ORACLE

Oracle® Fusion Middleware

Fusion Developer's Guide for Oracle Application Development
Framework

11gRelease 1 (11.1.1.9.0)

E52951-01

April 2015

Documentation for Oracle Application Development
Framework (Oracle ADF) developers that describes how to
develop and deploy web-based applications using ADF
Business Components, ADF task flows, and ADF Faces.

Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework 11g
Release 1 (11.1.1.9.0)

E52951-01
Copyright © 2008, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Ralph Gordon (Lead), Walter Egan, Cindy Hall, Kathryn Munn, Landon Ott, Alyona
Stashkova, Robin Whitmore, and Michele Whitaker

Contributor: Lynn Munsinger

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PrEIACEoo s xlix
AUIEINICE ... e xlix
Documentation Accessibility ..o xlix
Related DOCUIMENESc.cuouiiiiiiiiiiiciicicieicee et xlix
CONVENTIONS ...t I

What's New in This Guide for Release 11.1.1.9.0 ..., l

Part| Getting Started with Fusion Web Applications

1 Introduction to Building Fusion Web Applications with Oracle ADF
1.1 Introduction to Oracle ADF..........ccccoiiiiiiiiii s 1-1
1.2 Oracle ADF ATChiteCtUTIeccccuiuiiiiiiiiiiiciccc s 1-2
1.2.1 ADF Business COMPONENLS..........cccvviiiiiiiiiiiiiiiiiiii s 1-3
1.2.2 ADF MOl LAYeT ..ottt 1-4
1.2.3 ADF CONETOLLET ...ttt ettt st st sttt st st st 1-5
1.2.4 ADF Faces RiCh CHENL.....c.ccciuiiiiiiiiiiiiccrcicceeceee e 1-5
1.3 Developing with Oracle ADFcccooooiiiiic s 1-6
1.3.1 Creating an Application WOrkspace..........cccccevvviviviiininnininnininicncccces 1-7
1.3.2 Modeling with Database Object Definitions...........cccocovveervvrrnnnniirrccceeene 1-10
1.3.3 Creating Use Casesouvrueiiiiiieieccie s 1-12
1.3.4 Designing Application Control and Navigation Using ADF Task Flows................ 1-12
1.3.5 Identifying Shared RESOUICEScccoeueuiiiiiiiiiiiiiiiiicicreecrrc s 1-14
1.3.6 Creating a Data Model to Access Data with ADF Business Components 1-15
1.3.6.1 Creating a Layer of Business Domain Objects for Tables............cccccccevuvirinninne. 1-15
1.3.6.2 Building the Business SErvicescccccococeueuciiiiiiniciiiicceccececeeeeeeeeees 1-16
1.3.6.3 Testing and Debugging Business Services with the Business Component Browser ..

1-18
1.3.7 Implementing the User Interface with JSF........ccccccccoeiiiiinniiiiiicce 1-18
1.3.8 Data Binding with ADF Model Layer..........cccccoeeiiinriinirrrrcreecrereeeeeeeeeenes 1-19
1.3.9 Validation and Error Handling.............ccooiiiiiiiii 1-22
1.3.10 AddINg SECUTILY ...t 1-23

2

1.3.11 Testing and Debugging the Web Client Applicationcccooeveiiiiiiiicicine 1-23

1.3.12 Refactoring Application Artifacts..........cooouoiiiioiiiiiic e 1-24
1.3.13 Deploying a Fusion Web AppLicationccccceeuveiviiiiinnnircrcccereeceeeeecenes 1-24
1.3.14 Integrating a Fusion Web Application ... 1-24
1.4 Working Productively in Teams...........ccoeiiiiiiiiiiiieeceecc i 1-24
1.4.1 Enforcing Standardsccccccriiiiiiccc s 1-26
1.4.2 Using a Source Control SYStem ..ot 1-26
1.5 Learning Oracle ADF ..ot 1-28
1.6 Generation of Complete Web Tier Using Oracle JHeadstart..........cccccceoeveveiiiccvcncnnnne. 1-28

Introduction to the ADF Sample Application

2.1 Introduction to the Oracle Fusion Order Democccoooeviiviiiiininniicccnens 2-1
2.2 Setting Up the Fusion Order Demo Application...........ccooeeieiieiiinniiiiiiiiiiicecceeens 2-2
2.2.1 How to Download the Application Resources..........c...cooceueiircieinicicieecccececi, 2-2
222 How to Install the Fusion Order Demo Schemaccoovvviiiiiiiiinininicie, 2-3
2.2.3 Overview of the Fusion Order Demo Schema............cccccovvvviiiinninnnninne, 2-4
2.2.3.1 Translation Support in the Fusion Order Demo Schemacccccevviiiiiiiiiniinnns 2-5
2232 Lookup Tables in the Fusion Order Demo Schema..........c.cccoovevivnninnnninninincnce. 2-6
2.3 Running the Fusion Order Demo Application StoreFront Modulecccccccevviiiiiinnnn. 2-8
2.4 Running the Fusion Order Demo Standalone Applications...........cccccceceeiiiiiiiiiiiinennen. 2-10
2.41 How to Run the Standalone Applications..........ccccceueueueueirreriiinirrnrnrrererreceenes 2-11
2.4.2 Standalone Applications in the DevGuideExamples Application Workspace 2-13
2.4.3 Standalone Applications in the AdvancedExamples Application Workspace 2-15
2.4.4 Standalone Applications in the AdvancedEntityExamples Application Workspace........
2-17
2.4.5 Standalone Applications in the AdvancedViewObjectExamples Application
Workspace 2-19

25 Taking a Look at the Fusion Order Demo Application............ccoceviiireieiiiiciciciicn 2-21
2.5.1 ANoNymous BrOWSINGccccoiviviiiiiiiiiiiiiiiic s 2-22
2.5.11 Viewing Product Details............cooouimiiiiiii 2-24
2512 Browsing the Product Catalog..........cccccoceuiiiiiiiiiiiiiiiiiiccccccce, 2-27
2513 Searching for PrOAUCES.........ccccciuiiiiiiiicccccceccecee s 2-28
2.5.2 The LOGIN PrOCESScvviieiiieiiicte e 2-31
253 The Ordering Process ... 2-32
254 The Customer Registration Processccccocoevvivrrniriinrnrncrrreeeeeeeeeeeeeees 2-36

Part Il Building Your Business Services

3 Getting Started with ADF Business Components

3.1 Introduction to ADF Business COMPONENLSc.ccceurueueueueuruiinicirineeeerreeeeeeesesseseseeesesesenene 3-1
3.1.1 ADF Business Components Features.............ccccooviiiiiiiiiiiiiiiens 3-2
3.1.2 ADF Business Components Core ODJectsccocoeiiuiiiiiiiiiiiiiiiiiciceecceieens 3-3
3.2 Comparison to Familiar 4GL TOOISccociiiiiiiiiiiiccceeccecieeeee e 3-3
3.2.1 Familiar Concepts for Oracle Forms Developers.........cccoveiiiiiiiiiiiciniciiiiennn, 3-3
3.2.1.1 Similarities Between the Application Module and a "Headless" Form Module. 3-4
3.21.2 Similarities Between the Entity Object and a Forms Record Manager-................. 3-5
3.2.1.3 Similarities Between the View Object and a Data Block............ccccceuvviiiiiiniiinnninne. 3-5

3.2.2 Familiar Concepts for PeopleTools Developerscccoviueirniiiiicieieieinieieeiiiieieinns 3-5

3.2.2.1 Similarities Between the Application Module and a "Headless" Component..... 3-5
3.2.22 Similarities Between the Entity Object and a Record Definition..............cccc.c....... 3-6
3.2.2.3 Similarities Between the View Object and a Row Set.........ccccccovvivivniinniniininnne, 3-6
3.2.3 Familiar Concepts for Siebel Tools Developers............ccocoeueuniiiieiiiiiiinieecccieecce, 3-6
3.2.3.1 Similarities Between the entity Object and a Table Object.........cccccccccuvueueiiinnennne 3-7
3.2.3.2 Similarities Between the View Object and a Business Component....................... 3-7
3.2.3.3 Similarities Between the Application Module and a Business Object.................. 3-7
3.24 Familiar Functionality for ADO.NET Developers.........c.cccovvvnrrrneninnireneneccereenn. 3-7
3.2.4.1 Similarities Between the Application Module and a Data Set............ccccccevevennnn. 3-7
3.24.2 Similarities Between the Entity Object and a Data Adapterccccooeerriinie 3-8
3.24.3 Similarities Between the View Object and a Data Table.........cccccccccvuerviviinnnenne 3-8
3.3 Overview of Design Time Facilitiesc.cocoeeiiiiiiiiiiiiiiii e 3-8
3.3.1 Choosing a Connection, SQL Flavor, and Type Map........ccccoooriiiriiiiiicie, 3-8
3.3.2 What You May Need to Know About Displaying Numeric Values......................... 3-10
3.3.3 Creating New Components Using Wizardsccccoeiicieiiiicieiicicccee 3-10
3.3.4 Creating New Components Using the Context Menucooceveieiiiiiiiiiniciennne. 3-10
3.3.5 Editing Components Using the Component Overview Editor.........c.cccccccceuveennnne 3-11
3.3.6 Visualizing, Creating, and Editing Components Using UML Diagrams................. 3-11
3.3.7 Testing Application Modules Using the Business Component Browser 3-12
3.3.8 Refactoring COMPONENESc.ccueuiuiuiiiieieiicicieieieieieeeeeee e neaees 3-12
3.4 Overview of the UI-Aware Data Modelccccccooviiiiiiiiiiiice 3-12
3.4.1 A More Generic Business Service SOIUtioncccovvviviviiininnini 3-12
3.4.2 Typical Scenarios for a Ul-Aware Data Model...........cccccovvvnninnnnnnnrinicnne 3-13
3.4.3 Ul-Aware Data Model Support for Custom Code..........ccocorreiriiiniiiiiiiiciinnen, 3-13
3.5 Overview of the Implementation Architecture ... 3-14
3.5.1 Standard Java and XML.........cccociririnininiseseieieieeeeeeeee e sr et ssesaessesaesaessesassassensens 3-14
3.56.2 Application Server or Database Independence............c.cccovevrieiinineiniiiiiiicicenne, 3-15
3.5.3 Java EE Design Pattern SUppOrt ..o 3-15
3.5.4 Source Code Organizationc.ccccccceiieiiieiiciieeeeeeeeee s 3-15
3.5.5 Package Naming COnvVentions...........ccooceuiiiiniciiiicieieecc e 3-16
3.5.6 Metadata with Optional Custom Java Code..........ccccovviiininiininnniiiiiniine 3-17
3.5.6.1 Example of an XML-Only Component..........c.ccccocueucueeueucieeecmeeeneeeneeeneneneeees 3-18
3.5.6.2 Example of a Component with Custom Java Class..........cccccoveeiiiiiiiininnennne, 3-18
3.5.7 Basic Data TYPeS.....ccceiiriiiiiiiiiicccc s 3-19
3.5.8 Generic Versus Strongly-Typed APIS.........cccccoeiiiiiiniiccccceeeeeeeeeeeeeeees 3-20
3.5.9 Custom Interface Support for Client-Accessible Components.............c.ccceevvvevevennne. 3-21
3.5.9.1 Framework Client Interfaces for Components............ccccceeueuiiiiieiiiiicniicicinnenn. 3-21
3.5.9.2 Custom Client Interfaces for COMPONENtSccceueuvuveveverirerirereeerrnrerrecenes 3-21
3.6 Overview Of GIOOVY SUPPOLt.....ccoiiiiiiiiiiiiiiiiiiiicicicce s 3-22
3.6.1 Referencing Business Components Objects in Groovy Expressions..........cc.ccc....... 3-23
3.6.2 Referencing Custom Business Components Methods and Attributes in Groovy
Expressions 3-24

3.6.2.1 Referencing Members of the Same Business Componentccccoevvvvriniinnns 3-24
3.6.2.2 Referencing Members of Other Business Componentsccccovuvvvirirencncncnes 3-25
3.6.3 Manipulating Business Component Attribute Values in Groovy Expressions....... 3-25

4 Creating a Business Domain Layer Using Entity Objects

4.1 Introduction to Entity ObjJects..........covoiiiiiiiiii e 4-1
4.2 Creating Entity Objects and ASSOCIAtIONSccoeuvvviviriririririirrrccereer e 4-2
4.21 How to Create Multiple Entity Objects and Associations from Existing Tables........ 4-2
4.2.2 How to Create Single Entity Objects Using the Create Entity Wizard 4-4
4.2.3 What Happens When You Create Entity Objects and Associations from Existing Tables
4-5
4.2.3.1 What Happens When Tables Have Foreign Key Relationshipsccccccceueveaie. 4-5
4.23.2 What Happens When a Table Has No Primary Keycccooooiinin, 4-6
4.2.4 What Happens When You Create an Entity Object for a Synonym or View.............. 4-6
4.2.5 How to Edit an Existing Entity Object or Associationc.cccoeeieiiicciciiiicicine, 4-6
4.2.6 How to Create Database Tables from Entity Objectsc.coooooeveiiiiiiiiiiiie, 4-6
4.2.7 How to Synchronize an Entity with Changes to Its Database Table............................ 4-7
4271 Removing an Attribute Associated with a Dropped Column..........ccccceeviienniennns 4-7
4.2.7.2 Addressing a Data Type Change in the Underlying Table............cccccoovriiiinne. 4-8
4.2.8 How to Store Data Pertaining to a Specific Point in Time........c.cccocovvvinvnninncnene. 4-8
4.2.9 What Happens When You Create Effective Dated Entity Objectscccccoeveveuinnnnns 4-9
4.2.10 What You May Need to Know About Creating Entities from Tables....................... 4-10
4.3 Creating and Configuring ASSOCIAtIONSccccueueuiueieiciiiiieiccccecce s 4-10
4.31 How to Create an ASSOCIAtIONccceuiuiuiiiiiiiiiiiiiiicic s 4-10
4.3.2 What Happens When You Create an Associationccccoeicueieiiicciciiiccieiee 4-13
4.3.3 How to Change Entity Association Accessor Names.........ccccccecucueuvueieucucuenenieecnnennne 4-13
4.3.4 How to Rename and Move Associations to a Different Packagec.cccoceueuenee. 4-13
4.3.5 What You May Need to Know About Using a Custom View Object in an Association...
4-14
4.3.6 What You May Need to Know About Composition Associations...........cccccceeeuvenee. 4-15
4.4 Creating an Entity Diagram for Your Business Layer ... 4-16
4.41 How to Show Entity Objects in a Business Components Diagram.............cccc.o...... 4-16
4.4.2 What Happens When You Create an Entity Diagramcccccoocvciiiiciccccenne. 4-17
4.4.3 What You May Need to Know About the XML Component Descriptors 4-18
4.4.4 What You May Need to Know About Changing the Names of Components......... 4-18
4.5 Defining PrOPerty Setsccccciiiiiiiiiicceccee e 4-18
4.5.1 How to Define a Property Set ... 4-19
452 How to Apply @ Property Set ..o 4-19
4.6 Defining Attribute Control Hints for Entity Objectsc.cccccceoveciicinvvnnriicrrcne 4-20
4.6.1 How to Add Attribute Control HINts ... 4-20
4.6.2 What Happens When You Add Attribute Control Hints..........cccccccooiiiiiiinnnn 4-21
4.6.3 How to Define Formatters and Masks.........cccccovvriiniiiiininicccnes 4-21
4.7 Working with Resource Bundles ... 4-23
4.71 How to Set Message Bundle Optionscccccoeveiiiiiieinicnieicceccc e 4-24
4.7.2 How to Use Multiple Resource Bundlescccccceeiiiiiinininnniirrncrrceccenes 4-24
4.7.3 How to Internationalize the Date Formatcccccovviiiiiniiiiiiii 4-25
4.8 Defining Business LOgic GIOUPSccccceuiuiiiiiiiiiiiiiiiiiicicicicicciees s 4-26
4.8.1 How to Create a Business Logic GIoup.......cccccovvviiiiiininiiiiiinccce 4-26
4.8.2 How to Create a Business Logic Unitcooooiiiiiiiiie 4-27
4.8.3 How to Add Logic to a Business Logic Unit..........ccccoeeuviiriiiiiicieieicecee 4-27
4.8.4 How to Override Attributes in a Business Logic Unitc.cccccccceiiciiciiccnnne. 4-28

vi

4.8.5 What Happens When You Create a Business Logic GIoupcccccocoveviiiniinnnnen. 4-28
4.8.6 What Happens at Runtime: Invoking a Business Logic Groupc.ccccocoeueieinnnee. 4-29
4.9 Configuring Runtime Behavior Declarativelyccccocovviiiviiinnrciirrccceene 4-29
4.91 How to Configure Declarative Runtime Behavior...........cccocoeeiiiiiiiniiiin, 4-30
4.9.2 What Happens When You Configure Declarative Runtime Behavior 4-31
4.10 Setting Attribute Properties. ... 4-31
4.10.1 How to Set Database and Java Data Types for an Entity Object Attribute.............. 4-31
4.10.2 How to Indicate Data Type Length, Precision, and Scale.............cccccoevviniinnnnnn. 4-33
4.10.3 How to Control the Updatability of an Attribute ... 4-33
4104 How to Make an Attribute Mandatory.........cccoviiiiiiiiniciccccc, 4-33
4.10.5 How to Define the Primary Key for the Entity........cccoooiiiiiiiiii, 4-33
4.10.6 How to Define a Static Default Value...........cccoovviiiininiiiiniiccces 4-34
4.10.7 How to Define a Default Value Using a Groovy EXpression............cccceeiiueieininnne. 4-34
4.10.8 What Happens When You Create a Default Value Using a Groovy expression..... 4-34
4.10.9 How to Synchronize with Trigger-Assigned Values...........cccocovvvvvirnnvnvnnenenes 4-35
4.10.10 How to Get Trigger-Assigned Primary Key Values from a Database Sequence..... 4-35
4.10.11 How to Protect Against Losing Simultaneously Updated Data..........c..cccccevenenne. 4-36
4.10.12 How to Track Created and Modified Dates Using the History Column.................. 4-37
4.10.13 How to Configure Composition Behavior ..o 4-37
4.10.13.1 Orphan-Row Protection for New Composed Entitiescccccceiiinninninnnn. 4-38
4.10.13.2 Ordering of Changes Saved to the Database...........cccccccevurvrninnnnninrnes 4-38
4.10.13.3 Cascade Update of Composed Details from Refresh-On-Insert Primary Keys 4-38
4.10.134 Cascade Delete SUPPOTLt.......ccccoviiiviiiiiiiiiiiiiiiic s 4-38
4.10.13.5 Cascade Update of Foreign Key Attributes When Primary Key Changes........ 4-39
4.10.13.6 Locking of Composite Parent Entities..........ccccceveiiiiiniiniiiiiiiiiicn, 4-39
4.10.13.7 Updating of Composing Parent History Attributes..........ccccccceviiinnnnnnnnn 4-39
4.10.14 How to Set the Discriminator Attribute for Entity Object Inheritance Hierarchies 4-39
4.10.15 How to Define Alternate Key Values ..o, 4-39
4.10.16 What Happens When You Define Alternate Key Valuescccccoevviniiiinnnne 4-40
4.10.17 What You May Need to Know About Alternate Key Values.........cccccccoeeeuncnnnnne 4-40
4.11 Creating Business EVENts........c.ccooiiiiiiiiiiiii s 4-40
4111 Introducing Event Definitions ... 4-41
4.11.2 Introducing Event POINts..........ccccceiiiiiiiiiiiicccceceeeeeeeeeeeeeeeeeeeeees 4-41
4.11.3 What You May Need to Know About Event Points........c.ccccoeiiieiiinciiiicie 4-41
4114 How to Create a Business EVent..........cccocccviiniiiniiniiiiiccceceeeeeens 4-41
4115 What Happens When You Create a Business Event...........cccccccccoceiiiiiinnccnnene. 4-42
4.11.6 What You May Need to Know About Payload Size.........cccoouieieiiiniciiice 4-44
4.11.7 How to Publish a Business EVent..........cccccccvieuiinnineccinnicciineeceseeeeeeeeeneeeenes 4-44
4.11.8 How to Subscribe to Business Events..........c.c.ccoeeeiiieeiececceecece 4-44
4.12 Working Programmatically with Entity Objects and Associations............c.ccceceveveverenne. 4-45
4.12.1 How to Find an Entity Object by Primary Keycccccccoiiiiiiiinniiiciiine 4-46
4122 How to Access an Associated Entity Using the Accessor Attributeccc....... 4-47
4.12.3 How to Update or Remove an Existing Entity ROWcccccocoviiiiiininiii 4-48
4124 How to Create a New Entity ROW......ccccooiiiiiiiiiiiii 4-48
4125 Assigning the Primary Key Value Using an Oracle Sequence............ccccccevuvuvucunnne. 4-50
4.12.6 What You May Need to Know About Custom Entity Object Methods.................... 4-51
4.13 Generating Custom Java Classes for an Entity Object...........ccccccevvvvnnniinnnninnne 4-51

Vii

4.13.1 How to Generate Custom Classes..........c.cuiuiuiuiiiiiiiiiiiiiiiiiiiceee s 4-52
4.13.2 What Happens When You Generate Custom Classes............cccccevviriiiiiiniininininnnnne 4-52
4.13.3 What Happens When You Generate Entity Attribute Accessors.........c.cccoeeueueunnee. 4-52
4.13.4 How to Navigate to Custom Java Files........ccccccooviiiiiiiiiiii 4-53
413.5 What You May Need to Know About Custom Java Classes.........cccceceuvvviniriinnnnne 4-54
4.13.5.1 About the Framework Base Classes for an Entity Object.........c.cccccoccueucucncnnnnnn. 4-54
4.13.5.2 You Can Safely Add Code to the Custom Component File............ccocoeuevnnnenn. 4-54
4.13.5.3 Configuring Default Java Generation Preferencescccoovvviivnninnninnnn 4-54
4.135.4 Attribute Indexes and InvokeAccessor Generated Codeccccovuvevniririnccncee 4-55
4.13.6 Programmatic Example for Comparison Using Custom Entity Classes.................. 4-56
4.14 Adding Transient and Calculated Attributes to an Entity Objectccoccceveiriiinnnni 4-59
4.141 How to Add a Transient Attribute ... 4-59
4.14.2 What Happens When You Add a Transient Attribute..........cccoooiiiiinninnnnn 4-60
4.14.3 How to Base a Transient Attribute On a Groovy Expressioncccccooiueiriinnna 4-60
4.14.4 What Happens When You Base a Transient Attribute on Groovy Expression....... 4-62
4.14.5 How to Add Java Code in the Entity Class to Perform Calculationccc........ 4-62

5 Defining SQL Queries Using View Objects

viii

5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2
5.2.3
5.24
5.2.5
5.2.5.1

5.2.5.2
5.2.5.3
5.2.5.4
5.2.55
5.2.6
5.3
5.3.1
5.3.2
5.3.3
5.34
5.3.5
5.4
5.4.1
54.2
5.4.3
5.4.4

Introduction to VIew ODBJects ... 5-1
Overview of View Object CONCEPLScccvviviiiiiiiiiiiiiiiiiiciciiias 5-2
Runtime Features Unique to Entity-Based View Objectscccccoccuecicciciccncnnnne 5-3

Populating View Object Rows from a Single Database Table...........ccccoooeriiiininennnne. 5-4
How to Create an Entity-Based View Object.........ccccooiiiiiiiiiiic 5-5

Creating a View Object with All the Attributes of an Entity Object..................... 5-5
Creating an Entity-Based View Object from a Single Table..........c.ccccccoeriennnniie. 5-6
What Happens When You Create an Entity-Based View Object.........c.cccoceuriirinan. 5-9
How to Create an Expert Mode, Read-Only View Objectccccevuvervnninncncncnnee 5-10
What Happens When You Create a Read-Only View Objectccoovviiiininnnnen. 5-12
How to Edit a View ODbjJect......ccccciiiiiiiiiiiiiiiiiiiiiccicis 5-13
Overriding the Inherited Properties from Underlying Entity Object Attributes........
5-14
Controlling the Length, Precision, and Scale of View Object Attributes 5-15
Converting a Read-Only View Object to Allow Attribute Updates 5-15
Customizing View Object Attribute Display in the Overview Editor............... 5-17
Modifying the Order of Attributes in the View Object Source File 5-18
How to Show View Objects in a Business Components Diagram...........cccccoeveueee. 5-18

Populating View Object Rows with Static Dataccccecvveveiiriniiiinirccicrccceeeees 5-19
How to Create Static View Objects with Data You Entercccccccoeviiiiiiinnnn 5-20
How to Create Static View Objects with Data You Importcccoeeeieiciiinnnnn 5-20
What Happens When You Create a Static List View Objectcccccceeeucuvivirivecnnene. 5-21
Editing Static List View ObjJects........cccooorueiiiiiirieiiccic 5-23
What You May Need to Know About Static List View Objects.........ccccoevruerrrnnnnen. 5-23

Limiting View Object Rows Using Effective Date Ranges..........cccccccoceureciccncncnnnnne. 5-23
How to Create a Date-Effective View Object..........cccoooiiiiiiniiiiiiiiccccc 5-24
How to Create New View Rows Using Date-Effective View Objects....................... 5-25
How to Update Date-Effective View ROWScccccceviiiiiinvniiiccccnecccreecnes 5-25
How to Delete Date-Effective View ROWScccocevviiiiiiiiiiiiiiii 5-26

5.4.5 What Happens When You Create a Date-Effective View Objectccccccvnennnnene. 5-26

5.4.6 What You May Need to Know About Date-Effective View Objects and View LInks.......
5-27
5.5 Working with Multiple Tables in Join Query Results ..o 5-28
5.5.1 How to Create Joins for Entity-Based View Objects........ccccooiriiiiiiiiiiii 5-28
55.2 How to Select Additional Attributes from Reference Entity Usages........................ 5-31
5.5.3 How to Remove Unnecessary Key Attributes from Reference Entity Usages 5-32
5.5.4 How to Hide the Primary Key Attributes from Reference Entity Usages................ 5-32
5.5.5 How to Modify a Default Join Clause to Be an Outer Join When Appropriate 5-33
5.5.6 What Happens When You Reference Entities in a View Object.........cccccccocucucucncnnne. 5-35
5.5.7 How to Create Joins for Read-Only View Objects..........cccoeueiviiiciiiiicinieiiccice 5-36
55.8 HOW t0 TeSt the JOIN VIEWcciiuiiiiiiiiiiiieesete ettt ettt 5-36
5.5.9 How to Use the SQL Statement Dialog with Read-Only View Objects.................... 5-36
5.5.10 What You May Need to Know About Join View Objects.........ccccevviriiiiiiriciiine 5-37
5.6 Working with Multiple Tables in a Master-Detail Hierarchycccccooooiiiininni 5-38
5.6.1 How to Create a Master-Detail Hierarchy for Entity-Based View Objects............... 5-38
5.6.2 How to Create a Master-Detail Hierarchy Based on View Objects Alone............... 5-40
5.6.3 What Happens When You Create Master-Detail Hierarchies Using View Links... 5-42
5.6.4 How to Enable Active Master-Detail Coordination in the Data Model 5-43
5.6.5 How to Test Master-Detail Coordination..............ccceeveveiiiieiiiiiiiiciiiecceeens 5-44
5.6.6 How to Access the Detail Collection Using the View Link Accessor 5-45
5.6.6.1 Accessing Attributes of Row by Name ... 5-45
5.6.6.2 Programmatically Accessing a Detail Collection Using the View Link Accessor.......
5-45
5.7 Working with a Single Table in a Recursive Master-Detail Hierarchyccccc........ 5-46
5.7.1 How to Create a Recursive Master-Detail Hierarchy for an Entity-Based View Object ...
5-46
5.7.2 What Happens When You Create a Recursive Master-Detail Hierarchy................. 5-51
5.8 Working with View Objects in Declarative SQL Mode..........cooouoiriiiiiiiiiiiiicieee, 5-52
5.8.1 How to Create Declarative SQL View Objectscccceeuvvuvirirrnnnnnencnreeecnes 5-53
5.8.2 How to Filter Declarative SQL-Based View Objects When Table Joins Apply 5-56
5.8.3 How to Filter Master-Detail Related View Objects with Declarative SQL Mode ... 5-57
5.8.4 How to Force Attribute Queries for Declarative SQL Mode View Objects.............. 5-58
5.8.5 What Happens When You Create a View Object in Declarative SQL Mode........... 5-60
5.8.6 What Happens at Runtime: When a Declarative SQL Mode Query is Generated.. 5-61
5.8.7 What You May Need to Know About Overriding Declarative SQL Mode Defaults
5-61
5.8.8 What You May Need to Know About Working Programmatically with Declarative
SQL Mode View Objects 5-62
5.9 Working with View Objects in Expert Mode..........cccooviiniiiiiiiincceccece 5-63
5.9.1 How to Customize SQL Statements in Expert Modecccocovvvvvinnnnninnnnes 5-63
5.9.2 How to Name Attributes in Expert Mode...........ccccooviiiiiiiiiiiiiic 5-63
5.9.3 What Happens When You Enable Expert Mode...........cccccccciiiiiiiiiiiiiicnee 5-64
5.9.4 What You May Need to Know About Expert Modecccccccecieiniinnnniinnes 5-64
5.9.4.1 Expert Mode Provides Limited Attribute Mapping Assistance...........ccccco.c...... 5-64
5942 Expert Mode Drops Custom Edits..........cccccoeiiniiniiinniiiiiiicic 5-65
5.9.4.3 Expert Mode Ignores Changes to SQL EXpressions..........cccccccoeueevcuercueueecuencnnnnes 5-65

5.9.4.4 Expert Mode Returns Error for SQL Calculations that Change Entity Attributes......

5-66
5.9.4.5 Formatting of the SQL Statement in Expert Modecccooreiiiiiinnnan, 5-67
5.9.4.6 Expert Mode Wraps Queries as Inline Views.........cccccccceeeeiiicciccnccccnnn 5-67
5.94.7 Limitation of Inline View Wrapping at Runtime..........cccccoooveeniiiininnnnn, 5-68
5.9.4.8 Expert Mode Changes May Affect Dependent Objectscccccouoeiiviieirnnnnnn. 5-68
5.10 Working with Bind Variables.........c.ccccoiiiicccccceecccccecece e 5-69
5.10.1 How to Add Bind Variables to a View Object Definition...........cccccoevvvivninnnnnn 5-69
5.10.2 How to Reference the Current User in a Named Bind Variable Using Groovy...... 5-71
5.10.3 What Happens When You Add Named Bind Variables..........cccccccococcciiinicnnnne. 5-72
5.104 How to Test Named Bind Variables ... 5-72
5.10.5 How to Add a WHERE Clause with Named Bind Variables at Runtime................. 5-73
5.10.6 How to Set Existing Bind Variable Values at Runtime...........cccccccceovviicnnnnnnnene. 5-75
5.10.7 What Happens at Runtime: When a Read-Only View Object WHERE Clause is Set
5-76
5.10.8 What You May Need to Know About Named Bind Variables............ccccccccvvvinnnnnn 5-77
5.10.8.1 An Error Related to Clearing Bind Variables ..o, 5-77
5.10.8.2 Errors Related to the Names of Bind Variables...........cccccoeviiiiiiinnnininnnn, 5-78
5.10.8.3 Default Value of NULL for Bind Variables..........ccccccovvviiiinnniiiiiiin, 5-78
5.11 Working with Named View Criteria.........cccoooiriiiiiiiniiiiiicccciiccccccceeeenenenes 5-79
5.11.1 How to Create Named View Criteria Declaratively ... 5-80
5.11.2 What Happens When You Create a Named View Criteria.......ccccocooeriiiiiircinnnn. 5-85
5.11.3 What You May Need to Know About Bind Variable Options..........cccccccceeueueuennnene 5-86
5.11.4 What You May Need to Know About Nested Expressions.........c.cccooveueiiiiiereininnnee. 5-87
5.11.5 How to Set User Interface Hints on View Criteria.........cccccovvvviiiiiinninnnnnnn 5-87
5.11.6 How to Use Master-Detail Related View Objects in View Criteria.........cccccceueuueee. 5-90
5.11.7 How to Test View Criteria Using the Business Component Browser....................... 5-94
5.11.8 How to Create View Criteria Programmatically...........cccoooooioiiiiiii 5-95
5.11.9 What Happens at Runtime: When the View Criteria Is Applied to a View Object 5-96
5.11.10 What You May Need to Know About the View Criteria API..........cccooviiiiinnnn. 5-97
5.11.10.1 Referencing Attribute Names in View Criteria.......c.cocooeoeueiiioirieiiiiciee, 5-97
5.11.10.2 Referencing Bind Variables in View Criteria........cccccccccoeeiiiiciciiccnccccene 5-97
5.11.10.3 Altering Compound Search Conditions Using Multiple View Criteria............ 5-98
5.11.10.4 Searching for a Row Whose Attribute Value Is NULLcccccccceiiiinnininnnnn 5-99
5.11.10.5 Searching for Rows Using a Date Comparison...........ccccccoceeccccccceccneenennn 5-99
5.11.10.6 Searching for Rows Whose Attribute Value Matches a Value in a List............. 5-99
5.11.10.7 Searching Case-INSeNSItivelycccccciiiiiiiiiiiiiicccees 5-99
5.11.10.8 Clearing View Criteria in Effectcccooviiiiiiiiiiccccccccccceenes 5-100
5.11.11 What You May Need to Know About Query-by-Example Criteria........................ 5-100
5.12 Working with ROW FINAErScccccccuiiiiiiiiiiiiiiiiiiiiic s 5-100
5.12.1 How to Add Row Finders to a View Object Definitioncccceeuvvevvvnnrenncnnes 5-101
5.12.2 What Happens When You Define a Row Finder ..., 5-103
5.12.3 What You May Need to Know About View Criteria and Row Finder Usage....... 5-105
5.12.4 How to Programmatically Invoke the Row Finderccccooiiiiiiiiincncnns 5-105
5.12.5 How to Find Rows of a Master View Objectcccccoevevviiininninns 5-107
5.12.5.1 Defining a Row Finder on the Master View Object..........cccocoeveiviiiniiiinnnaes 5-107
5.125.2 What Happens When You Create a Row Finder for a Master View Object... 5-109

5.13 Working with List of Values (LOV) in View Object Attributesc.cccccovvvininnnn 5-111

5.13.1 How to Define a Single LOV-Enabled View Object Attribute..........c.ccccoooeennann. 5-113
5.13.2 How to Define Cascading Lists for LOV-Enabled View Object Attributes 5-114
5.13.2.1 Creating a Data Source View Object to Control the Cascading List................ 5-115
5.13.2.2 Creating a View Accessor to Filter the Cascading Listcccoooeeieiiiiiinnie, 5-116
5.13.3 How to Specify Multiple LOVs for an LOV-Enabled View Object Attribute........ 5-117
5.13.4 How to Set User Interface Hints on a View Object LOV-Enabled Attribute 5-119
5.13.5 How to Handle Date Conversion for List Type Ul Components............c.ccceoevenee. 5-123
5.13.6 How to Automatically Refresh the View Object of the View Accessor 5-124
5.18.7 How to Test LOV-Enabled Attributes Using the Business Component Browser. 5-125
5.13.8 What Happens When You Define an LOV for a View Object Attribute................. 5-126
5.13.9 What Happens at Runtime: When an LOV Queries the List Data Source.............. 5-128
5.13.10 What You May Need to Know About Lists.........ccccoceiiiciiiciiiiicieeeeeeene 5-129
5.13.10.1 Inheritance of AttributeDef Properties from Parent View Object Attributes. 5-129
5.13.10.2 Using Validators to Validate Attribute Valuesccooviiiiiiiiiiiinns 5-129
5.13.10.3 LOV Limitation When Exposing Application Module as EJB Session Bean.. 5-129
5.14 Defining Control Hints for View ODbjectsccccoouiriiiiiiiiiieiicccice e 5-129
5.141 How to Add Attribute-Specific Control Hintsccocooeieiiiiiiiiiicce 5-130
5.14.2 How to Add View Object Control Hints........c.cccccceeueiiiiiininrnicnreerreeenes 5-130
5.14.3 How to Access Control Hints Using EL EXpressions..........c.cccooeeuevniiciciiiinnennne. 5-131
5.14.4 What Happens When You Add Control Hints ... 5-131
5.14.5 How to Define UI Category HInts.........ccocoovvinnnnininincicccccccccecccenenes 5-132
5.14.6 What Happens When You Assign Attributes to Ul Categories..........ccccoeurneneee. 5-135
5.14.7 What You May Need to Know About Resource Bundles.............cocoviiiininnnnnns 5-137
5.15 Adding Calculated and Transient Attributes to a View Objectcccccceeuvuveiivcnnenne 5-137
5.151 How to Add a SQL-Calculated Attribute.........ccceeeeeveveieieeieiieieeeeeeeeee e 5-137
5.15.2 What Happens When You Add a SQL-Calculated Attributecccceevviiininiinne 5-138
5.15.3 How to Add a Transient Attribute.........ccccooveiiiiiiiiiiiiccce 5-139
5.154 How to Add a Validation Rule to a Transient Attribute.........c.cccooovviviiiinnnnns 5-141
5.15.5 What Happens When You Add a Transient Attribute..........cccccoovviininnns 5-142
5.15.6 Adding Java Code in the View Row Class to Perform Calculation 5-142
5.15.7 What You May Need to Know About Transient Attributes........c.ccccooooeiiiiii. 5-143

6 Working with View Object Query Results

6.1 Introduction to View Object Runtime Behavior..........ccoooiiiiiiiiiiiiiiicics 6-1
6.2 Creating an Application Module to Test View Instancesccccccooeeeiviiciiiincceneincnnen 6-1
6.2.1 How to Create the Application Module with Individual View Object Instances...... 6-2
6.2.2 How to Create the Application Module with Master-Detail View Object Instances. 6-2
6.3 Testing View Object Instances Using the Business Component Browsercccc...... 6-5
6.3.1 How to Run the Business Component Browser............cccccccccueeiieceiceenccceenne 6-5
6.3.2 How to Test Entity-Based View Objects Interactively ..o, 6-7
6.3.3 How to Update the Business Component Browser to Display Project Changes 6-9
6.3.4 What Happens When You Use the Business Component Browserccccccceueuee. 6-9
6.3.5 How to Simulate End-User Interaction in the Business Component Browser 6-10
6.3.5.1 Testing Master-Detail Coordination............cccocevvviviiinninnnniiiinicine, 6-12
6.3.5.2 Testing UL Control HINtscccccciiiiiiiiiiiiccccececceeeeceeeeeeeeeeeees 6-12
6.3.5.3 Testing Business Domain Layer Validation...........ccccooiiiiiiiiiie, 6-12
6.3.5.4 Testing Alternate Language Message Bundles and Control Hints..................... 6-12

xi

6.3.5.5 Testing View Objects That Reference Entity Usages........ccccccovrueieiiircieininnnen, 6-13

6.3.5.6 Testing Row Creation and Default Value Generationccccccevviviniiiriinnnnnn 6-13
6.3.5.7 Testing That New Detail Rows Have Correct Foreign Keys..........ccccoeeerenecnce. 6-13
6.3.6 How to Test Multiuser Scenarios in the Business Component Browser 6-13
6.3.7 How to Customize Configuration Options Before Running the Browser................ 6-14
6.3.8 How to Enable ADF Business Components Debug Diagnostics.........c.cccocevvreveencee 6-14
6.3.9 What Happens at Runtime: When View Objects and Entity Objects Cooperate.... 6-15
6.3.9.1 What Happens When a View Object Executes Its Queryccccovvvinininiinnns 6-16
6.3.9.2 What Happens When a View Row Attribute Is Modified..........cccccooeveiiicnnee 6-17
6.3.9.3 What Happens When a Foreign Key Attribute is Changed.............cccoeuennie.. 6-18
6.3.9.4 What Happens When a Transaction is Committed..........ccccooiiiininn, 6-19
6.3.9.5 What Happens When a View Object Requeries Datacccocoeeciccccncncnnee. 6-20
6.3.10 What You May Need to Know About Optimizing View Object Runtime Performance ..
6-22
6.4 Testing View Object Instances Programmatically.........ccocooooiiiiiiiii 6-24
6.4.1 ViewObject Interface Methods for Working with the View Object’s Default RowSet......
6-24
6.4.1.1 The Role of the Key Object in a View Row or Entity ROWccccevviiriiinnn, 6-25
6.4.1.2 The Role of the Entity Cache in the Transaction.............ccccoeeoiciiiiiicicienen, 6-26
6.4.2 How to Create a Command-Line Java Test Client.........ccocceeveeveviniinenenenierieieeeeeenns 6-27
6.4.2.1 Generating a Test Client with Skeleton Code...........cccooovriiiiiiiiiiiiiii, 6-27
6.4.2.2 Modifying the Skeleton Code to Create the Test Clientcccccccvvvviiiiiinnnnnn. 6-28
6.4.3 What Happens When You Run a Test Client Program..........cccccccococecccueiececnenne 6-30
6.4.4 What You May Need to Know About Running a Test Client..........ccccceoviienennnnen. 6-30
6.4.5 How to Count the Number of Rows in @ ROW Set........ccccccoeiiiiiiiiiiiiiin, 6-31
6.4.6 How to Access a Detail Collection Using the View Link Accessor.........cccccceuvuenee 6-31
6.4.7 How to Iterate Over a Master-Detail-Detail Hierarchy..........ccccooooiriniiinnnn. 6-33
6.4.8 How to Find a Row and Update a Foreign Key Value.........cccccccceviiiiiinnnnnnn 6-35
6.4.9 How to Create a New Row for a View Object Instancecccccococcuccccccicccncnenees 6-36
6.4.10 How to Retrieve the Row Key Identifying a ROWccoooiviiiiiiiii 6-37
6.4.11 How to Authenticate Test Users in the Test Client..........cccccoevvviinniininnnnn 6-39

7 Defining Validation and Business Rules Declaratively

Xii

7.1 Introduction to Declarative Validation............cccccoiiiiiiiiiiiiiiiicccccccecccceenes 7-1
711 When to Use Business-Layer Validation or Model-Layer Validation..............ccc.c....... 7-2
7.2 Understanding the Validation Cycle..........cooouoiiiiiiiiiii e 7-2
7.21 Types of Entity Object Validation Rules.............cccccoeiiiiiiiiiiiiiiciiccccciics 7-2
7.2.1.1 Attribute-Level Validation Rulescccccouiiiiiiiniiiiiiiccccnns 7-3
7.21.2 Entity-Level Validation Rules...........cccooiiii 7-3
722 Understanding Commit Processing and Validation ..., 7-3
7.2.3 Understanding the Impact of Composition on Validation Ordercccccccccueueueneee 7-4
7.2.4 Avoiding Infinite Validation Cyclesccooooiiiiiiiiii e, 7-4
725 What Happens When Validations Fail ... 7-4
7.2.6 Understanding Entity Objects ROW States ... 7-5
7.2.7 Understanding Bundled Exception Modeccooeeiiiiiieiiicice, 7-6
7.3 Adding Validation Rules to Entity Objects and Attributescccoeevniiiiniiiinnene. 7-6
7.3.1 How to Add a Validation Rule to an Entity or Attributecccooevviininnnnnne. 7-6

7.3.2
7.3.3
7.3.4
7.3.5

7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.4.12
7.4.13
7.4.14
7.4.15
7.4.16
7.417
7.4.18

7.5

7.5.1
7.5.2
7.5.3
7.6

7.6.1
7.6.2

7.6.3
7.6.4
7.6.5
7.7

7.71
7.7.2
7.7.3
7.7.4
7.8

7.9

How to View and Edit a Validation Rule On an Entity or Attribute.......................... 7-7
What Happens When You Add a Validation Rule............ccccooiiii, 7-7
What You May Need to Know About Entity and Attribute Validation Rules........... 7-8
What You May Need to Know About List of Values and Attribute Validation Rules......
7-8

Using the Built-in Declarative Validation Rulesccooooiiiii 7-9
How to Ensure That Key Values Are Unique........cccccoceucieeiiieieiieiiiciieceeeeeeeeenae 7-9
What Happens When You Use a Unique Key Validator..........c.ccooovviiniininnnnnnn 7-10
How to Validate Based on a CompariSonccoucueueieicrieiiiicie e 7-10
What Happens When You Validate Based on a Comparison...........cccccccccueueucuennne. 7-12
How to Validate Using a List of Valuesc.cccooooeiiiiiiiiie 7-12
What Happens When You Validate Using a List of Values..........ccccccccevvninnnnn 7-14
What You May Need to Know About the List Validatorcccccccccccvvrnicnnene. 7-14
How to Make Sure a Value Falls Within a Certain Range.........c.cccooooeeiiirnine. 7-15
What Happens When You Use a Range Validator ... 7-15
How to Validate Against a Number of Bytes or Charactersc.cccccovvevuvvereneene. 7-16
What Happens When You Validate Against a Number of Bytes or Characters..... 7-16
How to Validate Using a Regular EXpression ..o 7-17
What Happens When You Validate Using a Regular Expression..........c.ccccccccueeee. 7-18
How to Use the Average, Count, or Sum to Validate a Collectionccccoevenee 7-18
What Happens When You Use Collection Validationccoooooiiiiiiinne, 7-19
How to Determine Whether a Key EXiStsccccccceiiiiiiiiniiiccccccccceceees 7-19
What Happens When You Use a Key Exists Validator...........ccooveiiiiiininnnnn 7-21
What You May Need to Know About Declarative Validators and View Accessors..........
7-21

Using Groovy Expressions For Validation and Business Rules...........cccccccccccceiicnnnnne. 7-22
How to Reference Entity Object Methods in Groovy Validation Expressions........ 7-22
How to Validate Using a True/False EXPTessioncccoceooicieiiiiicicieicicciee 7-24
What Happens When You Add a Groovy EXpression.........c.ccccccceucucicciecenicecenenenes 7-25

Triggering Validation EXeCULIONc.oiuiiiiiiiiiic s 7-26
How to Specify Which Attributes Fire Validation........ccccocoooiiiiiii 7-26

What Happens When You Constrain Validation Execution with Triggering Attributes.
7-28

How to Set Preconditions for Validation ... 7-28
How to Set Transaction-Level Validationcccocovvvivvninininnnininicnne 7-28
What You May Need to Know About the Order of Validation Execution 7-29
Creating Validation Error Messagesccccceuiiurueiiiiiicieiicnic s 7-29
How to Create Validation Error Messagescccoeoeueeeueininicnieinicceiecceecennes 7-29
How to Localize Validation MeSSages........cccceueueururuririiurerireniienirerrieeeeree s 7-30
How to Conditionally Raise Error Messages Using Groovy........ccccocoeevriiunieiennnee. 7-30
How to Embed a Groovy Expression in an Error Message.........c.cccoccovueveiceneinnnnee. 7-30
Setting the Severity Level for Validation EXceptionscccccceceueuivvivinnnnnnnnccnnes 7-32
Bulk Validation in SQLcciviiiiieeieieteeeeeeete sttt se et se v s e s e e e s e esaeaeens 7-32

Implementing Validation and Business Rules Programmatically

8.1
8.2

Introduction to Programmatic Business Rulescocooooiiiiiiiiiicce 8-1
Using Method Validators...........cccccciiiiiiiiiiiiiicc e 8-2

xiii

9

Xiv

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.2
8.3.3
8.4
8.4.1
8.4.2
8.5
8.5.1
8.5.2
8.5.3
8.6
8.6.1
8.6.2
8.7
8.8
8.9
8.9.1
8.9.2
8.10
8.11
8.12
8.13

How to Create an Attribute-Level Method Validator.........ccoocvvevveveeiviiiciiiiieeeceeene 8-3

What Happens When You Create an Attribute-Level Method Validator-................... 8-4
How to Create an Entity-Level Method Validator............cccccocoeiiiciiiiiicicicenee 8-5
What Happens When You Create an Entity-Level Method Validator 8-6
What You May Need to Know About Translating Validation Rule Error Messages 8-6
Assigning Programmatically Derived Attribute Values..........cccocoevvrvnnnnnnnncnnnene. 8-7
How to Provide Default Values for New Rows at Create Time...........ccccocevvrviuiiniennns 8-7
Choosing Between create() and initDefaultExpressionAttributes() Methods..... 8-7
Eagerly Defaulting an Attribute Value from a Database Sequence....................... 8-7

How to Assign Derived Values Before Saving ..o, 8-8
How to Assign Derived Values When an Attribute Value Is Setccccccevvniiin. 8-9
Undoing Pending Changes to an Entity Using the Refresh Methodccccccccccceiiies 8-9
How to Control What Happens to New Rows During a Refreshc.cccccccoce.. 8-10
How to Cascade Refresh to Composed Children Entity Rows..........cccoeviiiriinnnc. 8-10
Using View Objects for Validation ... 8-10
How to Use View Accessors for Validation Against View Objects...........cccoucuunee. 8-10
How to Validate Conditions Related to All Entities of a Given Type....................... 8-11
What You May Need to Know About Row Set Access with View Accessors......... 8-12
Accessing Related Entity Rows Using Association ACCesSorsccovvvviviriiiniiinininicnns 8-12
How to Access Related Entity ROWS......cccouoiiiiiiiiiii 8-12
How to Access Related Entity ROW Setscccccoceuiiiiiiiiiiciiiccecccceeceenenees 8-13
Referencing Information About the Authenticated User..........ccccooiiiiiiiiiiiiii 8-14
Accessing Original Attribute Values............coooiiiiiiii 8-14
Storing Information About the Current User SeSSioncccceveveveeeviriveriircrneceerneene 8-14
How to Store Information About the Current User Sessioncccceevvvinininiinnns 8-14
How to Use Groovy to Access Information About the Current User Session......... 8-15
Accessing the Current Date and Timec.cccoceiiiiinniiiinnicreeereres s 8-16
Sending Notifications Upon a Successful Commitcoeueiiiiiiiiiiniiiiii 8-16
Conditionally Preventing an Entity Row from Being Removed.........c.ccccoooiiiiirnnnne. 8-16
Determining Conditional Updatability for Attributesccccocoeeenvvnnnnniienee 8-17

Implementing Business Services with Application Modules

9.1

9.2
9.2.1
9.2.2
9.2.3
9.2.3.1
9.2.3.2
9.2.3.3
9.24

9.25
9.2.6
9.2.7
9.2.8

Introduction to Application ModUules ... 9-1
Creating and Modifying an Application Moduleccoooiiiiiiiiie 9-3
How to Create an Application Module.........cccooovoriiiiiiiiiic 9-3
What Happens When You Create an Application Module...........cooeviiiiiiiiinnes 9-4
How to Add a View Object Instance to an Application Module...........ccccccevvieririnnnn. 9-5
Adding a View Object Instance to an Existing Application Module..................... 9-5
Adding Master-Detail View Object Instances to an Application Module 9-6

Customizing a View Object Instance that You Add to an Application Module. 9-9

What Happens When You Add a View Object Instance to an Application Module.........
9-10

How to Edit an Existing Application Module...........cccccocoeeiiiiiiiiciiiicccenenen 9-11
How to Change the Data Control Name Before You Begin Building Pages............ 9-11
What You May Need to Know About Application Module Granularity................. 9-12

What You May Need to Know About View Object Components and View Object
Instances 9-12

9.3

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.4

9.4.1
9.4.2

9.5

9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7
9.5.8
9.6

9.6.1
9.6.2

9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.7.6
9.8
9.8.1
9.8.2
9.9
9.9.1
9.9.2
9.9.3
9.94
9.9.5
9.9.6
9.10
9.10.1
9.10.2
9.10.3

9.11
9.111

Configuring Your Application Module Database Connectionc.ccccceveveiiviinninennen. 9-13

How to Use a JDBC URL Connection Type.......cccooeueiinininiecnininiecccieccceenenne 9-13
How to Use a JDBC Data Source Connection Type.......ccccceveviviiiiinniiiniiinnne, 9-14
What Happens When You Create an Application Module Database Connection. 9-15
How to Change Your Application Module's Runtime Configuration...................... 9-16
How to Change the Database Connection for Your Projectcccccocevvvvnrcncncnne. 9-17
Defining Nested Application Modules............ccccooiiiiiiniiiiiiiii 9-17
How to Define a Nested Application Module...........cccccoevviviinnniiinininiin 9-18

What You May Need to Know About Root Application Modules Versus Nested
Application Module Usages 9-19

Creating an Application Module Diagram for Your Business Servicec.ccccoecuenn 9-19
How to Create an Application Module Diagram...........ccccccovviiiiiiiinnieicicccne 9-19
What Happens When You Create an Application Module Diagram 9-20
How to Use the Diagram to Edit the Application Module...........c.cccccevuriniiinnnnnnn. 9-20
How to Control Diagram Display Options.........ccccceueieimieieiicicieiiiccceecce e 9-21
How to Filter Method Names Displayed in the Diagramcccccccoevvninnnccnnee 9-22
How to Show Related Objects and Implementation Files in the Diagram............... 9-22
How to Publish the Application Module Diagramc.cccocoeeioiiirineiniiccieenne, 9-23
How to Test the Application Module from the Diagramccccceceeuevuvrvccnnnene. 9-23

Supporting Multipage Units of WOIK.........c.cccoeiiiiiiiiiiiiiiicce 9-23
How to Simulate State Management in the Business Component Browser 9-24

What Happens When the Application Uses Application Module Pooling and State
Management 9-24

Customizing an Application Module with Service Methods...........ccccccovvviiiiiiinnnnnn 9-25
How to Generate a Custom Class for an Application Module.............c.cccooeenne. 9-26
What Happens When You Generate a Custom Class for an Application Module. 9-27
What You May Need to Know About Default Code Generation.............ccceveuunee. 9-27
How to Add a Custom Service Method to an Application Module.......................... 9-28
How to Test the Custom Application Module Using a Static Main Method........... 9-29
What You May Need to Know About Programmatic Row Set Iteration 9-31

Customizing Application Module Message Strings............ccoocoeeiviiccieeinincieciccciee 9-32
How to Add a Resource Bundle to an Application Modulecccccovevvinnncncne. 9-32
What Happens When You Add a Resource Bundle to an Application Module...... 9-33

Publishing Custom Service Methods to UL Clients..........ccccooeveniiiniiceiniicecceee 9-34
How to Publish a Custom Method on the Application Module’s Client Interface. 9-34
What Happens When You Publish Custom Service Methods.............ccccoeviiennnnn 9-34
How to Generate Client Interfaces for View Objects and View Rows..................... 9-35

How to Test Custom Service Methods Using the Business Component Browser.. 9-36
What You May Need to Know About Method Signatures on the Client Interface = 9-37
What You May Need to Know About Passing Information from the Data Model = 9-38

Working Programmatically with an Application Module's Client Interface.................. 9-38
How to Work Programmatically with an Application Module's Client Interface.. 9-39
What Happens When You Work with an Application Module's Client Interface.. 9-40
How to Access an Application Module Client Interface in a Fusion Web Application....
9-40

Overriding Built-in Framework Methods ..., 9-43
How to Override a Built-in Framework Method ..o 9-43

XV

10

11

XVi

9.11.2 What Happens When You Override a Built-in Framework Method......................... 9-44

9.11.3 How to Override prepareSession() to Set Up an Application Module for a New User
Session 9-45

Sharing Application Module View Instances

10.1 Introduction to Shared Application Modules...........cccocovivivniniiiiniiie 10-1

10.2 Sharing an Application Module INStance............cccviiiiiiiiiiiciccccccceeeee e 10-1

10.2.1 How to Create a Shared Application Module Instance ... 10-3

10.2.2 What Happens When You Define a Shared Application Module..............cc............ 10-3

10.2.3 What You May Need to Know About Design Time Scope of the Shared Application
Module 10-5

10.2.4 What You May Need to Know About the Design Time Scope of View Instances of the
Shared Application Module 10-5

10.2.5 What You May Need to Know About Managing the Number of Shared Query
Collections 10-6

10.2.6 What You May Need to Know About Shared Application Modules and Connection
Pooling 10-6

10.3 Defining a Base View Object for Use with Lookup Tables..........cccocovrriiniiiiinnnnnnn. 10-7
10.3.1 How to Create a Base View Object Definition for a Lookup Table......................... 10-8
10.3.2 What Happens When You Create a Base View Object...........ccoeveiiiinccciiccnnne. 10-10
10.3.3 How to Define the WHERE Clause of the Lookup View Object Using View Criteria......
10-12
10.3.4 What Happens When You Create a View Criteria with the Editor..............c.c........ 10-14
10.3.5 What Happens at Runtime: When a View Instance Accesses Lookup Data.......... 10-15
10.4 Accessing View Instances of the Shared Service............cccoooviiiii 10-15
10.4.1 How to Create a View Accessor for an Entity Object or View Object..................... 10-16
10.4.2 How to Validate Against @ VIEW ACCESSOTcccoveiiiiriiiiiiiccciccccceeeecenenes 10-18
10.4.3 What Happens When You Validate Against a View Accessor..........ccoevveuiuiuruennnee. 10-20
10.4.4 How to Create an LOV Based on a Lookup Table...........ccccooiiiiii 10-21
10.4.5 What Happens When You Define an LOV for a View Object Attribute................. 10-23
10.4.6 What Happens at Runtime: When the Attribute Displays the List of Values........ 10-24
10.4.7 What You May Need to Know About Displaying List of Values From a Lookup Table..
10-24
10.4.8 What You May Need to Know About Inheritance of AttributeDef Properties..... 10-24
10.4.9 What You May Need to Know About Using Validatorscccceeeereiiiirnennnee. 10-24
10.5 Testing View Object Instances in a Shared Application Module.........c.cccccorvrrinnnnnnn. 10-24
10.5.1 How to Test the Base View Object Using the Business Component Browser 10-25
10.5.2 How to Test LOV-Enabled Attributes Using the Business Component Browser. 10-26
10.5.3 What Happens When You Use the Business Component Browser 10-26

10.5.4 What Happens at Runtime: When Another Service Accesses the Shared Application
Module Cache 10-27

Creating SOAP Web Services with Application Modules

11.1 Introduction to Service-Enabled Application Modulesccccccceiicciicicccccenenne. 11-1
11.2 Publishing Service-Enabled Application Modulescccocevveiiiniiiiiniiiiiic, 11-2
11.2.1 How to Enable the Application Module Service Interface...........ccccccccvuvriinininnnnes 11-3
11.2.2 What Happens When You Create an Application Module Service Interface........ 11-10
11.2.2.1 Annotations Generated in the Web Service Interfacecccccoevvvviininnnnn 11-12

11.2.2.2 Web Service Schema Generated in the Web Service Schema File.................... 11-13

11.2.2.3 WSDL Generated in the Web Service Definition File...........cccccooiviiiinnnn 11-13
11.2.2.4 Stateless Session Bean Specified by the Service Implementation Class 11-14
11.2.2.5 Lookup Defined in the connections.xml File...........cccccocovniniiinnn 11-15

11.2.3 What Happens When You Create an Application Module Service Interface With
Polymorphic View Objects 11-16

11.2.4 What You May Need to Know About Method Signatures on the ADF Web Service
Interface 11-19

11.2.5 What You May Need to Know About Row Finders and the ADF Web Service
Operations 11-20

11.2.6 How to Service-Enable Individual View Objects..........ccccccovivivininnninnninnne 11-20
11.2.7 How to Customize the SDO Properties of Service-Enabled View Objects 11-22
11.2.7.1 Excluding Individual SDO Properties in a Generated SDO Component........ 11-23
11.2.7.2 Associating Related SDO Properties Using Complex Data Types................... 11-23
11.2.8 How to Support Nested Processing in Service-Enabled Master-Detail View Objects
11-25
11.2.9 What Happens When You Create SDO Classes..........cccocooviviiniiniiiiincccnnnn, 11-26
11.2.9.1 Property Accessors Generated in the SDO Interface..........c.cccccovvvninninininnnne 11-26
11.2.9.2 View Object Interface Implemented by SDO Class.........cccccoeeiiiecccnccncnen 11-27
11.2.9.3 View Object Schema Generated in the SDO Schema File..........cccccccovrinnnnnen. 11-27
11.294 Container Object Implemented by SDO Result Class and Interface................ 11-27
11.2.10 How to Expose a Declarative Find Operation Filtered By a Required Bind Variable.......
11-28
11.2.11 How to Expose a Custom Find Method Filtered By a Required Bind Variable.... 11-29
11.2.12 How to Generate Asynchronous ADF Web Service Methods ..o 11-30
11.2.13 What Happens When You Generate Asynchronous ADF Web Service Methods 11-31
11.2.14 What Happens at Runtime: How the Asynchronous Call Is Made......................... 11-32
11.2.15 How to Set Preferences for Generating the ADF Web Service Interface................. 11-33
11.2.16 How to Set Display Names for Service View Instances and Attributes................. 11-34
11.2.17 How to Secure the ADF Web Service for Access By SOAP Clients 11-35
11.2.18 How to Secure the ADF Web Service for Access By RMI Clientscccc......... 11-38
11.2.18.1 Enabling Authentication for RMI CHENtscccccociiiiicciiicccecccenenes 11-38
11.2.18.2 Configuring Authorization for RMI Clients...........cccooviiiiiciieiniiice, 11-41
11.2.19 How to Grant Test Users Access to the Service..........ccccevvviviivvnninnnnniinnene 11-42
11.2.20 How to Enable Support for Binary Attachments for SOAP Clients........................ 11-44
11.2.21 How to Test the Web Service Using Integrated WebLogic Server 11-45
11.2.22 How to Prevent Custom Service Methods from Timing Out........cccccoeevveirirennnnnen. 11-46
11.2.23 How to Deploy Web Services to Oracle WebLogic Servercccccovvvvrrenencnne. 11-48
11.3 Accessing Remote Data Over the Service-Enabled Application Module...................... 11-51
11.3.1 How to Use Service-Enabled Entity Objects and View Objects...........cccocovvvurunnnnee. 11-52
11.3.1.1 Creating Entity Objects Backed by SDO Services..........ooueveeieiiiiccciccncnns 11-52
11.3.1.2 Using Complex Data Types with Service-Backed Entity Object Attributes... 11-54
11.3.1.3 Creating View Objects Backed by SDO Servicesccccocvuvvvivirivininivnninncnnes 11-55
11.3.2 What Happens When You Create Service-Backed Business Components............. 11-55
11.3.3 How to Update the Data Model for Service-Backed Business Components......... 11-57
11.34 How to Configure the Service-Backed Business Components Runtime................. 11-59
11.3.4.1 Adding the SDO Client Library to the Classpath...........cccccccovvivninnnnncene. 11-60

Xvii

12

xviii

11.3.4.2 Registering the ADF Business Components Service in the Consuming
Application’s connections.xml for the EJB RMI Protocol 11-61

11.3.4.3 Registering the ADF Business Components Service in the Consuming
Application’s connections.xml for the SOAP Protocol 11-63

11.3.4.4 Registering the ADF Business Components Service in the Consuming
Application’s connections.xml for Fabric SDO Binding 11-66
11.3.5 How to Test the Service-Backed Components in the Business Component Browser
11-67
11.3.6 How to Invoke Operations of the Service-Backed Components in the Consuming

Application 11-68

11.3.7 What You May Need to Know About Creating Service Data Objects in the Consuming
Application 11-69

11.3.8 What You May Need to Know About Invoking Built-In Service Methods in the
Consuming Application 11-69

11.3.9 What Happens at Runtime: How the Application Accesses the Published Application
Module 11-69

11.3.10 What You May Need to Know About Service-Backed Entity Objects and View Objects.

11-70
11.4 Accessing Polymorphic Collections in the Consuming Applicationcccceeuevneee. 11-70
11.4.1 How to Generate Web Service Client Proxy Classes From the Service-Enabled

Application Module 11-71

11.4.2 How to Invoke Operations of Polymorphic View Object Using Generated Proxy
Classes 11-72

11.4.3 What Happens When You Generate Java Proxy Classes With the SDO Schema. 11-76

11.44 What You May Need to Know About Invoking Service Methods in the Client
Application 11-77

Using ADF Model in a Fusion Web Application

12.1 Introduction to ADF Data Binding........ccccooiiiiiiiiiii 12-1
12.2 Exposing Application Modules with ADF Data Controls...........cccccccceuvuvueiercnvecnrnenene. 12-3
12.2.1 How an Application Module Data Control Appears in the Data Controls Panel... 12-4
12.2.1.1 How the Data Model and Service Methods Appear in the Data Controls Panel........
12-5
12.2.1.2 How Transaction Control Operations Appear in the Data Controls Panel...... 12-6
12.21.3 How View Objects Appear in the Data Controls Panel.............ccccccovinnnn 12-7
12.2.1.4 How Nested Application Modules Appear in the Data Controls Panel........... 12-9
12.2.2 How to Open the Data Controls Panelcccoooiiinnniniinciiicccccccenes 12-10
12.2.3 How to Refresh the Data Controls Panelccccoovvviininnnn 12-10
12.2.4 Packaging a Data Control for Use in Another Project...........ccccooeviiiiiiiiicnnnes 12-11
12.3 Using the Data Controls Panel............cocooiiiiiiiiiiiiiicccccccceeccee e 12-11
12.3.1 How to Use the Data Controls Panel ... 12-14
12.3.2 What Happens When You Use the Data Controls Panel............cccocoevveriniiinnnnnn. 12-15
12.3.3 What Happens at Runtime: How the Binding Context Works...........cccccceieennne. 12-17
12.4 Working with the DataBindings.cpx File ..o, 12-18
12.4.1 How JDeveloper Creates a DataBindings.cpx File..........ccoooiiiiiiiiinnn, 12-18
12.4.2 What Happens When JDeveloper Creates a DataBindings.cpx File........................ 12-18
12.5 Configuring the ADF Binding Filterc.cocoooiiiiiiiiiiiii 12-20
12.5.1 How JDeveloper Configures the ADF Binding Filter..........cccooooviiiiiiiiinnnn. 12-21
12.5.2 What Happens When JDeveloper Configures an ADF Binding Filter 12-21

13

12.5.3 What Happens at Runtime: How the ADF Binding Filter Works..............c.c.c......... 12-21

12.6 Working with Page Definition Files...........ccccocoviiniiiiiiiiice, 12-22
12.6.1 How JDeveloper Creates a Page Definition Filec.ccccocoviinnniinnnnnnnes 12-22
12.6.2 What Happens When JDeveloper Creates a Page Definition File......................... 12-23
12.6.2.1 Bindings Binding ObjJectsccocueiiiriiieiiiccc e 12-26
12.6.2.2 Executable Binding ObJECtS.........covvviiriiiriririrrccc e 12-27
12.7 Creating ADF Data Binding EL EXPIressions..........ccccccuoieieieiiiciciiiiccece e, 12-30
12.7.1 How to Create an ADF Data Binding EL Expression..........c.cccoocoeueiiiiiiiiiicicnnne. 12-30
12.7.1.1 Opening the Expression Builder from the Property Inspector 12-31
12.7.1.2 Using the Expression Builder ..., 12-32
12.7.2 What You May Need to Know About ADF Binding Properties............ccccccueunce. 12-33
12.8 Using Simple Ul First Development ..o 12-33
12.8.1 How to Apply ADF Model Data Binding to Existing Ul Components.................. 12-35

12.8.2 What Happens When You Apply ADF Model Data Binding to Ul Components 12-36

Integrating SOAP Web Services Into a Fusion Web Application

13.1 Introduction to Web Services in Fusion Web Applications...........c.cccocoeueveiiiriiniiicniennnn. 13-1
13.2 Calling a Web Service from an Application Module...........ccccoceociiiiiiciccceneenene. 13-2
13.2.1 How to Call an External Service Programmaticallyc.coooorueiniiiiiiniiice 13-2
13.2.1.1 Creating a Web Service Proxy Class to Programmatically Access the Service 13-3
13.2.1.2 Calling the Web Service Proxy Template to Invoke the Service......................... 13-3
13.2.1.3 Calling a Web Service Method Using the Proxy Class in an Application Module.....

13-4
13.2.2 How to Create a New Web Service Connection...........cccccceveeiiininiiiiinneinnnn, 13-4
13.2.3 What Happens When You Create the Web Service ProXycccccoeecceuccunicicennnene. 13-5
13.2.4 What Happens at Runtime: When You Call a Web Service Using a Web Service Proxy
Class 13-6

13.25 What You May Need to Know About Web Service Proxiesccccoevveicieriinnne. 13-6
13.2.5.1 Using a Try-Catch Block to Handle Web Service Exceptions..........c.ccccccucueneee. 13-6
13.2.5.2 Separating Application Module and Web Services Transactions 13-7
13.2.5.3 Setting Browser Proxy Information ..., 13-7
13.2.5.4 Invoking Application Modules with a Web Service Proxy Class....................... 13-7
13.3 Creating Web Service Data Controls...........ccoeueiimiriiiiiniiiiiccec e 13-7
13.3.1 How to Create a Web Service Data Control...........cccccccoeeiiiiiiiiiciiiicccee 13-8
13.3.2 How to Include a Header Parameter for a Web Service Data Control 13-8
13.3.3 How to Adjust the Endpoint for a Web Service Data Control...........cccccovvvnininiinnn 13-9
13.3.4 How to Refresh a Web Service Data Control...........c.cccceciuiiiiiiniiiiininniiccccccee 13-9
13.3.5 What You May Need to Know About Web Service Data Controls............cccccc........ 13-9
13.4 Securing Web Service Data CONtrols ... 13-11
13.4.1 WS-Security Specification...........coovviiiininiiniiiiiiie s 13-12
13.4.2 USINg Key StOTEScooviiiiiiiiiiiiiiicc s 13-12
13.4.3 How to Define Web Service Data Control Securitycoocooevvimieieiniicieiiiiciene, 13-13

Part lll Creating ADF Task Flows

Xix

14

15

XX

Getting Started with ADF Task Flows

14.1 Introduction to ADF Task FIOWScccccociiiniiiiiiiiiiicerccces e 14-1
14.1.1 Task FLOW AdVantages..........cccocccuceiemiiiiieeecieieceeieieeeeneeee e eeenens 14-2
14.1.2 Task FIOW TYPES ..ottt 14-2
14.1.2.1 Unbounded Task FIOWS.........ccccccoviviiiiiiiiiiiiiics 14-3
14.1.2.2 Bounded Task FIOWS..........cocviiiiiiiiiii e, 14-4
14.1.3 CONELOL FLOWS ..ottt s 14-7
14.2 Creating a Task FIOWc.oooiiiiii e 14-9
14.2.1 How to Create a Task FIOWcccooviiiiiiiiiicc s 14-9
14.2.2 What Happens When You Create a Task FIoWccccccovvinie, 14-12
14.2.3 What You May Need to Know About the Default Activity in an ADF Bounded Task
Flow 14-13

14.2.4 What You May Need to Know About Memory Scope for Task Flows................... 14-13
14.2.5 What Happens at Runtime: Using ADF Task FIows........cccccocooviiiiiniiiinnen, 14-16
14.3 Adding Activities to a Task FIOWcccccoviiiiiiiiiis 14-16
14.3.1 How to Add Additional Activities to an ADF Task FIowccccccccoeviiiiiinnnnnen. 14-17
14.3.2 What Happens When You Add an Activity to an ADF Task Flow.............c.......... 14-18
14.3.3 How to Add Control FIOWS........ccccoviiiiiiiiiiiicccccesceeee s 14-18
14.3.4 How to Add a Wildcard Control Flow Ruleccccooevviviiiiiiiiinc, 14-21
14.3.5 What Happens When You Create a Control Flow Rule...........cccoooviiinninnnnn. 14-21
14.3.6 What Happens at Runtime: Evaluating Control Flow Rulescccccooooeeninne. 14-22
144 Testing ADF Task FLOWScccccociiiiiiiiiiiccccceecce e 14-23
14.4.1 How to Run a Bounded Task Flow That Contains Pagesccccccoovveiiiiinnennee. 14-23
14.4.2 How to Run a Bounded Task Flow That Uses Page Fragmentsc..cccccc.c....... 14-23
14.4.3 How to Run a Bounded Task Flow That Has Parameterscccccooovviiinnnnen. 14-24
14.4.4 How to Run a JSEPage ..o 14-24
14.45 How to Run an ADF Unbounded Task FIOWcccccccevviinininniniiinn 14-25
14.4.6 How to Set a Run Configuration for a Project.........ccccccocveeeiiicinnnnnnnninneenes 14-25
14.5 Refactoring to Create New ADF Task Flows and Templates............ccccoeeiririiiiinnnnnn. 14-26
14.51 How to Create an ADF Bounded Task Flow from Selected Activities 14-26
14.5.2 How to Create a Task Flow from JSF Pages.......c.ccccccceeueueiniiicnnnerrreecereeeene 14-27
14.5.3 How to Convert ADF Bounded Task FIOWSccccccovveiiiiiniii 14-27
14.6 What You Should Know About Task Flow Constraintsc.c.ccceeeeeieiiciniiiiincnnnne 14-28

Working with Task Flow Activities

15.1 Introduction to ACtiVity TYPeS......cccouviviiiiiiiiiiiiiiicccc s 15-1
15.2 Using View ACHVIHIES......ccovuiiiiiiiiiiiici s 15-3
15.2.1 Adding a View ACHVILY ..o 15-4
15.2.2 Transitioning Between View Activities.........cccooviiiiniiiiiniiccccc 15-5
15.2.2.1 How to Transition to a View ActiVity ... 15-5
15.2.2.2 What Happens When You Transition Between Activitiescccoooeeieniennn. 15-6
15.2.3 Bookmarking View AcCtiVities ..o 15-6
15.2.3.1 How to Create a Bookmarkable View Activity.......cccccococecicicciiciccccenne 15-8
15.2.3.2 How to Specify HTTP Redirect ... 15-8
15.2.3.3 What Happens When You Designate a View as Bookmarkable 15-9
15.3 Using URL View ACtIVItieSs.......cocoeiiviiiiiiiiiiiiicicicc e 15-9
15.3.1 How to Add a URL View Activity to a Task FIOWcccccevviiiiiiniiiiiinn 15-10

16

17

15.3.2 Constructing a URL for Use Within a Portlet ... 15-11

15.4 Using Router ACtiVIities........ccoveiiiiiiiiiiiiiccc e 15-11
15,5 Using Method Call ACHVIHIESccovvvvuiririricir e 15-13
15.5.1 How to Add a Method Call Activityccccooioiiiiiiiiiiec 15-14
15.5.2 How to Specify Method Parameters and Return Values.........c.c.ccooeeiiininn. 15-16
15.5.3 What Happens When You Add a Method Call Activityccoceeeeiiiiciicccnenne 15-17
15.6 Using Task Flow Call ACtVIties........ccoourueiiiiiiiiiic e, 15-18
15.6.1 How to Call a Bounded Task Flow Using a Task Flow Call Activity 15-18
15.6.2 What Happens When You Call a Bounded Task Flow Using a Task Flow Call Activity.
15-20
15.6.3 How to Specify Input Parameters on a Task Flow Call Activityc.cccceornnnane. 15-20
15.6.4 How to Call a Bounded Task Flow Using a URL..........cccocooiiiiiiniiiicce 15-21
15.6.5 What Happens When You Configure a Bounded Task Flow to be Invoked by a URL ...
15-22
15.6.6 What You May Need to Know About Calling a Bounded Task Flow Using a URL.........
15-23
15.6.7 How to Specify Before and After Listeners..........cccoooorrieiiiiiniiiiiiincecccee 15-24
15.6.8 What Happens When You Add a Task Flow Call Activitycccoveveiicccnnee 15-25
15.6.9 What Happens at Runtime When a Task Flow Call Activity Invokes a Task Flow
15-26
15.7 Using Task Flow Return Activities ..o 15-27
15.8 Using Save Point Restore Activities ..., 15-29
15.9 Using Parent Action Activities........cooeviiiiiiiiiiiiiiii 15-29
15.10 Using Task Flow Activities with Page Definition Files..........ccccooviiiiiiininnnn. 15-30
15.10.1 How to Associate a Page Definition File with a Task Flow Activity 15-31
15.10.2 What Happens When You Associate a Page Definition File with a Task Flow Activity ..
15-31
Using Parameters in Task Flows
16.1 Introduction to Parameters in Task FIOWScccccccoviviiiiiiiccc, 16-1
16.2 Passing Parameters to a View AcCtivity ... 16-1
16.3 How to Pass Parameters to an ADF Bounded Task Flowccccccoviiniiviiiniinicnnen, 16-2
16.4 Specifying Return Values ... 16-5
16.5 Specifying EL Binding EXPressions..........c.cccocviiiiniiiiiiiiiiiicccccccccccncenes 16-7
Using Task Flows as Regions
17.1 Introduction to Using Task Flows in ADF Regions...........ccccecvuvuiminiiicnieiniceeieccene, 17-1
17.1.1 Benefits of Executing a Task Flow in an ADF Region.......c.cccccovvvvvvnnnnnvnnenene. 17-2
17.1.2 Task Flows and ADF Region Use Cases and Examples..........cccccoooiiiiiinieiinnnne. 17-2
17.1.3 Additional Functionality for Task Flows that Render in ADF Regions 17-4
17.1.3.1 Page Fragments and ADF RegiOnsc.cccccoeiiuiieiiiiieiiiccceccceeeeenennees 17-4
17.1.3.2 View Ports and ADF ReZIONSc.coeiuiiiiiieieiiccie 17-5
17.1.3.3 Security and ADF RegIONSccccceueuiiiiiiiiiiiiiiiiiciccceees 17-5
17.1.3.4 Parent Page Determines the Capabilities of an ADF Regionc.ccccceueueenene. 17-5
17.2 Creating an ADF ReGION.......ccccooiiiiiiiiiii e 17-6
17.2.1 How to Create an ADF Region ... 17-6
17.2.2 What Happens When You Create an ADF Regioncccccocoeiiicccccccncccnnnne. 17-7

XXi

18

XXii

17.3 Specifying Parameters for an ADF Region..........ccccouoviiiiiiiiiiiiiicc 17-8

17.3.1 How to Specify Parameters for an ADF Region..........ccccoorueiiiiiieiiiiicieicce 17-9
17.3.2 What Happens When You Specify Parameters for an ADF Region.......................... 17-9
17.4 Specifying Parameters for ADF Regions Using Parameter Maps........c.c.cccccoeeuerninunen. 17-10
17.4.1 How to Create a Parameter Map to Specify Input Parameters for an ADF Region
17-10
17.4.2 What Happens When You Create a Parameter Map to Specify Input Parameters............
17-11
17.5 Refreshing an ADF RegIONcccooouiiiiiiiiiiiic 17-12
17.5.1 How to Configure the Refresh of an ADF Regioncccocovvimiiieiiiciciiiicee, 17-13
17.5.2 What You May Need to Know About Refreshing an ADF Region..........c.cccc........ 17-14
17.6 Configuring Activation of an ADF Regionccccooeemiiiiieiiiiiiieiccie 17-15
17.6.1 How to Configure Activation of an ADF Region.........cccceovoimieiiiiiicciciiccee 17-15
17.6.2 What Happens When You Configure Activation of an ADF Region 17-16
17.7 Navigating Outside an ADF Region's Task FIOWcccccoeviiiiiiiiiii, 17-18
17.7.1 How to Trigger Navigation Outside of an ADF Region's Task Flow 17-18
17.7.2 What Happens When You Configure Navigation Outside a Task Flow 17-19
17.8 Configuring Transaction Management in an ADF Region..........cccccocoveieiiiiciiiininnnne. 17-19
17.9 Creating ADF Dynamic ReIONScccocoviiiiiiiiiiiiiiiiii e 17-21
17.9.1 How to Create an ADF Dynamic Region ..o, 17-22
17.9.2 What Happens When You Create an ADF Dynamic Region............cccoeveiirunnnnee. 17-23
17.10 Adding Additional Task Flows to an ADF Dynamic Region............ccccoeeveiriinininnnnn. 17-24
17.10.1 How to Create an ADF Dynamic Region Link........ccccccccoiiiiiiiiiiiniie, 17-25
17.10.2 What Happens When You Create an ADF Dynamic Regionccoccvevirnnnnnee. 17-25
17.11 Configuring a Page To Render an Unknown Number of Regions.............ccccceeueenncen. 17-26
17.11.1 How to Configure a Page to Render an Unknown Number of Regions................ 17-27

17.11.2 What Happens When You Configure a Page to Render an Unknown Number of
Regions 17-28

17.11.3 What You May Need to Know About Configuring a Page to Render an Unknown
Number of Regions 17-28

Creating Complex Task Flows

18.1 Introduction to Complex Task FIOWS.........cccccovviiiiiiiiininininiiiiiicccccccccenee 18-1
18.2 Using Initializers and FINAliZErsc.ccooviiiiiiiiiiiicccccceececeeee s 18-2
18.3 Sharing Data Controls Between Task FIOWS........c.cccooiiiiiiiiiiiiie 18-2
18.3.1 How to Share a Data Control Between Task FIows...........ccccccceiiiiiiiiiiiiicnnee 18-3
18.3.2 What Happens When You Share a Data Control Between Task Flows.................... 18-3
18.3.3 What Happens at Runtime: How Task Flows Share Data Controls.......................... 18-4
18.4 Managing Transactions ... 18-4
18.4.1 How to Enable Transactions in a Bounded Task FIowcccccoooovviiiiiinninnnn. 18-6
18.4.2 What Happens When You Specify Transaction Options ..o, 18-8

18.4.3 What You May Need to Know About Sharing Data Controls and Managing
Transactions 18-8

18.4.3.1 Creating Completely Separate Transactionscccoceeeeverevvenrernnnnrerenceecnns 18-9
18.4.3.2 Guaranteeing a Called Bounded Task Joins an Existing Transaction.............. 18-11
18.4.3.3 Using an Existing Transaction if Possible..........ccccccovviiniiniiiiiiiiicnees 18-12

18.4.4 What You May Need to Know About ADF Business Component Database
Connections and Task Flow Transaction Options 18-13

18.5 Reentering a Bounded Task FIOWccccooiiiiiiiiiiiiiii s 18-14

18.5.1 How to Set Reentry Behavior ..o 18-14
18.5.2 How to Set Outcome-Dependent Optionscccccceeueueueurviverrnnnnnrreerreeenes 18-15
18.5.3 What You Should Know About Managed Bean Values Upon Task Flow Reentry
18-16
18.6 Executing a Bounded Task Flow Directly From a JSF Pagecccoooeveivirnieiiiiciennee. 18-16
18.7 Handling Exceptions in Task FIOWS.........ccccooiiiiiiiiiiiiiiiccicccceccceeeeenenenene 18-16
18.7.1 How to Designate an Activity as an Exception Handler ..o, 18-17
18.7.2 What Happens When You Designate an Activity as an Exception Handler-......... 18-18
18.7.3 How to Designate Custom Code as an Exception Handler..........cccccccooennnnnnne. 18-18
18.7.4 What Happens When You Designate Custom Code as an Exception Handler 18-19
18.7.5 What You May Need to Know About Handling Exceptions During Transactions
18-19
18.7.6 What You May Need to Know About Handling Validation Errors 18-20
18.8 Configuring Your Application to Use Save Pointscccooiirieiiiiciciiiic 18-20
18.8.1 How to Configure Your Fusion Web Application to Use Save Points 18-20
18.8.2 What Happens When You Configure a Fusion Web Application to Use Save Points......
18-21
18.8.3 What You May Need to Know About the Database Table for Save Points 18-21
18.9 Using Save Points in Task FIOWScccoeiiiiiiiii e, 18-22
18.9.1 How to Add a Save Point to a Task FIOWccccooviiiiiiiiiiicce, 18-23
18.9.2 What Happens When You Add Save Points to a Task Flow.........cccoeviiiinnnnee. 18-24
18.9.3 How to Restore a Save POiNt ... 18-24
18.9.4 What Happens When You Restore a Save Point...........cccccocoeiivcicccicccccicnnne. 18-24
18.9.5 How to Use the Save Point Restore Finalizercccocovvniiiiininnnn, 18-25
18.9.6 What Happens When a Task Flow Invokes a Save Point Restore Finalizer 18-25
18.9.7 How to Enable Implicit Save POINES........cccccccuiiiiiiiniiiicececeeeccereeeeeenes 18-25
18.9.8 What You May Need to Know About Enabling Implicit Save Points 18-26
18.9.9 What You May Need to Know About the Time-to-Live Period for a Save Point 18-26
18.10 Minimizing the Number of Active Root View Ports in an Applicationcccccc...... 18-27
18.10.1 How to Minimize the Number of Active Root View Portscccooviriiiinnnnnns 18-27
18.10.2 What Happens When You Minimize the Number of Active Root View Ports 18-28
18.11 Creating a Train ... 18-28
18.11.1 Bounded Task FIows as TTainsccccoevviiiniiiniiinininiiiiii e 18-29
18.11.2 Train SEQUENCESccooviviiiiiiciic s 18-31
18.11.3 How to Create a Train ..o 18-32
18.11.4 What You May Need to Know About Grouping Activities ..o, 18-33
18.11.5 What You May Need to Know About Grouping Activities in Child Task Flows. 18-35
18.11.6 What You May Need To Know About Using Child Trainsc.ccccccccveeccucuennne. 18-36
18.11.7 What You May Need to Know About Branching ..., 18-36
18.12 Running Multiple Task FIOWSccooiiiiiiiiiiiiiiiccccceecees 18-37
18.12.1 Understanding How the ViewPortInstance Works in ADF Regions...................... 18-38
18.13 Creating a Task Flow Template ..o 18-38
18.13.1 How to Copy and Reference a Task Flow Templatec.cccocoovieiniriiiiiccennnen. 18-39
18.13.2 How to Create a Task Flow Template from Another Task Flow..........ccccccceceenie. 18-41
18.13.3 How to Use a Task Flow Templatecccccoeeiiiiiiiiiiiiiinn 18-41
18.13.4 How to Create a Task Flow Templateccccooevviiiiininiiiicceccecc, 18-42

xXiii

19

18.13.5 What Happens When You Create a Task Flow Template..........cccccooviiiiinnnnne. 18-42
18.13.6 What You May Need to Know About Task Flow Templates That Use Bindings = 18-43

18.14 Creating a Page HIerarchy ..o e 18-43
18.14.1 How to Create a Page Hierarchy ... 18-45
18.14.1.1 How to Create an XMLMenuModel Metadata File...........ccccoooviiiiinnnn 18-46
18.14.1.2 How to Create a Submenu with a Hierarchy of Group and Child Nodes...... 18-47
18.14.1.3 How to Attach a Menu Hierarchy to Another Menu Hierarchy 18-48
18.14.2 What Happens When You Create a Page Hierarchy........ccccooovviiiniinnnnnnnn 18-48
18.15 Using BPEL With Task FLOWS ... 18-50
18.15.1 How to Invoke a BPEL Process from a Task FIOW ..o, 18-50
18.15.2 How to Call a Bounded Task Flow from BPELcccccccoviiinniinniiiinnn 18-50
18.16 Reporting Incidents to the Oracle Fusion Middleware Diagnostic Framework........... 18-51

18.16.1 How to Configure the Number of Events to Report to the Diagnostic Framework
18-51

18.16.2 What Happens When You Configure the Number of Events to Report to the
Diagnostic Framework 18-52

Using Dialogs in Your Application

19.1 Introduction to Using Dialogs in Your Applicationccccoovieniiiiiiecicccicecc, 19-1
19.2 Running a Bounded Task Flow in a Modal Dialog........c.cccccccociueiiiinniiiccicccnene 19-1
19.2.1 How to Run a Bounded Task Flow in a Modal Dialogccccccueveiirieiiiiriciine 19-2
19.2.2 How to Return a Value From a Modal Dialogccccoueeriiiiiiiieieiccecce 19-2
19.2.3 What You May Need to Know About Running a Bounded Task Flow in a Modal
Dialog 19-3
19.3 Using the ADF Faces Dialog Framework ..o 19-4
19.3.1 How to Define a JSF Navigation Rule for Opening a Dialog............cccoceveirruerennnee. 19-8
19.3.2 How to Create the JSF Page That Opens a Dialogc.cccccoevceiicccccccciccccnennes 19-8
19.3.3 How to Create the Dialog Page and Return a Dialog Valueccccccooeueiinnnnnne. 19-10
19.3.4 What Happens at Runtime: Raising the Return Event from the Dialog................. 19-11
19.3.5 How to Pass a Value into a Dialog........c.ccccvceuiiiiiieiiiiininiieecrccceeeeeeeeeseeeaes 19-12
19.3.6 What Happens at Runtime: Handling the LaunchEventcccocoviiininnn 19-13
19.3.7 How to Handle the Return Value..........ccccccoouviiiniiiininniiinnncccccces 19-13
19.3.8 What Happens at Runtime: Handling the ReturnEvent on the Launching Component..
19-14

Part IV Creating a Databound Web User Interface

20

XXiv

Getting Started with Your Web Interface

20.1 Introduction to Developing a Web Application with ADF Faces........cccccccccceeucicucncnnee. 20-1
20.2 Using Page Templates ...t s 20-1
20.2.1 How to Use ADF Data Binding in ADF Page Templatesccccccceevvvnnnninincnnes 20-3
20.2.2 What Happens When You Use ADF Model Layer Bindings on a Page Template. 20-5
20.2.3 How to Add a Databound Page Template to a Page Dynamically...........cccccoce... 20-6
20.2.4 What Happens at Runtime: How Pages Use Templates...........cccccoeevvirriiieicinnnnne. 20-7
20.3 Creatinga Web Pageccccocoiiiiiiiiiiiiiiicc s 20-7
20.4 Using a Managed Bean in a Fusion Web Application..........cccooviiiiiiniiiiiciciennen, 20-8
20.4.1 How to Use a Managed Bean to Store Information...........ccccccceevviininnnnnnnnnes 20-10

21

22

20.4.2 What Happens When You Create a Managed Bean...........cccooooiiiiiinninnnnnnn. 20-12

20.4.3 How to Set Managed Bean Memory Scopes in a Server-Cluster Environment 20-13
Understanding the Fusion Page Lifecycle

21.1 Introduction to the Fusion Page Lifecycle..........ccccccoiiiiiiiiiiiiiiiiiccen, 21-1
21.2 The JSF and ADF Page LifeCycles ... 21-3
21.21 What You May Need to Know About Using the Refresh Property Correctly......... 21-7
21.2.2 What You May Need to Know About Task Flows and the Lifecycle........................ 21-9
21.3 ODbject SCOPE LIECYCLESoviiiiiiiiiicieiccc e 21-10
21.3.1 What You May Need to Know About Object Scopes and Task Flows.................... 21-12
21.4 Customizing the ADF Page Lifecycleccooviiiiiiniiinniinincnes 21-13
21.41 How to Create a Custom Phase Listener..........c.cccooooviiniiiniiiiiie, 21-13
21.4.2 How to Register a Listener Globallycooooiiiiiiiiiii 21-14
21.4.3 What You May Need to Know About Listener Ordercccoviviviiiiiiinnnns 21-14
2144 How to Register a Lifecycle Listener for a Single Page.........cccocevvvrnnnnnncncncnnes 21-15
Creating a Basic Databound Page

22.1 Introduction to Creating a Basic Databound Page..........cccccecevuvvirrrnnnnnnnnnnrccnes 22-1
22.2 Using Attributes to Create Text Fields........ccooooiiiiiii 22-2
22.2.1 How to Create a Text Field ... 22-2
22.2.2 What Happens When You Create a Text Field ... 22-4
22.2.2.1 Creating and Using Iterator Bindings ..., 22-4
22222 Creating and Using Value Bindingscccoooooiiiiiiiice, 22-5
22.2.2.3 Using EL Expressions to Bind Ul Componentscccccccceeeeeieievnnciceeennenes 22-5
22.3 Creating a Basic FOIM........ccoovoiiiiiiii e 22-7
22.3.1 How to Create @ FOIm ... 22-7
22.3.2 What Happens When You Create @ FOIM ..o 22-8
22.4 Incorporating Range Navigation into FOrms ..., 22-9
22.41 How to Insert Navigation Controls into @ FOrm.........cc.coooeiiiii, 22-10
2242 What Happens When You Create Command Buttons.............ccceeeevviccciincnenee 22-10
22.4.2.1 Action Bindings for Built-in Navigation Operationscccooceeieiiiiiinnnen, 22-11
22,422 Iterator RangeSize Attributecccoovviiiiiiiniiiiiiiiccccccce 22-11
22.4.2.3 EL Expressions Used to Bind to Navigation Operations...........cccccococueueccnnes 22-12
22.4.3 What You May Need to Know About Automatic Partial Page Rendering............ 22-14
22.4.4 What Happens at Runtime: How Action Events and Action Listeners Work 22-14

22.45 What You May Need to Know About the Browser Back Button and Navigating
Through Records 22-15

22,5 Creating a Form to Edit an Existing Recordcocoorieiiiiiiiiiiiicce 22-15
22.5.1 How to Create Edit FOImMScccccceiiiiiiiiiiiiiiiiicaes 22-15
2252 What Happens When You Use Built-in Operations to Change Data 22-17
22.6 Creating an Input FOIM ..o 22-19
22.6.1 How to Create an Input Form Using a Task FIOWccccooeiiiiiiiiniiice, 22-19
22.6.2 What Happens When You Create an Input Form Using a Task Flow.................... 22-20
22.6.3 What Happens at Runtime: Createlnsert Action from the Method Activity 22-21
22.6.4 What You May Need to Know About Displaying Sequence Numbers.................. 22-22
22.7 Using a Dynamic Form to Determine Data to Display at Runtime.............ccoeeuennine 22-22

XXV

23

24

XXVi

22.7.1 How to Use Dynamic FOImMS.......cccccoieiiiiiiiiiiiiiiiiiii s 22-23

22.7.2 What Happens When You Use Dynamic Components.............cccceeevreieiiircnennnee. 22-24

22.7.3 What Happens at Runtime: How Attribute Values Are Dynamically Determined
22-24

22.7.4 What You May Need to Know About Converters for Dynamic Forms.................. 22-25

22.8 Modifying the Ul Components and Bindings on a Formcccccoooiin 22-25

22.8.1 How to Modify the UI Components and Bindings..........cccccocvvevevnrnnnncninncnccncnes 22-25

22.8.2 What Happens When You Modify Attributes and Bindings............cccooeeveiinnnnnne. 22-26

Creating ADF Databound Tables

23.1 Introduction to Adding Tablescccooiiiiiiiii e 23-1
23.2 Creating a Basic Tablec.coooiiiiiii s 23-2
23.2.1 How to Create a Basic Table........ccccccooiiiiiiiiiiiiicces 23-2
23.2.2 What Happens When You Create a Tablecccoooiiiiiiiiiiicccce 23-4
23.2.2.1 Iterator and Value Bindings for Tablesc.cccooooiiii 23-4
23.2.2.2 Code on the JSF Page for an ADF Faces Tablecccccccceciiiiiicincccene 23-5
23.2.3 What You May Need to Know About Setting the Current Row in a Table.............. 23-8
23.3 Creating an Editable Tablec.cccooiiiiiii e 23-10
23.3.1 How to Create an Editable Table..........cccccoocoiiiiiiiiiic, 23-11
23.3.2 What Happens When You Create an Editable Tablecccocooviiiiiiniinnnnen, 23-13
23.4 Creating an Input Table ..o 23-13
23.41 How to Create an Input Table..........cccccoiiiiiiiiiiiiiiceeceeeeeeeeeeeeeeeeaes 23-13
23.4.2 What Happens When You Create an Input Tableccccoovin, 23-14
23.4.3 What Happens at Runtime: How Createlnsert and Partial Page Refresh Work... 23-15
23.4.4 What You May Need to Know About Creating a Row and Sorting Columns...... 23-15
23.4.5 What You May Need to Know About Create and Createlnsertc.cccccoeee... 23-16
23.5 Creating a List View of @ ColleCtion...........ccccovirieieiiiiiiiicc 23-16
23.5.1 How to Create a Databound List VIEW ..o, 23-17
23.5.2 What Happens When You Create a Databound List Viewcccccooviiinnnnen. 23-18
23.6 Providing Multiselect Capabilities............cccocoviiiiiiniiiiiiiiiie 23-19
23.6.1 How to Add Multiselect Capabilitiescccccocvcueeieiiiciiiniiiiicrcrcreeeerrecenes 23-20
23.6.2 What Happens at Runtime: How an Operation Executes Against Multiple Rows...........
23-22
23.7 Modifying the Attributes Displayed in the Table.ccccccccoviviviinnnnniiiiine 23-22
23.7.1 How to Modify the Displayed Attributesccccocoeieivvvinnniicreecreeenes 23-22
23.7.2 How to Change the Binding for a Table..........c.cccccoooiiiiiiii, 23-23
23.7.3 What Happens When You Modify Bindings or Displayed Attributes................... 23-23

Displaying Master-Detail Data

24.1 Introduction to Displaying Master-Detail Data...........cccccoeeueiirniiiiiiniiececcee 24-1
24.2 Identifying Master-Detail Objects on the Data Controls Panel............c.ccccccccevrnnnnnnn. 24-3
24.3 Using Tables and Forms to Display Master-Detail Objects...........ccccoeueiirieiiiinnieinnne 24-5
24.31 How to Display Master-Detail Objects in Tables and Forms..........ccccoovvvernrninnnen. 24-6
24.3.2 What Happens When You Create Master-Detail Tables and Forms 24-7
24.3.2.1 Code Generated in the JSF Page........cccoviiieieiiicic e 24-7
24.3.2.2 Binding Objects Defined in the Page Definition File............cccccccccciiiinnnnn. 24-8
24.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms...... 24-9

25

26

24.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate
Pages 24-10

24.4 Using Trees to Display Master-Detail Objects.........ccccceueiiimiiioiiiiciiiiccicccee 24-10
24.41 How to Display Master-Detail Objects in Trees...........ccccoviiiiiciiicccecicenenes 24-11
24.4.2 What Happens When You Create an ADF Databound Tree.........ccoovvriinnnnnnn. 24-14
24.4.2.1 Code Generated in the JSEPage........ccocouoiiiiiiiiiccc e, 24-14
24422 Binding Objects Defined in the Page Definition File............cccoooeoiiiiiinnes 24-15
24.4.3 What Happens at Runtime: Displaying an ADF Databound Tree 24-16
245 Using Tree Tables to Display Master-Detail Objectsccccoeuoiiiriiiiiiiiiiiie 24-16
2451 How to Display Master-Detail Objects in Tree Tables..........c.cccooeoiiiiicciicncnnes 24-17
245.2 What Happens When You Create a Databound Tree Table............ccccooooviinnnnnn. 24-17
24.5.2.1 Code Generated in the J[SEPage........ccccouoiiiiiiciicc e, 24-17
24522 Binding Objects Defined in the Page Definition File............cccccooeoiiiiincnes 24-18
24.5.3 What Happens at Runtime: EVents ..., 24-18
24.5.4 Using the Targetlterator Property ... 24-19
246 Using List Views to Display Master-Detail Objects............ccccoeiiiiiiiiincicciiecnenes 24-20
24.6.1 How to Display Master-Detail Objects in List VIEWS..........cccooeiiiiiiiiiiiiiinnes 24-20
24.6.2 What Happens When You Create a Master-Detail List View ..o, 24-21
24.7 Using Selection Events with Trees and Tablesccccccceeuiviiiinnnnnrrrccnreeae 24-22
24.71 How to Use Selection Events with Trees and Tables ..o 24-22
24.7.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events........ 24-24
Creating Databound Selection Lists and Shuttles

25.1 Introduction to Selection Lists and Shuttlescccccoeviiiiiiiiniiiii 25-1
25.2 Creating List of Values (LOV) ...c.ccoooiiiiiicreccrrcce s 25-2
25.2.1 How to Create an LOV ... 25-7
25.2.2 What Happens When You Create an LOV ... 25-8
25.3 Creating a Selection List.........ccccccoviiiiiiiiiiiicc s 25-9
25.3.1 How to Create a Single Selection Listcocooiiiiiiiiiiii, 25-11
25.3.2 How to Create a Model-Driven List.........cccccoviviiiiniiniiccces 25-11
25.3.3 How to Create a Selection List Containing Fixed Valuesccccccceoevvvnninnencne. 25-13
25.3.4 How to Create a Selection List Containing Dynamically Generated Values......... 25-14
25.3.5 What Happens When You Create a Model-Driven Selection List...............ccc........ 25-15
25.3.6 What Happens When You Create a Fixed Selection List.........cccooeeiiiciiincnnne. 25-15
25.3.7 What You May Need to Know About Values in a Selection Listcocco....... 25-16
25.3.8 What Happens When You Create a Dynamic Selection List..........ccccccccoeciiiinnnnnn. 25-16
25.4 Creating a List with Navigation List BINding..........ccccooiviiiiiiiiiccicciccnes 25-18
25.5 Creating a Databound Shuttle..........ccccooiiii 25-18
Creating Databound ADF Data Visualization Components

26.1 Introduction to Creating ADF Data Visualization Componentsccccceeuvrriereinnnen. 26-1
26.2 Creating Databound Charts ... 26-3
26.2.1 How to Create an Area, Bar, Combination, or Line Chart Using Data Controls 26-6
26.2.2 What Happens When You Use the Data Controls Panel to Create a Chart........... 26-10
26.2.3 How to Create Databound Funnel Chartsccccccovviviiiinnninincne 26-10
26.2.4 How to Create Databound Pie Charts ..o, 26-12

XXVii

XXViii

26.2.5 Creating a Databound Spark Chart Using Data Controlsccccoceevviiniiininnnnn. 26-15

26.2.6 How to Create Databound Bubble and Scatter Charts............cccooooeiiiiiiin, 26-16
26.2.7 What You May Need to Know About Using Attribute Labels............cccccccceenneeee. 26-22
26.3 Creating Databound Graphs..........cccoooiiiiiiiiiiiic s 26-23
26.3.1 How to Create a Stock Graph Using Name-Value Pairs..........ccccooovoeiiiiiiinnnn. 26-24

26.3.2 What You May Need to Know About Using a Graph’s Row Selection Listener for
Master-Detail Processing 26-26

26.3.3 What You May Need to Know About Using Name-Value Pairsccccccoc...... 26-27
26.4 Creating Databound Gauges...........cccocueviiurieiiiiicicc s 26-28
26.4.1 How to Create a Databound Dial Gaugec.cccceeueuiicirvinvinnnrcrnnenereeeees 26-30
26.4.2 What Happens When You Create a Dial Gauge from a Data Control.................... 26-32
26.4.3 How to Create a Databound Rating Gaugecccocooeviiiiiiiiiiiiiccccnas 26-33
26.4.4 Including Gauges in Databound ADF Tablescccccccceeviiiicnnncnnrccrcenes 26-35
26.4.4.1 How to Include a Gauge in a Databound ADF Table............cccccooiiiiiiiinnnnnen. 26-36
26.4.4.2 What Happens When You Include a Gauge in an ADF Table.......................... 26-38
26.5 Creating Databotund NBOXES.........ccccccciuiiiiiiiiiiiiiiiiicicieirccceee e 26-39
26.5.1 How to Create an NBox Component Using ADF Data Controlscccccovuruenee. 26-40
26.5.2 What Happens When You Create a Databound NBOXcccccoooviiiiiiiiiiiii 26-46
26.5.2.1 Bindings for NBox COMPONENtSccceueuiueuririreiiiiiriniiirereeeeresee e 26-46
26.5.2.2 Editing the NBox BiNdingc.coooviiiiioiiii e, 26-47
26.5.2.3 Code on the JSF Page for an NBox Component...........cccovuvvvninniiinnnnnnnnes 26-48
26.5.2.4 Modifying NBox Properties and Layout..........cccoceevvviinnnnnnnnnnnrccnes 26-49
26.6 Creating Databound Pivot Tablesccccooeiiiiiiiiii 26-49
26.6.1 How to Create a Pivot Table ... 26-51
26.6.2 What Happens When You Use the Data Controls Panel to Create a Pivot Table. 26-61
26.6.2.1 Bindings for Pivot Tables ... 26-61
26.6.2.2 Code on the JSF Page for a Pivot Table and Pivot Filter Bar...............c.c........... 26-62
26.6.3 What You May Need to Know About Aggregating Attributes in the Pivot Table 26-62
26.6.3.1 Default Aggregation of Duplicate Data ROWS........ccccovoiirieiiiinciciicie, 26-63
26.6.3.2 Custom Aggregation of Duplicate ROWSccooooeieieiiiiiiii, 26-63
26.6.4 What You May Need to Know About Specifying an Initial Sort for a Pivot Table
26-64

26.7 Creating Databound Geographic Maps...........ccocoeuiiiiiiiiiiiiiiiiiicccc e 26-65
26.7.1 How to Create a Geographic Map with a Point Theme............ccccooovviiinnnn. 26-66
26.7.2 How to Create Point Style Items for a Point Theme.........ccccccccceiiiiinnnnnnnne 26-69
26.7.3 What Happens When You Create a Geographic Map with a Point Theme........... 26-70
26.7.3.1 Binding XML for a Point Themeccccccevviviinnniininiceccccece 26-71
26.7.3.2 XML Code on the JSF Page for a Geographic Map and Point Theme 26-71

26.7.4 What You May Need to Know About Adding Custom Point Style Items to a Map Point
Theme 26-72

26.7.5 How to Add a Databound Color Theme to a Geographic Map.........ccccceovevruennnee. 26-72
26.7.6 What Happens When You Add a Color Theme to a Geographic Map 26-75
26.7.6.1 Binding XML for a Color Theme..........c.cccoviriiiiiiiiie e, 26-75
26.7.6.2 XML Code on the JSF Page for a Color Themeccccccovuvivvnnnnnnninncnnes 26-75
26.7.7 What You May Need to Know About Customizing Colors in a Map Color Theme..........
26-76
26.7.8 How to Add a Databound Pie Graph Theme to a Geographic Map...........ccccco..... 26-76
26.7.9 What Happens When You Add a Pie Graph Theme to a Geographic Map 26-78

26.7.9.1 Binding XML for a Pie Graph Theme............cccoooiiiiiiiie, 26-78

26.7.9.2 Code on the JSF Page for a Pie Graph Theme ..o, 26-78
26.8 Creating Databound Thematic Maps.......c.ccccccceueuiiiiiinirniiicrecsrereceeeeseseeees s 26-78
26.8.1 How to Create a Thematic Map Using ADF Data Controls..........cccccoorieieiinnnen. 26-79
26.8.2 What Happens When You Use Data Controls to Create a Thematic Map............. 26-86
26.8.3 How to Add Data Layers to Thematic Maps.......cccccceeueueuruvriernnnrnrncnererceeenes 26-89
26.8.4 Styling Areas, Markers, and Images to Display Data..........c.cccoooiiiiin, 26-93
26.8.4.1 How to Style Areas to Display Datac.cccooeeieiiiiciiiiiicccce, 26-93
26.8.4.2 How to Style Markers to Display Data.........c.cocoevrnnniinininciiiccccccccnes 26-96
26.8.4.3 What You May Need to Know About Styling Markers.........c.ccccoooeeiniinnnnen 26-103
26.8.4.4 What You May Need to Know About Default Style Values for Attribute Groups
26-104
26.8.4.5 How to Use Images to Display Data.........cccccoevinniiiiiniiiiiicniiicns 26-105
26.8.4.6 What You May Need to Know About SVG Files........cccoooiiiiiiiniiinin, 26-108
26.8.5 What You May Need to Know About Base Map Location Idscccccoceueinne. 26-109
26.8.6 What You May Need to Know About Configuring Master-Detail Relationships
26-110
26.8.7 How to Define a Custom Map Layer ... 26-110
26.8.8 How to Configure Drilling in Thematic Mapsccccoeevoirieiiiiiicieiccieccc, 26-114
26.8.9 Creating Databound Legends..........c.cccccceeviriiiiiiiiiinicrcrcccreeeeec s 26-116
26.9 Creating Databound Gantt Charts ..., 26-119
26.9.1 How to Create a Databound Project Gantt Chart ... 26-120

26.9.2 What Happens When You Create a Project Gantt Chart from a Data Control ... 26-123
26.9.3 What You May Need to Know About Summary Tasks in a Project Gantt Chart 26-125
26.9.4 What You May Need to Know About Percent Complete in a Project Gantt Chart...........

26-125
26.9.5 What You May Need to Know About Variance in a Project Gantt Chart............ 26-126
26.9.6 How to Create a Databound Resource Utilization Gantt Chart ... 26-127
26.9.7 What Happens When You Create a Resource Utilization Gantt Chart................ 26-128
26.9.8 How to Create a Databound Scheduling Gantt Chart............cccccevvivninnnnenne. 26-130
26.9.9 What Happens When You Create a Scheduling Gantt Chartccccovnnnen. 26-133
26.10 Creating Databound Timelines...........ccccccceiiiiiiiiiiiiiiiniiiicsas 26-134
26.10.1 How to Create a Timeline Using ADF Data Controls...........ccccceevuverrnnnrncnecnee 26-136
26.10.2 What Happens When You Use Data Controls to Create a Timeline..................... 26-141
26.10.3 What You May Need to Know About Using Data Controls to Create a Dual Timeline...
26-143
26.11 Creating Databound Hierarchy VIEWers.........cccccccceriiiiinnniiirccceeeeeeceeeeenes 26-144
26.11.1 How to Create a Databound Hierarchy Viewer............ccoocoiiiiiiiiiicn 26-145
26.11.2 What Happens When You Create a Databound Hierarchy Viewer 26-154
26.11.3 How to Configure an Alternate View Object for a Databound Panel Card......... 26-156
26.11.3.1 What Happens When You Use an Alternate View Object for a Hierarchy Viewer
Panel Card 26-160

26.11.4 How to Create a Databound Search in a Hierarchy Viewer..........c..cccoooevnvinnnne. 26-162
26.12 Creating Databound Treemaps and SUNDUISESccccceucueiriririiiierrrcrrreecreene 26-166
26.12.1 How to Create Treemaps and Sunbursts Using ADF Data Controls.................... 26-168
26.12.2 What Happens When You Create a Databound Treemap or Sunburst................ 26-174

26.12.3 What Happens at Runtime: How Databound Sunbursts or Treemaps Are Initially
Displayed 26-176

XXiX

27

28

XXX

26.13 Creating Databound Diagrams.........cccceueiimieiiiiiiiieiiicii e 26-178

26.13.1 How to Create a Diagram Using ADF Data Controls........c.cccooereiiiiicieiiicinnnen, 26-180
26.13.2 What Happens When You Create a Databound Diagram...........c.cccccoceceiinennee. 26-190
26.13.2.1 Bindings for Diagram Components.............ccocueveiimicieiiiicieinice e 26-191
26.13.2.2 Code on the JSF Page for a Diagram Component...........ccccccovvinvniniiinnincnnes 26-191
26.13.2.3 Default Client Layout Files and Locationc.ccceceevvencnnnncncncncnnnecees 26-192
26.13.2.4 Modifying Diagram Properties and Layoutc.ccooeviiiiiiiicini 26-192

Creating ADF Databound Search Forms

27.1 Introduction to Creating Search FOImSccoooiiiiiiiiiiii 27-1
27141 Query Search FOIMS ... e 27-2
27.1.2 Quick Query Search FOIMScoviiiriiinicc e 27-11
271.3 Named Bind Variables in Query Search Formscccooooiiiiiiiiiic 27-12
2714 Filtered Table and Query-by-Example Searches..............cccooeviiiiiiiiiiicciciiica, 27-13
27.1.5 Implicit and Named View Criteria.........cccocvveeririrrrnnirinninieeccccccceceeenenes 27-15
27.1.6 List of Values (LOV) Input Fields.........cccccoiiiiinniiniiccicce 27-15
27.2 Creating Query Search FOImS..........cccooiiiiiiiiiiic s 27-16
27.21 How to Create a Query Search Form with a Results Table or Tree Table.............. 27-16
27.2.2 How to Create a Query Search Form and Add a Results Component Later-......... 27-17
27.2.3 How to Persist Saved Searches into MDS ..o 27-18
27.2.4 How to Set Default Search Binding Behavior..........cccccccevuvviinnninnnninrecnes 27-18
27.2.5 What You May Need to Know About Dependent Criterion...........c.cccoooceveiinnnnen. 27-20
27.2.6 What Happens When You Create a Query Form ..o, 27-20
27.2.7 What Happens at Runtime: Search FOrms...........cocoovviiiniiiniiciiccccccccenees 27-22
27.3 Setting Up Search Form Properties ... 27-22
27.31 How to Set Search Form Properties on the View Criteriacccccoovvvinininnninnnes 27-23
27.3.2 How to Add Placeholder Text, Label, and TOOIPccccceueueuiieuiviviciircrenes 27-24
27.3.3 How to Set Search Form Properties on the Query Component...........cccccoevvnienne 27-24
27.3.4 How to Set Timezone Control Hint for Timestamp Attribute...........ccccocoeoeeeii. 27-25
27.3.5 How to Create Custom Operators or Remove Standard Operators 27-26
27.4 Creating Quick Query Search FOImMS ..o 27-28
27.41 How to Create a Quick Query Search Form with a Results Table or Tree Table.. 27-29
2742 How to Create a Quick Query Search Form and Add a Results Component Later
27-29
27.4.3 How to Set the Quick Query Layout Format..........ccooooueviiiiiiiiiic 27-30
27.4.4 What Happens When You Create a Quick Query Search Form...........cccovnneee. 27-30
27.45 What Happens at Runtime: Quick QUETY ..o 27-30
27.5 Creating Standalone Filtered Search Tables from Named View Criteria...................... 27-31

Creating More Complex Pages

28.1 Introduction to More Complex Pages.........cccovuiimiiiiiiiiiiiiiiiiiiiiiiciceeeeeeeeees 28-1
28.2 Creating Command Components to Execute Methodsc.ccocorniiiiiiiiiinnn 28-2
28.2.1 How to Create a Command Component Bound to a Custom Method 28-2
28.2.2 What Happens When You Create Command Components Using a Method 28-3
28.2.2.1 Defining Method Action Binding...........cccccceueuiiiiininiiiinniiiiniiicncccene 28-3
28.2.2.2 Using Parameters in @ Method ... 28-3
28.2.2.3 Adding ADF Faces Component Code to JSF Pagecccccecevviviiinnninnnicnnn 28-4

29

28.2.2.4 Using EL Expressions to Bind to Methods ... 28-4

28.2.2.5 Using the Return Value from a Method Call...........ccccooiiiie, 28-4
28.2.3 What Happens at Runtime: Command Button Method Bindingsc.cccccceueuueee. 28-5
28.3 Setting Parameter Values Using a Command Componentcccccoooeueeiniiciniiincnnnns 28-5
28.3.1 How to Set Parameters Using setPropertyListener Within a Command Component......
28-6

28.3.2 What Happens When You Set Parameters ... 28-6
28.3.3 What Happens at Runtime: setPropertyListener for a Command Component 28-7
28.4 Overriding Declarative Methods...........cocooiiii e 28-7
28.4.1 How to Override a Declarative Method ..o, 28-7
28.4.2 What Happens When You Override a Declarative Method...........ccccocoeiiinnne. 28-10
28.5 Using the ADF Faces Calendar Componentococeueuiiriciniiiccieeiccieeceee s 28-11
28.5.1 How to Use the ADF Faces Calendarccccooviiiiiiiiniiiiiceen, 28-13
28.5.2 What Happens When You Create a Calendar...........cccocovviviviiniiiiinnccnnen, 28-15
28.5.3 What Happens at Runtime: How the Calendar Binding Workscccccccoevenne 28-17
28.6 Using the ADF Faces Carousel COMPONENt...........cccoveieiiiiniiiiiiicceccceeeeeenenes 28-17
28.6.1 How to Create a Databound Carousel Component..........cccccocouvivivinininnininnninnnnns 28-18
28.6.2 What Happens When You Create a Carousel ..o, 28-20
28.7 Creating Contextual EVENts.........ccccccccciiiiiiiiiiiiccccrceeeeecreere s 28-21
28.7.1 How to Create Contextual Events Declarativelycccocooeiiiiiiiiiiinie 28-24
28.7.1.1 Creating Contextual Events in the Publisher ..., 28-24
28.7.1.2 Subscribing to and Consuming EVentscccccocovvvvvinnnnnnnnnecccees 28-26
28.7.2 How to Create Contextual Events Manually ... 28-27
28.7.3 How to Create Contextual Event Using Managed Beans............ccccooeiiiine. 28-29
28.7.4 How to Create a Contextual Event from JavaScript........ccccoooiiniiiniioicncciicncenes 28-31
28.7.5 How to Manually Create the Event Map ..o 28-31
28.7.6 How to Register a Custom Event Dispatcher..........cccoooiiiiiii 28-32
28.7.7 What Happens When You Create Contextual Events...........cooveiiiiinciiinncnne. 28-32
28.7.8 How to Control Contextual Events Dispatch ..o 28-33
28.7.9 What Happens at Runtime: Contextual Eventsccccoooiii 28-34
28.8 Adding ADF Model Layer Validationcccccccoiiiiiiiiiiiiiiicccccccceeeeeenenes 28-34
28.8.1 How to Add Validationccceeueviiiiiiiiniiiiiiccs 28-34
28.8.2 What Happens at Runtime: Model Validation Rules..........c.cccocoooviiiiiiiiiiinnnnn, 28-35
28.9 Displaying Error MESSAZES.c.coceueuimiuemiuiuiieieieieieieieieieieieaeeeieaeeeaeseeeeseseseesesessesasesssesesesesnas 28-35
28.10 Customizing Error Handling ..o 28-37
28.10.1 How to Customize the Detail Portion of a Message............cccooovuvvvernninccniieinncnen 28-38
28.10.2 How to Write an Error Handler to Deal with Multiple Threadsc.cccccccceeucce. 28-40
Designing a Page Using Placeholder Data Controls

29.1 Introduction to Placeholder Data COntrols..........ccccoovvviiiiiiiiiiiiiiiiicccnes 29-1
29.2 Creating Placeholder Data CONtrols..........cocoooueiiiiiiiiiii 29-2
29.2.1 How to Create a Placeholder Data Control............ccccoovivivininnnnnniiniiicnne 29-2
29.2.2 What Happens When You Create a Placeholder Data Controlccccccccecucnnnnee 29-3
29.3 Creating Placeholder Data TyPescccoouirueieiiicicieic e 29-4
29.3.1 How to Create a Placeholder Data Type........ccccovieeiiiniiieiniceececeees 29-5
29.3.2 What Happens When You Create a Placeholder Data Type.......ccccocoeeeuicccucncnnnee. 29-8
29.3.3 How to Configure a Placeholder Data Type Attribute to Be an LOV 29-9

XXXi

29.3.3.1
29.3.3.2
29.3.4
29.3.5
29.3.6
29.3.6.1
29.3.6.2
29.3.7
29.4
29.4.1
29.4.2
29.4.3
29.4.4
29.4.5
29.4.6

Configuring an Attribute to Be a Fixed LOV.......ccccccoiiiiiiiiiiic 29-9
Configuring an Attribute to Be a Dynamic LOVcccccccovviiiiniinnnn 29-10
How to Create Master-Detail Data TyPes......cccccccoeucueiiiiinniiicrrccrreeeeerecenes 29-11
What Happens When You Create a Master-Detail Data Type........c.ccccoeeueunnneen. 29-13
How to Add Sample Dataccccevuiiiiiiiiiniiiiiiiiiis 29-13
Adding Sample Data Manuallyccoviiiiiiiiiiiicccceececcccenenes 29-14
Importing Sample Dataccoooviiiiiii e, 29-15
What Happens When You Add Sample Datacccooiriiiiii 29-15
Using Placeholder Data CONIOLSccoviiiiririiiiiicciccccecccceecee e 29-16
Limitations of Placeholder Data Controls...........ccccooviiiiiiiiiiiiiccines 29-16
Creating Layout ..o 29-16
Creating a Search FOIM.........c.ccccciiiiiiiiiiiccecreece s 29-17
Binding COmMPONeNtscc.coviiiiieiiii e 29-17
Rebinding COMPONENLSc.oviuiieiiiecieieiceie e 29-17
Packaging Placeholder Data Controls to ADF Library JARSccccceevvevvrineenee. 29-17

PartV Completing Your Application

30 Enabling ADF Security in a Fusion Web Application

XXXii

30.1
30.1.1
30.1.2
30.2
30.3
30.3.1
30.3.2
30.3.3
30.3.4
30.3.5
30.3.6
30.3.7
30.4
30.4.1
30.4.2
30.4.3
30.5
30.5.1
30.5.2
30.5.3
30.5.4
30.5.5
30.5.6
30.5.6.1
30.5.6.2
30.5.7
30.5.8

Introduction to ADF SeCUTItYcceiiuiiiiiiiiiiiccciceeecee e 30-1
Integration of ADF Security and Java Security ... 30-3
Summary of ADF SECUIILYcooeviiiiiiieiice s 30-4

ADF Security Process OVEIVIEWccciiiiiiiiiiiiiniiciiic s 30-6

Enabling ADFE S@CUTIEYoocueueiiiiieiiiicicie s 30-9
How to Enable ADF Security ..o 30-9
What Happens When You Enable ADF Security........c.cocoeveeinineincciinccccccnne. 30-13
What Happens When You Generate a Default Form-Based Login Page................ 30-17
What You May Need to Know About the Configure ADF Security Wizard......... 30-18
What You May Need to Know About ADF Authenticationccccoeoviieennnee 30-18
What You May Need to Know About the Built-In test-all Roleccccocoeece.. 30-18
What You May Need to Know About the valid-users Role............ccccccoveuernnnncnen. 30-19

Creating Application ROIEScccccciiiiiiiiiiiiiiiiiciccreee s 30-19
How to Create Application Roles...........ccccoviiiiiiiiiiiiiiiiccc 30-20
What Happens When You Create Application Roles..........ccccoovreriiinninininnnnnn. 30-20
What You May Need to Know About Enterprise Roles and Application Roles... 30-21

Defining ADF Security POLCIES.ccooovuiieiiiieieiici s 30-21
How to Make an ADF Resource PUbIic..........ccccccoviviiiiininiininiiiiinnncnnnce 30-22
What Happens When You Make an ADF Resource Public...........ccccccoeciiiiinnne. 30-25
What Happens at Runtime: How the Built-in Roles Are Used..........cccccovrnnnnenee. 30-25
How to Define Policies for ADF Bounded Task FIows...........cccccoceuviinnniinnnnnes 30-26
How to Define Policies for Web Pages That Reference a Page Definition 30-29
How to Define Policies to Control User Access to ADF Methods...........cccccoevnee 30-33

Creating a Resource Grant to Control Access to ADF Methods....................... 30-33
Enforcing the Resource Grant in the User Interface...........cccocoevvvvvvnnnccnnee 30-34
What Happens When You Define the Security Policyccccocovieiiiiiiiiiiiina. 30-35
What Happens at Runtime: How ADF Security Policies Are Enforced.................. 30-36

30.5.9 What You May Need to Know About Defining Policies for Pages with No ADF
Bindings 30-37

30.5.10 How to Use Regular Expressions to Define Policies on Groups of Resources....... 30-38
30.5.11 How to Define Policies for Datacocovvvviiiiiiiiiiiiicccne 30-39
30.5.11.1 Defining Permission Maps on ADF Entity Objectscccccooireiiiiiiiiiininnne, 30-40
30.5.11.2 Defining Permission Maps on ADF Entity Object Attributes.............c............. 30-41
30.5.11.3 Granting Permissions on ADF Entity Objects and Entity Attributes 30-42
30.5.12 How to Aggregate Resource Grants as Entitlement Grants..............cccooeeinnnao. 30-43
30.5.13 What Happens After You Create an Entitlement Grantccccoooeiin, 30-45
30.6 Creating Test USErS.......cccoiiiiiiiiiiiiiiiiiiii s 30-47
30.6.1 How to Create Test Users in JDeveloper...........cccccovviviniviiininininininnn 30-47
30.6.2 What Happens When You Create Test Users.........cccooiirieieiiiicieiicc, 30-49
30.6.3 How to Associate Test Users with Application Roles...........cccooooiiiiiinciicncncnes 30-50
30.6.4 What Happens When You Configure Application Rolesccccccceevveiiiiinnnnnn 30-51
30.7 Creating a LOGIN Pagecccccouoiiiiiiiiii s 30-51
30.7.1 How to Create a Login Link Component and Add it to a Public Web Page for Explicit
Authentication 30-52
30.7.2 How to Create a Login Page Specifically for Explicit Authentication.................... 30-54
30.7.2.1 Creating Login Code for the Backing Beancccoooiiii, 30-55
30.7.2.2 Creating an ADF Faces-Based Login Page Specifically for Explicit Authentication ..
30-59
30.7.2.3 Ensuring That the Login Page Is Public.........cccoooiiiiiiii, 30-62
30.7.3 How to Ensure That the Custom Login Page’s Resources Are Accessible for Explicit
Authentication 30-63

30.7.4 How to Create a Public Welcome Pagec.ccccceuvvvirinnnninnreccecccccccanes 30-63
30.7.4.1 Ensuring That the Welcome Page Is Public........ccccoovoiiiiiiiiiie, 30-63
30.7.4.2 Adding Login and Logout Links..........ccccceeiiiiinniinns 30-64
30.7.4.3 Hiding Links to Secured Pages..........cccoovirrnrnnnniniiiiccccceccccccenenes 30-65
30.7.5 How to Redirect a User After Authentication............ccceceeeviniciiiiniiiiin, 30-65

30.7.6 How to Trigger a Custom Login Page Specifically for Implicit Authentication... 30-67
30.7.7 What You May Need to Know About Redirecting to a Different Host Server 30-68
30.7.8 What You May Need to Know About ADF Servlet Logout and Browser Caching...........

30-69
30.7.9 What You May Need to Know About IBM WebSphere Application Server-......... 30-69
30.7.10 What You May Need to Know About Displaying Error Pages in Internet Explorer

30-70
30.8 Testing Security in JDeVeloper........cccouiiiieiiiici e 30-70
30.8.1 How to Configure, Deploy, and Run a Secure Application in JDeveloper............ 30-70
30.8.2 What Happens When You Configure Security Deployment Options.................... 30-71
30.8.3 How to Use the Built-In test-all Application Role ..o 30-72
30.8.4 What Happens at Runtime: How ADF Security Handles Authentication............. 30-73
30.8.5 What Happens at Runtime: How ADF Security Handles Authorization............... 30-75
30.9 Preparing the Secure Application for Deploymentccccoeeviiiiiiiiiniiniiinn, 30-77
30.9.1 How to Remove the test-all Role from the Application Policy Store...................... 30-78
30.9.2 How to Remove Test Users from the Application Identity Store..........cccccceureuncee. 30-79
30.9.3 How to Secure Resource Files Using a URL Constraintccocoeveiireieiiinnnnne. 30-79
30.10 Disabling ADF SECUTILY ...ttt 30-80
30.10.1 How to Disable ADF SECUTILYc.ccocvuiiriririririririrrrr e 30-80

XXXiii

31

XXXiV

30.10.2 What Happens When You Disable ADF Security.........ccooooviiiiniiiiiiiciinnen, 30-81

30.11 Advanced Topics and Best Practices.........cccoooiiuiioiiiiiiniiiiccc e 30-82
30.11.1 Using Expression Language (EL) with ADF Securitycccccccoeeiiciccnnccnnnne. 30-82
30.11.11 How to Evaluate Policies Using ELc.c.cccoooiiioiiiiiiie, 30-82
30.11.1.2 What Happens When You Use the Expression Builder Dialog....................... 30-85
30.11.1.3 What You May Need to Know About Delayed Evaluation of EL.................... 30-86
30.11.2 How to Protect Ul Components Using OPSS Resource Permissions and EL........ 30-86
30.11.21 Creating the Custom Resource Typecccoooruiiiiiiiiiiiiiiiicce 30-87
30.11.2.2 Creating a Resource Grant for a Custom Resource Type......c.ccccoeiveiiinnnaes 30-88
30.11.2.3 Associating the Rendering of a Ul Component with a Resource Grant.......... 30-89
30.11.3 How to Perform Authorization Checks for Entity Object Operations.................... 30-91
30.11.4 Getting Information from the ADF Contextcccccceeueivvrnrnnvnrrnrerrereeene 30-91
30.11.41 How to Determine Whether Security Is Enabled............ccccoooiiiiiiinn, 30-92
30.11.4.2 How to Determine Whether the User Is Authenticatedccccooeieiieiii, 30-92
30.11.4.3 How to Determine the Current User Nameccccoevvviiniiiiiinniiininieneinnns 30-92
30.11.4.4 How to Determine Membership of a Java EE Security Role............ccccccoceeeee. 30-93
30.11.4.5 How to Determine Permission Using Javaccccceveeeieeiieinicicii, 30-93
30.11.5 Best Practices for Working with ADF Securityccoooiiiiioiiiiiiccccccenenes 30-94

Testing and Debugging ADF Components

31.1 Introduction to ADF Debugging ... 31-1
31.2 Correcting Simple Oracle ADF Compilation Errors.........cccccocevvviiiinininiiincn, 31-2
31.3 Correcting Simple Oracle ADF Runtime EXTors.........cccooovoioiieiiiiiciieieicccce 31-4
31.4 Validating ADF Controller Metadatacccocecueririiiiininiiiirrccccrceeeeeeeeeeeeeas 31-6
31.5 Using the ADF LOZZETc.coviiiiiiiiicieieietci i 31-6
31.5.1 How to Set ADF Logging Levels.........cccccooiiiiiiiiiiiiiiicccees 31-7
31.5.2 How to Create an Oracle ADF Debugging Configurationcccccccevvevverrernccnee 31-9
31.5.3 How to Turn On Diagnostic Logging for Non-Oracle ADF Loggers 31-11
31.54 How to Use the Log Analyzer to View Log Messages...........cccocoeueurieirueiiicinncnnne. 31-11
31.5.4.1 Viewing Diagnostic Messages in the Log Analyzer...........cccocoiiciiincnccnne. 31-12
31.5.4.2 Using the Log Analyzer to Analyze the ADF Requestcccoooeviiiriiiinnene, 31-14
31.5.4.3 Sorting Diagnostic Messages By ADF Eventscccccooviiniiiiiiniiicne, 31-18
31.55 What You May Need to Know About ADF Loggers and Log Levels..................... 31-21
31.5.6 What You May Need to Know About ADF Loggers and Log Output................... 31-22
31.5.7 What You May Need to Know About ADF Logging and Oracle WebLogic Server
31-22
31.6 Using the Business Component Browser for Testing and Debugging.........c...ccccee.c.... 31-23
31.6.1 How to Run in Debug Mode and Test with the Business Component Browser... 31-23
31.6.2 How to Run the Business Component Browser and Test with a Specific Configuration.
31-24
31.6.3 What Happens When You Run the Business Component Browser in Debug Mode........
31-25
31.6.4 How to Verify Runtime Artifacts in the Business Component Browser 31-25
31.6.5 How to Refresh the Business Component Browser with Application Changes ... 31-25
31.7 Using the ADF Declarative DeDUGEETccovuvuvuriiiriniiiiirrcccreerer s 31-26
31.71 Using ADF Source Code with the Debugger...........cccooiiiii 31-27
31.7.2 How to Set Up the ADF Source User Library.........cccocovvenininnniiiiiciciccanes 31-28

32

33

31.7.3 How to Add the ADF Source Library to a Project ..o 31-28
31.7.4 How to Use the EL Expression Evaluator ... 31-29
31.75 How to View and Export Stack Trace Informationcccococevvvnrnnnnnnnncncnes 31-30
31.8 Setting ADF Declarative Breakpoints ..o 31-31
31.8.1 How to Set and Use Task Flow Activity Breakpointsc.cccooooeieiiiiiinan, 31-39
31.8.2 How to Set and Use Page Definition Executable Breakpoints............ccccocoeiccnnns 31-41
31.8.3 How to Set and Use Page Definition Action Binding Breakpoints 31-42
31.8.4 How to Set and Use Page Definition Value Binding Breakpoints..............c............ 31-43
31.85 How to Set and Use ADF Lifecycle Phase Breakpointsccccoceeevvvnnnerncncnes 31-44
31.8.6 How to Use the ADF Structure Window ..., 31-47
31.8.7 How to Use the ADF Data WINdOWccociiiiiiiiiiiiciccccncecceces 31-50
31.8.8 What Happens When You Set an ADF Declarative Breakpoint..........cccccccevueneeee. 31-60
31.9 Setting Java Code BreaKpoints..........ccoooieuiiiiiiciiiiicc e 31-60
31.9.1 How to Set Java Breakpoints on Classes and Methods...........ccooeiiiinn, 31-60
31.9.2 How to Optimize Use of the Source Editorcccccccceiiiiiiiniiiciene 31-61
31.9.3 How to Set Breakpoints and Debug Using ADF Source Codecccceueviurnnnnne. 31-62
31.94 How to Use Debug Libraries for Symbolic Debuggingccccoovoiiiiiinnnn. 31-62
31.95 How to Use Different Kinds of Java Code Breakpoints...........cccceceeuvvrvnnrernccnes 31-64
31.9.6 How to Edit Breakpoints for Improved Control............ccccoeveiiiiinnninnninnnn, 31-65
31.9.7 How to Filter Your View of Class Members...........cccoouviviiiiiiiiniiiiiiccnes 31-66
31.9.8 How to Use Common Oracle ADF Breakpointscccccevvevrvvinnnnnncnrcnecnes 31-66
31.10 Regression Testing with JURNit........ccooooiiiiiii e 31-67
31.10.1 How to Obtain the JUNit EXteNSION. ...cc.ciiiiiieieieieieeeeeee e 31-68
31.10.2 How to Create a JUNIt TeSt Case ..cvevveeeerieeeieiirieieseeieeeteieseeeteseeaeseesesseesesseensens 31-69
31.10.3 How to Create a JUnit Test FIXTUTEcc.coceriiiiiieiiieiieeeeeeeeceesee e 31-71
31.10.4 How to Create a JUnit Test SUIte......c.cocieririiiiiiiiiiieiteeeee e 31-71
31.10.5 How to Create a Business Components Test Suite...........ccccoeviiviiiiinniinnnen 31-72
31.10.6 How to a Create Business Components Test Fixturecccoceevviiininnnnnnnn 31-74
31.10.7 How to Run a JUnit Test Suite as Part of an Ant Build Scriptcccooeeiiriin. 31-75
Refactoring a Fusion Web Application

32.1 Introduction to Refactoring a Fusion Web Applicationcccoevveiiiniiiciiincienes 32-1
32.2 Renaming FIlescccccoiiiiiiiiiiccc s 32-1
32.3 MoOVING JSF PAGES ..ottt e 32-2
32.4 Refactoring pagedef.xml Bindings Objectsc.cccovvviniininiiiniiniiiiiiccicccccccnes 32-2
32.5 Refactoring ADF Business COMPONENLScccccoeueuiiiiiiiicuiiniiiieiiieeeieieeieieeeeeeeeeeeeeeeeeees 32-3
32.6 Refactoring ADF Business Component Object Attributes...........cccccevvvvivviinininnnnnnn 32-3
32.7 Refactoring Named EIements ... 32-4
32.8 Refactoring ADF Task FIOWS.......ccccccceuiiiiiiiiiiiiiicicceeccce e 32-5
32.9 Refactoring the DataBindings.cpX File.........cccoooiiiiiiiiiii e 32-5
32.10 Refactoring Across Abstraction Layers ... 32-6
32.11 Refactoring LImitations ... eeeeeeees 32-6
32.12 Refactoring the jpx Project File ... 32-7
Reusing Application Components

33.1 Introduction to Reusable COMPONENtS..........cccovuivimiiiiiiiiiiiiiiiiciiecec s 33-1

XXXV

34

XXXVi

33.1.1 Creating Reusable COMPONENLScccevvvviiiiiiiiiiiiiiiiici s 33-3

33.1.1.1 Naming CONVENtioNS........ccoceuiiiiiiiiiieieicieiie e 33-3
33.1.1.2 The Naming Process for the ADF Library JAR Deployment Profile 33-5
33.1.1.3 Keeping the Relevant Project ... 33-6
33.1.1.4 Selecting the Relevant Technology Scope........ccccoeiiiiiiiiiiiiiiiiicce, 33-6
33.1.1.5 Selecting Paths and FOIdersccccccoiiiiiiiiiiiccccceeeceeeees 33-6
33.1.1.6 Including Connections Within Reusable Components...........c.ccccoviueieiiniennnee. 33-6
33.1.2 Using the Resource Palette.............cooiiiiiii e 33-7
33.1.3 Extension LIiDIaries ... 33-8
33.2 Packaging a Reusable ADF Component into an ADF Library.......c.ccccocoeoeeinincieininnen. 33-11
33.2.1 How to Package a Component into an ADF Library JAR ..o, 33-12
33.2.2 What Happens When You Package a Project to an ADF Library JAR 33-16
33.2.2.1 Application ModUulesccceeiiiiiiiiiniiiii 33-16
33.2.2.2 Data CONtrolsccovvviiiiiiiiiiiiii e 33-17
33.2.2.3 TaSK FIOWS ...cuiiiitiiicc e 33-17
33.2.2.4 Page Templatescceueiiiiriiiiciic 33-17
33.2.2.5 Declarative COMPONENLEScoviuiieiiicicieice e 33-17
33.2.3 How to Place and Access JDeveloper JAR Files........cccccccovvvinvnvnnnnnncrnecnes 33-17
33.3 Adding ADF Library Components into Projects..........ccccooureieiiiiiieiiiccciccce 33-18
33.3.1 How to Add an ADF Library JAR into a Project using the Resource Palette......... 33-18
33.3.2 How to Add an ADF Library JAR into a Project Manually.........ccccccccovvvnrnnenne. 33-20
33.3.3 What Happens When You Add an ADF Library JAR to a Project........cccccvuneee. 33-21
33.3.4 What You May Need to Know About Using ADF Library Components 33-23
33.3.4.1 Using Data CONtrols.........ccooiiiiiiiiiiieceeeeeeeteiee s 33-24
33.3.4.2 Using Application Modules............ccccoeviiinininiiniiicne 33-24
33.3.4.3 Using Business COMPONENLSccceveveiiiiiiiiiiiiiiiieees 33-24
33.34.4 USINg Task FLOWS......cooiiiiiiiiicc e 33-25
33.3.4.5 Using Page Templates..........cccovoiiuiieiiiicieiiciei e 33-25
33.3.4.6 Using Declarative COmMponents............ccceuiceieiiicciciicce e 33-26
33.35 What You May Need to Know About Differentiating ADF Library Components............
33-26

33.3.6 What Happens at Runtime: Adding ADF Libraries ..o, 33-26
33.4 Removing an ADF Library JAR from a Projectcccoooiiiiiiiiiiiiiiiiicins 33-27
33.4.1 How to Remove an ADF Library JAR from a Project Using the Resource Palette 33-27
33.4.2 How to Remove an ADF Library JAR from a Project Manually..........ccccccoeeunee.. 33-27

Customizing Applications with MDS

341 Introduction to Customization and MDS..........ccccocoriiiiinieiiiiee et 34-1
34.1.1 Customizations and Layers..........cccccccveiiiiiiiiiiiiiiccceeees 34-2
34.1.2 Static and Dynamic Customization Contentccccoeeevereiieinneicreeeeeeenes 34-3
34.2 Developing a Customizable Application ... 34-4
34.2.1 How to Create Customization CLasSesc.coecevueirieirieirieinieinieiretnieeseeesreesveenes 34-4
34.21.1 CUStOMIZAtION CLASSEScuveuivenirieirieirieietetete ettt ettt senes 34-4
34.2.1.2 Implementing the getValue() Method in Your Customization Class................ 34-6
34.21.3 Creating a Customization Class ... 34-8
34.2.2 What You May Need to Know About Customization Classes...........cccccccoeueueueunnnne. 34-9
34.2.3 How to Consume Customization Classes.........cccoeeurueeerrenirreninienenienenieeereneeeneenenennens 34-10

35

34.2.3.1 Making Customization Classes Available to JDeveloperccccccoooviinnnnes 34-10

34.2.3.2 Consuming Customization Classes from an Extension Project 34-11
34.2.4 How to Enable Seeded Customizations for View Projectscccccccevvveverrencncnne. 34-11
34.2.5 How to Enable Seeded Customizations in Existing Pagesccccccoooeeieiirnnnae. 34-12
34.2.6 How to Enable Customizations in Resource Bundles............ccccccvvivnninnninnnnnn 34-13
34.2.7 How to Configure the adf-config.xml fileccooiviiiiniiiniiiiiiiccccenes 34-13
34.2.8 What Happens When You Create a Customizable Applicationcccoeurunennn. 34-14
34.2.9 What You May Need to Know About Customizable Objects and Applications . 34-14
34.3 Customizing an APPLCAtIONccovviviriririiii e 34-15
34.3.1 Introducing the Customization Developer Role.............ccoooeiiiiiiiiiii 34-15
34.3.2 How to Switch to the Customization Developer Role in JDeveloper 34-16
34.3.3 Introducing the Tip Layer ..o 34-16
34.3.4 How to Configure Customization Layers.........c...coooeueiiiriiiniincicicccce 34-16
34.3.4.1 Configuring Layer Values Globallycccooooiiiiiiiie, 34-18
34.3.4.2 Configuring Workspace-Level Layer Values from the adf-config Editor....... 34-18
34.3.4.3 Configuring Workspace-Level Layer Values from the Customization Context
Window 34-19

34.3.5 How to Customize Metadata in JDeveloper ..., 34-20
34.3.6 How to Fix Incongruencies Between the Tip Layer and Base Metadata................ 34-21
34.3.7 What Happens When You Customize an Applicationcccoovviiiiininnnnnnn. 34-21
34.3.8 How to Customize Business Logic using Groovy Triggers.........cccooevnieinininininnne. 34-22
34.3.9 How to Customize ADF Library Artifacts in JDeveloper..........ccccoivicciicncncnns 34-23
34.3.9.1 Specifying a Location for ADF Library Customizations...........c.cccoooeeveieinnnen. 34-23
34.3.9.2 Viewing ADF Library Runtime Customizations from Exported JARs 34-24
34.3.10 What Happens When You Customize ADF Library Artifacts.........ccccccoeoeecueuennne. 34-25
34.3.11 How to Package and Deploy Customized Applications ..o 34-26
34.3.11.1 Implicitly Creating @ MARcccoiiiiiiiiiiiccccce e 34-26
34.3.11.2 Explicitly Creating a MAR ..o 34-27
34.3.12 What Happens at Runtime in a Customized Application.........cccccooviviiiinnnnnn. 34-27
34.3.13 What You May Need to Know About Customized Applications...........cccccueece. 34-28
34.3.13.1 Customization and Integrated Source Controlc.cccccevuvvviinnnnnnnneene. 34-28
34.3.13.2 Editing Resource Bundles in Customized Applications...........cccccevvvvirinininnes 34-28
34.4 Extended Metadata Properties.........ccccovviiiiiiiiiiiiiiiiccccccccccccennes 34-29
34.41 How to Edit Extended Metadata Properties..........cccccoeuevuvverrnnvnnnnnnnrereeenes 34-30
34.4.2 How to Enable Customization for Design Time at Runtime.........c.c.ccoooeveiinennnn. 34-30
34.5 Enabling Runtime Modification of Customization Configuration...........cccccccceueuvununne 34-31
Allowing User Customizations at Runtime

35.1 Introduction to Allowing User Customizations............cccececvuvurirvivirininnnnnnnnnnnneecnes 35-1
35.2 Enabling Runtime User Customizations for a Fusion Web Application..........c...c.c........ 35-4
35.2.1 How to Enable User Customizations...........ccccceeveueieiniiieiiiiiiciiiciiiiceceees 35-4
35.2.2 What Happens When You Enable User Customizations...........cccccoeveveiviicineininnen. 35-5
35.3 Configuring User CUStOMIZAtiONS........cccceueuiuiuiiririiiiiiiiiririeiereeeeeseeseeee s 35-6
35.3.1 How to Configure Change Persistence............cocoeueieiiicieiiiiciciccccc 35-7
35.3.2 What Happens When You Configure Change Persistencecccccoeeveiiiereinnnnen. 35-8
35.4 Controlling User Customizations in Individual JSF Pages........c.cccccccecvvvvirnnvnnnnenes 35-8
35.4.1 How to Implement User Customizations on a JSF Page.........cccccoeevvrieieiicicicininne. 35-9

XXXVii

36

XXXViii

35.4.2 What Happens at Runtime: How Changes Are Persisted and Restored................ 35-10

35.4.3 What You May Need to Know About Using Change Persistence on Templates,
Regions, and Declarative Components 35-10

35.,5 Implementing Custom User Customizationscccceiviviviiiiiniiiinnicccen 35-11
35.5.1 Change Persistence Framework AP ... 35-12
35.5.2 How to Create Code for Custom User Customizations............ccoceveveirueiiieinncnenne. 35-13
35.6 Creating Implicit Change Persistence in Custom Components............cccccecvuvevuverererencnee 35-17
35.6.1 How to Set Implicit Change Persistence For Attribute Values that Use Events ... 35-17
35.6.2 How to Set Implicit Change Persistence For Other Attribute Values..................... 35-18

Deploying Fusion Web Applications

36.1 Introduction to Deploying Fusion Web Applications............cccccevvivivinininnniinninnnn 36-1
36.1.1 Developing Applications with Integrated WebLogic Servercccccccvvuvvrunenne. 36-3
36.1.2 Developing Applications to Deploy to Standalone Application Servers................. 36-3
36.2 Running an ADF Application in Integrated WebLogic Serverccccooevveriininnnnn 36-5
36.2.1 How to Run an Application in Integrated WebLogic Serverccccccovvvvrrncnnee 36-6
36.2.2 How to Run an Application with Metadata in Integrated WebLogic Server 36-6
36.3 Preparing the Applicationcooiiiiiiii s 36-8
36.3.1 How to Create a Connection to the Target Application Serverc.ccccccccucuenennene 36-9
36.3.2 How to Create Deployment Profiles...........ccoooeeiiiiiiioiiiiiii 36-11
36.3.2.1 Adding Customization Classes into a JARccooeoiiiiiiiiiic, 36-12
36.3.2.2 Creating a WAR Deployment Profileccooooiiiiiiiiiniiiiiicccccccenes 36-13
36.3.2.3 Creating a MAR Deployment Profile ..o, 36-14
36.3.2.4 Creating an Application-Level EAR Deployment Profileccccccoeeeeie. 36-16
36.3.2.5 Delivering Customization Classes as a Shared Library..........cccccocociiiicnes 36-17
36.3.2.6 Viewing and Changing Deployment Profile Properties..........cccccocoeuviririeinnene, 36-18
36.3.3 How to Create and Edit Deployment Descriptors..........cooccueiiiomrieinciiciciiiicee, 36-18
36.3.3.1 Creating Deployment DeScriptorscocoveiiiiniiiiiiiciccccccccccenenes 36-19
36.3.3.2 Viewing or Modifying Deployment Descriptor Properties.........c.cccccovvevennnnne. 36-20
36.3.3.3 Configuring the application.xml File for Application Server Compatibility.. 36-20
36.3.3.4 Configuring the web.xml File for Application Server Compatibility.............. 36-21
36.3.3.5 Enabling the Application for Real User Experience Insight..........c.ccccceevninnn. 36-21
36.3.4 How to Deploy Applications with ADF Security Enabled............ccccccoevininnnnnne. 36-22
36.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)..................... 36-22
36.3.4.2 Configuring Security for WebLogic Server ..., 36-23
36.3.4.3 Configuring Security for WebSphere Server ..o 36-25
36.3.5 How to Replicate Memory Scopes in a Clustered Environmentcccccceeveenee. 36-26
36.3.6 How to Enable the Application for ADF MBeans..........ccccccceviuniiiiieiiiiinnns 36-26
36.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic Server ...
36-27
36.4 Deploying the APPLiCationccccoeuiiiieiriririiiiiricrrr e 36-28
36.4.1 How to Deploy to the Application Server from JDevelopercccocovviniriniinne 36-31
36.4.2 How to Create an EAR File for Deploymentcccccccevvininininnnninnninninnes 36-33
36.4.3 What You May Need to Know About EAR Files and Packaging...........ccccccccccee... 36-34
36.4.4 How to Deploy the Application Using Scripts and Antcccoooiiiiiiiinnnnnes 36-34
36.4.5 How to Deploy New Customizations Applied to ADF Llbrary........ccccocoevevuennnee. 36-34
36.4.5.1 Exporting Customization to a Deployed Applicationcccccocevvvvvnerncecnnee 36-35

36.4.5.2 Deploying Customizations to a JAR ..o,
36.4.6 What You May Need to Know About ADF Librariesccccocvvvinnnnninnncnnn
36.4.7 How to Deploy ADF Faces JARs with the Applicationcccocoviiiicnccicncnenns
36.4.8 What You May Need to Know About JDeveloper Runtime Libraries
36.5 Postdeployment Configuration ..o
36.5.1 How to Migrate an Application...........ccceuvuveviiiririrriniinrrerrre e
36.5.2 How to Configure the Application Using ADF MBeanscccccoooreiiiniriennnnen.
36.6 Testing the Application and Verifying Deploymentccccooooieiiiiiiniiiniiiina

Part VI Advanced Topics

37 Advanced Business Components Techniques
37.1 Extending the ADF Business Components Framework...........ccccooeueieiiniiinincenne,

37.1.1 How To Create a Framework Extension Class..........cccccoovieiiininiiinniiiecnen
37.1.2 What Happens When You Create a Framework Extension Class...........c.cccccoevevnne.
37.1.3 What You May Need to Know About Customizing Framework Extension Bases
Classes 37-4
37.1.4 How to Base an ADF Component on a Framework Extension Class........................
37.1.5 How to Define Framework Extension Classes for All New Components...............
37.1.6 How to Define Framework Extension Classes for All New Projectsc.c..c.........
37.1.7 What Happens When You Base a Component on a Framework Extension Class..
37.1.7.1 XML-Only COMPONENLSoouiiiiiiicieiiccicte i
37.1.7.2 Components with Custom Java Classes.........ccccooerrieiniiiiieieiiccece e,

37.1.8 What You May Need to Know About Updating the Extends Clause in Custom
Component Java Files 37-9

37.1.9 How to Package Your Framework Extension Layer in a JAR Filecc....c........
37.1.10 How to Create a Library Definition for Your Framework Extension JAR File......
37.2 Customizing Framework Behavior with Extension Classes..........c.cccocevurrnnininnnencnnes
37.2.1 How to Access Runtime Metadata For View Objects and Entity Objects..............
37.2.2 How to Implement Generic Functionality Using Runtime Metadata.....................
37.2.3 How to Implement Generic Functionality Driven by Custom Properties
37.2.4 How to Configure Design Time Custom Property Namescccccccoviriiieinncnen.

37.2.5 What You May Need to Know About the Kinds of Attributes...........ccccccevuennene.
37.2.6 What You May Need to Know About Custom Properties.........c.ccccccceceuciecucncnnne.
37.3 Creating Generic Extension Interfaces.............cocooeuoiiiiiiiiiiiiiiccce
37.4 Invoking Stored Procedures and FUNCHONS...........ccooeueiiiiiiiiniiiccee
37.4.1 How to Invoke Stored Procedures with No Argumentscccccocovvvnnnncncncnnes
37.4.2 How to Invoke Stored Procedure with Only IN Arguments............cccoeueiirnnene.
37.4.3 How to Invoke Stored Function with Only IN Arguments.........c.cccoooeverriinennnen.
37.4.4 How to Call Other Types of Stored Procedures............ccccoevuvrvvvnrnnnninrcncnes
37.5 Accessing the Current Database Transactionccccoeeeieiiicieiiiiccccce
37.6 Working with Libraries of Reusable Business Componentsccccocovueveirnrninicnnnnn.
37.6.1 How To Create a Reusable Library of Business Componentsc.coceceeverereencee
37.6.2 How To Import a Package of Reusable Components from a Library
37.6.3 How to Remove an Imported Package from a Project........c.cccoovoeeieiiiniiinnnnnen.

37-9

37-11

37-24

37.6.4 What Happens When You Import a Package of Reusable Components from a Library..

37-25

XXXiX

38

xl

37.6.5 What You May Need to Know About Imported Projects.........cccccoeueviveiiniiiinnnnnn 37-25

37.7 Customizing Business Components Error Messagesccooeviiiiiiiiiinnicnninnn, 37-25
37.7.1 How to Customize Base ADF Business Components Error Messages................... 37-26
37.7.2 What Happens When You Customize Base ADF Business Components Error Messages
37-28
37.7.3 How to Display Customize Error Messages as Nested Exceptions 37-28
37.7.4 How to Customize Error Messages for Database Constraint Violations 37-29
37.7.5 How to Implement a Custom Constraint Error Handling Routine 37-30
37.7.5.1 Creating a Custom Database Transaction Framework Extension Class 37-30
37.75.2 Configuring an Application Module to Use a Custom Database Transaction Class .
37-31
37.8 Creating Extended Components Using Inheritance.............cccoooeviieeiiiiciiiicce 37-32
37.8.1 How To Create a Component That Extends Another ... 37-33
37.8.2 How To Extend a Component After Creation.........ccccceuvuveveeerrerevevnrnnncereecenes 37-33
37.8.3 What Happens When You Create a Component That Extends Another 37-33
37.8.3.1 Attributes in an Extended Component Inherited from the Parent Component
37-33
37.8.3.2 Attributes Added to the Extended Component's XML Descriptor.................. 37-34
37.8.3.3 Java Classes Generated for an Extended Component...........c.cccoceveveiiiiiininnnnns 37-34
37.8.4 What You May Need to Know About Extending Componentscccccoeece. 37-35
37.8.4.1 Parent Classes and Interfaces for Extended Components...........c.cccecevvrenencncee. 37-35
37.8.4.2 Generated Classes for Extended Components............cccooeeviiiniiiiiinnnas 37-37
37.8.4.3 Business Component Types.........ccccoeveieiiieieiiiiiiiiiic 37-37
37.84.4 New Attributes in an Extended Component..........ccccceeueuvurrvvennnnnnrnneenes 37-37
37.9 Substituting Extended Components in a Delivered Applicationcccoceevvvininiinne 37-38
37.9.1 How To Substitute an Extended Component...........ccccovviiininniiniiiiinns 37-38
37.9.2 What Happens When You Substitute...........cccocciiiiiiiiiiiicceececceecneeeees 37-39
37.9.3 How to Enable the Substituted Components in the Base Application 37-40

Advanced Entity Object Techniques

38.1 Creating Custom, Validated Data Types Using Domainsccccceeevvrviiiieriiiiinnennnnn, 38-1
38.1.1 How to Create a DOmainc.cccciviiiiiiniiiiiiicicrcrceec e 38-2
38.1.2 What Happens When You Create a Domain...........cccoccieiiiciciicccceccereenes 38-2
38.1.3 What You May Need to Know About Domainsccceeeviiiiiininiiiiccicieennen, 38-3
38.1.3.1 Using Domains for Entity and View Object Attributesccccccccuvviviriinnnnn. 38-3
38.1.3.2 Validate Method Should Throw DataCreationException If Sanity Checks Fail
38-3
38.1.3.3 String Domains Aggregate a String Value..........ccccocooeviiiiniiiiiii, 38-4
38.1.3.4 Other Domains Extend Existing Domain Type.........cccccovvvivninnnnnnncncccnns 38-4
38.1.3.5 Simple Domains Are Immutable Java Classes ... 38-5
38.1.3.6 Creating Domains for Oracle Object Types When Useful...........ccccccevevevrnnnnnnn 38-5
38.1.3.7 Quickly Navigating to the Domain Classcccccccciuiniiiiiiciciniicciccee, 38-6
38.1.3.8 Domains Get Packaged in the Common JAR ... 38-6
38.1.3.9 Entity and View Object Attributes Inherit Custom Domain Properties............ 38-6
38.1.3.10 Domain Settings Cannot Be Less Restrictive at Entity or View Level............... 38-6
38.2 Updating a Deleted Flag Instead of Deleting ROWS.........ccccccccueueiciiiiinieeccceccceenen 38-7
38.2.1 How to Update a Deleted Flag When a Row Is Removed.........c.cccoooriiiiiiniinnn. 38-7
38.2.2 Forcing an Update DML Operation Instead of a Delete............ccccccceeiiiiiininninnne. 38-7

39

38.3 Using Update BatChingc.cccoeiiiiiiiiiiiiiiiiiiiicic s 38-8

38.4 Advanced Entity Association Techniques..........ccccooviiiiiiiiiiiiiice 38-9
38.4.1 Modifying Association SQL Clause to Implement Complex Associations.............. 38-9
38.4.2 Exposing View Link Accessor Attributes at the Entity Level ..o 38-9
38.5 Basing an Entity Object on a PL/SQL Package APIccccoooiiiiiiiiiniccce 38-9
38.5.1 How to Create an Entity Object Based on a View.........ccccccovuervvvnnnnnnnrnccnnes 38-10
38.5.2 What Happens When You Create an Entity Object Based on a View 38-11
38.5.3 Centralizing Details for PL/SQL-Based Entities into a Base Classcccc.c..... 38-11
38.5.4 Implementing the Stored Procedure Calls for DML Operations.........c.cccccoeuruuneee. 38-12
38.5.5 Adding Select and Lock Handlingc.coieieioiiiiioii 38-13
38.5.5.1 Updating PLSQLEntityImpl Base Class to Handle Lock and Select................ 38-14
38.5.5.2 Implementing Lock and Select for the Product Entity.........ccccccoooeiiiiiccnns 38-15
38.5.5.3 Refreshing the Entity Object After RowInconsistentException.............c......... 38-17
38.6 Basing an Entity Object on a Join View or Remote DBLInkccccccovivinnininincnn 38-17
38.7 Using Inheritance in Your Business Domain Layer............ccccccceviinnnnnnnnnnnnncne. 38-18
38.7.1 Understanding When Inheritance Can Be Useful..........c.cccooooiiii 38-18
38.7.2 How to Create Entity Objects in an Inheritance Hierarchyc.c.cccccoooiiii. 38-19
38.7.2.1 Start by Identifying the Discriminator Column and Distinct Values 38-20
38.7.2.2 Identify the Subset of Attributes Relevant to Each Kind of Entity................... 38-20
38.7.2.3 Creating the Base Entity Object in an Inheritance Hierarchy 38-20
38.7.2.4 Creating a Subtype Entity Object in an Inheritance Hierarchy 38-21
38.7.3 How to Add Methods to Entity Objects in an Inheritance Hierarchy 38-22
38.7.3.1 Adding Methods Common to All Entity Objects in the Hierarchy 38-22
38.7.3.2 Overriding Common Methods in a Subtype Entitycccooeoiiiiicniiincnns 38-22
38.7.3.3 Adding Methods Specific to a Subtype Entitycccoooiiiiiii, 38-23
38.7.4 What You May Need to Know About Using Inheritance..........c.cccoooeiiinrenne. 38-23
38.7.4.1 Sometimes You Need to Introduce a New Base Entity......c.cccccoovvvvnnnnnnne. 38-23
38.7.4.2 Finding Subtype Entities by Primary Keycccccooviiiiiii, 38-24
38.7.4.3 You Can Create View Objects with Polymorphic Entity Usages..................... 38-24
38.8 Controlling Entity Posting Order to Avoid Constraint Violations...........c.ccceceviecune. 38-24
38.8.1 Understanding the Default Post Processing Ordercccoooeueieiicciiininicicine 38-24
38.8.2 How Compositions Change the Default Processing Ordering...........ccccocovevrunnnnee. 38-25
38.8.3 Overriding postChanges() to Control Post Order...........ccccooiiiiiiicicnciincncnenes 38-25
38.8.3.1 Observing the Post Ordering Problem First Hand..........ccccoooiiiiiiinin, 38-25
38.8.3.2 Forcing the Supplier to Post Before the Product...........cccccccovviinniinnnnnne. 38-26
38.8.3.3 Understanding Associations Based on DBSequence-Valued Primary Keys.. 38-28
38.8.3.4 Refreshing References to DBSequence-Assigned Foreign Keys...................... 38-28
38.9 Implementing Custom Validation Rules............ccccooeiiniiiininiiiiiiiccece 38-29
38.9.1 How to Create a Custom Validation Rule...........cccoovviiriiiiiiicen, 38-30
38.9.2 Adding a Design Time Bean Customizer for Your Rule..........ccccooniiininn. 38-31
38.9.3 Registering and Using a Custom Rule in JDeveloper ... 38-32
38.10 Creating New History TYPesccccoviiviiiiiiiiiiiiiiiiccc s 38-33
38.10.1 How to Create New History Types......ccccoiiriiiiiiiiiiii 38-33
38.10.2 How to Remove a History Typecccoviiiiiiniiiiiicciccccccs 38-35
Advanced View Object Techniques

39.1 Advanced View Object Concepts and Featuresccoooeuevriviiiiiiiciiinincceccce 39-1

xli

xlii

39.1.1 Limiting the View Object Max Fetch Size to Fetch the First n Rowsc.ccc........ 39-1
39.1.2 Maintaining New Row Consistency in View Objects Based on the Same Entity.... 39-2

39.1.2.1 What Happens at Runtime When View Link Consistency is Enabled.............. 39-3

39.1.2.2 How to Change the Default View Link Consistency Settingc.cccooeueueee. 39-3

39.1.2.3 How to Use a RowMatch to Qualify Which New, Unposted Rows Get Added to a
Row Set 39-4

39.1.2.4 What You May Need to Know About the Dynamic WHERE Clause and View Link

Consistency 39-5
39.1.3 Understanding View Link Accessors Versus Data Model View Link Instances..... 39-5

39.1.3.1 Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination 39-5
39.1.3.2 Accessing a Stable Detail Row Set Using View Link Accessor Attributes........ 39-6
39.1.3.3 Accessor Attributes Create Distinct Row Sets Based on an Internal View Object......
39-6
39.14 Presenting and Scrolling Data a Page at a Time Using the Rangec............. 39-7
39.15 Efficiently Scrolling Through Large Result Sets Using Range Paging...................... 39-8
39.1.51 Understanding How to Oracle Supports "TOP-N" Queries..........c.ccccceuvvevenennne. 39-9
39.1.5.2 How to Enable Range Paging for a View Objectccccccevvviininiinnninnnne, 39-10
39.15.3 What Happens When You Enable Range Paging..........c.cccooeeiiiccicnccnne 39-11
39.1.5.4 What Happens When View Rows are Cached When Using Range Paging ... 39-12
39.1.55 How to Scroll to a Given Page Number Using Range Paging............ccccc.c...... 39-12
39.1.5.6 Estimating the Number of Pages in the Row Set Using Range Paging........... 39-12
39.1.5.7 Understanding the Tradeoffs of Using a Range Paging Mode......................... 39-12
39.1.6 Setting Up a Data Model with Multiple Masterscoccoeioioriieiiiicicicicce 39-13
39.1.7 Understanding When You Can Use Partial Keys with findByKey()..........cccccc...... 39-14
39.1.8 Creating Dynamic Attributes to Store UL Stateccoooeveiiiiiiiiiiic 39-15
39.1.9 Working with Multiple Row Sets and Row Set Iterators..........ccccocovviiininiinininnn 39-15
39.1.10 Optimizing View Link Accessor Access By Retaining the Row Set 39-16
39.2 Tuning Your View Objects for Best Performancec.cccoooreiiiiiiiniiiniiicce 39-17
39.2.1 Use Bind Variables for Parameterized QUETIES.........ccecveevieeeniieeerieceerieeeeieeeeenens 39-17
39.2.1.1 Use Bind Variables to Avoid Re-parsing of Queries...........ccccccoviciicrccncnne 39-17
39.2.1.2 Use Bind Variables to Prevent SQL-Injection Attackscccccocevvvviiiiiiininnnnnes 39-18
39.2.2 Consider Using Entity-Based View Objects for Read-Only Data...........cccceuevnneeee. 39-18
39.2.3 Use SQL Tracing to Identify Ill-Performing Queries...........ccoceeeeviiiiniiccincncnne 39-20
39.2.4 Consider the Appropriate Tuning Settings for Every View Object 39-21
39.2.4.1 Set the Database Retrieval Options Appropriatelyccoeevvnniniininnnaes 39-22
39.2.4.2 Consider Whether Fetching One Row at a Time is Appropriate 39-22
39.2.4.3 Specify a Query Optimizer Hint if Necessary ..o, 39-22
39.2.5 Creating View Objects at Design Time........c.cccocooeriiiiiiiiniiiiecccec e 39-23
39.2.6 Use Forward Only Mode to Avoid Caching View Rows.........cccccoiiiiiiiincncnne. 39-23
39.3 Generating Custom Java Classes for a View Objectcoooiiiiiii 39-24
39.3.1 How To Generate Custom Classes...........ccovuvivirinininiiininininiiiiiiiccccccccccennes 39-24
39.3.1.1 Generating Bind Variable ACCESSOTS..........ccovreriiriririniiiiiecccrccccecccenenes 39-25
39.3.1.2 Generating View Row Attribute Accessors ..., 39-25
39.3.1.3 Exposing View Row Accessors to Clients...........cccccvvvvvivvnnnnnnnnnnnecnes 39-26
39.3.1.4 Configuring Default Java Generation Preferencescccccccoeeoeicvccccccnnes 39-27
39.3.2 What Happens When You Generate Custom Classes............ccocovviuriiinininnnennnn. 39-27
39.3.2.1 Seeing and Navigating to Custom Java Filesc.cccccoviiiiiiininns 39-28
39.3.3 What You May Need to Know About Custom Classescccccoeecrceucueurucueunnnenes 39-28

39.3.3.1 About the Framework Base Classes for a View Object..........cccoovvviiininininne 39-28

39.3.3.2 You Can Safely Add Code to the Custom Component File................c.c........... 39-28
39.3.3.3 Attribute Indexes and InvokeAccessor Generated Codeccccovvvinruiriiinnes 39-29
39.3.3.4 Avoid Creating Dependencies on Parent Application Module Types............ 39-30
39.4 Working Programmatically with Multiple Named View Criteriaccccecooreueininnnnn. 39-31
39.4.1 Applying One or More Named View Criteria........cccocoovvvrnrnnnnnnnccceerecnes 39-31
39.4.2 Removing All Applied Named View Criteria........cccooevvviiinnnnnnnnn 39-32
39.4.3 Using the Named Criteria at Runtime..........c.cooooi 39-33
39.5 Performing In-Memory Sorting and Filtering of Row Sets..........cccccovvvirnnnnnnnncnne. 39-34
39.5.1 Understanding the View Object's SQL Mode..........ccccoiiieiiiiiiniiiiceece 39-34
39.5.2 Sorting View Object Rows IN MemOTYccoeueiiiiiiiiiiiiec 39-35
39.5.2.1 Combining setSortBy and setQueryMode for In-Memory Sorting.................. 39-35
39.5.2.2 Simplified In-Memory SOrting...........cooeeueveiirieieiiceecci e 39-37
39.5.2.3 Extensibility Points for In-Memory SOrting..........ccccceeveeeieininiccciiicceece, 39-37
39.5.3 Performing In-Memory Filtering with View Criteria........c.cccocoeveeiiiniicnciiccenes 39-37
39.5.4 Performing In-Memory Filtering with RowMatch ... 39-40
39.5.4.1 Applying a RowMatch to a View Object.........oooreiiiiiiiii, 39-40
39.5.4.2 Using RowMatch to Test an Individual ROW ..o 39-42
39.5.4.3 How a RowMatch Affects Rows Fetched from the Database..............cccc.c........ 39-42
39.6 Using View Objects to Work with Multiple Row Types........ccccoorriiiiiiiiiiice 39-42
39.6.1 Working with Polymorphic Entity Usagesc.coceeeririininiiiinciciiicccccccnenens 39-44
39.6.1.1 How To Create a View Object with a Polymorphic Entity Usage.................... 39-44
39.6.1.2 What Happens When You Create a Subtype View Object with a Polymorphic
Entity Usage 39-50
39.6.1.3 What You May Need to Know About Entity Usages.........ccccccoeeeecuecucucnennne. 39-53
39.6.2 Working with Polymorphic View ROWS ..ot 39-55
39.6.2.1 How to Create a View Object with Polymorphic View Rowsccccccoeece. 39-56
39.6.2.2 What You May Need to Know About Polymorphic View Rows..................... 39-57
39.6.2.3 What You May Need to Know About Polymorphic View Rows.................... 39-59
39.6.3 What You May Need to Know About the Discriminator Attribute....................... 39-61
39.6.4 Updating the Application Module to Expose Subtype Usagesccccccceucueunnene 39-62
39.6.4.1 How to Expose Subtype Usages on the Data Model..............ccoooeiiiiiiinnine, 39-62
39.6.4.2 What Happens When You Add Subtype View Objects to the Application Module..
39-64

39.7 Reading and Writing XMLccccociiiiiiiiiiiieeccrceeree s 39-64
39.71 How to Produce XML for Queried Dataccceeeverrieiereeieneeieseeieseereseeeveseevens 39-65
39.7.2 What Happens When You Produce XMLcccooiiiiiiiiiiiiiiicccccnes 39-65
39.7.3 What You May Need to Know About Reading and Writing XML......................... 39-67
39.7.3.1 Controlling XML Element Names..........cccccccouoieieiiiinicieiicieieseie e 39-68
39.7.3.2 Controlling Element Suppression for Null-Valued Attributes......................... 39-68
39.7.3.3 Printing or Searching the Generated XML Using XPathccccceeevvnrnccncae. 39-68
39.7.3.4 Using the Attribute Map For Fine Control Over Generated XML................... 39-69
39.7.3.5 Use the Attribute Map Approach with Bi-Directional View Links.................. 39-70
39.7.3.6 Transforming Generated XML Using an XSLT Stylesheet..........cccccccovurunenncee. 39-71
39.7.3.7 Generating XML for a Single ROW ..o 39-72
39.7.4 How to Consume XML Documents to Apply Changes...........ccccooevvirneiniicnennenee. 39-72
39.7.5 What Happens When You Consume XML Documents...........cccccoceucucrceeuecucncnnnnee 39-72

xliii

40

xliv

39.7.5.1 How ViewObject.readXML() Processes an XML Documentccccccevuueeee 39-72

39.7.5.2 Using readXML() to Processes XML for a Single Row.........c.ccccvvviiininininnnnes 39-73
39.8 Using Programmatic View Objects for Alternative Data Sourcescccccecvercucnnes 39-77
39.8.1 How to Create a Read-Only Programmatic View Objectcccoeveiiriiiiinnnn, 39-77
39.8.2 How to Create an Entity-Based Programmatic View Object.........ccccoevviircnninnnc. 39-77
39.8.3 Key Framework Methods to Override for Programmatic View Objects................ 39-77
39.8.4 How to Create a View Object on a REF CURSORccccooviviiinnniiiin 39-78
39.8.4.1 The Overridden create() Methodcoccceveirieeneincincincncenceencesecees 39-79
39.8.4.2 The Overridden executeQueryForCollection() Method ..o 39-79
39.8.4.3 The Overridden createRowFromResultSet() Methodccccocverinenencnencne. 39-80
39.8.4.4 The Overridden hasNextForCollectionMethod()cccccevverirenncnenenncnnenns 39-80
39.8.4.5 The Overridden releaseUserDataForCollection() Method............ccccvecvevenennenee. 39-81
39.8.4.6 The Overridden getQueryHitCount() Methodcooeveiiiiiii, 39-81
39.9 Creating a View Object with Multiple Updatable Entitiesccccccooeeriiiiiineni. 39-82
39.10 Programmatically Creating View Definitions and View Objectscccccoeeciiiccnnne. 39-84
39.11 Declaratively Preventing Insert, Update, and Delete...........cccccooorimiiriininniinne 39-86

Application State Management

40.1 Understanding Why State Management is NeCessarycccceveeieeiereeernrienineneenenens 40-1
40.1.1 Examples of Multi-Step Tasks.........cccccciiiiiiininiiiiiiis 40-1
40.1.2 Stateless HTTP Protocol Complicates Stateful Applications..........ccccceeueuruvereverureenes 40-2
40.1.3 How Cookies Are Used to Track a User SesSion..........cccuueueveueveiireieieieieieieeiereieinenens 40-2
40.1.4 Performance and Reliability Impact of Using HttpSession.........cccccooocuevrieirncinnnc. 40-3
40.2 Introduction to Fusion Web Application State Managementcccccccecueucueueueunnennnne. 40-5
40.2.1 Basic Architecture of the Save for Later Facilitycccccooeviiiiiiiiinii 40-5
40.2.2 Basic Architecture of the Application Module State Management Facility 40-5
40.2.2.1 Understanding When Passivation and Activation Occurs.........cccccoevuvueuvurunenne. 40-6
40.2.2.2 How Passivation Changes When Optional Failover Mode is Enabled 40-8
40.2.2.3 About State Management Release Levels ..., 40-9
40.2.2.4 State Management and Subclassed Entity Objectsccooovoiiiiivciiicncnns 40-11

40.2.3 What You May Need to Know About Using Application Scoped Managed Beans in a
Clustered Environment 40-11

40.3 Using Save FOr Later ... 40-11
40.4 Setting the Application Module Release Level at Runtime............ccoccoeiiiiciiiicnnne. 40-12
40.4.1 How to Set Unmanaged Level ... 40-12
40.4.2 How to Set Reserved Level..........ccccooiiiiiniiiiiiccccccanes 40-12
40.4.3 How to Set Managed Level ... 40-12
40.4.4 How to Set Release Level in a JSF Backing Bean............cooocoiiiiiiciiiie, 40-12
40.4.5 How to Set Release Level in an ADF PagePhaseListenerccccoooovoeveiiiccnnnnee. 40-13
40.4.6 How to Set Release Level in an ADF PageController...........ccccocovvvvnvnnnnnccnnes 40-13
40.4.7 How to Set Release Level in an Custom ADF PageLifecycle............cccooeuoiinnnenn. 40-14
40.5 What Model State Is Saved and When It Is Cleaned Up........ccccoooviiiviciininicniiicnnn 40-15
40.5.1 State Information Saved During Passivation............cccccevccecccceeceeeneceeenes 40-15
40.5.2 Where the Model State Is Savedccooiiiiiiiiiiiiies 40-16
40.5.2.1 How Database-Backed Passivation Works...........cccocoiiiiiiiiiiiciiicnnns 40-16
40.5.2.2 Controlling the Schema Where the State Management Table Resides............ 40-16
40.5.2.3 Configuring the Type of Passivation Store..........ccceoiiieiiiiicciiiccce, 40-17

41

40.5.3 Cleaning Up the Model Stateoooeioiiiiiiiiiic s 40-17

40.5.3.1 Previous Snapshot Removed When Next One Taken............cccccovvvivininininnne 40-17
40.5.3.2 Passivation Snapshot Removed on Unmanaged Release............cccccceuvvrunennce. 40-18
40.5.3.3 Passivation Snapshot Retained in Failover Modecccccevviiininnnnnne, 40-18
40.5.4 Cleaning Up Temporary Storage Tablesccccoooiiiiiiiiiiiiicccce 40-18
40.6 Timing Out the HHPSESSION......ccoviiiiiiii e 40-19
40.6.1 How to Configure the Implicit Timeout Due to User Inactivityccccccoeernnnene. 40-19
40.6.2 How to Code an Explicit HttpSession Timeoutcccccovvvvivviininnnnininne, 40-19
40.7 Managing Custom User-Specific Information...........cccoceevvrvvnrnnnnnnnnrncrceecne 40-20
40.7 1 How to Passivate Custom User-Specific Information.........c.cccoceevieiiiiiiinnnnn 40-20
40.7.2 What Happens When You Passivate Custom Information...........cccccevvivinninninne 40-21
40.7.3 What You May Need to Know About Activating Custom Information 40-22
40.8 Managing the State of View ODbjectscccccoiiriiiiiii e 40-22
40.8.1 How to Manage the State of View Objects.........ccceuoioiriieiniiiiiicccce 40-22
40.8.2 What You May Need to Know About Passivating View Objectsc.cccccccucueeee. 40-23
40.8.3 How to Manage the State of Transient View Objects and Attributes..................... 40-23
40.8.4 What You May Need to Know About Passivating Transient View Objects.......... 40-23
40.8.5 How to Use Transient View Objects to Store Session-level Global Variables 40-23
40.9 Using State Management for Middle-Tier Savepoints.........c.ccccooreieiiiiniciiiiciciicne 40-25
40.91 How to Use State Management for Savepoints.........ccccooeoeeieiiiiciciniciccccc, 40-25
40.10 Testing to Ensure Your Application Module is Activation-Safe.........c.cccccccovuvrrrenenne. 40-25
40.10.1 Understanding the jbo.ampool.doampooling Configuration Parameter 40-25
40.10.2 Disabling Application Module Pooling to Test Activationccccccoevvvinininnnnnes 40-26
40.11 Keeping Pending Changes in the Middle Tier ..o 40-26
40.11.1 How to Set Applications to Use Optimistic Locking.........cccccoovviiiiiiiiiiiinnnnns 40-27
40.11.2 How to Avoid Clashes Using the postChanges() Method..........ccccccooriiininn. 40-28
40.11.3 How to Use the Reserved Level For Pending Database Statesc.ccccceeurureence. 40-28
Tuning Application Module Pools and Connection Pools
41.1 Introduction to Application Module POOLNGccccccueueiciiiiiiiiiniiiiiicrcecrreeeeeeeceenes 41-1
4111 Types of Pools Created When Running the Fusion Web Application...................... 41-2
41.1.11 Application Module Pools..........ccccccciiiiiiiiiiiiiiiicces 41-2
411.1.2 Database Connection POOIS ..o, 41-2
41.1.2 Understanding Application Module and Connection Pools..........c.cccccoeueveiiinienennne 41-3
41.1.21 Single Oracle WebLogic Server Domain, Single Oracle WebLogic Server Instance,
Single JVM 41-3
411.2.2 Multiple Oracle WebLogic Server Domains, Multiple Oracle WebLogic Server
Instance, Multiple JVMs 41-4
41.2 Setting Pool Configuration Parametersc..coooeueioiinieiciiiciece s 41-5
41.2.1 How to Set Configuration Properties Declaratively...........cccocooiiiiiiiiiniinnnee. 41-5
41.2.2 What Happens When You Set Configuration Properties Declaratively................... 41-5
41.2.3 How to Set Configuration Properties as System Parameters..........ccccoevrueveninnnnnen 41-7
4124 How to Programmatically Set Configuration Properties............cccocovvirvrvnnnenennnes 41-7
41.25 What You May Need to Know About Configuration Property Scopes.................... 41-8

41.2.6 What You May Need to Know About How Database and Application Module Pools
Cooperate 41-10

41.2.7 What You May Need to Know About Application Module Pool Parameters 41-11

xlv

42

41.2.7 1 P00l BeRavior Paramieterseioeeiiiiiiiieee ettt 41-11

41.2.7.2 P00l Sizing Parameterscccoceueiiiiiciiiicciece e 41-14
41.2.7.3 Pool Cleanup Parameterscccccevueiiiicnnieiicrcncereeeesee s 41-15
41.2.8 What You May Need to Know About Data Source Configuration......................... 41-18
41.2.9 What You May Need to Know About Database Connection Pool Parameters..... 41-19
41.3 Initializing Database State and Pooling Considerations..........c.ccccceeeciiioinccciccncnes 41-21
41.3.1 How to Set Database State Per USer...........cccoocviieiiiiiiiiniiiiiiinns 41-21
41.3.2 What You May Need to Know About Optimizing Connection Pooling................ 41-22

Using the Active Data Service

42.1 Introduction to the Active Data Serviceccooiiiiiiiiiiiiiiiicccces 42-1
42.1.1 Limitations of the Active Data Service Framework.........c.cccccoovvvviviniiiinnnnnnn, 42-2
42.1.2 Active Data Service Framework ... 42-3
421.3 Data Transport Modesc.oociiiiiieiiiceec e 42-4
42.2 Configuring the Active Data SEIVICe........ccccooeiuiiiiriririiiiicirirircicrrecee s 42-6
42.2.1 How to Configure the Active Data Service.........coooevoiiieiiiiiiiiiie 42-6
42.2.2 What You May Need to Know About Transport Modes...........ccccooeereiniiieininnne. 42-8
42.2.3 How to Configure Session Timeout for Active Data Serviceccccccceeueurueucucnennne 42-9
42.3 Configuring Components to Use the Active Data Service...........cccocueveiviriniiiniicicininne. 42-10
42.3.1 How to Configure Components to Use the Active Data Service Without the Active
Data Proxy 42-11
42.3.2 How to Configure Components to Use the Active Data Service with the Active Data
Proxy 42-11
42.3.3 What You May Need to Know About Displaying Active Data in ADF Trees 42-12
42.3.4 What Happens at Runtime: How Components Render When Bound to Active Data......
42-12
42.3.5 What You May Need to Know About ADS and Google Chrome........................... 42-12
42.4 Using the Active Data PrOXYcocoooriiiiiiiiiiiic s 42-13
42.4.1 What You May Need to Know About Read Consistencyc.cccooerieinircieinnne. 42-18
42.5 Using the Active Data with a Scalar Modelccocoovvvinnnnnnnnenee 42-18

Part VII Appendices

A Oracle ADF XML Files

xlvi

AA Introduction to the ADF Metadata Files...........cccocoovviiiviiiiniiniiicc, A-1
A2 ADF File Overview DIiagram ... A-2
A2.1 Oracle ADF Data Control FIlesccocoieiiinnieiinncciesecenseeereessaenee s A-2
A22 Oracle ADF Data Binding Files.........ccccccccoeiiiiiiiiiiiccreeee e A-3
A23 Web Configuration Files...........c.oiiiiii e A-3
A3 ADF File Syntax Diagramccccciiiiiiiiiiiiiiicccieeee e A-4
A4 AAFMUXINL oo A-5
A5 MOACIPTOJECENATNEJPX.co.oiviiiiniiii s A-6
A6 DCAJXCEG s A-8
A7 DataBindingS.CPX «..cueveveueieieiiieieiiieieiciceeeie ettt A-9
A7 DataBindings.CpX SYNtaX......ccuoiiurieieiicicieinicie e A-9
AT72 DataBindings.cpX Sample.........ccccciiiiiiiiiiiiiiiiiice s A-11
A8 pageNamePageDef XIML..........ccii e A-12

A.8.1
A9
A.10
A1
A2
A.13
A4

PageDef.XmM] SYNtaX........ccooeueiiiiiiieiiiici e A-12
Adfe-CONFIG. XML A-24
task-flow-definition. XMl ... A-24
adf-cONfIG. XMoo A-24
adf-settings. XMloooiiiii A-27
WED.XINL oo A-28
10GEING XINLoviiii s A-29

Oracle ADF Binding Properties

ADF Security Permission Grants

ADF Equivalents of Common Oracle Forms Triggers

D.1
D.2
D.3
D.4
D.5

Validation and Defaulting (Business LOZic)ccoooeueuiiiiiiiiiiiiicieicce D-1
QUETY ProCESSINGcocvviiieiieiei s D-2
Database CONNECHIONcoueriitiieieiriieert ettt ettt sttt ettt ebeebe b b saeneen D-3
Transaction "Post" Processing (Record Cache)..........ccccoeeieiiiiiiiiiiiiiniiiciiicicc D-3
Error Handling ... D-4

Most Commonly Used ADF Business Components Methods

E.1
E.1.1
E.1.2
E.1.3
E1.4
E.1.5
E.1.6
El7
E.1.8
E.1.9
E.2
E.21
E2.2
E.2.21
E.2.2.2

E.2.2.3

E.2.3
E.2.3.1
E.2.3.2

E2.4

E.2.41
E.2.4.2
E.2.4.3

Most Commonly Used Methods in the Client Tier........ccocooimiiiiiiiiice, E-1
ApplicationModule INterface.........cccccceceiiiiiiiiiieeccececeeee s E-1
Transaction INterface...........oeviiiiiiniiiiiiii s E-3
ViewObject INterface ... E-3
ROWSet INtETTACEocvviiiiiiiicicc s E-5
RowSetlterator Interface.........ccooiiiiiiiiiiiiic s E-6
ROW INtEIface......cocuiviiiiiiiiiiiiiiciici s E-7
StructureDef INterface........oovviiiiiiiiiiii s E-8
AttributeDef Interface ... E-8
AttributeHints INterface.........coocieinrieioinniiiiiiccccceee e E-9

Most Commonly Used Methods in the Business Service Tierccccoevcccccccicncnnnnes E-10
Controlling Custom Java Files for Your Componentsccccceuvireieiniccienninnen E-10
ApplicationModuleImpl ClIass.........ccccceeuiuiiiiiiiiiiiiiiicceees E-11

Methods You Typically Call on ApplicationModuleImpl..........ccccceuvvvuvurunenunnes E-11
Methods You Typically Write in Your Custom ApplicationModuleImpl Subclass...
E-11

Methods You Typically Override in Your Custom ApplicationModuleImpl
Subclass E-12

DBTransactionImpl2 Classc.ccccueuieuiueuiiiiimieieieiciceieeeeeieeeeiereie e senenes E-13
Methods You Typically Call on DBTransaction...........cccccvmrueieiiciciciniccnnen, E-13
Methods You Typically Override in Your Custom DBTransactionImpl2 Subclass ...
E-14

EntityImMpl Class.c.ccucuimiuimiiiiieiiiccciccceceeee ettt E-15
Methods You Typically Call on EntityImpl........ccccooiiiiiiiiiiiiic, E-15
Methods You Typically Write in Your Custom Entitylmpl Subclass................ E-16
Methods You Typically Override in Your Custom Entitylmpl Subclass........... E-16

xlvii

E.2.5
E.2.5.1
E.25.2
E.2.5.3
E.2.6
E.2.6.1
E.2.6.2
E.2.6.3
E27
E.2.71
E.2.7.2
E.2.7.3
E.2.8

EntityDefImpl Classcocuriiiiiiiiiccie e E-17
Methods You Typically Call on EntityDefImplcccooooviiiiiii, E-18
Methods You Typically Write in Your Custom EntityDeflmpl Class E-18
Methods You Typically Override in Your Custom EntityDefImpl.................... E-19

ViewObjectIMpl Class.........cceuiiciiieiicciecc e E-19
Methods You Typically Call on ViewObjectImpl........c.ccccccciuiiiiiinniiicene E-19
Methods You Typically Write in Your Custom ViewObjectImpl Subclass E-20
Methods You Typically Override in Your Custom ViewObjectImpl Subclass E-21

VieWROWIMPL ClaSScuouimiiimiiiiiiiiiiciciccceiceeeeeeete e E-22
Methods You Typically Call on ViewRowImpl.........ccccoooiiiiiiiiiii, E-22
Methods You Typically Write in Your Custom ViewRowlmpl Class............... E-22

Methods You Typically Override in Your Custom ViewRowImpl Subclass... E-23
Setting Up Your Own Layer of Framework Base Classesccccccocoveueiiinieinnnne. E-23

F ADF Business Components Java EE Design Pattern Catalog

G Performing Common Oracle Forms Tasks in Oracle ADF

G.1
G.1.1
G.1.2
G.1.3
G.1.4
G.1.5
G.1.6
G.2
G.2.1
G.2.2
G.2.3
G.24
G.2.5
G.2.6
G.2.7
G.2.8
G.2.9
G.2.10

Performing Tasks Related to Data..........cccooieiiiiiiiiii G-1
How to Retrieve Lookup Display Values for Foreign Keys...........cccoooceiiiiiriinnnn. G-1
How to Get the Sysdate from the Database...........c.cccccoeiiiiiiiiiiiiiccicccccee G-2
How to Implement an Isolation Mode That Is Not Read Consistent..............cccc.c..... G-2
How to Implement Calculated Fields..........ccoooeiiiiiiie G-2
How to Implement Mirrored ItEMSc.cccccucuieiiiiiiiiiiiiiiccceceeeeeeeeeeeeeeeeeeaes G-3
How to Use Database Columns of Type CLOB or BLOB...........cccccoooiiiiiiie G-3

Performing Tasks Related to the User Interface..........cccoooiiiiiiiii, G-3
How t0 Lay Out @ Page.....c.cccuiiiiiiiiiiiiiiccccccceeeeeee e G-3
HoW t0 Stack Canvases.........cccvvueveiiieieiiiiiiiiiieeeeee s G-4
How to Implement a Master-Detail Screen............coccoiiiiiiiiiiicee G-4
How to Implement an Enter QUery Screen..........ccccccvueueicieicirivceceineeeccrceeeeeeeenes G-4
How to Implement an Updatable Multi-Record Table............cccccccevvvviiiiniinninnnnn G-4
How to Create a Popup List of Values ..o G-4
How to Implement a Dropdown List as a List of Valuesc.cccocoevvnnnnnnnncnne. G-5
How to Implement a Dropdown List with Values from Another Table.................... G-5
How to Implement Immediate Locking...........cccccooiiiiiiiiiiiiiciiccccee G-5
How to Throw an Error When a Record Is Lockedcccooiniiiiiiiiiicinnen, G-6

H Data Controls in Oracle ADF Fusion Web Applications

H.1
H.2
H.3

Glossary

xlviii

Introduction to Data CONIOIS.........ccccciuiuiiiiiiiiiiiiiiicicicieceeerre s H-1
Data Control Feature Implementation Comparison...........cccccevvvivviiiiiinininniinicnn H-2
Data Control ODJECES.........ccvuiiviiiiiiiiiiiicicc s H-3

Audience

Preface

Welcome to the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

This document is intended for enterprise developers who need to create and deploy
database-centric Java EE applications with a service-oriented architecture using the
Oracle Application Development Framework (Oracle ADF). This guide explains how
to build Fusion web applications using ADF Business Components, ADF Controller,
ADF Faces, and JavaServer Faces.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following documents:

Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

Oracle Fusion Middleware Desktop Integration Developer’s Guide for Oracle Application
Development Framework

Oracle Fusion Middleware Mobile Browser Developer’s Guide for Oracle Application
Development Framework

Oracle Fusion Middleware Performance and Tuning Guide
Oracle Fusion Middleware High Availability Guide

Oracle Fusion Middleware Administrator’s Guide for Oracle Application Development
Framework

xlix

Oracle Fusion Middleware Java EE Developer’s Guide for Oracle Application Development
Framework

Oracle [Developer 11g Online Help

Oracle [Developer 11g Release Notes, included with your JDeveloper 11¢ installation, and
on Oracle Technology Network

Oracle Fusion Middleware Java API Reference for Oracle ADF Model
Oracle Fusion Middleware Java API Reference for Oracle ADF Controller
Oracle Fusion Middleware Java API Reference for Oracle ADF Lifecycle
Oracle Fusion Middleware Java API Reference for Oracle ADF Faces
Oracle Fusion Middleware JavaScript API Reference for Oracle ADF Faces

Oracle Fusion Middleware Java API Reference for Oracle ADF Data Visualization
Components

Oracle Fusion Middleware Java API Reference for Oracle ADF Share
Oracle Fusion Middleware Java API Reference for Oracle ADF Business Components Browser
Oracle Fusion Middleware Java API Reference for Oracle Generic Domains

Oracle Fusion Middleware interMedia Domains Java API Reference for Oracle ADF Business
Components

Oracle Fusion Middleware Java API Reference for Oracle Metadata Service (MDS)
Oracle Fusion Middleware Tng Reference for Oracle ADF Faces

Oracle Fusion Middleware Tng Reference for Oracle ADF Faces Skin Selectors

Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces
Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin

Selectors
Conventions
The following text conventions are used in this document:
Convention Meaning
boldface Boldface type indicates graphical user interface elements (for example,

menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and
file names, URLSs, text that appears on the screen, or text that you enter.

What's New in This Guide for Release
11.1.1.9.0

For Release 11.1.1.9.0, this guide has been updated in several ways from this guide for

Release 11.1.1.7.0. The following table lists the sections that have been added or

changed.

Note:

This version of the guide may not contain the most recent

content. To view the latest version, access the guide directly from the
library on OTN. To see what has been added to this newer version,
compare the What's New sections of each guide.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the New Features page on the Oracle

Technology Network at

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index

.html.

Sections

Changes Made

Chapter 4, "Creating a Business Domain Layer
Using Entity Objects"

Section 4.12.6, "What You May Need to Know
About Custom Entity Object Methods"

Section added to describe how to avoid dependencies on
application modules and view objects in the methods that
you implement in custom entity object classes.

Chapter 5, "Defining SQL Queries Using View
Objects"

Section 5.11.6, "How to Use Master-Detail Related
View Objects in View Criteria"

Section added to explain how to create inline view criteria to
reference attributes of a detail view object in a master-detail
hierarchy.

Section 5.11.10.5, "Searching for Rows Using a Date
Comparison”

Section added to describe valid date comparison operators
used in view criteria.

Section 5.12, "Working with Row Finders"

Section added to describe how to use row finders to locate
specific rows in a view object row set. The row finder is
similar to query-by-example searches, and does not rely on a
row key attribute to locate specific rows.

Section 5.14.5, "How to Define UI Category Hints"

Section added to describe how to group attributes that a
view object defines using Ul category hints. You can use the
category hint to aid the user interface to separate a large list
of view object attributes into smaller groups related by
categories.

Sections

Changes Made

Chapter 7, "Defining Validation and Business
Rules Declaratively"

Section 7.3.5, "What You May Need to Know About
List of Values and Attribute Validation Rules"

Section added to describe limitation of attribute validation
rules that are defined on List of Values (LOV) data source
attributes.

Chapter 11, "Creating SOAP Web Services with
Application Modules"

Section 11.2.1, "How to Enable the Application
Module Service Interface"

Section revised to describe view object types that do not
automatically participate in the SDO service interface.

Section 11.2.3, "What Happens When You Create an
Application Module Service Interface With
Polymorphic View Objects"

Section added to document how the SDO service interface
supports subtype view objects that extend a base view
object.

Section 11.2.16, "How to Set Display Names for
Service View Instances and Attributes"

Section added to describe how to set display name UT hints
for view objects and view object attributes that have the
getDf1tObjAttrHints () built-in method configured on their
service view instance.

Section 11.4, "Accessing Polymorphic Collections in
the Consuming Application”

Section added to document how to use a JAX-WS client to
access polymorphic view object collections.

Chapter 17, "Using Task Flows as Regions"

Section 17.8, "Configuring Transaction Management
in an ADF Region"

Section added that discusses how to configure the
transaction options of a task flow that renders in an ADF
region.

Section 17.11, "Configuring a Page To Render an
Unknown Number of Regions"

Section added to describe how to use the multi task flow
binding that you can use to render an unknown number of
regions.

Chapter 18, "Creating Complex Task Flows"

Section 18.4, "Managing Transactions"

Section revised to describe how choosing the <No
Controller Transaction> option from a task flow's overview
editor turns off the transaction management capabilities of
the ADF task flow and delegates transaction management to
the ADF Model layer.

Section 18.10, "Minimizing the Number of Active
Root View Ports in an Application”

Section added to describe the new <max-root-view-ports>
property that you can use to specify the maximum number
of root view ports in an application.

Section 18.16, "Reporting Incidents to the Oracle
Fusion Middleware Diagnostic Framework"

Section added to describe how you can configure the
<debug-history-size> element in your application's
adf-config.xml file to stop the collection of events or
modify the number of events that the ADF Controller
collects to report to the Diagnostic Framework if an incident
occurs in your application.

Chapter 22, Creating a Basic Databound Page

Section 22.7.4, "What You May Need to Know
About Converters for Dynamic Forms"

Section added to describe how to use an alternate format
string for a converter in a dynamic form.

Chapter 23, "Creating ADF Databound Tables"

Section 23.5, "Creating a List View of a Collection"

Section added to describe the new wizard available to create
databound listView components.

Chapter 24, "Displaying Master-Detail Data"

Section 24.6, "Using List Views to Display
Master-Detail Objects"”

Section added to describe creating a databound
master-detail view with the 1istview component.

Sections

Changes Made

Chapter 26, "Creating Databound ADF Data
Visualization Components"

Section 26.2, "Creating Databound Charts"

Section added to describe how you can create the user
interface using new client-side charts: area, bar, bubble,
combination, funnel, horizontal bar, line, pie, scatter, spark.
The charts replace the server-side area, bar, bubble,
combination, horizontal bar, line, pie, scatter and spark
graphs.

Section 26.5, "Creating Databound NBoxes"

Section added to document new DVT NBox component,
used to visualize and compare data across a
two-dimensional grid, represented visually by rows and
columns.

Section 26.8, "Creating Databound Thematic Maps"

Section added to describe how to create and configure
thematic maps using ADF data controls.

Section 26.10, "Creating Databound Timelines"

Section added describing how to create and configure
timelines using ADF data controls.

Section 26.12, "Creating Databound Treemaps and
Sunbursts"

Section added describing how to create and configure
treemaps and sunbursts using ADF data controls.

Chapter 27, "Creating ADF Databound Search
Forms"

Section 27.3.2, "How to Add Placeholder Text,
Label, and Tooltip"

Section added to describe how to create watermark, label,
and tooltip texts to a search field.

Chapter 30, "Enabling ADF Security in a Fusion
Web Application"

Section 30.5.6, "How to Define Policies to Control
User Access to ADF Methods"

Section added to describe how to control user access to
command components in the user interface that execute
ADF methods.

Section 30.5.12, "How to Aggregate Resource Grants
as Entitlement Grants"

Section added to describe how to control user access to
multiple Oracle ADF artifacts, using a single ADF Security
entitlement grant.

Section 30.7, "Creating a Login Page"

Section revised to clarify how the procedure to create a login
page programmatically uses Oracle WebLogic
Server-specific API for Basic authentication.

Section 30.9.3, "How to Secure Resource Files Using
a URL Constraint"

Section added to describe how to control user access to
resource files, including images, style sheets, and JavaScript
libraries, that support the Fusion web application.

Section 30.11.2, "How to Protect Ul Components
Using OPSS Resource Permissions and EL"

Section revised to describe how to control user access to Ul
components in the user interface, using an ADF Security
resource grant.

Section 30.11.3, "How to Perform Authorization
Checks for Entity Object Operations”

Section added to describe how to use entity row API and
ADF Security EL methods to test user permission for
secured entity object operations.

Chapter 31, "Testing and Debugging ADF
Components"

Section 31.5.6, "What You May Need to Know
About ADF Loggers and Log Output”

Section added to describe how to manage loggers to
optimize the log output.

Chapter 37, "Advanced Business Component
Techniques"

Sections

Changes Made

Section 37.8.3.1, "Attributes in an Extended
Component Inherited from the Parent Component”

Section added to describe how overriding attributes in an
extended component changes the behavior of inheritable
attribute changes subsequently made in the parent
component.

Chapter 41, "Advanced View Object Techniques"

Section 39.3.3.4, "Avoid Creating Dependencies on
Parent Application Module Types"

Section added to describe how to avoid dependencies on
application modules and view objects in the methods that
you implement in custom view object and view row classes.

Section 39.6, "Using View Objects to Work with
Multiple Row Types"

Section revised to better describe how to create polymorphic
view objects.

Chapter 40, Application State Management

Section 40.2.3, "What You May Need to Know
About Using Application Scoped Managed Beans in
a Clustered Environment"

Section added to describe limitation of application scoped
beans in a clustered environment.

liv

Part |

Getting Started with Fusion Web
Applications

Part I contains the following chapters:
» Chapter 1, "Introduction to Building Fusion Web Applications with Oracle ADF"
» Chapter 2, "Introduction to the ADF Sample Application"

1

Introduction to Building Fusion Web
Applications with Oracle ADF

This chapter describes the architecture and key functionality of Oracle Application
Development Framework (Oracle ADF) when used to build a Fusion web application
that uses ADF Business Components, ADF Model, ADF Controller, and ADF Faces
rich client, along with high-level development practices.

This chapter includes the following sections:

s Section 1.1, "Introduction to Oracle ADF"

s Section 1.2, "Oracle ADF Architecture"

= Section 1.3, "Developing with Oracle ADF"

= Section 1.4, "Working Productively in Teams"

= Section 1.5, "Learning Oracle ADF"

= Section 1.6, "Generation of Complete Web Tier Using Oracle JHeadstart"

1.1 Introduction to Oracle ADF

The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies. You can use Oracle ADF to implement
enterprise solutions that search, display, create, modify, and validate data using web,
wireless, desktop, or web services interfaces. Because of its declarative nature, Oracle
ADF simplifies and accelerates development by allowing users to focus on the logic of
application creation rather than coding details. Used in tandem, Oracle JDeveloper 11g
and Oracle ADF give you an environment that covers the full development lifecycle
from design to deployment, with drag-and-drop data binding, visual UI design, and
team development features built in.

You can download and view the Fusion Order demo application, which helps to
illustrate the concepts and procedures in this guide (and other Fusion Middleware
developer guides). The StoreFront module of this application is built using the Fusion
web application technology stack, which includes ADF Business Components, ADF
Model, ADF Controller, and JavaServer Faces pages with ADF Faces rich client
components. Screenshots and code samples from this module are used throughout this
guide to provide you with real-world examples of using the Oracle ADF technologies
in an application that uses the Fusion web technology stack. For more information
about downloading and using the StoreFront module of the Fusion Order Demo
application, see Chapter 2, "Introduction to the ADF Sample Application."

Introduction to Building Fusion Web Applications with Oracle ADF 1-1

Oracle ADF Architecture

1.2 Oracle ADF Architecture

In line with community best practices, applications you build using the Fusion web
technology stack achieve a clean separation of business logic, page navigation, and
user interface by adhering to a model-view-controller architecture. As shown in
Figure 1-1, in an MVC architecture:

The model layer represents the data values related to the current page
The view layer contains the Ul pages used to view or modify that data
The controller layer processes user input and determines page navigation

The business service layer handles data access and encapsulates business logic

Figure 1-1 MVC Architecture Cleanly Separates Ul, Business Logic and Page Navigation

Controller

Business
Services

Figure 1-2 illustrates where each ADF module fits in the Fusion web application
architecture. The core module in the framework is ADF Model, a data binding facility.
The ADF Model layer enables a unified approach to bind any user interface to any
business service, without the need to write code. The other modules that make up a
Fusion web application technology stack are:

ADF Business Components, which simplifies building business services.

ADF Faces rich client, which offers a rich library of AJAX-enabled Ul components
for web applications built with JavaServer Faces (JSF).

ADF Controller, which integrates JSF with ADF Model. The ADF Controller
extends the standard JSF controller by providing additional functionality, such as
reusable task flows that pass control not only between JSF pages, but also between
other activities, for instance method calls or other task flows.

1-2 Fusion Developer's Guide for Oracle Application Development Framework

Oracle ADF Architecture

Note: In addition to ADF Faces, Oracle ADF also supports using the
Swing, JSP, and standard JSF view technologies. For more information
about these technologies, refer to the JDeveloper online help. Oracle
ADF also provides support for using Microsoft Excel as a view layer
for your application. For more information, see the Oracle Fusion
Middleware Desktop Integration Developer’s Guide for Oracle Application
Development Framework

Figure 1-2 Simple Oracle ADF Architecture

Desktop Mobile Browser-Based

! { !
m Controller
!

Mode!

!

eV [85" [X5 | SR | SWarcomees | SPEC| o | Poron J-etpoodd

g Data
Services
Database Veb Services Legacy Systems Apps Unlimited

S)|

BS)

Metadata Semices (M|

1.2.1 ADF Business Components

When building service-oriented Java EE applications, you implement your core
business logic as one or more business services. These backend services provide clients
with a way to query, insert, update, and delete business data as required while
enforcing appropriate business rules. ADF Business Components are prebuilt
application objects that accelerate the job of delivering and maintaining
high-performance, richly functional, database-centric services. They provide you with
a ready-to-use implementation of Java EE design patterns and best practices.

As illustrated in Figure 1-3, Oracle ADF provides the following key components to
simplify building database-centric business services:

Entity object

An entity object represents a row in a database table and simplifies modifying its
data by handling all data manipulation language (DML) operations for you. It can
encapsulate business logic to ensure that your business rules are consistently
enforced. You associate an entity object with others to reflect relationships in the
underlying database schema to create a layer of business domain objects to reuse
in multiple applications.

View object

A view object represents a SQL query and simplifies working with its results. You
use the SQL language to join, filter, sort, and aggregate data into the shape
required by the end-user task being represented in the user interface. This includes
the ability to link a view object with other entity objects to create master-detail
hierarchies of any complexity. When end users modify data in the user interface,
your view objects collaborate with entity objects to consistently validate and save
the changes.

Introduction to Building Fusion Web Applications with Oracle ADF 1-3

Oracle ADF Architecture

= Application module

An application module is the transactional component that Ul clients use to work
with application data. It defines an updateable data model along with top-level
procedures and functions (called service methods) related to a logical unit of work
related to an end-user task.

Figure 1-3 ADF Business Components Simplify Data Access and Validation

Entity abjects are M
busmesé domnain e Oreereo [oroeRs
components related Orderld
to atable. They OrderDate
enfarce business OrderStatus Code
logic and handle OrderTatal
saving changes to Customerid
the raws. ShipToName
ShipToAddressid
ShipToPhoneNumber
)) ShippingCptionid
View objects are query Paymentoptionid
components that shape e R
datafor the user ¥ .
|

interface. They can

reference entity objects |

to support updates and |
I
|

I I
|
validation. &3] Orderinfov O

& OrdersvVo

“““““ I
|
Application modules are :
business service

components that clients use
to browse and madify data. T :

They use view objects in [I‘:’II StoreSenviceAM

their data model. OrdersvO

T
|
|
|
|
|
| Orderinfav'o
|

|

|

Tip: If you have previously worked with Oracle Forms, note that this
combined functionality is the same set of data-centric features
provided by the form, data blocks, record manager, and form-level
procedures or functions. The key difference in Oracle ADF is that the
user interface is cleanly separated from data access and validation
functionality. For more information, see Appendix G, "Performing
Common Oracle Forms Tasks in Oracle ADE."

1.2.2 ADF Model Layer

The ADF Model layer abstracts the business service implementation, providing a
single programming interface for different types of services. Data controls provide this
interface by using standard metadata interfaces to describe the service’s operations
and data collections, including information about the properties, methods, and types
involved. In JDeveloper, the functionality and attributes exposed by a business service
are indicated by icons in the Data Controls panel. You can drag and drop onto a page
to create Ul components. JDeveloper automatically creates the bindings from the page
and the UI components to the services. At runtime, the ADF Model layer reads the
information describing your data controls and data bindings from appropriate XML
files and implements the two-way connection between your user interface and your
business service.

1-4 Fusion Developer's Guide for Oracle Application Development Framework

Oracle ADF Architecture

Oracle ADF provides out-of-the-box data control implementations for the most
common business service technologies. Using JDeveloper and Oracle ADF together
provides you with a drag-and-drop data binding experience as you build your user
interfaces. Along with support for ADF application modules, ADF Model also
provides support for the following service technologies:

= Enterprise JavaBeans (E]JB) session beans and JPA entities
s JavaBeans

» Web services

= XML

n CSVfiles

1.2.3 ADF Controller

In the controller layer, where handling page flow of your web applications is a key
concern, ADF Controller provides an enhanced navigation and state management
model on top of JSE. JDeveloper allows you to declaratively create task flows where
you can pass application control between different types of activities, such as pages,
methods on managed beans, case statements, or calls to other task flows.

These task flows can be reused, and can also be nested, both within themselves and
within pages. Task flows nested in pages become regions that contain their own set of
navigatable pages, allowing users to view a number of different pages and
functionality without leaving the main page.

1.2.4 ADF Faces Rich Client

ADF Faces rich client (ADF Faces for short), is a set of standard JSF components that
include built-in AJAX functionality. AJAX is a combination of asynchronous
JavaScript, dynamic HTML (DHTML), XML, and Xml1HttpRequest communication
channels. This combination allows requests to be made to the server without fully
rerendering the page. While AJAX allows rich client-like applications to use standard
internet technologies, JSF provides server-side control, which reduces the dependency
on an abundance of JavaScript often found in typical AJAX applications.

ADF Faces provides over 100 rich components, including hierarchical data tables, tree
menus, in-page dialogs, accordions, dividers, and sortable tables. ADF Faces also
provides ADF Data Visualization components, which are HTMLS5, Flash- and
SVG-enabled components capable of rendering dynamic charts, graphs, gauges, and
other graphics that can provide a real-time view of underlying data. Each component
also supports customization and skinning, along with internationalization and
accessibility.

To achieve these front-end capabilities, ADF Faces components use a rendering kit that
handles displaying the component and also provides the JavaScript objects needed for
the rich functionality. This built-in support enables you to build rich applications
without needing extensive knowledge of the individual technologies on the front or
back end.

ADF Faces can also be used in an application that uses the Facelets library. Facelets is a
JSF-centric XML view definition technology that provides an alternative to using the
JSP engine. For more information about ADF Faces, including the architecture and
detailed information about each of the components, see the Oracle Fusion Middleware
Web User Interface Developer’s Guide for Oracle Application Development Framework.

Along with ADF Faces, Oracle ADF also supports the following view technologies:

Introduction to Building Fusion Web Applications with Oracle ADF 1-5

Developing with Oracle ADF

Apache MyFaces Trinidad: This is the open source code donation from Oracle to
the Apache Software Foundation. ADF Faces components are based on these
Trinidad components.

Java Swing and ADF Swing: ADF Swing is the development environment for
building Java Swing applications that use the ADF Model layer.

Microsoft Excel: You can create spreadsheets that are bound to data using the same
binding principals as do other view technologies. For more information, see the
Oracle Fusion Middleware Desktop Integration Developer’s Guide for Oracle Application
Development Framework.

1.3 Developing with Oracle ADF

Oracle ADF emphasizes the use of the declarative programming paradigm throughout
the development process to allow users to focus on the logic of application creation
without having to get into implementation details. Using JDeveloper 11¢ with Oracle
ADF, you benefit from a high-productivity environment that automatically manages
your application’s declarative metadata for data access, validation, page control and
navigation, user interface design, and data binding.

At a high level, the development process for a Fusion web application usually involves
the following:

Creating an application workspace: Using a wizard, JDeveloper automatically
adds the libraries and configuration needed for the technologies you select, and
structures your application into projects with packages and directories.

Modeling the database objects: You can create an offline replica of any database,
and use JDeveloper editors and diagrammers to edit definitions and update
schemas.

Creating use cases: Using the UML modeler, you can create use cases for your
application.

Designing application control and navigation: You use diagrammers to visually
determine the flow of application control and navigation. JDeveloper creates the
underlying XML for you.

Identifying shared resources: You use a resource library that allows you to view
and use imported libraries by simply dragging and dropping them into your
application.

Creating business components to access data: From your database tables, you
create entity objects using wizards or dialogs. From those entity objects, you create
the view objects used by the pages in your application. You can implement
validation rules and other types of business logic using editors.

Implementing the user interface with JSF: JDeveloper’s Data Controls panel
contains a representation of the view objects for your application. Creating a user
interface is as simple as dragging an object onto a page and selecting the Ul
component you want to display the underlying data. For UI components that are
not databound, you use the Component Palette to drag and drop components.
JDeveloper creates all the page code for you.

Binding UI components to data using the ADF Model layer: When you drag an
object from the Data Controls panel, JDeveloper automatically creates the bindings
between the page and the data model.

Incorporating validation and error handling: Once your application is created you
use editors to add additional validation and to define error handling.

1-6 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

= Securing the application: You use editors to create roles and populate these with
test users. You then use a flat file editor to define security policies for these roles
and assign them to specific resources in your application.

s Testing and debugging: JDeveloper includes an integrated application server that
allows you to fully test your application without needing to package it up and
deploy it. JDeveloper also includes the ADF Declarative Debugger, a tool that
allows you to set breakpoints and examine the data.

= Deploying the application: You use wizards and editors to create and edit
deployment descriptors, JAR files, and application server connections.

1.3.1 Creating an Application Workspace

The first step in building a new application is to assign it a name and to specify the
directory where its source files will be saved. When you create an application using
the application templates provided by JDeveloper, it organizes your workspace into
projects and creates and organizes many of the configuration files required by the type
of application you are creating.

One of these templates is the Fusion Web Application (ADF) template, which provides
the correctly configured set of projects you need to create a web application that uses
ADF Faces for the view, ADF Page Flow for the controller, and ADF Business
Components for business services. When you create an application workspace using
this template, JDeveloper automatically creates the JSF and ADF configuration files
needed for the application.

One part of the application overview is the Fusion Web Application Quick Start
Checklist. This checklist provides you with the basic steps for creating a Fusion web
application. Included are links to pertinent documentation, prerequisites, and the
ability to keep track of status for each step in the checklist, as shown in Figure 1-4.

Figure 1-4 Fusion Web Application Quick Start Checkilist

Applicationl? Overview | E]
Checklist

Java Files

Fusion Web Application Quick Start Checklist

Eoom

7 Credte the application by Follawing step-by-step instructions describing how to build
Page Flows Fusion Web Applications according to Oracle best practice recommendations,

wieb Pages Shi Al |

Business Components

Binding Files Plan Your Application E Mot Skarted

Offline Databases

2 » @] Connect to & Database E Mok Skarted
I [@ Build Business Services |3 Mot Started
4 b Design Application Flow E Mot Started
5 b !_—f/ Design Pages ﬂ Mot Started
[E Add Common Components (Lookups, Search and Menus) E Mot Started
A Implement Business Logic E Mot Started

. '%‘ - . - PR | I—

JDeveloper also creates a project named Model that will contain all the source files
related to the business services in your application, and a project named

Introduction to Building Fusion Web Applications with Oracle ADF 1-7

Developing with Oracle ADF

ViewController that will contain all the source files for your ADF Faces view layer,
including files for the controller.

JDeveloper adds the following libraries to the data model project:
= ADF Model Runtime

s BC4J Oracle Domains

s BC4] Runtime

= BC4J Security

» BC4J Tester

= MDS Runtime

= MDS Runtime Dependencies

s Oracle JDBC

JDeveloper also adds the following libraries to the view project:
= JSP Runtime

= JSF12

= JSTL12

= ADF Page Flow Runtime

= ADF Controller Runtime

= ADF Controller Schema

s ADF Faces Runtime 11

= ADF Common Runtime

= ADF Web Runtime

= MDS Runtime

= MDS Runtime Dependencies

s Commons Beautils 1.6

= Commons Logging 1.0.4

s Commons Collections 3.1

= ADF DVT Faces Runtime

= ADF DVT Faces Databinding Runtime

Once you add a JSF page, JDeveloper adds the Oracle JEWT library.

Once the projects are created for you, you can rename them as you need. You can then
use JDeveloper to create additional projects, and add the packages and files needed for
your application.

Note: If you plan to reuse artifacts in your application (for example,
task flows), then you should follow the naming guidelines presented
in Chapter 33, "Reusing Application Components" in order to prevent
naming conflicts.

1-8 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

Tip: You can edit the default values used in application templates, as
well as create your own templates. To do so, choose Application >
Manage Templates.

Figure 1-5 shows the different projects, packages, directories, and files for the
StoreFrontModule application, as displayed in the Application Navigator.

Figure 1-5 StoreFrontModule Application Projects, Packages, and Directories

A.pplication énDatabase Mavigator
StoreFrontModule -
Projects & & V- %=

[=-{E3] StoreFront L
=[] Application Sources
- oracle.fodema, Frrmwkesxt

{fl oracle.Fodema.skinning
-l oracle.fodema, storefront
- @=-[O META-IVF

B web Content

-7 accounk

B[] checkout
-] images
=i

-] skins

-7 templates
-7 WEB-TNF
-7 Page Flows

------ horme jspx

------ lagin_errar. jspx
------ login. jspe:

------ logout. jspx

------ myOrders, jspx

For more information, see "Managing Applications and Projects" in the "JDeveloper
Basics" section of the JDeveloper online help.

When you work with your files, you use mostly the editor window, the Structure
window, and the Property Inspector, as shown in Figure 1-6. The editor window
allows you to view many of your files in a WYSIWYG environment, or you can view a
file in an overview editor where you can declaratively make changes, or you can view
the source code for the file. The Structure window shows the structure of the currently
selected file. You can select objects in this window and then edit the properties for the
selection in the Property Inspector.

Introduction to Building Fusion Web Applications with Oracle ADF 1-9

Developing with Oracle ADF

Figure 1-6 The JDeveloper Workspace

Ble Edt Yiew Applicotion Refagtor Search Navigate Build Eun Versigning
FaEa D
Sapplication
=] StoreFrontModule

Ioolks

tondow Help
[T

= @l Component Palstts (giee...

=
AUF Fuces -

Data Controls |~

Panel

Structure
Window

|~ Proects

-

- 5

-

&) bemplates
[wenme
&[0 Page Flows

¥ hone jspux - Struchre

[adfc-coniig
[choschoue-tamsh-Plosr
[} customer-regstrator sk flow

L emckyee-regutrationtast-fow
[helortask Aow

Recently Opaned Fies

a

SR

T Fattibute
=i = ol StoreF rort Tanglate.
5 = genter
%=t end
= i header
B alpanedGrouplayout - F
= o inagatiorPars
(&) of:commanchisy

H =he
i Show Detail tern -)
A reawen

Hot e H Shopning Cart Sumimas
i o skoct S Dietad Tt - (v, o featured header 1|
—v by

=/ . Productllame.inpeis

=

e 91 Listhrice
FIE vt

mp v o et v) fiparely g5 » i aF: -
Desgn | Source | Bedngs | Frevew | Hstory

[Elressages - Lo

!

Hessagts | Extirions

| | @ buwton

U] Frdersd: [cdefants e
Elll oren:

| I

| 5 fction;

L]
Common Conporerts
*hs Bread Crumbs

[Calendsr

0 Corcusel

@ Caroussl Jtem

-
Layout

| |} ecorstive B
i

[L ooment

i L aokee Frame

k) Naigation Pans.

[Fered accordion

Cpratre

|
|| riavgoton tem - #4reclgkcbal..

RS (N

L

TE

=1d: cnil

#{reslghobalnav.home' |
Imagesihome.of

Gabsome

| Actiorlistenar:

TargetFranme:
UseWindow:
Wiro rbad e

el ..
el ..
‘Wirdowtodalty Tyoe: | cdelad> ...

[

-+

Component
Palette

Property

Inspector

Log |
Window

1.3.2 Modeling with Database Object Definitions

In JDeveloper, after you create your application workspace, you can copy database
objects from a database schema to an offline database or project where they become
available as offline database objects, saved as .xml files. You can then create and edit
database object definitions within a project using the same editors that you use to
create and edit database objects on live database connections. You can also compare
your offline database objects with other offline or live database schemas and generate
SQL statements (including CREATE, REPLACE, and ALTER).

For example, you can drag a table from a database connection that your application
defines onto a database diagram and JDeveloper will give you the choice to model the
database object live or offline (to create the .xm1 file representation of the object).
Modeling database definitions, such as tables and foreign keys, visually captures the
essential information about a schema. You can use the diagram to drag and drop
columns and keys to duplicate, move, and create foreign key relationships. Working in
offline mode, whenever you model a node on a diagram, JDeveloper creates the
underlying offline object and lists it in the Application Navigator. Working with a live
schema, JDeveloper updates the live database object as you amend the diagram. You
can create multiple diagrams from the same offline database objects and spread your
offline database across multiple projects.

Using a database diagram like the one shown in Figure 1-7 you can visualize the
following:

s Tables and their columns
= Foreign key relationships between tables
s Views

s Offline sequences and synonyms

1-10 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

In addition to using the diagram directly to create and edit database objects, you can
work with specific database object editors. After you have finished working with the
offline database objects, you can generate new and updated database definitions to
online database schemas.

When you work with the database diagram you can customize the diagram to change

the layout, change how objects are represented and grouped, add diagram annotations
to specify dependencies or links (such as URLs), and change visual properties, such as
color and font of diagram elements.

Figure 1-7 Database Diagram for Payments Grouping

Payments Grouping

DISCOUNT_TRANSLATIONS_SEQ 1 P——
] DISCOUNT_TRANSLATIONS | = DISCOUNTS_BASE L COUPON_USAGES
DISCOUN | _IRAMSLA HONS_ID : NUMBERI1S, U) LISTOUMI_ID : MUMBER(1S, U) *
DISCOUNT_ID : NUMBER(15,) DISCOUNT_TYPE_CODE : WAICHAR2(30 BYTE)
DESCRIPTION : 'V ARCHAR2(4000 BY TE) DISCOUNT_AMOUNT : NUMBER 1
LAMGUAGE : VARCHAR2(30 BYTE) N APPLY_AS_PERCENTAGE_FLAG : VARCHAR2(* BYTE) FODOffline
SOURCE_LANGUAGE : % ARCHARZ2(15 BYTE) ————EASY_CO2E: VARCHAR2(20 BYTE) . ELIGIBLE_DISCOUNTS
CREATED_BY : WVARCHAR2(E0 BYTE) 1 | ADD_FREE_SHIPPING_FLAG : VARCHAR2(1 BYE)
CRCATION_DATLE : DATC QNCTIMC_DISCOUNT_FLAG : WVARCIIARZ(1 OYTI)
LAST_UPDATED_BY : VARCHARZ{G0 BYTE) .Iu.ﬁ. DISCOUNT_SEQ

«PH=DISCOUMTS_PK: DISCOUNT_ID

«ChecksDISCOUNTS_FREE_SHIPPING_CHK: ADC_FREE_| - ZIncrement : 1

Maximum Yalue : 999999
Minimun Yalue : 1
Start With ©

LAST_UPDATE_DATE : DATE
OBJECT_VERSION_ID : MUMBER(15, 0)

DISCOUNT_TRANSLATIONS DISCOUNTS_BASE

i) DISCOUNTS

DISCOUNT_ID(DISCOUNT _ID)

DESCRIPTION(DISCOUNT_TRANSLATIONS DESCRIPTION)

DISCOUNT_T'YPE_CODE(DISCOUNTS _BASE.DISCOUNT_TYPE_CODE)

DISCOUNT_AMOUNT{DISCOUNTS _BASE DISCOUMT_AMOLUMNT)

APPLY_AS_PERCEMTAGE_FLAG({DISCOUNTS_BASE APPLY_AS_PERCENTAGE_FLAG) aleftLinks arightLinks
EASY_CODE(DISCOUNTS_BASE EASY_CODE)

ADD_FREE_SHIPPING _FLAG(DISCOUNTS_BASE.ADD_FREE_SHIPPING_FLAG)

ONETIME_DISCOUNT_FLAG(DISCOUNTS_BASE OMETIME_DISCOUNT_FLAG]

INMER: JOIMN

Click to Access

Customer Memberships Persons Orders Full Schema

Specifically, the following customizations were made to the database diagram shown
in Figure 1-7:

= DISCOUNT_TRANSLATIONS element show the table with constraints not displayed.

s DISCOUNTS_BASE element shows the table with some column definitions hidden
(such as CREATED_BY, CREATION_DATE, and LASTUPDATED_BY) plus the diagram
element has been sized to fit within the overall diagram (thus truncating some of
the detail).

= DISCOUNT_TRANSLATIONS_SEQ element shows a sequence displayed in compact
view in contrast to DISCOUNTS_SEQ which shows the sequence properties.

Introduction to Building Fusion Web Applications with Oracle ADF 1-11

Developing with Oracle ADF

= COUPON_USAGES and ELIGIBLE_DISCOUNTS elements use different colors both in
compact view and each identifies their database schema (FODOff1ine).

= DISCOUNTS element is a view displayed. The element identifies the tables that
comprise the view in compact mode and the JOIN type (INNER JOIN). It also
identifies the usage relationships on tables with a dotted line.

= DISCOUNTS_BASE and DISCOUNT_TRANSLATIONS elements show a foreign key
relationship.

= DISCOUNT_SEQ element uses an annotation (dashed arrow) to represent the
dependency with DISCOUNTS_BASE table.

s Payments Grouping element uses HTML link annotations (for example, Customer
Memberships) to display other diagrams from the project.

= Payments Grouping element nests elements with group shapes (Click to Access).

For more information about modeling database definitions with database diagrams,
see "Creating, Editing, and Dropping Database Objects" in the "Designing Databases"
section of the JDeveloper online help.

1.3.3 Creating Use Cases

After creating an application workspace, you may decide to begin the development
process by doing use case modeling to capture and communicate end-user
requirements for the application to be built. Figure 1-8 shows a simple diagram
created using the UML modeler in JDeveloper. The diagram represents an end user
viewing a list of his orders and then drilling down to view the details of an order.
Using diagram annotations, you can capture particular requirements about what end
users might need to see on the screens that will implement the use case. For example,
in this use case, it is noted that the user will select order details for each order listed.

Figure 1-8 Use Case Diagram for Viewing Order History

[

User selects order StoreFronthMocule
to view from a list
of orders in history

User views most recent order
L)
1
]
include
Customer I
1

User selects order to display

For more information about creating use case diagrams, see "Modeling With
Diagrams" in the "Designing and Developing Applications" section of the JDeveloper
online help.

1.3.4 Designing Application Control and Navigation Using ADF Task Flows

By modeling the use cases, you begin to understand the kinds of user interface pages
that will be required to implement end-user requirements. At this point, you can begin
to design the flow of your application. In a Fusion web application, you use ADF task
flows instead of standard JSF navigation flows. Task flows provide a more modular

1-12 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

and transaction-aware approach to navigation and application control. Like standard
JSF navigation flows, task flows contain mostly viewable pages. However, instead of
describing navigation between pages, task flows facilitate transitions between
activities. Aside from navigation, task flows can also have nonvisual activities that can
be chained together to affect the page flow and application behavior. For example,
these nonvisual activities can call methods on managed beans, evaluate an EL
expression, or call another task flow. This facilitates reuse, as business logic can be
invoked independently of the page being displayed.

Figure 1-9 shows the checkout-task-flow task flow from the StoreFront module of
the Fusion Order Demo application. In this task flow, order and orderSummary are
view activities that represent pages, while reconcileShoppingCart is a method call
activity. When the user enters this flow, the reconcileShoppingCart activity is
invoked (because it is the entry point for the flow, as denoted by the green circle) and
the corresponding method is called. From there, the flow continues to the order page.
From the order page, control can be passed to the orderSummary page, or to the
continueShopping return activity that is the exit point of the flow and passes control
back to the home page.

Figure 1-9 Task Flow in the StoreFrontModule Application

viewQrder

P —

reconcileShoppingCart ‘

errorPage

orderSummary B

»
»

orderSummary

return

return

v

continueShopping

The ADF Controller provides a mechanism to define navigation using control flow
rules. The control flow rule information, along with other information regarding the
flow, is saved in a configuration file. Figure 1-10 shows the Structure window for the
checkout-task-flow task flow. This window shows each of the items configured in
the flow, such as the control flow rules. The Property Inspector (by default, located at
the bottom right) allows you to set values for the different elements in the flow.

Introduction to Building Fusion Web Applications with Oracle ADF 1-13

Developing with Oracle ADF

Figure 1-10 Task Flow Elements in the Structure Window and Property Inspector

= checkout-task-Flow . . & Thumbnail (=) |[Echeckout-task-Alow.xmi (=] @view - order - Property Inspector]
e B Q[0 | show- | § AT BT e @@ BB AR (& 3@

=[] ADF Task Flow
& [[2 task-flow-definition - checkout-task-Flow
@ default-activity - reconcileshoppingCart
[dats-control-scope viswOrder © Page *: \feheckautforder jspx 3
13 input-parameter-definition - userInfoBean ¢ N
@ managed-bean - paymentOptionsBiean
tion-handler - errorPage

er

Bounded Task Flow = General

o ctinity D *; [order]
J

Redirect: | <default> (false) 3~

Description

§ J Page Parameters
¢ task-Flow-return - conti i r 10pping Gart
view - errarPage

method-call - reconcileShoppingCart
=683 control-flow-rule - order

© from-activity-id - arder

{4 control-flow-case - ordersummary (p—
(&) controk-Flow-case - continueShopping
= €43 control-flow-rule - ordersummary

© from-acthvity-id - orderSummary orderSummary &
{4 control-flow-case - continueShopping orderSummary
&) control-flow-rule - reconcileShoppingCart ‘

Customization

errorPage

Aside from pages, task flows can also coordinate page fragments. Page fragments are
JSF JSP documents that are rendered as content in other JSF pages. You can create page
fragments and the control between them in a bounded task flow as you would create
pages, and then insert the entire task flow into another page as a region. Because it is
simply another task flow, the region can independently execute methods, evaluate
expressions, and display content, while the remaining content on the containing page
remains the same. For example, before registering a new user, the application needs to
determine what kind of user needs to be created. All the logic to do this is handled in
the user-registration-task-£flow task flow, which is used as a region in the
registerUser page.

Regions also facilitate reuse. You can create a task flow as a region, determine the
pieces of information required by a task and the pieces of information it might return,
define those as parameters and return values of the region, then drop the region on
any page in an application. Depending on the value of the parameter, a different view
can display.

The chapters contained in Part III, "Creating ADF Task Flows" contain information
about using task flows. For general information about task flows and creating them,
see Chapter 14, "Getting Started with ADF Task Flows." For information about task
flow activities, see Chapter 15, "Working with Task Flow Activities." If you need to
pass parameters into or out of task flows, see Chapter 16, "Using Parameters in Task
Flows." For more information about regions, see Chapter 17, "Using Task Flows as
Regions." For information about advanced functionality that task flows can provide,
such as transactional capabilities and creating mandatory sequences of pages (known
as trains), see Chapter 18, "Creating Complex Task Flows." For information about using
task flows to create dialogs, see Chapter 19, "Using Dialogs in Your Application."

1.3.5 Identifying Shared Resources

You may find that some aspects of your application can be reused throughout the
application. For example, you may need the functionality of creating an address to
appear both when a user registers and when a user creates an order. Or you may find
throughout the development process that certain components of your application
should be shared throughout the application. You can declaratively create ADF
libraries that allow you to package artifacts and reuse them throughout the
application. For example, you might create a task flow for the process of creating an
address. You can then save this task flow and package it as a library. The library can be
sent to other developers who can add it to their a resource catalog, from which they
can drag and drop it onto any page where it’s needed. Figure 1-11 shows the Resource
Palette in JDeveloper.

1-14 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

Figure 1-11 Resource Palette in JDeveloper

@Resource Palette X =
- (8- D)

My Catalogs
=[] Task Flows

[E1-[E ADF Task Flows
-3} adfc-config
; [[B checkaut-task-Flaw
L_E‘ customer-registr ation-task-Flow
L_'[g employee-registration-task-flow
e L_|E| user-registration-task-flow

When designing the application, be sure to note all the tasks that can possibly become
candidates for reuse. Chapter 33, "Reusing Application Components" provides more
information about the ADF artifacts that can be packaged and reused as an ADF
library, along with procedures both for creating and using the libraries.

1.3.6 Creating a Data Model to Access Data with ADF Business Components

Typically, when you implement business logic as ADF Business Components, you do
the following:

= Create entity objects to represent tables that you expect your application to
perform a transaction against (if no transaction is to be performed, an entity object
is not needed). Add validation and business rules as needed.

» Create view objects that work with the entity objects to query and update the
database. These view objects will be used to make the data available for display at
your view layer.

s Create the application module that the Ul layer of your application will use. This
application module contains view object instances in its data model along with
any custom methods that users will interact with through the application’s web

pages.
= If needed, publish your services as web services for remote invocation.

The chapters contained in Part II, "Building Your Business Services" provide
information on creating each of these artifacts. The chapters in Part VI, "Advanced
Topics" provide additional information, such as extending business objects, tuning,
and state management.

1.3.6.1 Creating a Layer of Business Domain Objects for Tables

Once you have an understanding of the data that will be presented and manipulated
in your application, if you haven’t already done so, you can build your database (for
more information, see the "Designing Databases" topic in the "Designing and
Developing Applications" section of the JDeveloper online help). Once the database
tables are in place, you can create a set of entity objects that represents them and
simplifies modifying the data they contain. When you use entity objects to encapsulate
data access and validation related to the tables, any pages you build today or in the
future that work with these tables are consistently validated. As you work, JDeveloper
automatically configures your project to reference any necessary Oracle ADF runtime
libraries your application will need at runtime.

For example, the StoreFrontService project of the StoreFrontModule application
contains the business services needed by the application. Figure 1-12 shows two of the
entity objects that represent the database tables in that application.

Introduction to Building Fusion Web Applications with Oracle ADF 1-15

Developing with Oracle ADF

Figure 1-12 Business Components Diagram Showing Entity Objects and Related Tables

@ entities @ entities
Orders Ordertems
Orderld : DESequence Orderld : Mumber
CrderDate : Date Linetemld : Mumber
COrderShippedDate : Date Productld : Number
OrderStatusCode © String Quartity : Mumber
OrcerTotal © Number UnitPrice : Number
Customerld : Mumber CreatedBy : String
ShipTokame : String = | CreationDate : Date
ShipToAddressld : Number = LastUpdatedBy : String
ShipToPhonehumber : String 1 LastUpdateDate : Date
ShippingOptionld : Number OhbjectVersionld : Number
PaymentOptionld : Number LinettemTotal : Mumber

Discountld : Number
Couponld : Number T
FreeShippingFlag : String :
CustomerCollectFlag : String |
CollectionVWarehouseld : Mumber |
GiftwrapFlag : String |
GiftwrapMessage : String |
CreatedBy : String :
CreationDate : Date |
LastUpdatedBy : String |
LastUpdateDate : Date |
ObjectVersionld : Mumber |
1
1
1
I
I
I
I

| ORDERS =] ORDER_ITEMS
ORDER_ID : NUMBER(15, 0) . | ORDER_ID: NUMBER(15, 0)
ORDER_DATE : DATE LINE_ITEM_ID : NUMBER(3, 0)
ORDER_SHIPPED_DATE : DATE 1 PRODUCT_ID : NUMBER(15, 0)
ORDER_STATUS_CODE : VARCHAR2(30 E QUANTITY : NUMBER(E, 0)
ORDER TOTAL : NUMBER(S. 2 UNIT PRICE : NUMBER(E. 2

To create the business layer, you first create the entity objects based on your database
tables. Any relationships between the tables will be reflected as associations between
the corresponding entity objects. Alternatively, you can first create the entity objects,
and the associations, and then create database tables from those objects.

Once the entity objects are created, you can define control and attribute hints that
simplify the display of the entities in the UI, and you can also add behaviors to the
objects. For more information, see Chapter 4, "Creating a Business Domain Layer
Using Entity Objects."

1.3.6.2 Building the Business Services

Once the reusable layer of business objects is created, you can implement the
application module. An application module provides a data-model and service
methods with which a UI client can work.

The application module's data model is composed of instances of the view object
components you create that encapsulate the necessary queries. View objects can join,
project, filter, sort, and aggregate data into the shape required by the end-user task
being represented in the user interface. When the end user needs to update the data,
your view objects reference entity objects in your reusable business domain layer. View
objects are reusable and can be used in multiple application modules.

When you want the data to display in a consistent manner across all view pages that
access that data, you can configure metadata on the view object to determine display
properties. The metadata allows you to set display properties in one place and then
change them as needed, so that you make the change only in one place instead of on
all pages that display the data. Conversely, you can also have the query controlled by
the data the page requires. All display functionality is handled by the page. For more
information, see Chapter 5, "Defining SQL Queries Using View Objects."

For example, the StoreFrontService project contains the
oracle.fodemo.storefront.store.queries package, which contains many of the
queries needed by the StoreFrontModule application, as shown in Figure 1-13.

1-16 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

Figure 1-13 View Objects in the StoreFrontModule Application

Application Navigator

StareFrontModule -

Projects SR IR =T
=-[5] StoreFrontService
BD Application Sources
-/ oracle.Fodema,storefront
[l accounk
[l adfextensions

B@ store
[queries
-1l lirks
-] addressesAndUsagest
-] addressesio
-5 AddressUsagesvo
- Couponsic
-] CustamerInfavo
-2 Featureditemyo
- FindAddressesByIdyd
-8 FindOrdersByIdvo

Additionally, you may find that you need to expose functionality to external
applications. You can do this by exposing this functionality through a service interface.
For example, the StoreServiceAM application module is exposed as a web service. This
web service exposes the CustomerInfo and OrderInfo view instances, as shown in
Figure 1-14. For more information, see Chapter 11, "Creating SOAP Web Services with
Application Modules."

Figure 1-14 StoreFrontModule Application in the Fusion Order Demo Application

[ClistoreserviceAM.xml |

Q@
General
Data Model Service Interface £ / *®
Java

Click + icon ko enable this application module to support Service Interface,
EJB Session Bean

Service Interface

= Service Intetface Custom Methods Vs
Configurations

The custarn methods will be published ko vour service interface,

[=| Service Interface Yiew Instances Vs

Click the edit icon to configure the view instances on wour service interface,

View Instances: Basic Cperations:

CustometInfolOl Operation Methiod Mame
CustomerInfolCl

OrderInfovol

OrderInfovOl

Wiew Criteria Find Operations:
View Criteria ~ Method M... Parameters

[l Generated Files for Service Interface

These are the files and java classes generated by ADF Business Components to
suppork the Service Interface platForm,

Remate Cormmon Class: StorefrontService. java

Introduction to Building Fusion Web Applications with Oracle ADF 1-17

Developing with Oracle ADF

1.3.6.3 Testing and Debugging Business Services with the Business Component
Browser

While you develop your application, you can iteratively test your business services
using the Business Component Browser. The browser allows you to test the queries,
business logic, and validation of your business services without having to use or create
a user interface or other client to test your services. Using the browser allows you to
test out the latest queries or business rules you've added, and can save you time when
you're trying to diagnose problems. For more information about developing and
testing application modules, see Chapter 9, "Implementing Business Services with
Application Modules."

The browser also interacts with the ADF Declarative Debugger to allow debug your
business services. You can set breakpoints on any custom methods you create. For
more information, see Section 31.6, "Using the Business Component Browser for
Testing and Debugging."

1.3.7 Implementing the User Interface with JSF

From the page flows you created during the planning stages, you can double-click the
page icons to create the actual JSP files. When you create a JSP for an ADF Faces
application, you can choose to create an XML-based JSP document (which uses the
extension *.jspx) rather than a *. jsp file.

Best Practice: Using an XML-based document has the following
advantages:

= Simplifies treating your page as a well-formed tree of Ul
component tags.

s Discourages you from mixing Java code and component tags.

= Allows you to easily parse the page to create documentation or
audit reports.

If you want to use Facelets instead of JSP in your application, you can instead create
XHTML files. Facelets is a JSF-centric XML view definition technology that provides
an alternative to using the JSP engine.

Tip: While Facelet pages can use any well formed XML file,
including . jspx, when you create a Facelet page in JDeveloper, it is
created as an XHTML file.

Best Practice: Use Facelets to take advantage of the following:

s The Facelets layer was created specifically for JSE, which results in
reduced overhead and improved performance during tag
compilation and execution.

= Facelets is considered the primary view definition technology in
JSF 2.0.

= Some future performance enhancements will only be available
with Facelets

ADF Faces provides a number of components that you can use to define the overall
layout of the page. JDeveloper contains predefined quick start layouts that use these
components to provide you with an efficient way to correctly determine the layout of
your pages. You can choose from one-, two-, or three-column layouts, and then

1-18 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

determine how you want the columns to behave. You can also choose to apply themes
to the layouts, which adds color to some of the components for you. For more
information see the "Using Quick Start Layouts" section of the Oracle Fusion Middleware
Web User Interface Developer’s Guide for Oracle Application Development Framework.

Oracle ADF also allows you to create and use your own page templates. When
creating templates, a developer can determine the layout of the page (either using one
of the quick layout templates or creating the layout manually), provide static content
that must appear on all pages, and create placeholder attributes that can be replaced
with valid values for each page. Each time the template is changed, for example if the
layout changes, any page that uses the template will reflect the update.

Most pages in the StoreFrontModule application use the StoreFrontTemplate
template, which provides an area for branding and navigation, a main content area
divided into three panes, and a footer area. If the template designer decides to switch
the location of the branding and the navigation, all pages that use the template will
automatically reflect that change at runtime.

The chapters in Part IV, "Creating a Databound Web User Interface" provide
information on creating different types of UI functionality, from basic forms to more
complex search capabilities.

1.3.8 Data Binding with ADF Model Layer

In JSE, you use a simple expression language (called EL) to bind to the information you
want to present and/or modify (for more information, see
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html). Example
expressions look like #{userInfoBean.principalName} to reference a particular user's
name, or #{userInfoBean.principalName eqg ’'SKING’} to evaluate whether a user’s
name is SKING or not. At runtime, a generic expression evaluator returns the String
and boolean value of these respective expressions, automating access to the individual
objects and their properties without requiring code.

At runtime, the value of certain JSF UI components is determined by the value
attribute. While a component can have static text as its value, typically the value
attribute will contain a binding that is an EL expression that the runtime infrastructure
evaluates to determine what data to display. For example, an outputText component
that displays the name of the currently logged-in user might have its value attribute
set to the expression #{userInfoBean.principalName}. Since any attribute of a
component can be assigned a value using an EL expression, it's easy to build dynamic,
data-driven user interfaces. For example, you could hide a component when a user is
not logged in by using a boolean-valued expression like
#{userInfoBean.prinicpalName !=null} in the Ul component's rendered attribute. If
there is no principal name in the current instantiation of the userInfoBean, the
rendered attribute evaluates to false and the component disappears from the page.

In a typical JSF application, you would create objects like the userInfoBean object as a
managed bean. The JSF runtime manages instantiating these beans on demand when
any EL expression references them for the first time. However, in an application that
uses the ADF Model layer, instead of binding the UI component attributes to
properties or methods on managed beans, JDeveloper automatically binds the Ul
component attributes to the ADF Model layer, which uses XML configuration files that
drive generic data binding features. It implements concepts that enable decoupling the
user interface technology from the business service implementation: data controls and
declarative bindings.

Data controls use XML configuration files to describe a service. At design time, visual
tools like JDeveloper can leverage that metadata to allow you to declaratively bind Ul

Introduction to Building Fusion Web Applications with Oracle ADF 1-19

http://java.sun.com/products/jsp/reference/techart/unifiedEL.html
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

Developing with Oracle ADF

components to any data control operation or data collection, creating bindings. For
example, Figure 1-15 shows the StoreServiceAMDataControl data control as it
appears in the Data Controls panel of JDeveloper.

Figure 1-15 StoreFrontServiceAMDataControl

Diata Contraols
% LookupService AMDataControl
E% StareServiceAMDataContral
[3 Addresses
AddressesandsagesyOl
Authenticatedser
AvailableCategoriesShuttleList
CustomerInfoviol
CuskomerReqgistration
FindaddressesById
FindOrdersById
FindPavment OptionsByld
MostPopularProductsByCategories
MyOrders
MyShoppingCart
OrderInfoO1
OrderPaymentOptions
----- {53 Accounthumber
----- =3 EilingAddressId
----- &8 CardTypeCode
----- =8 CheckDigits
----- {8 CustomerId
----- {x72 ExpireDate
----- =@ InstitutionMame
----- &8 PaymentOptionld
----- {8 Payment TypeCode
----- &8 Routingldentifier
----- {573 ValidFromDate
----- {38 ValidToDate
&1-{E] OrderBilingaddresses
#-[27 operations
[0 Mamed Criteria
-5 Orders

i OO e 0 ey OO O O o O s OO e O OO e O e O

O

|

Note that the collections that display in the panel represent the set of rows returned by
the query in each view object instance contained in the StoreServiceAlM application
module. For example, the OrderPaymentOptions data collection in the Data Controls
panel represents the OrderPaymentOptions view object instance in the
StoreServiceAM’s data model. The OrderBillingAddress data collection appears as a
child, reflecting the master-detail relationship set up while building the business
service. The attributes available in each row of the respective data collections appear as
child nodes. The data collection level Operations node contains the built-in operations
that the ADF Model layer supports on data collections, such as previous, next, first,
last, and so on.

Note: If you create other kinds of data controls for working with web
services, XML data retrieved from a URL, JavaBeans, or E]Bs, these
would also appear in the Data Controls panel with an appropriate
display. When you create one of these data controls in a project,
JDeveloper creates metadata files that contain configuration
information. These additional files do not need to be explicitly created
when you are working with Oracle ADF application modules, because
application modules are already metadata-driven components, and so
contain all the information necessary to be exposed automatically as
data controls.

1-20 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

Using the Data Controls panel, you can drag and drop a data collection onto a page in
the visual editor, and JDeveloper creates the necessary bindings for you. Figure 1-16
shows the CustomerRegistration collection from the StoreServiceAMDataControl
data control being dragged from the Data Controls panel, and dropped as a form onto
a JSF page.

Figure 1-16 Declaratively Creating a Form Using the Data Controls Panel

ﬁpplication Mavigator E] untitledl.jspx

StareFrontMadule - - | &)+ show - |Ml @ L
Projects Bl @5 |
Application Resources
Data Controls @Y

% LookupService AMDataControl Create

B% StoreServiceAMDataControl 0 Carousel

ADF Farm...

- [E] Addresses

CrderInfolOl

EJ-E AddressesAndUsagesiol Gantt » ADF Read-only Form, ..

[[E] AuthenticatedUser Gauge... ADF Search Form

E]---E AvailableCategoriesshuttleList Geographic Map » | €% Trinidad Form. ..

-{E] CustomerInfovol araph... &% Trinidad Read-orly Form. .,

[j---E (CustomerRegistration Higrarchy Viewer, ., @ Trinidad Search Form

-] Featureditem Multiple Selection b | €% Trinidad Creation Forrm...

- [E] Findaddressestyld Mavigation »

{5 Findorderstyld Single Selection » |aste, ordrag and drop content onto this blank
(- {E] FindPaymentOptionsByld Table y Irdragand drop a component from the palette.
E]---E MostPopularProductsByC ategories -

{5 Myorders Tree '

EJ---E yShoppingCark Cancel

-8

The first time you drop a databound component from the Data Controls panel on a
page, JDeveloper creates an associated page definition file. This XML file describes the
group of bindings supporting the UI components on a page. The ADF Model uses this
file at runtime to instantiate the page’s bindings. These bindings are held in a
request-scoped map called the binding container. Each time you add components to the
page using the Data Controls panel, JDeveloper adds appropriate binding entries into
this page definition file. Additionally, as you perform drag-and-drop data binding
operations, JDeveloper creates the required tags representing the JSF Ul components
on the JSF page. For more information about using the Data Controls panel, see
Chapter 12, "Using ADF Model in a Fusion Web Application."

Note: You can use dynamic Ul components that create the bindings
at runtime instead of design time. To use dynamic components, you
set control hints on your view objects that determine how the data is
to be displayed each time the view object is accessed by a page. This
ensures that data is displayed consistently across pages, and also
allows you to change in a single location, how the data is displayed
instead of having to update each individual page. For more
information, see Section 22.7, "Using a Dynamic Form to Determine
Data to Display at Runtime."

Figure 1-17 illustrates the architecture of a JSF application when you leverage ADF
Model for declarative data binding. By combining ADF Model with JSF, you avoid
having to write a lot of the typical managed bean code that would be required for
real-world applications.

Introduction to Building Fusion Web Applications with Oracle ADF 1-21

Developing with Oracle ADF

Figure 1-17 Architecture of a JSF Application Using ADF Model Data Binding

, View
-
#{binding expressions}
“Backing” _
‘?_?g"igcgmﬁf Controller
Necessary 3
& @58 Bl ginding
; Container
- gj Model
—&l g
Data Control |
StoreService
[— Business
Services

Aside from forms and tables that display or update data, you can also create search
forms, and databound charts and graphs. For more information about using data
controls to create different types of pages, see the chapters contained in Part IV,
"Creating a Databound Web User Interface". For more information about the Data
Controls panel and how to use it to create any Ul data bound component, see
Chapter 12, "Using ADF Model in a Fusion Web Application."

1.3.9 Validation and Error Handling

You can add validation to your business objects declaratively using the overview
editors for entity and view objects. Figure 1-18 shows the Business Rules tab of the
overview editor for the AddressEO entity object.

1-22 Fusion Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

Figure 1-18 Setting Validation in the Overview Editor

nddressED.HmI
@
General
Attributes Business Rules

Business Rules Select an expression node of any atbribute or its validator to edit the expression

Java @ L) W dp # 3 setExecution orde

Business Events

VI R +-[C7) Entity validators

=[] Attributes
EJIEI AddressId

: L@ Database Constraint - Precision : (15,0
EE Addressl

----- 1 Database Constraint - Mandatory

(- ## Database Constraint - Precision @ (40)

=6 Addressz

Database Constraint - Precision @ (40)

-E City

------ ## Database Constraint - Mandatary
L@@ Database Constraint - Precision : (40)

: [& Database Constraint - Precision @ (12)
[£-E8 StateProvince

----- &8 Database Constraint - Mandakary

------ & Database Constraint - Precision : (40)
- CountryId
Q List Yalidator: CountryId in Wiew Accessor({SharedCountriesya. Value) A

Along with providing the validation rules, you also set the error messages to display
when validation fails. To supplement this declarative validation, you can also use
Groovy-scripted expressions. For more information about creating validation at the
service level, see Chapter 7, "Defining Validation and Business Rules Declaratively."

Additionally, ADF Faces input components have built-in validation capabilities. You
set one or more validators on a component either by setting the required attribute or
by using the prebuilt ADF Faces validators. You can also create your own custom
validators to suit your business needs. For more information, see the "Validating and
Converting Input" chapter of the Oracle Fusion Middleware Web User Interface
Developer’s Guide for Oracle Application Development Framework.

You can create a custom error handler to report errors that occur during execution of
an ADF application. Once you create the error handler, you only need to register the
handler in one of the application’s configuration files. For more information, see
Section 28.10, "Customizing Error Handling."

1.3.10 Adding Security

Oracle ADF provides a security implementation that is based on Java Authentication
and Authorization Service (JAAS). JAAS is a standard security Application
Programming Interface (API) that is added to the Java language through the Java
Community Process. It enables applications to authenticate users and enforce
authorization. The Oracle ADF implementation of JAAS is permission-based. You
define these permissions and then grant them on application roles that you associate
with users of the application. For more information about securing your application,
see Chapter 30, "Enabling ADF Security in a Fusion Web Application."

1.3.11 Testing and Debugging the Web Client Application

Testing an Oracle ADF web application is similar to testing and debugging any other
Java EE application. Most errors result from simple and easy-to-fix problems in the
declarative information that the application defines or in the EL expressions that

Introduction to Building Fusion Web Applications with Oracle ADF 1-23

Working Productively in Teams

access the runtime objects of the page’s Oracle ADF binding container. In many cases,
examination of the declarative files and EL expressions resolve most problems.

For errors not caused by the declarative files or EL expressions, JDeveloper includes
the ADF Logger, which captures runtime trace messages from the ADF Model layer
APL The trace includes runtime messages that may help you to quickly identify the
origin of an application error. You can also search the log output for specific errors.
JDeveloper also includes the ADF Declarative Debugger, a tool that allows you to set
breakpoints. When a breakpoint is reached, the execution of the application is paused
and you can examine the data that the Oracle ADF binding container has to work
with, and compare it to what you expect the data to be. Chapter 31, "Testing and
Debugging ADF Components" contains useful information and tips on how to
successfully debug a Fusion web application.

For testing purposes, JDeveloper provides integration with JUnit. You use a wizard to
generate regression test cases. For more information, see Section 31.10, "Regression
Testing with JUnit."

1.3.12 Refactoring Application Artifacts

Using JDeveloper, you can easily rename or move the different components in your
application. For example, you may find that you need to change the name of your
view objects after you have already created them. JDeveloper allows you to easily do
this and then propagates the change to all affected metadata XML files. For more
information, see Chapter 32, "Refactoring a Fusion Web Application."

1.3.13 Deploying a Fusion Web Application

You can deploy a Fusion web application to either the integrated WebLogic server
within JDeveloper or to a standalone instance. For more information about
deployment, see Chapter 36, "Deploying Fusion Web Applications."

1.3.14 Integrating a Fusion Web Application

You can integrate your Fusion web application with any existing or new applications
using service-oriented architecture (SOA) principals provided by Oracle SOA Suite.
Oracle SOA Suite includes declarative development tools that allow you to easily
integrate multiple applications using services, events, business rules, business process
flows, and other SOA technologies.

You can build your Fusion web application so that it can easily integrate with other
applications. You can publish your application modules as services.You can also create
events that can be used for example, to initiate business processes. For more
information, see Chapter 11, "Creating SOAP Web Services with Application
Modules." Your application modules can also call other web services directly. For more
information, see Section 13.2, "Calling a Web Service from an Application Module."
You can also integrate your application using task flows. For example, a task flow can
be used to initiate a business process flow. For more information, see Section 18.15,
"Using BPEL with Task Flows."

For more information about Oracle SOA Suite, see Oracle Fusion Middleware Developer’s
Guide for Oracle SOA Suite.

1.4 Working Productively in Teams

Often, applications are built in a team development environment. While a team-based
development process follows the development cycle outlined in Section 1.3,

1-24 Fusion Developer's Guide for Oracle Application Development Framework

Working Productively in Teams

"Developing with Oracle ADF,"many times developers are creating the different parts
of the application simultaneously. Working productively means team members divide
the work, understand how to enforce standards, and manage source files with a source
control system, in order to ensure efficient application development.

Before beginning development on any large application, a design phase is typically
required to assess use cases, plan task flows and screens, and identify resources that
can be shared.

The following list shows how the work for a typical Fusion web application might be
broken up once an initial design is in place:

Infrastructure

A DBA creates Ant scripts (or other script files) for building and deploying the
finished application. SQL scripts are developed to create the database schema used
by the application.

Entity objects

In a large development environment, a separate development group builds all
entity objects for the application. Because the rest of the application depends on
these objects, entity objects should be one of the first steps completed in
development of the application.

Once the entity objects are finished, they can be shared with other teams using
Oracle ADF libraries (see Section 33.2, "Packaging a Reusable ADF Component
into an ADF Library" for more information). The other teams then access the
objects by adding to them to a catalog in the Resource Palette. In your own
application development process, you may choose not to divide the work this way.
In many applications, entity objects and view objects might be developed by the
same team (or even one person) and would be stored within one project.

View objects

After the entity objects are created and provided either in a library or within the
project itself, view objects can be created as needed to display data (in the case of
building the UI) or supply service data objects (when data is needed by other
applications in a SOA infrastructure).

When building the Fusion Order Demo application, each developer of a particular
page or service was in charge of creating the view objects for that page or service.
This was needed because of the tight integration between the view object and its
use by a page in the Fusion Order demo; the team who built the UI also built the
corresponding view objects.

During development, you may find that two or more view objects are providing
the same functionality. In some cases, these view objects can be easily combined by
altering the query in one of the objects so that it meets the needs of each
developer's page or service.

Once the view objects are in place, you can create the application module, data
controls, and add any needed custom methods. The process of creating view
objects, reviewing for redundancy, and then adding them to the application
module can be an iterative one.

User interface (UI) creation

With a Ul design in place, the view objects in place and the data controls created,
the UI can be built either by the team that created the view objects (as described in
the previous bullet point) or by a separate team. You can also develop using a
Ul-first strategy, which would allow Ul designers to create pages before the data

Introduction to Building Fusion Web Applications with Oracle ADF 1-25

Working Productively in Teams

controls are in place. Oracle ADF provides placeholder data controls that UI
designers can use early in the development cycle. For more information, see
Chapter 29, "Designing a Page Using Placeholder Data Controls."

1.4.1 Enforcing Standards

Because numerous individuals divided into separate teams will be developing the
application, you should enforce a number of standards before development begins to
ensure that all components of the application will work together efficiently. The
following are areas within an application where it is important to have standardization
in place when working in a team environment:

Code layout style

So that more than one person can work efficiently in the code, it helps to follow
specific code styles. JDeveloper allows you to choose how the built-in code editor
behaves. While many of the settings affect how the user interacts with the code
editor (such as display settings), others affect how the code is formatted. For
example, you can select a code style that determines things like the placement of
opening brackets and the size of indents. You can also import any existing code
styles you may have, or you can create your own and export them for use by the
team. For more information, see "Setting Preferences for the Source Editor" in the
"JDeveloper Basics" section of the JDeveloper online help.

Package naming conventions

You should determine not only how packages should be named, but also the
granularity of how many and what kinds of objects will go into each package. For
example, all managed beans in the StoreFront module are in the view.managed
package. All beans that contain helper-type methods accessed by other beans are
in util packages (one for Oracle ADF and one for JSF). All property files are in the
common package.

Pages

You can create templates to be used by all developers working on the U], as
described in Section 1.3.7, "Implementing the User Interface with JSE." This not
only ensures that all pages will have the same look and feel, but also allows you to
make a change in the template and have the change appear on all pages that use it.
For more information, see Section 20.2, "Using Page Templates."

Aside from using templates, you should also devise a naming standard for pages.
For example, you may want to have names reflect where the page is used in the
application. To achieve this goal, you can create subdirectories to provide a further
layer of organization.

Connection names: Unlike most JDeveloper and Oracle ADF objects that are
created only once per project and by definition have the same name regardless of
who sees or uses them, database connection names might be created by individual
team members, even though they map to the same connection details. Naming
discrepancies may cause unnecessary conflicts. Team members should agree in
advance on common, case-sensitive connection names that should be used by
every member of the team.

1.4.2 Using a Source Control System

When working in a team environment, you will need to use a source control system.
By default, Oracle JDeveloper provides integrated support for both the CVS and
Subversion source control systems, though others may be available through

1-26 Fusion Developer's Guide for Oracle Application Development Framework

Working Productively in Teams

extensions. You can also create an extension that allows you to work with another
system in JDeveloper. For information about using these systems within JDeveloper,
see the "Using Versioning" topic in the "Designing and Developing Applications"
section of the JDeveloper online help.

Following are suggestions for using source control with a Fusion web application:

Checking out files

Using JDeveloper, you can create a connection to the source control server and use
the source control window to check out the source. When you work locally in the
files, the pending changes window notifies you of any changed files. You can
create a script using Apache Ant (which is integrated into JDeveloper). You can
then use the script to build all application workspaces locally. This can ensure that
the source files compile before you check the changed files into the source control
repository. To find out how to use Apache Ant to create scripts, see "Building With
Apache Ant" in the "Designing and Developing Applications" section of the
JDeveloper online help.

Automating builds

Consider running a continuous integration tool. Once files are checked into the
source servet, the tool can be used to recognize either that files have changed or to
check for changed files at determined intervals. At that point, the tool can run an
Ant script on the server that copies the full source (note that this should be a copy,
and not a checkout), compiles those files, and if the compilation is successful,
creates a zip file for consumers (not developers) of the application to use. The
script should then clean up the source directory. Running a continuous integration
tool will improve confidence in the quality of the code in the repository, encourage
developers to update more often, and lead to smaller updates and fewer conflicts.
Examples of continuous integration tools include Apache Gump and Cruise
Control.

Updating and committing files

When working with Subversion, updates and commits should be done at the
Working Copy level, not on individual files. If you attempt to commit and update
an individual file, there is a chance you will miss a supporting metadata file and
thereby corrupt the committed copy of the application.

Resolving merge conflicts

When you add or remove business components in a JDeveloper ADF Business
Components project, JDeveloper reflects it in the project file (. jpr). When you
create (or refactor) a component into a new package, JDeveloper reflects that in the
project file and in the ADF Business Components project file (. jpx). Although the
XML format of these project control files has been optimized to reduce occurrences
of merge conflicts, merge conflicts may still arise and you will need to resolve
them using JDeveloper’s Resolve Conflicts option on the context menu of each
affected file.

After resolving merge conflicts in any ADF Business Components XML
component descriptor files, the project file (. jpr) for an ADF Business
Components project, or the corresponding business components project file (. jpx),
close and reopen the project to ensure that you're working with latest version of
the component definitions. To do this, select the project in the Application
Navigator, choose File > Close from the JDeveloper main menu, and then expand
the project again in the Application Navigator.

Introduction to Building Fusion Web Applications with Oracle ADF 1-27

Learning Oracle ADF

1.5 Learning Oracle ADF

In addition to this developers guide, Oracle also offers the following resources to help
you learn how you can best use Oracle ADF in your applications:

s Cue Cards in JDeveloper: JDeveloper cue cards provide step-by-step support for
the application development process using Oracle ADF. They are designed to be
used either with the included examples and a sample schema, or with your own
data. Cue cards also include topics that provide more detailed background
information, viewlets that demonstrate how to complete the steps in the card, and
code samples. Cue cards provide a fast, easy way to become familiar with the basic
features of Oracle ADF, and to work through a simple end-to-end task.

= Tutorials on Oracle Technology Network: These short tutorials allow you to gain
valuable hands-on experience, and then use the lessons as the foundation for your
own implementation.

» Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework: Provides detailed information, procedures, and practices
for using the ADF Faces components and architecture.

1.6 Generation of Complete Web Tier Using Oracle JHeadstart

As you'll learn throughout the rest of this guide, Oracle JDeveloper 11g and Oracle
ADF give you a productive, visual environment for building richly functional,
database-centric Java EE applications with a maximally declarative development
experience. However, if you are used to working with tools like Oracle Designer that
offer complete user interface generation based on a higher-level application structure
definition, you may be looking for a similar facility for your Java EE development. If
so, then the Oracle JHeadstart 11g application generator may be of interest to you. It is
an additional extension for JDeveloper that uses Oracle ADF’s built-in features to offer
complete web-tier generation for your application modules. Starting with the data
model you've designed for your ADF business service, you use the integrated editors
that JHeadstart adds to the JDeveloper environment to iteratively refine a higher-level
application structure definition. These editors controls the functionality and
organization of the view objects’ information in your generated web user interface. By
checking boxes and choosing various options from dropdown lists, you describe a
logical hierarchy of pages that can include multiple styles of search regions, list of
values (LOVs) with validation, shuttle controls, nested tables, and other features.
These declarative choices use terminology familiar to Oracle Forms and Designer
users, further simplifying web development. Based on the application structure
definition, you generate a complete web application that automatically implements the
best practices described in this guide, easily leveraging the most sophisticated features
that Oracle ADF and JSF have to offer.

Whenever you run the JHeadstart application generator, rather than generating code, it
creates (or regenerates) all of the declarative view and controller layer artifacts of your
Oracle ADF-based web application. These artifacts use the ADF Model layer and work
with your ADF application module as their business service. The generated files are
the same kinds you produce when using JDeveloper’s built-in visual editors. The key
difference is that JHeadstart creates them in bulk, based on a higher-level definition
that you can iteratively refine until the generated pages match your end users’
requirements as closely as possible. The generated files include:

= JSF Pages with databound ADF Faces UI components
s ADF Model page definition XML files describing each page’s data bindings

= JSF navigation rules to handle page flow

1-28 Fusion Developer's Guide for Oracle Application Development Framework

http://www.oracle.com/technology/obe/obe11jdev/11/index.html

Generation of Complete Web Tier Using Oracle JHeadstart

= Resource files containing localizable Ul strings

Once you've generated a maximal amount of your application's web user interface,
you can spend your time using JDeveloper's productive environment to tailor the
results or to concentrate your effort on additional showcase pages that need special
attention. Once you've modified a generated page, you can adjust a setting to avoid
regenerating that page on subsequent runs of the application generator. Of course,
since both the generated pages and your custom designed ones leverage the same
ADF Faces Ul components, all of your pages automatically inherit a consistent look
and feel. For more information on how to get a fully functional trial of JHeadstart for
evaluation, including details on pricing, support, and additional services, see the
JHeadstart page on the Oracle Technology Network at
http://www.oracle.com/technetwork/developer-tools/jheadstart/
overview/index.html.

Introduction to Building Fusion Web Applications with Oracle ADF 1-29

http://www.oracle.com/technology/products/jheadstart/index.html
http://www.oracle.com/technology/products/jheadstart/index.html
http://www.oracle.com/technology/products/jheadstart/index.html

Generation of Complete Web Tier Using Oracle JHeadstart

1-30 Fusion Developer's Guide for Oracle Application Development Framework

2

Introduction to the ADF Sample Application

This chapter describes how to run the StoreFront module of the Fusion Order Demo
(FOD) application created as a sample to demonstrate the use of the Fusion web
application technology stack to create transaction-based web applications as required
for a web shopping storefront. Details about the schema and features that implement
the Fusion Order Demo application are also provided. The demonstration application
is used as an example throughout this guide to illustrate points and provide code
samples.

Before examining the individual components and their source code in depth, you may
find it helpful to install and become familiar with the functionality of the Fusion Order
Demo application.

This chapter includes the following sections:

s Section 2.1, "Introduction to the Oracle Fusion Order Demo"

= Section 2.2, "Setting Up the Fusion Order Demo Application"

= Section 2.3, "Running the Fusion Order Demo Application StoreFront Module"
= Section 2.4, "Running the Fusion Order Demo Standalone Applications"

» Section 2.5, "Taking a Look at the Fusion Order Demo Application"

2.1 Introduction to the Oracle Fusion Order Demo

In this sample application, electronic devices are sold through a storefront-type web
application. Customers can visit the web site, register, and place orders for the
products. In order to register customers and fulfill orders, currently only a single
application is in place. In a future release, several applications, will cooperate. For a
detailed description of how the application works at runtime, see Section 2.5, "Taking a
Look at the Fusion Order Demo Application."

In order to view and run the demo, you need to install Oracle JDeveloper 11g. You
then need to download the application for this demonstration. Instructions to
complete these tasks appear in this chapter. For complete details, see Section 2.2,
"Setting Up the Fusion Order Demo Application."

Once the application is installed and running, you can view the code using Oracle
JDeveloper. You can view the application at runtime by logging in as an existing
customer and placing an order.

Introduction to the ADF Sample Application 2-1

Setting Up the Fusion Order Demo Application

2.2 Setting Up the Fusion Order Demo Application

The Fusion Order Demo application runs using an Oracle database and Oracle
JDeveloper 11g. The platforms supported are the same as those supported by
JDeveloper.

To prepare the environment and run the Fusion Order Demo application, you must:

1.

Install Oracle JDeveloper 11g and meet the installation prerequisites. The Fusion
Order Demo application requires an existing Oracle database. For details, see
Section 2.2.1, "How to Download the Application Resources."

Install the Fusion Order Demo application from the Oracle Technology Network.
For details, see Section 2.2.2, "How to Install the Fusion Order Demo Schema."

Install Mozilla FireFox, version 2.0 or higher, or Internet Explorer, version 7.0 or
higher.

Run the application on a monitor that supports a screen resolution of 1024 X 768 or
higher. For details, see Section 2.3, "Running the Fusion Order Demo Application
StoreFront Module."

2.2.1 How to Download the Application Resources

The Fusion Order Demo application requires an existing Oracle database. You run the
Fusion Order Demo application using Oracle JDeveloper 11g.

Do the following before installing the Fusion Order Demo application:

Install Oracle JDeveloper. You need Oracle JDeveloper 11g Studio Edition to view
the application’s projects and run the application using the JDeveloper integrated
server. You can download Oracle JDeveloper from:

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

Note: Ensure that you download and install 11g and that it is the
Studio Edition, not the Java Edition. You can verify these details in
Oracle JDeveloper from the Help > About menu option.

Download the Fusion Order Demo application ZIP file (FusionOrderDemo_
R1PSx.zip). You can download the ZIP file from:

http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fodl1111-407812
.html

Install an Oracle database. The Fusion Order Demo application requires a database
for its data.

The SQL scripts were written for an Oracle database, so you will need some
version of an Oracle RDBMS, such as 11g, or XE. The scripts will not install into
Oracle Lite. If you wish to use Oracle Lite or some other database, then you will
need to modify the database scripts accordingly. You can download an Oracle
database from:

http://www.oracle.com/technetwork/index.html

Specifically, the small footprint of the Oracle Express Edition (XE) is ideally suited
for setting up the database on your local machine. You can download it from:

http://www.oracle.com/technetwork/database/database-technologies/express-editio

2-2 Fusion Developer's Guide for Oracle Application Development Framework

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html

Setting Up the Fusion Order Demo Application

n/downloads/index.html

2.2.2 How to Install the Fusion Order Demo Schema

You can download the Fusion Order Demo application from the Oracle Technology
Network (OTN) web site.

To download the demo and install the FOD schema to your database:

1.

5.

Navigate to
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fodlll
1-407812.html and download the ZIP file to a local directory.

Start Oracle JDeveloper 11g and from the main menu choose File > Open.

In the Open dialog, browse to the location where you extracted the ZIP file to in
Step 1 and select Infrastructure.jws from the infrastructure directory. Click Open.

In the Application Navigator, expand MasterBuildScript and then Resources, and
double-click build.properties.

In the editor, modify the properties shown in Table 2-1 for your environment.

Table 2-1 Properties Required to Install the Fusion Order Demo Application

Property Description

jdeveloper.home The root directory where you have Oracle JDeveloper 11g

installed. For example:

C:/JDeveloper/11/jdeveloper

jdbc.urlBase The base JDBC URL for your database in the format

jdbc:oracle: thin:@<yourhostname>. For example:

jdbc:oracle:thin:@localhost

jdbc.port The port for your database. For example:
1521

jdbc.sid The SID of your database. For example:
ORCL or XE

db.adminUser The administrative user for your database. For example:
system

db.demoUser . tablespace The table space name where FOD users will be installed. For
example:
USERS

6. From the JDeveloper main menu, choose File > Save All.

7. Inthe Application Navigator, under the Resources node, right-click build.xml and

choose Run Ant Target > buildAll
8. In the Enter Property dialog, enter the password for the database system user and

click Continue.

Once you enter the password, the Ant build script creates the FOD users and
populates the tables in the FOD schema. In the Apache Ant - Log window, you
will see a series of SQL scripts and finally:

buildall:

Introduction to the ADF Sample Application 2-3

http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html

Setting Up the Fusion Order Demo Application

BUILD SUCCESSFUL
Total time: nn minutes nn seconds

For more information on the demo schema and scripts, see the README. txt file in
the MasterBuildScript project.

2.2.3 Overview of the Fusion Order Demo Schema

Figure 2-1 shows a simplified representation of the schema for the Fusion Order Demo
application. The blue shapes in the diagram represent the four core tables. The other
tables and views are shown as yellow shapes that sometimes represent several tables
to help simplify the diagram. Some of the tables use sequences, but only those used by
the core tables are shown.

Figure 2-1 Schema Diagram for the Fusion Order Demo Application

ORDER_ITEMS_SEQ PRODUCT_SEQ
ORDER_ITEMS 1
Shipping Options
————— > Products --—->»
A .
! PRODUCTS_BASE
|
! 1 ORDER_SEQ
ORDERS
————— > P2
T T
| |
: * : | |
| | : :
: : Warehouse | |
| | | |
| | : :
A4 A4 | |
| | —
| Ltilities
< .
Payments Addresses I I
| |
Voo
N : .
I | I
I | I
I | I
: : Customer/Memberships :
| ! W/ | PERSON_SEQ |
|
K-————q I
|
A"

PERSONS
B —— Suppliers

The core tables represented by the blue diagram elements include:

= PERSONS: This table stores all the users who interact with the system, including
customers, staff, and suppliers. The first and last name, email address, and person
type code of each user is stored. A user is uniquely identified by an ID. Other IDs
provide foreign keys to tables with address information and, in the case of
customer’s, membership information.

= ORDERS: This table represents activity by specific customers. When an order is
created, the date of the order, the total amount of the order, the ID of the customer

2-4 Fusion Developer's Guide for Oracle Application Development Framework

Setting Up the Fusion Order Demo Application

who created it, and the status of the order are all recorded. After the order is
fulfilled, the order status and order shipped date are updated. All orders are
uniquely identified by a sequence-assigned ID.

= ORDER_ITEMS: For each order, there may be many order items recorded. The unit
price and quantity of each order item are recorded. The order line item and its
order ID uniquely identify each order item.

= PRODUCTS_BASE: This table stores all of the products available in the store. For each
product, the name and cost are recorded. All products are uniquely identified by a
sequence-assigned ID. The image of the product and its description are stored in
separate tables, which each reference the product ID. The columns ATTRIBUTEx are
reserved for future use with descriptive flexfields (commonly required by Oracle
E-Business Suite schema).

The sequences that the core tables use include:

= PERSON_SEQ: Populates the ID for for each new person.

= ORDER_SEQ: Populates the ID for each new order.

= ORDERS_ITEMS_SEQ: Populates the ID for each new order item.
= PRODUCTS_SEQ: Populates the ID for each product.

The PL/SQL package USER_CONTEXT_PKG contains a procedure set_app_user_lang ()
used to illustrate a simple example of how to set per-user database state from inside an
application module.

Note the SHIPPING_OPTIONS view is reserved for future use and is not currently used in
the Fusion Order Demo.

To support tracking of change history in the Fusion Order Demo, every table contains
the hiStOI‘y column CREATED_BY, CREATION_DATE, LAST UPDATED_BY, LAST UPDATED_
DATE, and OBJECT_VERSION_ID, as shown in Figure 2-2.

Figure 2-2 History Columns for Tables in FOD Schema

[Database Mavigatar
BRYT
EI StoreFrontModule
& Fop

=-{F3) Tables
£1-fE5 ADDRESS_LISAGES
------ B ADDRESS_USAGES_ID
------ B ASSOCIATED_OWHER _ID
------ B owWMER_TYPE_CODE
------ B aDDRESS_ID
------ B UsAGE_TVYPE_CODE
------ B ExPIRED_FLAG
------ B CREATED_BY
------ B CREATIOM_DATE
------ B LAST_URDATED_BY
------ B LasT_UPDATE_DATE
------ B 0BJECT_YERSION_ID
(1[5 ADDRESSES

2.2.3.1 Translation Support in the Fusion Order Demo Schema

To support localization of the Fusion Order Demo, the AVAILABLE_LANGUAGES table lists
all available languages. In this table, only one row will have the DEFAULT_FLAG set to Y
corresponding to the current user’s language.

Translations exist for the following base tables: PRODUCTS_BASE (PRODUCT_
TRANSLATIONS), PRODUCT_CATEGORIES_BASE (CATEGORY_TRANSLATIONS), SHIPPING

Introduction to the ADF Sample Application 2-5

Setting Up the Fusion Order Demo Application

OPTIONS_BASE (SHIPPING_OPTION_TRANSLATIONS), MEMBERSHIPS_BASE (MEMBERSHIP_
TRANSLATIONS) and DISCOUNTS_BASE (DISCOUNT_TRANSLATIONS).

Taking the Shipping Options group, as shown in Figure 2-3: SHIPPING_OPTION_
TRANSLATIONS is fully populated so that each product has one row for each language.
The column LANGUAGE holds the translation language identifier. The entry itself may
not yet be translated, in which case the SOURCE_LANGUAGE column holds the language
that the entry is currently in. When a value has been translated, SOURCE_LANGUAGE and
LANGUAGE will hold the same value. The PL/SQL package USER_CONTEXT_PKG creates
the custom USERENV (' CLIENT_INFO') variable that specifies the runtime locale used to
pull the correct translations from SHIPPING_OPTION_TRANSLATIONS into the SHIPPING_
OPTIONS view along with the SHIPPING_OPTIONS_BASE table data. Each order has one
set of Shipping Options associated with it.

Figure 2-3 Shipping Options Grouping for the Fusion Order Demo Schema

Shipping Options Grouping

SHIPPING_TRANSLATIONS_SEQ SHPPING_OPTION_SEQ
5] SHIPPING_OPTION_TRANSLATIONS] SHPPING_OPTIONS_BASE
SHIPPING_TRANSLATIONS _ID - NUMBER(15, 0) ISHIPPING_OPTION_ID : NUMBER(15, 0)
SHIPPING_OPTION_ID : NUMBER(15, 0) COUNTRY_CODE : VARCHAR2(2 BYTE)
SHIPPING_METHOD : VARCHAR2(100 BYTE) COST_PER_CLASS1_ITEM: NUMBER(S, 2)
LANGUAGE : VARCHAR2(30 BYTE) COST_PER_CLASSZ_ITEM : NUMBER(S, 2)
SOURCE_LANG : VARCHAR2(4000 BYTE) COST_PER_CLASS3_ITEM : NUMBER(S, 2)
CREATED_BY : VARCHAR2(60 BYTE) * FREE_SHIPFING _ALLOWED_FLAG : VARCHARZ2(1 BYTE)
CREATION_DATE : DATE CREATED_BY : VARCHAR2(B0 BYTE)
LAST_UPDATED_BY : VARCHAR2(G0 BYTE) 1 |CREATION_DATE : DATE
LAST_UPDATE_DATE : DATE LAST_UPDATED_BY : VARCHAR2(60 BYTE)
OBJECT_VERSION_ID : NUMBER(15, 0) LAST_UPDATE_DATE : DATE

OBJECT _VERSION_ID - NUMBER(15, 0)

aPK=SHIPPING_OPTION_TRANSLATI_PK: SHIPPING_TRANSLATIONS_ID
FH=SHIPPING _OPTION_TRANSLATION_FK: SHIPPING_OPTION_ID «PK=SHPPING _OPTIONS_PK: SHIPPING _OPTION_ID

it

«wChecksSHIPPING_ORTIONS _FREE_CHK: FREE_SHIPPING _ALLOWED_FLAG IN ("Y", 'N')

SHIPPING _OPTION_TRAMSLATIONS SHIPPING _OPTIONS_BASE

SHIPPING_OPTIONS

SHPPING_METHOD{SHPPING_OPTION_TRANSLATIONS SHIFPING_METHOD)
SHIPPING_OPTION_ID(SHIPPING_OPTION_ID)

COUNTRY_CODE(SHIPFING_OPTIONS_BASE COUNTRY _CCDE)

COST_PER_CLASS1_ITEM(SHPPING_OPTIONS_BASE.COST_PER_CLASS1_ITEM) —— e
COST_PER_CLASSZ_ITEM(SHPPING_OPTIONS_BASE COST_PER_CLASS2_ITEM)

COST_PER_CLASS3_ITEM(SHIPPING _OPTIONS_BASE.COST_PER_CLASS3_ITEM)
FREE_SHIPPING_ALLOWED_FLAG(SHIPPING _CPTIONS_BASE.FREE_SHIPPING _ALLOWED_FLAG)

INMER: JOIN

2.2.3.2 Lookup Tables in the Fusion Order Demo Schema

The code lookup table LOOKUP_CODES table contains codes that are used throughout the
Fusion Order Demo application. For example, the PERSONS table contains the columns
person_type_code, marital_status_code, and gender. These codes have
corresponding rows in the LOOKUP_CODES table, discriminating on the lookup_type
column. Foreign keys are not defined for these rows, but instead are enforced in the
user interface by populating user interface components with LOOKUP_CODES values for
a particular lookup type. For example, when creating a new registration (also known
as a person) in the user interface, the values that can be used for the person_type_code

2-6 Fusion Developer's Guide for Oracle Application Development Framework

Setting Up the Fusion Order Demo Application

are populated in a dropdown list from the lookup_code values with lookup_
type=person_type_code.

The LOOKUP_CODES table also supports the localization of the user interface. The table
uses a combined key of code and language (obtained from runtime locale or
preference) to determine the code’s meaning. Each code has an entry for each
supported language, as described in Section 2.2.3.1, "Translation Support in the Fusion
Order Demo Schema."

Using addresses as an example, as shown in Figure 2—4: PERSONS uses an intersection
ADDRESS_USAGES to accommodate multiple address information. In addition ADDRESS_
USAGES uses LOOKUP_CODES to store both OWNER_TYPE_CODE and USAGE_TYPE_CODE
information, returning the MEANING (see table extract in Figure 2-5). ADDRESSES directly
accesses COUNTRY_CODES to look up and use the COUNTRY_NAME associated with the
COUNTRY_ID stored in ADDRESSES. The PERSONS table also directly stores PRIMARY
ADDRESS_ID by a direct lookup to ADDRESSES.

Figure 2-4 LOOKUP_CODES Usage in the Fusion Order Demo Schema

B PERSONS

PERSON_D : NUMBER(1, 1)

PRINCIPAL _NAME : ARCHARZ(60 BYTE)

TITLE : VARCHARZ2(12 BYYTE)

FIRST_NAME - VARCHAR2(30 BYTE)

LAST_NAME : ARCHARZ(30 BYTE)

PERSON_TYPE_CODE : ARCHAR2(30 BYTE)

SUPPLIER_ID - HUMBER

PROVISIONED_FLAG - VARCHAR2(1 BYTE)
—_PRIMARY_ADDRESS _ID : NUMBER(15, 0)
REGISTERED_DATE - DATE
MEMBERSHIP_ID - NUMBER(15, 0)

1

*

[E] ADDRESS _USAGES [E] LOOKUR_CODES
ADDRESS_USAGES 1D - NUMBER LOGKUP_TYPE : VARCHAR2{30 BYTE)
ASSOCIATED_OWHER ID: NUMBER(15,0) | _ _ _ _ = */LOOKUP_CODE : VARCHAR2(30 BYTE)
OWNER_T'YPE_CODE : ARCHAR2(30 BYTE) MEANING - ' ARCHAR2(30 BYTE)
ADDRESS_D: NUMBER(15,0) | ___ _ = DESCRIPTION : 'ARCHAR2(240 BYTE)
USAGE_TYPE_CODE : VARCHAR2(30 BYTE) LANGUAGE : VARCHAR2(30 BYTE)
EXPIRED_FLAG : VARCHAR2(1 BYTE) SOURCE_LANG : VARCHAR2(30 BYTE)
.
1
] ADDRESSES [E] COUNTRY_CODES

ADDRESS_ID : NUMBER{15, 0)

ADDRESS1 : YARCHARZ2(40 BYTE)

ADDRESS2 : YARCHARZ2(40 BYTE)

0.1 oy - VARCHAR2(40 BYTE)
POSTAL_CODE : VARCHAR2(12 BYTE)

ISO_COUNTRY _CODE : WARCHAR2(2 BYTE)
= — — — S COUNTRY_NAME : VARCHAR2(100 BYTE)

LANGUAGE : W ARCHAR2(30 BYTE)

SOURCE_LANG : WARCHARZ({30 BYTE)

STATE_PROVINCE : “ARCHARZ2(40 BYTE)
COUNTRY_ID : CHAR(2 BYTE)
LONGITUDE : NUMBER

LATITUDE : NUMBER

The correct translation is applied by using the LANGUAGE columns in both LOOKUP_
CODES and COUNTRY_CODES with the runtime locale/preference.

Figure 2-5 LOOKUP_CODES Sample Data in the Fusion Order Demo Schema

LOOKUR _TYPE | LOOKUR_CODE | MEANING
OWHER _TYPE_CODE cusT Customer
OWHER _TYPE_CODE SUpP Supplier
OWHER _TYPE_CODE STAFF Staff
USAGE_TYPE_CODE I Invoice Address
USAGE_TYPE_CODE SH Shipping Address

The lookup table DEMO_OPTIONS defines the various options within the Fusion Order
Demo application that are switched on. It also caches general configuration
information such as email addresses and phone numbers to use as overrides in this
demonstration scenario (for example, where email addresses are fictitious). This table
is reserved for future use.

Introduction to the ADF Sample Application 2-7

Running the Fusion Order Demo Application StoreFront Module

2.3 Running the Fusion Order Demo Application StoreFront Module

The Fusion Order Demo application consists of a web user interface and a business
components layer. Specifically, the following projects are part of the Fusion Order
Demo application:

m StoreFrontService: Provides access to the storefront data and provides
transaction support to update data for customer information and orders.

» StoreFrontUI: Provides web pages that the customer uses to browse the
storefront, place orders, register on the site, view order information, and update
the user profile.

You run the StoreFront module of the Fusion Order Demo application in JDeveloper
by running the home. jspx page in the StoreFrontUI project. The StoreFrontUI project
uses JavaServer Faces (JSF) as the view technology, and relies on the ADF Model layer
to interact with ADF Business Components in the StoreFrontService project. To learn
more about the Fusion Order Demo application and to understand its implementation
details, see Section 2.5, "Taking a Look at the Fusion Order Demo Application."

A second module of the Fusion Order Demo application is available to process the
orders that you place using the StoreFront module. For example, the WebLogic Fusion
Order Demo module uses various internal and external applications, including a
customer service application, a credit validation system, and both an internal vendor
and external vendor. These composite services are the subject of another developer’s
guide and are not addressed in the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework. For details about the WebLogic Fusion
Order Demo module used to demonstrate the capabilities of Oracle SOA Suite, see the
Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite.

You cannot run the WebLogic Fusion Order Demo module in JDeveloper. When you
want to integrate the storefront portion with the composite services portion of the
application, you must deploy the Fusion Order Demo application to a SOA-enabled
Oracle WebLogic Server. Instructions to deploy any SOA web application to Oracle
WebLogic Server, are addressed in the Fusion Order Demo home page on OTN at this
link
http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html.
The easiest way to run the Fusion Order Demo application is to open only the

StoreFront module in JDeveloper and run the home . jspx page in the StoreFrontUI
project.

To run the StoreFront module of the Fusion Order Demo application:
1. Open the application in Oracle JDeveloper:

a. From the JDeveloper main menu, choose File > Open.

b. Navigate to the location where you extracted the demo ZIP file to and select
the StoreFrontModule.jws application workspace from the
StoreFrontModule directory. Click Open.

Figure 2-6 shows the Application Navigator after you open the file for the
application workspace. For a description of each of the projects in the
workspace, see Section 2.5, "Taking a Look at the Fusion Order Demo
Application."

2-8 Fusion Developer's Guide for Oracle Application Development Framework

http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html

Running the Fusion Order Demo Application StoreFront Module

Figure 2-6 The Fusion Order Demo Projects in Oracle JDeveloper

EI SkareFronkService

EI StareFrontUL

{Zlapplication Navigator =]

StoreFrontMaodule - -

Projects B Y S=

{7 Application Sources

l—:l application Sources
-7 Web Content

In the Application Navigator, click the Application Resources accordion title to
expand the panel.

In the Application Resources panel, expand the Connections and Database nodes.
Right-click FOD connection and choose Properties.

In the Edit Database Connection dialog, modify the connection information shown
in Table 2-2 for your environment.

Table 2-2 Connection Properties Required to Run the Fusion Order Demo Application

Property Description

Host Name The host name for your database. For example:
localhost

JDBC Port The port for your database. For example:
1521

SID The SID of your database. For example:

ORCL or XE

Do not modify the user name and password fod/fusion. These must remain
unchanged. Click OK.

In the Application Navigator, right-click StoreFrontService and choose Rebuild.
In the Application Navigator, right-click StoreFrontUI and choose Run.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

The home. jspx page within the StoreFrontUI project is the default run target.
When you run the default target, JDeveloper will launch the browser and display
the Fusion Order Demo application home page.

Once the home page appears, you can browse the web site as an anonymous user, or

you

can choose to log in and place orders (may require registering as a customer first).

Because the Fusion Order Demo application implements ADF Security to manage
access to Oracle Application Development Framework (Oracle ADF) resources, only
the authenticated user will be able to view orders in their cart. Table 2-3 shows the
users who are authorized as members of the fod-users role to log into the Fusion
Order Demo application.

Introduction to the ADF Sample Application 2-9

Running the Fusion Order Demo Standalone Applications

Note: The Fusion Order Demo application ships with predefined
user data. The schema for the application defines different types of
users including customer, supplier, and staff types. All users are
members of the fod-users role and are authorized to log in. However,
only ngreenbe is the user type CUST (customer). When you log in as
any other user, you will need to register as a customer before you can
place an order. These additional users were created to support roles in
other modules of the Fusion Order Demo application.

Table 2-3 Supplied Users in the Fusion Order Demo Application

Application
Username Password Role Notes

ngreenbe welcomel fod-users Can add items to cart, check out, and view
order information. This is the only user
who is preregistered as a customer in the
StoreFront module of Fusion Order Demo.

sking welcomel fod-users, Can add items to cart, but must register as
fod-admin a customer to check out and view order
information. This user also has
administration privileges (fod-admin) in
the MasterPriceList module of Fusion
Order Demo.

ahunold welcomel fod-users, Can add items to cart, but must register as
fod-manager a customer to check out and view order
information. This user also has read-only
privileges (fod-manager) in the
MasterPriceList module of Fusion Order
Demo.

pbrown / fdaviet welcomel fod-users Can add items to cart, but must register as
a customer to check out and view order
information. These users may be added to
to other roles in a future version of Fusion
Order Demo.

2.4 Running the Fusion Order Demo Standalone Applications

The Fusion Order Demo application includes a set of sample applications that allow
you to investigate Oracle ADF functionality that does not appear in the StoreFront
module. Collectively, these sample applications are referred to as standalone
applications. The standalone sample applications appear in five application
workspaces, each consisting of several projects, located in the StandaloneExamples
directory where you extracted the demo ZIP file.

In general, almost all of the standalone applications demonstrate concepts of ADF
Business Components and data model projects. References to these standalone
applications appear throughout the chapters contained in Part II, "Building Your
Business Services" and Part VI, "Advanced Topics" of this developer’s guide. As you
read sections this guide, you may want to run the corresponding standalone
application to investigate the concepts further. For a brief description of each
application workspace and links to the documentation, refer to the tables in

Section 2.4.2 through Section 2.4.5.

2-10 Fusion Developer's Guide for Oracle Application Development Framework

Running the Fusion Order Demo Standalone Applications

2.4.1 How to Run the Standalone Applications

How you use JDeveloper to run a standalone application depends on the individual
application. Some applications are set up to use the interactive testing tool JDeveloper
provides for the ADF Business Components data model project (this tool is known as
the Business Component Browser). Other applications provide Java test clients (with
file names like TestClientXxx.java) that use the ADF Business Components API to
execute queries and display results. In the case of the Business Component Browser,
you work entirely in the tool, which essentially provides a convenient user interface
for interacting with business components. In the case of the Java clients, the program
files output their results and print statements to the JDeveloper Log window.

Familiarize yourself with the following general procedures about how to run the
standalone applications. The first procedure describes how to run an application with
its provided test client. The second describes how to launch the Business Component
Browser on the data model project’s ADF application module. Then read Section 2.4.2
through Section 2.4.5 for more details about the individual standalone applications.

Before you begin:

= In the Database Navigator, modify the connection information for the FOD
database connection so it has the connection information for your environment, as
described in Section 2.3, "Running the Fusion Order Demo Application StoreFront
Module."

= Some of the standalone applications work with a modified version of the FOD
schema. For standalone applications that require schema changes, the
application’s project will contain a SQL script that you must run within
JDeveloper.

Once you are through investigating a standalone application, you can use the
script to back out the schema changes.

To run a standalone application from its provided test client:
1. Open the application in Oracle JDeveloper:

a. From the JDeveloper main menu, choose File > Open.

b. Navigate to the location where you extracted the demo ZIP file to, open the
StandaloneExamples directory, then open the desired standalone application
directory and select the application workspace (.jws) from the folder. Click
Open.

2. In the Application Navigator, expand the project folder and locate the test client
(.java) file. In some cases, the test client is added to a package located in the
Application Sources folder. In other cases, the Resources folder contains the test
client.

For example, Figure 2-7 shows the expanded ApplicationModules project with
the Java file node TestClientCustomInterface.java selected.

Introduction to the ADF Sample Application 2-11

Running the Fusion Order Demo Standalone Applications

Figure 2-7 Test Client Selected in Application Navigator

Application Navigator | [;]
DeviEuideExamples - -
Projects] @ V- &~

El--- ApplicationModules

E||—:| Application Sources

I@ devguide. examples. appmodules
B@ devguide. examples. client

£

entCustomInterf ace, java

Lexarples, entities
[l devguide.examples.queries

EJ--- onditionalDelete

E]--- QueryingDatawithiviewObjects

EJ"- UnitTests

3. Right-click the test client and choose Run.

For the names and location of the test clients provided with the standalone
applications, see the tables in Section 2.4.2 through Section 2.4.5.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

4. Examine the JDeveloper Log window for the test client’s output.
Refer to the referenced documentation for details about the expected results.

When the standalone application does not provide a test client to programmatically
exercise the ADF Business Components API, you will use the interactive testing tool,
known as the Business Components Browser.

To run a standalone application in the Business Component Browser:
1. Open the application in Oracle JDeveloper:

a. From the JDeveloper main menu, choose File > Open.

b. Navigate to the location where you extracted the demo ZIP file to, open the
StandaloneExamples directory, then open the desired standalone application
directory and select the application workspace (.jws) from the folder. Click
Open.

2. In the Application Navigator, expand the project folder and locate the application
module in a package in the Application Sources folder.

For example, Figure 2-8 shows the expanded ConditionalDelete project with the
application module AppModule selected and a tooltip for the node displayed.

Figure 2-8 Application Module Node Selected in Application Navigator

Application Mavigator | E]
DeviGuideExamples - -
Projects Q& V&=

ApplicationModules
ConditionalDelete
-7 application Sources

: () conditionaldelete

: Addresses
2] Addressesyiew

{& AppModule
H e _p

i Nalaka in:
Application Module - conditionaldelste , AppMadule
Queryingwpup o T 22 l

-{5] UnitTests

2-12 Fusion Developer's Guide for Oracle Application Development Framework

Running the Fusion Order Demo Standalone Applications

3. Right-click the application module node and choose Run.

For the names of the runnable application modules, see the tables in Section 2.4.2
through Section 2.4.5.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

4. Use the Business Component Browser to interact with the view instances of the
standalone application.

Refer to the referenced documentation for details about the application. For details
about using the Browser to interact with the data model, see Section 6.3, "Testing
View Object Instances Using the Business Component Browser."

2.4.2 Standalone Applications in the DevGuideExamples Application Workspace

Two of the standalone applications in the application workspace DevGuideExamples
use programmatic test clients to demonstrate concepts related to the ADF Business
Components framework. The third application demonstrates framework functionality
when you run the application in the Business Component Browser.

Figure 2-9 shows the Application Navigator after you open the DevGuideExamples
application workspace.

Figure 2-9 Runnable Applications in the DevGuideExamples Application Workspace

Applicatiun Mavigator | E]
DevizuideExamples - -
Projects EV R BT A= T

EI--- ApplicationModules

EI{_:I Application Sources
I'@ devguide, examples, approdules
I'@ devguide, examples, client
I‘m devguide. examples. entities
Iﬁ devguide. examples. gueries

=-{3] ConditionalDelete

EIl:I Application Sources
(-l conditionaldelete

EI QueryvingData'WwithyiewObjecks

=[] Application Sources

: I'@ devguide . examples. readonlywa

l:l Resources

[-{3] UnitTests

Note that the test clients for the DevGuideExamples standalone applications provide a
good starting point for understanding how to exercise methods of the ADF Business
Components APIL They also make good samples for test clients that you may want to
create to test business component queries in a data model project. For background on
working with test clients, see Section 6.4, "Testing View Object Instances
Programmatically."

Introduction to the ADF Sample Application 2-13

Running the Fusion Order Demo Standalone Applications

Note:

The ADF Business Components APl is available when you
need to generate custom classes to augment the default runtime
behavior of the business components. For background about the ADF
Business Components framework, see Section 3.5, "Overview of the
Implementation Architecture.”

Table 2—4 describes the standalone applications in the DevGuideExamples application
workspace. Examples from these applications appear throughout the chapters
contained in Part II, "Building Your Business Services" of this guide.

Table 2-4 Standalone Applications in the DevGuideExamples Application Workspace

Project Name

Runnable Class or Project Target

Documentation

ApplicationModule Run TestClientCustomInterface.javain For details about the test client, see
the devguide.examples.client package Section 9.10.1, "How to Work
in the Application Sources folder. Programmatically with an Application
. Module's Client Interface."
Exercises custom methods of
StoreFrontService application module’s For details about the methods of the
client interface and prints to the client interface, see the examples in
JDeveloper Log window to indicate the = Section 4.12, "Working
results. Programmatically with Entity Objects
and Associations."
ConditionalDelete Launch the Business Component For a description of overriding the

Browser on AppModule in the
Application Sources folder.

Overrides a method in the generated
entity class that conditionally prevents
deletion of entity rows. In the Business
Component Browser, click Delete the
Current Row and observe the exception
statement. Then, click Insert a New Row
and delete the new row.

remove () method that you generate in
the entity implementation class file, see
Section 8.12, "Conditionally Preventing
an Entity Row from Being Removed."

2-14 Fusion Developer's Guide for Oracle Application Development Framework

Running the Fusion Order Demo Standalone Applications

Table 2-4 (Cont.) Standalone Applications in the DevGuideExamples Application Workspace

Project Name

Runnable Class or Project Target

Documentation

QueryingDataWithView
Objects

Run TestClient.java in the Resources
folder.

Programmatically iterates over the

PersonList view instance using methods

of the Business Components API
RowIterator interface and prints to the
JDeveloper Log window.

For details about iterating over a
collection, see Section 6.4.5, "How to
Count the Number of Rows in a Row
Set."

For details about how to create test
clients, see Section 6.4, "Testing View
Object Instances Programmatically.”

Run TestClient2.java in the Resources
folder.

Programmatically iterates over the
PersonList view instance, accesses the
detail collection
OrdersToShipToCustomers using a view
link accessor attribute, and prints to the
JDeveloper Log window.

For details about iterating over a detail
collection, see Section 5.6.6, "How to
Access the Detail Collection Using the
View Link Accessor."

For more details about the test client,
see Section 6.4.6, "How to Access a
Detail Collection Using the View Link
Accessor."

Run TestClient3.java in the Resources
folder.

Programmatically iterates over the
PersonList view instance using a
strongly-typed PersonsRow interface and
prints to the JDeveloper Log window.

For details about iterating over a
collection using the view row accessor
attribute, see Section 39.3.1.3, "Exposing
View Row Accessors to Clients."

Run TestClientBindVars.java in the
Resources folder.

Programmatically sets the WHERE clause
for the PersonList view instance using
bind variables to filter the collection and
prints to the JDeveloper Log window.

For details about setting bind variables,
see Section 5.10.6, "How to Set Existing
Bind Variable Values at Runtime."

For more details about the test client,
see Section 5.10.5, "How to Add a
WHERE Clause with Named Bind
Variables at Runtime."

Run TestClientViewCriteria.java in the
Resources folder.

Programmatically sets a view criteria for

the PersonList view instance to filter the

collection and prints to the JDeveloper
Log window.

For details about the ADF Business
Component’s view criteria API, see
Section 5.11.10, "What You May Need
to Know About the View Criteria APL"

For more details about the test client,
see Section 5.11.8, "How to Create View
Criteria Programmatically.”

2.4.3 Standalone Applications in the AdvancedExamples Application Workspace

The standalone applications assembled in the application workspace
AdvancedExamples demonstrate advanced concepts that apply to the entire ADF
Business Components framework.

Figure 2-10 shows the Application Navigator after you open the AdvancedExamples
application workspace.

Introduction to the ADF Sample Application 2-15

Running the Fusion Order Demo Standalone Applications

Figure 2-10 Runnable Applications in the AdvancedExamples Application Workspace

.ﬁ.pplicatiun Mavigakar
AdvancedExamples

Projects

@l W~

EI--- BaseProject

=L Application Saurces

[Il devwguide.advanced. baseproject

EI CustomizedErrorMessages
=71 application Sources

Iﬁ devguide, advanced, customerrors
.[8] addProductsT ableConstraint, sql

E—:I ExtendAndsubstituke
=[] Application Sources

Iﬁ devguide. advanced. extsub

EI FrameworkExkensions
=[] application Sources

-1l com.yourcompany . adfextensions

EI ProgrammaticallySetProperties
=7 Application Sources

Iﬁ devqguide, advanced. customprops

[—] StaredProcedurelnvocation
=[] Application Sources

Iﬁ devguide, advanced., storedproc

------- @ ExamplePL3OLPackage. sql

#--[5] UnitTests

(=]
'rv

Table 2-5 describes the standalone applications in the AdvancedExamples application
workspace. Examples from this application workspace are described in Chapter 37,
"Advanced Business Components Techniques."

Table 2-5 Standalone Applications in the AdvancedExamples Application Workspace

Project Name

Runnable Class or Project Target

Documentation

BaseProject

Run TestClient.java in the Application
Sources folder.

For details about how to extend
business components to create a
customized versions of the original, see
Section 37.8, "Creating Extended
Components Using Inheritance."

CustomizedErrorMessages

Run the
addProductsTableConstraint.sqgl
scripts in the Application Sources
folder against the FOD connection to set
up the additional database objects
required for the project.

Launch the Business Component
Browser on ProductModule in the
Application Sources folder.

For details about how to provide an
alternative message string for the

builtin error codes in a custom message
bundle, see Section 37.7, "Customizing
Business Components Error Messages.'

1

ExtendAndSubstitute

Not runnable.

Programmatically iterates over the
PersonList view instance using
methods of the Business Components
API RowIterator interface and prints to
the JDeveloper Log window.

For details about how to substitute
business components, see Section 37.9,
"Substituting Extended Components in
a Delivered Application."

2-16 Fusion Developer's Guide for Oracle Application Development Framework

Running the Fusion Order Demo Standalone Applications

Table 2-5 (Cont.) Standalone Applications in the AdvancedExamples Application Workspace

Project Name

Runnable Class or Project Target

Documentation

FrameworkExtensions

Not runnable.

Provides template class files that you
can use to modify your own generated
ADF Business Components classes.

For details about framework
extensions, see Section 37.2,
"Customizing Framework Behavior
with Extension Classes."

ProgrammaticallySet
Properties

Run TestClient.java in the Application
Sources folder.

For details about how to communicate
custom declarative information about
business components to the generic
code in framework extension classes,
see Section 37.2, "Customizing
Framework Behavior with Extension
Classes."

StoredProcedure
Invocation

Run the ExampleSQLPackage. sql scripts
in the Application Sources folder
against the FOD connection to set up the
additional database objects required for
the project.

Run TestClient.java in the Application
Sources folder.

For details about how to code custom
Java classes for business components
that invoke database stored procedures
and functions, see Section 37.4,
"Invoking Stored Procedures and
Functions."

2.4.4 Standalone Applications in the AdvancedEntityExamples Application Workspace

The standalone applications assembled in the application workspace
AdvancedEntityExamples demonstrate advanced concepts that apply to ADF Business
Components entity objects.

Figure 2-11 shows the Application Navigator after you open the

AdvancedEntityExamples application workspace.

Introduction to the ADF Sample Application 2-17

Running the Fusion Order Demo Standalone Applications

Figure 2-11 Runnable Applications in the AdvancedEntityExamples Application

Workspace
=l Application Mavigator 2]
AdvancedEntityExamples - -
Projects Bl V-~

EI--- ContralingPastingOrder
EII:l Application Sources

[l devquide. advanced. postingorder
[—:I EntityWrappingPLSOLPackage
=[] application Sources

Iﬁ devguide, advanced. plaghwrap
@ CreateProductksaPIsgl
-[8] CreateproductsaRTPackage, sql
(- @ CreateProductsAPIPackageBody, sql
I:—:I InheritanceAndPaolymorphicQueries
EID Application Sources
: Iﬁ devvguide, advanced.inheritance
: - @ SlterPersonsTable,sgl
Ell_:l Resources

E—:I SimpleDamains
=27 application Sources
Iﬁ devguide, advanced. simpledomains

------- [B] createchject Type.sql
- [5] UnitTests

Table 2-6 describes the standalone applications in the AdvancedEntityExamples
application workspace. Examples from this application workspace are described in
Chapter 38, "Advanced Entity Object Techniques."

2-18 Fusion Developer's Guide for Oracle Application Development Framework

Running the Fusion Order Demo Standalone Applications

Table 2-6 Standalone Applications in the AdvancedEntityExamples Application Workspace

Project Name

Runnable Class or Project Target

Documentation

ControllingPostingOrder

Launch the Business Component
Browser on ProductsModule in the
Application Sources folder.

For details about controlling the
posting order resulting from DML
operations to save changes to a
number of related entity objects, see
Section 38.8, "Controlling Entity
Posting Order to Avoid Constraint
Violations."

EntityWrappingPLSQLPackage

Run the CreateProductsXXX.sql
scripts in the Application Sources
folder against the FOD connection to
set up the additional database objects
required for the project.

Launch the Business Component
Browser on ProductsModule in the
Application Sources folder.

For details about overriding the
default DML processing event for an
entity object to invoke methods in a
PL/SQL API PL/SQL package that
encapsulates insert, update, and
delete access to an underlying table,
see Section 38.5, "Basing an Entity
Object on a PL/SQL Package APL."

InheritanceAndPolymorphic
Queries

Run the AlterPersonsTable.sql
script in the Application Sources
folder against the FOD connection to
set up the additional database objects
required for the project.

Run TestEntityPolymorphism.java in
the Resources folder. Also, run
TestViewRowPolymorphism.java in
the Resources folder.

For details about creating an entity
object inheritance hierarchy, see
Section 38.7, "Using Inheritance in
Your Business Domain Layer."

SimpleDomains

Run the CreateObjectType. sql script
in the Application Sources folder
against the FOD connection to set up
the additional database objects
required for the project.

Launch the Business Component
Browser on PersonModule in the
Application Sources folder.

For details about creating custom
data types, see Section 38.1, "Creating
Custom, Validated Data Types Using
Domains."

2.4.5 Standalone Applications in the AdvancedViewObjectExamples Application

Workspace

The standalone applications assembled in the application workspace
AdvancedViewObjectExamples demonstrate advanced concepts that apply to ADF
Business Components view objects.

Figure 2-12 shows the Application Navigator after you open the
AdvancedViewObjectExamples application workspace.

Introduction to the ADF Sample Application 2-19

Running the Fusion Order Demo Standalone Applications

Figure 2-12 Runnable Applications in the AdvancedViewObjectExamples Application

Workspace

P.ppliu:atiu:un Mavigakar
AdvancedviewObiectExamples

BIW® V-&E-
EI--- DeclarativeBlockioperations
=77 Application Sources

[l devguide. advanced. blockops
E—:I InMernoryOperations
EID Application Sources
: Iﬁ devguide, advanced. inmemaoryops
{_:l Resources
[—:I MulkipleMasters
=7 application Sources

Iﬁ devqguide, advanced. multiplermasters
I:—:I MultipleViewCriterias
EID Application Sources

[l devguide, advanced, mulkiplewve
=53] ReadingandwritingxrL
EI{:l Application Sources
: Iﬁ devguide, advanced, xmil
&7 Resources
#-[5] UnitTests
I'_—'l--- WiewwObjeckOnRefCursor

EID Application Sources

Iﬁ devguide, advanced. refoursor

------- El CreateRefCursorPackage. sql

Projects

)
vv

Table 2—4 describes the standalone applications in the AdvancedviewObjectExamples
application workspace. Examples from this application workspace are described in

Chapter 39, "Advanced View Object Techniques."

Table 2-7 Standalone Applications in the AdvancedViewObjectExamples Application Workspace

Project Name Runnable Class or Project Target

Documentation

DeclarativeBlock Launch the Business Component For details about how to use custom
Operations Browser on AppModule in the metadata properties to control insert,
Application Sources folder. update, or delete on a view object, see
Section 39.11, "Declaratively Preventing
Insert, Update, and Delete."
InMemoryOperations Launch the Business Component For details about how to use view
Browser on AppModule in the objects to perform in-memory searches
Application Sources folder. and sorting to avoid unnecessary trips
. . . to the database, see Section 39.5,
Illustrates using the in-memory sorting . :
I . . . Performing In-Memory Sorting and
and filtering functionality from the client .,. " ° W
. . . . Filtering of Row Sets.
side using methods on the interfaces in
the oracle.jbo package.
MultipleMasters Launch the Business Component For details about creating a view object

Browser on AppModule in the
Application Sources folder.

with multiple updatable entities to
support creating new rows, see
Section 39.9, "Creating a View Object
with Multiple Updatable Entities."

2-20 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

Table 2-7 (Cont.) Standalone Applications in the AdvancedViewObjectExamples Application Workspace

Project Name

Runnable Class or Project Target

Documentation

MultipleViewCriterias

Run
TestClientMultipleViewCriteria.java in
the Application Sources folder.

For details about how to
programmatically filter query results,
see Section 39.4, "Working
Programmatically with Multiple
Named View Criteria."

ReadingAndwWritingXML

Run TestClientReadXML.java in the
Resources folder. Then run
TestClientWriteXML.java in the
Resources folder.

For details about how to produce XML
from queried data, see Section 39.7,
"Reading and Writing XML."

ViewObjectOnRefCursor

Run the CreateRefCursorPackage.sql
scripts in the Application Sources folder
against the FOD connection to set up the
additional database objects required for
the project,

Launch the Business Component
Browser on OrdersModule in the
Application Sources folder.

For details about how to use PL/SQL
to open a cursor to iterate through the
results of a query, see Section 39.8.4,
"How to Create a View Object on a REF
CURSOR."

2.5 Taking a Look at the Fusion Order Demo Application

Once you have opened the projects in Oracle JDeveloper, you can then begin to review
the artifacts within each project. The development environment for the Fusion Order

Demo application is divided into two projects: the StoreFrontService project and the
StoreFrontUI project.

The StoreFrontService project contains the classes that allow the product data to be
displayed in the web application. Figure 2-13 shows the StoreFrontService project
and its associated directories.

Figure 2-13 The StoreFrontService Project

¥

Applicatiun Mavigator
StoreFrontModule
Projects

|_:_|--- StoreFrontService
=[] Application Sources
=il oracle.Fodema.storefront

H--[_) META-INF

435 StoreFrontService, jpx
EEI--- StoreFrontUl

L g
'T
2 Y=

[l account
- [ifll adfextensions
-[ifll entities
[l lookups
Il mycompany
I stare

- 1§l queries

=1l service

{ﬁ StoreServicedM

Introduction to the ADF Sample Application 2-21

Taking a Look at the Fusion Order Demo Application

The StoreFrontService project contains the following directories:

m Application Sources: Contains the files used to access the product data. Included
are the metadata files used by Oracle Application Development Framework
(Oracle ADF) to bind the data to the view.

= META-INF: Contains a file used in deployment.

The StoreFrontUI project contains the files for the web interface, including the
backing beans, deployment files, and JSPX files. Figure 2-14 shows the StoreFrontUI
project and its associated directories.

Figure 2-14 The StoreFrontUI Project

Applicatiun Mavigator X [:]

StoreFrontModule - o
Projects T IR = e

StoreFrontService
EI StoreFronkI
l:l Application Sources
EID Web Content
D account
r_—l checkaut
D images
- i
D skins
-] templates
-7 WEB-INF
D Page Flows
- home. jspx
- login_error, jspix
- login. jsp
- logout, jspi
i - myOrders, jspx
(- unexpectedErrorHandler, jspix

The StoreFrontUI project contains the following directories:

s Application Sources: Contains the code used by the web client, including the
managed and backing beans, property files used for internationalization, and the
metadata used by Oracle ADF to display bound data.

= Web Content: Contains the web files, including the JSP files, images, skin files,
deployment descriptors, and libraries.

2.5.1 Anonymous Browsing

You start the Fusion Order Demo application by running the home . jspx page in the
StoreFrontUI project. For details about running the application using the default
target, home. jspx page, see Section 2.3, "Running the Fusion Order Demo Application
StoreFront Module."

When you enter the storefront site, the site is available for anonymous browsing. You
can use this page to browse the catalog of products without logging into an account.

2-22 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

The initial view shows the featured products that the site wishes to promote and gives
you access to the full catalog of items. Products are presented as images along with the
name of the product. Page regions divide the product catalog area from other features

that the site offers.

Figure 2-15 shows the home page.

Figure 2-15 Home Page with Multiple Regions

@ ||"1'!a' Orders | Chediwout | Registration

Featured HotTtems Start Shopping! Search for Deals!
Bluetooth Phone Headset oy
¥Box 360 Video Bluetooth Adaptor Internet Camera Mintendo DS F
A Game System a - =
' -
d, . =%,
g ' Price 439.99 —
Price 49,99 . y Price 19.99 ! Price 129,99
P”cganigeg'gg Cell Phones Can;ﬁro?;nd (Games
Zune 30Gh 7 Megapixel Digital Tungsten E PDA Ipod Shuffie 1Gb
P | Camera }
i Pl -
] — % ‘]
) =
Price 225.99 Price §29.99 Price 195.93 Price 99.99
Audio and Video rice : Audio and Video Audio and Video
Camera and Photo |
Flasma HD PlayStation 2 Bluetooth Phone
Trea SSD“PhonefPDA Television Video Game Headset
Pé';ﬁpﬁaaf: Price 1,999.99 Price 199.35 Price 49.99
Audio and Video Games Cell Phones
 Browse Products Statistics
» Gearch
-

Where to Find Implementation Details

Following are the sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework that describe how to create a databound web

page:
» Providing the structure for the web page

The home page separates features of the site into regions that are implemented
using a combination of ADF Faces templates and JavaServer Faces (JSF) page
fragments. ADF Faces templates and the fragments allow you to add ADF
databound components. For information about the steps you perform before
adding databound user interface components to a web page, see Section 20.1,
"Introduction to Developing a Web Application with ADF Faces."

» Displaying information on a web page

To support data binding, the featured items on the tabbed region of the home page
use EL (Expression Language) expressions to reference ADF data control usages in
the declarative ADF page definition file. The page definition file, which
JDeveloper creates for you when you work with the Data Controls panel to drag
and drop databound ADF Faces components, is unique to each web page or page
fragment. The ADF data control usages enable queries to the database and

Introduction to the ADF Sample Application 2-23

Taking a Look at the Fusion Order Demo Application

ultimately work with the JSF runtime to render the databound ADF Faces
components, such as the ADF Faces image component used to display images
from the PRODUCT_IMAGES table. For information about creating a databound web
page that references the ADF page definition file, see Section 22.1, "Introduction to
Creating a Basic Databound Page."

= Managing entry points to the application

The home page is supported by an ADF unbounded task flow. In general, the
Fusion web application relies on this ADF Controller feature to define entry points
to the application. The unbounded task flow for the entire home page and its page
fragments describes view activities for displaying the home page, displaying the
orders page, displaying the register user page, and it defines a task flow reference
to manage the checkout process. JDeveloper helps you to create the task flow with
visual design elements that you drag and drop from the Component Palette. When
you create an unbounded task flow, the elements allow you to identify how to
pass control from one activity in the application to the next. Because a view
activity must be associated with a web page or page fragment, JDeveloper allows
you also to create the files for the web page or fragment directly from the task flow
diagram. The process of creating a task flow adds declarative definitions to an
ADF task flow configuration file. The resulting diagram lets you work with a
visual control flow map of the pages and referenced task flows for your
application. For more information about specifying the entry points to the
application using an ADF unbounded task flows, see Section 14.1, "Introduction to
ADF Task Flows."

2.5.1.1 Viewing Product Details

To view detailed product information, you can click the product name link for any
product in the home page. The product information is laid out with collapsing nodes
organized by categories.

Figure 2-16 shows the detail dialog that you can view for a product.

2-24 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

Figure 2-16 Home Page - Product Details Popup

ders | Checkout | Registration

Featured Hot Items Start Shopping! Search for Deals!
Bluetooth Phone Headset Y
¥Box 360 Video Bluetooth Adaptor Internet Camera Mintendo DS F
%_ Game System - =
) m I a
/ e -l 15
)
Price Frice 129,99
Bluetooth Phone Headset Games
Hide [Add |

Streamlined and sophisticated, the Bluetooth Headset H500 provides wireless connectivity and

convenience. Combining an ergonomic design and versatile ear hook, this sleek headset can be

worn on either ear. Created to be ultra comfortable, the Motorola H500 is so easy to wear that

wou'l forget you even have it on! But don't be fooled by its good looks - this petite powerhouse od shuffle 1Gb
provides impressive battery power to boot and an omni-directional microphone to dearly pick up

wour voice. A perfect companion for a variety of Bluetooth compatible 1.2- and 1. 1-enabled

mobile phones, the Motorola H500 is a must-have accessory for communicating in style. The

Motorola H500 works with you to help you communicate on the go - connecting with devices up to

30 feet away. Or give your mobile a rest and connect with your Bluetooth-enabled PC for hands- price 99,99
free Voice over IP VoIP use. Offering improved comfort and sound quality over its predecessor, adio and Video
the Motorola H500 provides a sleek, ergonomic design that fits to your ear, allowing for m =5
comfortable wear over extended periods and providing an enhanced seal for outstanding audio

performance. Style and comfort are only part of this package - the headset boasts up to 8 hours

of talk time or 130 hours of standby time from a single charge, giving you plenty of juice for all of

wour wireless connections! Whether you are managing the office or party planning on-the-go, the setooth Fhone
Motorola H500 is perfect for multi-tasking with fiair. Equipped with a multifunction button it's easy Headset

to place, receive or end calls - all from one button! Advanced volume controls indude orientation ﬂ;

m

technology to assure that volume controls will always be upright Blue LED light to notify when the
headset is in use, or turn off this feature if you choose Bluetooth 1.2 provides quicker pairing,
better audio with less dropped calls and reduced interference from other devices Skype certified

Additional Information Price 45.93
Cell Phones
 Browse
 Search
| . ________________Ea& |

You can also select the Statistics subtab on the home page to view a graphical
representation of the number of orders that customers have placed for the featured
items. To present the information so that quantities are easily compared, the graph
sorts the products by the number of items ordered, in descending order.

Figure 2-17 shows the bar graph used to display the featured products’ current order
details.

Introduction to the ADF Sample Application 2-25

Taking a Look at the Fusion Order Demo Application

Figure 2-17 Home Page - Statistics for Featured Iltems

Featured Hot Items Start Shopping! Search for Deals!
Bluetooth Phone Headset
4 ne Total Orders = Maximum Single Order Quantity
.5)
Price 49.99
A A

» Browse Products Statistics

> Search

I EEEEEEEEEEEE———_ ~_

Where to Find Implementation Details

Following are the sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework that describe how to develop the
components used to support browsing product details:

s Triggering an action to display data

To display data from the data model, user interface components in the web page
are bound to ADF Model layer binding objects using JSF Expression Language
(EL) expressions. For example, when the user clicks on a link to display an
informational dialog, the JSF runtime evaluates the EL expression for the dialog’s
UI component and pulls the value from the ADF Model layer. At design time,
when you work with the Data Controls panel to drag an attribute for an item of a
data collection into you web page, and then choose an ADF Faces component to
display the value, JDeveloper creates all the necessary JSF tag and binding code
needed to display and update the associated data. For more information about the
Data Controls panel and the declarative binding experience, see Section 12.1,
"Introduction to ADF Data Binding."

= Displaying data in graphical format

JDeveloper allows you to create databound components declaratively for your JSF
pages, meaning you can design most aspects of your pages without needing to
look at the code. By dragging and dropping items from the Data Controls panel,
JDeveloper declaratively binds ADF Faces Ul components and ADF Data
Visualization components to attributes on a data control using an ADF binding.
For more information, see Section 26.1, "Introduction to Creating ADF Data
Visualization Components."

2-26 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

2.5.1.2 Browsing the Product Catalog

To begin browsing, click the Start Shopping tab in the home page. This action changes
the region of the page used to display details about featured products to a region that
displays a product categories tree. You can collapse and expand the branch nodes of
the tree to view the various product categories that make up the product catalog. The
tree displays the product categories in alphabetical order, by category names. When
you want to view all the products in a particular category, click its category node in the
tree (for example, click Electronics, Media, or Office). The site refreshes the product
information region to display the list of products organized as they appear in the
database with an image and an accompanying description.

Figure 2-18 shows the home page with all the products in the Electronics category
displayed.

Figure 2-18 Home Page - Product Categories View

E
> Featured HotItems Start Shopping! Search for Deals!
EIETES Electronics
View = Format = Freeze & Detach Wrap
Audio and Video Item Image Desaipﬁ;n
Camera and Photo o ' Tpod Video 30Gb "
Cell Phones fa Apple iPod - Continuing its tradition of hardware and software innovz
Games released a new iPod that surpasses the last. This update to the Sth) =
playback features a huge 80GE hard drive - the largest yet! With Tur
> Books See Larger Image, game downloa‘ds, there's more than enough content to satisfy this be
5 DVDs m also get a 2.5 display that is now 60% brighter, a... .
¥ Music — Ipod Video 60Gb
» Perindicals B Apple iPod - Continuing its tradition of hardware and software innove
released a new iPod that surpasses the last. This update to the 5th
- > Hardware playback features a huge 80GE hard drive - the largest yet! With Tur
See Larger Image@, game downloads, there's more than enough content to satisfy this be
> Software 4 m also get a 2.5" display that is now 60% brighter, a... 4
» Supplies See!
; Ipod Nano 1Gb
Indudes: earbud headphones, USB 2.0 cable, dock adapter, case, M
and more. Come one, come all and witness the incredible shrinking i
introduces the latest member of the highly successful iPod family of dig
See Larger Image@, is aptly named since it's a fraction of the size of its larger iPod cousins. I
m comes in at a featheright 1.5 ounce. ..
Seel
- Ipod Nano 2Gb
== Includes: earbud headphones, USB 2.0 cable, dock adapter, case, M
and more, Come one, come all and witness the incredible shrinking i
introduces the latest member of the highly successful iPod family of dig
See Larger Image®, is aptly named since it's a fraction of the size of its larger iPod cousins. I
m comes in at a featherdight 1.5 ounce... A
See!
4 T 3
» Search

-

Where to Find Implementation Details

Following are the sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework that describe how to use tables and forms to
display master-detail related objects:

» Dragging and dropping master and detail components

You can create pages that display master-detail data using the Data Controls
panel. The Data Controls panel displays master-detail related objects in a
hierarchy that mirrors the one you defined in the ADF application module data
model, where the detail objects are children of the master objects. All you have to
do is drop the collections on the page and choose the type of component you want
to use. For example, in the Fusion Order Demo application, the page home . jspx
displays the master list of product categories in an af: tree component and
displays the detail list of products in an af: table component. For more
information about the data model, see Section 3.4, "Overview of the Ul-Aware

Introduction to the ADF Sample Application 2-27

Taking a Look at the Fusion Order Demo Application

Data Model." For more information about various types of pages that display
master-detail related data, see Section 24.1, "Introduction to Displaying
Master-Detail Data."

= Sorting data that displays in tables

When you create an ADF Faces table component you bind the table to the
complete collection or to a range of data objects from the collection. The specific
components that display the data in the columns are then bound to the attributes
of the collection. The iterator binding handles displaying the correct data for each
object, while the table component handles displaying each object in a row. You can
set the Sort property for any column when you want the iterator to perform an
order-by query to determine the order. You can also specify an ORDER BY clause for
the query that the view object in the data model project defines. For more
information about binding table components to a collection, see Section 23.1,
"Introduction to Adding Tables." For more information about creating queries that
sort data in the data model, see Section 5.2, "Populating View Object Rows from a
Single Database Table."

2.5.1.3 Searching for Products

To search the product catalog, you have several choices. You can begin either by
clicking the disclosure icon (a + symbol) on the Search tab on the panel accordion or
by clicking the Search for Deals tab in the main region. When you click either of these,
the home page displays both regions at once to allow you to enter a search criteria and
view the search results. You use the Search tab on the accordion panel to perform a
simple keyword search against the attributes common to all products, such as product
names or product descriptions. When you select the attribute to search on from the
dropdown list, the panel renders a search field using an appropriate input component
to accept the search criteria. For example, in the case of the default searchable attribute
Productld, where a numeric value is expected, the search field uses a spinbox (the
ADF Faces component inputNumberSpinBox) to return the product ID.

Figure 2-19 shows the home page with the search results returned for the product with
an ID equal to 7.

Figure 2-19 Home Page - Search View

o
> Featured HotItems StartShopping! Search for Deals!
© Browse Search Results

Search

n] _ | XBox 360 Video Game System

Search | ¥box 360 sets a new pace for digital entertainment. More than jus
Product Id El bl - ¥box 380 also integrates high-definition video, DVD movie playbz
= See Larger Imaged, online connectivity into one sleek, small tower. .

'

Advanced

As an alternative to entering a simple search, you can use the advanced search feature
to define and save search criteria based on any combination of searchable fields that
you select for the product. Click the Advanced link to open the Advanced Search
dialog. Developer-defined saved searches like Find Products By Name appear in the
Saved Search dropdown list.

Figure 2-20 shows the Advanced Search dialog with a single search criteria, Name,
that the Find Products By Name saved search defines.

2-28 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

Figure 2-20 Home Page - Advanced Search Dialog

Advanced Search

Product Search

4 Search Saved Search Find Products By Name [

MName

| Search || Reset || Save, ., |

In addition to the developer-defined saved searches available in the Advanced Search
dialog, the end user can create saved searches that will persist for the duration of their
session. Enter the product search criteria in the Advanced Search dialog, then click the
Save button to open the Create Saved Search dialog.

Figure 2-21 shows the Create Saved Search dialog that you use to specify how you
want to save the search criteria you entered in the Advanced Search dialog. You can
name the search, for example, Treo product name search, so that it will display in the
Saved Search dropdown list of the Advanced Search dialog.

Figure 2-21 Home Page - Advanced Search Dialog - Saved Searches Option

Create Saved Search

*Name Treo product name search
Set as Default
Run Automatically
Save Results Layout

You can also manage your saved searches by selecting the Personalize function in the
Saved Search dropdown list of the Advanced Search dialog.

Figure 2-22 shows the Personalize Saved Search dialog for the Find Products By
Name search, with Show in Search List enabled so that it will appear in the Saved
Search dropdown list. Note that because this search is not a user-defined saved search,
the personalization options appear disabled.

Introduction to the ADF Sample Application 2-29

Taking a Look at the Fusion Order Demo Application

Figure 2-22 Home Page - Advanced Search Dialog - Personalization Option

Personalize Saved Searches x

Personalize Saved Searches

Treo product name search E|

Delete

*Mame
Treo product name search

Set as Default
Run Automatically
[¥] show in Search List

Where to Find Implementation Details

Following are the sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework that describe how to define queries and
create query search forms:

» Defining the query for the search form to display

A query is associated with an ADF Business Components view object that you
create for the data model project to define a particular query against the database.
In particular, a query component is the visual representation of the view criteria
defined on that view object. If there are multiple view criteria defined, each of the
view criteria can be selected from the Saved Search dropdown list. These saved
searches are created at design time by the developer. For example, in the Fusion
Order Demo application, the ProductsV0 view object defines two view criteria.
When the query associated with that view object is run, both view criteria are
available for selection. For more information, see Section 27.1, "Introduction to
Creating Search Forms."

» Creating a quick search form

A quick query search form has one search criteria field with a dropdown list of the
available searchable attributes from the associated data collection. By default, the
searchable attributes are all the attributes in the associated view object. You can
exclude attributes by setting the attribute’s Display control hint to Hide in the
view object. The user can search against the selected attribute or search against all
the displayed attributes. The search criteria field type will automatically match the
type of its corresponding attribute type. For more information, see Section 27.1.2,
"Quick Query Search Forms."

» Creating a search form

You create a query search form by dropping a named view criteria item from the
Data Controls panel onto a page. You have a choice of dropping only a search
panel, dropping a search panel with a results table, or dropping a search panel
with a tree table. For more information, see Section 27.2, "Creating Query Search
Forms."

= Displaying the results of a query search

2-30 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

Normally, you would drop a query search panel with the results table or tree table.
JDeveloper will automatically wire up the results table or tree table with the query
panel. If you drop a query panel by itself and want a separate results component,
you can set the query component's resultComponentId attribute to the relative
expression of the results component. For example, in the Fusion Order Demo
application, the page home. jspx displays an af: table with the ID searchT and the
results ID of the advanced search dialog is assigned this ID. For more information,
see Section 27.2.2, "How to Create a Query Search Form and Add a Results
Component Later."

2.5.2 The Login Process

Until you attempt to access secure resources in the storefront site, you are free to
browse the product catalog and update the shopping cart as an anonymous user.
However, when you click the My Orders or Checkout links that appear at the top of
the home page, you will be challenged by the web container running the site to supply
login credentials. The site requires that you enter a valid user name and password
before it completes your request to display the linked page.

Note: The Fusion Order Demo application supports the new
customer registration process, but that user is not added to the
security implementation. Thus, you must use a predefined customer’s
user name and password to log in, as shown in Table 2-3.

Figure 2-23 shows the login page fragment that displays before you can view order
details or purchase items from the store. For demonstration purposes, log in as a
customer by entering ngreenbe and welcomel for the Username and Password,
respectively.

Figure 2-23 Login Region
Log in

Username

Password

Log In

Mot a user? Create an account now!

== Continue Shopping

When you click the Log In button, the web container will compare your entries with
the credential information stored in its identity store. If the web container is able to
authenticate you (because you have entered the user name and password for a
registered user), then the web container redirects to the web page specified by your
link selection; otherwise, the site prompts you to create an account or to continue
browsing as an unauthenticated user.

Where to Find Implementation Details

Following are the sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework that describe how to secure Oracle ADF
resources so that users are required to log in to access those resources:

= Enabling fine-grained security to secure Oracle ADF resources

Introduction to the ADF Sample Application 2-31

Taking a Look at the Fusion Order Demo Application

ADF Security is a framework that provides a security implementation that is based
on Java Authentication and Authorization Service (JAAS). The Oracle ADF
implementation of JAAS is role-based. In JDeveloper, you define these roles and
then make permission grants based on these roles to enable fine-grained security
for Oracle ADF resources. JDeveloper supports declaratively defining the policy
store for an ADF bounded task flow or individual web pages associated with their
ADF page definition. For information about securing Oracle ADF resources, see
Section 30.5, "Defining ADF Security Policies."

s Triggering dynamic user authentication

When you use ADF Security, authentication is triggered automatically if the user is
not yet authenticated and tries to access a page that is not granted to the
anonymous-role role. After successfully logging in, another check will be done to
verify if the authenticated user has view access to the requested page. For more
information, see Section 30.3.5, "What You May Need to Know About ADF
Authentication."

s Performing permission checking within the web page

At runtime, the security policy you define for ADF resources is enforced using
standard JAAS permission authorization to determine the user’s access rights. If
your application requires it, you can use Expression Language (EL) to perform
runtime permission checks within the web page to hide components that should
not be visible to the user. For example, in the Fusion Order Demo application, the
page myOrders. jpx uses an expression with the value userGrantedPermission to
test the user’s authorization privileges before displaying their account number.
For more information, see Section 30.11.1, "Using Expression Language (EL) with
ADF Security."

2.5.3 The Ordering Process

You begin the order process by browsing the product catalog. When you click Add
next to a product, the site updates the shopping cart region to display the item.

Figure 2-24 shows the cart summary with a single item added. The summary shows a
subtotal for the items that appear in the cart.

2-32 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

Figure 2-24 Home Page - Shopping Cart Summary
Shopping Cart Summary

Zune 30Gb
Audio and Video
225.99 - guantity: 1

Subtotal= 225.99

When you are satisfied with the items in the cart, you can complete the order by
clicking the Checkout link at the top of the home page. To check out and complete the
order, you must become an authenticated user, as described in Section 2.5.2, "The
Login Process."

After you log in, the site displays the checkout page with order details, such as the
name and address of the user you registered as. The order is identified by an Order
Information number that is generated at runtime and assigned to the order. An Order
Summary region displays the order items that comprise the new order. This region is
similar to the cart summary on the home page, except that it adds the cost of shipping
and deducts any discounts that apply to the order to calculate the total purchase
amount.

Figure 2-25 shows the checkout page with an order comprising four order items.

Introduction to the ADF Sample Application 2-33

Taking a Look at the Fusion Order Demo Application

Figure 2-25 Checkout Page - Order Details Form

- Shipping Details Order Summary

4 Customer Information Nintendo Wii
N - Games
General Information Primary Address 659.99 -guantity: 1
Customer Name Nancy Greenberg Address Line 1 2549 Yonge Street Ipod Video 30Gb
Member Since City Toronto ;‘l‘l;ig;ml \ﬁllmﬁ -1
Email Address NGREEMBE Postal Code or ZIP M4P 2H9 o 311;: LI
Mabile Phone State [Province ON Audio and Video
§65.555.0102 865.555.0102 Country CA 225.99 -quantity: 1
| Order Information - #1120
Shipping Information Payment Options
Ship to Pag;”;:: 95317932161 =Ey
i’gﬂi’;ﬂ 100 N Peach 5t Philadelphia PA 19133 U5 [=|[(H & Code
Phone
MNumber
Shipping Options Discounts H
Shipping Option Code @ Standard S:lpp.mg {3-5 business days) Coupon Code Items: =1,135.97
© Two-Day Shipping Shipping & =35.94
(@) One-Day Shipping Handiing
@ Pick-up Discounts =20,00
Gift Options Your Total: =1,151.91
Gift Wrapping Message Naone

You can use the checkout page to customize details of the order information. For
example, click the Edit icon next to the Payment Option Code field to display and edit
payment funding information for the order.

Figure 2-26 shows the detail dialog for the Payment Option Code field.

Figure 2-26 Checkout Page - Payment Option Detail Dialog

*Payment Type Invoice El

*Biling Address 100 N Peach St Philadelphia PA US 19139 El
* Account Number 5105105105105100

Card Type MasterCard El
Expiration Date 0115 %
Check Digits

Routing Identifier

Institution Name

valid From Date 17-MAR-201109:22:43 [
Valid To Date By
Valid sample credit card numbers incude:
Visa: 401.

MC: 5105105105105100
AMEX: 343434343434343

Valid routing numbers indude: 9874321 and 789456124

2-34 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

Many of the fields of the payment options dialog offer user interface hints that guide
you to enter specific information.

Figure 2-27 shows an example of a date entry (01/15) that the format mask (mm-yy)
defines for the Expiration Date field.

Figure 2-27 Checkout Page - Payment Options Detail Dialog - Date Format Mask

=

*Payment Type Invoice E|
*Biling Address 100 N Peach 5t Philadelphia PA LS 19139 []

Account Number | 5105105105105100
Card Type MasterCard E| Example: 45/98

Expiration Date 01/15 [y
Check Digits
Routing Identifier
Institution Name

Valid From Date 17-MAR-201109:22:43 %

Valid To Date [y

Valid sample credit card numbers indude:

Visa: 4012888888881881

MC: 5105105105105100

AMEX: 343434343434343

Valid routing numbers include: 9874321 and 789456124

K || Cancel

The Card Type field displays a dropdown that allows you to select from a valid list of
credit card types.

Figure 2-28 displays the list of values for the Card Type field.

Figure 2-28 Checkout Page - Payment Options Detail Dialog - List of Values (LOV)
Choice List

*Payment Type Invoice El
*Biling Address 100 M Peach 5t Philadelphia PA US 19139 El
* Account Number | 5105105105105100
Card Type

MasterCard

Expiration Date

American Express

Check Digits Diners Club

Routing Identifier
Institution Name
Valid From Date 17-MAR-201109:22:43 %
Valid To Date [y

Valid sample credit card numbers indude:

Visa: 4012888BBEER1881

MC: 5105105105105100

AMEX: 343434343434343

Valid routing numbers indude: 9874321 and 789456124

QK || Cancel

If you close the payment options dialog and click the Submit Order button in the
checkout page, the purchase order is created and sent into a process flow.

After you place an order using the StoreFront module, a second module of the Fusion
Order Demo application is available to process the order. For details about the
WebLogic Fusion Order Demo module used to demonstrate the capabilities of Oracle
SOA Suite, see Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite. For
information about running this portion of the Fusion Order Demo application, see

Introduction to the ADF Sample Application 2-35

Taking a Look at the Fusion Order Demo Application

Section 2.3, "Running the Fusion Order Demo Application StoreFront Module."

Where to Find Implementation Details

Following are the sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework that describe how to develop forms like the
ones used in the order checkout process:

» Creating a databound edit form

When you want to create a basic form that collects values from the user, instead of
having to drop individual attributes, JDeveloper allows you to drop all attributes
for an object at once as an input form. You can create forms that display values,
forms that allow users to edit values, and forms that collect values. For example, in
the Fusion Order Demo application, the checkout page orderSummary . jspx
displays one form to display user information and another form to collect
shipping information for the user’s order. For more information, see Section 22.6,
"Creating an Input Form."

s Defining format masks for input forms

Format masks help ensure the user supplies attribute values in the required
format. To facilitate this task, ADF Business Components provides declarative
support known as control hints for attributes in the data model project. For
example, in the Fusion Order Demo application, the attribute for the
CustomerPaymentOptionVO view object used to assign the user’s credit card
expiration date is configured with a format mask hint and enforced in the
Payment Options page fragment paymentOptionsDetails.jsff. For information
on defining format masks for input form components, see Section 5.14, "Defining
Control Hints for View Objects."

s Defining a list of values for selection lists

Input forms displayed in the user interface can utilize databound ADF Faces
selection components to display a list of values (LOV) for individual attributes of
the data collection. To facilitate this common design task, ADF Business
Components provides declarative support to specify the LOV usage for attributes
in the data model project. For example, in the Fusion Order Demo application, the
three af : selectOneChoice components displayed in the Payment Options page
fragment paymentOptionsDetails.jsff are bound to LOV-enabled attributes
configured for the CustomerPaymentOptionV0 view object. For more information
about configuring attributes for LOV usage, see Section 5.13, "Working with List of
Values (LOV) in View Object Attributes."

s Keeping track of transient session information

When you create a data model project that maps attributes to columns in an
underlying table, your ADF view objects can include transient attributes that
display calculated values (for example, using Java or Groovy expressions) or that
are value holders. For example, in the Fusion Order Demo application, the order
summary page orderSummary . jspx displays the value of the InvoiceTotal
attribute calculated by the expression defined on the Ordervo view object. For
more information about defining transient attributes in the data model project, see
Section 4.14, "Adding Transient and Calculated Attributes to an Entity Object.”

2.5.4 The Customer Registration Process

The site requires that you become an authenticated user before you can display the
checkout page. To make it possible for new customers complete the order process, the

2-36 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

site needs to provide a way to guide users through customer registration. To begin,
click the registration link on the home page and then click Register as a customer.

Customer registration progresses in steps, with one screen dedicated to each step. To
represent the progression of these steps, the registration page displays a series of train
stops labelled Basic Information, Address, Payment Options, and Review. To
navigate the customer registration process, you can click certain train stops or you can
click the Next button.

Figure 2-29 shows the first screen in the customer registration process. The Basic
Information stop of the train is enabled and selected to identify it as the current stop.
Notice that the next train stop icon, Address, is enabled but not highlighted, while the
Payment options and Review train stop icons appear disabled and grayed out.
Together, these train stops signify that you must complete the activity in a sequential
flow.

Figure 2-29 Customer Registration Page - Basic Information Form

L]
Basic Information Address
Basic Information Cancel | | MNext
*|Jser Phone
Name .
Mobile
Title <No Selection> E| Phone
First Name *Gender <No Selection [
Last Name Date of Birth rf&'g
Person | customer Contact <N Selection>
Type Method
* Email *Marital <o Selection> [=]
Address Status
* Confirmed Income
Email
Address
Categories of interest Iam interested in...
Audio and Video -
Books
Camera and Photo
C
ell Phones | > I
DVDs 5
Electronics @
Games
Hardware]
Media
Music &
Niffire S
Description Description

Before you enter any information into the Basic Information form, click the Address
train stop. The page displays an error dialog to inform you that specific fields require a
value before you can progress to the next step.

Figure 2-30 shows the error dialog with messages stating that the Basic Information
form requires a user name and an email address.

Introduction to the ADF Sample Application 2-37

Taking a Look at the Fusion Order Demo Application

Figure 2-30 Customer Registration Page - Basic Information Form with Validation Error

Popup
]
Basic Infor @ — %
Basic Infa Cancel | | Mext
*|jeer Messages for this page are listed below.
Name - ser Name @ You must enter a value.
Tie Email Address @ You must enter a value.
First Name ielection= [=]
Confirmed Email Address @ You must enter a value,
Last Name E‘_’"@
Persan OK| | ielection>
Type
* Email *Marital 2Na Selection=
Address I I Status EI
* Confirmed | I Income

Email
Address

Click OK to dismiss the error dialog. Then enter a user name and email address. Be
sure to confirm the email address in the form.

Again, click Next to progress to the next task. This time, the site should display the
Addpress screen with icon buttons that you can select to create a new address record in
the database (or, in the case of an existing customer, to update an existing address
record).

Figure 2-31 shows the Address screen with one column for Address Label and no row
information. Because you are entering information as a new customer, no address
record currently exists, so no rows are available to display below these columns.

Figure 2-31 Customer Registration Page - Address Input Task

Address Information Cancel| | Back | Mext

View v New @ Update 3§ Remove i Detach
Address Label

Click New. The registration page changes to display an address input form and the
current train stop remains on Address.

Figure 2-32 shows the empty address input form.

Figure 2-32 Customer Registration Page - Address Input Form

Basic Information .Add_ress Payment options
Address Details Ly Cancel | | o Save & Add Another | | [Save & Return

* Address Line 1
Address Line 2
* City
*State [/ Province
Postal Code or ZIP
*Country <Moo Selection > [=]
Address Usage Type Invoice Address E|

2-38 Fusion Developer's Guide for Oracle Application Development Framework

Taking a Look at the Fusion Order Demo Application

For the fields with an asterisk symbol (*), enter the address information specified. The
asterisk symbol indicates that the value is required. Note that you must also select a
country from the dropdown list since this information is required by the database.
Then click Save & Return to create the new address record in the database.

Figure 2-33 shows the Address screen with the row information for the new address
record.

Figure 2-33 Customer Registration Page - Address Record Complete

Basic Information Address Payment options

Address Information Cancel| | Back || Mext

View ¥ New g Update 3§ Remove] Detach
Address Label
2545 Yonge Street, Toronto, OM, null - CANADA

This concludes the tour of the Fusion Order Demo application.

Where to Find Implementation Details

Following are the sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework that describe how to use complex
components like the ADF Faces Train component used in the registration process:

= Grouping activities using a bounded task flow

Every Fusion web application contains an unbounded task flow, which contains
the entry points to the application. The application can then calls bounded task
flows from activities within the unbounded task flow. For example, in the Fusion
Order Demo application, the bounded task flow checkout-task-flow controls the
flow of the checkout process and calls another bounded task flow
customer-registration-task-flow to control the flow of the registration process.
For information about the bounded task flow, see Section 14.1, "Introduction to
ADF Task Flows."

= Displaying a progression of related activities using a train component that you
associate with a bounded task flow

You configure train stops based on activities that you select in an ADF bounded
task flow and then you add the af:train component to your JSF pages. For
example, in the Fusion Order Demo application, the bounded task flow
customer-registration-task-£flow defines four train stops for the page
fragments basicInformation.jsff, defineAddresses.jsff,
paymentOptions.jsff, and reviewCustomerInfo.jsff. The page register.jspx
displays the fragments and each page fragment displays the train component
bound to the activities that define the four stops. For information about the
bounded task flow and how you can use it to define train stops, see

Section 18.11.3, "How to Create a Train."

= Requiring values to complete an input form

The input form displays attributes of a data collection that you drop from the Data
Controls panel. You can set the required property of individual components in the
form to control whether an attribute value is mandatory. For details about how to
customize the required property, see Section 22.2, "Using Attributes to Create Text
Fields." Alternatively, you can set a display control hint property directly on the
attribute where it is defined by an ADF Business Components entity object. The
entity object is a data model component that represents a row from a specific table

Introduction to the ADF Sample Application 2-39

Taking a Look at the Fusion Order Demo Application

in the database and that simplifies modifying its associated attributes. For details
about using control hints to make an attribute mandatory, see Section 4.10, "Setting
Attribute Properties."

2-40 Fusion Developer's Guide for Oracle Application Development Framework

Part Il

Building Your Business Services

Part II contains the following chapters:

Chapter 3, "Getting Started with ADF Business Components"

Chapter 4, "Creating a Business Domain Layer Using Entity Objects"
Chapter 5, "Defining SQL Queries Using View Objects"

Chapter 6, "Working with View Object Query Results"

Chapter 7, "Defining Validation and Business Rules Declaratively"

Chapter 8, "Implementing Validation and Business Rules Programmatically"
Chapter 9, "Implementing Business Services with Application Modules"
Chapter 10, "Sharing Application Module View Instances"

Chapter 11, "Creating SOAP Web Services with Application Modules"
Chapter 12, "Using ADF Model in a Fusion Web Application"

Chapter 13, "Integrating SOAP Web Services Into a Fusion Web Application”

3

Getting Started with ADF Business
Components

This chapter describes key features that you can use when you begin to work with the
ADF Business Components layer of Oracle Application Development Framework
(Oracle ADF). It also describes the implementation architecture of ADF Business
Components and describes support for the Groovy scripting language with entity
objects and view objects.

This chapter includes the following sections:

m Section 3.1, "Introduction to ADF Business Components"

= Section 3.2, "Comparison to Familiar 4GL Tools"

= Section 3.3, "Overview of Design Time Facilities"

s Section 3.4, "Overview of the UI-Aware Data Model"

= Section 3.5, "Overview of the Implementation Architecture”

= Section 3.6, "Overview of Groovy Support"

3.1 Introduction to ADF Business Components

ADF Business Components and JDeveloper simplify the development, delivery, and
customization of business applications for the Java EE platform. With ADF Business
Components, developers aren’t required to write the application infrastructure code
required by the typical Java EE application to:

= Connect to the database
= Retrieve data

= Lock database records

= Manage transactions

ADF Business Components addresses these tasks through its library of reusable
software components and through the supporting design time facilities in JDeveloper.
Most importantly, developers save time using ADF Business Components since the
JDeveloper design time makes typical development tasks entirely declarative. In
particular, JDeveloper supports declarative development with ADF Business
Components to:

= Author and test business logic in components which automatically integrate with
databases

Getting Started with ADF Business Components 3-1

Introduction to ADF Business Components

Reuse business logic through multiple SQL-based views of data, supporting
different application tasks

Access and update the views from browser, desktop, mobile, and web service
clients

Customize application functionality in layers without requiring modification of
the delivered application

The goal of ADF Business Components is to make the business services developer
more productive.

3.1.1 ADF Business Components Features

ADF Business Components provides a foundation of Java classes that allow your
business-tier application components to leverage the functionality provided in the
following areas:

Simplifying Data Access

Design a data model for client displays, including only necessary data

Include master-detail hierarchies of any complexity as part of the data model
Implement end-user Query-by-Example data filtering without code
Automatically coordinate data model changes with business domain object layer

Automatically validate and save any changes to the database

Enforcing Business Domain Validation and Business Logic

Declaratively enforce required fields, primary key uniqueness, data
precision-scale, and foreign key references

Easily capture and enforce both simple and complex business rules,
programmatically or declaratively, with multilevel validation support

Navigate relationships between business domain objects and enforce constraints
related to compound components

Supporting Sophisticated Uls with Multipage Units of Work

Automatically reflect changes made by business service application logic in the
user interface

Retrieve reference information from related tables, and automatically maintain the
information when the user changes foreign-key values

Simplify multistep web-based business transactions with automatic web-tier state
management

Handle images, video, sound, and documents without having to use code
Synchronize pending data changes across multiple views of data

Consistently apply prompts, tooltips, format masks, and error messages in any
application

Define custom metadata for any business components to support metadata-driven
user interface or application functionality

Add dynamic attributes at runtime to simplify per-row state management

Implementing High-Performance Service-Oriented Architecture

Support highly functional web service interfaces for business integration without
writing code

3-2 Fusion Developer's Guide for Oracle Application Development Framework

Comparison to Familiar 4GL Tools

Enforce best-practice interface-based programming style

Simplify application security with automatic JAAS integration and audit
maintenance

"Write once, run anywhere": use the same business service as plain Java class or
web service

Streamlining Application Customization

Extend component functionality after delivery without modifying source code

Globally substitute delivered components with extended ones without modifying
the application

Deliver application upgrades without losing or having to reapply downstream
customizations manually

3.1.2 ADF Business Components Core Objects

ADF Business Components implements the business service through the following set
of cooperating components:

Entity object

An entity object represents a row in a database table and simplifies modifying its
data by handling all data manipulation language (DML) operations for you. It can
encapsulate business logic for the row to ensure that your business rules are
consistently enforced. You associate an entity object with others to reflect
relationships in the underlying database schema to create a layer of business
domain objects to reuse in multiple applications.

View object

A view object represents a SQL query. You use the full power of the familiar SQL
language to join, filter, sort, and aggregate data into exactly the shape required by
the end-user task. This includes the ability to link a view object with others to
create master-detail hierarchies of any complexity. When end users modify data in
the user interface, your view objects collaborate with entity objects to consistently
validate and save the changes.

Application module

An application module is the transactional component that Ul clients use to work
with application data. It defines an updatable data model and top-level
procedures and functions (called service methods) related to a logical unit of work
related to an end-user task.

While the base components handle all the common cases through built-in behavior,
customization is always possible and the default behavior provided by the base
components can be easily overridden or augmented.

3.2 Comparison to Familiar 4GL Tools

ADF Business Components provides components that implement functionality similar
to that offered by enterprise 4GL tools. Several key components in ADF Business
Components map to concepts that you may be familiar with in other 4GL tools.

3.2.1 Familiar Concepts for Oracle Forms Developers

ADF Business Components implements all of the data-centric aspects of the familiar
Oracle Forms runtime functionality, but in a way that is independent of the user

Getting Started with ADF Business Components 3-3

Comparison to Familiar 4GL Tools

interface. In Oracle Forms, each form contains both visual objects (like canvases,
windows, alerts, and LOVs), as well as nonvisual objects (like data blocks, relations,
and record groups). Individual data block itemms have both visual properties like
Foreground Color and Bevel, as well as nonvisual properties like Data Type and
Maximum Length. Even the different event-handling triggers that Forms defines fall
into visual and nonvisual categories. For example, it's clear that triggers like
WHEN-BUTTON-PRESSED and WHEN-MOUSE-CLICKED are visual in nature, relating to the
front-end UI, while triggers like WHEN-VALIDATE-ITEM and ON-INSERT are more related
to the backend data processing. While merging visual and nonvisual aspects definitely
simplifies the learning curve, the flip side is that it can complicate reuse. With a cleaner
separation of Ul-related and data-related elements, it would be easier to redesign the
user interface without disturbing backend business logic and easier to repurpose
back-end business logic in multiple different forms.

In order to imagine this separation of UI and data, consider reducing a form as you
know it to only its nonvisual, data-related aspects. This reduces the form to a container
of data blocks, relations, and record groups. This container would continue to provide
a database connection for the data blocks to share and would be responsible for
coordinating transaction commits or rollbacks. Of course, you could still use the
nonvisual validation and transactional triggers to augment or change the default
data-processing behavior as well. This nonvisual object you are considering is a kind
of a "smart data model" or a generic application module, with data and business logic,
but no user interface elements. The goal of separating this application module from
anything visual is to allow any kind of user interface you need in the future to use it as
a data service.

Focus a moment on the role the data blocks would play in this application module.
They would query rows of data from the database using SQL, coordinate
master/detail relationships with other data blocks, validate user data entry with
WHEN-VALIDATE-RECORD and WHEN-VALIDATE-ITEM triggers, and communicate valid
user changes back to the database with INSERT, UPDATE, and DELETE statements when
you commit the data service's transaction.

Experience tells you that you need to filter, join, order, and group data for your
end-users in a variety of ways to suit the many different tasks. On the other hand, the
validation rules that you apply to your business domain data remain basically the
same over time. Given these observations, it would be genuinely useful to write
business entity validation exactly once, and leverage it consistently anywhere that data
is manipulated by users in your applications.

Enabling this flexibility requires further "factoring" of your data block functionality.
You need one kind of "SQL query" object to represent each of the many different views
of data your application requires, and you need another kind of "business entity"
object to enforce business rules and communicate changes to your base table in a
consistent way. By splitting things like this, you can have multiple "view objects" with
specific SQL queries that present the same business data yet each working with the
same underlying "entity object."

Oracle ADF addresses the Ul/data split by providing ready-to-use Java components
that implement typical Forms functionality. Responsibilities between the querying and
entity-related functions are cleanly separated, resulting in better reuse.

3.2.1.1 Similarities Between the Application Module and a "Headless" Form Module

The application module component is the "data portion" of the form. The application
module is a smart data service containing a data model of master-detail-related
queries that your client interface needs to work with. It also provides a transaction and
database connection used by the components it contains. It can contain form-level

3-4 Fusion Developer's Guide for Oracle Application Development Framework

Comparison to Familiar 4GL Tools

procedures and functions, referred to as service methods, that are encapsulated within
the service implementation. You can decide which of these procedures and functions
should be private and which ones should be public.

3.2.1.2 Similarities Between the Entity Object and a Forms Record Manager

The entity object component implements the "validation and database changes"
portion of the data block functionality. In the Forms runtime, this duty is performed by
the record manager. The record manager is responsible for keeping track of which of
the rows in the data block have changed, for firing the block-level and item-level
validation triggers when appropriate, and for coordinating the saving of changes to
the database. This is exactly what an entity object does for you. The entity object is a
component that represents your business domain entity through an underlying
database table. The entity object gives you a single place to encapsulate business logic
related to validation, defaulting, and database modification behavior for that business
object.

3.2.1.3 Similarities Between the View Object and a Data Block

The ViewObject component performs the "data retrieval” portion of the data block
functionality. Each view object encapsulates a SQL query, and at runtime each one
manages its own query result set. If you connect two or more view objects in
master-detail relationships, that coordination is handled automatically. While defining
a view object, you can link any of its query columns to underlying entity objects. By
capturing this information, the view object and entity object can cooperate
automatically for you at runtime to enforce your domain business logic, regardless of
the "shape" of the business data required by the user’s task.

3.2.2 Familiar Concepts for PeopleTools Developers

If you have developed solutions in the past with PeopleTools, you are familiar with the
PeopleTools component structure. ADF Business Components implement the data
access functionality you are familiar with from PeopleTools.

3.2.2.1 Similarities Between the Application Module and a "Headless" Component

Oracle ADF adheres to an MVC pattern and separates the model from the view. Pages,
which you are familiar with in the PeopleTools Component, are defined in the view
layer, using standard technologies like JSF and ADF Faces components for web-based
applications or Swing for desktop-fidelity client displays.

The ADF application module defines the data structure, just like the PeopleTools
Component Buffer does. By defining master-detail relationships between ADF query
components that produce row sets of data, you ensure that any application module
that works with the data can reuse the natural hierarchy as required, similar to the
scroll levels in the Component Buffer.

Similar to the Component Interface you are familiar with, the application module is a
service object that provides access to standard methods, as well as additional
developer-defined business logic. In order to present a "headless" data service for a
particular user interface, the Component Interface restricts a number of PeopleTools
functions that are related to Ul interaction. The application module is similar to the
Component Interface in that it provides a "headless" data service, but in contrast it
does not do this by wrapping a restricted view of an existing user interface. Instead,
the application module is designed to deal exclusively with business logic and data
access. Rather than building a Component Interface on top of the component, with
ADF Business Components you first build the application module service that is

Getting Started with ADF Business Components 3-5

Comparison to Familiar 4GL Tools

independent of user interface, and then build one or more pages on top of this service
to accomplish some end-user task in your application.

The application module is associated with a transaction object in the same way that the
PeopleTools Component Buffer is. The application module also provides a database
connection for the components it contains. Any logic you associate today with the
transaction as Component PeopleCode, in ADF Business Components you would
define as logic on the application module.

Logic associated with records in the transaction, that today you write as Component
Record PeopleCode or Component Record Field PeopleCode, should probably not be
defined on the application module. ADF Business Components has view objects that
allow for better re-use when the same record appears in different components.

In summary, PeopleTools uses the component for the container concept, whereas ADF
Business Components uses the application module. That is where the similarity ends.
Do not assume that all of your component code will migrate to an application module.
First, understand the concept of the view object, which is the layer between the entity
object and the application module. Then, decide which of your component code is
suitable for an application module and which is suitable for view objects.

3.2.2.2 Similarities Between the Entity Object and a Record Definition

The entity object is the mapping to the underlying data structure, just like the
PeopleTools Record Definition maps to the underlying table or view. You'll often create
one entity object for each of the tables that you need to manipulate your application.

Similar to how you declare a set of valid values for fields like "Customer Status" using
PeopleTools' translate values, in ADF Business Components you can add declarative
validations to the individual attributes of an entity object. Any logic you associate with
the record that applies throughout your applications, which today you write as Record
PeopleCode or Record Field PeopleCode, can be defined in ADF Business
Components on the entity object.

3.2.2.3 Similarities Between the View Object and a Row Set

Just like a PeopleTools row set, a view object can be populated by a SQL query. Unlike
a row set, a view object definition can contain business logic.

Any logic which you would find in Component Record PeopleCode is a likely
candidate to define on the view object. Component Record PeopleCode is directly tied
to the component, but a view object can be associated with different application
modules. Whereas you can use the same record definition in many PeopleTools
components, Oracle ADF allows you to reuse the business logic across multiple
applications.

The view object queries data in exactly the "shape" that is useful for the current
application. Many view objects can be built on top of the same entity object.

You can define relationships between view objects to create master-detail structures,
just as you find them in the scroll levels in the PeopleTools component.

3.2.3 Familiar Concepts for Siebel Tools Developers

If you have developed solutions in the past with Siebel Tools version 7.0 or earlier, you
will find that ADF Business Components implements all of the familiar data access
functionality you are familiar with, with numerous enhancements.

3-6 Fusion Developer's Guide for Oracle Application Development Framework

Comparison to Familiar 4GL Tools

3.2.3.1 Similarities Between the entity Object and a Table Object

Like the Siebel Table object, the ADF entity object describes the physical characteristics
of a single table, including column names and physical data types. Both objects contain
sufficient information to generate the DDL (data definition language) statements to
create the physical tables in the database. In ADF Business Components you define
associations between entity objects to reflect the foreign keys present in the underlying
tables. These associations allow view object queries used by user interface pages to
automatically join business information. ADF Business Components handles list of
values (LOV) objects that you reference from data columns through a combination of
declarative entity-level validation rules and view object attribute-level LOV
definitions. You can also encapsulate other declarative or programmatic business logic
with these entity object "table" handlers that is automatically reused in any view of the
data you create.

3.2.3.2 Similarities Between the View Object and a Business Component

Like the Siebel Business Component, the ADF view object describes a logical mapping
on top of the underlying physical table representation. Both the Siebel Business
Component and the ADF view object allow you to provide logical field names, data,
and calculated fields that match the needs of the user interface. As with the Siebel
Business Component, with the ADF view object you can define view objects that join
information from various underlying tables. The related ADF view link is similar to
the Siebel Link object and allows you to define master-detail relationships. In ADF
Business Components, your view object definitions can exploit the full power of the
SQL language to shape the data as required by the user interface.

3.2.3.3 Similarities Between the Application Module and a Business Object

The Siebel Business Object lets you define a collection of business components. The
ADF application module performs a similar task, allowing you to create a collection of
master-detail view objects that act as a "data model" for a set of related user interface
pages. In addition, the application module provides a transaction and database
connection context for this group of data views. You can make multiple requests to
objects obtained from the application module and these participate in the same
transaction.

3.2.4 Familiar Functionality for ADO.NET Developers

If you have developed solutions in the past with Visual Studio 2003 or 2005, you are
familiar with using the ADO.NET framework for data access. ADF Business
Components implements all of the data access functionality you are familiar with from
ADO.NET, with numerous enhancements.

3.2.4.1 Similarities Between the Application Module and a Data Set

The application module component plays the same role as the ADO.NET data set. It is
a strongly typed service component that represents a collection of row sets called view
object instances, which are similar to ADO.NET data tables. An application module
exposes a service interface that surfaces the rows of data in a developer-configurable
set of its view instances as an SDO-compatible service (accessible as a web service, or
as an SCA composite). The application module works with a related transaction object
to provide the context for the SQL queries that the view objects execute. The
application module also provides the context for modifications saved to the database
by the entity objects, which play the role of the ADO.NET data adapter.

Getting Started with ADF Business Components 3-7

Overview of Design Time Facilities

3.2.4.2 Similarities Between the Entity Object and a Data Adapter

The entity object component is like a strongly-typed ADO.NET data adapter. It
represents the rows in a particular table and handles the find-by-primary-key, insert,
update, delete, and lock operations for those rows. In ADF Business Components, you
don't have to specify these statements yourself, but you can override them if you need
to. The entity object encapsulates validation or other business logic related to
attributes or entire rows in the underlying table. This validation is enforced when data
is modified and saved by the end user using any view object query that references the
underlying entity object. One difference in ADF Business Components is that the
arbitrary, flexible querying is performed by SQL statements at the view object instance
level, but the view objects and entity objects coordinate automatically at runtime.

3.2.4.3 Similarities Between the View Object and a Data Table

The view object component encapsulates a SQL query and manages the set of resulting
rows. It can be related to an underlying entity object to automatically coordinate
validation and saving of modifications made by the user to those rows. This
cooperation between a view object's queried data and an entity object’s encapsulated
business logic offers all of the benefits of the data table with the clean encapsulation of
business logic into a layer of business domain objects. Like ADO.NET data tables, you
can easily work with a view object's data as XML or have a view object read XML data
to automatically insert, update, or delete rows based on the information it contains.

3.3 Overview of Design Time Facilities

JDeveloper includes comprehensive design time support for ADF Business
Components. Collectively, these facilities let you create, edit, diagram, test, and
refactor the business components.

3.3.1 Choosing a Connection, SQL Flavor, and Type Map

The first time you create a component, you'll see the Initialize Business Components
Project dialog shown in Figure 3-1. You use this dialog to select a design time
application resource connection to use while working on your business components in
this data model project or to create a new application resource connection by copying
an existing IDE-level connection.

3-8 Fusion Developer's Guide for Oracle Application Development Framework

Overview of Design Time Facilities

Figure 3—1 |Initialize Business Components Project Dialog

Initialize Business Components Project

This project has not yet been initislized for Business Components, After specifying the Following infarmation For your Business
Components Project (jpe file), you will be prompted to create your Business Component(s),

Specify the database connection that lets wou create Business Components from existing database objects.

Conneckion; [FOD '| l# / &,
User Mame: fod
Diriver: oracle. jdbe. OracleDriver

Connect String: jdbe:oracle: thini@lacalhost: 1521 :arcl

Choose the proper 0L flavor and bype map that Fits your application,

QL Flavor: |Oracls M
Type Map: |Oracle v|
| Help | | (o4 | | Cancel |

Since this dialog appears before you create your first business component, you also
use it to globally control the SQL platform that the view objects will use to formulate
SQL statements. SQL platforms that you can choose include:

= Oracle SQL platform for an Oracle database connection (the default)
= OLite for the Oracle Lite database

s SQLServer for a Microsoft SQLServer database

= DB2 for an IBM DB2 database

= SQL92 for any other supported SQL92- compliant database

Note: If you plan to have your application run against both Oracle
and non-Oracle databases, you should select the SQL92 SQL platform
when you begin building your application, not later. While this
sacrifices some of the Oracle-specific optimizations that are inherent in
using the Oracle SQL platform, it makes the application portable to
both Oracle and non-Oracle databases.

Additionally, the dialog lets you determine which set of data types that you want the
data model project to use. JDeveloper uses the data type selection to define the data
types of attributes when you create entity object and view objects in the data model
project. It is therefore important that you make the appropriate selection before you
save the settings in the Initialize Business Components Project dialog. The dialog
provides these options:

= Java Extended for Oracle type map is selected by default if JDeveloper detects you
are using an Oracle database driver. The Java Extended for Oracle type map uses
standard Java types and the optimized types in the oracle.jbo.domain package
for common data types.

Tip: New Fusion web applications should use the default Java
Extended for Oracle type.

Getting Started with ADF Business Components 3-9

Overview of Design Time Facilities

= Java type map is provided to support applications that will run on a non-Oracle
database and that you create using SQL92-compliance. In this case, you should set
the data type map to Java to globally use only the basic Java data types.

= Oracle Domains type map is provided for backward compatibility and for ADF
applications that do not use ADF Faces as the view layer technology, as explained
in Section 3.3.2, "What You May Need to Know About Displaying Numeric
Values."Please note that when you migrate an application developed with
JDeveloper version 11.1.1.4.0 or earlier, your application will continue to use the
Oracle Domains type map and will not change to the current default type map
Java Extended for Oracle

Once you save project selections in the Initialize Business Components Project dialog,
the project is considered initialized and you will not be able to change the data type
map selection. After you initialize the project, you can override the SQL platform in
the Business Components page of the overview editor for the adf-config.xnl file, but
you must do this before you add business components to the project. You can locate
the adf-config.xml file in the Application Resources pane by expanding the
Descriptors and ADF META-INF nodes. Specifying the database type in the
adf-config.xml file supports generating SQL statements during runtime that can
require the actual database type of the deployed Fusion web application.

3.3.2 What You May Need to Know About Displaying Numeric Values

The Java Extended for Oracle type map and the Oracle Domains type map handle
numeric data differently. When you create a new application the default type map Java
Extended for Oracle maps numeric data to the java.math.BigDecimal class, which
inherits from java.math.Number. The java.math.BigDecimal default matches the way
the Fusion web application view layer, consisting of ADF Faces components, preserves
alignment of numeric data (such as numeric values displayed by ADF Faces input
fields in a web page). Whereas the Oracle Domains type map, which maps numeric
data to the oracle. jbo.domain.Number class, may not display the data with the
alignment expected by certain ADF Faces components. Aside from this alignment
issue, the Oracle Domains type map remains a valid choice and applications without
ADF Faces components will function without issue.

3.3.3 Creating New Components Using Wizards

In the New Gallery in the ADF Business Components category, JDeveloper offers a
wizard to create each kind of business component. Each wizard allows you to specify
the component name for the new component and to select the package into which
you'd like to organize the component. If the package does not yet exist, the new
component becomes the first component in that new package.

The wizard presents a series of panels that capture the necessary information to create
the component type. When you click Finish, JDeveloper creates the new component
by saving its XML component definition file. If you have set your Java generation
options to generate classes by default, JDeveloper also creates the initial custom Java
class files.

3.3.4 Creating New Components Using the Context Menu

Once a package exists in the Application Navigator, you can quickly create additional
business components of any type in the package by selecting it in the Application
Navigator and using one of the options on the context menu shown in Figure 3-2.

3-10 Fusion Developer's Guide for Oracle Application Development Framework

Overview of Design Time Facilities

Figure 3-2 Context Menu Options on a Package to Create Any Kind of Business
Component

npplication MNavigator

StoreFrontModule - =
Projects Bl @7 E-

=-[5] StoreFrontService

=] Application Sources

=/ oracle.Fodema, starefront
B@ acoount

. B [Mew.., Ctil-N

Exclude Project Content
n

3¢ Delete
ls

Mewy Entity Obiect...
A9 Mew Domain, .

BB Mew Assaciation...
2] e view Obiject. ..
‘a:-] Mews Wiew Link. ..

- META- [l New Application Madule. .
----- 4% StoreF

[]... StareFrontUl Mew Business Components from Tables. ..
E:I--- UnitTests Mew Default Data Model Components. ..
Mew Business Components Diagram. ..

Make Ctrl+Shift-Fa
Feebuild Alt+ Shift-Fa

Refactor]
[F Reformat Cti+AlL
Crganize Imporks Ciralt-0

Compare With »

Restore from Local History.,

3.3.5 Editing Components Using the Component Overview Editor

Once a business component exists, you can edit its properties using the respective
overview editor that you access either by double-clicking the component in the
Application Navigator or by selecting it and choosing the Open option from the
context menu.

The overview editor presents the same editing options that you see in the wizard but it
may arrange them differently. The overview editor allows you to change any aspect of
the component. When you make a change in the component’s editor, JDeveloper
updates the component’s XML component definition file and, if necessary, any of its
related custom Java files. Because the overview editor is a JDeveloper editor window,
rather than a modal dialog, you can open and view the overview editor for as many
components as you require.

3.3.6 Visualizing, Creating, and Editing Components Using UML Diagrams

JDeveloper offers extensive UML diagramming support for ADF Business
Components. You can drop components that you've already created onto a business
components diagram to visualize them. You can also use the diagram to create and
modify components. The diagrams are kept in sync with changes you make in the
editors.

To create a new business components diagram, use the Business Components
Diagram item in the ADF Business Components category of the JDeveloper New
Gallery. This category is part of the Business Tier choices.

Getting Started with ADF Business Components 3-11

Overview of the Ul-Aware Data Model

3.3.7 Testing Application Modules Using the Business Component Browser

Once you have created an application module component, you can test it interactively
using the built-in Business Component Browser. To launch the Business Component
Browser, select the application module in the Application Navigator or in the business
components diagram and choose either Run or Debug from the context menu.

The Business Component Browser presents the view object instances in the application
module's data model and allows you to interact with them using a dynamically
generated user interface. The tool also provides a list of the application module’s client
interface methods that you can test interactively by double-clicking the application
module node. This tool is invaluable for testing or debugging your business service
both before and after you create the web page view layer.

3.3.8 Refactoring Components

At any time, you can select a component in the Application Navigator and choose
Refactor > Rename from the context menu to rename the component. The Structure
window also provides a Rename context menu option for details of components, such
as view object attributes or view instances of the application module data model, that
do not display in the Application Navigator. You can also select one or more
components in the navigator by using Ctrl + click and then choosing Refactor > Move
from the context menu to move the selected components to a new package. References
to the old component names or packages in the current data model project are
adjusted automatically.

3.4 Overview of the Ul-Aware Data Model

One of the key simplifying benefits of using ADF Business Components for your
business service implementation is the application module's support for a "Ul-aware
data model" of row sets. The data model defines the business objects specific to your
application, while the row sets of each business object contain the data. In the Ul
portion of the application, the UI components interact with these business objects to
perform retrieve, create, edit, and delete operations. When you use ADF Business
Components in combination with the ADF Model layer and ADF Faces Ul
components, the data model is "UI aware" because your Ul components will
automatically update to reflect any changes to the row sets of these business objects

Thus, the Ul-aware data model represents a solution that works across application
technology layers to ensure that the Ul and data model remain synchronized.

3.4.1 A More Generic Business Service Solution

Using a typical Java EE business service implementation makes the client developer
responsible for:

» Invoking service methods to return data to present
» Tracking what data the client has created, deleted, or modified

= Passing the changes back to one or more different service methods to validate and
save them

Retrieving, creating, editing, deleting, and saving is a typical sequence of tasks
performed during application development. As a result, the ADF application module
represents a smarter, more generic solution. Using the application module for your
business service, you simply bind client Ul components like fields, tables, and trees to
the active view object instances in the application module’s data model. Your Ul

3-12 Fusion Developer's Guide for Oracle Application Development Framework

Overview of the Ul-Aware Data Model

components in JSP or JSF pages for the web or mobile devices (as well as
desktop-fidelity Uls comprising windows and panels that use Swing) automatically
update to reflect any changes to the rows in the view object row sets of the data model.
This active data notification also extends to custom business service methods that
happen to produce changes to the data model.

Under the covers, the application module component implements a set of generic
service methods that allow users to leverage its Ul-aware data model in a
service-oriented architecture (SOA). Both web service and Ul clients can easily access
an application module’s data model using simple APIs. These APIs enable you to
search for and modify any information that the application module makes available.

When you build Uls that take advantage of the ADF Model layer for declarative data
binding, you generally won’t need to write client-side code. Because the data model is
Ul-aware, your Ul components will be bound declaratively to view objects in the data
model and to custom business service methods.

3.4.2 Typical Scenarios for a Ul-Aware Data Model

Without a Ul-aware data model, you would need to write more code in the client to
handle the straightforward, everyday CRUD-style operations. In addition, to keep
pages up to date, you would need to manage "refresh flags" that clue the controller
layer in to requesting a "repull” of data from the business service to reflect data that
might have been modified. When using an ADF application module to implement
your business service, you can focus on the business logic at hand, instead of the
plumbing to make your business work as your end users expect.

Consider the following three simple, concrete examples of the Ul-aware data model:
s New data appears in relevant displays without requerying

A customer logs into the Fusion Order Demo application and displays a list of
items in their shopping cart. Then if the customer visits some product pages and
creates a new order item, when they return back to display their shopping cart, the
new item appears in their list without requiring the application to requery the
database.

s Changes caused by business domain logic automatically reflected

A back office application causes an update to the order status. Business logic
encapsulated in the Orders entity object in the business domain layer contains a
simple rule that updates the last update date whenever the order status attribute is
changed. The user interface updates to automatically reflect the last update date
that was changed by the logic in the business domain layer.

= Invocation of a business service method requeries data and sets current rows

In a tree display, the user clicks on a specific node in a tree. This action
declaratively invokes a business service method on your application module that
requeries master-detail information and sets the current rows to an appropriate
row in the row set. The display updates to reflect the new master-detail data and
current row displayed.

3.4.3 Ul-Aware Data Model Support for Custom Code

Because the application module supports the Ul-aware data model, your client user
interface will remain up to date. This means you will not need to write code in the
client that is related to setting up or manipulating the data model.

Getting Started with ADF Business Components 3-13

Overview of the Implementation Architecture

Another typical type of client-side code you no longer have to write using ADF
Business Components is code that coordinates detail data collections when a row in
the master changes. By linking the view objects, you can have the coordination
performed automatically for you.

However, when you do need to write custom code, encapsulate that code inside
custom methods of your application module component. For example, whenever the
programmatic code that manipulates view objects is a logical aspect of implementing
your complete business service functionality, you should encapsulate the details by
writing a custom method in your application module's Java class. This includes, but is
not limited to, code that:

= Configures view object properties to query the correct data to display
= Iterates over view object rows to return an aggregate calculation
s Performs any kind of multistep procedural logic with one or more view objects

By centralizing these implementation details in your application module, you gain the
following benefits:

= You make the intent of your code more clear to clients.
= You allow multiple client pages to easily call the same code if needed.
= You simplify regression-testing of your complete business service functionality.

= You keep the option open to improve your implementation without affecting
clients.

= You enable declarative invocation of logical business functionality in your pages.

3.5 Overview of the Implementation Architecture

Before you begin implementing specific ADF business components, it is a good idea to
have some familiarity with the Oracle ADF business services layer’s design and
implementation.

3.5.1 Standard Java and XML

As is the case with all Oracle ADF technologies, ADF Business Components is
implemented in Java. The working, tested components in the framework provide
generic, metadata-driven functionality from a rich layer of robust code. ADF Business
Components follows the Java EE community best practice of using cleanly separated
XML files to store metadata that you define to configure each component's runtime
behavior.

Since ADF Business Components is often used for business critical applications, it's
important to understand that the full source for Oracle ADF, including the ADF
Business Components layer, is available to supported customers through Oracle
Worldwide Support. The full source code for Oracle ADF can be an important tool to
assist you in diagnosing problems, as described in Section 31.7, "Using the ADF
Declarative Debugger." Working with the full source code for Oracle ADF also helps
you understand how to correctly extend the base framework functionality to suit your
needs, as described in Section 37.2, "Customizing Framework Behavior with Extension
Classes."

3-14 Fusion Developer's Guide for Oracle Application Development Framework

Overview of the Implementation Architecture

3.5.2 Application Server or Database Independence

Applications built using ADF Business Components can run on any Java-capable
application server, including any Java EE-compliant application server. Because
business components are implemented using plain Java classes and XML files, you can
use them in any runtime environment where a Java Virtual Machine is present. This
means that services built using ADF Business Components are easy to use both inside
a Java EE server — known as the "container" of your application at runtime — and
outside.

Customers routinely use application modules in such diverse configurations as
command-line batch programs, web services, custom servlets, JSP pages, and
desktop-fidelity clients built using Swing.

You can also build applications that work with non-Oracle databases, as described in
Section 3.3.1, "Choosing a Connection, SQL Flavor, and Type Map." However,
applications that target Oracle databases will find numerous optimizations built into
ADF Business Components.

3.5.3 Java EE Design Pattern Support

The ADF Business Components layer implements all of the popular Java EE design
patterns that you would normally need to understand, implement, and debug yourself
to create a real-world enterprise Java EE application. If it is important to you to
cross-reference the names of these design patterns from the Java EE specifications with
their ADF Business Components counterparts, you can refer to Appendix F, "ADF
Business Components Java EE Design Pattern Catalog."

3.5.4 Source Code Organization

Since ADF Business Components is implemented in Java, its classes and interfaces are
organized into packages. Java packages are identified by dot-separated names that
developers use to arrange code into a hierarchical naming structure.

The classes and interfaces that comprise the source code provided by ADF Business
Components reside in the oracle.jbo package and numerous subpackages. However,
in day to day work with ADF Business Components, you'll work typically with classes
and interfaces in these two key packages:

s Theoracle. jbo package, which contains all of the interfaces that are designed for
the business service client to work with

s Theoracle.jbo.server package, which contains the classes that implement these
interfaces

Note: The term client here refers to any code in the model, view, or
controller layers that accesses the application module component as a
business service.

Figure 3-3 shows a concrete example of the application module component. The client
interface for the application module is the ApplicationModule interface in the

oracle. jbo package. This interface defines the names and signatures of methods that
clients can use while working with the application module, but it does not include any
specifics about the implementation of that functionality. The class that implements the
base functionality of the application module component resides in the
oracle.jbo.server package and is named ApplicationModuleImpl.

Getting Started with ADF Business Components 3-15

Overview of the Implementation Architecture

Figure 3-3 ADF Business Components Separate Interface and Implementation

oracle,jbo
ApplicationModule

w

oracle.jbo.server
ApplicationModulelmpl

3.5.5 Package Naming Conventions

Since ADF Business Components is implemented in Java, the components of your
application (including their classes, interfaces, and metadata files) will also be
organized into packages.

To ensure that your components won't clash with reusable components from other
organizations, choose package names that begin with your organization's name or web
domain name. For example, the Apache organization chose org.apache. tomcat for a
package name related to its Tomcat web server, while Oracle picked
oracle.xml.parser as a package name for its XML parser. Components you create for
your own applications might reside in packages with names like

com. yourcompany . yourapp and subpackages of these.

Package names that you specify must not reference the names of objects that already
exist within the ADF Business Components project or include certain technology
names, such as rest. When you attempt to modify a default package name in an ADF
Business Components wizard and use a reserved word, the wizard prevents this with
an alert dialog. For example, naming a package like adf . sample.adfbc.rest is illegal
in JDeveloper because rest is a reserved word.

As a specific example, the ADF Business Components that make up the main business
service for the Fusion Order Demo application are organized into the
oracle.fodemo.storefront package and its subpackages. As shown in Figure 34,
these components reside in the StoreFrontService project in the StoreFrontModule
application, and are organized broadly as follows:

m oracle.fodemo.storefront.account.queries contains the view objects used in
the customer registration process

m oracle.fodemo.storefront.client contains test client . java files
m oracle.fodemo.storefront.entities contains the entity objects

m oracle.fodemo.storefront.lookups contains static data view objects and the
LookupServiceAM shared application module

» oracle.fodemo.storefront.store.queries contains the view objects used to
manage the storefront

m oracle.fodemo.storefront.store.service contains the StoreServiceAM
application module

3-16 Fusion Developer's Guide for Oracle Application Development Framework

Overview of the Implementation Architecture

Figure 3—-4 Organization of ADF Business Components in the Fusion Order Demo

Application
F\pplication Mavigakor [:]
StareFrontModule - -
Projects Bl#@T-E-

{53 StareFrontService
E||—:| Application Sources
-/ oracle.Fodema, starefront
B@ account
- queries
-l adfextensions
[l entities
.- [ffll lnokups
-] AddressesLoakupvo
2] Countriesvo
-2 HelpTranslationshor
52 LookupsBasey O
[-{il) LookupServiceaM
-1 mrycomparry
E)-[6{ stare

@ queries

B@ service

{E StareServiceAr

-7 META-INF
----- 435 StoreFrontService, jpx
E]--- StoreFrontUI

In your own applications, you can choose any package organization that you believe
best. In particular, keep in mind that you are not constrained to organize components
of the same type into a single package.

Because JDeveloper supports component refactoring, you can easily rename
components or move them to a different package at any time. This flexibility allows
you to easily incorporate inevitable changes into the application as your application
evolves.

There is no optimal number of components in a package. However, with experience,
you'll realize that the best structure for your team falls somewhere between the two
extremes of placing all components in a single package and placing each component in
its own, separate package.

One thing to consider is that the package in ADF Business Components is the unit of
granularity that JDeveloper supports for reuse in other data model projects. So, you
might factor this consideration into how you choose to organize components. For more
information, see Section 37.6, "Working with Libraries of Reusable Business
Components."

3.5.6 Metadata with Optional Custom Java Code

Each kind of component in ADF Business Components comes with built-in runtime
functionality that you control through declarative settings. These settings are stored in
an XML component definition file with the same name as the component that it
represents. When you need to write custom code for a component, for example to
augment the component’s behavior, you can enable an optional custom Java class for
the component in question. Figure 3-5 shows how the Application Navigator displays
the XML component definition and optional custom Java class for an application
module.

Getting Started with ADF Business Components 3-17

Overview of the Implementation Architecture

Figure 3-5 Application Navigator Displays Component XML File and Optional Class

Files

Application MNavigator X E]

- Sample - -
Projects @ Gﬂ ? T

E|--- SampleProject
B3 Application Sources
El-[l com.yourcompany, yourapp
EI{H ‘fourService

----- {ﬁ Yaurservice, sl

------- @ YourServiceDefImpl. java

3.5.6.1 Example of an XML-Only Component

Figure 3-6 illustrates the XML component definition file for an application-specific
component like an application module named YourService that you create in a
package named com. yourcompany . yourapp. The corresponding XML component
definition resides in a . /com/yourcompany/yourapp subdirectory of the data model
project's source path root directory. That XML file records the name of the Java class it
should use at runtime to provide the application module implementation. In this case,
the XML records the name of the base oracle.jbo.server.ApplicationModuleImpl
class provided by Oracle ADF.

Figure 3—-6 XML Component Definition File for an Application Module

oracle.jbo
ApplicationModule

oracle.jbo.server

ApplicationModulelmpl Oracle ADF-Supplied
Framework Code

-

Jcom/yourcompany/yourapp/YourService, xml Application-Specific
Component

When used without customization, your component is completely defined by its XML
component definition and it will be fully functional without custom Java code or even
a Java class file for the component. If you have no need to extend the built-in
functionality of a component in ADF Business Components, and no need to write any
custom code to handle its built-in events, you can use the component in this XML-only
fashion.

3.5.6.2 Example of a Component with Custom Java Class

When you need to add custom code to extend the base functionality of a component or
to handle events, you can enable a custom Java class for any of the key types of ADF
Business Components you create. You enable the generation of custom classes for a
component on the Java page of its respective overview editor in JDeveloper. When you
enable this option, JDeveloper creates a Java source file for a custom class related to
the component whose name follows a configurable naming standard. This class,
whose name is recorded in the component's XML component definition, provides a
place where you can write the custom Java code required by that component. Once
you’ve enabled a custom Java class for a component, you can navigate to it using a

3-18 Fusion Developer's Guide for Oracle Application Development Framework

Overview of the Implementation Architecture

corresponding Go To componentName Class option in the component’s Application
Navigator context menu.

Figure 3-7 illustrates what occurs when you enable a custom Java class for the
YourService application module. A YourServiceImpl.java source code file is created
in the same source path directory as your component's XML component definition file.
The YourServiceImpl.xml file is updated to reflect the fact that at runtime the
component should use the com. yourcompany. yourapp. YourServiceImpl class instead
of the base ApplicationModuleImpl class.

Figure 3-7 Component with Custom Java Class

oracle.jbo
ApplicationMocdule

=] oracle.jbo.server

ApplicationModulelmpl Oracle ADF Supplied
Framework Code

&

[T com.yourcompany.yourapp Application-Specific
YourServicelmpl Component
L

Jcomfyourcompany/yourapp/YourService.xml

Note: The examples in this guide use default settings for generated
names of custom component classes and interfaces. If you want to
change these defaults for your own applications, use the Business
Components: Class Naming page of the JDeveloper Preferences
dialog. Changes you make only affect newly created components.

3.5.7 Basic Data Types

The Java language provides a number of built-in data types for working with strings,
dates, numbers, and other data. When working with ADF Business Components, you
can use these types, but by default you'll use an optimized set of types in the
oracle.jbo.domain and oracle.ord. im packages. These types, shown in Table 3-1,
allow data accessed from the Oracle database to remain in its native, internal format.
You will achieve better performance using the optimized data types provided by ADF
Business Components by avoiding costly type conversions when they are not
necessary. To work with string-based data, by default ADF Business Components uses
the regular java.lang.String type.

Table 3—1 Basic Data Types in the oracle.jbo.domain and oracle.ord.im Packages

Data Type Package Represents

Number oracle.jbo.domain Any numerical data

Date oracle.jbo.domain Date with optional time

DBSequence oracle.jbo.domain Sequential integer assigned by a database trigger
RowID oracle.jbo.domain Oracle database ROWID

Timestamp oracle.jbo.domain Timestamp value

Getting Started with ADF Business Components 3-19

Overview of the Implementation Architecture

Table 3—-1 (Cont.) Basic Data Types in the oracle.jbo.domain and oracle.ord.im Packages

Data Type Package Represents
TimestampTZ oracle.jbo.domain Timestamp value with time zone information
TimestampLTZ oracle.jbo.domain Timestamp value with local time zone information retrieved from
JavaVM or from the ADF Context when configured in the
application’s adf-config.xml with an EL expression:
<user-time-zone-config xmlns=
"http://xmlns.oracle.com/adf/usertime
zone/config">
<user-timezone expression= "EL
exp" />
</user-time-zone-config>
The EL expression will be evaluated to determine the time zone of
the current user; otherwise, the value defaults to the time zone of
the JavaVM.
BFileDomain oracle.jbo.domain Binary File (BFILE) object
BlobDomain oracle.jbo.domain Binary Large Object (BLOB)
ClobDomain oracle.jbo.domain Character Large Object (CLOB)
OrdImageDomain oracle.ord.im Oracle Intermedia Image (ORDIMAGE)
OrdAudioDomain oracle.ord.im Oracle Intermedia Audio (ORDAUDIO)
OrdvideoDomain oracle.ord.im Oracle Intermedia Video (ORDVIDEO)
OrdDocDomain oracle.ord.im Oracle Intermedia Document (ORDDOC)
Struct oracle.jbo.domain User-defined object type
Array oracle.jbo.domain User-defined collection type (e.g. VARRAY)

Note: The oracle.jbo.domain.Number class has the same class name
as the built-in java.lang.Number type. Since the Java compiler
implicitly imports java.lang. * into every class, you need to explicitly
import the oracle.jbo.domain.Number class into any class that
references it. Typically, JDeveloper will follow this practice for you,
but when you begin to write more custom code of your own, you'll
learn to recognize compiler or runtime errors related to "Number is an
abstract class" as indicating that you are inadvertently using

java.lang.Number instead of oracle.jbo.domain.Number. Adding
the:

import oracle.jbo.domain.Number;

line at the top of your class, after the package line, prevents these
kinds of errors.

3.5.8 Generic Versus Strongly-Typed APIs

When working with application modules, view objects, and entity objects, you can
choose to use a set of generic APIs or you can have JDeveloper generate code into a
custom Java class to enable a strongly-typed API for that component. For example,
when working with an view object, if you wanted to access the value of an attribute in
any row of its result, the generic API would look like this:

3-20 Fusion Developer's Guide for Oracle Application Development Framework

Overview of the Implementation Architecture

Row row = ordersVO.getCurrentRow() ;
Date shippedDate = (Date)row.getAttribute ("OrderShippedDate");

Notice that using the generic APIs, you pass string names for parameters to the
accessor, and you have to cast the return type to the expected type, as with Date
shown in the example.

Alternatively, when you enable the strongly typed style of working you can write code
like this:

OrdersRow row = (OrdersRow)ordersVO.getCurrentRow() ;
Date shippedDate = row.getOrderShippedDate();

In this case, you work with generated method names whose return type is known at
compile time, instead of passing string names and having to cast the results. Typically,
it is necessary to use strongly typed accessors when you need to invoke the methods
from the business logic code without sacrificing compile-time safety. This can also be
useful when you are writing custom validation logic in setter methods, although in
this case, you may want to consider using Groovy expressions instead of generating
entity and view row implementation classes for Business Components. Subsequent
chapters explain how to enable this strongly typed style of working by generating Java
classes for business logic that you choose to implement using Java.

3.5.9 Custom Interface Support for Client-Accessible Components

Only these components of the business service as visible to the client:

= Application module, representing the service itself

= View objects, representing the query components

= View rows, representing each row in a given query component's results

The entity objects in the business service implementation is intentionally not designed
to be referenced directly by clients. Instead, clients work with the data queried by view
objects as part of an application module's data model. Behind the scenes, the view
object cooperates automatically with entity objects in the business domain layer to
coordinate validating and saving data that the user changes. For more information
about this runtime interaction, see Section 6.3.9, "What Happens at Runtime: When
View Objects and Entity Objects Cooperate."

3.5.9.1 Framework Client Interfaces for Components

The Java interfaces of the oracle. jbo package provide a client-accessible API for your
business service. This package intentionally does not contain an Entity interface, or
any methods that would allow clients to directly work with entity objects. Instead,
client code works with interfaces like:

= ApplicationModule, to work with the application module
m ViewObject, to work with the view objects

= Row, to work with the view rows

3.5.9.2 Custom Client Interfaces for Components

When you begin adding custom code to your ADF Business Components that you
want clients to be able to call, you can "publish" that functionality to clients for any
client-visible component. For each of your components that publishes at least one
custom method to clients on its client interface, JDeveloper automatically maintains
the related Java interface file. So, assuming you were working with an application

Getting Started with ADF Business Components 3-21

Overview of Groovy Support

module like StoreServiceAM in the Fusion Order Demo application, you could have
custom interfaces like:

s Custom application module interface

StoreServiceAM extends ApplicationModule

» Custom view object interface

OrderItemsInfo extends ViewObject

s Custom view row interface

OrderItemsInfoRowClient extends Row

Client code can then cast one of the generic client interfaces to the more specific one
that includes the selected set of client-accessible methods you've selected for your
particular component.

3.6 Overview of Groovy Support

Groovy is a scripting language with Java-like syntax for the Java platform. Groovy
language expressions in ADF Business Components differs from the Java code that
you might use in a Business Components custom Java class. The Groovy scripting
language simplifies the authoring of code by employing dot-separated notation, yet
still supporting syntax to manipulate collections, Strings, and JavaBeans. In Groovy
expressions, type checking is done at runtime, whereas, in Java, type checking is done
during compile time. Additionally, because Groovy expressions are dynamically
compiled, they are stored in the XML definition files of the business components
where you use it.

ADF Business Components supports the use of the Groovy scripting language in
places where access to entity object and view object attributes is useful, including
attribute validators (for entity objects), attribute default values (for either entity objects
or view objects), transient attribute value calculations (for either entity objects or view
objects), bind variable default values (in view object query statements and view
criteria filters), and placeholders for error messages (in entity object validation rules).
Additionally, ADF Business Components provides a limited set of built-in keywords
that can be used in Groovy expressions.

Specifically, the ADF Business Components framework provides support for the use of
Groovy to perform the following tasks:

= Define a Script Expression validator or Compare validator (see Section 7.5, "Using
Groovy Expressions For Validation and Business Rules")

= Define error message tokens for handling validation failure (see Section 7.7.4,
"How to Embed a Groovy Expression in an Error Message")

» Handle conditional execution of validators (see Section 7.7.3, "How to
Conditionally Raise Error Messages Using Groovy")

= Set the default value of a bind variable in the view object query statement (see
Section 5.10, "Working with Bind Variables")

= Set the default value of a bind variable that specifies a criteria item in the view
criteria statement (see Section 5.11, "Working with Named View Criteria").

= Define the default value for an entity object attribute (see Section 4.10.6, "How to
Define a Static Default Value")

3-22 Fusion Developer's Guide for Oracle Application Development Framework

Overview of Groovy Support

s Calculate the value of a transient attribute of an entity object or view object (see
Section 4.14, "Adding Transient and Calculated Attributes to an Entity Object" and
Section 5.15, "Adding Calculated and Transient Attributes to a View Object")

For more information about the Groovy language, refer to the following web site:

= http://groovy.codehaus.org/

3.6.1 Referencing Business Components Objects in Groovy Expressions

There is one top-level object named adf that allows you access to objects that the
framework makes available to the Groovy script. The accessible Oracle ADF objects
consist of the following;:

» adf.context - to reference the ADFContext object

= adf.object - to reference the object on which the expression is being applied
(which can also be referenced using the keyword object, without the adf prefix).
Other accessible member names come from the context in which the Groovy script
is applied.

Entity object attributes: The context is an instance of the entity implementation
class. Through this object you can reference custom methods of the custom
entity implementation class, any methods defined by the base implementation
class as specified by the JavaDoc for EntityImpl, and you can reference the
attributes of the entity instance.

Entity object script validation rules: The context is the validator object
(JbovalidatorContext) merged with the entity on which the validator is
applied. For details about keywords that you can use in this context, see
Section 3.6.2.1, "Referencing Members of the Same Business Component."

View object attributes: The context is an instance of the view row
implementation class. Through this object, you can reference custom methods
of the custom view row implementation class, any methods defined by the
base implementation class as specified by the JavaDoc for ViewRowImpl, and
you can reference the attributes of the view row instance as defined by the
query row set.

Bind variable in view objects: The context is the variable object itself not the
view row. You can reference the structureDef property to access other
information as well as the viewObject property to access the view object in
which the bind variable participates. However, access to view object attributes
is not supported.

Bind variable in view accessors: The context is the current view row. The view
accessor with bind variable is used to create a cascading List of Value (LOV).
The view accessor can derive Groovy-driven values from the current view row
in the view accessor view object used to formulate the list of valid choices.

Transient attributes: The context is the current entity or view row. You can
reference attributes by name in the entity or view row in which the attribute
appears, as well as public methods on that entity or view row. To access
methods on the current object, you must use the object keyword to reference
the current object (for example, object .methodName ()). The object keyword
is equivalent to the this keyword in Java. Without it, in transient expressions,
the method will be assumed to exist on the dynamically compiled Groovy
script object itself.

s adf.error - in validation rules, to access the error handler that allows the
validation expression to generate exceptions or warnings

Getting Started with ADF Business Components 3-23

Overview of Groovy Support

m adf.userSession - returns a reference to the ADF Business Components user
session (which you can use to reference values in the userData hashmap that is
part of the session)

You can also reference the current date (time truncated) or current date and time using
the following expressions:

m adf.currentDate

s adf.currentDateTime

3.6.2 Referencing Custom Business Components Methods and Attributes in Groovy

Expressions

Groovy script language simplifies the authoring of code that you might write to access
methods and attributes of your entity object and view objects.

3.6.2.1 Referencing Members of the Same Business Component

The simplest example of referencing business component members, including
methods and attributes that the entity object and view object define, is to reference
attributes that exist in the same entity object or view object as the attribute that you
apply the expression.

For example, you could define a Groovy expression to calculate the value of a transient
attribute AnnualSalary on an entity object with an attribute Sal that specifies the
employee’s monthly salary:

Sal * 12
Or, with Groovy you can write a simple validation rule to compare the attributes of a
single view object using syntax like:

PromotionDate > HireDate

Using Java, this same comparison would look like:

((Date)getAttribute ("PromotionDate")) .compareTo((Date)getAttribute ("HireDate")) > 0

Note that the current object is passed in to the script as the this object, so you can
reference an attribute in the current object by simply using the attribute name. For
example, in an attribute-level or entity-level Script Expression validator, to refer to an
attribute named "HireDate", the script can simply reference HireDate.

Similar to referencing attributes, when you define custom methods in an entity
implementation class, you can invoke those methods as part of your expression. For
example, to define an attribute default value:

adf.object.getDefaultSalaryForGrade ()

A method reference requires the prefix adf . object which allows you to reference the
same entity that defines the attribute on which the expression is applied. This same
prefix also allows you to reference the methods of the base class of the entity
implementation class (EntityImpl.java) that your custom implementation class
extends.

Note that when you want to reference the method of an entity implementation class in
a validation rule, you use the source prefix:

source.getDefaultSalaryForGrade ()

3-24 Fusion Developer's Guide for Oracle Application Development Framework

Overview of Groovy Support

Use of the source prefix is necessary in validators because the object keyword implies
the validation rule object instead of the entity object (where the method is defined).

To allow you to reference members of the validator object (JbovalidatorContext), you
can use these keywords in your validation rule expression:

= newValue: in an attribute-level validator, to access the attribute value being set

» oldvalue: in an attribute-level validator, to access the current value of the attribute
being set

For example, you might use the following expression to specify a dynamic validation
rule check of the salary for a salesman.

if (Job == "SALESMAN")
{

return newValue < source.getMaxSalaryForGrade (Job)

}
else
return true

3.6.2.2 Referencing Members of Other Business Components

You can also reference the methods and attributes that entity objects and view objects
defines in the expressions you apply to a different entity object attribute or validation
rule. This is accomplished by referencing the accessor in the entity association.

For example, if you define an entity with a master-detail association for Dept and Emp,
by default the accessor for the entity association will be named Dept and Emp, to
identity the source and destination data source. Using that accessor in a Groovy
expression to set the default value for a new employee’s salary based on the location of
their department:

adf.object.getDefaultSalaryForGrade (Dept.Loc)

This expression does not reference the entity even though it has the same name (Dept)
as the accessor for the association. Instead, assuming a master-detail relationship
between departments and employees, referencing the accessor allows the Groovy

expression for the employee entity object to walk back to the master department entity
and pass in the value of Loc from that master.

3.6.3 Manipulating Business Component Attribute Values in Groovy Expressions

You can use the following built-in aggregate functions on Oracle Business
Components RowSet objects:

m rowSetAttr.sum(GroovyExpr)
m rowSetAttr.count (GroovyExpr)
m rowSetAttr.avg(GroovyExpr)
m rowSetAttr.min (GroovyEXpr)
m rowSetAttr.max (GroovyExpr)

These aggregate functions accept a string-value argument that is interpreted as a
Groovy expression that is evaluated in the context of each row in the row set as the
aggregate is being computed. The Groovy expression must return a numeric value (or
number domain).

For example, in a Dept entity object you could add a transient attribute that displays
the sum of all employee salaries that is calculated by this expression:

Getting Started with ADF Business Components 3-25

Overview of Groovy Support

EmployeesInDept.sum("Sal")

To reference the employees of a specific department, the expression supplies the name
of the master-detail association’s accessor for the destination Emp entity. In this case,
the accessor is EmployeesInDept and salary is interpreted for each record of the Emp
entity object.

Or, assume that you want the calculation of the salary total for specific departments to
include each employee’s benefits package, which varies with job role:

EmployeesInDept.sum("Sal + adf.object.getBenefitsValue(Job)")

3-26 Fusion Developer's Guide for Oracle Application Development Framework

4

Creating a Business Domain Layer Using
Entity Objects

This chapter describes how to use ADF entity objects to create a reusable business
layer of Java objects that describe the business domain in an Oracle Application
Development Framework (Oracle ADF) application.

This chapter includes the following sections:

= Section 4.1, "Introduction to Entity Objects"

m Section 4.2, "Creating Entity Objects and Associations"

= Section 4.3, "Creating and Configuring Associations"

» Section 4.4, "Creating an Entity Diagram for Your Business Layer"

= Section 4.5, "Defining Property Sets"

= Section 4.6, "Defining Attribute Control Hints for Entity Objects"

= Section 4.7, "Working with Resource Bundles"

= Section 4.8, "Defining Business Logic Groups"

= Section 4.9, "Configuring Runtime Behavior Declaratively"

m Section 4.10, "Setting Attribute Properties"

= Section 4.11, "Creating Business Events"

s Section 4.12, "Working Programmatically with Entity Objects and Associations"
= Section 4.13, "Generating Custom Java Classes for an Entity Object"

= Section 4.14, "Adding Transient and Calculated Attributes to an Entity Object"

4.1 Introduction to Entity Objects

An entity object is the ADF Business Components component that represents a row in
the specified data source and simplifies modifying its associated attributes.
Importantly, it allows you to encapsulate domain business logic to ensure that your
business policies and rules are consistently validated.

Entity objects support numerous declarative business logic features to enforce the
validity of your data. You will typically complement declarative validation with
additional custom application logic and business rules to cleanly encapsulate a
maximum amount of domain business logic into each entity object. Your associated set
of entity objects forms a reusable business domain layer that you can exploit in
multiple applications.

Creating a Business Domain Layer Using Entity Objects 4-1

Creating Entity Objects and Associations

The key concepts of entity objects are the following:

= You define an entity object by specifying the database table whose rows it will
represent.

= You can create associations to reflect relationships between entity objects.
= Atruntime, entity rows are managed by a related entity definition object.
= Each entity row is identified by a related row key.

= You retrieve and modify entity rows in the context of an application module that
provides the database transaction.

4.2 Creating Entity Objects and Associations

If you already have a database schema to work from, the simplest way to create entity
objects and associations is to reverse-engineer them from existing tables. When
needed, you can also create an entity object from scratch, and then generate a table for
it later.

4.2.1 How to Create Multiple Entity Objects and Associations from Existing Tables

To create one or more entity objects, use the Business Components from Tables wizard,
which is available from the New Gallery.

To create one or more entity objects and associations from existing tables:

1. In the Application Navigator, right-click the project in which you want to create
the entity objects and choose New.

2. Inthe New Gallery, expand Business Tier, select ADF Business Components and
then Business Components from Tables, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. On the Entity Objects page, do the following to create the entity objects:
= Enter the package name in which all of the entity objects will be created.

= Select the tables from the Available list for which you want to create entity
objects.

If the Auto-Query checkbox is selected, then the list of available tables appears
immediately. In the Name Filter field, you can optionally enter a full or partial
table name to filter the available tables list in real time. As an alternative to the
auto-query feature, click the Query button to retrieve the list based on an
optional table name filter. When no name filter is entered, JDeveloper retrieves
all table objects for the chosen schema.

» Click Filter Types if you want to see only a subset of the database objects
available. You can filter out tables, views, or synonyms.

Once you have selected a table from the Available list, the proposed entity object
name for that table appears in the Selected list with the related table name in
parenthesis.

= Select an entity object name in the Selected list and use the Entity Name field
to change the default entity object name.

4-2 Fusion Developer's Guide for Oracle Application Development Framework

Creating Entity Objects and Associations

Best Practice: Since each entity object instance represents a single
row in a particular table, name the entity objects with a singular noun
(like Address, Order, and Person), instead of their plural counterparts.
Figure 4-1 shows what the wizard page looks like after selecting the
ADDRESSES table in the FOD schema, setting a package name of
oracle.fodemo.storefront.entities, and renaming the entity object
in the singular.

Figure 4-1 Create Business Components from Tables Wizard, Entity Objects Page

& Create Business Components from Tables

Entity Objects

Specify the package to contain your new entity objects and associations.
Package: | oracle.Fodemo. storefront, entities | [Broﬂse. 5 |

(o) Entity Objects

Updatable Yiew Objects
T Filter the types of schema objects to display as available, then select the schema object{s) and click '=' to

create entity objects,

Schema: [FOD v| Type Filcer: OFF Filter Types

Available: Selected:

Mame Filter:

l
I
I

AYAILABLE | AMGLAGES
CATEGORY _TRANSLATIONS
COUNTRY_CODES
COUPON_USAGES
CUSTOMER,_IDEMTIFICATIONS
CUSTOMER,_INTERESTS
DEMO_OPTIONS

DISCOUNTS

DISCOUNTS_BASE

Bllal¥ly]

Entity Mame: | Address |

[Mext = ![Finish H Cancel l

5.

When you are satisfied with the selected table objects and their corresponding
entity object names, click Finish.

The Application Navigator displays the entity objects in the package you specified.

Best Practice: After you create associations, move all of your
associations to a separate package so that you can view and manage
them separately from the entity objects. In Figure 4-2, the associations
have been moved to a subpackage (associations) and do not appear
in the entities package in the Application Navigator. For more
information, see Section 4.3.4, "How to Rename and Move
Associations to a Different Package."

Creating a Business Domain Layer Using Entity Objects 4-3

Creating Entity Objects and Associations

Figure 4-2 New Entity Objects in Application Navigator

E|--- StoreFrontService

A.pplication Navigator |
StoreFrontMaodule

- >
Projects Bl F-%&=-
277 Application Sources
-/ oracle.Fodema,starefront
-l account
@ adfextensions
- entities
-1 assodiations

formatters

validators

z3 AddressEQ

z3 Addressl)sageED

8 AvailableLanguageEC
CategoryTranslationED

Application Resources
@ v

Data Contrals
Recently Opened Files

4.2.2 How to Create Single Entity Objects Using the Create Entity Wizard

To create a single entity object, you can use the Create Entity Object wizard, which is
available in the New Gallery.

To create a single entity object and association:

1.

In the Application Navigator, right-click the project in which you want to create
the entity object and choose New.

In the New Gallery, expand Business Tier, select ADF Business Components and
then Entity Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

On the Name page, do the following to create the entity object:
= Enter the package name in which the entity object will be created.

n Click Browse (next to the Schema Object field) to select the table for which
you want to create the entity object.

Or, if you plan to create the table later, you can enter a name of a table that
does not exist.

If you manually entered a table name in the Schema Objects field, you will need
to define each attribute on the Attributes page of the wizard. Click Next.

You can create the table manually or generate it, as described in Section 4.2.6,
"How to Create Database Tables from Entity Objects."

When you are satisfied with the table object and its corresponding entity object
name, click Finish.

4-4 Fusion Developer's Guide for Oracle Application Development Framework

Creating Entity Objects and Associations

4.2.3 What Happens When You Create Entity Objects and Associations from Existing
Tables

When you create an entity object from an existing table, first JDeveloper interrogates
the data dictionary to infer the following information:

» The Java-friendly entity attribute names from the names of the table's columns (for
example, USER_ID -> UserId)

s The SQL and Java data types of each attribute based on those of the underlying
column

s The length and precision of each attribute
s The primary and unique key attributes
s The mandatory flag on attributes, based on NOT NULL constraints

» The relationships between the new entity object and other entities based on
foreign key constraints

Note: Since an entity object represents a database row, it seems
natural to call it an entity row. Alternatively, since at runtime the entity
row is an instance of a Java object that encapsulates business logic for
that database row, the more object-oriented term entity instance is also
appropriate. Therefore, these two terms are interchangeable.

JDeveloper then creates the XML component definition file that represents its
declarative settings and saves it in the directory that corresponds to the name of its
package. For example, when an entity named Order appears in the
genericbcmodel.entities package, JDeveloper will create the XML file
genericbcmodel/entities/Order.xml under the project's source path. This XML file
contains the name of the table, the names and data types of each entity attribute, and
the column name for each attribute.

You can inspect the XML description for the entity object by opening the object in the
overview editor and clicking the Source tab.

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
entity object class (for example, OrderImpl.java).

4.2.3.1 What Happens When Tables Have Foreign Key Relationships

In addition to the entity objects, the wizard also generates named association
components that capture information about the relationships between entity objects.
For example, the database diagram in Figure 4-3 shows that JDeveloper derives
default association names like OrderItemsProductsFkAssoc by converting the foreign
key constraint names to a Java-friendly name and adding the Assoc suffix. For each
association created, JDeveloper creates an appropriate XML component definition file
and saves it in the directory that corresponds to the name of its package.

By default the associations reverse-engineered from foreign keys are created in the
same package as the entities. For example, for the association
OrderItemsProductsFkAssoc with entities in the fodemo.storefront.entities
package, JDeveloper creates the association XML file named
./fodemo/storefront/entities/OrderItemsProductsFkAssoc.xml.

Creating a Business Domain Layer Using Entity Objects 4-5

Creating Entity Objects and Associations

Figure 4-3 ORDER_ITEMS and PRODUCTS_BASE Tables Related by Foreign Key

[ORDER_ITEMS [PRODUCTS_BASE

ORDER_ID : NUMBER(15, 0) PRODUCT_ID : NUMBER(15, 0)

LINE_ITEM_ID : NUMBER(3, 0) SUPPLIER_ID : NUMBER(15, 0)

PRODUCT_ID : MUMBER(15, 0) CATEGORY_ID : NUMBER{15, 0)

QUANTITY : NUMBER(E, 0) PRODUCT_NAME : \ARCHAR2(50 BYTE)
UNIT_PRICE : NUMBER(S, 2) COST_PRICE : NUMBER(E, 2)

CREATED_BY : VARCHARZ(60 BY TE) ORDER_ITEMS_PRODUCTS_FK |LIST_PRICE : NUMBER(E, 2)

CREATION_DATE : DATE MIN_PRICE : NUMBER(S, 2)
LAST_UPDATED_BY : VARCHAR2(E0 BYTE) . 1 |WARRANTY_PERIOD_MONTHS : NUMBER(2, 0)
LAST_UPDATE_DATE : DATE SHIPPING_CLASS_CODE : VARCHAR2(30 BYTE)
OBJECT_WERSION_ID : NUMBER(15, 0) EXTERMAL_URL : VARCHAR2(200 BYTE)

ATTRIBUTE_CATEGORY : VARCHARZ(30 BYTE)

=PK3ORDER_ITEMS_PK: ORDER_ID, LINE ITEM_ID PRODUCT STATUS : VARCHAR2(30)

<FK>ORDER_ITEMS_ORDERS_FK: ORDER_ID

<FK>ORDER_ITEMS_PRODUCTS_FH: PRODUCT_ID -PISPRODUCTS PI: PRODUCT ID
<FK>PRODUCTS_PRODUCT_CATEGORIES_FK: CAT
<FK>PRODUCTS_SUPPLIERS_FK: SUPPLIER_ID

4.2.3.2 What Happens When a Table Has No Primary Key

If a table has no primary key constraint, then JDeveloper cannot infer the primary key
for the entity object. Since every entity object must have at least one attribute marked
as a primary key, the wizard will create an attribute named RowID and use the database
ROWID value as the primary key for the entity. If appropriate, you can edit the entity
object later to mark a different attribute as a primary key and remove the RowID
attribute. When you use the Create Entity Object wizard and you have not set any
other attribute as primary key, you will be prompted to use RowID as the primary key.

4.2.4 What Happens When You Create an Entity Object for a Synonym or View

When you create an entity object using the Business Components from Tables wizard
or the Create Entity Object wizard, the object can represent an underlying table,
synonym, or view. The framework can infer the primary key and related associations
for a table or synonym by inspecting database primary and foreign key constraints in
the data dictionary.

However, when your selected schema object is a database view, then neither the
primary key nor associations can be inferred since database views do not have
database constraints. In this case, if you use the Business Components from Tables
wizard, the primary key defaults to RowID. If you use the Create Entity Object wizard,
you'll need to specify the primary key manually by marking at least one of its
attributes as a primary key. For more information, see Section 4.2.3.2, "What Happens
When a Table Has No Primary Key."

When your selected schema object is a synonym, there are two possible outcomes. If
the synonym is a synonym for a table, then the wizard and editor behave as if you had
specified a table. If instead the synonym refers to a database view, then they behave as
if you had specified a view.

4.2.5 How to Edit an Existing Entity Object or Association

After you've created a new entity object or association, you can edit any of its settings
in the overview editor. To launch the editor, choose Open from the context menu for
the entity object or association in the Application Navigator or double-click the object.
By clicking the different tabs of the editor, you can adjust the settings that define the
object and govern its runtime behavior.

4.2.6 How to Create Database Tables from Entity Objects

To create database tables based on entity objects, right-click the package in the
Application Navigator that contains the entity objects and choose Create Database

4-6 Fusion Developer's Guide for Oracle Application Development Framework

Creating Entity Objects and Associations

Objects from the context menu. A dialog appears to let you select the entities whose
tables you'd like to create. This tool can be used to generate a table for an entity object
you created from scratch, or to drop and re-create an existing table.

Caution: This feature does not generate a DDL script to run later. It
performs its operations directly against the database and will drop
existing tables. A dialog appears to confirm that you want to do this
before proceeding. For entities based on existing tables, use with
caution.

In the overview editor for an association, the Use Database Key Constraints checkbox
on the Association Properties page controls whether the related foreign key constraint
will be generated when creating the tables for entity objects. Selecting this option does
not have any runtime implications.

4.2.7 How to Synchronize an Entity with Changes to Its Database Table

Inevitably you (or your DBA) might alter a table for which you've already created an
entity object. Your existing entity will not be disturbed by the presence of additional
attributes in its underlying table; however, if you want to access the new column in the
table in your Java EE application, you'll need to synchronize the entity object with the
database table.

For example, suppose you had done the following at the SQL*Plus command prompt
to add a new SECURITY_ QUESTION column to the PERSONS table:

ALTER TABLE PERSONS ADD (security_question VARCHAR2 (60));

Then you can use the synchronization feature to add the new column as an attribute
on the entity object.

To synchronize an entity with changes to its database table:

1. In the Application Navigator, right-click the desired entity object and choose
Synchronize with Database.

The Synchronize with Database dialog shows the list of the actions that can be
taken to synchronize the business logic tier with the database.

2. Select the action you want to take:

= Select one or more actions from the list, and click Synchronize to synchronize
the selected items.

» Click Synchronize All to perform all actions in the list.

» Click Write to File to save the action list to a text file. This feature helps you
keep track of the changes you make.

3. When finished, click OK to close the dialog.

4.2.7.1 Removing an Attribute Associated with a Dropped Column

The synchronize feature does not handle dropped columns. When a column is
dropped from the underlying database after an entity object has been created, you can
delete the corresponding attribute from the entity object. If the attribute is used in
other parts of your application, you must remove those usages as well.

Creating a Business Domain Layer Using Entity Objects 4-7

Creating Entity Objects and Associations

To remove an entity attribute:
1. In the Application Navigator, double-click the entity.

2. In the overview editor, click the Attributes navigation tab.
3. On the Attributes page, right-click the attribute, and choose Delete Safely.

If there are other usages, the Delete Attributes dialog displays the message
"Usages were found."

4. If usages were found, click View Usages.
The Log window shows all usages of the attribute.

5. Work through the list in the Log window to delete all usages of the entity attribute.

4.2.7.2 Addressing a Data Type Change in the Underlying Table

The synchronize feature does not handle changed data types. For a data type change
in the underlying table (for example, precision increased), you must locate all usages
of the attribute and manually make changes, as necessary.

To locate all usages of an entity attribute:
1. Inthe Application Navigator, double-click the entity.

2. Inthe overview editor, click the Attributes navigation tab.
3. On the Attributes page, right-click the attribute and choose Find Usages.

If there are other usages, they are displayed in the Log window.

4.2.8 How to Store Data Pertaining to a Specific Point in Time

Effective dated tables are used to provide a view into the data set pertaining to a
specific point in time. Effective dated tables are widely used in applications like HRMS
and Payroll to answer queries like:

= What was the tax rate for an employee on August 31st, 2005?
= What are the employee's benefits as of October 2004?
In either case, the employee’s data may have changed to a different value since then.

The primary difference between the effective dated entity type and the dated entity
type is that the dated entity does not cause row splits during update and delete.

Note: Take caution when using effective dating on a both ends of a
master-detail relationship. Because child objects can raise events on
parent objects, and effective dated entity objects cause row splits
during update and delete operations, it is possible for the child object
to raise an event on the wrong parent object if both the parent and
child are updated during the same transaction. Do not configure a
business event to be raised on an effective dated parent from an
effective dated child. For more information about business events, see
Section 4.11, "Creating Business Events."

When you create an effective dated entity object, you identify the entity as effective
dated and specify the attributes of the entity that represent the start and end dates. The
start date and end date attributes must be of the Date type.

4-8 Fusion Developer's Guide for Oracle Application Development Framework

Creating Entity Objects and Associations

Additionally, you can specify an attribute that represents the sequence for the effective
dated entity and an attribute that represents a flag for the sequence. These attributes
allow for tracking of multiple changes in a single day.

To create an effective dated entity object

1. In the Application Navigator, double-click the entity on which you want enable
effective dating.

2. In the Property Inspector, expand the Type category.

If necessary, choose Property Inspector from the View menu to display the
Property Inspector.

If the Type category is not displayed in the Property Inspector, click the General
tab in the overview editor to set the proper focus.

3. From the context menu for the Effective Date Type property, choose Edit.
To display the context menu, click the down arrow next to the property field.
4. In the Edit Property dialog, specify the following settings:
» For Effective Date Type, select EffectiveDated.
» For Start Date Attribute, select the attribute that corresponds to the start date.
= For End Date Attribute, select the attribute that corresponds to the end date.

5. You can optionally specify attributes that allow for tracking of multiple changes in
a single day:.

» For Effective Date Sequence, select the attribute that stores the sequence of
changes.

» For Effective Date Sequence Flag, select the attribute that stores a flag
indicating the most recent change in the sequence.

Without specifying the Effective Date Sequence and Effective Date Sequence
Flag attributes, the default granularity of effective dating is one day. For this
reason, multiple changes in a single day are not allowed. An attempt to update the
entity a second time in a single day will result in an exception being thrown. After
these two attributes are specified, the framework inserts and updates their values
as necessary to track multiple changes in a single day.

6. Click OK.

Note: You can also identify the start and end date attributes using
the Property Inspector for the appropriate attributes. To do so, select
the appropriate attribute in the overview editor and set the
IsEffectiveStartDate or IsEffectiveEndDate property to true in the
Property Inspector.

4.2.9 What Happens When You Create Effective Dated Entity Objects

When you create an effective dated entity object, JDeveloper creates a transient
attribute called SysEffectiveDate to store the effective date for the row. Typically the
Insert, Update, and Delete operations modify the transient attribute while the ADF
Business Components framework decides the appropriate values for the effective start
date and the effective end date.

Example 4-1 show some sample XML entries that are generated when you create an
effective dated entity. For more information about working with effective dated

Creating a Business Domain Layer Using Entity Objects 4-9

Creating and Configuring Associations

objects, see Section 5.4, "Limiting View Object Rows Using Effective Date Ranges."

Example 4-1 XML Entries for Effective Dated Entities

// In the effective dated entity
<Entity

EffectiveDateType="EffectiveDated">

// In the attribute identified as the start date
<Attribute

IsEffectiveStartDate="true">

// In the attribute identified as the end date
<Attribute

IsEffectiveEndDate="true">

// The SysEffectiveDate transient attribute
<Attribute

Name="SysEffectiveDate"
IsQueriable="false"
IsPersistent="false"
ColumnName="$nones$"
Type="oracle.jbo.domain.Date"
ColumnType="$nones"
SQLType="DATE" />

4.2.10 What You May Need to Know About Creating Entities from Tables

The Business Components from Tables wizard makes it easy to quickly generate many
business components at the same time. In practice, this does not mean that you should
use it to immediately create entity objects for every table in your database schema just
because it is possible to do so. If your application requires all of the tables, then that
strategy might be appropriate. But because you can use the wizard whenever needed,
you should create the entity objects for the tables that you know will be involved in
the application.

Section 9.4, "Defining Nested Application Modules," describes a use case-driven
design approach for your business services that can assist you in understanding which
entity objects are required to support your application's business logic needs. You can
always add more entity objects later as necessary.

4.3 Creating and Configuring Associations

If your database tables have no foreign key constraints defined, JDeveloper won't be
able to infer the associations between the entity objects that you create. Since several
ADF Business Components runtime features depend on the presence of entity
associations, create them manually if the foreign key constraints don’t exist.

4.3.1 How to Create an Association

To create an association, use the Create New Association wizard, which is available in
the New Gallery.

4-10 Fusion Developer's Guide for Oracle Application Development Framework

Creating and Configuring Associations

To create an association:

1. In the Application Navigator, right-click the project in which you want to create
the association and choose New.

2. Inthe New Gallery, expand Business Tier, select ADF Business Components and
then Association, and click OK.

3. On the Name page, do the following to create the association:
= Enter the package name in which the association will be created.
= Enter the name of the association component.
» Click Next.
4. On the Entity Objects page, select the source and destination entity attributes:

= Select a source attribute from one of the entity objects that is involved in the
association to act as the master.

» Select a corresponding destination attribute from the other entity object
involved in the association.

For example, Figure 4—4 shows the selected OrderId attribute from the OrderE0
entity object as the source entity attribute. Because the OrderItemEO rows contain
an order ID that relates them to a specific OrderEO row, you would select this
OrderId foreign key attribute in the OrderItemEO entity object as the destination
attribute.

Figure 4-4 Create Association Wizard, Attribute Pairs That Relate Two Entity Objects
Defined

® Create Association - Step 2 0f 5

Entity Objects
| e Select each pair of source and destination entity attributes that define the association, then click Add.
i) Entity Objects Cardinality: [D..1to* ¥
T dssodation Properties. Select Source Attribute; Select Destination Attribute:
----- ¥ FreeShippingFlag =+-[e orderTtemeo
o] & GiftwrapFlag || =98 CreatedBy
-----) GiftwrapMessage --[E8 CreationDate
----- [isEventLaunched @ LastUpdateDate
----- & isPublishableEvent -8 LastUpdatedBy
----- =@ LastUpdateDate @ Lineltemld
----- ¥ LastUpdatedBy -8 LineltemTotal
----- [Objectversionld X8 ListPrice
----- @& OrderDate -[E8) Objectiersionld
----- EEOrderld e JOrderId
=R
Source Bound Destination Bound
CrderEC, Orderld OrderltemED, Orderld
(e] s [Cancel |

5. Click Add to add the matching attribute pair to the table of source and destination
attribute pairs below.

By default, the Bound checkbox is selected for both the source and destination
attribute. This checkbox allows you to specify whether or not the value will be
bound into the association SQL statement that is created internally when

Creating a Business Domain Layer Using Entity Objects 4-11

Creating and Configuring Associations

navigating from source entity to target entity or from target entity to source entity
(depending on which side you select).

Typically, you would deselect the checkbox for an attribute in the relationship that
is a transient entity attribute whose value is a constant and therefore should not
participate in the association SQL statement to retrieve the entity.

If the association requires multiple attribute pairs to define it, you can repeat the
preceding steps to add additional source/target attribute pairs.

Finally, ensure that the Cardinality dropdown correctly reflects the cardinality of
the association. The default is a one-to-many relationship. Click Next.

For example, since the relationship between a OrderEO row and its related
OrderItemEO rows is one-to-many, you can leave the default setting.

On the Association SQL page, you can preview the association SQL predicate that
will be used at runtime to access the related destination entity objects for a given
instance of the source entity object.

On the Association Properties page, disable the Expose Accessor checkbox on
either the Source or the Destination entity object when you want to create an
association that represents a one-way relationship. The default, bidirectional
navigation is more convenient for writing business validation logic, so in practice,
you typically leave these default checkbox settings.

For example, Figure 4-5 shows an association that represents a bidirectional
relationship, permitting either entity object to access the related entity row(s) on
the other side when needed. In this example, this means that if you are working
with an instance of an OrderEO entity object, you can easily access the collection of
its related OrderItemEO rows. With any instance of a OrderItemEO entity object,
you can also easily access the Order to which it belongs.

Figure 4-5 Association Properties Control Runtime Behavior

® Create Association - Step 3 of 5

Association Properties

Source Accessar Destination Accessar
Entitw Obiects Entity Object: OrderEC Entity Object: OrderltemEQ
Association Properti Expose in: OrderltemED Expose in: OrderED
. o Accessor Name: Accessor Name:
Edit Association Query
T |OrderEO | |OrderItemEO

|:| Use Database Key Constraints
|:| Composition Association

Help | | < Back " Mext = | Cancel

10. When you are satisfied with the association definition, click Finish.

4-12 Fusion Developer's Guide for Oracle Application Development Framework

Creating and Configuring Associations

4.3.2 What Happens When You Create an Association

When you create an association, JDeveloper creates an appropriate XML component
definition file and saves it in the directory that corresponds to the name of its package.
For example, if you created an association named OrderItemsOrdersFkAssoc in the
oracle.fodemo.storefront.entities.associations subpackage, then the association
XML file would be created in the
./oracle/fodemo/storefront/entities/associations directory with the name
OrderItemsOrdersFkAssoc.xml. At runtime, the entity object uses the association
information to automate working with related sets of entities.

4.3.3 How to Change Entity Association Accessor Names

You should consider the default settings for the accessor names on the Association
Properties page and decide whether changing the names to something more intuitive
is appropriate. The default settings define the names of the accessor attributes you will
use at runtime to programmatically access the entities on the other side of the
relationship. By default, the accessor names will be the names of the entity object on
the other side. Since the accessor names on an entity must be unique among entity
object attributes and other accessors, if one entity is related to another entity in multiple
ways, then the default accessor names are modified with a numeric suffix to make the
name unique.

In an existing association, you can rename the accessor using the Association
Properties dialog.

To rename the entity accessor in an association:
1. In the Application Navigator, double-click the association.

2. In the overview editor, click the Relationships navigation tab.
3. On the Relationships page, expand the Accessors category and click the Edit icon.

The Association Properties dialog displays the current settings for the association’s
accessors.

4. Modify the name as necessary, and click OK to apply your changes and close the
dialog.

4.3.4 How to Rename and Move Associations to a Different Package

Since associations are a component that you typically configure at the outset of your
project and don't change frequently thereafter, you might want to move the
associations to a different package so that your entity objects are easier to see. Both
renaming components and moving them to a different package is straightforward
using JDeveloper's refactoring functionality.

To move a set of business components to a different package:
1. In the Application Navigator, select the components you want to move.

2. Right-click one of the selected components, and choose Refactor > Move.

3. In the Move Business Components dialog, enter the name of the package to move
the component(s) to, or click Browse to navigate to and select the package.

4. Click OK to apply your changes and close the dialog.

Creating a Business Domain Layer Using Entity Objects 4-13

Creating and Configuring Associations

To rename a component:

1. In the Application Navigator, right-click the component you want to rename, and
choose Refactor > Rename.

2. Inthe Rename dialog, enter the new name for the component and click OK.

When you refactor ADF Business Components, JDeveloper moves the XML and Java
files related to the components, and updates any other components that might
reference them.

Figure 4-6 shows what the Application Navigator would look like after renaming all
of the associations and moving them to the oracle.fodemo.storefront.associations
subpackage. While you can refactor the associations into any package name you
choose, picking a subpackage keeps them logically related to the entities, and allows
you to collapse the package of associations to better manage which files display in the
Application Navigator.

Figure 4-6 Application Navigator After Association Refactoring

Application Navigator X |
StoreFrontMadule - -
Projects @ Gﬂ '? LT

L:_|--- StoreFronkService
-7 Application Sources
2/l oracle. fodemo . storefront
-l account
Iﬁ adfextensions
=il entities
&I associations
-Ef1, addressllsagesAddressesFkAssac
BB, addresslsagesPersonsFkassoc
L_E.I.‘ AddressUsagesSuppliersFkaAssoc
L_E, Category TranslationsFkassoc

L_E\, Category TranslationToC ustomer Inker:
BB, countryCodesToAddress
. -5 CouponisagesDiscountsFkaAssoc

Application Resources

Data Controls WY

Recently Opened Files

4.3.5 What You May Need to Know About Using a Custom View Object in an

Association

You can associate a custom view object with the source end or destination end (or
both) of an entity association.

When you traverse entity associations in your code, if the entities are not already in the
cache, then the ADF Business Components framework performs a query to bring the
entity (or entities) into the cache. By default, the query performed to bring an entity
into the cache is the find-by-primary-key query that selects values for all persistent
entity attributes from the underlying table. If the application performs a lot of
programmatic entity association traversal, you could find that retrieving all of the
attributes might be heavy-handed for your use cases.

Entity associations support the ability to associate a custom, entity-based view object
with the source entity or destination entity in the association, or both. The primary
entity usage of the entity-based view object you supply must match the entity type of
the association end for which you use it.

Using a custom view object can be useful because the custom view object's query can
include fewer columns and it can include an ORDER BY clause. This allows you to

4-14 Fusion Developer's Guide for Oracle Application Development Framework

Creating and Configuring Associations

control how much data is retrieved when an entity is brought into the cache due to
association traversal, as well as the order in which any collections of related entities
will appear.

For more information about creating a custom view object, see Section 39.8.2, "How to
Create an Entity-Based Programmatic View Object."

4.3.6 What You May Need to Know About Composition Associations

An association represents a relationship between entities, such as Person referenced by
an Order or an OrderItem contained in an Order. When you create associations, it is
useful to know about the kinds of relationships you can represent, and the various
options.

Associations between entity objects can represent two styles of relationships
depending on whether the source entity:

» References the destination entity
s Contains the destination entity as a logical, nested part

Figure 4-7 depicts an application business layer that represents both styles of
relationships. For example, an OrderEO entry references a PersonkO. This relationship
represents the first kind of association, reflecting that a PersonEO or an OrderEO entity
object can exist independent from each other. In addition, the removal of an Order
does not imply the cascade removal of the Person to which it was referring.

In contrast, the relationship between OrderE0 and its collection of related OrderItemEO
details is stronger than a simple reference. The OrderItemEO entries comprise a logical
part of the overall OrderEO. In other words, an OrderE0 is composed of OrderItemEO
entries. It does not make sense for an OrderItemEO entity row to exist independently
from an OrderE0, and when an OrderEO is removed — assuming the removal is
allowed — all of its composed parts should be removed as well. This kind of logical
containership represents the second kind of association, called a composition. The UML
diagram in Figure 4-7 illustrates the stronger composition relationship using the solid
diamond shape on the side of the association which composes the other side of the
association.

Figure 4-7 OrderEO Composed of OrderltemEO Entries and References Both PersonEO

and AddressEO
[* |
@ OrderEQ 4-:—:-'@ OrderltemEQ
1
L [
72 0.1
= PersoneC m——— L

AddressEQ

The Business Components from Tables Wizard creates composition associations by
default for any foreign keys that have the ON DELETE CASCADE option. You can use the
Create Association wizard or the overview editor for the association to indicate that an
association is a composition association. Select the Composition Association checkbox
on either the Association Properties page of the Create Association wizard or the
Relationships page of the overview editor.

Note: A composition association cannot be based on a transient
attribute.

Creating a Business Domain Layer Using Entity Objects 4-15

Creating an Entity Diagram for Your Business Layer

An entity object offers additional runtime behavior in the presence of a composition.
For the settings that control the behavior, see Section 4.10.13, "How to Configure
Composition Behavior."

4.4 Creating an Entity Diagram for Your Business Layer

Since your layer of business domain objects represents a key reusable asset for your
team, it is often convenient to visualize the business domain layer using a UML model.
JDeveloper supports easily creating a diagram for your business domain layer that you
and your colleagues can use for reference.

The UML diagram of business components is not just a static picture that reflects the
point in time when you dropped the entity objects onto the diagram. Rather, it is a
UML-based rendering of the current component definitions, that will always reflect
the current state of affairs. What's more, the UML diagram is both a visualization aid
and a visual navigation and editing tool. To open the overview editor for any entity
object in a diagram, right-click the desired object and choose Properties from the
context menu or double-click the desired object. You can also perform some entity
object editing tasks directly on the diagram, like renaming entities and entity
attributes, and adding or removing attributes.

4.41 How to Show Entity Objects in a Business Components Diagram

To create a diagram of your entity objects, you can use the Create Business
Components Diagram dialog, which is available in the New Gallery.

To create a business components diagram that models existing entity objects:

1. In the Application Navigator, right-click the project in which you want to create
the entity diagram and choose New.

2. Inthe New Gallery, expand Business Tier, select ADF Business Components and
then Business Components Diagram, and click OK.

3. In the dialog, do the following to create the diagram:
= Enter a name for the diagram, for example Business Domain Objects.

= Enter the package name in which the diagram will be created. For example,
you might create it in a subpackage like myproject.model.design.

4. Click OK.

5. To add existing entity objects to the diagram, select them in the Application
Navigator and drop them onto the diagram surface.

After you have created the diagram you can use the Property Inspector to adjust visual
properties of the diagram. For example you can:

= Hide or show the package name

s Change the font

= Toggle the grid and page breaks on or off

= Display association names that may otherwise be ambiguous

You can also create an image of the diagram in PNG, JPG, SVG, or compressed SVG
format, by choosing Publish Diagram from the context menu on the diagram surface.

Figure 4-8 shows a sample diagram that models various entity objects from the
business domain layer.

4-16 Fusion Developer's Guide for Oracle Application Development Framework

Creating an Entity Diagram for Your Business Layer

Figure 4-8 UML Diagram of Business Domain Layer

@ PersonEQ
Personld : oracle jbo.domain DESequence
Principaltame : String

Title : String

FirstMame : String
LastMame : String
PersonTypeCode @ String
Supplierld : Mumber
ProvisionedFlag : String
PrimaryAddressld : Number
RegisteredDate : Date
Membershipld : Number

Email : String
1
.

£33 OrderEQ

Orderld : oracle jbo .domain. DESeqguence
CrderDate : Date

OrderShippedDate : Date
OrderStatusCode : String

OrderTotal : Mumber 1
Customerld : Mumber

ShipTokame : String

ShipToAddressld : Mumber
ShipToPhoneMumber : String
ShippingCptionld : Number
PaymentOptionld : Number

5] ProductBaseEQ
Productid : Mumber
Supplierld : Mumber
Categoryld : Number
ProductMame : String
ProductStatus : String
CostPrice | Number
ListPrice : Mumber
MinPrice : Number
WarrantyPeriodMonths : Number
ShippingClassCode : String
Externallrl : String
T —
F5) CreertemED
Orderld : Number
Linettemld : oracle jho.domain DESequence
Productic : Number
Cuartity : Number
UnitPrice : Mumber
CreatedBy : String
CreationDate : Date
+ |LastUpdatedBy : String
LastUpdateDate : Date
OhjectVersionld : Number
LinetemTotal : Number
ListPrice : Mumber
ShippingCost : Number

4.4.2 What Happens When You Create an Entity Diagram

When you create a business components diagram, JDeveloper creates an XML file

*.oxd_bc4j representing the diagram in a subdirectory of the project's model path that
matches the package name in which the diagram resides.

By default, the Application Navigator unifies the display of the project contents paths
so that ADF components and Java files in the source path appear in the same package

tree as the UML model artifacts in the project model path. However, as shown in
Figure 4-9, using the Navigator Display Options toolbar button on the Application
Navigator, you can see the distinct project content path root directories when you

prefer.

Figure 4-9 Toggling the Display of Separate Content Path Directories

Application MNavigator |

[l adfextensions
[ertities

[lookups

[mycomparny
[store

-7 META-INF

------ % ejb-jar.xml

------ % StoreFrontService. jpx
-5 StoreFrontUI

.- Rk Tacks
Application Resources

Data Controls
Recently Opened Files

StoreFrontModule = v
Projects Bl & V-
El--- StoreFrontService v Graup by Dired
=[] Application Sources Sort by Type
BD e Package Level 4
-1 oracle fodemo.starefront Web Content Level — »
i account Shiow Libraries

v Group by Category
¥ Group Related Files

@ v

Creating a Business Domain Layer Using Entity Objects 4-17

Defining Property Sets

4.4.3 What You May Need to Know About the XML Component Descriptors

When you include a business component like an entity object to a UML diagram,
JDeveloper adds extra metadata to a <Data> section of the component’s XML
component descriptor as shown in Example 4-2. This additional information is used at
design time only.

Example 4-2 Additional UML Metadata Added to an Entity Object XML Descriptor

<Entity Name="OrderEO" ... >
<Data>
<Property Name ="COMPLETE_LIBRARY" Value ="FALSE" />
<Property Name ="ID"

Value ="ff16fca0-0109-1000-80£f2-8d9081ce706f::::EntityObject" />
<Property Name ="IS_ABSTRACT" Value ="FALSE" />
<Property Name ="IS_ACTIVE" Value ="FALSE" />
<Property Name ="IS_LEAF" Value ="FALSE" />
<Property Name ="IS_ROOT" Value ="FALSE" />
<Property Name ="VISIBILITY" Value ="PUBLIC" />

</Data>

</Entity>

4.4.4 What You May Need to Know About Changing the Names of Components

On an entity diagram, the names of entity objects, attributes, and associations can be
changed for clarity. Changing names on a diagram does not affect the underlying data
names. The name change persists for the diagram only. The new name may contain
spaces and mixed case for readability. To change the actual entity object names,
attribute names, or association names, open the entity object or association in the
overview editor.

4.5 Defining Property Sets

A property set is a named collection of properties, where a property is defined as a
name/value pair. Property sets are a convenience mechanism to group properties and
then reference them from other ADF Business Components objects. Properties defined
in a property set can be configured to be translatable, in which case the translations are
stored in a message bundle file owned by the property set.

Property sets can be used for a variety of functions, such as control hints and error
messages. A property set may contain control hints and other custom properties, and
you can associate them with multiple attributes of different objects.

Note: Take care when defining property sets that contain translatable
content. Be sure not to "overload" common terms in different contexts.
For example, the term "Name" might be applied to both an object and
a person in one language, but then translated into two different terms
in a target language. Even though a term in several contexts might be
the same in the source language, a separate distinguishable term
should be used for each context.

Property sets can be used with entity objects and their attributes, view objects and
their attributes, and application modules.

4-18 Fusion Developer's Guide for Oracle Application Development Framework

Defining Property Sets

4.5.1 How to Define a Property Set

To define a property set, you create a new property set using a dialog and then specify
properties using the Property Inspector.

To define a property set:

1. In the Application Navigator, right-click the project where you want to create the
property set, and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Property Set, and click OK.

Figure 4-10 Property Set in New Gallery

& New Galle ry

X

r Al Technologies |/ Current Project Technologies |

Cateqgories: Items: [] Shaw &ll Descriptions
:::E;::ls Tier [n Defaulk Data Model Components
JF Bus #1d Domain

E@ Entity Business Logic Lnit

Enttity Cbject

A4 Property Set

Launches the Create Property Set Dialog, which allows vou ko create a
B-Client Tier custom Property Set. Use Property Sets to define a bag of properties or hints
5 Database Tier that can be used by Attributes and Eindings.

[H-Web Tier To enable this option, you must seleck a project in the Application Mavigator,
..... Al Ttems EBefore you can finish creating the new property set, vou will be prompted to
select (or create) a database connection,

& Validation Rule
2] view Link

&) view Object

| Help | | Ok J | Cancel |

3. In the Create Property Set dialog, enter the name and location of the property set
and click OK.

4. From the View menu, choose Property Inspector.

5. In the Property Inspector, define the properties for the property set.

4.5.2 How to Apply a Property Set
After you have created the property set, you can apply the property set to an entity
object or attribute, and use the defined properties (or override them, if necessary).

To apply a property set to an entity object or view object:

1. In the Application Navigator, double-click the desired object (entity object or view
object).

2. In the overview editor, click the General navigation tab, and then click the Edit
icon next to the Property Set line.

3. Select the appropriate property set, and click OK.

Creating a Business Domain Layer Using Entity Objects 4-19

Defining Attribute Control Hints for Entity Objects

To apply a property set to an attribute:

1.

In the Application Navigator, double-click the desired object (entity object or view
object).

In the overview editor, click the Attributes navigation tab, and double-click the
attribute you want to edit.

In the Edit Attribute dialog, click the first node to view the general properties of
the attribute.

For view objects, it is the View Attribute node. For entity objects, it is the Entity
Attribute node.

In the Property Set dropdown list, select the appropriate property set, and click
OK.

4.6 Defining Attribute Control Hints for Entity Objects

If you are familiar with previous versions of ADF business components, you may have
used control hints. Control hints allow you to define label text, tooltip, and format
mask hints for entity object attributes. The UI hints you define on your business
domain layer are inherited by any entity-based view objects as well. You can also set
additional control hints on view objects and application modules in a similar manner.

4.6.1 How to Add Attribute Control Hints

To add attribute control hints to an entity object, use the overview editor.

To add attribute control hints to an entity object:

1.
2.

In the Application Navigator, double-click the desired entity object.

In the overview editor, click the Attributes navigation tab, and double-click the
attribute you want to edit.

In the Edit Attribute dialog, click the Control Hints node to view the attribute’s
control hints.

Specify control hints as necessary, and then click OK.

For example, Figure 4-11 shows control hints defined for the attribute ExpireDate
of the PaymentOptionEO entity object. The defined hints include the following:

s Format Type to Simple Date

s Format mask of yyyy-MM-dd

4-20 Fusion Developer's Guide for Oracle Application Development Framework

Defining Attribute Control Hints for Entity Objects

Figure 4-11 Edit Attribute Dialog, Control Hints Node

& Edit Attribute: ExpireDate

[&®)| Ccontrol Hints
-~ Entity Attribube SN |D' I |
: ; -
i Walidation SEa Ay .
Custom Properties Label Text: |Expirati0n Date || |
Control Hinks el i | | |—|
Dependencies R e
Farmat Type: |Simple Date - |
Eormat: | yyyy-MM-dd |v|
Control Type: |Default - |
Display width:
Display Height:
Form Type: Detail -
Help Apply | | o4 _J | Cancel

Note: Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's SQL
and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and java.text.SimpleDateFormat classes.

4.6.2 What Happens When You Add Attribute Control Hints

When you define attribute control hints for an entity object, JDeveloper creates a
resource bundle file in which to store them. The hints that you define can be used by
generated forms and tables in associated view clients. The type of file and its
granularity are determined by Resource Bundle options in the Project Properties
dialog. For more information, see Section 4.7, "Working with Resource Bundles."

4.6.3 How to Define Formatters and Masks

When you set the Format Type control hint (in the Edit Attribute dialog) for an
attribute (for example, to Simple Date), you can also specify a format mask for the
attribute to customize how the Ul displays the value. If the mask you want to use is
not listed in the Format dropdown list, you can simply type it into the field.

Not all formatters require format masks. Specifying a format mask is only needed if
that formatter type requires it. For example, the date formatter requires a format mask,
but the currency formatter does not. In fact the currency formatter does not support
format mask at all.

The mask elements that you can use are defined by the associated Java format class.
For information about the mask elements for the Simple Date format type, see the
Javadoc for java. text.SimpleDateFormat. For information about the mask elements
for the Number format type, see the Javadoc for java.text.DecimalFormat.

If you have a format mask that you will continue to use on multiple occasions, you can
add it to the formatinfo.xml file, so that it is available from the Format dropdown list

Creating a Business Domain Layer Using Entity Objects 4-21

Defining Attribute Control Hints for Entity Objects

in the Edit Attribute dialog. The entries in this file define the format masks and
formatter classes for a domain class. Example 4-3 shows the format definitions for the
java.util.Date domain.

Note: You can find the formatinfo.xmlfile in the BC4] subdirectory
of the JDeveloper system directory (for example,

C:\Documents and Settings\username\Application
Data\JDeveloper\system##\o.BC4J\formatinfo.xml).

Example 4-3 Format Definitions for java.util.Date in formatinfo.xml

<?xml version="1.0"?>
<FORMATTERS>

<DOMAIN CLASS="java.util.Date">
<FORMATTER name="Simple Date" class="oracle.jbo.format.DefaultDateFormatter">
<FORMAT text="yyyy-MM-dd" />
<FORMAT text="EEE, MMM d, ''yy" />
<FORMAT text="dd-MM-yy" />
<FORMAT text="dd-MMM-yyyy" />
<FORMAT text="dd/MMM/yyyy" />
</FORMATTER>
</DOMAIN>

</FORMATTERS>

The definition of the format mask belongs to a formatter and a domain class, and
includes the text specification of the mask as it appears in the Edit Attribute dialog.
When you specify the Format Type (FORMATTER name) for an attribute of a given type
(DOMAIN CLASS), the masks (FORMAT text) appear in the Format dropdown list.

To map a formatter to a domain for use with control hints, you can either amend one
of the default formatters provided in the oracle.jbo. format package, or create a new
formatter class by extending the oracle.jbo. format.Formatter class. The default
formatters provided with JDeveloper aggregate the formatters provided in the
java.text package.

It is not necessary to create new domain to map a formatter. You can use an existing
domain when the business components project contains a domain of the same data
type as the formatter.

To define a new format mask:
1. Open the formatinfo.xml file in a text editor.

2. Find the domain class and formatter name for which you want to add a format
mask.

3. Insert a new FORMAT entry within the FORMATTER element.

After defining a format mask, you can select the new format mask from the Format
dropdown list in the Edit Attribute dialog.

Note: If you create a new domain for the format mask, the XML
definition of the formatter must include a DOMAIN CLASS (which can be
a new or existing one), the FORMATTER (which includes the name and
class), and the list of FORMAT definitions the formatter class specifies.

4-22 Fusion Developer's Guide for Oracle Application Development Framework

Working with Resource Bundles

4.7 Working with Resource Bundles

When you define translatable strings (such as validator error messages, or attribute
control hints for an entity object or view object), by default JDeveloper creates a
project-level resource bundle file in which to store them. For example, when you
define control hints for an entity object in the StoreFront project, JDeveloper creates
the message bundle file named StoreFrontBundle.xxx for the package. The hints that
you define can be used by generated forms and tables in associated view clients.

The resource bundle option that JDeveloper uses is determined by an option on the
Resource Bundle page of the Project Properties dialog. By default JDeveloper sets the
option to Properties Bundle, which produces a .properties file. For more
information on this and other resource bundle options, see Section 4.7.1, "How to Set
Message Bundle Options."

You can inspect the message bundle file for the entity object by selecting the object in
the Application Navigator and looking in the corresponding Sources node in the
Structure window. The Structure window shows the implementation files for the
component you select in the Application Navigator.

Example 4-4 shows a sample message bundle file where the control hint information
appears. The first entry in each String array is a message key; the second entry is the
locale-specific String value corresponding to that key.

Example 4-4 Project Message Bundle Stores Locale-Sensitive Control Hints

AddressUsageEO_OwnerTypeCode_Error_0=Invalid OwnerTypeCode.
AddressUsageEO_UsageTypeCode_Error_0=Invalid UsageTypeCode.
OwnerTypeCode_CONTROLTYPE=105

PaymentOptionEO_RoutingIdentifier Error_0=Please enter a valid routing identifier.
PaymentOptionsEQ_PaymentTypeCode_Error_0=Invalid PaymentTypeCode.
PaymentTypeCode_CONTROLTYPE=105

PaymentOption_AccountNumber=Please enter a valid Account Number
MinPrice_FMT_ FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter
CostPrice_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter
UnitPrice_FMT_ FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter
OrderEO_GiftMessage=Please supply a message shorter than 200 characters
OrderEO=Please supply a gift message
DiscountBaseEO_DiscountAmount=Discount must be between 0 and 40%

oracle.fodemo.storefront.entities.PaymentOptionEQ.ExpireDate_FMT FORMAT=mm/yy
#Date range validation for ValidFrom and ValidTo dates
PaymentOptionEO_invalidDateRange_Error_0O=Date range is invalid. {0} must be
greater than {1}.

PaymentOptionEO_DateRange_Error_0=Invalid date range.{0} should be greater than
{1}.

oracle.fodemo.storefront.entities.PaymentOptionEO.ValidFromDate LABEL=Valid From
Date

oracle.fodemo.storefront.entities.PaymentOptionEO.ValidToDate_LABEL=Valid To Date
OrderItemsVO_ImageId_Rule_0=ImageId not found
oracle.fodemo.storefront.store.queries.AddressesV0O.Addressl_LABEL=Address
oracle.fodemo.storefront.store.queries.AddressesVO.PostalCode_LABEL=Post Code or
Z1P

Creating a Business Domain Layer Using Entity Objects 4-23

Working with Resource Bundles

4.7.1 How to Set Message Bundle Options

The resource bundle option JDeveloper uses to save control hints and other
translatable strings is determined by an option on the Resource Bundle page of the
Project Properties dialog. By default JDeveloper sets the option to Properties Bundle
which produces a .properties file.

To set resource bundle options for your project

1.
2
3.

7.

In the Application Navigator, right-click the project and choose Project Properties.
Click Resource Bundle.
Select whether to use project or custom settings.

If you select Use Custom Settings, the settings apply only to your work with the
current project. They are preserved between sessions, but are not recorded with
the project and cannot be shared with other users. If you select Use Project
Settings, your choices are recorded with the project and can be shared with others
who use the project.

Specify your preference with the following options by selecting or deselecting the
option:

= Automatically Synchronize Bundle

= Warn About Hard-coded Translatable Strings

s Always Prompt for Description

For more information on these options, click Help to see the online help.
Select your choice of resource bundle granularity.

= One Bundle Per Project (default)

= One Bundle Per File

= Multiple Shared Bundles (not available for ADF Business Components)
Select the type of file to use.

= List Resource Bundle

The ListResourceBundle class manages resources in a name/value array.
Each ListResourceBundle class is contained within a Java class file. You can
store any locale-specific object in a ListResourceBundle class.

= Properties Bundle (default)

A text file containing translatable text in name/value pairs. Property files (like
the one shown in Example 4-4) can contain values only for String objects. If
you need to store other types of objects, you must use a ListResourceBundle
instead.

s Xliff Resource Bundle

The XML Localization Interchange File Format (XLIFF) is an XML-based
format for exchanging localization data.

Click OK to apply your settings and close the dialog.

4.7.2 How to Use Multiple Resource Bundles

When you define translatable strings (for example, for attribute control hints), the
Select Text Resource dialog allows you to enter a new string or select one that is

4-24 Fusion Developer's Guide for Oracle Application Development Framework

Working with Resource Bundles

already defined in the default resource bundle for the object. You can also use a
different resource bundle if necessary. This is helpful when you use a common
resource bundle that is shared between projects.

To use strings in a nondefault resource bundle:

1. In the Select Text Resource dialog, select the bundle you want to use from the
Resource Bundle dropdown list.

If the desired resource bundle is not included in the Resource Bundle dropdown
list, click the Browse icon to locate and select the resource bundle you want to use.

The dialog displays the strings that are currently defined in the selected resource
bundle.

2. Select an existing string and click Select, or enter a new string and click Save and
Select.

If you entered a new string it is written to the selected resource bundle.

4.7.3 How to Internationalize the Date Format

Internationalizing the model layer of an application built using ADF Business
Components entails producing translated versions of each component message bundle
file. For example, the Italian version of the OrdersImplMsgBundle message bundle
would be a class named OrdersImplMsgBundle_it and a more specific Swiss Italian
version would have the name OrdersImplMsgBundle_it_ch. These classes typically
extend the base message bundle class, and contain entries for the message keys that
need to be localized, together with their localized translation.

Example 4-5 shows the Italian version of an entity object message bundle. Notice that
in the Italian translation, the format masks for RequestDate and AssignedDate have
been changed to dd/MM/yyyy HH:mm. This ensures that an Italian user will see a date
value like May 3rd, 2006, as 03/05/2006 15:55, instead of 05/03/2006 15:55, which
the format mask in the default message bundle would produce. Notice the overridden
getContents () method. It returns an array of messages with the more specific
translated strings merged together with those that are not overridden from the
superclass bundle. At runtime, the appropriate message bundles are used
automatically, based on the current user's locale settings.

Example 4-5 Localized Entity Object Component Message Bundle for Italian

package devguide.model.entities.common;
import oracle.jbo.common.JboResourceBundle;
public class ServiceRequestImplMsgBundle_it
extends ServiceRequestImplMsgBundle {
static final Object[][] sMessageStrings = {

{ "AssignedDate_FMT FORMAT", "dd/MM/yyyy HH:mm" },
"AssignedDate_LABEL", "Assegnato il" },
"AssignedTo_LABEL", "Assegnato a" },
"CreatedBy_LABEL", "Aperto da" },
"ProblemDescription_LABEL", "Problema" },
"RequestDate_FMT_FORMAT", "dd/MM/yyyy HH:mm" },
"RequestDate_LABEL", "Aperto il" },
"RequestDate_TOOLTIP", "La data in cui il ticket e stato aperto" },
"Status_LABEL", "Stato" },

"SvrId_LABEL", "Ticket" }

e i W e e e B

}i
public Object[][] getContents() {
return super.getMergedArray (sMessageStrings, super.getContents());

Creating a Business Domain Layer Using Entity Objects 4-25

Defining Business Logic Groups

4.8 Defining Business Logic Groups

Business logic groups allow you to encapsulate a set of related control hints, default
values, and validation logic. A business logic group is maintained separate from the
base entity in its own file, and can be enabled dynamically based on context values of
the current row.

This is useful, for example, for an HR application that defines many locale-specific
validations (like national identifier or tax law checks) that are maintained by a
dedicated team for each locale. The business logic group eases maintenance by storing
these validations in separate files, and optimizes performance by loading them only
when they are needed.

Each business logic group contains a set of business logic units. Each unit identifies the
set of business logic that is loaded for the entity, based on the value of the attribute
associated with the business logic group.

For example, you can define a business logic group for an Employee entity object,
specifying the EmpRegion attribute as the discriminator. Then define a business logic
unit for each region, one that specifies a range validator for the employee’s salary.
When the application loads a row from the Employee entity, the appropriate validator
for the EmpSalary attribute is loaded (based on the value of the EmpRegion attribute).

In another example, from the StoreFront module of the Fusion Order Demo
application, the PersonEO entity object has a business logic group called
PersonTypeCodeGroup that uses PersonTypeCode as the discriminator attribute.
Because this attribute has three valid values (CUST, STAFF, and SUPP), there are three
corresponding business logic units.

In this scenario, each business logic unit contains new or modified business logic that
pertains only to that person type:

» The CUST business logic unit contains logic that pertains to customers. For
example, it contains a validator that checks for a phone number because all
customers must have a phone number.

= The STAFF business logic unit contains logic that pertains to staff members. For
example, it contains a validator that constrains the credit limit.

= The SUPP business logic unit contains logic that pertains to suppliers. For example,
it contains a validator that makes sure the ContactByAffiliatesFlag attribute is
set to N, because suppliers cannot be contacted by affiliates.

4.8.1 How to Create a Business Logic Group

You create the business logic group for an entity object from the overview editor.

To create a business logic group:

1. In the Application Navigator, double-click the entity for which you want to create
a business logic group.

2. In the overview editor, click the General navigation tab.

3. On the General page, expand the Business Logic Groups section, and click the
Add icon.

4-26 Fusion Developer's Guide for Oracle Application Development Framework

Defining Business Logic Groups

4. In the creation dialog, select the appropriate group discriminator attribute and
specify a name for the group.

Tip: To enhance the readability of your code, you can name the
group to reflect the discriminator. For example, if the group
discriminator attribute is PersonTypeCode, you can name the business
logic group PersonTypeCodeGroup.

5. Click OK.

The new business logic group is added to the table in the overview editor. After you
have created the group, you can add business logic units to it.

4.8.2 How to Create a Business Logic Unit

You can create a business logic unit from the New Gallery, or directly from the context
menu of the entity that contains the business logic group.

To create a business logic unit:

1. In the Application Navigator, right-click the entity that contains the business logic
group and choose New Entity Business Logic Unit from the context menu.

2. In the Create Business Logic Unit dialog, specify the name of the base entity and
select the appropriate business logic group.

3. Enter a name for the business logic unit.

The name of each business logic unit must reflect a valid value of the group
discriminator attribute with which this business logic unit will be associated. For
example, if the group discriminator attribute is PersonTypeCode, the name of the
business logic unit associated with the PersonTypeCode value of STAFF must be
STAFF.

4. Specify the package for the business logic unit.

Note: The package for the business logic unit does not need to be the
same as the package for the base entity or the business logic group.
This allows you to develop and deliver business logic units separately
from the core application.

5. Click OK.

JDeveloper creates the business logic unit and opens it in the overview editor. The
name displayed for the business logic unit in the Application Navigator contains the
name of the entity object and business logic group in the format EntityName_
BusLogicGroupName_BusLogicUnitName. For example, when you create a business
logic unit with the name CUST in the PersonTypeCodeGroup business logic group of the
PersonkO entity object, the displayed name of the business logic unit is PersonE0_
PersonTypeCodeGroup_CUST.

After you have created the unit, you can redefine the business logic for it.

4.8.3 How to Add Logic to a Business Logic Unit

After you have created a business logic unit, you can open it in the overview editor
and add business logic (such as adding an entity-level validator) just as you would in
the base entity.

Creating a Business Domain Layer Using Entity Objects 4-27

Defining Business Logic Groups

To add an entity validator to a business logic unit:
1. In the Application Navigator, double-click the business logic unit.

2. In the overview editor, click the Business Rules navigation tab.

3. On the Business Rules page, select the Entity Validators folder and click the Add
icon.

4. Define your validation rule, and click OK.

For example, the PersonE0 entity object in the StoreFront module of the Fusion Order
Demo application has a business logic unit called PersonEO_PersonTypeCodeGroup_
CUsT. This business logic unit has an entity validator that checks for the presence of a
phone number to ensure that all persons who are customers have a phone number.

4.8.4 How to Override Attributes in a Business Logic Unit

When you view the Attributes page for the business logic unit (in the overview editor),
you can see that the Extends column in the attributes table shows that the attributes
are "extended" in the business logic unit. Extended attributes are editable only in the
base entity, not in the business logic unit. To implement changes in the business logic
unit rather than the base entity, you must define attributes as overridden in the
business logic unit before you edit them.

To override attributes in a business logic unit:
1. Inthe Application Navigator, double-click the business logic unit.

2. Inthe overview editor, click the Attributes navigation tab.
3. On the Attributes page, select the desired attribute and click the Override button.

After you make an attribute overridden, you can edit the attribute as you normally
would by double-clicking the attribute to open it in the Edit Attribute dialog. You will
notice that in an overridden attribute, you are limited to making modifications to only
control hints, validators, and default values.

4.8.5 What Happens When You Create a Business Logic Group

When you create a business logic group, JDeveloper adds a reference to the group in
the base entity’s XML file. Example 4-6 shows the code added to the base entity’s XML
file for the business logic group.

Example 4-6 XML Code in the Base Entity for a Business Logic Group

<BusLogicGroup
Name="PersonTypeCodeGroup"
DiscrAttrName="PersonTypeCode" />

When you create a business logic unit, JDeveloper generates an XML file similar to
that of an entity object. Example 4-7 shows XML code for a business logic unit.

Note: The package for the business logic unit does not need to be the
same as the package for the base entity or the business logic group.
This allows you to develop and deliver business logic units separately
from the core application.

Example 4-7 XML Code for a Business Logic Unit
<Entity

4-28 Fusion Developer's Guide for Oracle Application Development Framework

Configuring Runtime Behavior Declaratively

xmlns="http://xmlns.oracle.com/bcdj"
Name="PersonEO_PersonTypeCodeGroup_CUST"
Version="11.1.1.54.6"
Extends="oracle.fodemo.storefront.entities.PersonEQ"
DBObjectType="table"
DBObjectName="PERSONS"
BindingStyle="OracleName"
UseGlueCode="false"
BusLogicGroupName="PersonTypeCodeGroup"
BusLogicUnitName="CUST"
xmlns:validation="http://xmlns.oracle.com/adfm/validation">
<DesignTime>
<Attr Name="_codeGenFlag2" Value="Access"/>
<AttrArray Name="_publishEvents"/>
</DesignTime>
<validation:ExpressionValidationBean
Name="PersonEQO_PersonTypeCodeGroup_CUST Rule_ 0"
OperandType="EXPR"
Inverse="false">
<validation:MsgIds>
<validation:Item
Value="CUST_PHONE_REQUIRED"/>
</validation:MsgIds>
<validation:TransientExpression>
<! [CDATA[if (PhoneNumber == null && MobilePhoneNumber == null)
return false;
else return true;]]>
</validation:TransientExpression>
</validation:ExpressionValidationBean>
<ResourceBundle>
<PropertiesBundle
PropertiesFile="oracle.fodemo.storefront.entities.common.PersonEQ_
PersonTypeCodeGroup_CUSTMsgBundle" />
</ResourceBundle>
</Entity>

4.8.6 What Happens at Runtime: Invoking a Business Logic Group

When a row is loaded in the application at runtime, the entity object decides which
business logic units to apply to it.

The base entity maintains a list of business logic groups. Each group references the
value of an attribute on the entity, and this value determines which business logic unit
to load for that group. This evaluation is performed for each row that is loaded.

If the logic for determining which business logic unit to load is more complex than just
a simple attribute value, you can create a transient attribute on the entity object, and
use a Groovy expression to determine the value of the transient attribute.

4.9 Configuring Runtime Behavior Declaratively

Entity objects offer numerous declarative features to simplify implementing typical
enterprise business applications. Depending on the task, sometimes the declarative
facilities alone may satisfy your needs. The declarative runtime features that describe
the basic persistence features of an entity object are covered in this section, while
declarative validation and business rules are covered in Chapter 7, "Defining
Validation and Business Rules Declaratively."

Creating a Business Domain Layer Using Entity Objects 4-29

Configuring Runtime Behavior Declaratively

Note: It is possible to go beyond the declarative behavior to
implement more complex business logic or validation rules for your
business domain layer when needed. In Chapter 8, "Implementing
Validation and Business Rules Programmatically,” you'll see some of
the most typical ways that you extend entity objects with custom
code.

Also, it is important to note as you develop your application that the business logic
you implement, either programmatically or declaratively, should not assume that the
attributes of an entity object or view row will be set in a particular order. This will
cause problems if the end user enters values for the attributes in an order other than
the assumed one.

4.9.1 How to Configure Declarative Runtime Behavior

To configure the declarative runtime behavior of an entity object, use the overview
editor.

To configure the declarative runtime behavior of an entity object:
1. In the Application Navigator, double-click an entity object.

2. In the overview editor, click the General navigation tab to view the name and
package of the entity object, and configure aspects of the object at the entity level,
such as its associated schema, alternative keys, custom properties, and security.

» The Alternate Keys section allows you to select entity object attributes
mapped to the database that can serve as an alternative primary key. For
information on alternative keys, see Section 4.10.15, "How to Define Alternate
Key Values."

s The Tuning section allows you to set options to make database operations
more efficient when you create, modify, or delete multiple entities of the same
type in a single transaction. For more information, see Section 38.3, "Using
Update Batching."

s The Custom Properties section allows you to define custom metadata that you
can access at runtime on the entity.

» The Security section allows you to define role-based updatability permissions
for the entity. For more information, see Chapter 30, "Enabling ADF Security
in a Fusion Web Application."

s The Business Logic Groups section allows you to add and edit business logic
groups. For more information, see Section 4.8, "Defining Business Logic
Groups."

3. Click the Attributes navigation tab to create or delete attributes that represent the
data relevant to an entity object, and configure aspects of the attribute, such as
validation rules, custom properties, and security.

Select an attribute and click the Edit icon to access the properties of the attribute.
For information on how to set these properties, see Section 4.10, "Setting Attribute
Properties."

4-30 Fusion Developer's Guide for Oracle Application Development Framework

Setting Attribute Properties

Tip: If your entity has a long list of attribute names, there's a quick
way to find the one you're looking for. In the Structure window with
the Attributes node expanded, you can begin to type the letters of the
attribute name and JDeveloper performs an incremental search to take
you to its name in the tree.

4. Click the Business Rules navigation tab to define declarative validators for the
entity object and its attributes. For more information, see Chapter 7, "Defining
Validation and Business Rules Declaratively."

5. Click the Java navigation tab to select the classes you generate for custom Java
implementation. You can use the Java classes for such things as defining
programmatic business rules, as in Chapter 8, "Implementing Validation and
Business Rules Programmatically."

6. Click the Business Events navigation tab to define events that your entity object
can use to notify others of interesting changes in its state, optionally including
some or all of the entity object's attributes in the delivered event. For more
information about business events, see Section 4.11, "Creating Business Events."

7. Click the View Accessors navigation tab to create and manage view accessors. For
more information, see Section 10.4.1, "How to Create a View Accessor for an Entity
Object or View Object."

4.9.2 What Happens When You Configure Declarative Runtime Behavior

The declarative settings that describe and control an entity object's runtime behavior
are stored in its XML component definition file. When you use the overview editor to
modify settings of your entity, JDeveloper updates the component's XML definition
file and optional custom Java files.

4.10 Setting Attribute Properties

The declarative framework helps you set attribute properties easily. In all cases, you
set these properties in the Edit Attribute dialog, which you can access from the
Attributes page of the overview editor.

4.10.1 How to Set Database and Java Data Types for an Entity Object Attribute

The Persistent property controls whether the attribute value corresponds to a
column in the underlying table, or whether it is just a transient value. If the attribute is
persistent, the Database Column area lets you change the name of the underlying
column that corresponds to the attribute and indicate its column type with precision
and scale information (e.g. VARCHAR2 (40) or NUMBER (4, 2)). Based on this information,
at runtime the entity object enforces the maximum length and precision/scale of the
attribute value, and throws an exception if a value does not meet the requirements.

Both the Business Components from Tables wizard and the Create Entity Object
wizard infer the Java type of each entity object attribute from the SQL type of the
database column type of the column to which it is related.

Creating a Business Domain Layer Using Entity Objects 4-31

Setting Attribute Properties

Note: The project’s Type Map setting also plays a role in determining
the Java data type. You specify the Type Map setting when you
initialize your business components project, before any business
components are created. For more information, see Section 3.3.1,
"Choosing a Connection, SQL Flavor, and Type Map."

The Attribute Type field (in the Edit Attribute dialog) allows you to change the Java
type of the entity attribute to any type you might need. The Database Column Type
field reflects the SQL type of the underlying database column to which the attribute is
mapped. The value of the Database Column Name field controls the column to which
the attribute is mapped.

Your entity object can handle tables with various column types, as listed in Table 4-1.
With the exception of the java.lang.String class, the default Java attribute types are
all in the oracle.jbo.domain and oracle.ord.im packages and support efficiently
working with Oracle database data of the corresponding type. The dropdown list for
the Attribute Type field includes a number of other common Java types that are also
supported.

Table 4-1 Default Entity Object Attribute Type Mappings

Oracle Column Type Entity Column Type Entity Java Type

NVARCHAR2 (n), VARCHAR2 (n), VARCHAR2 java.lang.String

NCHAR VARYING (n),

VARCHAR (n)

NUMBER NUMBER oracle.jbo.domain.Number
DATE DATE oracle.jbo.domain.Date
TIMESTAMP (n), TIMESTAMP (n) TIMESTAMP java.sql.Timestamp

WITH TIME ZONE,

TIMESTAMP (n) WITH LOCAL

TIME ZONE

LONG LONG java.lang.String

RAW (n) RAW oracle.jbo.domain.Raw

LONG RAW LONG RAW oracle.jbo.domain.Raw

ROWID ROWID oracle.jbo.domain.RowID
NCHAR, CHAR CHAR oracle.jbo.domain.Char

CLOB CLOB oracle.jbo.domain.ClobDomain
NCLOB NCLOB oracle. jbo.domain.NClobDomain
BLOB BLOB oracle.jbo.domain.BlobDomain
BFILE BFILE oracle.jbo.domain.BFileDomain
ORDSYS.ORDIMAGE ORDSYS.ORDIMAGE oracle.ord.im.OrdImageDomain
ORDSYS.ORDVIDEO ORDSYS.ORDVIDEO oracle.ord.im.OrdvideoDomain
ORDSYS.ORDAUDIO ORDSYS.ORDAUDIO oracle.ord.im.OrdAudioDomain
ORDSYS.ORDDOC ORDSYS.ORDDOC oracle.ord.im.OrdDocDomain

4-32 Fusion Developer's Guide for Oracle Application Development Framework

Setting Attribute Properties

Note: In addition to the types mentioned here, you can use any Java
object type as an entity object attribute's type, provided it implements
the java.io.Serializable interface.

4.10.2 How to Indicate Data Type Length, Precision, and Scale

When working with types that support defining a maximum length like VARCHAR2 (n),
the Database Column Type field (in the Edit Attribute dialog) includes the maximum
attribute length as part of the value. For example, an attribute based on a

VARCHAR2 (10) column in the database will initially reflect the maximum length of 10
characters by showing VARCHAR2 (10) as the database column type. If for some reason
you want to restrict the maximum length of the String-valued attribute to fewer
characters than the underlying column will allow, just change the maximum length of
the Database Column Type value.

For example, if the EMAIL column in the PERSONS table is VARCHAR2 (50), then by default
the Email attribute in the Persons entity object defaults to the same. But if you know
that the actual email addresses are always 8 characters or fewer, you can update the
database column type for the Email attribute to be VARCHAR2 (8) to enforce a maximum
length of 8 characters at the entity object level.

The same holds for attributes related to database column types that support defining a
precision and scale like NUMBER (p[, s]). For example, to restrict an attribute based on a
NUMBER (7, 2) column in the database to instead have a precision of 5 and a scale of 1,
just update the value of the Database Column Type field to be NUMBER (5, 1).

4.10.3 How to Control the Updatability of an Attribute

The Updatable property controls when the value of a given attribute can be updated.
You can select the following values:

= Always, the attribute is always updatable
= Never, the attribute is read-only

= While New, the attribute can be set during the transaction that creates the entity
row for the first time, but after being successfully committed to the database the
attribute is read-only

Note: In addition to the static declaration of updatability, you can
also add custom code in the isAttributeUpdateable () method of the
entity to determine the updatability of an attribute at runtime.

4.10.4 How to Make an Attribute Mandatory

Select the Mandatory checkbox if the field is required. The mandatory property is
enforced during entity-level validation at runtime (and not when the attribute
validators are run).

4.10.5 How to Define the Primary Key for the Entity

The Primary Key property indicates whether the attribute is part of the key that
uniquely identifies the entity. Typically, you use a single attribute for the primary key,
but multiattribute primary keys are fully supported.

Creating a Business Domain Layer Using Entity Objects 4-33

Setting Attribute Properties

At runtime, when you access the related Key object for any entity row using the
getKey () method, this Key object contains the value of the primary key attribute for
the entity object. If your entity object has multiple primary key attributes, the Key
object contains each of their values. It is important to understand that these values
appear in the same relative sequential order as the corresponding primary key
attributes in the entity object definition.

For example, if the OrderItemEO entity object has multiple primary key attributes
OrderId and LineItemId. On the Entity Attribute page of the overview editor, OrderId
is first, and LineItemId is second. An array of values encapsulated by the XKey object
for an entity row of type OrderItemEO will have these two attribute values in exactly
this order.

It is crucial to be aware of the order in which multiple primary key attributes appear
on the Entity Attributes page. If you try to use £indByPrimaryKey () to find an entity
with a multiattribute primary key, and the Key object you construct has these multiple
primary key attributes in the wrong order, the entity row will not be found as
expected.

4.10.6 How to Define a Static Default Value

The Value field (in the Edit Attribute dialog) allows you to specify a static default
value for the attribute when the Value Type is set to Literal. For example, you can set
the default value of the ServiceRequest entity object's Status attribute to Open, or set
the default value of the User entity object's UserRole attribute to user.

Note: When more than one attribute is defaulted for an entity object,
the attributes are defaulted in the order in which they appear in the
entity object’s XML file.

4.10.7 How to Define a Default Value Using a Groovy Expression

You can use a Groovy expression to define a default value for an attribute. This
approach is useful if you want to be able to change default values at runtime, but if the
default value is always the same, the value is easier to see and maintain using the
Default field (in the Edit Attribute dialog). For general information about using
Groovy, see Section 3.6, "Overview of Groovy Support.”

To define a default value using a Groovy expression:
1. In the Application Navigator, double-click the entity to open the overview editor.

2. In the overview editor, click the Attributes navigation tab.
3. On the Attributes page, select the desired attribute and click the Edit icon.

4. In the Edit Attribute dialog, select Expression for the value type, and click Edit
(next to the Value field).

5. Enter a Groovy expression in the field provided, and click OK.
6. Click OK.

4.10.8 What Happens When You Create a Default Value Using a Groovy expression

When you define a default value using a Groovy expression, a
<TransientExpression> tag is added to the entity object’s XML file within the
appropriate attribute. Figure 4-8 shows sample XML code for an Groovy expression
that gets the current date for a default value.

4-34 Fusion Developer's Guide for Oracle Application Development Framework

Setting Attribute Properties

Example 4-8 Default Date Value
<TransientExpression>
<! [CDATA[
newValue <= adf.currentDate

11>
</TransientExpression>

4.10.9 How to Synchronize with Trigger-Assigned Values

If you know that the underlying column value will be updated by a database trigger
during insert or update operations, you can enable the respective Insert or Update
checkboxes in the Refresh After area (in the Edit Attribute dialog) to ensure the
framework automatically retrieves the modified value and keeps the entity object and
database row in sync. The entity object will use the Oracle SQL RETURNING INTO
feature, while performing the INSERT or UPDATE to return the modified column back to
your application in a single database roundtrip.

Note: If you create an entity object for a synonym that resolves to a
remote table over a DBLINK, use of this feature will give an error at
runtime like:

JB0-26041: Failed to post data to database during "Update"
Detail 0
ORA-22816: unsupported feature with RETURNING clause

Section 38.6, "Basing an Entity Object on a Join View or Remote
DBLink" describes a technique to circumvent this database limitation.

4.10.10 How to Get Trigger-Assigned Primary Key Values from a Database Sequence

One common case for refreshing an attribute after insert occurs when a primary key
attribute value is assigned by a BEFORE INSERT FOR EACH ROW trigger. Often the trigger
assigns the primary key from a database sequence using PL/SQL logic. Example 4-9
shows an example of this.

Example 4-9 PL/SQL Code Assigning a Primary Key from a Database Sequence

CREATE OR REPLACE TRIGGER ASSIGN_SVR_ID
BEFORE INSERT ON SERVICE_REQUESTS FOR EACH ROW
BEGIN
IF :NEW.SVR_ID IS NULL OR :NEW.SVR_ID < 0 THEN
SELECT SERVICE_REQUESTS_SEQ.NEXTVAL
INTO :NEW.SVR_ID
FROM DUAL;
END IF;
END;

In the Edit Attribute dialog, you can set the value of the Type field to the built-in data
type named DBSequence and the primary key will be assigned automatically by the
database sequence. Setting this data type automatically selects the refresh after Insert
checkbox.

Creating a Business Domain Layer Using Entity Objects 4-35

Setting Attribute Properties

Note: The sequence name shown on the Sequence tab is used only at
design time when you use the Create Database Tables feature
described in Section 4.2.6, "How to Create Database Tables from Entity
Objects." The sequence indicated here will be created along with the
table on which the entity object is based.

When you create a new entity row whose primary key is a DBSequence, a unique
negative number is assigned as its temporary value. This value acts as the primary key
for the duration of the transaction in which it is created. If you are creating a set of
interrelated entities in the same transaction, you can assign this temporary value as a
foreign key value on other new, related entity rows. At transaction commit time, the
entity object issues its INSERT operation using the RETURNING INTO clause to retrieve
the actual database trigger-assigned primary key value. In a composition relationship,
any related new entities that previously used the temporary negative value as a
foreign key will get that value updated to reflect the actual new primary key of the
master.

You will typically also set the Updatable property of a DBSequence-valued primary
key to Never. The entity object assigns the temporary ID, and then refreshes it with the
actual ID value after the INSERT operation. The end user never needs to update this
value.

For information on how to implement this functionality for an association that is not a
composition, see Section 38.8.3.3, "Understanding Associations Based on
DBSequence-Valued Primary Keys."

Note: For a metadata-driven alternative to the DBSequence
approach, see Section 4.12.5, "Assigning the Primary Key Value Using
an Oracle Sequence."

4.10.11 How to Protect Against Losing Simultaneously Updated Data

At runtime, the framework provides automatic "lost update" detection for entity
objects to ensure that a user cannot unknowingly modify data that another user has
updated and committed in the meantime. Typically, this check is performed by
comparing the original values of each persistent entity attribute against the
corresponding current column values in the database at the time the underlying row is
locked. Before updating a row, the entity object verifies that the row to be updated is
still consistent with the current state of the database. If the row and database state are
inconsistent, then the entity object raises the RowInconsistentException.

You can make the lost update detection more efficient by identifying any attributes of
your entity whose values you know will be updated whenever the entity is modified.
Typical candidates include a version number column or an updated date column in
the row. The change-indicator attribute’s value might be assigned by a database trigger
you’'ve written and refreshed in the entity object using the Refresh After Insert and
Refresh After Update options (in the Edit Attribute dialog). Alternatively, you can
indicate that the entity object should manage updating the change-indicator attribute’s
value using the history attribute feature described in Section 4.10.12, "How to Track
Created and Modified Dates Using the History Column." To detect whether the row
has been modified since the user queried it in the most efficient way, select the Change
Indicator option to compare only the change-indicator attribute values.

4-36 Fusion Developer's Guide for Oracle Application Development Framework

Setting Attribute Properties

4.10.12 How to Track Created and Modified Dates Using the History Column

If you need to keep track of historical information in your entity object, such as when
an entity was created or modified and by whom, or the number of times the entity has
been modified, you specify an attribute with the History Column option selected (in
the Edit Attribute dialog).

If an attribute's data type is Number, String, or Date, and if it is not part of the primary
key, then you can enable this property to have your entity automatically maintain the
attribute's value for historical auditing. How the framework handles the attribute
depends which type of history attribute you indicate:

s Created On: This attribute is populated with the time stamp of when the row was
created. The time stamp is obtained from the database.

s Created By: The attribute is populated with the name of the user who created the
row. The user name is obtained using the getUserPrincipalName () method on the
Session object.

s Modified On: This attribute is populated with the time stamp whenever the row
is updated/created.

= Modified By: This attribute is populated with the name of the user who creates or
updates the row.

= Version Number: This attribute is populated with a long value that is incremented
whenever a row is created or updated.

4.10.13 How to Configure Composition Behavior

An entity object exhibits composition behavior when it creates (or composes) other
entities, such as an OrderEO entity creating a OrderItemEO entity. This additional
runtime behavior determines its role as a logical container of other nested entity object
parts. Because of this relationship, a composition association cannot be based on a
transient attribute.

Note: Composition also affects the order in which entities are
validated. For more information, see Section 7.2.3, "Understanding the
Impact of Composition on Validation Order."

The features that are always enabled for composing entity objects are described in the
following sections:

= Section 4.10.13.1, "Orphan-Row Protection for New Composed Entities"
= Section 4.10.13.2, "Ordering of Changes Saved to the Database"

= Section 4.10.13.3, "Cascade Update of Composed Details from Refresh-On-Insert
Primary Keys"

The additional features, and the properties that affect their behavior, are described in
the following sections:

= Section 4.10.13.4, "Cascade Delete Support"

= Section 4.10.13.5, "Cascade Update of Foreign Key Attributes When Primary Key
Changes"

= Section 4.10.13.6, "Locking of Composite Parent Entities"
= Section 4.10.13.7, "Updating of Composing Parent History Attributes"

Creating a Business Domain Layer Using Entity Objects 4-37

Setting Attribute Properties

4.10.13.1 Orphan-Row Protection for New Composed Entities

When a composed entity object is created, it performs an existence check on the value
of its foreign key attribute to ensure that it identifies an existing entity as its owning
parent entity. At create time, if no foreign key is found or else a value that does not
identify an existing entity object is found, the entity object throws an
InvalidOwnerException instead of allowing an orphaned child row to be created
without a well-identified parent entity.

Note: The existence check finds new pending entities in the current
transaction, as well as existing ones in the database if necessary.

4.10.13.2 Ordering of Changes Saved to the Database

Composition behavior ensures that the sequence of data manipulation language
(DML) operations performed in a transaction involving both composing and
composed entity objects is performed in the correct order. For example, an INSERT
statement for a new composing parent entity object will be performed before the DML
operations related to any composed children.

4.10.13.3 Cascade Update of Composed Details from Refresh-On-Insert Primary
Keys

When a new entity row having a primary key configured to refresh on insert is saved,
then after its trigger-assigned primary value is retrieved, any composed entities will
have their foreign key attribute values updated to reflect the new primary key value.

There are a number of additional composition related features that you can control
through settings on the Association Properties page of the Create Association wizard
or the overview editor. Figure 4-12 shows the Relationships page for the
OrderItemsOrdersFkAssoc association between two entity objects: OrderItemEO and
OrderEO.

4.10.13.4 Cascade Delete Support

You can either enable or prevent the deletion of a composing parent while composed
children entities exist. When the Implement Cascade Delete option (see Figure 4-12)
is deselected, the removal of the composing entity object is prevented if it contains any
composed children.

Figure 4-12 Composition Settings on Relationship Page of Overview Editor for
Associations

- Behavior

Specify the behavioral aspects of this association.

Use Database Key Constraints
["] Optimize for Database Cascade Delete
Implement Cascade Delete
Composition Association

[[] cascade Update Key Attributes

[Update Top-evel History Columns

Lock Level:

(@) None (C)Lock Container () Lock Top-evel Container

4-38 Fusion Developer's Guide for Oracle Application Development Framework

Setting Attribute Properties

When selected, this option allows the composing entity object to be removed
unconditionally together with any composed children entities. If the related Optimize
for Database Cascade Delete option is deselected, then the composed entity objects
perform their normal DELETE statement at transaction commit time to make the
changes permanent. If the option is selected, then the composed entities do not
perform the DELETE statement on the assumption that the database ON DELETE CASCADE
constraint will handle the deletion of the corresponding rows.

4.10.13.5 Cascade Update of Foreign Key Attributes When Primary Key Changes

Select the Cascade Update Key Attributes option (see Figure 4-12) to enable the
automatic update of the foreign key attribute values in composed entities when the
primary key value of the composing entity is changed.

4.10.13.6 Locking of Composite Parent Entities

Select the Lock Top-Level Container option (see Figure 4-12) to control whether
adding, removing, or modifying a composed detail entity row should attempt to lock
the composing entity before allowing the changes to be saved.

4.10.13.7 Updating of Composing Parent History Attributes

Select the Update Top-Level History Columns option (see Figure 4-12) to control
whether adding, removing, or modifying a composed detail entity object should
update the Modified By and Modified On history attributes of the composing parent
entity.

4.10.14 How to Set the Discriminator Attribute for Entity Object Inheritance Hierarchies

Sometimes a single database table stores information about several different kinds of
logically related objects. For example, a payroll application might work with hourly,
salaried, and contract employees all stored in a single EMPLOYEES table with an
EMPLOYEE_TYPE column. In this case, the value of the EMPLOYEE_TYPE column contains
values like H, S, or C to indicate respectively whether a given row represents an hourly,
salaried, or contract employee. And while it is possible that many attributes and
behavior are the same for all employees, certain properties and business logic may also
depend on the type of employee.

In situations where common information exists across related objects, it may be
convenient to represent these different types of entity objects using an inheritance
hierarchy. For example, attributes and methods common to all employees can be part
of a base Employee entity object, while subtype entity objects like HourlyEmployee,
SalariedEmployee, and ContractEmployee extend the base Employee object and add
additional properties and behavior. The Discriminator attribute setting is used to
indicate which attribute's value distinguishes the type of row. Section 38.7, "Using
Inheritance in Your Business Domain Layer," explains how to set up and use
inheritance.

4.10.15 How to Define Alternate Key Values

Database primary keys are often generated from a sequence and may not be data you
want to expose to the user for a variety of reasons. For this reason, it’s often helpful to
have alternate key values that are unique. For example, you might want to enforce that
every customer have a unique email address. Because a customer may change their
email address, you won’t want to use that value as a primary key, but you still want
the user to have a unique field they can use for login or other purposes.

Creating a Business Domain Layer Using Entity Objects 4-39

Creating Business Events

Alternate keys are useful for direct row lookups via the £indByKey class of methods.
Alternate keys are frequently used for efficient uniqueness checks in the middle tier.
For information on how to find out if a value is unique, see Section 7.4.1, "How to
Ensure That Key Values Are Unique."

To define an alternate key, you use the Create Entity Constraint wizard.

To define alternate key values:

1. In the Application Navigator, right-click an entity object and choose New Entity
Constraint.

2. Follow the steps in the Create Entity Constraint wizard to name your constraint
and select the attribute or attributes that participate in the key.

3. On the Properties page, select Alternate Key and choose the appropriate Key
Properties options.

For more information about the Key Properties options, press the F1 key or click
Help.

4.10.16 What Happens When You Define Alternate Key Values

When you define alternate key values, a hashmap is created for fast access to entities
that are already in memory.

4.10.17 What You May Need to Know About Alternate Key Values

The Unique key constraint is used only for forward generation of UNIQUE constraints in
the database, not for alternate key values.

4.11 Creating Business Events

Business events raised from the model layer are useful for launching business
processes and triggering external systems synchronization by way of the Oracle
Mediator.

Oracle Mediator supports declarative subscriptions which map business events to
actions. In other words, you can define and publish a business event (such as a new
customer being created) in one component, and then subscribe to that event in another
component so that a business process is notified when it occurs. You can then, in the
subscribing component, proceed with an action you assign to that event (such as
sending a welcome new customer email).

You declaratively define business events at the entity level. You may also specify
conditions under which those events should be raised. Business events that meet the
specified criteria are raised upon successful commit of the changed data. A business
event is raised to the Mediator on a successful create, update, or delete of an entity
object.

To implement a business event, you first create an event definition, then map that
event definition to an event point, then publish that definition. After the business
event is published, you can subscribe to the event from another component.

4-40 Fusion Developer's Guide for Oracle Application Development Framework

Creating Business Events

Note: Do not configure a business event to be raised on an effective
dated parent entity object from an effective dated child entity object in
a master-detail relationship. Because child objects can raise events on
parent objects, and effective dated entity objects cause row splits
during update and delete operations, it is possible for the child object
to raise an event on the wrong parent object if both the parent and
child are updated during the same transaction. For more information
about effective dated entity objects, see Section 4.2.8, "How to Store
Data Pertaining to a Specific Point in Time."

4.11.1 Introducing Event Definitions

An event definition describes an event that will be published and raised with an event
system Mediator. An event definition is stored in an entity object’s XML file with the
elements shown in Table 4-2.

Table 4-2 Event Definition Elements for Entity Objects

Element Description
Event Name Name of the event, for example, OrderUpdated
Payload A list of attributes sent to the subscriber. Attributes marked as

optional appear on payload only if changed.

4.11.2 Introducing Event Points

An event point is a place from which an event can be raised. On a successful commit,
one of the event points shown in Table 4-3 can be raised to the Mediator for each
entity in a transaction.

Table 4-3 Example Event Points Raised to the Mediator

DML Type Event Name Event Description

CREATE EntityCreated A new Entity has been created.
UPDATE EntityUpdated An existing Entity has been updated.
DELETE EntityDeleted An existing Entity has been deleted.

Note that no events are raised by default; all events are custom. When you create the
event, you can specify the name and DML operation appropriately.

For each event point, you must specify which event definitions should be raised on a
particular event point. In other words, you must declaratively map each event
definition to an event point.

4.11.3 What You May Need to Know About Event Points

Transactional event delivery, where event delivery is part of the transaction, is not
supported by the framework.

Synchronous events, where the publisher waits for further processing until the
subscriber has confirmed event reception, is not supported by the framework.

4.11.4 How to Create a Business Event

To create a business event, use the Business Events page of the overview editor.

Creating a Business Domain Layer Using Entity Objects 4-41

Creating Business Events

To create a business event:
1. In the Application Navigator, double-click an entity object.

2. In the overview editor, click the Business Events navigation tab.

3. On the Business Events page, expand the Event Definitions section and click the
New icon.

4. In the Create Business Event Definition dialog, provide a name that describes this
event, such as EmployeeContactInfoChanged.

5. In the payload table, click New and Delete to select the appropriate attributes for
this event.

Alternatively, you can double-click the cell and pick the attributes you want.

Note: Only attributes of supported types are displayed in the Entity
Attribute column. While ClobDomain attributes are supported, very
large clob data can impact performance.

6. In the Value Sent field, choose whether the value should Always be sent, or Only
if changed.

The Only if changed option provides the best performance because the attribute
will be considered optional for the payload. If you leave the default Always, the
payload will require the attribute whether or not the value has changed. For more
details about payload efficiency, see Section 4.11.6, "What You May Need to Know
About Payload Size."

7. Use the arrow buttons to rearrange the order of attributes.

The order that the attributes appear in defines their order in the generated XSD.
Since you'll be using the XSD to build your Fabric mediator and BPEL process,
you might want the most frequently accessed attributes at the top.

8. Click OK.

Repeat the procedure for each business event that you want to define. To publish an
event, see Section 4.11.7, "How to Publish a Business Event."

4.11.5 What Happens When You Create a Business Event

When you create a business event, the entity object’s XML file is updated with the
event definition. Example 4-10 shows an example of the XML code for a business
event. JDeveloper also generates an associated XSD file for the event schema that
allows specification of required attributes and optional attributes. Required attributes
correspond to Value Sent - Always in the Create Business Event Definition dialog,
whereas optional attributes are those for which you changed Value Sent to Only if
changed.

Example 4-10 XML Code for a Business Event

<EventDef
Name="CustBusEventl">
<Payload>
<PayloadItem
AttrName="Order.OrderId"/>
<PayloadItem
AttrName="LineItemId"/>
<PayloadItem

4-42 Fusion Developer's Guide for Oracle Application Development Framework

Creating Business Events

AttrName="ProductBase.ProductId"
SendOnlyIfChanged="true"/>
</Payload>
</EventDef>

Example 4-11 shows an example of the XSD event schema for a business event.

Example 4-11 XSD Event Schema for a Business Event

<?xml version = '1.0' encoding = 'UTF-8'?>
<xs:schema
targetNamespace="/oracle/fodemo/storefront/entities/events/schema/OrderItemEQ"
xmlns="/oracle/fodemo/storefront/entities/events/schema/OrderItemEQ"
elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="CustBusEventlInfo">
<xs:complexType>
<xs:sequence>
<xs:element name="Order.OrderId" type="DecimalValuePair" minOccurs="1"/>
<xs:element name="LineItemId" type="DecimalValuePair" minOccurs="1"/>
<xs:element name="ProductBase.ProductId" type="DecimalValuePair" minOccurs="0"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="ValuePair" abstract="true"/>
<xs:complexType name="DecimalValuePair">
<xs:complexContent>
<xs:extension base="ValuePair">
<XS:sequence>
<xs:element name="newValue" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xs:anyType">
<xs:attribute name="value" type="xs:decimal"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="oldValue" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xs:anyType">
<xs:attribute name="value" type="xs:decimal"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:schema>

Example 4-12 shows an example of the EDL event definition for the entity object.

Example 4-12 EDL Event Definition for the Entity Object

<definitions
targetNamespace="/oracle/fodemo/storefront/entities/events/edl/OrderItemEQ"
xmlns:ns0="/oracle/fodemo/storefront/entities/events/schema/OrderItemEQ"
xmlns="http://schemas.oracle.com/events/edl">

Creating a Business Domain Layer Using Entity Objects 4-43

Creating Business Events

<schema-import
namespace="/oracle/fodemo/storefront/entities/events/schema/OrderItemEOQ"
location="0OrderItemEO.xsd"/>
<event-definition name="CustBusEventl">
<content element="ns0:CustBusEventlInfo"/>
</event-definition>
</definitions>

4.11.6 What You May Need to Know About Payload Size

The attributes of the associated entity object constitute the payload of a business event.
The payload attributes for a business event are defined by the creator of the event. It
isn't automatically optimized. When the event is defined, an attribute can be marked
as sent Always or Only if changed. For events fired during creation, only new values
are sent. For events fired during an update or delete, the new and old values are sent
and only the attributes that should be based on the Value Sent setting. For best
performance, you should include only the primary key attribute for delete events.

To support composition scenarios (such as a purchase order with line items), a child
entity can raise events defined on the parent entity, and events defined on the child
entity can include attributes from the parent entity. When a child entity raises an event
on a parent entity, only a single event is raised for a particular top-level entity per
transaction, regardless of how many times the child entity raises it.

In the case of entity subtypes (for example, a Manager entity object is a subtype of the
User entity), ADF Business Components does not support overriding of business
events. Because the subscriber to a business event listens to the event using the event
name, overriding of events could cause the event subscriber to receive payload data
unintended for that subscriber. Therefore, this capability is not supported.

When defining business events, remember that while ClobDomain attributes are
supported, very large clob data can have performance implications.

4.11.7 How to Publish a Business Event

To publish a business event, use the Business Events page of the entity objects
overview editor.

To publish a business event:
1. In the Application Navigator, double-click an entity object.

2. In the overview editor, click the Business Events navigation tab.

3. On the Business Events page, expand the Event Publication section and click the
Edit event publications icon.

4. In the Edit Event Publications dialog, click New to create a new event.
5. Double-click the new cell in Event column, and select the appropriate event.

6. Double-click the corresponding cell in Event Point column, and select the
appropriate event point action.

7. You can optionally define conditions for raising the event using the Raise
Conditions table.

8. C(lick OK.

4.11.8 How to Subscribe to Business Events

After you have created a business event, you can subscribe and respond to the event.

4-44 Fusion Developer's Guide for Oracle Application Development Framework

Working Programmatically with Entity Objects and Associations

Before you begin:
= Open (or create) the SCA project that will subscribe to the business event.

To subscribe to a business event:

1. Using the file system, copy the XSD and event definition files for the business
event into your SCA project's source path.

2. In the Application Navigator, right-click the project, and choose New.

3. Inthe New Gallery, expand SOA Tier, select Service Components and then
Mediator, and click OK.

4. In the Create Mediator dialog, select the Subscribe to Events template, as shown
in Figure 4-13.

Figure 4-13 Create Mediator Dialog, Subscribe to Events

© Create Mediator @

Mediator Component %
reate a mediator component to perform rouking, filkering, and transformations.
Mame: | Mediatarl |
Template: |Q,Z Subscribe to Events v|)
T |4 X
Event Consistency Fun as Roles Filter
| Help | Cancel

5. Click the Add icon to add an event.

6. In the Event Chooser dialog, click the Browse icon to navigate to and select the
event’s definition file, and then click OK.

7. In the Create Mediator dialog, you can optionally change the Consistency option
and specify a Filter for the event.

8. Click OK to generate the mediator.
The resulting mediator (.mplan file) is displayed in the overview editor.

9. You can now click the Add icon in the Routing Rules section to add a rule for how
to respond to the event.

4.12 Working Programmatically with Entity Objects and Associations

You may not always need or want Ul-based or programmatic clients to work directly
with entity objects. Sometimes, you may just want to use an external client program to
access an application module and work directly with the view objects in its data
model. Chapter 5, "Defining SQL Queries Using View Objects" describes how to easily
combine the flexible SQL-querying of view objects with the business logic enforcement

Creating a Business Domain Layer Using Entity Objects 4-45

Working Programmatically with Entity Objects and Associations

and automatic database interaction of entity objects to build powerful applications.
The combination enables a fully updatable application module data model, designed
to meet the needs of the current end-user tasks at hand, that shares the centralized
business logic in your reusable domain business object layer.

However, it is important first to understand how view objects and entity objects can be
used on their own before learning to harness their combined power. By learning about
these objects in greater detail, you will have a better understanding of when you
should use them alone and when to combine them in your own applications.

Since clients don't work directly with entity objects, any code you write that works
programmatically with entity objects will typically be custom code in a custom
application module class or in the custom class of another entity object.

4.12.1 How to Find an Entity Object by Primary Key

To access an entity row, you use a related object called the entity definition. At runtime,
each entity object has a corresponding entity definition object that describes the
structure of the entity and manages the instances of the entity object it describes. After
creating an application module and enabling a custom Java class for it, imagine you
wanted to write a method to return a specific order. It might look like the
retrieveOrderById() method shown in Example 4-13.

To find an entity object by primary key:
1. Find the entity definition.

You obtain the entity definition object for the OrderEO entity by passing its fully
qualified name to the static getDefinitionObject () method imported from the
EntityDefImpl class. The EntityDefImpl class in the oracle.jbo.server package
implements the entity definition for each entity object.

2. Construct a key.

You build a Key object containing the primary key attribute that you want to look
up. In this case, you're creating a key containing the single orderId value passed
into the method as an argument.

3. Find the entity object using the key.

You use the entity definition's findByPrimaryKey () method to find the entity
object by key, passing in the current transaction object, which you can obtain from
the application module using its getDBTransaction() method. The concrete class
that represents an entity object row is the oracle.jbo.server.EntityImpl class.

4. Return the object or some of its data to the caller.

Example 4-13 show example code for a retrieveOrderById() method developed
using this basic procedure.

Example 4-13 Retrieving an OrderEO Entity Object by Key

/* Helper method to return an Order by Id */
private OrderEOImpl retrieveOrderById(long orderId) {
EntityDefImpl orderDef = OrderEOImpl.getDefinitionObject();
Key orderKey = OrderEOImpl.createPrimaryKey (new DBSequence (orderId));
return (OrderEOImpl)orderDef.findByPrimaryKey (getDBTransaction(),orderKey) ;
}

4-46 Fusion Developer's Guide for Oracle Application Development Framework

Working Programmatically with Entity Objects and Associations

Note: The oracle.jbo.Key object constructor can also take an Object
array to support creating multiattribute keys, in addition to the more
typical single-attribute value keys.

4.12.2 How to Access an Associated Entity Using the Accessor Attribute

You can create a method to access an associated entity based on an accessor attribute
that requires no SQL code. For example, the method findOrderCustomer () might find
an order, then access the associated PersonEO entity object representing the customer
assigned to the order. For an explanation of how associations enable easy access from
one entity object to another, see Section 4.3, "Creating and Configuring Associations."

To avoid a conflict with an existing method in the application module that finds the
same associated entity using the same accessor attribute, you can refactor this
functionality into a helper method that you can then reuse anywhere in the application
module it is required. For example, the retrieveOrderById() method (shown in
Example 4-13) refactors the functionality that finds an order.

To access an associated entity object using the accessor attribute:
1. Find the associated entity by the accessor attribute.

The findOrderCustomer () method uses the retrieveOrderById() helper method
to retrieve the OrderEO entity object by ID.

2. Access the associated entity using the accessor attribute.

Using the attribute getter method, you can pass in the name of an association
accessor and get back the entity object on the other side of the relationship. (Note
that Section 4.3.3, "How to Change Entity Association Accessor Names," explains
that renaming the association accessor allows it to have a more intuitive name.)

3. Return some of its data to the caller.

The findOrderCustomer () method uses the getter methods on the returned
PersonEQ entity to return the assigned customer's name by concatenating their first
and last names.

Notice that you did not need to write any SQL to access the related PersonEO entity.
The relationship information captured in the ADF association between the OrderE0
and PersonEO entity objects is enough to allow the common task of data navigation to
be automated.

Example 4-14 shows the code for findOrderCustomer () that uses the helper method.

Example 4-14 Accessing an Associated Entity Using the Accessor Attribute

/* Access an associated Customer entity from the Order entity */
public String findOrderCustomer (long orderId) {
//1. Find the OrderEO object
OrderEOImpl order = retrieveOrderById(orderId);

if (order '= null) {
//2. Access the PersonEO object using the association accessor attribute
PersonEOImpl cust = (PersonEOImpl)order.getPerson();
if (cust != null) {
//3. Return attribute values from the associated entity object
return cust.getFirstName() + " " + cust.getLastName();
}
else {

return "Unassigned";

Creating a Business Domain Layer Using Entity Objects 4-47

Working Programmatically with Entity Objects and Associations

}
}
else {
return null;

}

4.12.3 How to Update or Remove an Existing Entity Row

Once you've got an entity row in hand, it's simple to update it or remove it. You could
add a method like the updateOrderStatus () shown in Example 4-15 to handle the job.

To update an entity row:
1. Find the Order by ID.

Using the retrieveOrderById() helper method, the updateOrderStatus ()
method retrieves the OrderEO entity object by Id.

2. Set one or more attributes to new values.

Using the EntityImpl class' setAttribute () method, the updateOrderStatus ()
method updates the value of the Status attribute to the new value passed in.

3. Commit the transaction.

Using the application module's getDBTransaction () method, the
updateOrderStatus () method accesses the current transaction object and calls its
commit () method to commit the transaction.

Example 4-15 Updating an Existing Entity Row

/* Update the status of an existing order */
public void updateOrderStatus(long orderId, String newStatus) {
//1. Find the order
OrderEOImpl order = retrieveOrderById(orderId);
if (order != null) {
//2. Set its Status attribute to a new value
order.setOrderStatusCode (newStatus) ;
//3. Commit the transaction
try {
getDBTransaction () .commit () ;
}
catch (JboException ex) {
getDBTransaction() .rollback();
throw ex;
}
}
}

The example for removing an entity row would be the same, except that after finding
the existing entity, you would use the following line instead to remove the entity
before committing the transaction:

// Remove the entity instead!
order.remove () ;

4.12.4 How to Create a New Entity Row

In addition to using the entity definition to find existing entity rows, you can also use
it to create new ones. In the case of product entities, you could write a
createProduct () method like the one shown in Example 4-16 to accept the name and

4-48 Fusion Developer's Guide for Oracle Application Development Framework

Working Programmatically with Entity Objects and Associations

description of a new product, and return the new product ID assigned to it. This
example assumes that the ProductId attribute of the ProductBaseEO entity object has
been updated to have the DBSequence type (see Section 4.10.10, "How to Get
Trigger-Assigned Primary Key Values from a Database Sequence"). This setting
ensures that the attribute value is refreshed to reflect the value of the trigger from the
corresponding database table, assigned to it from the table’s sequence in the
application schema.

To create an entity row:
1. Find the entity definition.

Using the getDefinitionObject () method, the createProduct () method finds
the entity definition for the Product entity.

2. Create a new instance.

Using the createInstance2 () method on the entity definition, the
createProduct () method creates a new instance of the entity object.

Note: The method name has a 2 at the end. The regular
createInstance () method has protected access and is designed to be
customized as described Section E.2.4, "EntityImpl Class" of
Appendix E, "Most Commonly Used ADF Business Components
Methods." The second argument of type AttributeList is used to
supply attribute values that must be supplied at create time; it is not
used to initialize the values of all attributes found in the list. For
example, when creating a new instance of a composed child entity
row using this API, you must supply the value of a composing parent
entity's foreign key attribute in the AttributeList object passed as the
second argument. Failure to do so results in an
InvalidOwnerException.

3. Set attribute values.

Using the attribute setter methods on the entity object, the createProduct ()
method assigns values for the Name, Status, and other attributes in the new entity
TOW.

4. Commit the transaction.

Calling commit () on the current transaction object, the createProduct () method
commits the transaction.

5. Return the trigger-assigned product ID to the caller.

Using the attribute getter method to retrieve the value of the ProductId attribute
as a DBSequence, and then calling get SequenceNumber () . longValue (), the
createProduct () method returns the sequence number as a long value to the
caller.

Example 4-16 Creating a New Entity Row

/* Create a new Product and Return its new id */
public long createProduct (String name, String status, String shipCode) {
//1. Find the entity definition for the Product entity
EntityDefImpl productDef = ProductBaseEOImpl.getDefinitionObject();
//2. Create a new instance of a Product entity
ProductBaseEOImpl newProduct =
(ProductBaseEOImpl)productDef.createInstance2 (getDBTransaction(),null);

Creating a Business Domain Layer Using Entity Objects 4-49

Working Programmatically with Entity Objects and Associations

//3. Set attribute values
newProduct . setProductName (name) ;
newProduct.setProductStatus (status) ;
newProduct.setShippingClassCode (shipCode) ;
newProduct.setSupplierId(new Number (100));
newProduct.setListPrice (new Number (499));
newProduct.setMinPrice (new Number (479));
newProduct.setCreatedBy ("Test Client");
newProduct.setLastUpdatedBy ("Test Client");
newProduct.setCategoryId(new Number (5));
//4. Commit the transaction
try {
getDBTransaction() .commit () ;

}

catch (JboException ex) {
getDBTransaction() .rollback() ;
throw ex;

//5. Access the database-trigger-assigned ProductId value and return it
DBSequence newlIdAssigned = newProduct.getProductId();
return newIdAssigned.getSequenceNumber () .longValue();

4.12.5 Assigning the Primary Key Value Using an Oracle Sequence

As an alternative to using a trigger-assigned value (as described in Section 4.10.10,
"How to Get Trigger-Assigned Primary Key Values from a Database Sequence"), you
can assign the value to a primary key when creating a new row using an Oracle
sequence. This metadata-driven approach allows you to centralize the code to retrieve
the primary key into a single Java file that can be reused by multiple entity objects.

Example 4-17 shows a simple CustomEntityImpl framework extension class on which
the entity objects are based. Its overridden create () method tests for the presence of a
custom attribute-level metadata property named SequenceName and if detected,
populates the attribute's default value from the next number in that sequence.

Example 4-17 CustomEntitylmpl Framework Extension Class

package sample;

import oracle.jbo.AttributeDef;

import oracle.jbo.AttributelList;
import oracle.jbo.server.EntityImpl;
import oracle.jbo.server.SequenceImpl;

public class CustomEntityImpl extends EntityImpl {
protected void create(AttributeList attributeList) {
super.create(attributelist);
for (AttributeDef def : getEntityDef().getAttributeDefs()) {
String sequenceName = (String)def.getProperty ("SequenceName") ;
if (sequenceName != null) {
SequenceImpl s = new Sequencelmpl (sequenceName,getDBTransaction());
setAttribute (def.getIndex (), s.getSequenceNumber ()) ;

4-50 Fusion Developer's Guide for Oracle Application Development Framework

Generating Custom Java Classes for an Entity Object

To assign the primary key value using an Oracle sequence:

1. Create the CustomEntityImpl.java file in your project, and insert the code shown
in Example 4-17.

2. Inthe Application Navigator, double-click the entity you want to edit.

3. In the overview editor, click the Attributes navigation tab, and double-click the
attribute you want to edit.

4. In the Edit Attribute dialog, set the attribute Type to Number, and then click the
Custom Properties node.

5. Enter SequenceName for the name.

6. Enter the name of the database sequence for the value, click Add, and then click
OK to create the custom property.

For example, a Dept entity could define the custom property SequenceName on its
Deptno attribute with the value DEPT_TABLE_SEQ.

4.12.6 What You May Need to Know About Custom Entity Object Methods

Custom methods that you implement in the entity object class must not be dependent
on the return type of an application module. At runtime, in specific cases, methods
that execute with such a dependency may throw a ClassCastException because the
returned application module does not match the expected type. It is therefore
recommended that custom methods that you implement should not have code to get a
specific application module implementation or view object implementation as shown
below.

((MyAM) getTransaction() .getRootApplicationModule()) .getMyVO

Specifically, the above code fails with a ClassCastException in the following
scenarios:

= When your code uses the entity object in the context of a different view object,
other that the view object that you reference in the method. Because your
application may map more than one view object definition to the same same entity
object, the ADF Business Components runtime does not guarantee that methods
with dependencies on the view object will execute consistently.

= When you manually nest an application module under a root application module.
In this case, the nested application modules share the same Transaction object
and there is no guarantee that the expected application module type is returned
with the above code.

= When the ADF Business Components framework implementation changes with
releases. For example, in previous releases, the framework created an internal root
application module in order to control declarative transactions that the application
defined using ADF task flows.

4.13 Generating Custom Java Classes for an Entity Object

As described in this chapter, all of the database interaction and a large amount of
declarative runtime functionality of an entity object can be achieved without using
custom Java code. When you need to go beyond the declarative features to implement
custom business logic for your entities, you'll need to enable custom Java generation
for the entities that require custom code. Appendix E, "Most Commonly Used ADF
Business Components Methods," provides a quick reference to the most common code

Creating a Business Domain Layer Using Entity Objects 4-51

Generating Custom Java Classes for an Entity Object

that you will typically write, use, and override in your custom entity object and entity
definition classes.

4.13.1 How to Generate Custom Classes

To enable the generation of custom Java classes for an entity object, use the Java page
of the overview editor.

To generate a custom Java class for an entity object:
1. In the Application Navigator, double-click the entity.

2. In the overview editor, click the Java navigation tab, and then click the Edit icon.

3. In the Select Java Options dialog, select the types of Java classes you want to
generate.

= Entity Object Class — the most frequently customized, it represents each row
in the underlying database table.

= Entity Collection Class — rarely customized.

= Entity Definition Class — less frequently customized, it represents the related
class that manages entity rows and defines their structure.

4. C(lick OK.

4.13.2 What Happens When You Generate Custom Classes

When you select one or more custom Java classes to generate, JDeveloper creates the
Java file(s) you've indicated. For example, assuming an entity object named
fodemo.storefront.entities.OrderEQ, the default names for its custom Java files will
be OrderEOImpl.java for the entity object class and OrderEODefImpl.java for the
entity definition class. Both files are created in the same
./fodemo/storefront/entities directory as the component's XML component
definition file.

The Java generation options for the entity object continue to be reflected on subsequent
visits to the Java page of the overview editor. Just as with the XML definition file,
JDeveloper keeps the generated code in your custom Java classes up to date with any
changes you make in the editor. If later you decide you didn't require a custom Java
file for any reason, disabling the relevant options on the Java page causes the custom
Java files to be removed.

4.13.3 What Happens When You Generate Entity Attribute Accessors

When you enable the generation of a custom entity object class, if you also enable the
Accessors option, then JDeveloper generates getter and setter methods for each
attribute in the entity object. For example, an OrderEO entity object that has the
corresponding custom OrderEOImpl . java class might have methods (like those shown
in Example 4-18) generated in it.

Example 4-18 Getter and Setter Methods from OrderEOImpl.java

public DBSequence getOrderId() { ... }

public void setOrderId(DBSequence value) { ... }
public Date getOrderDate() { ... }

public void setOrderDate(Date value) { ... }

4-52 Fusion Developer's Guide for Oracle Application Development Framework

Generating Custom Java Classes for an Entity Object

public String getOrderStatusCode() { ... }

public void setOrderStatusCode(String value) { ... }
public Number getCustomerId() { ... }

public void setCustomerId(Number value) { ... }
public String getShipToName() { ... }

public void setShipToName (String value) { ... }

These methods allow you to work with the row data with compile-time checking of
the correct data type usage. That is, instead of writing a line like this to get the value of
the CustomerId attribute:

Number customerId = (Number)order.getAttribute("CustomerId");

you can write the code like:

Number customerId = order.getCustomerId();

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed CustomerCode instead of CustomerId:

// spelling name wrong gives compile error
Number customerId = order.getCustomerCode() ;

Without the generated entity object accessor methods, an incorrect line of code like the
following cannot be caught by the compiler:

// Both attribute name and type cast are wrong, but compiler cannot catch it
String customerId = (String)order.getAttribute ("CustomerCode");

It contains both an incorrectly spelled attribute name, as well as an incorrectly typed
cast of the getAttribute () return value. When you use the generic APIs on the Row
interface, which the base EntityImpl class implements, errors of this kind raise
exceptions at runtime instead of being caught at compile time.

4.13.4 How to Navigate to Custom Java Files

As shown in Figure 4-14, when you've enabled generation of custom Java classes, they
also appear as child nodes under the Application Sources node for the entity object.
As with all ADF components, when you select an entity object in the Application
Navigator, the Structure window provides a structural view of the entity. When you
need to see or work with the source code for a custom Java file, there are two ways to
open the file in the source editor:

= You can right-click the Java file, and choose Open from the context menu, as
shown in Figure 4-14.

= You can right-click an item in a node in the Structure window, and choose Go To
Source from the context menu.

Creating a Business Domain Layer Using Entity Objects 4-53

Generating Custom Java Classes for an Entity Object

Figure 4-14 Seeing and Navigating to Custom Java Classes for an Entity Object

Application MNavigator | E]
StareFrontModuls - -
Projects B @@ V&=

-{E] StareFrantService

BB Application Sources

=/ oracle.Fodema, starefront
Iﬁ account

[l adfextensions
[=--[fll entities

[l associations
[l events

[l Formatters

[l validators

3 AddressEQ

3 AddressilsageEC
AddressUsageED . xml

@ AddresslsagamoTemels

5 addressilsa Qpen

]... availableLangua Exclude Project Content
- [CategoryTransla K pelete

J--- CountryCodeEQ

-

JON = O O B B

Find Usages... Crl+Alt-U
J--- CouponlsageE:
[CustomerTdentifi Make Ctil+ Shift-Fa
= R o IR

4.13.5 What You May Need to Know About Custom Java Classes

See the following sections for additional information about custom Java classes.

4.13.5.1 About the Framework Base Classes for an Entity Object

When you use an XML-only entity object, at runtime its functionality is provided by
the default ADF Business Components implementation classes. Each custom Java class
that is generated will automatically extend the appropriate ADF Business Components
base class so that your code inherits the default behavior and you can easily add to or
customize it. An entity object class will extend EntityImpl, while the entity definition
class will extend EntityDefImpl (both in the oracle.jbo.server package).

4.13.5.2 You Can Safely Add Code to the Custom Component File

Some developers are hesitant to add their own code to generated Java source files.
Each custom Java source code file that JDeveloper creates and maintains for you
includes the following comment at the top of the file to clarify that it is safe for you to
add your own custom code to this file.

[s
/] === File generated by Oracle ADF Business Components Design Time.
/] === Custom code may be added to this class.

/] === Warning: Do not modify method signatures of generated methods.
[m e

JDeveloper does not blindly regenerate the file when you click OK or Apply in an edit
dialog. Instead, it performs a smart update to the methods that it needs to maintain,
leaving your own custom code intact.

4.13.5.3 Configuring Default Java Generation Preferences

You can generate custom Java classes for your view objects when you need to
customize their runtime behavior or when you simply prefer to have strongly typed
access to bind variables or view row attributes.

To configure the default settings for ADF Business Components custom Java
generation, you can choose Preferences from the Tools menu and open the Business

4-54 Fusion Developer's Guide for Oracle Application Development Framework

Generating Custom Java Classes for an Entity Object

Components page to set your preferences to be used for business components created
in the future. Developers getting started with ADF Business Components should set
their preference to generate no custom Java classes by default. As you run into a
specific need for custom Java code, you can enable just the bit of custom Java you need
for that one component. Over time, you'll discover which set of defaults works best for
you.

4.13.5.4 Attribute Indexes and InvokeAccessor Generated Code

The entity object is designed to function based on XML only or as an XML component
definition combined with a custom Java class. To support this design choice, attribute
values are not stored in private member fields of an entity's class (a file that is not
present in the XML-only situation). Instead, in addition to a name, attributes are also
assigned a numerical index in the entity's XML component definition based on the
zero-based, sequential order of the <Attribute> and association-related
<AccessorAttribute> tags in that file. At runtime, attribute values in an entity row are
stored in a sparse array structure managed by the base EntityImpl class, indexed by
the attribute's numerical position in the entity's attribute list.

For the most part, this private implementation detail is unimportant, since as a
developer using entity objects, you are shielded from having to understand this.
However, when you enable a custom Java class for your entity object, this
implementation detail relates to some of the generated code that JDeveloper maintains
in your entity object class. It is sensible to understand what that code is used for. For
example, in the custom Java class for an OrderEO entity object, each attribute or
accessor attribute has a corresponding generated integer enum. JDeveloper ensures
that the values of these enums correctly reflect the ordering of the attributes in the
XML component definition.

You'll also notice that the automatically maintained, strongly typed getter and setter
methods in the entity object class use these attribute enums, as shown in
Example 4-19.

Example 4-19 Getter and Setter Methods Using Attribute Constants in the Custom
Entity Java Class

// In oracle.fodemo.storefront.entities.OrderEOImpl class
public Date getOrderDate() {

return (Date)getAttributelInternal (ORDERDATE); // <-- Attribute enum
}

public void setOrderDate (Date value) {
setAttributeInternal (ORDERDATE, value); // <-- Attribute enum

}

Another aspect of the automatically maintained code related to entity attribute enums
are the getAttrInvokeAccessor () and setAttrInvokeAccessor () methods. These
methods optimize the performance of attribute access by numerical index, which is
how generic code in the EntityImpl base class typically accesses attribute values when
performing generic processing. An example of the getAttrInvokeAccessor () method
is shown in Example 4-20. The companion setAttrInvokeAccessor () method looks
similar.

Example 4-20 getAttrinvokeAccessor() Method in the Custom Entity Java Class

// In oracle.fodemo.storefront.entities.OrderEOImpl class
/** getAttrInvokeAccessor: generated method. Do not modify. */
protected Object getAttrInvokeAccessor (int index, AttributeDefImpl attrDef)
throws Exception {
if ((index >= AttributesEnum.firstIndex()) && (index < AttributesEnum.count())) {

Creating a Business Domain Layer Using Entity Objects 4-55

Generating Custom Java Classes for an Entity Object

return AttributesEnum.staticValues() [index - AttributesEnum.firstIndex()].get(this);

}

return super.getAttrInvokeAccessor (index, attrDef);

}

The rules of thumb to remember about this generated attribute-index related code are
the following.

The Do’s
= Add custom code if needed inside the strongly typed attribute getter and setter
methods.

= Use the overview editor to change the order or type of entity object attributes.

JDeveloper changes the Java signature of getter and setter methods, as well as the
related XML component definition for you.

The Don'ts
s Don’t modify the getAttrInvokeAccessor () and setAttrInvokeAccessor ()
methods.

= Don't change the values of the attribute index numbers manually.

Note: If you need to manually edit the generated attribute enums
because of source control merge conflicts or other reasons, you must
ensure that the zero-based ordering reflects the sequential ordering of
the <Attribute> and <AccessorAttribute> tags in the corresponding
entity object XML component definition.

4.13.6 Programmatic Example for Comparison Using Custom Entity Classes

To better evaluate the difference of using custom generated entity classes versus
working with the generic EntityImpl class, Example 4-21 shows a version of methods
in a custom entity class (StoreFrontServiceImpl.java) from a custom application
module class (StoreFrontService2Impl.java). Some important differences to notice
are:

= Attribute access is performed using strongly typed attribute accessors.

= Association accessor attributes return the strongly typed entity class on the other
side of the association.

s Using the getDefinitionObject () method in your custom entity class allows you
to avoid working with fully qualified entity definition names as strings.

s The createPrimaryKey () method in your custom entity class simplifies creating
the Key object for an entity.

Example 4-21 Programmatic Entity Examples Using Strongly Typed Custom Entity
Object Classes

package devguide.examples.appmodules;
import oracle.fodemo.storefront.entities.OrderEOImpl;

import oracle.fodemo.storefront.entities.PersonEOImpl;
import oracle.fodemo.storefront.entities.ProductBaseEOImpl;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;

4-56 Fusion Developer's Guide for Oracle Application Development Framework

Generating Custom Java Classes for an Entity Object

import
import
import
import
import
import

oracle.
oracle.
oracle.

oracle

oracle.
oracle.

jbo.
jbo.
jbo.
.jbo.
jbo.
jbo.

Key;

client.Configuration;
domain.DBSequence;
domain.Number;
server.ApplicationModuleImpl;
server.EntityDefImpl;

i
File generated by Oracle ADF Business Components Design Time.
Custom code may be added to this class.

Warning: Do not modify method signatures of generated methods.
[/ =

/) ---
/) ===
/) ===

/**

* This custom application module class illustrates the same

* example methods as StoreFrontServiceImpl.java, except that here

* we're using the strongly typed custom Entity Java classes

* OrderEOImpl, PersonsEOImpl, and ProductsBaseEOImpl instead of working
* with all the entity objects using the base EntityImpl class.

*/

public class StoreFrontService2Impl extends ApplicationModuleImpl {
/**This is the default constructor (do not remove).

*/

public StoreFrontService2Impl () {

}
/*

* Helper method to return an Order by Id

*

/

private OrderEOImpl retrieveOrderById(long orderId) ({

EntityDefImpl orderDef = OrderEOImpl.getDefinitionObject();

Key orderKey = OrderEOImpl.createPrimaryKey (new DBSequence (orderId)) ;
return (OrderEOImpl)orderDef.findByPrimaryKey (getDBTransaction(),orderKey) ;

/*

* Find an Order by Id

*

/

public String findOrderTotal (long orderId) {
OrderEOImpl order = retrieveOrderById(orderId);
if (order !'= null) {

return order.getOrderTotal () .toString();

/*

}

return null;

* Create a new Product and Return its new id

*

/

public long createProduct (String name, String status, String shipCode) {
EntityDefImpl productDef = ProductBaseEOImpl.getDefinitionObject();
ProductBaseEOImpl newProduct =
(ProductBaseEOImpl)productDef.createInstance2 (getDBTransaction(),null);
newProduct.setProductName (name) ;
newProduct.setProductStatus (status) ;
newProduct.setShippingClassCode (shipCode) ;
newProduct.setSupplierId(new Number (100));
newProduct.setListPrice (new Number (499));
newProduct.setMinPrice (new Number (479));
newProduct.setCreatedBy ("Test Client");
newProduct.setLastUpdatedBy ("Test Client");

Creating a Business Domain Layer Using Entity Objects 4-57

Generating Custom Java Classes for an Entity Object

newProduct.setCategoryId(new Number (5));
try {
getDBTransaction() .commit () ;
}
catch (JboException ex) {
getDBTransaction() .rollback();
throw ex;
}
DBSequence newlIdAssigned = newProduct.getProductId();
return newIdAssigned.getSequenceNumber () .longValue();

/*
* Update the status of an existing order
*/

public void updateRequestStatus(long orderId, String newStatus) {
OrderEOImpl order = retrieveOrderById(orderId);

if (order !'= null) {
order.setOrderStatusCode (newStatus) ;
try {

getDBTransaction () .commit () ;

}

catch (JboException ex) {
getDBTransaction () .rollback();

throw ex;
}
}
}
/*
* Access an associated Customer entity from the Order entity
*/

public String findOrderCustomer (long orderId) {
OrderEOImpl svcReq = retrieveOrderById(orderId);
if (svcReqg != null) {

PersonEOImpl cust = (PersonEOImpl)svcReq.getPerson();
if (cust != null) {

return cust.getFirstName() + " " + cust.getLastName();
}
else {

return "Unassigned";

}
else {
return null;

/*
* Testing method
*/
public static void main(String[] args) {
String amDef = "devguide.model.StoreFrontService";
String config = "StoreFrontServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule (amDef, config) ;
/*
* NOTE: This cast to use the StoreFrontServiceImpl class is OK since
* this code is inside a business tier *Impl.java file and not in a
* client class that is accessing the business tier from "outside".
*/

4-58 Fusion Developer's Guide for Oracle Application Development Framework

Adding Transient and Calculated Attributes to an Entity Object

StoreFrontServiceImpl service = (StoreFrontServiceImpl)am;

String total = service.findOrderTotal (1011);
System.out.println("Status of Order # 1011 = " + total);

String customerName = service.findOrderCustomer (1011);
System.out.println("Customer for Order # 1011 = " + customerName) ;
try {

service.updateOrderStatus (1011, "CANCEL") ;
}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());
}
long id = 0;
try {
id = service.createProduct (null, "NEW", "CLASS1");
}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());
}
id = service.createProduct ("Canon PowerShot G9", "NEW", "CLASS1");
System.out.println("New product created successfully with id = "+id);
Configuration.releaseRootApplicationModule (am, true) ;

4.14 Adding Transient and Calculated Attributes to an Entity Object

In addition to having attributes that map to columns in an underlying table, your
entity objects can include transient attributes that display values calculated (for
example, using Java or Groovy) or that are value holders. For example, a transient
attribute you create, such as FullName, could be calculated based on the concatenated
values of FirstName and LastName attributes.

Once you create the transient attribute, you can perform a calculation in the entity
object Java class, or use a Groovy expression in the attribute definition to specify a
default value.

If you want to be able to change the value at runtime, you can use a Groovy
expression. If the calculated value is not likely to change (for example, if it’s a sum of
the line items), you can perform the calculation directly in the entity object Java class.

4.14.1 How to Add a Transient Attribute

Use the Attributes page of the overview editor to create a transient attribute.

To add a transient attribute to an entity object:
1. In the Application Navigator, double-click the entity.

2. In the overview editor, click the Attributes navigation tab, and then click the New
icon.

Enter a name for the attribute.

Set the Java attribute type.

Disable the Persistent option.

If the value will be calculated, set Updatable to Never.
Click OK.

N o a > @

Creating a Business Domain Layer Using Entity Objects 4-59

Adding Transient and Calculated Attributes to an Entity Object

4.14.2 What Happens When You Add a Transient Attribute

When you add a transient attribute, JDeveloper updates the XML component
definition for the entity object to reflect the new attribute.

The <Attribute> tag of a transient attribute has no TableName and a ColumnName of
$none$, as shown in Example 4-22.

Example 4-22 XML Code for a Transient Attribute

<Attribute
Name="FullName"
IsUpdateable="false"
IsQueriable="false"
IsPersistent="false"
ColumnName="$nones"
Type="java.lang.String"
ColumnType="$none$"
SQLType="VARCHAR" >

</Attribute>

In contrast, a persistent entity attribute has both a TableName and a ColumnName, as
shown in Example 4-23.

Example 4-23 XML Code for a Persistent

<Attribute
Name="FirstName"
IsNotNull="true"
Precision="30"
ColumnName="FIRST NAME"
Type="java.lang.String"
ColumnType="VARCHAR2"
SQLType="VARCHAR"
TableName="USERS" >

</Attribute>

4.14.3 How to Base a Transient Attribute On a Groovy Expression

When creating a transient attribute, you can use a Groovy expression to provide the
default value.

To create a transient attribute based on a Groovy expression:

1. Create a new attribute, as described in the first four steps of Section 4.14.1, "How
to Add a Transient Attribute."

2. In the Application Navigator, double-click the entity.

3. In the overview editor, click the Attributes navigation tab, and then click the New
icon.

4. Inthe New Entity Attribute dialog box, enter a name for the attribute.
5. Set the Java attribute type.
6. Click the Edit button next to the Value field.

Expressions that you define are evaluated using the Groovy scripting language, as
described in Section 3.6, "Overview of Groovy Support.” Groovy lets you insert
expressions and variables into strings. The expression is saved as part of the entity
object definition.

4-60 Fusion Developer's Guide for Oracle Application Development Framework

Adding Transient and Calculated Attributes to an Entity Object

7. In the Edit Expression dialog, enter an expression in the field provided, as shown

in Figure 4-15.

Attributes that you reference can include any attribute that the entity object
defines. Do not reference attributes in the expression that are not defined by the

entity object.

Figure 4-15 Edit Expression Dialog

& Edit Expression Editorn

X

Expression:
(iduantity == mall) 7 0 @ Quantity) * ((UnitPrice ==
mally ? 0 : ThitPrice)

Enter a Recaloulate Expression For the expression abowve: |g|

(3) Always

() Based on the Following expression;

Select attributes that this attribute is dependent upon, These dependencies are
used during database queries and attribute recalculation,

Available:
CreatedBy
CreationDate
LastlpdateDate
LastUpdatedBy
LineItemId
LiskPrice
Obijectyersionld
OrderId
ProductId
ShippingCaost

Selected:
CQuanktity
UritPrice

&4 ¥y

| Help | | [al'd J | Cancel

8. Select the appropriate recalculate setting.

If you select Always (default), the expression is evaluated each time any attribute
in the row changes. If you select Never, the expression is evaluated only when the

row is created.

9. You can optionally provide a condition for when to recalculate the expression.

For example, the following expression in the Based on the following expression
field causes the attribute to be recalculated when either the Quantity attribute or

the UnitPrice attribute are changed:

return (adf.object.isAttributeChanged("Quantity") ||
adf.object.isAttributeChanged ("UnitPrice"));

10. You can also list attributes on which this attribute is dependent.

In Figure 4-15, the Quantity and UnitPrice attributes are selected, which causes
the attribute to be recalculated when either attribute is changed.

11. Click OK to save the expression.

12. Then click OK to create the attribute.

Creating a Business Domain Layer Using Entity Objects 4-61

Adding Transient and Calculated Attributes to an Entity Object

Note: If either the value expression or the optional recalculate
expression that you define references an attribute from the base entity
object, you must define this as a dependency on the Dependencies
page of the Edit Attribute dialog. In the Dependency page, locate the
attributes in the Available list and shuttle each to the Selected list.

4.14.4 What Happens When You Base a Transient Attribute on Groovy Expression

When you base a transient attribute on a Groovy expression, a
<TransientExpression> tag is added to the entity object’s XML file within the
appropriate attribute, as shown in Example 4-24.

Example 4-24 Calculating a Transient Attribute Using a Groovy Expression

<TransientExpression>
<! [CDATA[
((Quantity == null) ? 0 : Quantity) * ((UnitPrice == null) ? 0 : UnitPrice)
11>
</TransientExpression>

4.14.5 How to Add Java Code in the Entity Class to Perform Calculation

A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to While New or Always, then the end user can
enter a value for the attribute. If you want the transient attribute to display a
calculated value, then you'll typically leave the Updatable property set to Never and
write custom Java code that calculates the value.

After adding a transient attribute to the entity object, to make it a calculated attribute
you need to:

= Enable a custom entity object class on the Java page of the overview editor,
choosing to generate accessor methods

» Write Java code inside the accessor method for the transient attribute to return the
calculated value

= Specify each dependent attribute for the transient attribute on the Dependencies
page of the Edit Attribute dialog

For example, after generating the view row class, the Java code to return the transient
attribute’s calculated value would reside in the getter method for the attribute (such as
FullName), as shown in Example 4-25.

Example 4-25 Getter Method for a Transient Attribute

// Getter method for FullName calculated attribute in UserImpl.java
public String getFullName() {
// Commented out original line since we'll always calculate the value
// return (String)getAttributeInternal (FULLNAME) ;
return getFirstName()+" "+getLastName();
}

To ensure that the transient attribute is reevaluated whenever the attributes to be
concatenated (such as LastName and FirstName) might be changed by the end user,
specify the dependent attributes for the transient attribute. On the Dependencies page
of the Edit Attribute dialog, locate the attributes in the Available list and shuttle each
to the Selected list.

4-62 Fusion Developer's Guide for Oracle Application Development Framework

Adding Transient and Calculated Attributes to an Entity Object

Creating a Business Domain Layer Using Entity Objects 4-63

Adding Transient and Calculated Attributes to an Entity Object

4-64 Fusion Developer's Guide for Oracle Application Development Framework

O

Defining SQL Queries Using View Objects

This chapter describes how to create ADF view objects to create SQL queries that join,
filter, sort, and aggregate data for use in an Oracle Application Development
Framework (Oracle ADF) application. It describes how view objects map their
SQL-derived attributes to database table columns and static data source, such as flat
files.

This chapter includes the following sections:

Section 5.1, "Introduction to View Objects"

Section 5.2, "Populating View Object Rows from a Single Database Table"
Section 5.3, "Populating View Object Rows with Static Data"

Section 5.4, "Limiting View Object Rows Using Effective Date Ranges"
Section 5.5, "Working with Multiple Tables in Join Query Results"

Section 5.6, "Working with Multiple Tables in a Master-Detail Hierarchy"
Section 5.7, "Working with a Single Table in a Recursive Master-Detail Hierarchy"
Section 5.8, "Working with View Objects in Declarative SQL Mode"

Section 5.9, "Working with View Objects in Expert Mode"

Section 5.10, "Working with Bind Variables"

Section 5.11, "Working with Named View Criteria"

Section 5.12, "Working with Row Finders"

Section 5.13, "Working with List of Values (LOV) in View Object Attributes"
Section 5.14, "Defining Control Hints for View Objects"

Section 5.15, "Adding Calculated and Transient Attributes to a View Object"

5.1 Introduction to View Objects

A view object is an Oracle Application Development Framework (Oracle ADF)
component that encapsulates a SQL query and simplifies working with its results.
There are several types of view objects that you can create in your ADF Business
Components project:

Entity-based view objects when data updates will be performed

Read-only view objects when updates to data are not necessary (can also be
entity-based)

Static data view objects for data defined by the view object itself

Defining SQL Queries Using View Objects 5-1

Introduction to View Objects

s Programmatically populated view objects (for more information, see Chapter 39,
"Advanced View Object Techniques")

An entity-based view object can be configured to support updatable rows when you
create view objects that map their attributes to the attributes of one or more existing
entity objects. The mapped entity object is saved as an entity usage in the view object
definition. In this way, entity-based view objects cooperate automatically with entity
objects to enable a fully updatable data model. The entity-based view object queries
just the data needed for the client-facing task and relies on its mapped entity objects to
automatically validate and save changes made to its view rows. An entity-based view
object encapsulates a SQL query, it can be linked into master-detail hierarchies, and it
can be used in the data model of your application modules.

5.1.1 Overview of View Object Concepts

View objects with no entity usage definition are always read-only. They do not pick up
entity-derived default values, they do not reflect pending changes, and they do not
reflect updated reference information. In contrast to entity-based view objects,
read-only view objects require you to write the query using the SQL query language. The
Create View Object wizard and overview editor for entity-based view objects, on the
other hand, simplify this task by helping you to construct the SQL query declaratively.
For this reason, it is almost always preferable to create a non-updatable,
entity-mapped view object, even when you want to create a view object just to read
data. Additionally, as an alternative to creating view objects that specify a SQL
statement at design time, you can create entity-mapped view objects that dynamically
generate SQL statements at runtime.

There remain a few situations where it is still preferable to create a non-entity-mapped
view object to read data, including SQL-based validation, Unions, and Group By
queries.

This chapter helps you understand these view object concepts as illustrated in
Figure 5-1:

= You define a view object by providing a SQL query (either defined explicitly or
declaratively).

= You use view object instances in the context of an application module that
provides the database transaction for their queries.

= You can link a view object to one or more others to create master-detail hierarchies.

= Atruntime, the view object executes your query and produces a set of rows
(represented by a RowSet object).

s Each row is identified by a corresponding row key.
= You iterate through the rows in a row set using a row set iterator.

= You can filter the row set a view object produces by applying a set of
Query-by-Example criteria rows.

5-2 Fusion Developer's Guide for Oracle Application Development Framework

Introduction to View Objects

Figure 5-1 A View Object Defines a Query and Produces a Row Set of Rows

ApplicationModule 1 Yse= 19 Transaction

¥
Contains Data Model Instances| 1

.] Can Be Filtered Usin
Linked TOL_.—_,-{J”] . * - Query by Exampleg —
vl ViewObject 8 “ ViewCriteria
¥
1
Defines Query to Produce Set Of | 1
*
*
Rows | j i j
lterates Rows In 1 RowSet 1 ViewCriteriaRow
N -
setof |01
Row Setlterator
*
Identified By -
Row "M ™) Key

5.1.2 Runtime Features Unique to Entity-Based View Objects

When a view object has one or more underlying entity usages, you can create new
rows, and modify or remove queried rows. The entity-based view object coordinates
with underlying entity objects to enforce business rules and to permanently save the
changes to the database. In addition, entity-based view objects provide these
capabilities that do not exist with read-only view objects:

= Changes in cache (updates, inserts, deletes) managed by entities survive the view
object’s execution boundary.

= Changes made to relevant entity object attributes through other view objects in the
same transaction are immediately reflected.

= Attribute values of new rows are initialized to the values from the underlying
entity object attributes.

= Changes to foreign key attribute values cause reference information to get
updated.

= Validation for row (entity) level is supported.

= Composition features, including validation, locking, ordered-updates are
supported.

= Support for effective dating, change indicator, and business events.

This chapter explains how instances of entity-based view objects contained in the data
model of your application module enable clients to search for, update, insert, and
delete business domain layer information in a way that combines the full data shaping
power of SQL with the clean, object-oriented encapsulation of reusable domain
business objects. And all without requiring a line of code.

This chapter helps you to understand these entity-based view object concepts as
illustrated in Figure 5-2:

= You define an updatable view object by referencing attributes from one or more
entity objects.

= You can use multiple, associated entity objects to simplify working with reference
information.

= You can define view links based on underlying entity associations.

Defining SQL Queries Using View Objects 5-3

Populating View Object Rows from a Single Database Table

= You use your entity-based view objects in the context of an application module
that provides the transaction.

= Atruntime, the view row delegates the storage and validation of its attributes to
underlying entity objects.

Figure 5-2 View Objects and Entity Objects Collaborate to Enable an Updatable Data
Model

= . 5 1 1
3 ApplicationModule 7:1‘- Transaction

Uses
Contains Data Model Instances | 1

Linked To Associated With
Q..

1 * 0.1
— g 5 0.1 * e A Ao
i ViewObject ——] EntityDefinition
eferences
* Attributes From *
Defines Query to Produce | 1 Manages | 1
*
= RowSet
SetOf | g1

* *

Delegates Storage
= Row and Validation To (=] Entity
L# ¥ aad

5.2 Populating View Object Rows from a Single Database Table

View objects provide the means to retrieve data from a data source. In the majority of
cases, the data source will be a database and the mechanism to retrieve data is the SQL
query. ADF Business Components can work with JDBC to pass this query to the
database and retrieve the result.

When view objects use a SQL query, query columns map to view object attributes in
the view object. The definition of these attributes, saved in the view object’s XML
definition file, reflect the properties of these columns, including data types and
precision and scale specifications.

Performance Tip: If the query associated with the view object
contains values that may change from execution to execution, use bind
variables. Using bind variables in the query allows the query to
reexecute without needing to reparse the query on the database. You
can add bind variables to the view object in the Query page of the
overview editor for the view object. For more information, see

Section 5.10, "Working with Bind Variables."

Using the same Create View Object wizard, you can create view objects that either map
to the attributes of existing entity objects or not. Only entity-based view objects
automatically coordinate with mapped entity objects to enforce business rules and to
permanently save data model changes. Additionally, you can disable the Updatable
feature for entity-based view objects and work entirely declaratively to query
read-only data. Alternatively, you can use the wizard or editor’s expert mode to work
directly with the SQL query language, but the view object you create will not support
the transaction features of the entity-based view object.

While there is a small amount of runtime overhead associated with the coordination
between view object rows and entity object rows, weigh this against the ability to keep
the view object definition entirely declarative and maintain a customizable view
object. Queries that cannot be expressed in entity objects, and that therefore require

5-4 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows from a Single Database Table

expert-mode query editing, include Unions and Group By queries. Expert mode-based
view objects are also useful in SQL-based validation queries used by the view
object-based Key Exists validator. Again, it is worth repeating that, by definition, using
expert mode to define a SQL query means the view object must be read-only.

For more information about the differences between entity-based view objects and
read-only view objects, see Section 5.1.2, "Runtime Features Unique to Entity-Based
View Objects."

5.2.1 How to Create an Entity-Based View Object

Creating an entity-based view object is the simplest way to create a view object. It is
even easier than creating an expert-mode, read-only view object, since you don't have
to type in the SQL statement yourself. An entity-based view object also offers
significantly more runtime functionality than its expert-mode counterpart.

In an entity-based view object, the view object and entity object play cleanly separated
roles:

s The view object is the data source: it retrieves the data using SQL.
s The entity object is the data sink: it handles validating and saving data changes.

Because view objects and entity objects have cleanly separated roles, you can build a
hundred different view objects — projecting, filtering, joining, sorting the data in
whatever way your user interfaces require, application after application — without
any changes to the reusable entity object. In fact, it is possible that the development
team responsible for the core business domain layer of entity objects might be
completely separate from another team responsible for the specific application
modules and view objects needed to support the end-user environment. This
relationship is enabled by metadata that the entity-based view object encapsulates. The
metadata specifies how the SELECT list columns are related to the attributes of one or
more underlying entity objects.

Your entity-based view object may be based on more than one database table. To use
database joins to add multiple tables to the view object, see Section 5.5, "Working with
Multiple Tables in Join Query Results."

5.2.1.1 Creating a View Object with All the Attributes of an Entity Object

When you want to allow the client to work with all of the attributes of an underlying
entity object, you can use the Create View Object wizard as described in Section 5.2.1.2,
"Creating an Entity-Based View Object from a Single Table." After selecting the entity
object, simply select all of its attributes on the Attributes page. However, for this
frequent operation, there is an even quicker way to perform the same task in the
Application Navigator.

Before you begin:

Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create a default entity-based view object:

1. In the Application Navigator, right-click the entity object and choose New Default
View Object.

This context menu option lets you create a view object based on a single entity
object that you select. If you need to add additional entity objects to the view
object definition, you can use the Entity Objects page of the view object overview
editor after you create the view object.

Defining SQL Queries Using View Objects 5-5

Populating View Object Rows from a Single Database Table

2. Provide a package and component name for the new view object in the Create
Default View Object dialog.

In the Create Default View Object dialog you can click Browse to select the
package name from the list of existing packages. For example, in Figure 5-3,
clicking Browse locates oracle.fodemo.storefront.enties package on the
classpath for the StoreFrontService project in the StoreFrontModule application.

Figure 5-3 Shortcut to Creating a Default View Object for an Entity Object

Create Default View Object

Package: |oracle.Fodemo.storeFront.entities | |Br0ﬂse...|

Marme: | PersonECYiew |

| Help | | [0]4 | | Cancel |

The new entity-based view object created will be identical to one you could have
created with the Create View Object wizard. By default, it will have a single entity
usage referencing the entity object you selected in the Application Navigator, and will
include all of its attributes. It will initially have neither a WHERE nor ORDER BY clause,
and you may want to use the overview editor for the view object to:

= Remove unneeded attributes
m Refine its selection with a WHERE clause
m Order its results with an ORDER BY clause

» Customize any of the view object properties

5.2.1.2 Creating an Entity-Based View Object from a Single Table

To create an entity-based view object, use the Create View Object wizard, which is
available from the New Gallery.

Before you begin:

Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create an entity-based view object from a single table:

1. In the Application Navigator, right-click the project in which you want to create
the view object and choose New.

2. Inthe New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Keep the default setting Updatable access through entity
objects enabled to indicate that you want this view object to manage data with its
base entity object. Click Next.

5. On the Entity Objects page, select an entity object whose data you want to use in
the view object. Click Next.

5-6 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows from a Single Database Table

An entry in this list is known as an entity usage, since it records the entity objects
that the view object will be using. Each entry could also be thought of as an entity
reference, since the view object references attributes from that entity. For
information about working table joins to create additional entity usages, see
Section 5.5, "Working with Multiple Tables in Join Query Results."

For example, Figure 5-4 shows the result after shuttling the PersonEO entity object
into the Selected list.

Figure 5-4 Create View Object Wizard, Entity Objects Page

® Create View Object - Step 2 of 9

Entity Objects

e Select entity objects for this view object.
\T" Entity Dbhjects Available: Selected: Subtypes...
attributes [z DemaOptionEC
T DiscountBaseED
l DiscountTranslationES
EligibleDiscountEQ 1
I aokupCadeED |§|
] MembershipBaseEQ —
MembershipTranslationEQ |]{ |
l COrderEQ
I OrderItemEC
= PaymentOpkionEC
3 P ersonEC
ot
Alias: | PersonED
Updatable
| Help | | < Back "M | Cancel |

6. On the Attributes page, select the attributes you want to include from each entity
usage in the Available list and shuttle them to the Selected list. Click Next.

For example, Figure 5-5 shows the attributes have been selected from the
PersonkO.

Defining SQL Queries Using View Objects 5-7

Populating View Object Rows from a Single Database Table

Figure 5-5 Create View Object Wizard, Attributes Page

® Create View Object - Step 3 of 9

Attributes
Seleck the attributes you want to include in this wiew object, Use the MNew button to add a new view

] attribute.

T— Entity Objects

) Attributes Available: Selected:

| § . CuskomerRegistration : Personld{PersonEC:PERSON_IDY

¥ Attribute Seftings 5# PersonEQ Principalame(PersanEC:PRINCIPAL_NA
[Personld Title{PersonEC: TITLE)

l @ Principallame FirstMame(PersonEC: FIRST _MAME)

I =53 Title LastMame(PersonECLAST_MAME)
553 Firsthame PersonTypeCode(PersonEQ:PERSON_TY

l 53 LastMame —— |Supplierld{PersonEC: SUPPLIER_IC —

I [E58) PersonTypeiCode |2| ProvisionedFlagPersonEC :PROYISIONEL |i|

| 53 Supplierld |?| PrimaryAddressIdiPersonEQ: PRIMARY_{ |@|
=@ ProvisionedFlag —— |ReqisteredDate(PersonE0:REGISTERED —
&3 PrimaryAddressId |§| Mermbershipld{PersonEC:MEMBER SHIP_]
[RegisteredDate Email{PersonEQ: EMAILL)
=@ MembershipId ConfirmedEmail{PersonE: COMFIRMED
=53 Email PhoneMumber{PersonEQ:PHONE _NUMEE
%8 ConfirmedErnail onelumber
@ PhoneMumber

.|
| Help | | < Back " Mext = i | Finish | | Cancel |

7. On the Attribute Settings page, optionally, use the Select Attribute dropdown list
to switch between the view object attributes in order to change their names or any
of their initial settings.

For more information about any of the attribute settings, press F1 or click Help.

8. On the Query page, optionally, add a WHERE and ORDER BY clause to the query to
filter and order the data as required. JDeveloper automatically generates the
SELECT statement based on the entity attributes you've selected.

Do not include the WHERE or ORDER BY keywords in the Where and Order By field
values. The view object adds those keywords at runtime when it executes the

query.

For example, Figure 5-6 shows the ORDER BY clause is specified to order the data
by first name, last name, and email.

5-8 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows from a Single Database Table

Figure 5-6 Create View Object Wizard, Query Page

® Create View Object - Step 5 of 9

Query

By default, the SELECT list and FROM clause are automatically maintained, To override this mechanism,
select Expert Mode.,

Generated Statement

. a PersonE0. CONTACT BY AFFILLIATES FLAG
Attribute Settings - - ’
PersonE0. CREATED_EY,
| Query PersonE0. CREATION DATE,
PersonE0. LAST UPDATED EY,
PersonE0. LAST UPDATE DATE,
DersonE0. OBJECT_VERZSION ID
FROM PERSONS PersonED
OFDEER BY PersonE0. FIRST NAME, PersonE0. LAST MAME, PersonEO0. EMATL

Bind ¥ariables

C—C—(—6§—B—8—C—C—

Query Clauses
where:

Order By: |PersonED.FIRST_NAHE,PersonED_ LAST MNAME, PersonE0_EMATL | |gdit... |

Einding Style: |Oracle MNamed v| |Exg|ain Flan... | |El

S0OL Mode: |N0rmal - |

| Help | | < Back " Mext = || Finish || Cancel |

9. When you are satisfied with the view object, click Finish.

5.2.2 What Happens When You Create an Entity-Based View Object

When you create a view object, JDeveloper creates the XML document file that
represents the view object's declarative settings and saves it in the directory that
corresponds to the name of its package. For example, the view object Orders, added to
the queries package, will have the XML file . /queries/Orders.xml created in the
project's source path.

To view the view object settings, select the desired view object in the Application
Navigator and open the Structure window. The Structure window displays the list of
XML definitions, including the SQL query, the name of the entity usage, and the
properties of each attribute. To open an XML definition in the editor, right-click the
corresponding node and choose Go to Source.

Note: If you configure JDeveloper preferences to generate default
Java classes for ADF Business Components, the wizard will also create
an optional custom view object class (for example, OrdersImpl.java)
and/or a custom view row class (for example, OrdersRowImpl.java).
For details about setting preferences, see Section 39.3.1.4, "Configuring
Default Java Generation Preferences.”

Figure 5-7 depicts the entity-based view object OrderItemsInfovO and the three entity
usages referenced in its query statement. The dotted lines represent the metadata
captured in the entity-based view object's XML document that map SELECT list
columns in the query to attributes of the entity objects used in the view object. The
query of the entity-based view object joins data from a primary entity usage
(OrderItemEO) with that from secondary reference entity usages (ProductBaseEO and
SupplierE0).

Defining SQL Queries Using View Objects 5-9

Populating View Object Rows from a Single Database Table

Figure 5-7 View Object Encapsulates a SQL Query and Entity Attribute Mapping Metadata

[caracie fodema strafrantertbes

OrderbernE0

— = —{Ordart - Nurizer

=== === |Linetemt : DBSequence

————— Fraductkd - Murribar

= — | Cuarity - Nuber

| o —|UnitPra : Mumbar

Cresa By - Siring

CressSanDette - Darter

Lastlipdate dBy - Sting
Lastlipdane Duite - Daater
Ciject

=ionkd < Murmbar

| Orderkems hfol'0

miTatal: Murmbar

ShimnnoCast: Humber
SELECT OrderItemEQ. OFDER ID, ———-—-—=--—-—=—=-—————————— - 4
OrderItemEQ. LINE_ITEM ID E .
OrderTtemE0. FRODUCT ID, - I‘
OrderItemEQ. QUANTITY, - -~
OrderTremED. THIT PEICE, ——-——-m==—mmmmmmm oo [aracie fodema strafrontertbes
ProdustBaseR0. PRIDUCT MAME, —————=—=—===== == === === ———— oo 1 e Bans)
SupplierE0, SUPPLIER NAME, ~—~—~"""-"-"----------oomooo—-o-oog
ProductBaseE0. PRODUCT_ID A5 PROCUCT IDL,
SupplierE0 SUPPLIER ID ------- ittt talet ittt
FROM ORDER_ITEMS OrderItemE0, PRODUCTS BASE ProductBaseEO,
SUPPLIERS Supp lierE0
WHERE OrderTremBEO. Product Td = IroductBaseEd. Product Td and
SupplierED. Supplier ID = IroductBaseED. Swplier ID

P
Pl
1l
P
1Vl
P
1l
P
Pl
I
T ListPrice - Mumbear
1Vl
P
Pl
1l
P
1Vl
P
I
-1
!

1 Fraductld - DB Sequance
Supplert - Nurmber

ListPrice : Mumber

i Price - Number

Warran tyPesiodMan s - Murtier
SimmngCassCode - Sirng
Externafiid - String
AritnteCatagary : Siring
Asritnitel - Sring

Aritnte - Sxing

Aritnited - Sxing

1

L858 s fordesna storafrantaribes
SuppierEO
——m =[St - e

Enal - Stng
USkn : Strng

5.2.3 How to Create an Expert Mode, Read-Only View Object

When you need full control over the SQL statement, the Create View Object wizard
lets you specify that you want a view object to be read-only. In this case, you will not
benefit from the declarative capabilities to define a non-updatable entity-based view
object. However, there are a few situations where it is desirable to create read-only
view objects using expert mode. Primarily, the read-only view object that you create
will be useful when you need to write Unions or Group By queries. Additionally, you
can use a read-only view object if you need to create SQL-based validation queries
used by the view object-based Key Exists validator, provided that you have marked a
key attribute.

Best Practice: Unlike entity-based view objects, read-only view
objects that you create in expert mode, will not define a key attribute
by default. While it is possible to create a read-only view object
without defining its key attribute, in expert mode it is a best practice
to select the attribute that corresponds to the queried table’s primary
key and mark it as the key attribute. The presence of a key attribute
ensures the correct runtime behavior for row set navigation. For
example, the user interface developer may create an LOV component
based on the read-only view object collection. Without a key attribute
to specify the row key value, the LOV may not behave properly and a
runtime error can result.

For more information about the tradeoffs between working with entity-based view
objects that you define as non-updatable and strictly read-only view objects, see
Section 39.2.2, "Consider Using Entity-Based View Objects for Read-Only Data."

5-10 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows from a Single Database Table

To create a read-only view object, use the Create View Object wizard, which is
available from the New Gallery.

To create a read-only view object:

1.

In the Application Navigator, right-click the project in which you want to create
the view object and choose New.

In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Read-only access through SQL query to indicate that
you want this view object to manage data with read-only access. Click Next.

On the Query page, use one of the following techniques:

= Type or paste any valid SQL statement into the Query Statement box. The
query statement can use a WHERE clause and an Order By clause. For example,
Figure 5-8 shows a query statement that uses a WHERE clause and an Order By
clause to query a list of country codes in the language used by the application.

» Click Query Builder to open the SQL Statement dialog and use the interactive
query builder.

Figure 5-8 Create View Object Wizard, Query Page

Create View Object - Step 2 of 9

Query

(—(—C—C—C—C(—€—@r—¢

Enter wour custom SELECT statement and click Tesk to check its swntax. Provide the ORDER BY clause

Mame
sepatately.

| Query Query Statement

Bind Yariables SELECT C.IS0_COUNTRY_CODE

C.COUNTRY_NAME

FROM COUNTRY _CODES C

WHERE LANGUAGE = SYE_CONTEXT ('USERENV','LANG')
ORDER BY C.COUNTRY NAME

Query Clauses

Order By: | | |§dit...|

Einding Style: |Oracle Mamed |Q_uery Builder. .. ||Exg|ain Flan... | |El

S0L Mode:

Help | < Back " Mext = | | Cancel |

Note: If the Entity Objects page displays instead of the Query page,
go back to Step 1 of the wizard and ensure that you've selected
Read-only Access.

Defining SQL Queries Using View Objects 5-11

Populating View Object Rows from a Single Database Table

After entering or building the query statement, click Next.
On the Bind Variables page, do one of the following:
= If the query does not reference any bind variables, click Next to skip Step 6.

» Toadd a bind variable and work with it in the query, see Section 5.10.1, "How
to Add Bind Variables to a View Object Definition."

On the Attribute Settings page, from the Select Attribute dropdown, select the
attribute that corresponds to the primary key of the queried table and then enable
the Key Attribute checkbox.

The Create View Object wizard auto-detects key attributes from the database and
enables the Key Attribute checkbox, as shown in Figure 5-9. Failure to define the
key attribute can result in unexpected runtime behavior for ADF Faces
components with a data control based on the view object collection.

Figure 5-9 Create View Object Wizard, Attribute Settings Page

& C

Attribute Settings

reate View Object - Step 6 of 9

-
P

C— ——HE - — —(—

Select Attribute: |IsoCountryC0de v|
Attribute Updatable
Mame: ‘IsoCountryCode |
Type: ‘String '| Browse...
Property Set: ‘<N0ne> '|
Attributes Value Type: (3) Literal () Expression ~
= () Aluays
Attribute Settings ialue: \ | -
() While News
il
ava Mapped to Column or SQL Key Attribute (3) Newer
Queryable
[] Discriminatar:
[] passivate
Query Column
Alias: |ISO_COUNTR\"_CODE Type: |[CHAR |
Expression: | 150_COUMTRY_CODE

Help < Back Mext = Finish Cancel

9.

On the Attribute Mappings page, click Finish.

Note: In the ADF Business Components wizards and editors, the
default convention is to use camel-capped attribute names, beginning
with a capital letter and using uppercase letters in the middle of the
name to improve readability when the name comprises multiple
words.

5.2.4 What Happens When You Create a Read-Only View Object

When you create a view object, JDeveloper first parses the query to infer the following
from the columns in the SELECT list:

5-12 Fusion Develope

The Java-friendly view attribute names (for example, CountryName instead of
COUNTRY_NAME)

r's Guide for Oracle Application Development Framework

Populating View Object Rows from a Single Database Table

By default, the wizard creates Java-friendly view object attribute names that
correspond to the SELECT list column names, as shown in Figure 5-10.

For information about using view object attribute names to access the data from
any row in the view object's result set by name, see Section 6.4, "Testing View
Object Instances Programmatically."

s The SQL and Java data types of each attribute

Figure 5-10 Create View Object Wizard, Attribute Mappings Page

& Create View Object - Step 4 of 9

Attribute Mappings
To remap a query column, click on its current view attribute and select a new one From the list, Attribute mapping only applies ko

’]\ Expert Mode.

.}, Bind Yariables

@ Attribute Mappings Query Columns \-'ifw Attributes

| [50_COUNTRY _CODE sz IsoCountryCode

T Attributes COUNTRY_NAME S8 CountryName
| Help | | < Back " Mext = | | Finish | | Cancel |

Each part of an underscore-separated column name like SOME_COLUMN_NAME is turned
into a camel-capped word (like SomeColumnName) in the attribute name. While the view
object attribute names correspond to the underlying query columns in the SELECT list,
the attribute names at the view object level need not match necessarily.

Tip: You can rename the view object attributes to any names that
might be more appropriate without changing the underlying query.

JDeveloper then creates the XML document file that represents the view object's
declarative settings and saves it in the directory that corresponds to the name of its
package. For example, the XML file created for a view object named CountriesVo in
the lookups package is . /lookups/CountriesV0.xml under the project's source path.

To view the view object settings, select the desired view object in the Application

Navigator and open the Structure window. The Structure window displays the list of
XML definitions, including the SQL query and the list of attributes. To open an XML
definition in the editor, right-click the corresponding node and choose Go to Source.

5.2.5 How to Edit a View Object

After you've created a view object, you can edit any of its settings in the overview
editor for the view object.

Defining SQL Queries Using View Objects 5-13

Populating View Object Rows from a Single Database Table

Performance Tip: How you configure the view object to fetch data
plays a large role in the runtime performance of the view object. For
information about the tuning parameters that you can edit to optimize
performance, see Section 6.3.10, "What You May Need to Know About
Optimizing View Object Runtime Performance."

To edit a view object definition:

1. In the Application Navigator, double-click the view object to open the overview
editor.

2. Select a navigation tab to open any editor page where you can adjust the SQL
query, change the attribute names, add named bind variables, add UI controls
hints, control Java generation options, and edit other settings.

5.2.5.1 Overriding the Inherited Properties from Underlying Entity Object Attributes

One interesting aspect of entity-based view objects is that each attribute that relates to
an underlying entity object attribute inherits that attribute’s properties. Figure 5-11
shows the Edit Attribute dialog with the inherited attribute selected. You can see that
fields like the Java attribute type and the query column type are disabled and their
values are inherited from the related attribute of the underlying entity object to which
this view object is related. Some properties like the attribute's data type are inherited
and cannot be changed at the view object level.

Other properties like Queryable and Updatable are inherited but can be overridden as
long as their overridden settings are more restrictive than the inherited settings. For
example, the attribute from underlying entity object might have an Updatable setting
of Always. As shown Figure 5-11, the Edit Attribute dialog allows you to set the
corresponding view object attribute to a more restrictive setting like While New or
Never. However, if the attribute in the underlying entity object had instead an
Updatable setting of Never, then the editor would not allow the view object’s related
attribute to have a less restrictive setting like Always.

Figure 5-11 View Object Attribute Properties Inherited from Underlying Entity Object

& Edit Attribute: LastName E|
':\'“)| view Attribute
thribuke Akkribute Updatable
Entity Attribute
Custom Properties
- Control Hinks
Dependencies Property Set: ‘ <Mone= - |
value Type: (@) Literal () Expression
Yalue: ‘ || Edit... |
Mapped to Column or SQL [Key Attribute
Selected in Query CQueryable
[Discriminator:
Query Calumn
Alias: LAST_MAME
Expression:
Help Apply | ‘ OF | | Cancel

5-14 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows from a Single Database Table

5.2.5.2 Controlling the Length, Precision, and Scale of View Object Attributes

When you display a particular attribute of the view object in the Edit Attribute dialog,
you can see and change the values of the declarative settings that control its runtime
behavior. One important property is the Type in the Query Column section, shown in
Figure 5-11. This property records the SQL type of the column, including the length
information for VARCHAR2 columns and the precision and scale information for NUMBER
columns.

Figure 5—-12 Custom Attribute Settings in the Edit Attribute Dialog

® Edit Attribute: FirstName

(g8)| view Attribute
v Aktribute Attribute Updatable
Entity Atkribute
Custom Properties
Control Hints
L... Dependencies Property Set: ‘ <MNone= bt |
Value Type: (@) Literal () Expression
Yalue: ‘ “ Edit... |
Mapped to Column or SGL [key attribute
Selected in Query Cueryable
[] Discriminatar:

Query Column

alias: [FIRST _NamE

Expression: |

| Help | | Apply | ‘ Ok J | Cancel |

JDeveloper tries to infer the type of the column automatically, but for some SQL
expressions the inferred value might default to VARCHAR2 (255). You can update the
Type value for this type of attribute to reflect the correct length if you know it. In the
case of read-only view objects, this property is editable in the Edit Attribute dialog you
display from the overview editor for the view object. In the case of entity-based view
objects, you must edit the Type property in the Edit Attribute dialog that you display
for the entity object, as described in Section 4.10.2, "How to Indicate Data Type Length,
Precision, and Scale."

For example, VARCHAR2 (30) which shows as the Type for the FirstName attribute in
Figure 5-12 means that it has a maximum length of 30 characters. For a NUMBER
column, you would indicate a Type of NUMBER (7, 2) for an attribute that you want to
have a precision of 7 digits and a scale of 2 digits after the decimal.

Performance Tip: Your SQL expression can control how long the
describe from the database says the column is. Use the SUBSTR ()
function around the existing expression. For example, if you specify
SUBSTR (yourexpression, 1, 15),then the describe from the database
will inform JDeveloper that the column has a maximum length of 15
characters.

5.2.5.3 Converting a Read-Only View Object to Allow Attribute Updates

When you use the Create View Object wizard to create a read-only view object, by
default the attributes of the view object will not be updateable. Later you may decide
to convert the view object to one that permits updates to its SQL-mapped table

Defining SQL Queries Using View Objects 5-15

Populating View Object Rows from a Single Database Table

columns. However, this cannot be accomplished by merely changing the attribute’s
Updateable property. To convert a read-only view object to one that is updateable, you
must add an entity usage that maps to the same table as the one used to create the
read-only view object. Choosing an entity usage that defines the same table ensures
that you can then remap the SQL-derived view attributes to entity usage attributes
corresponding to the same table columns.

To modify a read-only view object to allow updates:
1. In the Application Navigator, double-click the read-only view object.

2. In the overview editor, click the Entity Objects navigation tab.

3. In the Entity Objects page, expand the Available list and double-click the entity
object that describes the attributes of the read-only view object.

The entity object that you double-click will appear in the Selected list as an entity
usage. You will need to remap the SQL-derived attributes to corresponding
attributes defined by the entity usage.

4. Click the Query navigation tab, and in the Query page, click the Edit SQL Query
button.

5. In the Edit Query dialog, click Query and then click Attribute Mappings.

6. In the Attribute Mappings page, perform the following steps to convert all
SQL-derived attributes to their corresponding entity usage mapped attribute.

a. Click an attribute field in the View Attributes column and scroll to the top of
the dropdown list to locate the entity usage attributes.

b. In the entity usage attribute list, select the attribute corresponding to the
read-only attribute that you want to remap, as shown in Figure 5-11.

Figure 5-13 Specifying an Entity-Derived Attribute in the Edit Query Dialog

® Edit Query: ViewObj
(@@

Attribute Mappings

E‘ Query Toremap a query column, click on its current wiews attribute and select a new one from the list. Attribute mapping only
H Bind Yariables applies to Expert: Mode,

Attribute Mappings
Wigw Criteria
Lo Blternate Keys

Query Calumns View Attributes
ORDER_ID E3 OrderId

CORDER_TOTAL

=78 Orderld

B8 OrderDate

&3 OrderShippedDate
[OrderStatusCode
[CrderTotal

(578 CustomerId

| Help | Apply | | oK _J | Cancel

7. Click OK.

5-16 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows from a Single Database Table

5.2.5.4 Customizing View Object Attribute Display in the Overview Editor

When you edit view objects in the overview editor, you can customize the Attributes
page of the overview editor to make better use of the attributes table displayed for the
view object.

Customization choices that you make for the attributes table include the list of
attribute properties to display as columns in the attributes table, the order that the
columns appear (from left to right) in the attributes table, the sorting order of the
columns, and the width of the columns. The full list of columns that you can choose to
display correspond to the attribute properties that you might edit in the view object’s
Edit Attributes dialog.

For example, you can add the Updatable property as a column to display in the
attributes table when you want to quickly determine which attributes of your view
object are updatable. Or, you can add the attributes’ Label property as a column and
see the same description as the end user. Or, you might want to view the list of
attributes based on their entity usages. In this case, you can display the Entity Usage
column and sort the entire attributes table on this column.

When you have set up the attributes table with the list of columns that you find most
useful, you can apply the same set of columns to the attributes table displayed for
other view objects by right-clicking the attributes table and choose Apply to All View
Objects.

To customize the attributes table display:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, click the dropdown menu to the right of the attribute
column headers (just below the attributes table’s button bar) and choose Select
Columns.

4. In the Select Columns dialog, perform any of the following actions.

a. Click the left/right shuttle buttons to change the list of visible columns in the
attributes table of the overview editor. The overview editor displays only
those columns corresponding to the attribute properties that appear the
Selected list.

b. Click one of the Move Selection buttons to change the position of the columns
in the attributes table of the overview editor. The overview editor displays the
attribute properties arranged from left to right starting with the property at
the top of the Selected list.

5. Click OK.

6. On the Attributes page of the overview editor, perform any of the following
actions.

a. Select any column header and drag to change the position of the column in the
attributes table of the overview editor.

b. Click any column header to sort all columns in the attributes table by the
selected column.

This feature is particularly useful when you want to focus on a particular
column. For example, in the case of an entity-based view object, you can click
the Entity Usage column header to group attributes in the attributes table by
their underlying entity objects. To save this setting across all view objects that

Defining SQL Queries Using View Objects 5-17

Populating View Object Rows from a Single Database Table

you display in the overview editor, click the dropdown menu to the right of
the column headers and choose Apply to All View Objects.

c. Click any column header border and drag to adjust the width of the attributes
table’s column.

d. Click the dropdown icon to the right of the column headers and select among
the list of displayed columns to change the visibility of a column in the current
attributes table display.

This feature lets you easily hide columns when you want to simplify the
attributes table display in the current view object overview editor.

7. To extend the changes in the columns (including column list, column order,
column sorting, and column width) to all other view object overview editors, click
the dropdown menu to the right of the column headers and choose Apply to All
View Objects.

This feature allows you to easily compare the same attributes across view objects.
The overview editor will apply the column selections (and order) that you make in
the Select Columns dialog and the current attributes table’s column sorting and
column widths to all view objects that you edit. View objects that are currently
displayed in an open overview editor are not updated with these settings; you
must close the open view object overview editor and then reopen the view object
to see these settings applied.

5.2.5.5 Modifying the Order of Attributes in the View Object Source File

After you create a view object definition, you may decide to change the order of the
attributes queried by the view object. This view object editing feature allows you to
easily change the order that the attributes will appear in the attributes table displayed
on the Attributes page of the view object overview editor. Because this feature acts on
specific attributes and alters the XML definition of the current view object, it does not
apply to other view objects that you may edit. Alternatively, you can sort the display
of attributes on the Attribute page of the view object overview editor without affecting
the source file by clicking any column header in the overview editor’s attributes table.

To modify the order of attributes in the view object source file:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and click Set Source
Order.

3. In the Set Source Order dialog, select the attribute you want to reposition and click
one of the Move Selection buttons.

4. Click OK.

This feature has no affect on other view objects that you may edit; it only affects
the current view object.

5.2.6 How to Show View Objects in a Business Components Diagram

JDeveloper’s UML diagramming lets you create a Business Components diagram to
visualize your business domain layer. In addition to supporting entity objects,
JDeveloper's UML diagramming allows you to drop view objects onto diagrams as
well to visualize their structure and entity usages. For example, if you create a new
Business Components Diagram named StoreFrontService Data Model in the
oracle.fodemo.storefront package, and drag the CustomerAddressV0 view object
from the Application Navigator onto the diagram, its entity usages would display, as

5-18 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows with Static Data

shown in Figure 5-14. When viewed as an expanded node, the diagram shows a
compartment containing the view objects entity usages.

For information about creating the diagram, see Section 4.4, "Creating an Entity
Diagram for Your Business Layer."

Figure 5-14 View Object and Its Entity Usages in a Business Components Diagram

gueries
CustomerAddress\i0

Addressld : oracle jbo.domain DESeqguenc

Address1 : String

Address2 : String AddressUsageEQ Country CodeED
City : String

PostalCode : String

StateProvince : String

AddressLabel : String

Countryld : String

Longitude : Mumber

Latitude : Mumber

Ohject'/ersionld : Mumber

AddressUsagesld : oracle jbo.domain DBS

AszsocigtedDwnerld : Mumber AddressED LookupCodeED
CwnerTypeCode © String

Addressld! : Number

UsageTypeCode : String

ExpiredFlag : String

Object'ersionld! : Mumber

5.3 Populating View Object Rows with Static Data

ADF Business Components lets you create view objects in your data model project
with rows that you populate at design time. Typically, you create view objects with
static data when you have a small amount of data to maintain and you do not expect
that data to change frequently. The decision whether to use a lookup table from the
database or whether to use a static view object based on a list of hardcoded values
depends on the size and nature of the data. The static view object is useful when you
have no more than 100 entries to list. Any larger number of rows should be read from
the database with a conventional table-based view object. The static view object has
the advantage of being easily translatable because attribute values are stored in a
resource bundle. However, all of the rows of a static view object will be retrieved at
once and therefore, using no more than 100 entries yields the best performance.

Best Practice: When you need to create a view object to access a
small list of static data, you should use the static view object rather
than query the database. The static view object is ideal for lists not
exceeding 100 rows of data. Because the Create View Object wizard
saves the data in a resource message file, these data are easily
translatable.

Static list view objects are useful as an LOV data source when it is not desirable to
query the database to supply the list of values. Suppose your order has the following
statuses: open, closed, pending. You can create a static view object with these values
and define an LOV on the static view object’s status attribute. Because the wizard
stores the values of the status view object in a translatable resource file, the UI will
display the status values using the resource file corresponding to the application’s
current locale.

Defining SQL Queries Using View Objects 5-19

Populating View Object Rows with Static Data

5.3.1 How to Create Static View Objects with Data You Enter

You use the Create View Object wizard to create static view objects. The wizard lets
you define the desired attributes (columns) and enter as many rows of data as
necessary. The wizard displays the static data table as you create it.

Note: Because the data in a static view object does not originate in
database tables, the view object will be read-only.

You can also use the Create View Object wizard to create the attributes based on data
from a comma-separated value (CSV) file format like a spreadsheet file.

To manually create attributes for a static view object:

1. In the Application Navigator, right-click the project in which you want to create
the static list view object and choose New.

2. Inthe New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Rows populated at design time (Static List) to indicate
that you want to supply static list data for this view object. Click Next.

5. On the Attributes page, click New to add an attribute that corresponds to the
columns in the static data table. In the New View Object Attribute dialog, enter a
name and select the attribute type. Click OK to return to the wizard, and click
Next.

6. On the Attribute Settings page, do nothing and click Next.

7. On the Static List page, click the Add icon to enter the data directly into the wizard
page. The attributes you defined will appear as the columns for the static data
table.

8. On the Application Module pages, do nothing and click Next.
9. On the Summary page, click Finish.

5.3.2 How to Create Static View Objects with Data You Import

Using the Import feature of the Create View Object wizard, you can create a static data
view object with attributes based on data from a comma-separated value (CSV) file
format like a spreadsheet file. The wizard will use the first row of a CSV flat file to
identify the attributes and will use the subsequent rows of the CSV file for the data for
each attribute. For example, if your application needs to display choices for
international currency, you might define the columns Symbol, Country, and
Description in the first row and then add rows to define the data for each currency
type, as shown in Figure 5-15.

5-20 Fusion Developer's Guide for Oracle Application Development Framework

Populating View Object Rows with Static Data

Figure 5-15 Sample Data Ready to Import from CSV Flat File

A B z
1 |Symbol | Country Description
2 \UsSD United States of America Dollars
3 |CNY P.R. China Yuan Renminbi
4 EUR Europe Eura
5 |JPy Japan Yfen

To create attributes of a static view object based on a flat file:

1. In the Application Navigator, right-click the project in which you want to create
the static list view object and choose New.

2. Inthe New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Rows populated at design time (Static List) to indicate
that you want to supply static list data for this view object. Click Next.

5. On the Attributes page, optionally, click New to add an attribute that corresponds
to the columns in the static data table. In the New View Object Attribute dialog,
enter a name and select the attribute type. Click OK to return to the wizard, and
click Next.

When the static data will be loaded from a CSV flat file, you can optionally skip
this step. If you do not create the attributes yourself, the wizard will attempt to use
the first row of the CSV file to create the attributes. However, if you create the
attributes in the wizard, then the attributes you create must match the order of the
columns defined by the flat file. If you have created fewer attributes than columns,
the wizard will ignore extra columns during import. Conversely, if you create
more attributes than columns, the wizard will define extra attributes with the
value NULL.

6. On the Attribute Settings page, do nothing and click Next.

7. On the Static List page, click Import to locate the CSV file and display the data in
the wizard. Verify the data and edit the values as needed.

To edit an attribute value, double-click in the value field.

8. Optionally, click the Add icon or Remove icon to change the number of rows of
data. Click Next.

To enter values for the attributes of a new row, double-click in the value field.
9. On the Application Module page, do nothing and click Next.
10. On the Summary page, click Finish.

5.3.3 What Happens When You Create a Static List View Object

When you create a static view object, the overview editor for the view object displays
the rows of data that you defined in the wizard. You can use the editor to define
additional data, as shown in Figure 5-16.

Defining SQL Queries Using View Objects 5-21

Populating View Object Rows with Static Data

Figure 5-16 Static Values Page Displays Data

General
Attributes Static Yalues

Static Values The data for this wiew object is not from a database object, but from this static list of values,

Java

View ACcessars Symbal Country Description
List UI Hinks uso United States of America Dallars
CHY F.R. China ‘fuan Renminbi
EUR Europe Euro
JPY Japan fen

The generated XML definition for the static view object contains one transient attribute
for each column of data. For example, if you import a CSV file with data that describes
international currency, your static view object might contain a transient attribute for

Symbol, Country, and Description, as shown in Example 5-1.

Example 5-1 XML Definition for Static View Object
<ViewObject

<!-- Transient attribute for first column -->
<ViewAttribute
Name="Symbol"
IsUpdateable="false"
IsSelected="false"
IsPersistent="false"
PrecisionRule="true"
Precision="255"
Type="java.lang.String"
ColumnType="VARCHAR2"
AliasName="Symbol"
SQLType="VARCHAR" />
<!-- Transient attribute for second column -->
<ViewAttribute
Name="Country"
IsUpdateable="false"
IsPersistent="false"
PrecisionRule="true"
Precision="255"
Type="java.lang.String"
ColumnType="VARCHAR"
AliasName="Country"
SQLType="VARCHAR" />
<!-- Transient attribute for third column -->
<ViewAttribute
Name="Description"
IsUpdateable="false"
IsPersistent="false"
PrecisionRule="true"
Precision="255"
Type="java.lang.String"
ColumnType="VARCHAR"
AliasName="Description"
SQLType="VARCHAR" />
<StaticList
Rows="4"
Columns="3"/>
<!-- Reference to file that contains static data -->
<ResourceBundle>
<PropertiesBundle

5-22 Fusion Developer's Guide for Oracle Application Development Framework

Limiting View Object Rows Using Effective Date Ranges

PropertiesFile="model.ModelBundle"/>
</ResourceBundle>
</ViewObject>

Because the data is static, the overview editor displays no Query page and the
generated XML definition for the static view object contains no query statement.
Instead, the <ResourceBundle> element in the XML definition references a resource
bundle file. Example 5-1 shows the reference to the file as
PropertiesFile="model.ModelBundle". The resource bundle file describes the rows of
data and also lets you localize the data. When the default resource bundle type is used,
the file Mode1lBundle.properties appears in the data model project, as shown in
Example 5-2.

Example 5-2 Default Resource Bundle File for Static View Object

model .ViewObj.SL_0_0=USD

model .ViewObj.SL_0_1=United States of America
model .ViewObj.SL_0_2=Dollars

model .ViewObj.SL_1_0=CNY

model .ViewObj.SL_1_1=P.R. China
model .ViewObj.SL_1_2=Yuan Renminbi
model .ViewObj.SL_2_0=EUR

model .ViewObj.SL_2_1=Europe

model .ViewObj.SL_2_2=Euro

model .ViewObj.SL_3_0=JPY

model .ViewObj.SL_3_1=Japan

model .ViewObj.SL_3_2=Yen

5.3.4 Editing Static List View Objects

When you need to make changes to the static list table, double-click the view object in
the Application Navigator to open the overview editor for the view object. You can
add and delete attributes (columns in the static list table), add or delete rows (data in
the static list table), sort individual rows, and modify individual attribute values. The
editor will update the view object definition file and save the modified attribute values
in the message bundle file.

5.3.5 What You May Need to Know About Static List View Objects

The static list view object has a limited purpose in the application module’s data
model. Unlike entity-based view objects, static list view objects will not be updatable.
You use the static list view object when you want to display read-only data to the end
user and you do not want to create a database table for the small amount of data the
static list table contains.

5.4 Limiting View Object Rows Using Effective Date Ranges

Applications that need to query data over a specific date range can generate
date-effective row sets. To define a date-effective view object you must create an
entity-based view object that is based on an date-effective entity object. User control
over the view object’s effective date usage is supported by metadata on the view object
at design time. At runtime, ADF Business Components generates the query filter that
will limit the view rows to an effective date.

Defining SQL Queries Using View Objects 5-23

Limiting View Object Rows Using Effective Date Ranges

5.4.1 How to Create a Date-Effective View Object

Whether or not the query filter for an effective date will be generated depends on the
value of the Effective Dated property displayed in the Property Inspector for the view
object (to view the property, select any tab in the overview editor for the view object
other than Attributes).

Note: Because the date-effective view object must be based on an
date-effective entity object, setting a view object’s Effective Dated
property to True without an underlying date-effective entity object,
will result in a runtime exception.

The overview editor for the view object does not display the date-effective query
clause in the WHERE clause. You can use the Explain Plan dialog or Test Query dialog to
view the clause. A typical query filter for effective dates looks like this:

(:Bind_SysEffectiveDate BETWEEN Person.EFFECTIVE_START_DATE AND
Person.EFFECTIVE_END_DATE)

At runtime, the bind value for the query can be obtained from a property of the root
application module or can be assigned directly to the view object. To set the effective
date for a transaction, use code similar to the following snippet:

am.setProperty (ApplicationModule.EFF_DT_PROPERTY_STR, new
Date("2008-10-01));

If you do not set EFF_DT_PROPERTY_STR on the application module, the current date is
used in the query filter, and the view object returns the effective rows filtered by the
current date.

The view object has its own transient attribute, SysEffectiveDate, that you can use to
set the effective date for view rows. Otherwise, the SysEffectiveDate attribute value
for new rows and defaulted rows is derived from the application module. ADF
Business Components propagates the effective date from the view row to the entity
object during DML operations only.

Before you begin:
1. Create an effective dated entity object as described in Section 4.2.8, "How to Store
Data Pertaining to a Specific Point in Time."

2. Use the Create View Object wizard to create the entity-based view object as
described in Section 5.2.1, "How to Create an Entity-Based View Object."

The view object you create should be based on the effective dated entity object you
created. In the Attributes page of the wizard, be sure to add the date-effective
attributes that specify the start date and end date on the entity object to the
Selected list for the view object.

To enable effective dates for a view object using the SysEffectiveDate attribute:

1. Inthe Application Navigator, double-click the view object you created based on
the effective dated entity object.

2. In the overview editor, click the General navigation tab.
3. In the Property Inspector, expand the Name category.

If the Name category is not displayed in the Property Inspector, click the General
navigation tab in the overview editor to set the proper focus.

5-24 Fusion Developer's Guide for Oracle Application Development Framework

Limiting View Object Rows Using Effective Date Ranges

4. \Verify that the context menu for the Effective Dated property displays True.

5. In the overview editor, click the Attributes navigation tab and double-click the
attribute for the start date.

6. In the Edit Attribute dialog, verify that Effective Date is enabled and that Start is
selected, as shown in Figure 5-17. Verify that the attribute for the end date is also
enabled correctly, as shown in the figure. Note that these fields appear grayed out
to indicate that they cannot be edited for the view object.

Figure 5-17 Edit Attribute Dialog Displays Effective Date Settings

7. Click OK.

No additional steps are required once you have confirmed that the view object has
inherited the desired attributes from the date-effective entity object.

5.4.2 How to Create New View Rows Using Date-Effective View Objects

Creating (inserting) date-effective rows is similar to creating or inserting ordinary view
rows. The start date and end date can be specified as follows:

= The user specifies the effective date on the application module. The start date is set
to the effective date, and the end date is set to end of time.

» The user specifies values for the start date and the end date (advanced).

In either case, during entity validation, the new row is checked to ensure that it does
not introduce any gaps or overlaps. During post time, ADF Business Components will
acquire a lock on the previous row to ensure that the gap or overlaps are not created
upon the row insert.

5.4.3 How to Update Date-Effective View Rows

Date-effective rows are updated just as non date-effective rows are updated, using a
Row.setAttribute () call. However, for the desired operation to take effect, an
effective date mode must be set on the row before the update. ADF Business
Components supports various modes to initiate the row update.

To set the update mode, invoke the Row. setEffectiveDateMode (int mode) method
with one of the following mode constants.

s CORRECTION (Correction Mode)

The effective start date and effective end dates remain unchanged. The values of
the other attributes may change. This is the standard row update behavior.

= UPDATE (Update Mode)

The effective end date of the row will be set to the effective date. All user
modifications to the row values are reverted on this row. A new row with the
modified values is created. The effective start date of the new row is set to the
effective date plus one day, and the effective end date is set to end of time. The
new row will appear after the transaction is posted to the database.

= OVERRIDE (Update Override Mode)

Defining SQL Queries Using View Objects 5-25

Limiting View Object Rows Using Effective Date Ranges

The effective end date of the modified row will be set to the effective date. The
effective start date of the next row is set to effective date plus one day, and the
effective end date of the next row is set to end of time.

» CHANGE_INSERT (Change Insert Mode)

The effective end date of the modified row should be set to the effective date. All
user modifications to the row values are reverted on this row. A new row with the
modified values will be created. The effective start date of the new row is set to
effective date plus one day, and the effective end date is set to effective start date
of the next row minus one day. The new row will appear after the transaction is
posted to the database.

5.4.4 How to Delete Date-Effective View Rows

ADF Business Components supports various modes to initiate the row deletion. You
can mark view rows for deletion by using API calls like RowSet . removeCurrentRow ()
or Row.remove ().

To set the deletion mode, invoke the Row.setEffectiveDateMode (int mode) method
with one of the following mode constants.

» DELETE (Delete Mode)

The effective date of the row is set to the effective date. The operation for this row
is changed from delete to update. All rows with the same noneffective date key
values and with an effective start date greater than the effective date are deleted.

» NEXT_CHANGE (Delete Next Change Mode)

The effective end date of the row is set to the effective end date of the next row
with the same noneffective date key values. The operation for this row is changed
from delete to update. The next row is deleted.

= FUTURE_CHANGE (Delete Future Change Mode)

The effective end date of the row is set to the end of time. The operation for this
row is changed from delete to update. All future rows with the same noneffective
date key values are deleted.

= ZAP (Zap Mode)
All rows with the same non-effective date key values are deleted.

The effective date mode constants are defined on the row interface as well.

5.4.5 What Happens When You Create a Date-Effective View Object

When you create a date-effective view object, the view object inherits the transient
attribute SysEffectiveDate from the entity object to store the effective date for the
row. Typically, the insert/update/delete operations modify the transient attribute
while Oracle ADF decides the appropriate values for effective start date and effective
end date.

The query displayed in the overview editor for the date-effective view object does not
display the WHERE clause needed to filter the effective date range. To view the full
query for the date-effective view object, including the WHERE clause, edit the query and
click Explain Plan in the Edit Query dialog. The following sample shows a typical
query and query filter for effective dates:

SELECT OrdersVO.ORDER_ID,
OrdersVO.CREATION_DATE,
OrdersVO.LAST UPDATE_DATE

5-26 Fusion Developer's Guide for Oracle Application Development Framework

Limiting View Object Rows Using Effective Date Ranges

FROM ORDERS OrdersVO
WHERE (:Bind_SysEffectiveDate BETWEEN OrdersVO.CREATION_DATE AND
OrdersVO.LAST_UPDATE_DATE)

Example 5-3 shows sample XML entries that are generated when you create an
date-effective view object.

Example 5-3 XML Definition for Date-Effective View Object

<ViewObject

<!-- Property that enables date-effective view object. -->
IsEffectiveDated="true">
<EntityUsage

Name="Ordersl"
Entity="model.OrdersDatedEQ"
JoinType="INNER JOIN"/>
<!-- Attribute identified as the start date -->
<ViewAttribute
Name="CreationDate"
IsNotNull="true"
PrecisionRule="true"
IsEffectiveStartDate="true"
EntityAttrName="CreationDate"
EntityUsage="Ordersl"
AliasName="CREATION_DATE"/>
<!-- Attribute identified as the end date -->
<ViewAttribute
Name="LastUpdateDate"
IsNotNull="true"
PrecisionRule="true"
IsEffectiveEndDate="true"
EntityAttrName="LastUpdateDate"
EntityUsage="Ordersl"
AliasName="LAST UPDATE_DATE"/>
<!-- The SysEffectiveDate transient attribute -->
<ViewAttribute
Name="SysEffectiveDate"
IsPersistent="false"
PrecisionRule="true"
Type="oracle.jbo.domain.Date"
ColumnType="VARCHAR2"
AliasName="SysEffectiveDate"
Passivate="true"
SQLType="DATE" />
</ViewObject>

5.4.6 What You May Need to Know About Date-Effective View Objects and View Links

Effective dated associations and view links allow queries to be generated that take the
effective date into account. The effective date of the driving row is passed in as a bind
parameter during the query execution.

While it is possible to create a noneffective dated association between two entities
when using the Create Association wizard or Create View Link wizard, JDeveloper
will by default make the association or link effective dated if one of the ends is
effective dated. However, when the association or view link exists between an effective
dated and a noneffective dated object, then at runtime ADF Business Components will
inspect the effective dated nature of the view object or entity object before generating

Defining SQL Queries Using View Objects 5-27

Working with Multiple Tables in Join Query Results

the query clause and binding the effective date. The effective date is first obtained
from the driving row. If it is not available, then it is obtained from the property EFF_
DT_PROPERTY_STR of the root application module. If you do not set EFF_DT_PROPERTY_
STR for the application module, the current date is used in the query filter on the
driving row and applied to the other side of the association or view link.

5.5 Working with Multiple Tables in Join Query Results

Many queries you will work with will involve multiple tables that are related by
foreign keys. In this scenario, you join the tables in a single view object query to show
additional descriptive information in each row of the main query result. You use the
Create View Object wizard to define the query using declarative options. Whether
your view object is read-only or entity-based determines how you can define the join:

= When you work with entity-based view objects, the Create View Object wizard
uses an existing association defined between the entities to automatically build the
view object's join WHERE clause. You can declaratively specify the type of join you
want to result from the entity objects. Inner join (equijoin) and outer joins are both
supported.

= When you work with read-only view objects, you can use the SQL Builder dialog
to build the view object’s join WHERE clause. In this case, you must select the
columns from the tables that you want to join.

Figure 5-18 illustrates the rows resulting from two tables queried by a view object that
defines a join query. The join is a single flattened result.

Figure 5-18 Join Query Result

[0]| Order | 1322 | Pat |1 Fay |
Join [212]] Order] [322] | Pat | { Fay |
Query [2227]] Order | [310] [John I Chen |
[123]| Order | [300] [Steven [King |
C] Persons
:] Orders

5.5.1 How to Create Joins for Entity-Based View Objects

It is extremely common in business applications to supplement information from a
primary business domain object with secondary reference information to help the end
user understand what foreign key attributes represent. Take the example of the
OrderItems entity object. It contains foreign key attribute of type Number like:

= ProductId, representing the product to which the order item pertains

From experience, you know that showing an end user exclusively these "raw"
numerical values won't be very helpful. Ideally, reference information from the view
object’s related entity objects should be displayed to improve the application's
usability. One typical solution involves performing a join query that retrieves the
combination of the primary and reference information. This is equivalent to
populating "dummy" fields in each queried row with reference information based on
extra queries against the lookup tables.

When the end user can change the foreign key values by editing the data, this presents
an additional challenge. Luckily, entity-based view objects support easily including
reference information that's always up to date. The key requirement to leverage this
feature is the presence of associations between the entity object that act as the view

5-28 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in Join Query Results

object's primary entity usage and the entity objects that contribute reference
information.

To include reference entities in a join view object, use the Create View Object wizard.
The Create View Object wizard lets you specify the type of join:

s InnerJoin

Select when you want the view object to return all rows between two or more
entity objects, where each entity defines the same primary key column. The inner
join view object will not return rows when a primary key value is missing from the
joined entities.

s Outer Join

Select when you want the view object to return all rows that exist in one entity
object, even though corresponding rows do not exist in the joined entity object.
Both left and right outer join types are supported. The left and right designation
refers to the source (left) and destination (right) entity object named in an
association. For details about changing the default inner join to an outer join, see
Section 5.5.5, "How to Modify a Default Join Clause to Be an Outer Join When
Appropriate.”

Both inner joins and outer joins are supported with the following options:
= Reference

Select when you want the data from the entity object to be treated as reference
information for the view object. Automatic lookup of the data is supported and
attribute values will be dynamically fetched from the entity cache when a
controlling key attribute changes.

= Updatable

Deselect when you want to prevent the view object from modifying any entity
attributes in the entity object. By default, the first entity object (primary) in the
Selected list is updatable and subsequent entity objects (secondary) are not
updatable. To understand how to create a join view object with multiple updatable
entity usages, see Section 39.9, "Creating a View Object with Multiple Updatable
Entities."

» Participate in row delete

Select when you have defined the entity as updatable and you want the action of
removing rows in the Ul to delete the participating reference entity object. This
option is disabled for the primary entity. For example, while it may be possible to
delete an order item, it should not be possible to delete the order when a remove
row is called from the join view object.

Before you begin:

Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create a view object that joins entity objects:
1. In the Application Navigator, right-click the project in which you want to create
the view object and choose New.

When you want to modify an existing view object that you created to include
reference information from its related entity objects, double-click the view object
and open the Entity Objects page in the overview editor for the view object.

Defining SQL Queries Using View Objects 5-29

Working with Multiple Tables in Join Query Results

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Keep the default setting Updatable Access Through Entity
Objects enabled to indicate that you want this view object to manage data with its
base entity object. Click Next.

4. In the Entity Objects page, the first entity usage in the Selected list is known as the
primary entity usage for the view object. Select the primary entity object from the
Available list and shuttle it to the Selected list.

The list is not limited to a single, primary entity usage.

5. To add additional, secondary entity objects to the view object, select them in the
Available list and shuttle them to the Selected list.

The Association dropdown list shows you the name of the association that relates
the selected secondary entity usage to the primary one. For example, Figure 5-19
shows the result of adding one secondary reference entity usage,
ShippingOptionTranslationEQ, in addition to the primary ShippingOptionBaseEO
entity usage. The association that relates to this secondary entity usage is
ShippingOptionTranslationFkAssociation.

Figure 5-19 Create View Object Wizard, Entity Objects Page

% Create View Object - Step 2 of B

Entity Objects

Select entity objects for this view object.

+ Mame
T B ailable: Selected: Subtypes...

Entity Objects | | [T =] PersanEd A ShippingCptionEaseEd
ProductBaseEQ ShippingOptionTranslationEQ
ProductCategoryEaseEQ

ProductImageEC
ProductTranslationEC
ShippingOptionBaseED
ShippingOptionTranslationEC
SupplierEC

wWarehouseEQ

----- WarghousestockLevelEQ
-0 oracle.Fodemo.storeFront.entities.assonv

o um . \ e SN

’

\}; Attributes
[
[
[
[
[

Alias: | ShippingOptionTranslationES

Association: @ ShippingOptionTranslationFkass. .. VI

Join Type: [Eer join V]
[] Updatable Reference

6. Optionally, use the Alias field to give a more meaningful name to the entity usage
when the default name is not clear.

7. If you add multiple entity usages for the same entity, use the Association
dropdown list to select which association represents that usage's relationship to
the primary entity usage. Click Next.

For each secondary entity usage, the Reference option is enabled to indicate that
the entity provides reference information and that it is not the primary entity. The
Updatable option is disabled. This combination represents the typical usage.
However, when you want to create a join view object with multiple, updatable

5-30 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in Join Query Results

entity usages, see Section 39.9, "Creating a View Object with Multiple Updatable
Entities."

Secondary entity usages that are updatable can also have the Participate in row
delete option enabled. This will allow secondary entity attributes to appear NULL
when the primary entity is displayed.

8. On the Attributes page, select the attributes you want each entity object usage to
contribute to the view object. Click Next.

9. On the Attribute Settings page, you can rename an attribute when the names are
not as clear as they ought to be.

The same attribute name often results when the reference and secondary entity
objects derive from the same table. Figure 5-20 shows the attribute
ShippingOptionIdl in the Select Attribute dropdown list, which has been
renamed to ShippingOptionTranslationId in the Name field.

Figure 5-20 Create View Object Wizard, Attribute Settings Page

® Create View Object - Step 4 of B

Attribute Settings

Select Attribute: | ShippingOptionId1 ~|
[Attribute Updatable
] Mame: | ShippingCpkionTranslationId
o dtbributes
1 Type:
./ Attribute Settings Property Set: | pro— = |
|
T 30L Statement Yalue Type: (@) Literal () Expression
I Walue: | || Edit... |
I Mapped to Colurnn or SQL [key Attribute
l Selected in Query Queryahle
¢ [] Discriminator

Query Column

Alias: |sHIPPING_oPTION D1

Expression: ‘

| Help | < Back " Next>_J| Finish || Cancel |

10. Click Finish.

5.5.2 How to Select Additional Attributes from Reference Entity Usages

After adding secondary entity usages, you can use the overview editor for the view
object to select the specific, additional attributes from these new usages that you want
to include in the view object.

Defining SQL Queries Using View Objects 5-31

Working with Multiple Tables in Join Query Results

Tip: The overview editor lets you sort attributes displayed in the
Attributes page by their entity usages. By default, the attributes table
displays attributes in the order they appear in the underlying entity
object. To sort the attributes by entity usage, click the header for the
Entity Usage column of the attributes table. If the Entity Usage
column does not appear in the attributes table, click the dropdown
menu icon on the top-right corner of the table (below the button bar)
and choose Select Columns to add the column to the Selected list.

To select attributes from a secondary entity usage:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and click the Add from
Entity button to view the list of available entity-derived attributes.

3. In the Attributes dialog, select the desired attribute and add it to the Selected list.

Note that even if you didn't intend to include them, JDeveloper automatically
verifies that the primary key attribute from each entity usage is part of the
Selected list. If it's not already present in the list, JDeveloper adds it for you. When
you are finished, the overview editor Query page shows that JDeveloper has
included the new columns in the SELECT statement.

4. Click OK.

5.5.3 How to Remove Unnecessary Key Attributes from Reference Entity Usages

The view object attribute corresponding to the primary key attribute of the primary
entity usage acts as the primary key for identifying the view row. When you add
secondary entity usages, JDeveloper marks the view object attributes corresponding to
their primary key attributes as part of the view row key as well. When your view
object consists of a single updatable primary entity usage and a number of reference
entity usages, the primary key attribute from the primary entity usage is enough to
uniquely identify the view row. Further key attributes contributed by secondary entity
usages are not necessary and you should disable their Key Attribute settings.

For example, based on the view object with primary entity usage ShippingOptionEo,
you could disable the Key Attribute property for the ShippingOptionTranslationEO
entity usage so that this property is no longer selected for this additional key attribute:
ShippingTranslationsId.

To remove unnecessary key attributes:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, in the attributes table, select the key attribute (identified by
the key icon in the Name column), and click the Edit selected attribute(s) button.

4. In the View Attribute page of the Edit Attribute dialog, deselect the Key Attribute
property.
5. Click OK.

5.5.4 How to Hide the Primary Key Attributes from Reference Entity Usages

Since you generally won't want to display the primary key attributes that were
automatically added to the view object, you can set the attribute’s Display Hint
property in the Control Hints page of the Edit Attribute dialog to Hide.

5-32 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in Join Query Results

To hide the primary key attribute:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, in the attributes table, select the primary key attribute
(identified by the key icon in the Name column), and click the Edit selected

attribute(s) button.

4. In the Control Hints page of the Edit Attribute dialog, select Hide in the Display
Hint dropdown list.

5. Click OK.

5.5.5 How to Modify a Default Join Clause to Be an Outer Join When Appropriate

When you add a secondary entity usage to a view object, the entity usage is related to
an entity usage that precedes it in the list of selected entities. This relationship is
established by an entity association displayed in the Association dropdown list in the
Entity Objects page of the overview editor for the view object. You use the Association
dropdown list in the editor to select the entity association that relates the secondary
entity usage to the desired preceding entity usage in the Selected list. The name of the
preceding entity usage is identified in the Source Usage dropdown list.

When JDeveloper creates the WHERE clause for the join between the table for the
primary entity usage and the tables for related secondary entity usages, by default it
always creates inner joins. You can modify the default inner join clause to be a left or
right outer join when appropriate. The left designation refers to the source entity object
named in the selected association. This is the entity identified in the Source Usage
dropdown list. The right designation refers to the current secondary entity usage that
you have selected in the Selected list.

In the left outer join, you will include all rows from the left table (related to the entity
object named in the Source Usage list) in the join, even if there is no matching row
from the right table (related to the current secondary entity object selection). The right
outer join specifies the reverse scenario: you will include all rows from the right table
(related to the entity object named in the Selected list) in the join, even if there is no
matching row from the left table (related to the current secondary entity object
selection).

For example, assume that a person is not yet assigned a membership status. In this
case, the MembershipId attribute will be NULL. The default inner join condition will not
retrieve these persons from the MEMBERSHIPS_BASE table. Assuming that you want
persons without membership status to be viewable and updatable through the
MembershipDiscountsVO view object, you can use the Entity Objects page in the
overview editor for the view object to change the query into an left outer join to the
MEMBERSHIPS_BASE table for the possibly null MEMBERSHIP_ID column value. When you
add the person entity to the view object, you would select the left outer join as the join
type. As shown in Figure 5-21, the association PersonsMembershipsBaseFkAssoc
identifies a source usage MembershipBaseEO on the left side of the join and the selected
PersonEQ entity usage on the right side. The view object MembershipDiscountsVO joins
the rows related to both of these entity objects and defines a left outer join for
PersonkO to allow the view object to return rows from the table related to
MembershipBaseEO even if they do not have a match in the table related to PersonEo.

Defining SQL Queries Using View Objects 5-33

Working with Multiple Tables in Join Query Results

Figure 5-21 Setting an Outer Join to Return NULL Rows from Joined Entities

General

Entity Objects Entity Objects ®
grbiles These entity objects are used by the view abject for access to the attributes and business
Query logic.
Java
view Accessors | vailable: Selected: Subtypes...
List UI Hints s StoreFrontService MembershipBaseEQ

@ oracle fodemo,starefront, entities MembershipTranslationEC

DiscountBaseEo
— |DiscountTranslationEC
| S |EIigtheDisc0untEO

Alias: | PersonEQ

Definition: oracle fodemo.storefront entiti...

Association: |L_E PersonsMember shipsE. .. v|

Source Usage: | MembershipBaseECQ - |

Join Type: | left outer join - |
[[] Updatable Reference

Vi

The view object’s updated WHERE clause includes the addition (+) operator on the right
side of the equals sign for the related table whose data is allowed to be missing in the
left outer join:

PersonEQ.MEMBERSHIP_ID = MembershipBaseEOQ.MEMBERSHIP_ID (+)

Before you begin:

Create the desired entity objects and associations as described in Section 4.2.1, "How to
Create Multiple Entity Objects and Associations from Existing Tables."

To change an inner join type to an outer join:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Entity Objects navigation tab.
The entity object you select represents the table on the right side of the join.

3. In the Entity Objects page, in the Selected list, select the entity object that you
want to change the join type for.

The entity object you select represents the table on the right side of the join.

4. In the Association dropdown list, if only one association is defined, leave it
selected; otherwise, select among the list of entity object associations that relate the
secondary entity object to the desired entity object. The entity usage that
represents the joined table will be displayed in the Source Usage dropdown list.

The entity object in the Source Usage dropdown list that you choose through the
association selection represents the table on the left side of the join.

5. In the Join Type dropdown list, decide how you want the view object to return
rows from the joined entity objects:

» left outer join will include rows from the left table in the join, even if there is
no matching row from the right table.

= right outer join will include rows from the right table in the join, even if there
is no matching row from the left table.

The Source Usage dropdown list is the left side of the join and the current entity
usage in the Selected list is the right side.

5-34 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in Join Query Results

5.5.6 What Happens When You Reference Entities in a View Object

When you create a join view object to include secondary entity usages by reference,
JDeveloper updates the view object's XML document to include information about the
additional entity usages. For example, the ShippingOptionsVo0.xml file for the view
object includes an additional reference entity usage. You will see this information
recorded in the multiple <EntityUsage> elements. For example, Example 5-5 shows an
entity usage entry that defines the primary entity usage.

Example 5-4 Primary Entity Usage

<EntityUsage
Name="ShippingOptionBaseEQ"
Entity="oracle.fodemo.storefront.entities.ShippingOptionBaseE0" />

The secondary reference entity usages will have a slightly different entry, including
information about the association that relates it to the primary entity usage, like the
entity usage shown in Example 5-5.

Example 5-5 Secondary Reference Entity Usage

<EntityUsage

Name="ShippingOptionTranslationEQ"

Entity="oracle.fodemo.storefront.entities.ShippingOptionTranslationEQ"

Association="oracle.fodemo.storefront.entities.associations.
ShippingOptionTranslationFkAssoc"

AssociationEnd="oracle.fodemo.storefront.entities.associations.
ShippingOptionTranslationFkAssoc.ShippingOptionTranslation"

SourceUsage="oracle.fodemo.storefront.store.queries.ShippingOptionsVo.
ShippingOptionBaseEO"

ReadOnly="true"

Reference="true"/>

Each attribute entry in the XML file indicates which entity usage it references. For
example, the entry for the ShippingOptionId attribute in Example 5-6 shows that it's
related to the ShippingOptionBaseEO entity usage, while the ShippingMethod attribute
is related to the ShippingOptionTranslationEO entity usage.

Example 5-6 Entity Usage Reference of View Object Attribute

<ViewAttribute
Name="ShippingOptionId"
IsNotNull="true"
EntityAttrName="ShippingOptionId"
EntityUsage="ShippingOptionBaseE0"
AliasName="SHIPPING_OPTION_ID" >
</ViewAttribute>

<ViewAttribute
Name="ShippingMethod"
IsUpdatable="true"
IsNotNull="true"
EntityAttrName="ShippingMethod"
EntityUsage="ShippingOptionTranslationEQ"
AliasName="SHIPPING_ METHOD" >
</ViewAttribute>

The Create View Object wizard uses this association information at design time to
automatically build the view object's join WHERE clause. It uses the information at

Defining SQL Queries Using View Objects 5-35

Working with Multiple Tables in Join Query Results

runtime to enable keeping the reference information up to date when the end user
changes foreign key attribute values.

5.5.7 How to Create Joins for Read-Only View Objects

To create a read-only view object joining two tables, use the Create View Object
wizard.

To create a read-only view object joining two tables:

1. In the Application Navigator, right-click the project in which you want to create
the view object and choose New.

2. Inthe New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Read-only access through SQL query to indicate that
you want this view object to manage data with read-only access. Click Next.

5. On the Query page, use one of the following techniques to create the SQL query
statement that joins the desired tables:

= Type or paste any valid SQL statement into the Query Statement box.

» Click Query Builder to open the SQL Statement dialog and use the interactive
query builder, as described in Section 5.5.9, "How to Use the SQL Statement
Dialog with Read-Only View Objects."

6. After entering or building the query statement, click Next.
7. On the Bind Variables page, do one of the following:
» If the query does not reference any bind variables, click Next to skip Step 3.

» Toadd a bind variable and work with it in the query, see Section 5.10.1, "How
to Add Bind Variables to a View Object Definition."

8. On the Attribute Mappings page, click Finish.

5.5.8 How to Test the Join View

To test the new view object, edit the application module and on the Data Model page
add an instance of the new view object to the data model. Then, use the Business
Component Browser to verify that the join query is working as expected. For details
about editing the data model and running the Business Component Browser, see
Section 6.3, "Testing View Object Instances Using the Business Component Browser."

5.5.9 How to Use the SQL Statement Dialog with Read-Only View Objects

The Quick-pick objects page of the SQL Statement dialog lets you view the tables in
your schema, including the foreign keys that relate them to other tables. To include
columns in the select list of the query, shuttle the desired columns from the Available
list to the Selected list. For example, Figure 5-22 shows the result of selecting the
PRODUCT_ID, PRODUCT_NAME, and COST_PRICE columns from the PRODUCTS table, along
with the SUPPLIER_NAME column from the SUPPLIERS table. The column from the
second table appears, beneath the PRODUCTS_SUPPLIERS_FK foreign key in the

5-36 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in Join Query Results

Available list. When you select columns from tables joined by a foreign key, the SQL
Statement dialog automatically determines the required join clause for you.

Figure 5-22 View Object Query Builder to Define a Join

':\'“)| Quick-pick objects

Schema: |FOD v| Type Filker: OFF | Filter Types |

~SELECT dlause plenclis gy | [Cauto-query | query |
- WYHERE clause
-~ GROLP BY clause Ayailable: Selected:
CHAYING dause || [B ATTRIBUTELZ PRODUCT _ID (PRODUCTS_BASE PRODUCT]
-Bndvariables ||| L B ATTRIBUTELS PRODUCT _MAME (PRODUCTS_BASE PRODI
i.....Enkire SQLQuery | | i B ATTRIBUTE14 COST_PRICE (PRODUCTS_BASE COST_PRI
______ 5 ATTRIBUTELS SUPPLIER_MAME (SUPPLIERS. SUPPLIER M4
------ B crEATED_BY
------ B CREATION_DATE
------ B LAST_UPDATED_BY ==
------ B LasT_UPDATE_DATE |2|
------ B 0BIECT_YERSION_ID <
E-B& PRODUCTS_SUPPLIERS_FK | ——
£ sURPLIERS |§|
t.. B SUPPLIER_ID
S=B-UFPLIER_MAME
B SUPPLIER_STATUS
-~ U1_skm
B CREATED_BY
B CREATION_DATE

o] G| ||| s

| Help | | (o] 4 | | Cancel |

Optionally, use the WHERE clause page of the SQL Statement dialog to define the
expression. To finish creating the query, click OK in the SQL Statement dialog. The
Edit Query dialog will show a query like the one shown in Example 5-7.

Example 5-7 Creating a Query Using SQL Builder

SELECT
PRODUCTS_BASE.PRODUCT_ID PRODUCT_ID,
PRODUCTS_BASE. PRODUCT_NAME PRODUCT_NAME,
PRODUCTS_BASE.COST_PRICE COST_PRICE,
SUPPLIERS.SUPPLIER_NAME SUPPLIER_NAME
FROM

PRODUCTS_BASE JOIN SUPPLIERS USING (SUPPLIER_ID)

You can use the Attributes page of the Create View Object wizard to rename the view
object attribute directly as part of the creation process. Renaming the view object here
saves you from having to edit the view object again, when you already know the
attribute names that you'd like to use. As an alternative, you can also alter the default
Java-friendly name of the view object attributes by assigning a column alias, as
described in Section 5.9.2, "How to Name Attributes in Expert Mode."

5.5.10 What You May Need to Know About Join View Objects

If your view objects reference multiple entity objects, they are displayed as separate
entity usages on a business components diagram.

Defining SQL Queries Using View Objects 5-37

Working with Multiple Tables in a Master-Detail Hierarchy

5.6 Working with Multiple Tables in a Master-Detail Hierarchy

Many queries you will work with will involve multiple tables that are related by
foreign keys. In this scenario, you can create separate view objects that query the
related information and then link a "source" view object to one or more "target" view
objects to form a master-detail hierarchy.

There are two ways you might handle this situation. You can either:

» Create a view link based on an association between entity objects when the source
and target view objects are based on the underlying entity objects” association.

» Create a view link that defines how the source and target view objects relate.

Whether or not an association exists is determined when entity objects are created. By
default, the entity object associations model the hierarchical relationships of the data
source. For example, entity objects based on database tables related by foreign keys
will capture these relationships in entity associations. If you do base the view link on
an existing entity association, there is no performance penalty over defining the view
link on the view objects alone. In either case, you use the Create View Link wizard to
define the master-detail relationship.

Note: A view link defines a basic master-detail relationship between
two view objects. However, by creating more view links you can
achieve master-detail hierarchies of any complexity, including;:

= Multilevel master-detail-detail
= Master with multiple (peer) details
s Detail with multiple masters

The steps to define these more complex hierarchies are the same
whether you create the relationships based on view objects alone or
view objects with entity associations. In either case, you just need to
create each additional hierarchy, one view link at time.

Figure 5-23 illustrates the multilevel result that master-detail linked queries produce.

Figure 5-23 Linked Master-Detail Queries

. | Pat | Fa |
Linked . (101 [Order | [322 |
Master/Detail G| owe] [32]
Queries [dohn [_cChen]

[222 || Order | [310 |

[] Persons [steven | | King |
[orders (125]| Order | [300]

5.6.1 How to Create a Master-Detail Hierarchy for Entity-Based View Objects

Just as with read-only view objects, you can link entity-based view objects to other
view objects to form master-detail hierarchies of any complexity. The only difference in
the creation steps involves the case when both the master and detail view objects are
entity-based view objects and their respective entity usages are related by an
association. In this situation, since the association captures the set of source and

5-38 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in a Master-Detail Hierarchy

destination attribute pairs that relate them, you create the view link just by indicating
which association it should be based on.

To create an association-based view link, you use the Create View Link wizard.

Before you begin:

Create the desired entity-based view objects as described in Section 5.2.1, "How to
Create an Entity-Based View Object."

To create an association-based view link

1.

In the Application Navigator, right-click the project in which you want to create
the view object and choose New.

To avoid having to type in the package name in the Create View Link wizard, you
can choose New View Link on the context menu of the links package node in the
Application Navigator.

In the New Gallery, expand Business Tier, select ADF Business Components and
then View Link, and click OK.

In the Create View Link wizard, on the Name page, supply a package and a
component name.

On the View Objects page, in the Select Source Attribute tree expand the source
view object in the desired package. In the Select Destination Attribute tree
expand the destination view object.

For entity-based view objects, notice that in addition to the view object attributes,
relevant associations also appear in the list.

Select the same association in both Source and Destination trees. Then click Add
to add the association to the table below.

For example, Figure 5-24 shows the same OrderItemsOrdersFkAssoc association
in both Source and Destination trees selected.

Defining SQL Queries Using View Objects 5-39

Working with Multiple Tables in a Master-Detail Hierarchy

Figure 5-24 Master and Detail Related by an Association Selection

% Create View Link - Step 2 of 6

View Objects
Select each pair of source and destination view object attributes that define the view link, then dlick Add.
o Mame
I View Dbjects Cardinality: [1to* M|
! Wievs Link Properties Select Source Attribute: Select Destination Attribute:
T ----- g LastUpdateDate A [F 0 T
l ¥ LastUpdatedsy | | B @3 LastUpdatedyz
----- &8 Objectyersionld -5 Lineltemld
l &3 OrdetDate | |: i @& LineltemTotal
l ----- =3 ListPrice
o Summary | L AT —., | e (=3 ListPricel_1
----- == MinPrice
----- @ Objectversionldz
----- @& OrderId
----- L_"r_l, COrderIkemsOrders
o
| add |
Source Attributels) Destination Attributels)
OrderltemsOrdersFlAssoc OrderItemsOrdersFlassoc
| Help | < Back " Mext = Cancel

6. Click Finish.

5.6.2 How to Create a Master-Detail Hierarchy Based on View Objects Alone

When you want to show the user a set of master rows, and for each master row a set of
coordinated detail rows, then you can create view links to define how you want the
master and detail view objects to relate. For example, you could link the Persons view
object to the Orders view object to create a master-detail hierarchy of customers and
the related set of orders they have placed.

To create the view link, use the Create View Link wizard.

Before you begin:

Create the desired read-only view objects as described in Section 5.2.3, "How to Create
an Expert Mode, Read-Only View Object."

To create a view link between read-only view objects:
1. Inthe Application Navigator, right-click the project in which you want to create
the view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Link, and click OK.

3. In the Create View Link wizard, on the Name page, enter a package name and a
view link name. For example, given the purpose of the view link, a name like
OrdersPlacedBy is a valid name. Click Next.

4. On the View Objects page, select a "source" attribute from the view object that will
act as the master.

For example, Figure 5-25 shows the PersonId attribute selected from the
PersonsVO0 view object to perform this role. Click Next.

5-40 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in a Master-Detail Hierarchy

On the View Objects page, select a corresponding destination attribute from the
view object that will act as the detail.

For example, if you want the detail query to show orders that were placed by the
currently selected customer, select the CustomerId attribute in the Ordersvo to
perform this role.

Click Add to add the matching attribute pair to the table of source and destination
attribute pairs below. When you are finished defining master and detail link, click
Next.

Figure 5-25 shows just one (PersonId,CustomerId) pair. However, if you require
multiple attribute pairs to define the link between master and detail, repeat the
steps for the View Objects page to add additional source-target attribute pairs.

Figure 5-25 Defining Source/Target Attribute Pairs While Creating a View Link

& Create View Link - Step 2 of 7

Wiew Objects

Select each pair of source and destination view object attributes that define the view link, then click add.
T Mame:
) ¥iew Objects Cardinality: w
T Wiew Link Properties Select Source Attribute: Select Destination Attribute:
-8 Marital3tatusCode -8 ordersvo
] .58 Membershipld - @8 CalculabedOrderTotal
l ...[5@ MobilePhoneMurber -8 Collection'arehouseId
(8 OhjectVersionld -+ Couponld
I B, OrdersaddressesFkassoc -8 CreatedBy
- Ry CrdersPersonsFkassoc - CreationDate
-7 PaymentOptionsPersonsFkassac - CustomerCallectFlag
-) o) CustomerId
L_E, PersonshddressesFkassoc - &) DiscountAmaunt
&3 PersonTypeCode -8 Discountld
Ak, L. ...[¥%2] FrapShinninnFlan
Add
Source Attributeis) Destination Atkributeis)
FersonsyO,Personld Ordersy0, CustomerTd
| Help ‘ | < Back " Mext = | | Cancel |

On the View Link Properties page, you can use the Accessor Name field to change
the default name of the accessor that lets you programmatically access the
destination view object.

By default, the accessor name will match the name of the destination view object.
For example, you might change the default accessor name OrdersVvo to
CustomerOrders to better describe the master-detail relationship that the accessor
defines.

Also on the View Link Properties page, you control whether the view link
represents a one-way relationship or a bidirectional one.

By default, a view link is a one-way relationship that allows the current row of the
source (master) to access a set of related rows in the destination (detail) view
object. For example, in Figure 5-26, the checkbox settings indicate that you'll be
able to access a detail collection of rows from Ordersvo for the current row in
PersonsV0, but not vice versa. In this case, this behavior is specified by the
checkbox setting in the Destination Accessor group box for the Ordersvo (the
Generate Accessor In View Object: PersonsVO box is selected) and checkbox
setting in the Source Accessor group box for Personsvo (the Generate Accessor In
View Object: OrdersVO box is not selected).

Defining SQL Queries Using View Objects 5-41

Working with Multiple Tables in a Master-Detail Hierarchy

Figure 5-26 View Link Properties Control Name and Direction of Accessors

® Create View Link - Step 3 of 7

View Link Properties
Source Accessor Destination Accessor
l Wiew Object: PersonsWo View Object: Ordersvo
o View Obijects
T Generate Accessor Generate Accessor
w) Yiew Link Properties [In Yiew Cbject: Ordersyo In Yiew Object: PersonsyC
| Edit Source Quer [] In Entity: OrderEQ []In Entity: PersanEQ
T Accessor Mame:
l ‘CustomerOrders
| Help ‘ | < Back. || Text = | | Finish | | Cancel |

9. On the Edit Source Query page, preview the view link SQL predicate that will be
used at runtime to access the master row in the source view object and click Next.

10. On the Edit Destination Query page, preview the view link SQL predicate that will
be used at runtime to access the correlated detail rows from the destination view
object for the current row in the source view object and click Next.

11. On the Application Module page, add the view link to the data model for the
desired application module and click Finish.

By default the view link will not be added to the application module’s data model.
Later you can add the view link to the data model using the overview editor for
the application module.

5.6.3 What Happens When You Create Master-Detail Hierarchies Using View Links

When you create a view link or an association-based view link, JDeveloper creates the
XML document file that represents its declarative settings and saves it in the directory
that corresponds to the name of its package. For example, if the view link is named
OrderInfoToOrderItemsInfo and it appears in the queries.links package, then the
XML file created will be . /queries/link/OrderInfoToOrderItemsInfo.xml under the
project's source path. This XML file contains the declarative information about the
source and target attribute pairs you've specified and, in the case of an
association-based view link, contains the declarative information about the association
that relates the source and target view objects you've specified.

In addition to saving the view link component definition itself, JDeveloper also
updates the XML definition of the source view object in the view link relationship to
add information about the view link accessor you've defined. As a confirmation of
this, you can select the source view object in the Application Navigator and inspect its
details in the Structure window. As shown in Figure 5-27, you can see the defined
accessor in the ViewLink Accessors node for the OrderItemsInfoV0 source view object
of the OrderInfoToOrderItemsInfo view link.

5-42 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in a Master-Detail Hierarchy

Figure 5-27 View Object with View Link Accessor in the Structure Window

ig OrderInfo¥0.xml - Structure E]
=

-5 orderInfavo

----- D Properties

-] Attributes

----- [alternate Keys

----- O3 wiew Criteria

----- [Publisher

=[] viewlink Accessors
- 7=,W CrderItemsInfolic

----- D Bind Variables

B[] Entity Uisages

----- D AssociationUsage

----- [Client Interfaces

----- [view Accessars

----- D List of Yalues

..... [Propertysets

----- [ResourceBundle

----- [Datasource

----- [T DeclarativeWhereClause

----- [Sortriteria

5.6.4 How to Enable Active Master-Detail Coordination in the Data Model

When you enable programmatic navigation to a row set of correlated details by
defining a view link as described in Section 5.6.1, "How to Create a Master-Detail
Hierarchy for Entity-Based View Objects,” the view link plays a passive role, simply
defining the information necessary to retrieve the coordinated detail row set when
your code requests it. The view link accessor attribute is present and programmatically
accessible in any result rows from any instance of the view link's source view object. In
other words, programmatic access does not require modifying the application
module's data model.

However, since master-detail user interfaces are such a frequent occurrence in
enterprise applications, the view link can be also used in a more active fashion so you
can avoid needing to coordinate master-detail screen programmatically. You opt to
have this active master-detail coordination performed by explicitly adding an instance
of a view-linked view object to your application module's data model.

To enable active master-detail coordination, open the application module in the
overview editor and select the Data Model page.

Before you begin:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object" and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To add a detail instance of a view object:
1. Inthe Application Navigator, double-click the application module.

2. In the overview editor, click the Data Model navigation tab.

3. In the Data Model page, expand the View Object Instances section and, in the
Available View Objects list, select the detail view object node that is indented
beneath the master view object.

Note that the list shows the detail view object twice: once on its own, and once as a
detail view object via the view link. For example, in Figure 5-28 you would select

Defining SQL Queries Using View Objects 5-43

Working with Multiple Tables in a Master-Detail Hierarchy

the detail view object OrderItemsInfoVO via OrderInfoToOrderItemInfo instead
of the view object labeled as OrderItemsInfoV0 (which, in this case, appears
beneath the highlighted view object).

Figure 5-28 Detail View Object Selection from Available View Objects

Available View Objects:

(=1l oracle Fodemo.storefront. store .queries
----- #2] addressesAndlsagesyo

----- 8] Addressesvo

-89 addressUsagesvo

----- E] Couponsh'c

----- 2] CustomerInfovo

----- 2 FindaddressesByIdvD

----- £2] FindordersByIdvo

-----] MembershipDiscauntsyo

- MostPopularProductsByCategoriesiO
-] orderinfovo
PO N der ThermnsInFodD via OrderlnfoToOrderTkemInfo
----- 2] orderTtemsInfovo
----- 2] OrderTremsvio

Mew Yiew Instance: CrderTtemsDetailvo

Mew Yiew Link Instance: | OrderInfoToOrderDetailInfo

4. Enter a name for the detail instance you're about to create in the Name View
Instance field below the Available View Objects list.

For example, Figure 5-28 shows the name OrderItemsDetailVo0 for the instance of
the OrderItemsInfoVO view object that is a detail view.

5. In the Data Model list, select the instance of the view object that you want to be
the actively-coordinating master.

6. Click Add Instance to add the detail instance to the currently selected master
instance in the data model, with the name you've chosen.

For example, in Figure 5-29, the Data Model list shows a master-detail hierarchy
of view object instances with OrderItemsDetailVo0 as the detail view object.

Figure 5-29 Data Model with View Linked View Object

Daka Model: |Subtypes... ||Edit... |

[ﬁ StareServiceaM
[]---gﬂ CustomerReqgistration
[}--?&.Tfl ParentProductCategories
----- ?_ﬂ PayrmentOptions
[-}--?.Tﬂ OrderInfovd

L g_fl OrderltemsDiet: fia OrderInfoToOrderDetaillnfa
----- gﬂ ProductOrdersCount
----- ?fl FindProductById
----- ﬁ_ﬂ FindQrdersById
[}--;ﬂ Products
E]---;’.'—ﬂ ProductCategories
----- ?fl MostPopularProductsEyCategories
----- ?fl FindAddressesEyId
----- ?-ﬂ ProductImages

5.6.5 How to Test Master-Detail Coordination

To test active master-detail coordination, launch the Business Component Browser on
the application module by choosing Run from its context menu in the Application
Navigator. The Business Component Browser data model tree shows the view link
instance that is actively coordinating the detail view object instance with the master
view object instance. You can double-click the view link instance node in the tree to
open a master-detail data view page in the Business Component Browser. Then, when

5-44 Fusion Developer's Guide for Oracle Application Development Framework

Working with Multiple Tables in a Master-Detail Hierarchy

you use the toolbar buttons to navigate in the master view object — changing the view
object's current row as a result — the coordinated set of details is automatically
refreshed and the user interface stays in sync.

If you double-click another view object that is not defined as a master and detail, a
second tab will open to show its data; in that case, since it is not actively coordinated
by a view link, its query is not constrained by the current row in the master view
object.

For information about editing the data model and running the Business Component
Browser, see Section 6.3, "Testing View Object Instances Using the Business
Component Browser."

5.6.6 How to Access the Detail Collection Using the View Link Accessor

To work with view links effectively, you should also understand that view link
accessor attributes return a RowSet object and that you can access a detail collection
using the view link accessor programmatically.

5.6.6.1 Accessing Attributes of Row by Name

At runtime, the getAttribute () method on a Row object allows you to access the value
of any attribute of that row in the view object's result set by name. The view link
accessor behaves like an additional attribute in the current row of the source view
object, so you can use the same getAttribute () method to retrieve its value. The only
practical difference between a regular view attribute and a view link accessor attribute
is its data type. Whereas a regular view attribute typically has a scalar data type with a
value like 303 or ngreenbe, the value of a view link accessor attribute is a row set of
zero or more correlated detail rows. Assuming that curUser is a Row object from some
instance of the Orders view object, you can write a line of code to retrieve the detail
row set of order items:

RowSet items = (RowSet)curUser.getAttribute("OrderItems");

Note: If you generate the custom Java class for your view row, the
type of the view link accessor will be RowIterator. Since at runtime
the return value will always be a RowSet object, it is safe to cast the
view link attribute value to RowSet.

5.6.6.2 Programmatically Accessing a Detail Collection Using the View Link
Accessor

Once you've retrieved the RowSet object of detail rows using a view link accessor, you
can loop over the rows it contains just as you would loop over a view object's row set
of results, as shown in Example 5-8.

Example 5-8 Programmatically Accessing a Detail Collection

while (items.hasNext()) {
Row curltem = items.next();
System.out.println("--> (" + curltem.getAttribute("LineItemId") + ") " +

curItem.getAttribute ("LineItemTotal"));
}

For information about creating a test client, see Section 6.4.6, "How to Access a Detail
Collection Using the View Link Accessor."

Defining SQL Queries Using View Objects 5-45

Working with a Single Table in a Recursive Master-Detail Hierarchy

5.7 Working with a Single Table in a Recursive Master-Detail Hierarchy

A recursive data model is one that utilizes a query that names source and destination
attributes in a master-detail relationship based on a single table. In a typical
master-detail relationship, the source attribute is supplied by the primary key attribute
of the master view object and the destination attribute is supplied by foreign key
attribute in the detail view object. For example, a typical master-detail relationship
might relate the DepartmentId attribute on the DEPARTMENT table and the
corresponding DepartmentId attribute on the EMPLOYEE table. However, in a recursive
data model, the source attribute EmployeeId and the target attribute ManagerId both
exist in the EMPLOYEE table. The query for this relationship therefore involves only a
single view object. In this scenario, you create the view object for a single base entity
object that specifies both attributes and then you define a self-referential view link to
configure this view object as both the "source" and the "target" view object to form a
master-detail hierarchy.

After you create the view link, there are two ways you can handle the recursive
master-detail hierarchy in the data model project. You can either:

» Create a data model that exposes two instances of the same view object, one
playing the role as master and the other playing the role as detail, actively
coordinated by a view link instance. This can be useful when you anticipate
needing to show a single level of master rows and detail rows at a time in two
separate tables.

» Create a data model that exposes only a single instance of the view object, and use
the view link accessor attribute in each row to access a row set of details. This is
the more typical use case of the two because it allows you to display (or
programmatically work with) the recursive master-detail hierarchy to any number
of levels that exist in the data. For example, to show the recursive hierarchy in a
tree or treeTable component, you would use this approach, as described in
Section 24.4.1, "How to Display Master-Detail Objects in Trees."

5.7.1 How to Create a Recursive Master-Detail Hierarchy for an Entity-Based View
Object

In a recursive master-detail hierarchy, the attributes of the view object that you select
for the source and destination in the view link will typically be the same pair of
attributes that define the self-referential association between the underlying entity
object, if this association exists. While this underlying association is not required to
create the view link, it does simplify the creation of the view link, so you will first
create a foreign key association for the base entity object of the view object.

To create an association, you use the Create Association wizard. Then the association
will appear as a selection choice when you use the Create View Link wizard. The view
link will be self-referential because the association you select for the source and the
destination view object names the same entity object, which is derived from a single
database table.

Before you begin:

= When you create the view link JDeveloper won't be able to infer the association
between the source and destination attributes of the entity object. To support the
recursive hierarchy, you can use the Create Association wizard to create an
association between the source attribute and the destination attribute. On the
Entity Objects page, select the same entity object to specify the source and
destination attributes and leave all other default selections unchanged in the

5-46 Fusion Developer's Guide for Oracle Application Development Framework

Working with a Single Table in a Recursive Master-Detail Hierarchy

wizard. For details about creating an association, see Section 4.3, "Creating and
Configuring Associations."

For example, assume the recursive master-detail hierarchy displays a list of
employees based on their management hierarchy. In this scenario, you would
create the association based on the Employees entity object. On the Entity Objects
page of the Create Association wizard, you would select Employees.EmployeeId as
the source attribute and Employee.ManagerId as the destination attribute. The
entity object Employees supplies both attributes to ensure the association is
self-referential.

Create the entity-based view object and create a view criteria that will filter the
view instance’s results to include only those rows you want to see at the "root" of
the hierarchy. To create a view criteria that uses a bind variable to filter the view
object, see Section 5.11, "Working with Named View Criteria."

For example, in a recursive hierarchy of managers and employees, you would
create the entity-based view object EmployeesView. After you create the view
object in the Create View Object wizard, you can use the Query page of the
overview editor to create a bind variable and view criteria which allow you to
identify the employee or employees that will be seen at the top of the hierarchy. If
only a single employee should appear at the root of the hierarchy, then the view
criteria in this scenario will filter the employees using a bind variable for the
employee ID (corresponding to the source attribute) and the WHERE clause shown
in the Create View Criteria dialog would look like ((Employees.EMPLOYEE_ID =
:TheEmployeeId)) , where TheEmployeeId is the bind variable name. For more
information on creating a view criteria that uses a bind variable to filter the view
object, see Section 5.13.2.1, "Creating a Data Source View Object to Control the
Cascading List."

When you are ready to expose the employees view object in your project’s data
model, you will configure the view instance in the data model to use this view
criteria to filter the initial employee in the root of the tree. You'll configure the bind
variable to specify the employee ID of the employee that you want to be the root
value of the entire hierarchy. For example, the root value of the recursive hierarchy
of managers and employees would be the employee ID of the highest level
manager in the organization.

To create an association-based, self-referential view link:

1.

In the Application Navigator, right-click the project in which you want to create
the view object and choose New.

To avoid having to type in the package name in the Create View Link wizard, you
can choose New View Link on the context menu of the links package node in the
Application Navigator.

In the New Gallery, expand Business Tier, select ADF Business Components and
then View Link, and click OK.

In the Create View Link wizard, on the Name page, supply a package and a
component name.

On the View Objects page, in the Select Source Attribute tree expand the source
view object in the desired package. In the Select Destination Attribute tree
expand the destination view object.

For entity-based view objects, notice that in addition to the view object attributes,
relevant associations also appear in the list.

Defining SQL Queries Using View Objects 5-47

Working with a Single Table in a Recursive Master-Detail Hierarchy

Select the same association in both Source and Destination trees. Then click Add
to add the association to the table below.

For example, Figure 5-30 shows the same EmpManagersFkAssoc association in both
Source and Destination trees selected. The view link is self-referential because the
definition of the association names the source and destination attribute on the same
entity object (in this case, Employees).

Figure 5-30 Master and Detail Related by a Self-Referential Association Selection

& Create View Link - Step 2 of 7

View Objects

Select each pair of source and destination view object attributes that define the view link, then click Add.
Mame

Yiew Objects

Select Destination Attribute:
E--- Employeesiiew
--[X3) CommissionPct
--[E2) DepartmentId
-8 Emnail

-2 Employeeld

Select Source Attribute:
EE Employeesiiew
----- =3 CommissionPct

..... &8 Departmentld
..... =@ Email

e
+ Wiew Link Properties
I
|
I

- [E%8 FirstMame
----- =3 HireDate --[x73) HireDate
----- 553 JobId &3 JobId
----- (=3 Lasthame --[x73) LastMame

..... (&2l MananerTd[5¥2) MananerTd

Source Attributeds)
EmpManagerFkassoc

Destination Attributeds)
EmpManagerFkassoc

Help |

| < Back " Mext = |

| Cancel |

On the View Link Properties page, leave the default selections unchanged, but edit
the accessor name of the destination accessor to provide a meaningful name.

For example, Figure 5-31 shows the destination accessor has been renamed from
EmployeesView to StaffList. This name will be exposed in the binding editor
when the user interface developer populates the ADF Faces tree component by
selecting this accessor. The name you provide will make clear to the UI developer
the purpose of the accessor; in this case, to generate a list of employees associated
with each manager.

5-48 Fusion Developer's Guide for Oracle Application Development Framework

Working with a Single Table in a Recursive Master-Detail Hierarchy

Figure 5-31 Renamed Destination Accessor in View Link

® Create View Link - Step 3 of 7

View Link Properties

Source Accessar Destination Accessar
‘iew Object: Employeesyiew Wiew Object: Employeesyiew
Wigws Objecks
Generate Accessor Generate Accessar
¥iew Link Properties In Yiew Object: Employeesyiew
Edit Source Query
Accessor Name:
[staffList]
| Help | < Back " Mext = 4 | Finish | | Cancel

7.

Click Finish.

To define the view object instance in an existing application module:

1.
2.
3.

In the Application Navigator, double-click the application module.
In the overview editor, click the Data Model navigation tab.

In the Data Model page, expand the View Object Instances section and, in the
Available View Objects list, select the view object definition that you defined the
view criteria to filter.

The New View Instance field below the list shows the name that will be used to
identify the next instance of that view object that you add to the data model.

To change the name before adding it, enter a different name in the New View
Instance field.

With the desired view object selected, shuttle the view object to the Data Model
list.

Figure 5-32 shows the view object EmployeesView has been renamed to Employees
before it was shuttled to the Data Model list.

Defining SQL Queries Using View Objects 5-49

Working with a Single Table in a Recursive Master-Detail Hierarchy

Figure 5-32 Data Model Displays Added View Object Instance

Data Model Components @

Select a wiew object from the tree of available view objects, select the instance or application module ta be its
parent in the data model tree, and click '=' to create a named instance of the view object in the data model,

Available view Objects: Data Model: Subtypes... ” Edit... |
% test, model, Model ﬁ HRModule
(= test.model . %) o

Employeestiew via EmpManagerFhkLi

(2]
K3

Mew Yiews Instance: Yiew Instance: Employees /
View Definition: test. model Employveesiiew
ya

6. To filter the view object instance so that you specify the root value of the hierarchy,
select the view object instance you added and click Edit.

7. In the Edit View Instance dialog, shuttle the view criteria you created to the
Selected list and enter the bind parameter value that corresponds to the root of the
hierarchy.

Figure 5-33 shows the view object ByEmployeeId view criteria with the bind
parameter TheEmployeeId set to the value 100 corresponding to the employee that
is at the highest level of the hierarchy.

Figure 5-33 View Criteria Filters View Instance

 Edit View Instance: Employees f'5__<|

' view Criteria

Caonfigure the view object query For this view instance.

Wigw Criteria

Select the view criteria that you want o apply ko this view object, If you select multiple view criteria, they will be
combined with an AMD operatar,

Auailable: Selected:

|_=—'-“ ByEmployeeld

Eind Parameter Values

Provide values for any bind parameters defined for this query and indicate if any of these values are sourced From

this base object,
Pararneter Type Walue
TheEmployesld oracle. jbo.domain, Mumber 100
| Help | Apply | | OF i | Cancel

8. C(lick OK.

5-50 Fusion Developer's Guide for Oracle Application Development Framework

Working with a Single Table in a Recursive Master-Detail Hierarchy

5.7.2 What Happens When You Create a Recursive Master-Detail Hierarchy

When you create an self-referential view link, JDeveloper creates the XML document
file that represents its declarative settings and saves it in the directory that corresponds
to the name of its package. This XML file contains the declarative information about
the source and target attribute pairs that the association you selected specifies and
contains the declarative information about the association that relates the source and
target view object you selected.

Example 5-9 shows how the EmpManagerFkLink defines the same view object
EmployeesView for the source and destination in its XML document file.

Example 5-9 Self-Referential View Link Defined in XML

<ViewLink
xmlns="http://xmlns.oracle.com/bcdj"
Name="EmpManagerFkLink"
Version="11.1.1.53.5"
EntityAssociation="test.model.EmpManagerFkAssoc">
<ViewLinkDefEnd
Name="EmployeesViewl"
Cardinality="1"
Owner="test.model .EmployeesView"
Source="true">
<DesignTime>
<Attr Name="_finderName" Value="ManagerIdEmployeesView"/>
<Attr Name="_isUpdateable" Value="true"/>
</DesignTime>
<AttrArray Name="Attributes">
<Item Value="test.model.EmployeesView.EmployeeId"/>
</AttrArray>
</ViewLinkDefEnd>
<ViewLinkDefEnd
Name="EmployeesView2"
Cardinality="-1"
Owner="test.model .EmployeesView">
<DesignTime>
<Attr Name="_finderName" Value="DirectReports"/>
<Attr Name="_isUpdateable" Value="true"/>
</DesignTime>
<AttrArray Name="Attributes">
<Item Value="test.model.EmployeesView.ManagerId"/>
</AttrArray>
</ViewLinkDefEnd>
</ViewLink>

In addition to saving the view link component definition itself, JDeveloper also
updates the XML definition of the view object to add information about the view link
accessor you've defined. As a confirmation of this, you can select the view object in the
Application Navigator and inspect its details in the Structure window. As shown in
Figure 5-34, you can see the defined accessor in the ViewLink Accessors node for the
EmployeesView view object of the EmpManagerFkLink view link.

Defining SQL Queries Using View Objects 5-51

Working with View Objects in Declarative SQL Mode

Figure 5-34 View Object with View Link Accessor in the Structure Window

E EmployeesYiew.xml - St... E]
=

=5 Employeesyiew

----- D Properties

[0 Attributes

----- [alternate Kevs

-] View Criteria

----- [Publisher

=[] Viewlink Accessors
H 7=lﬂ irectReports

[]---D Bind Wariables

[0 Entity Usages

----- D AssociationUsage

----- [T Client Interfaces

----- [T view Accessars

----- D List of Yalues

..... [Propertysets

----- [ResourceBundle

----- [T Datasource

----- [T DeclarativeWhereClause

----- [Sortcriteria

5.8 Working with View Objects in Declarative SQL Mode

At runtime, when ADF Business Components works with JDBC to pass a query to the
database and retrieve the result, the mechanism to retrieve the data is the SQL query.
As an alternative to creating view objects that specify a SQL statement at design time,
you can create entity-based view objects that contain no SQL statements. This
capability of the ADF Business Components design time and runtime is known as
declarative SQL mode. When the data model developer works with the wizard or editor
for a view object in declarative SQL mode, they require no knowledge of SQL. In
declarative SQL mode, the view object’s metadata causes the ADF Business
Components runtime to generate the SQL query statements as follows:

Optionally, generates SELECT and FROM lists based on the rendered web page’s
databound UI components” usage of one or more entity objects” attributes

Specifying the runtime query statement based solely on databound UI component
attribute usage is an optimization that you control at the level of each view object
attribute by changing the attribute’s IsSelected property setting. By default, the
property setting is IsSelected=true for each attribute that you add to the view
object in declarative SQL mode. The default setting specifies the added attribute
will be selected in the SQL statement regardless of whether or not the attribute is
exposed in the Ul by a databound component. For details about changing the
property setting to optimize the runtime query statement, see Section 5.8.1, "How
to Create Declarative SQL View Objects."

Optionally, generates a WHERE clause based on a view criteria that you add to the
view object definition

Optionally, generates an ORDERBY clause based on a sort criteria that you add to the
view object definition.

Optionally, augments the WHERE clause to support table joins based on named view
criteria that you add to the view object definition

Optionally, augments the WHERE clause to support master-detail view filtering
based on a view criteria that you add to either the source or destination of a view
link definition

5-52 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Declarative SQL Mode

Additionally, the SQL statement that a declarative SQL mode view object generates at
runtime will be determined by the SQL flavor specified in the Business Components
page of the Project Properties dialog.

Note: Currently, the supported flavors for runtime SQL generation
are SQL92 (ANSI) style and Oracle style. For information about setting
the SQL flavor for your project, see Section 3.3.1, "Choosing a
Connection, SQL Flavor, and Type Map."

Declarative SQL mode selection is supported in JDeveloper as a setting that you can
apply either to the entire data model project or to individual view objects that you
create. The ADF Business Components design time also allows you to override the
declarative SQL mode project-level setting for any view object you create.

The alternatives to declarative SQL mode are normal mode and expert mode. When
you work in either of those modes, the view object definitions you create at design
time always contain the entire SQL statement based on the SQL flavor required by
your application module’s defined database connection. Thus the capability of SQL
independence does not apply to view objects that you create in normal or expert
mode. For information about using the wizard and editor to customize view objects
when SQL is desired at design time, see Section 5.2, "Populating View Object Rows
from a Single Database Table."

5.8.1 How to Create Declarative SQL View Objects

All view objects that you create in JDeveloper rely on the same design time wizard
and editor. However, when you enable declarative SQL mode, the wizard and editor
change to support customizing the view object definition without requiring you to
display or enter any SQL. For example, the Query page of the Create View Object
wizard with declarative SQL mode enabled lacks the Generated SQL field present in
normal mode.

Additionally, in declarative SQL mode, since the wizard and editor do not allow you
to enter WHERE and ORDERBY clauses, you provide equivalent functionality by defining a
view criteria and sort criteria respectively. In declarative SQL mode, these criteria
appear in the view object metadata definition and will be converted at runtime to their
corresponding SQL clause. When the databound UI component has no need to display
filtered or sorted data, you may omit the view criteria or sort criteria from the view
object definition.

Otherwise, after you enable declarative SQL mode, the basic procedure to create a
view object with ensured SQL independence is the same as you would follow to create
any entity-based view object. For example, you must still ensure that your view object
encapsulates the desired entity object metadata to support the intended runtime query.
As with any entity-based view object, the columns of the runtime-generated FROM list
must relate to the attributes of one or more of the view object’s underlying entity
objects. In declarative SQL mode, you automatically fulfill this requirement when
working with the wizard or editor when you add or remove the attributes of the entity
objects on the view object definition.

If you prefer to optimize the declarative SQL query so that the SELECT and FROM
clauses of the SQL query statement are based solely on whether or not the attributes
you add to the view object are rendered at runtime by a databound UI component,
then you must disable the Selected in Query checkbox (sets IsSelected=false for the
view object definition) for all added attributes. By default, the IsSelected property is
true for any attribute that you add to the view object in declarative SQL mode. The

Defining SQL Queries Using View Objects 5-53

Working with View Objects in Declarative SQL Mode

default setting means the added attribute will be selected in the SQL statement
regardless of whether or not the attribute is exposed by a databound UI component.
When you create a new view object in declarative SQL mode, you can use the
Attribute Settings page of the Create View Object wizard to change the setting for each
attribute. If you need to alter this setting after you generate the view object, you can
use the Property Inspector to change the Selected in Query property setting for one or
more attributes that you select in the Attributes page of the view object editor.

Performance Tip: A view object instance configured to generate SQL
statements dynamically will requery the database during page
navigation if a subset of all attributes with the same list of key entity
objects is used in the subsequent page navigation. Thus performance
can be improved by activating a superset of all the required attributes
to eliminate a subsequent query execution.

Thus there are no unique requirements for creating entity-based view objects in
declarative SQL mode, nor does declarative SQL mode sacrifice any of the runtime
functionality of the normal mode counterpart. You can enable declarative SQL mode
as a global preference so that it is the Create View Object wizard’s default mode, or
you can leave the setting disabled and select the desired mode directly in the wizard.
The editor for a view object also lets you select and change the mode for an existing
view object definition.

To enable declarative SQL mode for all new view objects:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Business Components node and choose
View Objects.

3. On the Business Components: View Object page, select Enable Declarative SQL
mode for new objects and click OK.

To predetermine how the FROM list will be generated at runtime you can select
Include all attributes in runtime-generated query, as described in Section 5.8.4,
"How to Force Attribute Queries for Declarative SQL Mode View Objects."

To create an entity-based view object in declarative SQL mode, use the Create View
Object wizard, which is available from the New Gallery.

Before you begin:

Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create declarative SQL-based view objects:
1. In the Application Navigator, right-click the project in which you want to create
the view objects and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. On the Name page, enter a package name and a view object name. Keep the
default setting Updatable access through entity objects enabled to indicate that
you want this view object to manage data with its base entity object. Click Next.

Any other choice for the data selection will disable declarative SQL mode in the
Create View Object wizard.

5-54 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Declarative SQL Mode

On the Entity Objects page, select the entity object whose data you want to use in
the view object. Click Next.

When you want to create a view object that joins entity objects, you can add
secondary entity objects to the list. To create more complex entity-based view
objects, see Section 5.5.1, "How to Create Joins for Entity-Based View Objects."

On the Attributes page, select at least one attribute from the entity usage in the
Available list and shuttle it to the Selected list. Attributes you do not select will
not be eligible for use in view criteria and sort criteria. Click Next.

You should select any attribute that you intend to customize (in the Attribute
Settings page) or any attributes that you intend to use in a view criteria or sort
criteria (in the Query page). Additionally, the tables that appear in the FROM list of
the runtime-generated query will be limited to the tables corresponding to the
attributes of the entity objects you select.

On the Attribute Settings page, optionally, use the Select Attribute dropdown list
to switch between the view object attributes in order to change their names or any
of their initial settings.

Use the Select Attribute dropdown list to switch between the previously selected
view object attributes and deselect Selected in Query for each attribute that you
want to be selected in the SQL statement based solely on whether or not the
attribute is rendered by a databound UI component. Click Next.

By default, the Selected in Query checkbox is enabled for all view object attributes
that you add in declarative SQL mode. This default setting will generate a SQL
statement with all added attributes selected. When you deselect the checkbox for
an attribute, the IsSelected property is set to false and whether or not the
attribute is selected will be determined at runtime by the databound UI
component’s usage of the attribute.

On the Query page, select Declarative in the Query Mode dropdown list if it is
not already displayed. The wizard changes to declarative SQL mode.

Changing the mode to Declarative in the wizard allows you to override the
default mode for this single view object. If you did not select Enable declarative
SQL mode for new objects in the Preferences dialog, the wizard displays the
default query mode, Normal.

Optionally, define Where and Order By criteria to filter and order the data as
required. At runtime, ADF Business Components automatically generates the
corresponding SQL statements based on the criteria you create.

Click Edit next to the Where field to define the view criteria you will use to filter
the data. The view criteria you enter will be converted at runtime to a WHERE clause
that will be enforced on the query statement. For information about specifying
view criteria, see Section 5.11, "Working with Named View Criteria."

In the Order By field select the desired attribute in the Available list and shuttle it
to the Selected list. Attributes you do not select will not appear in the SQL
ORDERBY clause generated at runtime. Add additional attributes to the Selected list
when you want the results to be sorted by more than one column. Arrange the
selected attributes in the list according to their sort precedence. Then for each sort
attribute, assign whether the sort should be performed in ascending or descending
order. Assigning the sort order to each attribute ensures that attributes ignored by
the UI component still follow the intended sort order.

For example, as shown in Figure 5-35, to limit the CustomerCardStatus view
object to display only the rows in the CUSTOMERS table for customers with a specific

Defining SQL Queries Using View Objects 5-55

Working with View Objects in Declarative SQL Mode

credit card code, the view criteria in the Where field limits the CardTypeCode
attribute to a runtime-determined value. To order the data by customer ID and the
customer’s card expiration date, the Order By field identifies those attributes in
the Selected list.

Figure 5-35 Creating View Object Wizard, Query Page with Declarative Mode Selected

® Create View Object - Step 5 of 9

Query
The SELECT list and FROM clause will be generated at runtime. Provide the View Criteria and Sort Criteria
I separately, which will be used to generate the WHERE and ORDER BY clauses.
l Query Clauses
.1. Attribute Settings where: |58 Criteria Group | Edit... |
W Query - Pavment TypeCode STARTSWITH :cardtype
v Bind Yariables —
T |gear... |
I Order BY: ayailable: Selected:
I Accounthumber —— [Customerld
. AdditionalInformation |i| o
Approximatelncome |§})| | {}|
Billingaddressid pr— p—
CardTypeCode |i|
CheckDigits (|
(hildran Inder 1 T
Sort Order: |Ascending
Query Mode: |Declarative -
| Help | < Back " Mext = | | Finish | | Cancel

10. Click Finish.

5.8.2 How to Filter Declarative SQL-Based View Objects When Table Joins Apply

When you create an entity-based view object you can reference more than one entity
object in the view object definition. In the case of view objects you create in declarative
SQL mode, whether the base entity objects are activated from the view object
definition will depend on the requirements of the databound UI component at
runtime. If the UI component displays attribute values from multiple entity objects,
then the SQL generated at runtime will contain a JOIN operation to query the
appropriate tables.

Just as with any view object that you create, it is possible to filter the results from table
joins by applying named view criteria. In the case of normal mode view objects, all
entity objects and their attributes will be referenced by the view object definition and
therefore will be automatically included in the view object’s SQL statement. However,
by delaying the SQL generation until runtime with declarative SQL mode, there is no
way to know whether the view criteria should be applied.

Note: In declarative SQL mode, you can define a view criteria to
specify the WHERE clause (optional) when you create the view object
definition. This type of view criteria when it exists will always be
applied at runtime. For a description of this usage of the view criteria,
see Section 5.8.1, "How to Create Declarative SQL View Objects."

5-56 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Declarative SQL Mode

Because a SQL JOIN may not always result from a view object defined in declarative
SQL mode with multiple entity objects, named view criteria that you define to filter
query results should be applied conditionally at runtime. In other words, named view
criteria that you create for declarative SQL-based view objects need not be applied as
required, automatic filters. To support declarative SQL mode, named view criteria that
you apply to a view object created in declarative SQL mode can be set to apply only on
the condition that the UI component is bound to the attributes referenced by the view
criteria. The named view criteria once applied will, however, support the Ul
component’s need to display a filtered result set.

You use the Edit View Criteria dialog to create the named view criteria and enable its
conditional usage by setting the appliedIfJoinSatisfied property in the Property
Inspector.

To define a view criteria to filter only when the join is satisfied:

1. Create the view object with declarative SQL mode enabled as described in
Section 5.8.1, "How to Create Declarative SQL View Objects."

2. In the Application Navigator, double-click the view object.
3. In the overview editor, click the Query navigation tab.

4. In Query page, expand the View Criteria section, and click the Create new view
criteria button.

5. In the Create View Criteria dialog, create the view criteria as described in
Section 5.11.1, "How to Create Named View Criteria Declaratively."

6. After creating the view criteria, select it in the View Criteria section of Query page
of the overview editor.

7. With the view criteria selected, open the Property Inspector and set the
AppliedIfJoinSatisfied property to true.

The property value true means you want the view criteria to be applied only on
the condition that the UI component requires the attributes referenced by the view
criteria. The default value false means that the view criteria will automatically be
applied at runtime. In the case of declarative SQL mode-based view objects, the
value true ensures that the query filter will be appropriate to needs of the view
object’s databound UI component.

5.8.3 How to Filter Master-Detail Related View Objects with Declarative SQL Mode

Just as with normal mode view objects, you can link view objects that you create in
declarative SQL mode to other view objects to form master-detail hierarchies of any
complexity. The steps to create the view links are the same as with any other
entity-based view object, as described in Section 5.6.1, "How to Create a Master-Detail
Hierarchy for Entity-Based View Objects.” However, in the case of view objects that
you create in declarative SQL mode, you can further refine the view object results in
the Source SQL or Destination SQL dialog for the view link by selecting a previously
defined view criteria in the Create View Link wizard or the overview editor for the
view link.

To define a view criteria for view link source or view link destination:

1. Create the view objects in declarative SQL mode as described in Section 5.8.1,
"How to Create Declarative SQL View Objects."

2. In the overview editor for the view objects, define the desired view criteria for
either the source (master) view object or the destination (detail) view object as

Defining SQL Queries Using View Objects 5-57

Working with View Objects in Declarative SQL Mode

described in Section 5.8.2, "How to Filter Declarative SQL-Based View Objects
When Table Joins Apply."

Create the view link as described in Section 5.6.1, "How to Create a Master-Detail
Hierarchy for Entity-Based View Objects" and perform one of these additional
steps:

= On the SQL Source page, select a previously defined view criteria to filter the
master view object. Click Next.

= On the Destination SQL page, select a previously defined view criteria to filter
the detail view object.

Figure 5-35 shows a view criteria that filters the master view object based on
customer IDs.

Figure 5-36 Filtering a View Link in Declarative SQL Mode

® Create View Link - Step 4 of 6

Source SQL
Source
I Attributes Bind Yariables
] CrderEC, ORDER_ID :Bind_tOrderld
T Wiew Link Properties
T Source 50L
Destinakion SOL T T
T Pick. a wiew criteria From the source view to further refine the query results.

Wiew Object: oracle.Fodera, storefront, store, queries . Ordersyo

Generate SQL at Runtime: Yes

Wigw Criteria: [MyOrdersByCustomerld « |

[Criteria Group
] CustomerId = :orderCustomerId

Where clause for Source to Destination
:Bind_OrderId = OrderItemEQ, ORDER _ID

Help < Back Mext = Finish Cancel
| | | J| || |

After you create the view link, you can also select a previously defined view
criteria. In the overview editor navigation list, select Query and expand the Source
or Destination sections. In the View Criteria dropdown list, select the desired
view criteria. The dropdown list will be empty if no view criteria exist for the view
object.

If the overview editor does not display a dropdown list for view criteria selection,
then the view objects you selected for the view link were not created in declarative
SQL mode. For view objects created in normal or expert mode, you must edit the
WHERE clause to filter the data as required.

5.8.4 How to Force Attribute Queries for Declarative SQL Mode View Objects

Typically, when you define a declarative SQL mode view object, the attributes that get
queried at runtime will be determined by the requirements of the databound Ul
component as it is rendered in the web page. This is the runtime-generation capability
that makes view objects independent of the design time database’s SQL flavor.
However, you may also need to execute the view object programmatically without

5-58 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Declarative SQL Mode

exposing it to an ADF data binding in the UL In this case, you can enable the Include
all attributes in runtime-generated query option to ensure that a programmatically
executed view object has access to all of the entity attributes.

Note: Be careful to limit the use of the Include all attributes in
runtime-generated query option to programmatically executed view
objects. If you expose the view object with this setting enabled to a
databound UI component, the runtime query will include all
attributes.

The Include all attributes in runtime-generated query option can be specified as a
global preference setting or as a setting on individual view objects. Both settings may
be used in these combinations:

Enable the global preference so that every view object you create includes all
attributes in the runtime query statement.

Enable the global preference, but disable the setting on view objects that will not
be executed programmatically and therefore should not include all attributes in
the runtime query statement.

Disable the global preference (default), but enable the setting on view objects that
will be executed programmatically and therefore should include all attributes in
the runtime query statement.

To set the global preference to include all attributes in the query:

1.
2.
3.

From the main menu, choose Tools > Preferences.
In the Preferences dialog, expand Business Components and select View Objects.

On the Business Components: View Object page, select Enable Declarative SQL
mode for new objects.

Select Include all attributes in runtime-generated query to force all attributes of
the view object’s underlying entity objects to participate in the query and click
OK.

Enabling this option sets a flag in the view object definition but you will still need
to add entity object selections and entity object attribute selections to the view
object definition.

You can change the view object setting in the Tuning section of the overview editor’s
General page. The overview editor only displays the Include all attributes in
runtime-generated query option if you have created the view object in declarative
SQL mode.

To set the view object-specific preference to include all attributes in the query:

1.

When you want to force all attributes for specific view objects, create the view
object in the Create View Object wizard and be sure that you have enabled
declarative SQL mode.

You can verify this in the overview editor. In the overview editor, click the Query
navigation tab and click the Edit SQL Query button along the top of the page. In
the Edit Query dialog, verify that the SQL Mode dropdown list shows the
selection Declarative.

In the overview editor, click the General navigation tab.

Defining SQL Queries Using View Objects 5-59

Working with View Objects in Declarative SQL Mode

3. Inthe General page, expand the Tuning section and select Include all attributes in
runtime-generated query.

Enabling this option forces all attributes of the view object’s underlying entity
objects to participate in the query. When enabled, it sets a flag in the view object
definition but you will still need to add entity object selections and entity object
attribute selections to the view object definition.

5.8.5 What Happens When You Create a View Object in Declarative SQL Mode

When you create the view object in declarative SQL mode, three properties get added
to the view object’s metadata: SelectListFlags, FromListFlags, and WhereFlags.
Properties that are absent in declarative SQL mode are the normal mode view object’s
SelectList, FromList, and Where properties, which contain the actual SQL statement
(or, for expert mode, the SQLQuery element). Example 5-10 shows the three view object
metadata flags that get enabled in declarative SQL mode to ensure that SQL will be
generated at runtime instead of specified as metadata in the view object’s definition.

Example 5-10 View Object Metadata with Declarative SQL Mode Enabled

<ViewObject
xmlns="http://xmlns.oracle.com/bcdj"
Name="CustomerCardStatus"
SelectListFlags="1"
FromListFlags="1"
WhereFlags="1"

Similar to view objects that you create in either normal or expert mode, the view object
metadata also includes a ViewAttribute element for each attribute that you select in
the Attribute page of the Create View Object wizard. However, in declarative SQL
mode, when you "select” attributes in the wizard (or add an attribute in the overview
editor), you are not creating a FROM or SELECT list in the design time. The attribute
definitions that appear in the view object metadata only determine the list of potential
entities and attributes that will appear in the runtime-generated statements. For
information about how ADF Business Components generates these SQL lists, see
Section 5.8.6, "What Happens at Runtime: When a Declarative SQL Mode Query is
Generated."

Example 5-11 shows the additional features of declarative SQL mode view objects,
including the optional declarative WHERE clause (DeclarativeWhereClause element)
and the optional declarative ORDERBY clause (SortCriteria element).

Example 5-11 View Object Metadata: Declarative View Criteria and Sort Criteria

<DeclarativeWhereClause>
<ViewCriteria
Name="CustomerStatusWhereCriteria"
ViewObjectName="oracle.fodemo.storefront.store.queries.CustomerCardStatus"
Conjunction="AND"
Mode="3"
AppliedIfJoinSatisfied="false">
<ViewCriteriaRow
Name="vcrow60">
<ViewCriteriaIltem
Name="CardTypeCode"
ViewAttribute="CardTypeCode"
Operator="STARTSWITH"
Conjunction="AND"

5-60 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Declarative SQL Mode

Required="Optional">
<ViewCriterialtemValue
Value=":cardtype"
IsBindVarValue="true"/>
</ViewCriteriaItem>
</ViewCriteriaRow>
</ViewCriteria>
</DeclarativeWhereClause>
<SortCriteria>
<Sort
Attribute="CustomerId"/>
<Sort
Attribute="CardTypeCode" />
</SortCriteria>

5.8.6 What Happens at Runtime: When a Declarative SQL Mode Query is Generated

At runtime, when a declarative SQL mode query is generated, ADF Business
Components determines which attributes were defined from the metadata
ViewCriteria element and SortCriteria element. It then uses these attributes to
generate the WHERE and ORDERBY clauses. Next, the runtime generates the FROM list
based on the tables corresponding to the entity usages defined by the metadata
ViewAttribute elements. Finally, the runtime builds the SELECT statement based on
the attribute selection choices the end user makes in the Ul As a result, the view object
in declarative SQL mode generates all SQL clauses entirely at runtime. The
runtime-generated SQL statements will be based on the flavor that appears in the
project properties setting. Currently, the runtime supports SQL92 (ANSI) style and
Oracle style flavors.

5.8.7 What You May Need to Know About Overriding Declarative SQL Mode Defaults

JDeveloper lets you control declarative SQL mode for all new view objects you add to
your data model project or for individual view objects you create or edit. These
settings may be used in these combinations:

= Enable the global preference in the Preferences dialog (select Tools > Preferences).
Every view object you create will delay SQL generation until runtime. Figure 5-37
shows the global preference Enable declarative SQL for new objects set to
enabled.

= Enable the global preference in the Preferences dialog, but change the SQL mode
for individual view objects. In this case, unless you change the SQL mode, the
view objects you create will delay SQL generation until runtime.

= Disable the global preference (default) in the Preferences dialog, but select
declarative SQL mode for individual view objects. In this case, unless you change
the SQL mode, view objects you create will contain SQL statements.

Defining SQL Queries Using View Objects 5-61

Working with View Objects in Declarative SQL Mode

Figure 5-37 Preferences Dialog with Declarative SQL Mode Enabled

& Preferences E|
'ﬁ\'ﬁ)| Business Components: view Objects
[~ Environment Enter tuning parameters Far this Yiew, to control SOL execution and how data is Fetched From the
[ADF Swing database.
..... Ank
- Audit Retrieve From the Database

= Business Components

(@) All Rows () Only up ta row number
----- Application Modules
----- Base Classes in Batches of:
""" Class Naming (3) As Meeded () All ak Once

----- Entities

----- General () At Most One Row

""" History Types () No Rows (i.e. used only For inserting new rows)
----- Object Maming
..... Packages [Retain ¥iew Link Accessor Rowset

""" Register Rules [Use Ansi style outer-join syntax while generating SQL for Join Yiew Cbjects

----- Tester

[Generate only equi-joins by default

[Code Editar Enable Declarative SQL mode For new objects

----- Compare and Merge
_____ Compiler [Include all attributes in runtime-generated query
----- 35 Editar
[#- Database Specify a prefix that will be added to the namespace for a view object's service data object,

----- Data Controls Panel

Service Data Object Mamespace Prefix: |

| Help | | (o] 4 J | Cancel |

To edit the SQL mode for a view object you have already created, open the Query page
in the Edit Query dialog and select Declarative from the SQL Mode dropdown list. To
display the Edit Query dialog, open the view object in the overview editor, select
Query from the navigation list and click the Edit SQL Query button. The same option
appears in the Query page of the Create View Object wizard.

5.8.8 What You May Need to Know About Working Programmatically with Declarative
SQL Mode View Objects

As a convenience to developers, the view object implementation API allows individual
attributes to be selected and deselected programmatically. This API may be useful in
combination with the view objects you create in declarative SQL mode and intend to
execute programmatically. Example 5-12 shows how to call selectAttributeDefs ()
on the view object when you want to add a subset of attributes to those already
configured with SQL mode enabled.

Example 5-12 ViewObjectimpl API with SQL Mode View Objects

ApplicationModule am = Configuration.createRootApplicationModule (amDef, config);
ViewObjectImpl vo = (ViewObjectImpl) am.findViewObject ("Customervo");
vo.resetSelectedAttributeDefs (false);

vo.selectAttributeDefs (new String[] {"FirstName, "LastName"});
vo.executeQuery () ;

The call to selectAttributeDefs () adds the attributes in the array to a private
member variable of ViewObjectImpl. A call to executeQuery () transfers the attributes
in the private member variable to the actual select list. It is important to understand
that these ViewObjectImpl attribute calls are not applicable to the client layer and are
only accessible inside the Impl class of the view object on the middle tier.

Additionally, you might call unselectAttributeDefs () on the view object when you
want to deselect a small subset of attributes after enabling the Include all attributes in
runtime-generated query option. Alternatively, you can call selectAttributeDefs ()

5-62 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Expert Mode

on the view object to select a small subset of attributes after disabling the Include all
attributes in runtime-generated query option.

Caution: Be careful not to expose a declarative SQL mode view
object executed with this API to the Ul since only the value of the
Include all attributes in runtime-generated query option will be
honored.

5.9 Working with View Objects in Expert Mode

When defining entity-based view objects in Normal mode, you can fully specify the
WHERE and ORDER BY clauses, whereas, by default, the FROM clause and SELECT list are
automatically derived. The names of the tables related to the participating entity
usages determine the FROM clause, while the SELECT list is based on the:

s Underlying column names of participating entity-mapped attributes
= SQL expressions of SQL-calculated attributes

When you require full control over the SELECT or FROM clause in a query, you can
enable expert mode.

Tip: The view object editors and wizard in the JDeveloper provide
full support for generating SQL from choices that you make. For
example, two such options allow you to declaratively define outer
joins and work in declarative SQL mode (where no SQL is generated
until runtime).

5.9.1 How to Customize SQL Statements in Expert Mode

To enable expert mode, select Expert Mode from the SQL Mode dropdown list on the
Query panel of the Create View Object wizard. You can also modify the SQL statement
of an existing entity-based view object in the view object overview editor. In the
overview editor, navigate to the Query page and click the Edit SQL Query button. In
the Edit Query dialog, select Expert Mode from the SQL Mode dropdown list.

5.9.2 How to Name Attributes in Expert Mode

If your SQL query includes a calculated expression, use a SQL alias to assist the Create
View Object wizard in naming the column with a Java-friendly name. Example 5-13
shows a SQL query that includes a calculated expression.

Example 5-13 SQL Query with Calculated Expression

select PERSON_ID, EMAIL,

SUBSTR (FIRST_NAME,1,1)|]|'. '||LAST_NAME
from PERSONS
order by EMAIL

Example 5-14 uses a SQL alias USER_SHORT_NAME to assist the Create View Object
wizard in naming the column with a Java-friendly name. The wizard will display
UserShortName as the name of the attribute derived from this calculated expression.

Example 5-14 SQL Query with SQL Alias

select PERSON_ID, EMAIL,
SUBSTR (FIRST_NAME,1,1)||'. '||LAST_NAME AS USER_SHORT NAME

Defining SQL Queries Using View Objects 5-63

Working with View Objects in Expert Mode

from PERSONS
order by EMAIL

5.9.3 What Happens When You Enable Expert Mode

When you enable expert mode, the read-only Generated Statement section of the
Query page becomes a fully editable Query Statement text box, displaying the full
SQL statement. Using this text box, you can change every aspect of the SQL query.

For example, Figure 5-38 shows the Query page of the Edit Query dialog for the
OrderItems view object. It's an expert mode, entity-based view object that references a
PL/SQL function decode that obtains its input values from an expression set on the
ShippingCost attribute.

Figure 5-38 Orderitems Expert Mode View Object

= Edit Query: OrderltemsV0 @

])| query

Enter wour custom SELECT statement and click Test ta check its syntax. Provide the ORDER BY
-Bind Yariables clause separately,

-Aktribute Mappings
Wiew Criteria

- Albernate Keys SELECT OrderItewE0.ORDER ID,

OrderItenE0. LINE_ITEM ID,

OrderItewEDd. PRODIICT_ID,

OrderTtemE0. QUANTITY,

OrderItenED . UNIT_PRICE,

IroductBaseE0. PRODUCT_ID AS PRODUCT _TD1,
ProductBaseE0. SUPPLIER ID',

ProductBaseE0. CATEGORY ID,

IroductBaseE0. PRODUCT _NAME,
ProductBaseE0. COST_PRICE,

ProductBaseE0. LIST_PRICE,
IroductBaseE0.MIN PRICE,

Query Statement

Query Clauses

Order By: | | |§dit... |
Binding Style: |Oracle Mamed = | |Query Builder. .. ||Exg|ain Flan... | |E|
S0L Mode: | Expert - |
Help | apply | | (o] 4 | | Cancel |

5.9.4 What You May Need to Know About Expert Mode

When you define a SQL query using expert mode in the Edit Query dialog, you type a
SQL language statement directly into the editor. Using this mode places some
responsibility on the Business Components developer to understand how the view
object handles the metadata resulting from the query definition. Review the following
information to familiarize yourself with the behavior of the Edit Query dialog that you
use in expert mode.

5.9.4.1 Expert Mode Provides Limited Attribute Mapping Assistance

The automatic cooperation of a view object with its underlying entity objects depends
on correct attribute-mapping metadata saved in the XML document. This information
relates the view object attributes to corresponding attributes from participating entity
usages. JDeveloper maintains this attribute mapping information in a fully automatic
way for normal entity-based view objects. However, when you decide to use expert
mode with a view object, you need to pay attention to the changes you make to the
SELECT list. That is the part of the SQL query that directly relates to the attribute

5-64 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Expert Mode

mapping. Even in expert mode, JDeveloper continues to offer some assistance in
maintaining the attribute mapping metadata when you do the following to the SELECT
list:

= Reorder an expression without changing its column alias

JDeveloper reorders the corresponding view object attribute and maintains the
attribute mapping.

= Add a new expression

JDeveloper adds a new SQL-calculated view object attribute with a corresponding
camel-capped name based on the column alias of the new expression.

= Remove an expression

JDeveloper converts the corresponding SQL-calculated or entity-mapped attribute
related to that expression to a transient attribute.

However, if you rename a column alias in the SELECT list, JDeveloper has no way to
detect this, so it is treated as if you removed the old column expression and added a
new one of a different name.

After making any changes to the SELECT list of the query, visit the Attribute Mappings
page to ensure that the attribute-mapping metadata is correct. The table on this page,
which is disabled for view objects in normal mode, becomes enabled for expert mode
view objects. For each view object attribute, you will see its corresponding SQL
column alias in the table. By clicking into a cell in the View Attributes column, you
can use the dropdown list that appears to select the appropriate entity object attribute
to which any entity-mapped view attributes should correspond.

Note: If the view attribute is SQL-calculated or transient, a
corresponding attribute with a "SQL" icon appears in the View
Attributes column to represent it. Since neither of these type of
attributes are related to underlying entity objects, there is no entity
attribute related information required for them.

5.9.4.2 Expert Mode Drops Custom Edits

When you disable expert mode for a view object, it will return to having its SELECT
and FROM clause be derived again. JDeveloper warns you that doing this might cause
your custom edits to the SQL statement to be lost. If this is what you want, after
acknowledging the alert, your view object's SQL query reverts back to the default.

5.9.4.3 Expert Mode Ignores Changes to SQL Expressions

Consider a Products view object with a SQL-calculated attribute named Shortens
whose SQL expression you defined as SUBSTR (NAME, 1, 10). If you switch this view
object to expert mode, the Query Statement box will show a SQL query similar to the
one shown in Example 5-15.

Example 5-15 SQL-Calculated Attribute Expression in Expert Mode

SELECT Products.PROD_ID,
Products.NAME,
Products.IMAGE,
Products.DESCRIPTION,
SUBSTR (NAME, 1,10) AS SHORT_NAME
FROM PRODUCTS Products

Defining SQL Queries Using View Objects 5-65

Working with View Objects in Expert Mode

If you go back to the attribute definition for the Shortens attribute and change the
SQL Expression field from SUBSTR (NAME, 1,10) to SUBSTR (NAME, 1,15), then the
change will be saved in the view object's XML document. Note, however, that the SQL
query in the Query Statement box will remain as the original expression. This occurs
because JDeveloper never tries to modify the text of an expert mode query. In expert
mode, the developer is in full control. JDeveloper attempts to adjust metadata as a
result of some kinds of changes you make yourself to the expert mode SQL statement,
but it does not perform the reverse. Therefore, if you change view object metadata, the
expert mode SQL statement is not updated to reflect it.

Therefore, you need to update the expression in the expert mode SQL statement itself.
To be completely thorough, you should make the change both in the attribute metadata
and in the expert mode SQL statement. This would ensure — if you (or another
developer on your team) ever decides to toggle expert mode off at a later point in time
— that the automatically derived SELECT list would contain the correct SQL-derived
expression.

Note: If you find you had to make numerous changes to the view
object metadata of an expert mode view object, you can avoid having
to manually translate any effects to the SQL statement by copying the
text of your customized query to a temporary backup file. Then, you
can disable expert mode for the view object and acknowledge the
warning that you will lose your changes. At this point JDeveloper will
rederive the correct generated SQL statement based on all the new
metadata changes you've made. Finally, you can enable expert mode
once again and reapply your SQL customizations.

5.9.4.4 Expert Mode Returns Error for SQL Calculations that Change Entity
Attributes

When changing the SELECT list expression that corresponds to entity-mapped attributes,
don't introduce SQL calculations into SQL statements that change the value of the
attribute when retrieving the data. To illustrate the problem that will occur if you do
this, consider the query for a simple entity-based view object named Products shown
in Example 5-16.

Example 5-16 Query Statement Without SQL-Calculated Expression

SELECT Products.PROD_ID,
Products.NAME,
Products.IMAGE,
Products.DESCRIPTION

FROM PRODUCTS Products

Imagine that you wanted to limit the name column to display only the first ten
characters of the name of a product query. The correct way to do that would be to
introduce a new SQL-calculated field, such as ShortName with an expression like
SUBSTR (Products.NAME, 1,10). One way you should avoid doing this is to switch the
view object to expert mode and change the SELECT list expression for the
entity-mapped NAME column to the include the SQL-calculate expression, as shown
in Example 5-17.

Example 5-17 Query Statement With SQL-Calculated Expression

SELECT Products.PROD_ID,
SUBSTR (Products.NAME, 1,10) AS NAME,
Products.IMAGE,

5-66 Fusion Developer's Guide for Oracle Application Development Framework

Working with View Objects in Expert Mode

Products.DESCRIPTION
FROM PRODUCTS Products

This alternative strategy would initially appear to work. At runtime, you see the
truncated value of the name as you are expecting. However, if you modify the row,
when the underlying entity object attempts to lock the row it does the following:

» Issues a SELECT FOR UPDATE statement, retrieving all columns as it tries to lock the
TOW.

= If the entity object successfully locks the row, it compares the original values of all
the persistent attributes in the entity cache as they were last retrieved from the
database with the values of those attributes just retrieved from the database
during the lock operation.

= If any of the values differs, then the following error is thrown:

(oracle.jbo.RowInconsistentException)
JB0-25014: Another user has changed the row with primary key [...]

If you see an error like this at runtime even though you are the only user testing the
system, it is most likely due to your inadvertently introducing a SQL function in your
expert mode view object that changed the selected value of an entity-mapped
attribute. In Example 5-17, the SUBSTR (Products.NAME, 1,10) function introduced
causes the original selected value of the Name attribute to be truncated. When the
row-lock SQL statement selects the value of the NAME column, it will select the entire
value. This will cause the comparison shown in Example 5-17 to fail, producing the
"phantom" error that another user has changed the row.

The same thing would happen with NUMBER-valued or DATE-valued attributes if you
inadvertently apply SQL functions in expert mode to truncate or alter their retrieved
values for entity-mapped attributes.

Therefore, if you need to present altered versions of entity-mapped attribute data,
introduce a new SQL-calculated attribute with the appropriate expression to handle
the task.

5.9.4.5 Formatting of the SQL Statement in Expert Mode

When you change a view object to expert mode, its XML document changes from
storing parts of the query in separate XML attributes, to saving the entire query in a
single <SQLQuery> element. The query is wrapped in an XML CDATA section to preserve
the line formatting you may have done to make a complex query be easier to
understand.

5.9.4.6 Expert Mode Wraps Queries as Inline Views
If your expert-mode view object:

= Contains a ORDERBY clause specified in the Order By field of the Query Clauses
page at design time, or

= Has a dynamic WHERE clause or ORDERBY clause applied at runtime using
setWhereClause () or setOrderByClause()

then its query gets nested into an inline view before applying these clauses. For
example, suppose your expert mode query was defined like the one shown in
Example 5-18.

Example 5-18 Expert Mode Query Specified At Design Time
select PERSON_ID, EMAIL, FIRST_NAME, LAST NAME

Defining SQL Queries Using View Objects 5-67

Working with View Objects in Expert Mode

from PERSONS

union all

select PERSON_ID, EMAIL, FIRST NAME, LAST_NAME
from INACTIVE_PERSONS

Then, at runtime, when you set an additional WHERE clause like email =
:TheUserEmail, the view object nests its original query into an inline view like the one
shown in Example 5-19.

Example 5-19 Runtime-Generated Query With Inline Nested Query

SELECT * FROM (

select PERSON_ID, EMAIL, FIRST NAME, LAST_ NAME
from PERSONS

union all

select PERSON_ID, EMAIL, FIRST NAME, LAST_NAME
from INACTIVE_PERSONS) QRSLT

And, the view object adds the dynamic WHERE clause predicate at the end, so that the
final query the database sees looks like the one shown in Example 5-20.

Example 5-20 Runtime-Generated Query With Dynamic WHERE Clause

SELECT * FROM (

select PERSON_ID, EMAIL, FIRST NAME, LAST_ NAME
from PERSONS

union all

select PERSON_ID, EMAIL, FIRST NAME, LAST_NAME
from INACTIVE_PERSONS) QRSLT

WHERE email = :TheUserEmail

This query "wrapping" is necessary in general for expert mode queries, because the
original query could be arbitrarily complex, including SQL UNION, INTERSECT, MINUS,
or other operators that combine multiple queries into a single result. In those cases,
simply "gluing" the additional runtime WHERE clause onto the end of the query text
could produce unexpected results. For example, the clause might apply only to the last
of several UNION'ed statements. By nesting the original query verbatim into an inline
view, the view object guarantees that your additional WHERE clause is correctly used to
filter the results of the original query, regardless of how complex it is.

5.9.4.7 Limitation of Inline View Wrapping at Runtime

Inline view wrapping of expert mode view objects, limits a dynamically added WHERE
clause to refer only to columns in the SELECT list of the original query. To avoid this
limitation, when necessary you can disable the use of the inline view wrapping by
calling setNestedSelectForFullSql (false).

5.9.4.8 Expert Mode Changes May Affect Dependent Objects

When you modify a view object query to be in expert mode after you have already
created the view links that involve that view object or after you created other view
objects that extend the view object, JDeveloper will warn you with the alert shown in
Figure 5-39. The alert reminds you that you should revisit these dependent
components to ensure their SQL statements still reflect the correct query.

5-68 Fusion Developer's Guide for Oracle Application Development Framework

Working with Bind Variables

Figure 5-39 Proactive Reminder to Revisit Dependent Components

Business Components

Modifving the expert mode setting on the View Object may
impact Yiew Links or Wiew Objects that depend upon it
Proceed?

OrdersYO - OrdersByStatush'o

For example, if you were to modify the Ordersvo view object to use expert mode,
because the OrdersByStatusVO view object extends it, you need to revisit the extended
component to ensure that its query still logically reflects an extension of the modified
parent component.

5.10 Working with Bind Variables

Bind variables provide you with the means to supply attribute values at runtime to the
view object or view criteria. All bind variables are defined at the level of the view
object and used in one of the following ways:

= You can type the bind variable directly into the WHERE clause of your view object’s
query to include values that might change from execution to execution. In this
case, bind variables serve as placeholders in the SQL string whose value you can
easily change at runtime without altering the text of the SQL string itself. Since the
query doesn't change, the database can efficiently reuse the same parsed
representation of the query across multiple executions, which leads to higher
runtime performance of your application.

= You can select the bind variable from a selection list to define the attribute value
for a view criteria in the Edit View Criteria dialog you open on the view object. In
this case, the bind variables allow you to change the values for attributes you will
use to filter the view object row set. For more information about filtering view
object row sets, see Section 5.11, "Working with Named View Criteria."

If the view criteria is to be used in a seeded search, you have the option of making
the bind variable updatable by the end user. With this updatable option, end users
will be expected to enter the value in a search form corresponding to the view
object query.

Bind variables that you add to a WHERE clause require a valid value at runtime, or a
runtime exception error will be thrown. In contrast, view criteria execution need not
require the bind variable value if the view criteria item for which the bind variable is
assigned is not required. To enforce this desired behavior, the Bind Variable dialog lets
you can specify whether a bind variable is required or not.

You can define a default value for the bind variable or write scripting expressions for
the bind variable that includes dot notation access to attribute property values.
Expressions are based on the Groovy scripting language, as described in Section 3.6,
"Overview of Groovy Support."

5.10.1 How to Add Bind Variables to a View Object Definition

To add a named bind variable to a view object, use the Query page of the overview
editor for the view object. You can define as many bind variables as you need.

Defining SQL Queries Using View Objects 5-69

Working with Bind Variables

Before you begin:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To define a named bind variable:
1. In the Application Navigator, double-click the view object.

2. Inthe overview editor, click the Query navigation tab.

3. In the Query page, expand the Bind Variables section and click the Create new
bind variable button.

4. In the Bind Variable dialog, enter the name and data type for the new bind
variable.

Because the bind variables share the same namespace as view object attributes,
specify names that don't conflict with existing view object attribute names. As
with view objects attributes, by convention bind variable names are created with
an initial capital letter, but you can rename it as desired.

5. Optionally, specify a default value for the bind variable:

= When you want the value to be determined at runtime using an expression,
enter a Groovy scripting language expression, select the Expression value type
and enter the expression in the Value field. Optionally, click Edit to open the
Expression dialog. The Expression dialog gives you a larger text area to write
the expression. For example, you might want to define a bind variable to filter
view instances based on the current user, as described in Section 5.10.2, "How
to Reference the Current User in a Named Bind Variable Using Groovy."

= When you want to define a default value, select the Literal value type and
enter the literal value in the Value field.

6. Decide on one of the following runtime usages for the bind variable:

= When you want the value to be supplied to a SQL WHERE clause using a bind
variable in the clause, select the Required checkbox. This ensures that a
runtime exception will be thrown if the value is not supplied. For more
information, see Section 5.10.8.2, "Errors Related to the Names of Bind
Variables."

= When you want the value to be supplied to a view criteria using a bind
variable in the view criteria, only select the Required checkbox when you
need to reference the same bind variable in a SQL WHERE clause or when you
want to use the bind variable as the assigned value of a view criteria item that
is specifically defined as required by a view criteria that is applied to a view
object. When Required is unselected this ensures that the value is optional
and that no runtime exception will be thrown if the bind variable is not
resolved. For example, view criteria with bind variables defined can be used to
create Query-by-Example search forms in the user interface. For more
information, see Section 5.11, "Working with Named View Criteria."

7. Select the Control Hints tab and specify control hints like Label Text, Format
Type, Format mask, and others.

The view layer will use bind variable control hints when you build user interfaces
like search pages that allow the user to enter values for the named bind variables.
The Updatable checkbox controls whether the end user will be allowed to change
the bind variable value through the user interface. If a bind variable is not

updatable, then its value can only be changed programmatically by the developer.

5-70 Fusion Developer's Guide for Oracle Application Development Framework

Working with Bind Variables

8. Click OK.

After defining the bind variables, the next step is to reference them in the SQL
statement. While SQL syntax allows bind variables to appear both in the SELECT list
and in the WHERE clause, you'll typically use them in the latter context, as part of your
WHERE clause. For example, Example 5-21 shows the bind variables LowUserId and
HighUserId introduced into a SQL statement created using the Query page in the
overview editor for the view object.

Example 5-21 Bind Variables in the WHERE Clause of View Object SQL Statement

select PERSON_ID, EMAIL, FIRST NAME, LAST_ NAME

from PERSONS

where (upper (FIRST NAME) like upper (:TheName) ||'$%’
or upper(LAST NAME) like upper (:TheName)||'%')
and PERSON_ID between :LowUserId and :HighUserId

order by EMAIL

Notice that you reference the bind variables in the SQL statement by prefixing their
name with a colon like : TheName or :LowUserId. You can reference the bind variables
in any order and repeat them as many times as needed within the SQL statement.

5.10.2 How to Reference the Current User in a Named Bind Variable Using Groovy

You can use the Groovy expression adf.context.securityContext.userName to set
the default value for the named bind variable that you use to provide the current user
in a view instance filter. Specifically, you can use the bind variable in a named view
criteria that you define to filter a view object instance in the data model for the project.
For example, in the StoreFront module of the Fusion Order Demo application, the
named bind variable userPrincipal is defined for the Personsvo view object, as
shown in Figure 5-40.

Figure 5-40 Groovy Expression Used to Set userPrincipal Bind Variable

& Bind Variable 3

r Yariable |/ Custom Properties |/ Control Hints |
Marme: | userPrincipal |
Tvpe: |String - ||§rowse... |
Value Type: (O Literal (3) Expression | Test |
Walue: |adf.context,.securityCont,ext,.userName || Edit... |

Updatahble [Required
| Help | | (o] 4 J | Cancel |

The PersonsVO0 view object also defines the AuthenticatedUserByPrincipalCriteria
view criteria. This view criteria defines a filter for the PrincipalName attribute of the
PersonsV0 with the bind variable userPrincipal providing the value. In this example,
the bind variable userPrincipal is defined with Updatable enabled. This ensures that
the view criteria is able to set the value obtained at runtime from the ADF security

Defining SQL Queries Using View Objects 5-71

Working with Bind Variables

context. Since the bind variable is not used in the SQL WHERE clause for the Personsvo
view object, the Required field is unselected. This ensures that the value is optional
and that no runtime exception will be thrown if the bind variable is not resolved.

Then in the data model for the StoreFrontService project, where the Personsvo
specifies the view definition for the usage AuthenticatedUser, the view criteria
AuthenticatedUserByPrincipalCriteria with the named bind variable is defined as
the view usage’s runtime filter. For details about creating view instances for your
project’s data model, see Section 9.2.3.3, "Customizing a View Object Instance that You
Add to an Application Module."

5.10.3 What Happens When You Add Named Bind Variables

Once you've added one or more named bind variables to a view object, you gain the
ability to easily see and set the values of these variables at runtime. Information about
the name, type, and default value of each bind variable is saved in the view object's
XML document. If you have defined UI control hints for the bind variables, this
information is saved in the view object's component message bundle file along with
other control hints for the view object.

5.10.4 How to Test Named Bind Variables

The Business Component Browser allows you to interactively inspect and change the
values of the named bind variables for any view object, which can really simplify
experimenting with your application module's data model when named bind
parameters are involved. For more information about editing the data model and
running the Business Component Browser, see Section 6.3, "Testing View Object
Instances Using the Business Component Browser."

The first time you execute a view object in the Business Component Browser to display
the results in the data view page, a Bind Variables dialog will appear, as shown in
Figure 5-41.

The Bind Variables dialog lets you:

= View the name, as well as the default and current values, of the particular bind
variable you select from the list

= Change the value of any bind variable by updating its corresponding Value field
before clicking OK to set the bind variable values and execute the query

= Inspect and set the bind variables for the view object in the current data view
page, using the Edit Bind Parameters button in the toolbar — whose icon looks
like ":1d"

= Verify control hints are correctly set up by showing the label text hint in the Bind

Variables list and by formatting the Value attribute using the respective format
mask

5-72 Fusion Developer's Guide for Oracle Application Development Framework

Working with Bind Variables

Figure 5-41 Setting Bind Variables in the Business Component Browser

£ Bind Variables

Eind Yatiables
User Id Greater Than
Userld Less Than

Yariabl

Mame | TheMame
Type java.lang.String
Default

Yalue | Alexds

[Help] [OF][Cancel]

If you defined the bind variable in the Bind Variables dialog with the Reference
checkbox deselected (the default), you will be able to test view criteria and supply the
bind variable with values as needed. Otherwise, if you selected the Reference
checkbox, then you must supply a value for the bind variable in the Business
Component Browser. The Business Component Browser will throw the same exception
seen at runtime for any view object whose SQL statement use bind variables that do
not resolve with a supplied value.

5.10.5 How to Add a WHERE Clause with Named Bind Variables at Runtime

Using the view object's setWhereClause () method, you can add an additional filtering
clause at runtime. This runtime-added WHERE clause predicate does not replace the
design-time generated predicate, but rather further narrows the query result by
adding to the existing design time WHERE clause. Whenever the dynamically added
clause refers to a value that might change during the life of the application, you should
use a named bind variable instead of concatenating the literal value into the WHERE
clause predicate.

For example, assume you want to further filter the PersonList view object at runtime
based on the value of the PERSON_TYPE_CODE column in the table. Also assume that you
plan to search sometimes for rows where PERSON_TYPE_CODE = 'CUST' and other times
for rows where PERSON_TYPE_CODE = 'SUPP'. While it contains slightly fewer lines of
code, Example 5-22 is not desirable because it changes the WHERE clause twice just to
query two different values of the same PERSON_TYPE_CODE column.

Example 5-22 Incorrect Use of setWhereClause() Method

// Don't use literal strings if you plan to change the value!

vo.setWhereClause ("person_type_code = 'CUST'");
// execute the query and process the results, and then later...
vo.setWhereClause ("person_type_code = 'SUPP'");

Instead, you should add a WHERE clause predicate that references named bind variables
that you define at runtime as shown in Example 5-23.

Example 5-23 Correct Use of setWhereClause() Method and Bind Variable

vo.setWhereClause ("person_type_code = :ThePersonType");
vo.defineNamedWhereClauseParam("ThePersonType", null, null);
vo.setNamedWwhereClauseParam ("ThePersonType", "CUST") ;

// execute the query and process the results, and then later...
vo.setNamedWhereClauseParam ("ThePersonType", "SUPP") ;

Defining SQL Queries Using View Objects 5-73

Working with Bind Variables

This allows the text of the SQL statement to stay the same, regardless of the value of
PERSON_TYPE_CODE you need to query on. When the query text stays the same across
multiple executions, the database will return the results without having to reparse the
query.

If you later need to remove the dynamically added WHERE clause and bind variable,
you should do so the next time you need them to be different, just before executing the
query. This will prevent the type of SQL execution error as described in

Section 5.10.8.1, "An Error Related to Clearing Bind Variables." Avoid calling
removeNamediWhereClauseParam() in your code immediately after setting the WHERE
clause.

An updated test client class illustrating these techniques would look like what you see
in Example 5-24. In this case, the functionality that loops over the results several times
has been refactored into a separate executeAndShowResults () method. The program
first adds an additional WHERE clause of person_id = :ThePersonId and then later
replaces it with a second clause of person_type_code = :ThePersonType.

Example 5-24 TestClient Program Exercising Named Bind Variable Techniques

package devguide.examples.readonlyvo.client;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;

import oracle.jbo.ViewObject;

import oracle.jbo.client.Configuration;
import oracle.jbo.domain.Number;

public class TestClientBindVars {

public static void main(String[] args) {
String amDef = "devguide.examples.readonlyvo.PersonService";
String config = "PersonServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule (amDef, config);
ViewObject vo = am.findViewObject ("PersonList");
// Set the two design time named bind variables
vo.setNamedWhereClauseParam("TheName", "shelli%") ;
vo.setNamedWhereClauseParam("HighUserId", new Number (215));
executeAndShowResults (vo) ;
// Add an extra where clause with a new named bind variable
vo.setWhereClause ("person_type_code = :ThePersonId");
vo.defineNamedWhereClauseParam("ThePersonId", null, null);
vo.setNamedWhereClauseParam("ThePersonId",new Number (116));
executeAndShowResults (vo) ;
vo.removeNamedWhereClauseParam("ThePersonId") ;
// Add an extra where clause with a new named bind variable
vo.setWhereClause ("person_type_code = :ThePersonType") ;
vo.defineNamedWhereClauseParam("ThePersonType", null, null);
vo.setNamedWhereClauseParam ("ThePersonType", "SUPP") ;
// Show results when :ThePersonType = 'SUPP'
executeAndShowResults (vo) ;
vo.setNamedWhereClauseParam ("ThePersonType", "CUST") ;
// Show results when :ThePersonType = 'CUST'
executeAndShowResults (vo) ;
Configuration.releaseRootApplicationModule (am, true) ;

}

private static void executeAndShowResults (ViewObject vo) {
System.out.println("---");
vo.executeQuery () ;

5-74 Fusion Developer's Guide for Oracle Application Development Framework

Working with Bind Variables

while (vo.hasNext()) {
Row curUser = vo.next();
System.out.println(curUser.getAttribute ("PersonId")+" "+
curUser.getAttribute ("ShortName")) ;

}

However, if you run this test program, you may actually get a runtime error like the
one shown in Example 5-25.

Example 5-25 Runtime Error Resulting From a SQL Parsing Error

oracle.jbo.SQLStmtException: JBO-27122: SQL error during statement preparation.
Statement:
SELECT * FROM (select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper (FIRST NAME) like upper (:TheName) |
or upper (LAST NAME) like upper (:TheName)||'%"')

and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL) QRSLT WHERE (person_type_code = :ThePersonType)
Detail 0
java.sqgl.SQLException: ORA-00904: "PERSON_TYPE": invalid identifier

191
|'%

The root cause, which appears after the ## Detail 0 ## in the stack trace, is a SQL
parsing error from the database reporting that PERSON_TYPE_CODE column does not
exist even though the PERSONS table definitely has a PERSON_TYPE_CODE column. The
problem occurs due to the mechanism that view objects use by default to apply
additional runtime WHERE clauses on top of read-only queries. Section 5.10.7, "What
Happens at Runtime: When a Read-Only View Object WHERE Clause is Set," explains
a resolution for this issue.

5.10.6 How to Set Existing Bind Variable Values at Runtime

To set named bind variables at runtime, use the setNamedWhereClauseParam () method
on the ViewObject interface. In JDeveloper, you can choose Refactor > Duplicate to
create a new TestClientBindVars class based on the existing TestClient.java class as
shown in Section 6.4.2, "How to Create a Command-Line Java Test Client." In the test
client class, you can set the values of the bind variables using a few additional lines of
code. For example, the setNamedithereClauseParam() might take as arguments the
bind variables HighUserId and TheName as shown in Example 5-26.

Example 5-26 Setting the Value of Named Bind Variables Programmatically

// changed lines in TestClient class

ViewObject vo = am.findViewObject ("PersonList");
vo.setNamediwhereClauseParam ("TheName", "alex%") ;
vo.setNamedWwhereClauseParam ("HighUserId", new Number (315));
vo.executeQuery () ;

// etc.

Running the test client class shows that your bind variables are filtering the data. For
example, the resulting rows for the setNamediwhereClauseParam() method shown in
Example 5-26 may show only two matches based on the name alex as shown in
Example 5-27.

Example 5-27 Result of Bind Variables Filtering the Data in TestClient Class
303 ahunold

Defining SQL Queries Using View Objects 5-75

Working with Bind Variables

315 akhoo

Whenever a view object's query is executed, you can view the actual bind variable
values in the runtime debug diagnostics like the sample shown in Example 5-28.

Example 5-28 Debug Diagnostic Sample With Bind Variable Values

[256] Bind params for ViewObject: PersonList
[257] Binding param "LowUserId": 0

[258] Binding param "HighUserId": 315

[259] Binding param "TheName": alex%

This information that can be invaluable when debugging your applications. Notice
that since the code did not set the value of the LowUserId bind variable, it took on the
default value of 0 (zero) specified at design time. Also notice that the use of the

UPPER () function in the WHERE clause and around the bind variable ensured that the
match using the bind variable value for TheName was performed case-insensitively. The

sample code set the bind variable value to "alex%" with a lowercase "a", and the results
show that it matched Alexander.

5.10.7 What Happens at Runtime: When a Read-Only View Object WHERE Clause is Set

If you dynamically add an additional WHERE clause at runtime to a read-only view
object, its query gets nested into an inline view before applying the additional WHERE
clause.

For example, suppose your query was defined as shown in Example 5-29.

Example 5-29 Query Specified At Design Time

select PERSON_ID, EMAIL, FIRST NAME, LAST_NAME
from PERSONS
where (upper (FIRST NAME) like upper (:TheName) ||'$%’
or upper (LAST_NAME) like upper (:TheName)||'%")
and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL

%
%

At runtime, when you set an additional WHERE clause like person_type_code =
:ThePersonType as the test program did in Example 5-24, the framework nests the
original query into an inline view like the sample shown in Example 5-30.

Example 5-30 Runtime-Generated Query With Inline Nested Query

SELECT * FROM (
select PERSON_ID, EMAIL, FIRST NAME, LAST_NAME
from PERSONS
where (upper (FIRST NAME) like upper (:TheName) ||'$"
or upper (LAST_NAME) like upper (:TheName)||'%")
and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL) QRSLT

Then the framework adds the dynamic WHERE clause predicate at the end, so that the
final query the database sees is like the sample shown in Example 5-31.

Example 5-31 Runtime-Generated Query With Dynamic WHERE Clause

SELECT * FROM (

select PERSON_ID, EMAIL, FIRST NAME, LAST NAME
from PERSONS

where (upper (FIRST NAME) like upper (:TheName) ||'$"

5-76 Fusion Developer's Guide for Oracle Application Development Framework

Working with Bind Variables

or upper (LAST NAME) like upper (:TheName)||'%"')
and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL) QRSLT
WHERE person_type_code = :ThePersonType

This query "wrapping" is necessary in the general case since the original query could
be arbitrarily complex, including SQL UNION, INTERSECT, MINUS, or other operators that
combine multiple queries into a single result. In those cases, simply "gluing" the
additional runtime WHERE clause onto the end of the query text could produce
unexpected results because, for example, it might apply only to the last of several
UNION'ed statements. By nesting the original query verbatim into an inline view, the
view object guarantees that your additional WHERE clause is correctly used to filter the
results of the original query, regardless of how complex it is. The consequence (that
results in an ORA-00904 error) is that the dynamically added WHERE clause can refer
only to columns that have been selected in the original query.

The simplest solution is to add the dynamic query column names to the end of the
query’s SELECT list on the Edit Query dialog (click the Edit SQL Query button on the
Query page of the overview editor for the view object). Just adding the new column
name at the end of the existing SELECT list — of course, preceded by a comma — is
enough to prevent the ORA-00904 error: JDeveloper will automatically keep your view
object's attribute list synchronized with the query statement. Alternatively,

Section 5.9.4.7, "Limitation of Inline View Wrapping at Runtime" explains how to
disable this query nesting when you don't require it.

The test client program in Example 5-24 now produces the results shown in
Example 5-32.

Example 5-32 Named Bind Variables Resulting From Corrected TestClient

116 S. Baida

116 S. Baida

116 S. Baida

5.10.8 What You May Need to Know About Named Bind Variables

There are several things you may need to know about named bind variables, including
the runtime errors that are displayed when bind variables have mismatched names
and the default value for bind variables.

5.10.8.1 An Error Related to Clearing Bind Variables

You need to ensure that your application handles changing the value of bind variables
properly for use with activation and passivation of the view object instance settings at
runtime. For example, before you deploy the application, you will want to stress-test
your application in JDeveloper by disabling application module pooling, as described
in Section 40.10, "Testing to Ensure Your Application Module is Activation-Safe."
Following the instructions in that section effectively simulates the way your
application will manage the passivation store when you eventually deploy the
application.

When the application reactivates the pending state from the passivation store upon
subsequent requests during the same user session, the application will attempt to set
the values of any dynamically added named WHERE clause bind variables. Changing
the values to null before passivation takes place will prevent the bind variable values

Defining SQL Queries Using View Objects 5-77

Working with Bind Variables

from matching the last time the view object was executed and the following error will
occur during activation:

(oracle.jbo.SQLStmtException) JB0O-27122: SQL error during statement preparation.
(java.sgl.SQLException) Attempt to set a parameter name that does not occur in
SQL: 1

Do not change the value of the bind variables (or other view object instance settings)
just after executing the view object. Rather, if you will not be re-executing the view
object again during the same block of code (and therefore during the same HTTP
request), you should defer changing the bind variable values for the view object
instance until the next time you need them to change, just before executing the query.
To accomplish this, use the following pattern:

1. (Request begins and application module is acquired)

Call setWhereClause (null) to clear WHERE clause

Call setiWhereClauseParams (null) to clear the WHERE clause bind variables
Call setithereClause () that references n bind variables

Call setiWhereClauseParams () to set the n values for those n bind variables

Call executeQuery ()

N o g Db

(Application module is released)

5.10.8.2 Errors Related to the Names of Bind Variables

You need to ensure that the list of named bind variables that you reference in your
SQL statement matches the list of named bind variables that you've defined in the
Bind Variables section of the overview editor’s Query page for the view object. Failure
to have these two agree correctly can result in one of the following two errors at
runtime.

If you use a named bind variable in your SQL statement but have not defined it, you'll
receive an error like this:

(oracle.jbo.SQLStmtException) JB0O-27122: SQL error during statement preparation.
Detail 0
(java.sqgl.SQLException) Missing IN or OUT parameter at index:: 1

On the other hand, if you have defined a named bind variable, but then forgotten to
reference it or mistyped its name in the SQL, then you will see an error like this:

oracle.jbo.SQLStmtException: JB0O-27122: SQL error during statement preparation.
Detail 0

java.sqgl.SQLException: Attempt to set a parameter name that does not occur in the
SQL: LowUserId

To resolve either of these errors, double-check that the list of named bind variables in
the SQL matches the list of named bind variables in the Bind Variables section of the
overview editor’s Query page for the view object. Additionally, open the Bind
Variables dialog for the bind variable and verify that the Reference checkbox is not
still deselected (the default). To use the bind variable in a SQL statement, you must
select the Reference checkbox.

5.10.8.3 Default Value of NULL for Bind Variables

If you do not supply a default value for your named bind variable, it defaults to the
NULL value at runtime. This means that if you have a WHERE clause like:

5-78 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

PERSON_ID = :ThePersonId

and you do not provide a default value for the ThePersonId bind variable, it will
default to having a NULL value and cause the query to return no rows. Where it makes
sense for your application, you can leverage SQL functions like NVL (), CASE, DECODE (),
or others to handle the situation as you require. For example, the following WHERE
clause fragment allows the view object query to match any name if the value of
:TheName is null.

upper (FIRST NAME) like upper (:TheName)||'%'

5.11 Working with Named View Criteria

AA view criteria you define lets you specify filter information for the rows of a view
object collection. The view criteria object is a row set of one or more view criteria
groups, whose attributes mirror those in the view object. The view criteria definition
comprises query conditions that augment the WHERE clause of the target view object.
However, unlike the WHERE clause defined by the view object query statement, which
applies to all instances of the view object, the view criteria query condition is added to
specific view object instances. This allows you to create specific usages of the target
view object definition using query conditions that apply to the individual attributes of
the target view object.

View criteria definitions support Query-by-Example operators and therefore allows
the user to enter conditions such as "OrderId > 304", for example.

The Edit View Criteria dialog lets you create view criteria and save them as part of the
view object’s definition, where they appear as named view criteria. You use the View
Criteria page of the overview editor to define view criteria for specific view objects.
View criteria that you define at design time can participate in these scenarios where
filtering results is desired at runtime.

s Supporting Query-by-Example search forms that allow the end user to supply
values for attributes of the target view object.

For example, the end user might input the value of a customer name and the date
to filter the results in a web page that displays the rows of the CustomerOrders
view object. The web page designer will see the named view criteria in the
JDeveloper Data Controls panel and, from them, easily create a search form. For
more information about the utilizing the named view criteria in the Data Controls
panel, see Section 27.2, "Creating Query Search Forms."

= Supporting row finder operations that the application may use to perform row
look ups using any non-key attribute.

For example, it is usually preferable to allow the end user to make row updates
without the need to know the row key value (often an ID). In this case, a row
finder that you apply to a view criteria supports locating a row using easily
identifiable attribute values, such as by user name and user email address. For
more information, see Section 5.12, "Working with Row Finders."

» Filtering the list of values (LOV) components that allow the end user may select
from one attribute list (displayed in the UI as an LOV component).

The web page designer will see the attributes of the view object in the JDeveloper
Data Controls panel and, from them, easily create LOV controls. For more
information about utilizing LOV-enabled attributes in the Data Controls panel, see
Section 25.3, "Creating a Selection List."

Defining SQL Queries Using View Objects 5-79

Working with Named View Criteria

= Validating attribute values using a view accessor with a view criteria applied to
filter the view accessor results.

For more information about create view accessor validators, see Section 10.4.2,
"How to Validate Against a View Accessor."

s Creating the application module’s data model from a single view object definition
with a unique view criteria applied for each view instance.

The single view object query modified by view criteria is useful with look up data
that must be shared across the application. In this case, a base view object
definition queries the lookup table in the database and the view criteria set the
lookup table’s TYPE column to define application-specific views. To define view
instances in the data model using the view criteria you create for a base view
object definition, see Section 10.3.3, "How to Define the WHERE Clause of the
Lookup View Object Using View Criteria."

Additionally, view criteria have full API support, and it is therefore possible to create
and apply view criteria to view objects programmatically.

5.11.1 How to Create Named View Criteria Declaratively

View criteria have a number of uses in addition to applying them to declarative
queries at runtime. In all usages, the named view criteria definition consists of a set of
attribute requirements that you specify to filter individual view object results. The
features of the view criteria definition that you can use will depend on its intended
usage.

To define view criteria for the view object you wish to filter, you open the view object
in the overview editor and use the View Criteria section of the Query page. A
dedicated editor (the Create View Criteria dialog) that you open from the View
Criteria section helps you to build a WHERE clause using attribute names instead of the
target view object’s corresponding SQL column names. You may define multiple
named view criteria for each view object.

Before you work with the Create View Criteria dialog to create named view criteria,
familiarize yourself with the usages described in Section 5.11, "Working with Named
View Criteria." The chapter references provide additional details that will help you to
anticipate using the appropriate features of the Create View Criteria dialog. For
example, when you create a view criteria to specify the searchable attributes of a
search form, the view criteria condition defines a simple list of attributes (a subset of
the view object’s attributes) to be presented to the user, but then the view criteria
definition requires that you specify UI hints (model-level properties) to control the
behavior of those attributes in the search form. The Create View Criteria dialog
displays all the UI hints in a separate tabbed page that you select for the view criteria
you are defining. Whereas, when your view criteria is intended to specify view
instances in the data model, you can define arbitrarily complex query filter conditions,
but you can ignore the UI hints features displayed by the Create View Criteria dialog.

Each view criteria definition consists of the following elements:

= One or more view criteria rows consisting of an arbitrary number of view criteria
groups or an arbitrary number of references to another named view criteria
already defined for the current view object.

= Optional view criteria groups consisting of an arbitrary number of view criteria
items.

» View criteria items consisting of an attribute name, an attribute-appropriate
operator, and an operand. Operands can be a literal value when the filter value is

5-80 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

defined or a bind variable that can optionally utilize a scripting expression that
includes dot notation access to attribute property values.

Expressions are based on the Groovy scripting language, as described in
Section 3.6, "Overview of Groovy Support."

When you define a view criteria, you control the source of the filtered results. You can
limit the results of the filtered view object to:

= Just the database table specified by the view object
= Just the in-memory results of the view object query
= Both the database and the in-memory results of the view object query.

Filtering on both database tables and the view object’s in-memory results allows you
to filter rows that were created in the transaction but not yet committed to the
database.

View criteria expressions you construct in the Edit View Criteria dialog use logical
conjunctions to specify how to join the selected criteria item or criteria group with the
previous item or group in the expression:

= AND conjunctions specify that the query results meet both joined conditions. This is
the default for each view criteria item you add.

= OR conjunctions specify that the query results meet either or both joined
conditions. This is the default for view criteria groups.

Additionally, you may create nested view criteria when you want to filter rows in the
current view object based on criteria applied to view-linked detail views. A nested
view criteria group consists of an arbitrary number of nested view criteria items. You
can use nested view criteria when you want to have more controls over the logical
conjunctions among the various view criteria items. The nested criteria place
restrictions on the rows that satisfy the criteria under the nested criteria’s parent view
criteria group. For example, you might want to query both a list of employees with
(salary > 3000) and belonging to (DeptNo = 10 or DeptNo = 20). You can define a
view criteria with the first group with one item for (Salary > 3000) and a nested view
criteria with the second group with two items DeptNo = 10 and DeptNo =20.

Before you begin:

» Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object,"” and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

» If the view criteria will use a bind variable in the operand, create the bind variable
as described in Section 5.10.1, "How to Add Bind Variables to a View Object
Definition."

To define a named view criteria:

1. In the Application Navigator, double-click the view object for which you want to
create the named view criteria.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the View Criteria section and click the Create new
view criteria button.

4. In the Create View Criteria dialog, enter the name of the view criteria to identify
its usage in your application.

Defining SQL Queries Using View Objects 5-81

Working with Named View Criteria

5. In the Query Execution Mode dropdown list, decide how you want the view
criteria to filter the view object query results.

You can limit the view criteria to filter the database table specified by the view
object query, the in memory row set produced by the query, or both the database
table and the in-memory results.

Choosing Both may be appropriate for situations where you want to include rows
created as a result of enforced association consistency. In this case, in-memory
filtering is performed after the initial fetch.

6. Click one of these Add buttons to define the view criteria.

= Add Item to add a single criteria item. The editor will add the item to the
hierarchy beneath the current group or view criteria selection. By default each
time you add an item, the editor will choose the next attribute to define the
criteria item. You can change the attribute to any attribute that the view object
query defines.

= Add Group to add a new group that will compose criteria items that you
intend to add to it. When you add a new group, the editor inserts the OR
conjunction into the hierarchy. You can change the conjunction as desired.

s Add Criteria to add a view criteria that you intend to define. This selection is
an alternative to adding a named criteria that already exists in the view object
definition. When you add a new view criteria, the editor inserts the AND
conjunction into the hierarchy. You can change the conjunction as desired.
Each time you add another view criteria, the editor nests the new view criteria
beneath the current view criteria selection in the hierarchy. The root node of
the hierarchy defines the named view criteria that you are currently editing.

Search forms that the UI designer will create from view criteria are not able to
use directly nested view criteria. For more information about defining nested
expressions for use with search forms, see Section 5.11.4, "What You May Need
to Know About Nested Expressions."

s Add Named Criteria to add a view criteria that the view object defines. The
named criteria must appear in the overview editor for the view object you are
defining the view criteria.

7. Select a view criteria item node in the view criteria hierarchy and define the added
node in the Criteria Item section.

s Choose the desired Attribute for the criteria item. By default the editor adds
the first one in the list.

Optionally, you can add a nested view criteria inline when a view link exists
for the current view object you are editing. The destination view object name
will appear in the Attribute dropdown list. Selecting a view object lets you
filter the view criteria based on view criteria items for the nested view criteria
based on a view link relationship. For example, AddressVoO is linked to the
PaymentOptionsVO and a view criteria definition for PaymentOptionsVo will
display the destination view object AddressV0. You could define the nested
view criteria to filter payment options based on the CountryId attribute of the
current customer, as specified by the CustomerId criteria item, as shown in
Figure 5-42.

5-82 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

Figure 5-42 Edit View Criteria Dialog with Nested View Criteria Specified

® Edit View Criteria

Criteria Mame: |Payment0pti0nsForUser | Query Execution Mode: |Database '|

[Criteria Definition | UL Hinks |

Wiew Criteria: iew Object Where Clause:
&8 PaymentOptionsForUser { (PaymentOptionEQ. CUSTOMER_ID =
2-() Group :persanid 1) AND { { (EXISTS(SELECT 1

FROM ADDRESSES AddressED WHERE
{UPPERAddressEC, COUNTRY _IDY =
UPPER(:countryid))) AND

i bemE Customerld = :persanid
=h-{Fah AND Criteria

= () aroup {PaymentOptionEC . BILLING _ADDRESS 1D
=@ AddressesvO EXISTS = AddressEQ. ADDRESS_ID)))))
E}F‘-@ Crikeria
= () Group

P B ountryId = :countryid

|Qe|ete | Explain Plan. .. | |Iest |
Criteria Ikem
Ignore Case

Attribute: |C0untry1d v| Tgnore Mull Yalues
Operatar: |Equal to v| Yalidation: |Opti0nal -
Operand: |Bind Variable '|

Parameter: |c0untryid '| l+

Help | [s]4 J | Cancel

» Choose the desired Operator.

The list displays only the operators that are appropriate for the selected
attribute or view object. In the case of a view object selection, the exists
operator applies to a view criteria that you will define (or reference) as an
operand. In the case of Strings and Date type attributes, the Between and Not
between operators require you to supply two operand values to define the
range. In the case of Date type attributes, you can select operators that test for
a date or date range (with date values entered in the format YYYY-MM-DD).
For example, for December 16th, 2010, enter 2010-12-16.

JDeveloper does not support the IN operator. However, you can create a view
criteria with the IN operator using the AP]I, as described in Section 5.11.8,
"How to Create View Criteria Programmatically."

8. Choose the desired Operand for the view criteria item selection.

= Select Literal when you want to supply a value for the attribute or when you
want to define a default value for a user-specified search field for a
Query-by-Example search form. When the view criteria defines a query search
form for the user interface, you may leave the Value field empty. In this case,
the user will supply the value. You may also provide a value that will act as a
search field default value that the user will be able to override. The value you
supply in the Value field can include wildcard characters * or %.

= Select Bind Variable when you want the value to be determined at runtime
using a bind variable. If the variable was already defined for the view object,
select it from the Parameters dropdown list. Otherwise, click New to display
the Bind Variable dialog that lets you create a new bind variable on the view
object. For more information about creating bind variables, see Section 5.10.1,

Defining SQL Queries Using View Objects 5-83

Working with Named View Criteria

10.

11.

12.

13.

"How to Add Bind Variables to a View Object Definition."

When you define bind variables on the view object for use by the view criteria,
you must specify that the variable is not required by the SQL query that the
view object defines. To do this, deselect the Required checkbox in the Bind
Variables dialog, as explained in Section 5.10.1, "How to Add Bind Variables to
a View Object Definition."

For further discussion about view criteria use cases for bind variables and
literals, see Section 5.11.3, "What You May Need to Know About Bind Variable
Options."

For each item, group, or nested view criteria that you define, optionally change the
default conjunction to specify how the selection should be joined.

= AND conjunction specifies that the query results meet both joined conditions.
This is the default for each view criteria item or view nested view criteria that
you add.

= OR conjunction specifies that the query results meet either or both joined
conditions. This is the default for view criteria groups.

Verify that the view criteria definition is valid by doing one of the following:

s Click Explain Plan to visually inspect the view criteria’s generated WHERE
clause.

s Click Test to allow JDeveloper to verify that the WHERE clause is valid.

To prevent the attribute to be filtered based on the case of the runtime-supplied
value, leave Ignore Case selected.

The criteria item can be a literal value that you define or a runtime parameter that
the end user supplies. This option is supported for attributes of type String only.
The default disables case sensitive searches.

In the Validation dropdown list, decide whether the view criteria item is a
required or an optional part of the attribute value comparison in the generated
WHERE clause.

s Selectively Required means that the WHERE clause will ignore the view criteria
item at runtime if no value is supplied and there exists at least one criteria
item at the same level that has a criteria value. Otherwise, an exception is
thrown.

= Optional means the view criteria is added to the WHERE clause only if the value
is non-NULL. The default Optional for each new view criteria item means no
exception will be generated for null values.

= Required means that the WHERE clause will fail to execute and an exception
will be thrown when no value is supplied for the criteria item.

If the view criteria uses a bind variable as the operand, decide whether the IS
NULL condition is the generated in the WHERE clause. This field is enabled only if
you have selected Optional for the validation of the bind variable.

= Leave Ignore Null Values selected (default) when you want to permit the
view criteria to return a result even when the bind variable value is not
supplied at runtime. For example, suppose you define a view criteria to allow
users to display a cascading list of countries and states (or provinces) through
a bind variable that takes the countryID as the child list’s controlling attribute.
In this case, the default behavior for the view criteria execution returns the list
of all states if the user makes no selection in the parent LOV (an empty

5-84 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

countryId field). The generated WHERE clause would look similar to
(((CountryEO.COUNTRY_ID =:bvCountryId) OR (:bvCountryId IS NULL))),
where the test for a null value guarantees that the child list displays a result
even when the bind variable is not set. When validation is set to Required or
Optionally Required, the view criteria expects to receive a value and thus this
option to ignore null values is disabled.

= Deselect Ignore Null Values when you expect the view criteria to return a null
result when the bind variable value is not supplied at runtime. In the example
of the cascading lists, the view criteria execution returns no states if the user
makes no selection with an empty countryID field. In this case, the generated
WHERE clause would look similar to ((CountryEO.COUNTRY_
ID=:bvCountryId)), where the test for null is not performed, which means the
query is expected to function correctly with a null value bind variable.

Note that the validation settings Required or Optionally Required also
remove the null value condition but support a different use case. They should
be used in combination with Ignore Null Values feature to achieve the desired
runtime behavior. For more details about the interaction of these features, see
Section 5.11.3, "What You May Need to Know About Bind Variable Options."

14. Click OK.

5.11.2 What Happens When You Create a Named View Criteria

The Create View Criteria dialog in JDeveloper lets you easily create view criteria and
save them as named definitions. These named view criteria definitions add metadata
to the XML document file that represents the target view object's declarative settings.
Once defined, named view criteria appear by name in the Query page of the overview
editor for the view object.

To view the view criteria, expand the desired view object in the Application Navigator,
select the XML file under the expanded view object, open the Structure window, and
expand the View Criteria node. Each view criteria definition for a view object contains
one or more <ViewCriteriaRow> elements corresponding to the number of groups that
you define in the Create View Criteria dialog. Example 5-33 shows the
ProductsVO.xml file with the <ViewCriteria> definition FindByProductNameCriteria
and a single <ViewCriteriaRow> that defines a developer-seeded search for products
using the bind variable :bvProductName. Any control hints that you selected to
customize the behavior of a developer-seeded search will appear in the
<ViewCriteria> definition as attributes of the <CustomProperties> element. For
details about specific control hints for view criteria, see Section 5.11.5, "How to Set
User Interface Hints on View Criteria."

Example 5-33 FindByProductNameCtriteria View Criteria in the ProductsVO View Object
Definition
<ViewObject
xmlns="http://xmlns.oracle.com/bcdj"
Name="ProductsV0"
e >
<SQLQuery>

</SQLQuery>
<ViewCriteria
Name="FindByProductNameCriteria"

ViewObjectName="oracle.fodemo.storefront.store.queries.Productsv0"
Conjunction="AND">

Defining SQL Queries Using View Objects 5-85

Working with Named View Criteria

<Properties>
<CustomProperties>
<Property
Name="mode"
Value="Basic"/>
<Property
Name="autoExecute"
Value="false"/>
<Property
Name="showInList"
Value="true"/>
<Property
Name="displayName"
Value="Find Products By Name"/>
<Property
Name="displayOperators"
Value="InAdvancedMode" />
<Property
Name="allowConjunctionOverride"
Value="true"/>
</CustomProperties>
</Properties>
<ViewCriteriaRow
Name="vcrow87">
<ViewCriterialtem
Name="ProductName"
ViewAttribute="ProductName"
Operator="CONTAINS"
Conjunction="AND"
Value=":bvProductName"
UpperColumns="1"
IsBindVarValue="true"
Required="Optional"/>
</ViewCriteriaRow>
</ViewCriteria>

</ViewObject>

Additionally, when you create view objects and specify them as instances in an
application module, JDeveloper automatically creates a data control to encapsulate the
collections (view instances) that the application module contains. JDeveloper then
populates the Data Controls panel with these collections and any view criteria that you
have defined, as shown in Section 12.2.1.3, "How View Objects Appear in the Data
Controls Panel."

5.11.3 What You May Need to Know About Bind Variable Options

The view criteria filter that you define using a bind variable expects to obtain its value
at runtime. This can be helpful in a variety of user interface scenarios. To support a
particular use case, familiarize yourself with the combination of the Validation and
Ignore Null Values settings shown in Table 5-1.

5-86 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

Table 5-1 Use Cases for Bind Variable Options in View Criteria

Ignore Null
Validation Values Use Cases Notes
Optional True Configure This combination generates the SQL
g g
(Default) cascading List ~ query (ProductName = :bind) OR
of Values (LOV) (:bind IS NULL).
Wiil;ﬁ t{lgv When used for cascading LOVs, no
Salue is selection in the parent LOV returns all
optional rows in the child LOV.
Generate an Note that the preferred implementation
onptional search for an optional search field is a view
filzl d in a search criteria item with a literal operand type.
form.
Optional False Configure This combination generates the SQL
cascading LOVs query (ProductName = :bind).
wii;i tﬁlgv When used for cascading LOVs, no
pal . selection in the parent LOV returns no
;,eqtfr:esd rows in the child LOV.
Avoid this combination for search forms,
because when the user leaves the search
field blank the search will attempt to find
rows where this field is explicitly NULL.
A better way to achieve this is for the user
to explicitly select the "IS NULL" operator
in advanced search mode.
Required False Generate a This combination generates the SQL
(default) required search query ProductName = :bind.
?Oilim a search Avoid this setting for cascading LOVs,

because no selection in the parent LOV
will cause a validation error.

Note that the preferred implementation
for a required search field is a view
criteria item with a literal operand (not a
bind variable) type.

5.11.4 What You May Need to Know About Nested Expressions

Search forms that the UI designer will create from view criteria are not able to work
with all types of nested expressions. Specifically, search forms do not support
expressions with directly nested view criteria. This type of nested expression defines
one view criteria as a direct child of another view criteria. Query search forms do
support nested expressions where you nest the view criteria as a child of a criteria item
which is itself a child of a view criteria. For more information about using view criteria
to create search forms, see Section 27.1.5, "Implicit and Named View Criteria."

5.11.5 How to Set User Interface Hints on View Criteria

Named view criteria that you create for view object collections can be used by the web
page designer to create Query-by-Example search forms. Web page designers select
your named view criteria from the JDeveloper Data Controls panel to create search
forms for the Fusion web application. In the web page, the search form utilizes an ADF
Faces query search component that will be bound initially to the named view criteria
selected in the Data Controls panel. At runtime, the end user may select among all
other named view criteria that appear in the Data Controls panel. Named view criteria
that the end user can select in a search form are known as developer-seeded searches. The

Defining SQL Queries Using View Objects 5-87

Working with Named View Criteria

query component automatically displays these seeded searches in its Saved Search
dropdown list. For more information about creating search forms and using the ADF
query search component, see Section 27.2, "Creating Query Search Forms."

Note: By default, any named view criteria you create in the Edit
View Criteria dialog will appear in the Data Controls panel. As long as
the Show In List option appears selected in the UI Hints page of the
Edit View Criteria dialog, JDeveloper assumes that the named view
criteria should be available as a developer-seeded search. When you
want to create a named view criteria that you do not want the end
user to see in search forms, deselect the Show In List option in the
dialog. For example, you might create a named view criteria only for
an LOV-enabled attribute and so you would need to deselect Show In
List.

Because developer-seeded searches are created in the data model project, the UI Hints
page of the Edit View Criteria dialog lets you specify the default properties for the
query component’s runtime usage of individual named view criteria. At runtime, the
query component’s behavior will conform to the selections you make for the following
seeded search properties:

Search Region Mode: Select the mode that you want the query component to display
the seeded search as. The Basic mode has all features of Advanced mode, except that it
does not allow the end user to dynamically modify the displayed search criteria fields.
The default is Basic mode for a view criteria you define in the Edit View Criteria
dialog.

Query Automatically: Select when you want the query associated with the named
view criteria to be executed and the results displayed in the web page. Any
developer-seeded search with this option enabled will automatically be executed when
the end user selects it from the query component’s Saved Search list. Deselect when
the web page designer prefers not to update the previously displayed results until the
end user submits the search criteria values on the form. Additionally, when a search
form is invoked from a task flow, the search form will appear empty when this option
is deselected and populated when enabled. By default, this option is disabled for a
view criteria you define in the Edit View Criteria dialog.

Show Operators: Determine how you want the query component to display the
operator selection field for the view criteria items to the end user. For example, select
Always when you want to allow the end user to customize the operators for criteria
items (in either basic or advanced modes) or select Never when you want the view
criteria to be executed using the operators it defines. Note that the end user cannot
change the operator for criteria items that you specify with a bind variable because
bind variables may be used in more than one criteria item.

Show Match All and Match Any: Select to allow the query component to display the
Match All and Match Any radio selection buttons to the end user. When these buttons
are present, the end user can use them to modify the search to return matches for all
criteria or any one criteria. This is equivalent to enforcing AND (match all) or OR (match
any) conjunctions between view criteria items. Deselect when you want the view
criteria to be executed using the conjunctions it defines. In this case, the query
component will not display the radio selection buttons.

Rendered Mode: Select individual view criteria items from the view criteria tree
component and choose whether you want the selected item to appear in the search
form when the end user toggles the query component between basic mode and

5-88 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

advanced mode. The default for every view criteria item is All. The default mode
permits the query component to render an item in either basic or advanced mode. By
changing the Rendered Mode setting for individual view criteria items, you can
customize the search form’s appearance at runtime. For example, you may want basic
mode to display a simplified search form to the end user, reserving advanced mode for
displaying a search form with the full set of view criteria items. In this case, you would
select Advanced for the view criteria item that you do not want displayed in the query
component’s basic mode. In contrast, when you want the selected view criteria item to
be rendered only in basic mode, select Basic. Set any item that you do not want the
search form to render in either basic or advanced mode to Never.

Note: When your view criteria includes an item that should not be
exposed to the user, use the Rendered Mode setting Never to prevent
it from appearing in the search form. For example, a view criteria may
be created to search for products in the logged-in customer’s cart;
however, you may want to prevent the user from changing the
customer ID to display another customer’s cart contents. In this
scenario, the view criteria item corresponding to the customer ID
would be set to the current customer ID using a named bind variable.
Although the bind variable definition might specify the variable as not
required and not updatable, with the control hint property Display set
to Hide, only the Rendered Mode setting determines whether or not
the search form displays the value.

Support Multiple Value Selection: Select when you want to allow the end user to
make multiple selections for an individual criteria item that the query component
displays. This option is only enabled when the view object attribute specified by the
view criteria item has a List of Values (LOV) defined. Additionally, multiple selections
will only be supported by the query component when the end user selects the operator
equal to or not equal to. For example, if the criteria item names an attribute CountryId
and this attribute derives its values from a list of country IDs accessed by the
attribute’s associated LOV, then selecting this option would allow the end user to
submit the query with multiple country selections. At runtime, the query component
will generate the appropriate query clause based on the end user's operator selection.

Show In List: Select to ensure that the view criteria is defined as a developer-seeded
query. Deselect when the named view criteria you are defining is not to be used by the
query search component to display a search form. Your selection determines whether
the named view criteria will appear in the query search component’s Saved Search
dropdown list of available seeded searches. By default, this option is enabled for a
view criteria you define in the Edit View Criteria dialog.

Display Name: Enter the name of the seeded search that you want to appear in the
query component’s Saved Search dropdown list or click the ... button (to the right of
the edit field) to select a message string from the resource bundle associated with the
view object. The display name will be the name by which the end user identifies the
seeded search. When you select a message string from the resource bundle, JDeveloper
saves the string's corresponding message key in the view object definition file. At
runtime, the Ul locates the string to display based on the end user's locale setting and
the message key in the localized resource bundle. When you do not specify a display
name, the view criteria name displayed in the Edit View Criteria dialog will be used
by default.

Defining SQL Queries Using View Objects 5-89

Working with Named View Criteria

To create a seeded search for use by the ADF query search component, you select
Show In List in the UI Hints page of the Edit View Criteria dialog. You deselect Show
In List when you do not want the end user to see the view criteria in their search form.

Before you begin:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

Create the view criteria as described in Section 5.11.1, "How to Create Named
View Criteria Declaratively."

To customize a named view criteria for the user interface:

1.

In the Application Navigator, double-click the view object that defines the named
view criteria you want to use as a seeded search.

In the overview editor, click the Query navigation tab.

In the Query page, expand the View Criteria section and double-click the named
view criteria that you want to allow in seeded searches.

On the Ul Hints page of the Edit View Criteria dialog, ensure that Show In List is
selected.

This selection determines whether or not the query component will display the
seeded search in its Saved Search dropdown list.

Enter a user-friendly display name for the seeded search to be added to the query
component Saved Search dropdown list.

When left empty, the view criteria name displayed in the Edit View Criteria dialog
will be used by the query component.

Optionally, enable Query Automatically when you want the query component to
automatically display the search results whenever the end user selects the seeded
search from the Saved Search dropdown list.

By default, no search results will be displayed.

Optionally, apply Criteria Item UI Hints to customize whether the query
component renders individual criteria items when the end user toggles the search
from between basic and advanced mode.

By default, all view criteria items defined by the seeded search will be displayed in
either mode.

If a rendered criteria item is of type Date, you must also define Ul hints for the
corresponding view object attribute. Set the view object attribute’s Format Type
hint to Simple Date and set the Format Mask to an appropriate value, as described
in Section 5.14.1, "How to Add Attribute-Specific Control Hints." This will allow
the search form to accept date values.

Click OK.

5.11.6 How to Use Master-Detail Related View Objects in View Criteria

View criteria provide a declarative way to define view object query filters that apply to
the view object’s own query. In certain cases you may need to filter the master view
object using attributes of the detail view object. View criteria that involve master and
detail view objects rely on the EXISTS operator and an inline view criteria to define the
query filter. The EXISTS operator allows the inline view criteria to reference a detail

5-90 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

view object and apply attributes that you select as criteria items. For example, a view
criteria used in combination with a row finder can filter the master row set and locate
specific rows in the row set using view criteria items from the detail view object.

You use the View Criteria page of the view object overview editor to define the view
criteria on the master view object. For example, a view criteria findPersonByEmail
that filters the rows in the master PersonsV0 using the EmailAddress attribute of the
detail AddressvO might look similar to the one shown in Example 5-34. In this
example, the view criteria statement uses a bind variable EmailBindVar to obtain the
value of the email attribute on the detail view object AddressVv0 at runtime.

Example 5-34 EXISTS View Criteria Statement

((EXISTS(SELECT 1 FROM ADDRESS AddressEO WHERE
(UPPER (AddressEO.EMAIL_ADDRESS LIKE UPPER (:EmailBindVar H %)))
AND
(PersonEO.PERSON_ID = AddressEO.PERSON_ID))))

Before you begin:

It may be helpful to have an understanding of the row finder that operates on a master
view object. For more information, see Section 5.12, "Working with Row Finders."

It may be helpful to have an understanding of view criteria. For more information, see
Section 5.11, "Working with Named View Criteria."

You will need to complete this task:

Create the desired master-detail view objects, as described in Section 5.6.1, "How
to Create a Master-Detail Hierarchy for Entity-Based View Objects" or
Section 5.6.2, "How to Create a Master-Detail Hierarchy Based on View Objects
Alone."

To create an inline view criteria:

1. In the Application Navigator, double-click the view object for which you want to
create the inline view criteria.

The view object that you create the inline view criteria on must be a master view
object in a master-detail hierarchy.

2. In the overview editor, click the View Criteria navigation tab and click the Create
New View Criteria button.

3. In the Create View Criteria dialog, enter the name of the view criteria to identify
its usage in your application.

For example, to filter the person row set by an employee’s email, you might
specify a view criteria name like findPersonByEmail.

4. In the Query Execution Mode dropdown list, leave the default Database selected.

The default mode allows the view criteria to filter the database table specified by
the view object query.

5. In the Criteria Definition tab, click Add Item to define the view criteria.

6. In the view criteria hierarchy, select the unassigned view criteria item node
beneath Group and, in the Criteria Item section, select the Attribute dropdown
and select the detail view object from the list.

When a view link exists for the current view object you are editing, you may select
a detail view object to create a view criteria with a nested view criteria inline. The

Defining SQL Queries Using View Objects 5-91

Working with Named View Criteria

detail view object name will appear in the Attribute dropdown list. For example,
PersonsVO is linked to the AddressVo and a view criteria definition for
findPersonByEmail filters the master view object PersonsVo by attributes of the
detail view object AddressVo0, as shown in Example 5-43.

Figure 5-43 Edit View Criteria Dialog with Inline View Criteria Specified

I it View Criters

Criteria Name: |ﬁndPersonByEmail | Query Execution Mode: |Database ~

[Criteria Definition [UL Hints

View Criteria: iew Object Where Clause:
E—a findPersonByEmail
E}I:] Group
=R A ddressVO EXISTS
& Criteria
() Group
&8 EmailAddress STARTSWITH

|Qelete | Explain Plan... | |E|

Criteria Item

Ignore Case

Attribute: |Address\n‘0

Operator: |Exi515 Validation: |Opt’onal

Operand: |Inline View Criteria

| tep |

7. Leave the default Operator and Operand selections unchanged.

When you create an inline view criteria with a view object criteria item, the editor
specifies the Exists operator and Inline View Criteria operand as the default
choices. At runtime, the EXISTS operator tests for the presence of the attribute
value in the detail view object and filter the rows in the master view object, as
shown in Example 5-34.

8. In the view criteria hierarchy, select the new view criteria item node beneath
Group and, in the Criteria Item section, enter the following;:

s In the Attribute dropdown, select the attribute from the detail view object that
you want to filter by.

The detail attribute is the attribute that will be used to filter the master view
object. The value of this attribute can be supplied by the end user when a bind
variable is defined for the criteria item.

= In the Operator dropdown, select the desired filter operator.

= In the Operand dropdown, select Bind Variable to specify the name of the
bind variable for the detail attribute. If the variable was already defined for the
view criteria, select it from the Parameter dropdown list. Otherwise, click New
to display the New Variable dialog that lets you name a new bind variable on
the view criteria.

Note: When you select an existing bind variable from the dropdown list for
use by the view criteria, do not select a bind variable that has been defined for
the view object query (these will appear on the Query page of the overview

5-92 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

editor). Select only bind variables that you define in the View Criteria page of
the overview editor.

9. To disable case-sensitive filtering of the attribute based on the case of the
runtime-supplied value, leave Ignore Case selected.

This option is supported for attributes of type String only. The default disables
case sensitive searches.

10. In the Validation dropdown list, leave the default Optional selected.

Optional means the view criteria (or search field) is added to the WHERE clause
only if the value is non-NULL. The default Optional for each new view criteria item
means no exception will be generated for null values. For example, a
findPersonByEmail view criteria definition filters the master view object
PersonsV0 by the Email attribute of the detail view object Addressvo, and the
value may be null, as shown in Figure 5-44.

Figure 5-44 Edit View Criteria Dialog with Bind Variable Criteria Item Specified

[, Edit View Criteria

Criteria Name: |ﬁndPersonByEmaiI Query Execution Mode: |Database ~

[Criteria Definition [UL Hints

View Criteria: iew Object Where Clause:
%8 findPersonByEmail { (EXISTS(SELECT 1 FROM ADDRESS
() Group AddressEQ WHERE (
5-E AddressVO EXISTS (UPPER(AddressEC, EMAIL_ADDRESS)
=B criteria LIKE UPPER(:EmailBindvar || %)))
e AND (PersonEQ.PERSON_ID =
9"":_) Group AddressEQ.PERSON_ID))))
e IEmail Address STARTSWITH :EmailBindVar

|Qelehe | Explain Plan... | |E|

Criteria Item

Ignore Case
Attribute: |Emailnddress Ignore Mull Values

Operator: |513rts with Validation: |Opﬁonal

Operand: |Bind Variable

Parameter: |EmaiIBind'u'ar

| tep |

11. Click OK.

12. In the View Criteria page of the overview editor, select the bind variable and in the
Details section, leave the default settings unchanged:

= Leave Literal selected but do not supply a default value. The value will be
obtained from the end user at runtime.

= Leave Updatable selected to allow the bind variable value to be defined
through the user interface.

13. In the View Criteria page, click the UI Hints tab and specify hints like Label,
Format Type, Format mask, and others.

The view layer will use bind variable UI hints when you build user interfaces like
search pages that allow the user to enter values for the named bind variables. Note

Defining SQL Queries Using View Objects 5-93

Working with Named View Criteria

that formats are only supported for bind variables defined by the Date type or any
numeric data type.

5.11.7 How to Test View Criteria Using the Business Component Browser

To test the view criteria you added to a view object, use the Business Component
Browser, which is accessible from the Application Navigator.

The Business Component Browser, for any view object instance that you browse, lets
you bring up the Business Components View Criteria dialog, as shown in Figure 5-45.
The dialog allows you to create a view criteria comprising one or more view criteria

TOWS.

To apply criteria attributes from a single view criteria row, click the Specify View
Criteria toolbar button in the browser and enter Query-by-Example criteria in the
desired fields, then click Find.

To test view criteria using the Business Component Browser:

1.

In the Application Navigator, expand the project containing the desired
application module and view objects.

Right-click the application module and choose Run.

In the Business Component Browser, right-click the view instance you want to
filter and choose Find.

Alternatively, after you double-click a view instance, you can click the Specify
View Criteria toolbar button to test the view criteria.

In the Business Components View Criteria dialog, perform one of the following
tasks:

To test a view criteria that you added to the view object in your project, select
from the list and click Find. Any additional criteria that you enter in the ad
hoc Criteria panel will be added to the filter.

To test ad hoc criteria attributes from a single view criteria row, enter the
desired values for the view criteria and click Find. For example, Figure 5-45
shows the filter to return all customers who possess a customer ID that begins
with the letter "d" and placed an order in the amount greater than 100.

To test additional ad hoc view criteria rows, click the OR tab and use the
additional tabs that appear to switch between pages, each representing a
distinct view criteria row. When you click Find, the Business Component
Browser will create and apply the view criteria to filter the result.

5-94 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

Figure 5-45 Business Components View Criteria Dialog

Business Component View Criteria

Select predefined criteria, or define ad hoc criteria

Fredefined criteria:

Available: Selected:

Ty OrdersCriteria
ShoppingCarkCriteria

(]
(]
<

«

Ad hoe eriteria

Critetia

Enter an operator Followed by a value: Lo

Orderld:

OrderDate:

OrderStatusCode:

|
|
OrderShippedDate: |
|
|

OrderTotal:

CustomerId:

(e) (>) (romme]

5.11.8 How to Create View Criteria Programmatically

Example 5-35 shows the main () method finds the PersonList view object instance to
be filtered, creates a view criteria for the attributes of this view object, and applies the
view criteria to the view object.

To create a view criteria programmatically, follow these basic steps (as illustrated in
Example 5-35):

1. Find the view object instance to be filtered.

2. Create a view criteria row set for the view object.

3. Use the view criteria to create one or more empty view criteria rows
4. Set attribute values to filter on the appropriate view criteria rows.

You can use the single method setAttribute() on the view criteria rows to set
attribute name, comparison operator, and value to filter on. Alternatively, use
ensureCriterialtem(), setOperator (), and setValue() on the view criteria rows
to set attribute name, comparison operator, and value to filter on individually.

5. Add the view criteria rows to the view criteria row set.
6. Apply the view criteria to the view object.
7. Execute the query.

The last step to execute the query is important, since a newly applied view criteria is
applied to the view object's SQL query only at its next execution.

Example 5-35 Creating and Applying a View Criteria

package devguide.examples.readonlyvo.client;
import oracle.jbo.ApplicationModule;

import oracle.jbo.Row;
import oracle.jbo.ViewCriteria;

Defining SQL Queries Using View Objects 5-95

Working with Named View Criteria

import oracle.jbo.ViewCriteriaRow;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClientViewCriteria ({

public static void main(String[] args) {
String amDef = "devguide.examples.readonlyvo.PersonService";
String config = "PersonServiceLocal";
ApplicationModule am =

Configuration.createRootApplicationModule (amDef, config);

// 1. Find the view object to filter
ViewObject vo = am.findViewObject ("PersonList");
// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule (am, true);
// 2. Create a view criteria row set for this view object
ViewCriteria vc = vo.createViewCriterial();
// 3. Use the view criteria to create one or more view criteria rows
ViewCriteriaRow vcrl = vc.createViewCriteriaRow() ;
ViewCriteriaRow vcr2 = vc.createViewCriteriaRow();
// 4. Set attribute values to filter on in appropriate view criteria rows
verl.setAttribute ("PersonId", "> 200");
verl.setAttribute ("Email", "d%") ;
verl.setAttribute ("PersonTypeCode", "STAFF") ;
// Note the IN operator must be followed by a space after the operator.
vcr2.setAttribute ("PersonId", "IN (204,206)");
ver2.setAttribute ("LastName", "Hemant") ;
// 5. Add the view criteria rows to the view critera row set
vc.add(verl) ;
vc.add(ver2) ;
// 6. Apply the view criteria to the view object
vo.applyViewCriteria(vc);
// 7. Execute the query
vo.executeQuery () ;
while (vo.hasNext()) {
Row curPerson = vo.next();
System.out.println(curPerson.getAttribute("PersonId") + " " +
curPerson.getAttribute ("Email"));

}

Running the TestClientViewCriteria example produces the results shown in
Example 5-35:

206 SHEMANT

5.11.9 What Happens at Runtime: When the View Criteria Is Applied to a View Object

When you apply a view criteria containing one or more view criteria rows to a view
object, the next time it is executed it augments its SQL query with an additional WHERE
clause predicate corresponding to the Query-by-Example criteria that you've
populated in the view criteria rows. As shown in Figure 5-46, when you apply a view
criteria containing multiple view criteria rows, the view object augments its design
time WHERE clause by adding an additional runtime WHERE clause based on the
non-null example criteria attributes in each view criteria row.

A corollary of the view criteria feature is that each time you apply a new view criteria
(or remove an existing one), the text of the view object's SQL query is effectively
changed. Changing the SQL query causes the database to reparse the statement the
next time it is executed. You can eliminate the reparsing and improve the performance

5-96 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

of a view criteria as described in Section 5.11.11, "What You May Need to Know About
Query-by-Example Criteria."

Figure 5-46 View Object Automatically Translates View Criteria Rows into Additional
Runtime WHERE Filter

Customerld Email LastName FirstName OrderDate
> 304 d% 2008-09-01 :
IN (324,326) Baer :
WHERE |

(USER_ID > 304) AND
(EMATL LIEE 'd%') AND
(ORDER_DATE > 'Z008-03-01")

OR

{
(USER_ID IN (324,326)) AND
(LAST NAME LIKE '"Baer')

)

5.11.10 What You May Need to Know About the View Criteria API

When you need to perform tasks that the Edit View Criteria dialog does not support,
review the View Criteria APL. For example, programmatically, you can alter compound
search conditions using multiple view criteria rows, search for a row whose attribute
value is NULL, search case insensitively, and clear view criteria in effect.

5.11.10.1 Referencing Attribute Names in View Criteria

The setWhereClause () method allows you to add a dynamic WHERE clause to a view
object, as described in Section 6.4.1, "ViewObject Interface Methods for Working with
the View Object’s Default RowSet." You can also use setithereClause () to pass a string
that contains literal database column names like this:

vo.setWhereClause ("LAST NAME LIKE UPPER (:NameToFind)");
In contrast, when you use the view criteria mechanism, shown in Example 5-35, you
must reference the view object attribute name instead, like this:

ViewCriterialtem vc_iteml = vc_rowl.ensureCriterialtem("UserId");
vc_iteml.setOperator (">");
ve_iteml.setValue("304");

The view criteria rows are then translated by the view object into corresponding WHERE
clause predicates that reference the corresponding column names.

5.11.10.2 Referencing Bind Variables in View Criteria

When you want to set the value of a view criteria item to a bind variable, use
setIsBindvarValue (true), like this:

ViewCriteriaItem vc_iteml = vc_rowl.ensureCriterialtem("UserId");
vc_iteml.setIsBindVarValue (true);
vc_iteml.setValue(":VariableName") ;

Defining SQL Queries Using View Objects 5-97

Working with Named View Criteria

5.11.10.3 Altering Compound Search Conditions Using Multiple View Criteria

When you add multiple view criteria, you can call the setConjunction() method on a
view criteria to alter the conjunction used between the predicate corresponding to that
view criteria and the one for the previous view criteria. The legal constants to pass as
an argument are:

s ViewCriteriaComponent.VC_CONJ_AND

m ViewCriteriaComponent.VC_CONJ_NOT

m ViewCriteriaComponent.VC_CONJ_UNION

» ViewCriteriaComponent.VC_CONJ_OR (default)

The NOT value can be combined with AND or OR to create filter criteria like:

(PredicateForViewCriterial) AND (NOT (PredicateForViewCriterial2))

or

(PredicateForViewCriterial) OR (NOT (PredicateForViewCriteria2))

The syntax to achieve compound search conditions requires using Java's bitwise OR
operator like this:

vc2.setConjunction (ViewCriteriaComponent .VC_CONJ_AND | ViewCriteriaComponent.VC_
CONJ_NOT) ;

Performance Tip: Use the UNION value instead of an OR clause when
the UNION query can make use of indices. For example, if the view
criteria searches for sal > 2000 or job = 'CLERK' this query may
turn into a full table scan. Whereas if you specify the query as the
union of two inner view criteria, and the database table has an index
on sal and an index on job, then the query can take advantage of
these indices and the query performance will be significantly better
for a large data set.

The limitation for the UNION clause is that it must be defined over one view object. This
means that the SELECT and the FROM list will be the same for inner queries of the UNION
clause. To specify a UNION query, call setConjunction() on the outer view criteria like

this:

vc.setConjunction (ViewCriteriaComponent .VC_CONJ_UNION) ;

The outer view criteria should contain inner queries whose results will be the union.
For example, suppose you want to specify the union of these two view criteria:

m A view criteria named MyEmpJob, which searches for Job = ’'SALESMAN’.

s A view criteria named MyEmpSalary, which searches for Sal = 1500.

To create the UNION query for these two view criteria, you would make the calls shown
in Example 5-36.

Example 5-36 Applying the Union of Two View Criteria

vcu = voEmp.createViewCriterial();
vem = voEmp.getViewCriteriaManager () ;

5-98 Fusion Developer's Guide for Oracle Application Development Framework

Working with Named View Criteria

vcu.setConjunction (ViewCriteria.VC_CONJ_UNION) ;
vcu.add (vem.getViewCriteria ("MyEmpJdob")) ;
vcu.add (vem.getViewCriteria ("MyEmpSal")) ;

voEmp.applyViewCriteria (vcu) ;

When this view criteria is applied, it will return rows where Job is SALESMAN or Sal is
greater than 1500.

When you use a UNION view criteria, be sure that only one of the applied view criteria
has the UNION conjunction. Other view criteria that you apply will be applied to each
inner query of the UNION query.

5.11.10.4 Searching for a Row Whose Attribute Value Is NULL

To search for a row containing a NULL value in a column, populate a corresponding
view criteria row attribute with the value "IS NULL" or use
ViewCriteriaItem.setOperator ("ISBLANK").

5.11.10.5 Searching for Rows Using a Date Comparison

When you want to perform a comparison of date values in a view criteria item, use the
following predefined operators:

m BEFORE

s AFTER

= ONORBEFORE
= ONORAFTER

For example, to search for rows that contain a DATE type attribute whose value is after
a given date, you would use ViewCriteriaItem.setOperator ("AFTER").

Do not use operators like <, >, <=, and >= because these operators perform string
comparisons that yield inaccurate results for date values.

5.11.10.6 Searching for Rows Whose Attribute Value Matches a Value in a List

To search for all rows with a value in a column that matches any value in a list of
values that you specify, populate a corresponding view criteria row attribute with the
comma-separated list of values and use the IN operator. For example, to filter the list of
persons by IDs that match 204 and 206, set:

vcr.setAttribute ("PersonId", "IN (204,206)");
Note that there must be a space between the IN operator and the brace:
= IN (204,206) is correct.

s IN(204,206) throws a SQLSyntaxErrorException error.

5.11.10.7 Searching Case-Insensitively

To search case-insensitively, call setUpperColumns (true) on the view criteria row to
which you want the case-insensitivity to apply. This affects the WHERE clause predicate
generated for String-valued attributes in the view object to use UPPER (COLUMN_NAME)
instead of COLUMN_NAME in the predicate. Note that the value of the supplied view
criteria row attributes for these String-valued attributes must be uppercase or the
predicate won't match. In addition to the predicate, it also possible to use UPPER () on
the value. For example, you can set UPPER (ename) = UPPER("scott").

Defining SQL Queries Using View Objects 5-99

Working with Row Finders

5.11.10.8 Clearing View Criteria in Effect

To clear any view criteria in effect, you can call getViewCriteria() on a view object
and then delete all the view criteria rows from it using the remove () method, passing
the zero-based index of the criteria row you want to remove. If you don't plan to add
back other view criteria rows, you can also clear all the view criteria in effect by simply
calling applyViewCriteria(null) on the view object.

5.11.11 What You May Need to Know About Query-by-Example Criteria

For performance reasons, you want to avoid setting a bind variable as the value of a
view criteria item in these two cases:

= In the specialized case where the value of a view criteria item is defined as
selectively required and the value changes from non-NULL to NULL.

In this case, the SQL statement for the view criteria will be regenerated each time
the value changes from non-NULL to NULL.

= In the case where the value of the view criteria item is optional and that item
references an attribute for an indexed column.

In the case of optional view criteria items, an additional SQL clause OR
(:Variable IS NULL) is generated, and the clause does not support using column
indices.

In either of the following cases, you will get better performance by using a view object
whose WHERE clause contains the named bind variables, as described in Section 5.10.1,
"How to Add Bind Variables to a View Object Definition." In contrast to the view
criteria filtering feature, when you use named bind variables, you can change the
values of the search criteria without changing the text of the view object's SQL
statement each time those values change.

5.12 Working with Row Finders

Row finders are objects that the application may use to locate specific rows within a
row set using a view criteria. You can define a row finder when you need to perform
row lookup operations on the row set and you do not want the application to use row
key attributes to specify the row lookup.

Currently, row finders that you define at design time can participate in these scenarios
where non-row key attribute lookup is desired at runtime:

= When you expose the row finder in an ADF Business Components web service,
the end user may initiate row updates on the specific rows of the service view
instance that match one or more row-finder mapped, non-key attribute values. For
more information about this use case, see Section 5.12.3, "What You May Need to
Know About View Criteria and Row Finder Usage."

= Programmatically in the application when you want to obtain a set of rows that
match one or more row-finder mapped, non-key attribute values. For more
information about this use case, see Section 5.12.4, "How to Programmatically
Invoke the Row Finder."

Note: Row finders that you define on a view object are not currently
supported by the ADF Business Components data control for use in a
view project. Therefore row-finder mapped attributes of a view object
that the application exposes as a collection in the Data Controls panel
will not participate in row finder lookup operations.

5-100 Fusion Developer's Guide for Oracle Application Development Framework

Working with Row Finders

When the application programmatically invokes the row finder on the view object
instance, or when the end user supplies a value for a row-finder mapped attribute in
the web service payload, the row finder locates the rows that match the values
supplied to bind variables of the view criteria. The row finder does not alter the row
set when locating matching rows.

You can specify the row finder to locate all row matches or a specified number of row
matches. If the row finder locates more rows than the fetch limit you specify, you can
enable the row finder to throw an exception.

The view object definition with row finder includes the following elements.

1. A specified view criteria that applies one or more view criteria items to filter the
view object. View criteria items are defined on the view object attributes that
determine the row match and must be defined by bind variables to allow the row
finder to supply the values at runtime.

2. A mapping between view criteria bind variables and the source of the value: either
a transient attribute of the view object or an attribute-value expression.

For example, where EmpV0 has an attribute email, an EmpVO row finder may locate a
specific employee row using a view criteria defined on the Empv0 and the email
address of the employee. The view criteria for the EmpV0 might look similar to the one
shown in Example 5-37. In this example, the view criteria statement uses a bind
variable EmailBindVar to set the value of the email attribute on the view object EmpVo.

Example 5-37 View Criteria Statement Uses Bind Variables
((UPPER (EmpEO.EMAIL) = UPPER(:EmailBindVar)))

The row finder may apply values to the mapped view criteria bind variables in a
variety of ways:

= An ADF Business Components web service with an enabled update operation may
display a form with input fields that are bound to view object transient attributes
that the row finder maps to view criteria bind variables.

For details about enabling operations of Business Components web services, see
Section 11.2.1, "How to Enable the Application Module Service Interface."

s The application may invoke the row finder on the view object and
programmatically set the value of the mapped view object attributes to the view
criteria bind variables.

For more information, see Section 5.12.4, "How to Programmatically Invoke the
Row Finder."

5.12.1 How to Add Row Finders to a View Object Definition

You use the Row Finders page of the view object’s overview editor to define the row
finder. In the editor, you define a value source for each bind variable of the view
criteria that you select. Attributes of the view object or attribute-value expressions are
both valid sources for bind variables defined by the row finder.

The row finder that you define can map any number of view criteria bind variables to
a valid value source. Mapping additional variables in the row finder definition will
result in more restrictive row matches. In this regard, row finders are similar to query
search operations that do not alter the row set. Using an appropriately defined row
finder, the application can locate a single, specific row and the allow the end user to
perform row updates on the row.

Defining SQL Queries Using View Objects 5-101

Working with Row Finders

Figure 5-47 shows the overview editor with a row finder that maps the view criteria
bind variable EmailBindVar specified in the findEmpByEmpEmail view criteria to the
transient attribute TrEmpEmail defined by the view object EmpVO0 as its value source.

Figure 5-47 View Object Overview Editor with Row Finder

&) EmpV0.eml * [
General
Entity Objects Row Finders
Attributes Row finders are used to find view rows at runtime using view criteria,
Query L
Row Finders Row Finders - — + X View Criteria: | findEmpByEmpEmail -
MName View Criteria ; .
Java = () Attribute () Expression
EmailEmpFinder findEmpByEmMpEmail B B
UErhEEE Varizble Attribute
List UL Hints EmailBindVar TrEmpEmail
[Fetch Al
Fetch Limit: 15
Error Exceeding Limit
™ P

Note: You can define row finders on master view objects in a
master-detail hierarchy when you want to filter the master by
attributes of the detail view object. In this scenario, the view criteria
uses an inline view criteria, as described in Section 5.12.5, "How to
Find Rows of a Master View Object."

Before you begin:

It may be helpful to have an understanding of the row finder. For more information,
see Section 5.12, "Working with Row Finders."

It may be helpful to have an understanding of view criteria. For more information, see
Section 5.11, "Working with Named View Criteria."

You will need to complete these tasks:

Create the desired view objects, as described in Section 5.2, "Populating View
Object Rows from a Single Database Table" or Section 5.5, "Working with Multiple
Tables in Join Query Results."

Define a view criteria on the view object, as described in Section 5.11.1, "How to
Create Named View Criteria Declaratively."

Optionally, add transient attributes to the view object, as described in

Section 5.15.3, "How to Add a Transient Attribute." The transient attribute is an
alternative to an attribute-value expression that is evaluated at runtime. The
transient attribute may be set programmatically by the application or exposed in
an ADF Business Components web service payload to solicit the value from an
end user. The transient attributes must be defined as updatable to receive the
criteria lookup value.

To create a row finder for a view object:

1.

In the Application Navigator, double-click the view object for which you want to
create the row finder.

5-102 Fusion Developer's Guide for Oracle Application Development Framework

Working with Row Finders

2. In the overview editor, click the Row Finders navigation tab and then click the
Add Row Finder button.

3. In the Name field, rename the row finder.

For example, a row finder that you define to locate an employee by their email
address, might be named EmpByEmailRowFinder.

4. Select the new row finder in the Row Finders list and then, in the View Criteria
dropdown, select the view criteria that filters the view object row set.

The desired row finder should appear highlighted, as shown in Figure 5-47. The
view criteria list will be empty unless you have created a view criteria for the row
finder to use.

5. When you want the end user to supply a value, leave Attribute selected, select the
bind variable from the list, and then, in the Attribute dropdown, select the
transient attribute from the view object that supplies the bind variable value at
runtime.

The transient attribute that you select will be the one that the end user updates to
supply the criteria attribute value. For example, a row finder that matches the
employee record by their email address, might include a transient attribute named
TrEmpEmail that you define on the EmpVO view object.

Note: When you create the transient attribute in the overview editor for the view
object, be sure to define the transient attribute as Updatable so it can receive the
criteria lookup value

6. Deselect FetchAll when you want to specify the number of rows that the row
finder is allowed to match.

When you enter a number of rows for Fetch Limit, you can also select Error
Exceeding Limit to enable Oracle ADF to throw an exception when more
matching rows exist in the database than the number you specify for Fetch Limit.

5.12.2 What Happens When You Define a Row Finder

When you create a view object row finder, the view object definition contains all the
metadata required by the row finder, including the row finder definition itself. As
Example 5-38 shows, the metadata for a row finder RowFinder includes a bind variable
EmailBindVar in the <Variable> element, a transient attribute TrEmpEmail in the
<ViewAttribute> element, a view criteria findEmpByEmpEmail and a view criteria row
EmpVOCriteria_Row0 in the <ViewCriteria> element, and finally the row finder
EmpByEmailRowFinder in the <RowFinders> element of the view object definition.

The row finder <VarAttributeMapping> subelement maps the view criteria bind
variable EmailBindVar to the transient attribute TrEmpEmail of the view object, which
allows the end user to supply a value at runtime and allows the application to invoke
the row finder with the required criteria attribute. The <ViewCriteriaItem>
subelement sets the criteria attribute Email to the value of the bind variable
EmailBindVar.

At runtime, when the row finder is invoked on the view object, the transient attribute
values passed to one or more criteria attributes identify the matching rows in the row
set. In this example, the email of the employee is used to match the employee record
from the S_EMP table. The row finder locates the record for the employee without the
need to pass a row key value.

Defining SQL Queries Using View Objects 5-103

Working with Row Finders

Example 5-38 Row Finder Defined on a View Object

<ViewObject
xmlns="http://xmlns.oracle.com/bcdj"
Name="EmpVO"
SelectList="EmpEO.ID,
EmpEO.LAST_NAME,
EmpEO.FIRST NAME"
EmpEO.USERID"
EmpEO.DEPT_ID"
EmpEO.EMAIL"
FromList="S_EMP EmpEQ"

<Variable
Name="EmailBindVar"
Kind="viewcriteria"
Type="java.lang.String"/>
<EntityUsage
Name="EmpEO"
Entity="model.entities.EmpEQO"/>

<ViewAttribute
Name="TrEmpEmail"
IsUpdateable="false"
IsSelected="false"
IsPersistent="false"
PrecisionRule="true"
Type="java.lang.String"
ColumnType="CHAR"
AliasName="VIEW_ATTR"
SQLType="VARCHAR" />

<ViewCriteria
Name="findEmpByEmpEmail"
ViewObjectName="model.views.EmpVO"
Conjunction="AND">

<ViewCriteriaRow
Name="EmpVOCriteria_row 0"
UpperColumns="1">
<ViewCriteriaItem
Name="Email"
ViewAttribute="Email"
Operator="="
Conjunction="AND"
Value=":EmailBindvar"
IsBindVarValue="true"
Required="Optional"/>
</ViewCriteriaRow>
</ViewCriteria>

<RowFinders>
<AttrValueRowFinder
Name="EmpByEmailRowFinder"
FetchLimit="1"
ErrorOnExceedingLimit="true">
<ViewCriteriaUsage
Name="findEmpByEmpEmail"
FullName="model .views.EmpVO. findEmpByEmpEmail" />
<VarAttributeMap>
<VariableAttributeMapping

5-104 Fusion Developer's Guide for Oracle Application Development Framework

Working with Row Finders

Variable="EmailBindvVar"
Attribute="TrEmpEmail" />
</VarAttributeMap>
</AttrValueRowFinder>
</RowFinders>
</ViewObject>

5.12.3 What You May Need to Know About View Criteria and Row Finder Usage

Row finders and view criteria can both be used either programmatically or
declaratively to filter a view object row set. The row finder differs from the view
criteria because it defines a map between transient attributes that you define on the
view object and view criteria attribute bind variables. Ultimately, the row finder
matches one or more rows on the view object by applying the view criteria to the view
object with the bind variable defined by a transient attribute value that is resolved at
runtime.

The transient attribute mapped by the row finder allows the row finder to be used in
application use cases that would not be suitable for view criteria alone. In particular,
row finders are most useful when ADF Business Components web services enable
CRUD operations. In this case, the row finder gives the ADF Business Components
web services developer the ability to expose CRUD operations without needing
obscure row key values.

Fusion web application developers can create a web service data control to expose the
view objects of an ADF Business Components web service in the JDeveloper Data
Controls panel. The exposed row-finder mapped transient attributes of the view object
can then be used to design an input form that allows the end user to make the desired
updates. For example, an end user may supply the value of a familiar attribute, such
as a person’s email address, to match a particular person row and then initiate an
update operation on any attribute of that row, such as the one that would allow a
name change.

For details about support for row finder in ADF web services, see Section 11.2.5, "What
You May Need to Know About Row Finders and the ADF Web Service Operations."
For details about creating data controls based on ADF web services, see Chapter 13,
"Integrating SOAP Web Services Into a Fusion Web Application."

Note that the capability of row finders to match rows using non-key attributes extends
to master-detail related view objects, as described in Section 5.12.5, "How to Find
Rows of a Master View Object."

5.12.4 How to Programmatically Invoke the Row Finder

When you define a row finder you invoke the row finder on the view object. If the row
finder definition specifies a row limit, the executed row finder will throw a
RowFinderFetchLimitExceededException exception.

To invoke a row finder that you define on a view object, follow these basic steps (as
illustrated in Example 5-39):

1. Find the view object that defines the row finder.

2. Find the row finder from the view object.

3. Create a name value pair for each row finder bind variable mapping.
4. Set each bind variable using a row-finder mapped transient attribute.
5

Invoke the row finder on the desired view object.

Defining SQL Queries Using View Objects 5-105

Working with Row Finders

6. Throw an exception when the number of matching rows exceeds the row finder
fetch limit.

At runtime, when the row finder is invoked on the view object, row-finder mapped
transient attribute values populated by setAttribute() are set on criteria attributes to
identify the matching rows in the row set. In the following example, the email address
of the employee is used to match the employee record on the EmpView view object. The
row finder EmpByEmailRowFinder locates the record for the employee using the
transient attribute TrEmpEmail to specify the criteria attribute without the need to pass
a row key value.

Example 5-39 Invoking a Row Finder on a View Object

package model;

import oracle.jbo.*;

import oracle.jbo.client.Configuration;
import oracle.jbo.server.RowFinder;
import oracle.jbo.server.ViewObjectImpl;

public class TestClient
{
public TestClient()
{

super () ;

public static void main(String[] args)
{
TestClient testClient = new TestClient();
String amDef = "model.AppModule";
String config = "AppModuleLocal";
ApplicationModule am =
Configuration.createRootApplicationModule (amDef, config);

// 1. Find the view object with the row finder

ViewObjectImpl vo = (ViewObjectImpl)am.findViewObject ("EmpViewl");
Row r;

RowlIterator ri;

// 2. Find the row finder

RowFinder finder = vo.lookupRowFinder ("EmpByEmailRowFinder");
// 3. Create name value pairs for the row finder
NameValuePairs nvp = new NameValuePairs();

// 4. Set the row-finder mapped transient attribute

nvp.setAttribute ("TrEmailAddress", "cee.mague@company.com") ;
// 5. Invoke the row finder
try

{
ri = finder.execute(nvp, vo);
}
// 6. Throw an exception when row match exceeds specified limit
catch (RowFinderFetchLimitExceededException e)
{

System.out.println("Warning: more than one row match exists.");

while (ri.hasNext())
{

r = ri.next();

5-106 Fusion Developer's Guide for Oracle Application Development Framework

Working with Row Finders

System.out.println("Find emp row by email finder: " +
r.getAttribute("FirstName") + "/" + r.getAttribute("LastName"));
}

Configuration.releaseRootApplicationModule (am, true);

5.12.5 How to Find Rows of a Master View Object

Row finders are objects that the application may use to locate specific rows within a
row set using a view criteria. The row finder may be invoked on the master row set to
match one or more criteria attributes supplied by the detail row set.

The view criteria attributes defined by the view criteria can be any attribute that the
detail view object defines and specifically need not be a row key attribute. For
example, in a master-detail relationship, where Personsvo is the master view object
and AddressVO is the detail view object, the attribute EmailAddress will locate the
person row that matches the email address of the person in the AddressV0 row set.

To create a row finder to locate rows of the master view object using criteria attributes
supplied by the detail view object, perform the following steps:

1. Define an inline view criteria on the master view object to reference the detail view
object and specify the criteria attributes as a view criteria items defined by bind
variables.

2. Define a transient attribute on the master view object to receive the value of each
criteria attribute. At runtime, the transient attribute may be set programmatically
or exposed in a web service payload to allow an end user to supply the criteria
attribute value (for example, an email address).

3. Define the row finder on the master view object by selecting the view criteria and
setting each criteria attribute’s bind variable to a corresponding transient attribute
from the master view object.

5.12.5.1 Defining a Row Finder on the Master View Object

Row finders that you define to filter the row set of a master view object are defined
entirely on the master view object. The row finder matches the criteria attributes that
you specified in the inline view criteria with values obtained at runtime. In order to
receive the criteria attribute values, the master view object may define transient
attributes that the application can set programmatically using row finder methods on
the view object or that a web service payload may expose to receive end user-supplied
values.

You use the Row Finders page of the master view object’s overview editor to define
the row finder. In the editor, you define a value source for each bind variable of the
view criteria that you select. Attributes of the view object or attribute-value
expressions are both valid sources for bind variables defined by the row finder.

Figure 5-48 shows the overview editor with a row finder that maps the view criteria
bind variable EmailBindVar specified in the findPersonByEmail view criteria to the
transient attribute TrEmailAddress defined by the master view object PersonsVo as its
value source.

Defining SQL Queries Using View Objects 5-107

Working with Row Finders

Figure 5-48 View Object Overview Editor with Row Finder

Flpersonsvo.xml * |

@
General
Entity Objects Row Finders
Attributes Row finders are uzed to find view rows at runtime using view criteria.
Query -
Row Finders 4 X View Criteria: |findPersonByEmail -
Row Finders - -
Mame View Criteria — . — .
Java = (@) Attribute () Expression
) PersonByEmailFinder |findPersonByEmail - -
View Accessars Variable Attribute
List UL Hints EmailBindvar TrEmailaddress
[Fetch Al
Fetch Limit: 1
Error Exceeding Limit
O P

Note: You can also define row finders on view objects that do not
participate in a master-detail hierarchy, as described in Section 5.12.1,
"How to Add Row Finders to a View Object Definition."

Before you begin:

It may be helpful to have an understanding of the row finder for master-detail view
objects. For more information, see Section 5.12.5, "How to Find Rows of a Master View
Object."

It may be helpful to have an understanding of master-detail view objects. For more
information, see Section 5.6, "Working with Multiple Tables in a Master-Detail
Hierarchy."

You will need to complete these tasks:

» Create the desired master-detail view objects, as described in Section 5.6.1, "How
to Create a Master-Detail Hierarchy for Entity-Based View Objects" or
Section 5.6.2, "How to Create a Master-Detail Hierarchy Based on View Objects
Alone."

s Define an inline view criteria on the master view object, as described in
Section 5.11.6, "How to Use Master-Detail Related View Objects in View Criteria."
The inline view criteria references the detail view object and specifies one or more
detail attributes as view criteria items.

= Optionally, add transient attributes to the master view object, as described in
Section 5.15.3, "How to Add a Transient Attribute." The transient attribute is an
alternative to an attribute value expression that is evaluated at runtime. The
transient attribute may be set programmatically by the application or exposed in
an ADF Business Components web service payload to solicit the value from an
end user. The transient attributes must be defined as updatable to receive the
criteria lookup value.

To create a row finder for a master view object:

1. In the Application Navigator, double-click the master view object for which you
want to create the row finder.

5-108 Fusion Developer's Guide for Oracle Application Development Framework

Working with Row Finders

2. In the overview editor, click the Row Finders navigation tab and then click the
Add Row Finder button.

3. In the Name field, rename the row finder.

For example, a row finder that you define to locate a person record by their email
address, might be named PersonByEmailFinder.

4. Select the new row finder in the Row Finders list and then, in the View Criteria
dropdown, select the view criteria that filters the view object row set.

The desired row finder should appear highlighted, as shown in Figure 5-48. The
view criteria list will be empty unless you have created a view criteria for the row
finder to use.

5. When you want the end user to supply a value, leave Attribute selected, select the
bind variable from the list, and then, in the Attribute dropdown, select the
transient attribute from the master view object that supplies the bind variable
value at runtime.

The transient attribute that you select will be used by the row finder to supply the
criteria attribute value. For example, a PersonsV0 master view object that matches
rows based on the email address in the Addressv0, might include a transient
attribute that you define named TrEmailAddress.

Note: When you create the transient attribute in the overview editor for the view
object, be sure to define the transient attribute as Updatable so it can receive the
criteria lookup value.

6. Deselect FetchAll when you want to specify the number of rows that the row
finder is allowed to match.

When you enter a number of rows for Fetch Limit, you can also select Error
Exceeding Limit to enable Oracle ADF to throw an exception when more
matching rows exist in the database than the number you specify for Fetch Limit.

5.12.5.2 What Happens When You Create a Row Finder for a Master View Object

When you create a master view object row finder, the view object definition contains
all the metadata required by the row finder, including the row finder definition itself.
As Example 540 shows, the metadata for a row finder PersonByEmailFinder includes
a bind variable EmailBindVar in the <Variable> element, a transient attribute
TrEmailAddress in the <ViewAttribute> element, a view criteria findPersonByEmail
and an inline view criteria AddressVONestedCriteria in the <ViewCriteria> element,
and finally the row finder PersonByEmailFinder in the <RowFinders> element of the
view object definition.

The row finder <VarAttributeMapping> subelement maps the view criteria bind
variable EmailBindVar to the transient attribute TrEmailAddress of the master view
object, which allows the end user to supply a value at runtime and allows the
application to invoke the row finder with the required criteria attribute. The inline
<ViewCriteriaItem> subelement sets the criteria attribute EmailAddress on the detail
view object to the value of the bind variable.

At runtime, when the row finder is invoked on the master view object, the transient
attribute values passed to one or more criteria attributes identify the matching rows in
the master row set. In this example, the email address is used to match the person to
which the email address belongs. The row finder locates the person record without the
need to pass a row key value.

Defining SQL Queries Using View Objects 5-109

Working with Row Finders

Example 5-40 Row Finder Defined on a Master View Object

<ViewObject
xmlns="http://xmlns.oracle.com/bcdj"
Name="PersonsVO"
SelectList="PersonEO.ID,
PersonEO.FIRST_NAME
PersonEO.LAST NAME"
FromList="PERSON PersonEO"

<Variable
Name="EmailBindVar"
Kind="viewcriteria"
Type="java.lang.String"/>
<EntityUsage
Name="PersonEQ"
Entity="model.entities.PersonEQ"/>

<ViewAttribute
Name="TrEmailAddress"
IsUpdateable="false"
IsSelected="false"
IsPersistent="false"
PrecisionRule="true"
Type="java.lang.String"
ColumnType="CHAR"
AliasName="VIEW_ATTR"
SQLType="VARCHAR" />

<ViewCriteria
Name="findPersonByEmail"
ViewObjectName="model .views.PersonsV0"
Conjunction="AND">

<ViewCriteriaRow
Name="PersonsVOCriteria_row 0"
UpperColumns="1">
<ViewCriterialtem
Name="PersonsVOCriteria_PersonsVOCriteria_row_0_AddressVO"
ViewAttribute="AddressVO"
Operator="EXISTS"
Conjunction="AND"
IsNestedCriteria="true"
Required="Optional">
<ViewCriteria
Name="AddressVONestedCriteria"
ViewObjectName="model.views.AddressVO"
Conjunction="AND">
<ViewCriteriaRow
Name="AddressVONestedCriteria_row_0"
UpperColumns="1">
<ViewCriterialtem
Name="AddressVONestedCriteria_row_0_EmailAddress"
ViewAttribute="EmailAddress"
Operator="="
Conjunction="AND"
Value=":EmailBindVar"
IsBindVarValue="true"
Required="Optional"/>
</ViewCriteriaRow>
</ViewCriteria>
</ViewCriteriaIltem>

5-110 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

</ViewCriteriaRow>
</ViewCriteria>

<RowFinders>
<AttrValueRowFinder
Name="PersonByEmailFinder"
FetchLimit="1">
<ViewCriteriaUsage
Name="findPersonByEmail"
FullName="model.views.PersonsVO.findPersonByEmail" />
<VarAttributeMap>
<VariableAttributeMapping
Variable="EmailBindvVar"
Attribute="TrEmailAddress"/>
</VarAttributeMap>
</AttrValueRowFinder>
</RowFinders>
</ViewObject>

5.13 Working with List of Values (LOV) in View Object Attributes

Edit forms displayed in the user interface portion of your application can utilize
LOV-enabled attributes that you define in the data model project to predetermine a list
of values for individual input fields. When the user submits the form with their
selected values, ADF data bindings in the ADF Model layer update the value on the
view object attributes corresponding to the databound fields. To facilitate this common
design task, ADF Business Components provides declarative support to specify the
LOV usage in the user interface.

Defining an LOV for attributes of a view object in the data model project greatly
simplifies the task of working with list controls in the user interface. Because you
define the LOV on the individual attributes of the view object, you can customize the
LOV usage for an attribute once and expect to see the list component in the form
wherever the attribute appears.

Note: In order for the LOV to appear in the Ul, the LOV usage must
exist before the user interface designer creates the databound form.
Defining an LOV usage for an attribute referenced by an existing form
will not change the component that the form displays to an LOV.

You can define an LOV for any view object attribute that you anticipate the user
interface will display as a selection list. The characteristics of the attribute’s LOV
definition depend on the requirements of the user interface. The information you
gather from the user interface designer will determine the best solution. For example,
you might define LOV attributes in the following cases:

= When you need to display attribute values resulting from a view object query
against a business domain object.

For example, define LOV attributes to display the list of suppliers in a purchase
order form.

= When you want to display attribute values resulting from a view object query that
you wish to filter using a parameter value from any attribute of the LOV
attribute’s current row.

For example, define LOV attributes to display the list of supplier addresses in a
purchase order form but limit the addresses list based on the current supplier.

Defining SQL Queries Using View Objects 5-111

Working with List of Values (LOV) in View Object Attributes

If you wish, you can enable a second LOV to drive the value of the parameter
based on a user selection. For example, you can let the user select the current
supplier to drive the supplier addresses list. In this case, the two LOVs are known
as a cascading list.

Before you can define the LOV attribute, you must create a data source view object in
your data model project that queries the eligible rows for the attribute value you want
the LOV to display. After this, you work entirely on the base view object to define the
LOV. The base view object is the one that contains the primary data for display in the
user interface. The LOV usage will define the following additional view object
metadata:

A view accessor to access the data source for the LOV attribute. The view accessor
is the ADF Business Components mechanism that lets you obtain the full list of
possible values from the row set of the data source view object.

Optionally, supplemental values that the data source may return to attributes of
the base view object other than the data source attribute for which the list is
defined.

User interface hints, including the type of list component to display, attributes to
display from the current row when multiple display attributes are desirable, and a
few options specific to the choice list component.

Note: The LOV feature does not support the use of attribute
validation to validate the display list. Any validation rules that may
have been defined on data source attributes (including supplemental
ones) will be suppressed when the list is displayed and will therefore
not limit the LOV list. Developers must ensure that the list of values
returned from the data source view object contains only desired, valid
values.

The general process for defining the LOV-enabled attribute relies on the Edit Attribute
dialog that you display for the base view object attribute.

To define the LOV-enabled attribute, follow this general process:

1.
2.

Select the Enable List of Values option.

Create a new view accessor definition to point to the data source view object or
select an existing view accessor that the base view object already defines.

Always create a new view accessor for each use case that your wish to support.
Oracle recommends that you do not reuse a view accessor to define multiple LOV
lists that happen to rely on the same data source. Reusing a view accessor can
produce unintended results at runtime.

Optionally, you can filter the view accessor by creating a view criteria using a bind
variable that obtains its value from any attribute of the base view object’s current
rOwW.

If you create a view criteria to filter the data source view object, you may also set a
prerequisite LOV on the attribute of the base view object that you use to supply
the value for the view criteria bind variable. LOV lists that cooperate in this
manner, are known as cascading LOV lists. You set cascading LOV lists when you
want the user’s selection of one attribute to drive the options displayed in a
second attribute’s list.

5-112 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

4. Optionally, select list return values to map any supplemental values that your list
returns to the base view object.

5. Select user interface hints to specify the list’s display features.
6. Save the attribute changes.

Once you create the LOV-enabled attribute, the user interface designer can create the
list component in the web page by dragging the LOV-enabled attribute’s collection
from the Data Controls panel. For further information about creating a web page that
display the list, see Chapter 25, "Creating Databound Selection Lists and Shuttles."
Specifically, for more information about working with LOV-enabled attributes in the
web page, see Section 25.3.2, "How to Create a Model-Driven List."

5.13.1 How to Define a Single LOV-Enabled View Object Attribute

When an edit form needs to display a list values that is not dependent on another
selection in the edit form, you can define a view accessor to point to the list data
source. For example, assume that a purchase order form contains a field that requires
the user to select the order item’s supplier. In this example, you would first create a
view accessor that points to the data source view object (SuppliersView). You would
then set the LOV on the SupplierDesc attribute of the base view object
(PurchaseOrdersView). Finally, you would reference that view accessor from the
LOV-enabled attribute (SupplierDesc) of the base view object and select the data
source attribute (SupplierDesc).

You will use the Create List of Values dialog to define an LOV-enabled attribute for the
base view object. The dialog lets you select an existing view accessor or create a new
one to save with the LOV-attribute definition.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an

Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To define an LOV that displays values from a view object attribute:

1. In the Application Navigator, double-click the view object that contains the
attribute you wish to enable as an LOV.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute that is to display the LOV, and then
expand the List of Values section and click the Add list of values button.

Use the Create List of Values dialog to create the LOV on the attribute you have
currently selected in the attribute list of the overview editor. JDeveloper assigns a
unique name to identify the LOV usage. For example, the metadata for the
attribute SupplierDesc will specify the name SupplierDescLOV to indicate that the
attribute is LOV enabled.

4. In the Create List of Values dialog, click the Create new view accessor button to
add a view accessor to the view object you are currently editing.

Alternatively, you can expand List Data Source and select among the existing
view accessors. The dropdown list displays all view accessors that you have added
to the view object you are editing.

5. In the View Accessors dialog, select the view object definition or shared view
instance that defines the data source for the attribute and shuttle it to the view
accessors list.

Defining SQL Queries Using View Objects 5-113

Working with List of Values (LOV) in View Object Attributes

By default, the view accessor you create will display the same name as the view
object. You can edit the accessor name to supply a unique name. For example,
assign the name SuppliersViewAccessor for the SuppliersView view object.

The view instance is a view object usage that you have defined in the data model
of a shared application module. For more information about using shared view
instances in an LOV, see Section 10.4.4, "How to Create an LOV Based on a Lookup
Table."

6. Click OK to save the view accessor definition for the view object.

7. In the Create List of Values dialog, expand List Data Source and select the view
accessor you created for the base view object to use as the data source. Then select
the same attribute from this view accessor that will provide the list data for the
LOV-enabled attribute.

The editor creates a default mapping between the list data source attribute and the
LOV-enabled attribute. For example, the attribute SuppliersDesc from the
PurchaseOrdersView view object would map to the attribute SuppliersDesc from
the SuppliersViewAccessor view accessor.

The editor does not allow you to remove the default attribute mapping for the
attribute for which the list is defined.

8. Optionally, when you want to specify supplemental values that your list returns to
the base view object, click the Create return attribute map button in the List
Return Values section and map the desired base view object attributes with
attributes accessed by the view accessor.

Supplemental attribute return values are useful when you do not require the user
to make a list selection for the attributes, yet you want those values, as determined
by the current row, to participate in the update. For example, to map the attribute
SupplierAddress from the PurchaseOrdersView view object, you would choose
the attribute SupplierAddress from the SuppliersViewAccessor View accessor.

9. Click OK.

5.13.2 How to Define Cascading Lists for LOV-Enabled View Object Attributes

When the application user interface requires a list of values in one input field to be
dependent on the user’s entry in another field, you can create attributes that will
display as cascading lists in the user interface. In this case, the list of possible values
for the LOV-enabled attributes might be different for each row. As the user changes the
current row, the LOV values vary based on the value of one or more controlling
attribute values in the LOV-enabled attribute’s view row. To apply the controlling
attribute to the LOV-enabled attribute, you will create a view accessor to access the
data source view object with the additional requirement that the accessor filters the list
of possible values based on the current value of the controlling attribute. To filter the
LOV-enabled attribute, you can edit the view accessor to add a named view criteria
with a bind variable to obtain the user’s selection.

For example, assume that a purchase order form contains a field that requires the user
to select the supplier’s specific site and that the available sites will depend on the
order’s already specified supplier. To implement this requirement, you would first
create a view accessor that points to the data source view object. The data source view
object will be specific to the LOV usage, because it must perform a query that filters
the available supplier sites based on the user’s supplier selection. You might name this
data source view object definition SupplierIdsForCurrentSupplierSite to help
distinguish it from the SupplierSitesView view object that the data model already
contains. The data source view object will use a named view criteria

5-114 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

(SupplierCriteria) with a single view criteria item set by a bind variable
(TheSupplierId) to obtain the user’s selection for the controlling attribute
(SupplierId).

You would then set the LOV on the SupplierSiteld attribute of the base view object
(PurchaseOrdersView). You can then reference the view accessor that points to the data
source view object from the LOV-enabled attribute
(PurchaseOrdersView.SupplierSiteld) of the base view object. Finally, you must edit
the LOV-enabled attribute’s view accessor definition to specify the corresponding
attribute (SupplierIdsForCurrentSupplierSite.SupplierSiteId) from the view
object as the data source and, importantly, source the value of the bind variable from
the view row’s result using the attribute SupplierId.

5.13.2.1 Creating a Data Source View Object to Control the Cascading List

The data source view object defines the controlling attribute for the LOV-enabled
attribute. To make the controlling attribute accessible to the LOV-enabled attribute of
the base view object, you must define a named view criteria to filter the data source
attribute based on the value of another attribute. Because the value of the controlling
attribute is expected to change at runtime, the view criteria uses a bind variable to set
the controlling attribute.

To define the view criteria for the data source to be referenced by the

LOV-enabled attribute:

1. In the Application Navigator, double-click the view object that you created to
query the list of all possible values for the controlling attribute.

For example, if the LOV-enabled attribute SupplierSiteId depends on the
controlling attribute SupplierId value, you might have created the data source
view object SupplierIdsForCurrentSupplierSite to query the list of all supplier
sites.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the Bind Variables section and click the Create new
bind variable button to add a bind variable to the data source view object.

For example, for a data source view object SupplierIdsForCurrentSupplierSite
used to query the list of all supplier sites, you would create the bind variable
TheSupplierId, since it will be the controlling attribute for the LOV-enabled
attribute.

4. In the Bind Variable dialog, enter the name and type of the bind variable. Leave all
other options unchanged and click OK.

By default, the view accessor you create will display the same name as the view
object instance. You can edit the accessor name to supply a unique name. For
example, assign the name CurrencyLookupViewAccessor for the
CurrencyLookupView view object instance.

5. In Query page of the overview editor, expand the View Criteria section and click
the Create new view criteria button to add the view criteria to the data source
view object you are currently editing.

6. In the Create View Criteria dialog, click Add Group and define a single Criteria
Item for the group as follows:

= Enter a Criteria Name to identify the view criteria. For example, you might
enter the name SupplierCriteria for the
SupplierIdsForCurrentSupplierSite.

Defining SQL Queries Using View Objects 5-115

Working with List of Values (LOV) in View Object Attributes

= Select the controlling attribute from the Attributes list. For example, you
would select the SupplierSiteId attribute from the
SupplierIdsForCurrentSupplierSite.

» Select equal to from the view criteria Operator list.
= Select Bind Variable from the view criteria Operand list.

= Select the name of the previously defined bind variable from the Parameter
list.

= Select among the following bind variable configuration options to determine
whether or not the value is required by the parent LOV:

Optional from the Validation menu and deselect Ignore Null Values when
you want to configure cascading LOVs where the parent LOV value is
required. This combination supports the cascading LOV use case where no
selection in the parent LOV returns no rows in the child LOV. The WHERE clause
shown in the Edit View Criteria dialog should look similar to
((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID = :TheSupplierId)).

Optional from the Validation menu and leave Ignore Null Values selected
(default) when you want to configure cascading LOVs where the parent LOV
value is optional. This combination supports the cascading LOV use case
where no selection in the parent LOV returns all rows in the child LOV. The
WHERE clause shown in the Edit View Criteria dialog should look similar to
(((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID = :TheSupplierId)
OR (:TheSupplierId IS NULL))).

For more details about these settings, see Section 5.11.3, "What You May Need
to Know About Bind Variable Options." Do not select Required for the
Validation option for cascading LOVs, because no selection in the parent LOV
will cause a validation error.

7. Click OK.

5.13.2.2 Creating a View Accessor to Filter the Cascading List

To populate the cascading LOV-enabled attribute, you must first set up a named view
criteria on a data source view object. To make the LOV-enabled attribute of the base
view object dependent on the controlling attribute of the data source view object, you
then add a view accessor to the LOV-enabled attribute of the base view object and
reference the previously defined data source view object’s named view criteria.

Before you begin:

Create the data source view object and named view criteria as described in
Section 5.13.2.1, "Creating a Data Source View Object to Control the Cascading List."

To create a view accessor that filters display values for an LOV-enabled attribute
based on the value of another attribute in the same view row:

1. In the Application Navigator, double-click the base view object that contains the
attribute you want to use the filtered view accessor as the list data source.

For example, the base view object PurchaseOrdersView might contain the attribute
SupplierSiteId that will depend on the value of the controlling attribute
SupplierId.

2. In the overview editor, click the Attributes navigation tab.

5-116 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

3. Inthe Attributes page, select the attribute that is to filter the cascading LOV, and
then expand the List of Values section and click the Add list of values button.

4. In the Create List of Values dialog, click the Create new view accessor button to
add a view accessor to the view object you are currently editing.

Alternatively, you can expand List Data Source and select among the existing
view accessors. The dropdown list displays all view accessors that you have added
to the view object you are editing.

5. Inthe View Accessors dialog, select the view object instance name you created for
data source view object and shuttle it to the view accessors list.

6. With the new view accessor selected in the dialog, click Edit.

7. Inthe Edit View Accessor dialog, apply the previously defined view criteria to the
view accessor and provide a value for the bind variable as follows:

s Click the data source view object’s view criteria in the Available list and add it
to the Selected list. For example, you would select SupplierCriteria from the
SupplierIdsForCurrentSupplierSite view object definition.

= Set the value for the bind variable to the name of the controlling attribute. The
attribute name must be identical to the base view object’s controlling attribute.
For example, if the base view object PurchaseOrdersView contains the
LOV-enabled attribute SupplierSiteld that depends on the value of the
controlling attribute SupplierId, you would enter SupplierId for the bind
variable value.

= Select the name of the previously defined bind variable from the Parameter
list.

= Select Required from the Usage dropdown list.
8. Click OK to save the view accessor definition for the base view object.

9. In the Attributes page of the overview editor, select the attribute that is to display
the LOV, and then expand the List of Values section and click the Add list of
values button.

10. In the Create List of Values dialog, expand List Data Source and select the view
accessor you created for the data source view object instance to use as the data
source. Then select the controlling attribute from this view accessor that will serve
to filter the attribute you are currently editing.

The editor creates a default mapping between the view object attribute and the
LOV-enabled attribute. You use separate attributes in order to allow the bind
variable (set by the user’s controlling attribute selection) to filter the LOV-enabled
attribute. For example, the LOV-enabled attribute SupplierId from the
PurchaseOrdersView view object would map to the controlling attribute
SupplierSitelId for the SupplierIdsForCurrentSupplierSiteViewAccessor. The
runtime automatically supports these two cascading LOVs where the row set and
the base row attribute differ.

11. Click OK.

5.13.3 How to Specify Multiple LOVs for an LOV-Enabled View Object Attribute

Another way to vary the list of values that your application user interface can display
is to define multiple list of values for a single LOV-enabled view object attribute. In
contrast to a cascading list, which varies the list contents based on a dependent LOV
list selection, an LOV-enabled switcher attribute with multiple LOVs lets you vary the

Defining SQL Queries Using View Objects 5-117

Working with List of Values (LOV) in View Object Attributes

entire LOV itself. The LOV choice to display is controlled at runtime by the value of an
attribute that you have defined specifically to resolve to the name of the LOV to apply.

For example, you might want to define one LOV to apply in a create or edit form and
another LOV to apply for a search component. In the first case, the LOV-enabled
attribute that the form can use is likely to be an entity-based view accessor that is
shared across all the view objects that reference the entity. The entity-based view
accessor is useful for user interface forms because a single accessor definition can
apply to each instance of the LOV in the forms. However, in the case of the search
component, LOV definitions based on view accessors derived from an underlying
entity will not work. The LOV definitions for search components must be based on
view accessors defined in the view object. Note that when the user initiates a search,
the values in the criteria row will be converted into WHERE clause parameters. Unlike a
regular view row displayed in create or edit type forms, the criteria row is not backed
by an entity. In this scenario, one LOV uses the entity-based accessor as a data source
and a second LOV uses the view object-based accessor as a data source.

To address this requirement to define multiple LOV lists that access the same attribute,
you add a switcher attribute to the base view object. For example, you might add a
ShipperLOVSwitcher attribute for the Orders view object that resolves through an
expression to the name of the LOV to display. Such an expression can specify two
LOVs that may apply to the ShipperID attribute:

(adf.isCriteriaRow) ? "LOV_ShipperID_ForSearch" : "LOV_ShipperID"

This expression would appear in the Value field of the switcher attribute. At runtime,
in the case of the search component, the expression resolves to the value that identifies
the view object-based accessor LOV. In the case of the create or edit form, the
expression resolves to the value that identifies the entity-based accessor LOV.

You will use the Create List of Values dialog to add multiple LOV lists to an attribute
of the base view object. You will also use the List of Values section in the Attributes
page of the overview editor for the base view object to define the default LOV to
display and the switcher attribute to apply.

Before you begin:

Create the first LOV list for the attribute as described in Section 5.13.1, "How to Define
a Single LOV-Enabled View Object Attribute."

Note that the switcher attribute scenario requires that you create unique view
accessors. You must not reuse a view accessor to define multiple LOV lists. Reusing a
view accessor various use cases can produce unintended results at runtime.

To specify additional LOV lists for a view object attribute with an existing LOV:

1. In the Application Navigator, double-click the view object that contains the
attribute for which you want to specify multiple LOV lists.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the desired attribute, and then expand the List of
Values section and click the Add list of values button.

4. In the Create List of Values dialog, define the first LOV as described in
Section 5.13.1, "How to Define a Single LOV-Enabled View Object Attribute."

When you define the LOV, change the name of the LOV to match the value
returned by the attribute that you will use to determine which LOV your
application applies to the LOV-enabled attribute.

5-118 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

5. After you define the first LOV, return to the List of Values section of the Attributes
page of the overview editor and, with the original attribute selected, click the Add
List of Values button.

If you have selected the correct attribute from the Attributes page of the overview
editor, the List of Values section should display your previously defined LOV.

6. In the Create List of Values dialog, repeat the procedure described in
Section 5.13.1, "How to Define a Single LOV-Enabled View Object Attribute" to
define each subsequent LOV.

The name of each LOV must correspond to a unique value returned by the
attribute that determines which LOV to apply to the LOV-enabled attribute.

You must define the second LOV using a unique view accessor, but you may use
any attribute. There are no restrictions on the type of LOV lists that you can add to
an attribute with multiple LOV lists specified.

After you finish defining the second LOV, the List of Values section changes to
display additional features that you will use to control the selection of the LOV.

7. In the Attributes page of the overview editor, expand the List of Values section
and use the List of Values Switcher dropdown list to select the attribute that will
return the name of the List of Value to use.

The dropdown list displays the attributes of the base view object. If you want your
application to dynamically apply the LOV from the LOVs you have defined, your
view object must define an attribute whose values resolve to the names of the
LOVs you defined. If you have not added this attribute to the view object, be sure
that the dropdown list displays <None Specified>. In this case, at runtime your
application will display the LOV-enabled attribute with the default LOV and it
will not be possible to apply a different LOV.

8. To change the default LOV to apply at runtime, choose the Default radio button
corresponding to the desired LOV definition.

The default LOV selection determines which list of values your application will
display when the List of Values Switcher dropdown list displays <None
Specified>. Initially, the first LOV in the overview editor List of Values section is
the default.

9. To change the component that your application will use to display the various
LOV lists, select from desired component from the List Type UI Hint dropdown
list.

The component you select will apply to all LOV lists. For a description of the
available components, see Table 5-2.

5.13.4 How to Set User Interface Hints on a View Object LOV-Enabled Attribute

When you know how the view object attribute that you define as an LOV should
appear in the user interface, you can specify additional properties of the LOV to
determine its display characteristics. These properties, or UI hints, augment the
attribute hint properties that ADF Business Components lets you set on any view
object attribute. Among the LOV Ul hints for the LOV-enabled attribute is the type of
component the user interface will use to display the list. For a description of the
available components, see Table 5-2. (Not all ADF Faces components support the
default list types, as noted in the Table 5-2.)

Defining SQL Queries Using View Objects 5-119

Working with List of Values (LOV) in View Object Attributes

Table 5-2 List Component Types for List Type Control Hint

LOV List Component Type

Usage

Choice List

|Litera| W alue

Wienw Object Attribute
Wi Accessor Attribute
Transient Expression
Ertity Attribite

This component does not allow the user to
type in text, only select from the dropdown
list.

Combo Box

Gold membership discount.

5old membership discount,
50ld membership discount,
Fiasic corporate discount,
Fiasic corporate discount,
Flasic corporate discount.
Fasic corporate discount,
Basic partner discount,

This component allows the user to type text or
select from the dropdown list. This component
sometimes supports auto-complete as the user

types.

This component is not supported for ADF
Faces.

Combo Box with List of Values

|'|

Equals
MotEquals

|GresterThan !;

LessOrEqualTo
Muore...

This component is the same the as the combo
box, except that the last entry (More...) opens a
List of Values lookup dialog that supports
query with filtering when enabled for the LOV
attribute in its UI hints. The default UT hint
enables queries on all attributes.

This component is not supported for ADF
Faces.

Note that when the LOV attribute appears in a
table component, the list type changes to an
Input Text with List of Values component.

Input Text with List of Values

Coupon Code | |

This component displays an input text field
with an LOV button next to it. The List of
Values lookup dialog opens when the user
clicks the button or enters an invalid value
into the text field. The List of Values lookup
dialog for this component supports query
with filtering when enabled in the UI hints for
the LOV attribute. The default UI hint enables
queries on all attributes.

This component may also support
auto-complete when a unique match exists.

5-120 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

Table 5-2 (Cont.) List Component Types for List Type Control Hint

LOV List Component Type

Usage

List Box

Zamtn
Deptno
=yl gln]
Ename
Hiredsate
Jak

i

Sal

Sl Nt

This component takes up a fixed amount of
real estate on the screen and is scrollable (as
opposed to the choice list, which takes up a
single line until the user clicks on it).

Radio Group

This component displays a radio button group

) Always

with the selection choices determined by the
LOV attribute values. This component is most
useful for very short, fixed lists.

() while New

(%) Mever

Before you begin:

Create the LOV list for the attribute as described in Section 5.13.1, "How to Define a
Single LOV-Enabled View Object Attribute."

To set view object attribute Ul hints for an LOV-enabled attribute:

1.

In the Application Navigator, double-click the view object that contains the
attribute that you want to customize.

In the overview editor, click the Attributes navigation tab.

In the Attributes page, and select the desired attribute and then expand the List of
Values section.

In the List of Values section, select the LOV list that you want to customize and
click the Edit list of values button.

In the Edit List of Values dialog, select the UI Hints tab.

In the UI Hints page, select a default list type as the type of component to display
the list.

For a description of the available components, see Table 5-2.

The list component displayed by the web page and the view object’s default list
type must match at runtime or a method-not-found runtime exception results. To
avoid this error, confirm the desired list component with the user interface
designer. You can also edit the default list type to match, so that, should the user
interface designer subsequently change the component used in the web page, the
two stay in sync.

Optionally, select additional display attributes to add values to the display.

The list of additional attributes is derived from the LOV-enabled attribute’s view
row. The additional attribute values can help the end user select an item from the
list.

Defining SQL Queries Using View Objects 5-121

Working with List of Values (LOV) in View Object Attributes

8. If you selected the Combo Box with List of Values type component, by default,
the dropdown list for the component will display the first 10 records from the data
source. This limit also serves to keep the view object fetch size small. To change the
number of records the dropdown list of a Combo Box with List of Values
component can display, enter the number of records for Query Limit.

Because Query Limit also controls the number of rows the view object will fetch
(its sets the view object definition ListRangeSize property), specifying a large
value for Query Limit is not recommended. The end user can open the
component's LOV lookup dialog to access the full set of records (by clicking the
component's lookup icon). Query Limit is disabled for all other component types
and those components place no restriction on the number of rows that the LOV
will access.

For details about the ListRangeSize property, see Section 5.13.9, "What Happens
at Runtime: When an LOV Queries the List Data Source."

9. If you selected a component type that allows the user to open a List of Values
lookup dialog to select a list value (this includes either the Combo Box with List
of Values type component or Input Text with List of Values type component), by
default, the lookup dialog will display a search form that will allow the user to
search on all queryable attributes of the data source view object (the one defined
by the LOV-enabled attribute’s view accessor). Decide how you want to customize
these components.

a. When you select the Combo Box with List of Values type component and you
have added a large number of attributes to the Selected list, use Show in
Combo Box to improve the readability of the dropdown list portion of the
component. To limit the attribute columns to display in the dropdown list that
the Combo Box with List of Values component displays, choose First from
Show in Combo Box and enter a number corresponding to the number of
attributes from the top of the Selected list that you want the dropdown menu
to display (this combination means you are specifying the "first" x number of
attributes to display from the Create List of Values dialog’s Selected list).
Limiting the number of attribute columns to display in the dropdown list
ensures that the user does not have to horizontally scroll to view the full list,
but it does not limit the number of attribute columns to display in the List of
Values lookup dialog. This option is disabled for all list component types
except Combo Box with List of Values.

b. You can limit the attributes to display in the List of Values lookup dialog by
selecting a view criteria from the Include Search Region dropdown list. To
appear in the dropdown list, the view criteria must already have been defined
on the data source view object (the one that the LOV-enabled attribute’s view
accessor defines). Click the Edit View Criteria button to set search form
properties for the selected view criteria. For more information about
customizing view criteria for search forms, see Section 5.11.5, "How to Set User
Interface Hints on View Criteria."

c. You can prepopulate the results table of the List of Values lookup dialog by
selecting Query List Automatically. The List of Values lookup dialog will
display the results of the query when the user opens the dialog. If you leave
this option deselected, no results will be displayed until the user submits the
search form.

10. Alternatively, if you prefer not to display a search region in the List of Values
lookup dialog, select <No Search> from the Include Search Region dropdown
list. In this case, the List of Values lookup dialog will display only attributes you
add to the Display Attributes list.

5-122 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

11. If you selected a choice type component to display the list, you can specify a Most
Recently Used Count as an alternative to displaying all possible values.

For example, your form might display a choice list of SupplierId values to drive a
purchase order form. In this case, you can allow the user to select from a list of
their most recently viewed suppliers, where the number of supplier choices is
determined by the count you enter. The default count 0 (zero) for the choice list
displays all values for the attribute.

12. If you selected a Combo Box with List of Values type component to display the
list, you can select a view criteria from the Filter Combo Box Using dropdown list
to limit the list of valid values the LOV will display.

When you enable Filter Combo Box Using, the dropdown list displays the
existing view criteria from the view object definition related to the LOV's view
accessor. If the dropdown list displays no view criteria, then the data source view
object defines no view criteria. When you do not enable this feature, the Combo
Box with List of Values component derives its values from the full row set
returned by the view accessor. The filtered Combo Box with List of Values is a
useful feature when you want to support the use of an LOV with popup search
dialog or LOV with a dropdown list that has a limited set of valid choices. For
details about using the Combo Box with List of Values component in user
interfaces, see Section 27.1.6, "List of Values (LOV) Input Fields."

13. Decide how you want the list component to handle a NULL value choice to display
in the list component. This option is not enabled for every list component type that
you can select.

If you enable Include "No Selection" Item, you can also determine how the NULL
value selection should appear in the list by making a selection from the dropdown
list. For example, when you select Labeled Item, you can enter the desired label in
the edit field to the right of the dropdown list or you can click the ... button (to the
right of the edit field) to select a message string from the resource bundle
associated with the view object. When you select a message string from the
resource bundle, JDeveloper saves the string's corresponding message key in the
view object definition file. At runtime, the Ul locates the string to display based on
the current user's locale setting and the message key in the localized resource
bundle.

14. Click OK.

5.13.5 How to Handle Date Conversion for List Type Ul Components

When the LOV-enabled attribute of the view object is bound to date information (such
as the attribute OrdershippedbDate), by default Oracle ADF assumes a format for the
field like yyyy-MM-dd hh:mm:ss, which combines date and time. This combined
date-time format is specified by the ADF Business Components Date domain class
(jbo.domain.Date) and creates a conversion issue for the ADF Faces component when
the user selects a date supplied by the LOV-enable attribute. When the ADF Faces
component is unable to convert the domain type to the Date type, the user interface
invalidates the input field and displays the message Error: The date is not in the
correct format.

To avoid this potential conversion error, configure a UI hint setting for the date value
attribute of the view object that you want to enable for an LOV. The UI hint you
specify will define a date-only mask, such as yyyy-MM-dd. Subsequently, any ADF
Faces component that references the attribute will perform the conversion based on a
pattern specified by its EL value-binding expression (such as

#{bindings.Hiredate. format) and will reference the UI hint format instead of the

Defining SQL Queries Using View Objects 5-123

Working with List of Values (LOV) in View Object Attributes

ADF Business Components domain date-time. The conversion error happens when the
EL expression evaluates to null because no format mask has been specified. For more
information about control hints, see Section 5.14, "Defining Control Hints for View
Objects."

To set a control hint to match the date format for the LOV-enable attribute:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and double-click the
date-value attribute that you want to customize with control hints.

Alternatively, display the Property Inspector for the selected attribute and select
the UI Hints navigation tab. The Property Inspector provides a way to customize
the attribute’s control hints without using the Edit Attribute dialog.

3. In the Edit Attribute dialog, select Control Hints, and in the Control Hints page,
select Simple Date for the Format Type and choose the format with the date only
mask.

Mapping of the ADF Business Components domain type to it’s available
formatters is provided in the formatinfo.xml file in the BC4J subdirectory of the
JDeveloper system directory (for example, C: \Documents and
Settings\<username>\Application
Data\JDeveloper\system<version#>\0.BC4J.\formatinfo.xml).

4. Click OK.

5.13.6 How to Automatically Refresh the View Object of the View Accessor

If you need to ensure that your view accessor always queries the latest data from the
database table, you can set the Auto Refresh property on the data source view object.
This property allows the view object instance to refresh itself after a change in the
database. You can enable this feature for any read-only view instance that your
application modules define. Once you enable this property on a view object, it ensures
that the changes a user commits to a database table will become available to any other
user working with the same database table. A typical use case is to enable auto refresh
for the data source view object when you define a view accessor for an LOV-enabled
view object attribute.

Because the auto-refresh feature relies on the database change notification feature,
observe these restrictions when enabling auto-refresh for your view object:

= Ensure the view objects query only read-only tables, and as few tables as possible.
This will ensure the best performance and prevent the database invalidation queue
from becoming too large.

= Configure the application module that contains updatable, auto-refresh view
instances to be shared and to lock rows during updates.

» Ensure the database user has database notification privileges. For example, to
accomplish this with a SQL*Plus command use grant change notification to
<user name>.

= Ensure the query is compatibility with query result change notification before you
enable auto refresh on the view object. Not all query definitions satisfy the
requirements for query result change notification. For information, see the "Using
Continuous Query Notification" chapter in the Oracle Database Advanced
Application Developer’s Guide.

5-124 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

When you enable auto refresh for the view object and observe these restrictions, the
refresh is accomplished through the Oracle database change notification feature. At
runtime, prior to executing the view object query, the framework will use the JDBC
API to register the view object query to receive database change notifications for
underlying data changes. When the view object receives a notification (because its
underlying data has changed), the row sets of the view object are marked as dirty and
the framework will refresh the row set on the next server trip from the client to the
middle tier. At that point, the dirty collections will be discarded and the request for the
updated data will trigger a new query execution by the view object. Because the
application module waits until the next checkout, the row set currency of the current
transaction is maintained and the end user is not hampered by the update

For example, assume that a user can create or edit a calendar entry but cannot edit
calendar entries added by other users. When the user creates and commits a new
entry, then in the same server trip the calendar entries that other users modified or
entered will be updated. But when another user creates a calendar entry, the view
object receives a notification and waits for the next server trip before it refreshes itself;
the delay to perform the update prevents contention among various users to read the
same data.

Best Practice: Use optimistic row locking for web applications.
Optimistic locking, the default configuration setting, assumes that
multiple transactions can complete without affecting each other.
Optimistic locking therefore allows auto-refresh to proceed without
locking the rows being refreshed. Pessimistic row locking prevents the
row set refresh and causes the framework to throw an exception
anytime the row set has a transaction pending (for example, a user
may be in the process of adding a new row). To ensure that the
application module configuration uses optimistic row locking, open
the Properties tab of the Business Components Configuration dialog
and confirm the jbo.locking.mode property is set to optimistic.

To register a view object to receive data change notifications:

1. Inthe Application Navigator, double-click the view object that you want to receive
database change notifications.

2, Inthe Property Inspector expand the Tuning Database Retrieve section, and select
True for the Auto Refresh property.

5.13.7 How to Test LOV-Enabled Attributes Using the Business Component Browser

To test the LOV you created for a view object attribute, use the Business Component
Browser, which is accessible from the Application Navigator.

The Business Component Browser, for any view object instance that you browse, will
display any LOV-enabled attributes using one of two component types you can select
in the UI Hints page of the List of Values dialog. Currently, only a Choice List
component type and Input Text with List of Values component type are supported.
Otherwise, the Business Component Browser uses the default choice list type to
display the LOV-enabled attribute.

To test an LOV using the Business Component Browser:

1. In the Application Navigator, expand the project containing the desired
application module and view objects.

Defining SQL Queries Using View Objects 5-125

Working with List of Values (LOV) in View Object Attributes

2. Right-click the application module and choose Run.

3. In the Select Business Components Configuration dialog, select the desired
application module configuration from the Configuration Name list to run the

Business Component Browser.

4. Click Connect to start the application module using the selected configuration.

5. In the Business Component Browser, select the desired view object from the
section on the left. The Business Component Browser displays the LOV-enabled
attribute as a dropdown choice list unless you specified the component type as an
Input Text with List of Value, UI hint.

Figure 5-49 shows an LOV-enabled attribute, TypeCouponCode for the Ordersvo,
that specifies an input text field and List of Values dialog as the UI hint list type.
The Input Text with List of Values component is useful when you want to display
the choices in a separate LOV dialog. Other list types are not supported by the

Business Component Browser.

Figure 5-49 Displaying LOV-Enabled Attributes in the Business Component Browser

IFiIe Wiew Create Database Help

m StoreServiceah A8 orders

-89 FindProductByld g
CuskomerRegistration [« < » M+
H-52| Products

-----] ProductOrdersCount Giftwrap?

) FindaddressestyId

%) ProductQuantities

7] LoggedInlser

7] pvailableCategoriesshy

Gift Wrapping Message
Calculated Total

=58 OrdersToOrderlten
o g'El Orderltems

% PaymentCptions

7] MostPopularProductsBy

7] FindordersById

% ProductsByCategaries

] FindPaymentOptionsBy

7] parentProductCateqati

) Addresses

7] CustomnerInfovo

) productCategories

] authenticatedUser

[R =

| >

Discaunt

Coupon Code

Shipping Address

LastUpdatedey

Cancelable?

£/

x. oy P 5,Bid £ LOV_TypedCoupon... [X]
" v<pngm |
Easy Code
$50.97
TENGFFFLLS
$10.00
[Help] [[o]4][Cancel
TENOFF [
3 |
0
|
F

Mame: StoreServiceAM. Orders Definition:oracle. fodemo, storefront. store. queties, Ordersito

5.13.8 What Happens When You Define an LOV for a View Object Attribute

When you define an LOV for a view object attribute, the view object metadata defines
the following additional information, as shown in Example 541 for the
OrdersV0.TypedCouponCode attribute in the Fusion Order Demo application.

» The <vViewAttribute> element names the attribute, points to the list binding
element that defines the LOV behavior, and specifies the component type to
display in the web page. For example, the LOV-enabled attribute TypedCouponCode
points to the list binding named LOV_TypedCouponCode and defines the
CONTROLTYPE input text field with list (input_text_lov) to display the LOV data.

When the user interface designer creates the web page using the Data Controls
panel, the <CONTROLTYPE Value="namedType"/> definition determines the
component that JDeveloper will add to the web page. When the component type
definition in the data model project does not match the component type displayed
in the web page, a runtime exception will result. For more information, see

5-126 Fusion Developer's Guide for Oracle Application Development Framework

Working with List of Values (LOV) in View Object Attributes

Section 5.13.9, "What Happens at Runtime: When an LOV Queries the List Data
Source."

s The <ListBinding> element defines the behavior of the LOV. It also identifies a
view accessor to access the data source for the LOV-enabled attribute. The view
accessor is the ADF Business Components mechanism that lets you obtain the full
list of possible values from the row set of the data source view object. For example,
ListVOName="Coupon" points to the Coupons view accessor, which accesses the
view object CouponsVo.

s The <ListBinding> element maps the list data source attribute to the LOV-enabled
attribute. For example, the ListAttrNames item EasyCode is mapped to the
LOV-enabled attribute TypedCouponCode.

= Optionally, the <ListBinding> element defines supplemental values that the data
source may return to attributes of the base view object other than the data source
attribute for which the list is defined. For example, DerivedAttrNames item
Couponldis a supplemental value set by the ListAttrNames item DiscountId.

s The <ListBinding> element also identifies one or more attributes to display from
the current row and provides a few options that are specific to the choice list type
component. For example, the ListDisplayAttrNames item EasyCode is the only
attribute displayed by the LOV-enabled attribute TypedCouponCode. In this
example, the value none for NullvalueFlag means the user cannot select a blank
item from the list.

Example 5-41 View Object MetaData For LOV-Attribute Usage

<ViewAttribute
Name="TypedCouponCode"
LOVName="LOV_TypedCouponCode"

<Properties>
<SchemaBasedProperties>
<CONTROLTYPE Value="input_text_lov"/>
</SchemaBasedProperties>
</Properties>
</ViewAttribute>

<ListBinding
Name="LOV_TypedCouponCode"
ListVOName="Coupons"
ListRangeSize="-1"
NullValueFlag="none"
NullValueId="LOV_TypedCouponCode_NullValueId"
MRUCount="0">
<AttrArray Name="AttrNames">
<Item Value="TypedCouponCode"/>
</AttrArray>
<AttrArray Name="DerivedAttrNames">
<Item Value="CouponId"/>
</AttrArray>
<AttrArray Name="ListAttrNames">
<Item Value="EasyCode"/>
<Item Value="DiscountId"/>
</AttrArray>
<AttrArray Name="ListDisplayAttrNames">
<Item Value="EasyCode"/>
</AttrArray>
</ListBinding>

Defining SQL Queries Using View Objects 5-127

Working with List of Values (LOV) in View Object Attributes

<ViewAccessor
Name="Coupons"
ViewObjectName="oracle.fodemo.storefront.store.queries.CouponsvVO" />

5.13.9 What Happens at Runtime: When an LOV Queries the List Data Source

The ADF Business Components runtime adds view accessors in the attribute setters of
the view row and entity object to facilitate the LOV-enabled attribute behavior. In
order to display the LOV-enabled attribute values in the user interface, the LOV
facility fetches the data source, and finds the relevant row attributes and mapped
target attributes.

The number of data objects that the LOV facility fetches is determined in part by the
ListRangeSize setting in the LOV-enabled attribute’s list binding definition, which is
specified in the Edit List of Values dialog that you display on the attribute from the
view object overview editor. If the number of records fetched is very large, the default
value for ListRangeSize may truncate the values available to the dropdown list
component used to display the records. The default number of fetched records for
LOV queries depends on the type of list component used to display the records. In the
case of the Combo Box with List of Values component and the Input Text with List of
Values component, the default value for ListRangeSize is 10. In the case of all other
types of list components that you can select (including choice list, combo box, list box,
and radio button group), the default value for ListRangeSize is set to -1. The value -1
means that the user will be able to view all the data objects from the data source. The
ListRangeSize value has no effect on the records that the end user can search on in the
lookup dialog displayed for the two List of Values type components. For more
information about how each list component displays values, see Section 5.13.4, "How
to Set User Interface Hints on a View Object LOV-Enabled Attribute."

Note that although you can alter the ListRangeSize value in the metadata definition
for the <ListBinding> element, setting the value to a discrete number of records (for
example, ListRangeSize="5") most likely will not provide the user with the desired
selection choices. Instead, if the value is -1 (default for simple list components without
a LOV dialog), then no restrictions are made to the number of records the list
component will display, and the user will have access to the full set of values.

Performance Tip: To limit the set of values a LOV displays, use a
view accessor to filter the LOV binding, as described in Section 5.13.1,
"How to Define a Single LOV-Enabled View Object Attribute."
Additionally, in the case of component types that display a choice list,
you can change the Most Recently Used Count setting to limit the list
to display the user’s previous selections, as described in Section 5.13.4,
"How to Set User Interface Hints on a View Object LOV-Enabled
Attribute."

Note, a runtime exception will occur when a web page displays a Ul component for an
LOV-enabled attribute that does not match the view object’s CONTROLTYPE definition.
When the user interface designer creates the page in JDeveloper using the Data
Controls panel, JDeveloper automatically inserts the list component identified by the
Default List Type selection you made for the view object’s LOV-enabled attribute in
the List UI Hint dialog. However, if the user interface designer changes the list type
subsequent to creating the web page, you will need to edit the selection in the List Ul
Hint dialog to match.

5-128 Fusion Developer's Guide for Oracle Application Development Framework

Defining Control Hints for View Objects

5.13.10 What You May Need to Know About Lists

There are several things you may need to know about LOVs that you define for
attributes of view objects, including how to propagate LOV-enabled attributes from
parent view objects to child view objects (by extending an existing view object) and
when to use validators instead of an LOV to manage a list of values.

5.13.10.1 Inheritance of AttributeDef Properties from Parent View Object Attributes

When a view object extends another view object, you can create the LOV-enabled
attribute on the base object. Then when you define the child view object in the
overview editor, the LOV definition will be visible on the corresponding view object
attribute. This inheritance mechanism allows you to define an LOV-enabled attribute
once and later apply it across multiple view objects instances for the same attribute.

You can also use the overview editor to extend the inherited LOV definition. For
example, you may add extra attributes already defined by the base view object’s query
to display in selection list. Alternatively, you can define a view object that uses a
custom WHERE clause to query the supplemental attributes not already queried by the
based view object. For information about customizing entity-based view objects, see
Section 5.10, "Working with Bind Variables."

5.13.10.2 Using Validators to Validate Attribute Values

If you have created an LOV-enabled attribute for a view object, there is no need to
validate the attribute using a List Validator. You only use an attribute validator when
you do not want the list to display in the user interface, but still need to restrict the list
of valid values. List validation may be a simple static list or it may be a list of possible
values obtained through a view accessor you define. Alternatively, you might prefer to
use Key Exists validation when the attribute displayed in the Ul is one that references
a key value (such as a primary, foreign, or alternate key). For information about
declarative validation in ADF Business Components, see Chapter 7, "Defining
Validation and Business Rules Declaratively."

5.13.10.3 LOV Limitation When Exposing Application Module as EJB Session Bean

A limitation exists related to LOV-enabled attributes when your application uses an
EJB Session Bean to expose application module services. The Data Controls panel
exposes these services in the user interface project, using data binding functionality,
and you will be able to create a databound LOV list component. However, at runtime,
the LOV list will appear empty. Additionally, if the LOV dialog includes search
capabilities, clicking the search link will result in a FacesCtrlSearchBinding exception
error. This is a known limitation of deploying the business services, as supported by
an EJB Session Bean, and the user interface in separate tiers.

5.14 Defining Control Hints for View Objects

One of the built-in features of ADF Business Components is the ability to define
control hints on view objects and attributes of view objects. Control hints are settings
that the view layer can use to automatically display the queried information to the
user in a consistent, locale-sensitive way. For example, in web pages, a UI developer
may access control hint values by entering EL expressions utility methods defined on
the bindings name space and specified for ADF binding instance names.

JDeveloper stores the hints in resource bundle files that you can easily localize for
multilingual applications.

Defining SQL Queries Using View Objects 5-129

Defining Control Hints for View Objects

5.14.1 How to Add Attribute-Specific Control Hints

To create control hints for attributes of a view object, use the overview editor for the
view object, which is accessible from the Application Navigator. You can also display
and edit control hints using the Property Inspector that you display for an attribute.

Before you begin:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object,"” and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To customize view object attribute with control hints:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and double-click the
attribute that you want to customize with control hints.

Alternatively, display the Property Inspector for the selected attribute and select
the UI Hints navigation tab. The Property Inspector provides a way to customize
the attribute’s control hints without using the Edit Attribute dialog.

3. In the Edit Attribute dialog, select Control Hints and define the desired hints.

For example, for an attribute UserId, you might enter a value for its Label Text
hint like "13" or set the Format Type to Number, and enter a Format mask of
00000.

4. C(lick OK.

Note: Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's SQL
and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and java.text.SimpleDateFormat classes.

5.14.2 How to Add View Object Control Hints

To create control hints for a view object, use the overview editor for the view object,
which is accessible from the Application Navigator. You can also display and edit
several additional control hints using the Property Inspector that you display for the
view object.

Before you begin:

It may be helpful to have an understanding of control hints. For more information, see
Section 5.14, "Defining Control Hints for View Objects."

You will need to complete this task:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object,"” and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To customize view objects with control hints:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the General navigation tab.

3. In the General page, enter a Display Name to define an EL accessible hint for the
view object name.

5-130 Fusion Developer's Guide for Oracle Application Development Framework

Defining Control Hints for View Objects

For example, for a view object Ordersv0, you might enter a value for its Display
Name hint like "Order".

4. With the General page displayed in the overview editor, open the Property
Inspector for the view object and expand the UI Hints section, and then enter
additional hints as needed.

For example, for a view object OrdersVv0, you might enter a value for the Display
Name (Plural) hint like "Orders" and, for the Description hint, you might enter a
value like "customer orders".

5.14.3 How to Access Control Hints Using EL Expressions

A Ul developer can access control hints using EL expressions and display the hint
values as data in a web page. The Ul developer may access control hints through the
ADF binding instances that they create after dropping databound components into
their web pages.

In the case of the view object hints, the UI developer accesses the view object hints
through the iterator binding defined for the view object. For example, assume that you
have configured the view object control hints as follows.

» OrdersV0 view object Display Name hint = Order

» OrdersV0 view object Display Name (Plural) hint = Orders

» OrdersV0 view object Description hint = customer orders

The Ul developer might display a header that makes use of these hints like this:

Showing customer orders number 10 of 51 Orders.

Example 5-42 shows that the EL expression that produces the above text. In this EL
expression the iterator binding OrdersvOlIterator provides access to the view object
hints. The names of the EL expression utility methods match the property names
defined in the view object XML definition file for the control hints. For example, the
view object property name labelPlural, which defines the Display Name (Plural)
hint, corresponds to the utility method name used in the expression
bindings.OrdersVOlIterator.hints.labelPlural.

Example 5-42 EL to Access View Object Control Hints

<af:panelHeader id="phl"
text="Showing #{bindings.OrdersVOlIterator.hints.description} number
#{bindings.Orderno.inputvValue} of
#{bindings.OrdersV0Ol.estimatedRowCount}
#{bindings.OrdersVOlIterator.hints.labelPlural}.">

5.14.4 What Happens When You Add Control Hints

When you define control hints for a view object or view object attributes, by default
JDeveloper creates a project-level resource bundle file in which to store them. For
example, when you define control hints for a view object in the StoreFront project,
JDeveloper creates the message bundle file named StoreFrontBundle. xxx for the
package. The hints that you define can be used by generated forms and tables in
associated view clients.

The type of resource bundle file that JDeveloper uses and the granularity of the file are
determined by settings on the Resource Bundle page of the Project Properties dialog.
By default, JDeveloper sets the option to Properties Bundle and generates one
.properties file for the entire data model project.

Defining SQL Queries Using View Objects 5-131

Defining Control Hints for View Objects

Alternatively, if you select the option in the Project Properties dialog to generate one
resource bundle per file, you can inspect the message bundle file for any view object
by selecting the object in the Application Navigator and looking in the corresponding
Sources node in the Structure window. The Structure window shows the
implementation files for the component you select in the Application Navigator. You
can inspect the resource bundle file for the view object by expanding the parent
package of the view object in the Application Navigator, as shown in Figure 5-50.

Figure 5-50 Resource Bundle File in Application Navigator

Application MNavigator | E]
. DevEuideExamples - N
Projects Bl & W &

ApplicationModules
B QueryingDataWith¥iewObjects
-7 Application Sources
EI@ devguide, examples.readonkyvo

Gl cliert

{ﬂ PersonService

[l queries
: |§| QueryingDatawithwiewObjectsBundle_it. properties
- QueryingDataiwithviewObjectsBundle. properties

For more information on the resource bundle options you can select, see Section 4.7.1,
"How to Set Message Bundle Options."

Example 5-43 shows a sample message bundle file where the control hint information
appears. The first entry in each String array is a message key; the second entry is the
locale-specific String value corresponding to that key.

Example 5-43 Resource File With Locale-Sensitive Control Hints

devguide.examples.readonlyvo.queries.Persons.PersonId_FMT FORMATTER=
oracle.jbo.format.Defaul tNumberFormatter
devguide.examples.readonlyvo.queries.Persons.PersonId_FMT FORMAT=00000
devguide.examples.readonlyvo.queries.Persons.PersonId_LABEL=Id
devguide.examples.readonlyvo.queries.Persons.Email_LABEL=Email Address
devguide.examples.readonlyvo.queries.Persons.LastName_LABEL=Surname
devguide.examples.readonlyvo.queries.Persons.FirstName_ LABEL=Given Name

5.14.5 How to Define Ul Category Hints

Ul categories provide the means to group attributes that a view object defines. The
category names that you create are identifiers to be used by the dynamic rendering
user interface to group attributes for display. The user interface will render the
attribute with other attributes of the same category. You can use the category hint to
aid the user interface to separate a large list of view object attributes into smaller
groups related by categories.

Additionally, you can specify the field order hint to reorder how the user interface will
render the attribute values within its category. For example, if a view object defines
four attributes attributea, attributeB, attributeC, and attributeD and you specify
the field order 4, 3, 2, and 1 respectively for each attribute, then wherever the user
interface renders the category, the attributes of that category will appear in the order
attributeD, attributeC, attributeB, and attributeA.

5-132 Fusion Developer's Guide for Oracle Application Development Framework

Defining Control Hints for View Objects

Note: Use the UI Categories page in the overview editor for the view
object to change the order of the attributes listed within a category
you've created. JDeveloper automatically assigns and maintains the
field order values of the attributes based on their order in the list, and
you do not need to edit numeric values to define the field order hint.

The category and field order hints will be utilized by any dynamic rendering user
interface that displays the attribute, including dynamic forms and search forms:

= In the case of dynamic forms, the attributes from each category will appear in a
separate tab.

s In the case of search forms, the order of the form’s individual view criteria is
determined by the field order and category assigned to the attribute upon which
the view criteria items are based.

To create Ul categories for attributes of a view object, use the overview editor for the
view object, which is accessible from the Application Navigator. You can create and
edit categories for the entire view object using the UI Categories page, as shown in
Figure 5-51.

Figure 5-51 Attribute Ul Categories in View Object Overview Editor

%2 CustomerInfoVO.xml * | ad
i =
©)

General
Entity Objects UI Categories
Attributes UI categories are used for dynamic user interfaces. Categories are presented as titled groups in the UL
Query Drag and drop to sequence attributes within categaries,
Row Finders
Java Categories e 3¢ Category UI Hints
View Accessors B Uncategorized Label Text: |C0ntact Information | Ck
List UL Hints L. Personld) (
UI Categories .58 FirstName Tooltip Text: | | \:k
~E LastMame Attribute UI Hints
- ContactInfo
&8 ConfirmedEmail
- 1obil=Phonehumber
- MemberInfo
¢ &8 MembershipTypeCode
(&8 Membershipld
A
Overview | Source | History |:|

When you assign a view object attribute to a category that you create in the Ul
Categories page, the order of the attributes displayed in the category list determines its
numeric field order. The Ul Categories page lets you change the field order of the
attributes you've assigned to a category by dragging and dropping attributes within
the list. When you drag and drop the attributes into the category lists, J]Developer

Defining SQL Queries Using View Objects 5-133

Defining Control Hints for View Objects

automatically maintains the correct sequence of the field order hints within the
category and displays the field order value of individual attributes in the Attribute Ul
Hints list of the Ul Categories page. Other attribute-level UI hints displayed in the Ul
Categories page are synchronized with settings in the UI Hints tab of the Attributes
page of the view object editor.

Each category can have a label and tooltip text string resource to be utilized by the
user interface when the category is rendered. You can localize these resource strings in
the resource bundle file that you select to store the entries. For example, Figure 5-52
shows the attributes ConfirmedEmail and MobilePhoneNumber with labels Confirmed
Email and Mobile Phone Number in a category with the label Contact Information.

Figure 5-52 Ul Categories Displayed in Oracle ADF Model Tester

I =, Oracle Business Component Browser (StoreServiceAl

File View Create Database Help

@ﬂ.

[=+%] CrdersToPaymen
E|§f| MyOrdersPay
Eframat K ¢ > N EXBB BV P
5% myor,
E}?{J PersonsToPaymentOptior Contactlnfo
ffl ----- PaymentOptionsForl:
E}ﬁ] PersonsToPersonsinteres
= §f| CustomerInterestsVo
----- £ AvailableCategoriesShuttlelis
S| Customerinolo!
[=}-%=] CustomerRegistration
E}ﬁ] CustomerRegistrationToC =
?fl ----- CustomerAddress
E‘?ﬂ CustomerRegistrationToC MembershipTypeCode |PERS
8 selectedCategoriesst
E}ﬁ] CustomerRegistrationToC
= §f| CustomerPaymentOp
----- £ Featuredtem
| FindaddressesById
) FindordersByld Personld |110
| FindPaymentOptionsByld FirstName |John
| MostPopularProductsByCateg il Lasthame |Chen
28 MuShanninalart

gﬂ CustomerInfovO1 l

Confirmed Email |JCHEN
Mobile Phone Number

MemberInfo

Membershipld |1

3

Name:StoreServiceAM. CustomerInfoVO1 Definition:orade. fodemo.storefront. store. queries. CustomerInfovo

Before you begin:
You will need to complete these tasks:
» Create the desired view objects, as described in Section 5.2.1, "How to Create an

Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

= Optionally, specify attribute UI hints, as described in Section 5.14.1, "How to Add
Attribute-Specific Control Hints." Attribute UI hints are displayed read-only in the
UI Categories page of the view object editor.

To create user interface categories and reorder the attributes for display:

1. Inthe Application Navigator, double-click the view object that you want to
customize with user interface categories.

2. In the overview editor, click the UI Categories navigation tab.

3. In the UI Categories page, click the Create New Category button to create the
category and then right-click the new category and choose Rename.

4. In the Rename dialog, enter the name of the category.

5-134 Fusion Developer's Guide for Oracle Application Development Framework

Defining Control Hints for View Objects

5. In the overview editor, in the UI Hints section, enter the user interface Label Text
and Tooltip Text for the category.

The text that you enter will be added to the default resource bundle file for the
project, as described in Section 5.14.4, "What Happens When You Add Control
Hints." To select a different resource bundle file to store the label and tooltip
strings, click the browse (. . .) button beside the text field.

6. In the Categories list, expand the Uncategorized list and scroll the list of attributes
to locate the attribute you want to add to a category.

The Uncategorized list displays all the attributes that the view object you are
editing defines. This list is displayed by the overview editor as a selection list for
the creation of UI Category hints. Attributes that you leave in the Uncategorized
list will appear by default above the attribute categories displayed in the user
interface.

7. Select the desired attribute and drag it into the new category you created. If the
category contains more than one attribute, the position of the attribute that you
drop into the list will determine its field order value.

Developer automatically assigns a numeric value to the field order hint based on
the sequence of the attributes that appear within a UI Category list. The attribute
you place at the top of a category list will be rendered by the user interface first,
the attribute second in the list will be rendered second, and so on. The field order
hint appears in the Attribute UI Hints list of the UI Categories page and is not
editable. The hint value is also visible in the source for the view object definition
and should not be edited in the source.

5.14.6 What Happens When You Assign Attributes to Ul Categories

When you define attribute Ul categories for a view object, JDeveloper updates the
view object’s XML document file. JDeveloper adds the CATEGORY and the FIELDORDER
UI hints in the <SchemaBasedProperties> element of the <ViewAttribute> element.
The definition of the categories appears in a new <Category> element.

The metadata in Example 5-44 shows that the ConfirmedEmail attribute’s CATEGORY
hint refers to the ContactInfo category and the MembershipTypeCode attribute’s
CATEGORY hint refers to the MemberInfo category. The definition for both categories
appears in <Category> elements. The FIELDORDER hint for each attribute specifies a
numeric value, which JDeveloper assigns and maintains based on the order of the
attributes in the UI categories lists you create in the overview editor. As shown in
Example 5-44, the FIELDORDER hint is a decimal value. A decimal value is used by
JDeveloper to allow you to insert new attributes into a category without requiring
JDeveloper to change all the existing attribute values and still be able to maintain the
correct order.

Note that the default field order value for the first attribute in a category is assigned by
JDeveloper as 0. 0. The field order value can be changed to any number to sort the
category list, and it is not an index. The field order numeric values do not need to be
contiguous.

Example 5-44 View Object MetaData for Attribute Ul Category Hints

<Category
Name="ContactInfo">
<Properties>
<SchemaBasedProperties>
<FIELDORDER
Value="0.0"/>

Defining SQL Queries Using View Objects 5-135

Defining Control Hints for View Objects

<LABEL
ResId="ContactInfo LABEL"/>
</SchemaBasedProperties>
</Properties>
</Category>
<Category
Name="MemberInfo">
<Properties>
<SchemaBasedProperties>
<FIELDORDER
Value="1.0"/>
</SchemaBasedProperties>
</Properties>
</Category>

<ViewAttribute
Name="ConfirmedEmail"
IsUpdateable="false"
IsPersistent="false"
PrecisionRule="true"
Precision="25"
Type="java.lang.String"
ColumnType="VARCHAR2"
AliasName="CONFIRMED_EMAIL"
Expression="CONFIRMED_EMAIL"
SQLType="VARCHAR" >
<DesignTime>
<Attr Name="_DisplaySize" Value="25"/>
</DesignTime>
<Properties>
<SchemaBasedProperties>
<LABEL
ResId="ConfirmedEmail LABEL"/>
<CATEGORY
Value="ContactInfo"/>
<FIELDORDER
Value="0.0"/>
</SchemaBasedProperties>
</Properties>
</ViewAttribute>

<ViewAttribute
Name="MembershipTypeCode"
IsUpdateable="false"
IsPersistent="false"
PrecisionRule="true"
Precision="30"
Type="java.lang.String"
ColumnType="VARCHAR2"
AliasName="MEMBERSHIP_TYPE_CODE"
Expression="MEMBERSHIP_TYPE_CODE"
SQLType="VARCHAR" >
<DesignTime>
<Attr Name="_DisplaySize" Value="30"/>
</DesignTime>
<Properties>
<SchemaBasedProperties>
<CATEGORY
Value="MemberInfo"/>
<FIELDORDER

5-136 Fusion Developer's Guide for Oracle Application Development Framework

Adding Calculated and Transient Attributes to a View Object

Value="0.0"/>
</SchemaBasedProperties>
</Properties>
</ViewAttribute>

5.14.7 What You May Need to Know About Resource Bundles

Internationalizing the model layer of an application built using ADF Business
Components entails producing translated versions of each component’s resource
bundle file. For example, the Italian version of the
QueryDataWithViewObjectsBundle.properties file would be a file named
QueryDataWithViewObjectsBundle_it.properties, and a more specific Swiss Italian
version would have the name QueryDataWithViewObjectsBundle_it_ch.properties.

Resource bundle files contain entries for the message keys that need to be localized,
together with their localized translation. For example, assuming you didn't want to
translate the number format mask for the Italian locale, the Italian version of the
QueryDataWithViewoObjects view object message keys would look like what you see
in Example 5-45. At runtime, the resource bundles are used automatically, based on
the current user's locale settings.

Example 5-45 Localized View Object Component Resource Bundle for Italian

devguide.examples.readonlyvo.queries.Persons.PersonId_FMT FORMATTER=
oracle.jbo.format.Defaul tNumberFormatter
devguide.examples.readonlyvo.queries.Persons.PersonId_FMT FORMAT=00000
devguide.examples.readonlyvo.queries.Persons.PersonId_LABEL=Codice Utente
devguide.examples.readonlyvo.queries.Persons.Email_LABEL=Indirizzo Email
devguide.examples.readonlyvo.queries.Persons.LastName_LABEL=Cognome
devguide.examples.readonlyvo.queries.Persons.FirstName_LABEL=Nome

5.15 Adding Calculated and Transient Attributes to a View Object

In addition to having attributes that map to underlying entity objects, your view
objects can include calculated attributes that don't map to any entity object attribute
value. The two kinds of calculated attributes are known as:

» SQL-calculated attributes, when their value is retrieved as an expression in the SQL
query's SELECT list

» Transient attributes, when their value is not retrieved as part of the query

A view object can include an entity-mapped attribute which itself is a transient
attribute at the entity object level.

5.15.1 How to Add a SQL-Calculated Attribute

You use the overview editor for the view object to add a SQL-calculated attribute.

Before you begin:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To add a SQL-calculated attribute to a view object:

1. In the Application Navigator, double-click the view object for which you want to
define a SQL-calculated attribute.

Defining SQL Queries Using View Objects 5-137

Adding Calculated and Transient Attributes to a View Object

2. Inthe overview editor, click the Attributes navigation tab and click the Create
new attribute button.

In the New View Object Attribute dialog, enter a name for the attribute.
Set the Java attribute type to an appropriate value.

Select the Mapped to Column or SQL checkbox.

o o k~ w

Provide a SQL expression in the Expression field.

For example, to change the order of first name and last name, you could write the
expression LAST NAME| | ', '||FIRST_NAME, as shown in Figure 5-53.

Figure 5-53 New SQL-Calculated Attribute

© New View Object Attribute 3
Attribute Updatable
Marme: | LaskCammaFirst |
Tvpe: |String hd ||§rowse... |

Property Set: | <Mone=

M|

VYalue Type: (3) Literal (O) Expression

Walue: |

|| Edit... | () Aluays

Mapped ko Coluran or SQL
Selected in Query

() while Mew

[key Attribute
Queryahle

(3) Newer

[] iscriminatar:
[] Passivate

Query Column

Alias: |LasT_comma_FIRST Type: |VARCHARZ(62)

Expression: || as1 naME|[, '||FIRST_NAME

| Help | | (o4 | | Cancel |

7. Consider changing the SQL column alias to match the name of the attribute.

8. Verify the database query column type and adjust the length (or precision/scale)
as appropriate.

9. C(lick OK.

5.15.2 What Happens When You Add a SQL-Calculated Attribute

When you add a SQL-calculated attribute in the overview editor for the view object,
JDeveloper updates the XML document for the view object to reflect the new attribute.
The entity-mapped attribute’s <ViewAttribute> tag looks like the sample shown in
Example 5-46. The entity-mapped attribute inherits most of it properties from the
underlying entity attribute to which it is mapped.

Example 5-46 Metadata For Entity-Mapped Attribute

<ViewAttribute
Name="LastName"
IsNotNull="true"
EntityAttrName="LastName"
EntityUsage="Userl"
AliasName="LAST NAME" >

</ViewAttribute>

5-138 Fusion Developer's Guide for Oracle Application Development Framework

Adding Calculated and Transient Attributes to a View Object

Whereas, in contrast, a SQL-calculated attribute's <vViewAttribute> tag looks like
sample shown in Example 5-47. As expected, the tag has no EntityUsage or
EntityAttrName property, and includes datatype information along with the SQL
expression.

Example 5-47 Metadata For SQL-Calculated Attribute

<ViewAttribute
Name="LastCommaFirst"
IsUpdatable="false"
IsPersistent="false"
Precision="62"
Type="java.lang.String"
ColumnType="VARCHAR2"
AliasName="FULL_NAME"
Expression="LAST_NAME||', '||FIRST_NAME"
SQLType="VARCHAR" >

</ViewAttribute>

Note: The ' is the XML character reference for the apostrophe.
You reference it by its numerical ASCII code of 39 (decimal). Other
characters in literal text that require similar construction in XML are
the less-than, greater-than, and ampersand characters.

5.15.3 How to Add a Transient Attribute

Transient attributes are often used to provide subtotals or other calculated expressions
that are not stored in the database.

Before you begin:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To add a transient attribute to a view object:
1. In the Application Navigator, double-click the view object for which you want to
define a transient attribute.

2. In the overview editor, click the Attributes navigation tab and click the Create
new attribute button.

3. In the New View Object Attribute dialog, enter a name for the attribute.
4. Set the Java attribute type to an appropriate value.

For example, a calculated attribute that concatenates a first name and a last name
would have the type String, as shown in Figure 5-54.

Defining SQL Queries Using View Objects 5-139

Adding Calculated and Transient Attributes to a View Object

Figure 5-54 New Transient Attribute

& New View Object Attribute

e] |

Aktribute Updatable

[Marme: | FirstDokLask |

Tvpe: | Skring - || Erowse. .. |

Property Set: | <Mone= - |

Value Type: (3) Literal (O) Expression

Walue: | “ Edit...

[Mapped to Column or SQL [key Attribute

Queryahle
[] Discriminatar:

[] Passivate

Query Calurmn

Cancel |

5.
6.

Leave the Mapped to Column or SQL checkbox unselected.
Click OK.

To create a transient attribute based on an expression:

1.

In the Application Navigator, double-click the view object for which you want to
define a transient attribute.

In the overview editor, click the Attributes navigation tab and click the Create
new attribute button.

In the New View Object Attribute dialog, enter a name for the attribute.
Set the Java attribute type to an appropriate value.

Leave the Mapped to Column or SQL checkbox unselected.

A transient attribute does not include a SQL expression.

Next to the Value field, click Edit to define an expression that calculates the value
of the attribute.

Expressions you define will be evaluated using the Groovy Expression Language.
Groovy lets you insert expressions and variables into strings. The expression will
be saved as part of the view object definition. For more information about Groovy,
see Section 3.6, "Overview of Groovy Support.”

In the Edit Expression dialog, enter an expression in the field provided.

Attributes that you reference can include any attribute that the base entity objects
define. Do not reference attributes in the expression that are not defined by the
view object’s underlying entity objects.

Select the appropriate recalculate setting.

If you select Always (default), the expression is evaluated each time any attribute
in the row changes. If you select Never, the expression is evaluated only when the
row is created.

You can optionally provide a condition for when to recalculate the expression.

5-140 Fusion Developer's Guide for Oracle Application Development Framework

Adding Calculated and Transient Attributes to a View Object

For example, the following expression in the Based on the following expression
field causes the attribute to be recalculated when either the Quantity attribute or
the UnitPrice attribute are changed:

return (adf.object.isAttributeChanged("Quantity") ||
adf.object.isAttributeChanged ("UnitPrice"));

10. When either the value expression or the optional recalculate expression that you
define references an attribute from the base entity object, you must define this as a
dependency in the Edit Expression dialog. Locate each attribute in the Available
list and shuttle it to the Selected list.

11. Click OK to save the expression and return to the New View Object Attribute
dialog.
12. Click OK.

A view object can include an entity-mapped attribute which itself is a transient
attribute at the entity object level.

To add a transient attribute from an entity object to an entity-based view object:
1. In the Application Navigator, double-click the view object for which you want to
add a transient attribute based on an entity usage.

2. In the overview editor, click the Attributes navigation tab and click the Add From
Entity button.

3. In the Attributes dialog, move the desired transient attribute from the Available
list into the Selected list.

4. Click OK.

If you use the Business Component Browser to test the data model, you can see the
usage of your transient attributes. Figure 5-55 shows three attributes that were created
using a SQL-calculated attribute (LastCommaFirst), a transient attribute
(FirstDotLast) and an entity-derived transient attribute (FullName).

Figure 5-55 View Object with Three Kinds of Calculated Attributes

SRService, StaffList
L P X Gl aX

User Id: | 305
Ermnail Address: | daustin
First Mame: | David

Last Mame: | Austin

5.15.4 How to Add a Validation Rule to a Transient Attribute

Attribute-level validation rules are triggered for a particular view object transient
attribute when either the end user or the program code attempts to modify the
attribute's value. Since you cannot determine the order in which attributes will be set,
attribute-level validation rules should be used only when the success or failure of the
rule depends exclusively on the candidate value of that single attribute.

The process for adding a validation rule to a view object transient attribute is similar to
create declarative validation rules, and is done using the Add Validation Rule dialog.

Defining SQL Queries Using View Objects 5-141

Adding Calculated and Transient Attributes to a View Object

You can open this dialog from the overview editor for the view object by clicking the
Add Validation Rule icon on the Attributes page. You must first select the transient
attribute from the attributes list.

To add a validation rule for a transient attribute:
1. In the Application Navigator, double-click the desired view object.

2. Click the Attributes navigation tab on the overview editor.

3. Select the transient attribute for which you want to add a validation rule, expand
the Validation Rules section, and then click the Add Validation Rule icon.

When you add a new validation rule, the Add Validation Rule dialog appears.
4. Select the type of validation rule desired from the Rule Type dropdown list.
5. Use the dialog settings to configure the new rule.

The controls will change depending on the kind of validation rule you select. For
more information about the different validation rules, see Section 7.4, "Using the
Built-in Declarative Validation Rules."

6. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

8. Click OK.

5.15.5 What Happens When You Add a Transient Attribute

When you add a transient attribute in the overview editor for a view object,
JDeveloper updates the XML document for the view object to reflect the new attribute.
A transient attribute's <ViewAttribute> tag in the XML is similar to the
SQL-calculated one, but it lacks an Expression property.

When you base a transient attribute on a Groovy expression, a
<TransientExpression> tag is created within the appropriate attribute, as shown in
Example 5-48.

Example 548 Calculating a Transient Attribute Using a Groovy Expression
<TransientExpression>
<! [CDATA[
((Quantity == null) ? 0 : Quantity) * ((UnitPrice == null) ? 0 : UnitPrice)
11>
</TransientExpression>

5.15.6 Adding Java Code in the View Row Class to Perform Calculation

A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to While New or Always, the end user can enter a
value for the attribute. If you want the transient attribute to display a calculated value,
then you'll typically leave the Updatable property set to Never and write custom Java
code that calculates the value.

After adding a transient attribute to the view object, to make it a calculated transient
attribute you need to enable a custom view row class and choose to generate accessor

5-142 Fusion Developer's Guide for Oracle Application Development Framework

Adding Calculated and Transient Attributes to a View Object

methods, in the Java dialog that you open clicking the Edit icon on the Java page of the
overview editor for the view object. Then you would write Java code inside the
accessor method for the transient attribute to return the calculated value.

Example 5-48 shows the StaffListRowImpl.java view row class contains the Java
code to return a calculated value in the getLastCommaFirst () method.

// In StaffListRowImpl.java

public String getFirstDotLast() {
// Commented out this original line since we're not storing the value
// return (String) getAttributeInternal (FIRSTDOTLAST) ;
return getFirstName().substring(0,1)+". "+getLastName();

}

5.15.7 What You May Need to Know About Transient Attributes

The view object includes the SQL expression for your SQL-calculated attribute in the
SELECT list of its query at runtime. The database is the one that evaluates the
expression, and it returns the result as the value of that column in the query. The value
is reevaluated each time you execute the query.

Defining SQL Queries Using View Objects 5-143

Adding Calculated and Transient Attributes to a View Object

5-144 Fusion Developer's Guide for Oracle Application Development Framework

6

Working with View Object Query Results

This chapter describes how to interactively test ADF view objects query results using
the Business Component Browser provided in JDeveloper. This chapter also explains
how to use the Business Components API to access view object instances in a test
client outside of JDeveloper.

This chapter includes the following sections:
» Section 6.1, "Introduction to View Object Runtime Behavior"
= Section 6.2, "Creating an Application Module to Test View Instances"

» Section 6.3, "Testing View Object Instances Using the Business Component
Browser"

= Section 6.4, "Testing View Object Instances Programmatically"

6.1 Introduction to View Object Runtime Behavior

JDeveloper includes an interactive application module testing tool that you can use to
test all aspects of its data model without having to use your application user interface
or write a test client program. Running the Business Component Browser can often be
the quickest way of exercising the data functionality of your business service during
development.

Note: When you want to test an application module
programmatically, you can write a test client. For more information,
see Section 6.4.2, "How to Create a Command-Line Java Test Client."
When you want to log query execution, use the ADF Logger. For more
information, see Section 31.5, "Using the ADF Logger."

Using the Business Component Browser, you can simulate an end user interacting
with your application module data model before you have started to build any custom
user interface of your own. Even after you have your Ul pages constructed, you will
come to appreciate using the Business Component Browser to assist in diagnosing
problems when they arise. You can reproduce the issues in the Business Component
Browser to discover if the issue lies in the view or controller layers of the application,
or is instead a problem in the business service layer application module itself.

6.2 Creating an Application Module to Test View Instances

Before you can test view objects that you create in your data model project, you must
create an application module where you will define instances of the view objects you

Working with View Object Query Results 6-1

Creating an Application Module to Test View Instances

want to test. The application module is the transactional component that the Business
Component Browser (or Ul client) will use to work with application data. The set of
view obje