security Services, which include SSL configuration features for 
system components, and Oracle Wallet, which is utilized in Oracle Identity 
Management products, Oracle Enterprise Manager, and Oracle Database Server

■ system components like Oracle Web Services Manager (OWSM); Business 
Integration (B2B); Oracle Portal; and Oracle Identity Federation 

This chapter takes a closer look at the underlying security technologies and introduces 
the components of the Oracle Security Developer Tools. It covers these topics: 

■ About Cryptography

■ About Public Key Infrastructure (PKI)

■ About Web Services Security

■ About the SAML Format

■ About Identity Federation

■ Overview of Oracle Security Developer Tools

■ References

1.1 About Cryptography
As data travels across untrusted communication channels, cryptography protects the 
transmitted messages from being intercepted (a passive attack) or modified (an active 
attack) by an intruder. To protect the message, an originator uses a cryptographic tool 
to convert plain, readable messages or plaintext into encrypted ciphertext. While the 



About Cryptography

1-2 Developing Secure Applications with Oracle Security Developer Tools

original text is present, its appearance changes into a form that is unintelligible if 
intercepted. The message recipient likewise uses a cryptographic tool to decrypt the 
ciphertext into its original readable format. 

Cryptography secures communications over a network such as the internet by 
providing: 

■ Authentication, which assures the receiver that the information is coming from a 
trusted source. Authentication is commonly achieved through the use of a 
Message Authentication Code (MAC), digital signature, and digital certificate. 

■ Confidentiality, which ensures that only the intended receiver can read a message. 
Confidentiality is commonly attained through encryption.

■ Integrity, which ensures that the received message has not been altered from the 
original. Integrity is commonly ensured by using a cryptographic hash function.

■ Non-repudiation, which is a way to prove that a given sender actually sent a 
particular message. Non-repudiation is typically achieved through the use of 
digital signatures.

1.1.1 Types of Cryptographic Algorithms
The mathematical operations used to map between plaintext and ciphertext are 
identified by a cryptographic algorithm (also known as a cipher). Cryptographic 
algorithms require the text to be mapped, and, at a minimum, require some value 
which controls the mapping process. This value is called a key. 

Essentially, there are three types of cryptographic algorithms which can be categorized 
by the number of keys used for encryption and decryption, and by their application 
and usage. The basic types of cryptographic algorithms are:

■ Symmetric Cryptographic Algorithms

■ Asymmetric Cryptographic Algorithms

■ Hash Functions

Each type is optimized for certain applications. Hash functions are suited for ensuring 
data integrity. Symmetric cryptography is ideally suited for encrypting messages. 
Asymmetric cryptography is used for the secure exchange of keys, authentication, and 
non-repudiation. Asymmetric cryptography could also be used to encrypt messages, 
although this is rarely done. Symmetric cryptography operates about 1000 times faster, 
and is better suited for encryption than asymmetric cryptography. 

1.1.1.1 Symmetric Cryptographic Algorithms
A symmetric cryptography algorithm (also known as secret key cryptography) uses a 
single key for both encryption and decryption. The sender uses the key to encrypt the 
plaintext and sends the ciphertext to the receiver. The receiver applies the same key to 
decrypt the message and recover the plaintext. The key must be known to both the 
sender and receiver. The biggest problem with symmetric cryptography is the secure 
distribution of the key.

Symmetric cryptography schemes are generally categorized as being either a block 
cipher or stream cipher. A block cipher encrypts one fixed-size block of data (usually 
64 bits) at a time using the same key on each block. Some common block ciphers used 
today include Blowfish, AES, DES, and 3DES. 

Stream ciphers operate on a single bit at a time and implement some form of feedback 
mechanism so that the key is constantly changing. RC4 is an example of a stream 
cipher that is used for secure communications using the SSL protocol. 



About Public Key Infrastructure (PKI)

Introduction to Oracle Security Developer Tools 1-3

1.1.1.2 Asymmetric Cryptographic Algorithms
An asymmetric cryptography algorithm (also known as public key cryptography) uses 
one key to encrypt the plaintext and another key to decrypt the ciphertext. It does not 
matter which key is applied first, but both keys are required for the process to work.

In asymmetric cryptography, one of the keys is designated the public key and is made 
widely available. The other key is designated the private key and is never revealed to 
another party. To send messages under this scheme, the sender encrypts some 
information using the receiver's public key. The receiver then decrypts the ciphertext 
using her private key. This method can also be used to prove who sent a message 
(non-repudiation). The sender can encrypt some plaintext with her private key, and 
when the receiver decrypts the message with the sender's public key, the receiver 
knows that the message was indeed sent by that sender. 

Some of the common asymmetric algorithms in use today are RSA, DSA, and 
Diffie-Hellman.

1.1.1.3 Hash Functions
A hash function (also known as a message digest) is a one-way encryption algorithm 
that essentially uses no key. Instead, a fixed-length hash value is computed based 
upon the plaintext that makes it impossible for either the contents or length of the 
plaintext to be recovered. Hash algorithms are typically used to provide a digital 
fingerprint of a file's contents, often used to ensure that the file has not been altered by 
an intruder or virus. Hash functions are also commonly employed by many operating 
systems to encrypt passwords. Hash functions help preserve the integrity of a file. 
Some common hash functions include MD2, MD4, MD5 and SHA.

1.2 About Public Key Infrastructure (PKI)
A public key infrastructure (PKI) is designed to enable secure communications over 
public and private networks. Besides secure transmission and storage of data, PKI 
enables secure e-mail, digital signatures, and data integrity. 

These facilities are delivered using public key cryptography, a mathematical technique 
that uses a pair of related cryptographic keys to verify the identity of the sender 
(digital signature), or to ensure the privacy of a message (encryption). PKI facilities 
support secure information exchange over insecure networks, such as the Internet. 

Critical elements for achieving the goals of PKI include:

■ Encryption algorithms and keys to secure communications

■ Digital certificates that associate a public key with the identity of its owner

■ Key distribution methods to permit widespread, secure use of encryption

■ A trusted entity, known as a Certificate Authority (CA), to vouch for the 
relationship between a key and its legitimate owner

■ A Registration Authority (RA) that is responsible for verifying the information 
supplied in requests for certificates made to the CA

Relying third parties use the certificates issued by the CA and the public keys 
contained therein to verify digital certificates and encrypt data.

1.2.1 Key Pairs
Encryption techniques often use a text or number called a key, known only to the 
sender and recipient. 



About Public Key Infrastructure (PKI)

1-4 Developing Secure Applications with Oracle Security Developer Tools

When both use the same key, the encryption scheme is called symmetric. Difficulties 
with relying on a symmetric system include getting that key to both parties without 
allowing an eavesdropper to get it, too; and the fact that a separate key is needed for 
every two people, so that each individual must maintain many keys, one for each 
recipient. 

Public key cryptography uses a key pair of mathematically related cryptographic keys 
- the public key and the private key. For an explanation of the use of key pairs, see 
"Asymmetric Cryptographic Algorithms".

Table 1–1 summarizes who uses public and private keys and when:

1.2.2 Certificate Authority
A Certificate Authority (CA) is a trusted third party that vouches for the public key 
owner's identity. Examples of certificate authorities include Verisign and Thawte. 

1.2.3 Digital Certificates
The certification authority validates the public key's link to a particular entity by 
creating a digital certificate. This digital certificate contains the public key and 
information about the key holder and the signing certification authority. Using a PKI 
certificate to authenticate one's identity is analogous to identifying oneself with a 
driver's license or passport.

1.2.4 Related PKI Standards
A number of standards and protocols support PKI certificate implementation.

Cryptographic Message Syntax
Cryptographic Message Syntax (CMS) is a general syntax for data protection 
developed by the Internet Engineering Task Force (IETF). It supports a wide variety of 
content types including signed data, enveloped data, digests, and encrypted data, 
among others. CMS allows multiple encapsulation so that, for example, previously 
signed data can be enveloped by a second party.

Values produced by CMS are encoded using X.509 Basic Encoding Rules (BER), 
meaning that the values are represented as octet strings.

Secure/Multipurpose Internet Mail Extension 
Secure/Multipurpose Internet Mail Extension (S/MIME) is an Internet Engineering 
Task Force (IETF) standard for securing MIME data through the use of digital 
signatures and encryption.

S/MIME provides the following cryptographic security services for electronic 
messaging applications:

■ Authentication

Table 1–1 Summary of Public and Private Key Usage

Function Key Type Whose Key

Encrypt data for a recipient Public key Receiver

Sign data Private key Sender

Decrypt data received Private key Receiver

Verify a signature Public key Sender



About Public Key Infrastructure (PKI)

Introduction to Oracle Security Developer Tools 1-5

■ Message integrity and non-repudiation of origin (using digital signatures)

■ Privacy and data security (using encryption)

Lightweight Directory Access Protocol
Lightweight Directory Access Protocol (LDAP) is the open standard for obtaining and 
posting information to commonly used directory servers. In a public key infrastructure 
(PKI) system, a user's digital certificate is often stored in an LDAP directory and 
accessed as needed by requesting applications and services. 

Time Stamp Protocol
In a Time Stamp Protocol (TSP) system, a trusted third-party Time Stamp Authority 
(TSA) issues time stamps for digital messages. Time stamping proves that a message 
was sent by a particular entity at a particular time, providing non-repudiation for 
online transactions. 

The Time Stamp Protocol, as specified in RFC 3161, defines the participating entities, 
the message formats, and the transport protocol involved in time stamping a digital 
message.

To see how a time-stamping system can work, suppose Sally signs a document and 
wants it time stamped. She computes a message digest of the document using a secure 
hash function and then sends the message digest (but not the document itself) to the 
TSA, which sends her in return a digital time stamp consisting of the message digest, 
the date and time it was received at the TSA server, and the signature of the TSA. Since 
the message digest does not reveal any information about the content of the document, 
the TSA cannot eavesdrop on the documents it time stamps. Later, Sally can present 
the document and time stamp together to prove when the document was written. A 
verifier computes the message digest of the document, makes sure it matches the 
digest in the time stamp, and then verifies the signature of the TSA on the time stamp.

Online Certificate Status Protocol
Online Certificate Status Protocol (OCSP) is one of two common schemes for checking 
the validity of digital certificates. The other, older method, which OCSP has 
superseded in some scenarios, is known as the certificate revocation list (CRL). 

OCSP overcomes the chief limitation of CRL: the fact that updates must be frequently 
down-loaded to keep the list current at the client end. When a user attempts to access a 
server, OCSP sends a request for certificate status information. The server sends back a 
response of good, revoked, or unknown. The protocol specifies the syntax for 
communication between the server (which contains the certificate status) and the client 
application (which is informed of that status). 

Certificate Management Protocol
The certificate management protocol (CMP) handles all relevant aspects of certificate 
creation and management. CMP supports interactions between public key 
infrastructure (PKI) components, such as Certificate Authorities (CAs), Registration 
Authorities (RAs), and end entities that are issued certificates.

1.2.5 Benefits of PKI
PKI provides users with the following benefits:

■ Secure and reliable authentication of users

Reliable authentication relies on two factors. The first is proof of possession of the 
private key part of the public/private pair, which is verified by an automatic 



About Web Services Security

1-6 Developing Secure Applications with Oracle Security Developer Tools

procedure that uses the public key. The second factor is validation by a 
certification authority that a public key belongs to a specific identity. A PKI-based 
digital certificate validates this identity connection based on the key pair.

■ Data integrity

Using the private key of a public/private key pair to sign digital transactions 
makes it difficult to alter the data in transit. This "digital signature" is a coded 
digest of the original message encrypted by the sender's private key. Recipients 
can readily use the sender's corresponding public key to verify who sent the 
message and the fact that it has not been altered. Any change to the message or the 
digest would have caused the attempted verification using the public key to fail, 
telling the recipient not to trust it.

■ Non-repudiation

PKI can also be used to prove who sent a message. The sender encrypts some 
plaintext with her private key to create a digital signature, and when the receiver 
decrypts the message with the sender's public key, the receiver knows that the 
message was indeed sent by that sender, making it difficult for the message 
originator to disown the message; this capability is known as non-repudiation.

■ Prevention of unauthorized access to transmitted or stored information

The time and effort required to derive the private key from the public key makes it 
unlikely that the message would be decrypted by anyone other than the key pair 
owner.

1.3 About Web Services Security
Web services provide a standard way for businesses and other organizations to 
integrate Web-based applications using open standards technologies such as XML, 
SOAP, and WSDL. 

SOAP is a lightweight protocol for exchange of information in a service oriented 
environment. In such an environment, applications can expose selected functionality 
(business logic, for example) for use by other applications. SOAP provides the means 
by which applications supply and consume these services; it is an XML-based protocol 
for message transport in a distributed, decentralized Web Services application 
environment. 

While the core SOAP specification solves many problems related to XML and Web 
Services, it does not provide a means to address message security requirements such 
as confidentiality, integrity, message authentication, and non-repudiation. The need for 
securing SOAP prompted OASIS to put forward the Web Services Security standard, 
which:

■ Specifies enhancements to allow signing and encryption of SOAP messages

■ Describes a general-purpose method for associating security tokens with messages

■ Provides additional means for describing the characteristics of tokens that are 
included with a message

1.4 About the SAML Format
Security Assertions Markup Language (SAML) is an XML-based framework for 
exchanging security information over the Internet. SAML enables the exchange of 
authentication and authorization information between various security services 
systems that otherwise would not be able to interoperate. 



About the SAML Format

Introduction to Oracle Security Developer Tools 1-7

The SAML 1.0, 1.1, and 2.0 specifications were adopted by the Organization for the 
Advancement of Structured Information Standards (OASIS) in 2002, 2003, and 2005 
respectively. OASIS is a worldwide not-for-profit consortium that drives the 
development, convergence, and adoption of e-business standards. 

SAML 2.0 marks the convergence of the Liberty ID-FF, Shibboleth, and SAML 1.0/1.1 
federation protocols.

1.4.1 SAML Assertions
SAML associates an identity (such as an e-mail address or a directory listing) with a 
subject (such as a user or system) and defines the access rights within a specific 
domain. The basic SAML document is the Assertion, which contains declarations of 
facts about a Subject (typically a user). SAML provides three kinds of declarations, or 
Statements:

■ AuthnStatement asserts that the user was authenticated by a particular method at 
a specific time.

■ AttributeStatement asserts that the user is associated with particular attributes or 
details, for example an employee number or account number.

■ AuthzDecisionStatement asserts that the user's request for a certain access to a 
particular resource has been allowed or denied.

Assertions are XML documents generated about events that have already occurred. 
While SAML makes assertions about credentials, it does not actually authenticate or 
authorize users. Example 1–1 shows a typical SAML authentication assertion wrapped 
in a SAMLP response message:

Example 1–1 Sample SAMLP Response Containing a SAML 1.0 Authentication Assertion

<samlp:Response
MajorVersion="1" MinorVersion="0"
ResponseID="128.14.234.20.90123456"
InResponseTo="123.45.678.90.12345678"
IssueInstant="2005-12-14T10:00:23Z"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol">
<samlp:Status>

<samlp:StatusCode Value="samlp:Success" />
</samlp:Status>
<saml:Assertion

MajorVersion="1" MinorVersion="0"
AssertionID="123.45.678.90.12345678"
Issuer="IssuingAuthority.com"
IssueInstant="2005-12-14T10:00:23Z" >
<saml:Conditions

NotBefore="2005-12-14T10:00:30Z"
NotAfter="2005-12-14T10:15:00Z" />

</saml:Conditions
<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2005-12-14T10:00:20Z">
<saml:Subject>

<saml:NameIdentifier NameQualifier="RelyingParty.com">
john.smith

</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:artifact-01



About the SAML Format

1-8 Developing Secure Applications with Oracle Security Developer Tools

</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</samlp:Response>

1.4.2 SAML Requests and Responses
The authority that issues assertions is known as the issuing authority or identity 
provider. An issuing authority can be a third-party service provider or an individual 
business that is serving as an issuing authority within a private federation of 
businesses. SAML-compliant applications and services, which trust the issuing 
authority or identity provider and make use of its services, are called relying parties 
or service providers.

1.4.2.1 SAML Request and Response Cycle
In a typical SAML cycle, the relying party (or service provider), which needs to 
authenticate a specific client request, sends a SAML request to its issuing authority or 
identity provider. The identity provider responds with a SAML assertion, which 
supplies the relying party or service provider with the requested security information. 

For example, when a user signs into a SAML-compliant service of a relying party or 
identity provider, the service sends a "request for authentication assertion" to the 
issuing authority (identity provider). The issuing authority returns an "authentication 
assertion" reference stating that the user was authenticated by a particular method at a 
specific time. The service can then pass this assertion reference to other relying 
party/identity provider sites to validate the user's credentials. When the user accesses 
another SAML-compliant site that requires authentication, that site uses the reference 
to request the "authentication assertion" from the issuing authority or identity 
provider, which states that the user has already been authenticated.

 At the issuing authority, an assertion layer handles request and response messages 
using the SAML protocol, which can bind to various communication and transport 
protocols (HTTP, SOAP, and so on). Note that while the client always consumes 
assertions, the issuing authority or identity provider can act as producer and consumer 
since it can both create and validate assertions.

This cycle is illustrated in Figure 1–1.



About the SAML Format

Introduction to Oracle Security Developer Tools 1-9

Figure 1–1 SAML Request-Response Cycle

This figure shows a SAML request and response cycle, and shows a user, boxes for 
relying parties, and a box for the issuing authority. The user or client request first goes 
to the relying party, which sends a SAML request to its issuing authority. The issuing 
authority responds with a SAML assertion, which supplies the relying party with the 
requested security information. Two-way arrows denote the client communication 
with the relying party (there can be more than one relying party), and also denote the 
request-response communication between the relying party and issuing authority. 

Finally, the box for the issuing authority separates out the assertion layer (SAML) from 
the transport layer (HTTP, SOAP, and so on) to show that the communication between 
these layers enables the issuing authority to create and validate assertions.

1.4.2.2 SAML Protocol Bindings and Profiles
SAML defines a protocol for requesting and obtaining assertions (SAMLP). Bindings 
define the standard way that SAML request and response messages are transported 
across the issuing authorities (identity providers) and relying parties (identity 
providers) by providing mappings between SAML messages and standard 
communication protocols. For example, the defined transport mechanism for SAML 
requests and responses is Simple Object Access Protocol (SOAP) over HTTP. This 
enables the exchange of SAML information across several Web services in a standard 
manner.

A profile describes how SAML assertion and protocol messages are combined with 
particular transport bindings to achieve a specific practical use case. Among the most 
widely-implemented SAML profiles, for example, are Web browser profiles for single 
sign-on and SOAP profiles for securing SOAP payloads.

1.4.2.3 SAML and XML Security
In addition, SAML was designed to integrate with XML Signature and XML 
Encryption, standards from the World Wide Web Consortium for embedding 
encrypted data or digital signatures within an XML document. This support for XML 
signatures allows SAML to handle not only authentication, but also message integrity 



About Identity Federation

1-10 Developing Secure Applications with Oracle Security Developer Tools

and nonrepudiation of the sender. See Chapter 8 for more information about Oracle 
XML Security.

1.5 About Identity Federation
As global businesses strive for ever-closer relationships with suppliers and customers, 
they face challenges in creating more intimate, yet highly secure trading relationships.

Parties conducting a business transaction must be certain of the identity of the person 
or agent with whom they are dealing; they must also be assured that the other has the 
authority to act on behalf of the business with whom the transaction is being 
conducted.

Historically, in the course of doing business with partners, companies have resorted to 
acquiring names, responsibilities, and other pertinent information about all entities 
who might act on behalf of the partner company. With changing roles and 
responsibilities, and particularly in large enterprises, this can create significant 
logistical problems as the data quickly becomes very costly to maintain and manage. 

Besides complexity, other challenges include cost control, enabling secure access to 
resources for employees and customers, and regulatory compliance, among others.

These requirements are driving the move toward Federated Identity Management, in 
which parties establish trust relationships that allow one party to recognize and rely 
upon security tokens issued by another party.

Key federation concepts include:

■ Principal - the key actor in a federated environment, being an entity that performs 
an authorized business task

■ Identity Provider - a service that authenticates a Principal's identity

■ Service Provider - an entity that provides a service to a principal or another entity. 
For example, a travel agency can act as a Service Provider to a partner's employees 
(principals).

■ Single Sign-on - the Principal's ability to authenticate with one system entity (the 
Identity Provider), and have other entities (the Service Providers) honor that 
authentication

The Liberty Alliance is an open organization which establishes technology and 
business standards for Federated Identity Management to facilitate interoperable 
identity services.

1.6 Overview of Oracle Security Developer Tools
This section provides an introduction to the Oracle Security Developer Tools, which 
are pure java tools that enable you to implement a wide range of security tasks and 
projects using the standards we described in earlier sections of this chapter. It contains 
these topics:

■ Toolkit Architecture

■ Supported Standards

■ Oracle Crypto

■ Oracle Security Engine

■ Oracle CMS

■ Oracle S/MIME



Overview of Oracle Security Developer Tools

Introduction to Oracle Security Developer Tools 1-11

■ Oracle PKI SDK

■ Oracle XML Security

■ Oracle SAML

■ Oracle Web Services Security

■ Oracle Liberty SDK

■ Oracle XKMS

■ Oracle JWT

1.6.1 Toolkit Architecture
It is useful to consider the tools in the toolkit as a whole, and then to look at functional 
subsets of tools for different applications.

Overall Architecture

Figure 1–2 The Oracle Security Developer Tools

Figure 1–2 shows the components of the Oracle Security Developer Tools. Typically, a 
tool will utilize functions provided by the tool immediately below it in the stack. For 
example, the Oracle SAML tool leverages functions provided by the Oracle XML 
Security tool. 

Note that:

■ Conceptually, the tools can be considered to be arranged in layers with the 
fundamental building blocks at the bottom layer; each additional layer utilizes and 
builds upon the layer immediately below, to provide tools for specific security 
applications. 

■ The figure is not intended as a hierarchy or sequence diagram. Rather, it illustrates 
the relationship among components and the progression from low-level tools to 
more specialized and application-specific components higher up the stack.

Oracle Crypto and Oracle Security Engine are the basic cryptographic tools of the set. 
The next layer consists of Oracle CMS for message syntax, Oracle XML Security for 
signature encryption, and Oracle PKI SDK, which is a suite of PKI tools consisting of 
Oracle PKI LDAP SDK, Oracle PKI TSP SDK, Oracle PKI OCSP SDK, and Oracle PKI 



Overview of Oracle Security Developer Tools

1-12 Developing Secure Applications with Oracle Security Developer Tools

CMP SDK. Oracle S/MIME exploits Oracle CMS to provide a toolset for secure e-mail. 
The next layer contains Oracle SAML and Oracle Liberty SDK, which provides 
structured assertion markup and federated identity management capabilities. Finally, 
Oracle Web Services Security provides web services security.

For a description of each tool, see these sections:

■ Oracle Crypto

■ Oracle Security Engine

■ Oracle CMS

■ Oracle S/MIME

■ Oracle PKI SDK

■ Oracle XML Security

■ Oracle SAML

■ Oracle Web Services Security

■ Oracle Liberty SDK

■ Oracle XKMS

■ Oracle JWT

Tools for XML, SAML, and Web Services Security Applications
In addition to providing security for XML documents, the Oracle XML Security 
package provides the foundation for these components of the toolkit:

■ Oracle Web Services Security 

■ Oracle SAML for developing SAML 1.0 and 2.0-compliant Java security services

■ Oracle Liberty SDK for single sign-on (SSO) and federated identity applications 
based on Liberty Alliance specifications

Figure 1–3 Tools for XML, SAML, and WS Security

This graphic shows that Oracle SAML, Oracle Web Services Security, and Oracle 
Liberty tools are built on Oracle XML Security.



Overview of Oracle Security Developer Tools

Introduction to Oracle Security Developer Tools 1-13

Tools for Public Key Cryptography (PKI) Applications
The Oracle PKI package consists of tools for working with digital certificates within an 
LDAP repository, for developing timestamp services conforming to RFC 3161, for 
OCSP messaging compliant with RFC 2560, and tools for the certificate management 
protocol (CMP) specification. The Oracle PKI package also provides the foundation for 
Oracle XKMS, which enables you to develop XML transactions for digital signature 
processing.

Figure 1–4 PKI Tools

This graphic shows that Oracle's XKMS tool is built on Oracle PKI tools, which consist 
of Oracle LDAP, Oracle TSP, Oracle OCSP, and Oracle CMP.

Tools for E-mail Security Applications
Oracle CMS provides tools for reading and writing CMS objects, as well as the 
foundation for the Oracle S/MIME tools for e-mail security, including certificate 
parsing and verification, X.509 certificates, private key encryption, and related 
features.

Figure 1–5 CMS and S/MIME Tools

This graphic shows that Oracle's S/MIME tool is built on Oracle CMS.

Note: A diagram like this is necessarily simplified; in practice the jar 
relationships between the Oracle Security Developer Tools are 
complex and dependent upon implementation details. For example, to 
use the SAML libraries, you actually need several components:

■ The Oracle XML Security library is needed as SAML requires 
signatures.

■ Oracle Security Engine provides certificate and CRL management 
features

See Figure 1–2, "The Oracle Security Developer Tools" for a more 
complete picture of dependencies. See the subsequent tool chapters in 
this guide for instructions on setting up the classpath for each tool, so 
that you have the correct environment for each type of application.



Overview of Oracle Security Developer Tools

1-14 Developing Secure Applications with Oracle Security Developer Tools

Tools for Low-level Cryptographic Applications
Oracle Crypto provides a broad range of cryptographic algorithms, message digests, 
and MAC algorithms, as well as the basis for the Oracle Security Engine for X.509 
certificates and CRL extensions.

Figure 1–6 Cryptographic Tools

This graphic shows that Oracle Security Engine is built upon the Oracle Crypto tool.

1.6.2 Supported Standards
The Oracle Security Developer Tools support the standards and protocols shown in 
Table 1–2.

Table 1–2  Supported Standards

Feature/Component Standard

SAML ■ SAML 1.0

■ SAML 1.1

■ SAML 2.0

XML Security Transforms The following transforms are supported:

■ canonicalization 1.0 

■ canonicalization 1.1

■ exclusive canonicalization

■ decrypt transform

■ xpath filter transform

■ xpath filter 2.0 transform

■ enveloped signature transform

WS-Security WS-Security 1.1, including:

■ WS-Security Core Specification 1.1

■ Username Token Profile 1.1

■ X.509 Token Profile 1.1

■ SAML Token profile 1.1

■ Kerberos Token Profile 1.1

■ SOAP with Attachments (SWA) Profile 1.1

Note: By way of clarification, note that SAML token profile 1.1 
applies to SAML 2.0, while SAML token profile 1.0 applies to SAML 
1.0 and SAML 1.1.



Overview of Oracle Security Developer Tools

Introduction to Oracle Security Developer Tools 1-15

1.6.3 Oracle Crypto
The Oracle Crypto toolkit provides the following features:

■ Public key cryptography algorithms such as RSA

■ Digital signature algorithms such as Digital Signature Algorithm (DSA) and RSA

■ Key exchange algorithms such as Diffie-Hellman 

■ Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2, and 
RC4

■ Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384, 
and SHA-512

■ MAC algorithms such as HMAC-MD5 and HMAC-SHA-1

■ Methods for building and parsing ASN.1 objects

1.6.4 Oracle Security Engine
The Oracle Security Engine toolkit provides the following features:

■ X.509 Version 3 Certificates, as defined in RFC 3280

■ Full PKCS#12 support

■ PKCS#10 support for certificate requests

■ CRLS as defined in RFC 3280

■ Implementation of Signed Public Key And Challenge (SPKAC)

■ Support for X.500 Relative Distinguished Name

■ PKCS#7 support for wrapping X.509 certificates and CRLs

■ Implementation of standard X.509 certificates and CRL extensions

1.6.5 Oracle CMS
Oracle CMS provides an extensive set of tools for reading and writing CMS objects, 
and supporting tools for developing secure message envelopes.

Oracle CMS implements the IETF Cryptographic Message Syntax specified in 
RFC-2630. Oracle CMS implements all the RFC-2630 content types.

1.6.6 Oracle S/MIME
Oracle S/MIME provides the following Secure/Multipurpose Internet Mail Extension 
(S/MIME) features:

■ Full support for X.509 Version 3 certificates with extensions, including certificate 
parsing and verification

■ Support for X.509 certificate chains in PKCS#7 and PKCS#12 formats

■ Private key encryption using PKCS#5, PKCS#8, and PKCS#12 

■ An integrated ASN.1 library for input and output of data in ASN.1 DER/BER 
format



Overview of Oracle Security Developer Tools

1-16 Developing Secure Applications with Oracle Security Developer Tools

1.6.7 Oracle PKI SDK
Oracle PKI SDK contains a set of tools for working with digital certificates, including 
access to LDAP directories, date stamping of digital messages, certificate validation, 
and certificate management. It includes the following toolkits:

■ Oracle PKI LDAP SDK

■ Oracle PKI TSP SDK

■ Oracle PKI OCSP SDK

■ Oracle PKI CMP SDK

1.6.7.1 Oracle PKI LDAP SDK
Oracle PKI LDAP SDK provides facilities for accessing a digital certificate within an 
LDAP directory. Some of the tasks you can perform using the Oracle PKI LDAP SDK 
are: 

■ Validating a user's certificate in an LDAP directory

■ Adding a certificate to an LDAP directory

■ Retrieving a certificate from an LDAP directory

■ Deleting a certificate from an LDAP directory

1.6.7.2 Oracle PKI TSP SDK
The Oracle PKI TSP SDK provides the following features and functionality:

■ Oracle PKI TSP SDK conforms to RFC 3161 and is compatible with other products 
that conform to this time stamp protocol (TSP) specification.

■ Oracle PKI TSP SDK provides an example implementation of a TSA server to use 
for testing TSP request messages, or as a basis for developing your own time 
stamping service.

1.6.7.3 Oracle PKI OCSP SDK
The Oracle PKI OCSP SDK provides the following features and functionality:

■ The Oracle PKI OCSP SDK conforms to RFC 2560 and is compatible with other 
products that conform to this specification, such as Valicert's Validation Authority.

■ The Oracle PKI OCSP SDK API provides classes and methods for constructing 
OCSP request messages that can be sent through HTTP to any RFC 2560 compliant 
validation authority.

■ The Oracle PKI OCSP SDK API provides classes and methods for constructing 
responses to OCSP request messages, and an OCSP server implementation that 
you can use as a basis for developing your own OCSP server to check the validity 
of certificates you have issued. 

1.6.7.4 Oracle PKI CMP SDK
The set of functions supported by certificate management protocol (CMP) messages 
are:

■ Registration of an entity, which takes place prior to issuing a certificate

■ Initialization, such as the generation of a key pair

■ Certification (issuing certificates)



Overview of Oracle Security Developer Tools

Introduction to Oracle Security Developer Tools 1-17

■ Key pair recovery for reissuing lost keys

■ Key pair updates when a certificate expires and a new key pair and certificate 
needs to be generated

■ Revocation requests to the CA to include a certificate in a CRL

■ Cross-certification between two CAs

The Oracle PKI CMP SDK conforms to RFC 2510 and is compatible with other 
products that conform to this certificate management protocol (CMP) specification. In 
addition, it conforms to RFC 2511 and is compatible with other products that conform 
to this certificate request message format (CRMF) specification.

1.6.8 Oracle XML Security
XML Security refers to the common data security requirements of XML documents, 
such as confidentiality, integrity, message authentication, and non-repudiation.

Oracle XML Security fulfills these needs by providing the following features:

■ Support for the Decryption Transform proposed standard

■ Support for the XML Canonicalization standard

■ Support for the Exclusive XML Canonicalization standard

■ Compatibility with a wide range of JAXP 1.1 compliant XML parsers and XSLT 
engines

1.6.9 Oracle SAML
The Oracle SAML API provides tools and documentation to assist developers of 
SAML-compliant Java security services. You can integrate Oracle SAML into existing 
Java solutions, including applets, applications, EJBs, servlets, and JSPs. 

Oracle SAML provides the following features:

■ Support for the SAML 1.0/1.1 and 2.0 specifications 

■ Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced 
Client Proxy, and federated identity profiles

1.6.10 Oracle Web Services Security
Oracle Web Services Security provides an authentication and authorization framework 
based on Organization for the Advancement of Structured Information Standards 
(OASIS) specifications. Oracle Web Services Security provides the following features: 

■ Support for the SOAP Message Security standard (SOAP 1.1, 1.2)

■ Support for the Username Token Profile standard (UsernameToken Profile 1.1)

■ Support for the X.509 Certificate Token Profile standard

■ Support for the WSS SAML Token Profile (version 1.0)

Note: The WSS SAML Token Profile version is different from the 
SAML version.



References

1-18 Developing Secure Applications with Oracle Security Developer Tools

1.6.11 Oracle Liberty SDK
Oracle Liberty SDK allows Java developers to design and develop single sign-on (SSO) 
and federated identity solutions based on the Liberty Alliance specifications. Oracle 
Liberty SDK, available in versions 1.1 and 1.2, aims to unify, simplify, and extend all 
aspects of development and integration of systems conforming to the Liberty Alliance 
1.1 and 1.2 specifications. 

 Oracle Liberty SDK provides the following features:

■ Support for the Liberty Alliance Project version 1.1 and 1.2 specifications

■ Support for Liberty-based Single Sign-on and Federated Identity

1.6.12 Oracle XKMS
Oracle XKMS (XML Key Management Specification) provides a convenient way to 
handle public key infrastructures by allowing developers to write XML transactions 
for digital signature processing. Oracle XKMS implements the W3C XKMS standard 
and avoids some of the cost and complexity involved with public key infrastructures.

1.6.13 Oracle JWT
Oracle JWT (JSON Web Token) provides support for the JSON Web Token standard. 
Using Oracle JWT, you can construct and maintain JSON objects to represent claims 
being transferred between parties using a compact token format.

1.7 References
For example code demonstrating usage of Oracle Security Developer Tools, see My 
Oracle Support Knowledge Base Doc ID 1333968.1. (Note: This article is provided for 
reference only, and is applicable to Release 10g only.)



2

Migrating to the JCE Framework 2-1

2 Migrating to the JCE Framework

[3] The Oracle Security Developer Tools framework in 11g Release 1 (11.1.1) introduced 
changes to low-level libraries to comply with the Java Cryptography Extension (JCE) 
framework.

The changes affect pre-11g versions of both client programs and higher-level libraries 
of the Oracle Security Developer Tools. 

This chapter describes how the change affect the toolkit architecture, and explain how 
you can migrate your programs to leverage the new functions. It contains these topics:

■ About The JCE Framework

■ Working with JCE Keys

■ Working with JCE Certificates

■ Creating JCE Certificate Revocation Lists (CRLs)

■ Working with JCE Keystores

■ The Oracle JCE Provider Java API Reference

Additional Reading
The primary focus of this chapter is on the changes to the Oracle Security Developer 
Tools for the JCE framework, and how to migrate your existing security artifacts to JCE 
objects. 

For more information about how to utilize the capabilities of the JCE framework and 
security-related APIs, including such topics as generating different types of keys and 
key pairs, certificates, and so on, refer to the JDK 6 Security documentation at 
http://docs.oracle.com/javase/6/docs/technotes/guides/security/index.html.

2.1 About The JCE Framework
Prior to Oracle Fusion Middleware 11g, Oracle Security Developer Tools used a 
cryptographic engine that was developed before the adoption of JCE in the market. To 
enable applications like Oracle WebLogic Server to adopt JCE, starting with Oracle 
Fusion Middleware 11g the Oracle Security Developer Tools have standardized on 
low-level libraries that are compliant with the Java Cryptography Extension (JCE) 
framework. Benefits of the new toolkit include: 

■ standards-based implementations of cryptographic and certificate management 
engines

■ a pluggable JCE provider architecture that enables you to leverage third-party JCE 
provider implementations



Working with JCE Keys

2-2 Developing Secure Applications with Oracle Security Developer Tools

■ the ability to use third-party providers as the cryptographic engine

2.2 Working with JCE Keys
In OracleAS 11gR1, the higher level toolkits (Oracle XML Security, Oracle Web Services 
Security, Oracle CMS, Oracle S/MIME, Oracle XKMS) have changed so that instead of 
taking Oracle cryptographic keys and certificates, they take standard JCE keys and 
certificates. Thus, APIs that were taking oracle.security.crypto.core.PublicKey 
now take a java.security.PublicKey.

■ oracle.security.crypto.core.PublicKey changed to java.security.PublicKey

■ oracle.security.crypto.core.PrivateKey changed to 
java.security.PrivateKey

■ oracle.security.crypto.core.SymmetricKey changed to 
javax.crypto.SecretKey

2.2.1 Converting an Existing Key Object to a JCE Key Object
If you are using a java.security.KeyStore to store your keys, you will directly get a 
java.security.PrivateKey object from it, so you do not need to do any conversion.

However if you are using a oracle.security.crypto.cert.PKCS12 object to store your 
keys, you will get an oracle.security.crypto.core.PrivateKey from it, and then you need 
to convert to a java.security.PrivateKey object.

Converting a Private Key from Oracle Security Developer Tools to JCE Object
//***** Conversion or PrivateKeys from OSDT -> JCE *******
{
// Example code to convert an RSAPrivateKey (non CRT) to JCE
oracle.security.crypto.core.RSAPrivateKey osdtKey = null;
RSAPrivateKeySpec keySpec = new RSAPrivateKeySpec(
osdtKey.getModulus(), osdtKey.getExponent());
KeyFactory kf = KeyFactory.getInstance("RSA");
RSAPrivateKey jceKey = (RSAPrivateKey)kf.generatePrivate(keySpec);
}
 
{
// Example code to convert an RSAPrivateKey (CRT) to JCE
oracle.security.crypto.core.RSAPrivateKey osdtKey = null;
RSAPrivateKeySpec keySpec = new RSAPrivateCrtKeySpec(
osdtKey.getModulus(),
osdtKey.getPublicExponent(),
osdtKey.getExponent(),
osdtKey.getPrimeP(),
osdtKey.getPrimeQ(),
osdtKey.getPrimeExponentP(),
osdtKey.getPrimeExponentQ(),
osdtKey.getCrtCoefficient());
KeyFactory kf = KeyFactory.getInstance("RSA");
RSAPrivateCrtKey jceKey = (RSAPrivateCrtKey)kf.generatePrivate(keySpec);
 

Note: This discussion highlights changes in the Oracle Security 
Developer Tools in support of JCE. For fuller details of all the available 
cryptographic functions, see the API documentation.



Working with JCE Keys

Migrating to the JCE Framework 2-3

}
 
{
// Example code to convert a DSAPrivateKey to JCE
oracle.security.crypto.core.DSAPrivateKey osdtKey = null;
DSAPrivateKeySpec keySpec = new DSAPrivateKeySpec(
osdtKey.getX(),
osdtKey.getParams().getP(),
osdtKey.getParams().getQ(),
osdtKey.getParams().getG());
 
KeyFactory kf = KeyFactory.getInstance("DSA");
DSAPrivateKey jceKey = (DSAPrivateKey)kf.generatePrivate(keySpec);
 
}
 
{
// Example code to convert a DHPrivateKey to JCE
oracle.security.crypto.core.DHPrivateKey osdtKey = null;
 
// Note q is assumed to be (p-1)/2
DHPrivateKeySpec keySpec = new DHPrivateKeySpec(
osdtKey.getX(),
osdtKey.getParams().getP(),
osdtKey.getParams().getG());
 
KeyFactory kf = KeyFactory.getInstance("DiffieHelman");
DHPrivateKey jceKey = (DHPrivateKey)kf.generatePrivate(keySpec);
 
}

Converting a Private Key from JCE Object to Oracle Security Developer Tools
//***** Conversion or Private Keys from JCE -> OSDT *******
{
// Example code to convert an RSAPrivateKey (non CRT) to OSDT
RSAPrivateKey jceKey = null;
oracle.security.crypto.core.RSAPrivateKey osdtKey =
new oracle.security.crypto.core.RSAPrivateKey(
jceKey.getModulus(),
jceKey.getPrivateExponent());
}
 
{
// Example code to convert an RSAPrivateKey (CRT) to OSDT
RSAPrivateCrtKey jceKey = null;
oracle.security.crypto.core.RSAPrivateKey osdtKey =
new oracle.security.crypto.core.RSAPrivateKey(
jceKey.getModulus(),
jceKey.getPrivateExponent(),
jceKey.getPublicExponent(),
jceKey.getPrimeP(),
jceKey.getPrimeQ(),
jceKey.getPrimeExponentP(),
jceKey.getPrimeExponentQ(),
jceKey.getCrtCoefficient());
}
 
{
// Example code to convert an DSAPrivateKey to OSDT



Working with JCE Certificates

2-4 Developing Secure Applications with Oracle Security Developer Tools

DSAPrivateKey jceKey = null;
oracle.security.crypto.core.DSAPrivateKey osdtKey =
new oracle.security.crypto.core.DSAPrivateKey(
jceKey.getX(),
new oracle.security.crypto.core.DSAParams(
jceKey.getParams().getP(),
jceKey.getParams().getQ(),
jceKey.getParams().getG()));
}
 
{
// Example code to convert an DHPrivateKey to OSDT
DHPrivateKey jceKey = null;
 
// Note calculate q = (p-1)/2
oracle.security.crypto.core.DHPrivateKey osdtKey =
new oracle.security.crypto.core.DHPrivateKey(
jceKey.getX(),
new oracle.security.crypto.core.DHParams(
jceKey.getParams().getP(),
jceKey.getParams().getG(),
jceKey.getParams().getP().subtract(new BigInteger("1")).divide(new 
BigInteger("2"))));
}

2.3 Working with JCE Certificates
 In OracleAS 11gR1, oracle.security.crypto.cert.X509 is changed to 
java.security.cert.X509Certificate.

Several utility methods are available for creating and working with JCE certificates:

2.3.1 Switching to a JCE Certificate
An X509Certificate  object can be created from an input stream using 
java.security.cert.CertificateFactory. The input stream can be one of the following:

■ a FileInputSream, if the certificate is stored in a file, or

■ a ByteArrayInputStream, if we got the encoded bytes from an old X509 object, or 

■ any other sources.

For example, the following code converts an Oracle Security Developer Tools 
certificate to a JCE certificate:

CertificateFactory cf = CertificateFactory.getInstance("X.509");
  
X509Certificate cert = (X509Certificate)cf.generateCertificate(
    new FileInputStream(certFileName);

where certFileName is the name of the certificate file.

2.4 Creating JCE Certificate Revocation Lists (CRLs)
 In OracleAS 11gR1, oracle.security.crypto.cert.CRL is replaced by 
java.security.cert.CRL.

You can create the java.security.cert.CRL object:



Working with JCE Keystores

Migrating to the JCE Framework 2-5

■ from an input stream

■ by using java.security.cert.CertificateFactory

The input stream can be one of the following:

■ FileInputSream, if the CRL is stored in a file

■ ByteArrayInputStream, if the encoded bytes were obtained from an old 
oracle.security.crypto.cert.CRL object

■ any other source

Here is an example of a CRL object creation:

CertificateFactory cf = CertificateFactory.getInstance("X.509");
 
509Certificate cert = (X509Certificate)cf.generateCRL(

new FileInputStream(crlFileName));

where the crlFileName is the name of the CRL file.

2.5 Working with JCE Keystores
Oracle Security Developer Tools provide four types of keystore:

1. the JKS keystore, which is Sun Microsystem's implementation of the 
java.security.KeyStore interface

2. the Oracle wallet, which is Oracle's implementation of the java.security.KeyStore 
interface

3. the PKCS12 wallet, which is a proprietary Oracle interface/implementation of 
PKCS12

4. the PKCS8 wallet, which is a proprietary Oracle interface/implementation of 
PKCS8 

2.5.1 Working with standard KeyStore-type Wallets
You can instantiate a Keystore object using either a Sun Microsystems provider or an 
Oracle provider depending on the keystore format.

JKS Keystore
This example instantiates a JKS keystore for the JKS provider:

java.security.KeyStore keystore = KeyStore.getInstance("JKS", "SUN");

Oracle Keystore
This example instantiates a PKCS12 wallet for the Oracle provider:

java.security.KeyStore keystore = KeyStore.getInstance("PKCS12", "OraclePKI");

Loading a Keystore File
You perform this task with the keystore.load method:

keystore.load(new FileInputStream(walletFile), pass);



The Oracle JCE Provider Java API Reference

2-6 Developing Secure Applications with Oracle Security Developer Tools

Certificate Retrieval
To retrieve a certificate and private key using an alias:

Key key = keystore.getKey(alias);

Certificate cert = keystore.getCert(alias);

If the alias is not known in advance, you can list all aliases by calling:

keystore.aliases();

2.5.2 Working with PKCS12 and PKCS8 Wallets
If you maintain keystores in the PKCS12 or PKCS8 oracle wallet format, you can 
retrieve keys, certificates or CRLs from those stores in Oracle Security Developer Tools 
format. 

Key Retrieval
In Oracle wallets, the key is found in oracle.security.crypto.core.PrivateKey.

After retrieval, you can convert the keys into the JCE key format, using the utility class 
PhaosJCEKeyTranslator.

For more information, see Section 2.2.1, "Converting an Existing Key Object to a JCE 
Key Object".

Certificate Retrieval
In Oracle wallets, the certificate is found in oracle.security.crypto.cert.X509.

After retrieval, you can:

1. get the encoded value of the X509 certificate, for example X509.getEncoded();

2. use the CertificateFactory to create a X509Certificate instance, based on the 
encoded bytes value.

For more information, see . Section 2.3, "Working with JCE Certificates".

CRL Retrieval
In Oracle wallets, the CRL is found in oracle.security.crypto.cert.CRL.

After retrieval, you can:

1. get the encoded value of the CRL, for example CRL.getEncoded();

2. use the CertificateFactory to create a java.security.cert.CRL instance, based on the 
encoded bytes value.

For more information, see Section 2.4, "Creating JCE Certificate Revocation Lists 
(CRLs)".

2.6 The Oracle JCE Provider Java API Reference
The Oracle JCE Provider API (Javadoc) is available at:

Oracle Fusion Middleware JCE Java API Reference for Oracle Security Developer Tools



3

Oracle Crypto 3-1

3 Oracle Crypto

[4] This chapter provides information about using the Oracle Crypto Software 
Development Kit (SDK). Oracle Crypto allows Java developers to create applications 
that ensure data security and integrity. 

This chapter contains the following topics:

■ Oracle Crypto Features and Benefits

■ Setting Up Your Oracle Crypto Environment

■ Core Classes and Interfaces

■ The Oracle Crypto and Crypto FIPS Java API References

3.1 Oracle Crypto Features and Benefits
Oracle Crypto provides the following features:

■ Public key cryptography algorithms such as RSA

■ Digital signature algorithms such as DSA and RSA

■ Key exchange algorithms such as Diffie-Hellman

■ Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2, and 
RC4

■ Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384, 
and SHA-512

■ MAC algorithms such as HMAC-MD5 and HMAC-SHA-1

■ Methods for building and parsing ASN.1 objects

Note: The use of the Oracle Crypto library is not recommended 
beginning with Oracle AS 11gR1. Instead, use the standard JCE 
interface for all cryptographic operations.

However, for ASN.1 parsing you should continue to use the Oracle 
Crypto library, as there are no standard APIs in the JDKs for that task. 

For more information, see these resources:

■ JDK documentation on using the JCE interfaces at 
http://java.sun.com/javase/6/docs/technotes/guides/securi
ty/crypto/CryptoSpec.html

■ Chapter 2, "Migrating to the JCE Framework"



Setting Up Your Oracle Crypto Environment

3-2 Developing Secure Applications with Oracle Security Developer Tools

3.1.1 Oracle Crypto Packages
Oracle Crypto contains the following packages:

■ oracle.security.crypto.core - Basic cryptographic primitives

■ oracle.security.crypto.core.math - Utility classes for handling mathematical 
functions

■ oracle.security.crypto.util - Various utility classes

■ oracle.security.crypto.asn1 - Facilities for reading and writing both 
BER-encoded and DER-encoded ASN.1 structures

3.2 Setting Up Your Oracle Crypto Environment
This section explains how to set up your environment to use Oracle Crypto. It contains 
the following topics:

■ System Requirements for Oracle Crypto

■ Setting the CLASSPATH Environment Variable

3.2.1 System Requirements for Oracle Crypto
In order to use the Oracle Crypto SDK, your system must have the Java Development 
Kit (JDK) version 1.6 or higher. 

3.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to the 
required jar and class files. Make sure that the osdt_core.jar file is included in your 
CLASSPATH.

3.2.2.1 Setting the CLASSPATH on Windows
To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

5. Add the full path and file names for all of the required jar and class files to the 
CLASSPATH. 

For example, your CLASSPATH might look like this:

%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar

6. Click OK.

3.2.2.2 Setting the CLASSPATH on UNIX 
On UNIX, set your CLASSPATH environment variable to include the full path and file 
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar



Core Classes and Interfaces

Oracle Crypto 3-3

3.3 Core Classes and Interfaces
This section provides information and code samples for using the core classes and 
interfaces of Oracle Crypto. The core classes and interfaces are divided into the 
following categories:

■ About Key Classes and Interfaces

■ Generating Keys and Key Pairs

■ Working with Ciphers

■ Using Signature Algorithms

■ Working with Message Digests

■ Working with Key Agreement Schemes

■ Using Pseudo-Random Number Generators

3.3.1   About Key Classes and Interfaces
Oracle Crypto provides the following classes and interfaces for working with keys:

■ About the oracle.security.crypto.core.Key Interface

■ About the oracle.security.crypto.core.PrivateKey Interface

■ About the oracle.security.crypto.core.PublicKey Interface

■ About the oracle.security.crypto.core.SymmetricKey Class

3.3.1.1 About the oracle.security.crypto.core.Key Interface
This interface represents a key which may be used for encryption or decryption, for 
generating or verifying a digital signature, or for generating or verifying a MAC. A 
key may be a private key, a public key, or a symmetric key.

3.3.1.2 About the oracle.security.crypto.core.PrivateKey Interface
This interface represents a private key which may be an RSAPrivateKey, a 
DSAPrivateKey, a DHPrivateKey, an ECPrivateKey or a PrivateKeyPKCS8 instance that 
holds an encrypted private key.

3.3.1.3 About the oracle.security.crypto.core.PublicKey Interface
This interface represents a public key which may be a RSAPublicKey, a DSAPublicKey, 
a DHPublicKey or a ECPublicKey instance.

3.3.1.4 About the oracle.security.crypto.core.SymmetricKey Class
This class represents a symmetric key which may be used for encryption, decryption 
or for MAC operations.

3.3.2 Generating Keys and Key Pairs
Oracle Crypto provides the following classes for key generation:

■ Using the oracle.security.crypto.core.KeyPairGenerator Class

■ Using the oracle.security.crypto.core.SymmetricKeyGenerator Class



Core Classes and Interfaces

3-4 Developing Secure Applications with Oracle Security Developer Tools

3.3.2.1 Using the oracle.security.crypto.core.KeyPairGenerator Class
This abstract class is used to generate key pairs such as RSA, DSA, Diffie-Hellman or 
ECDSA key pairs.

To get a new key pair generator, create a new instance of KeyPairGenerator by calling 
the static getInstance() method with an AlgorithmIdentifier object as a parameter. 
Example 3–1 shows how to create a new KeyPairGenerator instance:

Example 3–1 Code Example for Creating a New KeyPairGenerator Instance

KeyPairGenerator kpg = KeyPairGenerator.getInstance(AlgID.rsaEncryption);

This creates a KeyPairGenerator object from one of the concrete classes: 
RSAKeyPairGenerator, DSAKeyPairGenerator, DHKeyPairGenerator, or 
ECKeyPairGenerator.

Initialize the key pair generator by using one of the initialize() methods. Generate 
the key pair with the generateKeyPair() method. Example 3–2 shows how to 
initialize the key pair generator and then generate a key pair:

Example 3–2 Code Example for Initializing and Generating a Key Pair

kpg.initialize(1024, RandomBitsSource.getDefault());
KeyPair kp = kpg.generateKeyPair();
PrivateKey privKey = kp.getPrivate();
PublicKey pubKey = kp.getPublic();

Save the keys using the output() method, or in the case of the private key, encrypt it 
and save it using the PrivateKeyPKCS8 class. Example 3–3 shows how to save a key 
pair.

Example 3–3 Code Example for Saving a Key Pair

FileOutputStream pubKeyFos = new
FileOutputStream("my-pub-key.der");
pubKey.output(pubKeyFos);
pubKeyFos.close();

PrivateKeyPKCS8 privKeyPKCS8 = 
new PrivateKeyPKCS8(privKey, "myPassword");

FileOutputStream privKeyFos = 
new FileOutputStream("my-encrypted-priv-key.der");

privKeyPKCS8.output(privKeyFos);
privKeyFos.close();

3.3.2.2 Using the oracle.security.crypto.core.SymmetricKeyGenerator Class
This class generates symmetric key pairs such as Blowfish, DES, 3DES, RC4, RC2, AES, 
and HMAC keys.

To get a new symmetric key generator, create a new instance of 
SymmetricKeyGenerator by calling the static getInstance() method with an 
AlgorithmIdentifier object as a parameter. Example 3–4 shows how to create a new 
SymmetricKeyGenerator instance:

Example 3–4 Code Example for Creating a New SymmetricKeyGenerator Instance

SymmetricKeyGenerator skg = SymmetricKeyGenerator.getInstance(AlgID.desCBC);



Core Classes and Interfaces

Oracle Crypto 3-5

Generate the key pair with the generateKey() method. You can then save the key by 
using the getEncoded() method. Example 3–5 shows how to generate and save a 
symmetric key pair.

Example 3–5 Code Example for Generating and Saving Symmetric Keys

SymmetricKey sk = skg.generateKey();

FileOutputStream symKeyFos = 
new FileOutputStream("my-sym-key.der");

symKeyFos.write(sk.getEncoded());
symKeyFos.close();

3.3.3 Working with Ciphers
The Oracle Crypto Cipher classes and interfaces are divided into the following 
categories:

■ Using Symmetric Ciphers

■ Using the RSA Cipher

■ Using Password-based Encryption

3.3.3.1 Using Symmetric Ciphers
The symmetric ciphers are made up of two categories: the block ciphers (such as 
Blowfish, DES, 3DES, RC2, and AES) and the stream ciphers (such as RC4).

A symmetric cipher can be used for four types of operations:

■ Encryption of raw data. Use one of the encrypt() methods by passing data to be 
encrypted.

■ Decryption of encrypted data. Use one of the decrypt() methods by passing 
encrypted data to be decrypted.

■ Wrapping of private or symmetric keys. Use one of the wrapKey() methods by 
passing the private or symmetric key to be encrypted.

■ Unwrapping of private or symmetric encrypted keys. Use either the 
unwrapPrivateKey() or the unwrapSymmetricKey() method by passing the 
encrypted private or symmetric key to be decrypted.

The concrete block cipher classes extend the abstract 
oracle.security.crypto.core.BlockCipher class, which extends the 
oracle.security.crypto.core.Cipher class. The stream cipher classes directly 
extend the oracle.security.crypto.core.Cipher class.

To create a new instance of Cipher, call the static getInstance() method with an 
AlgorithmIdentifier and a Key object as parameters. 

Example 3–6 shows how to create a new Cipher instance. First an RC4 object is created 
and initialized with the specified key. Second a block cipher DES object is created and 
initialized with the specified key and padding. This creates a cipher and initializes it 
with the passed parameters. To re-initialize an existing cipher, call one of the 
initialize() methods.

Example 3–6 Code Example for Creating a Cipher Instance

Cipher rc4 = Cipher.getInstance(AlgID.rc4, rc4SymKey);



Core Classes and Interfaces

3-6 Developing Secure Applications with Oracle Security Developer Tools

Cipher desCipher = Cipher.getInstance(AlgID.desCBC, desSymKey, Padding.PKCS5);

When using CBC ciphers, the AlgorithmIdentifier object may hold cryptographic 
parameters such as the initialization vector (IV) or the effective key length for RC2 
ciphers. To specify these parameters when creating or initializing block ciphers, build a 
CBCAlgorithmIdentifier object or RC2AlgorithmIdentifier object with the 
cryptographic parameters. Example 3–7 shows how to create and initialize a CBC 
cipher and a RC2 cipher.

Example 3–7 Code Example for Creating and Initializing CBC Ciphers

CBCAlgorithmIdentifier cbcAlgID = 
new CBCAlgorithmIdentifier(AlgID.desCBC, iv);

desCipher.initialize(cbcAlgID, desSymKey, Padding.PKCS5);
RC2AlgorithmIdentifier rc2AlgID = 

new RC2AlgorithmIdentifier(iv, 56);
BlockCipher rc2Cipher = 

(BlockCipher)Cipher.getInstance(rc2AlgID, rc2SymKey, Padding.PKCS5);

3.3.3.2 Using the RSA Cipher
The RSA cipher is an implementation of PKCS#1 v2.0 that supports the RSAES-OAEP 
and RSAES-PKCS1-v1_5 encryption schemes. According to the specification, 
RSAES-OAEP is recommended for new applications, and RSAES-PKCS1-v1_5 is 
included only for compatibility with existing applications and protocols.

The encryption schemes are used to combine RSA encryption and decryption 
primitives with an encoding method. Encryption and decryption can only be done 
through the methods encrypt(byte[]) and decrypt(byte[]).

You can use an RSA cipher for four types of operations:

■ Encryption of raw data. Use one of the encrypt() methods by passing data to be 
encrypted.

■ Decryption of encrypted data. Use one of the decrypt() methods by passing 
encrypted data to be decrypted.

■ Wrapping of keys. Use the wrapKey() method by passing the key to be encrypted.

■ Unwrapping of encrypted keys. Use the unwrapSymmetricKey() method by 
passing the encrypted key to be decrypted.

To create a new instance of Cipher, call the static getInstance() method with 
AlgorithmIdentifier and Key objects as parameters. Example 3–8 demonstrates how 
to create an RSApkcs1 object and initialize it with the specified key. The cipher can then 
be used to encrypt or decrypt data.

Example 3–8 Code Example for Creating and Initializing an RSA Cipher

Cipher rsaEnc = Cipher.getInstance(AlgID.rsaEncryption, pubKey);
byte[] encryptedData = rsaEnc.encrypt(data);
Cipher rsaDec = Cipher.getInstance(AlgID..rsaEncryption, privKey);
byte[] decryptedData = rsaDec.decrypt(encryptedData);

When using RSA ciphers, the AlgorithmIdentifier object may hold cryptographic 
parameters such as the mask generation function for RSAES-OAEP. To specify these 
parameters when creating or initializing RSA ciphers, build an 
OAEPAlgorithmIdentifier, or use the default one located in the 
oracle.security.crypto.core.AlgID interface.



Core Classes and Interfaces

Oracle Crypto 3-7

3.3.3.3 Using Password-based Encryption
The abstract oracle.security.crypto.core.PBE class provides methods for Password 
Based Encryption (PBE) operations. The concrete classes extending the PBE are the 
PKCS5PBE and PKCS12PBE classes.

You can use a PBE object for four types of operations:

■ Encryption of raw data. For example:

byte[] encData = pbeEnc.encrypt("myPassword", data);

■ Decryption of encrypted data. For example:

byte[] decData = pbeDec.decrypt("myPassword", encData);

■ Wrapping of private or symmetric keys. For example:

byte[] encPrivKey = pbeEnc.encryptPrivateKey("myPassword", privKey);
byte[] encSymKey = pbeEnc.encryptSymmetricKey("myPassword", symKey);

■ Unwrapping of private or symmetric encrypted keys. For example:

PrivateKey decPrivKey = pbeDec.decryptPrivateKey("myPassword", encPrivKey);
SymmetricKey decSymKey = pbeDec.decryptSymmetricKey("myPassword", encSymKey);

To create a new instance of PBE, call the static getInstance() method with a 
PBEAlgorithmIdentifier object as a parameter. For example:

PBE pbeEnc = PBE.getInstance(pbeAlgID);

This will create a PKCS5PBE object and initialize it with the specified PBE algorithm. 
The PBE can then be used to encrypt or decrypt data, wrap or unwrap keys.

When using PBE objects, the AlgorithmIdentifier object may hold cryptographic 
parameters such as the salt or the iteration count as well as the ASN.1 Object Identifier 
specifying the PBE algorithm to use. To specify these parameters when creating or 
initializing PBEs, build a PBEAlgorithmIdentifier object with the cryptographic 
parameters.

Example 3–9 Code Example for Creating a PBE Object

PBEAlgorithmIdentifier pbeAlgID = 
new PBEAlgorithmIdentifier(PBEAlgorithmIdentifier.pbeWithMD5AndDES_CBC, salt, 1024);

pbeEnc.initialize(pbeAlgID);
PBE pbeDec = PBE.getInstance(pbeAlgID);

3.3.4 Using Signature Algorithms
The oracle.security.crypto.core.Signature abstract class provides methods to 
sign and verify signatures. The concrete classes extending the Signature class are the 
RSAMDSignature, DSA and the ECDSA classes.

The algorithms available for signature operations are:

■ For RSA: AlgID.md2WithRSAEncryption, AlgID.md5WithRSAEncryption and 
AlgID.sha_1WithRSAEncryption

■ For DSA: AlgID.dsaWithSHA1

■ For ECDSA: AlgID.ecdsaWithSHA1



Core Classes and Interfaces

3-8 Developing Secure Applications with Oracle Security Developer Tools

To create a new instance of Signature, call the static getInstance() method with an 
AlgorithmIdentifier and a PrivateKey or PublicKey objects as parameters. 
Example 3–10 shows how to create a new Signature object and initialize it with the 
specified algorithm.

Example 3–10 Code Example for Creating a New Signature Object

Signature rsaSign = Signature.getInstance(AlgID.md5WithRSAEncryption);
Signature rsaVerif = Signature.getInstance(AlgID.md5WithRSAEncryption);

Example 3–11 shows how to set the keys for the Signature objects and set the 
document to be signed or verified.

Example 3–11 Code Example for Setting Signature Keys and Documents

rsaSign.setPrivateKey(privKey);
rsaSign.setDocument(data);
rsaVerif.setPublicKey(pubKey);
rsaVerif.setDocument(data);

 Example 3–12 shows how to compute the signature using the private key or to verify 
the signature using the public key and the signature bytes.

Example 3–12 Code Example for Computing or Verifying a Signature

byte[] sigBytes = rsaSign.sign();
boolean verified = rsaVerif.verify(sigBytes);

3.3.5 Working with Message Digests
Oracle Crypto provides the following message digest classes:

■ Using the oracle.security.crypto.core.MessageDigest Class

■ Using the oracle.security.crypto.core.MAC Class

3.3.5.1 Using the oracle.security.crypto.core.MessageDigest Class
The MessageDigest abstract class provides methods to hash and digest data. The 
concrete classes extending the MessageDigest class are the MD2, MD4, MD5 and the SHA 
classes.

The available algorithms for message digest operations are: AlgID.md2, AlgID.md4, 
AlgID.md5, AlgID.sha_1, AlgID.sha_256, AlgID.sha_384 and AlgID.sha_512.

The basic process for creating a message digest is as follows:

1. Create a new instance of MessageDigest by calling the static getInstance() 
method with an AlgorithmIdentifier object as a parameter. 

2. Add the data to be digested.

3. Compute the hash value.

Example 3–13 shows how to create an MD5 message digest object.

Example 3–13 Code Example for Creating a Message Digest

//Create a new MD5 MessageDigest object
MessageDigest md5 = Signature.getInstance(AlgID.md5);

//Add the data to be digested



Core Classes and Interfaces

Oracle Crypto 3-9

md5.udpate(data1);
md5.udpate(data2);

//Compute the hash value
md5.computeCurrent();
byte[] digestBits = md5.getDigestBits();

3.3.5.2 Using the oracle.security.crypto.core.MAC Class
The MAC abstract class provides methods to compute and verify a Message 
Authentication Code (MAC). The concrete class extending the MAC is the HMAC class.

The available algorithms for MAC operations are: AlgID.hmacMD5 and AlgID.hmacSHA.

The basic process for creating a MAC is as follows:

1. Create a new instance of MAC by calling the static getInstance() method with an 
AlgorithmIdentifier and a SymmetricKey object as a parameter. 

2. Add the data to be digested.

3. Compute the MAC value and verify it.

Example 3–14 shows how to create a new HMAC object with the HMAC-SHA1 
algorithm.

Example 3–14 Code Example for Creating a MAC

//Create an HMAC object with the HMAC-SHA1 algorithm
MAC hmacSha1Compute = MAC.getInstance(AlgID.hmacSHA, hmacSha1Key);

//Add the data to be digested
hmacSha1Compute.udpate(data);

//Compute the MAC value and verify
byte[] macValue = hmacSha1Compute.computeMAC();
boolean verified = hmacSha1Verify.verifyMAC(data, macValue);

3.3.6 Working with Key Agreement Schemes
The oracle.security.crypto.core.KeyAgreement class abstract class provides 
methods for public key agreement schemes such as Diffie-Hellman. The concrete 
classes extending the KeyAgreement class are the DHKeyAgreement and the 
ECDHKeyAgreement classes.

The available algorithms for key agreement operations are: AlgID.dhKeyAgreement 
and ECDHKeyAgreement (Elliptic Curve Diffie-Hellman key agreement).

The basic process for key agreement is as follows:

1. Create a new instance of KeyAgreement by calling the static getInstance() method 
with an AlgorithmIdentifier object as a parameter. 

2. Set the local private key and the other party's public key.

3. Compute the shared secret value.

Example 3–15 shows how to perform key agreement.

Example 3–15 Code Example for Key Agreement

//Create a DH key agreement object
KeyAgreement dh = KeyAgreement.getInstance(AlgID.dhKeyAgreement);



Core Classes and Interfaces

3-10 Developing Secure Applications with Oracle Security Developer Tools

//Set the private key and public key
dh.setPrivateKey(privKey);
dh.setPublicKey(otherPubKey);

//Compute the shared secret
byte[] sharedSecret = dh.generateSecret();

3.3.7 Using Pseudo-Random Number Generators
In cryptography, random numbers are used to generate keys. Cryptographic systems 
need cryptographically strong (pseudo) random numbers that cannot be guessed by 
an attacker. 

Oracle Crypto provides the following pseudo-random number generator (PRNG) 
classes:

■ Using the oracle.security.crypto.core.RandomBitsSource class

■ Using the oracle.security.crypto.core.EntropySource class

3.3.7.1 Using the oracle.security.crypto.core.RandomBitsSource class
RandomBitsSource is an abstract class representing secure PRNG implementations. 
Note that, by the very nature of PRNGs, the security of their output depends on the 
amount and quality of seeding entropy used. Implementing classes should provide 
guidance as to their proper initialization and use. The concrete classes extending the 
RandomBitsSource are the MD5RandomBitsSource, SHA1RandomBitsSource, and the 
DSARandomBitsSource classes.

Create a new instance of RandomBitsSource by calling the static getDefault() method 
to return the default PRNG:

RandomBitsSource rbs = RandomBitsSource.getDefault();

A RandomBitsSource object can also be created by instantiating one of the subclasses:

RandomBitsSource rbs = new SHA1RandomBitsSource();

By default, a newly created PRNG created from a subclass will be seeded. To seed a 
generic RandomBitsSource object, use one of the seed methods by using a byte array or 
an EntropySource object:

rbs.seed(myByteArray);

The object is then ready to generate random data:

rbs.randomBytes(myRandomByteArray);

3.3.7.2 Using the oracle.security.crypto.core.EntropySource class
The EntropySource class provides a source of seed material for the PRNGs. The 
concrete classes extending the EntropySource are the SpinnerEntropySource and 
SREntropySource classes.

Create a new instance of EntropySource by calling the static getDefault() method to 
return the default entropy source:

EntropySource es = EntropySource.getDefault();

You can also create an EntropySource object by instantiating one of the subclasses:



The Oracle Crypto and Crypto FIPS Java API References

Oracle Crypto 3-11

EntropySource rbs = new SpinnerEntropySource();

The entropy source is readied for use by using one of the generateByte methods:

es.generateBytes(mySeedingArray);

3.4 The Oracle Crypto and Crypto FIPS Java API References
The Oracle Crypto Java API reference (Javadoc) is available at: 

Oracle Fusion Middleware Crypto Java API Reference for Oracle Security Developer Tools

The Oracle Crypto FIPS Java API reference (Javadoc) is available at: 

Oracle Fusion Middleware Crypto FIPS Java API Reference for Oracle Security Developer 
Tools



The Oracle Crypto and Crypto FIPS Java API References

3-12 Developing Secure Applications with Oracle Security Developer Tools



4

Oracle Security Engine 4-1

4 Oracle Security Engine

[5] This chapter provides information about using the Oracle Security Engine Software 
Development Kit (SDK) certificate package. Oracle Security Engine is a superset of 
Oracle Crypto. It contains all of the libraries and tools provided with Oracle Crypto, 
plus additional packages and utilities for generating digital certificates.

Oracle Crypto allows Java developers to develop applications that ensure data security 
and integrity. For more information about the Oracle Crypto functionality, see "Oracle 
Crypto" in Chapter 3.

For an overview of public key infrastructure, see "About Public Key Infrastructure 
(PKI)" in Chapter 1.

This chapter contains the following topics:

■ Oracle Security Engine Features and Benefits

■ Setting Up Your Oracle Security Engine Environment

■ Using Core Classes and Interfaces

■ The Oracle Security Engine Java API Reference

4.1 Oracle Security Engine Features and Benefits
Oracle Security Engine provides the following features:

■ X.509 Version 3 Certificates, as defined in RFC 3280

Note: The use of the Oracle Security Engine library is not 
recommended beginning with Oracle AS 11gR1. Instead use the JDK's 
Certificate APIs.

For details, see the JDK documentation at:

http://java.sun.com/javase/6/docs/technotes/guides/security/
cert3.html

However, the following Public-Key Cryptography Standards (PKCS) 
have no JCE equivalents:

■ PKCS#7

■ PKCS#10

■ Signed Public Key And Challenge (SPKAC)

and you can continue using Oracle Security Engine for these features.



Setting Up Your Oracle Security Engine Environment

4-2 Developing Secure Applications with Oracle Security Developer Tools

■ Full PKCS#12 support

■ PKCS#10 support for certificate requests

■ certificate revocation list (CRL) functionality as defined in RFC 3280

■ Implementation of Signed Public Key And Challenge (SPKAC)

■ Support for X.500 Relative Distinguished Names

■ PKCS#7 support for wrapping X.509 certificates and CRLs

■ Implementation of standard X.509 certificates and CRL extensions

4.1.1 About Oracle Security Engine Packages
The Oracle Security Engine toolkit contains the following packages:

■ oracle.security.crypto.cert - Facilities for handling digital certificates, CRLs, 
and PKCS#12.

■ oracle.security.crypto.cert.ext - Standard X.509 certificates and CRL 
extensions.

4.2 Setting Up Your Oracle Security Engine Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section provides information for setting up your environment for 
Oracle Security Engine. It contains the following topics:

■ System Requirements for Oracle Security Engine

■ Setting the CLASSPATH Environment Variable

4.2.1 System Requirements for Oracle Security Engine
In order to use Oracle Security Engine, your system must have the Java Development 
Kit (JDK) version 1.6 or higher. 

4.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to the 
required jar and class files. Make sure the following items are included in your 
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

4.2.2.1 Setting the CLASSPATH on Windows
To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.



Using Core Classes and Interfaces

Oracle Security Engine 4-3

5. Add the full path and file names for all of the required jar and class files to the 
CLASSPATH. 

For example, your CLASSPATH might look like this:

%CLASSPATH%;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;

6. Click OK.

4.2.2.2 Setting the CLASSPATH on UNIX
To set your CLASSPATH on UNIX, set your CLASSPATH environment variable to 
include the full path and file name of all of the required jar and class files. For 
example:

setenv CLASSPATH $CLASSPATH:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:

4.3 Using Core Classes and Interfaces
This section provides information and code samples for using the certificate facility 
classes of Oracle Security Engine. Oracle Security Engine also includes all of the classes 
provided with Oracle Crypto. See Chapter 3, "Oracle Crypto" for an overview of the 
core Oracle Crypto classes.

Class Changes in OracleAS 11gR1
In OracleAS 11gR1, the oracle.security.crypto.cert.X509 class for certificate 
management has been replaced with java.security.cert.X509Certificate

The Core Certificate Classes
The core certificate facility classes are:

■ Using the oracle.security.crypto.cert.X500RDN Class

■ Using the oracle.security.crypto.cert.X500Name Class

■ Using the oracle.security.crypto.cert.CertificateRequest Class

■ Using the java.security.cert.X509Certificate Class

4.3.1 Using the oracle.security.crypto.cert.X500RDN Class
This class represents an X.500 Relative Distinguished Name (RDN). This is the 
building block for X.500 names. A RDN consists of a set of attribute-value pairs. 
Typically, there is a single attribute-value pair in each RDN.

Example 4–1 Code Example for Creating and Retrieving an X500RDN Object

// Create the X500RDN object
X500RDN rdn = new X500RDN(PKIX.id_at_commonName, "Joe Smith");

// Retrieve the value
X500Name n = Instance of oracle.security.crypto.cert.X500Name;
String name = n.getAttribute(PKIX.id_at_commonName).getValue().getValue();



Using Core Classes and Interfaces

4-4 Developing Secure Applications with Oracle Security Developer Tools

4.3.2 Using the oracle.security.crypto.cert.X500Name Class
This class represents distinguished names as used in the X.500 series of specifications, 
defined in X.520. An X500Name object is made of X500RDN objects. An X500Name holds 
attributes defining an entity such as the common name, country, organization, and so 
on.

To create an X500Name object, use the standard constructor and then populate the object 
with attributes. Once created, the object can then be DER-encoded to make it available 
to other processes:

Example 4–2 Code Example for Creating an X500Name Object

X500Name name = new X500Name();
name.addComponent(PKIX.id_at_commonName, "Joe Smith");
name.addComponent(PKIX.id_at_countryName, "USA");
name.addComponent(PKIX.id_at_stateOrProvinceName, "NY");
name.addComponent(PKIX.id_at_localityName, "New York");
name.addComponent(PKIX.id_at_organizationName, "Oracle");
name.addComponent(PKIX.id_at_organizationalUnitName, "Engineering");
name.addComponent(PKIX.emailAddress, "joe.smith@example.com");

// Make object DER-encoded so its available to other processes 

byte[] encodedName = Utils.toBytes(name);
X500Name n = new X500Name(new ByteArrayInputStream(encodedName));
String name = n.getAttribute(PKIX.id_at_commonName).getValue().getValue();
String email = n.getAttribute(PKIX.emailAddress).getValue().getValue();

4.3.3 Using the oracle.security.crypto.cert.CertificateRequest Class
This class represents a PKCS#10 certificate request containing information about an 
entity and a signature of the content of the request. The certificate request is used to 
convey information and authentication data (the signature) that will be used by a 
Certificate Authority (CA) to generate a certificate for the corresponding entity.

Creating a new certificate request involves the following high-level steps:

1. Create a new instance of CertificateRequest by using the empty constructor and 
setting the keys and the subject name, or by using the constructor taking an 
X500Name and a KeyPair object.

2. Add X.509 extensions to the certificate request.

3. Sign the certificate request and save it to a file.

4. Send the certificate request you created to a Certificate Authority. 

Example 4–3 Code Example for Creating a Certificate Request

//Create CertificateRequest by setting the keys and subject name
 CertificateRequest certReq = new CertificateRequest();
 certReq.setPrivateKey(privKey);
certReq.setPublicKey(pubKey);
 certReq.setSubject(subjectName);

//OR

// Create CertificateRequest by taking an X500Name and KeyPair object
CertificateRequest certReq = new CertificateRequest(subjectName, keyPair);



Using Core Classes and Interfaces

Oracle Security Engine 4-5

// Add X.509 certificate extensions in a extensionRequest attribute
X509ExtensionSet extSet = new X509ExtensionSet();

// Basic Constraints: non-CA, critical
extSet.addExtension(new BasicConstraintsExtension(false, true));

// Key Usage: signature, data encipherment, key agreement 
// & non-repudiation flags, critical
extSet.addExtension(new KeyUsageExtension(new int[] {

KeyUsageExtension.DIGITAL_SIGNATURE,
KeyUsageExtension.DATA_ENCIPHERMENT,
KeyUsageExtension.KEY_AGREEMENT,
KeyUsageExtension.NON_REPUDIATION},

true));

// Subject Alternative Name: email address, non-critical
if (email.length() > 0)

extSet.addExtension(new SubjectAltNameExtension(
new GeneralName(GeneralName.Type.RFC822_NAME, email), false));

// Subject Key Identifier: key ID bytes, non-critical
extSet.addExtension(new SubjectKeyIDExtension

(CryptoUtils.generateKeyID(kp.getPublic())));
req.addAttribute(PKIX.extensionRequest, extSet);

// Sign the certificate request and save to file
req.sign();
req.output(reqOS);
reqOS.close();
}
// The certificate request can then be sent to a CA

4.3.4 Using the java.security.cert.X509Certificate Class

The java.security.cert.X509Certificate class supports the generation of new certificates 
as well as parsing of existing certificates.

Complete documentation of the java.security.cert.X509Certificate class is available at 
http://java.sun.com/j2se/1.4.2/docs/api/java/security/cert/X509Certificate
.html.

Converting Your Code to Use java.security.cert.X509Certificate
You can create the X509Certificate object using the certificate factory 
java.security.cert.CertificateFactory.

The certificate is generated from an input stream, which can be:

■ a FileInputSream, if the certificate is stored in a file, or

■ a ByteArrayInputStream, if the encoded bytes are from an existing X509 object, or 

■ any other source.

An example follows:

Note: This class replaces oracle.security.crypto.cert.X509 for X.509 
certificate management in Oracle WebLogic Server 11g. 



The Oracle Security Engine Java API Reference

4-6 Developing Secure Applications with Oracle Security Developer Tools

// Generating an X.509 certificate from a file-based certificate
                  
CertificateFactory cf = CertificateFactory.getInstance("X.509");
     
X509Certificate cert = (X509Certificate)cf.generateCertificate(
                       new FileInputStream(certFileName);

**

4.4 The Oracle Security Engine Java API Reference
The Oracle Security Engine Java API reference (Javadoc) is available at:

Oracle Fusion Middleware Security Engine Java API Reference for Oracle Security Developer 
Tools



5

Oracle CMS 5-1

5 Oracle CMS

[6] This chapter describes key features and benefits of Oracle CMS and explains how to 
set up and use Oracle CMS.

This chapter contains these topics:

■ Oracle CMS Features and Benefits

■ Setting Up Your Oracle CMS Environment

■ Developing Applications with Oracle CMS

■ The Oracle CMS Java API Reference

5.1 Oracle CMS Features and Benefits
The Oracle CMS SDK is a pure Java API with an extensive set of tools for reading and 
writing CMS objects, sample programs, and supporting tools for developing secure 
message envelopes.

Oracle CMS implements the IETF Cryptographic Message Syntax specified in RFC 
2630. This syntax is used to digitally sign, digest, authenticate, and encrypt messages.

The Cryptographic Message Syntax is derived from PKCS #7 version 1.5 as specified in 
RFC 2315 [PKCS#7].

5.1.1 Content Types
Oracle CMS supports all the content types specified in RFC-2630, as shown in 
Table 5–1:

Oracle CMS is a full implementation of RFC-2630 with these exceptions:

■ There is no support for Attribute Certificates

Table 5–1 Content Types Supported by Oracle CMS

Type Identifier

data 1.2.840.113549.1.7.1

signed-data 1.2.840.113549.1.7.2

enveloped-data 1.2.840.113549.1.7.3

digested-data 1.2.840.113549.1.7.5

encrypted-data 1.2.840.113549.1.7.6

authenticated-data 1.2.840.113549.1.9.16.1.2



Setting Up Your Oracle CMS Environment

5-2 Developing Secure Applications with Oracle Security Developer Tools

■ There is no support for Key Agreement RecipientInfo

Oracle CMS supports the following Enhanced Security Services for S/MIME content 
type specified in RFC-2634:

The following IETF PKIX TimeStamp Protocol content type corresponding to RFC 3161 
is supported:

5.1.2 Understanding Differences Between Oracle CMS Implementation and RFCs
Oracle CMS differs from PKCS #7 v 1.5 [RFC 2315] and IETF CMS [RFC 2630] in the 
following ways:

■ The enveloped-data contains an optional OriginatorInfo.

■ In RFC 2630 Enveloped data also contains optional unprotected attributes.

■ The SignerIdentifier in the signed-data SignerInfo is a choice of 
IssuerAndSerialNo or SubjectKeyIdentifier.

■ In RFC 2630 the Signed Data contains encapsulatedcontentinfo, which contains an 
optional content, whereas RFC 2315 contains content data.

5.2 Setting Up Your Oracle CMS Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section describes how to set up your environment for Oracle CMS. 
It contains the following:

■ Understanding System Requirements

■ Setting the CLASSPATH Environment Variable

5.2.1 Understanding System Requirements
In order to use Oracle CMS, your environment must have the Java Development Kit 
(JDK) version 1.6 or higher. 

Type Identifier

receipt 1.2.840.113549.1.9.16.1.2

Type Identifier

TSTInfo 1.2.840.113549.1.9.16.1.4

Note: Oracle CMS will not process a content type other than the ones 
specified earlier.

Note: You must keep these differences in mind if you require 
interoperability with PKCS#7 implementations.



Developing Applications with Oracle CMS

Oracle CMS 5-3

5.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ the osdt_core.jar file

■ the osdt_cert.jar file

■ the osdt_cms.jar file

5.2.2.1 Setting the CLASSPATH on Windows
To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

5. Add the full path and file names for all the required jar and class files to the 
CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cms.jar;

6. Click OK.

5.2.2.2 Setting the CLASSPATH on UNIX
To set your CLASSPATH on UNIX, set your CLASSPATH environment variable to 
include the full path and file name of all of the required jar and class files. For 
example:

setenv CLASSPATH $CLASSPATH:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cms.jar

5.3 Developing Applications with Oracle CMS
There are two approaches to reading and writing CMS objects with the 
oracle.security.crypto.cms package:

■ Using the CMSContentInfo classes, which are relatively easy to utilize

■ Using one of the following classes:

■ CMSInputStream

■ CMSOutputStream

■ CMSInputConnector

■ CMSOutputConnector 



Developing Applications with Oracle CMS

5-4 Developing Secure Applications with Oracle Security Developer Tools

These classes provide the ability to read and write CMS objects in a single pass, 
eliminating the need to accumulate the input data before writing any output.

The Oracle CMS API enables you to build nested (wrapped) CMS objects with no limit 
on the number of wrappings.

This section contains these topics:

■ About CMS Object Types

■ Constructing CMS Objects using the CMS***ContentInfo Classes

■ Constructing CMS Objects using the CMS***Stream and CMS***Connector Classes

5.3.1 About CMS Object Types
Application developers should be aware of some specific CMS object types which are 
discussed in subsequent sections.

A detached object applies to data and receipt content types. For these types, a 
detached object is one where the protected content is absent.

A degenerate object is a certificate-only signed-data object and is defined only for the 
signed-data content type. It refers to the case where the signed-data object has no 
signers. It is normally used to store certificates and is associated with file extensions 
p7b and p7c.

An external signature is defined only for the signed-data content type. It is essentially 
a detached signed-data object; that is, the signed-data object has one or more signers 
but the content that was signed is not present in the signed-data object.

5.3.2 Constructing CMS Objects using the CMS***ContentInfo Classes
Table 5–2 lists the classes which make up the CMS***ContentInfo classes.

You can use these classes to:

■ Read and write objects of the appropriate content type

■ Construct and process detached objects

■ Create nested objects

A detailed discussion of CMS***ContentInfo classes follows.

Table 5–2 CMS***ContentInfo Classes

Class Content Type

CMSDataContentInfo CMS.id_data

ESSReceipt CMS.id_ct_receipt (RFC-2634 receipt)

CMSDigestedDataContentInfo CMS.id_digestedData

CMSSignedDataContentInfo CMS.id_signedData

CMSEncryptedDataContentInfo CMS.id_encryptedData

CMSEnvelopedDataContentInfo CMS.id_envelopedData

CMSAuthenticateDataContentInfo     CMS.id_ct_authData



Developing Applications with Oracle CMS

Oracle CMS 5-5

5.3.2.1 Using the Abstract Base Class CMSContentInfo
CMSContentInfo is an abstract class representing a fundamental CMS object. Table 5–2 
lists the subclasses of CMSContentInfo.

Some of the useful methods of this abstract class are described in Table 5–3.

5.3.2.1.1 Constructing a CMS Object  

Perform the following steps to construct a CMS object:

1. Create the object of the specified content type.

2. Initialize the object.

3. Call the output(..) method to write the object encoding.

If you are reading in an existing CMSContentInfo, but you do not know the concrete 
type in advance, use inputInstance(). To create a new object, use one of the 
constructors of the concrete subclass with which you are working. To read in one of a 
known concrete type, use the no-args constructor and then invoke the input() 
method.

5.3.2.1.2 Reading a CMS Object  

Perform the following steps to read an object:

1. Call CMSContentInfo.inputInstance(..) to read in the object.

2. Call getContentType() to determine its content type.

3. You can now invoke the content type-specific operations.

5.3.2.2 Using the CMSDataContentInfo Class
The class CMSDataContentInfo represents an object of type id-data as defined by the 
constant CMS.id_data, and is intended to refer to arbitrary octet strings whose 
interpretation is left up to the application.

A useful method of this class is:

byte[] getData()

which returns the data stored in the data object.

Table 5–3 Useful Methods of CMSContentInfo

Method Description

contentTypeName
(oracle.security.crypto.asn1.ASN1ObjectID 
contentType)

Returns the content type of the object as a string.

getContentType() Returns the content type of the object as an 
object identifier (OID).

input(java.io.InputStream is) Initializes this object by reading a BER encoding 
from the specified input stream.

inputInstance(java.io.InputStream is) Creates a new CMSContentInfo object by 
reading a BER encoding from the specified input 
stream.

isDegenerate() Indicates if the object is degenerate.

isDetached() Indicates if the object is detached.

output(java.io.OutputStream os) Writes the encoding of the object to the given 
output stream.



Developing Applications with Oracle CMS

5-6 Developing Secure Applications with Oracle Security Developer Tools

To create a CMS data object:

1. Create an instance of CMSDataContentInfo using the constructor that takes a byte 
array, documentBytes, that contains the information:

CMSDataContentInfo exdata =
new CMSDataContentInfo(byte[] documentBytes)

2. Write the data object to a file, for example data.p7m:

exdata.output(new FileOutputStream("data.p7m"));

The steps you use when reading a CMS data object depend on whether you know the 
object's content type.

1. Open a connection to the file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type id-data:

CMSDataContentInfo exdata =
new CMSDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance, check the type prior to 
reading:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSDataContentInfo)
{
   CMSDataContentInfo exdata =  (CMSDataContentInfo) cmsdata;
   // .....
}

2. To access the information stored in the CMS data object:

byte[] docBytes = exdata.getData();

5.3.2.3 Using the ESSReceipt Class
Class ESSReceipt represents an object of type id-ct-receipt as defined by the constant 
CMS.id_ct_receipt,  and refers to an RFC-2634 receipt.

Table 5–4 lists some useful methods of this class.

Take the following steps to create a CMS receipt object.

Table 5–4 Useful Methods of ESSReceipt

Method Description

byte[] getOriginatorSignatureValue() Returns the signature value of the message 
that triggered the generation of this receipt.

ASN1ObjectID getReceiptContentType() Returns the content type of the message 
that triggered the generation of this receipt.

byte[] getReceiptData() Returns the encoded receipt.

byte[] getSignedContentIdentifier() Returns the signed content identifier of the 
message that triggered the generation of 
this receipt.

void inputContent(InputStream is) Initialize this object by reading the BER 
encoding from the specified input stream.



Developing Applications with Oracle CMS

Oracle CMS 5-7

1. Create an instance of ESSReceipt using the constructor that takes a content type 
identifier, a byte array containing the signed content identifier and a byte array 
containing the originator signature value:

ESSReceipt rcpt =
new ESSReceipt(contentType, signedContentIdentifier,
originatorSignatureValue);

2. Write the receipt object to a file, for example  data.p7m:

rcpt.output(new FileOutputStream("data.p7m"));

To read a receipt object:

1. Open a connection to the file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type 
id-ct-receipt:

ESSReceipt rcptdata = new ESSReceipt(new FileInputStream("data.p7m"));

Otherwise, if the content type is unknown:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof ESSReceipt)
{

ESSReceipt rcptdata =  (ESSReceipt) cmsdata;
// .....

}

2. Access the information stored in the receipt object:

ASASN1ObjectID contentType = rcptdata.getReceiptContentType();
byte[] sciBytes = rcptdata.getSignedContentIdentifier()
byte[] osvBytes = rcptdata.getOriginatorSignatureValue();

5.3.2.4 Using the CMSDigestedDataContentInfo Class
The class CMSDigestedDataContentInfo represents an object of type id-digestedData 
as defined by the constant CMS.id_digestedData.

Table 5–5 lists some of the useful methods of this class.

Note: When you create an ESSReceipt object, do not leave any input 
parameters set to null.

Table 5–5 Useful Methods of CMSDigestedDataContentInfo

Method Description

byte[] getDigest() Returns the message digest value.

AlgorithmIdentifier getDigestAlgID() Returns the message digest algorithm ID.

CMSContentInfo getEnclosed() Returns the digested content.

ASN1ObjectID getEnclosedContentType() Returns the content type of the digested 
content.

ASN1Integer getVersion() Returns the version number of this object.



Developing Applications with Oracle CMS

5-8 Developing Secure Applications with Oracle Security Developer Tools

5.3.2.4.1 Constructing a CMS Digested-data Object  

Take the following steps to create a CMS digested-data object.

1. Create an instance of CMSDigestedDataContentInfo using the constructor that 
takes the object to be digested and the digest algorithm identifier. For example, if 
contentInfo is a CMSDataContentInfo object and MD5 is the digest algorithm:

CMSDigestedDataContentInfo dig =
new CMSDigestedDataContentInfo(contentInfo, CMS.md5);

2. Write the CMS digested-data object to a file named data.p7m.

dig.output(new FileOutputStream("data.p7m"));

5.3.2.4.2 Reading a CMS Digested-data Object  

The steps you need to read a CMS digested-data object depend on whether you 
know the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file is of content type id-digestedData, 
open the connection as follows:

CMSDigestedDataContentInfo digdata =
new CMSDigestedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance, open it as follows:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSDigestedDataContentInfo)
{

CMSDigestedDataContentInfo digdata =
(CMSDigestedDataContentInfo) cmsdata;

// .....
}

2. To access the information stored in the CMS digested-data object:

int version = digdata.getVersionNumber().intValue();
AlgorithmIdentifier digestAlgID = digdata.getDigestAlgID();
byte[] digestValue = digdata.getDigest();
CMSContentInfo digContentInfo = digData.getEnclosed()
if (digData.getEnclosedContentType().equals(CMS.id_data))

CMSDataContentInfo contentInfo = (CMSDataContentInfo)digContentInfo;

3. To verify the integrity of the protected data, verify the digest:

digData.verify();

boolean isDetached() Indicates if this object is detached.

void setEnclosed(CMSContentInfo content) Sets the encapsulated content, that is, the 
object that was  originally digested.

void writeDetached(boolean writeDetached) Indicates if the object that is being digested 
should be omitted when creating the 
CMSDigestedDataContentInfo object.

Table 5–5 (Cont.) Useful Methods of CMSDigestedDataContentInfo

Method Description



Developing Applications with Oracle CMS

Oracle CMS 5-9

5.3.2.4.3 Working with Detached digested-data Objects  

When working with a detached object, the object that is digested is not a part of the 
resulting CMS digested-data structure. To generate a detached object, call the 
writeDetached (true | false) method. For example:

dig.writeDetached(true);

While you can read in a detached CMS digested-data object as shown earlier, the 
digest verification will fail because the original object that was digested is not present. 
To resolve this, call the setEnclosed (CMScontentInfo)  method to set the 
digestedContent:

digdata.setEnclosed(CMScontentInfo object);

followed by digest verification:

digdata.verify();

5.3.2.5 Using the CMSSignedDataContentInfo Class
The class CMSSignedDataContentInfo represents an object of type id-signedData as 
defined by the constant CMS.id_signedData.

Oracle CMS supports a choice of IssuerAndSerialNo or SubjectKeyIdentifier for use 
as the SignerIdentifier. For interoperability with PKCS #7 and S/MIME, however, 
the IssuerAndSerialNo must be used as the SignerIdentifier.

Table 5–6 lists some useful methods of this class:

Table 5–6 Useful Methods of CMSSignedDataContentInfo

Method Description

void addCertificate(X509Certificate cert) Appends the given certificate to 
the list of certificates which will be 
included with this signed data 
object.

void addCRL(CRL crl) Appends the given CRL to the list 
of CRLs which will be included 
with this signed data object.

void addSignature(AttributeSet authenticatedAttributes,
    PrivateKey signerKey, X509Certificate signerCert,
    AlgorithmIdentifier digestAlgID, 
   AlgorithmIdentifier digestEncryptionAlgID,
   AttributeSet unauthenticatedAttributes)

Adds a signature using the 
IssuerAndSerialNumber as the 
SignerIdentifier, that is, a Version1 
CMSSignerInfo.

void addSignature(AttributeSet authenticatedAttributes,
    PrivateKey signerKey, X509Certificate signerCert,
   AlgorithmIdentifier digestAlgID, 
   AlgorithmIdentifier digestEncryptionAlgID,
   AttributeSet unauthenticatedAttributes, 
   boolean useSPKI64)

Adds a signature using the 
SubjectKeyIdentifier as the 
SignerIdentifier; that is, a Version3 
CMSSignerInfo.

void addSignerInfo(X509Certificate signerCert, 
   CMSSignerInfo signerInfo)

Adds a CMSSignerInfo to the list 
of signers.

Vector getCertificates() Returns the list of certificates 
included with this signed data 
object.

Vector getCRLs() Returns the list of CRLs included 
with this signed data object.



Developing Applications with Oracle CMS

5-10 Developing Secure Applications with Oracle Security Developer Tools

Users of RSA and DSA signature algorithms should note that the providers are 
pluggable in the Oracle CMS implementation.

5.3.2.5.1 Constructing a CMS Signed-data Object  

Follow these steps to create a CMS signed-data object:

CMSContentInfo getEnclosed() Returns the signed document.

ASN1ObjectID getEnclosedContentType() Returns the content type of the 
document which was signed.

CMSSignerInfo getSignerInfo(signerCert) Returns the CMSSignerInfo 
corresponding to the certificate.

ASN1Integer getVersion() Returns the version number of 
this object.

boolean isDegenerate() IIndicates if this is a degenerate 
CMSSignedDataContentInfo 
object (that is, has no SignerInfo 
structures)

boolean isDetached() Indicates if this is a detached 
object.

boolean isExternalSignature() Checks for the presence of 
external signatures.

void setEnclosed(CMSContentInfo content) Sets the content which was 
signed.

Enumeration signers() Returns the signatures on this 
signed data object in the form of 
an enumeration, each element of 
which is an instance of 
CMSSignerInfo.

void verify(CertificateTrustPolicy trustPolicy) Returns normally if this CMS 
signed data object contains at least 
one valid signature, according to 
the given trust policy.

void verify(CertificateTrustPolicy
trustPolicy,CMSContentInfo contentInfo)

Returns normally if this signed 
data object contains at least one 
valid signature, according to the 
given trust policy.

void verifySignature(X509Certificate signerCert) Returns successfully if this signed 
data object contains a signature 
which is validated by the given 
certificate.

void verifySignature(X509Certificate signerCert,
CMSContentInfo contentInfo)

Returns successfully if this signed 
data object contains a signature 
which is validated by the given 
certificate and data.

void writeExternalSignature(boolean 
createExternalSignature)

Indicates if an external signature 
must be created.

Table 5–6 (Cont.) Useful Methods of CMSSignedDataContentInfo

Method Description



Developing Applications with Oracle CMS

Oracle CMS 5-11

1. Create an instance of CMSSignedDataContentInfo. For example, to create the 
CMSSignedDataContentInfo object, pass the contentInfo object (the data that is to 
be signed):

CMSSignedDataContentInfo sig =
new CMSSignedDataContentInfo(contentInfo);

2. Add signatures:

CertificateFactory cf = CertificateFactory.getInstance("X.509");
X509Certificate envCert =  (X509Certificate)cf.generateCertificate(new 
FileInputStream("name1"));
PrivateKey signerKey =

...;

a. To add a signature using the IssuerAndSerialNo as the SignerIdentifier, MD5 
digests and RSA Signature Algorithm:

sig.addSignature(null, signerKey, signerCert, CMS.md5,
CMS.rsaEncryption, null);

b. To add a signature using the 64 bit SubjectKeyIdentifier as the SignerIdentifier, 
SHA-1 digests and DSS Signature Algorithm: 

sig.addSignature(null, signerKey, signerCert, CMS.sha_1,
CMS.dsaWithSHA, null, true);

c. To add a signature using the 160 bit SubjectKeyIdentifier as the 
SignerIdentifier, SHA-1 digests and RSA Signature Algorithm:

sig.addSignature(null, signerKey, signerCert, CMS.sha_1,
CMS.rsaEncryption, null, false);

3. Add any Certificates and CRLs:

sig.addCertificate (....)
sig.addCRL (...)

4. Write the CMS signed-data object to a file, for example data.p7m:

sig.output(new FileOutputStream("data.p7m"));

5.3.2.5.2 Reading a CMS Signed-data Object  

The steps you need to read a CMS signed-data object depend on whether you know 
the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file is of content type id-signedData:

CMSSignedDataContentInfo sigdata =
new CMSSignedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSSignedDataContentInfo)
{



Developing Applications with Oracle CMS

5-12 Developing Secure Applications with Oracle Security Developer Tools

CMSSignedDataContentInfo sigdata =
(CMSSignedDataContentInfo) cmsdata;

// .....
}

2. Access the information stored in the CMS signed-data object:

int version = sigdata.getVersion().intValue();
CMSContentInfo sigContentInfo = sigData.getEnclosed()
Vector certs = sigdata.getCertificates();
Vector crls = sigData.getCRLs();
Enumeration e = sigData.signers();
CMSContentInfo sigContentInfo = sigData.getEnclosed();
if (sigData.getEnclosedContentType().equals(CMS.id_data))

CMSDataContentInfo contentInfo = (CMSDataContentInfo)sigContentInfo;

3. Verify the signature using the signer's public key certificate:

sigData.verifySignature(signerCert);

4. To get more information about the signer:

CMSSignerInfo sigInfo = sigdata.getSignerInfo(signerCert);
byte[] signatureValue = sigInfo.getEncryptedDigest();
AlgorithmIdentifier digest = sigInfo.getDigestAlgID();
AlgorithmIdentifier signature = sigInfo.getDigestEncryptionAlgID();
AttributeSet signedAttributes = sigInfo.getAuthenticatedAttributes();
AttributeSet unsignedAttributes = sigInfo.getUnauthenticatedAttributes();

5.3.2.5.3 Working with External Signatures (Detached Objects)  

For a detached object, the signed object is not part of the resulting CMS signed-data 
structure. To generate a detached object, call the writeExternalSignature()  method:

sig.writeExternalSignature(true);

While you can read in a detached CMS signed-data object as shown in "Reading a 
CMS Signed-data Object", the signature verification will fail because the original object 
that was signed is not present. To address this, first call the  setEnclosed (..) method 
to set the signed content:

sigdata.setEnclosed(contentInfo);

followed by signature verification:

sigdata.verifySignature(signerCert);

5.3.2.5.4 Working with Certificates/CRL-Only Objects  

These are essentially CMSSignedDataContentInfo objects with attached certificates, or 
CRLs, or both, but without any signatures. To generate a Certificate/CRL-only object:

CMSSignedDataContentInfo sigdata = 
new CMSSignedDataContentInfo(new CMSDataContentInfo(new byte[0]));

sigData.addCertificate (...);
sigData.addCRL( ...);
sigData.output(..);

You can read in a Certificate/CRL-only signed-data object as shown in "Reading a 
CMS Signed-data Object".



Developing Applications with Oracle CMS

Oracle CMS 5-13

5.3.2.6 Using the CMSEncryptedDataContentInfo Class
The class CMSEncryptedDataContentInfo represents an object of type 
id-encryptedData as defined by the constant CMS.id_encryptedData.

Table 5–7 lists some useful methods of this class.

Users of encryption operations, including RC2, DES, Triple-DES, AES, and so on, 
should note that the cipher providers are pluggable in the Oracle Security Engine 
implementation.

5.3.2.6.1 Constructing a CMS Encrypted-data Object  

To create an encrypted-data object:

1. Create an instance of CMSEncryptedDataContentInfo. For example, if contentInfo 
is a CMSDataContentInfo object and the cipher is Triple-DES in CBC mode:

SecretKey contentEncryptionKey = 
KeyGenerator.getInstance("DESede").generateKey();

 
CMSEncryptedDataContentInfo enc =

new CMSEncryptedDataContentInfo(contentInfo, contentEncryptionKey,
CMS.des_ede3_cbc);

2. Write the encrypted-data object to a file, say data.p7m:

enc.output(new FileOutputStream("data.p7m"));

5.3.2.6.2 Reading a CMS Encrypted-data Object  

Table 5–7 Useful Methods of CMSEncryptedDataContentInfo

Method Description

AlgorithmIdentifier
getContentEncryptionAlgID()

Returns the content encryption 
algorithm

CMSContentInfo
 getEnclosed(SecreKey decryptionKey)

Returns the decrypted content

ASN1ObjectID
getEnclosedContentType()

Returns the content type of the 
encrypted content

byte[] getEncryptedContent() Returns the encrypted content

AttributeSet
getUnprotectedAttributes()

Returns the set of unprotected 
attributes

ASN1Integer getVersion() Returns the version number

boolean isDetached() Indicates if this is a detached CMS 
object

void setUnprotectedAttributes
(oracle.security.crypto.cert.AttributeSet 

unprotectedAttributes)

Sets the unprotected attributes

void writeDetached
(boolean writeDetachedObject)

Indicates if the encryptedContent 
will be a part of the 
EncryptedContentInfo structure in 
this object's output encoding



Developing Applications with Oracle CMS

5-14 Developing Secure Applications with Oracle Security Developer Tools

The steps you need to read an encrypted-data object depend on whether you know 
the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type 
id-encryptedData:

CMSEncryptedDataContentInfo encdata =
new CMSEncryptedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSEncryptedDataContentInfo)
{

CMSEncryptedDataContentInfo encdata =
(CMSEncryptedDataContentInfo) cmsdata;

// .....
}

2. To access the information stored in the CMS encrypted-data object:

int version = encdata.getVersion().intValue();
AlgorithmIdentifier encAlgID = encdata.getContentEncryptionAlgID();
byte[] encValue = encdata.getEncryptedContent();
CMSContentInfo encContentInfo =

encdata.getEnclosed(ContentEncryptionKey);  //Decrypt the Content
if (encData.getEnclosedContentType().equals(CMS.id_data))
   CMSDataContentInfo contentInfo = (CMSDataContentInfo)encContentInfo;

5.3.2.6.3 Working with Detached Encrypted-data CMS Objects  

If it is a detached object, the encrypted object is not a part of the resulting CMS 
encrypted-data structure. To generate a detached object, call the writeDetached (..) 
method:

encData.writeDetached(true);

While you can read in a detached CMS encrypted-data object as shown in  "Reading a 
CMS Encrypted-data Object", the content decryption will fail because the original 
object that was encrypted is not present. Call the setEnclosed (..) method to set the 
encryptedContent:

encData.setEnclosed(encryptedcontent());

followed by content decryption:

encdata.getEnclosed(ContentEncryptionKey);

5.3.2.7 Using the CMSEnvelopedDataContentInfo Class
The class CMSEnvelopedDataContentInfo represents an object of type 
id-envelopedData as defined by the constant CMS.id_envelopedData.

Table 5–8 lists some useful methods of this class:



Developing Applications with Oracle CMS

Oracle CMS 5-15

5.3.2.7.1 Constructing a CMS Enveloped-data Object  

Take these steps to create an enveloped-data object:

Table 5–8 Useful Methods of CMSEnvelopedDataContentInfo

Method Description

void addRecipient(AlgorithmIdentifier 
keyEncryptionAlgID, 

SecretKey keyEncryptionKey, 
      byte[] keyIdentifier, Date keyDate, 
      ASN1Sequence otherKeyAttribute)

Adds a recipient using the key 
encryption (wrap) key exchange 
mechanism.

void addRecipient(CMSRecipientInfoSpec ris) Adds a recipient using the key 
exchange mechanism specification

void addRecipient(X509Certificate recipientCert,
      AlgorithmIdentifier keyEncryptionAlgID)

Adds a recipient using the key 
transport (IssuerAndSerialNo) key 
exchange mechanism

void addRecipient(X509Certificate recipientCert, 
AlgorithmIdentifier
    keyEncryptionAlgID, boolean useSPKI64)

Adds a recipient the key transport 
(SubjectKeyIdentifier) 

  key exchange mechanism

AlgorithmIdentifier getContentEncryptionAlgID() Returns the content encryption 
algorithm

CMSContentInfo getEnclosed(PrivateKey privateKey, 
X509Certificate recipientCert)

Returns the enclosed content after 
decryption using Key Transport 
RecipientInfo

CMSContentInfo getEnclosed(SecretKey symmetricKey, 
   byte[] keyIdentifier)

Returns the enclosed content after 
decryption using Key Encryption 
RecipientInfo

CMSContentInfo getEnclosed(SecretKey symmetricKey, 
   byte[] keyIdentifier,Date keyDate)

Returns the enclosed content after 
decryption

ASN1ObjectID getEnclosedContentType() Returns the content type of the 
encrypted content

byte[] getEncryptedContent() Returns the enclosed content 
which is encrypted

OriginatorInfo getOriginatorInfo() Returns the OriginatorInfo

AttributeSet getUnprotectedAttribs() Returns the unprotected attributes

ASN1Integer getVersion() Returns the version number

boolean isDetached() Indicates if the encrypted content 
is not present

Enumeration recipients() Returns the list of message 
recipients

void setEnclosed(byte[] encryptedContent) Sets the Encrypted Content

void setOriginatorInfo(OriginatorInfo
origInfo)

Sets the OriginatorInfo

void
setUnprotectedAttribs
(oracle.security.crypto.cert.AttributeSet

   unprotectedAttributes)

Sets the unprotected attributes

void writeDetached(boolean writeDetached) Indicates if the encrypted content 
must be omitted from this object's 
output encoding



Developing Applications with Oracle CMS

5-16 Developing Secure Applications with Oracle Security Developer Tools

1. Create an instance of CMSEnvelopedDataContentInfo. For example, if  contentInfo 
is a CMSDataContentInfo object and the cipher is Triple-DES in CBC mode:

CMSEnvelopedDataContentInfo env = 
new CMSEnvelopedDataContentInfo(contentInfo, CMS.des_ede3_cbc);

2. Add recipients, keeping in mind the recipient's key management technique.

■ If the recipient uses the key encryption (wrap) key management mechanism:

env.addRecipient(keyEncryptionAlgID, keyEncryptionKey,
keyIdentifier, keyDate, otherKeyAttribute);

■ If the recipient key exchange mechanism was specified using a 
CMSRecipientInfoSpec object:

env.addRecipient(ris)

■ If the recipient uses the key transport (IssuerAndSerialNo recipient identifier) 
key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption);

■ If the recipient uses the key transport (64-bit SubjectKeyIdentifier recipient 
identifier) key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption, true)

■ If the recipient uses the key transport (160-bit SubjectKeyIdentifier recipient 
identifier) key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption, false)

3. Set any optional arguments:

env.setOriginatorInfo(originatorInfo);
env.setUnprotectedAttribs(unprotectedAttributes);

4. Write the CMS enveloped-data object to a file, say data.p7m:

enc.output(new FileOutputStream("data.p7m"));

5.3.2.7.2 Reading a CMS Enveloped-data Object  

The steps you need to read the object depend on whether you know the object's 
content type.

1. Open a connection to the data.p7m file using FileInputStream. If you know that 
the object stored in the file is of content type id-envelopedData, open the 
connection as follows:

CMSEnvelopedDataContentInfo envdata =
new CMSEnvelopedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance, open it as follows:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSEnvelopedDataContentInfo)
{

CMSEnvelopedDataContentInfo envdata =
(CMSEnvelopedDataContentInfo) cmsdata;



Developing Applications with Oracle CMS

Oracle CMS 5-17

// 
.....

}

2. To access the information stored in the enveloped-data object:

int version = envdata.getVersion().intValue();
AlgorithmIdentifier encAlgID = envdata.getContentEncryptionAlgID();
ASN1ObjectID contentType = envdata.getEnclosedContentType();
byte[] encryptedContent = envdata.getEncryptedContent();
OriginatorInfo origInfo = envdata.getOriginatorInfo();
AttributeSet unprotected = envdata.getUnprotectedAttribs();

3. Decrypt the content depending on the recipient information:

CMSContentInfo envContentInfo =
env.getEnclosed(privateKey, recipientCert);

or

CMSContentInfo envContentInfo =
env.getEnclosed(symmetricKey, keyIdentifier);

or

CMSContentInfo envContentInfo =
env.getEnclosed(symmetricKey, keyIdentifier, keyDate)

if (envContentInfo instanceof CMSDataContentInfo)
{

CMSDataContentInfo contentInfo = (CMSDataContentInfo) envContentInfo;
// ...

}

5.3.2.7.3 About the Key Transport Key Exchange Mechanism  

This mechanism supports the use of either IssuerAndSerialNo or 
SubjectKeyIdentifier as the recipient identifier.

5.3.2.7.4 About the Key Agreement Key Exchange Mechanism  

This mechanism is not currently supported.

5.3.2.7.5 About the Key Encryption (Wrap) Key Exchange Mechanism  

Oracle CMS supports CMS3DESWrap and CMSRC2Wrap algorithms. Mixed mode 
wrapping is not supported; for example, 3DES keys cannot be RC2-wrapped.

5.3.2.7.6 Working with Detached Enveloped-data CMS Objects  

If working with a detached object, note that the enveloped object is not part of the 
resulting CMS enveloped-data structure. Call the writeDetached (..) method to 
generate a detached object:

envdata.writeDetached(true);

While you can read in a detached enveloped-data object as shown in "Reading a CMS 
Enveloped-data Object", the content decryption will fail because the original, 

Note: Using the OtherKeyAttribute could cause interoperability 
problems.



Developing Applications with Oracle CMS

5-18 Developing Secure Applications with Oracle Security Developer Tools

enveloped object  is not present. Call the  setEnclosed (..) method to set the 
enveloped content:

envdata.setEnclosed(env.getEncryptedContent());

followed by content decryption:

envdata.getEnclosed(............);

5.3.2.8 Using the CMSAuthenticatedDataContentInfo Class
The class CMSAuthenticatedDataContentInfo represents an object of type 
id-ct-authData as defined by the constant CMS.id_ct_authData.

Table 5–9 lists some useful methods of this class.

Note: Oracle CMS supports HMAC with SHA-1 Message 
Authentication Code (MAC) Algorithm.

Table 5–9 Useful Methods of CMSAuthenticatedDataContentInfo

Method Description

void addRecipient(AlgorithmIdentifier keyEncryptionAlgID, 
SecretKey keyEncryptionKey, byte[] keyIdentifier,

    java.util.Date keyDate, ASN1Sequence otherKeyAttribute)

Adds a recipient using the 
key wrap key exchange 
mechanism

void addRecipient(CMSRecipientInfoSpec ris) Adds a recipient using the 
specified key exchange 
mechanism

void addRecipient(X509Certificate recipientCert, 
   AlgorithmIdentifier keyEncryptionAlgID)

Adds a recipient using the 
key transport key exchange 
mechanism using the 
IssuerAndSerialNo as the 
recipient identifier

void addRecipient(X509Certificate recipientCert, 
   AlgorithmIdentifier keyEncryptionAlgID, boolean useSPKI64)

Adds a recipient using the 
key transport key exchange 
mechanism using the 
SubjectKeyIdentifier as the 
recipient identifier

AttributeSet getAuthenticatedAttributes() Returns the Authenticated 
Attributes

AlgorithmIdentifier getDigestAlgID() Returns the digest algorithm

CMSContentInfo getEnclosed() Returns the authenticated 
content

ASN1ObjectID getEnclosedContentType() Returns the content type of 
the enclosed content

byte[] getMAC() Returns the message 
authentication code

AlgorithmIdentifier getMACAlgID() Returns the MAC algorithm 
used for authentication

OriginatorInfo getOriginatorInfo() Returns the Originator 
information

AttributeSet getUnauthenticatedAttributes() Returns the 
Unauthenticated Attributes

ASN1Integer getVersion() Returns the version number



Developing Applications with Oracle CMS

Oracle CMS 5-19

5.3.2.8.1 Constructing a CMS Authenticated-data Object  

Take the following steps to create an authenticated-data object:

1. Create an instance of CMSAuthenticatedDataContentInfo. In the following 
example, contentInfo is a CMSDataContentInfo object, Triple-DES HMAC key and 
HMAC with SHA-1 MAC algorithm:

SecretKey contentEncryptionKey = 
KeyGenerator.getInstance("DESede").generateKey();

CMSAuthenticatedDataContentInfo auth = 
new CMSAuthenticatedDataContentInfo(contentInfo, 

contentEncryptionKey, CMS.hmac_SHA_1);

2. Add recipients, keeping in mind the recipient's key management technique.

■ If the recipient uses the key encryption (wrap) key management mechanism:

auth.addRecipient(keyEncryptionAlgID, keyEncryptionKey, keyIdentifier,
keyDate, otherKeyAttribute);

■ If the recipient key exchange mechanism was specified using a 
CMSRecipientInfoSpec object:

auth.addRecipient(ris)

■ If the recipient uses the key transport (IssuerAndSerialNo recipient identifier) 
key management mechanism:

boolean isDetached() Indicates if this object is 
detached

java.util.Enumeration recipients() Returns the list of message 
recipients

void setAuthenticatedAttributes(AttributeSet 
authenticatedAttributes, 
   AlgorithmIdentifier digestAlgorithm)

Sets the Authenticated 
attributes

void setEnclosed(CMSContentInfo content) Sets the authenticated 
content

void setOriginatorInfo(OriginatorInfo originatorInfo) Sets the OriginatorInfo

void setUnauthenticatedAttributes(AttributeSet 
unauthenticatedAttributes)

Sets the unauthenticated 
attributes

void verifyMAC(PrivateKey privateKey, X509Certificate 
recipientCert)

Returns the enclosed 
content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyIdentifier) Returns the enclosed 
content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyIdentifier, 
   Date keyDate)

Returns the enclosed 
content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyIdentifier, 
   Date keyDate, ASN1Sequence otherKeyAttribute)

Returns the enclosed 
content after decryption

void writeDetached(boolean writeDetachedObject) Indicates if the 
authenticated content must 
be omitted from this object's 
output encoding

Table 5–9 (Cont.) Useful Methods of CMSAuthenticatedDataContentInfo

Method Description



Developing Applications with Oracle CMS

5-20 Developing Secure Applications with Oracle Security Developer Tools

auth.addRecipient(recipientCert, CMS.rsaEncryption);

■ If the recipient uses the key transport (64-bit SubjectKeyIdentifier recipient 
identifier) key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption, true)

■ If the recipient uses the key transport (160-bit SubjectKeyIdentifier recipient 
identifier) key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption, false)

3. Set any optional arguments:

auth.setAuthenticatedAttributes(authenticatedAttributes, CMS.md5);
auth.setOriginatorInfo(originatorInfo);
auth.setUnauthenticatedAttributes(unauthenticatedAttributes);

4. Write the CMS authenticated-data object to a file, say data.p7m:

auth.output(new FileOutputStream("data.p7m"));

5.3.2.8.2 Reading a CMS Authenticated-data Object  

The steps you need to read the object depend on whether you know the object's 
content type:

1. Open a connection to the data.p7m file using FileInputStream. If you know that 
the object stored in the file is of  content type id-ct-authData:

CMSAuthenticatedDataContentInfo authdata =
new CMSAuthenticatedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof  CMSAuthenticatedDataContentInfo)
{
CMSAuthenticatedDataContentInfo authdata = 
                             (CMSAuthenticatedDataContentInfo) cmsdata;
   // .....
}

2. To access the information stored in the CMS authenticated-data object:

int version = authdata.getVersion().intValue();
AlgorithmIdentifier macAlgID = authdata.getMACAlgID();
byte[] macValue = authdata.getMAC();
CMSContentInfo authContentInfo = authdata.getEnclosed();
if (authData.getEnclosedContentType().equals(CMS.id_data))

CMSDataContentInfo contentInfo = (CMSDataContentInfo)authContentInfo;

3. Verify the MAC depending on the recipient information:

authdata.verifyMAC(recipientPrivateKey, recipientCert);

or

authdata.verifyMAC(symmetricKey, keyIdentifier)

or



Developing Applications with Oracle CMS

Oracle CMS 5-21

authdata.verifyMAC(symmetricKey, keyIdentifier, keyDate)

or

authdata.verifyMAC(symmetricKey, keyIdentifier, keyDate,
otherKeyAttribute)

5.3.2.8.3 Detached Authenticated-data CMS Objects  

While you can read in a detached authenticated-data object as shown earlier, the MAC 
verification will fail because the original object that was authenticated is not present. 
To resolve this, call the setEnclosed (..) method to set the authenticated content:

authdata.setEnclosed(contentInfo);

followed by MAC verification using the appropriate key exchange mechanism:

authdata.verifyMAC(...)

5.3.2.9 Working with Wrapped (Triple or more) CMSContentInfo Objects
To wrap a CMSContentInfo object in another CMSContentInfo object, you simply pass 
an initialized CMSContentInfo object to the enclosing CMSContentInfo object through 
its constructor. Call the output (..) method of the enclosing outermost 
CMSContentInfo object to generate the nested object.

5.3.2.9.1 Reading a Nested (Wrapped) CMS Object  

The approach to reading a nested object depends on whether you know the outermost 
content type in advance.

If you do not know the outermost content type in advance, call the static method:

CMSContentInfo.inputInstance( ... )

If you do know the outermost content type in advance, call the  appropriate 
constructor:

new CMS***DataContentInfo( .... )

Then, recursively call the getEnclosed(..) method to extract the next inner object.

5.3.3 Constructing CMS Objects using the CMS***Stream and CMS***Connector 
Classes

The CMS**DataContentInfo classes provide the same functionality as the 
CMS***Stream classes. The primary advantage of the CMS***Stream classes over the 
CMS**DataContentInfo classes is that CMS objects can be created or read in one pass 
without having to accumulate all the necessary information.

Table 5–10 lists the content types of the CMS***Stream classes:

Table 5–10 The CMS***Stream Classes

Class Content Type

CMSDigestedDataInputStream,
CMSDigestedDataOutputStream

CMS.id_digestedData

CMSSignedDataInputStream,
CMSSignedDataOutputStream

CMS.id_signedData



Developing Applications with Oracle CMS

5-22 Developing Secure Applications with Oracle Security Developer Tools

Table 5–11 lists the content types of the CMS***Connector classes:

5.3.3.1 Understand Limitations of the CMS***Stream and CMS***Connector Classes
There are some limitations to CMS***Stream and CMS***Connector classes when 
processing objects:

1. They cannot verify the digest of a detached CMS id-digestedData object.

2. They cannot verify the signature of a detached CMS id-signedData object.

3. They cannot verify the MAC of a detached CMS id-ct-authData object.

5.3.3.2 Understand Difference between CMS***Stream and CMS***Connector 
Classes
The CMS***OutputStream class is an output stream filter which wraps the data written 
to it within a CMS (RFC-2630) ContentInfo structure, whose BER encoding is then 
written to the underlying output stream. The CMS***OutputConnector class is an 
output stream filter which likewise wraps the data written to it within a CMS 
(RFC-2630) ContentInfo structure, except that only the values octets of the Content 
field of the ContentInfo structure (minus the explicit [0] tag) are written to the 
underlying output stream. 

The CMS***InputStream class is an input stream filter which reads in a BER encoding 
of a CMS (RFC-2630) ContentInfo structure from the underlying output stream. The 
CMS***InputConnector class is an input stream filter that expects the underlying input 
stream to be positioned at the start of the value octets of the Content field of the 
ContentInfo structure (after the explicit [0] tag).

CMSEncryptedDataInputStream,
CMSEncryptedDataOutputStream

CMS.id_encryptedData

CMSEnvelopedDataInputStream,
CMSEnvelopedDataOutputStream

CMS.id_envelopedData

CMSAuthenticatedDataInputStream,
CMSAuthenticatedDataOutputStream

CMS.id_ct_authData

Table 5–11 The CMS***Connector Classes

Class Content Type

CMSDigestedDataInputConnector,
CMSDigestedDataOutputConnector

CMS.id_digestedData

CMSSignedDataInputConnector,
CMSSignedDataOutputConnector

CMS.id_signedData

CMSEncryptedDataInputConnector,
CMSEncryptedDataOutputConnector

CMS.id_encryptedData

CMSEnvelopedDataInputConnector,
CMSEnvelopedDataOutputConnector

CMS.id_envelopedData

CMSAuthenticatedDataInputConnector,
CMSAuthenticatedDataOutputConnector

CMS.id_ct_authData

Caution: Always use the CMS**DataContentInfo classes when 
processing detached objects.

Table 5–10 (Cont.) The CMS***Stream Classes

Class Content Type



Developing Applications with Oracle CMS

Oracle CMS 5-23

CMS***Connectors are useful in creating and reading nested objects.

5.3.3.3 Using the CMS***OutputStream and CMS***InputStream Classes
To construct an object:

1. Create a CMS***OutputStream class of the appropriate content type. All the 
relevant parameters are passed through the constructor.

2. Write the data being protected to the CMS***OutputStream created in step 1.

3. After all the data is written, close the CMS***OutputStream created in step 1 .

To read an object:

1. Create  a CMS***InputStream class of the appropriate content type by passing the 
underlying input stream through the constructor.

2. Read the protected data from the CMS***InputStream created in step 1 using the 
read() and read (byte[],...) methods.

3. Invoke terminate() after you have finished reading data from the 
CMS***InputStream created in  step 1. This completes the reading of the object.

4. Invoke the appropriate methods to verify that the protected content is secure.

5.3.3.3.1 About CMS id-data Objects  

The getData() method returns the data which can then be written to a 
CMS***OutputStream or CMS***OutputConnector.

5.3.3.3.2 About CMS id-ct-receipt Objects  

The getReceiptData() method returns the encoded receipt which can then be written 
to a CMS***OutputStream or CMS***OutputConnector.

To read ESSReceipt data from the input stream:

byte[] rcptData = in.read(...);
ESSReceipt er = new ESSReceipt();
er.inputContent(rcptData);

5.3.3.3.3 About CMS id-digestedData Objects   

You will not be able to verify the digest of a detached digested-data object. Setting the 
boolean parameter writeEContentInfo in the  CMSDigestedDataOutputStream 
constructor to false enables you to create a detached digested-data object.

5.3.3.3.4 About CMS id-signedData Objects  

You will not be able to verify the signature of a detached signed-data object.

The  CMSSignerInfoSpec class stores signer-specific information. For every signature 
you want to add, you will need to create a corresponding CMSSignerInfoSpec object 
which is then passed to the constructor. 

Setting the boolean parameter createExternalSignatures in the 
CMSSignedDataOutputStream constructor to true enables you to create a detached 
signed-data object or external signatures.

To create a Certificate/CRL only object, do not pass any signer information to the 
CMSDSignedDataOutputStream constructor.

5.3.3.3.5 About CMS id-encryptedData Objects  



Developing Applications with Oracle CMS

5-24 Developing Secure Applications with Oracle Security Developer Tools

Setting the boolean parameter writeEncryptedOutput in the 
CMSEncryptedDataOutputStream constructor to false enables you to create a detached 
encrypted-data object.

5.3.3.3.6 About CMS id-envelopedData Objects  

The CMSRecipientInfoSpec class stores recipient-specific information. For every 
recipient you want to add, you will need to create a corresponding 
CMSRecipientInfoSpec object which is then passed to the constructor. 

Setting the boolean parameter writeContent in the CMSEnvelopedDataOutputStream 
constructor to false enables you to create a detached enveloped-data object.

Key Transport Key Exchange Mechanism
Use the CMSKeyTransRecipientInfoSpec class to store recipient information that uses 
the key transport key management mechanism.

Key Agreement Key Exchange Mechanism
This mechanism is not supported at this time.

Key Encryption (wrap) Key Exchange Mechanism
Use the CMSKEKRecipientInfoSpec class to store recipient information that uses the 
key wrap key management mechanism.

5.3.3.3.7 About CMS id-ct-authData Objects  

You will not be able to verify the MAC of a detached authenticated-data object.

Setting the boolean parameter detachEncapContent in the 
CMSAuthenticatedDataOutputStream constructor to true enables you to create a 
detached authenticated-data object.

5.3.3.4 Wrapping (Triple or more) CMS***Connector Objects
You use CMS***OutputConnectors to create nested objects.

Use the following code to create signed, enveloped, digested, and encrypted data and 
write it to the file nested.p7m:

// nested.p7m <--- FileOutputStream <--- CMSSignedDataOutputConnector
// <--- CMSEnvelopedDataOutputConnector <---
// <----  CMSDigestedDataOutputConnector <---
// <----  CMSEncryptedDataOutputConnector <---
// <---- write the data (byte[] data)

FileOutputStream fos = new FileOutputStream("nested.p7m");
CMSSignedDataOutputConnector conn1 = 

new CMSSignedDataOutputConnector(fos, .....);
CMSEnvelopedDataOutputConnector conn2 = 

new CMSEnvelopedDataOutputConnector(conn1, ...);
CMSDigestedDataOutputConnector conn3 = 

new CMSDigestedDataOutputConnector(conn2, ...);
CMSEncryptedDataOutputConnector conn4 = 

new CMSEncryptedDataOutputConnector(conn3, ...);
OutputStream os = conn4.getOutputStream();
os.write(data);
os.close();

To read signed, enveloped, digested, and encrypted data stored in file nested.p7m:



The Oracle CMS Java API Reference

Oracle CMS 5-25

// nested.p7m ---> FileInputStream ---> CMSSignedDataInputConnector -
// ---> CMSEnvelopedDataInputConnector ---
// -----> CMSDigestedDataInputConnector ---
// ----> CMSEncryptedDataInputConnector ---
// ---> read the data (byte[] data)

FileInputStream fos = new FileInputStream("nested.p7m");
CMSSignedDataInputConnector conn1 =

new CMSSignedDataInputConnector(fos, .....);
CMSEnvelopedDataInputConnector conn2 =

new CMSEnvelopedDataInputConnector(conn1, ...);
CMSDigestedDataInputConnector conn3 =

new CMSDigestedDataInputConnector(conn2, ...);
CMSEncryptedDataInputConnector conn4 =

new CMSEncryptedDataInputConnector(conn3, ...);
InputStream is = conn4.getInputStream();
is.read(data);

5.4 The Oracle CMS Java API Reference
The Oracle CMS API Reference (Javadoc) is available at:

Oracle Fusion Middleware CMS Java API Reference for Oracle Security Developer Tools



The Oracle CMS Java API Reference

5-26 Developing Secure Applications with Oracle Security Developer Tools



6

Oracle S/MIME 6-1

6 Oracle S/MIME

[7] This chapter provides an overview of Oracle S/MIME, describes key features and 
benefits, and explains how to set up and use Oracle S/MIME.

This chapter contains these topics:

■ Oracle S/MIME Features and Benefits

■ Setting Up Your Oracle S/MIME Environment

■ Developing Applications with Oracle S/MIME

■ The Oracle S/MIME Java API Reference

6.1 Oracle S/MIME Features and Benefits
Oracle S/MIME is a pure Java solution which provides the following features:

■ Full support for X.509 Version 3 certificates with extensions, including certificate 
parsing and verification

■ Support for X.509 certificate chains in PKCS #7 and PKCS #12 formats

■ Private key encryption using PKCS #5, PKCS #8, and PKCS #12

■ An integrated ASN.1 library for input and output of data in ASN.1 DER/BER 
format

6.2 Setting Up Your Oracle S/MIME Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section explains how to set up your environment for Oracle 
S/MIME. It contains these topics:

■ Understanding System Requirements for Oracle S/MIME

■ Setting the CLASSPATH Environment Variable

6.2.1 Understanding System Requirements for Oracle S/MIME
In order to use Oracle S/MIME, your system must have the Java Development Kit 
(JDK) version 1.6 or higher. Oracle S/MIME also requires:

■ An implementation of the JavaBeans Activation Framework (JAF). Sun's 
royalty-free implementation is available at:

http://java.sun.com/javase/technologies/desktop/javabeans/jaf/downloads
/index.html



Setting Up Your Oracle S/MIME Environment

6-2 Developing Secure Applications with Oracle Security Developer Tools

■ An implementation of the JavaMail API. Sun's royalty-free implementation is 
available at:

http://www.javasoft.com/products/javamail/index.html

If you are using POP or IMAP, be sure to download Sun's POP3 (or IMAP) Provider, 
which is also available at the JavaMail page.

6.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar file

■ osdt_cert.jar file

■ osdt_cms.jar file

■ osdt_smime.jar file

■ Your JAF (Java Activation Framework), JavaMail, and POP3 provider installations.

Any application using the Oracle S/MIME API must have all the neccessary MIME 
types registered in its command map. 

Some applications, specifically those reading S/MIME entries from a FileDataSource, 
will need to register the S/MIME file types.

6.2.2.1 Setting the CLASSPATH on Windows
To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

5. Add the full path and file names for all the required jar and class files to the 
CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cms.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_smime.jar;
C:\jaf-1.1.1\activation.jar;
C:\javamail-1.4.1\mail.jar;

6. Click OK.

Note: Java Activation Framework is included in JDK 1.6.



Developing Applications with Oracle S/MIME

Oracle S/MIME 6-3

6.2.2.2 Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file 
names of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cms.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_smime.jar:
/usr/lib/jaf-1.1/activation.jar:
/usr/lib/javamail-1.4.1/mail.jar

6.3 Developing Applications with Oracle S/MIME
This section describes selected interfaces and classes in the Oracle S/MIME API and 
illustrates their use. It includes these topics:

■ Using the Core Classes and Interfaces

■ Supporting Classes and Interfaces

■ Using the Oracle S/MIME Classes

Selected methods are described as appropriate.

6.3.1 Using the Core Classes and Interfaces
This section describes core classes and interfaces in the Oracle S/MIME API, and 
explains how to create and parse S/MIME objects.

Summary of Class Changes in OracleAS 11gR1
The following changes apply in OracleAS 11gR1:

■ oracle.security.crypto.cert.X509 has been replaced with 
java.security.cert.X509Certificate

■ oracle.security.crypto.core.PrivateKey has been replaced with 
java.security.PrivateKey

■ oracle.security.crypto.core.SymmetricKey has been replaced with 
javax.crypto.SecretKey

About the Core Certificate Classes and Interfaces
Core classes and interfaces include:

■ Using the oracle.security.crypto.smime.SmimeObject Interface

■ Using the oracle.security.crypto.smime.SmimeSignedObject Interface

■ Using the oracle.security.crypto.smime.SmimeSigned Class

■ Using the oracle.security.crypto.smime.SmimeEnveloped Class

■ Using the oracle.security.crypto.smime.SmimeMultipartSigned Class

■ Using the oracle.security.crypto.smime.SmimeSignedReceipt Class

■ Using the oracle.security.crypto.smime.SmimeCompressed Class



Developing Applications with Oracle S/MIME

6-4 Developing Secure Applications with Oracle Security Developer Tools

6.3.1.1 Using the oracle.security.crypto.smime.SmimeObject Interface
The oracle.security.crypto.smime.SmimeObject interface represents an S/MIME 
object. Classes that implement this interface include:

■ SmimeSigned

■ SmimeEnveloped

■ SmimeMultipartSigned

■ SmimeSignedReceipt

■ SmimeCompressed

Methods in this interface include:

String generateContentType ()
Returns the content type string for this S/MIME object. For example:

"application/pkcs7-mime; smime-type=signed-data"

String generateContentType (boolean useStandardContentTypes)
If the argument is true, returns the same as generateContentType(); if false, returns 
old-style (Netscape) content type string. For example:
 "application/x-pkcs7-mime; smime-type=signed-data"

void writeTo (java.io.OutputStream os, java.lang.String mimeType)
Outputs this object to the specified output stream.

6.3.1.2 Using the oracle.security.crypto.smime.SmimeSignedObject Interface
The oracle.security.crypto.smime.SmimeSignedObject interface extends 
SmimeObject, and specifies methods common to all S/MIME signed objects, including 
SmimeSigned and SmimeMultipartSigned.

Methods in this interface include:

Vector getCertificates ()
Returns the list of certificates included in this S/MIME object's signed content.

Vector getCRLs ()
Returns the list of certificate revocation lists in the S/MIME object's signed content.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()
Returns the document which was signed.

oracle.security.crypto.smime.ess.EquivalentLabels getEquivalentLabels
(java.security.cert.X509Certificate signerCert)
Returns the EquivalentLabels if present or null.

oracle.security.crypto.smime.ess.ESSSecurityLabel getESSSecurityLabel
(java.security.cert.X509Certificate signerCert)
Returns the ESSSecurityLabel if present or null.

oracle.security.crypto.smime.ess.MLExpansionHistory getMLExpansionHistory(
 java.security.cert.X509Certificate signerCert)
Returns the MLExpansionHistory attribute if present or null.

oracle.security.crypto.smime.ess.ReceiptRequest getReceiptRequest(
 java.security.cert.X509Certificate signerCert)
Returns the ReceiptRequest attribute if present or null.

oracle.security.crypto.smime.ess.SigningCertificate getSigningCertificate(
 java.security.cert.X509Certificate signerCert)
Returns the SigningCertificate.



Developing Applications with Oracle S/MIME

Oracle S/MIME 6-5

void verify (oracle.security.crypto.cert.CertificateTrustPolicy trustPolicy)
Returns normally if the signed contents include at least one valid signature according 
to the specified trust policy, otherwise throws an AuthenticationException.

void verifySignature (java.security.cert.X509Certificate signerCert)
Returns normally if the signed contents contain a signature which can be validated by 
the given certificate, otherwise throws an AuthenticationException.

The method can throw a SignatureException, if no signature exists corresponding to 
the given certificate.

6.3.1.3 Using the oracle.security.crypto.smime.SmimeSigned Class
The oracle.security.crypto.smime.SmimeSigned class represents an S/MIME 
signed message (.implements SmimeSignedObject). You may use this class to build a 
new message or parse an existing one.

Constructors and methods include:

SmimeSigned (javax.mail.internet.MimeBodyPart content)
Creates a new SmimeSigned object, using the specified MIME body part for the 
contents to be signed.

SmimeSigned ()
Creates a new empty SmimeSigned object, which is useful for building a 
"certificates-only" S/MIME message.

SmimeSigned (InputStream is)
Creates a new SmimeSigned object by reading its encoding from the specified input 
stream.

void addSignature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert,
oracle.security.crypto.core.AlgorithmIdentifier digestAlgID)

Adds a signature to the message, using the specified private key, certificate, and 
message digest algorithm.

void addSignature (java.security.PrivateKey signerKey,
 java.security.cert.X509Certificate signerCert,
 oracle.security.crypto.core.AlgorithmIdentifier digestAlgID,
      java.util.Date timeStamp)
Adds a signature to the message, including a time stamp.

void addSignature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert,
oracle.security.crypto.core.AlgorithmIdentifier digestAlgID,
SmimeCapabilities smimeCaps)

Adds a signature to the message, including S/MIME capabilities.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()
Returns the MIME body part that was signed.

To build a new message, use any of these three constructors:

// Create a new S/MIME Signed Message
SmimeSigned sig = new SmimeSigned();

//         -OR-
// Create a new S/MIME Signed Message with a specified MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
SmimeSigned sig1 = new SmimeSigned(bp);

//         -OR-



Developing Applications with Oracle S/MIME

6-6 Developing Secure Applications with Oracle Security Developer Tools

// Create a new S/MIME Signed Message with a specified MIME body part 
// and a flag switching compression on or off
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
boolean useCompression = true;
SmimeSigned sig2 = new SmimeSigned(bp, useCompression);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeSigned sig = new SmimeSigned(is);

6.3.1.4 Using the oracle.security.crypto.smime.SmimeEnveloped Class
The oracle.security.crypto.smime.SmimeEnveloped class represents an S/MIME 
enveloped message (implements SmimeObject), and may be used to build a new 
message or parse an existing one.

Constructors and methods include:

SmimeEnveloped (javax.mail.internet.MimeBodyPart content,
oracle.security.crypto.core.AlgorithmIdentifier contentEncryptionAlgID)

Creates a new SmimeEnveloped object from the specified MIME body part, using the 
specified content encryption algorithm.

SmimeEnveloped (InputStream is)
Creates a new SmimeEnveloped object by reading its encoding from the specified input 
stream.

void addRecipient (java.security.cert.X509Certificate cert)
Encrypts the message for the recipient using the given public key certificate.

byte[] getEncryptedContent ()
Returns the contents without decrypting.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart (
 java.security.PrivateKey recipientKey,
 java.security.cert.X509Certificate recipientCert)
Returns the MIME body part for the recipient specified by recipientCert, after 
decryption using the given recipient private key.

Use the following code to build a new message:

// Create a new S/MIME Enveloped Message with a specified MIME body part and a 
specified content
// encryption algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = AlgID.aes256_CBC;
SmimeEnveloped env = new SmimeEnveloped(bp, algId);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeEnveloped env = new SmimeEnveloped(is);

6.3.1.5 Using the oracle.security.crypto.smime.SmimeMultipartSigned Class
The oracle.security.crypto.smime.SmimeMultipartSigned class represents an 
S/MIME multi-part signed message. A multipart signed message is intended for email 
clients that are not MIME-aware. This class can be used to build a new message or 
parse an existing one.

Constructors and methods include:



Developing Applications with Oracle S/MIME

Oracle S/MIME 6-7

SmimeMultipartSigned (javax.mail.internet.MimeBodyPart bodyPart,
oracle.security.crypto.core.AlgorithmIdentifier digestAlgID)

Creates a new SmimeMultipartSigned message, with the specified MIME body part 
and message digest algorithm.

void addBodyPart (javax.mail.BodyPart part)
Inherited from javax.mail.Multipart, adds the specified body part to this 
SmimeMultipartSigned object. (See the javax.mail API documentation at 
http://java.sun.com/products/javamail/javadocs/javax/mail/BodyPart.html for 
more details.)

void addSignature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert)

Adds a signature to the message, using the specified private key and certificate.

void addSignature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert, java.util.Date timeStamp)

Adds a signature to the message, using the specified private key and certificate plus a 
time stamp.

void addSignature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert, java.util.Date timeStamp,
SmimeCapabilities smimeCaps)

Adds a signature to the message, using the specified private key and certificate, plus 
S/MIME capabilities.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()
Returns the MIME body part that was signed.

Use the following code to build a new message:

// Create a new S/MIME Multipart Signed Message with a specified 
// MIME body part and a specified digest algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = AlgID.sha1;
SmimeMutlipartSigned sig = new SmimeMultipartSigned(bp, algId);

To parse a message, use the constructor that takes a javax.activation.DataSource:

DataSource ds = Data source containing message to be parsed
SmimeMultipartSigned sig = new SmimeMultipartSigned(ds);

6.3.1.6 Using the oracle.security.crypto.smime.SmimeSignedReceipt Class
The oracle.security.crypto.smime.SmimeSignedReceipt class represents an 
S/MIME wrapped and signed receipt. You may use this class to build a new message 
or parse an existing one.

To build a new message, use any of these four constructors:

// Create a new S/MIME wrapped and signed receipt with the specified receipt,
// the specified digest of the message's signed attributes
// and the addresses of the receipt recipients
ESSReceipt receipt = ESS receipt to include in message
byte [] msgSigDigest = Digest of signed attributes to be included in message
Address [] addresses = Addresses of receipt recipients
SmimeSignedReceipt sig = new SmimeSigned(receipt, msgSigDigest, addresses);

 //         -OR-



Developing Applications with Oracle S/MIME

6-8 Developing Secure Applications with Oracle Security Developer Tools

// Create a new S/MIME wrapped and signed receipt 
// with a specified S/MIME Signed Message containing the receipt 
SmimeSignedObject sso = S/MIME signed message containing receipt
SmimeSignedReceipt sig1 = new SmimeSignedReceipt(sso);

//         -OR-
// Create a new S/MIME wrapped and signed receipt with a 
// specified S/MIME Signed Message containing the receipt,
// the signer's certificate and the addresses of the receipt recipients
SmimeSignedObject sso1 = S/MIME signed message containing receipt
X509Certificate signerCert = The message signer's certificate
Address [] addresses1 = Addresses of receipt recipients
SmimeSignedReceipt sig2 = new SmimeSignedReceipt(sso1, signerCert, addresses1); 

//         -OR-

// Create a new S/MIME wrapped and signed receipt with a 
// specified S/MIME Signed Message containing the receipt,
// the signer's certificate, the addresses of the receipt recipients and
// a specified MLExpansionHistory attribute.
SmimeSignedObject sso1 = S/MIME signed message containing receipt
X509Certificate signerCert = The message signer's certificate
Address [] addresses1 = Addresses of receipt recipients
MLExpansionHistory mlExpansionHistory = The MLExpansionHistory attribute
SmimeSignedReceipt sig2 = 

new SmimeSignedReceipt(sso1, signerCert, addresses1, mlExpansionHistory);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeSignedReceipt sig = new SmimeSignedReceipt(is);

6.3.1.7 Using the oracle.security.crypto.smime.SmimeCompressed Class
The oracle.security.crypto.smime.SmimeCompressed class represents an S/MIME 
compressed message as defined in RFC 3274. You can use this class to build a new 
message or parse an existing one. 

Use the following code to build a new message:

// Create a new S/MIME Compressed Message with a specified MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
SmimeCompressed comp = new SmimeCompressed(bp);

//           -OR-
// Create a new S/MIME Compressed Message with a specified MIME body part
// and a specified compression algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = Smime.id_alg_zlibCompress;
SmimeCompressed comp = new SmimeCompressed(bp, algId);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeCompressed comp1 = new SmimeCompressed(is);

6.3.2 Supporting Classes and Interfaces
This section describes Oracle S/MIME supporting classes and interfaces.



Developing Applications with Oracle S/MIME

Oracle S/MIME 6-9

6.3.2.1 Using the oracle.security.crypto.smime.Smime Interface
The oracle.security.crypto.smime.Smime interface defines constants such as 
algorithm identifiers, content type identifiers, and attribute identifiers.

6.3.2.2 Using the oracle.security.crypto.smime.SmimeUtils Class
The oracle.security.crypto.smime.SmimeUtils class contains static utility methods.

Methods of this class include:

public static FileDataSource createFileDataSource (File file,
String contentTypeHeader)

public static FileDataSource createFileDataSource (String name,
String contentTypeHeader)

For transparent handling of multipart or multipart/signed S/MIME types, use these 
methods instead of directly instantiating a javax.activation.FileDataSource. 

6.3.2.3 Using the oracle.security.crypto.smime.MailTrustPolicy Class
The oracle.security.crypto.smime.MailTrustPolicy class implements a certificate 
trust policy (oracle.security.crypto.cert.CertificateTrustPolicy) used to verify 
signatures on signed S/MIME objects.

6.3.2.4 Using the oracle.security.crypto.smime.SmimeCapabilities Class
The oracle.security.crypto.smime.SmimeCapabilities class encapsulates a set of 
capabilities for an S/MIME object including, for example, the supported encryption 
algorithms.

A useful method of this class is:

void addCapability(oracle.security.crypto.asn1.ASN1ObjectID capabilityID)
which adds the capability with the specified object ID to this set of S/MIME 
capabilities.

6.3.2.5 Using the oracle.security.crypto.smime.SmimeDataContentHandler Class
The oracle.security.crypto.smime.SmimeDataContentHandler class provides the 
DataContentHandler for S/MIME content types. It implements 
javax.activation.DataContentHandler.

6.3.2.6 Using the oracle.security.crypto.smime.ess Package
The oracle.security.crypto.smime.ess package contains the following classes:

Note: The default javax.activation.FileDataSource included with 
JAF 1.0.1 does not handle multipart MIME boundaries when used 
with Javamail 1.1.x.

Table 6–1 Classes in the oracle.security.crypto.smime.ess Package

Class Description

ContentHints Content hints

ContentReference Content reference

EquivalentLabels ESS EquivalentLabels

ESSSecurityLabel An ESS security label



Developing Applications with Oracle S/MIME

6-10 Developing Secure Applications with Oracle Security Developer Tools

6.3.3 Using the Oracle S/MIME Classes
This section describes how to use the Oracle S/MIME SDK to work with multi-part 
signed messages, create and open digital envelopes, and implement Enhanced 
Security Services (ESS). It covers these topics:

■ Using the Abstract Class SmimeObject

■ Signing Messages

■ Creating "Multipart/Signed" Entities

■ Creating Digital Envelopes

■ Creating "Certificates-Only" Messages

■ Reading Messages

■ Authenticating Signed Messages

■ Opening Digital Envelopes (Encrypted Messages)

■ Adding Enhanced Security Services (ESS)

6.3.3.1 Using the Abstract Class SmimeObject
SmimeObject is an abstract class representing a fundamental S/MIME message content 
entity. Subclasses of SmimeObject include :

■ SmimeSigned

■ SmimeEnveloped

■ SmimeMultipartSigned

■ SmimeSignedReceipt, and 

■ SmimeCompressed

One of the characteristics of SmimeObject implementations is that they "know their 
own MIME type" -- that is, they implement the generateContentType method. Thus, 
to place such an object inside a MIME message or body part, follow the same outline 
that was used in the SmimeSigned example:

1. Create the object.

2. Invoke generateContentType on the object to obtain a MIME type.

MLData Represents the MLData element which is used in the 
MLExpansionHistory attribute

MLExpansionHistory Mailing list expansion history

ReceiptRequest An ESS Receipt Request

ReceiptRequest.AllOrFirstTier An 'AllOrFirstTier' is a part of the 'ReceiptsFrom' field of a 
ReceiptRequest

SigningCertificate An ESS Signing Certificate

Table 6–1 (Cont.) Classes in the oracle.security.crypto.smime.ess Package

Class Description



Developing Applications with Oracle S/MIME

Oracle S/MIME 6-11

3. Pass the object, together with the generated content type, to the setContent 
method of a MimeMessage or MimeBodyPart object.

The SmimeObject class provides another version of the generateContentType method, 
which takes a boolean parameter. When given true as a parameter, 
generateContentType behaves exactly as in the case of no argument. When given false 
as a parameter, generateContentType returns the older MIME types required by 
certain mail clients, including Netscape Communicator 4.0.4. Specifically:

■ "application/pkcs7-mime" becomes "application/x-pkcs7-mime"

■ "application/pkcs7-signature" becomes "application/x-pkcs7-signature"

6.3.3.2 Signing Messages
Create a signed message, or signed MIME body part, using these steps:

1. Prepare an instance of MimeBodyPart which contains the content you wish to 
sign. This body part may have any content-type desired. In the following example 
we create a "text/plain" body part:

MimeBodyPart doc = new MimeBodyPart();
doc.setText("Example signed message.");

2. Create an instance of SmimeSigned using the constructor which takes the 
MimeBodyPart created earlier as argument.

SmimeSigned sig = new SmimeSigned (doc);

3. Add all desired signatures. For each signature, you need to specify a private key, a 
certificate for the matching public key, and a message digest algorithm. For 
example:

sig.addSignature (signatureKey, signatureCert, AlgID.sha1);
In this example we specified the SHA-1 message digest algorithm. Alternatively, 
we could have specified the MD5 algorithm by passing AlgID.md5 as the 
argument.

4. Place your SmimeSignedObject into a MimeMessage or MimeBodyPart, as 
appropriate. For example:

MimeMessage m = new MimeMessage();
m.setContent (sig, sig.generateContentType());

or

MimeBodyPart bp = new MimeBodyPart();
bp.setContent (sig, sig.generateContentType());

The generateContentType method used in these examples returns a string identifying 
the appropriate MIME type for the object, which in this case is:

application/pkcs7-mime; smime-type=signed-data

With these simple steps, you can now transport the MIME message, place the body 
part containing S/MIME content into a MIME multipart object, or perform any other 
operation appropriate for these objects. See the JavaMail API for details.

6.3.3.3 Creating "Multipart/Signed" Entities
The SmimeMultipartSigned class provides an alternative way to create signed 
messages. These messages use the "multipart/signed" mime type instead of 
"application/pkcs7-mime". The advantage is that the content of the resulting message 



Developing Applications with Oracle S/MIME

6-12 Developing Secure Applications with Oracle Security Developer Tools

is readable with non-MIME enabled mail clients, although such clients will not, of 
course, be able to verify the signature.

Creating a multi-part/signed message is slightly different from creating a signed 
message. For example, to send a multi-part/signed text message:

// create the content text as a MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Example multipart/signed message.");
// the constructor takes the signature algorithm
SmimeMultipartSigned sig = new SmimeMultipartSigned(bp, AlgID.sha1);
// sign the content
sig.addSignature(signerKey, signerCert); 
// place the content in a MIME message
MimeMessage msg = new MimeMessage();
msg.setContent(sig, sig.generateContentType());

The reason for identifying the message digest in the SmimeMultipartSigned 
constructor is that, unlike the case of application/pkcs7-mime signed data objects, 
multipart/signed messages require that all signatures use the same message digest 
algorithm.

The generateContentType method returns the following string:

multipart/signed; protocol="application/pkcs7-signature"

6.3.3.4 Creating Digital Envelopes
An S/MIME digital envelope (encrypted message) is represented by the 
SmimeEnveloped class. This is a MIME entity which is formed by encrypting a MIME 
body part with some symmetric encryption algorithm (eg, Triple-Des or RC2) and a 
randomly generated session key, then encrypting the session key with the RSA public 
key for each intended message recipient.

In the following example, doc is an instance of MimeBodyPart, which is to be wrapped 
in an instance of SmimeEnveloped, and recipientCert is the recipient's certificate.

SmimeEnveloped env = new SmimeEnveloped(doc, Smime.dES_EDE3_CBC);
env.addRecipient (recipientCert);

Any number of envelope recipients may be added by making repeated calls to 
addRecipient.

6.3.3.5 Creating "Certificates-Only" Messages
It is possible to create an S/MIME signed-data object that contains neither content nor 
signatures; rather, it contains just certificates, or CRLs, or both. Such entities can be 
used as a certificate transport mechanism. They have the special content type:

application/pkcs7-mime; smime-type=certs-only

Here is an example:

X509Certificate cert1, cert2;
SmimeSigned certBag = new SmimeSigned();
certBag.addCertificate(cert1);
certBag.addCertificate(cert2);

Now you can pass certBag to an appropriate setContent method. When 
generateContentType is invoked on certBag, it will automatically return a content 
type with the correct "certs-only" value for the smime-type parameter.



Developing Applications with Oracle S/MIME

Oracle S/MIME 6-13

6.3.3.6 Reading Messages
The basic JavaMail API technique for extracting Java objects from MIME entities is to 
invoke the getContent() method on an instance of MimePart, an interface which 
models MIME entities and is implemented by the MimeMesage and MimeBodyPart 
classes.

The getContent method consults the currently installed default command map - 
which is part of the JavaBeans Activities Framework - to find a data content handler 
for the given MIME type, which is responsible for converting the content of the MIME 
entity into a Java object of the appropriate class.

The mailcap file provided with your distribution can be used to install the 
SmimeDataContentHandler class, which serves as a data content handler for the 
following types:

6.3.3.7 Authenticating Signed Messages
Once you obtain an instance of SmimeSigned or SmimeMutlipartSigned from 
getContent(), you will naturally want to verify the attached signatures. To explain the 
available options for signature verification, it is neccessary to discuss the structure of 
an S/MIME signed message.

The content of a signed S/MIME message is a CMS object of type SignedData. Such an 
object itself has a content - the document to which the signatures are applied - which is 
the text encoding of a MIME entity. It also contains from zero to any number of 
signatures, and, optionally, a set of certificates, CRLs, or both, which the receiving 
party may use to validate the signatures.

The SmimeSigned and SmimeMultipartSigned classes encapsulate all of this 
information. They provide two authentication methods: verifyingSignature and 
verify.

To verify a particular signature with a certificate already in possession, ignoring any 
certificate and CRLs attached by the signer, use verifySignature. For example:

SmimeSignedObject sig =
(SmimeSignedObject)msg.getContent(); // msg is a Message

sig.verifySignature(cert, msg.getFrom()); // cert is an X509Certificate object

If verification fails, the verifySignature method throws either a SignatureException 
or an AuthenticationException ; otherwise, it returns normally.

Use verify to verify that the content contains at least one valid signature; that is, there 
exists a valid certificate chain, starting from a trusted root CA, and terminating in a 
certificate for the private key which generated the signature. This method makes use 
of the attached certificate and CRLs in order to follow certificate chains. 

For example, given a trusted certificate authority (CA) certificate already in hand:

TrustedCAPolicy trusts = new TrustedCAPolicy();
// if true, need CRL for each cert in chain
trusts.setRequireCRLs(false); 

Content Type Returns Instance Of

application/pkcs7-mime SmimeSigned or Smime Enveloped

application/pkcs7-signature SmimeSigned

application/pkcs10 oracle.security.crypto.cert.CertificateRequest

multipart/signed SmimeMultipartSigned



Developing Applications with Oracle S/MIME

6-14 Developing Secure Applications with Oracle Security Developer Tools

// caCert is an X509Certificate object with CA cert
trusts.addTrustedCA(caCert); 
SmimeSignedObject sig = (SmimeSignedObject)msg.getContent();
sig.verify(trusts, msg.getFrom());

Like verifySignature, verify throws an AuthenticationException if the signature 
cannot be verified; otherwise it returns normally. In either case you can recover the 
document that was signed, which is itself a MIME entity, by invoking 
getEnclosedBodyPart():

MimeBodyPart doc = sig.getEnclosedBodyPart();

6.3.3.8 Opening Digital Envelopes (Encrypted Messages)
An S/MIME digital envelope consists of:

■ A protected MIME body part, which has been encrypted with a symmetric key 
algorithm (for example, DES or RC2)

■ A randomly generated content encryption key

■ Information that allows one or more intended recipients to decrypt the content

For each recipient, this information consists of the content encryption key, itself 
encrypted with the recipient's public key.

To obtain the encrypted content from an SmimeEnveloped object, you need the 
recipient's private key and the corresponding certificate; the certificate is used as an 
index into the recipient information table contained in the envelope's data structure. 

For example:

SmimeEnveloped env = (SmimeEnveloped)msg.getContent();
MimeBodyPart mbp = env.getEnclosedBodyPart(privKey, cert)
// privKey is a PrivateKey object
// cert is an X509Certificate object

Passing the private key and the certificate to the getEnclosedBodyPart method returns 
the decrypted content as an instance of MimeBodyPart.

The getContent method can now be invoked on the MimeBodyPart object to retrieve 
the (now decrypted) content. This content may be a String (in the case of an 
encrypted text message), or any other object such as an SmimeSigned.

6.3.3.9 Adding Enhanced Security Services (ESS)
You can add the ESS services ReceiptRequests, SecurityLabels, and 
SigningCertificates to an S/MIME signed message by adding them to the 
signedAttributes of a signature.

// Create a Signed Message
SmimeSigned sig = new SmimeSigned(); 

AttributeSet signedAttributes = new AttributeSet();

Receipt Request (oracle.security.crypto.smime.ess.ReceiptRequest)
To request a signed receipt from the recipient of a message, add a receiptRequest 
attribute to the signedAttributes field while adding a signature:

ReceiptRequest rr = new ReceiptRequest();
.........
signedAttributes.addAttribute(Smime.id_aa_receiptRequest, rr);



The Oracle S/MIME Java API Reference

Oracle S/MIME 6-15

Security Label (oracle.security.crypto.smime.ess.ESSSecurityLabel)
To attach a security label to a message, add an ESSSecurityLabel attribute to the 
signedAttributes field while adding a signature:

ESSSecurityLabel sl = new ESSSecurityLabel();
.........
signedAttributes.addAttribute(Smime.id_aa_securityLabel, sl);

Signing Certificate (oracle.security.crypto.smime.ess.SigningCertificate)
To attach a signing certificate to a message, add a SigningCertificate attribute to the 
signedAttributes field while adding a signature:

SigningCertificate sc = new SigningCertificate();
.........
signedAttributes.addAttribute(Smime.id_aa_signingCertificate, sc);

Use the signedAttributes while adding a signature:

sig.addSignature(signerKey, signerCert, digestAlgID, signedAttributes);

The ESS signed receipts are generated using the SmimeSignedReceipt class in the 
oracle.security.crypto.smime package, in a manner similar to using a SmimeSigned 
class, except that the content that is signed is an 
oracle.security.crypto.cms.ESSReceipt object.

6.3.3.10 Processing Enhanced Security Services (ESS)
An S/MIME signed receipt must have correctly set content type parameters for the 
data content handlers to recognize it. If the content type parameters are missing, the 
signed receipt is treated as a signed message.

6.4 The Oracle S/MIME Java API Reference
The Oracle S/MIME Java API Reference (Javadoc) is located at:

Oracle Fusion Middleware S/MIME Java API Reference for Oracle Security Developer Tools



The Oracle S/MIME Java API Reference

6-16 Developing Secure Applications with Oracle Security Developer Tools



7

Oracle PKI SDK 7-1

7 Oracle PKI SDK

[8] A public key infrastructure (PKI) is a security architecture that provides an increased 
level of confidence when exchanging information over the Internet.

This chapter provides information about using the packages in Oracle PKI SDK, which 
is a set of software development kits (SDKs) for developing PKI-aware applications.

This chapter contains the following topics:

■ Oracle PKI CMP SDK

■ Oracle PKI OCSP SDK

■ Oracle PKI TSP SDK

■ Oracle PKI LDAP SDK

7.1 Oracle PKI CMP SDK
This section provides information about using the Oracle public key infrastructure 
(PKI) Software Development Kit (SDK) for certificate management protocol (CMP). 
Oracle PKI CMP SDK allows Java developers to quickly implement certificate 
management functionality such as issuing and renewing certificates, creating and 
publishing CRLs, and providing key recovery capabilities.

This chapter contains the following topics:

■ Oracle PKI CMP SDK Features and Benefits

■ Setting Up Your Oracle PKI CMP SDK Environment

■ The Oracle PKI CMP SDK Java API Reference

7.1.1 Oracle PKI CMP SDK Features and Benefits
The Oracle PKI CMP SDK provides the following features and functionality:

■ Oracle PKI CMP SDK conforms to RFC 2510, and is compatible with other 
products that conform to this certificate management protocol (CMP) 
specification. RFC 2510 defines protocol messages for all aspects of certificate 
creation and management.

■ Oracle PKI CMP SDK conforms to RFC 2511, and is compatible with other 
products that conform to this certificate request message format (CRMF) 
specification. RFC 2511 describes the Certificate Request Message Format (CRMF), 
which is used to convey X.509 certificate requests to a Certification Authority 
(CA).



Oracle PKI CMP SDK

7-2 Developing Secure Applications with Oracle Security Developer Tools

7.1.1.1 About Oracle PKI CMP SDK Packages
The Oracle PKI CMP SDK toolkit contains the following packages:

■ The oracle.security.crypto.cmp package provides classes that implement 
certificate management protocol (CMP) as described in RFC 2510, and certificate 
request message format (CRMF) as described in RFC 2511. 

■ The oracle.security.crypto.cmp.attribute package provides attribute classes 
for registration controls, registration information, and general information. This 
package includes the following classes and their subclasses:

– RegistrationControl

– RegistrationInfo

– InfoTypeAndValue (which extends 
oracle.security.crypto.cert.AttributeTypeAndValue)

■ The oracle.security.crypto.cmp.transport package provides classes for CMP 
and CRMF transport protocols. It includes the TCPMessage class and its specific 
message-type subclasses. 

7.1.2 Setting Up Your Oracle PKI CMP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section provides information for setting up your environment for 
Oracle PKI CMP SDK. It contains the following topics:

■ Understanding System Requirements for Oracle PKI CMP SDK

■ Setting the CLASSPATH Environment Variable

7.1.2.1 Understanding System Requirements for Oracle PKI CMP SDK
In order to use Oracle PKI CMP SDK, your system must have the Java Development 
Kit (JDK) version 1.6 or higher.

7.1.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_cms.jar

■ osdt_cmp.jar

7.1.2.2.1 Setting the CLASSPATH on Windows  

To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.



Oracle PKI OCSP SDK

Oracle PKI SDK 7-3

5. Add the full path and file names for all of the required jar and class files to the 
CLASSPATH. For example:

%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cms.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cmp.jar

6. Click OK.

7.1.2.2.2 Setting the CLASSPATH on UNIX  

On UNIX, set your CLASSPATH environment variable to include the full path and file 
names of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cms.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cmp.jar

7.1.3 The Oracle PKI CMP SDK Java API Reference
The Oracle PKI CMP SDK Java API reference (Javadoc) is available at: 

Oracle Fusion Middleware PKI SDK CMP Java API Reference for Oracle Security Developer 
Tools

7.2 Oracle PKI OCSP SDK
This section provides information about using the Oracle Online Certificate Status 
Protocol (OCSP) Software Development Kit (SDK). Oracle PKI OCSP SDK allows Java 
developers to quickly develop OCSP-enabled client applications and OCSP responders 
that conform to RFC 2560 specifications. 

This section contains the following topics:

■ Oracle PKI OCSP SDK Features and Benefits

■ Setting Up Your Oracle PKI OCSP SDK Environment

■ The Oracle PKI OCSP SDK Java API Reference

7.2.1 Oracle PKI OCSP SDK Features and Benefits
Oracle PKI OCSP SDK provides the following features and functionality:

■ Oracle PKI OCSP SDK conforms to RFC 2560 and is compatible with other 
products that conform to this specification, such as Valicert's Validation Authority. 
RFC 2560 specifies a protocol useful in determining the current status of a digital 
certificate without requiring CRLs.

■ The Oracle PKI OCSP SDK API provides classes and methods for constructing 
OCSP request messages that can be sent through HTTP to any RFC 2560 compliant 
validation authority. 

■ The Oracle PKI OCSP SDK API provides classes and methods for constructing 
responses to OCSP request messages, and an OCSP server implementation that 
you can use as a basis for developing your own OCSP server to check the validity 
of certificates you have issued.



Oracle PKI OCSP SDK

7-4 Developing Secure Applications with Oracle Security Developer Tools

7.2.2 Setting Up Your Oracle PKI OCSP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME/path_to_tools. This section provides information for setting up your 
environment for Oracle PKI OCSP SDK. It contains the following topics:

■ Understanding System Requirements for Oracle PKI OCSP SDK

■ Setting the CLASSPATH Environment Variable

7.2.2.1 Understanding System Requirements for Oracle PKI OCSP SDK
In order to use Oracle PKI OCSP SDK, your system must have the Java Development 
Kit (JDK) version 1.6 or higher. Also, make sure that your PATH environment variable 
includes the Java bin directory.

7.2.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_ocsp.jar

7.2.2.2.1 Setting the CLASSPATH on Windows
  To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

5. Add the full path and file names for all of the required jar and class files to the 
CLASSPATH. For example:

%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_ocsp.jar

6. Click OK.

7.2.2.2.2 Setting the CLASSPATH on Unix  

On Unix, set your CLASSPATH environment variable to include the full path and file 
name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOMEmodules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOMEmodules/oracle.osdt_11.1.1/osdt_ocsp.jar

7.2.3 The Oracle PKI OCSP SDK Java API Reference
The Oracle PKI OCSP SDK Java API reference (Javadoc) is available at: 



Oracle PKI TSP SDK

Oracle PKI SDK 7-5

Oracle Fusion Middleware PKI SDK OCSP Java API Reference for Oracle Security Developer 
Tools

7.3 Oracle PKI TSP SDK
This section provides information about using the Oracle PKI TSP SDK, which allows 
Java developers to quickly implement time-stamping functionality within a public key 
infrastructure (PKI) framework.

This section contains the following topics:

■ Oracle PKI TSP SDK Features and Benefits

■ Setting Up Your Oracle PKI TSP SDK Environment

■ The Oracle PKI TSP SDK Java API Reference

7.3.1 Oracle PKI TSP SDK Features and Benefits
Oracle PKI TSP SDK provides the following features and functionality:

■ Oracle PKI TSP SDK conforms to RFC 3161 and is compatible with other products 
that conform to this time stamp protocol (TSP) specification.

■ Oracle PKI TSP SDK provides an example implementation of a TSA server to use 
for testing TSP request messages, or as a basis for developing your own time 
stamping service. 

7.3.1.1 About Oracle PKI TSP SDK Classes and Interfaces
Oracle PKI TSP SDK contains the following classes and interfaces:

7.3.2 Setting Up Your Oracle PKI TSP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section provides information for setting up your environment for 
Oracle PKI TSP SDK. It contains the following topics:

■ Understanding System Requirements for Oracle PKI TSP SDK

Table 7–1 Oracle PKI TSP SDK Classes and Interfaces

Class or Interface Name Description

TSP Interface Defines various constants associated with the Time Stamp Protocol 
(TSP).

HttpTSPRequest Class Implementation of a TSP request message over HTTP.

HttpTSPResponse Class Implementation of a TSP response message over HTTP.

MessageImprint Class This class represents a MessageImprint object as defined in RFC 3161.

TSAPolicyID Class This class represents a TSAPolicyID object as defined in RFC 3161.

TSPContentHandlerFactory Class A content handler for TSP over HTTP.

TSPMessage Class A TSP message.

TSPTimeStampReq Class A TSP message of type TimeStampReq as defined in RFC 3161.

TSPTimeStampResp Class A TSP message of type TimeStampResp as defined in RFC 3161.

TSPUtils Class Defines various utility methods for the oracle.security.crypto.tsp 
package.



Oracle PKI TSP SDK

7-6 Developing Secure Applications with Oracle Security Developer Tools

■ Setting the CLASSPATH Environment Variable

7.3.2.1 Understanding System Requirements for Oracle PKI TSP SDK
In order to use Oracle PKI TSP SDK, your system must have the Java Development Kit 
(JDK) version 1.6 or higher. Also, make sure that your PATH environment variable 
includes the Java bin directory.

7.3.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar

■ osdt_cms.jar

■ osdt_cmp.jar 

■ osdt_tsp.jar

7.3.2.2.1 Setting the CLASSPATH on Windows  

To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

5. Add the full path and file names for all the required jar and class files to the 
CLASSPATH. For example:

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cms.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cmp.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_tsp.jar

6. Click OK.

7.3.2.2.2 Setting the CLASSPATH on Unix  

On Unix, set your CLASSPATH environment variable to include the full path and file 
name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cms.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cmp.jar;
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_tsp.jar

7.3.3 The Oracle PKI TSP SDK Java API Reference
The Oracle PKI TSP SDK Java API reference (Javadoc) is available at: 



Oracle PKI LDAP SDK

Oracle PKI SDK 7-7

Oracle PKI SDK TSP Java API Reference

7.4 Oracle PKI LDAP SDK
This section provides information about using Oracle PKI LDAP SDK, which allows 
Java developers to quickly implement operations that involve publishing and 
retrieving digital certificates from a directory server. 

This section contains the following topics:

■ Oracle PKI LDAP SDK Features and Benefits

■ Setting Up Your Oracle PKI LDAP SDK Environment

■ The Oracle PKI LDAP SDK Java API Reference

7.4.1 Oracle PKI LDAP SDK Features and Benefits
Oracle PKI LDAP SDK provides facilities for accessing a digital certificate within an 
LDAP directory. Some of the tasks you can perform with Oracle PKI LDAP SDK are: 

■ Validating a user's certificate in an LDAP directory

■ Adding a certificate to an LDAP directory

■ Retrieving a certificate from an LDAP directory

■ Deleting a certificate from an LDAP directory

7.4.1.1  About Oracle PKI LDAP SDK Classes
The oracle.security.crypto.LDAP package contains two classes:

■ LDAPCertificateValidator, which validates a user certificate by checking 
whether it exists in its subject's LDAP directory entry

■ LDAPUtils, which is a collection of methods to add, retrieve, and remove 
certificates from a subject's LDAP directory entry

7.4.2 Setting Up Your Oracle PKI LDAP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section provides information on setting up your environment for 
Oracle PKI LDAP SDK. It contains the following topics:

■ Understanding System Requirements for Oracle PKI LDAP SDK

■ Setting the CLASSPATH Environment Variable

7.4.2.1 Understanding System Requirements for Oracle PKI LDAP SDK
To use Oracle PKI LDAP SDK, your system must have the following:

■ Java Development Kit (JDK) version 1.6 or higher. Also, make sure that the Java 
bin directory is added to your PATH environment variable.

■ Sun Microsystem's Java Naming and Directory Interface (JNDI) version 1.2.1 or 
higher. You must add all of the JNDI jar files to your CLASSPATH.



Oracle PKI LDAP SDK

7-8 Developing Secure Applications with Oracle Security Developer Tools

7.4.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_ldap.jar

■ jndi.jar, ldapbp.jar, ldap.jar, jaas.jar, and providerutil.jar (Sun's 
Java Naming and Directory Interface (JNDI))

7.4.2.2.1 Setting the CLASSPATH on Windows  

To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

5. Add the full path and file names for all of the required jar and class files to the 
CLASSPATH. For example:

%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_ldap.jar;

6. Click OK.

7.4.2.2.2 Setting the CLASSPATH on Unix  

On Unix, set your CLASSPATH environment variable to include the full path and file 
name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_ldap.jar

7.4.3 The Oracle PKI LDAP SDK Java API Reference
The Oracle PKI LDAP SDK Java API reference (Javadoc) is available at: 

Oracle Fusion Middleware PKI SDK LDAP Java API Reference for Oracle Security Developer 
Tools



8

Oracle XML Security 8-1

8 Oracle XML Security

[9] XML security refers to standard security requirements of XML documents such as 
confidentiality, integrity, message authentication, and non-repudiation. The need for 
digital signature and encryption standards for XML documents prompted the World 
Wide Web Consortium (W3C) to put forth an XML Signature standard and an XML 
Encryption standard. 

This chapter describes key features and benefits of Oracle XML Security, and explains 
how to set up your environment to use Oracle XML Security.

This chapter contains these topics:

■ About Oracle XML Security Features and Benefits

■ Setting Up Your Oracle XML Security Environment

■ Signing Data

■ Verifying Data

■ Encrypting Data

■ Decrypting Data

■ Using Element Wrappers in the OSDT XML APIs

■ How to Sign Data with the Oracle XML Security API

■ How to Verify Signatures with the Oracle XML Security API

■ How to Encrypt Data with the Oracle XML Security API

■ How to Decrypt Data with the Oracle XML Security API

■ Common XML Security Questions

■ Best Practices

■ The Oracle XML Security Java API Reference

8.1 About Oracle XML Security Features and Benefits
Oracle Security Developer Tools provide a complete implementation of XML Signature 
and XML Encryption specification.

See Also: The following resources provide more information about 
XML and XML standards:

■ W3C's Recommendation for XML Signatures

■ W3C's Recommendation for XML Encryption



About Oracle XML Security Features and Benefits

8-2 Developing Secure Applications with Oracle Security Developer Tools

8.1.1 About the Supported XML Algorithms
Oracle Security Developer Tools provide a complete implementation of the XML 
Signature and XML Encryption specifications, and support these algorithms:

Signature Algorithms
■ DSA with SHA1

■ RSA with SHA1

■ HMAC-SHA1

Digest Algorithms
■ MD5

■ SHA1

■ SHA256

■ SHA512

Transforms
■ Canonicalization – Canonical XML 1.0, Canonical XML 1.1, exclusive Canonical 

XML 1.0, (all forms are supported with and without comments)

■ XSLT

■ XPath Filter

■ XPath Filter 2.0

■ Base64 Decode

■ Enveloped Signature

■ Decrypt Transform

Data Encryption Algorithms
■ AES-128 in CBC mode

■ AES-192 in CBC mode

■ AES-256 in CBC mode

■ DES EDE in CBC mode

Key Encryption and Key Wrapping Algorithms
■ RSAES-OAEP-ENCRYPT with MGF1

■ RSAES-PKCS1-v1_5

■ AES-128 Key Wrap

■ AES-192 Key Wrap

■ AES-256 Key Wrap

■ DES-EDE Key Wrap

8.1.2 Oracle XML Security API
This section describes the Oracle XML Security API.



Signing Data

Oracle XML Security 8-3

About the Examples in this Chapter
This chapter contains several sections with instructions and examples of API usage.

■ Section 8.3, "Signing Data"

■ Section 8.4, "Verifying Data"

■ Section 8.5, "Encrypting Data"

■ Section 8.6, "Decrypting Data"

The following sections are specific to the Oracle XML Security API:

■ Section 8.7, "Using Element Wrappers in the OSDT XML APIs"

■ Section 8.8, "How to Sign Data with the Oracle XML Security API"

■ Section 8.9, "How to Verify Signatures with the Oracle XML Security API"

■ Section 8.10, "How to Encrypt Data with the Oracle XML Security API"

■ Section 8.11, "How to Decrypt Data with the Oracle XML Security API"

8.2 Setting Up Your Oracle XML Security Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME/modules/oracle.osdt_11.1.1.

Understanding System Requirements
In order to use Oracle XML Security, you must have JDK 5 or higher. 

CLASSPATH Environment Variable
Make sure the following items are included in your CLASSPATH: 

■ osdt_core.jar

■ osdt_cert.jar 

■ osdt_xmlsec.jar (This is the main jar containing all the Oracle XML Security 
classes.) 

■ org.jaxen_1.1.1.jar, which is located in $ORACLE_HOME/modules/

Oracle XML Security relies on the Jaxen XPath engine for XPath processing.

8.3 Signing Data 
Using the Oracle Security Developer Tools Oracle XML Security API, you can sign an 
XML document, a fragment of an XML document, or some binary data. This section 
explains the concepts behind data signing. 

The basic steps are as follows:

1. Identify what to sign and where to place the signature.

2. Decide on a signing key.

See Also: For details of data signing with the Oracle XML Security 
APIs, see Section 8.8 through Section 8.11.



Signing Data

8-4 Developing Secure Applications with Oracle Security Developer Tools

8.3.1 Identifying What to Sign
The first step is to identify the data that you need to sign and where your signature 
will be placed. 

The most common case of signing is when you are signing a part of a document, and 
the signature is also placed in the same document. For this you need to decide how 
you refer to that part. The simplest way is to use an ID, for example:

<myDoc>
  <importantInfo  xml:id="foo1">
    ...
  </importantInfo>
  <dsig:Signature>
    ...
      <dsig:Reference URI="#foo1">
    ...
  </dsig:Signature>
</myDoc>

In this example myDoc is the entire document, of which you only want to sign the 
<importantInfo> element, and the signature is placed right after the <importantInfo> 
element. The <importantInfo> has an xml:id attribute, which the Signature uses to 
refer to it.

xml:id is a generic identifying mechanism. 

If your schema does not allow you to add this attribute to your <importantInfo> 
element, you can instead use an Xpath to refer to it. 

8.3.1.1 Determining the Signature Envelope
This example uses a "disjoint" signature where the signature and element to be signed 
are completely separate. 

There are two other ways of signing "enveloped":

■ where the signature element is the child/descendant of the element to be signed, 
and 

■ "enveloping" where the signature element is a parent/ancestor of the element to be 
signed.

Example of Enveloped Signing
<myDoc>
  <importantInfo  xml:id="foo1">
    ...
    <dsig:Signature>
      ...
      <dsig:Reference URI="#foo1">
         ...
         <Transform Algorithm="...enveloped-signature">
         ...
      </dsig:Reference>
      ...
    </dsig:Signature>
    ...
  </importantInfo>



Signing Data

Oracle XML Security 8-5

</myDoc>

When you use enveloped signature, you must use the EnvelopedSignatureTransform 
to exclude the signature itself from the signature calculation, otherwise the very act of 
generating a signature changes the content of the importtantInfo element, and the 
verification will fail.

8.3.1.2 Deciding How to Sign Binary Data 
It is also possible to sign binary data. To do this you must make the binary data 
available through a URI. Oracle XML Security allows any URIs that can be resolved by 
the JDK, such as http:, file:, and zip: URIs.  

You need to create a separate XML document which will hold the Signature element, 
and this signature will refer to the binary data using this URI.

Indeed you can sign XML data using this mechanism as well, provided your XML data 
can be accessed by a URI. But for XML you can decide to either treat it as binary data 
and sign as is, or apply canonicalization and sign as XML. To apply canonicalization 
you need to add a canonicalization transform. 

If your binary data is present as a base64 encoded string in your XML document, you 
can use an ID-based or an Xpath-based reference to it, and then use a 
Base64DecodeTransform to decode the data and sign the binary. 

<myDoc>
  <importantBinaryData  xml:id="foo1">
    XJELGHKLasNDE12KL=
  </importantBinaryData>
  <dsig:Signature>
    ...
      <dsig:Reference URI="#foo1">
         ...
         <Transform Algorithm="...base64">
         ...
      </dsig:Reference>
      ...
  </dsig:Signature>
</myDoc>

Note: External URI dereferencing can be very insecure. For example, 
say you are running Oracle Security Developer Tools code inside a 
server, and you verify an incoming message; if this message has an 
external URI reference, it is essentially causing your server to read 
from the file or from external web sites. This can lead to denial of 
service attacks and cross-site scripting. 

This is why External URI dereferencing is disabled by default. You 
need to set the JVM property osdt.allow.externalReferences (or set 
osdt.allow.all) to allow external URI dereferencing.



Signing Data

8-6 Developing Secure Applications with Oracle Security Developer Tools

8.3.1.3 Signing Multiple XML Fragments with a Signature
You can include multiple XML fragments into the same signature. For example, you 
can have two ID-based references, and include both of them in the same signature. Or 
you can use an Xpath expression which resolves to multiple subtrees. 

You can also mix and match local ID-based references with remote URI references, and 
have all of them in the same signature. 

In fact it is recommended that you include multiple parts into the same signature to 
cryptographically bind them together; for example, if you are using an XML signature 
to sign a purchase order approval, you must include the items that are being 
purchased, the user who approved it, and time it was approved, all in the same 
signature. If you forget to include the user, somebody can potentially steal this 
message, change the user name, resubmit it, and the signature will still verify.

8.3.1.4 Excluding Elements from a Signature
At times you may need to sign subtrees with exclusions, rather than signing complete 
subtrees; to achieve this you need to use an Xpath expression.

8.3.2 Deciding on a Signing Key
Once you have decided what to sign, and how to reference it, you need to decide on a 
signing key. Options include:

■ Use a X509Certificate. 

This is the most common mechanism. You sign with the private key, and anybody 
who has your public key can verify with it.

■ Use a raw asymmetric signing key, like a DSA, RSA, or DH key. 

When you are signing with an X509certificate, you are in fact signing with the 
DSA/RSA/DH signing key that is associated with the certificate. You can also sign 
with DSA/RSA/DH signing key that is not associated with any certificate, 
although there is no good reason for doing so.

■ Use a symmetric key.

You can also do HMAC signing with a symmetric key. This is useful when you 
and the verifier already share a symmetric key; it could be a key derived from a 
password, or it could be from a kerberos system which uses symmetric keys. The 
Oracle Security Developer Tools WS Security APIs provide explicit APIs for 
password-based keys and kerberos keys.

8.3.2.1 Setting Up Key Exchange
The key exchange needs to happen out of band. For example, if you signing with a 
certificate, the receiver should already be set up with the trust points, so that the 
receiver can verify your certificate. Or if you are signing with a symmetric key, the 
receiver should already know this symmetric key. The XML Signature specification 
does not define this initial key exchange mechanism.

8.3.2.2 Providing a Receiver Hint
You also need to provide a hint to the receiver so that it knows how to verify your 
signature. This will be in the <dsig:KeyInfo> tag inside the <dsig:Signature>. This 
can be accomplished in different ways:



Encrypting Data

Oracle XML Security 8-7

■ You can provide no hint at all. This perfectly acceptable, if you have already 
communicated the key to the receiver, and the receiver is expecting all signatures 
to be signed by this key. However this is not a likely situation.

■ When signing with an X509Certificate, you can provide one or more of the 
following:

– The entire X509Certificate. This is the most common usage.

– The Subject DN of the certificate – This is useful when the receiver has access 
to a LDAP directory, and it can look up the certificate based on the DN.

– The SubjectKeyIdentifier or the IssuerDN/Serial number pair – This is 
useful when the receiver is only expecting a signatures from a set of 
certificates, and it every time it has to verify a signature, it can loop over all 
the certificates and find the one with matching SKI or IssuerSerial.

■ When signing with a raw asymmetric key, you can provide the actual values of the 
RSA/DSA/DH public key. This is not recommended as the receiver cannot verify 
the key; alternatively, if you include the certificate, the receiver can do PKIX 
processing and verify it; that is, the receiver can check for certificate validity and 
check against an OCSP or CRL.

■ When signing with a symmetric key, you can provide a key name. This is just a 
string that conveys some information that the receiver can use to 
retrieve/construct the symmetric key.

8.4 Verifying Data 
This section explains the concepts behind data verification. 

Once you understand how to create a signature, you can use similar steps to verify the 
signature. The basic steps are as follows:

1. Search for the signature element, and check what was signed

When you first search for the signature element in the XML document. Oracle 
XML Security provides a method (put in link here) to list the elements included in 
this signature. Verify that those are the elements you were expecting to be signed.

2. Fetch the verification key

Next identify the key with which the signature was signed. To do this, examine the 
<dsig:KeyInfo> for the certificate, raw public key, or symmetric key that should 
be used for verification.

8.5 Encrypting Data 
This section explains the concepts behind data encryption. 

Using the Oracle XML Security API, you can sign an XML document, a fragment of an 
XML document or some binary data. The basic steps are as follows:

■ Identifying what to Encrypt

■ Deciding on the Encryption Key

See Also: For details of data verification with the Oracle XML 
Security APIs, see 



Encrypting Data

8-8 Developing Secure Applications with Oracle Security Developer Tools

8.5.1 Identifying what to Encrypt
The most common encryption scenario is to encrypt and replace. When you are 
encrypting a part of the document, replacing the document with the encrypted bytes. 

For example:

<myDoc>
  <importantInfo>
    ...
  </importantInfo>
</myDoc>

If you encrypt the importantInfo element, it will look like this:

<myDoc>
  <xenc:EncryptedData>
    ...
  </xenc:EncryptedData>
</myDoc>

Here the entire <importantInfo> and all its contents are replaced by an EncryptedData 
element which essentially contains a large base64 string, which is the base64 encoding 
of the encrypted <importantInfo> element. 

In this mode the <importantInfo> element is completely hidden, and the receiver has 
no way of knowing the contents until it is decrypted.

8.5.1.1 Using the Content Only Encryption Mode
There is also a "Content only" encryption mode where the element tag itself is not 
encrypted, but all its contents are encrypted.

<myDoc>
  <importantInfo>
    <xenc:EncryptedData>
      ...
    </xenc:EncryptedData>
  </importantInfo>
</myDoc>

Use the "Content Only" mode if it is appropriate for everyone to know that the 
<importantInfo> exists; only the intended party will know how to decrypt and look at 
the contents of the <importantInfo> element.

8.5.1.2 Encrypting Binary Data
If you are encrypting binary data present as a base64 encoded string, you can encrypt 
it as if it were regular XML data.

 However if you are encrypting external binary data (that is, data outside the XML 
document), your options depend on where you will store the encrypted data. 

Store Externally

See Also: For details of data encryption with the Oracle XML 
Security APIs, see Section 8.10, "How to Encrypt Data with the Oracle 
XML Security API".



Decrypting Data

Oracle XML Security 8-9

One option is to store the encrypted data externally as well. For SOAP Attachments 
refer to the WS Security SOAP Attachments (insert link) which specifies a mechanism 
to encrypt attachments and store the encrypted data back as an attachment. 

To store the encrypted data externally, you need to use a xenc:CipherReference, 
which is a subelement of xencEncryptedData and uses a URI to refer to the encrypted 
bytes.

Store Internally
The other option is to store the encrypted bytes inside the EncryptedData, just as you 
would with in-place XML encryption.

8.5.2 Deciding on the Encryption Key
This is very similar to the task of deciding the signing key (see section Section 8.3.2, 
"Deciding on a Signing Key") except that you never directly encrypt with an 
asymmetric key. Instead, you usually: 

■ choose a random symmetric key,

■ encrypt your data with this key,

■ encrypt this random symmetric key with your asymmetric key, and

■ send both the encrypted data and encrypted key to the receiver.

Even with a symmetric key, you can still choose to:

■ generate a random symmetric key, 

■ encrypt this random symmetric key with your symmetric key and

■ send both the encrypted data key and the encrypted key to the receiver

To use this encrypted key mechanism, you need to decide where to place the 
xenc:EncryptedKey in your document.

■ If you only have one encryptedData element, place the EncryptedKey in the 
KeyInfo of the EncryptedData.

■ Otherwise, place them separately and have one refer to the other.

Use the <dsig:KeyInfo> inside the EncryptedKey to refer to the certificate, asymmetric 
key, or key name that can be used to decrypt the EncryptedKey. 

8.6 Decrypting Data
Data decryption follows the same process as for data encryption, but in reverse. The 
basic steps are as follows:

If the data was encrypted with a simple encryption in place, locate the EncryptedData 
element and look at its KeyInfo. 

If it is directly encrypted with a known symmetric key, decrypt it. 

Otherwise if it is encrypted with a random symmetric key: 

■ locate the corresponding EncryptedKey,

■ decrypt it first, and

■ use this decrypted random symmetric key to decrypt the EncryptedData.



Using Element Wrappers in the OSDT XML APIs

8-10 Developing Secure Applications with Oracle Security Developer Tools

8.7 Using Element Wrappers in the OSDT XML APIs
All the XML-based Oracle Security Developer Tools APIs like Oracle XML Security, 
Oracle Web Services Security, Oracle SAML, Oracle XKMS, and Oracle Liberty SDK 
use a wrapper concept. 

For each XML element, there is a corresponding Java wrapper class. For example, the 
<dsig:Signature> XML element corresponds to the XSSignature class. All these 
wrapper classes inherit from XMLElement, and they contain only one data member, 
which is the pointer to the corresponding DOM element.

This section shows how to work with wrapper objects in the Oracle Security 
Developer Tools APIs.

8.7.1 Constructing the Wrapper Object
To construct a wrapper object from the DOM element, simply invoke the constructor.

For example:

Element sigElem =  
   (Element)doc.getElementsByTagNameNS(XMLURI.ns_dsig, "Signature").item(0);
XSSignature sig = new XSSignature(sigElem);

To construct a Wrapper object when the DOM element does not exist, you can either:

■ create a DOM element, and use the above method, or

■ use a newInstance method

XSSignature sig = XSSignature.newInstance(doc, null);

This internally achieves the same ends, that is, it creates a <dsig:Signature> DOM 
element, without appending it anywhere, then creates a wrapper object on top of the 
element. You will need to append this element somewhere in your document.

For some wrapper classes, there is no newInstance method and you need to call a 
constructor that takes the document object.

XSSignedInfo sigInfo =  new XSSignedInfo(doc, null);

Another way to create the wrapper object from the element is to call the 
XMLUtils.getInstance method:

XSSignature sig = (XSSignature)XMLUtils.getInstance(sigElem);

The Oracle Security Developer Tools APIs internally maintain a table associating 
element names to wrapper class names. The XMLUtils.getInstance uses this table to 
invoke the appropriate constructor and return an instance of that wrapper class.

8.7.2 Obtaining the DOM Element from the Wrapper Object
The underlying DOM element is readily available. All wrapper classes extend from 
XMLElement which provides a method, XMLElement.getElement(), to get the 
underlying DOM element.

See Also: For details of data decryption with the Oracle XML 
Security APIs, see 



Using Element Wrappers in the OSDT XML APIs

Oracle XML Security 8-11

8.7.3 Parse Complex Elements
Whenever there are complex elements containing a hierarchy of subelements, there 
will also be an equivalent hierarchy of wrapper objects. For example, suppose you 
have an incoming document containing a signature:

<dsig:Signature>
  <dsig:SignedInfo>
    <dsig:CanonicalizationMethod ... />
     ...
  <dsig:SignedInfo>
  <dsig:SignatureValue>..</dsig:SignatureValue>
  ...  
</dsig:Signature>

Most of these elements have a corresponding wrapper class, such as dsig:Signature 
-> XSSignature, dsig:SignedInfo -> XSSignedInfo, dsig:SignatureValue -> 
XSSignatureValue and so on.

But when you construct the XSSignedInfo object from the dsig:Signature DOM 
element, it does not construct any of the child objects, in fact it does not even look at 
any of the child elements. The new XSSignature(sigElem) is a quick call which 
simply creates an object with the data member pointing to the sigElem. The child 
objects are created every time. So when you call XSSignature.getSignedInfo() it 
searches the child elements of dsig:Signature to find the dsig:SignedInfo element, 
constructs a wrapper object on that element, and returns it. 

This wrapper object is not stored anywhere. So if you invoke 
XSSignature.getSignedInfo() again, it does the same thing, returning a different 
instance of the SignedInfo object; however both these objects point to the same DOM 
element, so they behave exactly the same way even though they are different 
instances.

8.7.4 Construct Complex Elements
Consider the same example as before, but now instead of the signature present in an 
incoming document, you want to create a document containing a signature and send 
this document to someone.

<dsig:Signature>
  <dsig:SignedInfo>
     ...
  <dsig:SignedInfo>
  ...  
</dsig:Signature>

To construct this complex element, you need to create individual wrapper objects and 
assemble them using set methods. 

For example:

XSSignature sig = XSSignature.newInstance(doc, null);
XSSignedInfo sigInfo = new XSSignedInfo(doc, null);
sig.setSignedInfo(sigInfo);

Note: Remember that the DOM is the source of truth, while the 
wrapper objects are throwaway objects. The get methods always 
create new wrapper objects, and if you modify the underlying DOM, 
the wrapper objects always see the most recent changes.



How to Sign Data with the Oracle XML Security API

8-12 Developing Secure Applications with Oracle Security Developer Tools

Remember that the DOM is always the source of truth; the set methods do not store or 
copy the passed-in wrapper object, they just modify the underlying DOM. 

So in this case the setSignedInfo gets the dsig:SignedInfo element, and makes that a 
child of the dsig:Signature element. So after invoking setSignedInfo(sigInfo), if 
you do sigInfo = null, it will not affect anything.

Finally you need to insert the top-level object somewhere into your DOM:

elem.appendChild(sig.getElement());

8.8 How to Sign Data with the Oracle XML Security API
This section describes techniques for signing data with the Oracle XML Security APIs.

8.8.1 Basic Procedure to Create a Detached Signature
To create a detached signature like this:

<myDoc>
  <importantInfo  xml:id="foo1">
    ...
  </importantInfo>
  <dsig:Signature>
    ...
      <dsig:Reference URI="#foo1">
    ...
  </dsig:Signature>
</myDoc>

You need to do this:

// assume you have your data set up in doc
Document doc = ...
Element impElem = ...
 
// Now put an ID on the importantInfo element
impElem.setAttributeNS(XMLURI.ns_xml, "xml:id", "foo1");
 
// Then get the signing key and certificate from 
// somewhere – e.g. you can load them from a keystore
PrivateKey signKey = ...
X509Certificate signCert = ...
 
// Create the Signature object
XSSignature sig = XSSignature.newInstance(doc, null);
 
// Create the SignedInfo object
// Normally you should use exclusive canonicalization
//    alg_exclusiveC14N
// Depending on the type of your private key DSA or RSA
//    use dsaWithSHA1 or rsaWithSHA1
XSSignedInfo sigInfo = sig.createSignedInfo(
  XMLURI.alg_exclusiveC14N, XMLURI.alg_rsaWithSHA1, null)
sig.setSignedInfo(sigInfo);
 
 
// Create a Reference object to the importantInfo element
// You need to specify the id which you set up earlier, 
//  and also a digestMethod



How to Sign Data with the Oracle XML Security API

Oracle XML Security 8-13

XSReference ref = sig.createReference(null, "#foo1", null, 
   XMLURI.alg_sha1);
sigInfo.addReference(ref);
// Create an exclusive c14n Transform object
// If you do not add this transform object, it will use 
// inclusive by default
XSAlgorithmIdentifier transform = 
  new XSAlgorithmIdentifier(doc, "Transform", 
  XMLURI.alg_exclusiveC14n);
ref.addTransform(transform);
 
 
// Create a KeyInfo object
XSKeyInfo keyInfo = sig.createKeyInfo();
sig.setKeyInfo(keyInfo);
 
// Create an X509Data element for your signingCert, inside
//  this keyingo
X509Data x509 = keyInfo.createX509Data(signingCert);
keyInfo.addKeyInfoData(x509);
 
// Everything is setup, now do the actual signing
// This will actually do all the canonicalization, 
// digesting, signing etc
sig.sign(signKey, null);
 
// Finally insert the signature somewhere in your document
doc.getDocumentElement().appendChild(sig.getElement());

8.8.2 Variations on the Basic Signing Procedure
Variations on the basic signing procedure include multiple references, enveloped 
signatures, XPath expressions, certificate hints, and HMAC key signing.

8.8.2.1 Multiple References
To include multiple references in a signature, simply add more XSReference objects to 
the XSSignedInfo object. Each XSReference object needs its own list of transforms.

8.8.2.2 Enveloped Signature
To use an enveloped signature, add the enveloped signature transform to the 
reference. This means inserting the following code just before the code that adds the 
exclusive transform:

XSAlgorithmIdentifier transform1 = 
  new XSAlgorithmIdentifier(doc, "Transform", 
  XMLURI.alg_envelopedSignature);
ref.addTransform(transform1);

Note: After creating a child Wrapper object, you must call a set or 
add method to put it in its parent, and also remember to insert the top 
level Signature object into your document.



How to Verify Signatures with the Oracle XML Security API

8-14 Developing Secure Applications with Oracle Security Developer Tools

8.8.2.3 XPath Expression
To use an XPath expression instead of an ID-based reference, pass in an empty string 
instead of "#foo1" for the URI parameter of createReference, then add an XPath 
transform to the Reference as the first transform.

String xpathExpr = "ancestor-or-self:importantInfo";
Element xpathElem = doc.createElementNS(XMLURI.ns_dsig, 
 "dsig:XPath");
xpathElem.appendChild(doc.createTextNode(xpathExpr);
XSAlgorithmIdentifier transform2 = 
  new XSAlgorithmIdentifier(doc, "Transform", 
  XMLURI.alg_xpath);
transform2.addParameter(xpathElem);
ref.addTransform(transform2);

8.8.2.4 Certificate Hint
If you do not want to include the entire certificate in the key info, but only a hint to the 
certificate, use the no-argument form of XSKeyInfo.createX509Data() and call one of 
the methods X509Data.addIssuerSerial, addSubjectName, or addSubjectKeyID.

8.8.2.5 Sign with HMAC Key 
TO sign with an HMAC key, instead of signing with an RSA or DSA private key, use 
the XSSignature.sign(byte[] secret, String sigValueId) method, and pass your 
HMAC key as the first argument. 

Also use a different kind of KeyInfo, such as a KeyName, by calling 
XSKeyInfo.createKeyName.

8.9 How to Verify Signatures with the Oracle XML Security API
This section explains how to verify signatures using the Oracle XML Security APIs.

8.9.1 Basic Procedure to Check What is Signed
To verify a signature, first locate the <dsig:Signature> element in your document, 
then use it to construct the XSSignature wrapper object.

Element sigElem = …
XSSignature sig = new XSSignature(sigElem);

Next, fetch the KeyInfo of the signature and examine the key to determine if you trust 
the signer. There are different ways to deal with the KeyInfo:

■ For very simple cases, you may already know the verification key in advance, and 
you do not need to look at the KeyInfo at all.

■ In most cases, however, you should look at the KeyInfo. One way is to set up 
callbacks, so when you call XSSignature.verify() you call it with no verification 
key. Internally, the Oracle Security Developer Tools look at the KeyInfo to see if it 
invokes a callback to fetch the key.

■ The other option is to proactively look into the KeyInfo and determine the key 
yourself.



How to Verify Signatures with the Oracle XML Security API

Oracle XML Security 8-15

8.9.2 Set Up Callbacks

If the KeyInfo Contains the Signing Certificate
If you expect the KeyInfo to contain the signing certificate, and you do not already 
have this certificate, but you have set up the trust points, you just need to set a 
certificate validator callback.

// Create your certificate validator
CertificateValidator myValidator 
  = new CertificateValidator() {
  public void validateCert(CertPath cp) {
     // Code to validate the certificate
  }
};
KeyRetriever.setCertificateValidator(myValidator);

The Oracle Security Developer Tools API retrieves the certificate from the KeyInfo and 
invokes your callback; if the callback returns true, it will verify with that certificate.

If the KeyInfo Contains a Hint
If you expect the KeyInfo to contain only a hint to the signing certificate, that is, the 
subjectDN or Issuer Serial or subject key identifier, write a KeyRetriever to fetch a 
certificate from a certificate store given this hint.

If your certificate store is a keystore, a PKCS12 wallet, or a PKCS8 file, you can use one 
of the built-in retrievers for these types. These retrievers iterate through all the 
certificates in the keystore or Oracle wallet and find the one which matches the given 
subjectDN/issuerSerial or SubjectKey. 

// Load your keystore
KeyStore ks = 
// Set up a callback against this KeyStore
KeyRetriever.addKeyRetriever(
  new KeyStoreKeyRetriever(ks, passwd));

8.9.3 Write a Custom Key Retriever
If these built in retrievers are not suitable, you can write a custom KeyRetriever by 
deriving from the KeyRetriever class; for example you could do this when you expect 
the KeyInfo to contain a subjectDN, and you will look up an LDAP directory to find 
the certificate for that DN.

KeyRetriever myRetriever = new KeyRetriever() {
   X509Certificate retrieveCertificate (KeyInfoData keyInfo) {
       // write code to fetch the certificate from 
       // the certificate store based on keyInfo
   }
 
   PublicKey retrieveCertificate (KeyInfoData keyInfo) {
       // write code to fetch the PublicKey from 
       // the certificate store based on keyInfo
   }

Note: You can also use this mechanism also if your KeyInfo contains 
the entire certificate; the key retriever will simply match the entire 
certificate.



How to Verify Signatures with the Oracle XML Security API

8-16 Developing Secure Applications with Oracle Security Developer Tools

};
KeyRetriever.addKeyRetriever(myRetriever);

If the signature used the symmetric key, and the KeyInfo has the keyname of that key, 
write a custom key retriever which can fetch the symmetric key based on this key 
name.

8.9.4 Check What is Signed
The next step is to check if this signature really signs what you were expecting it to 
sign. The Oracle Security Developer Tools provide an API to return this information:

// XSSignature has be created as mentioned before
XSSignature sig = ...
 
// at first locate the element that are expecting 
// to be signed
Element impElem = ...
 
// Now check if the signature really signs this
List signedObjects = XMLUtils.resolveReferences(sig);
if (signedObjects.size() != 1 ||
   signedObjects.get(0) != impElem {
   // something is wrong – impElem is not signed by
   // this signature
}

8.9.5 Verify the Signature
The last step is to actually verify the signature. 

8.9.5.1 If Callbacks are Set Up
If you set up callbacks, then make this call:

boolean result = sig.verify();

You need to check for both a false result and an exception:

■ sig.verify() returns false if the signature format is correct, but one of the 
reference digests does not match, or if the signature does not verify.

■ sig.verify() throws an exception if there is something wrong in the construction 
of the signature; for example, if the algorithm names are wrong or signature bytes 
are not of the right size.

8.9.5.2 If Callbacks are Not Set Up
If you did not set up callbacks, and you determined the key by yourself, you must call:

■ sig.verify(byte[]) for HMAC keys or

■ sig.verify(PublicKey) for DSA/RSA keys.

8.9.5.3 Debugging Verification 
If you cannot determine why a particular signature does not verify, and you need to 
debug it, set the JVM property –Dxml.debug.verify=1. This flag instructs the Oracle 
Security Developer Tools to print diagnostic output to the stderr for failed signatures.



How to Encrypt Data with the Oracle XML Security API

Oracle XML Security 8-17

8.10 How to Encrypt Data with the Oracle XML Security API
This section describes various options for data encryption with Oracle XML Security.

8.10.1 Encrypt with a Shared Symmetric Key
To encrypt and replace the following <importantInfo> element:

<myDoc>
  <importantInfo>
    ...
  </importantInfo>
</myDoc>

you will need to take the following steps:

// Assuming there is a shared symmetric key
SecretKey dataEncKey = ...
 
// Create a new XEEncryptedData instance 
// use either obj_Element or obj_Content depending
// on whether you want to encrypt the whole element
// or content only
XEEncryptedData ed = XEEncryptedData
    .newInstance(doc, null, XMLURI.obj_Element);
 
// Specify the data encryption method
XEEncryptionMethod em =   
   ed.createEncryptionMethod(XMLURI.alg_aes128_CBC);
ed.setEncryptionMethod(em);
 
// Create a Keyinfo with a hint to the symmetric key
XEKeyInfo ki= ed.createKeyInfo();
ki.addKeyInfoData(ki.createKeyName("MyKey"));
ed.setKeyInfo(ki);
 
// Locate the importantInfo element
Element impElem = ...
 
// Encrypt the importantInfo element and replace
// it with the EncryptedData element
XEEncrytedData.encryptAndReplace(impElem, dataEncKey, 
   null, ed);

A Utility Method for Encryption
There is a utility method which performs all these steps:

XEncUtils.encryptElement(
  impElem,  // element to be encrypted
  false,    // true = contentOnly, false = entire element
  XMLURI.alg_aes128_CBC, // data encryption alg
  "MyKey" // hint to data key
);

8.10.2 Encrypt with a Random Symmetric Key
In Section 8.10.1, "Encrypt with a Shared Symmetric Key", the example made a 
simplifying assumption that there was a shared symmetric key. In practice, you 



How to Encrypt Data with the Oracle XML Security API

8-18 Developing Secure Applications with Oracle Security Developer Tools

usually generate a random symmetric key and encrypt with that key, and then encrypt 
this random symmetric key with the receiver's public key. Here is how you would do 
that:

// Load up the encryption certificate of the reciever
X509Certificate encCert = ...
 
// Get the reciever's public key from the cert
PublicKey keyEncKey = encCert.getPublicKey();
 
// Then generate a random symmetric key
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(128);
SecretKey dataEncKey = keyGen.generateKey();
 
// Now create an EncryptedKey object
XEEncryptedKey = new XEEncryptedKey(doc);
 
// set up the key encryption algorithm
XEEncryptionMethod em =   
  ek.createEncryptionMethod(XMLURI.alg_rsaOAEP_MGF1);
em.setDigestMethod(XMLURI.alg_sha1);
ek.setEncryptionMethod(em);
 
// encrypt the random symmetric key with public key
byte[] cipherValue = ek.encrypt(dataEncKey, keyEncKey);
 
// store this cipherValue into ek
XECipherData cd = ek.createCipherData();
cd.setCipherValue(cipherValue);
ek.setCipherData(cd);
 
 
// decide on how you would let the receiver know the
// the key encryption key. We are putting in the 
// entire reciever's certificate
XEKeyInfo kki = ek.createKeyInfo();
kki.addKeyInfoData(kki.createX509Data(encCert);
 
// Now the encrypted key has been set up, let us
// do the data encryption as before
XEncUtils.encryptElement(
  impElem,  // element to be encrypted
  false,    // true = contentOnly, false = entire element
  XMLURI.alg_aes128_CBC, // data encryption alg
  null // No hint to data key
);
 
// Finally we need to put the EncryptedKey inside the
// KeyInfo of the EncryptedData
ed.addKeyInfoData(ek);

A Utility Method for Encryption
There is a utility method which performs all these steps:

XEncUtils.encryptElement (
  impElem,  // element to be encrypted
  false,    // true = contentOnly, false = entire element
  XMLURI.alg_aes128_CBC, // data encryption alg



Supporting Classes and Interfaces

Oracle XML Security 8-19

  dataEncKey, // the random symmetric key that we generated
  XMLURI.alg_rsaOAEP_MGF1, // key encryption alg
  KeyEncKey, // public key that we got from cert
  "RecieverCert" // A hint to the certificate
);

Notice that this utility method puts KeyName in the EncryptedKey's KeyInfo; if you 
want to pass X509Data instead, pass null for keyEncKeyName and then add the 
X509Data yourself:

// use utility method to create EncrytedData
XEEncryptedData ed = XEncUtils...
 
// no extract EncryptedKey from it
XEEncryptedKey ek = (XEEncryptedKey)ed.getKeyInfo()
 .getEncryptedKeys().elementAt(0);
 
// Set the keyInfo of the ek
XEKeyInfo kki = ek.createKeyInfo();
kki.addKeyInfoData(kki.createX509Data(encCert);

8.11 How to Decrypt Data with the Oracle XML Security API
Decryption techniques depend on whether you have a shared symmetric key or use a 
random symmetric key.

8.11.1 Decrypt with a Shared Symmetric Key
If you have a shared symmetric key, do the following:

// search for the EncryptedData element
Element edElem = ...
 
// decrypt the data
SecretKey dataDecKey = ...
XEEncrytedData.decryptAndReplace(dataDecKey, edElem, true);

8.11.2 Decrypt with a Random Symmetric Key
If you expect to use a random symmetric key:

// search for the EncryptedData element
Element edElem = ...
 
// decrypt the data
PrivateKey keyDecKey = ...
XEEncUtils.decryptElement(edElem, keyDecKey);

8.12 Supporting Classes and Interfaces
This section describes additional classes and interfaces in the Oracle XML Security 
API.



Common XML Security Questions

8-20 Developing Secure Applications with Oracle Security Developer Tools

8.12.1 The oracle.security.xmlsec.util.XMLURI Interface
This interface defines URI string constants for algorithms, namespaces, and objects. It 
uses the following naming convention:

■ Algorithm URIs begin with "alg_".

■ Namespace URIs begin with "ns_".

■ Object type URIs begin with "obj_".

8.12.2 The oracle.security.xmlsec.util.XMLUtils class
This class contains static utility methods for XML and XML-DSIG. Methods frequently 
used in applications include the createDocBuilder(), createDocument(), 
toBytesXML(), and toStringXML() methods.

8.13 Common XML Security Questions
This section answers frequently asked questions about XML security and about using 
Oracle XML Security. It addresses these areas:

What is the DER format? The PEM format? How are these formats used?
DER is an abbreviation for ASN.1 Distinguished Encoding Rules. DER is a binary 
format that is used to encode certificates and private keys. Oracle XML Security SDK 
uses DER as its native format, as do most commercial products that use certificates and 
private keys.

Many other formats used to encode certificates and private keys, including PEM, 
PKCS #7, and PKCS #12, are transformations of DER encoding. For example, PEM 
(Privacy Enhanced Mail) is a text format that is the Base 64 encoding of the DER 
binary format. The PEM format also specifies the use of text BEGIN and END lines that 
indicate the type of content that is being encoded.

I received a certificate in my email in a text format. It has several lines of text 
characters that don't seem to mean anything. How do I convert it into the format 
that Oracle XML Security uses?
If you received the certificate in your email, it is in PEM format. You need to convert 
the certificate from PEM (Privacy-Enhanced Mail) format to ASN.1 DER 
(Distinguished Encoding Rules) format. 

How do I use a certificate that is exported from a browser?
If you have exported the certificate from a browser, it is most likely in PKCS #12 
format (*.p12 or *.pfx). You must parse the PKCS #12 object into its component parts.

8.14 Best Practices
For a discussion of best practices for implementors and users of the XML Signature 
specification, see:

http://www.w3.org/TR/xmldsig-bestpractices/

8.15 The Oracle XML Security Java API Reference
The Oracle XML Security API (Javadoc) is available at:



The Oracle XML Security Java API Reference

Oracle XML Security 8-21

Oracle Fusion Middleware XML Security Java API Reference for Oracle Security Developer 
Tools



The Oracle XML Security Java API Reference

8-22 Developing Secure Applications with Oracle Security Developer Tools



9

Oracle SAML 9-1

9 Oracle SAML

[10] This book provides information about using the Oracle Security Assertions Markup 
Language (SAML) Software Development Kit (SDK). Oracle SAML allows Java 
developers to develop cross-domain single sign-on and federated access control 
solutions that conform to the SAML 1.0/1.1 and SAML 2.0 specifications. 

This chapter contains the following topics:

■ Oracle SAML Features and Benefits

■ Oracle SAML 1.0/1.1

■ Oracle SAML 2.0

9.1 Oracle SAML Features and Benefits
The Oracle SAML SDK provides a Java API with supporting tools, documentation, 
and sample programs to assist developers of SAML-compliant Java security services. 
Oracle SAML can be integrated into existing Java solutions, including applets, 
applications, EJBs, servlets, and JSPs. 

Oracle SAML provides the following features:

■ Support for the SAML 1.0/1.1 and 2.0 specifications

■ Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced 
Client Proxy, and federated identity profiles 

9.2 Oracle SAML 1.0/1.1
This section explains how to set up your environment for Oracle SAML 1.0/1.1, how 
to use Oracle SAML 1.0/1.1, and the classes and interfaces of the Oracle SAML 1.0/1.1 
toolkit. It contains the following topics:

■ Oracle SAML 1.0/1.1 Packages

■ Setting Up Your Oracle SAML 1.0/1.1 Environment

■ Classes and Interfaces

■ The Oracle SAML 1.0/1.1 Java API Reference

See Also: Section , "Oracle SAML Changes" for information about 
Oracle Fusion Middleware 11g updates.



Oracle SAML 1.0/1.1

9-2 Developing Secure Applications with Oracle Security Developer Tools

9.2.1 Oracle SAML 1.0/1.1 Packages
The Oracle SAML Java API contains the following packages for creating SAML 
1.0/1.1-compliant Java applications:

oracle.security.xmlsec.saml

This package contains classes that support SAML assertions. 

oracle.security.xmlsec.samlp

This package contains classes that support the SAML request and response protocol 
(SAMLP).

9.2.2 Setting Up Your Oracle SAML 1.0/1.1 Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME.

This section explains how to set up your environment for Oracle SAML 1.0/1.1. It 
contains these topics:

■ System Requirements for Oracle SAML 1.0/1.1

■ Setting the CLASSPATH Environment Variable

9.2.2.1 System Requirements for Oracle SAML 1.0/1.1
In order to use Oracle SAML, your system must have the Java Development Kit (JDK) 
version 1.6 or higher.

9.2.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_xmlsec.jar 

■ osdt_saml.jar 

■ The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle 
XML Security distribution)

9.2.2.2.1 Setting the CLASSPATH on Windows  To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab. 

3. Click Environment Variables. 

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit. 

5. Add the full path and file names for all the required jar files to the CLASSPATH. 

For example, your CLASSPATH might look like this:

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;



Oracle SAML 1.0/1.1

Oracle SAML 9-3

%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml2.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;

6. Click OK.

9.2.2.2.2 Setting the CLASSPATH on UNIX  On UNIX, set your CLASSPATH environment 
variable to include the full path and file name of all the required jar and class files. For 
example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_xmlsec.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml2.jar:
$ORACLE_HOME/modules/org.jaxen_1.1.1.jar

9.2.3 Classes and Interfaces
This section provides information and code samples for using the classes and 
interfaces of Oracle SAML 1.0/1.1. It contains these topics:

■ Core Classes

■ Supporting Classes and Interfaces

9.2.3.1 Core Classes
This section provides a brief overview of the core SAML and SAMLP 1.0/1.1 classes 
with some brief code examples.

The core classes are:

■ The oracle.security.xmlsec.saml.SAMLInitializer Class

■ The oracle.security.xmlsec.saml.Assertion Class

■ The oracle.security.xmlsec.samlp.Request Class

■ The oracle.security.xmlsec.samlp.Response Class

9.2.3.1.1 The oracle.security.xmlsec.saml.SAMLInitializer Class  This class initializes the 
Oracle SAML toolkit. By default Oracle SAML is automatically initialized for SAML 
v1.0. You can also initialize Oracle SAML for a specific version of the SAML 
specification. When the initialize method is called for a specific version, previously 
initialized versions will remain initialized. Example 9–1 shows how to initialize the 
SAML toolkit for SAML v1.0 and SAML v1.1.

Example 9–1 Initializing the Oracle SAML Toolkit

// initializes for SAML v1.1
SAMLInitializer.initialize(1, 1); 
// initializes for SAML v1.0, done by default
SAMLInitializer.initialize(1, 0); 

9.2.3.1.2 The oracle.security.xmlsec.saml.Assertion Class  This class represents the 
Assertion element of the SAML Assertion schema.



Oracle SAML 1.0/1.1

9-4 Developing Secure Applications with Oracle Security Developer Tools

Example 9–2 shows how to create a new Assertion element and append it to an 
existing XML document.

Example 9–2 Creating an Assertion Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

Example 9–3 shows how to obtain Assertion elements from an XML document.

Example 9–3 Obtaining Assertion Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Assertion elements in the document

NodeList assrtList = 
doc.getElementsByTagNameNS(SAMLURI.ns_saml, "Assertion");

if (assrtList.getLength() == 0)
System.err.println("No Assertion elements found.");

// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml.Assertion object and process

for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{

Assertion assertion = new Assertion((Element)assrtList.item(s));
// Process Assertion element
...

}

9.2.3.1.3 The oracle.security.xmlsec.samlp.Request Class  This class represents the Request 
element of the SAML Protocol schema.

Example 9–4 shows how to create a new Request element and append it to an existing 
XML document.

Example 9–4 Creating a Request Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Request request = new Request(doc);
doc.getDocumentElement().appendChild(request);

Example 9–5 shows how to obtain Request elements from an existing XML document.

Example 9–5 Obtaining Request Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Request elements in the document

NodeList reqList = 
doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Request");

if (reqList.getLength() == 0)
System.err.println("No Request elements found.");

// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.samlp.Request object and process



Oracle SAML 1.0/1.1

Oracle SAML 9-5

for (int s = 0, n = reqList.getLength(); s < n; ++s)
{

Request request = new Request((Element)reqList.item(s));
// Process Request element
...

}

9.2.3.1.4 The oracle.security.xmlsec.samlp.Response Class  This class represents the 
Response element of the SAML Protocol schema. 

Example 9–6 shows how to create a Response element and append it to an existing 
XML document.

Example 9–6 Creating a Response Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);

Example 9–7 shows how to obtain Response elements from an existing XML 
document.

Example 9–7 Obtaining Response Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Response elements in the document

NodeList respList = 
doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Response");

if (respList.getLength() == 0)
System.err.println("No Response elements found.");

// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.samlp.Response object and process

for (int s = 0, n = respList.getLength(); s < n; ++s)
{

Response response = new Response((Element)respList.item(s));
// Process Response element
...

}

9.2.3.2 Supporting Classes and Interfaces
This section provides an overview of the supporting classes and interfaces of Oracle 
SAML 1.0/1.1:

■ The oracle.security.xmlsec.saml.SAMLURI Interface 

■ The oracle.security.xmlsec.saml.SAMLMessage Class

9.2.3.2.1 The oracle.security.xmlsec.saml.SAMLURI Interface  This interface defines URI 
string constants for algorithms, namespaces, and objects. The following naming 
conventions are used:

■ Action Namespace URIs defined in the SAML 1.0 specifications begin with 
action_ .

■ Authentication Method Namespace URIs defined in the SAML 1.0 specifications 
begin with authentication_method_ .



Oracle SAML 2.0

9-6 Developing Secure Applications with Oracle Security Developer Tools

■ Confirmation Method Namespace URIs defined in the SAML 1.0 specifications 
begin with confirmation_method_ .

■ Namespace URIs begin with ns_ .

9.2.3.2.2 The oracle.security.xmlsec.saml.SAMLMessage Class  This is the base class for all 
the SAML and SAML extension messages that may be signed and contain an 
XML-DSIG (digital signature) structure.

9.2.4 The Oracle SAML 1.0/1.1 Java API Reference
The Oracle SAML 1.0/1.1 Java API reference (Javadoc) is available at: 

Oracle Fusion Middleware SAML 1.0/1.1 Java API Reference for Oracle Security Developer 
Tools

9.3 Oracle SAML 2.0
This section explains how to set up your environment for Oracle SAML 2.0, how to use 
Oracle SAML 2.0, and the classes and interfaces of the Oracle SAML 2.0 toolkit. It 
contains the following topics:

■ Oracle SAML 2.0 Packages

■ Setting Up Your Oracle SAML 2.0 Environment

■ Classes and Interfaces

■  The Oracle SAML 2.0 Java API Reference

9.3.1 Oracle SAML 2.0 Packages
The Oracle SAML Java API contains the following packages for creating SAML 
2.0-compliant Java applications:

oracle.security.xmlsec.saml2.core

This package contains classes that support SAML assertions.

oracle.security.xmlsec.saml2.protocol

This package contains classes that support the SAML request and response protocol 
(SAMLP).

oracle.security.xmlsec.saml2.ac
This package contains classes that support the SAML authentication context basic 
types.

oracle.security.xmlsec.saml2.ac.classes
This package contains classes that support various SAML authentication context 
classes.

oracle.security.xmlsec.saml2.metadata
This package contains classes that support the SAML metadata.

oracle.security.xmlsec.saml2.profiles.attributes
This package contains classes that support various SAML attribute profiles.



Oracle SAML 2.0

Oracle SAML 9-7

oracle.security.xmlsec.saml2.profiles.sso.ecp
This package contains classes that support the SAML ECP SSO profile.

9.3.2 Setting Up Your Oracle SAML 2.0 Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME.

This section explains how to set up your environment for Oracle SAML 2.0. It contains 
these topics:

■ System Requirements for Oracle SAML 2.0

■ Setting the CLASSPATH Environment Variable

9.3.2.1 System Requirements for Oracle SAML 2.0
In order to use Oracle SAML, your system must have the Java Development Kit (JDK) 
version 1.6 or higher.

9.3.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_xmlsec.jar 

■ osdt_saml.jar 

■ The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle 
XML Security distribution)

9.3.2.2.1 Setting the CLASSPATH on Windows  To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab. 

3. Click Environment Variables. 

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit. 

5. Add the full path and file names for all the required jar files to the CLASSPATH. 

For example, your CLASSPATH might look like this:

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml2.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;

6. Click OK.



Oracle SAML 2.0

9-8 Developing Secure Applications with Oracle Security Developer Tools

9.3.2.2.2 Setting the CLASSPATH on UNIX  On UNIX, set your CLASSPATH environment 
variable to include the full path and file name of all the required jar and class files. For 
example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_xmlsec.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml2.jar:
$ORACLE_HOME/modules/org.jaxen_1.1.1.jar

9.3.3 Classes and Interfaces
This section provides information and code samples for using the classes and 
interfaces of Oracle SAML 2.0. It contains these sections:

■ Core Classes

■ Supporting Classes and Interfaces

9.3.3.1 Core Classes
This section provides an overview of the core SAML and SAMLP classes with some 
brief code examples. The core classes are:

■ The oracle.security.xmlsec.saml2.core.Assertion Class

■ The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class

■ The oracle.security.xmlsec.saml2.protocol.StatusResponseType Class

9.3.3.1.1 The oracle.security.xmlsec.saml2.core.Assertion Class  This class represents the 
Assertion element of the SAML Assertion schema.

Example 9–8 shows how to create a new Assertion element and append it to an 
existing XML document.

Example 9–8 Creating an Assertion Element and Appending it to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

Example 9–9 shows how to obtain Assertion elements from an XML document.

Example 9–9 Obtaining Assertion Elements From an XML Document

// Get a list of all Assertion elements in the document
 
NodeList assrtList = 

doc.getElementsByTagNameNS(SAML2URI.ns_saml, "Assertion");
if (assrtList.getLength() == 0)

System.err.println("No Assertion elements found.");
 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml2.core.Assertion object and process
 
for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{

Assertion assertion = new Assertion((Element)assrtList.item(s));
// Process Assertion element



Oracle SAML 2.0

Oracle SAML 9-9

...
}

9.3.3.1.2 The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class  This class represents 
the AuthnRequest element of the SAML Protocol schema.

Example 9–10 shows how to create a new AuthnRequest element and append it to an 
existing XML document.

Example 9–10 Creating an AuthnRequest Element and Appending it to an XML 
Document

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest request = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(response);

Example 9–11 shows how to obtain AuthnRequest elements from an existing XML 
document.

Example 9–11 Obtaining AuthnRequest Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all AuthnRequest elements in the document
 
NodeList reqList = 

doc.getElementsByTagNameNS(SAML2URI.ns_samlp, "AuthnRequest");
if (reqList.getLength() == 0)

System.err.println("No Request elements found.");
 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml2.protocol.AuthnRequest 
// object and process
 
for (int s = 0, n = reqList.getLength(); s < n; ++s)
{

AuthnRequest request = new AuthnRequest((Element)reqList.item(s));
// Process Request element
...

}

9.3.3.1.3 The oracle.security.xmlsec.saml2.protocol.StatusResponseType Class  This class 
represents the Response element of the SAML Protocol schema. 

The samlp:StatusResponseType element is a base type representing an extension point 
for the SAML 2.0 protocols. The various protocols defined in the SAML 2.0 
specification use sub-types such as samlp:Response or samlp:LogoutResponse.

Example 9–12 shows how to create a Response element and append it to an existing 
XML document.

Example 9–12 Creating a Response Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);



Oracle SAML 2.0

9-10 Developing Secure Applications with Oracle Security Developer Tools

Example 9–13 shows how to obtain Response elements from an existing XML 
document.

Example 9–13 Obtaining a Response Element and Appending it to an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Response elements in the document
 
NodeList respList = 

doc.getElementsByTagNameNS(SAML2URI.ns_samlp, "Response");
if (respList.getLength() == 0)

System.err.println("No Response elements found.");
 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml2.protocol.Response object and process
 
for (int s = 0, n = respList.getLength(); s < n; ++s)
{

Response response = new Response((Element)respList.item(s));
// Process Response element
...

}

9.3.3.2 Supporting Classes and Interfaces
This section provides an overview of the supporting classes and interfaces of Oracle 
SAML 2.0. It includes:

■ The oracle.security.xmlsec.saml2.util.SAML2URI Interface

9.3.3.2.1 The oracle.security.xmlsec.saml2.util.SAML2URI Interface  This interface defines 
URI string constants for algorithms, namespaces, and objects. The interface uses these 
naming conventions:

■ Action namespace URIs defined in the SAML 1.0/1.1/2.0 specifications begin with 
action_ .

■ Authentication method namespace URIs defined in the SAML 1.0/1.1/2.0 
specifications begin with authentication_method_.

■ Confirmation method namespace URIs defined in the SAML 1.0/1.1/2.0 
specifications begin with confirmation_method_ .

■ Namespace URIs begin with ns_.

9.3.4 The Oracle SAML 2.0 Java API Reference
The Oracle SAML Java API reference (Javadoc) is available at: 

Oracle Fusion Middleware SAML 1.0/1.1 Java API Reference for Oracle Security Developer 
Tools



10

Oracle Web Services Security 10-1

10 Oracle Web Services Security

[11] Oracle Web Services Security provides a complete implementation of the OASIS WS 
Security 1.1 standard. This chapter describes how to install and use the SDK. 

This chapter contains these topics:

■ Setting Up Your Oracle Web Services Security Environment

■ Classes and Interfaces

■ The Oracle Web Services Security Java API Reference

The following resources provide more information about Web Services Security:

■ OASIS WSS SOAP Message Security Specification

■ OASIS WSS Username Token Profile Specification

■ OASIS WSS X.509 Certificate Token Profile Specification

■ OASIS WSS SAML Assertion Token Profile Specification

■ OASIS WSS SWA Token Profile Specification 1.1

10.1 Setting Up Your Oracle Web Services Security Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in 
ORACLE_HOME/modules/oracle.osdt_11.1.1.

To use Oracle Web Services Security, you must have Development Kit (JDK) version 
1.6 or higher.

Make sure the following items are included in your CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_xmlsec.jar - This is the Oracle XML Security jar.

■ osdt_saml.jar - This is the Oracle SAML 1.0 and 1.1 jar.

■ osdt_saml2.jar - This is the Oracle SAML 2.0 jar.

■ org.jaxen_1.1.1.jar, which is included in $ORACLE_HOME/modules/.

■ osdt_wss.jar - This is the main jar containing Oracle Web Services Security.

■ saaj-api.jar  - This is the standard SAAJ API and is included in JDK6; for 
previous JDKs, you can obtain it from your JavaEE container.

■ mail.jar, activation.jar  - You can obtain these jars from your JavaEE 
container.



Classes and Interfaces

10-2 Developing Secure Applications with Oracle Security Developer Tools

10.2 Classes and Interfaces

This section describes classes and interfaces in the Oracle Web Services Security API. It 
contains these topics:

■ Element Wrappers

■ The <wsse:Security> header

■ Security Tokens (ST)

■ Security Token References (STR)

■ Signing and Verifying

■ Encrypting and Decrypting

10.2.1 Element Wrappers
Oracle Web Services Security makes use of the concept of element wrappers.

Note: Review Chapter 8, "Oracle XML Security" before proceeding.

See Also: Section 8.7, "Using Element Wrappers in the OSDT XML 
APIs"

Table 10–1  Element Wrappers for Oracle Web Services Security

XML Tag Name Java Class Name

<wsse:Security> oracle.security.xmlsec.wss.WSSecurity

<wsse:BinarySecurityToken> oracle.security.xmlsec.wss.WSSBinarySecurityToken or one of its derived 
classes depending on the valueType attribute:
oracle.security.xmlsec.wss.x509.X509BinarySecurityToken
oracle.security.xmlsec.wss.kerberos.KerberosBinarySecurityToken

<wsse: SecurityTokenReference> oracle.security.xmlsec.wss.WSSecurityTokenReference

<wsse: Embedded> oracle.security.xmlsec.wss.WSSEmbedded

<wsse11:EncryptedHeader> oracle.security.xmlsec.wss.WSSEncryptedHeader

<wsse11:SignatureConfirmation> oracle.security.xmlsec.wss.WSSignatureConfirmation

<wsse:KeyIdentifier> oracle.security.xmlsec.wss.WSSKeyIdentifier or one of its derived classes 
depending on the valueType attribute:
oracle.security.xmlsec.wss.x509.X509KeyIdentifier
oracle.security.xmlsec.wss.saml.SAMLAssertionKeyIdentifier
oracle.security.xmlsec.wss.saml2.SAML2AssertionKeyIdentifier
oracle.security.xmlsec.wss.kerberos.KerberosKeyIdentifier
oracle.security.xmlsec.wss.WSSEncryptedKeyIdentifier

<wsse:Reference> oracle.security.xmlsec.wss.WSSReference

<wsu:Created> oracle.security.xmlsec.wss.WSUCreated



Classes and Interfaces

Oracle Web Services Security 10-3

As explained in Section 8.7, "Using Element Wrappers in the OSDT XML APIs", the 
java classes are only throwaway wrappers, while the DOM elements are the source of 
truth. You can create these wrapper classes using the appropriate constructor, which 
takes in the DOM element; you can get the underlying DOM element using the 
getElement method.

10.2.2 The <wsse:Security> header
The WS Security specification defines a new SOAP Header called <wsse:Security>. All 
security information is to be stored inside this header, namely:

■ Security Tokens - Contain user name tokens, certificates, SAML assertion and so 
on (see next section) 

■ Timestamp - The current time stamp is often included in the security header, and it 
is usually included in a signature to prevent replay attacks.

■ Signatures - Any signatures are stored inside the header. Even though the 
signature is in the Security header, what it signs is often outside the header - for 
example, a single signature can sign the SOAP Body, some SOAP attachments, a 
UserName token inside the Security header, and a Timestamp token in the 
Security header.

■ EncryptedKeys  - Any encrypted session keys are stored here.

■ ReferenceList - Contains a list of all the EncryptedData sections.

10.2.2.1 Outgoing Messages
For outgoing messages, you need to create a new <wsse:Security> header, add 
security tokens and then encrypt and/or sign parts of the document. Here is how to 
accomplish this task:

// Assuming we the outgoing message has already been constructed into 
// a SOAPMessage object (part of SAAJ API)
SOAPMessage msg = ...
 
// Now create a new <wsse:Security> Header 
// newInstance will internally use SOAPHeader.addHeaderElement
SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
WSSecurity ws = WSSecurity.newInstance(env);
 
// Add required prefixes to this SOAP header
 
// Now add some security tokens (refer to the next section on 
// how to create security tokens)
UsernameToken ut = ...

<wsu:Expires> oracle.security.xmlsec.wss.WSUExpires

<wsu:Timestamp> oracle.security.xmlsec.wss.WSUTimestamp

<wsse:UsernameToken> oracle.security.xmlsec.wss.username.UsernameToken
oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss.

Table 10–1 (Cont.)  Element Wrappers for Oracle Web Services Security

XML Tag Name Java Class Name



Classes and Interfaces

10-4 Developing Secure Applications with Oracle Security Developer Tools

ws.addUsernameToken(ut);
 
// Create some security token references to this token 
// (refer to following sections)
ws.createSTR...
 
// Now sign or encrypt some data (refer to following sections)
// These should use the above STRs
ws.sign(...);
ws.encryptWithEncKey(...);
ws.encryptNoEncKey(...);

10.2.2.2 Incoming Messages
For incoming messages, you need to look for a particular <wsse:Security> header, 
inspect its contents, and verify or decrypt parts of the document. To accomplish this 
task:

// Assuming we the incoming message has already been constructed into 
// a SOAPMessage object (part of SAAJ API)
SOAPMessage msg = ...

10.2.3 Security Tokens (ST)
The WS Security specification defines the concept of "security tokens", sometimes 
abbreviated to ST.   

A security token represents an artifact such as a certificate, a kerberos ticket, a user 
name with password , a Single sign-on token and so on.  Usually a key is 
derived/extracted from this token, and this key is used to encrypt/decrypt 
sign/verify parts of the message.  However, the security token can also be used just as 
a data object.

Table 10–2  Security Tokens for Oracle Web Services Security

Type of Token (Java Class) Variations Keys

Username token
oracle.security.xmlsec.wss.use
rname. UsernameToken

■ With no password

■ With a SHA1 digest of the 
password

■ With the actual password, 
or a different kind of 
digest/derived password.

Symmetric key obtained by 
running KeyDerivation on 
user's password

X509 certificate
oracle.security.xmlsec.wss.x50
9. X509BinarySecurityToken

■ Single v3 certificate

■ Chain of certificates in 
PKIPath format

■ Chain of certificates in 
PKCS7 format

■ Public key inside 
certificate

■ Private key associated 
with certificate

Kerberos ticket
oracle.security.xmlsec.wss.ker
beros. 
KerberosBinarySecurityToken

■ AP_REQ packet

■ GSS-wrapped AP_REQ 
packet

Either the session key present 
in the ticket, or a subkey.



Classes and Interfaces

Oracle Web Services Security 10-5

10.2.3.1 Creating a Username Token
First, create a UsernameToken and place it inside your WSSecurity header. The only 
mandatory field in the UsernameToken is the username:

// create a Username token
WSSecurity ws = ...
UsernameToken ut = new UsernameToken(doc);
ut.setUserName("Zoe");
 
// remember to put this inside your WSSecurity header. 
// addUserNameToken puts it at the beginning, you can also
// use a regular DOM method appendChild or insertChild to put it in.
ws.addUsernameToken(ut); 
 
// optionally add an wsu:Id, so you can refer to it
ut.setWsuId("MyUser");

Next, decide how to put the password into this token. There are several choices:

1. Add a clear text password. Consider using this technique only when the whole 
message is being sent over a secure channel like SSL.

2. Add a digest of the password or some other kind of derived password. A digest is 
not necessarily more secure than a clear text password, as it can also be replayed 
unless it is protected by a nonce and time.

3. Add a digest of the password using the digest mechanism given in the WS 
Security specification. This uses the nonce and the createdDate.

4. Do not add the password or its digest at all. Instead derive a key from the 
password and use that to sign the message, to demonstrate knowledge of the key. 

// For options 1 and 2, use the setPassword method
ut.setPassword("IloveDogs");  
 
// With this mechanism, the reciever should simply call
// UsernameToken.getPassword to check if the password is as expected.
 
// For option 3, use the setPasswordDigest method, but before doing 
// thatfor that you have to  at first set a nonce and a created date.
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
byte nonce[] = new byte[20];
random.nextBytes(nonce); // compute a 20 byte random nonce
ut.setNonce(nonce);
ut.setCreatedDate(new Date()); // Set the date to now
ut.setPasswordDigest("IloveDogs"); // will compute the digest from 
                                   // this clear text password using 

SAML Assertion 1.1
oracle.security.xmlsec.wss.sa
ml.SAMLAssertionToken

SAML Assertion 2.0
oracle.security.xmlsec.wss.sa
ml2. SAML2AssertionToken

■ holder_of_key

■ sender_vouchers

■ bearer

For holder_of_key  the 
subject's key is used – this is, 
the key inside the 
<saml:SubjectConfirmation> 
which is inside the 
<saml:Assertion>. 

For sender_vouches, the key 
of the attesting entity is used.

Keys are not extracted from 
bearer tokens.

Table 10–2 (Cont.)  Security Tokens for Oracle Web Services Security

Type of Token (Java Class) Variations Keys



Classes and Interfaces

10-6 Developing Secure Applications with Oracle Security Developer Tools

                                   // nonce and createdDate
 
// For this mechanism, the reciever should use the following
byte nonce[] = ut.getNonce();
.. check against the used nonces, to make sure this is a new nonce
Date createdDate = ut.getCreated();
.. check that this createdDate is within an expected clock skew
boolean valid = ut.isValid(userName, passwd), 
// above call will recompute the digest from the passwd
// and the nonce and created date, and check if this digest matches 
// the digest in the username token
 
 
// For option 4, set the salt and iteration count
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
byte salt[] = new byte[15];
random.nextBytes(salt); // compute a 15 byte random salt
 
ut.setSalt(1, salt);
ut.setIteration(1000);
SecretKey key = ut.deriveKey("IloveDogs");

Now you can use this secret key to sign or encrypt data.

10.2.3.2 Creating an X509 Token
You can either use the X509BinarySecurityToken constructor followed by the 
setToken method, or use the equivalent helper method WSSecurity.createBST_X509:

WSSecurity ws = ...
X509Certificate cert = ...
X509BinarySecurityToken x509token = WSSecurity.createBST_X509(cert);
 
// remember to put this inside your WSSecurity header. 
// addX509CertificateToken puts it at the beginning, you can also
// use a regular DOM method appendChild or insertChild to put it in.
ws.addX509CertificateToken(x509Token);
 
// optionally add an wsu:Id, so you can refer to it
x509Token.setWsuId("MyCert");

You can also create an X509BinarySecurityToken from a CertPath object if you want 
to include an entire chain of certificates.

For encryption data with this certificate, you need the public key which you can obtain 
by using cert.getPublicKey().  For signing, however, you need the private key, 
which you should maintain in a keystore.

10.2.3.3 Creating a Kerberos Token
Kerberos tokens are used, as a rule, in conjunction with the Java GSS-API.

Client Side
//Use JAAS Authentication with Kerberos Login Module
 
// Set up the config files and then call  login()
// to login using this module. This will cause the client to contact 
// the Kerberos Authentication-Service and get a ticket to talk to the 
// Kerberos Ticket-Granting-Service
LoginContext lc = new LoginContext(...);



Classes and Interfaces

Oracle Web Services Security 10-7

lc.login();
 
//Use JAAS Authorization to set the subject into the thread context
Subject.doAs(lc.getSubject(), action)
 
// The rest of the code should be executed as a Privileged action
// Create a GSSContext to talk to a particular server.
 
GSSManager gssManager = GSSManager.getInstance();
GSSName serviceName = gssManager.createName(svcPrincipalName, null);
GSSContext gssContext = gssManager.createContext(serviceName, null, 
    null, GSSCredential.DEFAULT_LIFETIME);
 
// Then call initSecContext. this will cause the client to contact 
// the Ticket-Granting-Service to obtain a ticket for talking to that 
// particular server. The token that is returned by the initSecContext
// is a GSS wrapped AP_REQ packet.
byte[] token = new byte[1];
token = gssContext.initSecContext(token, 0, token.length);
 
// Create a Kerberos BST using this AP_REQ packet
WSSecurity ws = ...
KerberosBinarySecurityToken kbst = ws.createBST_Kerberos(token,   
      WSSURI.vt_GSSKerberosv5);
ws.addKerberosToken(kbst);
 
// Get the sessionKey that is present inside the AP_REQ packet, 
// this is the session that is generated by the TGT and returned
// to the client in the initSecContext class
//
// This getSessionKey call simply calls Subject.getPrivateCredentials
// to get a list of tickets associated with the subject, and then
// iterates through them to find the one to be used for
// for that particular server
SecretKey sessionKey = 
   KerberosUtils.getSessionKey(lc.getSubject(),svcPrincipalName);

Now you can use this secret key to sign or encrypt data.

Server Side
// Use JAAS Authentication and Authorization as for the client 
// Create GSSContext will null credentials </b><br>
SSManager manager = GSSManager.getInstance();
GSSContext gssContext = manager.createContext((GSSCredential)null);
 
 
// Locate the KerberosBinarySecurityToken in the incoming WSSecurity 
// header. You can do this by doing a DOM search
WSSecurity = ...
KerberosBinarySecurityToken kbst = ...
 
 
// Now extract the AP_REQ from the BST and call acceptSecContext 
byte ap_req[] = kbst.getValue();
gssContext.acceptSecContext(ap_req);
 
// The context is now extablished. (Note Mutual authentication would 
// need one more round trip)
 
// Now extract the session key



Classes and Interfaces

10-8 Developing Secure Applications with Oracle Security Developer Tools

// KerberosUtils.getSession is an overloaded method, and this 
// particular one is meant to be used by server. Internally
// it decrypts the ap_req packet using the server's key (or the 
// tgtSession key) and extracts the key from the decrypted ap_req
// packet
Subject srvrSubject = ...
SecretKey sessionKey = 
   KerberosUtils.getSessionKey(srvrSubject, ap_req);

Now you can decrypt or verify using this key.

10.2.3.4 Creating a SAML Assertion Token
Refer to Chapter 8, "Oracle XML Security" for information on how to create Assertion 
objects. From the Assertion object you can create a SAML assertion token by simply 
invoking the SAMLAssertionToken(Assertion assertion) constructor.

10.2.4 Security Token References (STR) 
The WS Security specification also defines the concept of a "Security token reference", 
(sometimes abbreviated to STR), which is a mechanism to refer to a security token. A 
Signature or Encryption uses this STR mechanism to identify the key that was used 
to sign or encrypt.

STR typically supports the following mechanisms:

■ Direct Reference: The STR uses a URI to refer to the ST.

■ Key Identifier: The STR does not use a URI, but instead uses some other 
mechanism to identify the token, such as the Issuer serial for X509 tokens and the 
assertion ID for SAML tokens. The token may not be in the message at all.

■ Embedded: The token is directly embedded in the KeyInfo.

10.2.4.1 Creating a direct reference STR
Before creating the STR, first create the token as mentioned earlier, then call 
.setWsuId() to set an ID on that token. Next create the STR with that ID, and finally 
pass in that STR in the WSSSignatureParams or WSEncryptionParams as described 
below. 

10.2.4.2 Creating a Reference STR for a username token

WSSecurity ws = ...
WSSecurityTokenReference str = 
   ws.createSTR_Username_ref("#MyUser");

10.2.4.3 Creating a Reference STR for a X509 Token

WSSecurity ws = ...
WSSecurityTokenReference str =     
   ws.createSTR_X509_Ref("#MyCert");

10.2.4.4 Creating a Reference STR for Kerberos Token



Classes and Interfaces

Oracle Web Services Security 10-9

WSSecurity ws = ...
// use the appropriate value type
String valueType = WSSURI.vt_GSSKerberosv5;
WSSecurityTokenReference str =     
   ws.createSTR_KerberosKeyRef ( "#MyToken");

10.2.4.5 Creating a Reference STR for a SAML Assertion token

WSSecurity ws = ...
WSSecurityTokenReference str =
   ws.createSTR_SAML_Assertion_Ref20("MySAMLAssertion")

10.2.4.6 Creating a Reference STR for an EncryptedKey

WSSecurity ws = ...
WSSecurityTokenReference str =
  ws.createSTR_EncKeyRef("MyEncKey")

10.2.4.7 Creating a Reference STR for a generic token
Instead of using the createSTR methods you can also create the reference directly with 
the appropriate valueType and tokenType:

WSSecurity ws = ...
String uri = "#MyToken";
WSSReference ref = new WSSReference(doc, uri);
ref.setValueType(valueType); // set an optional valueType
WSSecurityTokenReference str = new WSSecurityTokenReference(doc);
str.setTokenType(tokenType); // set an optional tokenType
str.appendChild(ref);

10.2.4.8 Creating a Key Identifier STR
A KeyIdentifier is another way to refer to a security token that uses some intrinsic 
property of the token; for example, an assertionID for a SAML Token or a Subject 
Key Identifier for an X509 token. 

KeyIdentifers are often used when the token itself is not present in the document. For 
example, an incoming message can be encrypted with a X509Cert, but instead of 
having that X509Cert in the message, it can have only a hint to it, in the form of a 
SubjectKeyIdentifier.

10.2.4.9 Creating a KeyIdentifier STR for an X509 Token
There are three different ways to identify an X509 Token:

1. Issuer Serial: A combination of Issuer DN and Serial number of the certificate

2. Subject Key Identifier : The subject key Identifier of the certificate

3. Thumbprint SHA1: SHA1 of the certificate.

X509Certificate cert = ... 
WSSecurity ws = ...
WSSecurityTokenReference str = 
   ws.createSTR_X509_IssuerSerial(cert);



Classes and Interfaces

10-10 Developing Secure Applications with Oracle Security Developer Tools

// alternatively use ws.createSTR_X509_SKI(cert) 
// or ws. createSTR_X509_ThumbprintSHA1(cert)

10.2.4.10 Creating a KeyIdentifier STR for a Kerberos Token
Kerberos tokens can be identified by the SHA1 of the AP_REQ packet or of the GSS 
wrapped AP_REQ packet.

byte ap_req[] = ...
WSSecurity ws = ...
String valueType = WSSURI.vt_GSSKerberosv5;
WSSecurityTokenReference str = 
   ws.createSTR_KerberosKeyIdSHA1(ap_req, valueType);

10.2.4.11 Creating a KeyIdentifier STR for a SAML Assertion Token
SAML assertions can be identified by the Assertion ID.

For local SAML 1.1 assertions use:

WSSecurity.createSTR_SAML_AssertionIdv11(byte assertionId[])

For remote SAML 1.1 assertions use:

createSTR_SAML_AssertionIdv11(
byte assertionId[], AuthorityBinding authorityBinding)

For local SAML 2.0 assertions use:

createSTR_SAML_AssertionIdv20(byte assertionId[])

For remote SAML 2.0 assertions use a reference URI:

createSTR_SAML_Assertion_Ref20("MySAMLAssertion")

10.2.4.12 Creating a KeyIdentifier STR for an EncryptedKey
Remote encrypted keys can be identified by their SHA1 hash. Use this function to 
create the KeyIdentifier:

createSTR_EncKeySHA1(byte sha1[])

10.2.4.13 Adding an STRTransform
An STRTransform is a very useful transform that you add to your signatures. This 
transform causes a temporary replacement of the STRs wth the corresponding STs 
while calculating the signature. 

For example, you might include an X509 SKI based STR in your reference. Without the 
STRTransform this will result in only the STR reference being included in the 
signature,that is, only the SKI value. But if you add an STRTransform, during the 
signing and verifiing process the STR will be replaced by the actual X509 Certificate, 
that is, the entire X509 certificate will be included in the message.

10.2.5 Signing and Verifying
This section contains a discussion of topics on signing and verifying data.



Classes and Interfaces

Oracle Web Services Security 10-11

10.2.5.1 Signing SOAP Messages
Take these steps to sign a SOAP message:

1. Decide how you want to identify the data to be signed – the most common 
mechanism is to use an ID, but instead of an ID  you can also use an XPath 
expression

2. Decide on additional transforms – exclusive c14n and STR transforms are two 
common transforms that you might add.

3. Decide on the signing key – you can either do HMAC signing with a symmteric 
key or do RSA/DSA signatures.

4. Decide on how to indicate this signing key to the reciever – for this you usually 
need to create an STR as mentioned earlier.

10.2.5.1.1 Adding IDs to elements  Use the function

WSSUtils.addWsuIdToElement(String id, Element element) 

to add a wsu:Id to the element to be signed. You can use this mechanism to add an ID 
to regular DOM element, or SAAJ objects which also derive from DOM Elements.

You must declare the wsu namespace prefix. For example, you can declare it at the  
SOAP Envelope level like this

SOAPEnvelope env = ...
env.addNamespaceDeclaration("wsu" , WSSURI.ns_wsu);

To sign attachments, you must assign a ContentId to each attachment. For this you 
need to use the following method:

setContentId(String contentId) 

of the SAAJ AttachmentPart object.

10.2.5.1.2 Creating the WSSignatureParams object  A WSSSignatureParams object must be 
created with all the signing parameters. 

Use the following constructor to create the initial WSSignatureParams object. If you 
want to use HMAC signing, pass in a value for hmacKey, and null for the signingKey; 
to use asymmetric signing, pass in a value for the signingKey and null for hmacKey.

WSSignatureParams(byte[] hmacKey, PrivateKey signingKey); 

This constructor assumes c14nMethod=excC14N, digestMethod=SHA1 and   
signMethod=hmacSHA/rsaSHA1/dsaSHA1 (depending on the key). If you want different 
algorithms use the following setters to set them:

setDigestMethod(String digestMethod)
setSignMethod(String signMethod)
setC14nMethod(String method)

You also need to set the STR that you have created earlier into this object; use the 
setKeyInfoData for setting the STR.

setKeyInfoData(KeyInfoData keyInfoData)

When signing attachments, you need to set the SOAPMessage into this 
WSSignatureParams object so that it can resolve the cid references by locating 
corresponding attachments.

setSOAPMessage(SOAPMessage msg)



Classes and Interfaces

10-12 Developing Secure Applications with Oracle Security Developer Tools

10.2.5.1.3 Specifying Transforms  There are two ways to specify transforms - a simpler 
but limited way, and an advanced and flexible way. For the simple way, you need to 
set the following parameters in the WSSignatureParams:

·setAttachmentContentOnly(boolean)

In the simple mode, all cid references automatically get the 
AttachmentContentOnly transform, but if you call 
setAttachmentContentOnly(false) then the cid references will get an 
AttachmentComplete transform

·setUsingSTRTransform(boolean)

If you set this to true, each reference will be checked whether it points to an STR, if 
it does an STRTransform will we added to that reference. Note the STRTransform is 
only added if the reference directly points to an STR, not if the reference points to a 
an ancestor of an STR.

·setC14Nmethod(String) 

This parameter defaults to exclusive c14n, and specifies both the canonicalization 
method for each of the references and the canonicalization method for the 
SignedInfo section.

·setUsingDecryptTransfom(boolean)

Set this to true if you want a decrypt transform to be added.

10.2.5.1.4 Calling the WSSecurity.sign method  Finally call the following method in 
WSSecurity to perform the actual signing. 

XSSignature sign (String[] uris, WSSignatureParams sigParams, 
XSAlgorithmIdentifier[][] trans)

This method creates the <Signature> element, computes digests of each reference and 
finally computes the signature. 

uris is an array of IDs to be signed. A separate <Reference> will be created for each 
element of this array.

As described earlier there are two ways to specify the transforms – a simple way in 
which the transform must be null, and the transformation information is specified 
throught the various set methods mentioned above (in WSSignatureParams). Or a more 
advanced way where the transform parameter must explicitly specify all the 
transforms for each reference, that is, trans.length must be equal to uris.length. 

10.2.5.2 Verifying SOAP Messages
When verifying a signature you first need to locate the signature elements in the 
<wsse:Security> header; for this you can use the method

WSSecurity ws = ...
List<XSSignature>sigs = ws.getSignatures();

This method searches the DOM tree to find all immediate children of  
<wsse:Security> that are <dsig:Signature> and then creates XSSignature wrapper 
objects for each of those elements and returns them.  (Note the namespace prefixes do 
not have to use wsse and dsig).



Classes and Interfaces

Oracle Web Services Security 10-13

If you already have the verification key in hand, you can call the following method - 
either pass in an hmacKey for HMAC signatures or a signingKey for asymmetric key 
signatures. The SOAPMessage is only need when attachments are signed.

XSSignature sig = sigs[0];
 
byte [] hmacKey = ...
PublicKey signingKey = ... ; // Need either hmacKey of signingKey
 
SOAPMessage msg = null; // needed only for attachments
boolean res = WSSecurity.verify(sig, byte[] hmacKey, signingKey, msg);

However, if you do not have the verification key, you need to set up the following 
callbacks for resolving STR Key Identifiers. Recall that STR Key Identifiers are usually 
references to tokens outside the document, so Oracle Security Developer Tools cannot 
locate these tokens unless you explicitly set up these callbacks.

Table 10–3  Callbacks to Resolve STR Key Identifiers

Token Type
Implementation Interface and 
Registration Notes

Username Token Interface: 
PasswordRetriever

 

Registration:
UsernameToken.addPassword
Retriever

This callback resolves the  
UsernameToken Reference 
STRs.

In the getPassword() callback, 
return the password 
corresponding to the user. 

This secret key will be derived 
from password, iteration 
count and salt.

login() and logout() callbacks 
are not used

Interface: 
KeyDerivator

Registration:
UsernameToken.addKeyDeriva
tor

This callback also resolves the 
UsernameToken Reference 
STRs. Use it when you want to 
use your own key derivation 
algorithm. In the resolve() 
callback, derive the key and 
return it.

X509 Interface: 
X509KeyIdentifierResolver

Registration:
X509KeyIdentifier.addResolver

This callback resolves 
Thumbprint and SKI Key 
Identifier STRs.

Implement the resolve() and 
getPrivateKey() callbacks to 
return the certificate and the 
private key respectively. 

Note: The private key is not 
required for verification, but it 
is required for decryption.

If you have an array of 
certificates, use the 
X509KeyIdentifier.matches() 
method to match each 

cerificate against the passed-in 
X509 KeyIdentifier.



Classes and Interfaces

10-14 Developing Secure Applications with Oracle Security Developer Tools

Interface:
X509IssuerSerialResolver 

Registration:
X509IssuerSerial.addResolver

This callback resolves Issuer 
Serial Key Identifier STRs.

Implement the resolve() and 
getPrivateKey() callbacks as in 
the previous case.

Kerberos Interface:
KerberosKeyIdentifierResolver

 

Registration:
KerberosKeyIdentifier.addReso
lver

This callback resolves 
Kerberos STRs.

Implement the resolve() and 
resolveKey() method to return 
the ap_req packet and the 
session key/subkey 

which corresponds to the 
SHA1 value present in the 
KeyIdentifier.

 

If you have an array of ap_req 
packets, calculate the SHA1 of 
each one of them, and find the 
one 

whose SHA1 matches the 
value returned by 
KerberosKeyIdentifier.getValu
e(). 

Return this ap_req packet in 
the resolve() method.

 

For the resolveKey() method 
you need to take one more 
step and return they key 
present inside 

the ap_Req packet, for this 
youe can use the 
KerberosUtils.getSessionKey(
Subject, byte[]) method, 

which decrypts the ap_req 
packet using the Subject's key 
and extracts the session 
key/sub-key from it.

SAML Assertion v1.1 Interface:
SAMLAssertionKeyIdentifierR
esolver

Registration:
SAMLAssertionKeyIdentifier.a
ddResolver

This callback resolves SAML 
Assertion KeyIdentifier STRs.

Implement the resolve(), 
getPublicKey() and 
getPrivateKey() methods to 
return the SAML assertion, 
SAMLX509Cert, and private 
key respectively. (Note: The 
private key is required only 
for decryption, not for 
verification.)

Table 10–3 (Cont.)  Callbacks to Resolve STR Key Identifiers

Token Type
Implementation Interface and 
Registration Notes



Classes and Interfaces

Oracle Web Services Security 10-15

For tokens that use symmetric keys - UserName Token, Kerberos, and EncryptedKey - 
you need to set up a resolver, because the document does not have this symmetric key, 
and Oracle Security Developer Tools cannot verify (or decrypt) unless you set the 
resolvers.

For tokens that use asymmetric keys - SAML Assertions and X509 Tokens - you do not 
need to set up a resolver if it uses a direct URI reference STR or an embedded token, 
because in these cases Oracle Security Developer Tools can locate the certificate on its 
own.  However you still need to set up the CertificateValidator callback because 
Oracle Security Developer Tools will not blindly use a certificate in the message unless 
you have validated the certificate in your callback.

After you have set up all the resolvers and the CertificateValidator, use the 
following method:

SOAPMessage msg = null; // needed only for attachments
boolean searchTokens = true; 
boolean res = WSSecurity.verify(sig, searchTokens, msg);

This method inspects the Signature's KeyInfo and either searches for the certificate, or 
calls the appropriate resolvers to get the signing key.

You can also use the WSSecurity.verifyAll method which searches for signatures and 
verifies them one by one.

10.2.5.3 Confirming Signatures
You use the WSSignatureConfirmation wrapper class to contruct and process 
signature confirmation elements.

10.2.5.3.1 Signature Confirmation Response Generation  For response generation  use the 
following function in WSSecurity:

List<WSSignatureConfirmation> createSignatureConfirmations(Document doc);

This looks at all the Signatures present in the current WSSecurity element, and 
constructs corresponding SignatureConfirmation elements in a new document. These 
could be put in the response's WSSecuirty header.

10.2.5.3.2 Signature Confirmation Response Processing   For response processing, first use 
this function (at request time) to save all the Signature values.

String [] getSignatureValues()

At response processing time, you can then use this saved list to compare against the 
incoming SignatureConfirmations as follows:

SAML Assertion v 2.0 Interface:
SAML2AssertionKeyIdentifier
Resolver

Registration:
SAML2AssertionKeyIdentifier.
addResolver

See previous notes for SAML 
Assertion v1.1.

See Also: Chapter 8, "Oracle XML Security"

Table 10–3 (Cont.)  Callbacks to Resolve STR Key Identifiers

Token Type
Implementation Interface and 
Registration Notes



Classes and Interfaces

10-16 Developing Secure Applications with Oracle Security Developer Tools

boolean verifySignatureConfirmations(String sigValue[])

10.2.6 Encrypting and Decrypting
There are two primary encryption methods:

1. With EncryptedKey: Encrypt the elements with a random session key, then encrypt 
this session key into an <EncryptedKey> element and place that element in the 
<wsse:Security> header.

2. Without EncryptedKey: Encrypt the elements with known symmetric keys, which 
may be different for each element; construct  a <ReferenceList> element with 
references to each of these encrypted data sections, and place the <ReferenceList> 
in the <wsse:Security> header.

10.2.6.1 Encrypting SOAP messages with EncryptedKey
First decide on a key to use to encrypt this random session key, then create an STR 
with the information that the receiver will use to locate this decryption key:

Key keyEncKey = ... ; 
WSSecurityTokenReference str = ...

create a WSSEncryptionParams with this information:

// Choose a data encryption algorithm - say AES 128
String dataEncAlg = XMLURI.alg_aes128_CBC;
 
// Either generate a random session key yourself, or set this to 
// null to indicate that OSDT should generate it
SecretKey dataEncKey = null;
 
// Depending on the KeyEncryptionKey that you have chosen choose 
// either an RSA key wrap or a symmetric key wrap
String keyEncAlg = XMLURI.alg_rsaOAEP_MGF1;
 
// Now put all this information into a WSSEncryptionParams
WSSEncryptionParams eParam = new WSSEncryptionParams(
 dataEncAlg, dataEncKey, keyEncAlg, keyEncKey, str);

regular DOM element, SOAP headers, the SOAP Body or AttachmentParts:

Element elem1 = ... // one object to be encrypted
Element elem2 = … // another object to be encrypted
ArrayList objectList[] = new ArrayList();
objectList.add(elem1);
objectList.add(elem2);

Create two more arrays to indicate whether each object is to be encrypted content only, 
and what IDs will be assigned to the resulting EncryptedData objects:

Note: While encrypting regular DOM elements is standard practice, 
you can also encrypt SOAP headers, the SOAP body, and attachments. 
Special considerations apply for encrypting these objects as explained 
later. 



Classes and Interfaces

Oracle Web Services Security 10-17

// both these elements are not content only
boolean[] contentOnlys = { false, false };
 
// After encryption the EncryptedData elements will get these ids
String encDataIds[] = { "id1", "id2" };

Finally, call the encryptWithEncKey method:

WSSecurity ws = ...
XEEncryptedKey encKey = ws.encryptWithEncKey(objectList, contentOnlys, 
 encDataIds, eParam);

10.2.6.2 Encrypting SOAP messages without EncryptedKey
Use these steps if you do not wish to use an EncryptedKey:

Decide on a data encryption key; you can either use the same one for all the 
EncryptedData sections or a different one for each. Also create an STR with the 
information that the receiver will use to locate this decryption key, and put into a 
WSSEncryptionParams object:

SecretKey dataEncKey = ... ; // assuming 128 bit AES key
String dataEncAlg = XMLURI.alg_aes128_CBC;
WSSecurityTokenReference str = ...
 
// Now put all this information into a WSSEncryptionParams
WSSEncryptionParams eParam = new WSSEncryptionParams(
 dataEncAlg, dataEncKey, null, null, str);

Now create a list of elements to be encrypted as before, along with the associated 
contentOnly and encDataIds array:

Element elem1 = ... // one object to be encrypted
Element elem2 = … // another object to be encrypted
ArrayList objectList[] = new ArrayList();
objectList.add(elem1);
objectList.add(elem2);
 
// both these elements are not content only
boolean[] contentOnlys = { false, false };
 
// After encryption the EncryptedData elements will get these ids
String encDataIds[] = { "id1", "id2" };

Finally, call the encryptWithNoEncKey method:

WSSecurity ws = ...
XEEncryptedKey encKey = ws.encryptWithNoEncKey(objectList, 
 contentOnlys, encDataIds, new WSEncryptionParams[]{eParam, eParam});

In this example we used the same encryptionParams for both elements.

Note: SOAP bodies are always encrypted content only, regardless of 
what you pass in this flag. For attachments, "not content only" means 
content plus mime headers.



The Oracle Web Services Security Java API Reference

10-18 Developing Secure Applications with Oracle Security Developer Tools

10.2.6.3 Encrypting SOAP Headers into an EncryptedHeader
When you call the encrypt methods on the SOAP header block , with content only set 
to false, the entire SOAP header block is encrypted into an EncryptedData element; 
this element is placed inside an EncryptedHeader element, which replaces the original 
SOAP header block. 

The mustUnderstand and actor attributes are copied over from the current 
wsse:Security header.

10.2.6.4 Decrypting SOAP messages with EncryptedKey
To decrypt SOAP messages with EncryptedKey, use:

WSSecurity.decrypt(XEEncryptedKey, PrivateKey, SOAPMessage)

which first decrypts the EncryptedKey with the given PrivateKey to obtain a 
symmetric key, then uses this symmetric key to decrypt all the references inside the 
EncrytedKey.

If you do not know the PrivateKey, call: 

decrypt(XEEncryptedKey, SOAPMessage)

which looks into the KeyInfo of the EncryptedKey and calls the registered  callbacks to 
obtain the private key.

If you already know the decrypted form of the EncryptedKey then use:

decrypt(XEEncryptedKey, SecretKey, SOAPMessage)

which uses the given symmetric key to decrypt all the references inside the 
EncryptedKey.

10.2.6.5 Decrypting SOAP messages without EncryptedKey
When you wish to decrypt all the elements (or attachments)  mentioned in a top level 
ReferenceList, use: 

decrypt(XEReferenceList, SecretKey, SOAPMessage)

which uses the given symmetric key to decrypt all the references inside the 
ReferenceList. This functions assumes that all the references are encrypted with the 
same key.

 If you do not know the SecretKey, or if all the references are not encrypted with the 
same key, send in a null for the SecretKey; decrypt then looks into the KeyInfo of 
each of the EncrytedData and calls the registered callbacks to obtain the symmetric 
key.

10.3 The Oracle Web Services Security Java API Reference
The Oracle Web Services Security API Reference (Javadoc) is available at:

Oracle Fusion Middleware Web Services Security Java API Reference for Oracle Security 
Developer Tools



11

Oracle Liberty SDK 11-1

11 Oracle Liberty SDK

[12] The Liberty Alliance is an open organization that was founded with the goal of 
allowing individuals and businesses to engage in virtually any transaction without 
compromising the privacy and security of vital identity information. Specifications 
issued by the Liberty Alliance are based on an open identity federation framework, 
allowing partner companies to form business relationships based on a 
cross-organizational, federated network identity model. 

This chapter describes the features and benefits of the Oracle Liberty SDK, and 
explains how to set up your environment and use Oracle Liberty SDK.

This chapter contains these topics:

■ Oracle Liberty SDK Features and Benefits 

■ Oracle Liberty 1.1

■ Oracle Liberty 1.2

11.1 Oracle Liberty SDK Features and Benefits
Oracle Liberty SDK allows Java developers to design and develop single sign-on (SSO) 
and federated identity management (FIM) solutions. Oracle Liberty SDK aims to unify, 
simplify, and extend all aspects of development and integration of systems conforming 
to the Liberty Alliance ID-FF 1.1 and 1.2 specifications.

Oracle Liberty SDK 1.1 and 1.2 enable simplified software development through the 
use of an intuitive and straightforward Java API. The toolkits provide tools, 
information, and examples to help you develop solutions that conform to the Liberty 
Alliance specifications. The toolkits can also be seamlessly integrated into any existing 
Java solution, including applets, applications, EJBs, servlets, JSPs, and so on. 

The Oracle Liberty SDK is a pure java solution which provides the following features:

■ Support for the Liberty Alliance ID-FF version 1.1 and 1.2 specifications

■ Support for Liberty-based Single Sign-on and Federated Identity protocols

■ Support for the SAML 1.0/1.1 specifications

See Also: You can find the Liberty Alliance specifications at 
http://www.projectliberty.org/resources/specifications.php.



Oracle Liberty 1.1

11-2 Developing Secure Applications with Oracle Security Developer Tools

11.2 Oracle Liberty 1.1
This section explains how to set up your environment for and use Oracle Liberty 1.1, 
and describes the classes and interfaces of Oracle Liberty 1.1. It contains the following 
topics:

■ Setting Up Your Oracle Liberty 1.1 Environment

■ Overview of Oracle Liberty 1.1 Classes and Interfaces

■ The Oracle Liberty SDK 1.1 API Reference

11.2.1 Setting Up Your Oracle Liberty 1.1 Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME.

This section explains how to set up your environment for Oracle Liberty 1.1. It 
contains these topics:

■ System Requirements for Oracle Liberty 1.1

■ Setting the CLASSPATH Environment Variable

11.2.1.1 System Requirements for Oracle Liberty 1.1
In order to use Oracle Liberty 1.1, your system must have the Java Development Kit 
(JDK) version 1.6 or higher.

11.2.1.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_xmlsec.jar 

■ osdt_saml.jar 

■ The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle 
XML Security distribution)

■ the osdt_lib_v11.jar file

11.2.1.2.1 Setting the CLASSPATH on Windows  

To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab. 

3. Click Environment Variables. 

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit. 

5. Add the full path and file names for all of the required jar files to the CLASSPATH. 

For example, your CLASSPATH might look like this:



Oracle Liberty 1.1

Oracle Liberty SDK 11-3

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_lib_v11.jar;

6. Click OK.

11.2.1.2.2 Setting the CLASSPATH on UNIX  To set your CLASSPATH on UNIX, set your 
CLASSPATH environment variable to include the full path and file name of all of the 
required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_xmlsec.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml.jar:
$ORACLE_HOME/modules/org.jaxen_1.1.1.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_lib_v11.jar

11.2.2 Overview of Oracle Liberty 1.1 Classes and Interfaces
This section introduces some useful classes and interfaces of Oracle Liberty SDK v. 1.1. 
It contains these topics:

■ Core Classes and Interfaces

■ Supporting Classes and Interfaces

11.2.2.1 Core Classes and Interfaces
This section describes core classes and interfaces of the Oracle Liberty SDK v. 1.1.

The core classes are:

■ The oracle.security.xmlsec.liberty.v11.AuthnRequest Class

■ The oracle.security.xmlsec.liberty.v11.AuthnResponse Class

■ The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class

■ The oracle.security.xmlsec.liberty.v11.LogoutRequest Class

■ The oracle.security.xmlsec.liberty.v11.LogoutResponse Class

■ The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class

■ The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class

11.2.2.1.1 The oracle.security.xmlsec.liberty.v11.AuthnRequest Class  

This class represents the AuthnRequest element of the Liberty protocol schema.

Example 11–1 shows how to create a new AuthnRequest element and append it to a 
document.

Example 11–1 Creating an AuthnRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest authnRequest = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(authnRequest);

Example 11–2 shows how to obtain AuthnRequest elements from an XML document.



Oracle Liberty 1.1

11-4 Developing Secure Applications with Oracle Security Developer Tools

Example 11–2 Obtaining AuthnRequest Elements from a Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all AuthnRequest elements in the document.
NodeList arList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnRequest"); 
if (arList.getLength() == 0)

System.err.println("No AuthnRequest elements found.");
 
// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.AuthnRequest object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnRequest authnRequest = 
new AuthnRequest((Element)arList.item(s)); 

// Process AuthnRequest element
...

}

11.2.2.1.2 The oracle.security.xmlsec.liberty.v11.AuthnResponse Class  

This class represents the AuthnResponse element of the Liberty protocol schema.

Example 11–3 shows how to create a new AuthnResponse element and append it to a 
document.

Example 11–3 Creating an AuthnResponse Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnResponse authnResponse = new AuthnResponse(doc);
doc.getDocumentElement().appendChild(authnResponse);

Example 11–4 shows how to obtain AuthnResponse elements from an XML document.

Example 11–4 Obtaining  AuthnResponse elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all AuthnResponse elements in the document.
NodeList arList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnResponse");
if (arList.getLength() == 0)

System.err.println("No AuthnResponse elements found.");
 
// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.AuthnResponse object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnResponse authnResponse = 
new AuthnResponse((Element)arList.item(s)); 

// Process AuthnResponse element
...

}

11.2.2.1.3 The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class  

This class represents the FederationTerminationNotification element of the Liberty 
protocol schema.



Oracle Liberty 1.1

Oracle Liberty SDK 11-5

Example 11–5 shows how to create a new federation termination notification element 
and append it to a document.

Example 11–5 Creating a FederationTerminationNotification Element and Appending it 
to a Document

Document doc = Instance of org.w3c.dom.Document;
FederationTerminationNotification ftn = 

new FederationTerminationNotification(doc);
doc.getDocumentElement().appendChild(ftn);

Example 11–6 shows how to obtain federation termination notification elements from 
an XML document.

Example 11–6 Obtaining FederationTerminationNotification Elements from a Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all FederationTerminationNotification elements in the document
 NodeList ftnList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 

"FederationTerminationNotification");
if (ftnList.getLength() == 0)

System.err.println("No FederationTerminationNotification elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.FederationTerminationNotification 
// object and process
for (int s = 0, n = ftnList.getLength(); s < n; ++s)
{

FederationTerminationNotification ftn =
 new FederationTerminationNotification((Element)ftnList.item(s));

// Process FederationTerminationNotification element
...

}

11.2.2.1.4 The oracle.security.xmlsec.liberty.v11.LogoutRequest Class  

This class represents the LogoutRequest element of the Liberty protocol schema.

Example 11–7 shows how to create a new LogoutRequest element and append it to a 
document.

Example 11–7 Creating a LogoutRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
LogoutRequest lr = new LogoutRequest(doc);
doc.getDocumentElement().appendChild(lr);

Example 11–8 shows how to obtain LogoutRequest elements from an XML document.

Example 11–8 Obtaining LogoutRequest Elements from an XML Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutRequest elements in the document.
NodeList lrList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 

"LogoutRequest");
if (lrList.getLength() == 0)

System.err.println("No LogoutRequest elements found.");



Oracle Liberty 1.1

11-6 Developing Secure Applications with Oracle Security Developer Tools

 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.LogoutRequest
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutRequest lr = new LogoutRequest((Element)lrList.item(s));

// Process LogoutRequest element
...

}

11.2.2.1.5 The oracle.security.xmlsec.liberty.v11.LogoutResponse Class  

This class represents the LogoutResponse element of the Liberty protocol schema.

Example 11–9 shows how to create a new LogoutResponse element and append it to a 
document.

Example 11–9 Creating a LogoutResponse Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
LogoutResponse lr = new LogoutResponse(doc);
doc.getDocumentElement().appendChild(lr);

Example 11–10 shows how to obtain LogoutResponse elements from an XML 
document.

Example 11–10 Obtaining LogoutResponse elements from a Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutResponse elements in the document.
NodeList lrList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutResponse");
if (lrList.getLength() == 0)

System.err.println("No LogoutResponse elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.LogoutResponse
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutResponse lr = new LogoutResponse((Element)lrList.item(s));

// Process LogoutResponse element
...

}

11.2.2.1.6 The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class  

This class represents the RegisterNameIdentifierRequest element of the Liberty 
protocol schema.

Example 11–11 shows how to create a new RegisterNameIdentifierRequest element 
and append it to a document.



Oracle Liberty 1.1

Oracle Liberty SDK 11-7

Example 11–11 Creating a RegisterNameIdentifierRequest Element and Appending it to 
a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierRequest rnir = 

new RegisterNameIdentifierRequest(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–12 shows how to obtain RegisterNameIdentifierRequest elements from 
an XML document.

Example 11–12 Obtaining RegisterNameIdentifierRequest Elements from an XML 
Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all RegisterNameIdentifierRequest elements in the document
NodeList rnirList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 

"RegisterNameIdentifierRequest");
if (rnirList.getLength() == 0)

System.err.println("No RegisterNameIdentifierRequest elements found.");
 
// Convert each org.w3c.dom.Node object to an 
//oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierRequest rnir = new 
RegisterNameIdentifierRequest((Element)rnirList.item(s));

// Process RegisterNameIdentifierRequest element
...

}

11.2.2.1.7 The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class
  This class represents the RegisterNameIdentifierResponse element of the Liberty 
protocol schema.

Example 11–13 shows how to create a new RegisterNameIdentifierResponse element 
and append it to a document.

Example 11–13 Creating a RegisterNameIdentifierResponse Element and Appending it 
to a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierResponse rnir = new RegisterNameIdentifierResponse(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–14 shows how to obtain RegisterNameIdentifierResponse elements from 
an XML document.

Example 11–14 Obtaining RegisterNameIdentifierResponse Elements from an XML 
Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all RegisterNameIdentifierResponse elements in the document
NodeList rnirList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 

"RegisterNameIdentifierResponse");
if (rnirList.getLength() == 0)



Oracle Liberty 1.1

11-8 Developing Secure Applications with Oracle Security Developer Tools

System.err.println("No RegisterNameIdentifierResponse elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierResponse rnir = new 
RegisterNameIdentifierResponse((Element)rnirList.item(s));

// Process RegisterNameIdentifierResponse element
...

}

11.2.2.2 Supporting Classes and Interfaces
This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.1. 

The supporting classes and interfaces are:

■ The oracle.security.xmlsec.liberty.v11.LibertyInitializer class

■ The oracle.security.xmlsec.liberty.v11.LibertyURI interface

■ The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface

■ The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

■ The oracle.security.xmlsec.saml.SAMLURI Interface

■ The oracle.security.xmlsec.saml.SAMLMessage class

11.2.2.2.1 The oracle.security.xmlsec.liberty.v11.LibertyInitializer class  

The oracle.security.xmlsec.liberty.v11.LibertyInitializer class handles 
load-time initialization and configuration of the Oracle Liberty SDK library. You must 
call this class's static initialize() method before making any calls to the Oracle 
Liberty SDK API.

11.2.2.2.2 The oracle.security.xmlsec.liberty.v11.LibertyURI interface  

The oracle.security.xmlsec.liberty.v11.LibertyURI interface defines URI string 
constants for algorithms, namespaces and objects. The following naming convention is 
used: 

■ Algorithm URIs begin with "alg_".

■ Namespace URIs begin with "ns_".

■ Object type URIs begin with "obj_".

■ Liberty profile namespace URIs begin with "prof_".

11.2.2.2.3 The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface  

The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface 
defines URI string constants for algorithms, namespaces and objects. The following 
naming convention is used:

■ Algorithm URIs begin with "alg_".

■ Namespace URIs begin with "ns_".

■ Object type URIs begin with "obj_".



Oracle Liberty 1.2

Oracle Liberty SDK 11-9

11.2.2.2.4 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class  

The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class is an 
abstract class representing the top-level AuthenticationContextStatement element of 
the Liberty authentication context schema. Each concrete implementation of this class 
represents a respective class defined in the Liberty Authentication Context 
Specification.

11.2.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface  

The oracle.security.xmlsec.saml.SAMLURI interface defines URI string constants for 
algorithms, namespaces and objects. The following naming convention is used:

■ Action namespace URIs defined in the SAML 1.0 specifications begin with 
"action_"

■ Authentication method namespace URIs defined in the SAML 1.0 specifications 
begin with "authentication_method_".

■ Confirmation method namespace URIs defined in the SAML 1.0 specifications 
begin with "confirmation_method_".

■ Namespace URIs begin with "ns_".

11.2.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage class  

The oracle.security.xmlsec.saml.SAMLMessage class is the base class for all the 
SAML and SAML extension messages that may be signed and contain an XML-DSIG 
structure.

11.2.3 The Oracle Liberty SDK 1.1 API Reference
The Oracle Liberty SDK version 1.1 API Reference is available at:

Oracle Fusion Middleware Liberty 1.1 Java API Reference for Oracle Security Developer Tools

11.3 Oracle Liberty 1.2
This section describes the classes and interfaces of Oracle Liberty 1.2, and explains 
how to set up your environment and use Oracle Liberty 1.2. It contains these sections:

■ Setting Up Your Oracle Liberty 1.2 Environment

■ Overview of Oracle Liberty 1.2 Classes and Interfaces

■ The Oracle Liberty SDK 1.2 API Reference

11.3.1 Setting Up Your Oracle Liberty 1.2 Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME.

This section explains how to set up your environment for Oracle Liberty 1.2. It 
contains these topics:

■ System Requirements for Oracle Liberty 1.2

■ Setting the CLASSPATH Environment Variable



Oracle Liberty 1.2

11-10 Developing Secure Applications with Oracle Security Developer Tools

11.3.1.1 System Requirements for Oracle Liberty 1.2
In order to use Oracle Liberty 1.2, your system must have the Java Development Kit 
(JDK) version 1.6 or higher. Also, make sure that your PATH environment variable 
includes the Java bin directory.

11.3.1.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar 

■ osdt_cert.jar 

■ osdt_xmlsec.jar 

■ osdt_saml.jar 

■ The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle 
XML Security distribution)

■ osdt_lib_v12.jar 

11.3.1.2.1 Setting the CLASSPATH on Windows  

To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab. 

3. Click Environment Variables. 

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit. 

5. Add the full path and file names for all of the required jar files to the CLASSPATH. 

For example, your CLASSPATH might look like this:

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_lib_v12.jar;

6. Click OK.

11.3.1.2.2 Setting the CLASSPATH on Unix  

On Unix, set your CLASSPATH environment variable to include the full path and file 
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_xmlsec.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml.jar:
$ORACLE_HOME/modules/org.jaxen_1.1.1.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_lib_v12.jar



Oracle Liberty 1.2

Oracle Liberty SDK 11-11

11.3.2 Overview of Oracle Liberty 1.2 Classes and Interfaces
This section introduces some useful classes and interfaces of Oracle Liberty SDK v. 1.2. 
It contains these topics:

■ Core Classes and Interfaces

■ Supporting Classes and Interfaces

11.3.2.1 Core Classes and Interfaces
This section describes core classes and interfaces of the Oracle Liberty SDK, v. 1.2.

The core classes are:

■ The oracle.security.xmlsec.saml.Assertion class

■ The oracle.security.xmlsec.samlp.Request class

■ The oracle.security.xmlsec.samlp.Response class

■ The oracle.security.xmlsec.liberty.v12.AuthnRequest class

■ The oracle.security.xmlsec.liberty.v12.AuthnResponse class

■ The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class

■ The oracle.security.xmlsec.liberty.v12.LogoutRequest class

■ The oracle.security.xmlsec.liberty.v12.LogoutResponse class

■ The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class

■ The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class

11.3.2.1.1 The oracle.security.xmlsec.saml.Assertion class  

The oracle.security.xmlsec.saml.Assertion class represents the Assertion element 
of the SAML Assertion schema.

Example 11–15 shows how to create a new assertion element and append it to a 
document.

Example 11–15 Creating an Assertion element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

Example 11–16 shows how to obtain assertion elements from an XML document.

Example 11–16 Obtaining Assertion Elements from a Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all Assertion elements in the document
NodeList assrtList = 

doc.getElementsByTagNameNS(SAMLURI.ns_saml, "Assertion");
if (assrtList.getLength() == 0)

System.err.println("No Assertion elements found.");
 
// Convert each org.w3c.dom.Node object to 
// an oracle.security.xmlsec.saml.Assertion
// object and process
for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{



Oracle Liberty 1.2

11-12 Developing Secure Applications with Oracle Security Developer Tools

Assertion assertion = new Assertion((Element)assrtList.item(s));

// Process Assertion element
...

}

11.3.2.1.2 The oracle.security.xmlsec.samlp.Request class  

The oracle.security.xmlsec.samlp.Request class represents the Request element of 
the SAML Protocol schema.

Example 11–17 shows how to create a new Request element and append it to a 
document.

Example 11–17 Creating a Request element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
Request request = new Request(doc);
doc.getDocumentElement().appendChild(request);

Example 11–18 shows how to obtain Request elements from an XML document.

Example 11–18 Obtaining Request Elements from a Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all Request elements in the document
NodeList reqList = 

doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Request");
if (reqList.getLength() == 0)

System.err.println("No Request elements found.");

// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.samlp.Request
// object and process
for (int s = 0, n = reqList.getLength(); s < n; ++s)
{

Request request = new Request((Element)reqList.item(s));

// Process Request element
...

}

11.3.2.1.3 The oracle.security.xmlsec.samlp.Response class   

The oracle.security.xmlsec.samlp.Response class represents the Response element 
of the SAML Protocol schema.

Example 11–19 shows how to create a new element and append it to a document.

Example 11–19 Creating a Response Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);

Example 11–20 shows how to obtain Response elements from an XML document.



Oracle Liberty 1.2

Oracle Liberty SDK 11-13

Example 11–20 Obtaining Response Elements from a Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all Response elements in the document
NodeList respList = 

doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Response");
if (respList.getLength() == 0)

System.err.println("No Response elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.samlp.Response
// object and process
for (int s = 0, n = respList.getLength(); s < n; ++s)
{

Response response = new Response((Element)respList.item(s));

// Process Response element
...

}

11.3.2.1.4 The oracle.security.xmlsec.liberty.v12.AuthnRequest class  

The oracle.security.xmlsec.liberty.v12.AuthnRequest class represents the 
AuthnRequest element of the Liberty protocol schema.

Example 11–21 shows how to create a new authorization request element and append 
it to a document.

Example 11–21 Creating an AuthnRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest authnRequest = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(authnRequest);

Example 11–22 shows how to obtain AuthnRequest elements from an XML document.

Example 11–22 Obtaining AuthnRequest Elements from a  Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all AuthnRequest elements in the document
NodeList arList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 
"AuthnRequest");

if (arList.getLength() == 0)
System.err.println("No AuthnRequest elements found.");

 
// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.AuthnRequest
// object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnRequest authnRequest = new AuthnRequest((Element)arList.item(s));

// Process AuthnRequest element
...

}



Oracle Liberty 1.2

11-14 Developing Secure Applications with Oracle Security Developer Tools

11.3.2.1.5 The oracle.security.xmlsec.liberty.v12.AuthnResponse class  

The oracle.security.xmlsec.liberty.v12.AuthnResponse class represents the 
AuthnResponse element of the Liberty protocol schema.

Example 11–23 shows how to create a new authorization response element and 
append it to a document.

Example 11–23 Creating an AuthnResponse Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnResponse authnResponse = new AuthnResponse(doc);
doc.getDocumentElement().appendChild(authnResponse);

Example 11–24 shows how to obtain AuthnResponse elements from an XML document.

Example 11–24 Obtaining AuthnResponse Elements from a  Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all AuthnResponse elements in the document.
NodeList arList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnResponse");
if (arList.getLength() == 0)

System.err.println("No AuthnResponse elements found.");
 
// Convert each org.w3c.dom.Node object to 
// an oracle.security.xmlsec.liberty.v12.AuthnResponse
// object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnResponse authnResponse = 
new AuthnResponse((Element)arList.item(s));

// Process AuthnResponse element
...

}

11.3.2.1.6 The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class  

The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification  
class represents the FederationTerminationNotification element of the Liberty 
protocol schema.

Example 11–25 shows how to create a new federation termination notification element 
and append it to a document.

Example 11–25 Creating a DocumentFederationTerminationNotification Element and 
Appending it to a  Document

Document doc = Instance of org.w3c.dom.Document;
FederationTerminationNotification ftn = 

new FederationTerminationNotification(doc);
doc.getDocumentElement().appendChild(ftn);

Example 11–26 shows how to obtain federation termination notification elements from 
an XML document.



Oracle Liberty 1.2

Oracle Liberty SDK 11-15

Example 11–26 Obtaining FederationTerminationNotification Elements from a Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all FederationTerminationNotification elements in the document
NodeList ftnList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,

"FederationTerminationNotification");
if (ftnList.getLength() == 0)

System.err.println("No FederationTerminationNotification elements found.");
 
// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v12.FederationTerminationNotification
// object and process
for (int s = 0, n = ftnList.getLength(); s < n; ++s)
{

FederationTerminationNotification ftn = new 
FederationTerminationNotification((Element)ftnList.item(s));

// Process FederationTerminationNotification element
...

}

11.3.2.1.7 The oracle.security.xmlsec.liberty.v12.LogoutRequest class  

The oracle.security.xmlsec.liberty.v12.LogoutRequest class represents the 
LogoutRequest element of the Liberty protocol schema.

Example 11–27 shows how to create a new element and append it to a document.

Example 11–27 Creating a new LogoutRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
LogoutRequest lr = new LogoutRequest(doc);
doc.getDocumentElement().appendChild(lr);

Example 11–28 shows how to obtain logout request elements from an XML document.

Example 11–28 Obtaining LogoutRequest Elements from an XML Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutRequest elements in the document
NodeList lrList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutRequest");
if (lrList.getLength() == 0)

System.err.println("No LogoutRequest elements found.");
 
// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.LogoutRequest
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutRequest lr = new LogoutRequest((Element)lrList.item(s));

// Process LogoutRequest element
...

}

11.3.2.1.8 The oracle.security.xmlsec.liberty.v12.LogoutResponse class  



Oracle Liberty 1.2

11-16 Developing Secure Applications with Oracle Security Developer Tools

The oracle.security.xmlsec.liberty.v12.LogoutResponse class represents the 
LogoutResponse element of the Liberty protocol schema.

Example 11–29 shows how to create a new logout response element and append it to a 
document.

Example 11–29 Creating a new LogoutResponse Element and Appending it to a 
Document

Document doc = Instance of org.w3c.dom.Document;
LogoutResponse lr = new LogoutResponse(doc);
doc.getDocumentElement().appendChild(lr);
 
Example 11–30 shows how to obtain logout response elements from an XML 
document.

Example 11–30 Obtaining LogoutResponse Elements from an XML Document

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutResponse elements in the document
NodeList lrList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutResponse");
if (lrList.getLength() == 0)

System.err.println("No LogoutResponse elements found.");
 
// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.LogoutResponse
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutResponse lr = new LogoutResponse((Element)lrList.item(s));

// Process LogoutResponse element
...

}

11.3.2.1.9 The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class  

The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class 
represents the RegisterNameIdentifierRequest element of the Liberty protocol 
schema.

Example 11–31 shows how to create a new RegisterNameIdentifierRequest element 
and append it to a document.

Example 11–31 Creating a new RegisterNameIdentifierRequest Element and Appending 
it to a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierRequest rnir = new RegisterNameIdentifierRequest(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–32 shows how to obtain RegisterNameIdentifierRequest elements from 
an XML document.

Example 11–32 Obtaining RegisterNameIdentifierRequest Elements from an XML 
Document

Document doc = Instance of org.w3c.dom.Document;



Oracle Liberty 1.2

Oracle Liberty SDK 11-17

 
// Get list of all 
// RegisterNameIdentifierRequest elements 
// in the document
NodeList rnirList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty,
"RegisterNameIdentifierRequest");

if (rnirList.getLength() == 0)
System.err.println("No RegisterNameIdentifierRequest elements found.");

 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierRequest rnir =
 new RegisterNameIdentifierRequest((Element)rnirList.item(s));

// Process RegisterNameIdentifierRequest element
...

}

11.3.2.1.10 The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class  

The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class 
represents the RegisterNameIdentifierResponse  element of the Liberty protocol 
schema.

Example 11–33 shows how to create a new RegisterNameIdentifierResponse element 
and append it to a document.

Example 11–33 Creating a New RegisterNameIdentifierResponse Element and 
Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierResponse rnir = 

new RegisterNameIdentifierResponse(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–34 shows how to obtain RegisterNameIdentifierResponse elements from 
an XML document.

Example 11–34 Obtaining RegisterNameIdentifierResponse Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all RegisterNameIdentifierResponse elements in the document
NodeList rnirList = 

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 
"RegisterNameIdentifierResponse");

if (rnirList.getLength() == 0)
System.err.println("No RegisterNameIdentifierResponse elements found.");

 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierResponse rnir = new 



Oracle Liberty 1.2

11-18 Developing Secure Applications with Oracle Security Developer Tools

RegisterNameIdentifierResponse((Element)rnirList.item(s));

// Process RegisterNameIdentifierResponse element
...

}

11.3.2.2 Supporting Classes and Interfaces
This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.2:

■ The oracle.security.xmlsec.liberty.v12.LibertyInitializer class

■ The oracle.security.xmlsec.liberty.v12.LibertyURI interface

■ The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

■ The oracle.security.xmlsec.saml.SAMLInitializer class

■ The oracle.security.xmlsec.saml.SAMLURI interface

11.3.2.2.1 The oracle.security.xmlsec.liberty.v12.LibertyInitializer class  

This class handles load-time initialization and configuration of the Oracle Liberty SDK 
1.2 library. You must call this class's static initialize() method before making any 
calls to the Oracle Liberty SDK 1.2 API.

11.3.2.2.2 The oracle.security.xmlsec.liberty.v12.LibertyURI interface  

This interface defines URI string constants for algorithms, namespaces, and objects.

11.3.2.2.3 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class  

This is an abstract class representing the top-level AuthenticationContextStatement 
element of the Liberty authentication context schema. Each concrete implementation of 
this class represents the respective class defined in the Liberty Authentication Context 
Specification.

11.3.2.2.4 The oracle.security.xmlsec.saml.SAMLInitializer class  

This class handles load-time initialization and configuration of the Oracle SAML 
library. You should call this class's static initialize(int major, int minor) method, 
for version 1.1, before making any calls to the Oracle SAML Toolkit API for SAML 1.1.

11.3.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface  

The oracle.security.xmlsec.saml.SAMLURI interface defines URI string constants 
for algorithms, namespaces, and objects. The following naming convention is used:

■ Action Namespace URIs defined in the SAML 1.1 specifications begin with 
"action_"

■ Authentication Method Namespace URIs defined in the SAML 1.1 specifications 
begin with "authentication_method_"

■ Confirmation Method Namespace URIs defined in the SAML 1.1 specifications 
begin with "confirmation_method_"

■ Namespace URIs begin with "ns_"

11.3.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage Class  

oracle.security.xmlsec.saml.SAMLMessage is the base class for all the SAML and 
SAML extension messages that may be signed and contain an XML-DSIG structure.



Oracle Liberty 1.2

Oracle Liberty SDK 11-19

11.3.3 The Oracle Liberty SDK 1.2 API Reference
The Oracle Liberty SDK version 1.2 API Reference (Javadoc) is available at:

Oracle Fusion Middleware Liberty 1.2 Java API Reference for Oracle Security Developer Tools



Oracle Liberty 1.2

11-20 Developing Secure Applications with Oracle Security Developer Tools



12

Oracle XKMS 12-1

12 Oracle XKMS

[13] XKMS (XML Key Management Specification) is a W3C specification for public key 
management. It provides a convenient way to handle public key infrastructures by 
enabling developers to write XML transactions for digital signature processing.

This chapter contains these topics:

■ Oracle XKMS Features and Benefits

■ Setting Up Your Oracle XKMS Environment

■ Core Classes and Interfaces

■ The Oracle XKMS Java API Reference

12.1 Oracle XKMS Features and Benefits 
Oracle XKMS is a pure Java solution which consists of a toolkit for locating keys and 
verifying user identities across businesses and applications. It supports the secure, 
trusted messaging required for web services, and provides a way to sidestep some of 
the costs and complexity associated with PKI.

Oracle XKMS provides the following features: 

■ Simplified access to PKI functionality - by implementing the W3C XKMS 
Standard, Oracle XKMS combines the simplicity of XML with the robustness of 
PKI. With this toolkit, developers can easily deploy robust application 
functionality by deploying secure, lightweight client software.

■ Supports complete key/certificate life cycle - Oracle XKMS helps enterprise 
applications locate, retrieve, and validate signature and encryption keys using 
lightweight Web Services infrastructure.

■ Secures XKMS messages using XML Signatures - requests and responses can be 
digitally signed using Oracle XML toolkit.

■ 100% Java with no native methods

■ Works with JAXP 1.1 compliant XML parsers

12.1.1 Oracle XKMS Packages
The Oracle XKMS library contains the following packages:



Setting Up Your Oracle XKMS Environment

12-2 Developing Secure Applications with Oracle Security Developer Tools

12.2 Setting Up Your Oracle XKMS Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section explains how to set up your environment for Oracle XKMS. 
It contains these topics:

■ System Requirements for Oracle XKMS

■ Setting the CLASSPATH Environment Variable

12.2.1 System Requirements for Oracle XKMS
In order to use Oracle XKMS, your system must have the following components 
installed:

■ The Java Development Kit (JDK) version 1.6 or higher

■ the Oracle XML Security toolkit

12.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to the 
required jar and class files. Make sure that the following files are included in your 
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ org.jaxen_1.1.1.jar, which is located in the $ORACLE_HOME/modules/ directory 
of the security tools distribution. Oracle XML Security relies on the Jaxen XPath 
engine for XPath processing. 

12.2.2.1 Setting the CLASSPATH on Windows
To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

Table 12–1  Packages in the Oracle XKMS Library

Package Description

oracle.security.xmlsec.xkms Contains the main XKMS message 
elements

oracle.security.xmlsec.xkms.xkiss Contains the classes for the Key 
Information Service Specification

oracle.security.xmlsec.xkms.xkrss Contains the classes for the Key 
Registration Service Specification

oracle.security.xmlsec.xkms.util Contains constants and utility classes



Core Classes and Interfaces

Oracle XKMS 12-3

5. Add the full path and file names for all of the required jar and class files to the 
CLASSPATH. 

For example, your CLASSPATH might look like this:

C:%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;

6. Click OK.

12.2.2.2 Setting the CLASSPATH on UNIX 
On UNIX, set your CLASSPATH environment variable to include the full path and file 
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_xmlsec.jar
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;

12.3 Core Classes and Interfaces
This section provides information and code samples for using the key classes and 
interfaces of Oracle XKMS. The core classes are:

■ oracle.security.xmlsec.xkms.xkiss.LocateRequest

■ oracle.security.xmlsec.xkms.xkiss.LocateResult

■ oracle.security.xmlsec.xkms.xkiss.ValidateRequest

■ oracle.security.xmlsec.xkms.xkiss.ValidateResult

■ oracle.security.xmlsec.xkms.xkrss.RecoverRequest

■ oracle.security.xmlsec.xkms.xkrss.RecoverResult

12.3.1 oracle.security.xmlsec.xkms.xkiss.LocateRequest
This class represents the XKMS LocateRequest element.

Example 12–1 shows how to create an instance of LocateRequest:

Example 12–1 Creating an Instance of LocateRequest 

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;
 
//Create Query Key Binding
QueryKeyBinding queryKeyBinding = new QueryKeyBinding(sigDoc);
queryKeyBinding.setTimeInstant(new Date());
 
// Create the xkms:LocateRequest.
LocateRequest loc = new LocateRequest(sigDoc, queryKeyBinding);

Client requests of type LocateRequest must include an xkms:RespondWith attribute. 

Example 12–2 shows how RespondWith can be added to a LocateRequest:



Core Classes and Interfaces

12-4 Developing Secure Applications with Oracle Security Developer Tools

Example 12–2 Adding RespondWith to a LocateRequest

//Add xkms:RespondWith as X.509 Certificate.
loc.addRespondWith(XKMSURI.respondWith_X509Cert);

12.3.2 oracle.security.xmlsec.xkms.xkiss.LocateResult
This class represents the xkms:LocateResult element.

Example 12–3 shows how to create an instance of LocateResult:

Example 12–3 Creating an Instance of LocateResult

//Parse the XML document containin the dsig:Signature
Document sigDoc = //Instance of org.w3c.doc.Document;
 
// Create the xkms:LocateResult
LocateResult locRes = new LocateResult(sigDoc);
 
//Set ResultMajor to Success.
locRes.setResultCode(XKMSURI.result_major_success, null);

If the LocateRequest contained a RespondWith attribute of X509Certificate, use the 
following code to add an X509 Certificate to the LocateResult:

Example 12–4 Adding an X509 Certificate to LocateResult

//Creating a signature and adding X509 certificate to the KeyInfo element.
X509Certificate userCert = // Instance of java.security.cert.X509Certificate
XSSignature Sig = XSSignature.newInstance(sigDoc, "MySignature");
XSKeyInfo xsInfo = sig.getKeyInfo();
X509Data xData = xsInfo.createX509Data(userCert);
 
//Add X509Data to the KeyInfo
xsInfo.addKeyInfoData(xData);
 
//Set Key Binding and add KeyInfo the the KeyBinding
UnverifiedKeyBinding keyBinding = new UnverifiedKeyBinding(sigDoc);
keyBinding.setKeyInfo(xsInfo);
 
//Add Key Binding to LocateResult
locRes.addKeyBinding(keyBinding);

12.3.3 oracle.security.xmlsec.xkms.xkiss.ValidateRequest
This class represents the XKMS xkms:ValidateRequest element.

Example 12–5 shows how to create an instance of xkms:ValidateRequest:

Example 12–5 Creating an Instance of ValidateRequest

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;
 
//Create Query Key Binding
QueryKeyBinding queryKeyBinding = new QueryKeyBinding(sigDoc);
queryKeyBinding.setTimeInstant(new Date());
 
// Create the xkms:ValidateRequest.



Core Classes and Interfaces

Oracle XKMS 12-5

ValidateRequest validateReq = new ValidateRequest(sigDoc, queryKeyBinding);

Requests of type ValidateRequest must include an xkms:RespondWith attribute. 
Example 12–6 shows how to add RespondWith to a ValidateRequest:

Example 12–6 Adding RespondWith to a ValidateRequest

//Add xkms:RespondWith as X.509 Certificate.
validateReq.addRespondWith(XKMSURI.respondWith_X509Cert);

12.3.4 oracle.security.xmlsec.xkms.xkiss.ValidateResult
This class represents the XKMS ValidateResult element.

Example 12–7 shows how to create an instance of ValidateResult:

Example 12–7 Creating an Instance of ValidateResult

//Parse the XML document containin the dsig:Signature
Document sigDoc = //Instance of org.w3c.doc.Document;
 
// Create the xkms:ValidateResult
ValidateResult valRes = new ValidateResult(sigDoc);
 
//Set ResultMajor to Success.
valRes.setResultCode(XKMSURI.result_major_success, null);

Use the following code to set a status in response to a ValidateRequest:

Example 12–8 Setting a Response Status for a ValidateRequest

//Create a status element and add reasons.
Status responseStatus = new Status(sigDoc);
responseStatus.addValidReason(XKMSURI.reasonCode_IssuerTrust);
responseStatus.addValidReason(XKMSURI.reasonCode_RevocationStatus);
responseStatus.addValidReason(XKMSURI.reasonCode_ValidityInterval);
responseStatus.addValidReason(XKMSURI.reasonCode_Signature);
 
//Create a xkms:KeyBinding to add status and X509Data
XSKeyInfo xsInfo = 

// Instance of oracle.security.xmlsec.dsig.XSKeyInfo, 
// which contains X509Data

KeyBinding keyBinding = new KeyBinding(sigDoc);
keyBinding.setStatus(responseStatus);
keyBinding.setKeyInfo(xsInfo);
 
// Add the key binding to the ValidateResult.
valRes.addKeyBinding(keyBinding);

12.3.5 oracle.security.xmlsec.xkms.xkrss.RecoverRequest
This class represents the XKMS RecoverRequest element.

Example 12–9 shows how to create an instance of RecoverRequest:

Example 12–9 Creating an Instance of RecoverRequest 

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;



Core Classes and Interfaces

12-6 Developing Secure Applications with Oracle Security Developer Tools

 
// Create the xkms:RecoverRequest
RecoverRequest recReq = new RecoverRequest(sigDoc);
 
//Set RespondWith to PrivateKey, so that the RecoverResult 
contains the private key.
recReq.addRespondWith(XKMSURI.respondWith_PrivateKey);

A RecoverRequest must include the Authentication and RecoverKeyBinding 
elements. These can be added with the following code:

Example 12–10 Adding Authentication and RecoverKeyBinding to a RecoverRequest

//Create an instance of XSSignature.
XSSignature sig = 

//Instance of oracle.security.xmlsec.dsig.XSSignature
 
//Create an instance of Authentication element.
Authentication auth = new Authentication(sigDoc);
 
//Set key binding authentication.
auth.setKeyBindingAuthentication(sig);
 
//Set Authentication for the RecoverRequest.
recReq.setAuthentication(auth);
 
//Add RecoverKeyBinding to RecoverRequest.
RecoverKeyBinding recKeyBind = new RecoverKeyBinding(sigDoc);
 
//Add Key Info on the key to be recovered.
XSKeyInfo xsInfo = 

//Instance of oracle.security.xmlsec.dsig.XSKeyInfo
recKeyBind.setKeyInfo(xsInfo);
 
//Adding status, as known to the key holder, to the KeyBinding
Status keyStatus = new Status(sigDoc);
keyStatus.setStatusValue(XKMSURI.kbs_Indeterminate);
recKeyBind.setStatus(keyStatus);
 
//Adding RecoverKeyBinding to RecoverRequest.
recReq.setKeyBinding(recKeyBind);

12.3.6 oracle.security.xmlsec.xkms.xkrss.RecoverResult
This class represents the xkms:RecoverResult element.

Example 12–11 shows how to create an instance of RecoverResult:

Example 12–11 Creating an Instance of xkms:RecoverResult

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;
 
// Create the xkms:RecoverResult
RecoverResult recResult = new RecoverResult(sigDoc);
 
//Set ResultMajor to Success.
recResult.setResultCode(XKMSURI.result_major_success, null);



The Oracle XKMS Java API Reference

Oracle XKMS 12-7

The KeyBinding needs to be set for a RecoverResult. You can accomplish this with the 
following code:

Example 12–12 Creating a Key Binding for a RecoverResult

//Create a xkms:KeyBinding to add status and X509Data
XSKeyInfo xsInfo = 

//Instance of oracle.security.xmlsec.dsig.XSKeyInfo, 
//which contains X509Data

KeyBinding keyBinding = new KeyBinding(sigDoc);
keyBinding.setKeyInfo(xsInfo);
 
//Create a status element and add reasons.
//Status is set to Invalid because the service can decide
//to revoke the key binding in the case of recovery.

Status responseStatus = new Status(sigDoc);
responseStatus.addInvalidReason(XKMSURI.reasonCode_IssuerTrust);
responseStatus.addInvalidReason(XKMSURI.reasonCode_RevocationStatus);
responseStatus.addInvalidReason(XKMSURI.reasonCode_ValidityInterval);
responseStatus.addInvalidReason(XKMSURI.reasonCode_Signature);
responseStatus.setStatusValue(XKMSURI.kbs_Invalid);
 
keyBinding.setStatus(responseStatus);
 
//Set KeyBinding into RecoverResult
recResult.addKeyBinding(keyBinding);

Finally, Example 12–13 shows how to set the recovered PrivateKey into the 
RecoverResult:

Example 12–13 Setting the Recovered Private Key into RecoverResult

//Create an Instance of dsig:XEEncryptedData
XEEncryptedData encryptedData = //Instance of 
oracle.security.xmlsec.enc.XEEncryptedData
 
//Create an instance of oracle.security.xmlsec.xkms.xkrss.PrivateKey
PrivateKey privKey = new PrivateKey(sigDoc);
privKey.setEncryptedData(encryptedData);
 
//Add PrivateKey to RecoverResult
recResult.setPrivateKey(privKey);

12.4 The Oracle XKMS Java API Reference
The Oracle XKMS Java API Reference (Javadoc) is available at:

Oracle Fusion Middleware XKMS Java API Reference for Oracle Security Developer Tools



The Oracle XKMS Java API Reference

12-8 Developing Secure Applications with Oracle Security Developer Tools



13

Oracle JSON Web Token 13-1

13 Oracle JSON Web Token

[14] Oracle JSON Web Token, introduced in 11g Release 1 (11.1.1) Patch Set 5, provides 
support for the J SON Web Token (JWT) standard.

This chapter contains these topics:

■ Oracle JSON Web Token Features and Benefits

■ Setting Up Your Oracle JSON Web Token Environment

■ Core Classes and Interfaces

■ Examples of Usage

■ The Oracle JSON Web Token Reference

13.1 Oracle JSON Web Token Features and Benefits
This section introduces JWT concepts and key features of Oracle JSON Web Token.

■ About JWT

■ Oracle JSON Web Token Features

13.1.1 About JWT
JSON Web Token (JWT) is a means of representing claims to be transferred between 
two parties. JWT is a compact token format intended for space- constrained 
environments such as HTTP Authorization headers and URI query parameters. 

The claims in a JWT are encoded as a JSON object that is base64url encoded and 
consists of zero or more name/value pairs (or members), where the names are strings 
and the values are arbitrary JSON values. Each member is a claim represented by the 
JWT.

A JSON object is digitally signed using a JSON Web Signature (JWS) and optionally 
encrypted using JSON Web Encryption (JWE).

The JWT is represented as the concatenation of three segments:

■ JWT Header Segment describes the cryptographic operations applied to the token.

■ JWT Claim Segment encodes the claims contained in the JWT.

■ JWT Crypto Segment contains the cryptographic material that secures the contents 
of the token.

The segments are separated by period ('.') characters. All three segments are always 
Base64url encoded values.



Setting Up Your Oracle JSON Web Token Environment

13-2 Developing Secure Applications with Oracle Security Developer Tools

13.1.2 Oracle JSON Web Token Features
Oracle JSON Web Token is a full Java solution that provides extensive support for JWT 
tokens. Features include:

■ construct Base64url encoded tokens and set the token's header and claim 
parameter values, including user-defined headers

■ parse and verify tokens

■ sign and serialize tokens

The oracle.security.jwt.JwtToken class represents the JSON Web Token (JWT). 
Representative methods of oracle.security.jwt.JwtToken include:

■ setAlgorithm(String), getAlgorithm()

■ signAndSerialize(PrivateKey)

■ serializeUnsigned()

■ claim methods such as setPrincipal(String), getPrincipal(), getIssuer()

For details, see the tables of header and claim parameter names and corresponding 
get/set methods in the Javadoc.

13.2 Setting Up Your Oracle JSON Web Token Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in 
ORACLE_HOME. This section explains how to set up your environment for Oracle JSON 
Web Token. It contains these topics:

■ System Requirements for Oracle JSON Web Token

■ Setting the CLASSPATH Environment Variable

13.2.1 System Requirements for Oracle JSON Web Token
In order to use Oracle JSON Web Token, your system must have the Java Development 
Kit (JDK) version 1.6 or higher. 

13.2.2 Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all 
of the required jar and class files. Make sure the following items are included in your 
CLASSPATH: 

■ osdt_core.jar file

■ osdt_cert.jar file

■ jackson-core-1.1.1.jar file

■ jackson-mapper-1.1.1.jar file

At run-time, the following locations are searched for the Jackson jars:

1. If present, the jars are loaded from the system class path.

See Also: JSON Web Token IETF draft document at 
http://tools.ietf.org/html/draft-jones-json-web-token-05.

See Also: Section 13.5, "The Oracle JSON Web Token Reference".



Examples of Usage

Oracle JSON Web Token 13-3

2. If the jars are not present in the system class path, the system property 
Jackson.library.path is examined. If present, the jars are loaded from that 
location for both Java SE and Java EE clients.

3. If the system property Jackson.library.path is not set or the Jackson jars are not 
found there, they are picked up from the predefined location $ORACLE_
HOME/modules (for Java EE environment) and from the present directory (for Java 
SE client).

13.2.2.1 Setting the CLASSPATH on Windows
To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable 
for your user profile. If a CLASSPATH environment variable already exists, select it 
and click Edit.

5. Add the full path and file names for all the required jar and class files to the 
CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;

6. Click OK.

13.2.2.2 Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file 
names of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:

13.3 Core Classes and Interfaces
The Oracle JSON Web Token consists of the oracle.security.restsec.jwt.JwtToken class. 
Key functions provided by this class include:

■ constructing a JWT token

■ setting the parameter values of the JWT token

■ signing the token 

■ verifying the token 

■ token serialization

Section 13.4 demonstrates how to use Oracle JSON Web Token.

13.4 Examples of Usage
This section provides some examples of using Oracle JSON Web Token.



Examples of Usage

13-4 Developing Secure Applications with Oracle Security Developer Tools

■ Creating the JWT Token

■ Signing the JWT Token

■ Verifying the JWT Token

■ Serializing the JWT Token without Signing

13.4.1 Creating the JWT Token
To create a JWT token, begin by using the constructor method JwtToken() to create a 
JwtToken object.

JwtToken jwtToken = new JwtToken(); 

You can use various setter methods to set the parameter values of the JWT token. 

Setting Header Parameters
The header parameter alg must be set; use the setAlgorithm(String) and 
getAlgorithm() methods, respectively, to set and get this parameter. By default, the alg 
parameter is set to "none" implying that you do not want to sign the token.

Use the setHeaderParameter(String, Object) method to set a user-defined header 
parameter in the JWT header segment.

Setting Claim Parameters
Oracle JSON Web Token provides methods to set claim parameters exp, iat, iss, aud, 
prn. All the claim parameters are optional.

Use the setClaimParameter(String, Object) method to set the user-defined claim 
parameter in the JWT claim segment.

13.4.2 Signing the JWT Token
To create and sign the JWT token, first create the instance of the JwtToken class:

JwtToken jwtToken = new JwtToken(String); 

Next set the parameters like algorithm, issuer, expiry time, other claims and so on:

jwtToken.setAlgorithm(JwtToken.SIGN_ALGORITHM.HS256.toString());
jwtToken.setType(JwtToken.JWT);
jwtToken.setIssuer("my.company.com");
jwtToken.setPrincipal("john.doe"); 

Finally obtain the private key and sign the token with a secret key or private key:

PrivateKey privateKey ;
String jwtString = jwtToken.signAndSerialize(privateKey);

13.4.3 Verifying the JWT Token
This example code verifies the expiry date and token issuer:

Note: These are specific examples to demonstrate how to use Oracle 
JSON Web Token. For details and other options for using the methods 
described here, see the JWT javadoc (Section 13.5).



The Oracle JSON Web Token Reference

Oracle JSON Web Token 13-5

// Read the JWT token as a String from HTTP header
String jwtStr = "eyJ.eyJp.dB";
JwtToken token = new JwtToken(jwtStr);
 
// Validate the issued and expiry time stamp.
if (token.getExpiryTime().after(new Date())) {
...
...
}
 
// Get the issuer from the token
String issuer = token.getIssuer(); 

13.4.4 Serializing the JWT Token without Signing
If the JWT token is not required to be digitally signed, you can serialize the token 
without signing, as shown in the following example:

JwtToken jwtToken = new JwtToken();
jwtToken.setType(JwtToken.JWT);
jwtToken.setIssuer("my.example.com");
jwtToken.setPrincipal("john.doe");
String jwtString = jwtToken.serializeUnsigned();

13.5 The Oracle JSON Web Token Reference
The Oracle JSON Web Token API Reference (Javadoc) is available at:

Oracle Fusion Middleware JWT Java API Reference for Oracle Security Developer Tools



The Oracle JSON Web Token Reference

13-6 Developing Secure Applications with Oracle Security Developer Tools


	Contents
	List of Figures
	List of Tables
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle Security Developer Tools?
	New Features in 11g Release 1 (11.1.1.9.)
	New Features in 11g Release 1 (11.1.1.7.0)
	New Features in 11g Release 1 (11.1.1.6.0)
	New Features for Release 11g (11.1.1)
	Oracle SAML Changes

	1 Introduction to Oracle Security Developer Tools
	1.1 About Cryptography
	1.1.1 Types of Cryptographic Algorithms
	1.1.1.1 Symmetric Cryptographic Algorithms
	1.1.1.2 Asymmetric Cryptographic Algorithms
	1.1.1.3 Hash Functions


	1.2 About Public Key Infrastructure (PKI)
	1.2.1 Key Pairs
	1.2.2 Certificate Authority
	1.2.3 Digital Certificates
	1.2.4 Related PKI Standards
	1.2.5 Benefits of PKI

	1.3 About Web Services Security
	1.4 About the SAML Format
	1.4.1 SAML Assertions
	1.4.2 SAML Requests and Responses
	1.4.2.1 SAML Request and Response Cycle
	1.4.2.2 SAML Protocol Bindings and Profiles
	1.4.2.3 SAML and XML Security


	1.5 About Identity Federation
	1.6 Overview of Oracle Security Developer Tools
	1.6.1 Toolkit Architecture
	1.6.2 Supported Standards
	1.6.3 Oracle Crypto
	1.6.4 Oracle Security Engine
	1.6.5 Oracle CMS
	1.6.6 Oracle S/MIME
	1.6.7 Oracle PKI SDK
	1.6.7.1 Oracle PKI LDAP SDK
	1.6.7.2 Oracle PKI TSP SDK
	1.6.7.3 Oracle PKI OCSP SDK
	1.6.7.4 Oracle PKI CMP SDK

	1.6.8 Oracle XML Security
	1.6.9 Oracle SAML
	1.6.10 Oracle Web Services Security
	1.6.11 Oracle Liberty SDK
	1.6.12 Oracle XKMS
	1.6.13 Oracle JWT

	1.7 References

	2 Migrating to the JCE Framework
	2.1 About The JCE Framework
	2.2 Working with JCE Keys
	2.2.1 Converting an Existing Key Object to a JCE Key Object

	2.3 Working with JCE Certificates
	2.3.1 Switching to a JCE Certificate

	2.4 Creating JCE Certificate Revocation Lists (CRLs)
	2.5 Working with JCE Keystores
	2.5.1 Working with standard KeyStore-type Wallets
	2.5.2 Working with PKCS12 and PKCS8 Wallets

	2.6 The Oracle JCE Provider Java API Reference

	3 Oracle Crypto
	3.1 Oracle Crypto Features and Benefits
	3.1.1 Oracle Crypto Packages

	3.2 Setting Up Your Oracle Crypto Environment
	3.2.1 System Requirements for Oracle Crypto
	3.2.2 Setting the CLASSPATH Environment Variable
	3.2.2.1 Setting the CLASSPATH on Windows
	3.2.2.2 Setting the CLASSPATH on UNIX


	3.3 Core Classes and Interfaces
	3.3.1 About Key Classes and Interfaces
	3.3.1.1 About the oracle.security.crypto.core.Key Interface
	3.3.1.2 About the oracle.security.crypto.core.PrivateKey Interface
	3.3.1.3 About the oracle.security.crypto.core.PublicKey Interface
	3.3.1.4 About the oracle.security.crypto.core.SymmetricKey Class

	3.3.2 Generating Keys and Key Pairs
	3.3.2.1 Using the oracle.security.crypto.core.KeyPairGenerator Class
	3.3.2.2 Using the oracle.security.crypto.core.SymmetricKeyGenerator Class

	3.3.3 Working with Ciphers
	3.3.3.1 Using Symmetric Ciphers
	3.3.3.2 Using the RSA Cipher
	3.3.3.3 Using Password-based Encryption

	3.3.4 Using Signature Algorithms
	3.3.5 Working with Message Digests
	3.3.5.1 Using the oracle.security.crypto.core.MessageDigest Class
	3.3.5.2 Using the oracle.security.crypto.core.MAC Class

	3.3.6 Working with Key Agreement Schemes
	3.3.7 Using Pseudo-Random Number Generators
	3.3.7.1 Using the oracle.security.crypto.core.RandomBitsSource class
	3.3.7.2 Using the oracle.security.crypto.core.EntropySource class


	3.4 The Oracle Crypto and Crypto FIPS Java API References

	4 Oracle Security Engine
	4.1 Oracle Security Engine Features and Benefits
	4.1.1 About Oracle Security Engine Packages

	4.2 Setting Up Your Oracle Security Engine Environment
	4.2.1 System Requirements for Oracle Security Engine
	4.2.2 Setting the CLASSPATH Environment Variable
	4.2.2.1 Setting the CLASSPATH on Windows
	4.2.2.2 Setting the CLASSPATH on UNIX


	4.3 Using Core Classes and Interfaces
	4.3.1 Using the oracle.security.crypto.cert.X500RDN Class
	4.3.2 Using the oracle.security.crypto.cert.X500Name Class
	4.3.3 Using the oracle.security.crypto.cert.CertificateRequest Class
	4.3.4 Using the java.security.cert.X509Certificate Class

	4.4 The Oracle Security Engine Java API Reference

	5 Oracle CMS
	5.1 Oracle CMS Features and Benefits
	5.1.1 Content Types
	5.1.2 Understanding Differences Between Oracle CMS Implementation and RFCs

	5.2 Setting Up Your Oracle CMS Environment
	5.2.1 Understanding System Requirements
	5.2.2 Setting the CLASSPATH Environment Variable
	5.2.2.1 Setting the CLASSPATH on Windows
	5.2.2.2 Setting the CLASSPATH on UNIX


	5.3 Developing Applications with Oracle CMS
	5.3.1 About CMS Object Types
	5.3.2 Constructing CMS Objects using the CMS***ContentInfo Classes
	5.3.2.1 Using the Abstract Base Class CMSContentInfo
	5.3.2.1.1 Constructing a CMS Object
	5.3.2.1.2 Reading a CMS Object

	5.3.2.2 Using the CMSDataContentInfo Class
	5.3.2.3 Using the ESSReceipt Class
	5.3.2.4 Using the CMSDigestedDataContentInfo Class
	5.3.2.4.1 Constructing a CMS Digested-data Object
	5.3.2.4.2 Reading a CMS Digested-data Object
	5.3.2.4.3 Working with Detached digested-data Objects

	5.3.2.5 Using the CMSSignedDataContentInfo Class
	5.3.2.5.1 Constructing a CMS Signed-data Object
	5.3.2.5.2 Reading a CMS Signed-data Object
	5.3.2.5.3 Working with External Signatures (Detached Objects)
	5.3.2.5.4 Working with Certificates/CRL-Only Objects

	5.3.2.6 Using the CMSEncryptedDataContentInfo Class
	5.3.2.6.1 Constructing a CMS Encrypted-data Object
	5.3.2.6.2 Reading a CMS Encrypted-data Object
	5.3.2.6.3 Working with Detached Encrypted-data CMS Objects

	5.3.2.7 Using the CMSEnvelopedDataContentInfo Class
	5.3.2.7.1 Constructing a CMS Enveloped-data Object
	5.3.2.7.2 Reading a CMS Enveloped-data Object
	5.3.2.7.3 About the Key Transport Key Exchange Mechanism
	5.3.2.7.4 About the Key Agreement Key Exchange Mechanism
	5.3.2.7.5 About the Key Encryption (Wrap) Key Exchange Mechanism
	5.3.2.7.6 Working with Detached Enveloped-data CMS Objects

	5.3.2.8 Using the CMSAuthenticatedDataContentInfo Class
	5.3.2.8.1 Constructing a CMS Authenticated-data Object
	5.3.2.8.2 Reading a CMS Authenticated-data Object
	5.3.2.8.3 Detached Authenticated-data CMS Objects

	5.3.2.9 Working with Wrapped (Triple or more) CMSContentInfo Objects
	5.3.2.9.1 Reading a Nested (Wrapped) CMS Object


	5.3.3 Constructing CMS Objects using the CMS***Stream and CMS***Connector Classes
	5.3.3.1 Understand Limitations of the CMS***Stream and CMS***Connector Classes
	5.3.3.2 Understand Difference between CMS***Stream and CMS***Connector Classes
	5.3.3.3 Using the CMS***OutputStream and CMS***InputStream Classes
	5.3.3.3.1 About CMS id-data Objects
	5.3.3.3.2 About CMS id-ct-receipt Objects
	5.3.3.3.3 About CMS id-digestedData Objects
	5.3.3.3.4 About CMS id-signedData Objects
	5.3.3.3.5 About CMS id-encryptedData Objects
	5.3.3.3.6 About CMS id-envelopedData Objects
	5.3.3.3.7 About CMS id-ct-authData Objects

	5.3.3.4 Wrapping (Triple or more) CMS***Connector Objects


	5.4 The Oracle CMS Java API Reference

	6 Oracle S/MIME
	6.1 Oracle S/MIME Features and Benefits
	6.2 Setting Up Your Oracle S/MIME Environment
	6.2.1 Understanding System Requirements for Oracle S/MIME
	6.2.2 Setting the CLASSPATH Environment Variable
	6.2.2.1 Setting the CLASSPATH on Windows
	6.2.2.2 Setting the CLASSPATH on UNIX


	6.3 Developing Applications with Oracle S/MIME
	6.3.1 Using the Core Classes and Interfaces
	6.3.1.1 Using the oracle.security.crypto.smime.SmimeObject Interface
	6.3.1.2 Using the oracle.security.crypto.smime.SmimeSignedObject Interface
	6.3.1.3 Using the oracle.security.crypto.smime.SmimeSigned Class
	6.3.1.4 Using the oracle.security.crypto.smime.SmimeEnveloped Class
	6.3.1.5 Using the oracle.security.crypto.smime.SmimeMultipartSigned Class
	6.3.1.6 Using the oracle.security.crypto.smime.SmimeSignedReceipt Class
	6.3.1.7 Using the oracle.security.crypto.smime.SmimeCompressed Class

	6.3.2 Supporting Classes and Interfaces
	6.3.2.1 Using the oracle.security.crypto.smime.Smime Interface
	6.3.2.2 Using the oracle.security.crypto.smime.SmimeUtils Class
	6.3.2.3 Using the oracle.security.crypto.smime.MailTrustPolicy Class
	6.3.2.4 Using the oracle.security.crypto.smime.SmimeCapabilities Class
	6.3.2.5 Using the oracle.security.crypto.smime.SmimeDataContentHandler Class
	6.3.2.6 Using the oracle.security.crypto.smime.ess Package

	6.3.3 Using the Oracle S/MIME Classes
	6.3.3.1 Using the Abstract Class SmimeObject
	6.3.3.2 Signing Messages
	6.3.3.3 Creating "Multipart/Signed" Entities
	6.3.3.4 Creating Digital Envelopes
	6.3.3.5 Creating "Certificates-Only" Messages
	6.3.3.6 Reading Messages
	6.3.3.7 Authenticating Signed Messages
	6.3.3.8 Opening Digital Envelopes (Encrypted Messages)
	6.3.3.9 Adding Enhanced Security Services (ESS)
	6.3.3.10 Processing Enhanced Security Services (ESS)


	6.4 The Oracle S/MIME Java API Reference

	7 Oracle PKI SDK
	7.1 Oracle PKI CMP SDK
	7.1.1 Oracle PKI CMP SDK Features and Benefits
	7.1.1.1 About Oracle PKI CMP SDK Packages

	7.1.2 Setting Up Your Oracle PKI CMP SDK Environment
	7.1.2.1 Understanding System Requirements for Oracle PKI CMP SDK
	7.1.2.2 Setting the CLASSPATH Environment Variable
	7.1.2.2.1 Setting the CLASSPATH on Windows
	7.1.2.2.2 Setting the CLASSPATH on UNIX


	7.1.3 The Oracle PKI CMP SDK Java API Reference

	7.2 Oracle PKI OCSP SDK
	7.2.1 Oracle PKI OCSP SDK Features and Benefits
	7.2.2 Setting Up Your Oracle PKI OCSP SDK Environment
	7.2.2.1 Understanding System Requirements for Oracle PKI OCSP SDK
	7.2.2.2 Setting the CLASSPATH Environment Variable
	7.2.2.2.1 Setting the CLASSPATH on Windows
	7.2.2.2.2 Setting the CLASSPATH on Unix


	7.2.3 The Oracle PKI OCSP SDK Java API Reference

	7.3 Oracle PKI TSP SDK
	7.3.1 Oracle PKI TSP SDK Features and Benefits
	7.3.1.1 About Oracle PKI TSP SDK Classes and Interfaces

	7.3.2 Setting Up Your Oracle PKI TSP SDK Environment
	7.3.2.1 Understanding System Requirements for Oracle PKI TSP SDK
	7.3.2.2 Setting the CLASSPATH Environment Variable
	7.3.2.2.1 Setting the CLASSPATH on Windows
	7.3.2.2.2 Setting the CLASSPATH on Unix


	7.3.3 The Oracle PKI TSP SDK Java API Reference

	7.4 Oracle PKI LDAP SDK
	7.4.1 Oracle PKI LDAP SDK Features and Benefits
	7.4.1.1 About Oracle PKI LDAP SDK Classes

	7.4.2 Setting Up Your Oracle PKI LDAP SDK Environment
	7.4.2.1 Understanding System Requirements for Oracle PKI LDAP SDK
	7.4.2.2 Setting the CLASSPATH Environment Variable
	7.4.2.2.1 Setting the CLASSPATH on Windows
	7.4.2.2.2 Setting the CLASSPATH on Unix


	7.4.3 The Oracle PKI LDAP SDK Java API Reference


	8 Oracle XML Security
	8.1 About Oracle XML Security Features and Benefits
	8.1.1 About the Supported XML Algorithms
	8.1.2 Oracle XML Security API

	8.2 Setting Up Your Oracle XML Security Environment
	8.3 Signing Data
	8.3.1 Identifying What to Sign
	8.3.1.1 Determining the Signature Envelope
	8.3.1.2 Deciding How to Sign Binary Data
	8.3.1.3 Signing Multiple XML Fragments with a Signature
	8.3.1.4 Excluding Elements from a Signature

	8.3.2 Deciding on a Signing Key
	8.3.2.1 Setting Up Key Exchange
	8.3.2.2 Providing a Receiver Hint


	8.4 Verifying Data
	8.5 Encrypting Data
	8.5.1 Identifying what to Encrypt
	8.5.1.1 Using the Content Only Encryption Mode
	8.5.1.2 Encrypting Binary Data

	8.5.2 Deciding on the Encryption Key

	8.6 Decrypting Data
	8.7 Using Element Wrappers in the OSDT XML APIs
	8.7.1 Constructing the Wrapper Object
	8.7.2 Obtaining the DOM Element from the Wrapper Object
	8.7.3 Parse Complex Elements
	8.7.4 Construct Complex Elements

	8.8 How to Sign Data with the Oracle XML Security API
	8.8.1 Basic Procedure to Create a Detached Signature
	8.8.2 Variations on the Basic Signing Procedure
	8.8.2.1 Multiple References
	8.8.2.2 Enveloped Signature
	8.8.2.3 XPath Expression
	8.8.2.4 Certificate Hint
	8.8.2.5 Sign with HMAC Key


	8.9 How to Verify Signatures with the Oracle XML Security API
	8.9.1 Basic Procedure to Check What is Signed
	8.9.2 Set Up Callbacks
	8.9.3 Write a Custom Key Retriever
	8.9.4 Check What is Signed
	8.9.5 Verify the Signature
	8.9.5.1 If Callbacks are Set Up
	8.9.5.2 If Callbacks are Not Set Up
	8.9.5.3 Debugging Verification


	8.10 How to Encrypt Data with the Oracle XML Security API
	8.10.1 Encrypt with a Shared Symmetric Key
	8.10.2 Encrypt with a Random Symmetric Key

	8.11 How to Decrypt Data with the Oracle XML Security API
	8.11.1 Decrypt with a Shared Symmetric Key
	8.11.2 Decrypt with a Random Symmetric Key

	8.12 Supporting Classes and Interfaces
	8.12.1 The oracle.security.xmlsec.util.XMLURI Interface
	8.12.2 The oracle.security.xmlsec.util.XMLUtils class

	8.13 Common XML Security Questions
	8.14 Best Practices
	8.15 The Oracle XML Security Java API Reference

	9 Oracle SAML
	9.1 Oracle SAML Features and Benefits
	9.2 Oracle SAML 1.0/1.1
	9.2.1 Oracle SAML 1.0/1.1 Packages
	9.2.2 Setting Up Your Oracle SAML 1.0/1.1 Environment
	9.2.2.1 System Requirements for Oracle SAML 1.0/1.1
	9.2.2.2 Setting the CLASSPATH Environment Variable
	9.2.2.2.1 Setting the CLASSPATH on Windows
	9.2.2.2.2 Setting the CLASSPATH on UNIX


	9.2.3 Classes and Interfaces
	9.2.3.1 Core Classes
	9.2.3.1.1 The oracle.security.xmlsec.saml.SAMLInitializer Class
	9.2.3.1.2 The oracle.security.xmlsec.saml.Assertion Class
	9.2.3.1.3 The oracle.security.xmlsec.samlp.Request Class
	9.2.3.1.4 The oracle.security.xmlsec.samlp.Response Class

	9.2.3.2 Supporting Classes and Interfaces
	9.2.3.2.1 The oracle.security.xmlsec.saml.SAMLURI Interface
	9.2.3.2.2 The oracle.security.xmlsec.saml.SAMLMessage Class


	9.2.4 The Oracle SAML 1.0/1.1 Java API Reference

	9.3 Oracle SAML 2.0
	9.3.1 Oracle SAML 2.0 Packages
	9.3.2 Setting Up Your Oracle SAML 2.0 Environment
	9.3.2.1 System Requirements for Oracle SAML 2.0
	9.3.2.2 Setting the CLASSPATH Environment Variable
	9.3.2.2.1 Setting the CLASSPATH on Windows
	9.3.2.2.2 Setting the CLASSPATH on UNIX


	9.3.3 Classes and Interfaces
	9.3.3.1 Core Classes
	9.3.3.1.1 The oracle.security.xmlsec.saml2.core.Assertion Class
	9.3.3.1.2 The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class
	9.3.3.1.3 The oracle.security.xmlsec.saml2.protocol.StatusResponseType Class

	9.3.3.2 Supporting Classes and Interfaces
	9.3.3.2.1 The oracle.security.xmlsec.saml2.util.SAML2URI Interface


	9.3.4 The Oracle SAML 2.0 Java API Reference


	10 Oracle Web Services Security
	10.1 Setting Up Your Oracle Web Services Security Environment
	10.2 Classes and Interfaces
	10.2.1 Element Wrappers
	10.2.2 The <wsse:Security> header
	10.2.2.1 Outgoing Messages
	10.2.2.2 Incoming Messages

	10.2.3 Security Tokens (ST)
	10.2.3.1 Creating a Username Token
	10.2.3.2 Creating an X509 Token
	10.2.3.3 Creating a Kerberos Token
	10.2.3.4 Creating a SAML Assertion Token

	10.2.4 Security Token References (STR)
	10.2.4.1 Creating a direct reference STR
	10.2.4.2 Creating a Reference STR for a username token
	10.2.4.3 Creating a Reference STR for a X509 Token
	10.2.4.4 Creating a Reference STR for Kerberos Token
	10.2.4.5 Creating a Reference STR for a SAML Assertion token
	10.2.4.6 Creating a Reference STR for an EncryptedKey
	10.2.4.7 Creating a Reference STR for a generic token
	10.2.4.8 Creating a Key Identifier STR
	10.2.4.9 Creating a KeyIdentifier STR for an X509 Token
	10.2.4.10 Creating a KeyIdentifier STR for a Kerberos Token
	10.2.4.11 Creating a KeyIdentifier STR for a SAML Assertion Token
	10.2.4.12 Creating a KeyIdentifier STR for an EncryptedKey
	10.2.4.13 Adding an STRTransform

	10.2.5 Signing and Verifying
	10.2.5.1 Signing SOAP Messages
	10.2.5.1.1 Adding IDs to elements
	10.2.5.1.2 Creating the WSSignatureParams object
	10.2.5.1.3 Specifying Transforms
	10.2.5.1.4 Calling the WSSecurity.sign method

	10.2.5.2 Verifying SOAP Messages
	10.2.5.3 Confirming Signatures
	10.2.5.3.1 Signature Confirmation Response Generation
	10.2.5.3.2 Signature Confirmation Response Processing


	10.2.6 Encrypting and Decrypting
	10.2.6.1 Encrypting SOAP messages with EncryptedKey
	10.2.6.2 Encrypting SOAP messages without EncryptedKey
	10.2.6.3 Encrypting SOAP Headers into an EncryptedHeader
	10.2.6.4 Decrypting SOAP messages with EncryptedKey
	10.2.6.5 Decrypting SOAP messages without EncryptedKey


	10.3 The Oracle Web Services Security Java API Reference

	11 Oracle Liberty SDK
	11.1 Oracle Liberty SDK Features and Benefits
	11.2 Oracle Liberty 1.1
	11.2.1 Setting Up Your Oracle Liberty 1.1 Environment
	11.2.1.1 System Requirements for Oracle Liberty 1.1
	11.2.1.2 Setting the CLASSPATH Environment Variable
	11.2.1.2.1 Setting the CLASSPATH on Windows
	11.2.1.2.2 Setting the CLASSPATH on UNIX


	11.2.2 Overview of Oracle Liberty 1.1 Classes and Interfaces
	11.2.2.1 Core Classes and Interfaces
	11.2.2.1.1 The oracle.security.xmlsec.liberty.v11.AuthnRequest Class
	11.2.2.1.2 The oracle.security.xmlsec.liberty.v11.AuthnResponse Class
	11.2.2.1.3 The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class
	11.2.2.1.4 The oracle.security.xmlsec.liberty.v11.LogoutRequest Class
	11.2.2.1.5 The oracle.security.xmlsec.liberty.v11.LogoutResponse Class
	11.2.2.1.6 The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class
	11.2.2.1.7 The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class

	11.2.2.2 Supporting Classes and Interfaces
	11.2.2.2.1 The oracle.security.xmlsec.liberty.v11.LibertyInitializer class
	11.2.2.2.2 The oracle.security.xmlsec.liberty.v11.LibertyURI interface
	11.2.2.2.3 The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface
	11.2.2.2.4 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class
	11.2.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface
	11.2.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage class


	11.2.3 The Oracle Liberty SDK 1.1 API Reference

	11.3 Oracle Liberty 1.2
	11.3.1 Setting Up Your Oracle Liberty 1.2 Environment
	11.3.1.1 System Requirements for Oracle Liberty 1.2
	11.3.1.2 Setting the CLASSPATH Environment Variable
	11.3.1.2.1 Setting the CLASSPATH on Windows
	11.3.1.2.2 Setting the CLASSPATH on Unix


	11.3.2 Overview of Oracle Liberty 1.2 Classes and Interfaces
	11.3.2.1 Core Classes and Interfaces
	11.3.2.1.1 The oracle.security.xmlsec.saml.Assertion class
	11.3.2.1.2 The oracle.security.xmlsec.samlp.Request class
	11.3.2.1.3 The oracle.security.xmlsec.samlp.Response class
	11.3.2.1.4 The oracle.security.xmlsec.liberty.v12.AuthnRequest class
	11.3.2.1.5 The oracle.security.xmlsec.liberty.v12.AuthnResponse class
	11.3.2.1.6 The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class
	11.3.2.1.7 The oracle.security.xmlsec.liberty.v12.LogoutRequest class
	11.3.2.1.8 The oracle.security.xmlsec.liberty.v12.LogoutResponse class
	11.3.2.1.9 The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class
	11.3.2.1.10 The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class

	11.3.2.2 Supporting Classes and Interfaces
	11.3.2.2.1 The oracle.security.xmlsec.liberty.v12.LibertyInitializer class
	11.3.2.2.2 The oracle.security.xmlsec.liberty.v12.LibertyURI interface
	11.3.2.2.3 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class
	11.3.2.2.4 The oracle.security.xmlsec.saml.SAMLInitializer class
	11.3.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface
	11.3.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage Class


	11.3.3 The Oracle Liberty SDK 1.2 API Reference


	12 Oracle XKMS
	12.1 Oracle XKMS Features and Benefits
	12.1.1 Oracle XKMS Packages

	12.2 Setting Up Your Oracle XKMS Environment
	12.2.1 System Requirements for Oracle XKMS
	12.2.2 Setting the CLASSPATH Environment Variable
	12.2.2.1 Setting the CLASSPATH on Windows
	12.2.2.2 Setting the CLASSPATH on UNIX


	12.3 Core Classes and Interfaces
	12.3.1 oracle.security.xmlsec.xkms.xkiss.LocateRequest
	12.3.2 oracle.security.xmlsec.xkms.xkiss.LocateResult
	12.3.3 oracle.security.xmlsec.xkms.xkiss.ValidateRequest
	12.3.4 oracle.security.xmlsec.xkms.xkiss.ValidateResult
	12.3.5 oracle.security.xmlsec.xkms.xkrss.RecoverRequest
	12.3.6 oracle.security.xmlsec.xkms.xkrss.RecoverResult

	12.4 The Oracle XKMS Java API Reference

	13 Oracle JSON Web Token
	13.1 Oracle JSON Web Token Features and Benefits
	13.1.1 About JWT
	13.1.2 Oracle JSON Web Token Features

	13.2 Setting Up Your Oracle JSON Web Token Environment
	13.2.1 System Requirements for Oracle JSON Web Token
	13.2.2 Setting the CLASSPATH Environment Variable
	13.2.2.1 Setting the CLASSPATH on Windows
	13.2.2.2 Setting the CLASSPATH on UNIX


	13.3 Core Classes and Interfaces
	13.4 Examples of Usage
	13.4.1 Creating the JWT Token
	13.4.2 Signing the JWT Token
	13.4.3 Verifying the JWT Token
	13.4.4 Serializing the JWT Token without Signing

	13.5 The Oracle JSON Web Token Reference


